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ABSTRACT

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs), one among the most widely used metal oxide
nanomaterias, has unique propertiesch asoptoelectronicpropert, UV emission, transparent
conductivity, piezoelectricityUV absorption and reflectigrthose make ZnO NPs to be currently
used in a broad range of producsich widespread and expanding production and use increase the
potential for their release into the environmamtUS, Euorpe and ChinaWith the vast releasing of
ZnO NPs, the ecotoxicisk had drawn much researchergst in the last decadeBhe aquatic
ecosystem is the final destinatiohthereleased ZnO NPand thecoastal seawatetakes into the
most ofdischarge

At least three distinct mechanisro$ the toxic action of ZnO NPseleasd toxic Zrf+
effect, surface interactions with media may produce toxic substarce report, anghoto induced
toxicity, were reported.

Based on the published literatures reviewing, several research points on ecotoxicity of
ZnO NPs towards algaen@ mussel in marine environment were still unexplored and some
represent aims of this study.

0 ZnO NPs could have a specific behavior and effect in diverse marine seawaténss
aim the full characterization of ZnNP dissolution, aggregation, and sedimentation once
dispersed into a standard Artificial Sea Water (ASW) and a Reconstituted Sea Water
(RSW) from East China Sea was performed.

0 The ecotoxicity of ZnO NPs upon a green alga and a diatom would be diffEveagsess
the diverse toxicity upon different algae, growth inhibition algal assays were performed.
Additionally, to verify the hypothesis about the role of nano size in the overall toxicity,
ZnO buk, and Zn saloxicity were assessed as well.

0 ZnO NP toxcity towards mussels under a chronic exposure could be shown by Zn
bioaccumulation, tissue damages, and transcription of apoptosis and antioxidéied
genes. The hypothesis that nano size plays an important role in its toxicity was also
considered dgether with the all previous ones for mussklgalloprovincialis

The obtainedresults answered to the all hypotheses. Behaviors of ZnO NPs and bulk in
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ABSTRACT

different artificial seawater were observed indicating that the primary size of ZnO in suspensions
coud affect the aggregating rate in higher concentration. The behaviors of ZnO NPs dispersed into
ASW and RSW have similar changing trends with some slight differeGoasparative toxicity of

ZnO NPs, bulk, and Zn salt towards marine algae indicated thatatho size plays a key role in the
overall ZnO toxicity. Zn bioaccumulation and histological damagesre observed fomussel
exposed to ZnO NPs, bulend Zn saltPristine ZnO particlsizeinfluencesthe overall toxicity and

the rank wa representetyy threelevels of injury (in gill, digestive gland, and gonatbyw for bulk;
mediumfor NPsandhigh for salts Ecotoxicty of ZnO NPs in musselrevealed by transcription of
apoptosis and antioxidatienelated genes indicatatlat active reponse to ZnO NExposure which
induced DNA damage and oxidant injury contribgtto the overall toxicityln conclusion, zinc

oxide nanoparticles induced ecotoxicolgical stress to two algae and a mussel in marine environment

that were related to the R@i&luced property.
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0.1 Review onthe production and application of Zinc oxidanoparticle

Zinc oxide nanoparticke ZnO NP9, one among the most widely used medxide
nanomateriashas a wurtzite crystal structure contributing to its unique optoelectronic properties
(Wang, 2004 Besides, may other characteristicsuch aduV emission,transparent conductivity,
and piezoelectricitynakeZnO NPsparticularly attractive for electronic sensor, solar voltaics, and
transducerapplications(Ma et al, 2013)It is alsoa very effective photo catalyst materaith
excellent properties of UV absorption and reflec{iBloffmann et al., 1995)rhosepropertiesmake
ZnO NPs to becurrently used in a broad range of products including plastics, ceramics, rubber,
lubricants, paints, foods (source of Zn nutrient), batteries, fire retardants, persomngraducts,
medical disinfectionetc. (Porter, 1991; Mitchnick et al., 1999, Battez et al., 2008; Padmavathy &
Vijayaraghavan, 2008; Wilkie & Morgan, 2009; Ma et al., 20X3)nsequenthya huge quantity of
ZnO NPs wagproduced per yedor industrial usgKlingshirn, 2007)

Such widespread and expanding production and use increase the potential for their
release into the environmeHteller et al. (2014 gstimated that ZnO together with titanium diceid
represent 94 % dEngineeredNanoMaterial (ENMs) released into the environment from the use of
personal care products in US. Particularly, an amount of 3700 mt ZnO ENMs flowing into water

system each year was estimafeller et al., 2013)Gottschalk et al. (2009ported the modeled

environmental concentraton @gganoZnO i n sur face water (0.010 ¢
u.s.), sediment (2.90 e€g/L in Euorpe, 0.51 ¢
e g/ L 1 Ontke.oBer yide, with the rapid economic development, China become the largest

nanoméerial market in the Pacifid\sia (Gao et al., 2013)t wasalsoestimated that about 860 kt
of ZnO NPs coul d be discharged by wastewat e

environments only in 201(Gao et al., 2013)

0.2 Review on the ecotoxadogcal risk of release of ZnO NPs to the

environment
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Fig. 0.2-1 ZnO NPs fate and effect in the environment

With the vast releasing of ZnO NPs discharged fraudespread and expanding
production the ecotoxic risk had drawn much researtérestin the lest decaded:ig. 0.2-1 shows
the fate of released ZnO NRsd effect toenvironmental organisms dlfifferent taxain soil and
aguatic ecosystem. Rainfall asdrface runoffire the main power to move ZnO from the soil to the
ocean.Dissolving into water, ggregating to be bulk and sink into sediment, and combining with
organic object into the transformation of ecosystem could be the main three paths of the released
ZnO NPs.The discharged ionic Zn, ZnO aggetes, and other types @bmpoundcovered ZnO
directly and indirectly interacted with organism in soil, freshwater and seawater.

Excluding landfill, soil takes the mosamountsof released ZnO NP&Keller & Lazareva,
2013; Keller et al., 2013; Keller et al., 2014 relatively broad range of specjesuch asplants:
radish, rape, ryegrass, lettuce, corn, cucunther & Xing, 2007), zucchini (Stampoulis et al.,
2009) gardercressbroad beaiManzo et al., 2011)and wheafDu & al., 2011) andinvertebrates
nematodgMa et al., 2009; Wang et al., 2009; Khare et al., 2011; Ma et al., ZHrithworm(Hu et
al, 2010; Li et al., 2011 yoil arthropod (Manzo et al.,, 2011 )sopod (PipanrTkalec et al., 2010)
have beerinvestigated under soil exposumBoth discharged zinc ions and particldspendent
effect were reported to contribute the toxicity of ZnO NPst 2000 mg/ltowards plants bgeed
germinationinhibitionand root elongation terminan (Lin & Xing, 2007) However,Stampoulis et
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al. (2009)did not observe any ecotoxic effect of both ZnO NPs and &ull000 mgL to zucchini.
Manzo et al. (2011ieported theoot elongationnhibitionto garden cresandgenotoxicity toVicia
fabacaused by ZnO NP#lso, Du et al. (2011 reported theeduced biomass of wheanhd the Zn
uptakeindicating the discharged ionic Zn contributed the overall toxicity of ZnO [EHscts of
lethality, behavior, reproduction, and transgene expresdiatultnematodeaused by ZnO NPa
severalhundred mdL representedelatively low toxicity (Ma et al., 2009)however ZnO NPs
showed highly toxicity to larvatematod€éWang et al., 2009 that thewhole toxicity was based on
Zn ions from dissolutionComparing ofLC50s oftwo different siz ZnO NPsindicated that the
initial size of ZnO contributed the toxicity towardematode(Khare et al., 2011)Manzo et al.
(2011) reported the difference of ecotoxicity of ZnO NPs towards anbropod: 100% mortality
in Heterocypris incongruenand no effect®n the reproductionof Folsomia candida indicating
particledependent effecks the base of toxicityHowever, PipanTkalec et al. (2010jound that
ZnO NPs dissolution is regpsible for Zn bioaccumulation iBopod The aquatic ecosystem is the
final destination of pollutants and therefore river, lake, in particular seawaters, could be subject to
ZnO NPspollution coming through water movement.

