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Chapter 1
Introduction

1.1 Definitions

Digital reconstruction of the world for data analysis, monitoring, planning
and response to natural and man-induced hazards is the most important
aspect of sensing. Today, we can exploit sensors acquiring data through-
out the whole electromagnetic spectrum. However, when acquisitions are
made beyond the visible, the human-machine interface becomes funda-
mental for a correct interpretation and understanding of data, especially
in multi-disciplinary contexts.

Remote sensing is one of them, because it involves a large variety of
professionals with different expertise and background. This technique has
been defined many times in the past literature. As an example, in Lintz
and Simonett (1976), one can read:

“Remote sensing is the acquisition of physical data of an object
without touch or contact.”

This is a very general and basic definition, in which the emerging topic
is the gathering of information at a distance. A more articulated one has
been provided by White (1977):
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6 Chapter 1. Introduction

“Remote sensing, though not precisely defined, includes all methods
of obtaining pictures or other forms of electromagnetic records of the
Earth’s surface from a distance, and the treatment and processing
of the picture data.”

Campbell (2002) wrote:

“Remote sensing is the practice of deriving information about the
Earth’s land and water surfaces using images acquired from an over-
head perspective, using electromagnetic radiation in one or more re-
gions of the electromagnetic spectrum, reflected or emitted from the
Earth’s surface.”

The last two definitions highlight the topic’s most important themes:
again, the gathering of information at a distance; then, the use of pictures.

In everyday life, using pictures is quite common. Today, the spread
of digital technologies caused our lives to be immersed by images coming
from television, newspapers, internet and so on. Indeed, our need and in-
clination to express feelings or to describe the surrounding environment by
images of any nature is innate. Think about, as an example, to cave paint-
ings, which represent the first proofs of human activities in many parts
of the world. However, without coming back to the prehistory, we can
recall a saying, attributable to an advertisement of the early XX century,
to enforce the importance of images in our life. It plays as follows:

“Use a picture. It’s worth a thousand words.”

Like other sayings, it is inspired by everyday life, in which it has a clear
meaning. However, we can find the same claim and a technical explanation
in one of the most referenced textbooks in remote sensing. In fact, J. B.
Campbell begun his Introduction to Remote Sensing with the following
paragraph:

“A picture is worth a thousand word. Is this true, and if so, why?
Pictures concisely convey information about positions, sizes, and
interrelationships between objects. [. . . ] humans possess a high level
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of proficiency in deriving information from such images, (therefore)
we experience little difficulty in interpreting even those scenes that
are visually complex. We are so competent in such task that it is
only when we attempt to replicate these capabilities using computer
programs [. . . ] that we realize how powerful our abilities are to
derive this kind of intricate information.” (Campbell, 2002)

Indeed, these considerations are true for natural images, i.e. those
acquired with consumer devices. Remote sensing images constitute a spe-
cial class of pictures, often acquired exploiting radiation not visible to
human eye, for which many issues has to be taken into account, such as
(Campbell, 2002):

• Image presentation,

• Unfamiliar scales and resolutions,

• Overhead views from airborne or spaceborne platforms,

• Use of several regions of the electromagnetic spectrum.

Remote sensing images have qualities that make our ability to extract
information from them not innate. Therefore, an effort is necessary to
understand data and/or to make data understandable for their end-users.

In Figure 1.1 and Figure 1.2, the reader can find an example concerning
these considerations. If a natural image is considered (see Figure 1.1), we
have no difficult to interpret the complex patterns of color, light and dark
in order to recognize the scene objects. Moreover, at a higher level, we
are able to understand their arrangement and interrelationships in order
to reconstruct the picture meaning not emerging by chromatic analysis.

On the other hand, if we look at a satellite image (see Figure 1.2),
an effort must be made to recognize the patterns corresponding to sea
surface, lakes, cities, vegetation and so on. Of course, in this case the
interpretation is rather easy, because the image has been acquired in the
visible spectrum. Therefore, interpretative issues are mainly related with
unusual scale, resolution, and top of the roof visualization. Moreover, it
is also remarkable that this representation is nowadays part of our every-
day experience thanks to softwares like Google Earth. This introduce an
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Figure 1.1. Humans have an innate proficiency to extract information from
complex patterns of light and dark in order to recognize objects. At a higher
level, we can interpret the arrangement and the interrelationships between scene’s
objects in order to reconstruct the picture meaning not emerging by the analysis
of colors.

element which is not negligible in image interpretation, that is the habit
to a certain semantic context.

However, as argued by Schroder et al. (1998), the information con-
tained in satellite images is enormous and usually not limited in the visible
spectrum. Indeed, probably the most interesting information is the one
we can not see with nude eyes concerning, as an example, land surface
temperature, water pollution, biomass, soil moisture, etc.

The purpose of remote sensing scientists is therefore to develop meth-
ods and techniques suitable to extract this information through the elab-
oration of image data. In this book, we will mainly deal with images
acquired at microwave wavelength by synthetic aperture radars (SARs).
Data acquired by these sensors are critical for interpretation because im-
ages are usually presented in such way they loose their principal charac-



1.2. The power of images 9

Figure 1.2. A satellite image acquired in the visible spectrum over the south-
ern Italy. It can be interpreted roughly with limited expertise. However, the
information content is much higher than that we can catch with nude eye using
intuition and everyday experience. Moreover, unusual image presentation limits
our understanding capabilities. Therefore, it is necessary to acquire knowledge,
also using computer algorithms, to extract the meaning and the relationships
between recorded patterns.

teristics, that is the one we mainly exploit in everyday life: the capability
to tell a story.

1.2 The power of images

In the previous Section, we introduced some definitions of remote sensing
in which the importance of images was claimed. This concept can be
enforced by reading Fischer et al. (1976). They wrote:
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“Remote sensing has been variously defined but basically it is the
art or science of telling something about an object without touching
it.”

A similar claim was also provided by Lillesand and Kiefer (1994). With
respect to the definitions provided in Section 1.1, here it arises the concept
of remote sensing as the art of telling a story about the imaged objects.
Indeed, this is the primary objective of using images. As an example,
if one looks at the picture reported in Figure 1.3a, the message it wants
to convey is quite clear: it is about love, happiness, appeal of the city.
These are the things one wants to feel planning a travel. In the same
way, if Figure 1.3b is considered, the conveyed feelings are about family,
happiness, safety, future. These are the things one wants to feel going into
a bank to start a loan for buying a house. It is also remarkable that these
messages are transferred to the observer just by images. In fact, if these
pictures would be part of an advertisement, the observer would have no
need to read its text to catch them.

One of the issues preventing the diffusion of SAR data is that the story
we want to tell (and sell) to our customers (i.e. the end-users) is quite
unpleasant. In order to prove this claim, consider Figure 1.4. In this
picture, a SAR image in single look complex (SLC) format, that is the
format provided by space agencies/data provider, is depicted. It is rather
clear that the extraction of information is difficult, even for users with high
expertise with radar imaging. Therefore, a non-trivial effort is necessary
to make data understandable (and attractive) for their customers.

Indeed, the recent SAR literature paid few attention to the problem
of data representation, privileging the extraction of information through
automatic algorithms. In other words, the trend is the exclusion of users
from the processing chain. This brought to a fruitful development of
algorithms and techniques for data analysis. Nevertheless, this did not
correspond with a widespread usage of SAR images in applications and/or
in the end-user community. However, despite of the limited diffusion of
SAR, the investment of the international community on these sensors is
huge. As an example, the Italian SAR constellation COSMO-SkyMed
represented the highest technological investment of Italian government
with one billion euros. Sentinel-1 costed to the European community
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(a) (b)

Figure 1.3. Images can concisely convey a message to the observer. (a) Love,
happiness and joy are the things one wants to feel planning a travel. (b) Family,
happiness, safety and future are the things one wants to feel starting a house
loan.

about 300 million euros. Therefore, an effort is necessary in the SAR
community to favor the diffusion of data to the general public.

1.3 General remote sensing process and proposed
approach

In Figure 1.5, a general remote sensing processing chain is depicted (Camp-
bell, 2002). It starts from physical objects, i.e. what scientists want to
examine. Knowledge about them resides within specific disciplines, such
as geology, forestry, geography, hydrology and so on.

Sensor data represent the world as filtered by a sensor, which records
the electromagnetic radiation emitted or reflected from the landscape. In-
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Figure 1.4. A SAR image in single look complex format, i.e. as provided by
space agencies. Information extraction is quite difficult from such image, even
for users with high expertise with radar imaging.

Figure 1.5. General remote sensing processing chain: from the physical object
to the application.

terpretation of these data brings to the extracted information, and then
to the applications, in which data coming from different sources are fused,
usually in a geographic information system (GIS) environment, to get the
information the analyst is looking for. Most of the modern remote sens-
ing literature, especially dealing with SAR data, implements this passage
using frameworks/algorithms in which users play (in some cases) only in
the set-up phase, being often excluded from decisions. This is also due to
the difficulties in data interpretation, which discourage users to try to in-
teract with data. As a consequence, the information extraction process is
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usually left to automatic algorithms, in which the user is a mere executor.
This is equivalent to treat data as a simple numeric matrix, ignoring that
numbers are organized to form structures, objects, patterns which deserve
to be understood by the observer. We think that this is wrong for two
reasons.

Figure 1.6. Proposed processing chain: an intermediate product is used as
vehicle to obtain the physical information the analyst is looking for. This product
has two main characteristics: interpretability and possibility to be processed with
simple algorithms.

The first is purely philosophical: an image has the reason to exist only
if there is someone that observes and tries to catch information from it.
The second is more practical. In fact, in order to obtain the remotely
sensed image, as an example the SAR SLC image depicted in Figure 1.4,
a great effort, also economic, is needed. Starting from the project of the
sensor and continuing with its launch, data acquisition and focusing, a lot
of work has been done to obtain such image. Therefore it is worth to try
to catch information from it even at visual level. In fact, a higher under-
standing of the image increases analyst’s awareness of problem he/she is
facing, and could be helpful in the design of the best information extrac-
tion process.

Some authors expressed the necessity to design more user-oriented and
user-centered frameworks (Madhok and Landgrebe, 2002; Datcu and Sei-
del, 2005; Amitrano et al., 2015, 2016). The diagram depicted in Figure 1.6
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provided an example of such framework, specified for SAR data. In liter-
ature, Level-1 products are those usually provided by space agencies/data
provider.

In this case, an intermediate product has been introduced as a vehicle
from the sensor data to the physical parameter (the extracted information
in the diagram of Figure 1.5) the analyst is looking for. This product has
two fundamental characteristics: i) it facilitates users’ information mining
thanks to a suitable RGB displaying, and ii) it is processable with simple
algorithms. The purpose is to simplify the entire processing chain, loading
the expertise required to process SAR data in the building of the RGB
product, and delivering to users (who often have low/moderate expertise
with radar imaging) a product they can easily understand and process
with simple algorithmic tools.

1.4 Book contents

In this Book, we present an innovative methodology for a model-based
and user-oriented representation of SAR data. In particular, in Chapter
2, a change-detection-oriented product, we named as Level-1α product, is
introduced. In Chapter 3, a classification-oriented product (we named as
Level-1β product) obtained by the fusion of N images belonging to the
same time series is discussed. In Chapter 4 we will show how introduce a
basic semantic in the RGB products using neural networks. Applications
are discussed in Chapter 5. Conclusions are drawn at the end of the Book.

The reader interested in SAR fundamentals can refer to the past dis-
tinguished literature, such as, among the others, Franceschetti and Lanari
(1999); Oliver and Quegan (1998); Franceschetti et al. (1992); Moreira
et al. (2013); Bamler and Hartl (1998).
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Chapter 2
Change-detection-oriented
products: Level-1α

2.1 Introduction

Remote sensing technologies have a huge potential in environmental mon-
itoring and constitute a powerful instrument for large-scale investigations
and planning. In particular, SAR sensors play a decisive role in this con-
text due to their all-weather and all-time capability. Moreover, the avail-
able short revisit time makes them very attractive to work with time series
of images for the study of dynamic phenomena. The analysis of such data
can be set in the frame of the image-fusion theory, introducing relevant
challenges concerning the extraction, representation, and interpretation of
information.

Dealing with multitemporal data, the crucial point is the definition of
a reliable processing which should allow:

• The achievement of a set of spatially, temporally and radiometrically
comparable images;

• The best level of interaction between the user and the machine dur-
ing the decisional phase.

Indeed, the recent remote sensing literature mainly focused on the

17



18 Chapter 2. Level-1α products

first item of this list, aiming at the development of algorithms having the
maximum degree of automation. Therefore, limited attention was paid
to the human-machine interface. In that regard, it is quite clear that
one of the issues preventing an easy interpretation of SAR data is the
grayscale displaying. Therefore, a way to realize a good interface between
the operator and the data he/she is analyzing is the RGB visualization.
However, giving more importance to user’s experience means to define
frameworks in which the centrality is reserved to the analyst rather than
to algorithms.

The necessity to define such general and analyst-driven frameworks
has been highlighted by various authors (Almendros Jimenez et al., 2013;
Madhok and Landgrebe, 2002; Datcu and Seidel, 2005; Amitrano et al.,
2015b, 2016, 2015a; Gaetano et al., 2014), who expressed the need to focus
the processing on users’ skills, making the mathematical rigor, though of
fundamental importance, secondary with respect to analysis and interpre-
tation processes Madhok and Landgrebe (2002).

There is a strong need

to develop environments

allowing users’ data

mining without knowing

the operators needed

to represent the image

information content at

signal level

Many of the modern algorithms
for SAR data processing “through
the optimization of mathematical
criteria are often sub-optimal in
the sense that the output image
is cluttered/fuzzy/noisy, visually
unpleasing” (Madhok and Land-
grebe, 2002) and difficult to be in-
terpreted without a high technical
expertise. Therefore, one of the
aim of this Book is to emphasize
the human-computer interaction as a value, provided that the respective
strengths (see Table 2.1) are enhanced (Madhok and Landgrebe, 2002;
Shneiderman and Plaisant, 2005). This means that any remote sensing
data processing technique, although looking for the maximum degree of
automation, should never overlook users’ capability of judgment and na-
tive intuition, as argued by Madhok and Landgrebe (2002) and Datcu and
Seidel (2005).

There is a strong need to develop environments allowing users’ data
mining without “knowing the operators needed to represent the image in-
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Table 2.1. Human’s and machine’s peculiarities in data analysis.

The human The machine
Can draw upon experience

and adapt his decision
to specific situations

Can execute computationally
complex algorithms and

repetitive programmed actions

Can reason deductively
Can process several items

simultanously

Can generalize from observations
to build analytical models

or decision rules

Can implement
the generalizations

Can interpret subjectively data
Generates output conforming to

pre-implemented models

It is a source of knowledge
Has a short response time

and high computational speed

formation content at signal level” (Datcu and Seidel, 2005). In fact, the
capacity to understand data is still rather limited, because the incremental
value of developing sophisticated data-analysis algorithms is counterbal-
anced by the difficulty in the dissemination of the knowledge required to
use them effectively. Hence, it is crucial that remotely sensed data be-
come accessible to people who may have the analytical ability but not
necessarily the mathematical background to understand the physics that
generated the image (Madhok and Landgrebe, 2002).

An important task is to develop new methodologies to transform the
computer from a machine used for running complicate algorithms into an
interface for the communication with other people and machines. In other
words, one of the urgent priorities is to model the information either at a
semantic level or at an electromagnetic/physical level, privileging aspects
that are often post-posed to the development of the specific technique.

The idea is to introduce a general framework for building a new class of
user-oriented products, characterized by high interpretability and manage-
ability (even by non-expert users), to be added to the so-called Level-1 and
Level-2 products today available from SAR data providers. This Chapter
is focused on the definition of such products, we named as Level-1α prod-
ucts. They represent an intermediate level between the already available
Level-1 (see Figure 2.1) and Level-2 products. These products, unlike the
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generalist Level-1, are application-oriented due to the adaptive nature of
the processing that generates them.

Figure 2.1. Available Level-1 products, from 1A to 1α: SLC - Single Look
Complex; DGM - Detected Ground projected Multilooked; ORI - Orthorectified
Radar Image; GEC - Geocoded Ellipsoid Corrected; GTC - Geocoded Terrain
Corrected; SE - Spatially Enhanced; RE - Radiometrically Enhanced.

2.2 Multitemporal SAR in remote sensing liter-
ature

The design of a new framework for multitemporal SAR data processing
could not overlook the past literature. A systematic bibliographic study
helped to properly collocate all the examined works, and to identify the
properties and characteristics to be taken into account for the building of
the new product.

Multitemporal SAR data have been widely exploited in the develop-
ment of techniques oriented to change detection, classification, segmen-
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tation and multisensor data fusion. Various authors used these data to
validate empirical scattering models (see as an example Pulliainen et al.,
1999; Kurvonen et al., 1999; Pulliainen et al., 1996).

Nagler and Rott (2000) studied snow response to estimate its water
content and to extract classification maps. Soil moisture retrieval has
been faced in Moran et al. (2000) and Le Hégarat-Mascle et al. (2002).
Empirical scattering models for crops monitoring have been developed in
Kurosu et al. (1995) and Shao et al. (2001).

In the last decade, multitemporal SAR data have been often used for
classification, segmentation, change detection, and land-cover-oriented ap-
plications, even with the use of data fusion techniques. Lombardo et al.
(2003) proposed a technique for the fusion of multitemporal SAR data
with a single multispectral image for unsupervised classification purposes.
A similar approach was proposed by Errico et al. (2015) for environmental
hazards monitoring. Camps-Valls et al. (2008) also developed a multitem-
poral and multisource technique for classification and change detection.
Davidson and Ouchi (2003) proposed to use multitemporal SAR data for
extracting segmentation maps. Classification-oriented applications have
been developed by Bruzzone et al. (2004) and Skriver et al. (2011).

A lot of literature can be found dealing with change detection issues,
either in rural or in urban areas (Bovolo and Bruzzone, 2005; Du et al.,
2012; Gamba et al., 2006; Bazi et al., 2005). Other applications involved
hydrological and agricultural monitoring (Amitrano et al., 2014b,a, 2013b)
and studies on natural disasters, especially regarding floods (Pulvirenti
et al., 2011; Dellepiane and Angiati, 2012; Martinez and Le Toan, 2007)
and fires (Siegert and Hoffmann, 1998).

From the examined literature, it arose that multitemporal SAR data
processing should take into account the six key aspects listed below (see
also Amitrano et al., 2015b):

• Reproducibility: the processing chain should be transparent in all its
steps and reproducible on different datasets with slightly variations
of the required parameters;

• Automation: the processing chain should be manageable by users
with different expertise and background; it should have a limited
number of free parameters to be set;
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• Adaptability: the processing chain should be suitable for a large
number of applications;

• Reversibility: the processing chain should preserve the electromag-
netic and physics characteristics of the analyzed scene, giving rise to
invertible models;

• Robustness: the processing chain should be implementable using
data acquired by different sensors, in different modalities and in
different areas and/or climatic conditions;

• Visualization and interpretation: the output maps should be com-
fortable with human view and displayed in such a way to ease their
interpretation (Pohl and Van Genderen, 1998);

None of the examined works have all these properties.

Reproducibility,

automation, adaptability,

reversibility, robustness

and visualization are the

keywords for designing

a multitemporal SAR

framework

Adaptability is the major lim-
itation for semi-empirical models
such as those proposed in Pulli-
ainen et al. (1999, 1996); Kurvo-
nen et al. (1999); Kurosu et al.
(1995) and Shao et al. (2001). In-
version issues are faced only by
Nagler and Rott (2000); Moran
et al. (2000) and Le Hégarat-
Mascle et al. (2002). Automation
is a fundamental requirement for modern remote sensing data analysis. As
a matter of fact, all the examined works share a high degree of automation.
Reproducibility, instead, is the weakness of many modern remote sensing
algorithms, which are characterized by great mathematical insight and
strong parametric nature.

Indeed, one of the most annoying issues experienced by users handling
SAR data is the grayscale visualization. In fact, humans have the habit
to deal with color images, for which a fast comprehension can be realized
(Jacobson et al., 2007). Therefore, some authors proposed the use of RGB
compositions in order to favour data interpretation and users’ experience.
Siegert and Hoffmann (1998) used RGB images to classify the damage
induced by fires. Color images have been also exploited for the genera-
tion of land cover maps (Martinez and Le Toan, 2007; U. Wegmüller and



2.3. MAP3 workflow 23

C. Werner, 1997; Amitrano et al., 2013b), water resources management
(Amitrano et al., 2014b) and for floods analysis (Dellepiane and Angiati,
2012). However, a suitable processing chain for obtaining RGB images
stable in the association color-object has not been defined in the analyzed
literature.

2.3 MAP3 workflow

The processing chain we are going to define has been designed by taking
into account of the six keywords listed in the previous Section and arose
by the performed literature review. Its objective is to define a coded
processing in order to obtain multitemporal RGB products stable in the
color-object association and easy to be interpreted and manageable even
by operators with a limited technical expertise with SAR imagery.

The aim of MAP3 framework

is to provide RGB

products favouring users’

experience with data

The proposed methodology can
be conveniently organized in three
major blocks of activities, as shown
in the block diagram of Figure 2.2.

The first block of activities
concerns the pre-processing chain,
involving data coregistration, de-
speckling and calibration.

The second block deals with the adaptive processing in which the com-
bination of images better emphasizing the characteristics of the study area
is selected.

Finally, the last block is relevant to representation and analysis.

Because of the multitemporal and adaptive nature of the proposed
framework, we named it MAP3 (Multitemporal Adaptive Processing),
where the number three recalls the number of blocks. As previously
pointed out, the design of the blocks was guided by the six properties
listed in Section 2.2. Moreover, the objective is to build a simple frame-
work, with the minimum number of required operations to obtain the
products, and characterized by the availability (in literature and in com-
mercial and/or open source software suites) of the algorithms necessary to
implement the single operations. Innovation was necessary in the cross-
calibration step, for which an innovative methodology will be introduced
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in Section 2.3.1.

Figure 2.2. Block diagram of the MAP3 framework.

2.3.1 Pre-processing chain

Coregistration and speckle reduction

Data coregistration and speckle reduction are the first two steps of the
processing chain, as shown in Figure 2.2. Data must be spatially reg-
istered with sub-pixel precision (typically 1/8 or better), as required by
the evaluation of the interferometric coherence. Standard three-steps al-
gorithms (based on orbital shifts, cross-correlation shifts and coherence
shifts) usually allows for the achievement of such requirement.

Despeckling is mandatory, especially if the objective is to provide prod-
ucts aimed at improve the user experience with SAR data. In multitem-
poral analysis, it assumes a key importance, since the detrimental effects
of speckle could significantly alter the discrimination of the features along
the temporal axis Di Martino et al. (2014).

Working with multitemporal data offers the opportunity to exploit
filters that preserve the original spatial resolution. Several studies have
been proposed on this issue (De Grandi et al., 1997; Ciuc et al., 2001;



2.3. MAP3 workflow 25

S. Quegan and T. Le Toan and J. J. Yu and F. Ribbes and N. Floury,
2000; Yu and Acton, 2002). In this work, the despeckling is performed by
employing the optimal weighting multitemporal De Grandi filtering (De
Grandi et al., 1997) because of its availability on commercial software and
excellent declared performance in terms of Equivalent Number of Looks
(ENL) on simulated SAR data.

An example of the application of this filter is shown in Figure 2.3,
where we compare the SAR image of the Laaba basin (Burkina Faso)
before (see Figure 2.3a) and after (see Figure 2.3b) the application of
despeckling. At a visual inspection, a significant reduction of the speckle
has been obtained. Quantitatively, the image after despeckling has about
12 ENL. No loss in spatial resolution or deterioration of the boundaries is
appreciable. In addition, the contrast between the water surface and the
surrounding environment is increased.

(a) (b)

Figure 2.3. Burkina Faso, Laaba basin. SAR intensity image acquired on 09
October 2011 (a) before and (b) after the application of multitemporal De Grandi
despeckling.

Data calibration

One of the major challenges in multitemporal SAR data processing is the
achievement of a set of radiometrically comparable images. As an example,
COSMO-SkyMed SLC hold a radiometric accuracy smaller than 1 dB
(Torre et al., 2011), provided the application of a calibration coefficient
that can bee calculated by ancillary data (see e-geos, 2012). Note that



26 Chapter 2. Level-1α products

these coefficients refer to the SLC data, hence they should be applied to
the power image before the filtering step.

Finer calibration can be obtained using passive or active instruments
(S. Falzini and V. Speziale and E. De Viti, 2007; Riccio et al., 2012), if
available, or using image-based techniques, such as the one proposed by
D’Aria et al. (2010), based on permanent scatterers (PSs).

Indeed, the process of calibration of data is very delicate and could
be affected by several sources of errors. For a complete discussion on this
topic the reader should refer to Freeman (1992).

Data cross-calibration: The VALE method

In order to combine the time series images in a color composite, it is
necessary that data are expressed in a common scale with a number of
levels (usually 256) suitable with human visual perception.

