
DOTTORATO DI RICERCA

in

SCIENZE COMPUTAZIONALI ED INFORMATICHE

Ciclo XVII

Consorzio tra Università di Catania, Università di Napoli Federico II,

Seconda Università di Napoli, Università di Palermo, Università di Salerno

SEDE AMMINISTRATIVA: UNIVERSITÀ DI NAPOLI FEDERICO II

DIEGO REFORGIATO RECUPERO

DATA STRUCTURES AND ALGORITHMS FOR OPTIMIZATION AND

SEARCHING PROBLEMS IN METRIC SPACES AND GRAPHS

TESI DI DOTTORATO DI RICERCA



To “Mary Kathryn”...

i



Table of Contents

Table of Contents ii

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Graph Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Basic Definitions 10

I Antipole Tree Indexing to Support Range Search and
K-Nearest Neighbor Search in Metric Spaces 13

3 1-Median and Diameter (Furthest Pair) Approximated Algorithms 14

3.1 The 1-Median Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 The 1-Median Algorithm over Graphs . . . . . . . . . . . . . . . . . . 17

3.3 Diameter (Furthest Pair) Algorithm . . . . . . . . . . . . . . . . . . . 20

3.3.1 Running time analysis of Diameter (Furthest Pair) computation 21

3.3.2 A Diameter (Furthest Pair) computation on Euclidean spaces 25

4 The Antipole Clustering: A clustering scheme to index generic met-

ric spaces 28

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Basic Definitions and Related Works . . . . . . . . . . . . . . . . . . 31

4.3 The Antipole Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

ii



4.3.1 The Antipole Tree data structure in general metric spaces . . 35

4.4 Range Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 K-Nearest-Neighbor Algorithm . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6.1 Construction Time . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6.2 Choosing the best cluster diameter . . . . . . . . . . . . . . . 47

4.6.3 Range search analysis and comparisons . . . . . . . . . . . . . 47

4.6.4 K-Nearest Neighbor comparisons . . . . . . . . . . . . . . . . 53

4.7 Approximate K-Nearest Neighbor search Via Antipole Tree . . . . . . 54

4.8 A comparison with linear scan . . . . . . . . . . . . . . . . . . . . . . 60

4.9 Secondary Memory management . . . . . . . . . . . . . . . . . . . . . 62

4.9.1 Searching in Secondary memory via Antipole Tree . . . . . . . 66

4.10 Dealing with Dynamic Updates . . . . . . . . . . . . . . . . . . . . . 68

5 Applications 70

5.1 Protein Interaction Network . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Graphs Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.4 Performance Studies . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Texture synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Texture synthesis via Antipole Tree Clustering . . . . . . . . . 84

5.4 Image Colorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Image Colorization using Antipole Tree Clustering . . . . . . . 91

II Graph Searching Based on Indexing Techniques 96

6 GraphGrepVF: a new efficient method for exact and inexact graph

matching 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2 GraphGrep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Building the sets of paths . . . . . . . . . . . . . . . . . . . . 101

6.2.2 Filtering the database . . . . . . . . . . . . . . . . . . . . . . 104

6.2.3 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.4 Data storage with BerkeleyDB . . . . . . . . . . . . . . . . . . 106

6.2.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 VF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

iii



6.3.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.4 GraphGrepVF for exact graph matching . . . . . . . . . . . . . . . . 111

6.5 Performance Analysis and Results . . . . . . . . . . . . . . . . . . . . 113

6.6 Graph LInear DEscription language (GLIDE) . . . . . . . . . . . . . 117

6.6.1 Syntaxis and semantic of GLIDE . . . . . . . . . . . . . . . . 118

6.7 Extension of GraphGrepVF for inexact graph matching . . . . . . . . 120

7 Conclusions 126

Bibliography 129

iv



Abstract

There has been increasing interest in building search/index structures to perform sim-

ilarity search over high-dimensional data, e.g., image databases, document collections,

time-series databases, and genome databases. A similarity search problem involves a

collection of objects (e.g., documents, images) which are characterized by a collection

of relevant features and represented as points in a high-dimensional attribute space.

The first part of this thesis will present a new hierarchical clustering algorithm

called Antipole Clustering. The algorithm partitions the set of data objects in

clusters such that each one has diameter approximately less than a given value σ.

The algorithm returns a tree structure called Antipole Tree in which the leaves are

the final clusters.

This thesis will prove that the Antipole Tree is a suitable data structure to index

a metric space in order to solve efficiently problems such as Range Search and Nearest

Neighbor Search. These are core problems in pattern recognition, where a database

D of objects in a metric space M and a query object q in M are given, and one

wants to find those objects in D that are similar to q. A range query describes a

region in the space and asks for all points or the number of points in that region. A

k-nearest-neighbor query asks for the k nearest (most similar) objects to the query.

Several applications of the Antipole Clustering will be presented and analyzed:

• texture synthesis;

• image colorization;

• clustering of labeled graphs according to their structure;

v



vi

• discovering the genes correlations in a protein network environment.