In freshwatermany different oganisms were utilized for ecotoxicological assessment of
ZnO NPs potential impacalgae(Franklin et al., 2007; Aruoja et al., 2009; Aravantinou et al., 2015;
Bhuvaneshwari et al.,, 2015rustaceangHeinlaan et al,, 2008; Wiench et al., 2009; Zhu et al.,
2009b; Blinova et al., 2010jnollusks (Ali et al., 2012) fishes(Zhu et al., 2008; Zhu et al., 2009a;
Bai et al., 2010; Johnston et al., 2010; Yu et al,, 2011; Hao & Chen, 2012; Bessemer et al., 2015;
Suganthi et al.,, 2015pnd amphibiariNations et al,, 2011a; Nations et al., 201M4xuoja et al.
(2009)and Franklin et al. (2007)yeported that dissolution of ZnO NPs played a role in causing
toxicity upon microalgad’seudokirchneriella subcapitat@ravaninou et al. (2015pbservedthe
growth rateinhibition of the freshwater alga€hlorococcumsp. andScenedesmus rubescamsler
ZnO NPs exposure and suggested that the toxic effect is ralstetd the culture medium typén
addition, Bhuvaneshwari et al. (2015¢ported that the toxicity of ZnO NPs upon the freshwater
alga Scenedesmus obliqguugas mainly related to the initial size and concentrations of NPs, the
illumination conditions and dissolutiokleinlaan et al. (2008 ndBlinova et al. (2010)eported the
lethal concentration of ZnO NPs towards freshwater crustaceaBaphnia magna and

Thamnocephalus platyurissiggestinghe toxicity was depetent onionic Zn. However,Wiench et
9
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al. (2009)suggestedhatthe toxiaty towardsD. magnawas independent girimary size of NPs,
coating, aggregation, culture medium or the pretreatment of NPs suspendioasal. (2012)
reported the genotoxicity in digestive gland cellsfreEhwater snaiLymnaea luteoleexposed to

ZnO NPs attributed toxidative stressZhu et al. (2008)Zhu et al. (2009a)and(Bai et al, 2010)
focused on the embryo hatching rate of zebrafish exposed to ZnO NPs indicating dissGived Zn
and ZnO aggregates contributeth the toxicity. However, Yu et al. (2011)suggestedhat the
aggregation and sedimentation of ZnO NPs inhibited the toxic efflact.& Chen (2012)eported

the toxicity of ZnO NPs towards cafyprinus carpioon the changes of activity of antioxidative
enzymes superoxide dismutase (90&atalase (CAT), andlutathione peroxidase (GPapd lipid
peroxidation(LPO). The exposure of ZnO NPs caused significant decreasing of enzymes activities
and increasing olf PO indicating oxidative stress generatido.hnston et al. (201@getected limited

ZnO NPs uptake in zebrafi tissues suggestingnited invading ability directly to organisms.
Bessemer et al. (201®)videnced oxidative and cellular stress in gill of a freshwater teleost fish
Catostomus commersomikposedo ZnO NPs that leaded gill neuroepithelial cells activation and
then caused a hypoxic respenof the whole adult fish bodyuganthiet al. (2015)reported
decreased immune cells ineshwater fishOreochromis mossambicusiood caused by acute
exposure of ZnO NPs. Limited studies reported ZnO NP toxicitgrgphibians.Nations et al.
(2011a); N&éons et al. (2011lb)reported developmental abnormalities, high mortality, and
metamorphosis inhibition iXXenopus laeviey ZnO NPs exposure.

Since the destination of ZnO is eventually toastal seawatersprine organismsvere
largely used in the evadtion effects & well: many studies are abontarine alga€Brayner et al.,
2010; Miao et al., 2010; Miller et al., 2010; Wong et al., 2010; Aravantinou et al., 2015; Suman et
al., 2015) marine amphipodFabrega et al., 2012)narinecrustaceang\Wong et al., 2010; Manzo
et al., 2013) marinebivalves(Montes et al., 2012; Trevisan et al., 2014a; Trevisan et al., 2014b)
marine fish (Wong et al, 2010)Brayner et al. (2010yeported that the photosynthesis of
cyanobacterigdAnabaena flosasquaeand lethality rate of microalgaBuglena graciliseuglenoid
were affected by ZnO NPMiao et al. (2010kuggested thahe dissolved ionic Zn veathe only
determinant of ZnO NPs toxicity the marine diatorithalassiosira pseudonan@he growth assay
of four marine algaé&keletonema marionT. pseudonanaDunaliella tertiolecta andlsochrysis

galbanaunder ZnO NPs exposure were performedMviilfer et al. (2010)indicating the uptake of
10
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Zr#* dissolved from NPs contributed the toxicityong et al. (2010performed the growth assay of
two marine diatom§keletonema costatuamdT. pseudonanaxposed to ZnO NPs suggesting free
Zinc ions from the dissolution of ZnO could be contributed to the toxkityvantinou et al. (2015)
examing the growth rate of two marine speci2stertiolectaandT. suesicaxposed ZnO NPs and
found that the toxic effect attributed on algal species, exposure time and concentrition of NPs, and
primarily the type of culture nidum for algae.Suman et al. (2015)ested the level of several
molecular biomarkers imarine algaeChlorella vulgarisexposed to ZnO NPs and suggested high
level of Zrf* from dissolution of NPs contributed to the dafpendent toxictyHowever, on
marineamphipod Fabrega et al. (2012uggested the toxicity of ZnO NPs can not only contributed
to the ionic Zn from dissolutiorBut ill, Wong et al. (2010performed the mortality assay tife
crustaceangigriopus japonicusand Elasmopus rapaxxposed to ZnO NPs suggestitiwat free
Zinc ions could contribute to the toxicityn addition,Manzo et al. (2013jeported forsea urchin
Paracentrotus lividugxposed to ZnO NRshat thefertilization and early development of embryos
were affectedhot onlyby free Zn iondut thatalso the interactions between ZnO aggregates and
sea urchin/seawatgiay a rolein the toxicity For marine bivalve$/. galloprovincialis, Montes et
al. (2012)applied a observation of invaded ZnO NPs in mussel tissuescagning electron
microscope and suggested that ZnO NPs remained in the mussel body indicating a
biotransformationcould be real. The gill was suggested to be the firsarorig Pacific oysters
Crassostrea gigaéTrevisan et al., 2014andbrown mussel$erna perna(Trevisan et al., 2014b)
to be attacked bZnO NPs Wong et al. (2010petected the protein level of thremolecular
biomarkers SODmetallothionein (MT)and heat shock protein 70 (HSP#4ff)the medaka fish
Oryzias melastigmaxposed to ZnO NPs suggesting dissolution andxidéative stresgeneration
as majorcontribubrs to the toxictty.

In addition, alsathe effect aboubacteriawere well investigateqReddy et al., 2007;
Huang et al., 2008; Jones et al., 2008; Applerot et al., 2009; Aruoja et al., 2009; Jin et al., 2009; Liu
et al., 2009; Feris et al., 2010; Li et al., 2011; Premanathaln 2011; Raghupathi et al., 2011; Xie
etal, 2011; Ambika & Sundrarajan, 2015; Read et al., 2@mwth inhibition and cell viabilityof
bacteria population exposed to ZnO NPs were always the endpoints in the above studies. They
focused on théaceriostasisof NPs and compared the difference among different particles sizes.

In the main ofthe all above studieshé toxic action ofZnO NPs was potentially
11
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attributed to, at least three distinct mechanisms:

First, ZnO NPsrelease toxicZr?* into exposire media The dissolution process usually
involves the following reactiongYamabi & Imai, 2002; Ma et al., 2013)

T8 (1 az 11 (i

17 ( 6z:1/( AN/ ( AN

17 ANz2:1T AN /( AN

The dissolubility pays an important role in the toxic effect of ZnO NPs dispersed into
aqueous media. The physicechemical properties(particle size and surface arep and the
environmental paramete(pH, temperatureandorganic matterof the exposurenediacan largely
affect the dssolution of ZnO NPsGenerally the smaller is thearticle sizethe largeris thesurface
area resulting inZnO NPsgreater dissolutiorespect taZnO powder (ZnO bulk)Size dependent
dissolutionis one of tk mechanisms of higher toxicity of NPsthan bulk.

Second, surface interactiomsth media may produce toxic substantgsiroxyl radicals
(‘OH) andreactive oxygen specieROS) Besidesparticle dissolutiontoxicity, ROS mediated
toxicity induced by NPs ahhydroxyl radicalscontribute the overall toxicity.

