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ABSTRACT 

Zinc oxide nanoparticles (ZnO NPs), one among the most widely used metal oxide 

nanomaterias, has unique properties, such as optoelectronic property, UV emission, transparent 

conductivity, piezoelectricity, UV absorption and reflection, those make ZnO NPs to be currently 

used in a broad range of products. Such widespread and expanding production and use increase the 

potential for their release into the environment, in US, Euorpe, and China. With the vast releasing of 

ZnO NPs, the ecotoxic risk had drawn much research interest in the last decades. The aquatic 

ecosystem is the final destination of the released ZnO NPs and the coastal seawaters takes into the 

most of discharge. 

At least three distinct mechanisms of the toxic action of ZnO NPs, released toxic Zn2+ 

effect, surface interactions with media may produce toxic substance were report, and photo- induced 

toxicity, were reported.  

Based on the published literatures reviewing, several research points on ecotoxicity of 

ZnO NPs towards algae and mussel in marine environment were still unexplored and some 

represent aims of this study.  

• ZnO NPs could have a specific behavior and effect in diverse marine seawaters. To this 

aim the full characterization of ZnO NP dissolution, aggregation, and sedimentation once 

dispersed into a standard Artificial Sea Water (ASW) and a Reconstituted Sea Water 

(RSW) from East China Sea was performed. 

• The ecotoxicity of ZnO NPs upon a green alga and a diatom would be different. To assess 

the diverse toxicity upon different algae, growth inhibition algal assays were performed. 

Additionally, to verify the hypothesis about the role of nano size in the overall toxicity, 

ZnO bulk, and Zn salt toxicity were assessed as well. 

• ZnO NP toxicity towards mussels under a chronic exposure could be shown by Zn 

bioaccumulation, tissue damages, and transcription of apoptosis and antioxidation-related 

genes. The hypothesis that nano size plays an important role in its toxicity was also 

considered together with the all previous ones for mussel M. galloprovincialis. 

The obtained results answered to the all hypotheses. Behaviors of ZnO NPs and bulk in 
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different artificial seawater were observed indicating that the primary size of ZnO in suspensions 

could affect the aggregating rate in higher concentration. The behaviors of ZnO NPs dispersed into 

ASW and RSW have similar changing trends with some slight differences. Comparative toxicity of 

ZnO NPs, bulk, and Zn salt towards marine algae indicated that the nano size plays a key role in the 

overall ZnO toxicity. Zn bioaccumulation and histological damages were observed for mussel 

exposed to ZnO NPs, bulk, and Zn salt. Pristine ZnO particle size influences the overall toxicity and 

the rank was represented by three levels of injury (in gill, digestive gland, and gonad): low for bulk; 

medium for NPs and high for salts. Ecotoxicity of ZnO NPs in mussel revealed by transcription of 

apoptosis and antioxidation-related genes indicated that active response to ZnO NP exposure which 

induced DNA damage and oxidant injury contributing to the overall toxicity. In conclusion, zinc 

oxide nanoparticles induced ecotoxicolgical stress to two algae and a mussel in marine environment 

that were related to the ROS-induced property. 
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0 PREFACE 

0.1 Review on the production and application of Zinc oxide nanoparticles 

Zinc oxide nanoparticles (ZnO NPs), one among the most widely used metal oxide 

nanomaterias, has a wurtzite crystal structure contributing to its unique optoelectronic properties 

(Wang, 2004). Besides, many other characteristics such as UV emission, transparent conductivity, 

and piezoelectricity make ZnO NPs particularly attractive for electronic sensor, solar voltaics, and 

transducer applications (Ma et al., 2013). It is also a very effective photo catalyst material with 

excellent properties of UV absorption and reflection (Hoffmann et al., 1995). Those properties make 

ZnO NPs to be currently used in a broad range of products including plastics, ceramics, rubber, 

lubricants, paints, foods (source of Zn nutrient), batteries, fire retardants, personal care products, 

medical disinfection, etc. (Porter, 1991; Mitchnick et al., 1999; Battez et al., 2008; Padmavathy & 

Vijayaraghavan, 2008; Wilkie & Morgan, 2009; Ma et al., 2013). Consequently a huge quantity of 

ZnO NPs was produced per year for industrial use (Klingshirn, 2007). 

Such widespread and expanding production and use increase the potential for their 

release into the environment. Keller et al. (2014) estimated that ZnO together with titanium dioxide, 

represent 94 % of Engineered Nano Material (ENMs) released into the environment from the use of 

personal care products in US. Particularly, an amount of 3700 mt ZnO ENMs flowing into water 

system each year was estimated (Keller et al., 2013). Gottschalk et al. (2009) reported the modeled 

environmental concentration of nano ZnO in surface water (0.010 μg/L in Euorpe, 0.001 μg/L in 

U.S.), sediment (2.90 μg/L in Euorpe, 0.51 μg/L in U.S.), and soil (0.093 μg/L in Euorpe, 0.050 

μg/L in U.S.).  On the other side, with the rapid economic development, China become the largest 

nanomaterial market in the Pacific-Asia (Gao et al., 2013). It was also estimated that about 36000 kt 

of ZnO NPs could be discharged by wastewater and dust deposition into China‘s aquatic 

environments only in 2017 (Gao et al., 2013). 

0.2 Review on the ecotoxicological risk of release of ZnO NPs to the 

environment 
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Fig. 0.2-1 ZnO NPs fate and effect in the environment. 

With the vast releasing of ZnO NPs discharged from widespread and expanding 

production, the ecotoxic risk had drawn much research interest in the last decades. Fig. 0.2-1 shows 

the fate of released ZnO NPs and effect to environmental organisms of different taxa in soil and 

aquatic ecosystem. Rainfall and surface runoff are the main power to move ZnO from the soil to the 

ocean. Dissolving into water, aggregating to be bulk and sink into sediment, and combining with 

organic object into the transformation of ecosystem could be the main three paths of the released 

ZnO NPs. The discharged ionic Zn, ZnO aggregates, and other types of compound covered ZnO 

directly and indirectly interacted with organism in soil, freshwater and seawater.  

Excluding landfill,  soil takes the most amounts of released ZnO NPs (Keller & Lazareva, 

2013; Keller et al., 2013; Keller et al., 2014). A relatively broad range of species, such as, plants: 

radish, rape, ryegrass, lettuce, corn, cucumber (Lin & Xing, 2007), zucchini (Stampoulis et al., 

2009), garden cress, broad bean (Manzo et al., 2011), and wheat (Du et al., 2011), and invertebrates: 

nematode (Ma et al., 2009; Wang et al., 2009; Khare et al., 2011; Ma et al., 2011), earthworm (Hu et 

al., 2010; Li et al., 2011), soil arthropod (Manzo et al., 2011), isopod (Pipan-Tkalec et al., 2010), 

have been investigated under soil exposure.  Both discharged zinc ions and particles-dependent 

effect were reported to contribute to the toxicity of ZnO NPs at 2000 mg/L towards plants by seed 

germination inhibition and root elongation termination (Lin & Xing, 2007). However, Stampoulis et 
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al. (2009) did not observe any ecotoxic effect of both ZnO NPs and bulk at 1000 mg/L to zucchini. 

Manzo et al. (2011) reported the root elongation inhibition to garden cress and genotoxicity to Vicia 

faba caused by ZnO NPs. Also, Du et al. (2011) reported the reduced biomass of wheat and the Zn 

uptake indicating the discharged ionic Zn contributed the overall toxicity of ZnO NPs. Effects of 

lethality, behavior, reproduction, and transgene expression of adult nematode caused by ZnO NPs at 

several hundred mg/L represented relatively low toxicity (Ma et al., 2009), however, ZnO NPs 

showed highly toxicity to larval nematode (Wang et al., 2009), that the whole toxicity was based on 

Zn ions from dissolution. Comparing of LC50s of two different size ZnO NPs indicated that the 

initial size of ZnO contributed the toxicity towards nematode (Khare et al., 2011). Manzo et al. 

(2011) reported the difference of ecotoxicity of ZnO NPs towards two arthropods: 100% mortality 

in Heterocypris incongruens and no effects on the reproduction of Folsomia candida, indicating 

particle-dependent effect is the base of toxicity. However, Pipan-Tkalec et al. (2010) found that 

ZnO NPs dissolution is responsible for Zn bioaccumulation in isopod. The aquatic ecosystem is the 

final destination of pollutants and therefore river, lake, in particular seawaters, could be subject to 

ZnO NPs pollution coming through water movement. 

In freshwater, many different organisms were utilized for ecotoxicological assessment of 

ZnO NPs potential impact: algae (Franklin et al., 2007; Aruoja et al., 2009; Aravantinou et al., 2015; 

Bhuvaneshwari et al., 2015), crustaceans (Heinlaan et al., 2008; Wiench et al., 2009; Zhu et al., 

2009b; Blinova et al., 2010), mollusks (Ali et al., 2012), fishes (Zhu et al., 2008; Zhu et al., 2009a; 

Bai et al., 2010; Johnston et al., 2010; Yu et al., 2011; Hao & Chen, 2012; Bessemer et al., 2015; 

Suganthi et al., 2015), and amphibian (Nations et al., 2011a; Nations et al., 2011b). Aruoja et al. 

(2009) and Franklin et al. (2007) reported that dissolution of ZnO NPs played a role in causing 

toxicity upon microalgae Pseudokirchneriella subcapitata. Aravantinou et al. (2015) observed the 

growth rate inhibition of the freshwater algae Chlorococcum sp. and Scenedesmus rubescens under 

ZnO NPs exposure and suggested that the toxic effect is related also to the culture medium type. In 

addition, Bhuvaneshwari et al. (2015) reported that the toxicity of ZnO NPs upon the freshwater 

alga Scenedesmus obliquus was mainly related to the initial size and concentrations of NPs, the 

illumination conditions and dissolution. Heinlaan et al. (2008) and Blinova et al. (2010) reported the 

lethal concentration of ZnO NPs towards freshwater crustaceans Daphnia magna and 

Thamnocephalus platyurus suggesting the toxicity was dependent on ionic Zn. However, Wiench et 
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al. (2009) suggested that the toxicity towards D. magna was independent of primary size of NPs, 

coating, aggregation, culture medium or the pretreatment of NPs suspensions. Ali et al. (2012) 

reported the genotoxicity in digestive gland cells of freshwater snail Lymnaea luteola exposed to 

ZnO NPs attributed to oxidative stress. Zhu et al. (2008), Zhu et al. (2009a), and (Bai et al., 2010) 

focused on the embryo hatching rate of zebrafish exposed to ZnO NPs indicating dissolved Zn2+ 

and ZnO aggregates contributed to the toxicity. However, Yu et al. (2011) suggested that the 

aggregation and sedimentation of ZnO NPs inhibited the toxic effect. Hao & Chen (2012) reported 

the toxicity of ZnO NPs towards carp Cyprinus carpio on the changes of activity of antioxidative 

enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and lipid 

peroxidation (LPO). The exposure of ZnO NPs caused significant decreasing of enzymes activities 

and increasing of LPO indicating oxidative stress generation. Johnston et al. (2010) detected limited 

ZnO NPs uptake in zebrafish tissues suggesting limited invading ability directly to organisms. 

Bessemer et al. (2015) evidenced oxidative and cellular stress in gill of a freshwater teleost fish 

Catostomus commersonii exposed to ZnO NPs that leaded gill neuroepithelial cells activation and 

then caused a hypoxic response of the whole adult fish body. Suganthi et al. (2015) reported 

decreased immune cells in freshwater fish Oreochromis mossambicus blood caused by acute 

exposure of ZnO NPs. Limited studies reported ZnO NP toxicity to amphibians. Nations et al. 

(2011a); Nations et al. (2011b) reported developmental abnormalities, high mortality, and 

metamorphosis inhibition in Xenopus laevis by ZnO NPs exposure. 

Since the destination of ZnO is eventually the coastal seawaters, marine organisms were 

largely used in the evaluation effects as well: many studies are about marine algae (Brayner et al., 

2010; Miao et al., 2010; Miller et al., 2010; Wong et al., 2010; Aravantinou et al., 2015; Suman et 

al., 2015), marine amphipod (Fabrega et al., 2012), marine crustaceans (Wong et al., 2010; Manzo 

et al., 2013), marine bivalves (Montes et al., 2012; Trevisan et al., 2014a; Trevisan et al., 2014b), 

marine fish (Wong et al., 2010). Brayner et al. (2010) reported that the photosynthesis of 

cyanobacteria Anabaena flos-aquae and lethality rate of microalgae Euglena gracilis euglenoid 

were affected by ZnO NPs. Miao et al. (2010) suggested that the dissolved ionic Zn was the only 

determinant of ZnO NPs toxicity to the marine diatom Thalassiosira pseudonana. The growth assay 

of four marine algae Skeletonema marioni, T. pseudonana, Dunaliella tertiolecta, and Isochrysis 

galbana under ZnO NPs exposure were performed by Miller et al. (2010) indicating the uptake of 
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Zn2+ dissolved from NPs contributed the toxicity. Wong et al. (2010) performed the growth assay of 

two marine diatoms Skeletonema costatum and T. pseudonana exposed to ZnO NPs suggesting free 

Zinc ions from the dissolution of ZnO could be contributed to the toxicity. Aravantinou et al. (2015) 

examined the growth rate of two marine species D. tertiolecta and T. suesica exposed ZnO NPs and 

found that the toxic effect attributed on algal species, exposure time and concentrition of NPs, and 

primarily the type of culture medium for algae. Suman et al. (2015) tested the level of several 

molecular biomarkers in marine algae Chlorella vulgaris exposed to ZnO NPs and suggested high 

level of Zn2+ from dissolution of NPs contributed to the dose-dependent toxicty. However, on 

marine amphipod, Fabrega et al. (2012) suggested the toxicity of ZnO NPs can not only contributed 

to the ionic Zn from dissolution. But still, Wong et al. (2010) performed the mortality assay of the 

crustaceans Tigriopus japonicus and Elasmopus rapax exposed to ZnO NPs suggesting that free 

Zinc ions could contribute to the toxicity.  In addition, Manzo et al. (2013) reported for sea urchin 

Paracentrotus lividus exposed to ZnO NPs, that the fertilization and early development of embryos 

were affected not only by free Zn ions but that also the interactions between ZnO aggregates and 

sea urchin/seawater play a role in the toxicity. For marine bivalves M. galloprovincialis, Montes et 

al. (2012) applied a observation of invaded ZnO NPs in mussel tissues by scanning electron 

microscope and suggested that ZnO NPs remained in the mussel body indicating a 

biotransformation could be real. The gill was suggested to be the first organ in Pacific oysters 

Crassostrea gigas (Trevisan et al., 2014a) and brown mussels Perna perna (Trevisan et al., 2014b) 

to be attacked by ZnO NPs. Wong et al. (2010) detected the protein level of three molecular 

biomarkers SOD, metallothionein (MT), and heat shock protein 70 (HSP70) of the medaka fish 

Oryzias melastigma exposed to ZnO NPs suggesting dissolution and the oxidative stress generation 

as major contributors to the toxicity. 

In addition, also the effect about bacteria were well investigated (Reddy et al., 2007; 

Huang et al., 2008; Jones et al., 2008; Applerot et al., 2009; Aruoja et al., 2009; Jin et al., 2009; Liu 

et al., 2009; Feris et al., 2010; Li et al., 2011; Premanathan et al., 2011; Raghupathi et al., 2011; Xie 

et al., 2011; Ambika & Sundrarajan, 2015; Read et al., 2015). Growth inhibition and cell viability of 

bacteria population exposed to ZnO NPs were always the endpoints in the above studies. They 

focused on the bacteriostasis of NPs and compared the difference among different particles sizes. 

In the main of the all above studies, the toxic action of ZnO NPs was potentially 
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attributed to, at least three distinct mechanisms: 

First, ZnO NPs release toxic Zn2+ into exposure media. The dissolution process usually 

involves the following reactions (Yamabi & Imai, 2002; Ma et al., 2013): 

ZnO(𝑠) + H2O(𝑙) ⇌ Zn(OH)2(𝑠) 

Zn(OH)2(s) ⇌ Zn(OH)+(aq) + OH−(aq) 

Zn(OH)+(aq) ⇌ Zn2+(aq) + OH− (aq) 

The dissolubility plays an important role in the toxic effect of ZnO NPs dispersed into 

aqueous media. The physico-chemical properties (particle size and surface area) and the 

environmental parameters (pH, temperature, and organic matter) of the exposure media can largely 

affect the dissolution of ZnO NPs. Generally, the smaller is the particle size the larger is the surface 

area, resulting in ZnO NPs greater dissolution respect to ZnO powder (ZnO bulk). Size-dependent 

dissolution is one of the mechanisms of higher toxicity of NPs than bulk. 

Second, surface interactions with media may produce toxic substances hydroxyl radicals 

(·OH) and reactive oxygen species (ROS). Besides particle dissolution toxicity, ROS-mediated 

toxicity induced by NPs and hydroxyl radicals contribute the overall toxicity. 

Third, photo- induced toxicity associated with its photocatalytic property may be another 

important mechanism of toxicity. 

0.3 Research prospects of assessment of ZnO NPs global ecotoxic risk 

Based on the research contents of reported studies, several aspects are still not sufficient ly 

explored and therefore should be further investigated. 

First, the behavior of ZnO NPs in the different exposure media (pure water, natural fresh 

water, acid/alkali treated fresh water, artificial sea water, natural sea water, etc.) along the exposure 

time. The measurement of particle size aggregation, sedimentation, dissolubility, etc., is the former 

step to define the influence of medium physicochemical properties on the ZnO NP toxicity. 

Second, the different role of the two main component of the toxic effect: particle- induced 

toxicity and dissolved ion toxicity should be differentiated by upgraded testing tools and techniques. 

There is now no very efficient approach to directly determine particle- induced toxicity, instead of a 

comparing method that test the toxic difference between nano scale particles and normal size 

powders (Lin & Xing, 2008; Manzo et al., 2011; Fabrega et al., 2012). Also, Inductively Coupled 
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Plasma-Mass Spectrometry (ICP-MS) is the most popular method to measure the dissolved ionic Zn 

which is not the most sensitive method recently and could gradually be replaced by other techniques 

such as the Scanned Stripping Chrono Potentiometry (SSCP) technique (Merdzan, 2014). A new 

high efficient approach is highly expected to differentiate the particle- induced toxicity and 

dissolved ions toxicity. 

Third, the realistic exposure in environment by chronic assessment should focus on low 

concentration dose. In the sub lethal long term exposure, endpoints such as Zn accumulation and 

modification of relevant genes transcription and protein production should be assessed. As well, the 

toxicity of ZnO NPs via food chain could be the next hotspot. 
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1 STATE OF THE ART 

1.1 Characterization of ZnO NPs and bulk in marine environment 

Once released into marine environment, ZnO NPs will interact with each other and some 

organic/inorgnic compounds (Rocha et al., 2015). The properties of NPs, such as its nano size, 

pariticle shape, chemical composition, and surface charge, and the properties of medium, such as 

pH, temperature, ionic strength, plays an key role on ZnO NPs behaviour (Fabrega et al., 2012; 

Rocha et al., 2015). Several aspects of ZnO NPs characters changed in marine environment that had 

been well documented (Miao et al., 2007; Brayner et al., 2010; Miao et al., 2010; Miller et al., 2010; 

Ma et al., 2013; Rocha et al., 2015). They are progressive and simultaneous happenning in seawater. 

Dissolution is a step proceeded rapidly once ZnO NPs suspended into seawater. Miller et 

al. (2010) measured the concentration of dissolved Zn ion using Inductively Coupled 

Plasma-Atomic Emission Spectrometry (ICP-AES) technique suggesting an equilibrium value 

approximately 3 mg Zn/L was reached for the initial ZnO concentration 10 mg Zn/L and most Zn 

(approximately 70%) dissolved for all lower concentrations with in 12 h. However, the dissolution 

was still going on after 4 days for the high concentration. Miao et al. (2010) performed the 

dissolution test with Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS) technique 

resulting no consistent trend was observed in the different experimental conditions. However, a 

around 5% dissolution for NPs and 2.5% for bulk were reported for high concentration 

susuoensions (> 80 mg Zn/L) (Wong et al., 2010). Manzo et al. (2013b) summarized all 

abovementioned data resulting that the average solubility of ZnO NPs in seawater is around 5 mg 

Zn/L. 

Aggregation, at the same time, was rapidly occurred since the very beginning of 

dispersing in seawater medium. Miller et al. (2010) reported the diameter of NPs increased from 

initial 250-300 nm (10 mg Zn/L) to approximately 450 nm within 30 min using Dynamic Light 

Scattering (DLS) technique and suggested rapid aggregation of larger aggregates depends on the 

low surface/volume ratio. Miao et al. (2010) reported an increasing to 8500 nm after 7 days 

dispersed into ASW with also DLS. Also, Manzo et al. (2013b) reported similar trends that high 
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concentration pariticles aggregating much more than low concentration for both ZnO NPs and bulk 

in ASW and bulk aggregates size increased to 3000 nm after 250 min dispersing is larger than NPs 

(2600 nm). 

