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ABSTRACT 

Zinc oxide nanoparticles (ZnO NPs), one among the most widely used metal oxide 

nanomaterias, has unique properties, such as optoelectronic property, UV emission, transparent 

conductivity, piezoelectricity, UV absorption and reflection, those make ZnO NPs to be currently 

used in a broad range of products. Such widespread and expanding production and use increase the 

potential for their release into the environment, in US, Euorpe, and China. With the vast releasing of 

ZnO NPs, the ecotoxic risk had drawn much research interest in the last decades. The aquatic 

ecosystem is the final destination of the released ZnO NPs and the coastal seawaters takes into the 

most of discharge. 

At least three distinct mechanisms of the toxic action of ZnO NPs, released toxic Zn2+ 

effect, surface interactions with media may produce toxic substance were report, and photo- induced 

toxicity, were reported.  

Based on the published literatures reviewing, several research points on ecotoxicity of 

ZnO NPs towards algae and mussel in marine environment were still unexplored and some 

represent aims of this study.  

ѻ ZnO NPs could have a specific behavior and effect in diverse marine seawaters. To this 

aim the full characterization of ZnO NP dissolution, aggregation, and sedimentation once 

dispersed into a standard Artificial Sea Water (ASW) and a Reconstituted Sea Water 

(RSW) from East China Sea was performed. 

ѻ The ecotoxicity of ZnO NPs upon a green alga and a diatom would be different. To assess 

the diverse toxicity upon different algae, growth inhibition algal assays were performed. 

Additionally, to verify the hypothesis about the role of nano size in the overall toxicity, 

ZnO bulk, and Zn salt toxicity were assessed as well. 

ѻ ZnO NP toxicity towards mussels under a chronic exposure could be shown by Zn 

bioaccumulation, tissue damages, and transcription of apoptosis and antioxidation-related 

genes. The hypothesis that nano size plays an important role in its toxicity was also 

considered together with the all previous ones for mussel M. galloprovincialis. 

The obtained results answered to the all hypotheses. Behaviors of ZnO NPs and bulk in 
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different artificial seawater were observed indicating that the primary size of ZnO in suspensions 

could affect the aggregating rate in higher concentration. The behaviors of ZnO NPs dispersed into 

ASW and RSW have similar changing trends with some slight differences. Comparative toxicity of 

ZnO NPs, bulk, and Zn salt towards marine algae indicated that the nano size plays a key role in the 

overall ZnO toxicity. Zn bioaccumulation and histological damages were observed for mussel 

exposed to ZnO NPs, bulk, and Zn salt. Pristine ZnO particle size influences the overall toxicity and 

the rank was represented by three levels of injury (in gill, digestive gland, and gonad): low for bulk; 

medium for NPs and high for salts. Ecotoxicity of ZnO NPs in mussel revealed by transcription of 

apoptosis and antioxidation-related genes indicated that active response to ZnO NP exposure which 

induced DNA damage and oxidant injury contributing to the overall toxicity. In conclusion, zinc 

oxide nanoparticles induced ecotoxicolgical stress to two algae and a mussel in marine environment 

that were related to the ROS-induced property. 
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0 PREFACE 

0.1 Review on the production and application of Zinc oxide nanoparticles 

Zinc oxide nanoparticles (ZnO NPs), one among the most widely used metal oxide 

nanomaterias, has a wurtzite crystal structure contributing to its unique optoelectronic properties 

(Wang, 2004). Besides, many other characteristics such as UV emission, transparent conductivity, 

and piezoelectricity make ZnO NPs particularly attractive for electronic sensor, solar voltaics, and 

transducer applications (Ma et al., 2013). It is also a very effective photo catalyst material with 

excellent properties of UV absorption and reflection (Hoffmann et al., 1995). Those properties make 

ZnO NPs to be currently used in a broad range of products including plastics, ceramics, rubber, 

lubricants, paints, foods (source of Zn nutrient), batteries, fire retardants, personal care products, 

medical disinfection, etc. (Porter, 1991; Mitchnick et al., 1999; Battez et al., 2008; Padmavathy & 

Vijayaraghavan, 2008; Wilkie & Morgan, 2009; Ma et al., 2013). Consequently a huge quantity of 

ZnO NPs was produced per year for industrial use (Klingshirn, 2007). 

Such widespread and expanding production and use increase the potential for their 

release into the environment. Keller et al. (2014) estimated that ZnO together with titanium dioxide, 

represent 94 % of Engineered Nano Material (ENMs) released into the environment from the use of 

personal care products in US. Particularly, an amount of 3700 mt ZnO ENMs flowing into water 

system each year was estimated (Keller et al., 2013). Gottschalk et al. (2009) reported the modeled 

environmental concentration of nano ZnO in surface water (0.010 ɛg/L in Euorpe, 0.001 ɛg/L in 

U.S.), sediment (2.90 ɛg/L in Euorpe, 0.51 ɛg/L in U.S.), and soil (0.093 ɛg/L in Euorpe, 0.050 

ɛg/L in U.S.). On the other side, with the rapid economic development, China become the largest 

nanomaterial market in the Pacific-Asia (Gao et al., 2013). It was also estimated that about 36000 kt 

of ZnO NPs could be discharged by wastewater and dust deposition into Chinaôs aquatic 

environments only in 2017 (Gao et al., 2013). 

0.2 Review on the ecotoxicological risk of release of ZnO NPs to the 

environment 
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Fig. 0.2-1 ZnO NPs fate and effect in the environment. 

With the vast releasing of ZnO NPs discharged from widespread and expanding 

production, the ecotoxic risk had drawn much research interest in the last decades. Fig. 0.2-1 shows 

the fate of released ZnO NPs and effect to environmental organisms of different taxa in soil and 

aquatic ecosystem. Rainfall and surface runoff are the main power to move ZnO from the soil to the 

ocean. Dissolving into water, aggregating to be bulk and sink into sediment, and combining with 

organic object into the transformation of ecosystem could be the main three paths of the released 

ZnO NPs. The discharged ionic Zn, ZnO aggregates, and other types of compound covered ZnO 

directly and indirectly interacted with organism in soil, freshwater and seawater.  

Excluding landfill, soil takes the most amounts of released ZnO NPs (Keller & Lazareva, 

2013; Keller et al., 2013; Keller et al., 2014). A relatively broad range of species, such as, plants: 

radish, rape, ryegrass, lettuce, corn, cucumber (Lin & Xing, 2007), zucchini (Stampoulis et al., 

2009), garden cress, broad bean (Manzo et al., 2011), and wheat (Du et al., 2011), and invertebrates: 

nematode (Ma et al., 2009; Wang et al., 2009; Khare et al., 2011; Ma et al., 2011), earthworm (Hu et 

al., 2010; Li et al., 2011), soil arthropod (Manzo et al., 2011), isopod (Pipan-Tkalec et al., 2010), 

have been investigated under soil exposure. Both discharged zinc ions and particles-dependent 

effect were reported to contribute to the toxicity of ZnO NPs at 2000 mg/L towards plants by seed 

germination inhibition and root elongation termination (Lin & Xing, 2007). However, Stampoulis et 
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al. (2009) did not observe any ecotoxic effect of both ZnO NPs and bulk at 1000 mg/L to zucchini. 

Manzo et al. (2011) reported the root elongation inhibition to garden cress and genotoxicity to Vicia 

faba caused by ZnO NPs. Also, Du et al. (2011) reported the reduced biomass of wheat and the Zn 

uptake indicating the discharged ionic Zn contributed the overall toxicity of ZnO NPs. Effects of 

lethality, behavior, reproduction, and transgene expression of adult nematode caused by ZnO NPs at 

several hundred mg/L represented relatively low toxicity (Ma et al., 2009), however, ZnO NPs 

showed highly toxicity to larval nematode (Wang et al., 2009), that the whole toxicity was based on 

Zn ions from dissolution. Comparing of LC50s of two different size ZnO NPs indicated that the 

initial size of ZnO contributed the toxicity towards nematode (Khare et al., 2011). Manzo et al. 

(2011) reported the difference of ecotoxicity of ZnO NPs towards two arthropods: 100% mortality 

in Heterocypris incongruens and no effects on the reproduction of Folsomia candida, indicating 

particle-dependent effect is the base of toxicity. However, Pipan-Tkalec et al. (2010) found that 

ZnO NPs dissolution is responsible for Zn bioaccumulation in isopod. The aquatic ecosystem is the 

final destination of pollutants and therefore river, lake, in particular seawaters, could be subject to 

ZnO NPs pollution coming through water movement. 