Third, photeinduced toxicity associated with its photocatalytioperty may be another

important mechanism of toxicity
0.3 Research prospeaté assessment of ZnO NPs global ecotoxic risk

Based orthe regarch contents of reported studies, several aspects are still not sufficient
exploredand therefore should be further investigated

First, the behavior oZnO NPs in thaedifferentexposure medigure water, natural fresh
water,acidalkali treaed freshwater,artificial sea water, natural sea water, }eédong the exposure
time. The measurement qfarticle size aggregation, sedimentation, dissolubility, &d¢he former
step to define the influencef medium physiochemical propeds on the ZnO NBXcity.

Second, the different role of the two main component of the toxic effect: partibileed
toxicity anddissolvediontoxicity should belifferentiatel by upgrade testing tools and techniques.
There is now no very efficient approach to directytermine particlenduced toxicity, instead of a
comparing method that test the toxic difference between nano scale particles and normal size

powders(Lin & Xing, 2008; Manzo et al., 2011; Fabrega et al., 208230, Inductively Coupled
12
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PlasmaMass Spectrometry (IGRIS) is the most popular method to measure the dissolved ionic Zn
whichis not the most sensitive method recently aodld gradually bereplaced byther techniques
such aghe Scanned Stripping ChronBotentiometry (SSCP) technig(lerdzan, 2014) A new
high efficient approach ishighly expected to differentiate thparticle induced toxicity and
dissolved ions toxicity

Third, therealstic exposure in environmeitty chronic assessmestould focus onlow
concentratiordose. In he sub lethallong term exposureendpoints such adn accumulatiorand
modification ofrelevant genes transcription and proteiaduction should be assesséd well, the

toxicity of ZnO NPsvia food chain could be the next hotspot.
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1.1 Characterizatiomf ZnO NPs and bulkn marine environment

Once released intoarine environmentZnO NPs will interact with each other and some
organicinorgnic compoundgRocha et al.,, 2015)The properties of NPs, such as its nano size,
pariticle shapechemical compositiorand surface chargeandthe properties of mediumsuch as
pH, emperature, ionistrength,plays ankey role onZnO NPsbehaviour(Fabrega et al., 2012;
Rocha et al.,, 2015peveral aspects of ZnO NPs characters chamgetarine environment that had
been well documentgdMiao et al.,, 2007; Brayner et al., 2010; Miao et al., 2010; Miller et al., 2010;
Ma et al., 2013; Rocha et al., 201%hey areprogressiveand simultaneoushappenningin seawater.

Dissolutionis a step proceedeadpidly once ZnO NPs suspended into seawdidter et
al. (2010) measured the concentration of dissolved Zn ion usinductively Coupled
PlasmaAtomic Emission SpectrometryiICP-AES) technique suggéag an equilibrium value
approximately 3 mg Zn/lwas reachedfor the initial ZnOconcentration 10 mg Zn/L angost Zn
(approximately 70%dlissolved for all lower concentrations with in 12 h. However, the dissolution
was still going on after 4 days for thagh concentrationMiao et al. (2010)performed the
dissolution test wittGraphite Furnace Aimic Absorption Spectrophotomet@FAAS) technique
resultingno consistent trendvas observed in the different experimahtconditions However, a
around 5% dissolution for NPs and 2.5% for bulk were reported for high concentration
susuoensions (> 80 mgnA) (Wong et al, 2010)Manzo et al (2013bsummarizd all
abovementionedataresultingthat the averagesolubility of ZnO NPsin seawater is around 5 mg
Zn/L.

Aggregation at the same time, was rapidly occurred since theery beginning of
dispersing in seawater mediuiiller et al. (2010)reported the diameter of NPs increased from
initial 250-300 nm (10 mg Zn/L) to approximately 450 nm within 30 min udhygamic Light
Scattering (DL$ technique and suggestespid aggregatiolof larger aggregates depends on the
low surface/volume ratioMiao et al. (2010)reported an increasing to 8500 nm after 7 days

dispersed into ASW with also DL&\Iso, Manzo et al. (2013bjeported similar trends that high
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concentration pariticles aggregating much more than meentration for both ZnO NPs and bulk
in ASW and bulk aggregates size increased to 3000 nm after 250 min dispersing is larger than NPs
(2600 nm)

Sedimentation would occwyith aggregation due to gravity in AS\Wanzo et al. (2013b)
observeda clear sedimentationof large aggregatesor 100 mg Zn/L NPs and bulk. Low
concentration ZnO particles showed very slower sedimentation rate than highroties.same
time, NPs showed slower sedimentation rate than iMiller et al. (2010)reported similar results.

This could be due to the density difference between NPs and bulk.

1.2 The importance oprimary producers marine algae ecosystenand

ecotoxicolgical studies of ZnO NPs

Phytoplankton is thautotrophic component of the plankton community and a key factor
of oceans, seas and freshwater basins ecosystems. High growth rate, hightswdéome ratio
(high uptake rate), easy handling in laboratory conditig®astreBugallo et al., 2014) make
marine microalgae be an effective tool to test toxicity of contaminants such as ant{{Sietiase et
al,, 2014) metas (Wang & Zheng, 2008; Angel et al,, 2015)ane materials(Kadar et al., 2012;
Clément et al., 2013; CastrB8ugallo et al, 2014)Additionally, as diverse algae taxa resd
differently to chemical toxicants, it is mandatory to conduct tests on a different species representing
different classes.

Published literatures documented different nanomaterials toxicity towards vast algae
species Greenalgae could be the most populobject to investiga ecotoxicity of nanomaterials,
such as nano Ti§) ZnO, AbOs3, SIO;, CuO, Go, Carbon Nanotuheetc. (Baun et al., 2008b; Blaise
et al., 2008; Van Hoecke et al,, 2008; Wang et al., 2008; Arebal., 2009; Hall et al., 2009; Ji et
al., 2011; Lee & An, 2013; Manzo et al., 2013a; Fu et al., 2045p Diatom and other algae were
utilized to assess the ecotoxic effect of nano metal xoide, metal particlg8raymer et al., 2009;
Wong et al ., 2010, Peng et al ., 2011, Dahoun
Clénent et al., 2013; Fu et al.,, 2015; Li et al., 2015; Yung et al., 2015)

Among them, most algae are marine speridgated tlat nanomaterials are released into

marine ecosystem arousing many ecotoxicity studies on these coptmtoplanktos in recent
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years(Ozkoc & Taylan, 2010; Wong et al., 2010; Peng et al., 2011; Kadar et al., 2@12pht al.,
2013a; Aravantinou et al., 2015; Suman et al.,, 2015)

Among these investigated nanomateriada©® NPsis currently used in widespread and
expanding production that increagée heat of the studies on its ecotoxiqiya et al.,, 2013)A
broad range ofnarine algae became the research organism olgedt¢Brayner et al., 2010; Miao
et al, 2010; Miller et al., 2010; Wong et al., 2010; Manzo et al., 2013apAtmou et al., 2015;
Suman et al, 2015)However, marine green microalgaeTetraselmis suecicaand diatom
Phaeodactylum tricornuturwhich had not been reported on ZnO NPs ecotoxwése selected as
test organisms to respond to Zm@Psexposure.

P. tricornutumis a widespread pennate diatom, with low silica content and distinct cell
wall (i.e. frustule) structures which is essentially composed of organic compounds, particularly
sulfated glucomannafTesson et al., 2009has been described in three different morphotypes (i.e.
the ovoid, fusiformand triradiate forms), whose occurrence in culture seems to depend on strains as
well as environmental conditong~rancius et al., 2008)

T. suecicais an elliptical microalga of the class Chlorophyceae (Prasinophyceae)
generally used as the diets of zooplankton, bivalve molluscs and crustacean larvae. The
characteristic cell wa(theca) is composed of coalesced rigid carbohydrate s@dageset al., 2013)

and the typical four flagella are covered by double layercalés.