Dellepiane and Angiati (2012) solved this problem applying a his-
togram clipping corresponding with the percentile that best preserves the
image entropy. Successively, data are transformed from floating point
value to unsigned byte datatype and equalized.

This method requires that “only marginal changes (statistically speak-
ing) have occurred from one date to the next” Dellepiane and Angiati
(2012). This is not the case in many applications, especially if agricul-
tural cycles are under observation and/or the scene is subject to strong
seasonal variations (Amitrano et al., 2014c). In addition, equalization is
a nonlinear and image-dependent process, which could alter the intensity
ratios between the images.

These considerations suggest that a reliable criterion of comparabil-
ity between a series of images must be the conservation of the amplitude
ratios. In other words, the processing must guarantee that the same reflec-
tivity values are represented in the same histogram bin for all the images
of the time series.

Assuming that data are perfectly calibrated, it is possible to establish a
metric for the entire time series selecting a common threshold for clipping
all the histograms. This allows for the preservation of the amplitude ratios
between the images. To this end, we propose the following processing
chain, which defines the variable amplitude levels equalization (VALE)
method (see Amitrano et al., 2015b):
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1. Let NI be the number of images belonging to the time series and
Mi, i ∈ [1, 2, . . . , NI ] the maximum amplitude value of the i − th
image; the vector M = [M1,M2, . . . ,MNI

] is defined.

2. Let be p the position of the minimum in M, i.e. Mp = min {M}.
The p− th element of the series is then the image with the minimum
dynamics and is assumed as reference for establishing the amplitude
threshold. This ensures that the threshold value exists in all the
images of the series;

3. All the histograms of the series are clipped at an amplitude value
Â = qMp, with q < 1 evaluated on the p − th image. This en-
sures the best compromise between the entropy preservation and
the minimization of the percentage of saturated pixels. The opti-
mum percentile is established based on considerations on SAR image
probability density function (pdf).

4. All the histograms will be clipped at the same amplitude value qMp,

corresponding to the same binsize value b̂ = qMp/255. In this way,
the metrics of the time series is established.

The selection of the best q value is now in order. As known, the pdf of
SLC SAR images is strongly asymmetric and characterized by a very long
right tail. Hence, the skewness parameter exhibits positive values much
greater than zero. This means that most of the information is grouped
in a limited percentile of the cumulative histogram. Image entropy can
guide in the search of this percentile. In fact, as stated by Dellepiane and
Angiati (2012), when q tends to unit, the entropy has an abrupt fall, i.e. a
large number of amplitude values are compressed in a few histogram bins.

VALE method ensures the

comparability of images

by preserving amplitude

ratios

Our experiments (see Amitrano
et al., 2015b), revealed that the
best clipping value is q = 0.98. In
other words, the greatest part of
the information of a SAR image is
contained in the 98% of the cumu-
lative histogram. In fact, although
the maximum entropy could be reached at a lower percentile, the choice
of the 98th percentile allows for the saturation of a smaller percentage of
pixels with negligible loss in entropy.
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In the following, we provide a brief discussion about the importance
of a correct data cross-calibration for the interpretation of the dynamics
of a time series.

The two SAR images depicted in Figure 2.4 have been acquired over
a small basin in Burkina Faso. In this area, the landscape is extremely
variable due to semi-arid climate, which is characterized by a long dry
season and a short and intense rainy season, as detailed in following. Here,
we present the same scene in two very different conditions. In fact, the
image reported in Figure 2.4a has been acquired on August 2010, during
the rainy season. The image reported in Figure 2.4b has been acquired on
March 2011, during the dry season.

(a) (b)

Figure 2.4. Burkina faso, Particular of the Tougou basin for the acquisitions of
(a) 31/08/2010 and (b) 27/03/2011. The red rectangle (subset A) is relative to
a homogeneously and persistently vegetated area; the green rectangle (subset B)
is taken in a surface-water area.

On these pictures, two colored rectangles have been drawn. The red
rectangle (subset A) concerns an area in which the vegetation is homo-
geneous and persistent all over the year. The green rectangle (subset B),
concerns persistent surface water. Both the subsets are relative to a ho-
mogeneous area in which the electromagnetic response is expected to be
almost stable, despite the strong variability of the surrounding scene.
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We want the evaluate the effect of different cross-calibration methods
on the amplitude ratios of these images. To this end, we processed the
available dataset using the following chains:

• Chain A: percentile-based clipping and rescaling between [0, 255], as
proposed by Dellepiane and Angiati (2012). The histograms have
been clipped at the same percentile of the cumulative histogram,
thus resulting in a non-uniform binsize in the rescaling procedure.

• Chain B: the above described VALE method. It calls for: calibration
using metadata-based coefficients, amplitude threshold-based clip-
ping and rescaling between [0, 255]. Using VALE, the histograms
are clipped at the same intensity value. This means that the corre-
sponding percentile in the cumulative histogram could be different,
but the binsize in the rescaling procedure is the same for all the
images.

In Figure 2.5 we show the scatterplot in the plan mean vs. standard
deviation for the above introduced images processed with chains A and B.
We have indicated with T1 and T2 the acquisitions of August 2010 and
March 2011, respectively.

It arises that the two cross-calibration methods bring to conflicting
results. In fact, the class vegetation for the T1 image (August 2010,
wet season) is placed to the left of the class vegetation for the T2 image
(March 2011, dry season) in the case of chain A processing (proposed
by Dellepiane and Angiati (2012)) and to the right in the case of chain
B processing (VALE). The physically consistent result is obtained using
VALE. In fact, we expect a higher electromagnetic response during the wet
season due to volumetric backscattering given by the growth of the leafs.
Surface water areas, unlike vegetated ones, are only slightly affected by
the choice of the clipping method. Therefore, as an example, for flooding
applications, as the one proposed by Dellepiane and Angiati (2012), both
the chains are equally suitable.

However, VALE allows for a better separation between the classes
because the centers of mass of the populations concerning water and veg-
etation are more distant in both the images if processed with VALE (i.e.
chain B).
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Figure 2.5. Scatterplot in the plan mean vs. standard deviation for ten sample
subsets taken on the acquisition of August 2010 (T1) and March 2011 (T2).
They are representative of homogeneous vegetated areas and water surface area
and have been processed with percentile clipping, as proposed by Dellepiane and
Angiati (2012) (chain A) and VALE (chain B).

In Table 2.2 we report the entropy analysis for the two test images.
The entropy has been calculated with the following relation (Shannon,
1948):

H =
N∑

n=1

−Pn log2 Pn (2.1)

where Pn is the normalized probability of the n-th quantization level
of the histogram and N the total number of bins.

The analysis reported in Table 2.2 highlights that VALE ensures high
values of entropy for the processed images. In fact, images processed with
the VALE have an entropy value close to the theoretical maximum (i.e. 8),
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Table 2.2. Images entropy as a function of the clipping percentile. In chain A (as
proposed by Dellepiane and Angiati (2012)), all the histograms of the time series
have been clipped at the same percentile. Using chain B (VALE) the percentile
value refers only to the reference image of the time series. Image T2 refers to
March 2011, while image T1 to August 2010.

A-Dellepiane and Angiati (2012) B-VALE
Percentile T1 T2 T1 T2

90th 7.544 7.454 7.425 6.103
91th 7.580 7.458 7.460 6.286
92th 7.603 7.489 7.485 6.454
93th 7.615 7.508 7.502 6.606
94th 7.620 7.515 7.511 6.743
95th 7.617 7.511 7.507 7.076
96th 7.582 7.499 7.498 7.163
97th 7.544 7.459 7.452 7.364
98th 7.343 7.270 7.320 7.571
99th 2.840 2.398 2.842 3.634
100th 9.8E−4 1E−3 1.3E−3 1.5E−3

which would be assumed by an uniform distribution. This confirms VALE
robustness, since it preserves the amplitude ratios between the images
keeping their informative content.

2.3.2 Adaptive processing chain

Level-1α images are application-oriented products. In other words, the
best band combination and disposition in the RGB channels must be tai-
lored on the scene and on the objective of the analyst.

Semi-arid environments constitute a particularly illustrative example
of the characteristics of these products.

A semi-arid environment is characterized by extreme climatic condi-
tions, constituted by a long dry season, in which vegetation reaches its
minimum and basins are empty, and an intense wet season, in which the
abundant rainfalls cause a strong growth of vegetation and crops (Ami-
trano et al., 2014c). In Western Africa, the dry season typically goes from
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October to May, while the the wet season from June to September.

In Figure 2.6 the average of monthly rainfall for three control stations
located in Burkina Faso is reported. About 75% of the rain falls during the
months of July, August, and September, while from November to April
rainfall is lower than 20 mm per month Amitrano et al. (2014c). The
response of the scene to the rain forcing depends on the land cover:

Figure 2.6. Average
monthly rainfall com-
puted over the period
1974-2011 for three con-
trol stations located in
Burkina Faso. About
75% of the rain falls dur-
ing the months of July,
August, and Septem-
ber, while from Novem-
ber to April the rainfall
is lower than 20 mm per
month.

• Cultivated areas experience a growth of vegetation correlated with
the rain trend. The same behavior holds for uncultivated areas that
are not eroded; at the end of the dry season, most of the terrains
are almost completely bare.

• Eroded areas have lost the capability of absorbing water, so that
their dielectric characteristics are stable during all the year (Ami-
trano et al., 2013a);

• Reservoirs fill up rapidly during the wet season and empty almost
completely during the dry season. This happens especially for small
basins located in rural areas.

The electromagnetic reflectivity of the scene depends on these phe-
nomena. In fact, an increased backscattering is expected on vegetated
areas due to volumetric effects interaction Fung (1979). Vice versa, a low
response is expected on bare soils and ponds.
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Interferometric coherence extraction and quantization

As known, the interferometric coherence is given by the relation:

γ =

∣∣∣∣∣∣∣∣
E [I1I

∗
2 ]√

E
[
|I1|2

]
E
[
|I2|2

]
∣∣∣∣∣∣∣∣ , (2.2)

where the operator E[·] denotes mathematical expectation and the
apex ∗ the conjugate operation.

The interferometric coherence is an indicator of the phase stability of
a target. Hence, dealing with multitemporal series, in which the images
could have very large temporal baselines, we expect high values for γ
only in correspondence with fixed man-made structures. In other words,
when a long term interferometric coherence is computed, the result is an
almost binary mask composed by “coherent” and “not coherent” points.
Therefore, we impose that points whose interferometric coherence is below
an assigned threshold are classified as “not coherent” and placed in the
first histogram bin in the rescaling operation. For prevalently rural areas,
a reasonable threshold value turns out to be in the order of 0.45.

2.4 Multitemporal Level-1α products

The pre-processing chain described in Section 2.3.1 guarantee the compa-
rability of intensity channels. According to the third block of Figure 2.2,
it is now possible to build the multitemporal RGB Level-1α products.

The key aspect for highlighting the desired features is the identification
of a reference scenario, in which the physical parameters to be retrieved
have extreme values. In semi-arid environment, this situation occurs at
the end of the dry season, usually in April, when the environment is almost
completely dry. Therefore, it is possible to detect changes in the landscape
by comparison with respect to the reference acquisition.

Band disposition is fundamental for enhancing the feature of interests
of the scene. In semi-arid environments, basically, they are vegetation,
water and small human settlements. In this context, the best band dispo-
sition is the following (Amitrano et al., 2015b):



34 Chapter 2. Level-1α products

• Red band: Coherence map;

• Green band: Test image;

• Blue band: Dry season image.

Level-1α products are

bi-temporal images

in which changes in

the landscape can be

identified by comparison

with respect to a

reference acquisition

In Figure 2.7 and Figure 2.8
we show two examples of the im-
ages obtained by running MAP3
on a dataset acquired by the sensor
COSMO-SkyMed over a semi-arid
environment, like Burkina Faso. In
both images, the blue band (refer-
ence image) has been reserved to
the acquisition of 28 April 2011,
made at the peak of dry season.

The interpretation of the color meaning is now in order.

In Figure 2.7 the green band has been acquired on 31 August 2010,
during the wet season. As previously explained, in this season the abun-
dant rainfalls favour a strong growth of vegetation and crops. This causes
an enhancement of backscattering due to volumetric effects. Therefore,
vegetated areas are displayed in green.

Areas covered by seasonal surface water, i.e. present only at the time
of the acquisition of the test image, appear in blue. In fact, during the wet
season the ponds are filled up by intense rainfalls, the water acts as a re-
flector, and the corresponding backscattering (green band) is significantly
weaker with respect to that of the reference dry situation (blue band).
Permanent water appears as a black area within the basin, because of the
low electromagnetic response in both dry and wet season. The adjective
“permanent” specifies that this feature is present on the scene all over the
year.

The product depicted in Figure 2.8 was obtained through a compo-
sition of two images belonging to the dry season. The test image (green
band) was acquired on 27 March 2011. In this case, cyan is the dominant
color because the electromagnetic response of the two scenes is almost
unchanged, except for areas in which the counter-season agriculture is
exercised, in the immediate neighborhood of the available water source.
Therefore, those areas are characterized by green pixels. As explained
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Figure 2.7. Tougou basin (Burkina Faso), COSMO-SkyMed Level-1α product.
Blue band: 28/04/2011 (dry season); Green band: 31/08/2010 (wet season); Red
band: interferometric coherence. The adopted bands combination and disposition
allows for the enhancement of the most important characteristics of the scene,
i.e. growing vegetation and water. These features are rendered in natural colors,
i.e. green and blue.
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Figure 2.8. Tougou basin (Burkina Faso), COSMO-SkyMed Level-1α product.
Blue band: 28/04/2011 (dry season); Green band: 27/03/2011, (dry season);
Red band: interferometric coherence. Using as reference and test images two
acquisition made during the dry season, the dominant color is the cyan, meaning
a balance in the surfaces backscattering. This colorimetric response is associable
to bare soils.
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above, seasonal water is displayed in blue color due to the dominance of
terrain scattering.

Level-1α representation also provide immediate information about the
location of villages, otherwise hardly identifiable, as shown in Figure 2.9.
In fact, human settlements appear as bright points because they are char-
acterized by high backscattering all over the year and high values of the
interferometric coherence, due to their phase stability. This contribution
allows for separate man-made structures from highly reflective natural tar-
gets. Note that man-made targets detection can be performed using any
available Level-1α product due to the stability of such features.

(a) (b)

Figure 2.9. Detail concerning small human settlements. In Level-1α imagery
man-made structures are rendered in white due to the high contribution of all
the bands involved in the composition.

In Figure 2.10 we provide a synthetic instrument for the interpretation
of the images. Vegetation is displayed in green due to volumetric scatter-
ing; seasonal water is rendered in blue due to the dominant backscattering
of terrain. The interferometric coherence introduces the third dimension,
with a high contribution of the red band for man-made structures which,
as a consequence, will appear as bright targets on the maps.

In Figure 2.11 the Level-1α products for the entire analyzed time series
are shown. From this representation, covering about one year and a half,
the potentiality of the proposed products in the understanding of the scene
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Figure 2.10. Interpre-
tative tool for Level-1α
products in semi-arid en-
vironment (green-blue or
test image-reference im-
age plan). Vegetation
is displayed in green due
to volumetric scattering.
Seasonal water is ren-
dered in blue due to
the dominant backscat-
tering of terrain. Coher-
ence introduces a contri-
bution of the red band on
man-made targets, mak-
ing them distinguishable
from highly reflective nat-
ural targets.

dynamics is emphasized. The cycles of vegetation and inland water can
be quantitatively correlated to the rainfalls. In addition, the increasing
of vegetated surfaces during the wet season and the water amount in the
intakes can be easily monitored exploiting change detection with respect
to the reference image.

In synthesis, the key aspect in Level-1α product is the emphasis they
provide concerning dynamic and cyclic phenomena. The great advantage
introduced by this representation is the immediacy with whom the infor-
mation is conveyed to the observer, especially for those features for which
the association color-object is close to his/her expectation.

2.5 Application of MAP3 in temperate environ-
ment

Semi-arid environments constituted a very illustrative framework for ex-
plaining the potentiality of MAP3 processing. In this Section, we will
prove the robustness of this processing chain for variations of the scene
and of the climatic zone by processing a time series of images acquired by
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Figure 2.11. Tougou basin (Burkina Faso), multitemporal Level-1α COSMO-
SkyMed series. Reference image (blue band): 2011/04/28 (dry season). Test
images from left to right and up to down: 2010/06/12, 2010/07/14, 2010/08/15,
2010/08/31, 2010/09/16, 2010/12/05, 2011/03/27, 2011/07/17, 2011/08/02,
2011/10/09, 2011/11/10, 2011/12/12.

the sensor COSMO-SkyMed on a temperate environment, like Southern
Italy.

The results presented below have been obtained with the same param-
eters (i.e. histogram clipping parameter, interferometric coherence thresh-
old, bands combination and their disposition) adopted for the semi-arid
Burkina Faso scene. Of course, the selection of the reference acquisition
is guided by different criteria, depending on the phenomena the analyst
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wants to study.

The colorimetric response

of Level-1α images

is stable for a given

feature varying the scene

and the climatic zone

The solution presented in Fig-
ure 2.12 has been built taking as
reference image the acquisition of
14 December 2009, and it has been
loaded on the blue band. The ref-
erence image has been acquired on
27 August 2010, and it has been
loaded on the green band. In this
representation, which could be suitable, as an example, for monitoring the
growth of summer crops, the colorimetric response of the features previ-
ously analyzed for the Burkina Faso scene, is stable. In particular:

• Permanent water surfaces (i.e. the sea) appear as dark areas because
of the low response of all the involved channels;

• A balance in the response of the intensity channels is associable to
unchanged land cover;

• Urban areas are represented as bright areas due to the high contri-
butions of both intensity and interferometric coherence channels;

• Cultivated areas exhibit a color that depends on the state of the ter-
rain in the two dates and on the type of cultivation. Because of the
high degree of anthropization, in this case the agronomic interpre-
tation is not straightforward and needs to be supported by specific
expertise. However, vegetation growing during summer is associable
to the green color due to volumetric scattering. Similarly, winter
cultivations will exhibit a dominance of the blue band response.

It is worthwhile to note that in highly urbanized areas, buildings are
not the only coherent targets. Indeed, buildings are among the possible
coherent targets. In fact, guardrails and street lamps also appear as bright
points, as shown in Figure 2.13a. Moreover, azimuth ambiguities present a
coherent behavior since they are the replicas of stable targets (Di Martino
et al., 2014). This is evident looking a the the sea surface in front of the
city in Figure 2.12, whose detail is provided in Figure 2.13b. Another
concern relevant to the interferometric coherence band is the “red crown”
surrounding bright targets. This is due to the usage of a coherence window
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Figure 2.12. Castel Volturno (Italy), Level-1α product. Blue band:
14/12/2009; Green band: 27/08/2010; Red band: interferometric coherence. The
colorimetric response of the product is consistent with that analyzed for semi-arid
Burkina Faso. In fact, the same phenomenon/object/land cover can be associ-
ated to the same color in both the representations. As an example, green means
growing vegetation, black represents permanent surface water, white stands for
man-made targets and cyan indicates unchanged land cover.

of fixed dimensions (Amitrano et al., 2015c) and causes this quantity to
be calculated mixing together stable and unstable features. This results
in a non-null coherence value obtained on features like shadows or soils,
which, being characterized by low backscattering, are rendered in rather
pure red color.
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(a) (b)

Figure 2.13. In Level-1α imagery (a) guardrails and street lamps appear as
bright targets, as well as any other stable man-made feature one can find in
highly urbanized areas. Moreover, (b) azimuth ambiguities present a coherent
behavior since they are the replicas of stable targets. Another concern relevant
to the coherence band is the “red crown” surrounding bright targets. This is
due to the usage of a coherence window of fixed dimensions and results in a
non-null coherence value obtained on features like shadows or soils, which, being
characterized by low backscattering, are rendered in rather pure red color.

In temperate environment,

it is possible to obtain

a representation closer

to the natural color

palette by exchanging

the role of the reference

image and coherence bands

It is possible to argue that
the representation provided in Fig-
ure 2.12, although having a well-
defined semantic content, is not so
favourable for users, due to its high
blue content. Indeed, this is true,
since the blue color is present in
natural images only if pictures of
the sky or of the sea are shot.

However, in order to obtain a representation closer to the natural color
palette, a very simple operation can be performed. It consists in exchang-
ing the role played in the RGB composition by the reference image band
and by the interferometric coherence band, loading the first on the red
band and the latter on the blue band. The obtained result is shown in
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Figure 2.14. The change in the bands disposition allows for retrieving a
significant red component on terrains, resulting in a rendering closer to
the natural color palette.

Figure 2.14. Castel Volturno (Italy), Level-1α product. Blue band: inter-
ferometric coherence; Green band: 27/08/2010; Red band: 14/12/2009. In a
temperate environment, the inversion of the role played in the RGB composition
by the reference image band and by the interferometric coherence band allows for
retrieving a significant red component on terrains, resulting in a rendering closer
to the natural color palette.

However, this operation should be done only dealing with scenes ac-
quired in temperate environments. In fact, doing this in semi-arid envi-
ronment would cause seasonal water to appear in red, and this would be
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very visually unpleasant and confusing.

2.6 Conclusions and discussions

Multitemporal SAR analysis is a powerful and attractive technique for
environmental monitoring and planning. It introduces challenging issues
concerning to data comparability, representation and information extrac-
tion.

MAP3 framework, mixing

state-of-art techniques

with innovative

cross-calibration method

and RGB compositions,

brings to the extraction

of context-adaptive

Level-1α products, which

represent an advance with

respect to generalist

Level-1 products

In particular, representation is-
sues have been widely explored in
the past literature, but never coded
in all its aspects. In this Chap-
ter, the problem was formalized.
The MAP3 framework, mixing
state-of-art techniques with novel
cross-calibration method (VALE)
and innovative RGB compositions,
brings to the extraction of a new
family of multitemporal products,
the Level-1α products. These
products are characterized by a
context-adaptive nature, unlike the
already available and generalist Level-1 products.

The MAP3 framework has been designed pointing to the minimization
of the complexity and to the exploitation of the available algorithms. Inno-
vation was necessary in the cross-calibration phase, where we introduced
the VALE method.

The proposed framework faced the challenges introduced in Section
2.2 providing the following solutions:

• Reproducibility: a well-defined and transparent framework for the
building of Level-1α products has been presented;

• Automation: the processing chain is highly automated. Only few
parameters has to be set, i.e. the coherence quantization threshold
and the clipping percentile of the reference image histogram. The
first parameter is selected basing on the characteristics of the scene.
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In particular, for prevalently rural areas, a threshold of 0.45 is a rea-
sonable zero− th quantization level. The second parameter should
be determined through an entropy analysis of the reference image.
However, the 98−th percentile of the reference image is a parameter
which can suit with several applications;

• Adaptability: the processing chain can be adapted to different cli-
matic zones and scenarios;

• Reversibility: the proposed framework ensures the preservation of
the electromagnetic information thanks to an accurate calibration
of the channels involved in the processing. If the inversion of the
channels is needed, it should be performed before any quantization
or after classification;

• Robustness: the processing chain restituted products in which the
color-association is stable for a given feature; no variation of the
required parameters was applied;

• Visualization and interpretation: we exploited the RGB composition
of suitable cross-calibrated channels in order to provide a comfort-
able and interpretable experience of data. In such way, Level-1α
products realize a significant improvement in SAR images under-
standing and features extraction applications.

The adaptive processing chain makes possible to model the proposed
framework on the specific available dataset. We showed experiments con-
cerning images acquired in semi-arid and temperate environments. In
semi-arid environment, we choose as reference band an acquisition made
at the peak of the dry season and loaded it on the blue band. This choice
allowed us to enhance changes in vegetation cover and water availability.
In temperate environment, we showed how the change in the disposition
of the reference image can be used to obtain color composites rather close
to the natural color palette. The balance of the channels involved in the
multitemporal processing is ensured by the novel cross-calibration method
that we called VALE.

Level-1α products shorten the distance between Level-1 products to-
day available from data providers and Level-2 products, carrying an ex-
plicit physical information. In fact, these products can be easily managed
by a large variety of users and are classification-ready, due to the clear
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separation between the scene classes. These aspects, together with the
interpretative immediacy given by the RGB composition, makes the pro-
posed framework an attractive multidisciplinary tool for remote sensing
based/aided applications.

The MAP3 framework is robust and flexible. In fact, on the one hand
it can be replicated in different climatic zones and for different sensors; in
this case, the adaptive processing can be different but the results in terms
of the enhancement of the semantic content of the images hold whatever
the climate condition. On the other hand the techniques embodied in each
block (for example filtering or calibration) can be substituted by others
proposed in literature or implemented ex novo. Moreover, other blocks
can be inserted in the processing chain in order to adapt MAP3 to the
specific application.
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Chapter 3
Classification-oriented products:
Level-1β

3.1 Introduction

The use of SAR data has been so far limited because the information
content held in the images rarely emerges without a technical expertise. As
argued in Chapter 2, the development of new products devoted to provide
user-friendly representations of the physical information is a necessary
condition for the full exploitation of SAR sensors.