The second part of this thesis will present, GraphGrepVF, an application-

independent method for querying a database of graphs in order to find all the occur-

rences of a given subgraph. Many applications in industry, science and engineering

share this problem, and increasing the size of the database requires efficient structure

searching algorithms. New-generation database systems, dealing with Web, XML,

network directories and structured documents, molecular database etc., often model

data as graphs. In this context, several algorithms for graph querying have been de-

veloped. In this thesis we present the GraphGrepVF algorithm by which structured

objects in the form of a graph can be retrieved efficiently. The method is an exten-

sion of two very well known techniques for graph matching: GraphGrep and VF. Our

method enumerates and hashes node-paths of the graphs data set in order to create

two fingerprints of the database. When a query has to be processed, we build its fin-

gerprints, and we use them to prune the search database. Using the first fingerprint

we prune database graphs, while using the second one we prune edges inside graphs.

In this way we drastically reduce the search space. Moreover, the graphs are smaller

than the originals. Finally, searching this small residual set for subgraph matching

will be performed by VF. GraphGrepVF has been compared with the best known

software, (GraphGrep, VF, Daylight and Frowns) and in every test GraphGrepVF

has shown better performance. GraphGrepVF has been observed to be competitive

also when inexact matching is considered.



Acknowledgements

First I would like to thank and to express my deep gratitude to my advisor Professor

Alfredo Ferro, who has trusted in my capacities, given me suggestions and advice,

and influenced me with his incredible enthusiasm.

I also wish to thank Professor Dennis Shasha whom I worked with for six months

during my period abroad at New York University. He supported me tremendously,

giving me interesting new ideas for my projects and helping me both as a friend and

a mentor.

Thank you also to Professor Antonio Maugeri who has helped me and believed in

my research skills.

Thank you very much to my family for having supported me in difficult moments

of my life.

Results presented in this thesis are in collaboration with Professor Alfredo Ferro,

Professor Domenico Cantone, Dr. Alfredo Pulvirenti, Dr. Rosalba Giugno, Dr. Gian-

luca Cincotti, Dr. Sebastiano Battiato, Dr. Simone Faro and Dr. Gianpiero Di Blasi

from the University of Catania, and also with Professor Dennis Shasha, Dr. Rodrigo

Gutierrez and Chih-Yi Hsu from New York University.

It has been a great pleasure for me to have worked with all of them.

vii



Chapter 1

Introduction

Data mining and knowledge discovery in databases play an important role in the

way people interact with databases, especially scientific databases where analysis

and exploration operations are essential. Often databases are defined over a metric

space, where the objects have a global distance function (the metric). There has

been enormous interest in finding efficient solutions of problems, such as clustering,

nearest neighbor and range search, 1-median, and furthest pair, for data defined over

a metric space.

In recent years the importance of large datasets manipulation has grown. The

way in which the data are presented has been influenced by the progress of science

and technology. A new problem in database research is how to deal with objects

which need to be represented as graphs that can be manipulated more efficiently. For

this reason several researchers have begun to formulate models for next generation

databases able to represent novel types of data and provide manipulation capabilities

while efficiently supporting standard searching operations.

1.1 Clustering

Clustering is a very well known problem in computer science. Given points in some

space, often a high-dimensional space, the problem consists of grouping the points

1



2

into a small number of clusters, each one containing points that are “similar” in some

sense. The problem can be defined in one of the following forms:

1. given a set S and an integer k > 1, find a partition of points in k classes such

that a certain function is minimized. Examples of such functions are: (a) the

sum of the distances from the cluster objects to their cluster representative (k-

median), (b) the maximum distance between the objects in a cluster (k-center),

(c) the sum of the distances between points in the same cluster (k-clustering);

2. given a set S and a real number σ, partition S in the minimum number of

clusters such that the maximum distance between two points in each cluster is

at most σ (bounded diameter clustering).

Clustering was first applied many years ago, during a cholera outbreak in London,

when a physician plotted the location of cholera cases on a map, getting a plot that

looked like Fig. 1.1. Properly visualized, the data indicated that cases clustered

Figure 1.1: Clusters of cholera cases indicated the locations of polluted wells.

around certain intersections, where the water wells were polluted. Thus clustering,

not only exposing the cause of cholera, but also indicated how to solve that problem.

At a high level, clustering algorithms can be divided into two broad classes:



3

• centroid approaches. The algorithms guess the centroids or central points in

each cluster and assign points to the cluster according to the nearest centroid;

• hierarchical approaches. Assuming that each point is a cluster by itself, the

algorithms repeatedly merge nearby clusters, using some measure of how close

two clusters are (e.g., distance between their centroids) or how good a cluster

the resulting group would be (e.g., the average distance of points in the cluster

from the resulting centroid).

The problem of Clustering belongs to a class of fundamental proximity problems

which involves the distance between objects. That class also includes :

• 1-median problem. Find the point which has the minimum average distance

from the others points in the data set;

• furthest pair problem. Find the pair of objects in the set having maximum

distance;

• range search problem. Given a set of objects in a metric space and a query

region, find all the points which belong to the region;

• nearest neighbor search. Given a set S of objects in a metric space and a query

object q, return the object of S which is closest to q.

