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Abstract 

A significant part of the world cultural heritage is represented by masonry 

buildings. Many of them are characterized by a complex architecture like as 

religious buildings and need to be preserved, both from a historical and 

structural point of view. 

The recent earthquakes showed the seismic vulnerability of existing 

buildings stock. This is an important issue especially for buildings located 

in high seismic risk zones. The seismic action causes damages in the 

masonry, hence the reduction of the load capacity and stiffness. These 

aspects yield to changes in the dynamic and non-linear behaviour. 

Furthermore, high-damage has been relieved for heritage building stock, in 

particular when there are thrusting elements like as arches and vaults. 

Over the past years, several innovative materials and technologies have 

been developed to limit the effects of earthquakes on the masonry 

structures. The use of composite materials showed to be effective for most 

structures. In particular, the latest earthquakes have led to manufacturing 

specific and innovative retrofitting strategies. However, seismic retrofitting 

measures of historical masonry buildings are not straightforward in terms 

of compatibility with existing materials, of efficiency and safety. 

In this background, the numerical analyses and experimental simulations 

provide important information about the seismic behaviour of these 

structures. Furthermore, also the increase of load capacity by means of 

strengthening systems can be estimated using these theoretical and practical 

instruments. 

Unfortunately, the masonry buildings are characterized by a wide variability 

in response (construction techniques, regularity, etc.) which are complex to 

simulate and predict in numerical analyses (like as micro or macro-

modelling, FEM-based). 

The actual structural response of a masonry building should take several 

parameters into account, difficult to implement into a numerical model 
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especially when applied on heritage buildings (where there are vaults and 

arches). 

Furthermore, these approaches not compatible with the common practice, 

where it is useful to have simplified calculation approaches to estimate 

seismic capacity of masonry structures with or without strengthening 

systems. 

Therefore, the numerical analysis performed on masonry structures shows 

some drawbacks. 

The Ph.D. thesis starts from a vulnerability study at regional level. This 

analysis on a typical historical centre located in the Italian region has been 

performed. This is a preliminary study in order to assess the main 

parameters which cause vulnerabilities. The result remarks the influence of 

local mechanisms in the existing masonry buildings, when there are 

thrusting elements. 

For this reason, a structural assessment of masonry vaults, by using a 

detailed modelling, has been performed. 

The work focuses on a particular typology of barrel vaults typically used as 

roofs in religious buildings. These vaults typically do not include any 

backfill and are slender. These barrel vaults cannot be analysed through the 

classical approaches where no-tensile strength is assumed. The tensile 

strength must be included to assess the seismic capacity. 

Therefore a simplified analytical model, in the framework of limit analysis, 

is proposed which includes the tensile strength. Tensile strength in these 

analyses is not only affected by the strength of basic materials, but also by 

the bond at the unit-to-joint interfaces, which could be rather difficult to 

assess reliably. The proposed model is useful to have simplified calculations 

to estimate the increase in capacity of vaulted masonry due to the 

strengthening interventions. 

The validation of the analytical model was provided by comparing 

predictions of the load capacity and the failure mode with those obtained 
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from shaking table tests. The dynamic test used to validate the analytical 

model has been performed on a full scale masonry vault, previously tested. 

In fact, the experimental tests can provide an efficient contribution to the 

calibration and interpretation of the numerical models. The experimental 

analysis and numerical modelling comparison are not the only way to 

improve the understanding of the structural behaviour. They represent a first 

step towards the development of simplified calculation methods to estimate 

the capacity of vaulted structures. 

Starting from the validation of the proposed analytical model, sensitivity 

analyses have been performed in order to assess the impact of some 

mechanical and geometrical parameters on the seismic capacity. These 

analyses were performed using the proposed analytical model. 

Furthermore, the model, previously validated, has been used in order to 

design dynamic tests on another masonry vault. The proposed method 

represents a useful modelling tool to design dynamic tests on masonry 

vaults and to assess their vulnerability. 

The physical and mechanical characteristics of the arch profile are similar 

to the vault previously tested. Conversely, as it will be clarified by following 

discussion, the global geometry is different. 

The dynamic response of the specimen has been investigated by using the 

shaking table system, before and after application of strengthening systems. 

In particular, after suffering damage, the vault was repaired and 

strengthened. Then the strengthened specimen was tested again. 

The strengthening techniques are based on TRM system (Textile 

Reinforced Mortar) in addition to traditional strengthening techniques (steel 

ties and masonry ribs). The performance of the strengthening vault was 

assessed comparing the behaviour of two specimens (unreinforced and 

strengthening) during the several tests. In order to support the experimental 

studies, several FEM analyses have been performed additionally to the 

simplified modelling. 
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The results are intended as a contribution to the understanding of dynamic 

behaviour and towards the development of simplified models to estimate 

seismic capacity of vaulted structures. 

The experimental results remark the effectiveness of the TRM system 

coupled with traditional interventions (masonry rib and unidirectional steel 

tie). In particular, the strengthening system is particularly advisable to 

safeguard of heritage buildings. 

In fact, given the high efficiency and compatibility of the strengthening 

techniques experimentally used, they have been implemented in a real 

heritage building (Monastery of Santo Spirito, Ocre (Italy)). 

 

KEYWORDS: Simplified modelling, Barrel vaults, Arch, Shaking table 

test, Experimental validation, Strengthening systems, Heritage buildings, 

Seismic capacity assessment 
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Chapter 1 
 

INTRODUCTION: OVERVIEW OF MASONRY 

STRUCTURES  

 

The Egyptian Pyramids, the Colosseum in Rome, the Great Wall of China, 

are only some of the world’s most significant architectural works built with 

masonry material. The designers have chosen masonry for its durability, 

versatility and sustainability. 

The knowledge of buildings, starting from their history, may provide some 

important information. It is an essential tool in order to plan retrofit 

strategies and mitigation of seismic risk into the existing urban areas. The 

historical assessment is a preliminary strategy less frequently done. 

Generally, only for heritage buildings an approach based on advanced 

knowledge is performed. 

Given the critical conditions which are typical of existing building stock, 

planned preventive maintenance and strengthening interventions must be 

performed. Therefore, the continuing need for every historical centre to be 

preserved cannot ignore the historical assessment. 

Is interesting to note that, in a background where the reinforced concrete 

(r.c.) structures are threatened by corrosion effects, both the restoration 

and retrofit of masonry buildings appear a key opportunity. For this reason, 

an increasing interest will be allocated to the existing masonry structures. 

However, the recent seismic events showed the vulnerability of masonry 

buildings, especially of heritage masonry buildings. 

This first part focuses on some main issues typical of existing masonry 

structures. Some critical aspects were addressed with a broader view. 

Finally, starting from an analysis at regional level, the key sources of 

vulnerability were assessed for existing masonry structures. For this 
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reason, a typical historical centre located in Italian region has been chosen 

to estimate the main vulnerability parameters. 

 

1.1. Vulnerability of existing buildings 

 

The safeguard of existing buildings, with particular reference to prevention 

strategies and mitigation of seismic risk, is currently an issue of great 

interest for existing building stock. The recent seismic events showed the 

strong vulnerability of most of existing structures, especially for heritage 

masonry buildings (figure 1.1). 

 

 

Figure 1.1: Cathedral of Ica, Ica (Peru), damages after 2011-Earthquake. 

 

Many issues appear to be caused by the strong variability of the physical 

and mechanical parameters, which may be detected in the existing building 

stock. 

The assessment of the actual susceptibility of existing masonry structures 

to be damaged by seismic actions requires complex procedures. In fact, 

these buildings are characterized by a strong non-homogeneity of 

construction techniques and by a level of degradation typical of masonry 

structures. 
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Furthermore, these structures have been designed and built in periods with 

no regulations, specific methodologies and calculation tools, favouring a 

design approach based more on the intuition and experience (e.g. 

geometrical rules). 

The design approaches, which guarantee stability and performance for the 

buildings, less frequently were applied to the ordinary buildings.  

In fact, the structural analysis applied to masonry structures is relatively 

recent. However, the use of numerical and/or analytical models is not 

simple, given the fragile architectural and structural context. 

The issue is emphasized when the masonry buildings fall into the category 

of heritage buildings (like as monumental or religious buildings). 

In these cases, the structural modelling can be extremely complex. Reliable 

results can be very difficult to obtain. In fact, the strong non-homogeneity 

of parameters makes it difficult to generalize the results to other case 

studies. 

This is a critical issue, especially for the ordinary buildings, often designed 

by using geometrical rules without a suitable structural analysis. 

 

1.2. Masonry buildings: a troubled history 

 

The brick is the oldest manufactured product of the civilization. The first 

bricks were used in construction of buildings more than 6000 years ago. 

The first masonry constructions included low walls made of stones or mud. 

Where stone was unavailable, masonry was made of local clays and silts. 

The first constructions were made of rubble stone using overlap between 

the several blocks without a specific binder as shown in figure 1.2. 
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Figure 1.2: Masonry shed made of rubble stones without binder, Montalbano Elicona, 

Sicily (Italy). 

 

Given the lack of mortar, the static capacity depends on geometrical factors. 

In particular, block sizes and contact surfaces of stones contribute to 

improve the structural performance [Milosevic et al. 2015, Mueller et al. 

2015, Lombillo et al. 2013 & Tran et al. 2014]. 

The stone was not the only material used for the masonry construction. At 

the same time, also adobe was used for civil constructions. Generally, these 

structures were located in the poor areas, where the high cost of construction 

materials has promoted dissemination of local materials like as mud or clay 

(figure 1.3). 

 

 
Figure 1.3: Example of Adobe masonry, Samassi, Sardinia (Italy). 
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However, they are structures typically founded in archaeological or 

historical areas [Caporale et al. 2015 & Illampas et al. 2014]. When the 

buildings showed the first damages due to seismic events, many builders 

realized the importance of regular masonry units in order to increase bond 

between contact surfaces [Caporale et al. 2014]. 

This was the origin of squared blocks ensuring a perfect contact between 

masonry elements. 

At the same time, the civilizations of Central America, South America and 

Asia, have developed the technique of the cut stone. The artisans learned to 

manufacture the stones increasing the accuracy. 

The next big step for brick manufacturing occurred in about 4000 B.C.. 

Starting from this period the builders begun to use brick elements with 

regular shapes (normalized shape of masonry units). 

In order to increase the bond between masonry units, the soil represents the 

first material used in mortar joints to improve the behaviour of masonry. 

However, the use of new other materials with higher performance has been 

supported by the low performance of local materials. 

The use of different materials depends on the regional resources. Many 

materials were used to build the mortar joints. 

In the Mesopotamian area, the poor materials were replaced by new local 

materials. In particular, starting from the 19th century, given the several 

oilfields, the mortar joints were made of a material based on bitumen. 

Some discoveries both in Egypt and Greece showed that gypsum mortars 

were used starting from third millennium B.C.. These materials are 

characterized by an extremely fast maturation and showed good resistance 

to humidity [Banfill et al. 2016]. 

The Roman Civilization had integrated these construction techniques into 

their own. During the Roman period, in the Southern Italy, especially in the 

Campania Region, many limestone caves originated the development of 

lime-based mortar [Leone et al. 2016]. The Pompeii archaeological site 

(figure 1.4) is a valid proof of these construction techniques. 
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Figure 1.4: Pompeii archaeological site, Pompeii, Italy. 

 

Over time, through the art of turning limestone into lime, the mud was 

progressively replaced by lime-based mortar. 

The lime-based mortars showed cracking due to a strong shrinkage. Some 

new mixtures using additional natural additives were developed to remedy 

at the shrinkage effects. In particular, slaked lime and inert sands additives 

guaranteed a reduction of shrinkage [Fang et al. 2014]. 

The Romans, already from 3th century B.C., used the ash inert additive, the 

“pozzolana” [Falchi et al. 2015]. This natural additive improves the 

compatibility properties with the natural stones [Falchi et al. 2013]. 

Furthermore, the high performance of the lime-based mortar additivated 

with pozzolana guaranteed good performance at least for gravity condition. 

Then, new construction systems and manufacturing techniques were 

simultaneously proposed. 

When control of Western Civilization passed to Romans, they made the first 

large-scale use of masonry arches and roof vaults in their basilicas, baths, 

palaces and aqueducts. 

The Roman Heritage is the testimony of a design approach based on a 

progressive evolution in material and construction techniques. 



Chapter - 1 

25 
 

Then, with the Islamic Civilization, the vaulted masonries were brought to 

a higher architectural and design level. The Islamic builders have built 

magnificent palaces, markets and mosques made of brick and often 

incorporated glazed clay tiles (figure 1.5). 

 

 
Figure 1.5: Mosque of Nasir Al-Mulk, also named Rosa Mosque, Shiraz (Iran). 

 

Instead, in the European areas, the goal focused on fortresses and cathedrals 

of stone, culminating in the pointed vaults and flying buttresses of the great 

Gothic churches (figure 1.6.). 

 

 
Figure 1.6: Cathedral of Orvieto, Orvieto (Italy). 



Chapter - 1 

26 
 

Where the money resources did not allow structural restoration of 

architectural heritage, the existing techniques were improved with the few 

available resources. 

In particular, without natural stones in some continents, the manufacture 

was supported by the artificial blocks. These first elements were made of 

poor materials (clay, mud, terrain, etc.) mixed with several additives. 

The first structures made of mud/clay were improved by using artificial 

blocks. The masonry units were made of materials based on a mixture of 

clay (adobe masonry). 

In order to reduce the cracking, the adobe was mixed with natural fibres 

(e.g. panama). These additive fibres represent the first reinforced technique 

used in masonry [Andrejkovičová et al. 2015 & Parisi et al. 2015]. 

Additionally, other additives were considered to improve the behaviour of 

artificial blocks. In particular, inert sands is a suitable additive to improve 

the performance and durability of the mixture. 

Over time, these building techniques have been changed by a progressive 

refinement, e.g. in poor areas, the “pisè technique” (figure 1.7). 

 

 
Figure 1.7: Qasba 17th, Skpura’s Oasis, Morocco. 

 

This material is a mixture made of clay and natural stone having small sizes 

[Rovero et al. 2013]. In some cases, natural mixtures were added to limit 

both the cracking and the weight. 
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The structure was built from modular elements. For each element, 

shuttering systems made of wooden panels were used. It represents the 

ancestor of the modern reinforced concrete. The shuttering panels have been 

designed to allow the construction of elements with any shape. However, 

the materials used are very cheap compared to the structures made of natural 

stone. In fact, the “pisè" technique was relegated to poorly buildings. The 

dissemination was stopped by the low performance of materials, especially 

in areas at high humidity and/or very rainy [Sayin et al. 2013 & Quagliarini 

et al. 2015]. 

The effect of thermal radiations from fire on mud brick walls showed the 

advantages of the fired brick [Černý et al. 2015], leading to brick kilns birth. 

In fact, the thermal irradiations provide a significant reduction of vapour 

permeability. Furthermore, the firing process causes a chemical bond 

between the clay particles, improving both the durability and the 

mechanical properties. 

Along with the normalized bricks, the fired brick represents a new important 

step. With the last improving technique, it starts a revolution of the artificial 

manufacturing of masonry.  

Because of the high cost of artificial bricks, dissemination occurred only in 

some continents. The clay brick wide spreading in the world is the result of 

development of the modern industries (figure 1.8). 

The Industrial Revolution, between the last decades of the 18th century and 

the first of the 19th century characterizes the development of the building 

techniques. Following the industrial era, both the building technique and the 

design approaches suffered a strong change. 

In particular, the buildings were not modelled as elements fully decoupled 

but as several elements mutually connected. 

It was discovered that several components can interact if subjected to a 

seismic action. 
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Figure 1.8: University of London, building made of solid clay bricks, England. 

 

During this period, sophisticated mathematical approaches were applied for 

the first time to the analysis of curved masonry elements (like as arches and 

vaults). 

Portland cement mortar came into widespread use, enabling the 

construction of masonry buildings of greater strength and durability. 

Through the centuries, the methods for manufacturing brick evolved 

continuously. 

As brick manufacturing becomes highly elaborate, the use of design criteria 

became more diffuse. 

Then, the evolution of design approaches has led to concrete block. The 

manufacturing of concrete blocks evolved over time. This evolution was 

prompted by the development of cavity walls. The cavity walls consisted of 

two separate brick or stone panels with about an inch of air space between 

them. The cavity masonry was developed to reduce the problems with water 

penetration. 

Starting from this construction technique, several additional expedients 

have been applied. In 1850 a special block with air cells was introduced. 

Over the years, these elements have been modified until the modern 

industry developed standardized artificial elements, still in use. 
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Introducing the new systems of construction as: reinforced concrete (r.c.), 

laminated timber, steel, etc., the masonry buildings began to be replaced. 

Especially in the late 19th century, the masonry began to lose its primacy 

among the materials of construction. The very tall buildings of the central 

cities required steel or reinforced concrete frames which replace the thick 

masonry walls that limited the heights. 

The reinforced concrete buildings began to replace brick and stone 

masonries both for the foundation and elevation. The heavy masonry vaults 

were replaced by lighter floor and roof structures made of steel and 

concrete. 

In the 19th century the invention of the hollow brick, made of concrete, 

revitalizes masonry. In fact, over the 21th century, especially after the 

seismic earthquakes, an increasing interest for the masonry material has 

been shown. 

After more than 6000 years, masonry is still used today. Therefore, the 

masonry constructions are an important part of the History Civilization that 

must be safeguarded. 

 

1.3. Seismic behaviour of masonry buildings: in-plane and out-of-

plane response 

 

The masonry is a composite material where the mechanical properties are 

related not only to those of the components (stone, adobe, solid clay bricks, 

etc.) and mortar (mud, lime, hydraulic lime, etc.), but also to the sizes and 

shape of the constituents, the interlocking in the external leaves and the 

transversal connection through vertical and horizontal elements [Asteris at 

al. 2014]. 

These aspects contribute to characterize the structural response of masonry 

buildings, with new techniques, construction and design approaches [Serhal 

et al. 2016 & Landi et al. 2015]. 
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Masonry constructions are generally brittle in nature and one of the most 

vulnerable structures under earthquakes. The inertial forces induced by 

seismic action may cause severe in-plane or out-of-plane effects [Noor-E-

Khuda et al. 2016a, Furtado et al. 2016, Schwarz et al. 2015, Bolhassani et 

al. 2016, Bruggi et al. 2015, Basili et al. 2016 & Giresini et al. 2016]. 

A masonry panel, if pushed horizontally in a direction perpendicular to its 

plane (out-of-plane) shows a lower capacity (figure 1.9 a). The same wall, 

if pushed along its length (in-plane) may show much greater capacity (figure 

1.9 b). 

 

 
Figure 1.9: a) Out-of-plane behaviour, b) in-plane behaviour of masonry wall. 

 

The seismic capacity of masonry buildings can be achieved when a local or 

global mechanism occurred [Mendes et al. 2014]. 

The out-of-plane behaviour is promoted by lack of structural details 

(metallic ties, concrete ribs, etc.) and the seismic capacity depends on the 

local mechanism [Akcay et al. 2016]. This is a typical behaviour of poor 

buildings (ordinary buildings). 

In this case, the seismic capacity is unaffected by the mechanical properties 

of materials [Portioli 2016 & Dipasquale 2016]. In fact, the load capacity 

depends on equilibrium conditions [Walsh et al. 2015 & Furtado et al. 

2015]. Only for specific local mechanisms, the mechanical properties 

provide a non-negligible impact [Milani et al. 2015a & Preciado 2015]. 

Seismic action Seismic action 

a) b) 
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Generally, some masonry structures built on modelling base and capacity 

design criteria, showed a global behaviour [Valente et al. 2016, Milani et 

al. 2015b & Akhaveissy et al. 2013]. A global response depends on in-plane 

behaviour of masonry walls improving the seismic performance. The lateral 

load capacity of masonry structures is mainly due to in-plane shear strength 

of masonry elements [Gattesco et al. 2015, Minaie et al 2014 & Mazzotti et 

al. 2014]. In this case, seismic capacity of a masonry building is very 

sensitive to the mechanical properties of its constituents as well as masonry 

units and mortar [Serhal et al. 2016]. 

 

1.3.1. In-plane behaviour assessment 

 

When some structural details are incorporated in a building, the seismic 

capacity is not regulated by local mechanisms [Darbhanzi et al. 2013, 

Foraboschi et al. 2013 & Ural et al. 2015]. For this reason, the seismic 

assessment can be performed by means of a linear or non-linear global 

analysis, (with a static or dynamic approach). 

The bending and shear forces, due to seismic action, cause 

vertical/horizontal and diagonal cracks [Tomazevic et al. 2000], 

respectively. The first damage is due to flexural behaviour [Esmaeeli et al 

2013 & Almeida et al. 2015]. While the second induces the typical shear 

damage. 

In-plane damages alone, often cannot be sufficient to lead to structure 

collapse. Retrofit interventions performed on existing structures that lead to 

in–plane mechanisms improve the seismic capacity. 

A global damage is due to strong connection among the masonry walls. The 

presence of rigid floors coupled to reinforced concrete ribs is able to transfer 

horizontal forces from floors to parallel walls. Therefore, a “box” behaviour 

of buildings under seismic actions is expected (figure 1.10). 
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Figure 1.10: Typical damage occurred due to in-plane behaviour of masonry walls. 

 

Unfortunately, the layout of ordinary buildings is not consistent with this 

background. Many of them show local mechanisms, given discontinues, 

change in time, lack of maintenance and other details, (figure 1.11). 

 

 

 

Figure 1.11: Typical behaviour of masonry buildings: a) building with walls not tied 

together; b) building with deformable floors and tied walls and c) building with rigid 

floors and walls not tied together. 

 

Observation of seismic damages to masonry structure showed that masonry 

piers subjected to in-plane loading may have several types of behaviour 

Seismic action 

a) 
b) 

c) 

Seismic action 
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[Calderini et al. 2009] and different failure modes are associated: flexural 

behaviour and shear behaviour. 

The flexural behaviour may involve two different mechanisms of failure. 

When the vertical load is extremely lower than compressive strength, a 

horizontal load increase produces tensile flexural cracking at the corners 

(figure 1.12 a). 

The pier begins to behave as a nearly rigid body, rotating around toe 

(rocking mechanism [Magenes et al. 1992]). 

The pier is characterized by a widespread damage pattern when no 

significant flexural cracking occurs [Magenes et al. 1997]. Then, a damage 

with sub-vertical cracks oriented toward the more compressed corners 

(crushing failure). In many cases, the ultimate condition is achieved by 

failure at the compressed corners (figure 1.12 a)). 

 

 
Figure 1.12: Typical behaviour of masonry pier: a) rocking mechanism, b) sliding failure 

and c) diagonal cracking. 

 

A generic masonry wall under seismic action can show a shear behaviour. 

In particular, it produce two different failure modes. When the sliding shear 

failure occurs, the development of flexural cracking at the tense corners 

reduces the capacity of the section. The failure mode is attained with sliding 

on a horizontal joint plane. This plane of failure is generally located at one 

of the ends of the pier (figure 1.12 b). 

Sub-vertical 

cracks Flexural 

cracking 
Sliding on horizontal plane 

Diagonal crack 

a) b) c) 
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Furthermore, if failure mode is obtained from the formation of a diagonal 

crack, it generally starts from the centre and then propagates towards the 

corners of the pier, (figure 1.12 c). 

It is interesting to note that the crack may have occurred through mortar 

joints or also masonry units. The probability of occurrence of first or second 

propagation mode depends on the influence of the mortar-brick cohesion in 

the joints, (figure 1.13). 

 

 
Figure 1.13: Typical shear behaviour of masonry pier: Influence of the mortar-brick 

adhesion in the joints. 

 

The probability of occurrence of different failure modes depends on several 

geometrical and structural parameters: 

- Geometry of the structural elements: block aspect ratio and 

characteristics of cross section; 

- Load pattern: vertical and horizontal load; 

- Boundary conditions; 

- Mechanical characteristic of masonry constituents regarding to: 

mortar, blocks and interface. 

In the past, several pseudo-static and dynamic tests have been carried out in 

order to analyse the effect of previous parameters on failure modes of 

masonry walls. 

Rocking mechanism occurs mainly in slender piers and with low value of 

vertical loads, while the shear failure occurs in very thick piers. 