Sedimentation would occur with aggregation due to gravity in ASW. Manzo et al. (2013b) 

observed a clear sedimentation of large aggregates for 100 mg Zn/L NPs and bulk. Low 

concentration ZnO particles showed very slower sedimentation rate than high ones. In the same 

time, NPs showed slower sedimentation rate than bulk. Miller et al. (2010) reported similar results. 

This could be due to the density difference between NPs and bulk.  

1.2 The importance of primary producers marine algae in ecosystem and 

ecotoxicolgical studies of ZnO NPs 

Phytoplankton is the autotrophic component of the plankton community and a key factor 

of oceans, seas and freshwater basins ecosystems. High growth rate, high surface-to-volume ratio 

(high uptake rate), easy handling in laboratory conditions (Castro-Bugallo et al., 2014), make 

marine microalgae be an effective tool to test toxicity of contaminants such as antibiotics (Seoane et 

al., 2014), metals (Wang & Zheng, 2008; Angel et al., 2015), nano-materials (Kadar et al., 2012; 

Clément et al., 2013; Castro-Bugallo et al., 2014). Additionally, as diverse algae taxa respond 

differently to chemical toxicants, it is mandatory to conduct tests on a different species representing 

different classes. 

Published literatures documented different nanomaterials toxicity towards vast algae 

species. Green algae could be the most popular object to investigate ecotoxicity of nanomaterials, 

such as nano TiO2, ZnO, Al2O3, SiO2, CuO, C60, Carbon Nanotube, etc. (Baun et al., 2008b; Blaise 

et al., 2008; Van Hoecke et al., 2008; Wang et al., 2008; Aruoja et al., 2009; Hall et al., 2009; Ji et 

al., 2011; Lee & An, 2013; Manzo et al., 2013a; Fu et al., 2015). Also Diatom and other algae were 

utilized to assess the ecotoxic effect of nano metal xoide, metal particles, etc. (Brayner et al., 2009; 

Wong et al., 2010; Peng et al., 2011; Dahoumane et al., 2012a, b; Manusadžianas et al., 2012; 

Clément et al., 2013; Fu et al., 2015; Li et al., 2015; Yung et al., 2015). 

Among them, most algae are marine species indicated that nanomaterials are released into 

marine ecosystem arousing many ecotoxicity studies on these common phytoplanktons in recent 
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years (Özkoc & Taylan, 2010; Wong et al., 2010; Peng et al., 2011; Kadar et al., 2012; Manzo et al., 

2013a; Aravantinou et al., 2015; Suman et al., 2015). 

Among these investigated nanomaterials, ZnO NPs is currently used in widespread and 

expanding production that increases the heat of the studies on its ecotoxicity (Ma et al., 2013). A 

broad range of marine algae became the research organism objects on it (Brayner et al., 2010; Miao 

et al., 2010; Miller et al., 2010; Wong et al., 2010; Manzo et al., 2013a; Aravantinou et al., 2015; 

Suman et al., 2015). However, marine green microalgae Tetraselmis suecica and diatom 

Phaeodactylum tricornutum which had not been reported on ZnO NPs ecotoxicity were selected as 

test organisms to respond to ZnO NPs exposure. 

P. tricornutum is a widespread pennate diatom, with low silica content and distinct cell 

wall (i.e. frustule) structures which is essentially composed of organic compounds, particularly 

sulfated glucomannan (Tesson et al., 2009), has been described in three different morphotypes (i.e. 

the ovoid, fusiform and triradiate forms), whose occurrence in culture seems to depend on strains as 

well as environmental conditions (Francius et al., 2008). 

T. suecica is an elliptical microalga of the class Chlorophyceae (Prasinophyceae) 

generally used as the diets of zooplankton, bivalve molluscs and crustacean larvae. The 

characteristic cell wall (theca) is composed of coalesced rigid carbohydrate scales (Lee et al., 2013) 

and the typical four flagella are covered by double layer of scales. 

1.3 The role of filter feeder Mediterranean mussels Mytilus 

galloprovincialis in marine pollution survey 

Bivalves, like mussels Mytilus spp., are filter-feeders, widely distributed, and with a 

long- life span and represent a good choice for the study of marine environmental pollution (Sheir et 

al., 2013; Balbi et al., 2014; Hu et al., 2014; Cremonte et al., 2015). M. galloprovincialis, cultured 

in China for commercial interest (Lazo & Pita, 2012; FAO, 2016), was instead largely utilized in 

several countries to investigate biological responses to toxicants and environmental stress (Da Ros 

et al., 2000; Barmo et al., 2013; Estevez-Calvar et al., 2013; Balbi et al., 2014) and also to assess 

NPs toxicity (Canesi et al., 2010; Gomes et al., 2011; Hanna et al., 2013; Balbi et al., 2014; Gomes 

et al., 2014). 
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In this bivalve NPs uptake can occur by ingestion through the digestive tract (Roberts et 

al., 2007; Baun et al., 2008a; Gagné et al., 2008; Ward & Kach, 2009) and through the large 

respiratory surface of the gills, as demonstrated for SiO2 NPs in the congener species Mytilus edulis 

(Köhler & Riisgård, 1982). The gills and the digestive gland are, therefore, particularly relevant as 

target organs for nanotoxicological studies (Baun et al., 2008a; D'Agata et al., 2014). 

However, it was recently reported that NPs could accumulate with increasing time 

exposure in the digestive gland (Gomes et al., 2011; 2012; 2013; 2014). This indicates that although 

the gills are the first target of NPs, the digestive gland is the main tissue for their storage (Ringwood 

et al., 2010b). These particles could induce oxidative stress in mussel gills and digestive gland, and 

promote several abnormalities in cellular function which can also trigger major changes in gene 

transcription (Fabbri et al., 2008). 

1.4 Ecotoxicity assessments on algae and mussels 

On algae assay, growth inhibition is the most popular approach of ecotoxicity assessment 

(Aruoja et al., 2009; Ji et al., 2011; Peng et al., 2011; Kadar et al., 2012; Manzo et al., 2013a; 

Aravantinou et al., 2015; Li et al., 2015; Schiavo et al., 2016). Some approaches involved in 

oxidentive stress induced by nanoparticles, such as, measurement of related enzyme activity (SOD, 

CAT, LDH, GSH, etc.)(Li et al., 2015; Suman et al., 2015), ROS generation (H2O2, O2-, and ·OH) 

(Jagadeesh et al., 2015; Li et al., 2015), and lipid peroxidation (LPO) (Kadar et al., 2012; Jagadeesh 

et al., 2015; Suman et al., 2015). Besides, observation of nanoparticle invading in cells directly 

showed the damage from nanoparticles (Gong et al., 2011; Peng et al., 2011; Bhuvaneshwari et al., 

2015; Li et al., 2015). In addition, contents of chlorophyll (Gong et al., 2011), observation of DNA 

damage (Schiavo et al., 2016), extracellular protein content (Jagadeesh et al., 2015), and Zn content 

per algae surface (Aravantinou et al., 2015) were reported on ecotoxicity assessment. 

For mussels, many indexes were reported on nanoparticles toxicity. Enzymatic 

concentration/activity could be measured in most studies, such as, GSR, GST, CAT, GPX, Se-GPX 

SOD, MT, and GSSG (Canesi et al., 2010; Tedesco et al., 2010; Gomes et al., 2011; Gomes et al., 

2012; Barmo et al., 2013; Gomes et al., 2014). Lysosomal membrane stability, lysosomal lipofuscin 

content, lysosomal Neutral Lipid content, and LPO were reported as well (Canesi et al., 2010; 

Gomes et al., 2012). Gomes et al. (2013) reported the genotoxic comet assay on M. 
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galloprovincialis. Wang et al. (2014) reported total hemocyte counting, ROS and Lysosomal content 

and Barmo et al. (2013) reported some related genes expression, such as GST, CAT, Mytilin B, 

Myticin B, defensin, lysozyme and MgC1q, involved in oxidative stress and immune reponse. Beside 

of these molecular approaches, observation on tissue damages (Kádár et al., 2010; Barmo et al., 

2013; Hu et al., 2014; Trevisan et al., 2014; Vale et al., 2014; Cid et al., 2015), electrophoresis 

proteomic separations of gill proteins (Tedesco et al., 2008; Tedesco et al., 2010), embryotoxicity 

(Ringwood et al., 2010a), survival rate (Mwangi et al., 2012), and metal bioaccumulation in tissues 

(García-Negrete et al., 2013; Hu et al., 2014; Trevisan et al., 2014) were reported as well on 

nanomaterials toxicity.  
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2 AIMS OF THE STUDY 

Based on the published literatures reviewing, several research points on ecotoxicity of 

ZnO NPs towards algae and mussel in marine environment were still unexplored and some 

represent aims of this study. 

 ZnO NPs could have a specific behavior and effect in diverse marine seawaters as other 

nanomaterials described before. To this aim the full characterization of ZnO NP dissolution, 

aggregation, and sedimentation once dispersed into a standard Artificial Sea Water (ASW) 

and a Reconstituted Sea Water (RSW) from East China Sea was performed. 

 The ecotoxicity of ZnO NPs upon a green alga and a diatom would be different. To assess 

the diverse toxicity upon different algae, growth inhibition algal assays were performed.  

Additionally, to verify the hypothesis about the role of nano size in the overall toxicity, 

ZnO bulk, and Zn salt toxicity were assessed as well.  

 ZnO NP toxicity towards mussels under a chronic exposure could be shown by Zn 

bioaccumulation, tissue damages, and transcription of apoptosis and antioxidation-related 

genes. The hypothesis that nano size plays an important role in its toxicity was also 

considered together with the all previous ones for mussel M. galloprovincialis. 

2.1 Behaviors of ZnO NPs and bulk in different artificial seawater 

To characterize the behaviour of ZnO NPs and bulk dispersed into two salinities seawater, 

artificial standard seawater (ASTM, 1998) (salinity 35‰, pH 8.00, 0.22μm filtered) and natural 

seawater from East China Sea (salinity 25‰, pH 7.90, 0.22μm filtered), aggregation size, 

sedimentation, and dissolubility of particles were oberved and tested using dynamic light scattering 

technique (DLS), UV-vis spectrophotometer, and centrifugal ultrafiltration combined with 

inductively coupled plasma-mass spectrometry (ICP-MS) (Jenner et al., 1990). 

2.2 Comparative toxicity of ZnO NPs, bulk, and Zn salt towards marine 

algae T. suecica and P. tricornutum 

To focus the ecotoxicological effect of ZnO NPs and bulk towards the green alga T. 



2 AIMS OF THE STUDY 

27 

 

suecica and diatom P. tricornutum, the aims are to establish the main toxicity parameters and to 

compare the sensitivities of both algae to ZnO particles. For each compound No Observed Effect 

Concentration (NOEC), 1, 10, and 50% Effect Concentration (EC1, EC10, and EC50) were defined 

to provide biological criteria for the implementation of water quality standards to protect marine 

organisms. 

2.3 Zn bioaccumulation and histological damages of M. galloprovincialis 

exposed to ZnO NPs, bulk, and Zn salt 

The histological alterations on 6 organs in M. galloprovincialis exposed to ZnO NPs 

suspensions to characterize the tissue damages were observed. In addition, tissue Zn uptake was 

measured to reveal the fate of Zn in mussel and give a full understanding of ZnO NPs toxicity with 

the histological observation. A microwave digestion system (MARS Xpress, CEM, USA) and an 

atomic absorption spectrometer (AAS; AA240 Duo, Varian, USA) (Massányi et al., 2004; 

Kramárová et al., 2005; Gasparik et al., 2012) were used. 

2.4 Ecotoxicity of ZnO nanoparticles in M. galloprovincialis revealed by 

transcription of apoptosis and antioxidation-related genes 

The aim of this work is to investigate the changes in digestive gland transcription levels 

of key genes, DNA repair enzymes genes p53, PDRP, antioxidant enzymes genes superoxide 

dismutase (SOD), glutathione transferase (GST), and catalase (CAT), of M. galloprovincialis along 

four weeks exposure to ZnO NPs and bulk dispersed in RSW, using qRT-PCR. 

2.5 Zinc causes oxidative damages in digestive gland in mussel M. 

galloprovincialis revealed by transcription of related genes 

The aim of this work is to investigate the changes in digestive gland transcription levels 

of key genes, DNA repair enzymes genes p53, PDRP, antioxidant enzymes genes superoxide 

dismutase (SOD), glutathione transferase (GST), and catalase (CAT), of M. galloprovincialis along 

four weeks exposure to Zn salt dissolved in RSW, using qRT-PCR. 
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3 RESULTS AND DISCUSSION 

3.1 Behaviors of ZnO NPs and bulk in different artificial seawater 

To investigate the ecotoxicity of ZnO NPs on algae and mussels, the evaluation of the 

ZnO NP behaviours of dispersed in the testing media is a necessary step to understand how ZnO 

particles interact with organism. 

Two artificial seawater were utilized as ecotoxicological testing media: in this research 

the standard Artificial Sea Water (ASW) (ASTM, 1998) for algae and a Reconstituted Sea Water 

(RSW) from East China Sea for mussels.  

Once released into these media, ZnO NPs, due to their reactive nature, rapidly interact 

each other and with available inorganic compounds (Rocha et al., 2015).  

ZnO particle behaviour in the testing medium largely depends both on particle  properties, 

such as size, shape, surface charge; and on medium properties, such as pH, temperature, ionic 

strength, play key role on (Fabrega et al., 2012; Rocha et al., 2015). Based on the design of the 

ecotoxicological investigation, the aggregation described by size changing, the sedimentation 

induced by gravity, and dissolution described by ionic Zn release, were performed.  

3.2 Materials and methods 

3.2.1 Chemicals 

Bare ZnO NPs (cod. 544906, particle size < 100 nm, surface area 15-25 m2/g) was 

purchased from Sigma-Aldrich. (1) Bulk ZnO powder (particle size < 200 nm, surface area 4.9-6.8 

m2/g, purity > 99.9%) was purchased from Galeno S.r.l., Italy. (2) Bulk ZnO powder (Code 

ZK249038, particle size 150−200 nm, purity > 99.9%) was purchased from Quer Biotech Co., Ltd 

(Hefei, China). Baysalt crystals (Code Q/XWL 101−2006) were purchased from Shuilifang S&T 

Ltd. (Xiamen, China). 

3.2.2 Particle dispersions 

(1) Approach of particles dispersions in standard Artificial Sea Water (ASW) (ASTM, 
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1998): 

Stock suspensions of testing materials (ZnO NPs and bulk) were prepared with ASW (pH 

8.0, 0.22 μm filtered) to the final concentration of 100 mg Zn/L. The ZnO suspensions were 

dispersed by bath-sonication for 30 minutes at 50 W (Elma Transsonic Digital S). Test suspensions, 

at three concentrations 1, 5, and 10 mg Zn/L, were prepared by diluting the stock suspension with 

ASW. 

(2) Approach of particles dispersions in Reconstituted Sea Water (RSW) from East 

China Sea: 

Stock suspensions of ZnO NPs and ZnO bulk powder were prepared with (RSW). East 

China Sea baysalt crystals extracted from natural seawater were dissolved in pure water (MilliQ) to  

salinity 25 ‰ (pH 7.90) which is the salinity level of mussel sampling sea area (Shen et al., 2009) 

and filtered in 0.22 μm, to the final concentration of 100 mg Zn/L. The ZnO suspensions were 

dispersed by bath-sonication in the same abovementioned conditions. Test suspensions were 

prepared by diluting the stock suspension at 10 and 100 mg Zn/L with RSW (Manzo et al., 2013a). 

3.2.3 Measurement of the size of the aggregates 

After sonication treatment, an aliquot of ZnO NPs and bulk suspension, at concentration 

of different sea water (ASW: 1, 5, and 10 mg Zn/L; RSW: 10 and 100 mg Zn/L) respectively was 

put in a disposable polystyrene cuvette to determine particle size with dynamic light  scattering 

technique (DLS) using Zetasizer Nano ZS Malvern instrument. The instrument employs a 4 mW 

He-Ne laser at wavelength 632.8 nm and the measurement angle of 173 ° with a Non-Invasive Back 

Scatter technology (NIBS). Measurements were made at 25 °C. The measurements were run in 

triplicate and the results shown are the average of the runs. The samples were monitored for 4 days  

(ASW) and 90 min (RSW). Every day a new aliquot of sample was used to measure the aggregation 

size with DLS for ASW only. 

3.2.4 Sedimentation measurement in ASW and RSW 

As same as the condition of size measurement, an aliquot of ZnO NPs and bulk 

suspension, at concentration of 1, 10, and 100 mg Zn/L respectively was put in a disposable 

polystyrene cuvette to measure the sedimentation using a UV-vis spectrophotometer (at 468 nm) for 
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24 h. 

3.2.5 Dissolution in ASW and RSW 

The dissolved Zn concentrations of ZnO NPs and bulk suspensions in 100 and 10 mg 

Zn/L dispersed into low salinity RSW were measured by Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) described by Navarro et al. (2008). Samples after ultrafiltration (2 nm) 

have been acidified with HNO3 (1%) and diluted 1:1000 for Zn analysis. Dissolved Zn (ZnO 

particle or other Zn complex size < 2 nm) in the four suspensions were daily measured for 3 days. 

3.3 Results and discussion 

3.3.1 ZnO particle aggregation 

(1) In ASW: 

ZnO NPs in aqueous media tends to aggregate indeed, particularly in saltwater with 

increasing of salinity, that ionic strength reduces the negativity of electrophoretic mobility of the 

particles to encourage agglomeration (Batley et al., 2013). In order to monitored the stability of NPs 

and their rapid tendency to aggregate, after dispersion of ZnO NPs and bulk in ASW and sonication 

treatment for 30 minutes, agglomeration phenomenon was observed for the first 120 minutes and 

subsequently, once a day for four days (Fig. 3.3.1-1 and 2). 

  

Fig. 3.3.1 -1 Hydrodynamic d iameters of ZnO NPs and bulk in ASW suspension at three concentrations (10, 5 and 1 mg 

Zn/L) within two hours. 
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Fig. 3.3.1 -2 Hydrodynamic d iameters of ZnO NPs and bulk in ASW suspension at three concentrations (10, 5 and 1 mg 

Zn/L) within four days. * Samples not suitable for DLS analysis . 

The analysis of the DLS measurement data of the samples highlights that large aggregate 

were present for NPs and bulk for all the concentrations but ZnO NPs aggregates were smaller than 

bulk for all concentration as shown in Table 3.3.1-1. 

Table 3.3.1-1 PDI and hydrodynamic  diameter of NPs and bulk in  ASW suspensions at four concentrations (100, 10, 5, 

and 1 mg Zn/L) in the initial stage of dispersal after sonication treatment. 

mg/L 

NPs Bulk 

PDI 
Hydrodynamic 

diameter (nm) 
PDI 

Hydrodynamic 

diameter (nm) 

100 0.3 ± 0.05 1500 ± 300 0.8 ± 0.1 1900 ± 180 

10 0.48 ± 0.07 850 ± 100 0.56 ± 0.06 1150 ± 100 

5 0.72 ± 0.09 1250 ± 150 0.76 ± 0.09 1400 ± 200 

1 0.74 ± 0.03 900 ± 80 0.59 ± 0.17 1250 ± 400 

In the next 24 hours the hydrodynamic diameter of ZnO aggregate increased doubling  

their size. From third day of observation the size was greater than 6 microns (Fig. 3.3.1-1 and 2) 

than the sample was not suitable for DLS measurements. This observation highlights that the ZnO 

NPs colloidal suspension should be always freshly prepared and sonicated prior to each experiment 

in order to minimize the effects of particles aggregation. The Polydispersity Index (PDI) that 

describes the width of the particle size distribution was in the range of 0.3-0.8 as shown in Table 

3.3.1-1. Those values indicated that the sample has a very broad size distribution. 
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The hydrodynamic diameters of ZnO NPs and bulk particles were already approaching 

the microns range soon after dispersion in ASW, and showed a clear, although slow, tendency to 

further aggregate in the next few hours (Table 3.3.1-1 and Fig. 3.3.1-1). In general, bulk ZnO had 

larger aggregate sizes than NPs. It is worth to note that these results seem to be rather independent 

of the pristine size of ZnO particles and of dispersion methods. In fact, previous studies report 

analogous values of aggregate sizes and aggregation trends for ZnO dispersions in seawater 

although prepared from nano ZnO having pristine size much smaller than the one used in the 

present study and from different dispersion methods (Fairbairn et al., 2011; Yung et al., 2015). The 

reported results also show that, in our operating conditions, the aggregate size was only modestly 

influenced by the initial particle concentration. The average aggregate size of both nano and bulk 

ZnO first increased from 1 to 5 mg Zn/L then decreased at 10 mg Zn/L and finally showed the 

largest size at 100 mg Zn/L. However, the oscillation of bulk ZnO particle size between 1 and 10 

mg Zn/L was well included in the measurement variability, therefore test suspensions of bulk ZnO 

were basically characterized by an average aggregate size of around 1400 ± 490 nm. On the other 

hand, at concentration so high as 100 mg Zn/L the large aggregate size may be due to an increase in 

particle collision frequency which enhances aggregation (Keller et al., 2010). According to the 

aggregation trend shown by this particles (Fig. 3.3.1-1) 24 hours after the preparation of test 

suspensions the average aggregate size was nearly doubled for nano ZnO and almost multiplied by 

four in case of bulk ZnO (Fig. 3.3.1-2). After 48 hours, ZnO particles in low concentration 1 mg 

Zn/L were undetectable and the size of which in high concentration 5 and 10 mg Zn/L were too 

large (> 6 μm) to suitable for DLS. The absence of particles (both nano and bulk) could be 

addressed to the proceeding of the dissolution phenomenon. The water solubility of ZnO in fact, 

ranges from 1.6 mg Zn/L to 5 mg Zn/L (PROSPEcT, 2009). The high pH and high ionic strength 

conditions of the seawater further increase this solubility and highlight some differences between 

the NPs and bulk forms (Miao et al., 2010; Miller et al., 2010; Wong et al., 2010; Peng et al., 2011; 

Yung et al., 2015). However, the interaction between particles and algal cells could retard 

dissolution and promote homo aggregation of ZnO particles (Soldo et al., 2005; Miao et al., 2007; 

Navarro et al., 2008), that has been observed in this report. 