In freshwater, many different organisms were utilized for ecotoxicological assessment of 

ZnO NPs potential impact: algae (Franklin et al., 2007; Aruoja et al., 2009; Aravantinou et al., 2015; 

Bhuvaneshwari et al., 2015), crustaceans (Heinlaan et al., 2008; Wiench et al., 2009; Zhu et al., 

2009b; Blinova et al., 2010), mollusks (Ali et al., 2012), fishes (Zhu et al., 2008; Zhu et al., 2009a; 

Bai et al., 2010; Johnston et al., 2010; Yu et al., 2011; Hao & Chen, 2012; Bessemer et al., 2015; 

Suganthi et al., 2015), and amphibian (Nations et al., 2011a; Nations et al., 2011b). Aruoja et al. 

(2009) and Franklin et al. (2007) reported that dissolution of ZnO NPs played a role in causing 

toxicity upon microalgae Pseudokirchneriella subcapitata. Aravantinou et al. (2015) observed the 

growth rate inhibition of the freshwater algae Chlorococcum sp. and Scenedesmus rubescens under 

ZnO NPs exposure and suggested that the toxic effect is related also to the culture medium type. In 

addition, Bhuvaneshwari et al. (2015) reported that the toxicity of ZnO NPs upon the freshwater 

alga Scenedesmus obliquus was mainly related to the initial size and concentrations of NPs, the 

illumination conditions and dissolution. Heinlaan et al. (2008) and Blinova et al. (2010) reported the 

lethal concentration of ZnO NPs towards freshwater crustaceans Daphnia magna and 

Thamnocephalus platyurus suggesting the toxicity was dependent on ionic Zn. However, Wiench et 
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al. (2009) suggested that the toxicity towards D. magna was independent of primary size of NPs, 

coating, aggregation, culture medium or the pretreatment of NPs suspensions. Ali et al. (2012) 

reported the genotoxicity in digestive gland cells of freshwater snail Lymnaea luteola exposed to 

ZnO NPs attributed to oxidative stress. Zhu et al. (2008), Zhu et al. (2009a), and (Bai et al., 2010) 

focused on the embryo hatching rate of zebrafish exposed to ZnO NPs indicating dissolved Zn2+ 

and ZnO aggregates contributed to the toxicity. However, Yu et al. (2011) suggested that the 

aggregation and sedimentation of ZnO NPs inhibited the toxic effect. Hao & Chen (2012) reported 

the toxicity of ZnO NPs towards carp Cyprinus carpio on the changes of activity of antioxidative 

enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and lipid 

peroxidation (LPO). The exposure of ZnO NPs caused significant decreasing of enzymes activities 

and increasing of LPO indicating oxidative stress generation. Johnston et al. (2010) detected limited 

ZnO NPs uptake in zebrafish tissues suggesting limited invading ability directly to organisms. 

Bessemer et al. (2015) evidenced oxidative and cellular stress in gill of a freshwater teleost fish 

Catostomus commersonii exposed to ZnO NPs that leaded gill neuroepithelial cells activation and 

then caused a hypoxic response of the whole adult fish body. Suganthi et al. (2015) reported 

decreased immune cells in freshwater fish Oreochromis mossambicus blood caused by acute 

exposure of ZnO NPs. Limited studies reported ZnO NP toxicity to amphibians. Nations et al. 

(2011a); Nations et al. (2011b) reported developmental abnormalities, high mortality, and 

metamorphosis inhibition in Xenopus laevis by ZnO NPs exposure. 

Since the destination of ZnO is eventually the coastal seawaters, marine organisms were 

largely used in the evaluation effects as well: many studies are about marine algae (Brayner et al., 

2010; Miao et al., 2010; Miller et al., 2010; Wong et al., 2010; Aravantinou et al., 2015; Suman et 

al., 2015), marine amphipod (Fabrega et al., 2012), marine crustaceans (Wong et al., 2010; Manzo 

et al., 2013), marine bivalves (Montes et al., 2012; Trevisan et al., 2014a; Trevisan et al., 2014b), 

marine fish (Wong et al., 2010). Brayner et al. (2010) reported that the photosynthesis of 

cyanobacteria Anabaena flos-aquae and lethality rate of microalgae Euglena gracilis euglenoid 

were affected by ZnO NPs. Miao et al. (2010) suggested that the dissolved ionic Zn was the only 

determinant of ZnO NPs toxicity to the marine diatom Thalassiosira pseudonana. The growth assay 

of four marine algae Skeletonema marioni, T. pseudonana, Dunaliella tertiolecta, and Isochrysis 

galbana under ZnO NPs exposure were performed by Miller et al. (2010) indicating the uptake of 
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Zn2+ dissolved from NPs contributed the toxicity. Wong et al. (2010) performed the growth assay of 

two marine diatoms Skeletonema costatum and T. pseudonana exposed to ZnO NPs suggesting free 

Zinc ions from the dissolution of ZnO could be contributed to the toxicity. Aravantinou et al. (2015) 

examined the growth rate of two marine species D. tertiolecta and T. suesica exposed ZnO NPs and 

found that the toxic effect attributed on algal species, exposure time and concentrition of NPs, and 

primarily the type of culture medium for algae. Suman et al. (2015) tested the level of several 

molecular biomarkers in marine algae Chlorella vulgaris exposed to ZnO NPs and suggested high 

level of Zn2+ from dissolution of NPs contributed to the dose-dependent toxicty. However, on 

marine amphipod, Fabrega et al. (2012) suggested the toxicity of ZnO NPs can not only contributed 

to the ionic Zn from dissolution. But still, Wong et al. (2010) performed the mortality assay of the 

crustaceans Tigriopus japonicus and Elasmopus rapax exposed to ZnO NPs suggesting that free 

Zinc ions could contribute to the toxicity. In addition, Manzo et al. (2013) reported for sea urchin 

Paracentrotus lividus exposed to ZnO NPs, that the fertilization and early development of embryos 

were affected not only by free Zn ions but that also the interactions between ZnO aggregates and 

sea urchin/seawater play a role in the toxicity. For marine bivalves M. galloprovincialis, Montes et 

al. (2012) applied a observation of invaded ZnO NPs in mussel tissues by scanning electron 

microscope and suggested that ZnO NPs remained in the mussel body indicating a 

biotransformation could be real. The gill was suggested to be the first organ in Pacific oysters 

Crassostrea gigas (Trevisan et al., 2014a) and brown mussels Perna perna (Trevisan et al., 2014b) 

to be attacked by ZnO NPs. Wong et al. (2010) detected the protein level of three molecular 

biomarkers SOD, metallothionein (MT), and heat shock protein 70 (HSP70) of the medaka fish 

Oryzias melastigma exposed to ZnO NPs suggesting dissolution and the oxidative stress generation 

as major contributors to the toxicity. 

In addition, also the effect about bacteria were well investigated (Reddy et al., 2007; 

Huang et al., 2008; Jones et al., 2008; Applerot et al., 2009; Aruoja et al., 2009; Jin et al., 2009; Liu 

et al., 2009; Feris et al., 2010; Li et al., 2011; Premanathan et al., 2011; Raghupathi et al., 2011; Xie 

et al., 2011; Ambika & Sundrarajan, 2015; Read et al., 2015). Growth inhibition and cell viability of 

bacteria population exposed to ZnO NPs were always the endpoints in the above studies. They 

focused on the bacteriostasis of NPs and compared the difference among different particles sizes. 

In the main of the all above studies, the toxic action of ZnO NPs was potentially 
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attributed to, at least three distinct mechanisms: 

First, ZnO NPs release toxic Zn2+ into exposure media. The dissolution process usually 

involves the following reactions (Yamabi & Imai, 2002; Ma et al., 2013): 

:Î/ί (/ὰᵶ:Î/( ί 

:Î/( Óᵶ:Î/( ÁÑ /( ÁÑ 

:Î/( ÁÑᵶ:Î ÁÑ /( ÁÑ 

The dissolubility plays an important role in the toxic effect of ZnO NPs dispersed into 

aqueous media. The physico-chemical properties (particle size and surface area) and the 

environmental parameters (pH, temperature, and organic matter) of the exposure media can largely 

affect the dissolution of ZnO NPs. Generally, the smaller is the particle size the larger is the surface 

area, resulting in ZnO NPs greater dissolution respect to ZnO powder (ZnO bulk). Size-dependent 

dissolution is one of the mechanisms of higher toxicity of NPs than bulk. 

Second, surface interactions with media may produce toxic substances hydroxyl radicals 

(·OH) and reactive oxygen species (ROS). Besides particle dissolution toxicity, ROS-mediated 

toxicity induced by NPs and hydroxyl radicals contribute the overall toxicity. 

Third, photo- induced toxicity associated with its photocatalytic property may be another 

important mechanism of toxicity. 

0.3 Research prospects of assessment of ZnO NPs global ecotoxic risk 

Based on the research contents of reported studies, several aspects are still not sufficiently  

explored and therefore should be further investigated. 