Good adhesion  Weak adhesion  
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For moderately slender piers, diagonal cracking tends to prevail over 

rocking and bed joint sliding at increasing vertical loads [Lourenço et al. 

2005]. 

The diagonal cracking propagates through masonry units more than through 

mortar joints for increasing vertical loads. Similar effects can be shown at 

increasing ratios between mortar and block strengths [Bosiljkov et al. 2003]. 

The failure mode, changing from diagonal cracking through mortar joints 

to rocking, yields to an increase interlocking of blocks. 

The same effects may induce a transition from diagonal cracking through 

mortar to cracking through masonry units or to bed joints sliding.  

The crashing failure usually occurs for high levels of vertical loads 

[Vasconcelos et al. 2006]. However, several seismic assessments and tests 

showed that normal stresses are usually much lower than the compressive 

strength. For this reason, the crashing failure has an extremely low 

probability. 

 

1.3.2. Out-of-plane behaviour assessment 

 

Many approaches were developed to assess the seismic capacity by local 

mechanism [D’Ayala et al. 2003]. 

Since the 17th in Europe, empirical approaches, on the estimation of 

vulnerability indexes, have been proposed [Benedetti et al. 1984]. These 

methodologies are mainly devoted to historical masonry buildings. Over 

time, they were improved to extend at different typologies of buildings 

[Lagomarsino 1998a]. 

The studies based on in-situ surveys after seismic events allowed to create 

charts of the typical damages occurring in structural typologies. It has led a 

consequent systematization of the mechanical models able to describe their 

behaviour by means of kinematic models [Lagomarsino 1998b]. 

Kinematic models provide a coefficient λK=a/g calculated through the a 

ground acceleration over the g gravity acceleration ratio [Bernardini et al 
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1990]. It represents the seismic masses multiplier characterizing the 

ultimate equilibrium conditions for the structural element. 

In simplified assessment procedures, the mechanism connected to the 

lowest value of λK is the weakest one and, consequently, the most probable 

to occur. The in-plane mechanisms are usually characterized by λK 

coefficients higher than the out-of-plane ones. 

The mechanisms are related to the loss of equilibrium of structural portions 

rather than to states of stress exceeding the materials ultimate capacity. 

The limit analysis approach depends on few geometrical and mechanical 

properties. Therefore, it does not require an extremely accurate survey and 

time-consuming computation [Lagomarsino et al. 2004a]. 

Once the critical structural configuration is defined, the subsequent step is 

the identification of the most probable collapse mechanisms of each macro-

element [Lagomarsino et al. 2004b]. 

Several works on seismic vulnerability assessment of masonry buildings 

through limit analysis procedures have been proposed. The research was 

restricted to the estimation of the seismic activation multiplier, even if 

evaluated for complex mechanisms (typical of agglomerates of buildings). 

This approach of limit analysis applied to existing masonry buildings in 

seismic areas is now provided by the recent Italian seismic code. These 

models take into account the high vulnerability of existing masonry 

buildings not satisfying assumptions commonly more suitable for new 

earthquake-resistant buildings. 

In this field, another important document is represented by the Guidelines 

published by the Italian Ministry of Cultural Heritage for the evaluation and 

mitigation of seismic risk of the architectural heritage. 

Nevertheless, the out-of-plane behaviour assessment of masonry walls is 

one of the most debated topics in the scientific community. This failure 

mode may often limit the seismic capacity of existing masonry buildings. 

In ordinary buildings there aren't specific measures and a global analysis is 

not always feasible, this means that because of the natural discontinuities of 
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ordinary masonry and interactions with the neighbouring buildings, the 

local mechanisms assessment becomes a critical aspect. 

The external walls of buildings can be typically subjected to out-of-plane 

mechanisms (figure 1.14). 

 

 
Figure 1.14: Typical collapse mechanism of masonry walls by out-of-plane behaviour 

[Rondelet et al. 1834] 

 

Direct observation of damages detected after the last earthquakes, together 

with the scientific literature on the surveys of stone masonry buildings 

damage due to seismic events, showed that often the most recurrent failure 

mode is the overturning of walls. 

However, this failure mode involves portions of walls and infrequently 

involves the full wall. 

The way in which the local mechanism will activate depends on several 

structural details: quality and mechanical properties of masonry, 

connections between several structural elements, internal load-bearing, tie 

devices, type of floors and roofs, etc.. 

For unreinforced masonry, it is assumed that the only way to restrain the 

overturning mechanism carried out by other walls is regulated by the 

friction properties on the contact surfaces. These characteristics will give 

rise to different failure modes (figure 1.15). 
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Figure 1.15: Influence of the restraints effectiveness on overturning mechanisms [Borri 

et al. 2004] 

 

If the seismic capacity of buildings has been improved by means of 

additional devices like as ties or ring beams, the simple overturning is 

prevented. In this way, the failure mechanism is governed by the arch effect 

(figure 1.16). 

 

 
Figure 1.16: Local mechanism based on the arch effect [D’Ayala et al. 2003]. 

 

The framework becomes extremely critical for very complex buildings. In 

these cases the local behaviour can be analysed for a discrete number of 

structural portions. 

For example, in agglomerates of buildings the local behaviour assessment 

can be particularly complicated (figure 1.17).   
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Figure 1.17: Agglomerate of buildings typical of historical centres [Giuffrè, 1993]. 

 

When the building becomes very complex, a first step is to recognize 

structural units (structural portions). Then, the seismic capacity can be 

estimated using a macro-element approach. 

Therefore, a generic structural unit is made of several macro-elements 

(walls, floors and roofs). 

A critical issue is that the units can be structurally recognizable with an 

autonomous behaviour compared to the entire building. In fact, only some 

interactions can be modelled to avoid a complex model. 

In particular, the mutual bond between macro-elements can be modelled by 

potential damage pattern, contours of poor connection and statically 

equivalent forces. 

The damage could involve different structural shapes which depend on the 

characteristics of the walls (masonry properties, internal constraints, etc.). 
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The visual surveys performed after last earthquakes showed that the failure 

modes are very different between different building typologies. 

For heritage buildings, as churches, the seismic behaviour led to recurrent 

local damages of several architectonic components (i.e. nave, triumphal 

arch, apse, etc.) as shown in figure 1.18. These collapse mechanisms occur 

almost independently. 

 

 
Figure 1.18: Typical damage mechanisms of religious buildings [Doglioni et al. 1994 & 

Lagomarsino et al. 2004a]. 

 

1.3.3. The ordinary and heritage buildings 

 

An extensive typological classification is a hard task because the current 

buildings stock refers to a wide variety of constructions. 

Into each urban area two macro-classes of buildings can be identified: 

ordinary buildings and heritage buildings. 

The two typologies are characterized by both different masonries (quality, 

mechanical properties, etc.) and structural systems (regularity, connection, 

etc.). These characteristics change through historical periods and 

geographical areas. 
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Starting from the first constructions, without specific guidelines, the design 

of buildings was performed with empirical approaches. 

Many of existing masonry structures have been designed exclusively by 

means of geometrical rules. These approaches were based on past 

experiences rather than on accurate structural analyses. 

Only, for particular buildings (heritage buildings), some structural details 

were implemented during the construction phases. Therefore, many of the 

existing buildings, typically identified as ordinary buildings, are 

characterized by a low seismic performance. 

Even so, the recent earthquakes (figure 1.19) showed the results of these 

design approaches. 

 

  
Figure 1.19: L’Aquila (Italy) and Emilia Romagna (Italy), damages after 2009 and 2012 

Earthquake respectively. 

 

Many ordinary buildings are usually vulnerable because specific details 

were not adopted to prevent seismic damage. In particular, without specific 

details as: steel ties, buttresses, connection of floors to masonry walls, etc., 

the seismic capacity is limited by local mechanisms (out-of-plane 

behaviour) as shown figure 1.20. 
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Figure 1.20: Local mechanism (out-of-plane behaviour) of an ordinary building, Emilia 

Romagna (Italy), damages after 2012 Earthquake. 

 

After the first damage observation, specific measures were adopted in order 

to withstand the earthquake. In addition to modify the classical construction 

systems, the structures began to be analysed on the basis of modelling and 

capacity design criteria. 

The specific details mainly used in heritage buildings improve the dynamic 

behaviour. For these structures, the seismic capacity is regulated by global 

mechanism (in-plane behaviour). In fact, structural details promote a global 

response of the buildings while preventing local mechanisms (figure 1.21). 

 

 
Figure 1.21: Torrione degli Spagnoli, Emilia Romagna (Italy), damages after 2012 

Earthquake. 
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In fact, as the recent earthquakes show, the use of structural details prevents 

the activation of simple mechanisms, characterized by a low seismic 

capacity (i.e. global behaviour shows a higher activation multiplier). 

Previous brief description is not intended to be a full picture about the 

history of masonry but provides the complex background that each 

professional engineering or architect must face. 

A typological classification of buildings can be an useful approach in order 

to assess the main parameters which characterize the seismic response of 

masonry buildings. In the next section, a preliminary study based on a 

vulnerability assessment at regional level is synthetically discussed. 

 

1.4. The vulnerability assessment at regional scale: an useful tool to 

estimate the main vulnerabilities. 

  

A detailed study of each of these existing buildings is very complex so it 

can be interesting to analyse the vulnerability by means of simplified 

approaches.  

The safeguard of existing buildings, with particular reference to prevention 

strategies and mitigation of seismic risk, is currently an issue of great 

interest for existing urban stock (especially for heritage masonry buildings). 

For this goal, refined numerical models cannot be adopted due to the strong 

non-homogenous characteristics especially for existing buildings stock. 

In fact, the analysis at regional level cannot be performed in order to assess 

the seismic capacity of a single building but it can provide an estimate of 

main parameters that characterized the seismic behaviour. 

For this reason, a vulnerability assessment has been performed by means of 

study at regional level. The goal is to estimate the main parameters which 

characterize the vulnerability of existing masonry buildings. 

Furthermore, it is interesting to identify the main causes of vulnerability 

into historical urban areas. 

This first study, synthetically discussed below, is a preparatory work. 
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In particular, the results showed that the thrusting elements (as arches and 

vaults) can increase the vulnerability for existing masonry buildings. 

The assessment of the actual susceptibility of existing masonry structures 

to be damaged by seismic actions (vulnerability) requires complex 

procedures. These buildings are, indeed characterized by a strong non-

homogeneity of construction techniques and by a level of degradation 

typical of masonry structures. 

Furthermore, these structures have been designed and built in periods 

characterized by no regulations, specific methodologies and calculation 

tools, favouring a design approach based more on the intuition and 

experience. For these reasons, masonry buildings are often characterized by 

a strong vulnerability. 

This study is a first step towards the development of a seismic vulnerability 

evaluation procedure for the masonry buildings on large scale. 

For this purpose fragility curves have been elaborated, not related to single 

structural unit, but to classes of buildings, characterized by similar 

behaviour under seismic actions. 

In addition, to perform a vulnerability analysis at regional level [Valluzzi et 

al. 2004], the objective is not to identify the behaviour of individual 

structures, but to define an "average" behaviour in some homogeneous 

building classes. Therefore, to this aim, the analyses are typically conducted 

on entire urban areas, or on a multitude of buildings [Lagomarsino et al. 

2004c]. 

The vulnerability assessment at the regional level, starting from a not 

detailed, quick, in situ data collection, should be able to return a reliable 

assessment of the seismic vulnerability degree, without the use of refined 

and complex models. 

This allows an initial and quick classification of the structural types 

depending on some principal parameters; the identification of conditions of 

highest seismic risk and to provide preliminary support in post event 

operations. 
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1.4.1. Case study  

 

The masonry buildings considered to create a database of structural 

typologies, for the seismic vulnerability assessment at a large scale level, 

are located in the historical centre of Benevento (figure 1.22). 

 

 
Figure 1.22: Historical centre of Benevento. 

 

With reference to masonry, three masonry classes (Mu1=rubble stones 

masonry, Mu2=tuff masonry and Mu3=solid brick masonry) have been 

detected in the examined stock of building based on a visual inspection. 

The main physical and mechanical properties of such masonry classes are 

reported in table 1.1. 

 

Table 1.1: Mechanical properties for masonry classes. 

 

Masonry classes fm [MPa] τ0 [MPa] E [MPa] G [MPa] W [kN/m3] 

Mu1 1.0 0.02 870 290 19 

Mu2 1.4 0.03 1,080 360 16 

Mu3 2.4 0.06 1,500 500 18 
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The ordinary buildings (residential buildings without a particular artistic 

value) represent a significant portion of the urban area. 

The building stock in Benevento can be attributed mainly to two different 

periods: mid-17th century and early-19th century. 

The differences in construction are partially due to two important seismic 

events (1688 and 1702) that were the reason of a partial or total 

reconstruction of most buildings. 

Nevertheless, frequent characteristics, both structural (materials and 

techniques) and geometrical can be individuated in the masonry buildings 

of the historical centre. Most of the buildings are made of rubble stone 

masonry, while a lower percentage of tuff stones or clay bricks. 

The on-site surveys represented the starting point to gain knowledge of the 

examined building stock. The knowledge level and details should be 

consistent with a quick on site operation. 

In these preliminary studies, specific survey forms have been developed 

which have been used to screen over 220 buildings. 

In particular there are shown: compressive strength fm, shear strength τ0, 

elastic modulus E, shear modulus G and specific weight W. These values 

has been chosen according to the typological identifications provided by the 

current Italian code [IBC 2009] and adopting the minimum strength values 

and the average elastic modulus values of the suggested ranges, according 

to a reduced knowledge level. 

With respect to the first assignment based on the visual inspection, presence 

of degraded or non-homogeneous mortar joints leads to declass the 

masonry. 

Table 1.2 describes the assignment matrix of the masonry classes to 

different masonry types found in Benevento. Where it is not possible to 

identify the masonry type, the class with worst mechanical characteristics 

(i.e. Mu1) was assumed. 
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Table 1.2: Masonry class identification. 

Masonry Type 
Good state of 

conservation 

Degraded 

mortar 

Inhomogeneous 

texture 

Rubble stones Mu1 Mu1 Mu1 

Rounded blocks 

or stones 
Mu2 Mu1 Mu1 

Tuff stones Mu2 Mu1 Mu1 

Squared blocks Mu3 Mu2 Mu2 

Solid bricks Mu3 Mu2 Mu2 

Hollow bricks Mu2 Mu1 Mu2 

Clay bricks Mu2 Mu1 Mu1 

 

Furthermore, three types of floor (wooden, metallic and concrete slabs) 

have been identified in addition to the vaults frequently present at the first 

floor of the buildings. The presence of steel ties and concrete ring beams 

has been also detected. 

The average interstorey height, referring to all floors, varies in two ranges: 

2.7m - 3.0m and 3.0m - 3.4m. A height of 3.4m was assumed when vaults 

were found at the first floor. 

The dimensions of the openings, which directly affect slenderness of the 

masonry panels, are catalogued in terms of approximate average sizes: 

0.8m×1.2m to 1.2m×1.4m for windows and 0.8m×2.0m to 1.2m×2.5m for 

doors. 

 

1.4.2. Structural modelling 

 

The vulnerability assessment has been performed on the base of a 

mechanical approach. 

For this reason, several structural analyses were carried out. Furthermore, 

several mechanical prototype models have been developed in order to assess 

the effects of main geometrical and mechanical parameters on seismic 

capacity. 
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The choice of parameters to define typological structural classes was based 

on parametric analyses aimed to identify representative mechanical models. 

This goal was obtained by examining the structural behaviour through non-

linear static analyses in terms of "capacity curve" (load-displacement curve) 

varying significant geometrical and mechanical parameters of the buildings. 

The results allowed to identify mechanically representative models of 

different typologies of the building stock. For this purpose the (96) chosen 

structural prototype models are simple and representative (Figure 1.23). 

 

 
Figure 1.23: Examples of the geometrical schemes of structural models. 

 

On these prototype models the effects on seismic capacity of several 

parameters were assessed. The figure 1.24 shows some of several variables 

used into prototype models. The simplified modelling allowed to identify 

the causes of vulnerability. 

 

 
Figure 1.24: Examples of parameters implemented into structural models, a) Steel ties, 

b) masonry barrel vaults, c) type of floor. 
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The prototype models are the result of the essential simplifications for the 

development of the procedure and are described below. 

 

1.4.2.1. Mechanical and geometrical characteristics  

 

The three masonry classes indicated in table 1.1 have been used. 

Regarding the geometry of the models, the plan is rectangular with average 

size 8.1m×6.1m; the masonry thickness varies depending on physical and 

mechanical properties and they have been designed based on static 

considerations (vertical load bearing capacity). 

The distribution of the openings is intended to guarantee regularity of the 

walls in their plane.  

The interstorey height is variable from 2.8 to 3.3 meters; in the case of vaults 

at the first floor, a higher height (4.0 m) has been considered. The number 

of floors ranges from 2 to 4. 

The design of the floors was conducted according to vertical load capacity 

and deformability requirements (deflection limits). 

For the design of the vaults, barrel vaults were considered having the 

minimum span. 

The steel ties, when present, were positioned at all the levels and across all 

the walls. 

 

1.4.2.2. Load direction and target node 

 

Non-linear static analyses were carried out for each model in four main 

directions (±X and ±Y), neglecting the accidental eccentricity effect and 

considering a distribution of inertia forces proportional to the masses. 

The control node has been chosen at the top level (figure 1.25). 
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Figure 1.25: Chosen of control node. 

 

The load direction corresponding to the push-over curve characterized by 

the least dissipation capacity was considered as representative of each 

prototype building (figure 1.26). 
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Figure 1.26: Chosen of seismic direction. 

 

1.4.3. Capacity curves: analysis, comparison and classification 

 

Based on the most conservative capacity curve for each model, different 

structural behaviours were compared. The structural responses were 

examined in terms of SDOF (equivalent simple oscillator) in the ADSR 

plane (ground acceleration-displacement). 

All the 96 prototype models have been analysed according to this procedure 

in order to assign the structural classes. 

The current tendency is to perform exclusively typological classifications 

as described by the European Macroseismic Scale (EMS98). This approach 

doesn’t take into account the actual structural responses characterizing the 

typological behaviour and potentially could lead to unreliable damage 

assessments. 

On the basis of the capacity curves reported in Figure 1.27, the prototypes 

were assigned to six structural classes as identified by different colours. 
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Figure 1.27: Structural classes individuation: structural behaviour in term od SDOF in 

the ADSR plane. 

 

However, the classification was refined taking also into account the 

typological parameters. The definition of the structural classes was 

conducted on the basis of the following criteria and aims: 

 

 to standardize the global structural behaviour of the class; to this aim 

each SDOF capacity curve was examined in terms of stiffness, strength 

threshold, yield displacement and ultimate displacement; 

 the capacity curves were examined both with reference to the 

behaviour and typological properties; 

 to achieve a significant number of structural classes to perform 

accurate assignations of the relieved buildings. 

 

In table 1.3 the main parameters that identify each class are reported. 
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Table 1.3: Structural class identification. 

Class Description Significant parameters 

1 

Medium-low strength 

threshold and low 

ductility 

Mu1, 2 floors, metal beams floors, 

stiff spandrel panels. 

Mu2, 3 floors and concrete or metal 

beams floors, whit ties. 

Mu3, 2 floors and vaults at the first 

level. 

2 
Low strength threshold 

and high ductility 

Mu1, 3 floors and stiff spandrel 

panels. 

Mu3, 2/3 floors and vaults at the first 

level. 

3 

Medium strength 

threshold and high 

ductility 

Mu3, 3 floors and concrete or metal 

beams floors, whit vaults at the first 

level. 

4 

Partially rigid behaviour, 

low strength threshold 

and high ductility 

Mu1/Mu2, 3 floors, metal beams 

floors, weak spandrel panels. 

Mu3, 4 floors, metal beams floors, 

whit vaults at the first level. 

5 

Rigid behaviour, high 

strength threshold and 

low ductility 

Mu2/Mu3, 2 floors, concrete or metal 

beams floors, whit ties. 

6 

Medium-low strength 

threshold and l medium-

low ductility 

Mu3, 3/4 floors, concrete or metal 

beams floors, whit ties. 

 

On the base of previous classification an identification of classes on the 

urban area has been performed. The figure 1.28, shows the several class 

(Class 1, Class 2, …, Class 6) assigned to the historical centre of Benevento. 
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Figure 1.1: Classes individuation for the historical centre of Benevento, Class 1(ciano), 

Class 2(black), Class 3(green), Class 4(red), Class 5(blue) and Class 6(magenta). 

 

1.4.4. Damage estimation: in-plane behaviour 

 

Starting from the analyses of the capacity curves in terms of SDOF it is 

possible to identify the ranges of damage. 

These ranges are dependent on the mechanical characteristics of each 

model. The relation between capacity and damage [Calvi et al. 2004] is 

processed directly on the bilinear curve through the identification of some 

displacement thresholds. 

The typologies of damage taken into account are those covered by the 

European Macroseismic Scale EMS98. Then, the damage thresholds are 

evaluated as function of the yield, dy, and ultimate, du, displacements 

(Figure 1.29). 

A certain damage level is attained if the displacement demand exceeds the 

displacement threshold associated to that damage under a certain seismic 

event. 

The distributions of damage found with this procedure are site-dependent, 

since the seismic event is, in general, site-dependent. 
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The calculation of the displacement demand is executed according to the 

N2 method [Fajfar et al. 1996 & Fajfar 1999]. 

 

 
Figure 1.2: Identification of the conventional damage thresholds. 

 

The distribution of a fixed damage level within each class for different 

seismic intensities is evaluated by computing how many buildings of that 

class attained the fixed damage level. 

For each building a fixed damage level is attained when the capacity 

demand, evaluated for different seismic intensities, exceeds the 

displacement threshold (capacity) corresponding to that damage. The 

seismic intensities were expressed in terms of PGA assuming an unit 

increase of the return period Tr (1 year).  

This procedure allows obtaining “fragility curves” that represent an useful 

tool to perform damage estimations within a certain class of homogeneous 

buildings. 

It is worth to note that in the technical literature [Polese et al. 2007] the 

concept of ‘fragility curve’ has a probabilistic connotation and is often 

ag
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associated to several meanings depending on aims and fields of application 

of such curves. 

The fragility curves presented in this paper provide, for a fixed seismic 

event, individuated by the PGA value and the return period Tr, the 

percentage of buildings, pk (sTr│sDk ) that, within each class, have a damage 

level greater than or equal to an assigned damage Dk. 

Thus, the curves are built for each class and for each damage level. The five 

damage levels individuated by EMS98 have been chosen. According to this 

approach the probability  pk (sTr│sDk ) is given by: 

 

𝑝𝑘(𝑠𝑇𝑟|𝑠𝐷𝑘) =
𝑛(𝑠𝑇𝑟≥𝑠𝐷𝑘)

𝑛𝑗
∙ 100                                                               (1.1) 

 

where 𝑛(𝑠𝑇𝑟 ≥ 𝑠𝐷𝑘) represents the number of buildings with displacement 

demand, STr, associated to that Tr, greater than the capacity displacement, 

SDk, associated to the Dk damage. The term  𝑛𝑗  indicates the total number of 

prototype buildings of a structural class. 

The results obtained through previous equation provide a discrete point of 

the fragility curve. The fragility curves can be regularized by means of the 

procedure discussed below. 

In particular, starting from the conventional threshold as previously shown, 

the corresponding PGAk value can be calculated. These values represent the 

acceleration thresholds calculated for each prototype model and for 

conventional damage Dk. 

Given that a directly link between displacement and associated acceleration 

threshold cannot exist, the process is iterative. In fact, linking the 

displacement sDk to the acceleration threshold PGAk the spectrum shape is 

altered. 

Given the distribution of acceleration thresholds PGAk, the fragility curves 

were obtained. In Figure 1.30 the fragility curves for the structural class 4 

are illustrated for the five threshold damages of EMS98.  
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Figure 1.3: Fragility curves for the structural class 4 for all damage thresholds. 

 

In Figure 1.31 and figure 1.32 the different fragility curves obtained for the 

damage threshold D3 and D5, respectively, for the six structural classes are 

plotted. 

 

 
Figure 1.4: Fragility curves comparison for all structural classes and D3 damage. 
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Figure 1.5: Fragility curves comparison for all structural classes and D5 damage. 