(2) In RSW: 
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ZnO NPs once in RSW undergo to different physic-chemical processes that modify their 

pristine characteristics and therefore their availability/reactivity. 

ZnO particles dispersed in RSW (low salinity) undergo to complex physicochemical 

transformations: first, particles stick to each other in order to minimize the repulsive hydrophobic 

interactions with water, forming micron sized aggregate. DLS data recorded soon aft er the 

dispersion preparation illustrate this aggregation behavior and show that the average size of bulk 

ZnO particles were rather unaffected by the initial solid loading (Fig. 3.3.1-3B). On the contrary, 

aggregates formed by ZnO NPs showed constant size at low concentration whereas highly 

concentrated dispersions showed a marked trend to increase (Fig. 3.3.1-3A). The aggregate size 

increasing becomes evident in the next 48 hours when all the samples were characterized by the 

presence of very large particles (> 6000 nm) (Table 3.3.1-2). 

 

Fig. 3.3.1-3 Hydrodynamic diameters of ZnO NPs and bulk in RSW suspension at two concentrations (100 and 10 mg 

Zn/L) within about 90 min. 

Table 3.3.1-2 PDI and hydrodynamic d iameter of ZnO NPs and bulk in RSW suspensions a t two concentrations (100 

and 10 mg Zn/L) for 72 hours  

Suspension Time (h) Size (nm) PdI Z-potential (mv) 

100 mg Zn/L NPs 0 2320±520 0.44±0.119 -0.92 

 24 >6000nm 1 -2.49 

 48 >6000nm 1 -5.28 

 72 >6000 NA NA 

10 mg Zn/L NPs 0 950±160 0.53±0.14 -6.35 

 24 1570±200 0.76±0.13 -10.4 

 48 >6000 NA NA 

 72 >6000 NA NA 

100 mg Zn/L Bulk 0 1560±100 0.5±0.07 -10.7 
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 24 3150±220* 0.51±0.11 -10.2 

 48 >6000 1 -7.06 

 72 >6000 NA NA 

10 mg Zn/L Bulk 0 1000±200 0.63±0.08 -10.8 

 24 >6000nm* 1 NA 

 48 >6000 1 NA 

 72 >6000 1 NA 

3.3.2 ZnO particle sedimentation 

(1) In ASW: 

Manzo et al. (2013b) reported the sedimentation of ZnO NPs and bulk dispersed in ASW 

(Fig. 3.3.2-1). They observed a clear sedimentation for both ZnO aggregates and the suspended 

ZnO concentration decreased by almost 30% after 2 h at high concentration (100 mg Zn/L). At each 

concentration, bulk showed higher sedimentation rate than NPs after 2h. Manzo et al. (2013b)  

suggested that a main difference between NPs and bulk aggregates is the density which is lower for 

the nanomaterial. 

 

Fig. 3.3.2-1  Sedimentation measurement of ZnO NPs and bulk in ASW at the concentration 100 and 10 mg Zn/L within  
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about 5 h. 

(2) In RSW: 

Large particles suspended in RSW have a tendency to settle out of the liquid phase due to  

gravity. The sedimentation curves recorded showed indeed that the particle concentration in the 

water column was decreased by more than 80% and 70% already after 8 hours for ZnO NPs and 

bulk suspensions at 100 mg/L respectively (Fig. 3.3.2-2). 

 

Fig. 3.3.2-2 Sedimentation measurement of ZnO NPs and bulk in RSW suspension at the concentration 100 mg Zn/L 

within 24h. 

3.3.3 ZnO particle dissolution 

(1) In ASW: 

Dissolution is the other important transformation that occurs to ZnO particle in aqueous 

media. A dissolution kinetic curve of ZnO NPs and bulk dispersed in ASW was shown in Fig. 

3.3.3-1. The curve indicated that a very obvious tend in both NPs and bulk suspension which is 70% 

dissolution occurred in first few minutes and kept this stable status to the end of measurement.  
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Fig. 3.3.3-1 Dissolution kinetic curve of ZnO NPs and bulk dispersed in ASW at 10 mg Zn/L within 5 h. 

(2) In RSW: 

The analysis of ionic zinc released in the seawater from NPs and bulk dispersions shows 

a little displacement in the average Zn concentrations only as a function of the initial solid loadings, 

i.e. between 100 and 10 mg Zn/L (Fig. 3.3.3-2). In the main, an average Zn concentration around 5 

mg/L was found already after 24 hours and afterwards without significant variations (p > 0.05). 

Interestingly, this result is similar to a previous one obtained for ZnO NPs dispersed into an 

artificial seawater with different salinity and pH (ASW at salinity 35 ‰, pH 8.00, 0.22 μm filtered) 

with respect to the natural seawater used in the present study (Manzo et al., 2013b). 
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Fig. 3.3.3-2 Bar graphs of the dissolved Zn (Φ < 2 nm) of ZnO NPs (A and B) and bulk (C and D) suspensions in 100 

and 10 mg Zn/L measured by ICP-MS. 

3.4 Comparisons and Conclusions 

To respect the behavior of other nanoparticles dispersed in natural seawater repored by 

Garner & Keller (2014), that aggregation and sedimentation have similar time scales for most 

nanoparticles in general in seawater and dissolution is highly dependent on nanomaterials 

composition, for example, nano Ag, Al2O3, CuO, and NiO will dissolve over days to weeks but only 

hours to days for ZnO NPs, results in this case indicated similar and more detailed conclusion. 

The analysis of the size measurement data of NPs and bulk in ASW highlights that large 

aggregate were present for NPs and bulk for all the concentrations but ZnO NPs aggregates were 

smaller than bulk for all concentrations. In RSW, aggregates formed by ZnO NPs showed constant 

size at low concentration (10 mg Zn/L) whereas highly concentrated dispersions (100 mg Zn/L) 

showed a marked trend to increase. Hence, the primary size of ZnO in suspensions could affect the 

aggregating rate in higher concentration. To combine the previous conclusion (Manzo et al., 2013b) 
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and the sedimentation data obtained in this case indicated that the sedimentation occurred since in 

the first minutes to few hours and that was not related to ZnO particle s size. The analysis of ionic 

zinc released in the seawater from NPs and bulk dispersions shows a little displacement in the 

average Zn concentrations only as a function of the initial solid loadings. An average Zn 

concentration around 5 mg/L was found already after 24 hours and afterwards without significant 

variations (p > 0.05). This result is similar to a previous one obtained for ZnO NPs dispersed into an 

artificial seawater with different salinity and pH (ASW at salinity 35 ‰, pH 8.00, 0.22 μm filtered) 

with respect to the natural seawater used in the present study (Manzo et al., 2013b). 
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3.6 Comparative toxicity of ZnO NPs, bulk, and Zn salt towards marine 

algae T. suecica and P. tricornutum 

ZnO NPs is currently used in a broad range of products including plastics, ceramics, 

rubber, lubricants, paints, foods (source of Zn nutrient), batteries, fire retardants, personal care 

products, etc. (Ma et al., 2013). Such widespread and expanding production and use increase the 

potential for their release into the environment. Keller et al. (2014) estimated that ZnO together 

with titanium dioxide, represent 94% of engineered nanomaterial (ENMs). Gottschalk et al. (2009) 

reported the modeled environmental concentration of ZnO NPs in surface water (0.010g/L in 

Europe, 0.001g/L in U.S.). If current production and subsequent release quantities were to increase 

100-fold, ZnO would raise greatest concern since all studies indicate ZnO is toxic at some 

concentration to all species tested (Franklin et al., 2007; Blinova et al., 2010; Miller et al., 2010; Li 

et al., 2013). It is clear than the effects and the behavior of ZnO NPs in the marine environment 

would need to be monitored closely. 

Particle- induced effect was suggested as one mechanisms of toxic action of ZnO NPs in 

previous studies (Ma et al., 2013). The nanoparticles agglomeration/aggregation plays an important 

role in determining reactivity, toxicity, fate, transport, and risk in the environment indeed has been 

implicated as a mitigating factor in the transport, cellular level interactions, and fate of NPs in the 

environment (Hotze et al., 2010). 

Phytoplankton is the autotrophic component of the plankton community and a key factor 

of oceans, seas and freshwater basins ecosystems. High growth rate, high surface-to-volume ratio 

(high uptake rate), easy handling in laboratory conditions (Castro-Bugallo et al., 2014), make 

marine microalgae be an effective tool to test toxicity of contaminants such as antibiotics (Seoane et 

al., 2014), metals (Wang & Zheng, 2008; Angel et al., 2015), nano-materials (Kadar et al., 2012; 

Clément et al., 2013; Castro-Bugallo et al., 2014). Additionally, as diverse algae taxa respond 

differently to chemical toxicants, it is mandatory to conduct tests on a different species representing 

different classes. 

Marine green microalgae T. suecica and diatom P. tricornutum were selected as test 

organisms to respond to ZnO NPs exposure. 

P. tricornutum is a widespread pennate diatom, with low silica content and distinct cell 
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wall (i.e. frustule) structures which is essentially composed of organic compounds, particularly 

sulfated glucomannan (Tesson et al., 2009), has been described in three different morphotypes (i.e. 

the ovoid, fusiform and triradiate forms), whose occurrence in culture seems to depend on strains as 

well as environmental conditions (Francius et al., 2008). 

T. suecica is an elliptical microalga of the class Chlorophyceae (Prasinophyceae) 

generally used as the diets of zooplankton, bivalve molluscs and crustacean larvae. The 

characteristic cell wall (theca) is composed of coalesced rigid carbohydrate scales (Lee et al., 2013) 

and the typical four flagella are covered by double layer of scales. 

It worth to note that, as previously observed, ZnO NP aggregation and sedimentation will 

occur in first few hours in seawater suspensions (Manzo et al., 2013a). Therefore it is ecologically 

relevant to study the interactions of these ZnO aggregates with very diverse classes of algae (i.e. 

green algae and diatoms) with peculiar differences in size, shape, cell wall composition and motility.  

In this study we focused on the ecotoxicological effect of ZnO NPs and bulk towards the green alga 

T. suecica and diatom P. tricornutum with the aim to establish the main toxicity parameters and to 

compare the sensitivities of both algae to ZnO particles. 

For each compound No Observed Effect Concentration (NOEC), 1, 10, and 50% Effect 

Concentration (EC1, EC10, and EC50) were defined to provide biological criteria for the 

implementation of water quality standards to protect marine organisms. 

3.7 Materials and methods 

3.7.1. Chemicals 

Bare ZnO NPs (cod. 544906, particle size <100 nm, surface area 15-25 m2/g) and ZnSO4 

(cod. 204986, purity 99.999%) were purchased from Sigma-Aldrich. ZnO bulk powder (particle 

size < 200 nm, surface area 4.9-6.8 m2/g, purity >99.9%) was purchased from Galeno S.r.l., Italy. 

3.7.2. Organisms 

T. suecica (Prasinophyceae: Chlorodendrales) and P. tricornutum (Bacillariophyceae: 

Naviculales) (CriAcq Laboratory, Naples, Italy) algae, were maintained in sterilized standard 

medium (Guillard, 1975) made with artificial standard seawater (pH 8.00, 0.22 μm filtered) (ASTM, 

1998). To provide inoculant for experiments, microalgae were incubated under cool continuous 
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white fluorescent lights (about 58 μmol photons m−2 s−1) at 24 ± 1 °C with aeration for 5-7 days 

until log phase growth prevailed. Cell density was measured by hemacyto meter. 

3.7.3. Particle dispersions 

Stock suspensions and solution of testing materials (ZnO NPs, ZnO bulk, and ZnSO4) 

were prepared with Artificial Sea Water (ASW) to the final concentration of 100 mg Zn/L.  The ZnO 

suspensions were dispersed by bath-sonication for 30 minutes at 50 W (Elma Transsonic Digital S). 

Test suspensions, at concentrations ranging between 0.1 and 10 mg Zn/L, were prepared by diluting 

the stock suspension with ASW and sonicated once again. Before the addition of micronutrients and 

algae each test suspension was briefly vortexed. 

3.7.4. FIB observation methods 

The algal cells were preliminarily analyzed by an optical microscope (ZEISS Axioskop 

50) for observing the possible damage and its extent. High resolution morphological 

characterization was made by FEI Dual Beam Quanta 200 3D which integrates a high focused ion 

beam (FIB). FIB operates with a finely focused beam of gallium ions accelerated at 30 keV which 

scans over the surface at low beam currents taking care not to damage sample. 

Before FIB observations algal cells were fixed as described in Li et al. (2015). After 72 h 

of exposure algal cells were centrifuged (4000 rpm, 10 min) then the samples were fixed with 3% 

gluteraldehyde solution in 4 °C for 2 h. The samples were then washed with 0.1 M PBS (pH 7.8) by 

centrifugation (4000 rpm, 10 min) three times. Algal cells were fixed with 1% osmium tetra oxide 

for 2 h in 4 °C, and 0.1 M PBS (pH 7.8) was added to wash the cells by centrifugation (3800 rpm, 

10 min) three times. The control and treated (10 mg Zn/L) cells were coated on a thin glass slide, air 

dried and observed under the FIB. 

3.7.5. Algal growth inhibition test and data analysis 

Algal bioassays were performed according to our previous research (Manzo et al., 2013a) 

slightly modified. Test plates were kept in the growth chamber with continuous light for 3 days. The 

growth inhibition was expressed with respect to the control. The concentrations of the testing 

suspensions and solution were modified to 10, 5, 3, 1, 0.5, and 0.1 mg Zn/L for ZnO NPs, bulk, and 

ZnSO4. The EC1, EC10, and EC50 were calculated using the Linear Interpolation Method 
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(Inhibition Concentration procedure, ICp) (Norberg-King, 1993). NOEC was determined by 

Dunnett's test (US-EPA, 1989). 

3.8 Results and discussion 

3.8.1 Effects of ZnO particles upon algae 

T. suecica: 

During the three days of exposure to ZnO NPs, the parameters of algae inhibition were 

recorded every 24 h and similarly bulk ZnO and ZnSO4 trials were set up as comparing experiments. 

The overall toxic effect after three days of T. suecica exposure to investigated chemicals (Fig. 

3.8.1-1) indicated that, at the same Zn amount, ZnO NPs was more toxic than bulk ZnO and than 

ZnSO4, suggesting that the dominant cause of the algal growth inhibition by ZnO NPs was not only 

related to ion release. Our previous study upon marine algae Dunaliella tertiolecta (Manzo et al., 

2013a) also reported a higher toxicity of ZnO NPs respect to bulk. Similar toxicity trend was also 

observed for Chlorella sp (Ji et al., 2011). 
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Fig. 3.8.1-1 Toxic effects on T. suecica cells, together with the corresponding regression fit curves: nano ZnO toxic 

effects (diamond); ZnSO4 toxic effects (triangle); bulk ZnO toxic effects (square). The best fit function of toxicity data 

was sigmoid growth function. 50% effect level is represented. 
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The ecotoxicological parameters (NOEC, EC1, EC10, and EC50), at each exposure time 

point, reported in Table 3.8.1-1 showed that ZnO NPs was more toxic than bulk at all tested 

concentrations and zinc salts played a middling role between ZnO NPs and bulk. 

Table 3.8.1-1 NOEC, LOEC, EC1, EC10, EC20 and EC50 evaluated for each tested chemicals (nano ZnO, bulk ZnO 

and ZnSO4) to T. suecica at each exposure time point. 

Exposure time Chemicals NOEC (mg Zn/L) EC1 (mg Zn/L) EC10 (mg Zn/L) EC50 (mg Zn/L) 

24h 

Nano ZnO 0.1 0.01 [0.004, 0.06] 0.07 [0.05, 1.13] 4.09 [3.78, 4.59] 

ZnSO4 0.1 0.01 [0.004, 0.02] 0.06 [0.04, 0.15] 0.69 [0.42, 3.20] 

BulkZnO 1.0 0.01 [0.007, 0.46] 0.39 [0.07, 1.67] 4.55 [4.17, 4.98] 

48h 

Nano ZnO < 0.1 0.06 [0.005, 0.008] 0.06 [0.05, 0.09] 4.28 [3.98, 4.46] 

ZnSO4 < 0.1 0.01 [0.004, 0.006] 0.05 [0.04, 0.06] 5.97 [5.17, 6.46] 

BulkZnO 1.0 0.04 [0.02, 0.25] 1.32 [0.74, 1.60] 8.17 [7.53, 8.71] 

72h 

Nano ZnO 0.1 0.04 [0.01, 0.18] 0.47 [0.11, 0.63] 3.91 [3.66, 4.14] 

ZnSO4 0.5 0.02 [0.01, 0.24] 0.53 [0.08, 1.29] 5.61 [4.93, 6.23] 

BulkZnO 0.5 0.06 [0.01, 0.20] 0.66 [0.32, 0.99] 7.12 [6.65, 7.46] 

In particular for ZnO NPs in all three days exposure time (72 h), NOEC was recorded at 

the lowest setting concentration (0.1 mg Zn/L). The value resulted lower tha n that obtained for ZnO 

bulk (NOEC 0.5 mg Zn/L). ZnO NPs EC1, EC10, and EC50 of were respectively recorded at 0.04 

[0.01, 0.18] mg Zn/L, 0.47 [0.11, 0.63] mg Zn/L, and 3.91 [3.66, 4.14] mg Zn/L, which likewise 

were lower than those of bulk (0.06 [0.01, 0.20] mg Zn/L, 0.66 [0.32, 0.99] mg Zn/L, and EC50 = 

7.12 [6.65, 7.46] mg Zn/L). 

However T. suecica on the basis of these values resulted less sensitive than D. tertiolecta 

to ZnO (EC50 = 1.94 [0.78–2.31] mg Zn/L) as recorded in previous work (Manzo et al., 2013a) 

while very low EC50 value were found upon microalgae Pseudokirchneriella subcapitata (EC50 = 

0.042 mg Zn/L) (Aruoja et al., 2009) and Thalassiosira pseudonana (EC50 = 0.82 mg Zn/L, leading 

to the decrease of cell division rates by 50%) (Peng et al., 2011). 

With the aim to evaluate the relation between algae exposure and growth effect all these 



3 RESULTS AND DISCUSSION 

46 

 

parameters were recorded also in early testing phases (24 and 48 h, Table 3.8.1-1). At the beginning 

of the exposure (24 h), the parameter values for ZnO NPs were higher than those recorded at 

followed phases (48 and 72 h). Respect to ZnO NPs, bulk ZnO and ZnSO4 showed increasing 

trends for EC10 and EC50 values along with exposure time that could represent a different action of 

these particles upon the algal population: ZnO NPs effectively affected algal population from the 

rising phase (48 h) of growth curve in the most. 

The observations by optical microscope (Fig. 3.8.1-2) and by FIB (Fig. 3.8.1-3) of T. 

suecica exposed to ZnO (both nano and bulk) showed how ZnO aggregates tend to gather mainly 

around algae flagella area (Fig. 3.8.1-2). This phenomenon increased with particle concentration 

and exposure time and resulted in algae injury due to motility hindrance in culture media. Recently, 

some evidences of toxic mechanism due to the direct interaction of NP aggregates and algae cell 

wall, provoking the generation of "holes" was reported (Li et al., 2015). However, in our case, the 

size for both the ZnO particles was very large, and the main aggregation sites, as reported above, 

were flagella (Fig. 3.8.1-3). 