First, the behavior of ZnO NPs in the different exposure media (pure water, natural fresh 

water, acid/alkali treated fresh water, artificial sea water, natural sea water, etc.) along the exposure 

time. The measurement of particle size aggregation, sedimentation, dissolubility, etc., is the former 

step to define the influence of medium physicochemical properties on the ZnO NP toxicity. 

Second, the different role of the two main component of the toxic effect: particle- induced 

toxicity and dissolved ion toxicity should be differentiated by upgraded testing tools and techniques. 

There is now no very efficient approach to directly determine particle- induced toxicity, instead of a 

comparing method that test the toxic difference between nano scale particles and normal size 

powders (Lin & Xing, 2008; Manzo et al., 2011; Fabrega et al., 2012). Also, Inductively Coupled 



0 PREFACE 

13 

 

Plasma-Mass Spectrometry (ICP-MS) is the most popular method to measure the dissolved ionic Zn 

which is not the most sensitive method recently and could gradually be replaced by other techniques 

such as the Scanned Stripping Chrono Potentiometry (SSCP) technique (Merdzan, 2014). A new 

high efficient approach is highly expected to differentiate the particle- induced toxicity and 

dissolved ions toxicity. 

Third, the realistic exposure in environment by chronic assessment should focus on low 

concentration dose. In the sub lethal long term exposure, endpoints such as Zn accumulation and 

modification of relevant genes transcription and protein production should be assessed. As well, the 

toxicity of ZnO NPs via food chain could be the next hotspot. 
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1 STATE OF THE ART  

1.1 Characterization of ZnO NPs and bulk in marine environment 

Once released into marine environment, ZnO NPs will interact with each other and some 

organic/inorgnic compounds (Rocha et al., 2015). The properties of NPs, such as its nano size, 

pariticle shape, chemical composition, and surface charge, and the properties of medium, such as 

pH, temperature, ionic strength, plays an key role on ZnO NPs behaviour (Fabrega et al., 2012; 

Rocha et al., 2015). Several aspects of ZnO NPs characters changed in marine environment that had 

been well documented (Miao et al., 2007; Brayner et al., 2010; Miao et al., 2010; Miller et al., 2010; 

Ma et al., 2013; Rocha et al., 2015). They are progressive and simultaneous happenning in seawater. 

Dissolution is a step proceeded rapidly once ZnO NPs suspended into seawater. Miller et 

al. (2010) measured the concentration of dissolved Zn ion using Inductively Coupled 

Plasma-Atomic Emission Spectrometry (ICP-AES) technique suggesting an equilibrium value 

approximately 3 mg Zn/L was reached for the initial ZnO concentration 10 mg Zn/L and most Zn 

(approximately 70%) dissolved for all lower concentrations with in 12 h. However, the dissolution 

was still going on after 4 days for the high concentration. Miao et al. (2010) performed the 

dissolution test with Graphite Furnace Atomic Absorption Spectrophotometer (GFAAS) technique 

resulting no consistent trend was observed in the different experimental conditions. However, a 

around 5% dissolution for NPs and 2.5% for bulk were reported for high concentration 

susuoensions (> 80 mg Zn/L) (Wong et al., 2010). Manzo et al. (2013b) summarized all 

abovementioned data resulting that the average solubility of ZnO NPs in seawater is around 5 mg 

Zn/L. 

Aggregation, at the same time, was rapidly occurred since the very beginning of 

dispersing in seawater medium. Miller et al. (2010) reported the diameter of NPs increased from 

initial 250-300 nm (10 mg Zn/L) to approximately 450 nm within 30 min using Dynamic Light 

Scattering (DLS) technique and suggested rapid aggregation of larger aggregates depends on the 

low surface/volume ratio. Miao et al. (2010) reported an increasing to 8500 nm after 7 days 

dispersed into ASW with also DLS. Also, Manzo et al. (2013b) reported similar trends that high 
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concentration pariticles aggregating much more than low concentration for both ZnO NPs and bulk 

in ASW and bulk aggregates size increased to 3000 nm after 250 min dispersing is larger than NPs 

(2600 nm). 

Sedimentation would occur with aggregation due to gravity in ASW. Manzo et al. (2013b) 

observed a clear sedimentation of large aggregates for 100 mg Zn/L NPs and bulk. Low 

concentration ZnO particles showed very slower sedimentation rate than high ones. In the same 

time, NPs showed slower sedimentation rate than bulk. Miller et al. (2010) reported similar results. 

This could be due to the density difference between NPs and bulk.  

1.2 The importance of primary producers marine algae in ecosystem and 

ecotoxicolgical studies of ZnO NPs 

Phytoplankton is the autotrophic component of the plankton community and a key factor 

of oceans, seas and freshwater basins ecosystems. High growth rate, high surface-to-volume ratio 

(high uptake rate), easy handling in laboratory conditions (Castro-Bugallo et al., 2014), make 

marine microalgae be an effective tool to test toxicity of contaminants such as antibiotics (Seoane et 

al., 2014), metals (Wang & Zheng, 2008; Angel et al., 2015), nano-materials (Kadar et al., 2012; 

Clément et al., 2013; Castro-Bugallo et al., 2014). Additionally, as diverse algae taxa respond 

differently to chemical toxicants, it is mandatory to conduct tests on a different species representing 

different classes. 

Published literatures documented different nanomaterials toxicity towards vast algae 

species. Green algae could be the most popular object to investigate ecotoxicity of nanomaterials, 

such as nano TiO2, ZnO, Al2O3, SiO2, CuO, C60, Carbon Nanotube, etc. (Baun et al., 2008b; Blaise 

et al., 2008; Van Hoecke et al., 2008; Wang et al., 2008; Aruoja et al., 2009; Hall et al., 2009; Ji et 

al., 2011; Lee & An, 2013; Manzo et al., 2013a; Fu et al., 2015). Also Diatom and other algae were 

utilized to assess the ecotoxic effect of nano metal xoide, metal particles, etc. (Brayner et al., 2009; 

Wong et al., 2010; Peng et al., 2011; Dahoumane et al., 2012a, b; Manusadģianas et al., 2012; 

Clément et al., 2013; Fu et al., 2015; Li et al., 2015; Yung et al., 2015). 

Among them, most algae are marine species indicated that nanomaterials are released into 

marine ecosystem arousing many ecotoxicity studies on these common phytoplanktons in recent 
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years (Özkoc & Taylan, 2010; Wong et al., 2010; Peng et al., 2011; Kadar et al., 2012; Manzo et al., 

2013a; Aravantinou et al., 2015; Suman et al., 2015). 

Among these investigated nanomaterials, ZnO NPs is currently used in widespread and 

expanding production that increases the heat of the studies on its ecotoxicity (Ma et al., 2013). A 

broad range of marine algae became the research organism objects on it (Brayner et al., 2010; Miao 

et al., 2010; Miller et al., 2010; Wong et al., 2010; Manzo et al., 2013a; Aravantinou et al., 2015; 

Suman et al., 2015). However, marine green microalgae Tetraselmis suecica and diatom 

Phaeodactylum tricornutum which had not been reported on ZnO NPs ecotoxicity were selected as 

test organisms to respond to ZnO NPs exposure. 

P. tricornutum is a widespread pennate diatom, with low silica content and distinct cell 

wall (i.e. frustule) structures which is essentially composed of organic compounds, particularly 

sulfated glucomannan (Tesson et al., 2009), has been described in three different morphotypes (i.e. 

the ovoid, fusiform and triradiate forms), whose occurrence in culture seems to depend on strains as 

well as environmental conditions (Francius et al., 2008). 

T. suecica is an elliptical microalga of the class Chlorophyceae (Prasinophyceae) 

generally used as the diets of zooplankton, bivalve molluscs and crustacean larvae. The 

characteristic cell wall (theca) is composed of coalesced rigid carbohydrate scales (Lee et al., 2013) 

and the typical four flagella are covered by double layer of scales. 

1.3 The role of filter feeder Mediterranean mussels Mytilus 

galloprovincialis in marine pollution survey 

Bivalves, like mussels Mytilus spp., are filter-feeders, widely distributed, and with a 

long- life span and represent a good choice for the study of marine environmental pollution (Sheir et 

al., 2013; Balbi et al., 2014; Hu et al., 2014; Cremonte et al., 2015). M. galloprovincialis, cultured 

in China for commercial interest (Lazo & Pita, 2012; FAO, 2016), was instead largely utilized in 

several countries to investigate biological responses to toxicants and environmental stress (Da Ros 

et al., 2000; Barmo et al., 2013; Estevez-Calvar et al., 2013; Balbi et al., 2014) and also to assess 

NPs toxicity (Canesi et al., 2010; Gomes et al., 2011; Hanna et al., 2013; Balbi et al., 2014; Gomes 

et al., 2014). 
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In this bivalve NPs uptake can occur by ingestion through the digestive tract (Roberts et 

al., 2007; Baun et al., 2008a; Gagné et al., 2008; Ward & Kach, 2009) and through the large 

respiratory surface of the gills, as demonstrated for SiO2 NPs in the congener species Mytilus edulis 

(Köhler & Riisgård, 1982). The gills and the digestive gland are, therefore, particularly relevant as 

target organs for nanotoxicological studies (Baun et al., 2008a; D'Agata et al., 2014). 