 

1.4.5. Vulnerability maps for the case study: in-plane behaviour 

 

The fragility curves obtained according to the procedure explained in the 

previous section were used as a tool to provide information on the spatial 

distribution of the different damages Dk in the historical centre of 

Benevento. 

To this goal the relieved real buildings were assigned to the six typological 

classes defined according to the capacity curves of the 96 prototypes (figure 

1.28). 

Starting from figure 1.33 and figure 1.34, for demonstration purposes, the 

maps of distribution of damage D3 and D5 are plotted for the PGA values 

related to the return periods Tr=201 and 475 years, respectively. 
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Figure 1.6: Vulnerability map for the historical centre of Benevento: D3, TR=201 years. 

 

 
Figure 1.7: Vulnerability map for the historical centre of Benevento: D5, TR=475 years. 

 

Such damage levels were chosen in order to be significant for the fixed PGA 

values: it is, indeed, interesting to evaluate the distribution of a low-medium 

damage for seismic events corresponding to serviceability conditions, while 

for the higher PGA values (i.e. Tr=475) it is more significant evaluating the 

distribution of damage D5. 
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In all cases the distribution of each damage was expressed in terms of 

percentage of buildings exceeding the fixed damage threshold, grouping 

into four percentage ranges: 0-25%, 25-50%, 50-75%, 75-100%. The 

coloured representation means that, referring for example to the buildings 

coloured in red, the 75-100% of these building is expected to attain the 

examined damage.  

A more refined vulnerability map should take into account also the actual 

distribution of soil type in the examined area: in the presented maps, soil 

was assumed as type B, according to the large part of the historical centre 

of Benevento. 

The maps show that for low intensity seismic events (Tr=201, figure 1.33) 

most of the relieved buildings did not attain the damage D3, while as the 

seismic intensity grows, the percentage of buildings that exceeds higher 

damage thresholds (i.e. D5) is lower (see figure 1.34). 

 

1.4.5.1. Drawbacks of vulnerability analyses based on an in-plane 

behaviour 

 

The methodology developed in this paper for evaluating the seismic 

vulnerability is not intended to analyse individual buildings, but is a 

valuable tool for large scale vulnerability assessments and to develop 

vulnerability maps aimed to identify areas of high seismic risk. 

The reliability of the method is directly related to the representativeness of 

the prototype models and how the chosen geometrical and mechanical 

parameters influence the models behaviour. 

The procedure developed has a general nature and can be easily 

implemented. The enrichment of the database is an interesting advancement 

step for the study and for the application of the method at a wider, even 

national, scale. 
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Continuous development of the database, constantly updated, could 

represent an essential support for seismic vulnerability analysis at national 

scale. 

The automation of the methodology for the structural classification and the 

refinement of the procedure of assignment and classification, would 

improve those aspects, essential for the complete automation of the 

developed methodology. 

However, the damage assessment has been performed by using a push-over 

analysis. The local behaviour of the structures cannot be take into account. 

For buildings where some structural details has been incorporated, the 

previous results provide some useful information about their vulnerability. 

For ordinary buildings, these results showed partially the effects of 

geometrical and mechanical parameters on the seismic response. 

Therefore, mechanical-capacitive analyses that take into account also out-

of-plane mechanisms are certainly valuable and they must be performed. 

The implementation of the previous analysis with local mechanism is 

synthetically discussed below. 

 

1.4.6. Vulnerability maps for the case study: out-of-plane behaviour 

 

A vulnerability assessment on masonry buildings cannot preclude the 

possibility that a local behaviour occurs. In fact, often the local seismic 

capacity (out-of-plane behaviour) is lower than the global capacity (in-plane 

behaviour). 

The failure mechanisms implemented for the vulnerability assessment, 

according to the Guidelines Reluis-DPC are the following: 

 

 Overturning of full masonry wall (global overturning); 

 Overturning of masonry wall located at top level; 

 Overturning by horizontal flexure for unconfined masonry walls. 
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For masonry buildings with metallic ties or concrete ribs, the following 

failure modes were implemented: 

 

 Overturning by vertical flexure of full masonry walls; 

 Overturning by horizontal flexure for confined masonry walls. 

 

According to visual surveys performed after seismic events, some failure 

modes may be neglected. The probability occurrence of an overturning 

mechanism depends on the geometrical and mechanical characteristics of 

buildings. For this reason, some failure mechanisms have been not 

implemented into the vulnerability assessment. 

The structural analysis has been performed by means of a non-linear 

kinematic analysis, according to the Italian Building Code (IBC 2009). 

The analysis of local mechanisms provides the collapse acceleration of each 

failure mode. Furthermore, using the kinematical model, the return period 

Tr has been estimated for each failure mode and for each prototype model 

provide. 

For each structural model the mechanism with lower capacity has been 

chosen in order to develope the fragility curves. 

In particular, for confined masonry walls (i.e. model with ties, ribs, etc.) the 

failure mechanisms by horizontal flexure exhibit a higher probability 

occurrence. Indeed, for unconfined masonry walls (i.e. model without 

structural details) the overturning and vertical flexure mechanisms show a 

higher probability occurrence. 

For each prototype model the minimum seismic capacity was assessed. The 

assessment of the local mechanisms provide the return period Tr that 

activates the first failure mode (i.e. mechanism with the lower collapse’s 

acceleration). Finally, the coupled seismic assessment provides the 

minimum return period Tr between the global behaviour (in-plane 

behaviour) and local behaviour (out-of-plane behaviour). 
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Starting from the minimum value Tr the acceleration threshold PGAk was 

assesses. 

This analysis has been performed only for the damage threshold D5, as this 

is the ultimate condition for the structures (conventional collapse). 

In a coupled analysis (in-plane and out-of-plane behaviour) the first damage 

provides the fragility curve. It is interesting to note that the global (in-plane 

behaviour) or local (out-of-plane) analysis performed separately provides a 

damage threshold even greater than the one provided by a coupled analysis. 

In fact, the first damage which occurs with a coupled analysis provides a 

probability occurrence lower than an uncoupled analysis.  

It is interesting to analyse the effect on the seismic capacity due the global 

and local behaviour. 

The figure 1.35 shows the acceleration threshold PGA5 for the conventional 

damage D5 estimated for different approaches. In particular, figure 1.35 

shows the PGA threshold by using: the push-over approach on a global 

behaviour base (blue column), local analysis on local mechanisms base (red 

column) and coupled analysis approach (green column). 

 

 
Figure 1.8: Acceleration threshold PGA5 according to a conventional collapse (damage 

D5). 
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An analysis of the previous figure shows that the local mechanism limited 

the seismic capacity of all building classes. This is a critical issue especially 

for models where there are thrusting elements like as arches or vaults. 

In Figure 1.36 the fragility curves obtained from previous analysis are 

plotted for the damage threshold D5 (unlimited state) and for the six 

structural classes. 

 

 
Figure 1.9: Fragility curves comparison for all structural classes and D5 damage 

implemented with the out-of-plane behaviour. 

 

The effects of the thrusting element are shown especially for the structural 

class 4. In particular, when the fragility curve is calculated using the global 

analysis, the seismic capacity depends on in-plane response of the walls. In 

this case, the class 4 shows a higher capacity threshold (figure 1.23). 

However, for this class 4 the effect of thrusting elements provides a strong 

reduction of the seismic capacity due to the local mechanism. These 

deleterious effects can be seen in previous figure 1.35. 

In particular, when the local mechanism is considered, the class 4 shows a 

greater vulnerability. 
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This preliminary analysis provides important information about the impact 

of thrusting elements on the seismic capacity of existing masonry buildings. 

For this reason the thesis focuses on the behaviour assessment of thrusting 

elements like as arches and vaults. 
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Chapter 2 
 

THE BARRELL MASONRY VAULTS 

 

The masonry vaults represent a typical component of most existing 

historical buildings. These components influence the global behaviour both 

under vertical and horizontal loads. In particular, most damages and 

failures were observed after the recent earthquakes especially on masonry 

vaults. 

Therefore, the Historical and Monumental buildings are often 

characterized by high seismic vulnerability. The lowest seismic 

performances are associated with the presence of thrusting elements like as 

arches and vaults. 

In this background, the numerical analyses provide important information 

about the structural behaviour of such elements. 

The present Section focuses on a particular typology of vaults generally 

used as roofs in religious buildings. These vaults typically do not include 

any backfill and are slender. 

These typologies of masonry vaults cannot be analysed with classical 

approaches where no-tension is assumed. In fact, the tensile strength must 

be included in order to assess the seismic capacity of these masonry 

elements. 

In next Chapter the classical theory in order to assess the behaviour of 

masonry vault is discussed. 

After such analysis the novelties of the proposed method are introduced 

(Chapter 3) as improvements of the classical approaches, in particular 

accounting for the impact of tensile strength on seismic capacity of masonry 

vaults. 
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2.1. Overview on masonry vaults 

 

Masonry structures represent a significant part of international architectural 

heritage. Although they are among the oldest structures, their knowledge is 

still limited and it is usually difficult to investigate their structural 

behaviour. 

These difficulties are often due to the heterogeneity of the materials and of 

building techniques. Both the design and building techniques from age to 

age greatly evolved. 

This design approach, in some cases, has led to robust structures. Indeed, 

many of these structures: historic buildings, churches, railway bridges, etc. 

were subject to several seismic events without serious damage. 

However, this feature is typical of prestigious and strategic structures where 

same special structural measures were implemented. 

Instead, the old design approaches applied on ordinary buildings have 

generated often poorly built structures and characterized by strong 

vulnerability. 

Only in recent decades designers became aware of how to analyse masonry 

structures. 

These structural elements, during the seismic event, often influence the 

behaviour of the entire building by means of the interactions with the 

adjacent structural components. 

The recent Italian earthquakes (L’Aquila (Italy), 2009 and Emilia Romagna 

(Italy), 2012 earthquakes) showed how the vaulted structures are 

vulnerable. Figure 2.1 shows an example of the vaulted structure, as roofing, 

included in this study. 
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Figure 2.1: Buonacompra church, Emilia Romagna (Italy), damages after 2012-

Earthquake. 

 

Knowledge for ultimate seismic capacity of these structural elements and 

the collapse mechanism are key aspects both for the structural analysis and 

for the design of the strengthening interventions. 

This Ph.D. thesis focuses on masonry vaults with significant slenderness 

ratio (span/thickness of the cross section ratio), typically used as roofs in 

the religious buildings. 

For these vaulted roofs the use of classical approaches [e.g. Heyman 1995] 

to evaluate the seismic capacity cannot be applicable or would produce 

inaccurate results. 

For particular geometrical values of span, rise and cross section, the tensile 

strength of the masonry cannot be neglected as it will be clarified in the 

following paragraphs. 

In the next Section the critical issues of the classical analysis methods are 

discussed. 

 

 



Chapter - 2 

69 
 

2.2. Design approach based on geometrical rules 

 

An investigation of the main analytical models on masonry vaults has been 

conducted, along with design techniques used for many masonry arches 

previously designed. 

A first purpose is to investigate the classical theoretical approaches which 

can be used to assess the seismic capacity of curved masonry elements and 

point out their limitations. 

Structural analyses by using numerical models and prescriptions on 

technical codes have been applied to masonry buildings only recently. The 

first constructions were designed according to geometrical rules. The 

geometrical rules, in few cases (i.e. prestigious buildings), were coupled to 

other structural improvements like as steel ties, regular walls, elimination 

of horizontal thrusts, etc.. 

Such design rules were mainly based on past experiences, hence changed 

significantly during the years [Katalin 2014, Oppenheim 1992 & Dimitri et 

al. 2011]. Generally, for a curved element, given the span and radius of the 

arch, its thickness could be easily evaluated. 

In this Ph.D. thesis the focus is on curved elements made of masonry as 

arches and barrel vaults, yet including simple arch elements up to the major 

civil works as arch bridges, viaducts, etc.. A deep awareness of their actual 

safety level is still lacking. 

Many researchers have studied the impact of old design techniques on 

structural capacity of many existing structures. In particular, the empirical 

rules have been analysed according to modern structural criteria. 

Many studies showed that, in the majority of real cases designed through 

empiric rules, the structural performances are satisfactory [Brencich et al. 

2007]. In fact, many of existing structures are still in service although there 

are both a severe environmental degradation and inadequate maintenance. 

Starting from the usual jack arches to the magnificent civil bridges (figure 

2.2), in the world there are many samples of masonry arches. 
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Figure 2.2: Shaharah arch bridge made of regular natural bricks, Shaharah (Yemen). 

 

Also in Italian region there are many masonry arch bridges still in service 

(road and railway network). Many of them have been analysed in several 

studies under different point of views. 

In some recent studies [De Santis et al. 2012] the bridges dating back to 

XIX and XX Centuries and differing both in terms of geographical position 

and of geometrical properties were chosen. 

Surveying the geometrical characteristics of the historical bridges (referring 

to the vault thickness vs. span for deep arches and to pier top width vs. span 

and vault thickness for shallow arches), the majority of the existing 

scrutinised bridges were designed according to the empirical rules 

[Brencich et al. 2007]. 

Many of these design approaches have led to robust structures, especially 

for strategic structures (as like, bridges, aqueduct bridges, viaducts, etc.). 

It is interesting to note that these geometrical rules generally provide 

elements characterized by a large size. Therefore, these design approaches 

are not compatible with ordinary buildings. 
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2.3. The classical theory: basic assumptions 

 

The basic assumptions refer to the material behaviour and the no-tension is 

the main assumption usually adopted in the engineering problems for 

masonry structures. 

No-tension means that material has no tensile strength (or an extremely low 

value), hence even if tensile strains arise for strain compatibility, 

corresponding tensile stresses are always zero, masonry cracks and the 

effective cross-section reduces; this assumption is on safe side and justified 

by the low tensile strength of typical masonries. 

Different behaviour for materials can be considered, namely linear-elastic, 

cracking and plastic. 

For each behaviour, it is well known how to evaluate the failure surfaces 

[Giamundo et al. 2014, Prota et al. 2006, Borri et al. 2009, Parisi et al. 

2011, 2013 & Augenti et al. 2010] and how they change accordingly. 

In linear-elasticity, the limit surface is defined by a linear expression (solid 

green line shown in figure 2.3), in particular by two straight lines. 

The axial force value at maximum bending moment is equal to 50% of the 

axial plastic force (centred compressive force). 

The failure surface is governed by the most stressed fibre, whose stress level 

cannot be greater than the compressive strength, σ0 or lower than zero, 

considering that the cross section never cracks. 

The cracking behaviour takes into account that a portion of the cross section 

may not react in tension, while the reacting portion is always in compression 

(stress lower than the compressive strength). 

The failure surface is described by means of a non-linear curve (solid ciano 

line shown in figure 2.3). The cracking curve ends at a compressive force 

equal to 50% of the pure axial strength; afterwards, the cracking condition 

cannot exist (cross section is fully compressed). 
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Finally, under perfect plasticity assumption in compression, the plastic 

failure surface can be calculated. This failure condition is defined by a 

quadratic function (solid red line shown in figure 2.3). 

Introducing the normalized variables, axial force p and flexural moment m, 

for a section with unit depth: 

0 0

P P
p

P s 
 


                                                                                                                 (2.1) 

and 

2

0 0

6 6M M
m

s P s 

 
 

 
                                                                                                (2.2) 

where P and M are the normal force and bending moment, respectively, 

acting on the cross section, s is the thickness of barrel vault or better the 

height of rectangular cross section and P0 is the compressive axial capacity 

(with a uniform stress equal to compressive strength σ0 applied on the cross 

section). 

The failure surface can be described and plotted in a normalized form 

[Lignola et al. 2008], as shown in figure 2.3. 

 

 
Figure 2.3: Normalized interaction diagram M-P for rectangular cross section: no-

tension assumption. 
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The different failure surfaces, shown in figure 2.3, according to the no-

tension assumption, start from the origin of axes. Indeed, a pure traction 

condition for the cross section, is not compatible whit the basic 

assumptions. 

Finally, all the failure surface functions are symmetric to the p axis (hence 

not plotted here on the negative m side). 

 

2.4. The Heyman’s theory 

 

About the totality of engineering applications on masonry are conducted 

under no-tension assumption, according to best knowledge of author. 

The main effects of tensile strength on the performance of the masonry were 

studied in the course of time, e.g. [Fanning et al. 2001a, 2001b]. 

Most of those studies have been performed by using detailed approaches as 

macro or micro-mechanical modelling. However, both numerical and 

analytical models accounting for tensile strength and based on a simplified 

approach, like the present one, are sporadic. In particular, for vaulted 

masonry structures the Heyman’s theory [Heyman 1995] is commonly 

adopted. 

The maximum compressive stresses σmax are, on average, typically lower 

than the compressive strength σ0 due to the significant dimensions of the 

cross sections usually associated to the geometric rules. 

With reduced contact surfaces only (i.e. localized interaction between brick 

and mortar due to cracking effects), the normal stresses σmax could achieve 

high values. 

The analytical model for the design of masonry vaults loaded by a generic 

pattern is based on the following assumptions: 

 

 No tensile strength of materials; 

 Compressive strength is infinite; 

 No sliding failure mode. 
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Under these assumptions the hinge mechanism is the only failure mode. 

The first assumption is conservative and commonly assumed to assess the 

capacity of masonry structures. 

Since the crushing load is usually higher than the load which activates the 

hinges especially for unreinforced masonry vaults, the crushing failure is 

rare [Buhan et al. 1997 & Foraboschi 2004]. 

The sliding failure mode occurs when the shear stress, at the interfacial 

surface between mortar and brick, reaches the shear strength. In such 

conditions the sliding between two contacting surfaces is activated leading 

to the failure of the vaulted structure [Drosopoulos et al. 2007]. 

This mechanism could be activated when the angle between the thrust line 

and the axis of the arch is larger than the friction angle. In each cross section 

the thrust line is defined by the envelope of resultants of the acting 

compressive stress distribution, also in cracked condition. 

The thrust line should be inside the arch profile, hence its angle with the 

axis of the arch is usually small. 

According to the limit analysis [Fortunato et al. 2014, Angelillo et al. 2004, 

2013 and 2014], for a generic load pattern, if the thrust line is contained 

entirely within the arch boundaries, all the blocks are able to carry the load 

through compressive stresses only (without σmin<0). 

However, there is not only one thrust line to guarantee stability of the curved 

element. Indeed, according to the lower bound theorem, any thrust line 

which is located within the arch boundaries, corresponds to an equilibrium 

configuration for the curved structure [Moseley 1843 & Milankovitch 

1907]. 

The structure is stable under a generic load if and only if a thrust line entirely 

contained in the boundaries of arch can be found. 

Accounting for the no-tension assumption in cracked conditions the 

maximum eccentricity of the axial load is equal to s/2 and reduces at 

increasing axial load. 
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Therefore, the thrust line must be always entirely contained in the geometry 

of the curved element (i.e. eccentricity of axial load contained in the range 

–s/2, s/2 ). 

The collapse condition of the curved element is rigorously related to the 

thrust line’s configuration. The collapse can be activated if the number of 

contact points between the thrust line and boundaries of curved element 

(thrust line becomes tangent to the arch boundaries) is enough to generate a 

hinge mechanism (figure 2.4). 

Variations of the thrust line configuration can be induced by variations of 

the horizontal and/or vertical loads. The thrust line configuration, during the 

entire load history, depends both on load patterns (vertical and horizontal) 

and on restraint conditions of the curved element. 

 

 
Figure 2.4: Classic Heyman’s theory applied to a masonry arch with fixed restraints (at 

collapse with fixed gravity load and variable horizontal load). 

 

2.4.1. Drawbacks of Heyman’s theory 

 

The validity of the Heyman’s method is recognised in most of engineering 

applications. Nevertheless, in some cases it could provide inaccurate 

Seismic action 

Plastic hinge 
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solutions. Masonry vaults whit high span/thickness ratios cannot be 

analysed by the Heyman’s method. 

The reduced thickness of the curved element requires a minimum of tensile 

stresses already under a gravitational load. Figure 2.5 shows a masonry arch 

that, under the no-tensile assumption, even under gravity loads has a load 

multiplier lower than 1. 

Therefore, already under gravity acceleration the plastic compatibility 

conditions cannot be respected. In particular, these effects can be shown by 

using a non-linear analysis along the gravity direction (i.e. incremental 

analysis). 

 

 

Figure 2.5: Masonry arch where the no-tension assumption cannot be applied (gravity 

load only). 

 

Starting from an unload condition a vertical acceleration ranging from 0 to 

g (i.e. gravity load with an acceleration value of 9.81 m/s2) can be 

considered as load pattern to perform an incremental analysis. 

The relation between the vertical acceleration and the displacement of a 

control node shows that collapse occurs for a vertical acceleration lower 

than the gravity load (figure 2.6). 
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Figure 2.6: Acceleration-Displacement curve where the no-tension assumption cannot be 

applied (gravity load only). 

 

Given both the geometrical and structural symmetry, the plastic hinges 1th, 

2th and 3th, 4th occur simultaneously. 

This example shows that, only for a vertical load lower than gravitational, 

a thrust line entirely contained into the boundary of the arch can exist. 

Such an arch is supposed to theoretical collapse, even if in reality it stands 

up since many years and there is no evidence of any structural problem. 

The failure condition is given when no thrust line is contained in the arch 

boundaries. 

From a mechanical point of view, in terms of failure domain, if plastic 

compatibility conditions cannot be respected: some P-M stress points lie 

outside the failure surface (or in other words the eccentricity of compressive 

resultant P is higher than limit values given by Mmax/P ratios on failure 

surface).  

Therefore, for some structures a minimum tensile strength is crucial, 

especially for masonry vaults without backfill. For these structures the axial 

load is very small for gravity loads, hence the eccentricities and their 

fluctuations along the arch profile could be very large. 

This feature is characteristic of the vaulted roofing adopted in religious 

buildings. The present Ph.D. thesis focuses on this critical aspect. 
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Chapter 3 

 

PROPOSED ANALYTICAL MODEL 

 

The structural behaviour of curved elements can be complex to simulate 

and to predict exclusively by numerical analyses. Furthermore, the use of 

refined numerical FEM models cannot be always adopted in practical 

structural problems. 

In this background, the development of simplified analytical modelling 

approach, manageable and convenient for seismic capacity assessment is 

certainly valuable. Particular attention should be paid to some structural 

components, typically found in the monumental buildings and churches, like 

as arches and vaults. 

Therefore, the application of simplified methods is interesting especially for 

ordinary engineering applications. 

The proposed analytical model will be discussed in the next Section. 

 

3.1. Characteristics of the analytical model 

 

Many structural problems concerning masonry structures are usually 

analysed under no-tension assumptions. The structural analysis of masonry 

vaults through the Heyman’s model can be performed, however this model 

cannot be applied on particularly slender vaults, like as roofing typically 

used in religious buildings. 

These structures have both a high span/thickness ratio and backfill is not 

present over the vault. In these cases the classical theory cannot be adopted 

because the hinge mechanism can be activated already under gravity loads 

and the tensile strength should be included. 

A simplified analytical model, which includes the tensile strength, was 

proposed. 
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The proposed method represents a useful modelling tool in order to design 

dynamic tests on masonry vaults and to assess their vulnerability. 

 

3.2. Tensile strength effects on the failure surface 

 

The tensile strength provides different effects on the failure surface. 

As previously shown the no-tension assumption provides several failure 

surfaces according to the behaviour of masonry (linear-elastic, cracking and 

plastic behaviour based on stress block model). 

The low axial force values in such masonry arches at collapse justify the 

approximated overlapping of the yielding surface and cracking surface. 

Under this assumption, s/2 is the maximum eccentricity for the thrust line 

whatever the low axial load values. 

The elastic failure surface is compatible with the brittle behaviour of the 

masonry material, but is close also to the ideal plastic behaviour. 

In any case, the maximum eccentricity is independent on the axial force 

achieved during the load history, and this makes the Heyman’s model easily 

implementable in a graphical approach. 

Conversely, if the tensile strength is included, a dependency of the 

maximum eccentricity e of the thrust line to the axial force values P occurs. 

Nevertheless, as it will be explained in the following, the axial force is low 

and much lower than its ultimate value. Therefore, the maximum 

eccentricity can be assumed almost independent on axial load variations 

until the hinge mechanism is activated. 

This assumption facilitates a graphical approach; however it is not essential 

in the proposed approach and can be avoided. 