High-level processing is a key task for enhancing the interpretability
and the underlying information content of remote sensing images. This
problem assumes different connotations depending on the sensor acquiring
the data. As an example, in hyperspectral imagery, principal components
analysis is probably the most popular linear projection method to find
the more suitable representation for human users. However, it presents
several drawbacks (Jacobson and Gupta, 2005). Therefore, refined meth-
ods have been proposed in literature to overcome its limitations (Jacobson
and Gupta, 2005; Jacobson et al., 2007; Wilson et al., 1997) and to make
possible the displaying of the information contained in N channels (where
N can be in the order of few hundred) on a standard tristimulus RGB
device through a consistent dimensionality reduction.

Dealing with SAR images, data interpretability problems are prin-
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cipally related with: i) the geometrical distortion induced by the side-
looking acquisition mode, ii) the scattering mechanism resulting from the
interaction between the incident electromagnetic field and the physical
surfaces and iii) the gray-scale displaying, at least in non-polarimetric
modality. In fact, humans can easily interpret color images, which lead to
fast searching and comprehension of data (Jacobson et al., 2007).

Multiple acquisitions of the same scene represent a reasonable mean
for increasing the dimensionality of SAR data through the combination of
information collected along the time axis. The fusion problem is brilliantly
focused by Pohl and Van Genderen (1998), where the authors suggested a
series of questions an image fusion technique should answer. Indeed, these
questions refer to the problem of multisensor data fusion. Therefore, we
slightly reworked the aforementioned framework as follows:

1. What is the objective/application of the user?

2. What are the necessary pre-processing steps involved?

3. Which combination of the data is the most successful?

4. Which is the “best” technique to fuse these data for that particular
application?

Our objective is the definition of a new class of RGB SAR products
exploiting multiemporal. This answers to the first question, establishing
the objective of the whole processing to data representation.

Dealing with multitemporal SAR data, several valuable solutions can
be found in the very last literature concerning, as an example, forest mon-
itoring (Dong et al., 2015), flooding events (Dumitru et al., 2015) and land
cover mapping (Antropov et al., 2014). Other, more general, suggestions
and answers can be found in the past distinguished literature (Richards
and Jia, 2006; Franceschetti and Lanari, 1999; Campbell, 2002). Here, we
want to emphasize the usefulness of an appropriate and comfortable rep-
resentation. In fact, it makes data more attractive and visual data mining
easier, allowing for a better design of the information extraction process.
In fact, a better knowledge/understanding of the scene implies a higher
awareness of the process necessary for features extraction.

The above listed questions can be summarized in the following one (see
Schroder et al., 1998):
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5. How the enormous amount of information contained in remotely-
sensed images can be extracted?

We will not provide a complete answer to this question. In fact, we
mainly deal with a part of the whole problem, that is data representation.
However, as stated in Sonka et al. (1999),

“A good knowledge representation design is the most important part
of solving the understanding problem.”

Sharing this position, in Chapter 2, we introduced an intermediate
product level, i.e. the Level-1α, between the classic Level-1 and Level-2
products. These products are change-detection oriented because they are
bi-temporal, although obtained through a fully multitemporal processing.
However, Level-1α processing is not the only solution to combine multi-
temporal information in RGB images. In this Chapter, we linger on how
to provide an unique representation of a time series, enhancing the dy-
namics of the scene in order to provide a classification-oriented product.
We will refer to this new class of products as Level-1β products (Amitrano
et al., 2015a).

A good knowledge

representation design

is the most important

part of solving the

understanding problem

As for Level-1α processing, the
objective is twofold: i) to favour
interpretation and visual data min-
ing; ii) to provide products suitable
to be processed with standard algo-
rithms, which are the most popular
in the end-users community. These
characteristics lower the expertise
required to handle data and we think this is crucial, especially if the oper-
ator has a limited experience with SAR. In such way, the retrieval of the
physical information (which is usually seen as Level-2 product) is simpli-
fied since it takes place starting from a level which is higher than 1. As an
example, if the objective is crop classification, the discrimination between
summery and wintery cultivations is a good starting point. This is not an
information of Level-2 but is more than a Level-1 and could be helpful for
moving toward superior levels.

The design of a suitable knowledge representation, especially dealing
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with data acquired beyond the visible spectrum, requires a certain confi-
dence with both the sensed world, i.e. the world as seen by the sensor,
and of the perceived world, i.e. the world as understood by users. In other
words, in the design of a processing chain answering to the four questions
above introduced, two kinds of knowledge coexist: an objective knowledge,
given by the electromagnetic models, and a subjective knowledge, related
to the users.

3.2 Background

Mendel (1995) argued that two distinct forms of knowledge exist: objective
knowledge and subjective knowledge. SAR images interpretation is mainly
a matter of subjective knowledge. An expert SAR user has more possibili-
ties to successfully interpret data thanks to his/her habit to that semantic
context. A basic representation of SAR data usually makes difficult even
at visual level the extraction of information for many multidisciplinary
users, which exactly for this reason often turn toward other sources of
data which they can more easily manage, or leave the process of extrac-
tion of information to automatic algorithms.

This brings to the concept of emergent semantics. According Santini
et al. (2001), the informative content, or the meaning, of an image is
assumed to be not an intrinsic property but an emergent characteristic
through the interaction with users. Therefore:

• The meaning of the image becomes contextual, i.e. depends on the
condition in which a particular query is made and on the user per-
forming it;

• The knowledge about the image is assessed by the user experience
which, in this context, is built also by exploration/inspection of data.

From these considerations, it arises that the center of an image un-
derstanding process should be the user, rather than an algorithm. This
appears more evident if the data analysis process is approached from a
semiotic viewpoint.

In Figure 3.1 we show the Peirce’s semiotic triangle (Atkin, 2013). It
schematizes how a concept is formed in our mind. Pierce claims that this
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mechanism consists of three inter-related elements: a sign, an object and
an interpretant. The sign is everything can be perceived. In our case it is
the image or the electromagnetic response of scenes’ objects. The object
is what the sign concerns with and it exists independently on the sign. It
consists in the physical object on the scene. Finally, the interpretant is
the understanding that the observer reaches of some sign/object relation.
The interpretant is in turn a sign which refers to a further object and
interpretant, giving rise to the concept of infinite semiosis (Nöth, 1995),
in which signs are step by step enriched in their informative content by
the previous interpretant.

Figure 3.1. Peirce’s semiotic tri-
angle, depicting how a concept is
formed in our mind. It consists of
three inter-related elements: a sign,
an object and an interpretant. The
sign is everything can be perceived.
In our case it is the image or the
electromagnetic response of scenes’
objects. The object is what the sign
concerns with and it exists indepen-
dently on the sign. It consists in the
physical object on the scene. Finally,
the interpretant is the understand-
ing that the observer reaches of some
sign/object relation.

This interpretation of the cognitive process highlights how the ma-
chine can be only a support (although in many cases indispensable) of
the human activity. In fact, it can not participate to the cycle depicted in
Figure 3.1, apart in helping a better formation of the interpretant through
its capacity of executing complex tasks in a short time (see also Madhok
and Landgrebe, 2002, and Table 2.1).

In Chapter 2, MAP3 gave an example of the potentialities of such
an user-driven framework. The mean we used to concretize the human-
machine interaction was the fusion of the information contained in a N
SAR images in a series ofN−1 bi-temporal RGB products. Here the fusion
has the objective to provide an unique RGB frame (we called Level-1β
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product) representative of the scene dynamics. Therefore, we will speak
about a synthesis rather than a fusion. In fact, this word can assume
the twofold meaning of combination of separate things into a complete
whole and of overviewing a series of information which can be useful as a
first step for the understanding of dynamic phenomena, segmentation and
mining.

Being the automatic

extraction of information

still limited, RGB

products help the human

photo-interpreter,

which is in many cases

designated to assign the

scene semantic

In a context in which the
automatic extraction of informa-
tion from large databases is still
rather limited, Level-1α and Level-
1β products, by lowering the ex-
pertise level required to correctly
interpret data, aim to help the hu-
man photo-interpreter, which is in
many cases the figure designated
for assigning the scene semantic.
In fact, a suitable representation is
a powerful mean for the right association between the signs and the objects
through the semantic emergent from the interaction with data.

Level-1α and Level-1β products are “rather general purpose” data rep-
resentations because the quantity (and the quality) of information one can
mine from data is always dependent on the type of representation chosen
for it. In fact, as argued by Marr (1982)

“A representation is a formal system for making explicit certain
entities of types of information.”

In other words, data can be represented in different ways, and the
choice made greatly affects the information extraction process, since it
makes explicit some information at the expense of other that is pushed
back and could be quite hard to recover (Marr, 1982).

Summarizing, in this Section we explained the philosophical back-
ground Level-1α and Level-1β products refer to. At the end of the Book,
the reader should be successful in figuring out an operative model that,
placing the users at the center of the processing chain, allows for an ef-
fective management of several applications, replying to the fifth question
introduced in Section 3.1.
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3.3 General workflow and pre-processing chain

The general workflow to generate the proposed products is depicted in the
block diagram of Figure 3.2. The pre-processing block answers the second
question posed in Section 3.1 and involves all the operations necessary for
obtaining a set of data suitable for the multitemporal fusion, as detailed
in Section 2.3.1 and by Amitrano et al. (2015b). The only difference with
respect to the chain illustrated by that references is in data normalization.
Even in this case, the VALE method was adopted to reduce the images
dynamics to its more relevant part through a saturation of the spikes due
to (typically man-made) high reflective targets. However, here we keep
the floating point values of the data, postponing the quantization step at
the end of the synthesis, as detailed in the following sections.

Figure 3.2. General workflow of the multitemporal Level-1β synthesis. The
pre-processin chain is the same illustrated in Section 2.3.1. The only difference
concerns the VALE normalization. In fact, in this case we keep the floating point
values of the data, postponing the quantization step at the end of the synthesis.

3.4 Synthesis definition

Reference Jacobson et al. (2007) proposed some goals the fusion of a set
of images should achieve for preserving information and enabling inter-
pretability. Here, we want to highlight the four properties of summariza-
tion, consistent rendering, computational ease and natural palette recalling
some concepts expressed in the aforementioned work.

As for the summarization, an effective synthesis should accurately sum-
marize the original dataset, transferring to the user information he/she
can not reach otherwise. This is possible if the rendering of data is con-
sistent, i.e. the user is able to easily produce the association sign-object
or color-feature.
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Level-1β products have

been designed with

the aim to meet the

four properties of

summarization, consistent

rendering, computational

ease and natural palette

To this end, the natural color
palette is of course the best in-
termediary. However, while it
is achievable with good approx-
imation through an appropriate
weighting of N bands of multispec-
tral/hyperspectral data, for SAR
images it is still far away to be
produced. Hence, an advance
towards this representation, with
short computational times in order to also enable real-time or near real-
time applications, is desirable. Level-1α imagery gave a first solution to
this challenge, as shown in Section 2.4 and Section 2.5. Level-1β products
we are going to define have the same objective, trying to give an effective
answer to this requests by solving appropriately the challenges relevant to
the selection of the more suitable bands and to their fusion. This makes
possible to meet the four propriety discussed above and also represents
the subject of the third and fourth question introduced in Section 3.1.

3.4.1 Multitemporal analysis

In this Section, an answer to the third question raised in Section 3.1 will be
provided: what is the most successful combination of data in order to out-
put a RGB representation meeting the four properties of summarization,
consistent rendering, computational ease and natural palette?

The idea is to compare (and combine) the mean intensity values of the
time series with some variability indicators. The usage of the variance is a
simple choice in order to evaluate the deviation with respect to the mean
behaviour.

Another interesting information about the scene dynamics is repre-
sented by the maximum excursion of backscattered energy during the en-
tire time series. It allows for the identification of outliers. Therefore,
we use as third element of our synthesis the saturation map, as defined
by Bruzzone et al. (2004), which exploits the information derived by the
absolute maximums σmax and minimums σmin bands as follows:
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σs =
σmax − σmin

σmax
, σs ∈ [0, 1] , (3.1)

The drawback of this quantity is a pdf typically strongly skewed to
the right. This results, in the final composition, in a sort of watermark
of the color corresponding with that band covering the entire image. In
order to avoid this visually unpleasant effect and reach a more balanced
composition, we consider a saturation index defined by:

σ̂s =
σmax − σmin

σmax + σmin
, σ̂s ∈ [0, 1] . (3.2)

This formulation of the saturation index allows for reducing the skew-
ness of the distribution with respect to Equation (3.1) making possible to
obtain a higher balance of the RGB channels.

3.4.2 Multitemporal synthesis

As detailed in the previous Section, the quantities that will be used for
the multitemporal synthesis are the mean intensity, the variance and the
saturation index expressed in (3.2). The answer to the fourth question
posed in Section 3.1, i.e. how to fuse the selected data, is now in order.

Level-1β synthesis

involves the time

series mean, variance,

saturation index and

the mean interferometric

coherence

One of the basic problems in
computer vision is to allow the ob-
server to segment the image into
meaningful regions (Khellaf et al.,
1991) preventing the emergence of
bright saturated regions, which has
been judged to be distracting and
confusing Jacobson et al. (2007).
Hence, it is fundamental that the
visualization favour the pre-attentive processing (Healey et al., 1995), i.e.
the unconscious accumulation of information from the environment. As a
consequence, we design our fusion mechanism in such way it gives as out-
put highly contrasted images (which makes easier edges individuation),
with limited occurrences of saturated regions, and a good classes separa-
bility.



62 Chapter 3. Level-1β products

The fusion is implemented by maximizing the entropy of the channels
involved in the composition. In particular, this is realized by clipping
recursively the image pdf (at both left and right edges) for different per-
centages of the cumulative histogram until the maximum entropy value is
reached. This procedure allows for obtaining more stretched histograms
and a higher contrast. In fact, the flatter the histogram the higher the
entropy.

The synthesis has a fourth participant, i.e. the interferometric coher-
ence. This quantity is useful for separating high-reflective natural targets
from man-made surfaces. In order to insert this information in our RGB
composite we proceeded as follows:

a. A master image is fixed and assumed as reference for the entire series;

b. The interferometric coherence between the master image and all the
slaves is computed;

c. The mean coherence value γ is extracted;

d. The mean coherence map is linearly quantized between a user-defined
maximum and minimum. Reasonable values for these parameters are
∈ [0.3, 0.4] for the minimum and ∈ [0.5, 0.6] for the maximum. This
means that, assuming γmin = 0.3 and γmax = 0.5 all the pixels whose
coherence value is below 0.3 are set to null coherence; pixels with
a coherence value between [0.3, 0.5] are linearly distributed between
[0, 255]; pixels whose coherence value is above 0.5 are set to 255. In
the following we refer to this map as time series coherence map.

e. The obtained time series coherence map is used as a mask within the
saturation index map. In such a way, where the time series coherence
values are zero (natural surfaces), the composite map exhibits the
saturation index value. Otherwise the composite map returns the
time series coherence value.

In the following sections, when the saturation index map is referred,
the reader should take in mind the above described modification performed
on its original definition.

As for the combination of the selected bands, we propose a solution try-
ing to satisfy the requirements of consistent rendering and natural palette
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introduced in Section 3.4. Therefore, the products shown in the following
sections have been built with the following sequence:

• Red band: time series variance;

• Green band: time series mean;

• Blue band: saturation index map powered with the time series co-
herence map as explained above.

3.5 Products and their physical interpretation

In this Section, we propose three applicative scenarios for explaining the
characteristics of Level-1β products. In particular, we will deal with three
scenes acquired by different sensors in different climatic areas, in order to
highlight the robustness and the semantic stability of the defined synthesis.

3.5.1 Scenario 1 - Monitoring seasonal crops in temperate
environment with Mediterranean climate

Level-1β products are

application-oriented.

The combination of images

belonging to summer is

suitable for monitoring

crops growing in this

season

In this scenario, our objective
is the detection of summery cul-
tivations in Southern Italy, an
area characterized by a temperate
Mediterranean climate. To this
end, we used images acquired dur-
ing the summer. Indeed, since the
sowing time is slightly moved up
and the harvest could be delayed
of some weeks, we considered 9 im-
ages between 5 April 2010 and 28 October 2010. The obtained Level-1β
product is shown in Figure 3.3.

Before examining the monitoring activity, it is worthwhile to linger
on this representation which allows for highlighting some characteristics
of Level-1β products and the identification of some phenomena, as listed
below:

• Sea appears in almost pure blue since the low contribution of the
mean and variance bands and the high values of the saturation index
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Figure 3.3. Castel Volturno (Italy), COSMO-SkyMed Level-1β product ob-
tained by synthesis of 9 images acquired between April 2010 and October 2010
for summer crops monitoring. Red band: time series variance; Green band: mean
backscattering; Blue band: saturation index powered by the mean interferometric
coherence.

due to different sea states that produce different backscatter in time.
Indeed, this behavior (i.e. the blue color) can be observed on other
weak scatterers, which could exhibit an unstable response such as
roads, shadows, or surfaces in backslope;

• A more stagnant surface water, typical of rivers and irrigation tanks
turns the response of the composition toward the black (see Fig-
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ure 3.4a);

• Some irrigation tanks are subject to a more intensive usage during
summer and dry up completely. Hence, their response acquires a
strong red (i.e. variance) component which, red combined with an
increased contribution of the mean band, results in a violet color,
as shown in Figure 3.4b. In the following we will refer to these
structures as “temporary tanks”;

• Man-made structures appears in cyan due to the combined contribu-
tion of the interferometric coherence and mean. The former contri-
bution, in particular, allows for the distinction of such targets from
the pine-grow which is characterized by a strong response of the
mean, as shown in Figure 3.4c and Figure 3.4d.

(a) (b) (c) (d)

Figure 3.4. Castel Volturno, particulars of the Level-1β product: (a) stagnant
water in rivers and in “permanent” irrigation tanks appear in black due to the
low response of all the involved channels. (b) “Temporary” irrigation tanks are
rendered in violet due to significant contributions of variance and saturation
index. (c) Man-made structures are displayed in cyan due to the high contribution
of mean backscattering and mean interferometric coherence. (d) The pine groove
has a green color due to its backscattering stability.

As a general comment, a high contribution of the blue band can be
found both on very stable targets (such as buildings, due to the contribu-
tion of the time series coherence), and on very dynamic objects (such as
cropfields or sea surface, due to the contribution of the saturation index).
Indeed these two phenomenon, in principle ambiguous if only the blue
band is considered, are well separable. In fact, on stable (man-made) tar-
gets, a negligible contribution of variance is observed. Conversely, a high
variance is expected on agricultural land or dynamic natural surfaces.
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As argued by Marr (1982)

“The usefulness of a representation depends upon how well suited it
is to the purpose for which it is used.”

When in Section 3.1 we referred to Level-1β imagery as a “rather
general-purpose multitemporal SAR data synthesis”, we wanted just to
remark this aspect. In fact, the proposed composition, besides the advan-
tage for human operators, would have limited applications, as an example,
in sea parameter estimation or ship detection. On the other hand, it is
particularly indicated for land monitoring and agricultural applications.

For mining information about cultivated field, we used as reference
the CORINE land cover map (Bossard et al., 2000) (see Figure 3.5a). In
Figure 3.5b, the contour of this map have been overlayed to the geocoded
Level-1β product. These two representations should highlight the large-
scale correspondence between the semantic emergent by examining the
response of this product and the classes indicated in the thematic map.

(a) (b)

Figure 3.5. Castel Volturno (Italy): (a) CORINE land cover map and (b)
CORINE land cover contour overlayed to the Level-1β product.

In fact, the reader should easily distinguish, for example, the classes ur-
ban areas and water on the Level-1β product. Their topology is respected
with respect to the CORINE map. The pine-grove at the bottom left cor-
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ner of the scene, as well as the stripe of sparse vegetation and brushwoods
about on the seaside are in the same way identifiable. Actually, the classes
brushwoods and sparse vegetation are indistinguishable on the Level-1β
product, but they form a whole near the coast that is clearly separate by
the adjacent urban area and conifer woods.

It is worthwhile to remark that the product we are analyzing has been
produced considering a series of images belonging to summer. Hence, sea-
sonal cultivations are expected to have high values of the mean intensity
and variance bands due to the enhancement of backscattering derived by
the volumetric contribution of the plants growth (Fung, 1979). Indeed, the
saturation index is also expected to be high due to harvesting. Therefore,
summery cultivations exhibit high values in all the bands of the composi-
tion, but their balance is dictated by cultivation type, terrain roughness,
foliage density, plants height and fruits dimensions.

This means that there is no unique colour association that identify
all agricultural fields. However, given that the variance contribution is
significant, a higher contribution of the mean intensity (green band) results
into a color which goes into yellow. A dominance of the saturation index
(blue band) turns the response of the composition into a pink tonality. As
an example, if the field appears in yellow, a high foliage density or taller
plants have to be expected, as in the case of orchards (see the upper part
of thematic map of Figure 3.5a).

Coming back to the overlay depicted in Figure 3.5b, the reader should
note as the color of the contour for the classes “Springy/summery grain
cereals”, “Springy/summery vegetable crops”, “Springy/summery indus-
trial crops” and “Protected crops - vegetables and fruits” is the same
(yellow), i.e. these categories have been grouped in a macro-class. This
helps in highlighting as the Level-1β product is congruent on average with
the CORINE thematic map, since the fields whose response turn into pink
or yellow are enclosed in the contour of that macro-class.

The classes “Autumnal/wintery grain cereals” and “Grasslands”, indi-
viduated in Figure 3.5b by red and amethyst contours can be also fused in
an unique class. In fact, grasslands are objects almost stable and therefore
their response is dominated by the mean intensity band (green). During
summer, wintery-cultivated fields are usually destined to fallow and hence
they are most likely covered by vegetation. As a consequence, their re-
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sponse turns into green, too. In our case, grasslands and wintery culti-
vations are grouped in the center of the scene (see the thematic map of
Figure 3.5a) and this is confirmed by the Level-1β product which, in that
zone, exhibits a large dominance of the mean intensity band response.

The above listed outcomes hold for sensor variations.

In Figure 3.6a and Figure 3.6b we show two Level-1β products relevant
to the city of Cirò Marina (Italy). In both cases, the SLC images were
acquired by the sensor TerraSAR-X. In particular, the product depicted
in Figure 3.6a has been obtained by fusing a time series belonging to
April-October 2008. The product depicted in Figure 3.6b is the result
of the fusion of a time series belonging to the same period of the year
2009. In order to make the two time series comparable, a metric has
to be established. Therefore, we assumed as reference the 2008 product,
fixing the maximum and minimum values of the quantities involved in the
building of the Level-1β product of the successive year. In other words,
when data of the 2009 image are transformed from floating point data
format to unsigned byte, the zero-th and 255-th amplitude levels coincide
for each band with those of the reference image.

The reader can immediately appreciate how the semantic of these com-
positions is coherent with that illustrated above for the Castel Volturno
dataset. The principal cultivation of the study area is the grapevine, which
is a summer cultivation. Thanks to the above considerations, vineyards
are easily identifiable in the coastal stripe of Figure 3.6a in the fields with
a yellow response. Moreover, due to the calibration, variations in the col-
orimetric response in the two products can be exploited for studying the
behavior of the cultivations during the two farming seasons, as detailed in
Chapter 5.

3.5.2 Scenario 2: Level-1β products in regions with tem-
perate continental climate

Sentinel-1 started to acquire data on April 2014. The success of the mission
requires the development of repeatable and reliable processing able to
produce attractive products for the end-user community. The potential
of the mission has been widely explored in the remote sensing literature
(Malenovský et al., 2012). Here, we will show that Level-1β imagery is
fully compatible with the characteristics of the new sensor.
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(a) (b)

Figure 3.6. Ciró Marina (Italy): (a) April-October 2008 and (b) April-October
2009 TerraSAR-X Level-1β products.

To prove this claim, we processed a multitemporal series of six images
acquired between 3 October 2014 and 2 December 2014 in interferometric
wide swath (IWS) mode over the Saxony region, Germany. Preliminary
processing, such as TOPS (De Zan and Monti Guarnieri, 2006) deburst
and calibration, has been carried out thanks to ESA Sentinel-1 Toolbox
software.

In Figure 3.7 we show the full Level-1β product of the study area. The
spatial resolution is 15 meters. The yellow dot on the map identifies the
city of Dresden. We reported in the same image the 100 meters resolu-
tion CORINE land cover corresponding with the imaged area (in the top
left corner) and a wider view catching part of the central Europe (in the
bottom right corner).

Macroscopically, the reader should note as the colors restituted by the
composition are constantly associated to the same image feature. Cities
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Figure 3.7. Sentinel-1 full Saxony Level-1β product with 15 meters spatial
resolution. The yellow dot identifies the city of Dresden. On the top left corner
the 100 meters resolution CORINE land cover is reported. A wider view of part
of the center Europe is provided in the bottom right corner. The semantic carried
by the Level-1β product is congruent with the classes reported in the reference
map and it is constant for sensor variations.
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Figure 3.8. Sentinel-1 Level-1β product of the Dresden city area with its rele-
vant 100 meters resolution CORINE land cover.
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are rendered in cyan. In the middle of the image, at South of Dresden, a
wide stripe of woods area is identifiable since the response of the compo-
sition has a strong green component. Looking at the CORINE land cover
in the top left corner of Figure 3.7, the dominant classes in this area are
“Broad-leaved forest” and “Conifer Forest”, rendered in green and dark
green, respectively.