 

Fig. 3.8.1 -2 Behavior of T. suecica with aggregates of zinc oxide in 72 h, A: control, B: 0.1 mg Zn/L nano, C: 5 mg 

Zn/L nano, D: 10 mg Zn/L nano, E: 0.1 mg Zn/L bulk, F: 5 mg Zn/L bulk and G: 10 mg Zn/L bulk. The flagella showed 

more easily aggregates than cells walls. 
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Fig. 3.8.1-3 Observation of T. suecica interacting with aggregates (A: control, B: in nano ZnO exposure for 72 h, C: in  

bulk ZnO exposure for 72 h) by FIB. Aggregation occurred around flagella area with both particles. 

P. tricornutum: 

As for T. suecica during three days exposure to ZnO NPs, the parameters of P. 

tricornutum inhibition were recorded every 24 h and bulk ZnO and ZnSO4 trials were set up as 

comparing experiment as well. The overall toxic effect after three days of exposure to the 

investigated chemicals indicated a clear higher toxic effect of ZnO NPs respect to zinc salt and bulk 

ZnO (Fig. 3.8.1-4). Dose response curve obtained for ZnSO4 was almost overlapped with ZnO bulk 

one especially below 5 mg Zn/L. 
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Fig. 3.8.1 -4 Toxic effects on P. tricornutum cells, together with the corresponding regression fit  curves: nano ZnO toxic 

effects (diamond); ZnSO4 toxic effects (triangle); bulk ZnO toxic effects (square). The best fit function of toxicity data 
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was sigmoid growth function. 50% effect level is represented. 

The ecotoxicological parameters (NOEC, EC1, EC10, and EC50), at each exposure time 

point, reported in Table 3.8.1-2 showed that ZnO NPs was more toxic than bulk at all tested 

concentrations. 

Table 3.8.1-2 NOEC, LOEC, EC1, EC10, EC20 and EC50 evaluated for each tested chemicals (nano ZnO, bulk ZnO 

and ZnSO4) to P. tricornutum at each exposure time point. 

Exposure time Chemicals NOEC (mg Zn/L) EC1 (mg Zn/L) EC10 (mg Zn/L) EC50 (mg Zn/L) 

24h 

Nano ZnO 1.0 0.01 [0.004, 0.52] 0.08 [0.04, 0.73] 2.57 [1.93, 3.23] 

ZnSO4 0.5 0.06 [0.01, 0.16] 0.36 [0.05, 0.67] 3.60 [2.17, 5.49] 

BulkZnO 0.5 0.01 [0.004, 0.21] 0.06 [0.03, 0.57] 1.12 [0.89, 1.57] 

48h 

Nano ZnO < 0.1 0.006 [0.004, 0.01] 0.06 [0.04, 0.33] 1.41 [0.97, 3.40] 

ZnSO4 0.1 0.01 [0.01, 0.02] 0.14 [0.09, 0.23] 2.34 [2.05, 2.60] 

BulkZnO 0.5 0.05 [0.01, 0.35] 0.59 [0.09, 0.90] 3.32 [2.89, 3.79] 

72h 

Nano ZnO 0.1 0.03 [0.01, 0.12] 0.23 [0.14, 0.31] 1.09 [0.96, 1.57] 

ZnSO4 0.1 0.01 [0.01, 0.02] 0.54 [0.09, 0.61] 3.22 [2.48, 3.94] 

BulkZnO 0.5 0.02 [0.01, 0.52] 0.64 [0.52, 0.75] 3.47 [3.06, 3.91] 

In particular for ZnO NPs in 72 h, NOEC was recorded at the lowest concentration 0.1 

mg Zn/Lwhich resulted lower than that obtained for bulk ZnO (NOEC 0.5 mg Zn/L). 

Also for this alga the relation between exposure time and growth effect was investigated 

by evaluating the main ecotoxicological parameters along each testing day (24 and 48 h, Table 

3.8.1-2). After 24 h the toxic effect of bulk ZnO (EC10 and EC50: 0.06 mg/L and 1.12 mg Zn/L, 

respectively) was higher than ZnO NPs (EC10 and EC50: 0.08 mg Zn/L and 2.57 mg Zn/L, 

respectively). Along with increasing exposure time the effect of chemicals turned into that higher 

ZnO NPs toxicity. It could be supposed that the toxic effect in the first phase was related to the 

larger size of bulk ZnO aggregates that rapidly settled down on the bottom of the wells where the 

immobile algae lay, which were reported in our previous work (Manzo et al., 2013b), exerting there 

the toxic action. Instead, the action of ZnO NPs aggregates became evident only in the second day 
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of exposure when aggregation and sedimentation processes were completed. 

Although in this study P. tricornutum was very sensitive to ZnO particles especially at the 

beginning of exposure, some authors (Peng et al., 2011) reported this alga as the less sensitive to 

ZnO nanoparticles suspensions respect to Chaetoceros gracilis (EC50 not reported) and 

Thalassiosira pseudonana (EC50 = 0.82 mg Zn/L). 

The observations at optical microscope (Fig. 3.8.1-5) and at FIB (Fig. 3.8.1-6) provided 

supportive evidences to the interaction between ZnO particles (both NPs and bulk) and algae. The 

morphology and the lacking of motility of P. tricornutum algae let a large hetero aggregation along 

the cells that rapidly were completely wrapped around. An increasing trend of the process in 

dependence of exposure time and ZnO concentration (Fig.  3.8.1-5 and 6) could be observed. In 

comparison to T. suecica (Fig. 3.8.1-2), serious aggregation occurred between ZnO particles and 

diatom cells (Fig. 3.8.1-5). 

 

Fig. 3.8.1-5  Behavior of P. tricornutum with aggregates of zinc oxide in 72 h, A: control, B: 0.1 mg Zn/L nano, C: 5 mg 

Zn/L nano, D: 10 mg Zn/L nano, E: 0.1 mg Zn/L bu lk, F: 5 mg Zn/L bu lk and G: 10 mg Zn/L bulk. Algae adsorb the 

zinc oxide aggregates to be clumps along with increasing of concentrations and exposure time. 
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Fig. 3.8.1-6 Observation of P. tricornutum interacting with aggregates (A: control, B: in nano ZnO exposure for 72 h, C: 

in bulk ZnO exposure for 72 h) by FIB. Aggregation occurred wrapping the whole cell body with both particles . 

3.8.2 A comparison between the effects upon the two algae 

A comparison of the effects upon P. tricornutum and T. suecica along exposure times (24, 

48, 72 h) in relation to hydrodynamic diameters of ZnO NPs and bulk particles was performed (Fig. 

3.8.2-1) for thoroughly characterizing the diverse observed sensitivity of algae (Fig. 3.8.1-1 and 4, 

Table 3.8.1-1 and 2). 

 

Fig. 3.8.2-1 A graph panel of toxic effect on both algal cells and hydrodynamic d iameters  of ZnO part icles in ASW at 

three exposure phase points 24 h, 48 h, and 72 h orderly. The exposed chemicals were reported as Zn concentration.* 

Samples not suitable for DLS analysis  

Results suggested a clear effect on algae replication capability linked to the 

physic-chemical state of the nanoparticles in the medium, during the exposure time. In addition to 
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the toxicity mechanisms described for ZnO as bulk and nano materials in general (Miao et al., 2010; 

Miller et al., 2010). A close interference of the aggregates with algal cells likely related to a peculiar 

reactivity or to a mechanical entrapment and or wrapping of the cells in the culture media was 

figure out (Ji et al., 2011). 

The effect curves for ZnO NPs of both algae showed different trends and the diatom 

population always kept higher effect than green alga. It is worth to note that T. suecica at 1 mg Zn/L 

and 5 mg Zn/L showed constant effect trend around 20% in the first case and 60% in the second one 

while at highest concentration the effect were around 80% with a spike at 48 h (90%). P. 

tricornutum instead showed an increasing trend with time at the lowest concentrations, reaching the 

50% of effect, while at the next concentrations the effect were more or less stable during the time 

(around 70% for 5 mg Zn/L and > 80% for 10 mg Zn/L). At all concentrations increasing size of 

ZnO NPs particle was measured (Fig. 1 and 2). In particular, at 1 mg Zn/L just after 48 h there are 

particles with dimensions upper than 6 microns (not detectable by DLS), while at 24 h particle 

lesser than 500 nm were observed. For 5 and 10 mg Zn/L ZnO NPs concentrations a slower 

increasing aggregation process was observable, with particle around 2 microns at 48 hours and > 6 

microns at 72 hours, although with a different size at 24 h (> 1200 nm for 5 mg Zn/L and > 700 nm 

for 10 mg Zn/L). It could speculated that the toxic effect was related to the agglomeration process, 

in fact when the agglomeration proceed fast (i.e. at 1 mg Zn/L) the toxic effect were more evident, 

due probably to a durable and effective interaction solely exerted upon immobile algae on the 

bottom of the wells. When the aggregation turned more slowly (i.e. smaller aggregates at 48 h), the 

effect trend became more similar for the two algae although the diatom always registered the 

highest effects. This is because the aggregates could hardly interact with motile algae (swimming in 

the test media). 

Also for bulk ZnO generally the effect curves showed different trend with the time for the 

two algae. In particular at 1 mg Zn/L T. suecica showed always effect less than 20% while a 

decreasing trend starting from 60% down to 35% for 5 mg Zn/L and a slowly increasing trend 

starting from 60% up to 70% at 10 mg Zn/L were evaluable. 

P. tricornutum showed a decreasing toxicity trend starting from 50% down to 30% at 1 

mg Zn/L while a quite constant response around values > 70% was registered at 5 mg Zn/L and a 

slowly increasing effects from 70% to 80% were obtained at 10 mg Zn/L.  
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The aggregation trend for bulk ZnO was similar to that described for ZnO NPs but with 

higher aggregate sizes (i.e. agglomerates). For bulk the homo aggregation process resulted more 

efficient than hetero aggregation, and these could be the reason why the final effects were lower. 

Additionally at concentration < 5 mg Zn/L the different actions upon the two algae were more 

evident due to the less probability that aggregates/agglomerates could interact with motile algae 

respect to settled ones. At 10 mg Zn/L the numbers of particles are sufficient to exert a similar toxic 

action for both algae. 

Regarding homo aggregation of ZnO and aggregation between algal cells and aggregates 

during exposure, the algae, stimulated by ZnO particle, could promote this process, producing some 

compounds such as citrate, cysteine or carbonate (Mafuné et al., 2000). It was also reported that in 

some cases this phenomenon reduce the toxicity of some chemicals (Soldo et al., 2005; Miao et al., 

2007; Navarro et al., 2008). Based on the observation upon algae morphology (Fig. 3.8.1-2, 3, 5, 

and 6) we can observe that the higher suface area-volume ratio of P. tricornutum respect to T. 

suecica represent a very important factor because the interaction between ZnO particles and algae 

mainly happened on the cell surface. The toxicity reflected the difference in contact time and in 

contact area between algae and aggregates. In addition motility should be a key factor in the algae 

different sensitivity. Motility made algal cells largely distributed in culture medium reducing than 

the contact time with aggregates differently by the immobile diatoms. Consequently, shading effects 

could lead to a reduction in the light availability to entrapped cells thus inhibiting their growth 

(Wang et al., 2008; Aruoja et al., 2009; Gong et al., 2011). 

3.9 Conclusions 

Comparative toxicity of ZnO NPs, bulk, and Zn salt towards greenmicroalga T. suecica 

and diatom P. tricornutum has been detected in this study, aiming to understand if the presence of 

NPs themselves induces any additional toxic effect to those already attributed to the released metal 

ions. We have found that the nano size plays a key role in the overall ZnO toxicity. EC50s had been 

detected at 3.91 [3.66, 4.14] mg Zn/L for NPs, 5.61 [4.93, 6.23] mg Zn/L for ZnSO4 and 7.12 [6.65, 

7.46] mg Zn/L for bulk ZnO towards green microalgae and 1.09 [0.96, 1.57] mg Zn/L for NPs, 3.22 

[2.48, 3.94] mg Zn/L for ZnSO4 and 3.47 [3.06, 3.91] mg Zn/L for bulk ZnO towards diatom. 

Distinct inhibition effect difference on both algae indicated that diatom appears more sensitive than 



3 RESULTS AND DISCUSSION 

53 

 

T. suecica because of the difference of the contact time by motility, contact area by 

surface-to-volume ratio and available light by shading effects. Additional, effect of low 

concentration had been recorded that EC10 values were under 1 mg Zn/L for all chemicals towards 

P. tricornutum and NOEC were detected at the lowest concentration for NPs to both algae. 

Inhibition at low concentration is worth to be notice for exposure risk in environment. 
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3.11 Zn bioaccumulation and histological damages of M. galloprovincialis 

exposed to ZnO NPs, bulk, and Zn salt 

As nanomaterials (NMs) are used extensively in a variety of emerging technologies and 

commercial products so they can be largely be released in the environment. Fate and transport 

models indicate that they can reach the marine environment and can have an ecological impact.  

In particular the increasing use of ZnO NPs, their modeled release into the aquatic 

environment and the toxic effects to the aquatic organisms are well documented (Peng et al., 2011; 

Keller et al., 2013; Ma et al., 2013; Manzo et al., 2013a; Keller et al., 2014). 

However the NP ecotoxicological assessment was still uncompleted also because it is 

necessary to take into account several factors, including physicochemical properties of NPs, 

seawater parameters, interactions with both physical and chemical factors and organisms' 

physiology and ecology. 

Bivalves are largely used as bioindicators to monitor the health of an aquatic environment, 

either fresh or sea water. They are extremely useful as they are sessile which means they are closely 

representative of the environment where they are sampled or placed (caging), and because they are 

filter feeding, they expose their gills and internal tissues to bioaccumulation also of contaminants. 

Common mussels such as M. edulis and the similar species Mediterranean mussel M. 

galloprovincialis were also largely used as indicators of marine contamination since 1970s, 

(Golberg, 1975; Phillips, 1976) also for their worldwide distribution. Due to their peculiar 

characteristics, in recent years, M. galloprovincialis was more and more employed to investigate 

biological response to toxicants and then also NPs, in laboratorial condition (Bebianno & Serafim, 

1998; Da Ros et al., 2000; Barmo et al., 2013; Estevez-Calvar et al., 2013; Balbi et al., 2014; 

Bebianno et al., 2015). 

The mechanism of ZnO NPs toxicity was summarized in three aspects (Ma et al., 2013): 

ionic Zn dissolved from NPs, particle- induced effects, and NP photocatalytic activity, which were 

well documented on various organisms, bacteria (Sawai et al., 1998; Brunner et al., 2006; Zhang et 

al., 2007; Applerot et al., 2009; Xie et al., 2011), fungus (Lipovsky et al., 2011), plants (Lin & Xing, 

2008), microalgae(Manzo et al., 2011), and amphipod (Fabrega et al., 2012).  

However the ZnO NP toxic effects upon marine bivalve M. galloprovincialis, 

https://en.wikipedia.org/wiki/Bioindicators
https://en.wikipedia.org/wiki/Bioaccumulation
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physiological processes, such as respiration, accumulation of Zn, growth, and survival are still very 

scarce (Montes et al., 2012; Hanna et al., 2013). Despite the effects at histological level had been 

well documented of bivalvia, crustacea, fish, and mammal exposed to other nanomaterials, heavy 

metals salts, and organic contaminants (Sunila, 1988; Aarab et al., 2004; Aarab et al., 2006; Federici 

et al., 2007; Griffitt et al., 2007; Griffitt et al., 2009; Kádár et al., 2010; Sheir et al., 2010; Al 

Kaddissi et al., 2011; Abdelhalim & Jarrar, 2012; Barmo et al., 2013; Sheir et al., 2013; Balbi et al., 

2014; Hariharan et al., 2014; Hu et al., 2014; Trevisan et al., 2014; Vale et al., 2014; Cid et al., 2015)  

only rare records reported the effects at histological level in mussels (Kádár et al., 2010; Barmo et 

al., 2013; Hu et al., 2014) (Table 3.11-1). About investigated tissue, gill, digestive gland, and gonad 

were frequently used in bivalvia. For fish and rat, gill, intestine, and liver were the most 

investigated organs, haemocytes were used to assess the toxicity as well (Kádár et al., 2010; Barmo 

et al., 2013). 

Table 3.11-1 Histological alterations of exposed species  

Experimental 
species 

Exposure 
toxicants 

Histological alterations comparing with control 

References 
Observed organs 

Gill Digestive gland Gonad 

Mantle Adductor muscle Others 

Bivalvia      

M. edulis North Sea oil, 
alkylphenols 
and PAHs 

  Size, precocious degree, 
degeneration of spermatic 
cysts/ovarian follicles; 

morphologic change of 
connective tissue 

(Aarab et al., 
2004) 

M. edulis SO4
2-

, Cd
2+

, 
Cu

2+
, PbO, Co

2+
, 

Fe
3+

, Ag
+
, PCB, 

DDT and 
dieldrin 

Morphologic change and 
inflammation of gill filaments 

  (Sunila, 1988) 

M. edulis BPA, DAP and 
PBDEs 

  Morphologic change of 
ovocytes; Size, number of 

ovarian follicles/spermatic 
cysts; filling degree of 
gametocytes in ovarian 
follicles/spermatic cysts; 

(Aarab et al., 
2006) 

M. edulis Cd
2+

 Morphologic change and 
necrosis of gill filaments 

Necrosis of tubules Necrosis and inflammation of 
ovarian follicles/spermatic 
cysts 

(Sheir et al., 
2013) 

M. edulis CuO NPs Aberrant brown cells   (Hu et al., 
2014) 

M. edulis HgCl2 Morphologic change and 

necrosis of gill filaments; 
morphologic change and 
number of haemolymph 

vessel; 

Nuclear morphologic change 

and necrosis of epithelial 
cells; necrosis of connective 
tissue 

 (Sheir et al., 

2010) 

Morphologic change of fiber 

texture; morphologic change 
and necrosis of connective 
tissue 

M. TiO2 NPs  Nanoparticles direct invasion Haemocyte: nuclear (Barmo et al., 
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galloprovincialis abnormalities 2013) 

M. 

galloprovincialis 

Cd
2+

   D-larva: shell indentations 

and protruding mantle 

(Balbi et al., 

2014) 

M. sp. Fe NPs and Fe
3+

 Morphologic change of 
epithelial cells 

 Haemocyte: size and number (Kádár et al., 
2010) 

Perna viridis Pb
2+

 Morphologic change of gill 
filaments; damage of 

epithelium 

Morphologic change and 
inflammation of fiber texture; 

necrosis and inflammation in 
connective tissue; loss of 
muscular integrity 

 (Hariharan et 
al., 2014) 

Crassostrea 
gigas 

ZnO NPs Morphologic change and 
nanoparticles direct invasion 

in mitochondria of gills 
filaments 

  (Trevisan et 
al., 2014) 

Corbicula 
fluminea 

Nanodiamond  Degeneration of digestive 
cells; morphologic change of 

digestive epithelia 

 (Cid et al., 
2015) 

C. fluminea Cd
2+

 and TiO2 
NPs 

 Inflammation  (Vale et al., 
2014) 

Crustacea      

Procambarus 
clarkii 

UO2(NO3)2   Hepatopancreas tubules: 
Pathologic change of 

epithelium; degeneration of 
tubules 

(Al Kaddissi 
et al., 2011) 

Fish      

Danio rerio TiO2 NPs, Ag 
NPs, Ag

+
, Cu 

NPs and Cu2+ 

Gill filament width change   (Griffitt et al., 
2009) 

D. rerio Cu NPs and 
Cu

2+
 

Proliferation of epithelial 
cells and edema of gill 
filaments 

  (Griffitt et al., 
2007) 

Oncorhynchus 
mykiss 

TiO2 NPs Pathologic and morphologic 
change of gill filaments 

Pathologic and morphologic 
change of intestinal villi 

Liver: Pathologic change of 
hepatocytes; apoptotic bodies 

appeared; Brain: necrotic cell 
bodies appeared 

(Federici et 
al., 2007) 

Mammal      

Rattus 
norvegicus 

Au NPs   Liver: Pathologic change, 
degeneration, inflammation in 

hepatocytes 

(Abdelhalim 
& Jarrar, 

2012) 

However it is really informative the performance of different tissue injuries for the 

understanding the effect pathway in the exposed organisms (Federici et al., 2007; Abdelhalim & 

Jarrar, 2012; Barmo et al., 2013; Cid et al., 2015). 