The tensile strength effect on the failure surface is generally an expansion 

of the boundaries. The maximum thrust line's eccentricity is dependent on 

axial force whatever the behaviour of materials. 

Once the internal axial load is known, the maximum eccentricity value 

according to the P-M interaction diagram can be calculated as M/P ratio. 
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The model is proposed for the three different behaviours (linear-elastic, 

cracking and plastic based on the stress block model). 

The math expressions of the maximum eccentricity values e are provided in 

closed form. 

The no-tensile assumption (i.e. classical approach) can be considered as a 

particular case of the general proposed method where the tensile strength σt 

is zero. 

 

3.2.1. Linear-elastic behaviour 

 

The failure surface is evaluated in terms of P-M interaction domain 

assuming an unitary depth for cross section. With σt the tensile strength 

value and σ0 the compressive strength, the relationship between bending 

moment and axial force is assessed according to equilibrium and stress 

compatibility equations (3.1), in terms of maximum and minimum stresses, 

σmax and σmin. 

max 0

min t

 

 



 
   (3.1) 

In linear-elastic assumption the limit condition is obtained by means of the 

compressive or tensile strength achievement in the most stressed fibre. In 

particular, the strength can be achieved only on the external fibres. 

The figure 3.1 shows the internal stresses according to the elastic limit state 

for several points of the P-M interaction domain. 

 

 
Figure 3.1: Generic failure conditions for the cross section with linear-elastic behaviour. 
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The point (e)=(Mbal, Pbal) identifies the balanced condition for the cross 

section, where both the compressive strength σ0 and the tensile strength σt 

are achieved. 

The neutral axis xbal, can be calculated using the similarity (equilibrium) 

equations between compressive and tensile diagrams, as follows: 

0 t

bal balx s x

 



   (3.2) 

Using the math position α=σt/σ0, the equation (3.2) can be rewritten, it is: 

0 0

bal balx s x

  



   (3.3) 

Manipulating previous equation (3.3), it provides the neutral axis xbal: 

1
bal

s
x





   (3.4) 

where s is the thickness of the cross section. 

The maximum bending moment, Mel,max (i.e. Mel,bal), increases 

corresponding to a lower balanced axial force Pbal. The math expression of 

Pbal and Mbal, can be obtained from an equilibrium equation on the cross 

section. 

In particular, assigned a normal force value, the boundary of the P-M 

interaction domain must satisfy the following equilibrium equation: 

C T P     (3.5) 

where: 

 C is the resultant compression force achieved into the cross section; 

 T is the resultant tensile force achieved into the cross section; 

 P is the axial force externally applied on the cross section. 

When the balanced condition is satisfied, the equation (3.5) for a section 

with unitary depth, can be written as follows: 

 0

2 2

t balbal
bal

s xx
P

  
        (3.6) 

Using equation (3.4), the previous expression (3.6) can be rewritten, it is: 
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Manipulating the previous equation (3.7), it becomes: 

  01

2
bal

s
P

   
       (3.8) 

When the parameter α is equal to zero, the Pbal is equal to P0/2 (i.e. 

Heyman’s Theory). 

Using the math positions provided by the (2.1), the equation (3.8) can be 

rewritten in normalized form pbal, it is: 

 1

2
balp


       (3.9) 

The bending moment Mbal>0 (using the Navier equations for a section with 

unitary depth can be calculated, as follows: 

bal
0 2

bal

2

6

6

bal

bal
t

P M

s s

P M

s s






 


  

                                (3.10) 

Replacing the Pbal expression into the first equation of the (3.10), it is: 

  0 bal
0 2

1 6

2

M

s

 


  
                                  (3.11) 

Manipulating previous equation (3.11), the maximum bending moment Mbal 

can be calculated as follows: 

  2
0

bal 0

1

2 6

s
M

 


  
   
 

                                                                          (3.12) 

 
2

0
bal 1

12

s
M





                                                                                           (3.13) 

Using the math assumption provided in the (2.2) the equation (3.13) can be 

rewritten, in normalized form mbal, it results: 
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Simplifying the previous equation (3.14) can be rewritten as follows: 

 1

2
balm


                                                                                                (3.15) 

Similarly, the relation between bending moment Mel and axial force P which 

provides the failure surface for P≤Pbal (i.e. p≤pbal) and P≥Pbal (i.e. p≥pbal) 

can be calculated.  

According to the compatibility equation (3.1) the failure condition occurs 

when the σmax or σmin achieve the limit values (σ0 and -σt respectively). 

For a P value lower than Pbal the failure condition depends on tensile 

strength value σt (increasing solid green line shown in figure 3.2). 

Therefore, the maximum bending moment can be calculated, for a section 

with unitary depth, by the following equation (i.e. Navier equation): 

,1

2

6 el

t

MP

s s



                                                                                                       (3.16) 

Manipulating previous equation (3.16), it is: 
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P s
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    for    
balP P                                                             (3.17) 

It provides the bending moment Me,1 at varying axial force P. 

Using the math assumption provided in the (2.1) and (2.2), the equation 

(3.17) can be rewritten in normalized form mel,1, it results: 
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                                                                              (3.18) 

Manipulating previous equation (3.18), its normalized form mel,1(p) can be 

obtained as follows: 

,1elm p      for    balp p                                                                                              (3.19) 
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Instead, for a p value higher than pbal the failure condition depends on 

compressive strength value σo (decreasing solid green line shown in figure 

3.2). 

Therefore, the maximum bending moment Mel,2 can be calculated by the 

Navier equation where most stressed fibre has achieved the compressive 

strength: 

,2

0 2

6 elMP

s s



                                                                                                      (3.20) 

Manipulating previous equation (3.20), it is: 
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    for    balp p                                                             (3.21) 

It provides the bending moment Mel,2 at varying axial force P. 

Using the math position provided in the (2.1) and (2.2), the equation (3.21) 

can be rewritten in normalized form mel,1 as follows: 
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                                                                       (3.22) 

Manipulating previous equation (3.22), it is: 

 ,2 1elm p       for    balp p                                                                                      (3.23) 

It is interesting to note that the no-tension assumption is simply given by 

α=0. 

Therefore, this approach shows a general application falling into the 

classical theory when no-tensile strength is assumed (i.e. Heyman’s 

Theory). 

The maximum bending moment Mel(P) depends on the axial force P. The 

axial force values vary from the pure traction condition Pt to the pure 

compressive state P0. 

These terms, assuming an unitary depth for the cross section, are expressed 

as Pt=σt∙s and P0=σ0∙s, respectively. 
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The envelope of each stress point Mel(P) provides the interaction surface. 

According to previous equations (3.19) and (3.23) the failure surface can be 

provided in a normalized form (figure 3.2). 

 

 
Figure 3.2: P-M interaction surface with linear-elastic behaviour. 

 

The failure surface shifts to the left (i.e. traction side). 

The analysis of the p-m (or P-M) interaction domain shows that the 

maximum value of eccentricity eel(P) of the thrust line depends on 

normalized axial force P (figure 3.2). 

In particular, the eccentricity eel,1(P) can be expressed as follows: 
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M
e

P
      for    balP P     (3.24) 

Using the math position provided in the (3.1) and (3.2), the previous 

equation (3.24) can be rewritten using the normalized parameters mel,1 and 

p, it becomes: 
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Replacing the expression (3.19) into the previous equation (3.25), it is: 
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Similarly, the maximum eccentricity eel,2(P) can be provided through the 

following equation: 
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P
      for    balP P     (3.27) 

Using the math position provided in the (3.1) and (3.2), the previous 

equation (3.27) can be rewritten using the normalized parameters mel,2 and 

p, as follows: 
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Replacing the expression (3.23) into the previous equation (3.28), it results: 
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     for    balp p        (3.29) 

It is observed that for α=0 (i.e. classical equation without tensile strength) 

eccentricity is independent on axial load value. 

For α > 0 and 0 < p < pbal the eccentricity of the thrust line is always greater 

than s/6 (maximum value with no-tension and linear-elastic assumption). 

 

3.2.2. Cracking behaviour 

 

According to the proposed model the tensile strength σt can be achieved but 

not exceeded (while in classical assumption, tensile stresses are not 

accepted). 

In a brittle condition, where stresses are virtually higher than tensile 

strength, that area is excluded from calculations, hence it is assumed to 

crack. Therefore, two different parts can be identified in the cross section: 

 first part of the cross section where the tensile strength has been 

exceeded causing the cracking of material. The portion which is 
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under the fibre at σt value doesn’t provide any contribution to 

carrying capacity; 

 second portion where the stress is lower than the tensile strength or 

in compression (but lower than compressive strength), hence 

providing a contribution to capacity. 

In cracking assumption the limit condition is obtained by means of the 

simultaneous achievement of compressive and tensile strengths on a section 

with reduced thickness s’< s. 

The structural issue can be solved by using an approach similar to the linear-

elastic behaviour, but conducted on a reduced cross section with height 

equal to s’<s. 

When the strength values σ0 and σt on the outermost fibres of the reduced 

section are achieved, the failure condition is triggered. The figure 3.3 shows 

the internal stress state according to the proposed cracking’s model where a 

tensile strength is included. 

 

 
Figure 3.3: Generic failure conditions for the cross section with cracking behaviour. 

 

The linear elastic behaviour is always found, but in a reduced cross section. 

The s’ height value can be obtained as a balanced failure condition of 

reduced cross section, hence including the cracking behaviour. 

In particular, using the equilibrium equation (3.5) for the internal stresses 

shown in figure 3.3, it is: 
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Given the balanced condition achieved into the cross section, due to the 

linear behaviour of material, the neutral axis is expressed revising equation 

(3.4): 

'

1
cr

s
x





   (3.31) 

Replacing it into the equation (3.30), it is: 
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Manipulating previous equation (3.32), it results: 
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Therefore, manipulating the previous equilibrium equation (3.33) the 

reduced thickness s’ can be calculated as follows:  
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      for     0 1      and    balP P    (3.34) 

Using the math position (2.1), the equation (3.34) can be expressed, using 

the normalized parameter p, as follows: 

2
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p
s s




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
     for    0 1      and    balp p     (3.35) 

The maximum bending moment value Mcr(P) depends on axial force. The 

axial forces can vary from zero to Pbal value according to the cracking 

model. 

Indeed, it can be demonstrated that for P<0 the balanced failure cannot be 

achieved if σt < σ0 as supposed. In fact, a net traction cannot be achieved if 

tensile strength is lower than compressive strength (and both must be 

reached). 

Furthermore, with P<0 even assuming a cracking condition, without a 

balanced failure (i.e. stress in compression is lower than compressive 

strength) the associated bending moment Mcr is lower than Mel,1. However, 
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it is noted that this is not conforming to the given assumptions on cracking 

failure condition. 

The relation between bending moment Mcr and axial force P, which 

provides the cracking failure surface, can be expressed thought an 

equilibrium equation. 

In particular, the bending moment Mcr can be calculated by using the 

expression (3.13) because the reduced section (i.e. thickness s’<s) behaves 

according to a balanced equilibrium condition. This term must be added to 

bending moment due to the eccentricity of axial force P (effect of the 

thickness reduction). 

Therefore, the bending moment Mcr can be expressed revising the equation 

(3.13): 
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Using the equation (3.34) the bending moment Mcr can be rewritten as 

follows: 
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Manipulating the previous equation (3.37), it becomes: 
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(3.41) 

Then, using the math position provided in the (2.1) and (2.2), the equation 

(3.41) can be rewritten in normalized form mcr, as follows: 
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Manipulating previous equation (3.42), it results: 
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The envelope of each Mcr(P) provides the interaction surface with a 

cracking behaviour. Figure 3.4 shows the failure domain according to a 

normalized form mcr(p). 

 

 
Figure 3.4: P-M interaction surface with cracking behaviour. 
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Even if stress distribution is linear, due to cracking, the curve is a quadratic 

function of axial force P and bending Mcr value is dependent on both the 

axial force and α parameter. 

The maximum eccentricity value ecr(P) of the thrust line depends on the 

axial force P. 

In particular, the eccentricity ecr(P) can be expressed as follows: 

cr
cr

M
e

P
     for    0 1      and     balP P                           (3.45) 

Using the math position provided in the (3.2), the previous equation (3.45) 

can be rewritten as function on normalized parameters mcr and p: 
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     for    0 1      and     balp p    (3.46) 

Replacing the expression (3.44) into the previous equation (3.46), the 

equation of the eccentricity ecr becomes: 
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     for    0 1      and     balp p    (3.47) 

It is observed that for α=0, the previous equations fall into the classical 

equation where no-tension is assumed, and eccentricity is s/2 exactly in pure 

bending (i.e. p=0) and approximately at low axial load values. 

The figure 3.4 shows the main effects of tensile strength assumption in 

cracking conditions. 

Between the linear elastic and cracking failure surfaces, depending on the α 

value, an intersection point can exist. 

In particular, if cracking state occurs or not, it depends on α and, by 

comparing equations (3.44) and (3.19), the limit values for α can be 

assessed. 

For α ≥1/3 the cracking failure surface is totally below the elastic failure 

surface, while for α <1/3 the surface is partially above the elastic failure 

surface (totally above in the case of α=0).  



Chapter - 3 

92 
 

3.2.3. Plastic behaviour (stress-block model) 

 

A perfect plastic behaviour can be used for the compressive stress under the 

no-tensile assumption. But when the tensile strength is assumed, a perfect 

plastic behaviour cannot be adopted for the tensile stress too. 

Therefore, a stress-block based model [Whitney 1937] was adopted in order 

to assess the post-elastic behaviour of the masonry. The stress-block model 

was adopted both for the compressive and tensile behaviour (the height of 

the plastic zones in tension is multiplied by 0.5). 

The failure surface is very close to the yielding surface obtained under the 

no-tensile assumption. In fact, the tensile strength has an extremely low 

value for the masonry material. On average, the tensile strength σt is 

approximately equal to 1/10 of the compressive strength σ0. 

Interaction between bending moment and normal force depends on internal 

stresses as shown in figure 3.5.  

 

 
Figure 3.5: Generic failure conditions for the cross section by using stress-block model. 

 

In particular, the entire boundary of the P-M interaction domain is obtained 

through different equations. 

In normalized form, when p ranges from -α to –α/2 (i.e. points a’’ and b’’ 

respectively), the behaviour does not differ from the linear elastic one (i.e. 

there is no compression, the behaviour is governed by the tensile strength). 

In this range the P-M interaction domain is provided by the previous 

equation (3.19).  
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model the height of the plastic zones is the neutral axis, xp, multiplied by ψ 

(usually assumed equal to 0.8), hence it is ψ∙xp and the distance of 

application point of resultant force from neutral axis is λ∙xp (usually 

assuming λ equal to 0.4). 

The neutral axis with plastic behaviour is provided by an equilibrium 

equation. For p ranging from –α/2 to ψ the equilibrium equation (3.5) on the 

cross section with unitary depth can be rewritten as follows: 
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Manipulating previous equilibrium equation (3.48), the neutral axis xp,1 can 

be calculated, it results: 
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Using the math position provided in the (3.1), the neutral axis xp,1 can be 

expressed through the normalized parameter p: 
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The previous equation (3.53) provides the neutral axis up to the limit 

condition when the cross section is totally compressed (i.e. point e’’ shown 

in figure 3.5). This condition is reached when the neutral axis is ψ∙s. 

The axial force values range from a traction of -0.5∙Pt to a compression 

value of ψ∙P0. 
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The bending moment Mp,1(P) can expressed through the following 

equilibrium equation: 

,1

,1 ,1
2 2 3

p

p p

s xs s
C x T M

    
         
    

       (3.54) 

Replacing the resultant compression C and resultant traction T acting on the 

cross section, the equation (3.54) can be rewritten as follows:  
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Given the neutral axis xp,1 provided in the (3.52), previous equation (3.56) 

becomes: 

 
 

 
 

2 0
,1 0

0

2

0
0

0

21
6

12 2

21
6

6 2

p

P s
M s s

P s

 
   

  

 
   

  

     
              

     
            

   (3.57) 

Manipulating the previous expression (3.57), it results: 
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                                           (3.58) 
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The bending moment Mp,1 provided by the equation (3.59) can be rewritten, 

in normalized form mp,1, using the math position (2.1) and (2.2). In 

particular, the relation between bending moment mp,1 and axial force p in 

normalized form is: 

 
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 

 
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for      0 1         and        
2

p


                                                         (3.60) 

The previous equation (3.60) can be applied for p values up to p=Ψ. 

The maximum eccentricity ep,1(P) can be calculated as follows: 

,1
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p

M
e

P
                                                                                                        (3.61) 

Replacing the equation provided in the (3.59), the previous expression 

(3.61) becomes: 
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0
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                                                            (3.62) 

Using the math position expressed in the (3.1), the eccentricity ep,1(P) of the 

thrust line can be rewritten in normalized form, it is: 
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for     0 1       and     
2

p


                                                                              (3.63) 

For p ≥ Ψ the failure surface falls into the classical region with no-tensile 

assumption. 

In fact, starting from a section totally compressed, the eventual tensile 

strength does not impact on the failure surface. 
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The maximum bending moment Mp,2 is independent from the neutral axis 

(external to the cross section). The axial force values range from a 

compression of Ψ∙P0 up to a pure compression value of P0. 

The relationship between bending moment Mp,2 and axial force P can be 

calculated from an equilibrium equation, as follows: 

C P                                                                                                                               (3.64) 

Replacing the resultant compression C, it becomes: 

0 ,2px P                                                                                                                      (3.65) 

Manipulating previous equilibrium equation (3.65) the neutral axis xp,2 can 

be calculated through the following equation: 
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P
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 



   for     0 0P P P                                                              (3.66) 

Using the math position provided in (2.1), the neutral axis xp,2 can be 

expressed through the normalized parameter p, as follows: 

,2p

s p
x




      for    1p                                                             (3.67) 

The axial force values range from a compression of ψ∙P0 to a maximum 

compression strength value of P0. 

The bending moment Mp,2(P) can be expressed through following 

equilibrium equation: 
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p p
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M C x
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 
       (3.68) 

Replacing the resultant compression C according to the internal stresses, the 

equation (3.68) can be rewritten, it is:  
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                                                                                      (3.69) 
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                                                                        (3.70) 
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Given the neutral axis xp,2 provided in (3.66), the previous equation (3.70) 

becomes: 

,2 0

0 02
p

P s P
M   
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                                  (3.71) 

Manipulating the previous equation, it results: 
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The bending moment Mp,2 provided by equation (3.72) can be rewritten, in 

normalized form, using the math position (2.1) and (2.2). The relationship 

between bending moment mp,2 and axial force p in normalized form is: 
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      for    1p                                                         (3.73) 

The previous equation can be applied for a p value higher than p=Ψ up to 

p=1. 

The maximum value of eccentricity ep,2(P) of the thrust line depends on 

normalized axial force P. It can be calculated as follows: 
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M
e

P
                                                                                                        (3.74) 

Replacing the equation provided in (3.72), the previous expression (3.74) 

can be rewritten as follows: 
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                                                                                                            (3.75) 

Using the math position expressed in (3.1), the eccentricity ep,2(P) of the 

thrust line can be rewritten in normalized form, it results: 
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2
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

 
  

 
        for          1p                                                            (3.76)                                                                                                   

The envelope of each Mp(P) value is provided by a quadratic function. In 

figure 3.6 the P-M interaction domain is shown in a normalized form mp(p). 
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The maximum of the bending moment Mp(P) is obtained at the balanced 

axial load pbal. 

The failure surface is always outside the interaction surfaces with linear-

elastic and cracking behaviour. 

 

 
Figure 3.6: P-M interaction surface with plastic behaviour (stress-block model). 

 

The equations (3.15), (3.23), (3.44), (3.60) and (3.73) provide the stress 

compatibility equations that, starting from the gravity load up to collapse 

condition, must be satisfied. 

If the tensile strength is included, even for low axial force values, the 

eccentricity of the thrust line is not constant with axial load force. 

The plastic behaviour represents the most adequate assumption in order to 

perform a limit analysis. 

The proposed model showed that, including tensile strength, the maximum 

eccentricity of the thrust line can be greater compared to the classical 

approach (no-tension assumption). 

Indeed, the thrust line can be external to the geometrical boundaries of the 

curved element. These maximum eccentricities are provided in closed form 

by the equations (3.26), (3.29), (3.47), (3.63) and (3.76). 
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3.3. Graphical interpretation: fictitious thickness 

 

For a generic load pattern (vertical and/or horizontal load), the masonry arch 

is in safe condition if the hinge mechanism has not been activated (most 

likely mechanism). 

The collapse condition is activated when the thrust line reaches the 

maximum eccentricity in a sufficient number of points. However, the 

maximum eccentricity depends on the material’s behaviour and axial load 

value P.  

The previous equations (3.15), (3.23), (3.44), (3.60) and (3.73) provide the 

maximum eccentricities eel,1, eel,2, ecr, ep,1 and ep,2 of the thrust line according 

to the linear, cracking and plastic behaviour, respectively. 

The fictitious thickness, which depends on the axial force value achieved 

during the load history, can be assessed using these equations. 

Fixed a generic load step, the axial force value is known (figure 3.7) and the 

maximum eccentricity value can be calculated for any section (figure 3.8). 

The fictitious geometry of the masonry arch evolves with the axial loads. 

 

 
Figure 3.7: The evolution of the fictitious geometry varying the normal stress values. 

 

emax(n1) 

emax(n2) 

emax(n3) 
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Figure 3.8: The evolution of the maximum eccentricity e(P) varying the normal stress 

values P. 

 

3.3.1. Simplified approach aimed at the graphical method application 

 

For each load step, the thrust line must be contained in boundaries that are 

altered during the entire load history until the collapse condition. 

This aspect determines some limits to the applicability as a graphical 

method. However, the fictitious geometry could be assumed as fixed, 

assuming a negligible variation of the axial forces. 

With this additional simplification an approach similar to Heyman’s method 

can be performed (collapse multiplier and failure mode). However, it is 

noted that increasing the axial load, the fictitious thickness reduces. For this 

reason, the expected increments of axial load should be carefully noted and 

estimated. 

On safe side, the maximum expected axial load value in each section could 

be considered to evaluate the linked eccentricity. The maximum expected 

axial load value could be related to the axial load values under gravity 

conditions. 

Therefore, the graphical method can be applied on a curved masonry 

element where the actual thickness s is increased to a fictitious value equal 

n1 n2 n3 

emax(n1) emax(n2) emax(n3) 
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to twice the eccentricities eel,1, eel,2, ecr, ep,1 and ep,2, point wise evaluated 

according to previous equations. 

 

3.4. Solving algorithm for an arch element 

 

In order to apply the proposed analytical model, a solver algorithm is 

provided by using a synthetic form. 

A masonry arch loaded by a generic load pattern can be analysed by means 

of a discrete approach. The vertical and horizontal load patterns can be 

independent and the goal is to assess the maximum load leading to a 

collapse mechanism. This load value can be easily linked to a lateral 

acceleration. 

Usually, the vertical load is assumed constant throughout the entire load 

history. The collapse condition can be achieved by using an increasing 

horizontal load pattern. The horizontal load’s shape can be chosen 

proportional to the masses or to the first natural mode (as classical pushover 

analyses require). 

For some curved elements, the horizontal shaking motion yields to 

additional not negligible vertical accelerations [De Santis et al. 2014]. 

In figure 3.9 a masonry vault loaded by a generic vertical and horizontal 

load pattern is shown. 

Starting from the gravitational load, a thrust line variation is evaluated due 

to horizontal loads. The thrust line can be tangent to the boundary of 

fictitious geometry of the masonry arch during the loading history. The 

maximum number of tangent points depends on the restraint conditions. The 

collapse condition is achieved by means of the hinge mechanism (i.e. 

sufficient number of tangent points or hinge formations). 
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Figure 3.9: Discrete model of a masonry arch under a generic load pattern. 

 

The solving equations are based on a discrete approach. 

The curved element can be modelled by means of a finite number of 

elements (finite number of beams dn  and nodes 1dn  ). 

In a generic control section 
iS , according to the assumed material behaviour, 

the plastic hinge can be activated if the maximum bending moment is 

exceeded. 