At East and West of the city of Dresden (see the light yellow class
on the CORINE land cover), croplands are distinguishable, as well as at
South, above the woodland stripe. At North-West of Dresden, instead,
another wide woody area can be identified with some water bodies of
different size.

Summarizing, the proposed Sentinel-1 Level-1β product respects macro-
scopically the semantic indicated by the CORINE land cover.

The same reasoning can be repeated on a finer scale looking at the close
up of the Dresden city depicted in Figure 3.8. The corresponding portion
of the 100 meters resolution CORINE land cover is displayed in the bottom
left corner of the image. This representation should allow the reader to
better appreciate the matching between the semantic extractable from the
Level-1β product and that established by the CORINE land cover.

As an example, it is easy to link the area at North-West of the Elbe
river in which the green response is dominant with the conifer forest indi-
cated in dark green within the CORINE land cover. In the same way, the
Dresden city park, rendered in light pink on the reference land cover, is
clearly distinguishable in Level-1β imagery thanks to its green response.
In synthesis, basing on the considerations provided in Section 3.5.1 dis-
cussing about the Castel Volturno scene, the reader should be able to
reconstruct the semantic of the Level-1β response of the city of Dresden.
This testifies the robustness of our framework in the association color-
object (or sign-object in the Peirce view), and its suitability to Sentinel-1
imagery.

3.5.3 Scenario 3: Level-1β products in semi-arid environ-
ment

In this Section, we discuss the reliability of the proposed framework vary-
ing completely the climatic zone. In this case we deal with a semi-arid
environment (see Section 2.3.2) where agricultural activities are strongly



3.5. Products and their physical interpretation 73

related to the cycle of rainfalls (Amitrano et al., 2014b), determining the
effectiveness of seasonal cultivations and the quantity of water which can
be harvested for facing the dry season (Amitrano et al., 2014a).

In Figure 3.9 we show a Level-1β product relevant with the Laaba basin
obtained by processing eight COSMO-SkyMed spotlight images between
3 July 2014 and 4 August 2014, i.e. in the middle of the rainy season
(Amitrano et al., 2014b). In this scenario, it is of interest to monitor
water surface and cultivation dynamics, due to their importance for local
community wellness, as well as the presence of small human settlements,
since updated maps are usually not available.

Level-1β imagery provides useful information regarding all these ac-
tivities. As an example, the Laaba basin is clearly distinguishable at the
center of the image. As previously hinted, it is highly influenced by rain-
fall cycles. In fact, it dries up completely during the dry, season due to
evapotranspiration and human consumption, and it is filled by rain water
during the wet season (Amitrano et al., 2014a). This behavior is almost
constant in different years. However, basin contours are strongly variable
even during the wet season, since the available water is used for irrigation
and human activity. This emerges analyzing the Level-1β product in the
basin area. In fact, in its bottom part, wide areas characterized by a pink
response are present (see also Figure 3.10a), due to the combination of
variance and saturation index bands. Physically, because of the climatic
conditions of the imaged area, it is possible to associate this response to
regions characterized by an unstable water coverage.

The semantic carried

by Level-1β images

is congruent with the

classes indicated in

the available reference

maps and hold for sensor

and climatic condition

variations

The same phenomenon charac-
terizes bright regions within the
basin area and on its contour.
However, in this case, the high
contribution of the mean indicates
that that portion of terrain is
not covered by water in the most
part of the considered acquisitions.
Thus if a mask of the maximum
basin extension is available, Level-
1β imagery allows for the extrac-
tion of information about the water coverage extent in the considered
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Figure 3.9. Laaba basin (Burkina Faso), spotlight COSMO-SkyMed Level-1β
product obtained by fusion of eight spotlight COSMO-SkyMed images acquired
between 3 July 2014 and 4 August 2014.

time interval.

In Figure 3.10b and Figure 3.10c the reader should note how both
the change in acquisition modality and climatic area does not affect the
response of features such as cultivated fields (Figure 3.10b) and “urban
areas” (Figure 3.10c). We used quotation marks since in this case we are
talking about very small settlements composed by few constructions which
behave as stable targets.
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In Figure 3.10d we show a detail relevant to a feature characteristic of
a semi-arid environment, that is an eroded area (Amitrano et al., 2013),
i.e. a region which lost its capability to retain and absorb water and
which is, for this reason, completely barren and characterized by a low
reflectivity. Thus the response of Level-1β imagery for this feature turns
out toward the black or a very dark blue because of a little contribution
of the saturation index.

It is worthwhile to remark that dealing with semi-arid environments,
in which scenes are mostly natural and, during the rainy season, charac-
terized by a strong dynamic, the temporal sampling of the images involved
in the Level-1β composition is very important, as well as the considered
time span. In fact, a thin set of images or a long time interval could give
rise to anomalous response due to the effects of variance and/or of the
saturation index.

3.6 Conclusions and discussions

In this Chapter, we introduced a new class of multitemporal SAR RGB
products. Level-1β products are complementary to the bi-temporal Level-
1α products discussed in Chapter 2, since they fuse N acquisition in an
unique frame representative of the dynamics of the scene.

More attention to users’

experience is needed for

a wider diffusion of SAR

data in the end-user

community. This is

fundamental for the full

exploitation of the new

missions, whose data are

freely available for the

scientific community

Level-1β products products have
been designed in such a way to
help the human photo-interpreter,
thanks to a rendering as much
as possible consistent with human
view. As for Level-1α products,
the purpose is to lower the exper-
tise required to correctly interpret
data. In fact, in a scenario in
which the automatic extraction of
information from large databases is
rather limited, users are in many
cases appointed to extract informa-
tion from the analyzed scene, i.e. to transfer a semantic to the imaged
objects. Level-1β products encounter this necessity, which is more and
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(a) (b)

(c) (d)

Figure 3.10. Laaba basin (Burkina Faso), details of the Level-1β product shown
in Figure 3.9: (a) an area characterized by instable water coverage, (b) crops in
the nearby of the dam, (c) a small human settlement and (d) an eroded area.

more felt in the end-users community, making the human-machine inter-
action more easy and comfortable.

We tested the reliability of our products by implementing the Level-
1β processing chain using images acquired by three different sensors on
four scenes (Castel Volturno, Ciró, Laaba and Dresden). All the available
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acquisition modalities (stripmap, spotlight and scan) were tested, as well
as different climatic zones: temperate with Mediterranean/continental cli-
mate and semiarid climate. The obtained results confirmed the semantic
stability of the proposed products, i.e. the consistency of the association
between the displayed colors and the objects on the scene.

In Section 3.1, we recalled five questions proposed in the past litera-
ture concerning the reliability of a data fusion technique. We proposed
an answer for all of them with regard to the problem of data represen-
tation. However, question 5 (concerning how to extract the enormous
amount of information from remotely sensed data) is only partially an-
swered. It could not be otherwise, considering that Level-1β processing,
as well as Level-1α, deals with a part of the whole problem, that is data
representation.

However, the message we want to convey is that more attention to
users’ experience is needed for a wider diffusion of SAR data in the end-
user community, in which the level of technical expertise could be not
appropriate to manage classic SAR images and/or algorithms for infor-
mation extraction. This is fundamental for the full exploitation of the
new missions, whose data are freely available for the scientific community.
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Malenovský, Z., Rott, H., Cihlar, J., Schaepman, M. E., Garćıa-Santos,
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Chapter 4
Semantic products

4.1 Introduction

In this Chapter, we will show how to introduce a basic semantic in the
Level-1α and Level-1β products discussed in the previous chapters. In
particular, Kohonen’s self-organizing maps (Kohonen, 2001) will be used
to map the input RGB product in a feature space of limited dimension.
A label will be attached to each of the obtained clusters in order to make
the output product semantic. The label will consist in a verbal attribute
recalling a physical attribute of the cluster, in this case its color.

The Chapter is organized as follows. In Section 4.2, self-organizing
maps are introduced. Semantic self-organizing maps are introduced in
Section 4.3. Conclusions are drawn at the end of the Chapter.

4.2 Self-organizing maps

Self-organizing maps (SOMs), are a machine learning technique of the Ar-
tificial Neural Networks (ANN) family. They are used for the classification
of the most diverse data types. Their application, since their introduction
by Kohonen, has been experimented in different sectors, like gene expres-
sion analysis (Törönen et al., 1999), financial diagnosis (Serrano-Cinca,
1996), synoptic climatology (Hewitson and Crane, 2002), microbial com-
munity dynamics Dollhopf et al. (2013), bankrupt prediction (Kiviluoto,
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Figure 4.1. Randomly initialized SOM. In this
example, nodes constituted by a RGB triplet
are used. However, this neural net can be used
to classify the most diverse and heterogeneous
datatypes. The number of nodes is user-defined.
They are usually connected with a rectangular
structure, as the one depicted in figure.

1998), and political science (Pearson and Cooper, 2012). SOMs have been
widely applied to remote sensing since the ’90s (Atkinson and Tatnall,
1997) as well, and new applications are still studied and proposed today.
This widespread use of the SOMs is due to the extreme flexibility of the
tool, which can be adapted/modified/integrated to work with different
data types/structures (Kamal et al., 2010) and learning techniques (Pa-
tra and Bruzzone, 2014). The robustness to large amounts of data makes
them a suitable instrument for unsupervised or semi-supervised classifica-
tion in a big data scenario, which is, and will increasingly more be in the
future, a key issue in remote sensing.

Dealing with SAR data, SOMs have been employed, as an example, for
polarimetric data classification (Ito and Omatu, 1998), change detection
(Neagoe et al., 2014), and flood mapping Skakun (2010). Here, the SOM
will be used to map the input RGB product in a feature space with a
limited number of elements. Each element will be labeled with a verbal
attribute recalling a physical property, i.e. its color.

A SOM is composed by a user-defined number of randomly initialized
nodes of the same type of the data to be classified (see Figure 4.1). The
nodes are connected by a (usually) rectangular structure and are trained
using a pre-defined number of sample vectors randomly selected into the
input data. Each time a training vector is presented to the network (see
Figure 4.2), the most similar node is detected and identified as the best
matching unit (BMU). The BMU and its neighbor, defined by a radius,
are update to become more similar to the presented training sets. This
operation is repeated for several iterations (called epochs). At the end
of each epoch the neighbor of the BMU as well as the learning rate are
decreased. In such way, after many epochs, the SOM becomes stable and
the obtained nodes (i.e. colors) can be used to classify data.
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In the classic Kohonen’s scheme, SOM’s neurons are typically ran-
domly initialized. Consequently, for a given map and network parameters,
the SOM output will be different for each run. However, as explained be-
fore, SOMs, can be easily modified to be adapted to specific data. In our
case, we established a data-driven seed for generating the initial set of
neurons. In such way, the input map fixes the output SOM for a given set
of the required network parameters.

The flexibility of SOMs

allows to modify easily

their basic schema to

adapt the tool to the

specific input data

The training sets necessary for
running the SOM are chosen based
on the input RGB product. In par-
ticular, a matrix of M × 3 RGB
triplets is randomly generated us-
ing the previously introduced seed.
In order to consider a larger vari-
ety of combinations of the primary
colors, M is greater than the pre-established number T of training vectors.
These random triplets are made consistent with the re-quantization prob-
lem by computing pixel-wise the Euclidean distance between the i − th
training set and the input RGB product. Therefore, among the M avail-
able tones, the T that are closer to a color existing in the input RGB
products are chosen as training sets.

One of the knowledge required for understanding remote sensing im-
ages concerns the mapping of scene features into the image (Matsuyama
and Hwang, 1990). Exploiting this knowledge, we implemented a mod-
ification to the classic Kohonen’s scheme based on the input products.
As an example, consider a Level-1α product as in Figure 2.12, i.e. with
the coherence band loaded on the red channel. In this case, we impose
the presence of white, black and red colors among the training sets to be
used in the competitive phase. In fact, these colors are associate to pre-
cise classes (such as urban areas, water surfaces and low-backscattering
areas) which are likely to be present in every acquisition, even if, maybe,
with small occurrence with respect to other classes. In order to ensure
the presence of such colors in almost pure tonality in the final SOM, when
the relevant training sets are presented to the network, it behaves as in a
Learning Vector Quantization (LVQ) schema (Kohonen, 2001), in which
only the winning neuron is updated with a high learning rate.
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Figure 4.2. SOM’s nodes are trained using a
pre-defined number of sample vectors randomly
selected into the input data. Each time a train-
ing vector is presented to the network the most
similar node is detected and identified as the
best matching unit (BMU). The BMU and its
neighbor, defined by a radius, are update to be-
come more similar to the presented training sets.
This operation is repeated for several iterations
(called epochs). At the end of each epoch the
neighbor of the BMU as well as the learning rate
are decreased. In such way, after many epochs,
the SOM becomes stable and the obtained nodes
(i.e. colors) can be used to classify data. This is
the classic Kohonen’s scheme. It will be slightly
modified to be adapted to the characteristics of
the input RGB products.

4.3 Semantic self-organizing maps

As previously hinted, the objective of SOM clustering is not only to map
the input RGB product into a feature space of limited dimension, but also
to attach to each cluster a verbal label related to its color. In such way,
the SOM is made semantic (SSOM).

SOM are used to map

the input product from

the RGB space into a

feature space with a

limited number of labeled

elements

To this end, a HTML color
database is considered. At the
end of the training phase, the Eu-
clidean distance between the out-
put SOM and the database ele-
ments is computed. Finally, for
each SOM element, the name of the
less distant color of the database is
assigned.

In Figure 4.4 we show the results of SSOM clustering. In particular,
in Figure 4.3a, a Level-1α product of the city of Castel Volturno is shown
(see also 2). In Figure 4.3b, its 25-elements clustering is depicted. The
reader should appreciate that, despite a significant reduction of the space
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in which the products are defined, they look very similar. This allows for
an immediate semantic transferring between the two products.

(a) (b)

(c) (d)

Figure 4.3. Castel Volturno (Italy): Level-1α product (a) before and (b) after
25-elements SSOM clustering. Level-1β product (c) before and (d) after 25-
elements SSOM clustering. The usage of the SOM allows for the preservation of
the chromatic response of the input RGB product. This allows for an immediate
semantic transferring from the RGB product to the classified one.

The same reasoning can be made looking at the Level-1β product of
the Castel Volturno city analized in Chapter 3 and depicted in Figure 4.3c.
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Cluster label

White
Orange

Chocolate
Orange Red

Blue
Gold

Dark Goldenrod
Dark Goldenrod
Saddle Brown

Brown
Lawn Green
Olive Drab
Olive Drab

Saddle Brown
Saddle Brown
Lime Green
Olive Drab
Olive Drab

Saddle Brown
Dark Forest Green

Lime Green
Forest Green
Forest Green

Dark Forest Green
Black

Table 4.1. Cluster labels assigned by
the SSOM for the Level-1α product de-
picted in Figure 4.3b.

Cluster label

Blue
Royal Blue

Cyan
Medium Purple

Plum
Dark Slate Blue

Steel Blue
Cadet Blue

Dark Orchid
Pale Violet Red
Dark Slate Gray

Dim Gray
Dim Gray

Sienna
Chocolate

Black
Dark Olive Green

Olive Drab
Olive Drab

Peru
Forest Green
Forest Green
Lime Green

Yellow Green
Dark Khaki

Table 4.2. Cluster labels assigned by
the SSOM for the Level-1β product de-
picted in Figure 4.3d.

Its 25-elements clustering is depicted in Figure 4.3d. Even in this case,
the reader can appreciate few differences in the two products. In fact, the
chromatic content of the input RGB product is largely preserved in the
clustered one thanks to the usage of the SOM.

In Table 4.1 and Table 4.2, the cluster labels assigned by the SSOM
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during the clustering of the Level-1α and of the Level-1β products de-
picted in Figure 4.3b and Figure 4.3d, respectively. It is possible that the
algorithm assigns to more colors the same label due to their similarity. In
this case, that colors can be immediately considered for the fusion, since
they are likely to represent the same phenomenon.

These labels, identifying a certain scattering mechanism, can be used
for simple classification/pre-classification activities. To this end, consider
the Level-1β subset of the Castel Volturno scene reported in Figure 4.4a.
According to Level-1β products rationale, it belongs to an area mainly
dedicated to growing crops. In fact, this feature, as explained in Chapter
3 is rendered in yellowish/pinkish color. In order to identify it, a simple
semantic query can be made.

(a) (b)

Figure 4.4. Semantic queries allows for easily identifying image features through
the color attribute. (a) Level-1β product and (b) its growing crops mask obtained
isolating the clusters having attributes “Plum”, “Pale Violet Red”, and “Dark
Khaki”.

In fact, it is possible to isolate the clusters concerning growing crops
simply by querying the attacher color label. In Figure 4.4b, the mask
obtained by selecting only cluster having “Plum”, “Pale Violet Red”, and
“Dark Khaki” colors is reported. These colors have a strong red compo-
nent (i.e. a strong variance component), which is dominant compared with
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the green component (i.e. the mean backscattering component). There-
fore, they are likely to represent a changing landscape due to the growth of
plants. In this procedure, we selected only clusters with occurrence higher
than 5% of the scene, discarding those with dominant green component.

The color attribute

introduced through the

SOM can be exploited in

classification activities

by querying the image at

semantic level

It is remarkable that the us-
age of semantic queries allows for
avoiding to run statistical classi-
fiers that, having typically a strong
parametric nature, could require
a non-trivial technical expertise to
be used. Therefore, it represent
an end-user-oriented solution hav-
ing, moreover, a negligible compu-
tational burden. A richer characterization of the objects using shape and
spatial relationships can be used to refine the obtained results and/or to
run more complicated applications, as detailed in Chapter 5. In alter-
native, semantic queries could act as a pre-classifier, to be used to re-
trieve more specific classes (as an example the type of cultivation) using
scattering-based statistical methods.

4.4 Conclusions

In this Chapter, we showed how to introduce a basic semantic in SAR data
using SOM clustering. In particular, we slightly modified the classic Ko-
honen’s schema to make the neural net consistent with vector quantization
of SAR-derived data. The objective was to map the input color-composite
from the RGB space into a feature space with a limited number of (la-
beled) elements. The label is constituted by a verbal attribute recalling a
physical property of the class, in particular its color.

We showed how to exploit the cluster label for querying the image
at semantic level in an end-user-oriented environment for classification.
In alternative, semantic processing could be used as pre-classifier, to be
exploited to retrieve more specific classes (as an example the type of cul-
tivation) using scattering-based statistical methods.
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Chapter 5
Applications

5.1 Introduction

In this Chapter, some applications involving multitemporal SAR, with
particular emphasis on the usage of Level-1α and Level-1β products, will
be discussed. In particular, water resources management in semi-arid
regions through the synergic use of SAR data and hydrological modeling
is presented in Section 5.2. In this application, SAR images are used to
extract the bathymetry of small reservoirs and to retrieve a semi-empirical
relation between basins’ surface area and retained volume.

In Section 5.3, classification using Level-1α and Level-1β products is
discussed. In particular, in Section 5.3.1, a simple supervised classifier is
used to classify a Level-1α product. In Section 5.3.2, a two years crops
monitoring application using Level-1β products in combination with neu-
ral networks is faced. In Section 5.3.3, land cover mapping through neural
networks starting from a Level-1β products is performed.

Features extraction is discussed in Section 5.4. In particular, in Section
5.4.1, an index based on Level-1α products for detecting temporary wa-
ter surfaces is introduced. In Section 5.4.2, buildings extraction through
a new radiometric index is discussed, together with a technique for the
enhancement of built-up areas in Level-1α images. In Section 5.4.3, a pre-
cision agriculture application is faced exploiting semantic RGB products
and object-based image analysis.
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5.2 Water resources management in semi-arid re-
gions

In semi-arid regions, small reservoirs are widely employed for facing water
scarcity and climatic variability (Boelee et al., 2009; Cecchi et al., 2009).
In Burkina Faso, it is estimated that almost 1700 small reservoirs are
actually used for irrigation, livestock, and other uses. However, despite
of their crucial importance, they are not appropriately monitored and, in
many cases, not catalogued or the relative data not kept up-to date (Cecchi
et al., 2009). Moreover, small reservoirs are often built or modified for the
initiative of local communities and even basic data as their location and
capacity are not available. For these reasons it is extremely hard to study
their impact on the territory and to optimize their management.

In order to improve the management of water resources it is neces-
sary to provide hydrological models suitable for the specic environments
under study. In literature, there is a lack of environmental and hydrolog-
ical data concerning semi-arid West Africa. Therefore, it is necessary to
improve data availability through the development of cost-effective mon-
itoring techniques and to adapt the hydrological modeling to the limited
available data (Amitrano et al., 2014a).

Multitemporal SAR

is a powerful and

cost-effective tool

for water resources

monitoring in low-income

semi-arid countries

The use of remote sensing in
this context could really be a
breakthrough, allowing for a signif-
icant reduction of costs and time
needed for achieving crucial in-
formation for effective and inte-
grated water management (Zhang
and Jia, 2013). So far, the use of
multispectral (Liebe et al., 2005;
Mutiti et al., 2010) and low-resolution radars (Liebe et al., 2009; An-
nor et al., 2009) for reservoir monitoring evidenced great potentialities,
but also poor practical results. In fact, the main limit for a continuous
monitoring with passive sensors (i.e. optical sensors) turned out to be the
dependence of the results on the cloud cover, which is particularly critic in
wet season. Conversely, SAR systems are independent of illumination and
atmospheric conditions. However, their usage for small reservoirs monitor-
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ing has been limited by the resolution of the available data, at least until
the launch of the new generation of high-resolution sensors, which allowed
for a significant reduction of the dimension of the observable surfaces, up
to few thousand square meters (Amitrano et al., 2014a,c).

The increased resolution (both spatial and temporal) and radiometric
quality of the available data allows for overcoming most of the existing
limits, opening the way to new fields of applications of SAR that could
provide humanitarian, technological and economic benefits.

5.2.1 Methodology and case study characterization

The study area is located in northern Burkina Faso, and it is entirely
enclosed in the Volta basin. The region is characterized by a semi-arid cli-
mate, with precipitation concentrated in the June-September rainy season,
as detailed in Section 2.3.2. This climate calls for appropriate strategies
for water storage in the rainy season and water use in dry season.

One of the oldest and most popular technique for water harvesting is
the construction of dams for the creation of small reservoirs. The northern
Burkina Faso is characterized by an increasing demographic pressure and
by soils that are prone to erosion, causing sedimentation phenomena that
reduce the available water volume. The number of reservoirs frequently
changes, due to uncontrolled construction and ruptures, therefore an up-
dated inventory of the existing reservoirs with traditional techniques is
hard to obtain. Reservoirs monitoring would be of great importance in
order to optimize their management, also because their effects on the over-
all water distribution of the Volta basin is still unclear and it is object of
controversies with neighboring countries.

The block diagram presented in Figure 5.1 describes the overall method-
ology. More details on each block are provided in the following sections.
It is worth to note that the modularity of the approach allows for choosing
the most appropriate technique in accordance with the desired results and
the working environment. Here, most of the choices have been dictated
by the need to obtain accurate results with the simplest techniques. In
such way, a framework easily reproducible even by non-expert SAR users
is obtained.

Along with the obtained products, in the last column of the block
diagram, a set of applications have been cited to show the potentiality of
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Figure 5.1. Block diagram of the adopted processing chain. Basin contours
obtained through SAR processing and bathymetric data retrieved using a high
resolution DEM are used to feed an hydrogeological modeling for monitoring the
available water volume.

the approach (Amitrano et al., 2014a).

5.2.2 Water bodies extraction

In this Section, the processing steps for basins’ shoreline extraction is dis-
cussed. For basic multitemporal SAR processing, the reader is addressed
to Section 2.3.1.

The adopted technique for basin contours extraction is very simple. It
consists in a thresholding of the intensity image in order to separate the
class “water” from the class “no water”. The selection of the threshold
value is guided by the histogram evaluation of a subset taken around the
basin under analysis. The constrain to respect is the selection of a subset
in which the presence of surface water is relevant; in fact, in this case the
histogram of the intensity map exhibits a bimodal distribution.

In Figure 5.2 we considered a subset around the Gouinre basin and
reported the relevant histogram. Thanks to multitemporal despeckling,
low reflectivity objects are well-separated from the rest of the scene and
this makes the image pdf bimodal. This distribution emerges after an
appropriate histogram clipping. In fact, the histogram depicted is relevant
to the 98th percentile of the pdf. This parameter has been selected with
an entropy-guided criterion as detailed by Amitrano et al. (2015c).