1.3 The role of filter feeder Mediterranean musseldMytilus

galloprovincialisin marine pollution survey

Bivalves, lke musseldMytilus spp., are filteifeeders, widely distributed, and with a
long life span and represent a good choice for the studyamine environmental pollutiof® heir et
al,, 2013; Balbi et al., 2014; Hu et al., 2014; Cremonte et al., 28005alloprovincialis cultured
in China for commercial interegtazo & Pita, 2012; FAO, 2016)was instead largely utilized in
several countries to investigat®logical responses to toxicants and environmental s(i@sRos
et al, 2000; Barmo et al., 2013; Este¥ealvar et al., 2013; Balbi et al., 2014dihd also to assess
NPs toxicity(Canesi et al., 2010; Gomes et al., 2011; Hanna et al., 2013; Balbi et al., 2014; Gomes
et al., 2014)
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In this bivalve NPs uptake can occur by ingestion through the digestivéRamrts et
al., 2007; Ban et al., 2008a; Gagnéet al, 2008; Ward & Kach, 20a&yl thraigh the large
respiratory surface of the gills, as demonstrated for Sli2s in the congener speciglytilus edulis
(Kdnler & Riisgad, 1982). The gills and the digestive gland are, therefore, palaily relevant as
target organs for nanotoxicological studiéBaun et al., 2008a; D'Agata et al., 2014)

However, it was recently reported that dNPould accumulate with increasing time
exposure in the digestigland(Gomes et al., 2011; 2012; 2013; 201%his indicates that although
the gills are the first target of NPs, the digestive gland is the main tissue for their $Riregyeood
et al., 2010h)These particles could induce oxidative stress in mussel gills and digestive gldnd, an
promote several abnormalities in cellular function which can also trigger major changes in gene

transcription (Fabbri et al., 2008)
1.4 Ecotoxicity assessmentsialgae and mussel

On algae assay, growth inhibitiasithe most popular approach of ecotoxicity assessment
(Aruoja et al., 2009; Ji et al., 2011; Peng et al., 2011; Kadar et al., 2012; Manzo et al., 2013a;
Aravantinou et al., 2015; Li et al., 2015; Schiavo et al, 2088®me approaches involved in
oxidentive stress intted by nanoparticles, such agasurement of related enzyme activipD,
CAT, LDH, GSH etc.)Li et al., 2015; Suman et al., 201R0S generatiofH,0,, O*, and-OH)
(Jagadeesh et al., 2015; Li et al., 2085 lipid peroxidation(LPO) (Kadar et al., 2012; Jagadeesh
et al., 2015; Suman et al., 2018esides, observation of nanoparticle invading in cells directly
showed the @mage from nanoparticl&ong et al., 2011; Peng et al., 2011; Bhuvaneshwari et al.,
2015; Li et al., 2015)In addition,contentsof chlorophyll (Gong et al., 2011 )pbservation oDNA
damaggSchiavo et al., 2016gxtracellulamprotein conten{Jagadeesh et al.,, 201&ndZn content
per algae surfac@ravantinou et al., 2015yere reported orcotoxicity assessment

For mussels,many indexes were reported on nanoparticles toxiclEypzymatic
concentration/activitgould be measured in mostdies, such asGSR, GST, CAT, GPX, S&PX
SOD, MT, andGSSG(Canesi et al., 2010; Tedesco et al., 2010; Gomes et al,, 2011; Gomes et al.,
2012; Barmo et al., 2013; Gomes et al., 201430somal membrane stabilitysosomal lipofuscin
content, lysosomal Neutral Lipid conterstnd LPO were reported as we(Canesi et al.,, 2010;

Gomes et al, 2012)Gomes et al. (2013)reported the genotoxic comet assapn M.
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galloprovincialis Wang et al(2014)reportedtotal hemocyte counting, ROS and Lysosomal content
and Barmo et al. (2013)eported some related genes expragssuch asGST, CAT, Mytilin B,
Myticin B, defensin, lysozynaedMgC1lg involved in oxidative stress and immune repoiBeside

of these molecular approaches, observation on tissue daifi&ddset al.,, 2010; Barno et al.,
2013; Hu et al, 2014; Trevisan et al., 2014; Vale et al., 2014; Cid et al.,, 2EHophoresis
proteomic separations of gill protei($edesco et al., 2008; Tedesco et al., 20&0bryotoxicity
(Ringwood et al., 2010a3urvival rate(Mwangi et al., 2012)and metal boaccumulationn tissues
(Gard -Negete et al.,, 2013; Hu et al.,, 2014; Trevisan et al., 20¢dde reportedas wellon

nanomaterials toxicity.
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Based on the published literatures reviewing, several n&sgmints on ecotoxicityf
ZnO NPs towards ghe and mussel in marine environmewere still urexplored and some
represeniaims of this study.

1 ZnO NPs could have a specific behavdord effectin diverse marine seawaterss other
nanomaterials described befof@. this aimthe ful characterization oZnO NPdissolution,
aggregation, and sedéntationoncedispersed into a standard Artificial Sea Water (ASW)
and a Reconstituted Sea Water (RSW) from East China Sea was performed.

1 Theecotoxicity of ZnO NPs upon a green alga andadodin would be differentTo assess
the diversetoxicity upon differentalgae,growth inhibitionalgal assagwere performel.
Addiionally, to verify the hypothesisaboutthe role of nancsize in the overall toxicity,
ZnO bulkk, and Zn salt toxicitywere assssed as well.

1 ZnO NP toxicity towards musselunder a chronic exposureould be shownby Zn
bioaccumulation, tissue damages, and transcription of apoptosis and antioxidéied
genes.The hypothesisthat nano size plays an important role in itexicity was also

considered togethewith the allprevious ones fomusselM. galloprovincialis
2.1 Behaviors of ZnO NPs and bulk in different artificial seawater

To characterize the behaviour of ZnO NPs and bulk dispersed int@atindies seawater,
artificial standardseawate(ASTM, 199B) (salinity 3= , pH 8.00, 0.22 m f i) landenatwad
seawater from East China Sea (salinitya25pH 7.90, 0.22 m f i), dggregadiah size
sedimentation, andissolubility of particles were oberved and tested ugslggamic light scattering
technique (DLS) UV-vis spectrophotometerand entrifugal ultrafiltration combined with

inductively coupled plasmanass spectrometry (ICMS) (Jenner et al., 1990)

2.2 Comparative toxicity oZnO NPs bulk and Zn salt towards marine

algaeT. suecicaandP. tricornutum

To focus the ecotoxicological effect of Zn@Psand buk towards the green algh
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suecicaand diatomP. tricornutum the ains areto establish the main toxicity parameters and to
compare the sensitivities of both algae to ZnO parti¢les.each compound No Observed Effect
Concentration (NOEC), 1, 10, and 5@4ect Concentration (EC1, EC10, and EC50) were defined
to provide biological criteria for the implementation of water quality standards to protect marine

organisms.

2.3 Zn bioaccumulatiorand histological damages M. galloprovincialis

exposed to ZnONPs,bulk, and Zn salt

The histological alterations on 6 organsNh galloprovincialisexposed to ZnO NPs
suspensions to characterize the tissue damagesobserved. In addition, tissue Zn uptake was
measured to reveal the fate of Zn in mussel and give arfdirstanding of ZnO NPs toxicity with
the histological observatio microwave digestion system (MARS Xpress, CEM, U3 an
atomic absorption spectrometer (AAS; AA240 Duo, Varian, USMassawyi et al, 2004;
Kramdovaet al., 2005; Gasparik et al., 201R)re used.

2.4 Ecotoxicity of ZnO nanoparticles iNl. galloprovincialis revealed by

transcription of apoptosis and antioxidatiaated genes

The aim of this workis to investigate the changes in digestive glémchscription levels
of key genesDNA repair enzymesgenesp53 PDRP, antioxidant enzymegenessuperoxide
dismutasgSOD), glutathione transferas@GST), and catalase(CAT), of M. galloprovincialisalong

four weeks exposure to ZnRBPs andbulk dispersedn RSW, using gRT-PCR

2.5 Zinc causesoxidative damages in digestive gland in mussél

galloprovincialisrevealed by transcriptioof related genes

The aim of this workis to investigate the changes in digestive gland transcription levels
of key genes, DNAepair enzymegyenesp53 PDRP, antioxidant enzymesgenessuperoxide
dismutasgSOD), glutathione transferas@GST), and catalase(CAT), of M. galloprovincialisalong
four weeks exposure to Aal dissolved in RSW, usingqRT-PCR
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3.1 Behaviasof ZnO NPs and bulk in different tdfrcial seawater

To investigate the ecotoxicity of ZnO NPs on algae and nsigbel evaluation of the
ZnO NP behaviours of dispersed in thestingmediais a necessary stefp understand how ZnO
particles interact with organism.

Two artificial seawatemwere utilizedas ecotoxicological testingiedia in this research
the standard Artificial Sea Watd/ASW) (ASTM, 1998)for algae and &econstituted Sea Water
(RSW)from East China Sea for mussels.