However, it was recently reported that NPs could accumulate with increasing time 

exposure in the digestive gland (Gomes et al., 2011; 2012; 2013; 2014). This indicates that although 

the gills are the first target of NPs, the digestive gland is the main tissue for their storage (Ringwood 

et al., 2010b). These particles could induce oxidative stress in mussel gills and digestive gland, and 

promote several abnormalities in cellular function which can also trigger major changes in gene 

transcription (Fabbri et al., 2008). 

1.4 Ecotoxicity assessments on algae and mussels 

On algae assay, growth inhibition is the most popular approach of ecotoxicity assessment 

(Aruoja et al., 2009; Ji et al., 2011; Peng et al., 2011; Kadar et al., 2012; Manzo et al., 2013a; 

Aravantinou et al., 2015; Li et al., 2015; Schiavo et al., 2016). Some approaches involved in 

oxidentive stress induced by nanoparticles, such as, measurement of related enzyme activity (SOD, 

CAT, LDH, GSH, etc.)(Li et al., 2015; Suman et al., 2015), ROS generation (H2O2, O
2-, and ·OH) 

(Jagadeesh et al., 2015; Li et al., 2015), and lipid peroxidation (LPO) (Kadar et al., 2012; Jagadeesh 

et al., 2015; Suman et al., 2015). Besides, observation of nanoparticle invading in cells directly 

showed the damage from nanoparticles (Gong et al., 2011; Peng et al., 2011; Bhuvaneshwari et al., 

2015; Li et al., 2015). In addition, contents of chlorophyll (Gong et al., 2011), observation of DNA 

damage (Schiavo et al., 2016), extracellular protein content (Jagadeesh et al., 2015), and Zn content 

per algae surface (Aravantinou et al., 2015) were reported on ecotoxicity assessment. 

For mussels, many indexes were reported on nanoparticles toxicity. Enzymatic 

concentration/activity could be measured in most studies, such as, GSR, GST, CAT, GPX, Se-GPX 

SOD, MT, and GSSG (Canesi et al., 2010; Tedesco et al., 2010; Gomes et al., 2011; Gomes et al., 

2012; Barmo et al., 2013; Gomes et al., 2014). Lysosomal membrane stability, lysosomal lipofuscin 

content, lysosomal Neutral Lipid content, and LPO were reported as well (Canesi et al., 2010; 

Gomes et al., 2012). Gomes et al. (2013) reported the genotoxic comet assay on M. 
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galloprovincialis. Wang et al. (2014) reported total hemocyte counting, ROS and Lysosomal content 

and Barmo et al. (2013) reported some related genes expression, such as GST, CAT, Mytilin B, 

Myticin B, defensin, lysozyme and MgC1q, involved in oxidative stress and immune reponse. Beside 

of these molecular approaches, observation on tissue damages (Kádár et al., 2010; Barmo et al., 

2013; Hu et al., 2014; Trevisan et al., 2014; Vale et al., 2014; Cid et al., 2015), electrophoresis 

proteomic separations of gill proteins (Tedesco et al., 2008; Tedesco et al., 2010), embryotoxicity 

(Ringwood et al., 2010a), survival rate (Mwangi et al., 2012), and metal bioaccumulation in tissues 

(García -Negrete et al., 2013; Hu et al., 2014; Trevisan et al., 2014) were reported as well on 

nanomaterials toxicity.  
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2 AIMS OF THE STUDY  

Based on the published literatures reviewing, several research points on ecotoxicity of 

ZnO NPs towards algae and mussel in marine environment were still unexplored and some 

represent aims of this study. 

¶ ZnO NPs could have a specific behavior and effect in diverse marine seawaters as other 

nanomaterials described before. To this aim the full characterization of ZnO NP dissolution, 

aggregation, and sedimentation once dispersed into a standard Artificial Sea Water (ASW) 

and a Reconstituted Sea Water (RSW) from East China Sea was performed. 

¶ The ecotoxicity of ZnO NPs upon a green alga and a diatom would be different. To assess 

the diverse toxicity upon different algae, growth inhibition algal assays were performed.  

Additionally, to verify the hypothesis about the role of nano size in the overall toxicity, 

ZnO bulk, and Zn salt toxicity were assessed as well.  

¶ ZnO NP toxicity towards mussels under a chronic exposure could be shown by Zn 

bioaccumulation, tissue damages, and transcription of apoptosis and antioxidation-related 

genes. The hypothesis that nano size plays an important role in its toxicity was also 

considered together with the all previous ones for mussel M. galloprovincialis. 

2.1 Behaviors of ZnO NPs and bulk in different artificial seawater 

To characterize the behaviour of ZnO NPs and bulk dispersed into two salinities seawater, 

artificia l standard seawater (ASTM, 1998) (salinity 35ă, pH 8.00, 0.22ɛm filtered) and natural 

seawater from East China Sea (salinity 25ă, pH 7.90, 0.22ɛm filtered), aggregation size, 

sedimentation, and dissolubility of particles were oberved and tested using dynamic light scattering 

technique (DLS), UV-vis spectrophotometer, and centrifugal ultrafiltration combined with 

inductively coupled plasma-mass spectrometry (ICP-MS) (Jenner et al., 1990). 

2.2 Comparative toxicity of ZnO NPs, bulk, and Zn salt towards marine 

algae T. suecica and P. tricornutum 

To focus the ecotoxicological effect of ZnO NPs and bulk towards the green alga T. 
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suecica and diatom P. tricornutum, the aims are to establish the main toxicity parameters and to 

compare the sensitivities of both algae to ZnO particles. For each compound No Observed Effect 

Concentration (NOEC), 1, 10, and 50% Effect Concentration (EC1, EC10, and EC50) were defined 

to provide biological criteria for the implementation of water quality standards to protect marine 

organisms. 

2.3 Zn bioaccumulation and histological damages of M. galloprovincialis 

exposed to ZnO NPs, bulk, and Zn salt 

The histological alterations on 6 organs in M. galloprovincialis exposed to ZnO NPs 

suspensions to characterize the tissue damages were observed. In addition, tissue Zn uptake was 

measured to reveal the fate of Zn in mussel and give a full understanding of ZnO NPs toxicity with 

the histological observation. A microwave digestion system (MARS Xpress, CEM, USA) and an 

atomic absorption spectrometer (AAS; AA240 Duo, Varian, USA) (Massányi et al., 2004; 

Kramárová et al., 2005; Gasparik et al., 2012) were used. 

2.4 Ecotoxicity of ZnO nanoparticles in M. galloprovincialis revealed by 

transcription of apoptosis and antioxidation-related genes 

The aim of this work is to investigate the changes in digestive gland transcription levels 

of key genes, DNA repair enzymes genes p53, PDRP, antioxidant enzymes genes superoxide 

dismutase (SOD), glutathione transferase (GST), and catalase (CAT), of M. galloprovincialis along 

four weeks exposure to ZnO NPs and bulk dispersed in RSW, using qRT-PCR. 

2.5 Zinc causes oxidative damages in digestive gland in mussel M. 

galloprovincialis revealed by transcription of related genes 

The aim of this work is to investigate the changes in digestive gland transcription levels 

of key genes, DNA repair enzymes genes p53, PDRP, antioxidant enzymes genes superoxide 

dismutase (SOD), glutathione transferase (GST), and catalase (CAT), of M. galloprovincialis along 

four weeks exposure to Zn salt dissolved in RSW, using qRT-PCR. 
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3 RESULTS AND DISCUSSION 

3.1 Behaviors of ZnO NPs and bulk in different artificial seawater 

To investigate the ecotoxicity of ZnO NPs on algae and mussels, the evaluation of the 

ZnO NP behaviours of dispersed in the testing media is a necessary step to understand how ZnO 

particles interact with organism. 

Two artificial seawater were utilized as ecotoxicological testing media: in this research 

the standard Artificial Sea Water (ASW) (ASTM, 1998) for algae and a Reconstituted Sea Water 

(RSW) from East China Sea for mussels.  

Once released into these media, ZnO NPs, due to their reactive nature, rapidly interact 

each other and with available inorganic compounds (Rocha et al., 2015).  