The restraint devices can be replaced by their reactions. Assuming a fixed 

arch, defining with A and B the two sections at the imposts, for each of them 

three reactions occurs. HA, HB and VA, VB are the horizontal thrusts and 

vertical reactions at the impost sections respectively, whereas MA and MB 

are the bending moments acting in the X, Y plane. On each discretized 

element there is a discretized external load Vi and Hi where i = 1,2,…,nd is 

the generic element of the arch. 

In a Cartesian system x, y and z are defined in the barycentre of the generic 

arch’s element. The reaction values HB, VB and MB at the arch’s impost B 

can be written based on the HA, VA and MA counterparts as follows: 
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               (3.77)                                                                                                   

Where l is the arch’s span, xi and yi identify the generic element’s location 

in the local coordinate system. 

Similarly the internal forces within the generic element j of the arch, 

according to figure 3.8, can be expressed as follows: 
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             (3.78) 

Where the index i identifies all the elements starting from the impost’s 

section A to the control section sj. 

The internal axial and shear stresses, Pi and Ti, can be calculated as: 
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cos sin
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j j j j j

j j j j j

P H V

T H V

 

 

   
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             (3.79)  

where αj is the angle of the axis normal to the control section sj with respect 

to the horizontal axis x (local tangent at the curved element). 

The bending moment can be calculated by using the third equation of the 

system (3.78). 

On each element, a horizontal force is applied, expressed as Hi=λ∙Vi, where 

the natural number λ is the multiplier of the horizontal load, for a generic 

load step. The λ factor can be assumed also as a function (e.g. modal shape) 
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of a further parameter increasing up to the collapse condition (hinge 

mechanism), hence related to the collapse’s acceleration. 

The internal forces Mj, Pj ratio provides the eccentricity of the thrust line at 

any load step. Denoting with M0(Pj) the maximum bending moment 

according to the behaviour assumed for the masonry material (i.e. linear-

elastic, cracking or plastic), at each section the additional compatibility 

condition, written as follows, must be satisfied. 

 0 jj

j j

M PM

P P
      that is        ,0j j je e P               (3.80)  

Where ej,0 is the maximum eccentricity previously discussed. In all control 

sections the plastic hinges can be activated.  

In order to apply an incremental analysis aimed at the collapse activation, 

in the generic load step where the hinge is activated, the structure must be 

updated. If j’ is the cross section where the hinge is activated, it is 

Mj’≤M0(Pj). 

Indeed, the compatibility equations for any step after the first hinge 

activation must be satisfied. The structure is updated during the loading 

history up to the ultimate collapse mechanism. 

The incremental analysis provides both the collapse's acceleration and the 

evolution of the hinge mechanism. 

If the assessment of the collapse acceleration is the goal, the solution is even 

easier by using the Limit Analysis Theorems. 

According to the framework of the lower bound theorem, each possible 

thrust line lying within the fictitious arch boundaries, corresponds to an 

equilibrium configuration of the curved element where the tensile strength 

is assumed. The solver algorithm can be implemented as schematically 

discussed below: 

 

 The structure must be transformed into its equivalent isostatic 

structure by the elimination of restraint devices; 
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 They must be replaced by the related unknown reactions Xk with 

k=1,2,…,k and k is the number of statically indeterminate reactions; 

 The internal force diagrams are evaluated (bending moment and 

axial force) on the equivalent isostatic structure due to the external 

gravity loads Vi (MVj and PVj), the horizontal loads Hi=λ∙Vi (MHj and 

PHj) and the statically indeterminate reactions (MXk and PXk); 

 The global internal forces include the different effects as shown: 

            
j j K

j j K

j V H K X

j V H K X

P P P X P

M M M X M

   

   
                         (3.81)  

 Finally the compatibility equations (3.80) must be imposed; 

 In order to determine the static multiplier λ, a numerical procedure 

can be conducted that transforms the structural problem into a linear 

programming problem optimizing the system of equations given by 

(3.81). 
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Chapter 4 

 

ANALYTICAL MODEL VALIDATION 

 

The computing capacity of tools now available allows the development of 

complex numerical models that can be used to evaluate many structural 

aspects. The heterogeneity of the masonry often makes these numerical 

models very complex and unreliable when applied to structures different 

from those originally used to develop them. For these structures and their 

components (individual walls, vaults, etc.) the experimental support is 

necessary both to assess the mechanical behaviour and to validate models 

by means of numerical and experimental comparisons. 

In this background, the experimental tests can provide an efficient 

contribution to the calibration and interpretation of simplified numerical 

and analytical models. 

A simplified analytical model, which includes the tensile strength, was 

proposed (Chapter 3). Validation of the analytical model is provided by 

comparing predictions of the load capacity and the failure mode with those 

obtained from previous shaking table test series on a full scale masonry 

vaults. 

The experimental results have been obtained from dynamic tests conducted 

in the laboratory of Department of Structures for Engineering and 

Architecture of the University of Naples, Federico II. 

Then, the calibrated numerical model was used to design the dynamic tests 

on another more complex real scale masonry specimen.  
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4.1. Analytical model validation by means of experimental dynamic 

investigation 

 

The proposed method has been validated by means of past experimental 

shaking table tests discussed in detail in Giamundo et al. (2015). Several 

experimental tests on one full scale masonry vault were performed at the 

Department of Structures for Engineering and Architecture, University of 

Naples Federico II. 

The goal was to assess the seismic capacity of masonry vaults and the 

strengthening effects after damage. Indeed, the tests have been carried out 

in two parts: in a first part the tests have been performed on the unreinforced 

specimens; in a second step the dynamic tests have been performed again 

on the specimen strengthening by means of a TRM (Textile Reinforced 

Mortar) system and repaired by means of mortar joint repointing and grout 

injections. 

In next section, the proposed model was validated by comparison with the 

experimental results shown for the unreinforced specimen only.  

 

4.2. Specimen characteristics 

 

Several experimental tests on shaking table have been conducted. The 

masonry specimen was made of solid facing clay bricks with size 

(25∙5.5∙12) cm3 and pozzolana-based mortar joints (10 mm thick). 

The vaults have been built on a rigid steel beams system, which is part of 

the test setup (figure 4.1). 

This system provides a rigid constraint between the shaking table and 

vault’s imposts. Furthermore, the steel frame guarantees an adequate level 

of safety during the experimental tests. 
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Figure 4.1: Specimen tested in order to validate the proposed analytical model. 

 

The geometry of the specimen and its structural characteristics are 

representative of the vaulted roofs commonly adopted in the historical 

religious buildings, yet respecting some lab constraints. 

In-plane geometry of the curved element is characterized by a segmental 

arch profile which is less than a semicircle. 

The span, rise and depth values of the vault are 298 cm, 114 cm and 220 

cm, respectively. Further details about the geometry of the first specimen 

are provided in figure 4.2, where the two principal views have been shown.   

The backfill, usually acting on traditional vaults, provides a beneficial effect 

on the structure [Melbourne et al. 1995, Callaway et al. 2012 & Gago et al. 

2011]. However, this effect is not present in vaulted roofing of churches. 

Therefore, in this experimental work, in order to simulate such vault 

typology, the specimen has been tested without any backfill. 

The specimen was constrained on the shaking table and such boundary 

conditions simulate the action of the ties frequently adopted in the retrofit 

of historical vaulted structures. 

In a multiscale approach, perfect fixing of the imposts represents the first 

step to focus on the vault itself, while different boundary conditions would 



Chapter - 4 

109 
 

have added further variables to the system resulting in a more complex 

problem interpretation.  

 

 

 

Figure 4.2: Specimen geometry and structural model adopted: a) front view, b) lateral 

view, respectively. 

 

Rationale and limits of previous shaking table tests are discussed elsewhere, 

while the focus of present thesis is the simplified modelling, hence the 

validation by comparison with available experimental tests and 

configurations. 

More complex tests have been done and are foreseen for the future and the 

proposed model will be able to assist in the design of the future tests 

accounting for more slender walls or different structural geometries. 

The unreinforced specimen has been tested by using several signals (i.e. 

replicas of natural and artificial accelerograms, with a frequency content 
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compatible with the tested specimen) repeated increasing the peak 

accelerations, as commonly done in shaking test programs. 

The effect of replicas is expected to yield to strength decay and, to account 

for tensile strength uncertainty, parametric analyses can be performed on a 

range of possible strength values. 

At the end of each test, visual surveys on the specimen have been conducted. 

 

4.3. Experimental results 

 

The unreinforced specimen has been tested by means of seven artificial 

signals with increasing intensity. 

Until to the fifth test no substantial damages have been detected. After the 

last signal, in several locations, crack openings at the interfaces between 

mortar and brick have been detected. 

The crack openings denote the hinges activation and have been observed 

both at the intrados and the extrados of the masonry vault. Cracking at the 

intrados occurred along almost the entire depth of the joint at about 1/6 of 

the span length. 

At the extrados the cracking has involved a larger number of joints. The 

formation of all the described cracks occurred at the interfaces only by 

means of a mechanism of “crack opening and closing”. 

The cracks occurred at almost symmetrical locations at the inversion of the 

shaking direction. In order to highlight such mechanism, in figure 4.3 a still 

image taken from a video record of the tests shows the crack tips highlighted 

by a red circle (lateral loads acting from left to right). 

The experimental results confirm the hinge mechanism to be the limiting 

failure mode in masonry vaults compared to sliding or crushing failure. 

The crack opening remarks the triggering of a hinge mechanism in the vault. 

The vault's collapse was prevented by stopping the test. 
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Figure 4.3: Last signal for the first unreinforced specimen (hinge mechanism activated 

without collapse). 

 

However, the specimen went very close to the hinge mechanism (i.e. four 

hinges activated). The fourth hinge activated at an acceleration close to 

0.48g.  

The tests have been carried out in two phases on an unreinforced and 

strengthened specimen. The analysis focuses on unreinforced vault. 

 

4.3.1. Tensile strength estimation 

 

An additional static vertical load test has been performed in order to 

estimate the tensile strength of masonry vaults (best fitting of tensile 

strength to simulate the test, see Giamundo et al. 2015). Furthermore, 

through this test the residual vertical load capacity of the vault has been 

estimated also. 

The static vertical load test has been performed after the last shaking table 

test. 

During the test the vault has been monitored by means of a linear variable 

displacement transducer (LVDT). The LVDT device has been placed at the 

keystone location. 
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The masonry specimen was uniformly loaded by a vertical distributed load 

applied at the keystone zone. In particular, the load was applied on a length 

of 40 cm along the whole depth of the vault. It was quasi-statically applied 

to the vault at increasing step. 

The load-displacement curve experimental estimated has been compared 

with the curve obtained numerically by a non-linear numerical FEM model. 

This comparison has been performed in order to estimate the tensile strength 

of the masonry material. 

Through this test a tensile strength σt = 0.16 MPa has been estimated. This 

value was considered for the validation of the proposed analytical model. 

 

4.4. Analytical modelling and experimental comparison 

 

The specimen experimentally tested has been analysed by using the 

proposed simplified model. 

The gravity condition has been modelled by a fixed vertical load during the 

entire load history. Therefore, the collapse condition occurs by means of a 

monotonically increasing horizontal acceleration. The internal force 

variations are due to horizontal load increase only, by means of a 

monotonically increasing horizontal acceleration. The horizontal load 

pattern is proportional to the masses of the structure, while vertical load is 

gravity. The increase of the seismic load was modelled by using a load 

pattern proportional to the masses. 

The masonry material (mortar and brick) was modelled by using a 

homogeneous material. 

The vault was modelled using a discrete approach. In particular, the curved 

element has been discretized in elements.  

The plastic failure surface has been chosen for the masonry material. 

According to this assumption the interaction P-M surface is provided by 

equations (3.19), (3.60) and (3.73). 
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Furthermore, the maximum eccentricity values for the thrust line are 

provided by equations (3.26), (3.63) and (3.76). 

In this phase, the structural analyses do not take into account full variability 

of the mechanical properties because the goal is validate the proposed 

analytical model. 

Starting from mechanical parameters estimated by experimental tests, a 

reasonable range of mechanical characteristics has been provided in the 

paragraph 4.5 in order to evaluate the collapse accelerations for the 

unreinforced specimens. 

The expected acceleration according to the estimated tensile strength is 

shown in table 4.1. The collapse acceleration has been calculated for the 

unreinforced specimen. 

As it will be clarified in the next section, the tensile strength has an 

important effect on the seismic capacity and its value must be accurately 

estimated.  

The collapse multiplier   has been calculated by means of the lower bound 

theorem. The analytical model takes into account for the axial load 

variations. This last aspect produces a continuous update of the fictitious 

geometry within which the thrust line must be contained. 

With the knowledge of  , the PGA values can be assessed at the collapse 

condition for the specimen. In table 5.1 the results are shown in terms of 

PGA values at collapse condition for the masonry specimen. 
 

Table 4.1: PGA values at mechanism activation. 

PGA Specimen Collapse acceleration [g] 

Experimental threshold 0.48 

Numerically estimated (σt = 0.16 ) 0.54 

 

The vault was discretised into 60 elements and a specific weight of 18 

kN/m3 was assumed for the masonry. Hence, in the structural model there 

are 61 control sections in which plastic hinges can be activated. 
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The maximum horizontal load multiplier was evaluated having the thrust 

line inside the fictitious boundaries of the arch. A sensitivity analysis was 

conducted on the number of elements for the discretization and its impact 

is less significant than the tensile strength. 

The present choice represents a compromise between accuracy and efforts, 

where the most relevant parameter in such slender walls without backfill is 

the tensile strength. 

In figure 4.4 the thrust line configuration is shown for this specimen at the 

theoretical collapse condition (i.e.  =0.54g). The internal forces Mj and Pj 

are shown as hollow signs inside the interaction P-M surface, in solid line 

in figure 4.5. 

Furthermore, an incremental analysis has been performed in order to 

evaluate the progression of the plastic hinges up to theoretical collapse (see 

figure 4.4 and figure 4.5).   

Mj and Pj points clearly reach the plastic surface in four locations 

representing the hinges formation (figure 4.4). 

It is interesting to note that, the hinge location corresponds to the section 

where the internal forces Mj and Pj intersect the interaction surface or, 

similarly, corresponds to the tangent point of the thrust line to the fictitious 

boundaries of the arch (figure 4.5). 

It is worth noting that experimental test was stopped at 0.48g to prevent 

collapse, however the formation of the fourth hinge almost occurred 

experimentally (figure 4.3). 

These numerical results have been shown for the estimated tensile strength 

and they are in satisfactory agreement with hinge location (a comparison of 

experimental results is in figure 4.3 and theoretical outcome is in figure 4.4) 

and corresponding experimental load. 
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Figure 4.1: Theoretical thrust line configuration for the specimen (hinge mechanism 

activated). 

 

 
Figure 4.2: P-M points in the plastic failure surface. 

 

The collapse multiplier λ was evaluated by using the lower bound theorem. 

The numerical result provides a λ value equal to 0.54 g. The theoretical PGA 

value at collapse is very close to experimental PGA value achieved during 

the last signal. It is recalled that the specimen showed no clear collapse due 

to a timely ending of the dynamic sequence. For this reason the collapse 

multiplier numerically estimated (λ=0.54) is higher at the experimental 

value (λ=0.48). 

Hinge 1 

Hinge 2 

Hinge 3 

Hinge 4 
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For the ultimate step, the stresses: Ni, Ti and Mi, can be calculated for each 

control section providing the internal stresses at collapse. 

The agreement in terms of both activation multiplier and failure mode (i.e. 

hinge mechanism pattern, comparing experimental locations in figure 4.3 

and theoretical outcomes in figures 4.4) is very satisfactory.  

 

4.5. Sensitivity analysis 

 

The tensile strength must be included to assess the seismic capacity of 

slender barrel vaults. A simplified analytical model, in the framework of 

limit analysis, was proposed which includes the tensile strength. 

Tensile strength in these analyses is affected not only by the strength of 

basic materials, but also by the bond at the unit-to-joint interfaces, which 

could be rather difficult to assess reliably. 

Sensitivity of the predictions to variations of tensile strength is discussed. 

Validation of the analytical model has been discussed by comparing 

predictions of load capacity and failure mode with those obtained 

previously from shaking table tests on a full scale masonry barrel vault (see 

Section 4.4).  

These analyses show the effects of the tensile strength combined with 

different geometrical and mechanical parameters on the seismic response of 

the vaults. 

Starting from the geometry of the masonry vault experimentally tested 

(figure 4.2) a sensitivity analysis has been performed by using the validated 

model. 

 

4.5.1. Parameters of the sensitivity analysis 

 

Starting from the geometry shown in figure 4.2, several analyses have been 

performed varying both the geometrical and mechanical parameters. 
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With regard to the geometry, each parameter has been normalized to the 

span l of the tested specimen (l=3.1 m). 

In this way, both the rise of the vault f and the thickness of the cross section 

s are functions of the span value. 

In particular, the ratios between rise and span of the arch f/l range from 0.15 

to 0.5. 

Conversely, the ratios between thickness of the cross section and span of 

the vault s/l range from 0.025 to 0.25. 

The previous geometrical values, increased by discrete steps, allow 

assessing structural cases which are usually found in the engineering 

practice. 

The mechanical properties were considered variable in terms both of 

specific weight and tensile strength. 

In order to assess the structural capacity of masonry commonly found in 

practice, three values of the specific weight have been chosen according to 

the typological existing masonry buildings described into the Italian 

Building Code (IBC 2009). 

In particular, values equal to 11 kN/m3, 16 kN/m3 and 20 kN/m3 have been 

used for a masonry made of hollow clay brick, tuff stone and solid clay 

brick, respectively. 

Finally, the influence of the tensile strength on the structural behaviour has 

been assessed.  

The parametric analyses have been performed by using initially the no-

tensile strength assumption (Heyman’s Theory), up to a maximum value of 

0.3 MPa. Starting from a zero value of the tensile strength, five discrete 

values of 0, 0.08, 0.16, 0.24 and 0.3 MPa, have been used. 

The compressive strength has been fixed as 3.2 MPa having practically no 

effect on the structural behaviour of the vault. 

In fact, the normal stress values are extremely low at collapse condition. 

This means that the P-M points lie on the left side of the failure domain (i.e. 

low P). 
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The ultimate conditions, on the left side of the failure surface, are mainly 

governed by the tensile strength. Therefore, as long as the normal stresses 

are low, the compressive strength has no impact on the structural capacity 

of masonry vault. 

In order to perform a sensitivity analysis, the previous parameters were 

combined. 

The plastic failure surface has been chosen for the masonry material 

(equations (3.19), (3.60) and (3.73)) 

 

4.5.2. Results of the sensitivity analysis 

 

In the following paragraph some results of the sensitivity analysis are shown 

by using several graphs.  

The figure 4.6 shows the development of the λ factor varying the s/l ratio 

for different discrete values of the f/l. These curves were calculated by using 

the proposed model under a no-tensile strength assumption. In order to 

assess the effect of the specific weight on ultimate condition, when zero 

tensile strength is assumed, the numerical results are shown for the two 

extreme values: γm=11 kN/m3 (shades of green) and γm=22 kN/m3 (shades 

of red). 

The previous figure shows a negligible influence of the specific weight on 

the collapse multiplier under no-tensile strength assumption. This effect is 

very evident for slender masonry barrel vaults (with low s/l ratio) and for 

round arches with f/l tending to 0.5 value. 

It is interesting to note that for several cases to no-tensile strength 

assumption corresponds a zero value of the λ parameter. This means that 

they are in a critical static condition already under gravity load. 

This is a crucial aspect for the slender vaults where a minimum of tensile 

strength should be considered. Increasing the tensile strength, the influence 

of the specific weight on the structural capacity is more evident. 
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Figure 4.3: Results of the sensitivity analysis: development of λ value with σt=0, γm=11 

kN/m3 (shades of green) and γm=22 kN/m3 (shades of red). 

 

The figure 4.7 shows the development of the λ values varying the s/l ratio 

for different discrete values of f/l. These curves are provided accounting for 

a tensile strength of 0.16 MPa. 

In the following, the numerical results are shown for the two extreme values 

of the specific weight: γm=11 kN/m3 (shades of green) and γm=22 kN/m3 

(shades of red). 

When a tensile strength is assumed, the slope and values of the curves 

obviously increase. 

Furthermore, several curves suffer an expansion for different values of 

specific weight. For low s/l ratios (i.e. slender vaults) the estimation of the 

tensile strength represents a critical issue.  

Increasing the s/l ratio (i.e. thick vaults), an increase of the collapse’s 

acceleration is shown. 
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It is important to remember that, for thick vaults, the collapse condition can 

be achieved due to shear. For this reason, the proposed model must be 

applied in a consistent manner. In particular, when the curved elements are 

thick, the simplified model based on hinge mechanism, could provide 

unsafe results.  

 

 
Figure 4.4: Results of the sensitivity analysis: development of λ value with σt=0.16 MPa, 

γm=11 kN/m3 (shades of green) and γm=22 kN/m3 (shades of red). 

 

However, the model proposed is based on a hinge mechanism. In this case 

the specific weight shows an important effect on the structural capacity, 

which is not negligible. 

Moreover, it is interesting to analyse figure 4.8 providing the development 

of the same collapse multipliers λ, while changing the f/l ratio and for 

discrete values of s/l ratios.  
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Figure 4.5: Results of the sensitivity analysis: development of λ value with σt=0 kN/m2, 

γm=11 kN/m3 (shades of green) and γm=22 kN/m3 (shades of red). 

 

The numerical results are shown for the extreme values of specific weight 

(11 and 22 kN/m3, respectively) and under no-tensile strength assumption. 

The previous figure 4.8 shows again that the specific weight does not affect 

the structural capacity when no-tension is assumed. 

Similarly, the previous graph is repeated in figure 4.9 for a tensile strength 

value of 0.16 MPa. As indicated above, a moderate value of tensile strength 

makes the numerical results highly sensitive. 

The present section discussed the main aspects related to the analysis of 

slender masonry vaults (high ratios between span and thickness) and 

without any backfill. 

The structural assessment according to the Heyman's Theory cannot be 

performed. In fact, when no-tensile strength is assumed, the collapse could 

be achieved already under gravity loads. 
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Figure 4.6: Results of the sensitivity analysis: development of λ value with σt=0.16 MPa, 

γm=11 kN/m3 (shades of green) and γm=22 kN/m3 (shades of red). 

 

This is only a result of the theoretical modelling because real structures 

show no evidence of any structural problem. Theoretically, for these 

structures a tensile strength value should be assumed. 

The results of the sensitivity analysis provide the impact of several 

parameters both geometrical and mechanical on the structural capacity. 

In particular, under no-tension assumption, the influence of the typologies 

of masonry can be neglected. 

Indeed, the model is sensitive to tensile strength of masonry and its impact 

on the seismic capacity was estimated for a large number of cases. 

The results showed that a reliable estimation of the tensile strength is 

essential. 

The number of elements used for the discretization has a reduced impact on 

the capacity assessment. 
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Therefore, the proposed method is valuable to estimate the ultimate capacity 

of the masonry vaults, by using a simplified approach. 

The analytical method can also take into account different assumptions both 

geometrical (shape of the curved element and restraints) and mechanical 

(non-linear behaviour of the material like as cracking or plastic). 

Finally, the proposed method represents a useful modelling tool in order to 

design dynamic tests on masonry vaults and to assess their vulnerability. 
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Chapter 5 

 

DESIGN AND PLANNING OF A FULL-SCALE SHAKING 

TABLE TEST 

 

Many of the masonry buildings are characterized by a complex architecture 

like as the religious buildings. Their structural behaviour is crucial, 

especially in high seismic risk areas. Historical and monumental buildings 

often showed low seismic performance, especially if they incorporate 

thrusting elements like as arches and vaults. In this field, numerical 

analyses and experimental tests provide important information about the 

structural behaviour of thrusting elements. 

The structural behaviour can be complex to simulate and to predict 

exclusively by means of numerical analyses but experimental tests must be 

supported by numerical modelling. 

The use of complex numerical models can be useless in the preliminary 

phase of an experimental program. Especially during the planning and 

design phases of the experimental tests the use of simplified models is 

valuable. 

A masonry vault in solid facing clay bricks was tested by means of uniaxial 

dynamic tests on the shaking table. The vault characteristics are typical of 

churches built in Italy region. The vaults were tested by using several 

increasing signals in order to obtain an increasing damage level. After the 

damage occurred, the vault was strengthened and tested again. 