Once released into these media, ZnO N to their reactive nature, rapidiyterad
each other andith available inorganic compounds(Rocha et al., 2015)

ZnO particle behaviour in the testing medium largely depends both on p ariglerties,
such as sizeshape,surface charge; and omedium propertigssuch as pH, temperature, ionic
strength, playkey role on(Fabrega et al., 2012; Rocha et al., 20Egsed on the design tfie
ecotoxicological investigation, thaggregationdescribed by size changing, the sedimentation

induced by gravity, andissolution described by ionicZn release were performed.
3.2 Materials and methods

3.2.1 Chemicals

Bare ZnO NPs (cod. 544906, particle size 100 nm, surface area 185 nf/g) was
purchased from Sigmaldrich. (1) Bulk ZnO powder (particle size 200 nm, surface aa4.9-6.8
nf/g, purity > 99.9%) was purchased from GaleBor.l., Italy. (2) Bulk ZnO powder (Code
ZK249038 particle sizel50 200 nm, purity >99.9%) was purchased froQuer Biotech Co., Ltd
(Hefei, China). Baysalt crystals (Code Q/XWL 1@0D06) werepurchased fronshuilifang S&T
Ltd. (Xiamen, China).

3.2.2 Particle dispersions

(1) Approach of particles dispersions standard ArtificialSea Wate (ASW) (ASTM,
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1998)

Stocksuspensionef testing material(ZnO NPs andoulk) were preparedith ASW (pH
8. 0, 0. 2 2) toetime fidal cbricemtragod of 100 mg Zn/Che ZnO suspensionsvere
dispersed by bathonication fol30 minutes at 50W (Elma Transsonic Digital S)lest suspensions,
atthreeconcentrations 15, and 10 mg Zn/L, were prepared by diluting the stock suspension with
ASW.

(2) Approach of particles dispersions Reconstituted Sea Water (RSVifpm East
China Sea:

Stock suspensions of ZnO NBad ZnO bulk powder were prepared with (RSWEast
ChinaSea baysalt crystatsxtraced from natural seawater were dissolved in pure water (MilliQ) to
salinity 25a (pH 7.90 which is the salinity level of mussel sampling sea #8f#n et al., 2009)
and filtered in 0 . 2 2, to ghenfinal concentration of 100 mg Zn/L. The ZnO suspensions were
dispersed by batkonicationin the same abovementioned conditions. Test suspensions were

prepared by diuting the stock suspensiorfi@and 1@ mg Zn/L with RSW (Manzo et al., 2013a)
3.2.3Measurement of the size of the aggregates

After sontcation treatment, an aliquot @hO NPsand bulk suspension, at concentration
of different sea water (ASW1, 5,and10 mg Zn/L; RSW:10 and 100mg Zn/L) respectively was
put in a disposable polystyrene cuvette to determine particle size with dynamisdaftering
technique (DLS) using Zetasizer Nano ZS Malvern instrument. The instrument employs\a 4
He-Ne laser at wavelengt82.8nm and the measurement angld @8 ‘with a Non-Invasive Back
Scatter technology (NIBS). Measurements were made &E.29he measurements were run in
triplicate and the results shown are the average of the runs. The samples were monitored for 4 days
(ASW) and 90 min (RSW)Every day a new aliquot of sample was used to measure the aggregation

size with DLSfor ASW only
3.2.4 Sedinentation measurement ABW andRSW

As same as the condition of size measuremant,aliquot ofZnO NPsand bulk
suspension, at concentration df 10, and 100mg Zn/L respectively was put in a disposable

polystyrene cuvette to measuhe sedimentationsing a UV vis spectrophotometer (at 46@n) for
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24 h
3.2.5Dissolution iNnASW andRSW

The dissolved Zn concentrations of ZnO NPs and bulk suspensions in 100 and 10 mg
Zn/L dispersed into low salinityRSW were measured by Inductively Coupled Plasma Mass
Spectroratry (ICP-MS) described byNavaro et al. (2008) Samples after ultrafiltration (2m)
have been acidified with HN£(1%) and diluted 1:1000 for Zn analysBissolved Zn (ZnO

particle or other Zn complex size2 nm) in the four suspensions were daily measured for 3 days.
3.3 Results andliscussion

3.3.1Zn0O particle aggregation
Q) InASW.

ZnO NPsin aqueous media tends to aggregate indeed, particufardaltwaterwith
increasing of salinitythat ionic strength reduces the negativity of electrophoretic mobility of the
particles to encourage aggteration(Batley et al., 2013)in order to monitored the stability of ISP
and their rapid tendency to aggregate, after dispersion oN&EP€and bulk inASW and sonication
treatment for30 minutes, agglomeration phenomenon was observed for the first 120 minutes and

subsequently, once a day for four dayg.(3.31-1 and 2.
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Fig. 3.3.1-1 Hydrodynamic diameters of ZnBPsand bulk in ASW suspension at thie@ncentrations (10, 5 and 1 mg

Zn/L) within two hours.
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Fig. 3.3.1-2 Hydrodynamic diameters of ZnBPs and bullin ASW suspension at three concentrations (10, 5 and 1 mg

Zn/L) within four days. * Samples not suitable for DLS analysis

The analysis of 1DLS measurement data of the samples highlights that large aggregate
were present folPsand bulk for all the concentrations tAhO NPsaggregates were smaller than

bulk for all concentraton ashown n Table 3.31-1.

Table 3.3.11 PDI and hydrodynamidiameter of NPs and bulk in ASW suspensions at four concentrations (100, 10, 5,

and 1 mg Zn/L) in the initial stage of dispersal aftenication treatment

NPs Bulk
gl Hydrodynamic Hydrodynamic
i i
PDI y / PDI y y
diameter (nm) diameter (nm
100 0.3+0.05 1500 +300 0.8 £0.1 1900 +180
10 0.48 +0.07 850 +£100 0.56 +0.06 1150 +100
5 0.72 £0.09 1250 +150 0.76 +0.09 1400 +200
1 0.74 +£0.03 900 +80 0.59 +0.17 1250 +400

In the next 24 hours the hydrodynamic diameter of ZnO aggregate increased doubling
their size. From third day of observation the size was greater than 6 microns (Figl ai12)
than the sample was not suitable for DLS measurements. This observation highlights that the ZnO
NPs colloidal suspension should be always freshly prepam@d@nicated prior to each experiment
in order to minimize the effects of particles aggregation. The Polydispersity Index (PDI) that
describes thevidth of the particle size distributiowas in the range of 0.8.8 as shown in Table

3.3.1:1. Those valuesndlicated that the sample has a very broad size distribution.
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The hydrodynamic diameters of Zn@Psand bulk particles were already approaching
the microns rangsoon after dispersion IASW, and showed a clear, although slow, tendency to
further aggregat@ the next few hours (Tab®.3.1:1 and Fig.3.3.2-1). In general, buk ZnO had
larger aggregate sizes thaliPs It is worth to note that these results seem to be rather independent
of the pristine size of ZnO particles and of dispersion methods. Inpeetjous studies report
analogous values of aggregate sizes and aggregation trends for ZnO dispersions in seawater
although prepared fromano ZnO having pristine size much smaller than the one used in the
present study and from different dispersion md#{&airbairn et al., 2011; Yung et al., 2015he
reported results also show that, in our operating conditions, the aggregate size was only modestly
influenced by the initial particle concentration. The averaggremgate size of both nano and bulk
ZnO first increased from 1 to 5 mg Zn/L then decreased at 10 mg Zn/L and finally showed the
largest size at 100 mg Zn/L. However, the oscillation of bulk ZnO particle size between 1 and 10
mg Zn/L was well included in ehmeasurement variability, therefore test suspensions of bulk ZnO
were basically characterized by an average aggregate size of around 1400 £490 nm. On the other
hand, at concentration so high as 100 mg Zn/L the large aggregate size may be due tosgninncrea
particle collision frequency which enhances aggregatitailer et al., 201Q) According to the
aggregation trend shown by this palds (Fig. 3.3.21) 24 hours after the preparation of test
suspensions the average aggregate size was nearly doubled for nano ZnO and almost multiplied by
four in case of bulk ZnO (Fig8.3.1:2). After 48 hours, ZnO particles in low concentration 1 mg
Zn/L were undetectable and the size of which in high concentration 5 and 10 mg Zn/L were too
large (>6 em) to suitable for DLS. The absence of particles (both nano and bulk) could be
addressed to the proceeding of the dissolution phenomenon. The water solubility of ZnO in fact,
ranges from 1.6 mg Zn/L to 5 mg Zn(BROSPECcT, 2009)The high pH and high ionic strength
conditions of the seawater further increase this solubility and highlight some differences between
theNPsand bulk formgMiao et al., 2010; Miller et al2010; Wong et al., 2010; Peng et al., 2011;
Yung et al.,, 2015) However, the interaction between particles and algal cells could retard
dissolution and promote homo aggregation of ZnO part{@eddo et al., 2005Miao et al., 2007;

Navarro et al.,, 2008}hat has been observed in this report.
(2) In RSW:
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ZnO NPs oncan RSWundergo tadifferent physiechemical processes that modify their

pristine characteristics and therefdheir availability/reactivity.