ZnO particle behaviour in the testing medium largely depends both on particle properties, 

such as size, shape, surface charge; and on medium properties, such as pH, temperature, ionic 

strength, play key role on (Fabrega et al., 2012; Rocha et al., 2015). Based on the design of the 

ecotoxicological investigation, the aggregation described by size changing, the sedimentation 

induced by gravity, and dissolution described by ionic Zn release, were performed.  

3.2 Materials and methods 

3.2.1 Chemicals 

Bare ZnO NPs (cod. 544906, particle size < 100 nm, surface area 15-25 m2/g) was 

purchased from Sigma-Aldrich. (1) Bulk ZnO powder (particle size < 200 nm, surface area 4.9-6.8 

m2/g, purity > 99.9%) was purchased from Galeno S.r.l., Italy. (2) Bulk ZnO powder (Code 

ZK249038, particle size 150ī200 nm, purity > 99.9%) was purchased from Quer Biotech Co., Ltd 

(Hefei, China). Baysalt crystals (Code Q/XWL 101ī2006) were purchased from Shuilifang S&T 

Ltd. (Xiamen, China). 

3.2.2 Particle dispersions 

(1) Approach of particles dispersions in standard Artificial Sea Water (ASW) (ASTM, 
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1998): 

Stock suspensions of testing materials (ZnO NPs and bulk) were prepared with ASW (pH 

8.0, 0.22 ɛm filtered) to the final concentration of 100 mg Zn/L. The ZnO suspensions were 

dispersed by bath-sonication for 30 minutes at 50 W (Elma Transsonic Digital S). Test suspensions, 

at three concentrations 1, 5, and 10 mg Zn/L, were prepared by diluting the stock suspension with 

ASW. 

(2) Approach of particles dispersions in Reconstituted Sea Water (RSW) from East 

China Sea: 

Stock suspensions of ZnO NPs and ZnO bulk powder were prepared with (RSW). East 

China Sea baysalt crystals extracted from natural seawater were dissolved in pure water (MilliQ) to 

salinity 25 ă (pH 7.90) which is the salinity level of mussel sampling sea area (Shen et al., 2009) 

and filtered in 0.22 ɛm, to the final concentration of 100 mg Zn/L. The ZnO suspensions were 

dispersed by bath-sonication in the same abovementioned conditions. Test suspensions were 

prepared by diluting the stock suspension at 10 and 100 mg Zn/L with RSW (Manzo et al., 2013a). 

3.2.3 Measurement of the size of the aggregates 

After sonication treatment, an aliquot of ZnO NPs and bulk suspension, at concentration 

of different sea water (ASW: 1, 5, and 10 mg Zn/L; RSW: 10 and 100 mg Zn/L) respectively was 

put in a disposable polystyrene cuvette to determine particle size with dynamic light scattering 

technique (DLS) using Zetasizer Nano ZS Malvern instrument. The instrument employs a 4 mW 

He-Ne laser at wavelength 632.8 nm and the measurement angle of 173 ° with a Non-Invasive Back 

Scatter technology (NIBS). Measurements were made at 25 °C.  The measurements were run in 

triplicate and the results shown are the average of the runs. The samples were monitored for 4 days 

(ASW) and 90 min (RSW). Every day a new aliquot of sample was used to measure the aggregation 

size with DLS for ASW only. 

3.2.4 Sedimentation measurement in ASW and RSW 

As same as the condition of size measurement, an aliquot of ZnO NPs and bulk 

suspension, at concentration of 1, 10, and 100 mg Zn/L respectively was put in a disposable 

polystyrene cuvette to measure the sedimentation using a UV-vis spectrophotometer (at 468 nm) for 



3 RESULTS AND DISCUSSION 

31 

 

24 h. 

3.2.5 Dissolution in ASW and RSW 

The dissolved Zn concentrations of ZnO NPs and bulk suspensions in 100 and 10 mg 

Zn/L dispersed into low salinity RSW were measured by Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) described by Navarro et al. (2008). Samples after ultrafiltration (2 nm) 

have been acidified with HNO3 (1%) and diluted 1:1000 for Zn analysis. Dissolved Zn (ZnO 

particle or other Zn complex size < 2 nm) in the four suspensions were daily measured for 3 days. 

3.3 Results and discussion 

3.3.1 ZnO particle aggregation 

(1) In ASW: 

ZnO NPs in aqueous media tends to aggregate indeed, particularly in saltwater with 

increasing of salinity, that ionic strength reduces the negativity of electrophoretic mobility of the 

particles to encourage agglomeration (Batley et al., 2013). In order to monitored the stability of NPs 

and their rapid tendency to aggregate, after dispersion of ZnO NPs and bulk in ASW and sonication 

treatment for 30 minutes, agglomeration phenomenon was observed for the first 120 minutes and 

subsequently, once a day for four days (Fig. 3.3.1-1 and 2). 

  

Fig. 3.3.1-1 Hydrodynamic d iameters of ZnO NPs and bulk in ASW suspension at three concentrations (10, 5 and 1 mg 

Zn/L) within two hours. 
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Fig. 3.3.1-2 Hydrodynamic d iameters of ZnO NPs and bulk in ASW suspension at three concentrations (10, 5 and 1 mg 

Zn/L) within four days. * Samples not suitable for DLS analysis. 

The analysis of the DLS measurement data of the samples highlights that large aggregate 

were present for NPs and bulk for all the concentrations but ZnO NPs aggregates were smaller than 

bulk for all concentration as shown in Table 3.3.1-1. 

Table 3.3.1-1 PDI and hydrodynamic diameter of NPs and bulk in  ASW suspensions at four concentrations (100, 10, 5, 

and 1 mg Zn/L) in the initial stage of dispersal after sonication treatment. 

mg/L 

NPs Bulk 

PDI 
Hydrodynamic 

diameter (nm) 
PDI 

Hydrodynamic 

diameter (nm) 

100 0.3 ± 0.05 1500 ± 300 0.8 ± 0.1 1900 ± 180 

10 0.48 ± 0.07 850 ± 100 0.56 ± 0.06 1150 ± 100 

5 0.72 ± 0.09 1250 ± 150 0.76 ± 0.09 1400 ± 200 

1 0.74 ± 0.03 900 ± 80 0.59 ± 0.17 1250 ± 400 

In the next 24 hours the hydrodynamic diameter of ZnO aggregate increased doubling 

their size. From third day of observation the size was greater than 6 microns (Fig. 3.3.1-1 and 2) 

than the sample was not suitable for DLS measurements. This observation highlights that the ZnO 

NPs colloidal suspension should be always freshly prepared and sonicated prior to each experiment 

in order to minimize the effects of particles aggregation. The Polydispersity Index (PDI) that 

describes the width of the particle size distribution was in the range of 0.3-0.8 as shown in Table 

3.3.1-1. Those values indicated that the sample has a very broad size distribution. 
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The hydrodynamic diameters of ZnO NPs and bulk particles were already approaching 

the microns range soon after dispersion in ASW, and showed a clear, although slow, tendency to 

further aggregate in the next few hours (Table 3.3.1-1 and Fig. 3.3.1-1). In general, bulk ZnO had 

larger aggregate sizes than NPs. It is worth to note that these results seem to be rather independent 

of the pristine size of ZnO particles and of dispersion methods. In fact, previous studies report 

analogous values of aggregate sizes and aggregation trends for ZnO dispersions in seawater 

although prepared from nano ZnO having pristine size much smaller than the one used in the 

present study and from different dispersion methods (Fairbairn et al., 2011; Yung et al., 2015). The 

reported results also show that, in our operating conditions, the aggregate size was only modestly 

influenced by the initial particle concentration. The average aggregate size of both nano and bulk 

ZnO first increased from 1 to 5 mg Zn/L then decreased at 10 mg Zn/L and finally showed the 

largest size at 100 mg Zn/L. However, the oscillation of bulk ZnO particle size between 1 and 10 

mg Zn/L was well included in the measurement variability, therefore test suspensions of bulk ZnO 

were basically characterized by an average aggregate size of around 1400 ± 490 nm. On the other 

hand, at concentration so high as 100 mg Zn/L the large aggregate size may be due to an increase in 

particle collision frequency which enhances aggregation (Keller et al., 2010). According to the 

aggregation trend shown by this particles (Fig. 3.3.1-1) 24 hours after the preparation of test 

suspensions the average aggregate size was nearly doubled for nano ZnO and almost multiplied by 

four in case of bulk ZnO (Fig. 3.3.1-2). After 48 hours, ZnO particles in low concentration 1 mg 

Zn/L were undetectable and the size of which in high concentration 5 and 10 mg Zn/L were too 

large (> 6 ɛm) to suitable for DLS. The absence of particles (both nano and bulk) could be 

addressed to the proceeding of the dissolution phenomenon. The water solubility of ZnO in fact, 

ranges from 1.6 mg Zn/L to 5 mg Zn/L (PROSPEcT, 2009). The high pH and high ionic strength 

conditions of the seawater further increase this solubility and highlight some differences between 

the NPs and bulk forms (Miao et al., 2010; Miller et al., 2010; Wong et al., 2010; Peng et al., 2011; 

Yung et al., 2015). However, the interaction between particles and algal cells could retard 

dissolution and promote homo aggregation of ZnO particles (Soldo et al., 2005; Miao et al., 2007; 

Navarro et al., 2008), that has been observed in this report. 