Histogram clipping allows for an easy identification of the optimal
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Figure 5.2. Gouinre basin (Burk-
ina Faso). (a) SAR intensity map
after multitemporal De Grandi de-
speckling with (b) its 98th percentile
histogram. The bi-modal pdf allows
for an easy individuation of the op-
timal threshold for separating water
surface from land features

threshold, which is given by the local minimum between the two distri-
bution modes. This threshold is basin- and image-adapted, since water
surfaces are not necessarily static objects and their reflectivity could be
influenced by local phenomena.

The threshold-guided segmentation allows for a quick preliminary esti-
mate of the water surface, as shown in the example depicted in Figure 5.3.
In particular, in (Figure 5.3a), the SAR image of the Laaba basin after
multitemporal De Grandi despeckling and histogram clipping is depicted;
the binary mask obtained via thresholding of the intensity map is reported
in (Figure 5.3b).

The quality of the obtained mask, which could be affected by granular-
ity (principally due to the presence of eroded areas) and/or holes within
the basin area, can be significantly improved by using morphological op-
erators. Here, we applied a mode filter (Amitrano et al., 2016) followed by
a closing operator operator (Ronse and Serra, 2010). The result of these
operations are reported Figure 5.3c and Figure 5.3d, respectively.

Finally, the shoreline is extracted with the Roberts’ operator (Shri-
vakshan and Chandrasekar, 2012), as shown in Figure 5.3e. The result of
the whole processing chain is shown in Figure 5.3f, in which the obtained
contour has been superimposed to the amplitude map. Qualitatively, a
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3. Shoreline
extraction workflow:
(a) intensity De Grandi-
filtered map after the
98th percentile his-
togram clipping, (b)
threshold-guided seg-
mentation. The quality
of the obtained mask,
which could be affected
by granularity and/or
holes within the basin
area (principally due
to the simplicity of the
adopted method) can
be improved through
mathematical morphol-
ogy. Here, we applied
a (c) mode filter, fol-
lowed by (d) a closing
morphological operator.
Finally, (e) the Roberts
edge detector is used
for extracting the basin
contour which are (f)
superimposed to the
intensity map, as a
result of the whole
processing.

good matching between the extracted shoreline and the intensity map can
be appreciated.

The extraction of the shorelines has been performed with such a semi-
automatic procedure for all the available acquisition for two basins in
the nearby of the city of Ouahigouya and the basins of Laaba, Tougou,
Aoérama and Derhogo for a total of six sites (see Figure 5.4). The results
of this procedure are shown in Figure 5.5 to Figure 5.6 for Laaba and
Derhogo Tougou basins, respectively.
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Figure 5.4. Map of the monitored sites: we selected two basins in the nearby of
the city of Ouahigouya and the basins of Laaba, Tougou, Aoérama and Derhogo
for a total of six sites.

5.2.3 Basins bathymetry

Once the basin contour is known and re-projected in a cartographic sys-
tem, the water volume contained into the basin can be computed consid-
ering each pixel of the water mask as a water column whose height hwc is
given by:

hwc = hc − h, (5.1)

where hc is the elevation of the equipotential surface identified by the
basin contour, and h is the DEM height corresponding to the considered
pixel. The DEM has been obtained via standard interferometric processing
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(a) (b) (c)

(d) (e) (f)

Figure 5.5. Laaba basin (Burkina Faso), shorelines for the acquisitions of (a)
2010/06/12, (b) 2010/07/14, (c) 2010/08/31, (d) 2011/03/27, (e) 2011/11/10,
(f) 2011/12/12 (f). The water availability follows the cycle of rainfalls.

of a couple of images acquired at the peak of the dry season of the year
2011 and has a resolution of 9 meters (Amitrano et al., 2014c).

The water volume contained into the basin is given by the summation
of all the elementary contributions brought by the water columns:

V =

N∑
i=1

Si × hwci , (5.2)

where Si is the basin surface of the i− th resolution element belonging
to the water mask and N is the total number of pixels belonging to the
water mask.

In Figure 5.7 we show the results of the analysis for the six consid-
ered basins. As widely discussed in the following Section, these diagrams
are strictly related to the seasonal variation of rainfall with an abrupt
increment of volume at the beginning of the rainy season and a continue
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(a) (b) (c)

(d) (e) (f)

Figure 5.6. Derhogo basin (Burkina Faso), shorelines for the acquisitions of (a)
2010/06/12, (b) 2010/07/14, (c) 2010/08/31, (d) 2011/03/27, (e) 2011/11/10,
(f) 2011/12/12 (f). The water availability follows the cycle of rainfalls.

decrease in the dry season.

Note that the Tougou basin does not dry up completely during the
dry season (Amitrano et al., 2014a). Therefore, its bathymetry can not be
estimated in the part of the basin covered by water during the acquisitions
used for DEM retrieval. As a consequence, while the basin surface is
correctly determined, the estimated volume represent the variation with
respect to the minimum and not the entire available water volume.

In Table 5.1, dam positions and basins’ maximum surface and volume
availability are provided.

A relation between reservoirs’ storage volumes and surface areas can be
derived exploiting the obtained database. These relations are very useful
since the reservoirs’ surface areas can be always estimated with a good
precision by satellite or aerial imagery, while the volume measurement
requires more demanding and expensive bathymetric surveys.

Area-volume relations have been developed in literature, both theo-
retically and empirically. Based on an extensive bathymetric survey in
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7. Contour height, surface and water volume for the six analyzed
basins calculated for each available SAR acquisition. The monitored period goes
from June 2010 to December 2011.

Upper East Region of Ghana, Liebe et al. (2005) obtained the following
relationship:

Volume = 0.00857Area1.4367
[
m3
]
. (5.3)
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Table 5.1. Reservoirs database.

Reservoir Position Surface max Volume max(
m2
) (

m3
)

Laaba 13◦52′23.12′′N, 2◦.20′44.12′′W 407430 427215
Tougou 13◦40′48.68′′N, 2◦12′52.72′′W 5918022 7511779
Ouahigouya 1 13◦36′21.44′′N, 2◦24′42.31′′W 86994 80286
Ouahigouya 2 13◦37′78.96′′N, 2◦24′57.97′′W 25029 14871
Aorama 13◦40′10.61′′N, 2◦21′4.66′′W 96147 72723
Derhogo 13◦49′36.53′′N, 2◦20′34.15′′W 48519 44954

The regression analysis of the reservoirs volumes and areas obtained
using SAR-derived data allowed for the derivation of the following relation:
(Amitrano et al., 2014a):

Volume = 0.10120Area1.1670
[
m3
]
. (5.4)

The Tougou basin was not used in this derivation. In fact, as previ-
ously explained, it does not dry up completely, thus preventing the DEM
extraction for the areas covered by surface water.

As shown in Figure 5.8, there is only a slight difference between (5.3)
and (5.4). This confirms that, thanks to the morphological and morpho-
metrical regularity of the regions, the area-based volume estimation is
possible with good approximation.

5.2.4 Summary

The retrieved area-volume

relation is a quick and

effective tool for water

resources monitoring

In semiarid regions small reservoirs
form a set of well-distributed and
easily accessible water sources that
are used for agriculture, domestic
use, and livestock. Small reservoirs
are widely used to reduce the peo-
ple’s vulnerability to drought and
improve their livelihoods.

In order to optimize the management of these reservoirs, the access
to information is a crucial problem that calls for cheap, reliable and con-
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Figure 5.8. Reservoirs’ storage volume as a function of their surface area in a
log-log plane.

tinuous monitoring. The use of SAR sensors is, in this context, a very
powerful tool thanks to their all weather and all time characteristics and
high spatial and temporal resolution. They provided a detailed, continu-
ous and wide observation of the territory that deserves to be exploited in
regions where in situ measurements are impervious and expensive.

Multitemporal SAR processing of COSMO-SkyMed stripmap images
allowed for retrieving the extension of reservoirs through a simple segmen-
tation technique. The surface area information, combined with a high-
resolution DEM obtained via standard interferometric processing, allowed
for the estimation of the available water volumes for each of the monitored
sites. These data was used for regression analysis of reservoir volumes and
areas in order to retrieve an equation relating these two parameters. In
fact, if the surface area can be easily obtained through SAR imagery, the
estimation of the available volume requires expensive and difficult surveys.
Therefore, the retrieved relation represents a quick and effective tool for
obtaining information about the water resources in the study area.
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5.3 Classification

5.3.1 Using simple classification tools with Level-1α images

Introduction

Since the beginning of the SAR history, the scientific community aimed
to extract information from data with the purpose to classify objects on
the imaged scenes.

One of the first definitions for this activity was given by Harger (1973):

“Classification consists in the discrimination and identification of
randomly reflecting areas, characterized by a certain reflectivity
spectral density.”

This definition highlights two aspects:

• Discrimination, i.e. the separation of objects which share similar
characteristics of backscattering at the operating wavelength. This
operation is carried out at a physical/signal level;

• Identification, i.e. the process of the assignment of a label (or a
class) to a group of scatterers identified as similar. This operation
is carried out at a semantic level and is powered by the knowledge
of the SAR backscattering mechanism.

A more articulate definition of classification is provided by Campbell
and Wynne (2011):

“Classification is the assignment of objects [...] to classes based
on their appearance on the imagery. Often a distinction is made
between three levels of confidence and precision. Detection is the
determination of the presence or absence of a feature. Recognition
implies [...] that the object can be assigned an identity in a general
class or category. Finally, Identification means that the identity
of an object or feature can be specified with enough confidence and
detail to place it in a very specific class.”
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This definition highlights the appearance of the objects, and thus the
physical models which allows for the interpretation of the world represen-
tation, i.e. the image, as filtered by the sensor.

In recent years, the increased volume of available data and calculating
power raised the user requests concerning classification procedures. Thus,
while in ’70s and ’80s the rules were essentially dictated by the SAR com-
munity and by research needs, today the pressure on this activity comes
from a wide variety of professionals and scientists belonging to different
disciplines who posed new user-requirements to the SAR community.

In this context, several outstanding solutions were found. Some au-
thors exploited multitemporal datasets for extracting time-dependent vari-
ables used to discriminate the behavior of scene features (Bruzzone et al.,
2004). This allowed to devise robust classification schemas, but the diffi-
culties related to the implementation of the processing chain could limit
their usage. Camps-Valls et al. (2008) coupled multitemporal SAR and
optical data to set up a framework based on composite kernels. Davidson
and Ouchi (2003) improved a segmentation scheme with the use of mul-
titemporal data. Engdahl and Hyyppa (2003) proposed to use multitem-
poral quantities to reduce the dimension of the original dataset, selecting
the best-suited group of images for unsupervised classification. Quegan
et al. (2000) analyzed the backscattering characteristics of a time series
for forest mapping. Gaetano et al. (2014) applied a Markov random field
framework for multitemporal data segmentation using an homomorphic
transformation.

All these works used multitemporal data in order to improve the per-
formances of previously introduced schema or to introduce new methods
of data fusion. This allowed to better identify features which are assumed
to be stable (i.e. the forest mapping presented by Quegan et al. (2000)),
or which have a specific behavior along time with respect to a given mul-
titemporal quantity (see Davidson and Ouchi, 2003). Here, we want to
focus on the simplification of the classification schema, in which multitem-
poral data are exploited for building a product, i.e. the Level-1α product,
suitable to be treated with standard algorithms.

In general, given an application, different approaches lead to different
solutions and answers to the following questions:

1. What is the best algorithm/technique to reach the goal?
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2. Which parameters must be tuned for obtaining a more reliable out-
put?

The answers to these questions dramatically change as a function of
the expertise of the operator.

As for the first question, hundreds of algorithms/techniques with excel-
lent results exist. An expert user could use his/her skills to select the best
solution for the given application. A non-expert end-user looks toward so-
lutions already implemented in some available software suite. Moreover,
most of the existing methods suffer from the problem that both the end-
user and the SAR expert have a limited control/vision of the operations
that lead to the final product.

As for the second question, the great complexity of modern classifi-
cation algorithms requires a non trivial expertise for tuning the required
parameters.

Level-1α products

can be exploited in

simple algorithms for

classification

However, the active participa-
tion of end-users in classification
procedures represent an opportu-
nity to improve the performances
in terms of compliance to require-
ments of practical scenarios. This
can be possible dulling the hurdles
that they can encounter answering to the two aforementioned questions.
Hence, it is necessary to include simple algorithms in a framework in
which the knowledge/expertise required for classifying a scene is diluted
and made accessible to the end-users. This is feasible via an extreme sim-
plification of the classification schemas, starting from an adequate choice
of the input data. This position is in countertrend with the past literature
in which the development of new algorithms/techniques rather then the
reasoning on input data is privileged.

In the following sections, we will show that Level-1α products (Ami-
trano et al., 2015c), allows for the building of such a framework. It gives
the opportunity to use simple, well-known user-oriented classification tools
which, thanks to the characteristics Level-1α imagery, provide excellent
results on complex scenes (Amitrano et al., 2016). Thus, our framework
satisfies the fundamental end-user requirements of simplicity, velocity, ac-
curacy and repeatability.
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Figure 5.9. Block diagram of the adopted classification framework. Each block
is constituted by a very simple operation. This is possible thanks to the charac-
teristics of Level-1α imagery.

Definition of the classification framework

In Figure 5.9 the block diagram of the proposed framework is shown (see
also Amitrano et al., 2016).

It is articulated in three steps, pointing to the redistribution of the
complexities from the classification phase to those of pre-classification and
post-classification. This simple architecture is possible thanks to the us-
age of the Level-1α products which are characterized by i) a high level of
interpretability and ii) a good separability between the observable classes.
The former characteristic makes these products very attractive for super-
vised classification procedures, since their interpretability makes easier the
training phase. The latter characteristic allows to carry out the classifica-
tion procedure with simple algorithms which require only few parameters
to be set.

The architecture presented in Figure 5.9 is rather standard, at least
in the first two stages (named as “pre-classification” and “classification”
in the picture). Therefore, it is poorly suited for being applied to SAR
data. However, the introduced novelties, concerning the input products for
the classifier and the post-processing phase (in which two morphological
operators are used) allows for obtaining performances fully comparable
with those of definitely more complex algorithms. It is worthwhile to
remark that Level-1α imagery is obtained by multitemporal processing of
N images, even if each product involves only two of them, as stated by
Amitrano et al. (2015c). As all multitemporal processing, the quality of
the products increases as the number of the available images increases.

The proposed approach looks towards temporal series of classification
maps, introducing a novelty with respect to the past literature, which
typically aimed at producing a single classification map by integrating the
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information acquired by N acquisitions considered as stand-alone events.
Nevertheless, when N acquisitions of the same scene are available, a series
of N − 1 products and classification maps can be retrieved. This could
be useful if a long-term environmental monitoring is required, since the
changes between one acquisition and another can be recorded with a pro-
grammed revisit time. In the case of archive data the entire extent of
the time series can be exploited to perform historic investigations and/or
statistics. At semantic level, the detectable classes have a different mean-
ing with respect to the classic SAR literature. In fact, our framework
brings to a labeling which depends on the comparison of objects backscat-
tering with respect to a pre-established reference situation, rather than on
the temporal behavior of the scene with respect to some multitemporal
quantities.

The block diagram presented in Figure 5.9 is quite generic. In the
following subsections we will delineate a schema which allows to reduce
drastically the pre-classification activities necessary for supervised classi-
fication procedure and, in general, introduces significant simplification in
all the other blocks of the chain.

Pre-classification

Level-1α products defined by MAP3 (Amitrano et al., 2015c) are partic-
ularly well-suited for supervised classification procedures. In fact, these
products have the peculiarity of introducing a good separation between
the classes, which can be identified using simple algorithms. Moreover, the
training phase is simplified thanks to their high degree of interpretability,
which allows to identify objects by simple and fast visual inspection. Con-
versely, this operation could be very complex and tedious when considering
a single channel image, especially if the operator has no a priori knowledge
about the scene.

The supervised approach requires the user to select representative
training data for each of a predefined number of classes. Classification
performance is highly dependent on users ability in modeling the class
distribution. In this phase, users experience is crucial for identifying and
locating the best training areas that, ideally, should be homogeneous and
known, or, at least, recognizable (Townshend, 1981). The introduction of
the Level-1α products strongly mitigates these uncertainty factors since
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they can be easily managed and interpreted also by nonexpert users.

Classification

In our framework the complexity of the classification algorithm is redis-
tributed toward the phases of pre-classification and post-classification, al-
lowing to avoid the usage of complicated decision rules. Therefore, in this
work we used the maximum likelihood (ML) classifier. This choice was
guided by the simplicity of the set up and its availability on commercial
and open-source suites.

However, it is worthwhile to note that due to the strong inhomogeneity
of the urban areas we exploit their high separability in Level-1α products
using an interferometric coherence-derived mask. In fact, as explained by
Richards and Jia (2006), the ML classification used in this work assumes
that the statistics for each class in each band are normally distributed and
calculates the probability that a given pixel belongs to a specific class.
In Level-1α imagery, it is not possible to assume that the urban area
has this type of distribution, being it very heterogeneous. Therefore, we
used the interferometric coherence for identifying pixels belonging to this
class. In fact, it is well known that urban structures have typically a high
value of interferometric coherence, therefore they can be easily detected
by thresholding this quantity.

Post-classification

The output of the classification procedure could be mottled, especially
if complex scenes are analyzed. Hence, an adequate post classification
step is required in order to obtain a more homogeneous output map. In
this work, we propose a simple post classification phase composed of two
steps: i) application of a mode filter and ii) of a morphological filter that
generates the final output. These activities are described in detail in the
following paragraphs.

The vector mode filter The mode filter is a reliable solution for fil-
tering the output of the selected classifier, obtaining homogeneous classi-
fication maps with minimum alteration of its informative content.
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The vector mode filter

is a quick solution

for compensating

classification maps

granularity

The mode filter substitutes the
central pixel of a sliding window
with the mode computed within
the window itself. However, the ex-
ecution of that filter must take into
account three requirements: sim-
plicity, accuracy and velocity. In
fact, the implementation of a slid-
ing window running throughout the whole scene implies a high compu-
tational burden, which has to be carefully managed in order reduce the
execution times. As a matter of fact, for a m × n image and a square
sliding window of dimension l (with l odd), the number of windows to be
evaluated is (n− l + 1) (m− l + 1). Hence, for example, if the scene is
5000 × 5000 pixels and the sliding window is a three pixels square side,
the number of windows to be processed is 24980004.

A solution for implementing the sliding windows particularly suit-
able for vectorial languages is to exploit the Hankel indexing (Partington,
1989). To this end, assign to each element of the scene a linear index,
for example proceeding along the rows of a m × n matrix, obtaining the
matrix I:Ii,j = j + (j − i) (i− 1) + n (i− 1) , i = [1, . . . ,m] , j = [1, . . . , n].
The purpose is to process the sliding window in vector form, i.e. to build
an index matrix W in which each row collects the elements of a window.

In order to get this matrix, consider the Hankel-like matrix of dimen-
sions k × l, where k = n − l + 1. In this matrix, the generic element a is
such that ai,j = ai−1,j+1.

The matrix H collects on each row the first l elements of the sliding
windows involving the first row of the matrix I. Therefore, we can place
side by side to the H matrix l columns with an index jump of n with
respect to the elements Hi,l. This operation has to be repeated l − 1
times, i.e. once for each remaining row of the sliding window. Hence, the
intermediate matrix T has dimensions k × l2 and it is obtained as in the
following pseudo-code:

FOR i = 1, l DO

T(∗, ilu1 + v1) =H+nih,

END
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where v1 is a vector, v1 = [1, 2, . . . , l], u1 is a vector of dimensions [1×l]
whose elements are all equal to 1, and h is a matrix whose elements are
all equal to 1, i.e. h:hi,j = 1,∀i ∈ [1, . . . , k], ∀j ∈ [1, . . . , l2]. We indicated
with the asterisk T(∗, . . .) that the operation involves all the rows of the
matrix T using a notation typical of many programming languages.

The matrix T represents the sliding windows for the first l rows of
the matrix W. The last step is to replicate this matrix by rows k times
inserting an index jump of l every k rows as follows:

FOR j = 1, k DO

W(jku2 + v2, ∗) =T+njt,

END

where v2 is a vector v2 = [1, 2, . . . , k], u2 is a vector of dimensions
[1×k] whose elements are all equal to 1, and h is a matrix whose elements
are all equal to 1, i.e. t:ti,j = 1,∀i ∈ [1, . . . , nw], ∀j ∈ [1, . . . , l2].

Each row of the matrix W is composed by the linear position index
of the pixels belonging to a sliding window. The matrix dimensions are
nw × l2 , where nw = n× (l − 1)/2×m× (l − 1)/2, with l odd.

Applying the obtained index matrix to the input image, we get the
sliding windows (in vector form) in which the mode has to be computed.
We implemented an optimized procedure to accomplish this task, which
is structured as below:

• LetNC be the number of classes present within the classification map
and build a three dimensional matrix C of dimensions nw× l2×NC

such that

C(∗, ∗, i) = Z + iz, i = 1, 2, , NC , (5.5)

where Z is a matrix in which all the elements are equal to zero red
and z is a matrix of the same dimensions of the matrix Z whose
elements are all equal to 1. The matrix C is composed by a series
of matrices in which all the elements are equals between them and
equal to the position index of the element in the third dimension of
C. Hence, C(∗, ∗, 1) =Z+z, C(∗, ∗, 2) =Z+2z and so on;
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• Let S be the matrix of the sliding windows and replicate it in the
third dimension NC times. In such way, S and C are two matrices
of dimensions nw × l2 ×NC ;

• Make the subtraction A = S−C; in such way, along the third di-
mension of A we find a zero when the position index coincides with
the class indicated in the matrix S;

• Mark with one all the positions in which there is a zero in the matrix
A;

• Introduce the matrix B obtained by the summation by row of the
matrix A. This matrix have dimensions nw ×NC . The values of B
along the columns indicates how many times each class appears in
each window;

• Compute the maximum of the matrix B by rows: the position index
of the maximum of each rows indicates the mode of the window.

This vector approach allows to process a scene of size of the order of
4984×5831 in about one minute on a machine with 12 GB of RAM memory
and 8 processors. The same operation carried out with no vectorization
has been completed in about 8 minutes.

Morphological filtering Mathematical morphology is the most appro-
priate instrument for extracting image components that are useful in the
representation and description of region shape, such as boundaries, skele-
tons and convex hull. Moreover, morphological techniques are also used
for image preprocessing and/or postprocessing for filtering, thinning and
pruning activities (Gonzalez and Woods, 2007). In this section, in order to
optimize the classification map, we use a “closing” morphological operator
with square structuring element. It is obtained through the application
of the two basic morphologic operators of dilation and erosion. This filter
tends to smooth sections of contours fusing narrow breaks and long, thin
gulfs, eliminating small holes and filling gaps in the contour (Gonzalez and
Woods, 2007).
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Experimental results

In this Section, we applied the framework defined in Figure 5.9 to a Level-
1α product extracted from a set of COSMO-SkyMed images acquired over
the city of Castel Volturno (Italy) in stripmap mode (3 m spatial resolu-
tion) and HH polarization between December 2009 and October 2011.

In particular, the product used for classification involves two images
acquired on December 2009 (reference image, blue band) and August 2010
(test image, green band). Therefore, according with the rationale of Level-
1α imagery, this product is well-suited for detecting summer crops, since
the enhancement of backscattering produced by the growth of plants and
fruits (Fung, 1979) causes for this feature a dominant response of the green
band in the RGB composite.

The validation of the classification procedure has been performed using
an external ground truth derived from the CORINE land cover (Feranec
et al., 2007). Seven classes (“Grassland”, “Summer crops”, “Urban ar-
eas”, “Woods”, “Winter crops”, “Water” and “Temporary water”) were
extracted, as shown in Figure 5.10a, for a total extension in the order of
200000 pixels. However, it is remarkable that the class “Temporary wa-
ter” does not exist in the CORINE land cover product. For this reason, a
ground truth for such class has been built exploiting the SAR product.

The Level-1α product of the study area is depicted in Figure 5.10b.
The used training sets are depicted in Figure 5.11. The first experi-
ment was the solution of the classical SAR classification problem, i.e. a
four classes classification (Bruzzone et al., 2004) for the features “Water”,
“Temporary water” (TW), “Urban areas” and “Woods/grasses/crops”.
Results of this experiment are shown in Figure 5.12a and Table 5.2. The
registered kappa coefficient κ and overall accuracy are 0.78 and 93.65%,
respectively.

As a general comment, in Table 5.2, a moderate interclass confusion
between the classes “Urban areas” and “Woods/Grasses/Crops” (WGC) is
registered. This is due to the high resolution of the input maps which con-
trasts with the ground truth extracted from a land cover whose objective
is to identify large homogeneous areas, which, in the case of urban areas,
include other features (such as trees and grassland or gardens) detectable
on the SAR product.

The model can be complicated separating “Woods” (prevalently lo-
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(a) (b)

Figure 5.10. Castel Volturno, (a) CORINE land cover with the extracted
ground truth and (b) the relevant Level-1α product. Reference image: December
2009; Test image: August 2010.