Many different histological alterations were observed in gill filaments of bivalvia animals 

exposed to, nano-metal oxides, and ionic metals (Sunila, 1988; Kádár et al., 2010; Sheir et al., 2010; 

Sheir et al., 2013; Hariharan et al., 2014; Trevisan et al., 2014) such as: fusion and cilia erosion, 

chronic inflammation, proliferation, severe loss, and shrinkage of epithelial cells, edema, absence 

mitochondrial cristae, endocytic vesicles containing electron-dense particles, swollen mitochondria 

and lumen, highly vesciculated cytoplasmic space, disrupted mitochondria, total loss of gill 

architectures, and damaged interlamellar junctions. In digestive gland, degenerating digestive cells, 

increased vacuolation, unclear nuclei of eroded digestive epithelia, necrotic tubules, necrotic 

connective tissue, accompanied with irregular and dilated lumina were directly observed (Sheir et 
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al., 2010; Barmo et al., 2013; Sheir et al., 2013; Vale et al., 2014; Cid et al., 2015). The gonad was 

mainly investigated in the case of heavy metals and organic pollutants effects and was generally 

reported precocious developmental, enlarged and degenerating ovarian follicles; very loosen 

connective tissue, shrunken and empty oocytes in ovarian follicles, and empty spermatic cysts with 

few spermatozoa (Aarab et al., 2004; Aarab et al., 2006; Sheir et al., 2013). The loss of fibrous 

structure and muscular integrity, necrosis, hydropic change (swelling), decrease in extracellular 

spaces, and inflammatory responses and necrosis of connective tissue, vacuolization between the 

muscle bundles, and finally splitting of muscle fibers were observed in adductor muscle exposed to 

heavy metal (Sheir et al., 2010; Hariharan et al., 2014). Hu et al. (2014) reported that brown cells 

were found along the mantle margin and lining sinuses in CuO nanoparticles exposed mussel. No 

records have been found for characterising pleopod injury in bivalvia. 

Generally, together with the histological response, metals accumulation had been 

investigated as well to explain the toxicity of metals or metal oxides (Montes et al., 2012; Hanna et 

al., 2013). Hanna et al. (2013) determined the accumulation of Zn in M. galloprovincialis long term 

exposed to ZnO NPs showeing that the mussel gonad accumulated Zn efficiently in lower exposure 

concentration more than higher ones. Montes et al. (2012) detected an amount of four times of Zn 

accumulation in the whole mussel M. galloprovincialis respect to un-exposed sample. Fate and 

effect of metal-based nanoparticles had been well investigated in other marine oragnisms as well, 

e.g., the bivalve mollusk Scrobicularia plana and the annelid polychaete Hediste diversicolor 

(Mouneyrac et al., 2014). 

In this section, the histological alterations on 6 organs in M. galloprovincialis exposed to 

ZnO NPs suspensions were observed to characterize the tissue damages. 

To a comparative purpose ZnO bulk and Zn ions were tested as well, in order to also 

evidence a peculiar effect linked to the pristine ZnO size and to the ionic zinc alone. 

In addition, tissue Zn uptake was measured to reveal the fate of Zn in mussel and give a 

full understanding of ZnO NPs toxicity with the histological observation. 

3.12 Materials and methods 

3.12.1 Chemicals 
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Bare ZnO nanopowder (Code 544906, particle size < 100 nm, surface area 15-25 m2/g) 

and ZnSO4·7H2O crystals (Code 204986, 99.999% trace metals basis) were purchased from 

Sigma-Aldrich Co. LLC. (USA). Bulk ZnO powder (Code ZK249038, particle size 150−200 nm, 

purity > 99.9%) was purchased from Quer Biotech Co., Ltd (Hefei, China). Baysalt crystals (Code 

Q/XWL 101-2006) were purchased from Shuilifang S&T Ltd. (Xiamen, China). 

3.12.2 Particle dispersions 

Stock suspensions of nano and bulk ZnO powder were prepared with Reconstructed Sea 

Water (RSW, East China baysalt crystals dissolved in pure water; salinity 25 ‰, pH 7.90, 0.22 μm 

filtered) to the final concentration of 1g Zn/L. The ZnO suspensions were dispersed by 

bath-sonication for 30 min at 50 W (Yuhao ultrasonic cleaner, YH-200DH, Shanghai, China). Test 

suspensions of concentrations 0.01, 0.1, 1, 10 and 100mg Zn/L were prepared by diluting the stock 

suspension with RSW. Zn salt solution was prepared in the same five graded concentration without 

sonication. 

3.12.3 Animals and exposure experiment 

Wild adult specimens of M. galloprovincialis (shell length 4-5 cm) were collected from 

coastal rocks (30°41′ N, 122°27′ E; Zhoushan, Zhejiang Province) in the East China Sea. The site 

does not belong to a national park or a protected sea area or a relevant regulatory body concerned 

with wildlife protection or a private owner. The mussels were further acclimatised to aerated ASW 

in an aquarium for 7 days at 23°C (1 L/animal) (Scarlato, 1981; Ye et al., 2011) with feeding and 

water changing (3.5 dyas intervals; 1 mL per 50 L water of PhytoplexTM phytoplankton feed, Kent 

Marine Inc., Acworth, GA, USA) (Tedesco et al., 2010). 

Mussels were then treated with ZnO NPs and bulk counterpart in 0 (control), 0.01, 0.1, 1, 

10, and 100 mg Zn/L concentration, respectively, for four weeks. In each exposure tank, 25 mussel 

individuals were exposed to 5 L medium with aerating, feeding and water changing (twice per 

week). On the 1st, 2nd, 3rd, 7th, 14th, 21st, and 28th day, 3 individuals per tank were sampled, and 

fresh tissue of 6 organs (gill, digestive gland, gonad, adductor muscle, mantle, and pleopod) were 

used to make paraffin section and to perform the measurement of Zn accumulation. 

3.12.4 Measurement and analysis of tissue Zn accumulation 
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A 500 mg portion of fresh tissues was digested in 10 mL HNO3 (69%) using a microwave 

digestion system (MARS Xpress, CEM, USA). The vessels were heated from room temperature to 

120 °C in 5 min, and to 150 °C in 3 min and held for 5 min, then to 180 °C in 3 min and held for 10 

min; were cooled down to room temperature before they were opened.  After cooling the resulting 

solutions were diluted to 25 mL with deionized water. Zn concentrations were measured by an 

atomic absorption spectrometer (AAS; AA240 Duo, Varian, USA) in a graphite furnace (Massányi 

et al., 2004; Kramárová et al., 2005; Gasparik et al., 2012). The concentrations are expressed on 

wet-weight basis in μg/g. A relative Zn uptake rate (R) is used to express the efficiency of Zn 

accumulation in each tissue with an equation: 

 𝑅 =
𝐶𝐸 −𝐶𝐾

𝐶𝐾
× 100%                                                   (a) 

In the equation, CE means Zn concentration of exposed sample and CK means Zn 

concentration of control sample. All data are expressed as the mean ± SD of the different 

biological samples specified. 

3.12.5 Histological observation 

Fresh tissues were processed following the histological procedures described by Martoja 

& Martoja-Pierson (1967). The samples were fixed overnight in a Bouin's solution and stored in a 

70% ethanol solution; washed for 24h in deionized water and then dehydrated through a series of 

graded ethanol solutions (70–100%) and xylene for intermediate impregnation. After immersion in 

paraffin, sections of 5–7 μm were cut using a microtome (Kedee, China) and mounted on glass 

slidesand stained with hematoxyline and eosin (H&E). Histological observation was performed by 

an optical microscope (Olympus, Japan) and an image system (Shineso, China). 

3.13 Results and discussion 

3.13.1 Zn bioaccumulation 

The Zn concentrations of 6 organs in mussel exposed to 3 chemicals in 5 concentrations 

at 7 exposure time points were measured and the relative Zn uptake rates were calculated using 

equation (a) to express the efficiency of Zn accumulation. The relative Zn uptake rates in the middle 

exposure concentration 1 mg Zn/L were given in Fig. 3.13.1-1 which shows the trends of Zn 
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accumulation in different tissues along with exposure time. Curves of digestive gland and gonad 

represented higher amplification than other organs along with time. Zn ion showed the highest 

uptake rate and NPs was in somewhere between ion and bulk for each organ. 

 

Fig. 3.13.1-1 The relative Zn uptake rates in 6 organs exposed in 1mg Zn/L ZnO suspensions and salt solution. 

To compare the Zn uptakes among all tissues, the percents of relative Zn uptake rate of 

each tissue in whole exposed individual were drawn in Fig. 3.13.1-2. At low exposure 

concentrations (0.01 and 0.1 mg Zn/L), no evident trend was found. At the three higher 

concentrations (1.0, 10.0 and 100.0 mg Zn/L), the digestive glands represented increasing Zn uptake 

rates along with exposure time, gills showed a trend similar to digestive glands in the beginning 

three days of exposure (24-72 h) and evidenced a stable Zn uptake rates in the long exposure phases 

(7-28 d). Other tissues represent relative stable trends on Zn uptake rate along with exposure time. 
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Fig. 3.13.1-2  The percents of relative Zn  uptake rate o f each t issue exposed in ZnO suspensions and salt solutions in all 

concentrations. ̂  means all mussel individuals dead in the experimental group. 

3.13.2 Relationship of Zn uptake in different tissues 

An equation (a) was used to calculate the relative Zn uptake rate (R) for describing Zn 

accumulation difference among tissues and exposure time. Zn is rich in marine bivalve animals 

(George & Pirie, 1980; Wang & Fisher, 1996), such as the Mediterranean mussel in the present 

study, of which the concentrations are different among different organs (Regoli, 1998). The aim of 

comparing the Zn uptake rate in different tissues is to verify the tissue sensitivity on Zn 

accumulation in this study. 

But also to know in which organ the major NP effect could be waited, due to the Zn 

locally accumulated. The concentrations are expressed on wet-weight basis which could better 

image the Zn distribution in live mussel organs than dry-weight (Sager & Cofield, 1984). 

The relative Zn uptake rates in 6 different tissues were represented by 1 mg Zn/L 

concentration in Fig. 3.13.1-1 (the rest of all data were shown in Appendix 1). As the comparing 

objects, R values of control group (K) were set as the standard line with zero percent. On the basis 

of the control group, R values went a growing trend along with exposure time in all tissues, in 

particular digestive gland, which were bringed into correspondence with the longest stay time and 

largest area for ZnO exposure. The digestive gland is the required organ for measuring pollutants 
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uptake (Regoli, 1998; Gomes et al., 2012; Mouneyrac et al., 2014; Gornati et al., 2015). In the 

present resarch, gonad was also verified to have high Zn uptaking ability with a peak number (about 

3.5) at 21d exposure time that the R value was approximately 5.0 in digestive gland at the last 

exposure timepoint. The anatomical position of gonad is very close to digestive gland that ZnO 

staying in digestive gland for long time might to affect the exposure extent in gonad. Gill and 

mantle represented more uptake extent than pleopod and adductor muscle due to larger contact area 

with suspensions. However, in the beginning of exposure phase (0-72 h), R of gill, digestive gland, 

and gonad were the same level with the value almost 2.0, which indicated gill seems uptaking Zn 

with a capacity limit in the end three weeks being different with digestive gland and gonad. Ionic 

Zn showed the highest uptake rate and NPs was in somewhere between ion and bulk for each organ 

(Fig. 3.13.1-1). 

Actually, 1 mg Zn/L ZnO can dissolve at all into sea water which had been proved before 

(Manzo et al., 2013b). Digestive gland showed higher uptake rate on ionic Zn than dissolved Zn 

from NPs and bulk (Fig. 3.13.1-1) indicating the presence of a mechanism capable to limit the ionic  

Zn access in the tissue. The interaction between ZnO and live mussel might affect Zn uptaking. 

The percents of R values among all tissues were shown in Fig. 3.13.1-2 to compare the 

tissue difference on Zn uptake. No obvious pattern was found in the low exposure concentrations 

(0.01 and 0.1 mg/L) because R values were well included in the measurement variability. At 1 mg 

Zn/L concentration, gill showed gradually decline trends to three exposures which were not 

continued in higher concentrations. Instead, digestive gland showed gradually increasing trends 

of %R along with exposure time in all higher exposure concentrations (Appendix 1). This suggest 

that digestive tract could hold the ZnO during the exposure time and that it is the final sink to store 

Zn. Gonad showed similar increasing changes of %R values during the four weeks: the anatomical 

position near to digestive gland and its own capacity to hold Zn can explain this result. Obviously, 

the higher %R values were measured for digestive gland, gonad, and gill (Fig. 3.13.1-2). For the 

other organs, no clear trends have been found and the low percents of R values indicated that they 

are not the target tissues to investigate the Zn uptake. 

3.13.3 Histologic observation 

The microscopy observation indicated that NPs can induce varying degrees of histologic 
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injure in each organ and very obvious histologic alteration was observated in gill, digestive gland, 

and Gonad. Fig. 3.13.3-1 showed the observation of tissue injury in 6 organs exposed in 10 mg 

Zn/L ZnO suspensions and salts for 72 hours that a full observation can be taken in this situation 

representing the injury occurred in mussel tissue. Because tissue exposed into the lower 

concentrations (0.01-1.0 mg Zn/L) were not shown obvious observable injury by microscrope and 

that were too much in the highest concentration. In Fig. 3.13.3-1 Gill, the distances between 

adjacent gill filaments were measured. In a same length standard, 250-260 for control (A), 340-410 

for bulk (B), 440-490 for NPs (C), and 330-350 for Zn ion (D) indicated that NPs represented the 

highest effect among all. With respect to control, edema (red arrows) were found in all three 

exposed gill filaments and Zn salts caused swollen cavity (green arrows) and damaged interlamellar 

junctions in Fig. 3.13.3-1 Gill. For Digestive gland observation, necrotic tubules with tissue off (red 

arrows), necrotic connective tissue with irregular and dilated lumina (green arrows) were observed 

in all exposed tissues, especially severely by salts. Eight photos were exhibited in Fig. 3.13.3-1 

Gonad for showing damages in both of ovarian follicle (left) and spermatic cyst (right). Disrupted 

oocytes in ovarian follicles (red arrows) and very loosen connective tissue (green arrows) were 

observed in femal individuals exposed to all chemicals (B, C, and D in Fig. 3.13.3-1 Gonad). 

Broken and almost empty ovarian follicles were found for NPs and Zn ion exposed mussels, 

respectively. In male individuals, empty spermatic cysts with few spermatozoa (red arrows) and 

very loosen connective tissue (green arrows) were observed for all three exposed chemicals. In the 

observation of adductor muscle, loss of fibrous structure and muscular integrity and vacuolization 

between the muscle bundles (red arrows) were found in NPs (C) and, in particular, ion (D). Very 

loosen connective tissue (green arrows) were observed as well. Loosen epithelium (red arrows) 

were found along the margin of mantle and pleopod. Few lacunas (green arrows) were observed in 

ion exposed mantle (D) and NPs and ion exposed pleopod (C and D). 
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Fig. 3.13.3-1 Observation of tissue injury in 6 organs exposed in 10 mg Zn/L ZnO suspensions and salts for 72 hours. A: 

Control group, B: ZnO bulk, C: ZnO NPs, D: Zn salt; Gonad: left part is female and right part is male. 

3.13.4 Difference of tissue damage between tissues, chemicals 

The main representative pictures of tissues injury were reported in Fig. 3.13.2-1. The 

distance between adjacent gills filaments were utilized to compare the difference among ZnO NPs, 

ZnO bulk and Zn ions and control individuals (Griffitt et al., 2007; Griffitt et al., 2009). NPs 

showed the highest effect respect to zinc ions and ZnO bulk. Also, more edemas were observed in 

NPs exposed gill than in the others. However, swollen cavities were found only in gill samples 

exposed to Zn salts. Various degree of injury occurred in interlamellar junctions for all treated 

samples. 

Effects similar to those evidenced in this study where previously reported in gills of M. 

edulis exposed to environmental pollutants (Sunila, 1988; Sheir et al., 2013), though erosion or 

necrosis was never evidenced. Gill damages were also observed in nano-Fe exposed mussel Mytilus 

sp. (Kádár et al., 2010) although not similar to those observed in the present research. 

In digestive gland section, necrotic tubules with tissue off and necrotic connective tissues  

with irregular and dilated lumina were observed in all exposed tissues, especially severe in the case 

of salt exposure, in which necrosis is the main sign of injury occurred in digestive gland. Similarly, 

Sheir et al. (2010); Sheir et al. (2013) observed necrotic tubules and necrotic connective tissue in 
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the digestive gland of exposed M. edulis; inflammatory response, such as tubule lumen widening 

and thickness of the epithelium reducing, were observed in the digestive tubules of the fresh water 

bivalve C. fluminea exposed to Cd and TiO2 NPs (Vale et al., 2014); and degenerating digestive 

cells, increased vacuolation, thinness of the digestive epithelia, and accompanied with irregular and 

dilated lumina were observed in C. fluminea exposed to diamond NPs (Cid et al., 2015). Digestive 

tract holds the pollutants for the longest time in all mussel organs and seems the final sink in 

exposed individuals where ZnO and Zn salt can stay in enough to lead the maximum injury. 

Therefore, necrosis occurred in tubules and connective tissues without clear differences in the injury 

levels among three exposed chemicals. 

With superiority in Zn uptake rate, the gonad plays a quite important role in histological 

response to ZnO and ions. Both in ovarian follicle and spermatic cyst loosen connective tissues 

were observed in all chemicals exposed mussels. Disrupted, broken, even almost empty ovarian 

follicles and empty spermatic cysts with few spermatozoa occurred in female and male mussels, 

respectively, in particular when exposed to Zn salts. Aarab et al. (2004) reported larger, precocious 

developmental, even degenerating ovarian follicles and very loosen connective tissues with 

numerous haemocytes in female blue mussel M. edulis exposed to Sea oil for long term and similar 

trends were found in male individuals as well. Additional, M. edulis also was found to represent 

empty, atretic ovocytes and empty spermatic cysts with few spermatozoa (Aarab et al., 2006). Loss 

of gametes in both ovarian follicles and spermatic cysts with loosen connective tissues could be 

considered as the most evident histological response to environmental stress. 

For exposed adductor muscle, mantle, and pleopod, there is no that much clear 

histological changes respect to the unexposed organisms as reported for other three organs. But, still, 

loss of fibrous structure and muscular integrity and vacuolization between the muscle bundles were 

found in NPs and, in particular, in ions exposure; loosen epithelium were found along the margin of 

mantle and pleopod; few lacuna were observed in salts exposed mantle and pleopod. Those had 

been reported in previous researches (Sheir et al., 2010; Balbi et al., 2014; Hariharan et al., 2014) in 

mussels, however, Hu et al. (2014) reported also brown cells along the mantle margin and lining 

sinuses which were not observed in the present study. In summary, toxicity caused by NPs, bulk, 

and salts represented various degree, low by bulk < medium by NPs < high by salts, of injury in gill, 

digestive gland, and gonad, not in others. 
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3.14 Conclusions 

In this section, the histological alterations were observed on 6 organs in mussel M. 

galloprovincialis exposed to ZnO NPs, bulk suspensions and Zn salts. Tissue Zn uptake was 

measured to reveal the fate of Zn in tissues as well. With comparing of histological observation and 

Zn accumulation in different tissues exopsed three chosen chemicals, NPs toxicity were represented 

on tissue injury and Zn uptake which indicated the initial size effect contributing to the overall 

toxicity. 
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3.16 Ecotoxicity of ZnO nanoparticles in M. galloprovincialis revealed by 

transcription of apoptosis and antioxidation-related genes 

With the rapid economic development, China becomes the largest nanomaterial market in 

the Asia–Pacific (Gao et al., 2013). In particular, the possible use of zinc oxide nanoparticles (ZnO 

NPs) in several productive fields such as: medical plastic, ship antifouling paints (Han, 2011; Yue, 

2014), solar cells (Luo, 2013), antimicrobial agents (Shi, 2015), food additives (Liu, 2014), 

photocatalyst for pollution abatement (Gao et al., 2007; Gu et al., 2007) was largely investigated. 

This increasing use is consequently leading to a concurrent release increment into the environment 

where toxic effects to the aquatic organisms could be exerted (Peng et al., 2011; Keller et al., 2013; 

Ma et al., 2013; Manzo et al., 2013; Keller et al., 2014). It was estimated that about 36,000 kt of 

ZnO NPs could be discharged by wastewater and dust deposition into China‘s aquatic environments 

only in 2017 (Gao et al., 2013). 

Although in the last years the toxicity towards some marine organisms (Wong et al., 2010; 

Peng et al., 2011; Hanna et al., 2013; Keller et al., 2013; Ma et al., 2013; Manzo et al., 2013; Keller 

et al., 2014) was investigated, unfortunately, there is still a lack of information about the possible 

adverse effects especially toward organisms chronically exposed. 

Moreover, as the fate and the behavior of NPs in marine environment largely depend on 

the seawater characteristics that may promote NP aggregation/agglomeration/dissolution processes, 

the extrapolation of ZnO toxicity results to organisms of South East China is valid to a limited 

degree. 