(2) In RSW: 
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ZnO NPs once in RSW undergo to different physic-chemical processes that modify their 

pristine characteristics and therefore their availability/reactivity. 

ZnO particles dispersed in RSW (low salinity) undergo to complex physicochemical 

transformations: first, particles stick to each other in order to minimize the repulsive hydrophobic 

interactions with water, forming micron sized aggregate. DLS data recorded soon after the 

dispersion preparation illustrate this aggregation behavior and show that the average size of bulk 

ZnO particles were rather unaffected by the initial solid loading (Fig. 3.3.1-3B). On the contrary, 

aggregates formed by ZnO NPs showed constant size at low concentration whereas highly 

concentrated dispersions showed a marked trend to increase (Fig. 3.3.1-3A). The aggregate size 

increasing becomes evident in the next 48 hours when all the samples were characterized by the 

presence of very large particles (> 6000 nm) (Table 3.3.1-2). 

 

Fig. 3.3.1-3 Hydrodynamic diameters of ZnO NPs and bulk in RSW suspension at two concentrations (100 and 10 mg 

Zn/L) within about 90 min. 

Table 3.3.1-2 PDI and hydrodynamic d iameter of ZnO NPs and bulk in RSW suspensions at two concentrations (100 

and 10 mg Zn/L) for 72 hours 

Suspension Time (h) Size (nm) PdI Z-potential (mv) 

100 mg Zn/L NPs 0 2320±520 0.44±0.119 -0.92 

 24 >6000nm 1 -2.49 

 48 >6000nm 1 -5.28 

 72 >6000 NA NA 

10 mg Zn/L NPs 0 950±160 0.53±0.14 -6.35 

 24 1570±200 0.76±0.13 -10.4 

 48 >6000 NA NA 

 72 >6000 NA NA 

100 mg Zn/L Bulk 0 1560±100 0.5±0.07 -10.7 
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 24 3150±220* 0.51±0.11 -10.2 

 48 >6000 1 -7.06 

 72 >6000 NA NA 

10 mg Zn/L Bulk 0 1000±200 0.63±0.08 -10.8 

 24 >6000nm* 1 NA 

 48 >6000 1 NA 

 72 >6000 1 NA 

3.3.2 ZnO particle sedimentation 

(1) In ASW: 

Manzo et al. (2013b) reported the sedimentation of ZnO NPs and bulk dispersed in ASW 

(Fig. 3.3.2-1). They observed a clear sedimentation for both ZnO aggregates and the suspended 

ZnO concentration decreased by almost 30% after 2 h at high concentration (100 mg Zn/L). At each 

concentration, bulk showed higher sedimentation rate than NPs after 2h. Manzo et al. (2013b)  

suggested that a main difference between NPs and bulk aggregates is the density which is lower for 

the nanomaterial. 

 

Fig. 3.3.2-1 Sedimentation measurement of ZnO NPs and bulk in ASW at the concentration 100 and 10 mg Zn/L within  
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about 5 h. 

(2) In RSW: 

Large particles suspended in RSW have a tendency to settle out of the liquid phase due to 

gravity. The sedimentation curves recorded showed indeed that the particle concentration in the 

water column was decreased by more than 80% and 70% already after 8 hours for ZnO NPs and 

bulk suspensions at 100 mg/L respectively (Fig. 3.3.2-2). 

 

Fig. 3.3.2-2 Sedimentation measurement of ZnO NPs and bulk in RSW suspension at the concentration 100 mg Zn/L 

within 24h. 

3.3.3 ZnO particle dissolution 

(1) In ASW: 

Dissolution is the other important transformation that occurs to ZnO particle in aqueous 

media. A dissolution kinetic curve of ZnO NPs and bulk dispersed in ASW was shown in Fig. 

3.3.3-1. The curve indicated that a very obvious tend in both NPs and bulk suspension which is 70% 

dissolution occurred in first few minutes and kept this stable status to the end of measurement.  
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Fig. 3.3.3-1 Dissolution kinetic curve of ZnO NPs and bulk dispersed in ASW at 10 mg Zn/L within 5 h. 

(2) In RSW: 

The analysis of ionic zinc released in the seawater from NPs and bulk dispersions shows 

a little displacement in the average Zn concentrations only as a function of the initial solid loadings, 

i.e. between 100 and 10 mg Zn/L (Fig. 3.3.3-2). In the main, an average Zn concentration around 5 

mg/L was found already after 24 hours and afterwards without significant variations (p > 0.05). 

Interestingly, this result is similar to a previous one obtained for ZnO NPs dispersed into an 

artificial seawater with different salinity and pH (ASW at salinity 35 ă, pH 8.00, 0.22 ɛm filtered) 

with respect to the natural seawater used in the present study (Manzo et al., 2013b). 
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Fig. 3.3.3-2 Bar graphs of the dissolved Zn (ū < 2 nm) of ZnO NPs (A and B) and bulk (C and D) suspensions in 100 

and 10 mg Zn/L measured by ICP-MS. 

3.4 Comparisons and Conclusions 

To respect the behavior of other nanoparticles dispersed in natural seawater repored by 

Garner & Keller (2014), that aggregation and sedimentation have similar time scales for most 

nanoparticles in general in seawater and dissolution is highly dependent on nanomaterials 

composition, for example, nano Ag, Al2O3, CuO, and NiO will dissolve over days to weeks but only 

hours to days for ZnO NPs, results in this case indicated similar and more detailed conclusion. 

The analysis of the size measurement data of NPs and bulk in ASW highlights that large 

aggregate were present for NPs and bulk for all the concentrations but ZnO NPs aggregates were 

smaller than bulk for all concentrations. In RSW, aggregates formed by ZnO NPs showed constant 

size at low concentration (10 mg Zn/L) whereas highly concentrated dispersions (100 mg Zn/L) 

showed a marked trend to increase. Hence, the primary size of ZnO in suspensions could affect the 

aggregating rate in higher concentration. To combine the previous conclusion (Manzo et al., 2013b) 
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and the sedimentation data obtained in this case indicated that the sedimentation occurred since in 

the first minutes to few hours and that was not related to ZnO particles size. The analysis of ionic 

zinc released in the seawater from NPs and bulk dispersions shows a little displacement in the 

average Zn concentrations only as a function of the initial solid loadings. An average Zn 

concentration around 5 mg/L was found already after 24 hours and afterwards without significant 

variations (p > 0.05). This result is similar to a previous one obtained for ZnO NPs dispersed into an 

artificial seawater with different salinity and pH (ASW at salinity 35 ă, pH 8.00, 0.22 ɛm filtered) 

with respect to the natural seawater used in the present study (Manzo et al., 2013b). 
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3.6 Comparative toxicity of ZnO NPs, bulk, and Zn salt towards marine 

algae T. suecica and P. tricornutum 

ZnO NPs is currently used in a broad range of products including plastics, ceramics, 

rubber, lubricants, paints, foods (source of Zn nutrient), batteries, fire retardants, personal care 

products, etc. (Ma et al., 2013). Such widespread and expanding production and use increase the 

potential for their release into the environment. Keller et al. (2014) estimated that ZnO together 

with titanium dioxide, represent 94% of engineered nanomaterial (ENMs). Gottschalk et al. (2009) 

reported the modeled environmental concentration of ZnO NPs in surface water (0.010mg/L in 

Europe, 0.001mg/L in U.S.). If current production and subsequent release quantities were to increase 

100-fold, ZnO would raise greatest concern since all studies indicate ZnO is toxic at some 

concentration to all species tested (Franklin et al., 2007; Blinova et al., 2010; Miller et al., 2010; Li 

et al., 2013). It is clear than the effects and the behavior of ZnO NPs in the marine environment 

would need to be monitored closely. 

Particle- induced effect was suggested as one mechanisms of toxic action of ZnO NPs in 

previous studies (Ma et al., 2013). The nanoparticles agglomeration/aggregation plays an important 

role in determining reactivity, toxicity, fate, transport, and risk in the environment indeed has been 

implicated as a mitigating factor in the transport, cellular level interactions, and fate of NPs in the 

environment (Hotze et al., 2010). 