In order to plan a dynamic test by means of a shaking table system, the 

signals and their intensities should be selected by using preliminary 

calculations. 

The present Chapter focuses on the numerical simulations to design the 

dynamic tests. 

 



Chapter - 5 

125 
 

5.1.       State of art: experimental test of unreinforced and strengthened 

masonry vaults 

 

Several experimental tests investigated the structural behaviour of masonry 

curved elements (vaults or arches). In some of them, also the structural 

performances of innovative building materials systems on masonry 

elements have been investigated. 

Experimental tests on seven semi-circular brick arches which underwent 

strengthening by FRCM (Fibre Reinforced Cementitious Matrix) system 

have been shown in Jasienko et al. (2009). The experimental results showed 

that in all the arches the use of FRCM strengthening significantly increases 

the load carrying capacity of the brick arches. The inorganic matrix ensured 

a good capacity for distribution of stresses on the masonry substrate. 

Girardello et al. (2013) provided a further contribution on the study of 

FRCM strengthening applied to masonry arches. In such work the 

experimental tests were performed on a masonry curved element subjected 

to both monotonic and cyclic vertical asymmetric loads. The load was 

applied by means of hydraulic jacks at 1/4 of their span. The experimental 

results showed that this strengthening system increases the load capacity 

and the ductility of the masonry arch. Furthermore, the dynamic 

identification performed on the specimen showed the decay of the natural 

frequencies with achieved damage. 

Briccoli Bati et al. (2007) conducted a comparison between the 

experimental performances of FRP (Fibre Reinforced Polymers) strips and 

FRCM system applied on two masonry arches. The specimens were 

strengthened by two different technologies. The first specimen has been 

strengthened with CFRP (Carbon Fibre Reinforced Polymers). The second 

specimen has been strengthened with FRCM system by means of glass 

fibres. The experimental results showed that, under cyclic loads, the 

specimen strengthened with the FRCM system performed better. 

Furthermore, the use of FRCM strengthening does not radically change the 
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structural behaviour in collapse condition (the failure mechanism is similar 

to the unreinforced specimen). 

Calderini et al. (2014) reported an experimental study on the seismic 

behaviour of arch-pier system strengthened with tie-rods. An innovative tie-

rod characterized by a stiffness lower than traditional ones has been 

developed. The experimental test was performed by adopting the inclined 

plane static test on a scaled model. The experimental results showed that 

larger tie-rod deformability yields to larger displacement capacity at 

collapse. 

In these papers the masonry curved elements were usually subjected to 

monotonically or cyclic pseudo-static load. Such testing methods, 

nowadays widely adopted could not be always able to realistically simulate 

the seismic behaviour of the specimen. 

Furthermore, the pseudo-static forces are usually applied by means of 

hydraulic jacks which often generate a sliding failure at the locations where 

the load devices are applied [Garmendia et al. 2011]. 

While the concentred loads are applied, the loading devices could restrain 

the strengthening system on the substrate, jeopardizing the results. 

Furthermore, the same pointwise load could prematurely damage the 

strengthening system. Such critical aspects could lead to an inaccurate 

interpretation of the seismic behaviour of the strengthened structure. 

Indeed, it is well known that masonry curved elements are usually prone to 

the flexural failure by means of the hinge mechanism activation and the 

sliding failure is often neglected in the majority of cases [Heyman 1995]. 

In this background, shaking table tests are able to simulate realistically the 

seismic effects on many structures. These dynamic tests allow an actual 

assessment of the seismic performances of different strengthening systems. 

Nevertheless, dynamic tests both on unreinforced and strengthened 

masonry vaults by means of shaking table system are lacking in the 

scientific literature. 
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Giamundo et al. (2015) conducted a study aimed to the assessment of the 

structural performances of inorganic matrix grid applied on a masonry 

vault. Several shaking table tests, before and after the TRM (Textile 

Reinforced Mortar) strengthening system, have been performed. The 

experimental results showed that this strengthening technique greatly 

increased the seismic capacity and the ductility of the repaired masonry 

vault. 

In the present Section, several dynamic tests on masonry vaults with 

abutments typical of roofs in religious buildings have been designed. 

The present study is aimed to the assessment of the structural performances 

of TRM (Textile Reinforced Mortar) strengthening combined with other 

traditional strengthening systems (masonry rib and unidirectional steel tie). 

The structural assessment of strengthening system has been conducted by 

means of comparison between the performance detected on the 

unreinforced and strengthened specimens. The experimental results have 

been supported by preliminary calculations. Numerical models based on 

FEM approaches and on simplified analytical modelling have been 

considered [Bertolesi et al. 2016, Portioli et al. 2015, Tabbakhha et al. 

2016, Parisi et al. 2016 & Noor-E-Khuda 2016b]. 

 

5.1.1. Efficiency and compatibility of innovative building materials on 

masonry buildings 

 

Over the years, innovative materials and technologies have been developed 

to limit the effect of earthquakes on the structures. The use of composite 

materials has shown to be effective for these structures. 

Most of the European cultural heritage buildings are made of masonry. 

Furthermore, in almost all heritage buildings there are masonry vaults 

which represent a critical structural part in regard to the assessment of the 

seismic behaviour. In particular, vaulted structures incorrectly designed 

could promote a deleterious behaviour of the entire buildings. 
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The increase of stress level provided by the thrusting elements during the 

seismic events, could not be compatible with the performances of material, 

in traction in particular. 

This is a critical issue especially for masonry vaults without any backfill. 

Such load condition is typically present in vaulted roofs adopted in the 

historical religious buildings. 

Therefore, improving the knowledge both on masonry vaults and on 

strengthening systems, meets the need to safeguard the existing masonry 

buildings against the earthquake effects. 

In this background, the experimental tests can provide an efficient 

contribution to the interpretation of the strengthening effects. 

The use of innovative materials, aimed to the strengthening of masonry 

elements, has shown to be efficient [Valluzzi et al. 2001, 2002, Roca et al. 

2010, D’Ambrisi et al. 2013a, Angelillo et al. 2014, Giamundo et al. 2015 

& Wang et al. 2016]. 

However, some specific innovative materials are often not compatible with 

the heterogeneity of the masonry and building techniques. Indeed, the use 

of FRP laminates or fabric, has shown some crucial aspects as well as 

disadvantages [Lignola et al. 2012]. 

The key issue of the strengthening system based on organic matrix (i.e. 

FRP), is the deficiency of bond and compatibility between organic resin 

matrix and masonry substrates. Additionally, the organic matrix has both 

low vapour permeability and insufficient performances at high temperature 

(flammable material). 

Furthermore, the interventions by FRP systems are quite irreversible and 

could be in some cases architecturally invasive.  

The previous issues can be overcome by using strengthening systems based 

on inorganic matrices also indicated by FRCM acronym. This strengthening 

technique is made by embedding several reinforced fibres (strips or grids) 

in an inorganic matrix. 
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In this way, comparing to the traditional FRP technique, the mortar matrix 

replaces the epoxy resin matrix (organic). The advantages which involve 

the use of inorganic matrix are well known in the scientific literature [Prota 

et al. 2006, Papanicolaou et al. 2007, 2008, Lignola et al. 2009, Parisi et 

al. 2011, D’Ambrisi et al. 2013b, 2014, Carozzi et al. 2014 & Giamundo et 

al. 2015]. 

The physical and chemical compatibility of the matrix material with the 

masonry substrate provides an improvement of the bond between the 

strengthening system and masonry substrate. Additionally, the FRCM 

system is simple to install on curved surfaces also and it is fully reversible. 

It can be easily removed like as a plaster from the structural elements 

without causing damage. 

Furthermore, the premature debonding failure is prevented by using the 

spread grid element compared to the traditional unidirectional fibres in 

localized strips. 

The structural assessment of masonry vaults strengthened by inorganic 

matrix technique is a fundamental topic. The experimental results presented 

in this Ph.D. thesis provide a contribution to the knowledge on innovative 

techniques, aimed to the strengthening of the masonry curved elements with 

abutments. 

 

5.2.       Experimental test of a full-scale masonry vault 

 

Several dynamic tests with a shaking tables system were performed on a 

full scale clay brick masonry vault with abutments. 

The experimental program was carried out in two parts in order to assess 

the performances of the strengthening system. 

The dynamic tests were performed before on the unreinforced specimen up 

to failure and after on the specimen partially rebuilt and strengthened by 

means of the TRM strengthening combined to mortar joint repointing and 
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grout injections and other additional strengthening interventions. A detailed 

description of the specimen is provided in the following subsections. 

 

5.2.1. Description of the unreinforced specimen 

 

The entire masonry structure was made of solid facing clay bricks 

(25×5.5×12) cm3. The joints were made of pozzolana-based mortar with a 

thickness equal to 1 cm. 

The geometry of the vault is characterized by a segmental arch profile with 

span and rise equal to 298 cm and 114 cm, respectively. 

The specimen has a different depth for the base (constraint on the shaking 

table setup) and curved elements which are 220cm and 116cm, respectively. 

The segmental arch profile replicates the vault tested by Giamundo et al. 

(2015) and is less than a semicircle, but its imposts are located over two 

abutments 103 cm in height (figure 5.1, maximum allowable height 

according to laboratory constraints). 

 

 
Figure 5.1: Unreinforced specimen geometry 

 

According to typical historical buildings, the lateral masonry abutments 

have been raised over the imposts up to 234cm, also due to laboratory 

constraints. 
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In some traditional masonry vaults the backfill is present, and it provides 

multiple effects on the seismic performance of the vaults. On one hand it 

causes an increase of the horizontal thrust; on the other hand it distributes 

the external loads and produces an increase of the normal stresses. The first 

aspect can induce a deleterious effect on seismic performance of the vault. 

However, this issue can be solved by means of structural measures (i.e. steel 

ties). In this way, the negative effects of using a backfill can be eliminated 

and the second beneficial aspect is certainly emphasized. However, the 

backfill is not present generally in the roofs of churches (figure 5.2). 

 

 

Figure 5.2: San Biagio D’Amiterno Church, L’Aquila (Italy), damages after 2009-

Earthquake. 

 

This work focused on this vault typology. For that reason the specimens 

(strengthened and unreinforced vault) have been tested without any backfill.  

The material characterization was performed for the mortar and bricks. Both 

the compressive and tensile strengths were assessed according to the 

technical codes [UNI EN 998-2, 2010 & UNI EN 1015-11, 2007]. The 

mechanical characterization was performed on twelve masonry specimens 

with a dimension of (40×40×160) mm3. The specimens were tested at an 
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age of 28 days, after the hydration process. Instead, the Young’s modulus 

was assessed according to UNI 6556 (1979). 

The mechanical properties of clay bricks were assessed by means of several 

tests according to UNI 11128 (2004), EN 772-1 (2002) and UNI 8942-3 

(1986). In particular, compression and splitting tensile strength tests have 

been conducted. Finally, several three points bending tests have been 

performed. The measured properties of materials are shown in table 5.1. 

 

Table 5.1: Mechanical characterization results. 

Property Brick Mortar 

Compressive strength [MPa] 19.8 10.1 

Flexural strength [MPa] 3.7 - 

Splitting tensile strength [MPa] 2.5 - 

Tensile strength [MPa] - 2.4 

Young’s modulus [Mpa] 5756 1452 

Specific weight [kN/m3] 16 18 

 

5.2.2. Description of the strengthened specimen 

 

The masonry curved element and the masonry abutments have the same 

geometry for both specimens. Because it partially collapsed after the first 

dynamic tests, the vault has been partially rebuilt. Indeed, the collapse 

condition was achieved by means of the hinge mechanism. In addition, other 

interventions, by using different strengthening systems, have been 

performed. 

Interventions by means of repointing of the cracked joints and grout 

injections were performed in the abutments. It is assumed that this 

strengthening technique has restored the masonry to the undamaged 

condition. It has been performed both at the bases of the structure where the 

activation of the plastic hinges occurred (figure 5.3) and on the entire 

abutments (figure 5.4). 
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Figure 5.3: Repointing of the cracked joints and grout injections system on the abutments 

(lower portion). 

 

 
Figure 5.4: Repointing of the cracked joints and grout injections system on the abutments 

(higher portion). 

 

The former interventions have been performed by means of a repair mortar, 

commercially available. The grout injections system has been performed by 

means of several suitably spaced holes. The grout injection is a critical 

aspect, since no wide cracks are present. For that reason a mixture based on 

cement-free fluid hydraulic binder has been used for the injections. 

The TRM application aimed to improve the seismic performance of the 

masonry curved elements. 



Chapter - 5 

134 
 

Indeed, this strengthening system has been applied at the extrados of the 

curved element. It was made by a first mortar layer 0.5 cm thick applied to 

the masonry substrate (extrados of the curved element). 

Over the mortar layer an alkali-resistant primed fibre grid has been placed. 

The grid is made of basalt fibres with weight of 250g/m3. The grid layers 

were overlapped to cover the entire depth of the arch profile. Finally, a 

second mortar layer, entirely covering the basalt grid was built (figure 5.5). 

 

 
Figure 5.5: TRM strengthening applied on the extrados of the masonry curved element. 

 

For both the mortar layers a bi-component premixed mortar has been used. 

This mixture is made of natural hydraulic lime (NHL), several special 

additives, natural sand and synthetic polymers. The entire mixture is worked 

in aqueous dispersion according to the manufacturer.  

At the extrados, close to vault’s imposts only, two backfills have been made 

by means of structural mortar (previously used) mixed with expanded clay 

aggregates (15% in volume). 

The entire depth of the masonry vault (116 cm) was involved, raising up to 

41cm in height. In addition, a masonry rib was built over the extrados, in 

the middle of the curved element. In particular, the masonry was made of 
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clay hollow bricks (25×25×25) cm3 and pozzolana-based mortar joints with 

a thickness of 1 cm. 

The masonry rib was built by using a single row of bricks and has been 

raised up to 55cm in height over the backfill, reaching the crown of the vault 

(figure 5.6). 

 

 

 
Figure 5.6: Masonry rib made of single row of bricks. 

 

Finally, an innovative steel tie was built over the masonry rib. This last 

strengthening system was made of unidirectional steel fibres usually 

characterized by very low prestress, given without a specific device. In fact, 

a prestress manually provided is already sufficient. It was demonstrated that 

prestress of tie systems barely influences the seismic performance 

[Calderini et al. 2014]. 
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The steel tie is located at a height approximately corresponding to the crown 

of the masonry vault (figure 5.7). 

 

 
Figure 5.7: Innovative steel tie built over the masonry rib. 

 

The steel tie was perfectly bonded to the lateral masonry abutments by 

means of two steel devices (figure 5.8a). This system was made of steel 

elements with an appropriate L shape. 

Each end of the tie element was constrained by using two coupled steel 

angles. The tie element was applied inside the steel devices by means of a 

mortar layers. The mortar mixture used in order to cover the tie element has 

been the same used in the strengthening intervention (NHL-based). 

In conclusion, an epoxy grout injection (figure 5.8b) was performed on 

several contact surfaces (steel and masonry). 

 

 

 



Chapter - 5 

137 
 

 
Figure 5.8: b) steel angles and c) epoxy grout injection. 

 

In order to avoid a debonding failure between the masonry rib and the 

extrados of the vault, an additional basalt fibre grid has been applied (figure 

5.9a). 

In this way the connection between masonry rib and substrate is guaranteed 

by an additional TRM system. The entire surface (masonry rib and 

additional TRM strengthening) was covered by two mortar layers of about 

1 cm total thickness (figure 5.9b). The mixture used is the same (NHL-

based). 

 

 
Figure 5.9: b) Additional TRM strengthening and b) its covering. 

 

 

 

b) 

a) b) 

a) 
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Further details about the geometrical characteristics of the strengthened 

specimen are provided in figure 5.10. 

 

 
Figure 5.10: Strengthened specimen geometry. 

 

Preliminary mechanical characterisation tests have not been performed for 

the materials used in strengthening systems. In particular, the mechanical 

parameters were provided by manufacturer (technical data-sheets). 

The physical and mechanical properties of strengthening materials are 

reported in table 5.2. 

 

Table 5.2: Materials properties of strengthening systems. 

Property Grid Mortar 
Hallow 

brick 
Steel tie 

Epoxy 

grout 

Compressive strength 

[MPa] 
- ≥15 >5 - >70 

Tensile strength 

[kN/m; N/mm2*] 
≥60 - - >2.845* - 

Shear strength [MPa] - ≥0.15 - - >10 

Young’s modulus [Mpa] 89000 10000 - 210000 6000 

Specific weight 

[kN/m3; kN/m2*] 
2.45* - 6.23 0.077 16.68 

 

Strengthened Specimen

Wooden beam Masonry rib Steel tie

Basalt fiber grid

Steel angles

Steel angles
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Both the specimens were built on a stiff steel beams system. It ensures that 

the interaction between specimen and steel beam system is negligible. The 

masonry specimens were constrained on the shaking table by means of the 

steel structure. Indeed, allowing pier differential displacements could lead 

to premature damages of the vault due to pier failure. 

 

5.3. Preliminary calculation: seismic capacity assessment and 

dynamic behaviour investigation 

 

The success of any experimental test depends on its preliminary design. For 

dynamic tests the selection both of signals (i.e. frequency content and time 

history) and their intensity (i.e. maximum acceleration value) represents a 

critical aspect. 

Analytical and numerical models in order to predict the structural behaviour 

certainly represent valid tools in order to design an experimental test using 

the shaking table system. 

However, according to a preliminary design of the experimental program, 

when for instance there is still uncertainty on mechanical properties, 

amongst others, the use of complex numerical models may be problematic 

and ineffective. 

Nearly the totality of engineering applications, aimed at assessing the 

seismic capacity of masonry structures, is conducted under no-tension 

assumption. For masonry arches the Heyman’s approach [Heyman 1995] is 

commonly adopted. No-tensile strength and infinite compressive strength 

are the main assumptions used in Heyman’s theory, along with no sliding. 

At collapse, the compressive stresses are typically lower than the 

compressive strength. The normal stresses could achieve high values only 

in localized section (localized portions between brick and mortar due to 

cracking effects). 

In predictive models the hinge mechanism is the only considered failure 

mode, as supported by experimental evidence. Indeed, other failure modes 
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(sliding failure and crushing failure) are uncommon. 

According to the Heyman’s theory (i.e. limit analysis), for a generic load 

pattern, the resultant’s envelope of the acting compressive stress 

distribution (thrust line) must be contained entirely within the boundaries of 

structure [Lignola et al. 2008, Angelillo et al. 2013 & Fortunato et al. 

2014]. 

Each element is able to carry the load by means of compressive stress 

exclusively. According to the lower bound theorem, any thrust line which 

is placed within the vault’s boundaries, corresponds to an equilibrium 

configuration of the curved element [Angelillo et al. 2004]. 

The equilibrium of the masonry vault is satisfied under a generic load 

(vertical and horizontal), if a thrust line entirely contained in the vault’s 

boundaries can be found. 

With a rectangular cross section, assuming s the thickness and P the normal 

force acting on the cross section, the maximum eccentricity e(P) of the 

thrust line according to no-tension assumption in cracked condition is equal 

to s/2 and –s/2 for a zero axial load. 

The eccentricity value is reduced at increasing axial load P. The collapse of 

the masonry vault can be achieved, if there are a sufficient contact points 

between the thrust line and arch boundaries to generate a hinge mechanism. 

In fact, each contact point represents the formation of a hinge (with the 

opening on the side opposite to the contact point). 

The previous analytical model for particular cases could provide inaccurate 

solutions (see paragraph 2.4.1). 

Masonry vaults characterised by both a high span/thickness ratios (slender 

vaults) and without any backfill, cannot be analysed with the Heyman’s 

model. 

For these structures without a minimum of tensile strength, even under a 

gravity self-weight load, the plastic compatibility condition may be 

violated. It’s an issue due to the very low axial stress values and 

consequently, the eccentricities due to permanent gravity loads could not be 
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properly counteracted. Therefore, in order to assess the structural behaviour 

of the masonry vaults, a minimum value of tensile strength is necessary in 

the analysis. 

 

5.3.1. Seismic capacity assessment of the unreinforced vault 

 

For the unreinforced specimen an analytical model taking into account a 

tensile strength has been used [Ramaglia et al. 2016]. 

The collapse is achieved when the thrust line reaches the maximum 

eccentricity in an adequate number of points. The maximum eccentricity 

e(P) depends both on behaviour of material (elastic, cracking or plastic) and 

on the achieved axial load P. 

Furthermore, according to the tensile strength assumption, the maximum 

eccentricity of the thrust line is certainly greater compared to the classical 

approach, where no-tension is assumed. The boundaries containing the 

thrust line have an evolution with the load history [Ramaglia et al. 2015]. 

The unreinforced specimen has been analysed by means of the proposed 

analytical model (see Chapter 3). 

Several non-linear analyses (fixed gravity load and variable monotonically 

increasing horizontal loads) have been performed in order to provide both a 

reliable PGA (Peak Ground Acceleration) value and the hinge locations at 

collapse (evolution of the failure mode). 

In figure 5.11 the mechanical model used for the structural analyses is 

shown, where the curved element is discretized into a composition of beam 

elements. The abutments have been supposed fixed at their bases. 

During the entire analysis, a fixed vertical load pattern (gravity load) has 

been considered. The internal stress variation is due to the increasing of the 

horizontal load pattern, by means of a monotonically increasing 

acceleration. 
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Figure 5.11: Mechanical model of the unreinforced vault under a vertical and horizontal 

load pattern. 

 

The horizontal load increase is proportional to the masses of the masonry 

vault. Both the vertical and horizontal loads have been modelled by means 

of a discrete approach.  

The masonry material has been modelled using a homogeneous material 

with tensile strength. In table 5.3 the average mechanical properties of the 

homogeneous material (masonry), used in the preliminary analysis, are 

shown. 

 

Table 5.3: Mechanical characterization results. 

Mechanical Parameter Value 

Young’s modulus [MPa] 1200 1500 1800 

Compressive strength [MPa] 2.4 3.2 4 

Tensile strength [MPa] 0.08 0.16 (experimental value) 0.32 

 



Chapter - 5 

143 
 

The tensile strength value (middle value provided in table 5.3) is the same 

previously estimated on the similar specimen tested in the laboratory of the 

University of Naples, Federico II (see paragraph 4.3.1). 

In table 5.3, both the Young’s modulus and compressive strength are the 

values provided by the Italian Building Code 2009 for similar typological 

masonries. 

The experimental estimation of the mechanical properties was limited to the 

tensile strength only. 

The compressive strength has almost no effect on the seismic capacity of 

the specimen. In fact, the maximum compressive stresses are usually much 

lower than the compressive strength. 

The Young’s modulus has an important role both for the internal stress 

distribution and for the deformability of the vault. However, preliminary 

calculations showed the negligible influence both of the compressive 

strength and of the Young’s modulus on the ultimate seismic capacity of the 

specimen. 

No effect on the global behaviour has been shown by the wooden beam 

because it had not a sufficient bonded length and any anchoring device. 

Hence, this element has not been modelled in the numerical model. 

In the case of unreinforced specimen the analytical model provides both the 

collapse’s acceleration (2.26 m/s2 -i.e. 0.23g- with a tensile strength of 0.16 

MPa) and the resulting hinge mechanism (i.e. four hinges activated) as 

shown in figure 5.12. 

Similarly in the following figures, other graphical representations of the 

numerical results are provided for this specimen. 

The method and the average values of mechanical parameters were the same 

because the vaults were similar in terms of materials. 
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Figure 5.12: Hinge mechanism activated for the unreinforced specimen. 

 

The arch and walls were divided into 68 elements according to the specimen 

geometry. The curved portion was discretized in the same number of 

elements as previous case, while the walls were divided into two elements 

only, because potential locations for hinges were at their ends. However, 

increasing the number of elements in the lateral walls yields to the same 

results. 

A uniform horizontal load was assumed involving both walls and curved 

portion (i.e. the arch). Figure 5.13 shows the configuration of the thrust line 

at collapse condition for the curved element only. 

The internal forces Mj, Pj reach the plastic surface in two points only, 

representing the hinges 2 and 4 formation on the arch (figure 5.14). 
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Figure 5.13: Theoretical thrust line configuration for the masonry specimen (hinge 

mechanism activated). 