ZnO partcles dispersed iIRSW (low salinity) undergoto complex physicochemical

transformations: first, particles stick to each other in order to minimize the repulsive hydrophobic

interactions with water, forming micron sized aggregate. DLS data recorded s@&wnthet

dispersion preparation illustrate this aggregation behavior and show that the average size of bulk

ZnO particles were rather unaffected by the initial solid loadkig. 3.3.2-3B). On the contrary,

aggregates formed by Zn®IPs showed constant sizat low concentration whereas highly

concentrated dispersions showed a marked trend to increape3(3.123A). The aggregate size

increasing becomes evident in the next 48 hours when all the samples were characterized by the

presence of very large parisl (> 6000 nm) (Tabld.3.1-2).
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Fig. 3.3.1:3 Hydrodynamic diameters of Zn@Psand bulk nRSW suspension atvo concentrations (IDand 10 mg

Zn/L) within about 90 min

Table 3.3.1-2 PDI and hydrodynamic diameter of ZnO NPs and bulk in RSW suspengitwe aoncentrations (100

and 10 mg Zn/L) for 72 hours

Suspension Time (h) Size (nm) Pdl Z-potential (mv)
100 mg Zn/L NPs 0 23204520 0.44#6.119 -0.92
24 >6000nm 1 -2.49
48 >6000nm 1 -5.28
72 >6000 NA NA
10 mg Zn/L NPs 0 950160 0.53#.14 -6.35
24 15704200 0.7610.13 -10.4
48 >6000 NA NA
72 >6000 NA NA
100 mg Zn/L Bulk 0 15604100 0.5#0.07 -10.7
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24 31504220* 0.514.11 -10.2
48 >6000 1 -7.06
72 >6000 NA NA
10 mg Zn/L Bulk 0 1000400 0.631.08 -10.8
24 >6000nm* 1 NA
48 >6000 1 NA
72 >6000 1 NA

3.3.2Zn0 particle sedimentation
Q) In ASW:

Manzo et al. (2013keported theedimentation of ZnO NPs and budispersedn ASW
(Fig. 3.3.21). They observed a@lear sedimentatiofor both ZnO aggregates ambe suspended
ZnO concentration decre@d by almost 30% after 2&t high concentration (100 mg Zn/L). At each
concentration, bulk showed higher sedimentation rate than NPs aftédla2izo et al. (2013b)
suggesdthat a main difference betwe&Psandbulk aggregates is the density whits lower for

the nanomaterial

4 NPs 100 mg Zn/L
e Bulk 100 mg Zn/L
. o NPs 10 mg Zn/L
10_’ ® Bulk 10 mg Zn/L
0.9
0.8
0.7
QO -
O 06+
0.5
0.4
0.3
0.2 I L] ' T I T I T | T | T l
0 50 100 150 200 250 300
Time (min)

Fig. 3.32-1 Sedimentation measuremasftZnO NPs and bulk i\SW at the concentration 1@dd 10mg Zn/L within
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about 5h.
(2) In RSW:

Large particles suspendedRSW have a tendency to settle out of the liquid phase due to
gravity. The sedimentation curves recorded stwwndeed that the particle concentration in the
water column was decreased by more than 80% and 70% already after 8 haddm® fPsand

buk suspensions at 100 mg/L respectively (Bi@.2-2).
nano ZnO 100mg/L bulk ZnO 100 mg/L
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Fig. 3.32-2 Sedimentation measuremenitZnO NPs and bulk in RSW suspension at the concentration 100 mg Zn/L

within 24h.
3.3.3Zn0 particle d@solution
(1) In ASW:

Dissolution is the other important transformation that occurs to ZnO particle in aqueous
media. A dissolutionkinetic curveof ZnO NPs and bulk dispersed in ASWAs shown in Fig.
3.3.31. The curve indicated that a very obvious tend in both NPs and bulk suspension which is 70%

dissolution occurred in first few minutes and kept this stable status to the end ariemea.
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Fig. 3.33-1 Dissolution kineticcurveof ZnO NPs and bulk dispersed in AS&/10 mg Zn/lwithin 5 h.
(2) In RSW:

The analysis of ionic zinc released in the seawater M&®wand bulk dispersions shows
a little displacement in the average Zn conions only as a function of the initial solid loadings,
l.e. between 100 and 10 rg/L (Fig. 3.3.32). In the main, an average Zn concentration around 5
mg/L was found already after 24 hours and afterwards without significant variapon®.05).
Interestingly this result is similar to a previous one obtained for ZnO NPs dispersed into an
artificial seawater with different salinity and pH (ASat sal i nity 35 a, pH 8.

with respect to the natural seawater used in the present (dadhzo et al., 2013b)
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Fig. 3.3.32 Bar graphs ofhe dissolved Zr{u < 2nm) of ZnO NPs(A and B)and bulk(C and D)suspensions in 100

and 10 mg Zn/L measured by IGFS.

3.4 Comparisons an@onclusions

To respectthe behavior obther nanoparticledispersed in natural seawater repored by
Garner & Keller (2014)that aggregation and sedimentation have similar time scéde most
nanoparticlesin general in seawater and dissolution is highly dependent on nanomaterials
composition, for example, nameg, Al,O3, CuO, and NiO will dissolve over days to weeks only
hours to day$or ZnO NPs,resuilts in this case indicatesimilar and moredetailed conclusion.

The analysis of theize measurement data of NPs and bulk in AlSgWlights that large
aggregate were present for NPs and bulk for all the concentrations but ZnO NPs aggregates were
smaller than bulk for all concentiams. In RSW,aggregates formed by ZnO NPs showed constant
size at low concentratio(lO mg Zn/L)whereas highly concentrated dispersi¢t80 mg Zn/L)
showed a marked trend to increadence, the primary size of ZnO in suspensions could affect the

aggrea@ting rate in higher concegtion. To combinethe previous conclusiofManzo et al., 2013b)
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and the sedimentation data obtained in this caseatet that the sedimertion occured since in

the first minutes to few hours and that was not related to ZnO partide.The analysis of ionic

zinc released in the seawater from NPs and bulk dispersions shows a little displacement in the
average Zn concentrations only as a function of the initial solid loadihgs.average Zn
concentration around 5 mg/L was foundeally after 24 hours and afterwards without significant
variations p > 0.05).This result is similar to a previous one obtained for ZnO NPs dispersed into an
artificial seawater with different salinity a

with respect to the natural seawater used in the present (dfiaohzo et al., 2013b)
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3.6 Comparative toxicity oZnO NPs bulk and Zn salt towards marine

algaeT. suecicaandP. tricornutum

ZnO NPsis currently usé in a broad range of products including plastics, ceramics,
rubber, lubricants, paints, foods (source of Zn nutrient), batteries, fire retardants, personal care
products, etc(Ma et al., 2013)Such widespread drexpanding production and use increase the
potential for their release into the environmefeller et al. (2014 )estimated that ZnO together
with titanium dioxide, represent 94% of engineered nanomaterial (ENBdgjschalk et al. (2009)
reported the modeled environmental concentration of A} in surface water (0.0X@yL in
Europe, 0.004m/L in U.S.). If current production and subsequent release quantities were to increase
100-fold, ZnO would raise greatest concern since all studies indicate ZnO is toxic at some
concentration to all species test€dranklin et al., 2007; Blinova et al., 2010; Miller et al., 2010; Li
et al., 2013) It is clear than the effects and the behavior of 2¥s in the marine environment
would need to be monitored closely.

Particle induced effect wasuggesed as onenechanisms otoxic actionof ZnO NPsin
previous studiegMa et al., 2013)The nanoparticleagglomeration/aggregation plays an important
role in determining reactivity, toxicity, fate, transpantd risk in the environment indeed has been
implicated as a mitigating factor in the transport, cellular level interactions, and fate of NPs in the
environment (Hotze et al., 2010)

Phytoplankton is the autotrophic component of the plankton community and a key factor
of oceans, seas and freshwater basins ecosysktigis.growth rate, high surfage-volume ratio
(high uptake rate), easy handling laboratoryconditions (CastreBugallo et al, 2014) male
marine microalgaée an effective tool to test toxicity cbntaminants such as antibioti@eoane et
al., 2014) metals(Wang & Zheng, 2008; Angel et al., 2015)ane materials(Kadar et al., 2012;
Clément et al, 2013; CastBugallo et al., 2014)Additionally, as diverse algae taxa respond
differently to chemical toxicantst is mandatory to conduct tests on a different species representing
different classes.