Phytoplankton is the autotrophic component of the plankton community and a key factor 

of oceans, seas and freshwater basins ecosystems. High growth rate, high surface-to-volume ratio 

(high uptake rate), easy handling in laboratory conditions (Castro-Bugallo et al., 2014), make 

marine microalgae be an effective tool to test toxicity of contaminants such as antibiotics (Seoane et 

al., 2014), metals (Wang & Zheng, 2008; Angel et al., 2015), nano-materials (Kadar et al., 2012; 

Clément et al., 2013; Castro-Bugallo et al., 2014). Additionally, as diverse algae taxa respond 

differently to chemical toxicants, it is mandatory to conduct tests on a different species representing 

different classes. 

Marine green microalgae T. suecica and diatom P. tricornutum were selected as test 

organisms to respond to ZnO NPs exposure. 

P. tricornutum is a widespread pennate diatom, with low silica content and distinct cell 
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wall (i.e. frustule) structures which is essentially composed of organic compounds, particularly 

sulfated glucomannan (Tesson et al., 2009), has been described in three different morphotypes (i.e. 

the ovoid, fusiform and triradiate forms), whose occurrence in culture seems to depend on strains as 

well as environmental conditions (Francius et al., 2008). 

T. suecica is an elliptical microalga of the class Chlorophyceae (Prasinophyceae) 

generally used as the diets of zooplankton, bivalve molluscs and crustacean larvae. The 

characteristic cell wall (theca) is composed of coalesced rigid carbohydrate scales (Lee et al., 2013) 

and the typical four flagella are covered by double layer of scales. 

It worth to note that, as previously observed, ZnO NP aggregation and sedimentation will 

occur in first few hours in seawater suspensions (Manzo et al., 2013a). Therefore it is ecologically 

relevant to study the interactions of these ZnO aggregates with very diverse classes of algae (i.e. 

green algae and diatoms) with peculiar differences in size, shape, cell wall composition and motility. 

In this study we focused on the ecotoxicological effect of ZnO NPs and bulk towards the green alga 

T. suecica and diatom P. tricornutum with the aim to establish the main toxicity parameters and to 

compare the sensitivities of both algae to ZnO particles. 

For each compound No Observed Effect Concentration (NOEC), 1, 10, and 50% Effect 

Concentration (EC1, EC10, and EC50) were defined to provide biological criteria for the 

implementation of water quality standards to protect marine organisms. 

3.7 Materials and methods 

3.7.1. Chemicals 

Bare ZnO NPs (cod. 544906, particle size <100 nm, surface area 15-25 m2/g) and ZnSO4 

(cod. 204986, purity 99.999%) were purchased from Sigma-Aldrich. ZnO bulk powder (particle 

size < 200 nm, surface area 4.9-6.8 m2/g, purity >99.9%) was purchased from Galeno S.r.l., Italy. 

3.7.2. Organisms 

T. suecica (Prasinophyceae: Chlorodendrales) and P. tricornutum (Bacillariophyceae: 

Naviculales) (CriAcq Laboratory, Naples, Italy) algae, were maintained in sterilized standard 

medium (Guillard, 1975) made with artificial standard seawater (pH 8.00, 0.22 ɛm filtered) (ASTM, 

1998). To provide inoculant for experiments, microalgae were incubated under cool continuous 
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white fluorescent lights (about 58 ɛmol photons mī2 sī1) at 24 ± 1 °C with aeration for 5-7 days 

until log phase growth prevailed. Cell density was measured by hemacytometer. 

3.7.3. Particle dispersions 

Stock suspensions and solution of testing materials (ZnO NPs, ZnO bulk, and ZnSO4) 

were prepared with Artificial Sea Water (ASW) to the final concentration of 100 mg Zn/L. The ZnO 

suspensions were dispersed by bath-sonication for 30 minutes at 50 W (Elma Transsonic Digital S). 

Test suspensions, at concentrations ranging between 0.1 and 10 mg Zn/L, were prepared by diluting 

the stock suspension with ASW and sonicated once again. Before the addition of micronutrients and 

algae each test suspension was briefly vortexed. 

3.7.4. FIB observation methods 

The algal cells were preliminarily analyzed by an optical microscope (ZEISS Axioskop 

50) for observing the possible damage and its extent. High resolution morphological 

characterization was made by FEI Dual Beam Quanta 200 3D which integrates a high focused ion 

beam (FIB). FIB operates with a finely focused beam of gallium ions accelerated at 30 keV which 

scans over the surface at low beam currents taking care not to damage sample. 

Before FIB observations algal cells were fixed as described in Li et al. (2015). After 72 h 

of exposure algal cells were centrifuged (4000 rpm, 10 min) then the samples were fixed with 3% 

gluteraldehyde solution in 4 °C for 2 h. The samples were then washed with 0.1 M PBS (pH 7.8) by 

centrifugation (4000 rpm, 10 min) three times. Algal cells were fixed with 1% osmium tetra oxide 

for 2 h in 4 °C, and 0.1 M PBS (pH 7.8) was added to wash the cells by centrifugation (3800 rpm, 

10 min) three times. The control and treated (10 mg Zn/L) cells were coated on a thin glass slide, air 

dried and observed under the FIB. 

3.7.5. Algal growth inhibition test and data analysis 

Algal bioassays were performed according to our previous research (Manzo et al., 2013a) 

slightly modified. Test plates were kept in the growth chamber with continuous light for 3 days. The 

growth inhibition was expressed with respect to the control. The concentrations of the testing 

suspensions and solution were modified to 10, 5, 3, 1, 0.5, and 0.1 mg Zn/L for ZnO NPs, bulk, and 

ZnSO4. The EC1, EC10, and EC50 were calculated using the Linear Interpolation Method 
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(Inhibition Concentration procedure, ICp) (Norberg-King, 1993). NOEC was determined by 

Dunnett's test (US-EPA, 1989). 

3.8 Results and discussion 

3.8.1 Effects of ZnO particles upon algae 

T. suecica: 

During the three days of exposure to ZnO NPs, the parameters of algae inhibition were 

recorded every 24 h and similarly bulk ZnO and ZnSO4 trials were set up as comparing experiments. 

The overall toxic effect after three days of T. suecica exposure to investigated chemicals (Fig. 

3.8.1-1) indicated that, at the same Zn amount, ZnO NPs was more toxic than bulk ZnO and than 

ZnSO4, suggesting that the dominant cause of the algal growth inhibition by ZnO NPs was not only 

related to ion release. Our previous study upon marine algae Dunaliella tertiolecta (Manzo et al., 

2013a) also reported a higher toxicity of ZnO NPs respect to bulk. Similar toxicity trend was also 

observed for Chlorella sp (Ji et al., 2011). 
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Fig. 3.8.1-1 Toxic effects on T. suecica cells, together with the corresponding regression fit curves: nano ZnO toxic 

effects (diamond); ZnSO4 toxic effects (triangle); bulk ZnO toxic effects (square). The best fit function of toxicity data 

was sigmoid growth function. 50% effect level is represented. 
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The ecotoxicological parameters (NOEC, EC1, EC10, and EC50), at each exposure time 

point, reported in Table 3.8.1-1 showed that ZnO NPs was more toxic than bulk at all tested 

concentrations and zinc salts played a middling role between ZnO NPs and bulk. 

Table 3.8.1-1 NOEC, LOEC, EC1, EC10, EC20 and EC50 evaluated for each tested chemicals (nano ZnO, bulk ZnO 

and ZnSO4) to T. suecica at each exposure time point. 

Exposure time Chemicals NOEC (mg Zn/L) EC1 (mg Zn/L) EC10 (mg Zn/L) EC50 (mg Zn/L) 

24h 

Nano ZnO 0.1 0.01 [0.004, 0.06] 0.07 [0.05, 1.13] 4.09 [3.78, 4.59] 

ZnSO4 0.1 0.01 [0.004, 0.02] 0.06 [0.04, 0.15] 0.69 [0.42, 3.20] 

BulkZnO 1.0 0.01 [0.007, 0.46] 0.39 [0.07, 1.67] 4.55 [4.17, 4.98] 

48h 

Nano ZnO < 0.1 0.06 [0.005, 0.008] 0.06 [0.05, 0.09] 4.28 [3.98, 4.46] 

ZnSO4 < 0.1 0.01 [0.004, 0.006] 0.05 [0.04, 0.06] 5.97 [5.17, 6.46] 

BulkZnO 1.0 0.04 [0.02, 0.25] 1.32 [0.74, 1.60] 8.17 [7.53, 8.71] 

72h 

Nano ZnO 0.1 0.04 [0.01, 0.18] 0.47 [0.11, 0.63] 3.91 [3.66, 4.14] 

ZnSO4 0.5 0.02 [0.01, 0.24] 0.53 [0.08, 1.29] 5.61 [4.93, 6.23] 

BulkZnO 0.5 0.06 [0.01, 0.20] 0.66 [0.32, 0.99] 7.12 [6.65, 7.46] 

In particular for ZnO NPs in all three days exposure time (72 h), NOEC was recorded at 

the lowest setting concentration (0.1 mg Zn/L). The value resulted lower than that obtained for ZnO 

bulk (NOEC 0.5 mg Zn/L). ZnO NPs EC1, EC10, and EC50 of were respectively recorded at 0.04 

[0.01, 0.18] mg Zn/L, 0.47 [0.11, 0.63] mg Zn/L, and 3.91 [3.66, 4.14] mg Zn/L, which likewise 

were lower than those of bulk (0.06 [0.01, 0.20] mg Zn/L, 0.66 [0.32, 0.99] mg Zn/L, and EC50 = 

7.12 [6.65, 7.46] mg Zn/L). 