 

 
Figure 5.14: P-M points in the plastic failure surface (curved element). 

 

Conversely, the figure 5.15 provides the thrust line configuration for the 

lateral masonry walls at the same load. 

Hinge 4 

Hinge 2 
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It is worth noting that due to very low axial load values, the maximum 

eccentricity provided by equations (3.26) and (3.63) achieves extremely 

high values, especially at the top of the walls. On the other hand, at the 

intersection of the arch with the walls, the concentrated force due to the arch 

yields to a prompt increase of the axial load, hence a reduction of the 

fictitious thickness in the lower portion of the walls. 

 

 
Figure 5.15: Theoretical thrust line configuration for the masonry specimen (hinge 

mechanism activated). 

 

The internal forces Mj, Pj reach the plastic surface at the bases only, 

representing the hinges 1 and 3 formation at the bases of the lateral walls 

(figure 5.16).  

 

Hinge 3 

Hinge 3 Hinge 1 
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Figure 5.16: P-M points in the plastic failure surface (curved element). 

 

The tying at the wood truss location was not included in the model because, 

as expected, wood truss was free to slip during the experimental shakings. 

The cracks occurred at almost symmetrical locations at the inversion of the 

shaking direction. 

 

5.3.2. Seismic capacity assessment of the strengthened vault 

 

A similar approach has been performed for the specimen where several 

strengthening techniques have been combined. 

The assessment of the actual effects of several interventions is not simple, 

especially in a preliminary analysis. The several strengthening systems 

involve multiple effects on the global structural behaviour. The several 

interventions have been performed in order to improve both the seismic 

capacity and the dynamic behaviour of the specimen. 

The curved masonry elements and portions adjacent to the lateral abutments 

are certainly most interested by the interventions.  

In this background the masonry abutments are the most vulnerable elements 

(especially at the base). The arch element by means of the several 

strengthening techniques achieves an extremely high stiffness. 
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For this reason, in a preliminary calculation, the structural elements 

localized above the level of the vault’s imposts have been modelled as a 

rigid block (figure 5.17). 

 

 
Figure 5.17: Mechanical model of the strengthened vault under a vertical and horizontal 

load pattern. 

 

The resultant of the seismic actions can be applied in the centre of gravity 

of the rigid block. 

The structural model for the strengthened specimen is very simple. In 

particular the non-linear effect (i.e. plastic behaviour) was considered for 

the lower portion of the abutments only (figure 5.17). In fact, the plastic 

hinges activated according to the figure 5.18. 

It provides both a reliable collapse acceleration and the collapse 

configuration. 

The collapse mechanism, due to the strengthening techniques adopted, is 

localized in the lower portion of the masonry abutments. In particular the 

 

Non-linear 
behaviour 
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hinge mechanism is achieved formerly at the base of each abutment (first 

plastic hinges) and later at the vault’s imposts (two additional plastic 

hinges). 

The use of the predictive model provides a collapse’s acceleration of 4.9 

m/s2 (i.e. 0.5 g) with a tensile strength of 0.16 MPa. The hinge mechanism 

in figure 5.18 is shown for the strengthened specimen. 

 

 
Figure 5.18: Mechanical model of the strengthened vault under a vertical and horizontal 

load pattern 

 

5.3.2.1. Effects of the strengthening systems on the seismic capacity 

 

The collapse mechanism assumed is due to the strengthening systems made 

on masonry specimen. 

The masonry rib has increased arch stiffness. For this reason the 

vulnerabilities moves from the curved element to the masonry abutments. 

It is interesting to note that the additional systems: unidirectional steel tie 

and TRM system, provide a certainly increase of this effect. 

In order to assess the impact of masonry rib (elastic properties) on the 

strengthening efficiency, several sensitivity analyses have been performed. 
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The sensitivity analysis have been performed using a numerical FEM model 

(figure 5.19) where: 

 

- The masonry rib has been modelled with linear-elastic shells; 

- The masonry arch and lateral abutments have been modelled 

thought beam elements; 

- The covering made of TRM has an impact on the failure surface. In 

particular the failure surface has an expansion on the side where the 

TRM is effective. When the TRM system is applied at extrados of 

the curved element, it provides an expansion of the failure surface 

towards the negative bending moments. For this reason the TRM 

system has been modelled by means of an enlargement of the failure 

domain P-M [Ramaglia et al. 2015]. 

- Finally, the steel tie has been modelled using a beam element not 

reacting in compression and constrained on the extrados of the 

masonry rib. 

 

 
Figure 5.19: FEM model in order to assess the influence of masonry rib on the seismic 

behaviour. 

 

The sensitivity analysis have been performed on two FEM models. 
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In particular, first model (namely FEM_M_1) has been modelled without 

both the unidirectional steel tie and the TRM system. Therefore, this model 

takes into account only the impact of masonry rib on the seismic behaviour. 

Second FEM model (namely FEM_M_2) was developed in order to assess 

the effect of two additionally strengthening systems (i.e. steel tie and TRM 

system) on the seismic response. 

For each numerical model, push-over analyses have been performed 

varying both the geometrical (thickness sabut and height of the abutments 

habut) and the mechanical properties (Young’s modulus Erib of masonry rib). 

The non-linear effects have been modelled for the beam elements only. 

Therefore, the plastic hinges can be achieved only on the arch element or 

on the masonry abutments (figure 5.20). 

 

 
Figure 5.20: Identification of the elements where the plastic hinges may occur 

(FEM_M_1 or FEM_M_2). 

 

The Young’s modulus Erib of the masonry rib was changed from a minimum 

value of 1200 MPa according to the Italian Building Code (IBC, 2009) to a 

higher value (compatible with the typology of masonry). 

In particular, the elastic modulus was increased in order to achieve a failure 

according to the mechanism shown in figure 5.18 (i.e. the vulnerability 

moves from the arch element to the masonry abutments). 

Linear-elastic behaviour 

Non-linear behaviour 
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In order to assess the influence of other geometrical and mechanical 

parameters, the elastic modulus variation (Erib) has been coupled to the 

geometrical parameters (sabut, habut). 

Starting from the geometry of the tested vault (figure 5.10), the thickness of 

masonry abutments sabut and their height habut have been changed. In 

particular, the abutments thickness sabut ranged from 0.25m to 1m. Instead, 

the height of lateral abutments ranged from a value of 0.5m to 5m. 

Next section shows the results of these parametric analyses. In particular, 

the figure 5.21 shows the development of the Erib value (that provides a 

collapse mechanism according to the figure 5.18) varying the parameter 

habut for a tensile strength value of 0.16 MPa. In the following section only 

the results for a thickness abutment of 0.25 m will be discussed. 

 

 
Figure 5.21: Developing of Young’s modulus Erib in order to achieve a failure mode 

according to figure 5.18 (FEM_M_1 or FEM_M_2). 

 

It is interesting to note that the additional systems (unidirectional tie and 

TRM system) provide a beneficial effect on the seismic behaviour. 
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In particular, without the tie and TRM strengthening systems, the value of 

Erib with reference to the first model (FEM_M_1) that guarantees the 

supposed failure mode (figure 5.18) is higher than the Erib with reference to 

the second numerical model (FEM_M_2) where the additional 

strengthening systems are not included. 

Furthermore, figure 5.21 shows the impact of the parameter Erib varying 

habut. In particular, it is noted that for high values of habut the influence of 

the Erib can be neglected. In fact, when the masonry abutments are slender 

(i.e. high habut/sabut ratio) the interventions made on the curved element show 

a negligible impact on the global behaviour (full system made of arch 

element and abutments). This issue is due to the strong vulnerability that 

show the masonry abutments with high ratio of habut/sabut. 

Therefore, the numerical results show that the additional strengthening 

systems provide an important beneficial effect on the seismic behaviour. In 

fact, without the additional systems, the collapse mechanism shown in 

figure 5.18 may not occur. However, it could be solved by using a masonry 

rib with higher thickness srib or, alternatively, reducing the spacing between 

the masonry ribs. 

 

5.3.3. Dynamic investigation of the unreinforced vault 

 

An estimate of the ultimate lateral capacity only is insufficient in order to 

design experimental tests on shaking tables. The characteristics of the signal 

represent a critical aspect to ensure that the vault is adequately tested. In 

particular, the natural frequency of the vault must be well contained in the 

input signals. In order to define the frequency content of the signals, several 

modal analyses have been performed. 

For this reason, a numerical FEM model was built on a micro-modelling 

approach base. Both masonry bricks and mortar joints have been modelled 

using shell elements with a linear-elastic material (elastic parameters 

provided in table 5.1). 
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The non-linear behaviour has been modelled using a specific interface 

element between mortar and brick. In particular both cohesive and frictional 

contact models have been considered. 

This modelling strategy is due to experimental results obtained from 

previous dynamic tests on a similar specimen where cracks at the interfaces 

between mortar and brick have been always observed. 

Therefore, the non-linear behaviour is due to the interface behaviour, while 

both the bricks and mortar joints remain in the elastic state. 

The mechanical parameters of the interaction model have been calibrated in 

previous experimental tests [Giamundo et al. 2015] where several dynamic 

tests have been performed on a masonry specimen with similar curved 

portion but without abutments. The mechanical values used for the FEM 

model are shown in table 5.4. 

 

Table 5.4: Mechanical characterization of the bond at the interface between mortar and 

brick. 

Mechanical Parameter Value  

Normal stiffness modulus [N/mm3] 46  

Shear stiffness modulus [N/mm3] 46  

Friction angle [°] 38.02  

 

The dynamic behaviour (natural frequency) assessed by preliminary 

calculations was experimentally confirmed as well. The modal analysis has 

been conducted in order to estimate the natural frequencies both of the 

unreinforced and of the strengthened vault. 

The numerical model provides a natural frequency of 7.25 Hz on the 

unreinforced specimen (figure 5.22), whereas experimental results provide 

a natural frequency equal to 7.22 Hz. 
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Figure 5.22: Results of the modal analysis: first mode shape for the unreinforced 

specimen. 

 

5.3.4. Dynamic investigation of the strengthening vault 

 

A similar approach has been performed for the strengthened specimen 

where several strengthening techniques have been combined. The 

assessment of the actual effects of several interventions is not simple, 

especially in a preliminary analysis. 

The several strengthening systems involve multiple effects on the dynamic 

behaviour. The several interventions have been performed in order to 

improve the dynamic behaviour of the specimen. 

The curved masonry elements and their portions adjacent to the lateral 

abutments are certainly most interested by the interventions. 

Therefore, another numerical model was developed for the strengthened 

vault. In particular, the interface model was applied only on curved elements 

and abutments. 

The masonry rib has been modelled by means of homogenous shell 

elements (both brick and mortar joints) with a linear-elastic behaviour. The 

elastic properties of the masonry rib are shown in table 5.2. 

Then, the TRM system has been modelled with shell element perfectly 

bonded on the extrados surface. In fact, the perfect bond of strengthening 

f=7.25 Hz 
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system to masonry substrate was experimentally confirmed as well. Finally, 

the steel tie has been modelled by means of an internal constraint. 

The FEM model provided a natural frequency of 11.23 Hz (figure 5.23). 

The experimental results provided a natural frequency equal to 13.38 Hz. 

 

 
Figure 5.23: Results of the modal analysis: first mode shape for the strengthened 

specimen. 

 

The results of the modal analysis showed the different dynamic response of 

the two specimens. The unreinforced vault exhibits a first mode shape that 

involves the entire structure (figure 5.22). The first mode of the 

strengthened specimen shows a rigid behaviour between left and right side 

(figure 5.23). 

Furthermore, it is interesting to note that the keystone represents a crucial 

section for the strengthened vault. It is due to the accentuated distortion of 

the vault’s keystone experimentally confirmed as well. 

 

5.4. Instrumentation of specimens 

 

The specimens have been instrumented in order to monitor the structural 

behaviour of the vault during the dynamic tests. The instruments were 

placed in several locations of each specimen. 

f=11.23 Hz 
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Eight devices were placed on the profile of the curved element in order to 

monitor the acceleration values on the unreinforced masonry vault.  

Figure 5.24 shows the instrumentation configuration (SN devices) used both 

for the unreinforced specimen and strengthened specimen. 

 

 
Figure 5.24: Monitoring system of the unreinforced specimen. 

 

The displacements have been monitored by means of five laser 

displacement transducers (L and W devices). The displacement transducers 

were placed using the same configuration for both specimens (figure 5.25).  
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Figure 5.25: Monitoring system of the strengthened specimen. 

 

However, the configuration of accelerometers was improved on the 

strengthened specimen with four additional devices. 

The monitoring system records experimental data at 100Hz frequency. 

 

5.5. Test programme: characteristics and description of seismic 

signals 

 

The preliminary calculation provides information about the requirements 

for the seismic signals. The seismic capacity assessment on both specimens 

allows the estimation of the maximum intensity for each signal. Instead, a 

reliable estimate of the dynamic characteristics of the specimens provides 

the frequency content that must be contained in the input signals. 

The planned test programme is different for the unreinforced and 

strengthened specimen. Overall, three typologies of input signals have been 

adopted. The dynamic tests have been performed in the plane of the 

masonry vault (unidirectional test). 

In order to assess natural frequencies of the specimens (unreinforced and 

strengthened vault) a 30 seconds artificial random time history 

accelerogram has been adopted. The artificial signal, named random, is 
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obtained from a non-stationary random excitation having a large frequency 

content ranging from 1 to 30 Hz (figure 5.26). 

 

 
Figure 5.26: Random signal for artificial time history accelerogram with a scale factor 

of 100%. 

 

In fact, only a signal composition obtained through multiple-frequency 

random excitations, provides an accurate estimation of the natural 

frequency for both specimens. The dynamic identification of the specimens 

has been performed according to the transfer function method. 

The signal has a PGA of 4.50 m/s2, and it has been scaled down to a PGA 

of 0.25 m/s2 (i.e. scale factor of about 5%) to avoid undesirable damage. 

This signal has been applied on both specimens (unreinforced and 

strengthened vault). 

 

5.5.1. Description of seismic signals assigned for the unreinforced 

specimen 

 

The unreinforced specimen has been tested with a natural time history 

accelerogram which lasts 72.55 seconds. The signal recorded in Sturno 

(Campania, Italy) during the 1980 earthquake has been chosen for the entire 

first set (unreinforced vault). 
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The original signal (figure 5.27), progressively scaled up to the collapse 

condition, has a PGA of 1.78 m/s2 (i.e. scale factor equal to 100%). 

 

 

Figure 5.27: Sturno signal for natural time history accelerogram with a scale factor of 

100%. 

 

Furthermore, this input signal has a frequency content of about 8 Hz, which 

is very close to the natural frequency estimated from preliminary 

calculations. 

Starting from the Sturno signal scaled from a PGA of 0.432 m/s2 up to a 

PGA value of 2.170 m/s2 (collapse occurrence), five natural signals have 

been provided to the unreinforced vault. Additionally, the random signal 

has been applied before of each Sturno signal. Therefore, ten dynamic tests 

have been performed up to collapse. 

It is worth remarking that during experimental tests, shaking tables are not 

able to exactly match the “desired” signal. 

This issue always occurs, even after an accurate calibration of the entire 

control system. Therefore, at each theoretical PGA value (desired) 

corresponds an actual PGA value (achieved), achieved by the shaking tables 

system. In table 5.5, the desired and achieved PGA values have been 

reported according to the experimental programme with reference the 

unreinforced specimen. 
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Table 5.5: Experimental programme for the unreinforced specimen. 

Test ID Accelerogram 

Scale 

factor 

[%] 

PGA 

desired 

[m/s2] 

PGA 

achieved 

[m/s2] 

Specimen 

SIGN2 Sturno 25% 0.442 0.432 Unreinforced 

SIGN4 Sturno 50% 0.894 0.815 Unreinforced 

SIGN6 Sturno 75% 1.336 1.119 Unreinforced 

SIGN8 Sturno 100% 1.777 1.650 Unreinforced 

SIGN10 Sturno 125% 2.219 2.170 Unreinforced 

 

In order to avoid redundant information in the previous table, the maximum 

acceleration values of natural signals (Sturno signal) are provided without 

the (repeated) random signals. 

 

5.5.2. Description of seismic signals assigned for the strengthened 

specimen 

 

For the strengthened vault the Sturno signals (see paragraph 5.5.1) has been 

adopted only at the beginning of the experimental test. 

In particular, the previous dynamic sequence carried out on the unreinforced 

specimen (five natural signals with increasing intensity) have been repeated 

on the strengthened vault. 

Indeed, the first aim was to assess the effects of the strengthening 

interventions, repeating the dynamic sequence used for the unreinforced 

vault up to the Sturno signal scaled up to 125% when the collapse occurred 

previously. 

Additionally, the same natural signal (Sturno signal) has been used with an 

intensity higher than 125%. In particular, increasing the signal up to a PGA 

value of 4.753m/s2, the first visible damage has been achieved. 

After damage occurrence, the Sturno signal with scale factor of 125% has 

been assigned again to the strengthened vault. In this way the efficacy of 

the strengthening techniques can be assessed after damage occurred due to 
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replicas. Starting from the Sturno signal scaled down to a PGA of 0.403 

m/s2 and up to a PGA equal to 4.753 m/s2 plus a repetition with a scale 

factor of 125%, fourteen tests have been performed on the strengthened 

vault. 

In addition to the Sturno signal a new set based on the seismic signal 

recorded during the Gemona (Friuli, Italy) 1976 earthquake has been used 

after the Sturno sequence. 

This latter signal lasts 35.41 seconds with a frequency content of about 12 

Hz, which is very close to the natural frequency of the specimen estimated 

through modal analyses. This latter signal (figure 5.28), progressively 

scaled up to the collapse condition, has a PGA value of 3.103 m/s2 (i.e. scale 

factor equal to 100%). 

 

 
Figure 5.28: Gemona signal for natural time history accelerogram with a scale factor of 

100%. 

 

Starting from the Gemona signal scaled down to a PGA of 2.759 m/s2 up to 

a PGA equal to 5.146 m/s2, four additional dynamic tests have been 

performed on the strengthened vault up to the collapse. 

Furthermore, in order to assess the natural frequency variation of the 

strengthened vault, each shaking has been preceded by a random signal. In 

particular, the last random signal has been applied after the first damage 

occurred (i.e. after the last Sturno signal). At the end of tests performed on 
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the strengthened specimen, a total of thirty-three dynamic tests has been 

carried out.  

The natural frequency of the strengthened vault has been assessed again 

according to the transfer curve method, while after each test the masonry 

specimens have been inspected in order to detect the damage occurrence. 

In table 5.6, the desired and achieved PGA values have been reported 

according to the experimental programme with reference to the 

strengthened specimen. 

 

Table 5.6: Experimental programme for the strengthened specimen. 

Test ID Accelerogram 

Scale 

factor 

[%] 

PGA 

desired 

[m/s2] 

PGA 

achieved 

[m/s2] 

Specimen 

SIGN12 Sturno 25% 0.442 0.403 Strengthened 

SIGN14 Sturno 50% 0.894 0.746 Strengthened 

SIGN16 Sturno 75% 1.336 1.178 Strengthened 

SIGN18 Sturno 100% 1.777 1.620 Strengthened 

SIGN20 Sturno 125% 2.219 2.062 Strengthened 

SIGN22 Sturno 135% 2.396 2.219 Strengthened 

SIGN24 Sturno 150% 2.661 2.534 Strengthened 

SIGN26 Sturno 160% 2.848 2.759 Strengthened 

SIGN28 Sturno 180% 3.201 2.838 Strengthened 

SIGN30 Sturno 190% 3.378 3.083 Strengthened 

SIGN32 Sturno 200% 3.555 3.427 Strengthened 

SIGN34 Sturno 220% 3.908 4.419 Strengthened 

SIGN36 Sturno 250% 4.439 4.753 Strengthened 

SIGN38 Sturno 125% 2.219 2.072 Strengthened 

SIGN40 Gemona 100% 3.103 2.759 Strengthened 

SIGN41 Gemona 125% 3.879 3.712 Strengthened 

SIGN42 Gemona 150% 4.655 3.938 Strengthened 

SIGN43 Gemona 175% 5.421 5.146 Strengthened 
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In order to avoid redundant information in the previous table, the maximum 

acceleration values of natural signals (Sturno and Gemona signals) are 

provided without the random signals. 
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Chapter 6 

 

RESULTS & DISCUSSION 

 

The use of composite materials has shown to be effective for existing 

structures. In this background the experimental tests can provide an 

efficient contribution to the interpretation of the strengthening efficiency. 

The experimental results of an innovative strengthening system are herein 

presented. The strengthening technique is based on TRM system (Textile 

Reinforced Mortar) in addition to traditional strengthening techniques. 

Their effects have been investigated by using the shaking table tests, both 

before and after application of the strengthening systems. 

The strengthening system has been applied to a full-scale masonry vault 

typically found as roof in religious buildings. Several shaking table tests 

have been performed on the unreinforced and strengthened specimen. 

In this Chapter the strengthening performance of the vault has been 

assessed comparing the behaviour detected during the tests. 

 

6.1. Dynamic identification 

 

The monitoring of both specimens allows to estimate their natural frequency 

evolution. In particular, the application of the transfer function between the 

signal generated at the base and monitored on the structure allows the 

calculation of the natural frequency. 

 

6.1.1. Dynamic properties of unreinforced vault 

 

The transfer function was evaluated during each random signal. Figure 6.1 

shows the transfer function applied on the random signals before first and 

last seismic signal (collapse) for the unreinforced vault. 
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The natural frequency before the first signal (without damage) is 7.22Hz. 

 

 
Figure 6.1: Transfer function trend: undamaged unreinforced specimen (green) and 

before the collapse (black). 

 

6.1.2. Dynamic properties of strengthened vault 

 

Similar approach has been performed on the strengthened vault (figure 6.2). 

The strengthened specimen showed a natural frequency equal to 13.38Hz 

(without damage). 

 

 
Figure 6.2: Transfer function trend: undamaged strengthened specimen (green), after the 

first damage occurred (black). 
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6.2. Structural damage assessment based on the transfer curve 

method 

 

Starting from the transfer functions, also the gradual degradation of stiffness 

due to progressive damage can be assessed. 

The random signal assigned before each seismic signal showed a 

progressive decrease of the natural frequency. This stiffness degradation has 

been observed for both specimens (unreinforced and strengthened vault). 

In particular, for the unreinforced specimen before the collapse, the natural 

frequency is reduced up to -50% (3.63Hz) as shown in the figure 6.3. 

 

 
Figure 6.3: Transfer functions trend: unreinforced specimen. 

 

Is interesting to assess the natural frequency decay (figure 6.4). The 

frequency decay can be calculated using following equation: 

0
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    (6.1) 

where fi is the frequency estimated for a generic seismic signal i and f0 is 

the frequency of the undamaged specimen. 

 

  

7.27
6.97

6.57

5.83

3.63

0

1

2

3

4

5

6

7

8

SIGN1 SIGN3 SIGN5 SIGN7 SIGN9

Fr
eq

u
en

cy
 [

H
z]

Natural frequency (unreinforced specimen)



Chapter - 6 

168 
 

 
Figure 6.4: Frequency decay (unreinforced vault). 

  

Instead, for the strengthened vault, before the first visible damage, the 

natural frequency is reduced up to -58% (5.67Hz). Before the collapse, the 

natural frequency is reduced up to -67% (4.48Hz) as shown in the figure 

6.5. 

 

 
Figure 6.5: Transfer functions trend: strengthened specimen 

 

After the signal named SIGN40, additional random signals (aimed to 

dynamic identification) have not been assigned due to the damage occurred. 
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In fact, once the damage occurs, the dynamic identification is not reliable. 

Therefore, the strengthened specimen has been tested by means of natural 

signals only up to the collapse. 

The frequency decay estimation has been performed also for the 

strengthened masonry specimen. The frequency decay (figure 6.6) have 

been estimated using the previous equation (6.1). 

 

 
Figure 6.6: Frequency decay (strengthened vault). 

 

It is interesting to analyse the development of the natural frequency varying 

the PGA achieved at base of specimens. 

Furthermore, these data coupled with the corresponding frequency decay 

can provide significant information about the effectiveness of the 

strengthening techniques (figure 6.7). 