Bivalves, like mussels Mytilus spp., are filter-feeders, widely distributed, and with a 

long- life span and represent a good choice for the study of marine environmental pollution (Sheir et 

al., 2013; Balbi et al., 2014; Hu et al., 2014; Cremonte et al., 2015). Mytilus galloprovincialis, 

cultured in China for commercial interest (Lazo & Pita, 2012; FAO, 2016), was largely utilized in 

several countries to investigate biological responses to toxicants and environmental stress (Da Ros 

et al., 2000; Barmo et al., 2013; Estevez-Calvar et al., 2013; Balbi et al., 2014) and also to assess 

NPs toxicity (Canesi et al., 2010; Gomes et al., 2011; Hanna et al., 2013; Balbi et al., 2014; Gomes 

et al., 2014b). 

In this bivalve NPs uptake can occur by ingestion through the digestive tract (Roberts et 
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al., 2007; Baun et al., 2008; Gagné et al., 2008; Ward & Kach, 2009) and through the large 

respiratory surface of the gills, as demonstrated for SiO2 NPs in the congener species Mytilus edulis 

(Köhler & Riisgård, 1982). The gills and the digestive gland are, therefore, particularly relevant as 

target organs for nanotoxicological studies (Baun et al., 2008; D'Agata et al., 2014). In particular, 

the digestive gland is the main tissue for their storage (Ringwood et al., 2010), where NPs could 

accumulate with increasing time exposure (Gomes et al., 2011; Gomes et al., 2012; Gomes et al., 

2013; Gomes et al., 2014b). 

Once in the tissue, the particles could induce oxidative stress and promote several 

abnormalities in cellular function which can also trigger major changes in gene transcription (Fabbri 

et al., 2008). 

It was previously reported that ZnO induce reactive oxygen species (ROS) generation and 

subsequent oxidative stress, which leads to damaged DNA, lipids, and proteins and potentially to 

cell death as reported for several organisms (Diamond et al., 2002; Adams et al., 2006; Lipovsky et 

al., 2011; Ma et al., 2011; Schiavo et al., 2016). Regarding M. galloprovincialis exposed to ZnO, 

effects upon the individual performance (Hanna et al., 2013), immunomodulation and on the energy 

budget in mussel body (Muller et al., 2014) were mainly reported, while studies about oxidative 

stress response were, to the best of our knowledge, not still available. 

The oxidative stress is a common pathway of toxicity induced by pollutants (Winston & 

Di Giulio, 1991; Regoli, 1998). Organisms have adapted various stress response pathways, which 

play pivotal roles dealing with environmental insult (Gupta et al., 2010). These pathways (e.g. Fig. 

3.16-1) include antioxidant enzymes such as superoxide dismutase (SOD), glutathione transferase 

(GST), catalase (CAT), to remove ROS (Zelko et al., 2002); and DNA repair enzymes such as p53 

and PDRP involved in the pathway between ROS and DNA damages to minimize the impacts of 

genotoxicity such as DNA lesions, mutation accumulation, and chromosomal aberrations (Brierley 

& Martin, 2013). Accordingly different biomarkers were used to evaluate ROS-mediated NPs injury 

also in mussels (Table 3.16-1). On the other hand, it was showed that, in the ecotoxicological 

assessment, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) grants an 

accurate mRNA transcription quantification useful for gene expression profile assessment in 

biological samples exposed to stressors, providing at the same time, higher sensitivity (Huggett et 

al., 2005; Hellemans et al., 2007; Schmittgen & Livak, 2008). 
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Fig. 3.16-1 The signaling pathway of ZnO NPs toxic mechanism in viab le cell involved in apoptosis and antioxidation, 

cited from Estevez-Calvar et al. (2013) and Gomes et al. (2011). 

Table 3.16-1 Biomarkers in three marine mussels (M. galloprovincialis, M. edulis and Perna viridis) exposed to various 

chemicals or environmental stress 

Experimental 

species 

Exposure 

toxicant/ 

treatment 

Biomarker and response to toxic exposure 

Reference Enzymatic 

concentration/activity 

Gene expression Others 

M. 

galloprovincialis 

TiO2 NPs GSR, GST, CAT, GPX, 

and Se-GPX 

GST, CAT, Mytilin 

B, Myticin B, 

defensin, lysozyme 

and MgC1q 

 (Barmo et al., 

2013) 

Cd MT   (Bebianno & 

Serafim, 1998) 

Polluted 

environment 

SOD and CAT   (Da Ros et al., 

2000) 

CuO NPs SOD, CAT, GPX, and 

MT 

 lip id peroxidation 

(LPO) 

(Gomes et al., 

2012) 

Polluted 

waters 

Glutathione, 

Glyoxalase I and II, 

GST, Se-GSR, Se-GPx, 

CAT, SOD 

  (Regoli, 1998) 
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CuO and Ag 

NPs 

  Genotoxic comet  

assay 

(Gomes et al., 

2013) 

Ag NPs SOD, CAT and GPX   (Gomes et al., 

2014b) 

Nano carbon 

black, C60 

fullerene, 

Nano-TiO2 

and 

Nano-SiO2 

CAT and GST  Lysosomal 

membrane 

stability, 

lysosomal 

lipofuscin 

content, and 

lysosomal Neutral 

Lipid content 

(Canesi et al., 

2010) 

UV  p53, PDRP, Bcl-2, 

Bax, BI-1, and 

Dff-A 

 (Estevez-Calvar 

et al., 2013) 

CuO NPs SOD, CAT, and GPX   (Gomes et al., 

2011) 

M. edulis Au NPs Oxidized glutathione   (Tedesco et al., 

2010b) 

P. viridis TiO2 NPs and 

hypoxia 

  Total hemocyte 

counting, ROS 

and Lysosomal 

content 

(Wang et al., 

2014) 

Gene expression profiling has been used extensively in toxicological studies to determine 

the impacts of biotic and abiotic stressors to understand the function of differential gene activity 

under the challenges of environmental toxicants (Burnett et al., 2007; Altshuler et al., 2011). These 

DNA damage-responsive genes and antioxidant enzymes genes have not been yet documented in M. 

galloprovincialis. The toxicity of ZnO NPs to mussel could provoke gene transcription level 

modification also in dependence of its size. 

Therefore, the aim of this work was to investigate the changes in digestive gland  

transcription levels of key genes, p53, PDRP, SOD, CAT, and GST, of M. galloprovincialis along 

four weeks exposure to ZnO NPs and ZnO bulk dispersed in East China Sea water. 

A full physic-chemical characterization of ZnO NPs and ZnO bulk dispersed in East  

China Sea water in order to understand how the particles can be available for marine organisms was 

also performed. 

3.17 Materials and methods 
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3.17.1 Chemicals 

Bare ZnO nanopowder (Code 544906, particle size < 100 nm, surface area 15−25 m2/g) 

was purchased from Sigma-Aldrich Co. LLC. (USA). Bulk ZnO powder (Code ZK249038, particle 

size 150−200 nm, purity > 99.9%) was purchased from Quer Biotech Co., Ltd (Hefei, China). 

Baysalt crystals (Code Q/XWL 101−2006) were purchased from Shuilifang S&T Ltd. (Xiamen, 

China). 

3.17.2 Particle dispersions 

Stock suspensions of ZnO NPs and ZnO bulk powder were prepared with Reconstituted 

Sea Water (RSW). East China Sea baysalt crystals extracted from natural seawater were dissolved 

in pure water (MilliQ) to salinity 25 ‰ (pH 7.90) which is the salinity level of mussel sampling sea 

area (Shen et al., 2009) and filtered in 0.22 μm, to the final concentration of 1g Zn/L. The ZnO 

suspensions were dispersed by bath-sonication for 30 min at 50 W (Yuhao ultrasonic cleaner, 

YH-200DH, Shanghai, China). Test suspensions were prepared by diluting the stock suspension at 

0.01, 0.1, 1, 10, and 100 mg Zn/L with RSW (Manzo et al., 2013). 

3.17.3 Animals and exposure experiment 

Wild adult specimens of M. galloprovincialis (shell length 4−5 cm) were collected from 

coastal rocks (30 ° 41′ N, 122°27′ E; Zhoushan, Zhejiang Province) in the East China Sea. The site 

does not belong to a national park or a protected sea area or a relevant regulatory body concerned 

with wildlife protection or a private owner. The musse ls were further acclimatized to aerated RSW 

in an aquarium for 7 days at 23°C (1 L/animal) (Scarlato, 1981; Ye et al., 2011) with feeding and 

water changing (3.5 days intervals; 1ml per 50L water of PhytoplexTM phytoplankton feed, Kent 

Marine Inc., Acworth, GA, USA) (Tedesco et al., 2010a). 

Mussels were exposed to ZnO NP and bulk suspensions in 0 (control), 0.01, 0.1, 1, 10, 

and 100 mg Zn/L concentration, respectively, for four weeks. In each exposure tank, 25 mussel 

individuals were exposed to 5 L medium with aerating, feeding and water cha nging (twice per 

week). On the 1st, 2nd, 3rd, 7th, 14th, 21st, and 28th day, 3 individuals per tank were sampled, and 

then a part of fresh tissue of digestive gland was used to extract total RNA immediately after 

dissection. 
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3.17.4 RNA isolation and qRT-PCR 

Homogenization of 50mg tissues was performed by using Liquid Nitrogen Method and 

then the total RNA were extracted from homogenize tissues using E.Z.N.A.TM Total RNA Kit II 

(Omega Bio-tek, Inc.). RNA integritywas assessed with an electrophoresis system (Liuyi-Bio Co., 

Ltd). RNA concentration was quantified using a NanoDrop  2000 Spectrophotometer (Thermo 

Fisher, Inc.). First strand complementary DNA (cDNA) synthesis was performed by RevertAid First 

Strand cDNA Synthesis Kit (Thermo Scientific, Inc.). The quantitative Real-Time Polymerase 

Chain Reaction (qRT-PCR) was performed by SYBR® Premix Ex TaqTM II Kit (Takara, Inc.) and 

using a Applied Biosystems 7500 Real-Time PCR System (ABI, Inc.). The standard cycling 

conditions were: 94 °C for 1 min, followed by 40 cycles of 10 s at 95 °C, 45 s at 60 °C. A melting 

curve of PCR products from 55 to 94 °C was also performed to rule out the presence of artefacts  

and the -actin was used as the internal standard (Wang et al., 2013b). All primers were shown in 

Table 3.17.4-1. 

Table 3.17.4-1 Primer of qRT-PCR for relevent genes 

Primers Sequence Reference 

p53-F CTAGGTAGACGGGCAGTAGAAGTT 

(Estevez-Calvar et al., 2013) 
p53-R GCCTCCTGGTGTTACTGTAGTGAT 

PDRP-F CTGCCAAAGAAAGCTACAAAGAAG 

PDRP-R CCTTTGACAATGGATTGAGGTT 

GST-F ATCAGGAGGCTGCCAAAGTA 
(Wang et al., 2013a) 

GST-R CTACAGCCAACAGGCACTCA 

CAT-F AACCGAGAAACTCACCTGAAGGATCC 
(Dondero et al., 2006) 

CAT-R ACCTTGGTCAGTCTTGAAGTGGAAT 

SOD-F AGGCGCAATCCATTTGTTAC 

(Wang et al., 2013b) 
SOD-R CATGCCTTGTGTGAGCATCT 

-actin-F TGTAACAAACTGGGACGATA 

-actin-R AGCATGAGGAAGGGCATAAC 

3.17.5 Data analysis 

The relative gene expression level was analyzed by the 2-ΔΔCT method (Livak & 

Schmittgen, 2001). The gene expression in unexposed individuals was considered as the control and 

used forcomparison with various treated samples. All data are expressed as the mean ± SD of the 

different biological samples specified and were analyzed by one-way ANOVA with SPSS v13.0 

software. The differences were considered statistically significant at p ≤  0.05. The LC50 
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(concentration for 50% mortality effect) was calculated using the Linear Interpolation Method 

(Inhibition Concentration procedure, ICp) (Norberg-King, 1993). 

3.18 Results and discussion 

ZnO NPs once in seawater undergo to different physic-chemical processes that modify 

their pristine characteristics and therefore their availability/reactivity. Consequently the mussel 

exposure, particularly if prolonged, implies several biological stress responses which can also 

trigger the modification of gene transcription (Fabbri et al., 2008) and drive to the death. 

Most of the assays using bivalves were performed along short exposure time and then the 

long-term effects of ZnO in the bivalves deserve further attention (Rocha et al., 2015). In particular 

only few studies reported data about M. galloprovincialis exposed to ZnO NPs longer than two 

weeks (Hanna et al., 2013; Muller et al., 2014). 

This study report for M. galloprovincialis along 28 days, the evaluation of transcription 

level of p53 and PDPR, key genes involved in DNA damage/repair and GST, CAT, SOD genes 

associated with oxidative stress, together with physic-chemical characterization of ZnO NPs and 

ZnO bulk dispersed in the reconstituted East China Sea water. 

3.18.1 Transcription of genes 

In the pathways (Fig. 3.16-1) of organisms respond to environmental insult, the 

antioxidant enzymes SOD, GST, and CAT, were utilized to remove ROS (Zelko et al., 2002); while 

DNA repair enzymes p53 and PDRP were involved in the pathway between ROS and DNA 

damages to minimize possible genotoxic effects such as DNA lesions, mutation accumulation, and 

chromosomal aberrations (Brierley & Martin, 2013). 

The relative expression of DNA damage-responsive genes, p53 and PDPR, measured in 

the fresh digestive gland of mussels along to four weeks ZnO NPs and bulk exposure were showed 

respectively in Fig. 3.18.1-1 and 2. The relative expression of the three antioxidant enzymes genes 

GST, CAT, and SOD measured in the same abovementioned conditions were represented in Fig. 

3.18.1-3, 4, and 5. 
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Fig. 3.18.1-1 Effects of ZnO NPs and Bulk on gene p53 transcription in mussel digestive gland. Gene transcription was 

determined by qRT-PCR as described in methods. Relative expression was calculated with respect to control mussels. 

Data are the mean ± SD obtained from at least 3 independent RNA samples in triplicate. The d ifferences were 

considered statistically significant at p ≤ 0.05.* denotes the all individualswere dead in the group. 
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Fig. 3.18.1-2 Effects of ZnO NPs and Bulk on gene PDRP transcription in mussel digestive gland. Gene transcription 

was determined by qRT-PCR as described in methods. Relat ive expression was calculated with respect to control 

mussels. Data are the mean ± SD obtained from at  least 3 independent RNA samples in triplicate. The d ifferences were 

considered statistically significant at p ≤ 0.05.* denotes the all individualswere dead in the group. 
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Fig. 3.18.1-3 Effects of ZnO NPs and Bulk on gene GST transcription in mussel digestive gland. Gene transcription 

was determined by qRT-PCR as described in methods. Relat ive expression was calculated with respect to control 

mussels. Data are the mean ± SD obtained from at  least 3 independent RNA samples in triplicate. The d ifferences were 

considered statistically significant at p ≤ 0.05.* denotes the all individualswere dead in the group. 
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Fig. 3.18.1-4 Effects of ZnO NPs and Bulk on gene CAT transcription in mussel digestive gland. Gene transcription was 

determined by qRT-PCR as described in methods. Relative expression was calculated with respect to control mussels. 

Data are the mean ± SD obtained from at least 3 independent RNA samples in triplicate. The d ifferences were 

considered statistically significant at p ≤ 0.05. * denotes the all individualswere dead in the group. 



3 RESULTS AND DISCUSSION 

82 

 

 

Fig. 3.18.1-5 Effects of ZnO NPs and Bulk on gene SOD transcription in mussel digestive gland. Gene t ranscription 

was determined by qRT-PCR as described in methods. Relat ive expression was calculated with respect to control 

mussels. Data are the mean ± SD obtained from at  least 3 independent RNA samples in triplicate. The d ifferences were 

considered statistically significant at p ≤ 0.05. * denotes the all individualswere dead in the group. 

DNA damage-responsive genes (p53 and PDPR) transcription profile: 
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The first significant difference (p ≤ 0.05) of p53 expression with respect to the control 

occurred only after 72h of exposureat the lowest concentrations (0.01 and 0.1 mg Zn/L) while at 

higher concentrations (1−100 mg Zn/L) since the beginning of the exposure time, a significant 

increased expression were detected (Fig. 3.18.1-1). At the first two tested concentrations the p53 

gene expression increased in dependence of the exposure time until the end (28 Day) with a 

maximum expression level of about 15 fold the control. At 1 mg Zn/L this level could be observed 

after only 14 days followed by a sharp decrease in the following time exposure (21 and 28 days), 

and then by the death of the organisms. A similar pattern could be observed after 7 days exposure at 

10 mg Zn/L and after 72 h at 100 mg Zn/L, but in both cases, at the respective following time 

exposure, first a decrease of response and then the death of the organisms could be observable (21 d 

and 14 d for 10 mg Zn/L and 100 mg Zn/L, respectively). 

Therefore it seemed that up to 1 mg Zn/L the organisms can activate the maximum 

response in a time span linearly dependent on the concentration. Additionally, it was worthy to note 

that, at 100 mg Zn/L (72 h) there was an p53 overexpression, in fact the level measured was about 

twice the maximum level measured at the lower concentration independently by the exposure time. 

The comparison between NPs and bulk showed significant difference (p ≤ 0.05) 

depending on dose and exposure time, with NPs higher (of about 25 %) than bulkin most phases. 

The opposite situation was represented at the end of exposure time, in particular after the maximum 

p53 expression when the drop was evident for NPs but not for bulk. Also for bulk exposure the 

dramatic death effect could be observable with the above reported scheme for NPs. 

The ZnO exposure has induced PDRP expression response as well. In Fig. 3.18.1-2, the 

relative expression represented a very similar trend as that of p53, although the expressions are not 

at the same level. Diversely from p53 the first significant difference (p ≤ 0.05) occurred at 7 d for 

0.01 mg Zn/L and at 48 h for 0.1 mg Zn/L this indicates that PDRP response was less sensitive at 

the lowest exposure concentration than p53. In the range 1−100 mg Zn/L, gene expression levels 

showed a rising trend from the beginning of exposure up to a peak and then, in particular for NPs, 

they went down. The highest relative expression (approximately 6 fold the control) occurred at 28 d 

in 0.1 mg Zn/L, at 14 d in 1 mg Zn/L, and 7 d in 10 mg Zn/L. However, this pattern common for  

low concentrations was not evident at 100 mg Zn/L: in this case, the first level of gene expression 

was 4 fold the control and it went up to almost 10 fold the control at 72 h. The special 
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overexpression for high concentration exposure was also found in the assay for p53. Additional, the 

difference in gene expression between NPs and bulk was very evident in Fig. 3.18.1-2. Significant 

differences (p ≤ 0.05) between NPs and bulk were found since the day 7 in the lowest concentration 

exposure, the 72 h in 0.1 and 1 mg Zn/L, the 48 h in 10 mg Zn/L, and 24 h in 100 mg Zn/L, with a 

constant difference level, except at the end of exposure in the high concentration. 

Few studies evaluated the p53 gene expression in mussels as response to insult exposure 

evidencing modification of regular expression. Estevez-Calvar et al. (2013) reported the increasing 

p53 gene expression in M. galloprovincialis hemocytes since the beginning of UV exposure, up to 

25 times the control and, and a drop off after 48 hours. Banni et al. (2009) evaluated the p53 gene 

expression in Mytius spp. digestive gland exposed to two different organic compounds and reported 

two different relative expression, one higher (1.5 fold) and one lower (1/4 fold) the control, after 

approximately 24 hours and a similar level of control samples after 50 hours. Our study did not 

evidence early increment of expression after the first hours of exposure  (Estevez-Calvar et al., 2013) 

and, although the exposure to concentration > 1 mg Zn/L induced significant relative expression of 

p53 gene after the first 24 h (Banni et al., 2009), however, no adapting trend in the subsequent 

exposure time could be found. 

Similarly, PDRP expression in our study, showed a continued rising trend in the first 48 h 

differently to Estevez-Calvar et al. (2013) who reported a very high expression level for PDRP at 

the beginning of exposure that turned down to normal level (control group) at 48 h. The trend of 

DNA damage-responsive genes during the first 48 hours ZnO exposure indicated the activity of the 

DNA repair process in the mussel. The signal pathway of the two DNA damage-responsive genes 

(Fig. 3.16-1) shows how ROS directly induce p53 and PDRP  gene expression. ZnO exposure 

activated the process of DNA damage and repair at the same time in this report. The difference 

between ZnO NPs and bulk effects could be attributable to different ROS amount production in the 

cell as response to different particle size exposure (Avalos et al., 2014). 