However T. suecica on the basis of these values resulted less sensitive than D. tertiolecta 

to ZnO (EC50 = 1.94 [0.78ï2.31] mg Zn/L) as recorded in previous work (Manzo et al., 2013a) 

while very low EC50 value were found upon microalgae Pseudokirchneriella subcapitata (EC50 = 

0.042 mg Zn/L) (Aruoja et al., 2009) and Thalassiosira pseudonana (EC50 = 0.82 mg Zn/L, leading 

to the decrease of cell division rates by 50%) (Peng et al., 2011). 

With the aim to evaluate the relation between algae exposure and growth effect all these 
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parameters were recorded also in early testing phases (24 and 48 h, Table 3.8.1-1). At the beginning 

of the exposure (24 h), the parameter values for ZnO NPs were higher than those recorded at 

followed phases (48 and 72 h). Respect to ZnO NPs, bulk ZnO and ZnSO4 showed increasing 

trends for EC10 and EC50 values along with exposure time that could represent a different action of 

these particles upon the algal population: ZnO NPs effectively affected algal population from the 

rising phase (48 h) of growth curve in the most. 

The observations by optical microscope (Fig. 3.8.1-2) and by FIB (Fig. 3.8.1-3) of T. 

suecica exposed to ZnO (both nano and bulk) showed how ZnO aggregates tend to gather mainly 

around algae flagella area (Fig. 3.8.1-2). This phenomenon increased with particle concentration 

and exposure time and resulted in algae injury due to motility hindrance in culture media. Recently, 

some evidences of toxic mechanism due to the direct interaction of NP aggregates and algae cell 

wall, provoking the generation of "holes" was reported (Li et al., 2015). However, in our case, the 

size for both the ZnO particles was very large, and the main aggregation sites, as reported above, 

were flagella (Fig. 3.8.1-3). 

 

Fig. 3.8.1-2 Behavior of T. suecica with aggregates of zinc oxide in 72 h, A: control, B: 0.1 mg Zn/L nano, C: 5 mg 

Zn/L nano, D: 10 mg Zn/L nano, E: 0.1 mg Zn/L bulk, F: 5 mg Zn/L bulk and G: 10 mg Zn/L bulk. The flagella showed 

more easily aggregates than cells walls. 
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Fig. 3.8.1-3 Observation of T. suecica interacting with aggregates (A: control, B: in nano ZnO exposure for 72 h, C: in  

bulk ZnO exposure for 72 h) by FIB. Aggregation occurred around flagella area with both particles. 

P. tricornutum: 

As for T. suecica during three days exposure to ZnO NPs, the parameters of P. 

tricornutum inhibition were recorded every 24 h and bulk ZnO and ZnSO4 trials were set up as 

comparing experiment as well. The overall toxic effect after three days of exposure to the 

investigated chemicals indicated a clear higher toxic effect of ZnO NPs respect to zinc salt and bulk 

ZnO (Fig. 3.8.1-4). Dose response curve obtained for ZnSO4 was almost overlapped with ZnO bulk 

one especially below 5 mg Zn/L. 
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Fig. 3.8.1-4 Toxic effects on P. tricornutum cells, together with the corresponding regression fit  curves: nano ZnO toxic 

effects (diamond); ZnSO4 toxic effects (triangle); bulk ZnO toxic effects (square). The best fit function of toxicity data 
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was sigmoid growth function. 50% effect level is represented. 

The ecotoxicological parameters (NOEC, EC1, EC10, and EC50), at each exposure time 

point, reported in Table 3.8.1-2 showed that ZnO NPs was more toxic than bulk at all tested 

concentrations. 

Table 3.8.1-2 NOEC, LOEC, EC1, EC10, EC20 and EC50 evaluated for each tested chemicals (nano ZnO, bulk ZnO 

and ZnSO4) to P. tricornutum at each exposure time point. 

Exposure time Chemicals NOEC (mg Zn/L) EC1 (mg Zn/L) EC10 (mg Zn/L) EC50 (mg Zn/L) 

24h 

Nano ZnO 1.0 0.01 [0.004, 0.52] 0.08 [0.04, 0.73] 2.57 [1.93, 3.23] 

ZnSO4 0.5 0.06 [0.01, 0.16] 0.36 [0.05, 0.67] 3.60 [2.17, 5.49] 

BulkZnO 0.5 0.01 [0.004, 0.21] 0.06 [0.03, 0.57] 1.12 [0.89, 1.57] 

48h 

Nano ZnO < 0.1 0.006 [0.004, 0.01] 0.06 [0.04, 0.33] 1.41 [0.97, 3.40] 

ZnSO4 0.1 0.01 [0.01, 0.02] 0.14 [0.09, 0.23] 2.34 [2.05, 2.60] 

BulkZnO 0.5 0.05 [0.01, 0.35] 0.59 [0.09, 0.90] 3.32 [2.89, 3.79] 

72h 

Nano ZnO 0.1 0.03 [0.01, 0.12] 0.23 [0.14, 0.31] 1.09 [0.96, 1.57] 

ZnSO4 0.1 0.01 [0.01, 0.02] 0.54 [0.09, 0.61] 3.22 [2.48, 3.94] 

BulkZnO 0.5 0.02 [0.01, 0.52] 0.64 [0.52, 0.75] 3.47 [3.06, 3.91] 

In particular for ZnO NPs in 72 h, NOEC was recorded at the lowest concentration 0.1 

mg Zn/Lwhich resulted lower than that obtained for bulk ZnO (NOEC 0.5 mg Zn/L). 

Also for this alga the relation between exposure time and growth effect was investigated 

by evaluating the main ecotoxicological parameters along each testing day (24 and 48 h, Table 

3.8.1-2). After 24 h the toxic effect of bulk ZnO (EC10 and EC50: 0.06 mg/L and 1.12 mg Zn/L, 

respectively) was higher than ZnO NPs (EC10 and EC50: 0.08 mg Zn/L and 2.57 mg Zn/L, 

respectively). Along with increasing exposure time the effect of chemicals turned into that higher 

ZnO NPs toxicity. I t could be supposed that the toxic effect in the first phase was related to the 

larger size of bulk ZnO aggregates that rapidly settled down on the bottom of the wells where the 

immobile algae lay, which were reported in our previous work (Manzo et al., 2013b), exerting there 

the toxic action. Instead, the action of ZnO NPs aggregates became evident only in the second day 
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of exposure when aggregation and sedimentation processes were completed. 

Although in this study P. tricornutum was very sensitive to ZnO particles especially at the 

beginning of exposure, some authors (Peng et al., 2011) reported this alga as the less sensitive to 

ZnO nanoparticles suspensions respect to Chaetoceros gracilis (EC50 not reported) and 

Thalassiosira pseudonana (EC50 = 0.82 mg Zn/L). 

The observations at optical microscope (Fig. 3.8.1-5) and at FIB (Fig. 3.8.1-6) provided 

supportive evidences to the interaction between ZnO particles (both NPs and bulk) and algae. The 

morphology and the lacking of motility of P. tricornutum algae let a large hetero aggregation along 

the cells that rapidly were completely wrapped around. An increasing trend of the process in 

dependence of exposure time and ZnO concentration (Fig. 3.8.1-5 and 6) could be observed. In 

comparison to T. suecica (Fig. 3.8.1-2), serious aggregation occurred between ZnO particles and 

diatom cells (Fig. 3.8.1-5). 

 

Fig. 3.8.1-5 Behavior of P. tricornutum with aggregates of zinc oxide in 72 h, A: control, B: 0.1 mg Zn/L nano, C: 5 mg 

Zn/L nano, D: 10 mg Zn/L nano, E: 0.1 mg Zn/L bu lk, F: 5 mg Zn/L bu lk and G: 10 mg Zn/L bulk. Algae adsorb the 

zinc oxide aggregates to be clumps along with increasing of concentrations and exposure time. 