This analysis has been provided until the signal named SIGN38, additional 

random signals (aimed to dynamic identification) have not been assigned 

due to the damage occurred. In fact, once the damage occurs, the dynamic 

identification is not reliable. Therefore, the strengthened specimen has been 

tested by means of natural signals only up to the collapse. 

It is noted that with increasing steps of PGA the strengthened specimen 

shows a frequency decay lower than the one of unreinforced specimen. This 
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result remarks the effectiveness of the strengthening systems to improve the 

seismic response. 

 

 
Figure 6.7: Development of frequency and frequency decay at different PGAs (PGA 

value achieved at base). 

 

6.3. Damping ratio assessment 

 

Finally, the half power bandwidth method [Bracci et al. 1992] has been 

adopted in order to assess the structural damping ratio ζ, for both specimens. 

This analysis has been conducted up to the signal named SIGN39, for 

previous reasons. 

The damping ratio, ζ, has been calculated according to the well-known half-

power bandwidth method as: 

1 2

2 n

 








   (6.2) 

Where ωn is the natural frequency and ω2, ω2 represent the frequencies for 

which the power input is half of the input at resonance. 
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In table 6.1 and 6.2 the experimental estimated damping ratios are shown 

for the unreinforced and strengthened specimen respectively. 

The tested unreinforced specimen showed a damping ratio ζ, ranging 

between 2.12% and 4.54% (table 6.1). 

 

Table 6.1: Structural damping values for the unreinforced specimen (ξ values are 

expressed in %). 

Signal Damping ζ [%] Specimen 

SIGN1 2.12% Unreinforced 

SIGN3 2.94% Unreinforced 

SIGN5 3.43% Unreinforced 

SIGN7 3.86% Unreinforced 

SIGN9 4.54% Unreinforced 

 

Indeed, the strengthening masonry vault showed a damping ratio. ζ, ranging 

from the 0.82% to the 9.45% (table 6.2). 

 

Table 6.2: Structural damping values for the strengthened specimen (ξ values are 

expressed in %). 

Signal Damping ζ  [%] Specimen 

SIGN11 0.82% Strengthened 

SIGN13 1.18% Strengthened 

SIGN15 1.52% Strengthened 

SIGN17 1.91% Strengthened 

SIGN19 2.13% Strengthened 

SIGN21 2.23% Strengthened 

SIGN23 4.73% Strengthened 

SIGN25 5.29% Strengthened 

SIGN27 5.45% Strengthened 

SIGN29 6.01% Strengthened 

SIGN31 6.22% Strengthened 

SIGN33 6.52% Strengthened 

SIGN35 6.97% Strengthened 

SIGN37 7.38% Strengthened 

SIGN39 9.45% Strengthened 
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6.4. Seismic capacity and collapse mechanism: unreinforced vault 

 

The unreinforced specimen has been tested by means of five natural signals 

with increasing intensity (Sturno signal) and five random signals 

characterized by a lower intensity with a constant scale factor. At the end of 

each test, several visual surveys have been conducted. 

Up to the signal named SIGN8 (Sturno signal with scale factor 100%) 

evident damage has not been detected. However, a progressive damage was 

achieved at increasing seismic input, highlighted also in the transfer curves 

(figure 6.3). 

The collapse occurred by activation of a hinge mechanism at a PGA value 

of 2.170 m/s2 during the test SIGN10. The four plastic hinges activated 

almost instantaneously (figure 6.8). 

The numerical and experimental comparison showed that both the PGA 

(2.26 m/s2 according to the numerical model) and failure mode at collapse 

(location of four hinges activation) were confirmed by the analytical 

predictive model (see paragraph 5.3.1). 

The experimental result endorses the hinge mechanism to be the limiting 

failure mode in the masonry vaults. The sliding or crushing failure can be 

achieved for particular geometric configurations, for example, when the 

span/thickness ratio is extremely reduced (i.e. non-slender masonry vaults). 

Interesting is the assessment of the maximum acceleration induced in 

several monitored sections of the unreinforced specimen. The maximum 

values of the horizontal acceleration for each section (horizontal 

acceleration profile) provide information both on the acceleration 

distribution and on the variation of the seismic behaviour. 
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Figure 6.8: Test SIGN10 for the unreinforced specimen (collapse occurred). 

 

Figures 6.9 and 6.10 show how the maximum horizontal accelerations are 

distributed up to the last signal named SIGN10 on the unreinforced vault. 

To each shape of the acceleration profile is associated a dynamic signal. 

 

 

Figure 6.9: Horizontal acceleration profiles of the unreinforced vault up to collapse 

(curved element and abutments comparison, left side).  

Plastic hinges 



Chapter - 6 

174 
 

 

Figure 6.10: Horizontal acceleration profiles of the unreinforced vault up to collapse 

(curved element and abutments comparison, right side).  

 

Starting from the acceleration profile, the different behaviours between the 

curved element and the abutments can be assessed. The several acceleration 

profiles show how the curved element exhibits a decoupled behaviour 

compared to the abutments. 

The maximum value of the horizontal acceleration of 4.80 m/s2 was 

achieved during the test SIGN10 on the top edge of the masonry abutments 

(right side, see figure 6.10). Furthermore, a maximum acceleration of 2.95 

m/s2 was achieved on the middle haunch of the curved element (right side, 

see figure 6.10) during the same signal. 

The shape of the acceleration profile did not show a significant variation of 

the dynamic behaviour due to increase of the PGA value up to the test 

SIGN6. In fact, starting from the signal named SIGN8 up to the collapse, 

the distribution of the acceleration experiences a significant variation for 

both sides (figures 6.9 and 6.10). 

The alteration of the dynamic behaviour can be analysed through the 

transfer curves too (figures 6.3 and 6.7). In particular, the figure 6.3 shows 

how the maximum frequency decay has been observed moving from the test 

SIGN6 to the test SIGN8. 
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Finally, the dynamic amplification between vault’s imposts and specimen's 

bases increases significantly from the signal named SIGN6 to tests SIGN8 

and SIGN10. The amplification value remains almost constant up to 

penultimate signal (i.e. SIGN8). 

The horizontal acceleration profile at collapse highlights a symmetrical 

behaviour between the right and left side of the vault along the horizontal 

direction. 

A symmetrical shape of the acceleration profile was highlighted also along 

the vertical direction (i.e. vertical acceleration profile), shown as follow 

(figure 6.11). 

 

 
Figure 6.11: Vertical acceleration profiles of the unreinforced vault up to collapse 

(curved element and abutments).  
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6.5. Seismic capacity and collapse mechanism: strengthened vault 

 

The previous set of signals used on the unreinforced vault has been 

performed again on the strengthened specimen. During the test SIGN20 

(replica of the input signal with a scale factor of 125%), an acceleration of 

2.062 m/s2 was achieved at the base. 

Even after this signal, the several visual surveys did not show any evident 

damage. This first experimental result proves that the strengthening systems 

strongly improved the seismic capacity of the specimen. 

Figure 6.12 and figure 6.13 show the left and right acceleration profiles of 

first five dynamic signals performed on the strengthened vault. 

 

 

Figure 6.12: Horizontal acceleration profiles of the strengthened vault up to signal 

named SIGN20 (curved element and abutments comparison, lift side). 
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Figure 6.13: Horizontal acceleration profiles of the strengthened vault up to signal 

named SIGN20 (curved element and abutments comparison, right side). 

 

The effects of the strengthening techniques are evident starting from the 

preliminar analyses. However, after strengthening, both the arch and the 

lateral abutments show a sort of rigid motion because their amplification 

profiles become almost overlapping. 

The horizontal acceleration profile shows a symmetrical behaviour between 

left and right side of the vault. This effect is accentuated by the 

strengthening systems adopted. 

The maximum value of the horizontal acceleration of 3.65 m/s2 was 

achieved during the test SIGN20 on the abutments (right side, see figure 

6.13). Furthermore, on the curved element, the maximum acceleration of 

3.51 m/s2 was achieved on the middle haunch (left side, see figure 6.12) 

during the same signal. 

The shape and intensity of the acceleration profiles show a significant 

alteration at increasing intensity of the input signals. A variation of the 

shape of profile corresponds to a significant alteration of the dynamic 

behaviour as can be seen from the signal named SIGN24 (with scale factor 

of 150%). 

However, already starting from the signal named SIGN22 the shape of the 

acceleration profile denotes how the stiffening effect of the strengthening 
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systems has been reduced. Then, the stiffness decay rapidly increases with 

the subsequent signals. 

The change of dynamic behaviour can be analysed through the transfer 

curves also (figures 6.5 and 6.7), where the higher decay of the fundamental 

frequency between the test SIGN22 and SIGN24 is evident. 

After the test SIGN34, the strengthened specimen resulted still not damaged 

at all. 

A first local damage was achieved during the signal named SIGN36 (Sturno 

signal with a scale factor of 250%). An evident crack at the interface 

between mortar and brick was detected (figure 6.14 a)). In particular, the 

damage was localized at the vault’s impost (right side) for an acceleration 

at the base of 4.753 m/s2. 

Furthermore, a surface cracking occurred close to the keystone (figure 6.14 

b)). In particular, at the intrados, interface cracking occurred along the entire 

depth (116cm) of the curved element, in two sections. 

 

 

Figure 6.14: Test SIGN36 for the strengthened specimen (damage occurred) 

 

Afterwards, the first evident damage occurred and the signal with a scale 

factor of 125% (i.e. the shaking yielding to collapse of the unreinforced 

b
) 

a
) 

b) 

a) 
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specimen) has been performed again (SIGN38). After the last Sturno signal, 

the specimen did not show any additional damage. 

Figures 6.15 and 6.16 show the acceleration profiles starting from signal 

named SIGN38 (signal replica with a scale factor equal to 125%) up to 

signal SIGN43 when the collapse occurred. The acceleration profiles were 

shown separately for the left and right side. 

 

 

Figure 6.15: Horizontal acceleration profiles of the strengthened vault starting from 

signal named SIGN40 up to SIGN43 (curved element and abutments comparison, left 

side). 

 

 

Figure 6.16: Horizontal acceleration profiles of the strengthened vault starting from 

signal named SIGN40 up to SIGN43 (curved element and abutments comparison, right 

side). 
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It is interesting to note how the signal replica (SIGN38) yields to a shape of 

the acceleration profiles totally changed compared to test SIGN20. In 

particular, on the right side and left side, they are completely different both 

in terms of shape and of intensity (non-symmetrical response between the 

right and left side of the specimen), and it is attributed to impairment of 

strengthening efficiency. 

Finally, the acceleration profiles calculated during the last set of signals 

show the complete loss of the stiffening effect due to the strengthening 

systems. 

The present section shows the main aspects related to the experimental 

results. For a thorough chart refer to Appendix A where the full results are 

provided with different acceleration profiles. 

The experimental test has been performed up to the global collapse by 

means of a new set of signals (Gemona signal) with increasing intensity. 

The collapse occurred with a hinge mechanism for a PGA of 5.146 m/s2 

recorded at the base of the vault during the signal named SIGN43. The 

numerical and experimental comparison shows that both the PGA (4.9 m/s2 

according to the numerical model) and the failure mode at collapse (four 

hinges localized at the two ends of the masonry abutments) were achieved 

according to the analytical predictive model (figure 6.17a). In addition to 

the hinge mechanism, an increase of the cracking at the intrados of the 

curved element occurred (figure 6.17b)). 

The presence of the TRM strengthening prevented the formation of hinges. 

Indeed, the formation of the described cracks has occurred at the intrados 

of the curved element only. This effect was predicted by the preliminary 

calculation after the several strengthening techniques used.  

It is interesting to note that no debonding failure occurred between the TRM 

system and the masonry substrate. In fact, after the test SIGN43 (collapse) 

the inorganic matrix resulted still perfectly bonded to the masonry substrate, 

with exception of the keystone where the debonding failure occurred. 
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Figure 6.17: Test SIGN43 for the strengthened specimen (collapse occurred). 

 

However, it is due to the weight of an entire masonry block hanging after 

cracking occurred (figure 6.17 b)). These experimental results confirm the 

high bond properties of the TRM strengthening. 

 

6.6. An actual case study in Italy: the monastery of Santo Spirito 

 

The experimental tests (statically or dynamically performed) can provide 

important information about the structural behaviour and the effectiveness 

of several strengthening interventions. However, it is fundamental not to 

confine these results to scientific environment only. 

The experimental results remark the effectiveness of the strengthening 

techniques adopted to strengthen the damaged specimen. Furthermore, the 

reversibility and compatibility of these strengthening techniques support its 

application in heritage buildings (like as monumental buildings and 

churches). Given the experimental results, these strengthening techniques 

have been applied on an actual heritage building on some masonry cross 

vaults. 

The Monastery of Ocre in Italy (figure 6.18) has been chosen as 

demonstrator project according to the Research Project namely PON-

b
) 

a
) 

a) 

b) 



Chapter - 6 

182 
 

PROVACI (Technologies for Earthquake Protection and Valorisation of 

Cultural Heritage Sites). 

 

 
Figure 6.18: Monastery of Santo Spirito, Ocre (Italy). 

 

The Monastery was built in 13th century B.C.. The masonry system is 

characterised by a strong inhomogeneity both in texture and in masonry 

units. The masonry was mainly built with chaotic stones as shown in figure 

6.19. 

 

 
Figure 6.19: Characteristics of masonry (Monastery of Santo Spirito). 
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In the Monastery there are several masonry vaults made of solid clay bricks. 

Figure 6.20 shows a masonry cross vault typically found as roofs. 

 

 
Figure 6.20: Masonry vaults typically found as roofs (Monastery of Santo Spirito). 

 

With this demonstrator project several strengthening systems have been 

performed according to experimental results. 

In the next section the construction phases by means of several 

strengthening systems will be shown. 

The TRM application aimed to improve the seismic performance of the 

masonry curved elements. This strengthening system (figure 6.21) has been 

applied at the extrados of the curved element according to the construction 

phases previously discussed (see paragraph 5.2.2). 

In addition, some masonry ribs were built over the extrados. These masonry 

ribs were located starting from the imposts up to haunch of the curved 

element (figure 6.22).  
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Figure 6.21: TRM strengthening applied on the extrados of the masonry cross vault 

(Monastery of Santo Spirito). 

 

The masonry ribs were made of clay hollow bricks using single rows 

according to the strengthening system used for the experimental test (see 

paragraph 5.2.2). 

 

 
Figure 6.22: Masonry rib made of single rows of bricks (Monastery of Santo Spirito). 
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In order to improve effectiveness of TRM system between the masonry ribs 

and the extrados of the vault, an additional basalt fibre grid has been applied 

(figure 6.23). 

 

 
Figure 6.23: Additional TRM strengthening on the masonry ribs and its covering 

(Monastery of Santo Spirito). 

 

In this way the connection between masonry ribs and substrate is guaranteed 

by an additional TRM system. The entire surface (masonry ribs and 

additional TRM strengthening) was covered by two mortar layers according 

to the manufacture phases previously discussed (see paragraph 5.2.2). 

The engineering application briefly discussed shows an actual 

implementation of the strengthening techniques previously tested (see 

chapter 5). 
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Chapter 7 

 

CONCLUSIONS 

 

The Ph.D. thesis debated about the main aspects related to the analysis of 

slender masonry vaults without any backfill and with high span/thickness 

ratios, as those typically used in religious buildings as roofing. 

Their analysis by using the Heyman's Theory cannot be performed due to 

the very low axial force values, typically reached. Indeed, if no-tension is 

assumed, the collapse is expected, by means of theoretical analysis, even 

under gravitational load (even if the real structure shows no evidence of any 

structural problem) hence a tensile strength value should be assumed. 

An analytical model aimed at the assessment of slender masonry barrel 

vaults has been proposed. 

The equations in closed form are provided to account for three possible 

material behaviours (linear-elastic, cracking and plastic with stress block 

model). 

The proposed model is easily implementable by means of a solving 

algorithm in order to perform a limit or incremental analysis. The solving 

algorithm has been implemented by means of the Wolfram Mathematica 

software. 

Through the numerical and experimental comparison, the proposed 

analytical method has been validated. In particular, the specimen 

experimentally tested by means of shaking table test has been analysed by 

using the proposed simplified model. 

The plastic failure surface has been chosen for the masonry material. 

Starting from mechanical parameters estimated by experimental tests the 

analytical model has been used to estimate the seismic capacity of the vault. 

An incremental analysis has been performed in order to evaluated both the 
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evolution of the plastic hinges (i.e. evolution of the collapse mechanism) 

and the collapse acceleration. 

The numerical result provides a λ of 0.54 g. The theoretical PGA value at 

collapse is very close to experimental PGA achieved during the last signal 

(i.e. 0.48g). 

The agreement in terms of both activation multiplier and failure mode (i.e. 

hinge mechanism pattern, comparing experimental locations and theoretical 

outcomes) is very satisfactory. 

Starting from the validated model, several sensitivity analyses have been 

performed. The results of the sensitivity analysis provide the impact of 

different parameters, both geometrical and mechanical, on the structural 

capacity. 

The results showed that, under no-tensile strength assumption, the influence 

of the typologies of masonry can be neglected. 

Indeed, the model is sensitive to tensile strength of masonry and its impact 

on the seismic capacity was estimated for a large number of cases. 

In this background a reliable estimation of the tensile strength is essential. 

The number of elements used for the discretization has a reduced impact on 

the capacity assessment. 

Therefore, the proposed method is valuable to estimate the ultimate capacity 

of the masonry vaults, by using a simplified approach. 

Furthermore, the model can be extended to the FRP, FRCM or TRM retrofit 

systems, being able to increase the load carrying capacity of the vaults. 

This capacity increment is due to the expansion of the failure surface which 

moves far away from unreinforced failure condition. A further validation is 

required with experimentally tested retrofitted vaults. 

Then, the analytical model has been used to design the shaking table tests 

performed on other masonry specimens. In particular, several shaking table 

tests have been carried out on a full-scale masonry vault with abutments. 

The tested specimen is representative of vaulted roofs typically used in 

religious buildings without any backfill. 
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After the unreinforced specimen has been tested, it has been repaired and 

strengthened by means of several techniques and tested again. 

The analytical model provided reliable results and the hinge locations were 

correctly predicted. Furthermore, the structural capacity has been estimated 

with a good accuracy. 

Finally, the experimental results have provided key information about the 

effectiveness of the strengthening systems. 

In particular, a set of natural signals was used to shake the vault and damage 

evolution was analyzed by means of visual surveys while low intensity 

artificial random signals allowed performing dynamic identification and 

monitoring. 

The benefits were experimentally confirmed by comparing the performance 

of the specimens, yielding to the following conclusions. 

The failure mode of unreinforced specimen was achieved due to instant 

formation of four plastic hinges, which showed the fragility of the specimen 

at a PGA level of only 2.170 m/s2. 

After strengthening by combined system of TRM and traditional 

interventions, the seismic behavior of the vault was significantly improved. 

The horizontal acceleration profiles showed a perfect symmetrical response 

of the vault up to almost the same PGA yielding to the failure of 

unreinforced specimen. 

Increasing the PGA the instrumental response of the specimen started to 

change, however first visible damage occurred at a PGA almost doubled. 

After a replica with the PGA of the unreinforced specimen failure, no 

additional damage was evident up to the collapse. 

The collapse involved the formation of hinges in the abutments only, at a 

PGA level of 5.146 m/s2. 

The monitoring of both specimens allowed estimating their natural 

frequency evolution. 
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The initial natural frequency of the strengthened specimen was quite higher 

than unreinforced one and the reduction trends proved to be effective to 

identify damage occurrence even before visual evidence. 

An estimate of damping ratio showed that maximum values reached at 

collapse are about 5% and 10%, respectively for unreinforced and 

strengthened specimen. 

Finally, there was no debonding between TRM and the masonry substrate. 

The several strengthening strategies (combination of innovative and 

traditional ones) were effective in preventing global failure in the vault. 

The seismic capacity of the specimen was more than doubled and the 

vulnerability moved from the curved element to the masonry abutments; 

hence additional interventions must be eventually made on the lateral 

abutments. 

Finally, this strengthening system has been already implemented on a real 

heritage building. In particular, the Monastery of Santo Spirito (Ocre, Italy) 

has been chosen as demonstrator of the research project PROVACI, to 

implement the strengthening system presented and discussed in this Ph.D. 

thesis. 
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EXPERIMENTAL ACCELERATION PROFILES 

 

 
Figure A.1: Horizontal acceleration profiles (Sturno signal) of the unreinforced vault with, 

scale factor of 25%, 50% and 75% (curved element and abutments comparison, left side). 

 

 

 

 
Figure A.2: Horizontal acceleration profiles (Sturno signal) of the unreinforced vault with, 

scale factor of 25%, 50% and 75% (curved element and abutments comparison, right side). 
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Figure A.3: Horizontal acceleration profiles (Sturno signal) of the unreinforced vault with, 

scale factor of 100% and 125% (curved element and abutments comparison, left side). 

 

 

 

 

 
Figure A.4: Horizontal acceleration profiles (Sturno signal) of the unreinforced vault with, 

scale factor of 100% and 125% (curved element and abutments comparison, right side). 
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Figure A.5: Horizontal acceleration profiles (Sturno signal) of the strengthened vault with, 

scale factor of 25%, 50% and 75% (curved element and abutments comparison, left side). 

 

 

 

 

 
Figure A.6: Horizontal acceleration profiles (Sturno signal) of the strengthened vault with, 

scale factor of 25%, 50% and 75% (curved element and abutments comparison, right side). 
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Figure A.7: Horizontal acceleration profiles (Sturno signal) of the strengthened vault with, 

scale factor of 100% and 125% (curved element and abutments comparison, left side). 

 

 

 

 

 
Figure A.8: Horizontal acceleration profiles (Sturno signal) of the strengthened vault with, 

scale factor of 100% and 125% (curved element and abutments comparison, right side). 
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Figure A.9: Horizontal acceleration profiles (Sturno signal) of the strengthened vault with, 

scale factor of 135% and 150% (curved element and abutments comparison, left side). 

 

 

 

 

 
Figure A.10: Horizontal acceleration profiles (Sturno signal) of the strengthened vault with, 

scale factor of 135% and 150% (curved element and abutments comparison, right side). 
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Figure A.11: Horizontal acceleration profiles (Sturno signal) of the strengthened vault with, 

scale factor of 160% and 180% (curved element and abutments comparison, left side). 

 

 

 

 

 
Figure A.12: Horizontal acceleration profiles (Sturno signal) of the strengthened vault with, 

scale factor of 160% and 180% (curved element and abutments comparison, right side). 
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Figure A.13: Horizontal acceleration profiles (Sturno signal) of the strengthened vault with, 

scale factor of 190% and 200% (curved element and abutments comparison, left side). 

 

 

 

 

 
Figure A.14: Horizontal acceleration profiles (Sturno signal) of the strengthened vault with, 

scale factor of 190% and 200% (curved element and abutments comparison, right side). 

 

 



Appendix A 

209 
 

 
Figure A.15: Horizontal acceleration profiles (Sturno signal) of the strengthened vault with, 

scale factor of 220% and 250% (curved element and abutments comparison, left side). 

 

 

 

 

 
Figure A.16: Horizontal acceleration profiles (Sturno signal) of the strengthened vault with, 

scale factor of 220% and 250% (curved element and abutments comparison, right side). 

 

 



Appendix A 

210 
 

 
Figure A.17: Horizontal acceleration profiles (Sturno signal) of the strengthening vault, two 

replicas with scale factor of 125% (curved element and abutments comparison, left side). 

 

 

 

 

 
Figure A.18: Horizontal acceleration profiles of (Sturno signal) the strengthening vault, two 

replicas with scale factor of 125% (curved element and abutments comparison, right side). 
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Figure A.19: Horizontal acceleration profiles (Gemona signal) of the strengthened vault 

with, scale factor of 100% and 125% (curved element and abutments comparison, left side). 

 

 

 

 

 
Figure A.20: Horizontal acceleration profiles (Gemona signal) of the strengthened vault 

with, scale factor of 100% and 125% (curved element and abutments comparison, right side). 
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Figure A.21: Horizontal acceleration profiles (Gemona signal) of the strengthened vault 

with, scale factor of 150% and 175% (curved element and abutments comparison, left side). 

 

 

 

 

 
Figure A.22: Horizontal acceleration profiles (Gemona signal) of the strengthened vault 

with, scale factor of 150% and 175% (curved element and abutments comparison, right side). 