(a) (b)

Figure 5.11. Castel Volturno, training sets: (a) woods (red), water (blue), tem-
porary water (magenta) and (b) winter crops (green), grasses (yellow), summer
crops (orange).

cated at south-west of our scene, as clearly observable in the Level-1α
product of Figure 5.10b) from “Grassland and Crops” (GC), as shown in
Figure 5.12b and Table 5.3. The separation is quite good and in fact the
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(a) (b)

(c) (d)

Figure 5.12. Castel Volturno, ML classification with (a) four, (b) five, (c) six
and (d) seven classes.

registered κ and overall accuracy (which are 0.741 and 90.44%, respec-
tively) are only slightly lower with respect to the four classes problem.

Results of the six classes experiment are shown in Figure 5.12c. In
this case we separated “Summer crops” (Sc) from “Grassland and winter
crops” (GWc). This separation is possible thanks to the characteristics
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Table 5.2. Castel Volturno, four classes classification confusion matrix. κ =
0.78, overall accuracy: 93.65%. PA: producer accuracy. UA: user accuracy.

TW WGC Urban Water PA (%) UA (%)

TW 89.75 1.30 0.52 0.47 89.75 59.84
WGC 10.25 96.61 33.46 0.19 96.61 95.97
Urban 1.13 65.44 65.44 86.97
Water 0.96 0.58 99.34 99.34 85.86

Table 5.3. Castel Volturno, five classes classification confusion matrix. κ =
0.741, overall accuracy: 90.44%.

TW GC Urban Woods Water PA (%) UA (%)

TW 89.75 1.26 0.52 1.95 0.47 89.75 59.84
GC 10.25 94.72 33.18 30.85 0.19 94.72 93.64
Urban 1.20 65.44 0.01 65.44 86.87
Woods 1.99 0.28 64.31 64.31 68.67
Water 0.83 0.58 2.89 99.34 99.34 85.56

of the Level-1α products. In fact, summer cultivations have a response
which turns into green since the dominance of the test (summer) band
with respect to the reference (winter) one. However, this splitting caused
a fall of the κ and of the overall accuracy to 0.563 and 70.46%, respectively.
This can be explained by the fact that if the harvesting has been already
performed on some fields (in fact, the test band has been acquired at the
end of August), their response looses the volumetric contribution given
by the abundant presence of leafs and plants and turns toward that of a
pasture. The complete confusion matrix for this experiment is reported
in Table 5.4.

A further splitting is possible. In fact, winter crops should exhibit a
higher backscattering in winter and, as a consequence, a response which
turns into blue on the Level-1α product. The results of this seven classes
procedure are shown in Figure 5.12d. However this strongly depends on
the type of cultivations and on the sowing time. In fact, in souther Italy,
autumn/winter cereals are seeded usually in November due to the mild
climate. The relevant fields not always reach a backscattering such as
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Table 5.4. Caserta dataset, six classes classification confusion matrix. κ =
0.563, overall accuracy: 70.46%. Class abbreviations: TW: Temporary water,
GWc: Grassland and winter crops, Sc: Summer crops. PA: producer accuracy,
UA: user accuracy.

TW GWc Sc Urban Woods Water

TW 89.75 0.03 2.59 0.52 1.95 0.47
GWc 80.07 34.55 16.97 8.72
Sc 10.25 17.36 57.22 16.21 22.12 0.19
Urban 0.86 1.58 65.44 0.01
Woods 1.62 2.40 0.28 64.31
Water 0.06 1.67 0.58 2.89 99.34

PA (%) 89.75 68.5 57.22 65.44 64.31 99.34
UA (%) 59.84 68.5 68.12 86.87 68.67 85.56

to be separated from grassland at the end of December. In fact, in the
study area, this cultivations experienced their maximum growing stadium
usually in May/June since the harvesting is performed at the beginning
of summer. For this reason, the class “Winter crops” is highly absorbed
by the “Grassland” one. The registered κ for this classification is 0.462
while the overall accuracy is 60.58%. The confusion matrix is omitted for
brevity.

Summary

In this Section we introduced an end-user-oriented framework for the clas-
sification of multitemporal SAR data which exploits the characteristics
of the Level-1α products. The proposed framework makes use of simple
tools well-known in literature and, fusing the concepts of classification and
change detection, contextualizes its products in the field of the time se-
ries of classification maps. The extracted classes have a different semantic
content with respect to the past literature since the detection is made by
comparison of objects backscattering with respect to a reference situation
rather by the analysis of the temporal behavior along the entire series.
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Level-1α products allows

for designing end-user

oriented classification

frameworks, characterized

by the usage of simple

algorithms, giving

excellent results on

complex scenes

The proposed approach ex-
ploits the peculiarity of the Level-
1α products: interpretability and
class separability. The former
property makes our framework
particularly well-suited for su-
pervised classifications, since the
training step is simplified and fast.
The latter property allows for us-
ing very simple classification algo-
rithms. This allows for reduce the
complexity of the whole activity, making this schema particularly attrac-
tive for nonexpert SAR users. In fact, from the end-users’ standpoint, the
proposed framework fulfills the requirements of simplicity, repeatability,
velocity and accuracy. In particular: i) the use of the Level-1α optimize
the the selection of the training sets; ii) the simplicity of the training step
and of the decision rule ensures the classification procedure to be com-
pleted in a very short time. The post-classification phase also has a small
computational burden, thanks to the vector form of the mode filter and
to the mathematical morphology robustness; iii) the procedure is simply
replicable either for different elements of the same time series or for other
scenes with characteristics completely different; iv) the obtained results
testify the potentiality of the proposed framework in terms of accuracy
and reliability of the output maps.

Due to the simplicity of the schema, in many cases high level classes can
be obtained. This is particularly useful in operative contexts when quick
preliminary analysis are needed. In this optic, our framework acts as a pre-
classifier whose results can be exploited for more detailed investigations.

5.3.2 Crops monitoring using neural networks

In this Section, we explore the suitability of Level-1β products with prac-
tical scenarios. In fact, visual data mining and interpretation are not
enough to extract information at large scale from satellite images. As a
consequence, it is highly desirable that such an easy to read data represen-
tation can be effectively processed with standard algorithms. It is quite
clear that a more interpretable product is very well suited with supervised



118 Chapter 5. Applications

procedures, as explained by Amitrano et al. (2016) and in Section 5.3.1.

However, the recent remote sensing literature paid great attention to
neural network techniques because they can handle effectively large mul-
tidimensional datasets. Therefore, in the following we will linger on the
usage of such techniques, with particular reference to one of the most con-
solidated and widespread, i.e. the Kohonen’s Self-Organizing Map (Ko-
honen, 2001).

Objective and approach

The problem we consider is the evaluation of the agricultural production
in two successive years. To this end, we used two calibrated Level-1β
products (obtained considering images belonging to the summer season of
the years 2008 and 2009) concerning the city of Ciró Marina (see Section
3.5.1). These images are stacked in an unique six-bands data and used as
input of a randomly initialized SOM to classify. Presenting the two year
values together allows the network not only to classify the images based on
the characteristics of the pixels, but also on their relative change during
the two years. As a consequence, the changes in the two following years
detected by the SOM can be interpreted as changes in the crops behavior
or production.

Level-1β products can

be used in combination

with neural networks to

classify

However, this application is
critical since it involves two dif-
ferent characteristic times concern-
ing the building of the single mul-
titemporal product and the two-
years cropfields behavior classifica-
tion. Therefore, we considered a
strategy in which the SOM clustering was supported by hierarchical ag-
glomeration and object-based reasoning. This allowed for reconstructing
a more homogeneous clusters map and a better understanding of study
area.

In particular, we used an agglomerative hierarchical clustering method
to unify similar classes after classifying the input Level-1β products in 64
categories through an overdimensioned 8×8 SOM (Gonçalves et al., 2011).
Therefore, a top-down model was followed (Matsuyama and Hwang, 1990).
In fact, our world model suggests that 64 categories are too much to
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(a) (b) (c)

Figure 5.13. Ciró Marina (Italy): Level-1β products relevant with years (a)
2008 and (b) 2009. (c) Clustered product. The 64 clusters identified by the SOM
depicted in Figure 5.14 (counted from top to bottom and then from left to right)
are associated to 64 different colors.

describe the dynamics of our scene. As a consequence, the initial number
of clusters will be reduced according to the characteristics of the scene and
to the application we are dealing with, reducing the clusters fragmentation
at the same time.

In Figure 5.13a and Figure 5.13b the two subsets of the Level-1β prod-
ucts relevant to the year 2008 and 2009 are depicted. SOM clusters are
reported in Figure 5.13c. They have been obtained using 1000 training el-
ements and 200 epochs. In Figure 5.14, a realization of the 8×8 Kohonen
network is provided. Each element is represented by a plot showing the
change of RGB values in the 2008 and 2009 years.

The clusters map depicted in Figure 5.13c, although oversegmented,
has a smooth representation because at neighbouring pixels, having a sim-
ilar behavior, are associated neighbouring classes, thus similar colors. In
fact, observing the Kohonen network of Figure 5.14, the reader can see
that adjacent nodes represent similar patterns in the pixel behavior be-
tween the two years.

Agglomerative hierarchical clustering and object-based reason-
ing

In order to reduce the map fragmentation, we performed an agglomeration
of the obtained clusters to fuse those carrying similar information.
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Figure 5.14. 8 × 8 SOM grid showing the RGB values for year 1 and their
change to year 2. The colored rectangles represent the clusters after hierarchical
agglomeration (see the dendrogram in Figure 5.15).

A dendrogram represents a quick solution for evaluating the relation
between SOM clusters. In Figure 5.15, it has been built adopting as metric
the Ward’s distance J. H. J. Ward (1963). The red dashed line represents
the distance under which dendrogram’s branches are considered for clus-
ters fusion. Clusters interested by fusion have been displayed in yellow,
green, magenta, blue, and red. This representation is consistent with the
SOM grid depicted in Figure 5.14, in which the colored rectangles enclose
fused clusters, for a total of five categories. Looking at the dendrogram,
the output of the fusion process is given by the intersection between the
horizontal red dashed line and the black leaves above the colored groups
of clusters.

The output of the hierarchical clustering is depicted in Figure 5.16a,
in which an unpleasant granularity arises. It consists in small regions
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Figure 5.15. SOM clusters dendrogram. The red dashed line represents the
distance under which diagram’s branches are considered for fusion. Clusters
interested by the fusion are depicted in yellow, green, blue, red and magenta (see
also the SOM grid depicted in Figure 5.14).

mainly sunk into an uniform background. In this picture, the cluster-
color association is consistent with the dendrogram of Figure 5.15 and
with the SOM grid of Figure 5.14, in which the semi-transparent colored
rectangles enclose the agglomerated clusters.

Physical-based consideration and object-based reasoning can be used
for improve the quality of the obtained clusters map.

We propose a simple processing based on connected components label-
ing (Shapiro and Stockman, 2002). This algorithm assigns an increasing
numeric index to each connected region found within the image. For
these objects, as suggested by Shackelford and Davies (2003), some shape
parameters con be computed, as well as spatial relation between them.
Here, we proposed to reason basically on few parameters, such as area,
compactness, number of neighbours and percentage of shared borders be-
tween adjacent regions. These parameters have been used to generate an
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appropriate physical-based and application-tailored set of rules. In this
case, we want to reconstruct the homogeneity of the clusters representing
the behavior of the cropfields. Therefore, the implemented rules basically
aim at fuse small objects (also with irregular shape) to the background.

In Figure 5.16b, the result of the above described procedure application
is depicted. It is quite evident that the fusion operation has definitely
improved the quality of the clusters map. In fact, with respect to the map
presented in Figure 5.16a, the number of regions is dramatically reduced,
decreasing from 12529 to 207, also bringing undebatable benefits to the
physical interpretation of the map.

(a) (b)

Figure 5.16. Clusters map (a) after the hierarchical agglomeration and (b)
after the object-based region fusion. The cluster-color association is consistent
the dendrogram of Figure 5.15 and with the SOM grid of Figure 5.14.

Interpretation

The physical interpretation of the retrieved clusters is now in order.

From the available data extracted from the CORINE land cover, it re-
sults that the study area is mainly destined to vineyards. Thus, observing
the original Level-1β subsets depicted in Figure 5.13a and Figure 5.13b,
the clustered image reported in Figure 5.16b and the SOM grid of Fig-
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ure 5.14, it is possible to infer the following:

• Yellow cluster: The RGB values in this cluster are medium to high,
constant between the two years or with a slightly increasing red
value. The red (variance) and the green (mean) values are generally
higher than the blue (saturation index). This means that the yellow
cluster is associated with agricultural areas that have a pink/yellow
color in the Level-1β product in 2008 and remained similar in 2009,
or slightly turned to pink when they were yellow in the first year.
These areas exhibit an almost constant behavior in the two exam-
ined years. Assuming that the study area is destined to vineyard,
as stated in the CORINE land cover, we can argue that this cluster
represent the fields in which the optimum behavior of the cultiva-
tion is reached. In fact, vineyards experience their full development
between April and October, which is actually the period considered
for the building of the Level-1β products used for the classification
(see Section 3.5.1). Thus, in this period the growth of the cultivation
results in high values of the considered quantities;

• Green cluster: In this cluster the green value is medium and remains
constant, but red and blue values are generally decreasing from high
to low. This is associated with areas that were pink in the 2008
Level-1β product and turned into green. Physically, the decreas-
ing in variance and saturation index could be related to a smaller
development of the cultivation, thus to a lacking of a volumetric
contribution due to an increased foliage density and fruits growth.
However, since the contribution of the mean remains high in both
years, despite the decreasing in variance and saturation index, allows
for arguing that the cultivation is structurally characterized by an
almost dense foliage, such as a vineyard, whose structure and dy-
namics are fully compatible with the phenomenology inferable from
the cluster analysis;

• Red cluster: The RGB values are constant or slightly decreasing, but
generally lower than the values in the Yellow cluster. This cluster is
mainly associated with green areas which remains almost constant
in the two years. From the above considerations, we can infer that
the behavior of the vineyards grouped in this cluster is not optimal
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in both the considered years;

• Blue cluster: The areas in this cluster have high blue and red in
the first year, decreasing in the second year, while the green remains
constant. The red generally decreases more than the blue. This
cluster is associated with areas that were pink in the 2008 Level-
1β image and turned into blue in 2009. It is mainly located in
the field at the top left corner in Figure 5.13a, Figure 5.13a and
Figure 5.16b. It represents an anomaly with respect to the behavior
of the previously analyzed cluster. In fact, the abrupt fall in variance
and the low values of the mean bring us to argue that this cluster
is a fallow land on which some activities has been performed in the
year 2008;

• Magenta cluster: these areas have very low values of RGB. They are
almost constant in the two years. This is associated with dark blue
areas in the Level-1β products. The very small variance indicates
that the pixels are quite stable. In fact, looking at the shapes, it is
clear they are associated to roads.

The outcomes of clusters interpretation are summarized in Table 5.5.
In this table, RGB attributes are referred to the 2008 Level-1β product
and their derivatives are qualitatively evaluated basing on the SOM grid
depicted in Figure 5.14.

Table 5.5. Summary of clusters interpretation outcomes. RGB attributes are
referred to the 2008 Level-1β product. In table headings, t refers to time. In the
table body, H stands for high, M for medium and L for low.

Cluster R G B R(t) G(t) B(t) Interpretation

Yellow H H H = = = Optimal crops behavior
Green H M/H M ↓↓ = ↓ Non-optimal behavior (year 2)
Red M M M/L ↓ = = Non-optimal behavior (both years)
Blu H L H ↓↓ = ↓ Fallow lands
Magenta L L L = = = Roads/Low scatterers
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Summary

In this Section, we tested the reliability of Level-1β products to be used
in combination with neural networks. In particular, a complex two-years
crops classification was performed by running a Kohonen’s SOM on a stack
of two calibrated Level-1β products. Hierarchical agglomerative clustering
and object-based processing was adopted to make the output of the SOM
more homogeneous and to reconstruct the clusters meaning. In such way,
five clusters was extracted, representative of the behavior of the cultiva-
tions in the two considered years with respect to the assumed reference
situation.

5.3.3 Land cover mapping

In this Section, Level-1β products will be used in combination with SOM
for land cover mapping. In this case, as detailed in Chapter 4, SOMs
offer the possibility of an immediate semantic transferring from the Level-
1β product to the classified map. In fact, during the training, the SOM
(randomly initialized) nodes are updated to be representative of training
elements, which are chosen within the RGB triplets constituting the input
product. Thus, the resulting node colors will have the same semantic of
the Level-1β products.

Experimental results

We performed a land cover classification on a subset of the Sentinel-1
Level-1β product presented in Section 3.5.2 relevant to the Dresden city
area (Amitrano et al., 2015a). We used a 2×2 SOM grid for producing a 4-
class land cover product. The original Level-1β product and the SOM land
cover classification are shown in Figure 5.17 and Figure 5.18, respectively.

As stated above, the use of a SOM allows for transferring immediately
the semantic from one product to another. In particular, the interpretation
of the class meaning, following the guidelines dictated in Section 3.5, is
provided below:

• Blue Dodger class - Urban area: This class corresponds with cyan
areas in the Level-1β product due to the high contribution of the
mean and of the interferometric coherence;
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Figure 5.17. Dresden area: (a) Sentinel-1 Level-1β product.

• Light green class - Grasslands: It corresponds to light green areas
in the Level-1β product, showing low variance and saturation in-
dex and a higher contribution of the mean due to a backscattering
contribution of terrains;

• Orange class - Growing crops/vegetation: This category includes
areas characterized by tones from yellow to pink in the Level-1β
product thanks to a medium/high contribution of all the considered
indicators;

• Dark green class - Low scatterers: This is the more heterogeneous
class, enclosing the darker objects of the scene (water bodies, bare
soils and shadows).

The SOM land cover classification outcomes are summarized in Ta-
ble 5.6.

This experiment output a very heterogeneous cluster (the Dark green
one) enclosing objects of different nature. Thus, with respect to the scene
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Figure 5.18. Dresden area, 4-class land cover map obtained through SOM
clustering of the Level-1β product depicted in Figure 5.17. The SOM allows
for an automatic transferring of the Level-1β product semantic to the classified
product through the preservation of the chromatic content of the input RGB
product. However, a very heterogeneous cluster has be obtained (the Dark green
one); therefore it is desirable to split it into two more meaningful clusters.

Table 5.6. SOM 4-class land cover summary.

SOM/Map color Level-1β color Interpretation

Blue dodger Cyan Urban areas
Marine green Light green Grasslands

Saffron Pink/Yellow Growing vegetation
Dark green Dark green Low scatterers

analyzed in Section 5.3.2, the problem is inverted, since we could desire
to split this cluster in at least two more significant categories.

To this end, we analyze the reasons that led to the association of black
and dark green objects in the Level-1β product within a unique cluster.
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As explained above, in the classic Kohonen’s scheme, the SOM nodes
are trained with RGB triplets randomly selected within the input product.
However, looking at Figure 5.18, it arises that the “black object class” is
the less represented in the datum. Therefore, it is highly uncertain that a
SOM node can gain such color, since few training set relevant to this class
are presented to the network.

The SOM allow for an

automatic transferring

of the Level-1β
product semantic to

the classified product

through the preservation

of the chromatic response

of the input RGB product

The flexibility of a SOM, joined
to a knowledge about the mapping
of the real world into Level-1β im-
agery, allows to easily solve this
problem. In fact, in a Level-1β
product, an insufficient presence of
an object class can occur mainly
for water surfaces (as in the ana-
lyzed case) and urban areas, if an
extended natural scene is consid-
ered. In the presented experiment,
this caused substantially the aggre-
gation of the class water bodies into the class woods, which is the closer
for chromatic characteristics.

In order to split this class into its two major features, it is sufficient to
force a significant number of training sets (in the order of 15-20% of the
total) to point toward the less represented class. In such way, we induced
one of the SOM nodes to assume the corresponding color. In this case, we
used a 2x1 SOM, acting the modification of the training sets toward the
black color after masking out all the classes except the Dark green one. It
is worthiwhile to note that when the dimension of the SOM is reduced, the
neighbor influenced by the winner neuron should be modified accordingly.

In Figure 5.19, we show the final 5-classes land cover map, after the
application of the above described split of the Dark Green class into a
Dark Green cluster (again) representative mainly of woods and a Black
cluster relevant to water surfaces (see also Table 5.7). It is remarkable
how the land cover map looks very similar to the input Level-1β product.

However, as highlighted in Table 5.7, the Black cluster does not include
only water surfaces, since other features, such as shadows and bare soils,
are chromatically similar to them.
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Figure 5.19. Dresden area, 5-class land cover map obtained after the splitting
of the Dark green cluster visible in Figure 5.18. The retrieved classes are: “Ur-
ban areas” (Blue dodger cluster), “Grasslands” (Light green cluster), “Growing
vegetation” (Saffron cluster), “Woods” (Dark green cluster) and “Water/shad-
ows/bare soil” (Black cluster).

Table 5.7. SOM 5-class land cover summary after the split of the Dark green
class.

SOM/Map color Level-1β color Interpretation

Blue dodger Cyan Urban areas
Marine green Light green Grasslands

Saffron Pink/Yellow Growing vegetation
Dark green Dark green Woods

Black Black Water/shadows/bare soil

Summary

In this Section, we exploited Level-1β products in combination with SOM
for automatic land cover mapping. The most important outcome of this ac-
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tivity is that the SOM allows for the preservation of the chromatic response
of the input RGB product. Therefore, it makes possible an automatic and
immediate transferring of the semantic content from the Level-1β product
to the classified product (see Chapter 4 for details).

5.4 Features extraction

5.4.1 A seasonal water index based on Level-1α products

Introduction

Information about the extent of water surfaces is fundamental for water
resource monitoring (Frazier and Page, 2000; Amitrano et al., 2014a) and
flood prevention and resilience (Brivio et al., 2002; Martinez and Le Toan,
2007; Mason et al., 2012; Iervolino et al., 2015). Therefore, the past remote
sensing literature devoted great attention to this topic, developing several
methods to delineate water bodies and enhance their presence.

As stated by McFeeters (1996), these methods generally make use of
reflected solar radiation or active microwave systems.

As for for reflected solar radiation-based methods, Xu (2006) and
McFeeters (1996) classified them in single-band methods and multi-band
methods. In the first case, near-infrared radiation (NIR) is used to retrieve
the water body surface since it is strongly absorbed by water and highly
reflected by vegetation and terrain. A threshold is then chosen in order
to separate the water class from the rest of the scene. However, the usage
of a single band could induce the analyst in a wrong choice of the thresh-
old, since moist and bare soils could exhibit low reflectance values at NIR
frequencies. Hence, the coupling of NIR and visible frequencies has been
proposed in order to enhance the presence of water surfaces at the expense
of terrestrial features leading to the formulation of the Normalized Differ-
ence Water Index (NDWI) and its evolutions (McFeeters, 1996; Xu, 2006).
These parameters are extremely popular in the end-users community and
employed in a number of applications because they allow for a quick iden-
tification of water surfaces by mean of a simple bands ratio (Roshier et al.,
2001; Davranche et al., 2010; Sakamoto et al., 2007; Langford et al., 2008;
Ouma and Tateishi, 2006; McFeeters, 2013).
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Level-1α products allows

for the introduction of

a bands-ratio methods,

providing a simple

and user-oriented tool

for the detection of

temporary water bodies

in a change-detection

framework

Multispectral data allows for
the exploitation of simultaneous
acquisitions made at different
wavelengths which interacts differ-
ently with scene’s features. This
makes possible to define spectral
indices, such as the NDWI in the
case of water features, whose am-
plitude is related with some phys-
ical quantity linkable to the fea-
ture (for the NDWI this quantity
is the turbidity McFeeters, 1996).
These indices are extremely pow-
erful since they are easily manageable and understandable even by non-
expert remote sensing users, making them highly suitable for operative
contexts.

As for active microwave systems-based methods, in particular SAR,
the problem of water body detection can be contextualized in the field
of segmentation (Niedermeier et al., 2000; Deng and Clausi, 2005; Gae-
tano et al., 2014; Martinis et al., 2015). In this case, the main advantage
is the independency from weather and illumination conditions. The new
sensors generation added two fundamental characteristics, i.e. the high
resolution and the short revisit time. All these features make SAR sensors
very attractive for water resource management and flood monitoring, as
testified by the wide literature on these topics. Anyway, SAR scattering
mechanism makes the identification of water surfaces an open challenge
which is still solved with application-oriented, time consuming and para-
metric techniques. For this reason, end-users facing a water-related ap-
plication often prefer optical datasets, which are more easily interpretable
and transformable in a Level-2 product carrying a physical information.

Level-1α products Amitrano et al. (2015c) allows for introducing bands-
combination-based methods also in the SAR world. In fact, the availabil-
ity of multiple shots of the same scene allows the SAR-based methods
to move towards change detection. This field has been already explored
in the past literature which proposed valuable solutions, especially with
regard to flood mapping Dellepiane and Angiati (2012). However, the for-
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mulation of a water index derived from SAR data has not been reached
yet, leaving a gap between the SAR theory and operative contexts which
are principally populated by multidisciplinary users.