Antioxidant enzymes genes (GST, CAT, and SOD) transcription profile: 

The gene expression of the three antioxidant enzymes showed a common increasing 

transcription level along with exposure time (28 days) and chemicals (ZnO NPs and bulk) 

concentrations (Fig. 3.18.1-3, 4, and 5). 
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In the digestive gland of mussel exposed to ZnO NPs, the GST gene transcription 

linearly increased along with time for concentration below 1 mg Zn/L. At 1 mg Zn/L, instead, the 

relative expression of GST showed a peak (approximately 12 fold the control) at 14 d, that, at 21 d 

and 28 d, turned down to level not significantly differentfrom the control (p > 0.05). At the two 

higher concentrations (10 and 100 mg Zn/L) the same pattern of expression was observable. The 

peak of expression, measured at 7 d for 10 mg Zn/L and at 72 h for 100 mg Zn/L, was followed by a 

sharp decrease of expression in the next exposure times that, differently from the lower 

concentrations, culminated with the death of exposed mussels at 21 d and 14 d respectively. It is 

worth to note that the maximum gene relative expression (12 fold the control) occurred at 28 d in 

0.1 mg Zn/L, at 14 d in 1.0 mg Zn/L, and at 7 d in 10.0 mg Zn/L, while at 100 mg Zn/L the 

maximum level was reached at 48 h and at 72 h an overexpression (approximately 22 fold the 

control) was registered. 

In the case of ZnO bulk exposure, data suggested that gene transcription was less affected 

at the most exposure situations (p ≤ 0.05, in Fig. 3.18.1-3) respect to ZnO NP exposure. In the range 

of 0.01−0.1 mg Zn/L concentrations, an increasing trend along with exposure time similar to NPs 

was observable. At 1−100 mg Zn/L only a slight decline had been found at the end of exposure for 

bulk ZnO in comparison to the sharp decrease registered for ZnO NPs. This different decline level 

made gene expression induced by bulk significant higher than NPs at the end of exposure time (p ≤  

0.05). 

Although GST protein is a key enzyme that catalyzes H2O2 to H2O which is one 

common path to reduce ROS (H2O2) (Gomes et al., 2011; Estevez-Calvar et al., 2013), different 

GST production as response to NP exposure was reported in literature: some works (Canesi et al., 

2010; Pan et al., 2012; Buffet et al., 2013) reported an increased GST protein activity in clam 

(Scrobicularia plana) and mussel (M. galloprovincialis) exposed to several nanomaterials; while 

others (Renault et al., 2008) observed the repression of GST gene in gill cells of benthic bivalve 

Corbicula fluminea exposed to Au NPs. Saddick et al. (2015) measured in fish brain exposed in 

ZnO NPs for 15 days a slight increment or decrement of GST transcription in dependence to 

concentration.  

However to the best of our knowledge, GST trends similar to this study were not 

described before. 
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The transcription profile of the two antioxidant enzymes genes CAT and SOD in the 28 

days exposure to ZnO NPs and ZnO bulk were showed in Fig. 3.18.1-4 and 5. Their trends were 

similar to GST one although at different level of relative expression. In particular, thehighest 

relative expression at concentrations lower than 100 mg Zn/L was about 8 times the control for CAT 

and 10 for SOD, while an overexpression level of 14 (CAT) and approximately 18 (SOD) in 100 mg 

Zn/L was obtained. The first significant differences appeared for CAT at 7 d, 0.01 mg Zn/L and at 

48 h, 0.1 mg Zn/L for both ZnO; while for SOD at 72 h, 0.01 mg Zn/L for NPs; 48 h, 0.1 mg Zn/L 

for bulk differently from GST that occurred at 72 h, 0.01 mg Zn/L for both ZnO; 48 h, 0.1 mg 

Zn/L for bulk. This pattern indicated that CAT is less involved than other two genes at low Zn 

concentrations probably because while,  SOD, as key enzyme in the first step of antioxidation, 

catalyzes O2
- (ROS) to H2O2, CAT works on reducing the volume of H2O2 and then downstream the 

antioxidation induced by ZnO exposure. 

Studies focused on CAT and SOD enzyme activity of bivalve exposed to nano materials 

(Tedesco et al., 2008; Canesi et al., 2010; Buffet et al., 2011; Buffet et al., 2012; Gomes et al., 2012; 

Buffet et al., 2013; Buffet et al., 2014; Gomes et al., 2014b; Vale et al., 2014) generally indicated an 

increased enzyme activities. In addition, limited studies reported data about SOD and CAT gene 

expression: Renault et al. (2008) reported in gill cells of benthic bivalve Corbicula fluminea  

exposed to Au NPs, besides the GST repression, the SOD gene induction and left CAT expression 

unaltered, also an over expression of CAT in visceral mass that indicated the need to consider also 

other organs, such as digestive gland. In addition, Barmo et al. (2013) reported for digestive gland 

cells of M. galloprovincialis exposed to TiO2 NPs for 96 h, a GSTπ and CAT significant repression 

at low concentration and GSTπ and CAT not significant adaption, at high concentration. Although 

the repression occurredat low exposed concentrations was not observable in our study, the adaption 

phenomenon seemed to represent a kind of self-protective mechanism in exposed mussel similar to 

that described in our case. 

3.18.2 Mortality effect 

The mortality curves of mussel exposed to different concentration of ZnO NPs and bulk 

for 28 days were reported in Fig. 3.18.2-1. Both graphs showed, starting from 72h, increasing 

values along with the exposure time together with Zn increment. From 7d the effect exceeded 50% 
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and adifferent level of lethality could be observed in dependence of particle pristine size, with NPs 

always more toxic than bulk (see LC50s). The highest difference was evident after 28 d when NPs 

resulted three times more toxic than bulk (LC50 = 0.78 [0.64, 1.00] and 2.62 [1.00, 4.00] 

respectively). The 100% effect occurred at 14 d in the 100 mg Zn/L and at 21 d in 10 mg Zn/L. 

 

Fig. 3.18.2-1 Mortality effect of mussel exposed to ZnO NPs (A) and bulk (B) suspensions for 28 days. LC50s of 

mortality effect were calculated for 7d, 14d, 21d, and 28d. LC50s were undetectable for the first three days of exposure. 

No mortality was observed for the clam Scrobicularia plana exposed to 10 μg Cu/L (CuO 

NPs) for 21 days (Buffet et al., 2013) and to 10 μg Ag/L (Ag NPs) for 21 days (Buffet et al., 2014); 

for the mussel M. galloprovincialisin 10 μg Cu/L (CuO NPs) exposure for 15 days (Gomes et al., 

2014a), and for the Macoma balthica in 150−200 μg/g AgO and CuO NP exposure for 35 days (Dai 

et al., 2013). However, Muller et al. (2014) performed long term (100 days) M. 

galloprovincialisexposure to ZnO NPs reporting very low mortality rate 1.66×10-3 1/d for 

concentrations < 2 mg Zn/L: a toxic effect lower than in the present study, probably because of the 

different experimental design adopted. 

3.18.3 Comparison of DNA damage-responsive genes and antioxidant enzymes genes  

The DNA damage-responsive genes and antioxidant enzymes genes actively responded to 
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ZnO exposure. The gene expression trends along with exposure dose and time showedan extremely 

consistent pattern within each other. The production of ROS has been identified as one of the main 

causes of NP toxicity. Our results support other studies; it is probably that the ROS formation is 

strongly induced as this is associated with both a rapid upregulation of the CAT and SOD gene and a 

high level of expression of GST. The fact that, up to 1 mg Zn /L, gene expression levels 

subsequently subsides suggests that the antioxidant system is able to neutralize the hydrogen 

peroxide and other ROS formed by the ZnO NPs and thereby protect the organism (Varela-Valencia 

et al., 2014). This trend was previously reported as adaptation effect to Ag NPs at the end of 

exposure (15 days) in M. galloprovincialis gill by Bebianno et al. (2015). Based on the results 

reported here, it is suggested that 1 mg Zn /L, represents a threshold value below which the cell 

activates defences mechanisms to cope with the related oxidative stress (Davies, 2000; Clauditz et 

al., 2006). 

In the case of concentration higher than 1mg/L, instead, theobserved gene overexpression 

followed by the sharp decrease to the control level and by death, suggests the possibility for the cell 

antioxidant system to activate an additional extra expression in the effort of counteract the increased 

stimulus. This process was eventually insufficient to neutralize ROS deriving effects as DNA 

damages, alteration of cell metabolism and that drive to cell apoptosis. The general trend evidenced 

for bulk exposure showed many differences with that deriving from ZnO NP exposure. These 

differences were attributable to the pristine size of ZnO (Gomes et al., 2014b) and to their peculiar 

behavior in seawater (Fig. 3.3.1-3): In the main, because dissolution was very similar for the two 

ZnO, it could not be considered the main or the only process at the base of the oxidative stress and 

relative activation of gene expression. Moreover the ionic zinc alone showed an increasing pattern 

of antioxidant gene expression along with concentrations and time exposure (unpublished data). 

Therefore it should be hypothesized a toxicity mechanism linked to ZnO pristine nano 

size that induce ROS production promoting antioxidation and apoptosis involved in the expression 

of damage-responsive genes (p53 and PDPR) and antioxidant enzymes genes (GST, CAT, and 

SOD). 

However, Wang et al. (2014) reported that TiO2 NPs reduced the ROS production in 

mussel Perna viridis and Gomes et al. (2011) suggested that CuO NPs induced a decrease trend of 

enzymatic activity of SOD and CAT in M. galloprovincialis (Fig. 3.16-1). This contrast suggested 
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that the toxic mechanism of ZnO NPs to mussel is probably different of TiO2 NPs and CuO NPs. 

Nonetheless, some evidence to support the ROS-mediated toxic mechanism of nanomaterials to 

mussels were reported: Au NPs increased oxidized glutathione (GSSG) in digestive gland of M. 

edulis (Tedesco et al., 2010b) indicating that NPs induced oxidative stress; carbon black, C60 

fullerene, nano-TiO2 and nano-SiO2 (Canesi et al., 2010) increased specific activity of digestive 

gland CAT and GST in M. galloprovincialis along with exposure dose. 

3.19 Conclusion 

The results of this work showed the ROS-mediated injury on marine invertebrates M. 

galloprovincialis by ZnO NPs using qRT-PCR technique which could be a sensitive approach to 

reveal ecotoxicity of nanomaterials. The differences of genes transcription and lethality between 

both ZnO powders answered our hypothesis that all five investigated genes, p53, PDPR, GST, 

CAT, and SOD, involved in antioxidation and apoptosis represented active response to ZnO NPs 

exposure that induced DNA damage and oxidant injury contributing to the overall toxicity and 

which is to the pristine size of ZnO and its behavior in specific seawater. 
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3.21 Zinc causes oxidative damages in digestive gland in mussel M. 

galloprovincialis revealed by transcription of related genes 

Zinc, an essential micronutrient, is present in unpolluted areas at nanomolar levels and 

could reach micromolar values in metal-contaminated environments (Garcia et al., 2008; Gowd & 

Govil, 2008; Voets et al., 2009). Bivalves, being filter feeding, easily take up soluble zinc, mainly 

by gills and mantle, while the Zn particulate forms are taken up mainly by the digestive organs and 

stored in the digestive gland (George & Pirie, 1980; Wang, 2001; Cooper et al., 2010). 

Consequently, Zn in the body of bivalves can be easily related to zinc level in the environment 

(Rebelo et al., 2003).  

At cellular level Zn is a key transition metallic element and takes part in the modulation 

process of regulatory proteins and cellular activities such as antioxidant defenses (Brocardo et al., 

2007; Chasapis et al., 2012; Oteiza, 2012). 

However, Formigari et al. (2007) reported that higher level of Zn induces apoptosis and 

oxidative stress. Zn plays the dual role in oxidant/antioxidant and pro-apoptotic/anti-apoptotic 

process in live cells. 

The increasing use of pesticide, pharmaceuticals, alloy is leading to Zn release into the 

environment and the ecological hazard of Zn had received much attention in decades (Bonnevie et 

al., 1993; Morgan & Morgan, 1999; Gan et al., 2000; Lee et al., 2005; Hou et al., 2013; Kun et al., 

2015). Heavy metal Zn could be ionic in aquatic environment and accumulated in marine organism.  

On the basis of their world-wide distribution (Golberg, 1975; Phillips, 1976) common 

mussel Mytilus edulis and its similar species Mytilus galloprovincialis Lamarck, 1819 since 1970s 

were proposed and used as indicators of marine contamination by trace metals. In recent years, M. 

galloprovincialis was largely used to investigate biological response to toxicants and environmental 

stress in laboratorial condition (Bebianno & Serafim, 1998; Da Ros et al., 2000; Barmo et al., 2013; 

Estevez-Calvar et al., 2013; Balbi et al., 2014). 

As it was well documented (Leonard et al., 2004; Mithöfer et al., 2004; Matés et al., 2010) 

heavy metal toxicity is based on ROS-mediated injury. To present many examples of ROS-mediated 

injury in mussels by various toxicants or stress, biomarkers were reported (Regoli, 1998; Canesi et 

al., 2010; Tedesco et al., 2010a; Gomes et al., 2012; Wang et al., 2014). 
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The toxicity of zinc to bivalves has been demonstrated at different levels, such as 

mortality in adults, embryos and gametes (Nadella et al., 2009; Fathallah et al., 2010), decrease in 

oxygen consumption and metabolic dysfunction (Devi, 1995), as well as modulation of the 

antioxidant system and induction of oxidative stress (Geret & Bebianno, 2004; Franco et al., 2006). 

Several biomarkers of oxidative stress, such as enzymatic concentration/activity, genes expression, 

lipid peroxidation, DNA damage (comet assay), lysosomal membrane stability, etc., were analyzed 

in mussels (Table 3.21-1). Many studies reported the gill and/or digestive gland of M. 

galloprovincialis concentration or activity of enzymes which are involved in oxidative stress, 

apoptosis, and DNA damage/repair such as oxidized glutathione reductase (GSR), glutathione 

transferase (GST), catalase (CAT), total glutathione peroxidase (GPX) (Canesi et al., 2010; Gomes 

et al., 2011; Gomes et al., 2012; Barmo et al., 2013; Gomes et al., 2014b). 

Table 3.21-1 Biomarkers in three marine mussels (M. galloprovincialis, M. edulis and Perna viridis) under various 

environmental stress 

Experimental species 
Biomarkers 

Reference Enzymatic 
concentration/activity 

Gene expression Others 

M. galloprovincialis GSR, GST, CAT, GPX, and 
Se-GPX 

GST, CAT, Mytilin B, 
Myticin B, defensin, 
lysozyme and MgC1q 

 (Barmo et al., 2013) 

MT   (Bebianno & Serafim, 1998) 
SOD and CAT    (Da Ros et al., 2000) 
SOD, CAT, GPX, and MT  lipid peroxidation (LPO) (Gomes et al., 2012) 
Glutathione, Glyoxalase I 

and II, GST, Se-GSR, 
Se-GPx, CAT, SOD 

  (Regoli, 1998) 

  Genotoxic comet assay (Gomes et al., 2013) 
SOD, CAT and GPX   (Gomes et al., 2014b) 

CAT and GST   Lysosomal membrane 
stability, lysosomal 
lipofuscin content, and 
lysosomal Neutral Lipid 

content 

(Canesi et al., 2010) 

 p53, PDRP, Bcl-2, Bax, 
BI-1, and Dff-A 

 (Estevez-Calvar et al., 2013) 

SOD, CAT, and GPX   (Gomes et al., 2011) 
M. edulis Oxidized glutathione   (Tedesco et al., 2010a) 
P. viridis   Total hemocyte 

counting, ROS and 

Lysosomal content 

(Wang et al., 2014) 
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Fig. 3.21-1 The signaling pathway of Zn
2+

 toxic mechanism in viable cell involved in apoptosis and antioxidation , cited 

from Estevez-Calvar et al. (2013) and Gomes et al. (2011). 

Therefore (Fig. 3.21-1) ROS-mediated injury activate antioxidation of cellular response 

that key enzymes, SOD, CAT, and GST, play important roles to reduce ROS, as well as apoptosis 

that p53 and PDRP were involved in the pathway between ROS and DNA damages. These DNA 

damage-responsive genes and antioxidant enzymes genes have not been documented in M. 

galloprovincialis. Thus, it is necessary to investigate the transcript level changes which are more 

sensitive and direct than protein response for exposure to Zn. 

The aim was to investigate the pattern of oxidative stress and DNA damage/repair gene 

expression in response to prolonged M. galloprovincialis exposure (28 days) at different 

concentration of soluble Zinc. We report the transcription of key genes, p53, PDRP, SOD, CAT, and 

GST, involved in DNA damage/repair and antioxidation in this article to complete the whole picture 

of mechanism of Zn salt toxicity. 

3.22 Materials and methods 
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3.22.1 Chemicals 

ZnSO4·7H2O crystals (Code 204986, 99.999% trace metals basis) were purchased from 

Sigma-Aldrich Co. LLC. (USA). Baysalt crystals (Code Q/XWL 101-2006) were purchased from 

Shuilifang S&T Ltd. (Xiamen, China). 

3.22.2 Particle dispersions 

Stock solution of Zinc salt was prepared with Reconstituted Sea Water (RSW). East 

China Sea baysalt crystals extracted from natural seawater were dissolved in pure water (MilliQ) to 

salinity 25 ‰ (pH 7.90) which is the salinity level of mussel sampling sea area (Shen et al., 2009) 

and filtered in 0.22 μm, to the final concentration of 1g Zn/L. Test suspensions were prepared by 

diluting the stock solution at 0.01, 0.1, 1, 10, and 100 mg Zn/L with RSW. 

3.22.3 Animals and exposure experiment 

Wild adult specimens of M. galloprovincialis (shell length 4-5 cm) were collected from 

coastal rocks (30°41′ N, 122°27′ E; Zhoushan, Zhejiang Province) in the East China Sea. The site 

does not belong to a national park or a protected sea area or a relevant regulatory body concerned 

with wildlife protection or a private owner. The mussels were further acclimatised to aerated RSW 

in an aquarium for 7 days at 23°C (1 L/animal) (Scarlato, 1981; Ye et al., 2011) with feeding and 

water changing (3.5 dyas intervals; 1 mL per 50 L water of PhytoplexTM phytoplankton feed, Kent 

Marine Inc., Acworth, GA, USA) (Tedesco et al., 2010b). 

Mussels were then treated with Zinc salt solution in 0 (control), 0.01, 0.1, 1, 10, and 100 

mg Zn/L concentration, respectively, for four weeks. In each exposure tank, 25 mussel individuals 

were exposed to 5 L medium with aerating, feeding and water changing (twice per week). On the 

1st, 2nd, 3rd, 7th, 14th, 21st, and 28th day, 3 individuals per tank were sampled, and then a part of 

fresh tissue of digestive gland was used to extract total RNA immediately after dissection. 

3.22.4 RNA isolation and qRT-PCR 

Homogenization of 50mg tissues was performed by using Liquid Nitrogen Method and 

then the total RNA were extracted from homogenize tissues using E.Z.N.A.TM Total RNA Kit II 

(Omega Bio-tek, Inc.). RNA integritywas assessed with an electrophoresis system (Liuyi-Bio Co., 
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Ltd). RNA concentration was quantified using a NanoDrop  2000 Spectrophotometer (Thermo 

Fisher, Inc.). First strand complementary DNA (cDNA) synthesis was performed by RevertAid First 

Strand cDNA Synthesis Kit (Thermo Scientific, Inc.). The quantitative Real-Time Polymerase 

Chain Reaction (qRT-PCR) was performed by SYBR® Premix Ex TaqTM II Kit (Takara, Inc.) and 

using a Applied Biosystems 7500 Real-Time PCR System (ABI, Inc.). The standard cycling 

conditions were: 94 °C for 1 min, followed by 40 cycles of 10 s at 95 °C, 45 s at 60 °C. A melting 

curve of PCR products from 55 to 94 °C was also performed to rule out the presence of artefacts  

and the -actin was used as the internal standard (Wang et al., 2013). All primers were shown in 

Table 3.17.4-1. 

3.22.5 Data analysis 

The relative gene expression level was analyzed by the 2-ΔΔCT method (Livak & 

Schmittgen, 2001). The gene expression in unexposed individuals was considered as the control and 

used forcomparison with various treated samples. All data are expressed as the mean ± SD of the 

different biological samples specified and were analyzed by one-way ANOVA with SPSS v13.0 

software. The differences were considered statistically significant at p ≤  0.05. The LC50 

(concentration for 50% mortality effect) was calculated using the Linear Interpolation Method 

(Inhibition Concentration procedure, ICp) (Norberg-King, 1993). 

3.23 Results and discussion 

3.23.1 Transcription of genes 

In the pathways (Fig. 3.21-1) of organisms respond to environmental insult, the 

antioxidant enzymes SOD, GST, and CAT, were utilized to remove ROS (Zelko et al., 2002); while 

DNA repair enzymes p53 and PDRP were involved in the pathway between ROS and DNA 

damages to minimize possible genotoxic effects such as DNA lesions, mutation accumulation, and 

chromosomal aberrations (Brierley & Martin, 2013). 