Marine green microalgad. suecicaand diatom P. tricornutum were selected as test
organisms to respond to ZrndPsexposure

P. tricornutumis a widespread pennate diatom, with low silica content and distinct cell
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wall (i.e. frustule)structureswhich is essentially composed of organic compaogjndarticularly
sulfated glucomannafTesson et al., 2009has been described three different morphotypes (i.e.

the ovoid, fusiform and triradiate forms), whose occurrence in culture seems to depend on strains as
well as environmental conditong~rancius et al., 2008)

T. suecicais an elliptical microalga of the class Chlorophyceae (Prasinophyceae)
generally used as the diets of zooplankton, bivalve molluscs and crustacean Iaheae
characteristic cell wall (theg is composed of coalesced rigid carbohydrate s¢hdeset al., 2013)
and the typical four flagellaare covered by double layer of scales

It worth to note that, gsrevioudy observedZnO NPaggregatiorand sedimentatiowill
occur in first few hours iteawatesuspensionfManzo et al., 2013a)lherefore it is ecologically
relevant to study the interactions of these ZnO aggregates with very diverse classes of algae (i.e.
green algae and diatomsjth peculiar differences in size, shape, cell wall composition and motility.

In this study we focused on the ecotoxicological effect of Eii€3and bulk towards the green alga
T. suecicaand diatonP. tricornutumwith the aim to establish the main toxicpparameterand to
compare the sensttivities of both algae to ZnO patrticles

For each compountlio Observed Effect Concentration (NOEC), 1, 10, and 50% Effect
Concentration (EC1, EC10and EC50)were defined to provide biological criteria for the

implemenation of water quality standards to protect marine organisms.
3.7 Materials and methods

3.7.1.Chemicals

Bare ZnONPs(cod. 544906, particle sizel00 nm, surface area 185 nf/g) and ZnSQ
(cod. 204986 purity 99.999%) were purchased from Sigldrich. ZnO bulk powvder (particle
size < 200 nm, surface ared9-6.8nt/g, purity >99.9%) was purchased from GaleBa.l., Italy.

3.7.2.0rganisms

T. suecica (Prasinophyceae: Chlorodendrales)d P. tricornutum (Bacillariophyceae:
Naviculales) (CriAcq Laboratory, Naples, Italy)gak, were maintained in sterilized standard
medium(Guillard, 1975)made wih artificial standard seawat@rH 8., 0.22 eABTM,i |t er

1998). To provide inoculant for experiments, microalgae were incubated under cool continuous
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white fluorescent | i g'A¢g'satZ4a b6 with acbaion forrsd Haysp ho t «
until log phase growth prevaied. Cell density was measured by hemetgto

3.7.3.Particle dispersions

Stock suspensions ansblution of testing material(ZnO NPs ZnO buk, and ZnSQ)
were prepareavith Artificial Sea Water (ASW) to the final concentration of 100 mg Zihe ZnO
suspensiongvere dispersed by batdonication fo 30 minutesat 50W (Elma Transsonic Digital S).
Test suspensions, at concentrations ranging between 0.1 and 10 mg Zn/L, were prepared by diluting
the stock suspension with ASW and sorecatnceagain. Before the addition of micronutrients and

algae eaclest suspension was briefly vortexed.
3.7.4FIB observation methods

The algal cells were preliminarily analyzed by an optical microscope (ZEISS Axioskop
50) for observing the possible damage and its extent. High resolution morphological
characterization was mady FEI Dual Beam Quanta 200 3D which integrates a high focused ion
beam (FIB) FIB operates with a finely focused beam of gallium ions accelerated ke\B8@hich
scans over the surface at low beam currents taking care not to damage sample.

Before FIB olservations algal cells were fixed as describeti it al. (2015) After 72 h
of exposure algal cells were centrifuged@@0pm 10 min) then the samples were fixed witho3
gluteraldehyde solution in & for 2 h. The samples were then washed with 0.1 M PBS (pH 7.8) by
centrifugation (4000pm, 10 min) three times. Algal cells were fixed witBdlosmium teta oxide
for2 hind €, and 0.1 M PBS (pH 7.8) was added to wash the cells by centrifugation (3800 rpm,
10 min) three times. The control and treated (10 mg Zn/L) cells were coated on a thin glass slide, air

dried and observed under the FIB.
3.7.5Algal growth inhibition teseand data analysis

Algal bioassays were performed accordingtm previous researqManzo et al., 2013a)
slightly modified. Test plates were kept the growth chamber with continuous light for 3 days. The
growth inhibition was expressed with respect to the control. The concentrations of the testing
suspensions argblution weremodified t010, 5, 3, 1, 0.5and0.1 mg Zn/L for ZnONPs bulk, and

ZnSQ,. The EC1, EC10, and EC50 were calculated using the Linear Interpolation Method
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(Inhibition Concentration procedure, ICgNorbergKing, 1993) NOEC was determined by
Dumett's tes{US-EPA, 1989)

3.8 Results and discussion

3.8.1Effects of ZnO patrticles upon algae
T. suecica

During the three day®f exposureto ZnO NPs the parameters of algae inhibition were
recordecevery24 h andsimilarly bulk ZnO and ZnS@trials were set up as comparing experiments.
The overall toxic effect after three daysf T. suecicaexposureto investigatedchemicals(Fig.
3.8.1-1) indicated thatat the same Zn amou®nO NPswas more toxic than bulkZznO and than
ZnSQy, suggestinghat the dominant cause of the algal growth inhibitiorZzb@ NPswas not only
related to ion releas®ur previous studyupon marine alga®unaliella tertiolecta(Manzo et al.,
2013a)also reported a higer toxicity ofZnO NPsrespect to bukSimilar toxicity trend was also
observed foChlorella sp(Ji et al., 2011)

0O Nano ZnO
O ZnSO04

1004  Effect of chemicals to T. suecica
A Bulk ZnO

R’=0.99867
50 - o

Effect %

. R’=0.97472

T
0 1 2 3 4 5 6 7 8 9 10
Concentration (mgZn/L)

Fig. 3.8.1-1 Toxic effects onT. suecicacells, together wh the corresponding regression fit curves: nano ZnO toxc
effects (diamond); ZnS{xoxc effects (triangle); bulk ZnO toxic effectsquarg. The best fit function of toxicity data

was sigmoid growth function. 50% effect level is represented.
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The ecotoxgological parametersNOEC, EC1, EC10, and ECRGat each exposure time
point, reportedin Table 3.8.1:1 showedthat ZnO NPswas more toxic than bulk at all tesit

concentrations and zinc salts playedhiddling role betweerznO NPsand bulk.

Table 3.8.1-:1 NOEC, LOEC,EC1, EC10EC20 and EC50 evaluated for each testhdmicals(nanoZnO, bulkZnO

and ZnSQ) toT. suecicaat each exposure time point.

BExposure time  Chemicals  NOEC (mg Zn/L) ECL (mg Zn/L) EC10 (mg Zn/L) EC50 (mgzn/L)
Nano ZnO 0.1 0.01 [0004, 0.06] 0.07 [0.05, 1.13]  4.09[3.78, 4.59]

24h ZnSQy 0.1 0.01 [0.004, 0.02] 0.06 [0.04, 0.15]  0.69 [0.42, 3.20]
BulkznO 1.0 0.01 [0.007, 0.46] 0.39 [0.07, 1.67]  4.55[4.17, 4.98]

Nano ZnO <0.1 0.06 [0.005, 0.008] 0.06 [0.05, 0.09] 4.28[3.98, 446]

48h ZnSQ <01 0.01 [0.004, 0.006] 0.05 [0.04, 0.06] 5.97 [5.17, 6.46]
BulkznO 1.0 0.04 [0.02, 0.25] 1.32 [0.74, 1.60]  8.17[7.53, 8.71]

Nano ZnO 0.1 0.04 [0.01, 0.18]  0.47 [0.11, 0.63] 3.91[3.66, 4.14]

72h ZnsSQ 05 0.02 [0.01, 0.24] 0.53 [0.08,1.29]  5.61[4.93, 6.23]
BulkZnO 0.5 0.06 [0.01, 0.20] 0.66 [0.32, 0.99] 7.12[6.65, 7.46]

In particular forZnO NPsin all three days exposure time (72 NOEC was recorded at
the lowest setting concentration (0.1 mg Zn/L). The value resulted lowetlddabtained for ZnO
bulk (NOEC 0.5 mg Zn/L)ZnO NPsSEC1, EC10and EC50 of were respectively recorded &4
[0.01, 0.18] mg Zn/LL0.47 [0.11, 0.63] mg Zn/Land 3.91 [3.66, 4.14] mg Zn/L, which likewise
were lower than those of bulk (0.06 [0.01,@.2ng Zn/L, 0.66 [0.32, 0.99] mg Zn/LandEC50 =
7.12 [6.65, 7.46] mg Zn/L).