In this Section, we approach the problem of water bodies detection
in a change detection framework. The proposed method is suitable to be
applied in semi-arid environments for extracting small reservoirs contour
(Amitrano et al., 2015b). Computational complexities and the required
SAR expertise (which often discourage non-expert users) are moved in
the product formation phase, making the feature extraction immediate
and easy (Amitrano et al., 2013). In such way, SAR data can definitely
encounter the necessities of end-users/costumers, which are principally
interested in the possibility of operate with simple techniques, with few
parameters to set.

Detection of seasonal water in semi-arid environment

Semi-arid regions are characterized by a particularly vulnerable environ-
ment due to the scarce rainfalls which, allowing the growth of vegetation
coverage for limited period of the year, make terrains very inclined to ero-
sion phenomena (Diamond, 2005). The combination of water scarcity and
soil erosion has serious implications on terrains productivity and therefore
on the available food quantity per capita in countries where the demo-
graphic pressure is the highest throughout the world.

The international community is well-aware of these problems and many
initiatives for their monitoring, prevention and mitigation have been pro-
moted. In particular, the TIGER initiative launched by the European
Space Agency represents the most relevant program of the last decade
concerning water resource management supported by remotely sensed (al-
most optical) data.

In a change-detection framework, the presence of surface water can be
detected by comparing the electromagnetic response of a reference image
with that of the test one. Reference situation can be identified during the
dry season, when ponds are almost completely dry. Using multitemporal
Level-1α RGB composites, as explained in (Amitrano et al., 2015c), it is
convenient to place this image on the blue band. In such way, placing the
test acquisition on the green band, areas covered by seasonal water (i.e.
covered by water only during the test image acquisition) will be displayed
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in blue color due to the dominant response of the dry season image.

These above consideration lead us to define a seasonal water presence
pseudo-probability as follows:

SWPP = Ĝ2

(
B −G
B +G

)
, SWPP ∈ [−1, 1] , (5.6)

in which SWPP is the acronym for Seasonal Water Pseudo-Probability
and

Ĝ =

(
1− G

255

)
, (5.7)

is the complement of the green band.

In (5.6) the first factor at the right hand side enhances the value of the
pseudo-probability for those pixels in which there is a lack of response in
the green band, i.e. pixels interested by surface water. The second factor
at right hand side attenuates the value of the index for the pixels for which
the response of the two bands is comparable. At the same time, pixels
experiencing a dominant response in the green band (such as vegetated
areas) will assume a negative value of the SWPP, while pixels for which
the blue band is dominant are pushed toward positive values. Hence, the
SWPP values of the pixels candidate to be classified as surface water are
expected to be close to 1.

Physically, the proposed pseudo-probability is related with the state
of the terrain during the acquisition of the reference scene. In fact, the
higher the terrain response during this acquisition, the higher the value of
the SWPP.

In Figure 5.20 we show some results of the application of (5.6) to some
small reservoirs of the study area, located in Burkina Faso. In particular,
in the first column of Figure 5.20, we reported the subsets of the Level-
1α product concerning the considered reservoirs. In the second column,
the reservoir contour has been manually extracted. In the third column
the SWPP map of the area (which covers in all cases approximately 1.5
km2) is shown. Finally, in the fourth column, a binary mask obtained via
thresholding of the SWPP map at 0.3 is depicted. Mathematical morphol-
ogy has been applied in order to make more homogeneous the final mask
and remove islands (Amitrano et al., 2016).
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Figure 5.20. Burkina Faso: results of the application of the SWPP scene for
five small reservoirs. First column: Level-1α products (Reference image: 28 April
2011, Test image: 31 August 2010), second column: manually extracted water
surface mask, third column: SWPP map, fourth column: binary mask obtained
thresholding the SWPP map at 0.3.

This representations allows for qualitatively appreciating the perfor-
mances of the proposed approach, whose results show a good agreement
with the manually extracted ground truth, thus providing a quick solution
for the individuation of water bodies of (almost) any dimension, compat-
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ibly with the suitability of the input Level-1α product.

A quantitative assessment of the proposed approach is now in order.
The reader should easily understand that a ground truth is not available.
Therefore, we exploited our a priori knowledge of the study area Ami-
trano et al. (2014a,c,b), for identifying and extract by visual inspection
the contour of 19 reservoirs whose extent is between approximately 6000
and 300000 square meters (in general we did not consider objects with
surface area smaller than 5000 m2). These reservoirs have been marked
with a red dot in Figure 5.21, in which we report the Level-1α product
of the whole study area (reference image: 28 April 2010, test image: 31
August 2010). The numeric ID accompanying the red dots refers to the
graph depicted in Figure 5.24.

As first, an object-based assessment is proposed. In fact, in the study
area, where basins are not mapped and often built autonomously by local
communities without a governmental coordination, the most important
information the analyst needs is about the presence or not of a water
resource in a certain area. To this end, we consider another Level-1α
product, whose green band has been acquired on 15 August 2010. Com-
ing back to Figure 5.21, we already talk about red dots, which identify the
ground truth. As for the other markers, yellow dots are related to struc-
tures detected by the SWPP but not associable to reservoirs through visual
inspection on 15 August. Magenta dots dots are associated to structures
detected by the SWPP but not associable to reservoirs through visual in-
spection on 31 August. White dots are related to structures not associable
to reservoirs on both acquisitions. On 15 August we counted 13 of such
structures; on 31 August the count was 17. The number of structures
which persist in both dates is 6.

As for the object-based accuracy, the 19 basins constituting the ground
truth were detected on both 15 and 31 August. As for false alarms, the
analysis must take into account the climate conditions and the severe
rainfalls that occur during the wet season in the study area, as well as in
all West Africa. In other words, after a heavy rainfall, it is highly probable
that in some areas the shape of the terrain favors water accumulation in
natural hollows. This makes very difficult to establish whether a detected
structure is a false alarm or a tank.

As a consequence, we define as a false alarm a structure which is not
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Figure 5.21. Level-1α product of the study area. Reference image (blue band):
28 April 2010. Test image (green band: 31 August 2010. Red dots identify the
basins assumed as ground truth, indexed with an ID which refers to the graph
of Figure 5.24. Magenta dots indicate objects not recognized as basins by visual
inspection in the image acquired on 31 August 2010. Yellow dots indicate objects
not recognized as basins by visual inspection in the image acquired on 15 August
2010. White dots indicate objects not recognized as basins by visual inspection
in both the aforementioned images.
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stable on a short time scale, which, therefore, cannot be related to a stable
reservoir. In fact, due to high evapotranspiration, a water accumulation
in a natural hollow should disappear in few days. On the contrary, if
the scene is such to cause a persistent anomaly (we are considering only
objects whose area is greater than 5000 m2), this can be considered as a
false alarm or, at least, as a structure which is likely to be irrelevant from
an hydrogeological viewpoint, although representing a pond.

The analysis of false alarms is supported by the the diagram of rainfall
in the study area for the years 2010 and 2011 reported in Figure 5.22
Amitrano et al. (2014c). From this graph, it arises that the acquisition of
31 August is immediately preceded by a severe rainfall event. Therefore, it
is more probable to detect structures due to water accumulation, probably
irrelevant from an hydrogeological viewpoint.

Figure 5.22. Rainfalls and temperature diagrams for the study area in the years
2010 and 2011.

If we consider the acquisition of 15 August, we can see that the closest
rainfall occurred a couple of days before. Therefore, we can think that
the reduction in the number of unidentifiable structures detected could be
due to evapotranspiration.
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Therefore, the behavior of the proposed technique with respect to ob-
jects not associable with reservoirs is dependent on the rainfalls, beyond
scene characteristics. The more intense the rainfalls in the days preced-
ing the acquisition, the highest the probability to detect such structures.
However, if two acquisitions are considered, the probability to detect ob-
jects not relevant from an hydrological viewpoint is significantly reduced.
In particular, as previously hinted, by considering the acquisitions of 15
and 31 August 2010 we found 6 structures which can be assumed as false
alarms.

However, to remark the complexity of the false alarm evaluation, con-
sider the situation depicted in Figure 5.23. We are talking about particular
agricultural structures, typical of semi-arid environments, constituted by
terracing built in counterslope using rudimental walls for collecting rain
water. One of these structures as seen on a Google Earth view is shown
in Figure 5.23a. This structure is one of the 6 we classified as false alarms
(see white dots in Figure 5.21). In Figure 5.23b the same area is shown as
it appears in the Level-1α product of the 31 August 2010. Finally, in Fig-
ure 5.23c a 9 meters resolution DEM of the area Amitrano et al. (2014c)
is shown, highlighting that it represent a natural hollow, whose walls are
used for creating terracing. During the wet season, these structures can
be covered by surface water as well as the hollow on which they are built.
Thus they could be detected using the proposed methodology. The same
situation occurs in at least 4 of the 6 cases we classified as false alarms.
The question is therefore the following: can these 4 objects considered as
false alarms?

Figure 5.23. Terracing built exploiting a natural hollow as represented in (a)
Google Earth, (b) Level-1α imagery and (c) on a 9-meter resolution DEM.
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Figure 5.24. Detection accuracy in surface area estimation with respect to
the extracted ground truth for the 19 analyzed reservoirs. Data refer to the
acquisition of 31 August 2010.

From the point of view of the technique we propose, we can claim that
they are not false alarms. In fact, the proposed method is designed for
detecting temporary water coverage and, in this sense, it works. However,
in the context of semi-arid regions, the application is fundamental. As
an example, if the analyst wants to draw the water balance of the study
area, these structures should be classified as false alarms, since they are
probably not hydrologically relevant, such as a reservoir can be. On the
contrary, if the application is more focused on agriculture, then terracing
become important as well as reservoirs, since they represent areas in which
cultivations are possible.

A pixel-based assessment was also performed. In Figure 5.24 we show
the detection accuracy as a function of reservoirs’ surface area for the 19
considered basins (see Figure 5.21) assumed as ground truth. Overall, the



140 Chapter 5. Applications

Figure 5.25. Basin 6: (a) close-up of the Level-1α product and (b) its mask
extracted after thresholding.

registered accuracy is of 88.6%.

As for false alarms, the above considerations hold. In general, it is
expected to be negligible, since the probability to detect features that
not represent water is scarce, due to Level-1α products characteristics
and SWPP formulation. Furthermore the application of morphological
operators tends to erode slightly basins’ extension.

As for missed detections, they are mainly related to the mixed response
of boundaries in which the presence of mud and/or vegetation cause the
reference image scattering to be not dominant. This also determines the
accuracy with whom a reservoir is detected. As an example, consider
the basin depicted in Figure 5.25a. This is the basin indexed with the
number 6 in Figure 5.21 and that characterized by the worst performance
of the detection (about 55%, see Figure 5.24). In this case, the causes
of the missing detections can be attributed to the shape of the reservoir
(particularly elongated and narrow in its upper part) and to the presence
of vegetation at its boundary. This phenomenon represents the principal
cause of missed detections.

Summarizing, the most critic parameter to assess for the proposed
technique is the false alarm rate. The message we want to convey is that
the its evaluation should be application oriented. In fact, a technique is
designed to highlight a certain characteristic of the scene. In our case,
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it is the a temporary water coverage. However, different structures can
exhibit this characteristics and they are not all necessarily relevant for the
application one is carrying out. The most important thing is to minimize
the detection of objects which do not have the physical characteristic we
are looking for. In this sense, the performance of the proposed method
are satisfying, since only 2 of such objects have been detected. From
an applicative viewpoint, the capability of the analyst is fundamental for
recognizing the structures that could be interesting for his/her purposes.
In this sense, Level-1α imagery makes the interpretation of the images
easier with respect to Level-1 products, representing a valid support even
for users with limited expertise in SAR issues.

Summary

In this Section, we presented a change detection framework for temporary
water bodies detection suitable to be applied to Level-1α products. In
particular, we introduced a Seasonal Water Pseudo-Probability, whose
expression is given by a simple bands ratio between a reference image and
a test one, representing the situation in which the abnormal water coverage
occurs. This results in a quick, repeatable and user-oriented technique.

The proposed method is suitable to be applied to detect small reser-
voirs in a semi-arid environment, such as that of Burkina Faso. The
proposed method allowed for detecting all the reservoirs in the study area
with a negligible influence of false alarm. The performances are related
with the selection of the reference band composing the input Level-1α
product. In fact, the seasonality of the water is related to its absence
during the acquisition of this band. Therefore, a suitable choice for the
reference image is an acquisition made at the peak of the dry season, when
the environment is almost completely dry.

5.4.2 Buildings extraction

Introduction

In Chapter 2 we introduced the MAP3 framework for building of Level-
1α products. The main characteristic of this representation is that the
association color-object, being physical-based, does not depend on the
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scene. In this Section, we will focus, in particular, on the built-up fea-
ture. This class of objects is characterized by precise temporal properties:
high (and stable) backscattering and high interferometric coherence, even
when computed with a long temporal baseline. These properties make
built-up features to appear in white in Level-1α images, which are ob-
tained combining the backscattering amplitude of two acquisitions and
their interferometric coherence.

Coherence is estimated in a moving window, whose typical dimensions
are of several meters in order to avoid bias (Hanssen, 2001). However,
this choice is not optimal for all the scene targets. Moreover, decorrela-
tion can occur due to several causes, such as orbital instability, baseline
length, shadowing, feature shape and so on. The lack of the coherence
contribution make the built-up class to appear in cyan (thanks to the con-
tribution of the amplitude bands), thus introducing an alteration of the
expected semantic.

Already available

Level-1α products can

be used to enhance the

informative content

of the interferometric

coherence band through an

expert feedback system

Here, we present a technique
which aims at improve the infor-
mation content of the interferomet-
ric coherence band. Our technique
exploits an input Level-1α product
for generating an a priori informa-
tion which is used for i) adapting
the coherence window dimension to
the scene target and ii) introducing
a texture measure which is used to
identify the built-up feature class when it do not response to the variation
of the coherence window dimension.

Enhanced MAP3 Framework

The calculation of the interferometric coherence (see Equation (2.2)) re-
quires the selection of the dimension of the mean window, which deter-
mines the performances of the estimator with respect to the scene objects
(Arrigoni et al., 2005). As an example, rough surfaces (like the sea) exhibit
a stochastic and non-stationary backscattering, which is expected to pro-
duce incoherent signals. Thus, a small coherence window could produce a
noisy coherence. Conversely, man-made structures, having a deterministic
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stable scattering, typically exhibit high coherence values. Therefore, espe-
cially if the urban texture is not dense, a large computation window could
include features like vegetation, shadows or roads together with buildings,
thus causing a decrease in the resulting coherence beyond a poor resolution
of the computed map.

In Figure 5.26a we show a three-meters resolution Level-1α product of
the city of Castel Volturno (Italy). The product is composed as follows:
on the blue band, an image acquired on December 2009 (reference image)
is loaded; the green band depicts an image acquired on August 2010 (test
image); the red band is reserved to the interferometric coherence between
the two images computed using a 11-pixels coherence window.

(a) (b)

Figure 5.26. Castel Volturno (Italy): Level-1α product (reference image De-
cember 2009, test image August 2010) computed setting the coherence window
to (a) 11 pixels and (b) three pixels. The decreasing in the coherence window
dimension causes a wrong estimate of the interferometric coherence on stochastic
scatterers.

Since about eight months have passed between the two acquisitions
we expect that only stable features, such as buildings, keep high values of
the interferometric coherence. Being these features also highly reflective,
urban structures should be represented in white color. However, since
the interferometric coherence is computed using a mean window (i.e. the
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interferometric coherence map has a coarser resolution then the intensity
products), stable targets are surrounded by a red “crown” which helps the
human photo-interpreter in their detection.

The product depicted in Figure 5.26a is consistent with the above
considerations. Anyway, it is reasonable to think that a mean window of
about 30 meters is too large for representing as best the detail of the urban
areas. In fact, the reader should have the impression that white/red pixels
are a bit sparse for being representative of a dense urban area. This means
that the choice we made concerning the dimension of the coherence window
was not optimal since it did not allow for fully exploit the characteristic
of the estimator defined in Equation (2.2).

In Figure 5.26b we repeated the same experiment setting the coher-
ence window to three pixels. In this case, it is clear that the image has
an unacceptable granularity, which is physically inconsistent, beside being
visually unpleasant. In fact, as an example, wide portions of the sea sur-
face exhibit high coherence values. In this case the estimate on stochastic
targets is affected by a bias which increases as the coherence window di-
mension decreases (Hanssen, 2001). Anyway, it is also true that the urban
area is better represented using a smaller window, since it is possible to
appreciate that more details arise with respect to the product depicted in
Figure 5.26a. Therefore, a strategy for adapting the coherence window to
the scene target is needed.

To this end, we propose a feedback system, whose rationale is depicted
in Figure 5.27. The system is structured as follows:

• Level-1α products analysis: the characteristics of intensity and co-
herence of the MAP3 output are evaluated;

• Adaptive coherence window generation: an adaptive coherence win-
dow is implemented basing on the above analysis; in such way the
coherence estimated by Equation (2.2) is optimized for the consid-
ered target;

• New coherence map: the final coherence map is assembled and given
as input in the quantization process for the generation of the refined
Level-1α products.

In the following, we provide details about the implementation of the
proposed feedback.
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Figure 5.27. Coherence feedback system for the MAP3 framework. Level-1α
products are exploited for generating an a priori information which is used to
adapt the coherence window dimension to the scene target and to introduce a
texture measure which is used to identify the built-up feature class when it do
not response to the variation of the coherence window dimension.

Fuzzification The coherence feedback system works through the fuzzi-
fication of Level-1α’s coherence and intensity bands. We modeled these
variables using three fuzzy sets with verbal attributes of “low” (Z-type),
“medium” (π-type) and “high” (S-type). In particular, the following ex-
pressions was adopted Tobias and Seara (2002):

S(DN, a, b, c) =

=


0, DN ≤ a
2 {(DN − a) / (c− a)}2 , a < DN ≤ b
1− 2 {(DN − c) / (c− a)}2 , b < DN ≤ c
1, DN > c,

(5.8)

in which DN means digital number and a, c and b = (a + c)/2 are
the parameters which model the S-function (see Table 5.8 for details) The
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Z-type fuzzy set is obtained from the S-type one being Z(DN, a, b, c) =
1 − S(DN, a, b, c). Finally, the π-type function is built by combining a
S-type and a Z-type function sharing the parameters c and a, respectively,
as shown in Table 5.8. The obtained fuzzy sets are plotted in Figure 5.28.

Table 5.8. Parameters used for modeling the adopted fuzzy set for Level-1α’s
coherence and intensity bands and for the coherence window.

Level-1α Coherence window
Function type a b c a b c

S-type 160 190 220 21 36 51
Z-type 0 60 120 0 2.5 5
π-type (S-part) 40 100 160 3 7 11
π-type (Z-part) 160 185 210 11 26 31

The purpose of this system is to adapt the dimension of the coherence
window as a function of the phase-stability and reflectivity characteristics
exhibited by the targets in the bi-temporal RGB composite. Essentially,
we aim at reducing the mean window as the coherence and the inten-
sity responses increase. To this end, the system output (i.e. the coherence
window size) is fuzzified as well as the input Level-1α product. In particu-
lar, we considered three type of windows, “small”, “medium” and “large”,
which have been modeled with a S-rule a π-rule and a Z-rule, respectively.

The assignment of the coherence window category for each image tar-
get is now in order. The rationale is quite simple: the more stable and
reflective the target, the smaller the coherence window. In Table 5.9,
we reported the adopted rules for the assignment of the fuzzy categories
“small” and “medium” to the coherence window. All the other cases are
reserved to the “large” window attribute.

The selected fuzzy sets for the coherence window are depicted in Fig-
ure 5.29. They have been partitioned as a function of the membership
degree. As an example, the fuzzy set “small” is subdivided in three parts.
The first part is relevant to persistent scatterers (PSs), and is reserved to
pixel with the highest membership within this fuzzy set, which are likely to
be the more reflective and coherent in the input Level-1α product. As the
membership of “small” window decreases, the window dimension increases
to three and five pixels, since the correspondent targets seem further away
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Figure 5.28. Fuzzy set adopted for the fuzzification of the input Level-1α
product.

to behave as PSs. Similar reasoning can be performed for the “medium”
window fuzzy set. As for the “large” window fuzzy set, we do not define
any partition, since all the scatterers belonging to it are expected to be
stochastic.

In particular, we modeled “small”, “medium” and “large” windows
with a S-rule a π-rule and a Z-rule, respectively. The parameters adopted
for building these function are reported in Table 5.8.

The coherence window attribute (“small”, “medium” or “large”) and,
as a consequence, the dimension of the coherence window according with
the aforementioned partitions of the fuzzy sets, is assigned by comput-
ing the maximum membership degree after the application of the rules
reported in Table 5.9.

It is remarkable that an ambiguity arises concerning the “medium”
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Table 5.9. Adopted rules for the assignment of the coherence window attribute.

Window Coherence Intensity 1 Intensity 2

Small

High High High
Medium High High

High Medium High
High High Medium

Medium

Medium Medium Medium
Low High High

Medium Medium High
Medium High Medium

High Medium Medium

coherence window. In fact, due to the bell-shape of this fuzzy-set, two
windows dimensions correspond to each membership degree, one for the
S-part of the π and one its Z-part. However, these windows correspond
with targets with very different characteristics. In fact, on the S-part
of the π, we expect to have targets with medium-high characteristics of
reflectivity and coherence. On the contrary, on the the Z-part of the π,
we expect to find targets more likely to be incoherent. Therefore, we
require that targets which lie in the S-part of the “medium” window fuzzy
set must have “high” reflectivity in both the images which compose the
Level-1α product. Otherwise, they are placed on the Z-part of the π, on
the side of the largest windows associated to this fuzzy set.

Use of texture Coherence response of targets depends on several fac-
tors. Decorellation can occur, also on stable targets due to imaging geom-
etry (incidence angle), shadowing, misalignment with respect to the flight
direction or the shape of the building. As an example, a squared-shape
building with smooth walls is more likely to have a coherent response with
respect to one with an irregular shape or a pitched roof. Therefore, it is
possible that some buildings do not exhibit a coherent response after the
reduction of the coherence window.

In Level-1α imagery, built-up features are represented in white color,
due to the high contribution of both amplitude and interferometric chan-
nels. However, as explained above, decorrelation should cause this feature
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Figure 5.29. Fuzzy set adopted for the fuzzification of the coherence window.

to appear in cyan. Here, we want to introduce a texture measure for en-
hancing the red band informative content. In such way, it is possible to
restore the semantic the user expects on built-up features, making this
feature class to appear in white.

The principle we exploit is the convergence of evidences Matsuyama
and Hwang (1990). Until now, we have assumed that the built-up class
is characterized by high amplitude (in both the dates that constitute the
Level-1α bi-temporal composite) and high interferometric coherence. The
introduction of a fourth evidence, i.e. the texture, allows for slacken the
requirement on the interferometric coherence and considering as built-up
also the objects that, even after the feedback application, do not exhibit
a high response to the coherence estimator but are highly reflective (in
both Level-1α’s acquisitions) and located in areas characterized by high
texture.
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The texture measure we use was introduced by Nagao and Matsuyama
in Nagao and Matsuyama (1980). To obtain it, first, we applied a k-
means clustering to the input Level-1α product (see Figure 5.30b and
Figure 5.30a, respectively). A very coarse clustering is sufficient for our
purposes. In fact, as shown in Figure 5.30b, we just separated the white,
red and cyan color (grouped in the white class in the classified map) from
all the others (green class). The white class can be roughly associated
with built-up features.

The cluster map is used for contour extraction through the applica-
tion of the second Laplacian operator Marr and Hildreth (1980) (see Fig-
ure 5.30c). Finally, the Nagao-Matsuyama texture can be computed. It
is a very simple rule: a moving window of dimension N is applied to the
contour map; if in a window fall at least 2N + 1 border pixels, then the
central pixel of the window is classified as high texture area. Otherwise,
it is classified as a low texture area. The result of the application of this
rule to the computed edge map is depicted in Figure 5.30d.

The texture evidence is activated (for pixels classified as high texture
areas) on objects characterized by high backscattering in both Level-1α
acquisitions and low coherence. Obviously, the information conveyed by
the red band for these targets does not concern anymore their phase sta-
bility.

Experimental results The proposed feedback process is based on the
convergence of four evidences: the amplitudes of the two acquisition com-
posing the input Level-1α product, their interferometric coherence and
the texture. The first three evidences can be considered strong, since high
characteristic of reflectivity and coherence are almost an exclusive property
of built-up features. Texture, instead, is assumed to be a weak evidence,
because in SAR imagery high texture areas are not necessarely urban
areas. However, the convergence of two strong evidences (i.e. the high
backscattering in the two Level-1α’s acquisitions) and one weak evidence
(i.e. the texture) make us confident that the target we are considering is
man-made.