The relative expression of DNA damage-responsive genes, p53 and PDPR, measured in 

the fresh digestive gland of mussels along to four weeks Zn salt exposure were showed respectively 

in Fig. 3.23.1-1 and 2. The relative expression of the three antioxidant enzymes genes GST, CAT, 

and SOD measured in the same abovementioned conditions were represented in Fig. 3.23.1-3, 4 and 
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5. 

 

Fig. 3.23.1-1 Effects of Zn  salt on gene p53 transcription in  mussel digestive gland. Gene transcription was determined 

by qRT-PCR as described in methods. Relat ive expression was calculated with respect to control mussels. Data are the 

mean ± SD obtained from at least 3 independent RNA samples in t rip licate. The differences were considered 

statistically significant at p ≤ 0.05. 
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Fig. 3.23.1-2 Effects of Zn salt on gene PDRP transcription in mussel digestive gland. Gene transcription was 

determined by qRT-PCR as described in methods. Relative expression was calculated with respect to control mussels. 

Data are the mean ± SD obtained from at least 3 independent RNA samples in triplicate. The d ifferences were 

considered statistically significant at p ≤ 0.05. 
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Fig. 3.23.1-3 Effects of Zn salt on gene GST transcription in mussel digestive gland. Gene transcription was 

determined by qRT-PCR as described in methods. Relative expression was calculated with respect to control mussels. 

Data are the mean ± SD obtained from at least 3 independent RNA samples in triplicate. The d ifferences were 

considered statistically significant at p ≤ 0.05. 
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Fig. 3.23.1-4 Effects of Zn salt on gene CAT t ranscription in mussel digestive gland. Gene transcription was determined 

by qRT-PCR as described in methods. Relat ive expression was calculated with respect to control mussels. Data are the 

mean ± SD obtained from at least 3 independent RNA samples in t rip licate. The differences were considered 

statistically significant at p ≤ 0.05. 
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Fig. 3.23.1-5 Effects of Zn salt on gene SOD t ranscription in mussel digestive gland. Gene transcription was determined 

by qRT-PCR as described in methods. Relat ive expression was calculated with respect to control mussels. Data are the 

mean ± SD obtained from at least 3 independent RNA samples in t rip licate. The differences were considered 

statistically significant at p ≤ 0.05. 

DNA damage-responsive genes (p53 and PDPR) transcription profile 
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The first significant difference (p ≤ 0.05) of p53 expression with respect to the control 

occurred only after 48 h of exposure at concentration 0.1 mg Zn/L while at higher concentrations 

(1−100 mg Zn/L) since the beginning of the exposure time, a significant increased expression were 

detected (Fig. 3.23.1-1). At the first two tested concentrations the p53 gene expression increased in 

dependence of the exposure time until the end (28 Day) with a maximum expression level of about 

15 fold (10 in 0.01 mg Zn/L)the control. At 1 mg Zn/L this level could be observed after only 14 

days followed by a sharp decrease in the following time exposure (21 and 28 days), and then by the 

death of the organisms. However, at both 10 and 100 mg Zn/L, no data were obtained due to death 

after three days exposure. 

Therefore it seemed that up to 1 mg Zn/L the organisms can activate the maximum 

response in a time span linearly dependent on the concentration. Additionally, it was worthy to note 

that, at 100 mg Zn/L (72 h) there was an p53 overexpression, in fact the level measured was about 

twice the maximum level measured at the lower concentration independently by the exposure time. 

The Zn salt exposure has induced PDRP expression response as well. In Fig. 3.23.1-2, the 

relative expression represented a very similar trend as that of p53, although the expressions are not 

at the same level. Diversely from p53 the first significant difference (p ≤ 0.05) occurred at 48 h for 

both 0.01 and 0.1 mg Zn/L this indicates that PDRP response was more sensitive at the lowest 

exposure concentration than p53. In the range up to 1 mg Zn/L, gene expression levels showed a 

rising trend from the beginning of exposure up to a peak and then they went down. The highest 

relative expression (approximately 6.5 fold the control) occurred at 28 d in 0.1 mg Zn/L, at 14 d in 1 

mg Zn/L, and 7 d in 10 mg Zn/L. However, this pattern common for low concentrations was not 

evident at 100 mg Zn/L: in this case, the first level of gene expression was 6 fold the control and it 

went up to almost 12 fold the control at 72 h. The special overexpression for high concentration 

exposure was also found in the assay for p53. 

Few studies evaluated the p53 gene expression in mussels as response to insult exposure 

evidencing modification of regular expression. Estevez-Calvar et al. (2013) reported the increasing 

p53 gene expression in M. galloprovincialis hemocytes since the beginning of UV exposure, up to 

25 times the control and, and a drop off after 48 hours. Banni et al. (2009) evaluated the p53 gene 

expression in Mytius spp. digestive gland exposed to two different organic compounds and reported 

two different relative expression, one higher (1.5 fold) and one lower (1/4 fold) the control, after 
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approximately 24 hours and a similar level of control samples after 50 hours. Our study did not 

evidence early increment of expression after the first hours of exposure  (Estevez-Calvar et al., 2013) 

and, although the exposure to concentration > 1 mg Zn/L induced significant relative expression of 

p53 gene after the first 24 h (Banni et al., 2009), however, no adapting trend in the subsequent 

exposure time could be found. 

Similarly, PDRP expression in our study, showed a continued rising trend in the first 48 h 

differently to Estevez-Calvar et al. (2013) who reported a very high expression level for PDRP at 

the beginning of exposure that turned down to normal level (control group) at 48 h. The trend of 

DNA damage-responsive genes during the first 48 hours Zn salt exposure indicated the activity of 

the DNA repair process in the mussel. The signal pathway of the two DNA damage-responsive 

genes (Fig. 3.21-1) shows how ROS directly induce p53 and PDRP gene expression. Zn salt 

exposure activated the process of DNA damage and repair at the same time in this report. 

Antioxidant enzymes genes (GST, CAT, and SOD) transcription profile 

The gene expression of the three antioxidant enzymes showed a common increasing 

transcription level along with exposure time (28 days) and chemical concentrations (Fig. 3.23.1-3, 4, 

and 5). 

In the digestive gland of mussel exposed to Zn salt, the GST gene transcription linearly 

increased along with time for concentration below 1 mg Zn/L. At 1 mg Zn/L, instead, the relative 

expression of GST showed a peak (approximately 14 fold the control) at 14 d, that, at 21 d and 28 

d, turned down to level not significantly differentfrom the control (p > 0.05). At the two higher 

concentrations (10 and 100 mg Zn/L) no data were observed after three days exposure due to death. 

It is worth to note that the maximum gene relative expression (14 fold the control) occurred at 28 d 

in 0.1 mg Zn/L, at 14 d in 1.0 mg Zn/L, and at 72 h in 10.0 mg Zn/L, while at 100 mg Zn/L the 

maximum level was reached at 72 h an overexpression (approximately 24 fold the control) was 

registered. 

Although GST protein is a key enzyme that catalyzes H2O2 to H2O which is one 

common path to reduce ROS (H2O2) (Gomes et al., 2011; Estevez-Calvar et al., 2013), different 

GST productions were reported in literatures, such as, some works (Canesi et al., 2010; Pan et al., 

2012; Buffet et al., 2013) reported an increased GST protein activity in clam (Scrobicularia plana) 
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and mussel (M. galloprovincialis) exposed to several nanomaterials; while others (Renault et al., 

2008) observed the repression of GST gene in gill cells of benthic bivalve Corbicula fluminea. 

Saddick et al. (2015) measured in fish brain exposed in ZnO for 15 days a slight increment or 

decrement of GST transcription in dependence to concentration. 

However to the best of our knowledge, GST trends similar to this study were not 

described before. 

The transcription profile of the two antioxidant enzymes genes CAT and SOD in the 28 

days exposure to Zn salt were showed in Fig. 3.23.1-4 and 5. Their trends were similar to GST one 

although at different level of relative expression. In particular, the highest relative expression at 

concentrations lower than 100 mg Zn/L was about 8 times the control for CAT and 10 for SOD, 

while an overexpression level of 14 (CAT) and approximately 18 (SOD) in 100 mg Zn/L was 

obtained. The first significant differences appeared for both CAT and SOD at 48 h, 0.010.1 mg 

Zn/L. 

Studies focused on CAT and SOD enzyme activity of bivalve (Tedesco et al., 2008; 

Canesi et al., 2010; Buffet et al., 2011; Buffet et al., 2012; Gomes et al., 2012; Buffet et al., 2013;  

Buffet et al., 2014; Gomes et al., 2014b; Vale et al., 2014) generally indicated an increased enzyme 

activities. In addition, limited studies reported data about SOD and CAT gene expression: Renault et 

al. (2008) reported in gill cells of benthic bivalve Corbicula fluminea exposed to Au, besides the 

GST repression, the SOD gene induction and left CAT expression unaltered, also an over expression 

of CAT in visceral mass that indicated the need to consider also other organs, such as digestive 

gland. In addition, Barmo et al. (2013) reported for digestive gland cells of M. galloprovincialis a 

GSTπ and CAT significant repression at low concentration and GSTπ and CAT not significant 

adaption, at high concentration. Although the repression occurredat low exposed concentrations was 

not observable in our study, the adaption phenomenon seemed to represent a kind of self-protective 

mechanism in exposed mussel similar to that described in our case. 

3.23.2 Mortality effect 

The mortality curves of mussel exposed to different concentrations for 28 days were 

reported in Fig. 3.23.2-1. The graph showed, starting from 72h, increasing value along with the 

exposure time together with Zn increment. From 7d the effect exceeded 50%. The 100% effect 
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occurred at 14 d in the 100 mg Zn/L, at 21 d in 10 mg Zn/L and at 28 d in 1 mg Zn/L. 

 

Fig. 3.23.2-1 Mortality effect of mussel exposed to ZnSO4 solution for 28 days. LC50s of mortality effect were 

calculated for 7d, 14d, 21d, and 28d. LC50s were undetectable for the first three days of exposure. 

No mortality was observed for the clam Scrobicularia plana exposed to 10 μg Cu/L for 

21 days (Buffet et al., 2013) and to 10 μg Ag/L for 21 days (Buffet et al., 2014); for the mussel M. 

galloprovincialisin 10 μg Cu/L exposure for 15 days (Gomes et al., 2014a), and for the Macoma 

balthica in 150−200 μg/g AgO and CuO exposure for 35 days (Dai et al., 2013). However, Muller et 

al. (2014) performed long term (100 days) M. galloprovincialisexposure to ZnO reporting very low 

mortality rate 1.66×10-3 1/d for concentrations < 2 mg Zn/L: a toxic effect lower than in the present 

study, probably because of the different experimental design adopted. 

3.23.3 Comparison of DNA damage-responsive genes and antioxidant enzymes genes 

The DNA damage-responsive genes and antioxidant enzymes genes actively responded to 

Zn salt exposure. The gene expression trends along with exposure dose and time showed an 

extremely consistent pattern within each other. The production of ROS has been identified as one of 

the main causes of ionic toxicity. Our results support other studies; it is probably that the ROS 

formation is strongly induced as this is associated with both a rapid upregulation of the CAT and 
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SOD gene and a high level of expression of GST. The fact that, up to 1 mg Zn /L, gene expression 

levels subsequently subsides suggests that the antioxidant system is able to neutralize the hydrogen 

peroxide and other ROS formed by the Zn ion and thereby protect the organism (Varela-Valencia et 

al., 2014). Few studies focused on p53 and PDRP gene in metal ionic exposure. Chae et al. (2009) 

reported a decay trend of p53 expression in Ag+-exposed fish Oryzias latipes from the 1st day to the 

10th day followed by death that a restrained expression is different of data in this case. Also, Tang et 

al. (2013) reported similar lightly decreasing trend of p53 expression in Cd2+ exposed Danio rerio 

liver cells. However, similar situations were reported for antioxidant enzymes genes. Kim et al. 

(2011) reported low concentration (100 μg/L) of Ag+, Cu2+, and Zn2+ can induced SOD gene 

expression increasing (p < 0.05) in copepod Tigriopus japonicus for 96 h that supports the data in 

this case (Fig. 3.23.1-5). In addition, Won et al. (2012) reported very similar trends of GST and CAT 

gene expressions and protein activities in polychaete Perinereis nuntia expopsed into Cu2+ that an 

upregulation was occurred at earlier exposure phase (6-24 h) and a decreasing was observed at the 

end of exposure, particularly GST went to the control level (p > 0.05). Wan et al. (2009) reported a 

rapid increasing of GST gene expression in disk abalone Haliotis discus discus exposed into 50-500 

μg/L Cd2+ for 12 h while a increasing trend at lower concentrations and a decreasing at higher 

concentration (went to control level, p > 0.05) for both Cu2+ and Hg2+. Those showed the similar 

adaptation effect both in long exposure time and high exposed concentration with respect to this 

case. Based on the results reported here, it is suggested that 1 mg Zn /L, represents a threshold value 

below which the cell activates defences mechanisms to cope with the related oxidative stress 

(Davies, 2000; Clauditz et al., 2006). 

In the case of concentration at 1 mg/L, instead, the observed gene overexpression 

followed by the sharp decrease to the control level, suggests the possibility for the cell antioxidant 

system to activate an additional extra expression in the effort of counteract the increased stimulus. 

This process was eventually insufficient to neutralize ROS deriving effects as DNA damages, 

alteration of cell metabolism and that drive to cell apoptosis. The ionic zinc alone showed an 

increasing pattern of antioxidant gene expression along with concentrations and time exposure. 

3.24 Conclusion 

The results of this work represent the ROS-mediated injury on marine invertebrates M. 
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galloprovincialis by Zn salt using qRT-PCR approach. All five genes involved in antioxidation and 

apoptosis represented positive response on ZnO NPs exposure that induced DNA damage and 

oxidant injury contributed the total toxicity. In M. galloprovincialis, the effects of heavy metal, 

nanomaterials, UV treatment, and polluted environment stress on different biomarkers have been 

previously evaluated in different experimental conditions (Bebianno & Serafim, 1998; Regoli, 1998; 

Da Ros et al., 2000; Canesi et al., 2010; Gomes et al., 2011; Gomes et al., 2012; Barmo et al., 2013; 

Estevez-Calvar et al., 2013; Gomes et al., 2013; Gomes et al., 2014b). The relevant genes 

expressions in M. galloprovincialis exposed into Zn salt solution in the range of concentration 0.01 

to 100 mg Zn/L for four weeks were reported in this paper.  

As biomarkers on the basis of gene expression, insufficient literatures had recorded the 

five genes in M. galloprovincialis to respond metal ions (Hoarau et al., 2006; Ciacci et al., 2011). 

Hoarau et al. (2006) reported that active GST expression occurred in M. galloprovincialis exposed 

to Cd. The specific activities and gene expression of the enzymes are related to apoptosis and 

antioxidation which had been well documented (Gomes et al., 2011; Gomes et al., 2012; Barmo et 

al., 2013; Estevez-Calvar et al., 2013; Gomes et al., 2014b; Wang et al., 2014). In Fig. 3.21-1, p53 

and PDRP are on the upstream of the signaling pathway of ROS-mediated appotosis and SOD, GST 

and CAT are the key genes in the signaling pathway of ROS-mediated antioxidation (Gomes et al., 

2011; Estevez-Calvar et al., 2013; Romero et al., 2015). In this research, all investigated genes 

represented obvious increasing expression in the exposure of Zn salts that Zn ion could induced 

ROS-mediated injury. In conclusion, the present data of the investigated genes, p53, PDPR, GST, 

CAT, and SOD evidenced distinct action of apoptosis and antioxidation occurred in M. 

galloprovincialis exposed to Zn salts. The increase in antioxidant defenses and apoptosis suggested 

an obvious signaling pathway requesting more studies on cellular signaling in marine invertebrates 

exposed into stress. 
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3.26 Glossary 

NPs: Nanoparticles; ENMs: Engineered Nanomaterials; ASW: Artificial Sea Water; RSW: 

Reconstituted Sea Water; NOEC: No Observed Effect Concentration; EC1: 1% Effect 

Concentration; EC10: 10% Effect Concentration; EC50: 50% Effect Concentration; LC50: 50% 

Lethal Concentration; ANOVA: Analysis of Variance; Inhibition Concentration procedure, ICp; 

H&E: Hematoxyline and Eosin; PBS: Phosphate Buffer Saline; FAO: Food and Agriculture 

Organization; UV: Ultra Violet; UV-vis: Ultraviolet-Visible; ROS: Reactive Oxygen Species; R: Zn 

Uptake Rate. 

RNA: Ribonucleic Acid; DNA: Deoxyribonucleic Acid; cDNA: Complementary DNA; 

qRT-PCR: quantitative Real-Time Polymerase Chain Reaction. 

Bax: Bcl-2-associated X protein; Bcl-2: Bcl-2 Integral Membrane Protein; BI-1: Bax 

inhibitor-1; CAT: Catalase; DFF-A: DNA Fragmentation Factor A; GPx: Glutathione Peroxidase; 

GSH: Glutathione; GSR: Oxidized Glutathione Reductase; GSSG: Oxidized Glutathione; GST: 

Glutathione Transferase; HSP70: Heat Shock Protein 70; LDH: Lactate Dehydrogenase; LPO: Lipid 

Peroxidation; MgC1q: the Complement Factor MgC1q; MT: Metallothionein; p53: p53 Tumor 

Suppressor-Like Protein; PDRP: DNA damage regulated protein; Se-GPx: Se-Glutathione 

Peroxidase; Se-GSR: Se-Oxidized Glutathione Reductase; SOD: Superoxide Dismutase. 

BPA: Bisphenol A; DAP: Diallyl Phthalate; PAHs: Polycyclic Aromatic Hydrocarbon; 

PBDEs: Polybrominated Diphenyl Ethers; PCB: Polychlorinated Biphenyl; DDT: 

Dichlorodiphenyltrichloroethane. 

AAS: Atomic Absorption Spectrometer; DLS: Dynamic Light Scattering; FIB: Focused 

Ion Beam; GFAAS: Graphite Furnace Atomic Absorption Spectrophotometer; ICP-AES: 

Inductively Coupled Plasma-Atomic Emission Spectrometry; ICP-MS: Inductively Coupled 

Plasma-Mass Spectrometry; NIBS: Non-Invasive Back Scatter; PDI: Polydispersity Index; SSCP: 

Scanned Stripping Chrono Potentiometry. 
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4 GENERAL CONCLUSION 

Three hypotheses were presented on ecotoxicity of ZnO NPs towards algae and mussels 

in marine environment which were still to be explored and became the aims of this study. 

First, ZnO NPs could have a specific behavior and effect in diversemarine seawaters as 

other nanomaterials described before. To this aim the full characterization of ZnO NP dissolution, 

aggregation, and sedimentation once dispersed into a standard Artificial Sea Water (ASW) and a 

Reconstituted Sea Water (RSW) from East China Sea was performed. 

Second, the ecotoxicity of ZnO NPs upon a green alga and a diatom would be different. 

To assess the diverse toxicity upon different algae, growth inhibition algal assays were performed.  

Additionally, to verify the hypothesis about the role of nano size, ZnO NP toxicity for ZnO NPs, 

bulk, and Zn salt, were assessed as well. 

Final, ZnO NP toxicity towards mussel under a chronic exposure would be shown on Zn 

bioaccumulation, tissue damages, and transcription of apoptosis and antioxidation-related genes. 

The hypothesis that nano size plays an important role in its toxicity was also considered together 

with the all previous ones for mussel M. galloprovincialis. 

The results answered to the all hypotheses. Behaviors of ZnO NPs and bulk in different 

artificial seawater were observed indicating that the primary size of ZnO in suspensions could affect 

the aggregating rate in higher concentration. The behaviors of ZnO NPs dispersed into ASW and 

RSW have similar changing trends with some slight differences: aggregates size in ASW for hours 

is slightly larger than in RSW; Sedimentation speed in ASW (50%) is slower than in RSW (70%) 

within 200 min; Solubility is very similar in two seawaters (both in 70%, for 10 mg Zn/L). 

Comparative toxicity of ZnO NPs, bulk, and Zn salt towards marine algae T. suecica and 

P. tricornutum indicated that the nano size plays a key role in the overall ZnO toxicity. 

Zn bioaccumulation and histological damages were observed for mussel exposed to ZnO 

NPs, bulk, and Zn salt. Pristine ZnO particle size influences the overall toxicity and the rank was 

represented by three levels of injury (in gill, digestive gland, and gonad): low for bulk; medium for 

NPs and high for salts. Ecotoxicity of ZnO NPs in mussel revealed by transcription of apoptosis and 

antioxidation-related genes indicated that active response to ZnO NP exposure which induced DNA 
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damage and oxidant injury contributing to the overall toxicity. In conclusion, zinc oxide 

nanoparticles induced ecotoxicolgical stress both to algae and mussels and could exert effect also at 

realistic environmental concentrations during a chronic exposure. Therefore NPs should be 

considered as a real risk for marine environment. 
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