HoweverT. suecicaon the basis of these values resulted less sensitiveDthigemtiolecta
to ZnO (EC50 = 1.94 [0.12.31] mg Zn/L) as recorded in previous wdManzo et al., 2013a)
while very low EC50 value were found upon microal@seudokirchneriella subcapitat&@C50 =
0.042 mg Zn/L)Aruoja et al., 2009and Thalassiosira pseudonar(&@C50 = 0.82 mg Zn/L, leading
to the decrease of cell diision rates by 5Pgng et al., 2011)

With the aim to evaluate the relation between algae exposure and growtha#ffeese
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parametersvererecordedalsoin earlytestingphases (24 rad 48 h, Table.8.1-1). At the beginning
of the exposure (24 h)the parameter valuefor ZnO NPswere higher than thoseecordedat
followed phases (48 and 72 Respect taZnO NPs bulk ZnO and ZnS@® showed increasing
trendsfor EC10 and EC5®@aluesalong with exposure timghat could represent a different action of
these particles upon the allgoopulation ZnO NPseffectively affected algal population from the
rising phase (48 h) of growth curve in the most.

The dservatios by opticalmicroscope (Fig3.8.1:2) and by FIB (Fig.3.8.1:3) of T.
suecicaexposed taZnO (both nano and bulk$howedhow ZnO aggregates tend to gather mainly
around algae flagella ardkig. 3.8.2-2). This phenomenoimcreagd with particle concentration
and exposure timand reulted in algaeénjury due tomotility hindrancein culture mediaRecently,
some evidencesf toxic mechanisntue to the direct interaction of NP aggregates and algde
wall, provoking the generation of "holes" waported(Li et al., 2015) However,in our case the

sizefor both the ZnO particlewas verylarge and the main aggregation sitas reported above,

were flagella (Fig. 3.8.1-3).

Fig. 3.8.1-2 Behavior of T. suecicawith aggregates of zinc oxide in 72 h, A: control, B: 0.1 mg Zn/L nano, C: 5 mg
Zn/Lnano, D: 10 mg Zn/L nano, E: 0.1 mg Zn/L bulk, F: 5 mg Zn/L bulk and G: 10 mg Zn/L Duélagella showed

more easilyaggegates than cells walls.
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Fig. 3.8.1:3 Observation off. suecicainteracting with aggregates (A: control, B: in nano ZnO exposure for 72 h, C:in

bulk ZnO exposure for 72 h) by FIB. Aggregatimccurredaroundfagella areawith both particles.

P. tricomutum

As for T. suecicaduring three days exposur® ZnO NPs the parameters ofP.
tricornutum inhibition were recordecvery24 h and bulk ZnO and ZnS@ials were set up as
comparing experiment as wellhe overall toxic effect after three daysf exposureto the
investigatedchemicals indicated @ear higher toxic effeaf ZnO NPsrespect tazinc salt and bulk
ZnO (Fig. 3.8.13-4). Dose response curve obtained zmSQ, was almost overlappedith ZnO bulk

one especially below 5 mg Zn/L

O Nano ZnO

O ZnSOs4

A Bulk ZnO
)
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Fig. 3.8.1-4 Toxic effects orP. tricornutumcells, together with the corresponding regression fit curves: nano ZnO to xic

effects (diamond); ZnS{xoxic effects (triangle); bulk ZnO toxic effectsquarg. The best fit function of toxicity dat
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was sigmoid growth function. 50% effect level is represented.

The ecotoxicological parametefdQEC, EC1, EC10, and ECR(at each exposure time
point, reportedin Table 3.8.1-2 showedthat ZnO NPswas more toxic than bulk at all tesit

concentrations.

Table 38.1-2 NOEC, LOEC,EC1, EC10EC20 and EC50 evaluated for each testedmicals(nanozZnO, bulkZnO

and ZnSQ) toP. tricornutumat each exposure time point.

BExposure time Chemicals  NOEC (mg Zn/L) ECL (mg Zn/L) EC10 (mg Zn/L) EC50 (mgZn/L)
NanoZnO 1.0 0.01 [0.004, 0.52] 0.08 [0.04, 0.73]  2.57 [1.93, 3.23]

24h ZnSQ 0.5 0.06 [0.01, 0.16] 0.36 [0.05, 0.67] 3.60 [2.17, 5.49]
BulkZznO 0.5 0.01 [0.004, 0.21] 0.06 [0.03, 0.57]  1.12 [0.89, 1.57]

Nano ZnO <01 0.006 [0.004, 0.01] 0.06 [0.04, 0.33] 1.41 [0.97, 3.40]

48h ZnSQ, 0.1 0.01 [0.01, 0.02] 0.14 [0.09, 0.23]  2.34 [2.05, 2.60]
BulkZnO 0.5 0.05 [0.01, 0.35] 059 [0.09, 0.90] 3.32 [2.89, 3.79]

Nano ZnO 0.1 0.03 [0.01, 0.12] 0.23 [0.14, 0.31]  1.09[0.96, 1.57]

72h ZnSQ 0.1 0.01 [0.01, 0.02] 054 [0.09, 0.61] 3.22[2.48, 3.94]
BulkZnO 0.5 0.02 [0.01, 0.52] 0.64 [0.52, 0.75]  3.47[3.06, 3.91]

In particular forZnO NPsin 72 h, NOEC was recorded at the lowest concentration 0.1
mg Zn/Lwhich resultedlower thanthat obtained forbulk ZnO (NOEC Q5 mg Zn/L).

Also for this alga the relation between exposure time and growth effect was investigated
by evaluating the main ecotoxicological parameters along each testin@24leand 48 h, Table
3.8.1-2). After 24 hthe toxic effect of bulk ZnO(EC10and EC50:0.06 mg/Land 1.12 mg Zn/L,
respectively) was higher thasinO NPs(EC10 andEC50: 0.08 mg Zn/L and 2.57ng Zn/L,
respectively).Along with increasingexposure time the effect of chemicals turned into tigher
ZnO NPstoxicity. It could be supposethat the toxic effect in the first phase was related to the
larger size of bulk ZnO aggregates that rapidly settled down on the bottom of the wells where the
immobile algae layvhich were reported in our previous wdiManzo et al., 2013bgxerting there

the toxic action. Instead, the action£&iO NPsaggregates became evident only in the second day
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of exposure when aggregation and sedimentation processes were completed.

Although n this studyP. tricornutumwasvery sensitive t&nO particles especialigt the
beginning of exposuresome authorgPeng et al,, 2011eportedthis alga as the less sensitite
ZnO nanoparticlessuspensionsrespect to Chaetoceros grattis (EC50 not reported)and
Thalassiosira pseudonar(&@C50 =0.82 mg Zn/L).

The observatiofhat opticalmicroscope (Fig3.8.1:5) andatFIB (Fig. 3.8.1:6) provided
supportive evidence® the interaction between ZnO particles (bbithsand bulk) and alga The
morphology and the lacking of motility ¢f tricornutumalgae let a large hetero aggregation along
the cells that rapidlywere completely wrappedaround. An increasing trend of the process in
dependence of exposure time and ZnO concentration 88gk5 and 6) could be observedn
comparisorto T. suecica(Fig. 3.8.1-2), srious aggregationccurredbetween ZnO particles and

diatom cels (Fig.3.8.1-5).

Fig. 3.8.15 Behavior ofP. tricornutumwith aggregates of zinc oxide in 72 h, A: control,B1 mg Zn/L nano, C: 5 mg
Zn/L nano, D: 10 mg Zn/L nano, E: 0.1 mg Zn/L bulk, F: 5 mg Zn/L bulk and G: 10 mg Zn/L Algke adsorb the

zinc oxide aggregates to blimpsalong with increasing of concentrations and esxpe time.
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