In Figure 5.31a we show a Google Earth view of Macerata Campania,
a small city in southern Italy. In Figure 5.31b and Figure 5.31c the cor-
respondent Level-1α products before (coherence window set to 11 pixels)
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(a) (b)

(c) (d)

Figure 5.30. San Prisco (Italy): (a) Level-1α product, (b) two categories k-
means clustering, (c) edge map and (d) Nagao-Matsuyama texture.

and after the feedback application, respectively, are depicted. Qualita-
tively, the reader should appreciate as the feedback system improves the
representation of the built-up feature class. In fact, in Figure 5.31c, more
bright targets are visible with respect to Figure 5.31b. Moreover, the
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(a) (b) (c)

(d) (e) (f)

Figure 5.31. (a) Google Earth view of Macerata Campania stadium with its
correspondent Level-1α products (b) before and (c) after the feedback application.
(d) Google Earth view of Sant’Angelo in Formis rail station with its correspondent
Level-1α products (e) before and (f) after the feedback application.

red “crown” surrounding coherent targets is practically disappeared. This
means that the resolution of the red band is higher.

In Figure 5.31d we show a Google Earth view of the city of Sant’Angelo
in Formis (Italy), with its rail station and railway at the left of the residen-
tial area (see annotations on the picture). In Figure 5.31b and Figure 5.31c
the correspondent Level-1α products before (coherence window set to 11
pixels) and after the feedback application, respectively, are depicted. The
considerations made for the Macerata Campania scene hold: the feedback
application allows for retrieving a number of bright targets, i.e. more
buildings, in the residential area, more detail on the railway and improves
the resolution of the red band.
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These claims will be more and more evident if Figure 5.32 is consid-
ered. In particular, in Figure 5.32a and Figure 5.32b we reported the red
band (i.e. the one representing the coherence/texture information) of the
products displayed in Figure 5.31b and Figure 5.31c. In Figure 5.32c and
Figure 5.32d the red band of the products displayed in Figure 5.31e and
Figure 5.31f are depicted. All the maps in Figure 5.32 have been obtained
through linear quantization of the input coherence product between the
interval [0.45, 0.6].

It is remarkable that more bright points appear in Figure 5.32b and
Figure 5.32d (after the feedback application) with respect to the maps
depicted in Figure 5.32a and Figure 5.32c obtained by applying Equation
(2.2) with fixed 11 pixels window. This means that the urban area is
better characterized. In fact, as an example, in Figure 5.32b, the shape of
the stadium is recognizable (see the annotation on the picture) while in
Figure 5.32a it is not.

In Figure 5.32d (after the feedback application) it is remarkable as
more particular of the rail station arise with respect to Figure 5.32c. More-
over, the shape of the railway is now visible at the left of the residential
area (see annotation on Figure 5.32d).

These experiments should qualitatively convince the reader of the effec-
tiveness of the proposed algorithm. A quantitative assessment is provided
in the following Section.

Assessment The quantitative assessment of the performances of the
proposed algorithm is now in order.

To this end the urban atlas of the European Environmental Agency
has been used. It is a land cover map in which the density of urban areas is
measured with the respect to the soil sealing (SL), i.e. the covering of the
ground by an impermeable material. In particular, here we are particularly
interested in five urban categories of the urban atlas: “Continuous urban
fabric” (SL > 80%)”, “Discontinuous Dense Urban Fabric” (SL 50−80%),
“Discontinuous Medium Density Urban Fabric” (SL 30− 50%), “Discon-
tinuous Low Density Urban Fabric” (SL 10 − 30%) and “Discontinuous
Very Low Density Urban Fabric” (SL < 10%).

In order to compare the results of the application of the proposed
technique with the urban atlas database, we adopted the following pro-
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(a) (b)

(c) (d)

Figure 5.32. Macerata Campania (Italy): coherence map (a) before and (b)
after the feedback application corresponding with Level-1α products depicted
in Figure 5.31b and Figure 5.31c, respectively. Sant’Angelo in Formis (Italy):
coherence map (c) before and (d) after the feedback application corresponding
with Level-1α products depicted in Figure 5.31e and Figure 5.31f, respectively.

cedure. First, we applied the built-up index (BI) proposed in (Amitrano
et al., 2015d) to the input Level-1α product before and after the feedback
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implementation. We report it here for the ease of the reader:

BI =
RGB

2553
, (5.9)

where R, G and B are the values of the red, green and blue bands of
the input Level-1α product, respectively.

Equation (5.9) has been applied to the input Level-1α product before
and after the feedback application. In both cases a threshold of 0.1 has
been adopted for maps binarization.

The retrieved binary maps has been then compared with the polygons
provided by the urban atlas. In particular, we compute the zonal statistics
for each class, obtaining the total number of building pixels which fall
in the polygons belonging to that class. Therefore, for each class, the
following equation was computed

N i =
∑
ki

nik, (5.10)

where N i is the total number of building pixels for the i − th class,
ki is the index of the polygon belonging to the i− th class, and nik is the
number of building pixels which fall in the k − th polygon of the i − th
class.

The urban atlas class list can be found in Table 5.10 together with the
SL (when specificated) and the total area of the classes relatively to the
study area.

Once N i has been computed for each class, the percentage of soil (on
average) covered by built-up pixel for the i−th class is obtained by relation

S̄L
i

= 100r
N i

Ai
, (5.11)

where r is the map cell size and Ai the total area covered by polygons
belonging to the i− th class.

In Figure 5.33 a picture relevant to the study area containing both the
input Level-1α product and the urban atlas layer is shown. The results of
the application of the above described assessment procedure are reported
in Table 5.10.
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Table 5.10. Area covered by built-up pixels in relation with Urban Atlas cate-
gories before and after the feedback application.

Urban atlas categories SL Area SL before SL after
(%) [km2] (%) (%)

Continuous Urban > 80 2.77 12.11 24.83
Dense Urban 50-80 5.22 9.6 20.54
Medium Density Urban 30-50 1.09 4.81 11.04
Low Density Urban 10-30 0.46 2.33 5.59
Very Low Density Urban < 10 0.08 1.39 3.35
Agricultural/Wetlands 42.1 0.13 0.7
Isolated structures 0.6 1.82 3.96
Industrial/commercial 4.13 4.11 9.18
Other roads 25.6 0.54 1.32
Land without use 0.2 1.33 3.56
Fast transit roads 0.41 0.14 0.5
Railways 0.43 1.54 4.61
Dump sites 0.32 0.2 10.28
Construction sites 0.04 5.26 7.62
Green urban areas 0.09 4.03 10.21
Sports facilities 0.34 4.28 8.4
Forests 6.37 0.06 2.32
Water bodies 1.16 0.09 0.2

As expected, the percentage of soil covered by the built-up class sig-
nificantly increased after the feedback application. In particular, the SL
index passes: from 12.11% to 24.83% for the class “Continuous Urban Fab-
ric”, from 9.6% to 20.54 for the class “Discontinuous Dense Urban Fabric”,
from 4.81% to 11.04% for the class “Discontinuous Medium Density Urban
Fabric”, from 2.33% to 5.59% for the class “Discontinuous Low Density
Urban Fabric” and from 1.39% to 3.35% for the class “Discontinuous Very
Low Density Urban Fabric”. It is remarkable that, even after the feed-
back, this values are very far from the percentages indicated in the urban
atlas class description (see Table 5.10). This is can be explained. In fact,
consulting the urban atlas mapping guide, we know that the macro-class
“Urban Fabric” (i.e. the one that contains all those above mentioned)
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Figure 5.33. Level-1α product of the study area with its relevant urban atlas
layer.

is formed by “built-up areas and their associated land, such as gardens,
parks, planted areas and non-surfaced public areas and the infrastructure”
(European Environment Agency, 2011). Therefore: i) in the reference ur-
ban atlas class, other land covers are included beyond built-up; ii) some of
this land cover (roads, sidewalks, car parks) do not have the fundamental
property of high backscattering we use for the detection; iii) shadowing
effects, influencing backscattering, partially prevent the feature detection
using Equation (5.9). The last phenomenon is more severe as the density
of the urban area increases. That’s why the more dense the urban area,
the more distant the soil sealing index retrieved through Equation (5.11)
on the Level-1α product with respect to that indicated in the urban atlas.
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The Building Index is a

quick and user-oriented

solutions for the

extraction of building

features from Level-1α
products through bands

product

The last observation concerns
layover. Using a very coarse clus-
tering, it is likely that the texture
evidence brings to an incorrect de-
cision on layover features. This
should be more clear considering
Figure 5.34. In Figure 5.34a we
show the Level-1α product before
the feedback. Here, layover is cor-
rectly represented, since we have
no response of the red band (i.e. of the interferometric coherence). The
texture evidence action makes this feature to appear as a bright target,
thus introducing a confusion with the built-up class see (Figure 5.34b).
This problem can be solved using topographic corrections before building
Level-1α products or by applying a layover mask in post-processing. We
opted for this choice. We used a 20 meters resolution DEM for generat-
ing the layover mask depicted in Figure 5.34c. Qualitatively, the reader
should appreciate in Figure 5.34c as the masking operation applied to the
Level-1α product treated with the feedback algorithm mitigates the confu-
sion between layover (which should be displayed in cyan) and the built-up
class.

Quantitatively, the influence of layover in the soil sealing index cal-
culated through Equation (5.11) on the SAR image can be found in the
class “Forests” of Table 5.10. In the urban atlas layer, this class is mainly
located in the upper left part of our study area (see Figure 5.33, where
the presence of a relevant topography makes layover to occur. In this
case, the application of the proposed feedback causes the soil sealing to
increase from 0.06% (before the feedback) to 2.2% due to layover features
included in the computation. The application of the layover mask allows
for reducing this value to 1.14%. Better results can be obtained using a
finer resolution DEM.

Summary In this Section, we introduced a technique for enhancing the
information content of the red band of a Level-1α product. This band is
usually reserved to the interferometric coherence information and therefore
it is aimed at the enhancement of targets characterized by high phase sta-
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(a) (b)

(c) (d)

Figure 5.34. Layover treatment: Level-1α product (a) before and (b) after
the feedback application. (c) Layover mask. (d) Level-1α product after the
application of feedback and layover masking.

bility over the time, such as built-up features. The proposed technique is
devoted at enhancing the performances of the coherence estimator through
an adaptive selection of the moving window dimension. To this end, the
input Level-1α product is used to generate an a priori knowledge which
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is used to build the expert system for the choice of the window dimension
through fuzzy rules.

Texture evidence is used for supporting the enhancement of built-up
features where the feedback fails due to decorrelation. We proposed the use
of the simple Nagao-Matsuyama rule for improving the informative content
of the red band of the refined Level-1α product in areas characterized by
high backscattering and texture.

We assessed the performances of the proposed algorithm qualitatively
and quantitatively. Qualitatively, at the visual experience of the operator
is enhanced by the feedback application. This makes easier the detec-
tion of the urban area through the enhancement of its built-up features.
Quantitatively, we used the urban atlas layer for comparing the soil seal-
ing measured on the Level-1α product (before and after the feedback)
with data provided in the reference layer description. We found that the
feedback application significantly increased the number of detected pixels
belonging to the built-up class for all the relevant classes. The obtained
results in term of the measured soil sealing are congruent with data pro-
vided by urban atlas, compatibly with SAR imaging characteristics and
classes definition.

5.4.3 Object-based image-analysis

Object-based image analysis (OBIA) has its roots in industrial image pro-
cessing. In the remote sensing community, the most relevant research
started in the 2000s, thus the topic is relatively new (see Blaschke, 2010,
for an extended review). It is quite clear that object-based image under-
standing (Nagao and Matsuyama, 1980; Matsuyama and Hwang, 1990) is
strictly related to the reliability of such objects, thus to an effective image
segmentation.

Segmentation is one of the historical challenges of computer vision
(Haralick and Shapiro, 1985; Pal and Pal, 1993) and one of the most
addressed issues in modern SAR remote sensing (Gaetano et al., 2014;
Wang et al., 2014). In fact, segmentation is an ill-posed problem in the
sense of Hadamard since if a solution certainly exists, it is not unique
(Marroquin et al., 1987). In Chapter 4, we showed how to use a Kohonen
network to segment RGB SAR composites using color homogeneity and to
attach to each region a semantic label indicating a color attribute. Here,



5.4. Features extraction 161

we want to enrich the characterization of the obtained objects through
the introduction of parameters describing their shape, which can be then
used to recognize a certain class present on the scene.

We consider an application related with precision agriculture, in partic-
ular with olive-trees monitoring. This culture is object of great attention
in southern Italy due to plague of the xylella fastidiosa (Carlucci et al.,
2013), a fatal parasite which is causing the destruction of a number of
trees with severe damage to local economies.

The study area is located in Calabria (Southern Italy), in the nearby
of the city of Ciró Marina (see Figure 5.35). This area renowned for the
quality of its olives, whose cultivation represent one of the most important
productive activity . The backscattering of this cultivation is not easy to
be monitored on an aggregate product such as the Level-1β due to irregular
cycles of pruning and a strong variability of fruits production for different
years. However we can exploit the proposed color composite for classifying
different variety of olive-trees thanks to the trees-line geometry.

In Figure 5.36 we show an olive grove picture taken from the net.
The red rectangle represents its planting layout, which is an ideal square
or rectangle at which vertexes trees are positioned. This schema changes
with trees variety and dimension and with the type of plantation (intensive
or extensive). In any case, it should allow a satysfing illumination for each
plant in order to ensure the quality of its fruits.

The planting layout is important also at a normative level. As an
example, a local law of the Puglia region rules the safeguard of plurisecolar
olive-trees and of plantations with landscape relevance. One of the criteria
for establishing which trees fall in this categories is the irregularity of the
planting, since in the past less attention was paid to the geometry of the
plantation due to the absence of mechanized harvesting systems. The
local law of the Calabria region authorizes the public administration to
eradicates olive-trees from private terrains when the planting layout is such
that it creates damages to the olive-grove. Many disciplinary of consortia
for the production of extra-virgin olive oil dictate the minimum allowed
planting layout, i.e. the maximum allowed number of trees per hectare.

Olive trees can be identified indirectly by the shadow they produce to
the electromagnetic backscattering of terrains on the their backside with
respect to sensor flight track. In Figure 5.37a and Figure 5.37b we show
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Figure 5.35. Study area, located in Southern Italy, for the proposed olive-trees
monitoring application.

a Google Earth view and a Level-1β view of our test area, respectively.

In order to identify a preliminary mask of the olive-tree feature, we
first isolated a set of candidates by querying the color attribute of the
semantic Level-1β product. In this case, the colors corresponding to olive
trees shadow are “Black”, “Dark slate blue”, and “Midnight blue”. In Fig-
ure 5.37c we show the mask obtained selecting only the pixels whose color
attribute corresponds with those above enumerated. By comparison with
the Google Earth view of Figure 5.37a, it is clear that other features (such
as roads and buildings shadows) fall in the mask besides those we want to
isolate. In the following, we use an approach derived from Marr’s compu-
tational theory of vision (Marr, 1982) for identifying olive-trees shadows
within the extracted mask.

As first, we extracted objects from the binary image of Figure 5.37c
through connected components labeling (Shapiro and Stockman, 2002)
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Figure 5.36. An olive-grove with its planting layout (red rectangle).

obtaining a map in which each object is labeled with a progressive numeric
identifier. In parallel, we computed an objects contour map by application
the Laplacian operator to the mask image (Marr and Hildreth, 1980). In
Figure 5.37d we show the 4-adjacency rule contour map which, together
with the connected components map, constitute the instruments which
allow for an objects shape analysis.

In the identification of olive-trees shadow, we used three shape param-
eters: area, circularity and elongation. The area parameter (A) is simply
given by the area of the considered connected region. The circularity
parameter is computed by relation Cox (1927):

fC =
A

4πP 2
, (5.12)

where P is the region perimeter defined through the contour map.
Clearly, A can be obtained simply by counting the number of elements
belonging to each numbered element displayed in Figure 5.37c (the seg-
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(a) (b) (c)

(d) (e) (f)

Figure 5.37. Ciró Marina (Italy), olive grove: (a) Google Earth view, (b) Level-
1β view, (c) preliminary olive-trees mask, (d) connected components image, (e)
4-adjacency rule contour map and (f) circularity map.

ments area map is reported in Figure 5.37e). The perimeter is obtained by
superimposing the connected components map to the 4-adjacency map in
order to isolate border pixels (see Figure 5.37f). In the digital world, the
most round object is the isolated pixel (i.e. the square) for which A = 1
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(a) (b) (c)

Figure 5.38. Ciró Marina (Italy), olive-grove: (a) circularity map, (b) elongat-
edness map and, (c) final olive-trees mask.

and P = 4 (if the 4-adjacency is considered). Therefore, the maximum
value for the roundness is 0.785. The obtained roundness map is reported
in Figure 5.38a.

The elongation parameter is defined by relation Matsuyama and Hwang
(1990):

fE =
A

W 2
, (5.13)

where W is the number of iteration necessary to shrink completely the
segment. In other words, at each shrinking iteration, pixels directly in con-
tact with the background are eroded. The operation is repeated until the
entire segment is fused into the background. The obtained elongatedness
map is reported in Figure 5.38b.

By analyzing these maps it arises that the objects we are looking for
are characterized by a precise shape. In fact, olive-trees area is low as well
as their perimeter and elongatedness. Conversely, their circularity results
high, since they have an almost square shape. Therefore, the request for
extracting this feature starting from the preliminary mask of Figure 11c
obtained by querying the color attribute should be:
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Olive-trees have low area, low elongatedness and high circularity (5.14)

Low level semantic color

attribute and OBIA can be

exploited for extracting

features otherwise

scarcely identifiable

In order to query our shape
maps with this statement, a crisp
threshold is applied to the three
considered parameters in order to
establish if they are “low” or
“high”. The result of the appli-
cation of Equation (5.14) to the
preliminary olive-trees mask is re-
ported in Figure 5.38c. The retrieved number of trees is 494. A manual
count performed by visual inspection of the Google Earth view restituted
517 trees and 26 false alarms of the obtained detections. Therefore, ob-
tained accuracy net of false alarms is in the order of 88.8%. The false
alarm rate is in the order of 5.3% of the total detections. Given the ex-
tension of the analyzed terrain (about 20 hectares) the retrieved datum
is compatible with a planting layout in the order of 15 meters, which is
typical of extensive olive growing in Calabria. This data was confirmed
by a measure made thanks to Google Earth measurement tools and can
be converted by an agronomist in an indication on the olive-trees class.

Obviously, this application is possible in the limits dictated by the
resolution. In fact, treating intensive cultivations, with planting layouts
in the order of 5-7 meters or less, is not possible with stripmap products
(three meters spatial resolution). In these cases, spotlight products (about
one meter resolution) must be used.

Summary In this Section, we exploited a semantic Level-1β product
and some basic shape parameters for an application of precision agriculture
concerning with the extraction of the olive-trees contained in a field. In
particular, the color attribute attached to the Level-1β product through
SOM clustering allowed for a scattering-based extraction of a preliminary
feature mask. This mask have been then refined by calculating the shape
of the identified objects. The obtained results, being highly congruent with
the available ground truth, confirmed the reliability of our methodology.
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5.5 Conclusions and discussions

In this Chapter, we discussed several applications exploiting, in general,
multitemporal SAR images and, in particular, the new methodology de-
fined by the MAP3 framework introduced in Chapter 2.

In Section 5.2, water resources management in semi-arid regions was
implemented. We exploited multitemporal SAR images for implementing
a simple basin shorelines extraction using a threshold on the intensity im-
ages. In this case, only the first part of the MAP3 chain was applied,
dealing with geometric registration, radiometric calibration and despeck-
ling (that is almost all the content of the “Pre-processing” block displayed
in Figure 2.2). This information, in combination with a high-resolution
digital elevation model allowed for the estimate of the retained volume
in several reservoirs. Moreover, the obtained results was used for retriev-
ing a semi-empirical relation between basins’ surface and retained volume,
providing a quick and ready-to-use tool for the estimate of the available
water volume in all regions whose morphological characteristics and cli-
matic conditions are similar to that of the study area (i.e. the Sahel).
Operatively, such relation represents a very useful investigation instru-
ment since it allows for avoiding expensive bathymetric (in-situ) surveys.

In Section 5.3, classification activities exploiting using Level-1α and
Level-1β products were discussed. In particular, in Section 5.3.1, a simple
supervised ML classifier was used to classify a Level-1α product. The
obtained results, showing a good agreement with the considered ground
truth, confirmed the reliability of MAP3 products to be processed with
simple algorithms, widely available on commercial and/or open source
software suites and very popular in the end-user community.

In Section 5.3.2, a complex application concerning two years crops
monitoring using Level-1β products in combination with neural networks
was faced. In this case, due to the lack of a ground truth, our approach
allowed for inferring useful information from the available data about the
state of the cultivations in the study area. In Section 5.3.3, land cover
mapping through neural networks starting from a Level-1β products is
performed. In this case, the most interesting outcome was that the use of
Kohonen’s SOM allowed for the preservation of the input Level-1β product
chromatic response in the classified map. This allowed for an immediate
and automatic transferring of the semantic from the RGB map to the
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classified product.
Features extraction is discussed in Section 5.4. In particular, in Sec-

tion 5.4.1, we introduced an index, based on a ratio between Level-1α
bands,for identifying temporary water bodies, i.e. surface water occurring
only during the acquisition of the test image. We tested our approach for
small reservoirs monitoring in semi-arid environment. The congruence of
the obtained results with respect to the available ground truth confirmed
the reliability end the effectiveness of the proposed index, which represents
a quick and user-oriented solution for the considered problem.

In Section 5.4.2 we showed how to enhance the representation of ur-
ban areas in Level-1α imagery exploiting a feedback system to adapt the
dimension of the coherence window to scene’s target and textural infor-
mation. The enhanced Level-1α product was then used for extracting the
built-up feature using, again, a simple band product.

In Section 5.4.3 a precision agriculture application was faced. In this
case, we exploited a semantic Level-1β product and some shape param-
eters for the extraction of the number of olive-trees contained in a field.
The coupling of the low level semantic (constituted by the color attribute
attached to the RGB product by a Kohonen’s SOM) and OBIA allowed
for obtaining good performances in the features extraction process, which
showed a good agreement with the considered ground truth.

MAP3 products showed to be a reliable support for all the considered
scenarios, exhibiting the versatility, the interpretability and the usability,
i.e. the possibility to operate with simple techniques, an end-user needs
for his/her applications.
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Chapter 6
Conclusions

The limited usage of SAR data in the end-user community and in ap-
plicative contexts testified the failure of the recent literature, in which the
research privileged the automatic extraction of information at the expense
of users’ experience with data. In this Book, we introduced several human-
centered concepts for the understanding of SAR images. The necessity to
restore the centrality of the user in remote sensing data processing has been
widely expressed throughout the work and achieved thanks to the intro-
duction of the MAP3 framework, leading to the definition of two classes
of user-oriented RGB products we named as Level-1α and Level-1β. They
have two principal characteristics:

• Ease of interpretation, thanks to an effective multitemporal process-
ing and consistent rendering of suitable RGB channels;

• Possibility to be processed with simple, end-user-oriented algorithms.

These properties should definitely fill the gap between the academy
and the applications. In fact, the rationale is to provide ready-to-use
images, in which the technical expertise with electromagnetic models, SAR
imaging and image processing has been absorbed in the products formation
phase. In such way, the idea that SAR images are too complicated to
be interpreted and processed in order to extract physical information is
overcame.
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To conclude the work, we want to linger on the following consideration:
what is the role of the electromagnetic models in remote sensing data
analysis?

As first, electromagnetic models constitute the basis of the interpreta-
tion of any SAR product. In fact, unlike the case of optical data, humans
have no experience of radar imaging directly linked to the world they
live, and from which they can take inspiration for understanding data.
Therefore, Level-1α and Level-1β imagery gain their semantic from the
knowledge of the phenomenology dictated by the interaction of the elec-
tromagnetic field with physical surfaces. The proposed products absorb
the expertise required for understanding these complex mechanisms, re-
elaborating the scene dynamic in a more user-friendly color display in
which the non-expert user can more easily encounter his/her expectation
about object appearance. However, models are often left aside in favour
of the development of techniques, which are highly conditioned by the
application and by the correct selection of free parameters.

We found a lack of integration between these two levels. Actually, we
think that a data analysis technique, such as a neural-net-based method,
can be a valid alternative to the application of electromagnetic models,
which are probably out of reach for non-expert user, when high-level in-
formation are sought. Instead, understanding the scene at its lowest level
requires the application of scattering models. As an example, the knowl-
edge of the precise destination of a terrain belonging the class “Cropfields”
requires the mastery of a vegetation scattering model. In the same way,
the retrieval of the height of an object classified as “Urban structure” re-
quires the knowledge of the complex scattering mechanism triggered by
an urban environment.

At the end of the day, the message we convey is that a more effective
integration of techniques and models is needed, especially looking toward
automatic systems of image understanding which seem to become the
essential core of remotely sensed data analysis in a big data scenario. We
think that the full development of such systems can provide a complete
answer to the challenges of modern remote sensing.