These problems appear in many computer science areas. They have been investi-

gated for long time, and some efficient solutions have been found. Unfortunately many

applications require a higher space dimension (e.g. when the dimensionality of the

space is d = Ω(log n)); in this case, algorithms for low dimensions become inefficient.

Many researchers conjecture that no efficient solutions exist for these problems when

the dimension is high enough [99]; this difficulty is called the curse of dimensionality

or, for the more general case of the metric spaces, intrinsic dimensionality.



4

Two of the proximity problems just described, nearest neighbor and range search,

are very frequent in pattern recognition. It is simple to prove the linearity of the

solutions for both problems on the size of the input data set, but of course the goal

is to solve them faster.

Nearest Neighbor search has been a core problem in pattern recognition since the

early sixties, when, in one of the first applications presented [58, 49], it was proven

that half the classification information in an infinite sample set is contained in the

nearest neighbor. If Voronoi Diagram [108] is used to index the space, then the

nearest neighbor problem has an optimal solution; however, in higher dimensional

spaces it becomes harder, and classical indexing methods, used for low dimensional

spaces, appear to be inadeguate.

One important application of nearest neighbor problem is in multimedia databases.

Objects (i.e. images, documents) are represented as feature vectors, and the search

for the nearest object is performed by searching for the nearest feature vector. A

typical approach to solving nearest neighbor is to map the object space in a vector

space and perform the search by using the Euclidean distance, taking into account

that certain projected distances are dominated by those in the original space. This

immersion often represents the most difficult and sensitive step because it affects the

performance of the search in terms of running time and accuracy of the results. On

the other hand, for several kinds of databases, such as genetic sequences and graphs,

other techniques, which do not make use of immersion, are possible. For example,

the editing distance is commonly used for searching databases of bio sequences [122].

Many applications involve huge data sets which have high dimensionality or in

the more general case of metric spaces, high intrinsic dimensionality. It is crucial to

solve such problems by designing algorithms that are both fast and scalable to the

size of the database.



5

In the first part of this thesis, we show a new data structure for clustering which is

able to perform range and nearest neighbor searches efficiently and quickly. In partic-

ular this algorithm uses the diameter and the furthest pair approximate computation

to speed up the entire process. The 1-median algorithm used return an approximate

solution in linear time which introduces a small error, as compared to the quadratic

time of an exact algorithm.

1.2 Graph Matching

Many applications need to represent data as graphs. For example in a biochemical

database, proteins are represented as labeled graphs: the vertices represent the atoms

and the edges represent the links between the atoms Fig. 1.2 (image taken from [68]).

(a) (b)

Figure 1.2: (a) chemistry compound. (b) query containing wildcards.

Usually proteins are classified on the basis of common structures. One application

of such classification is the prediction of the functionality of a new protein fragment

(discovered or synthesized). The user queries the database and gets all the proteins

containing that particular query fragment. Queries may also contain wildcards to

perform inexact matching according to what the users want (the substitution of a

vertex or a path in the data). Solving this problem requires tools to compare different

graphs, recognize different part of graphs, and retrieve and classify them. In the



6

context of non-structured data (such as strings), string matching algorithms match

query words against documents extremely efficiently. Just as string matching matches

words against documents, graph matching matches query graphs against underlying

data graphs. Many efforts have been made to generalize string matching to graph

matching, but such generalization is not natural: string matching has polynomial

complexity on the database size. Graph matching has exponential complexity, and

thus belongs in a entirely different class of problems.

Three similar NP-complete problems about graph matching exists:

1. graphs isomorphism. Graphs G and H are isomorphic if there is a one-to-one

correspondence between the nodes of G and the nodes of H such that an edge

of H exists if and only if the corresponding nodes of G also are connected by

an edge of G;

2. subgraphs isomorphism. Graphs G and H1, subgraph of H, are isomorphic if

there is a one-to-one correspondence between the nodes of G and the nodes of

H1 such that an edge of H1 exists if and only if the corresponding nodes of G

also are connected by an edge of G;

3. graphs monomorphism. Graphs G and H1, subgraph of H, are monomorphic

if there is a correspondence between the nodes of G and the nodes of H1 such

that an edge of G exists if the corresponding nodes of H1 are also connected by

an edge of H1.

If we have a database of graphs instead of only one data graph, of course methods

to prune and speed up the matching process are used. In graphs monomorphism,

the problem we studied, a simple enumeration algorithm to find all the occurrences

of a query graph in a data graph generates all possible maps between the vertices of

the two graphs and checks whether the generated map is a match. Given that the



7

complexity of such an algorithm is exponential, there have been many research efforts

to reduce the cost.

First of all, researchers have been studied matching algorithms which tried to take

advantage of the particular kinds of graphs. (planar graphs, bounded valence graphs

and associate graphs). Another direction taken was to study tricks to reduce the

number of generate maps. Approximate methods with polynomial complexity but

with no guarantee to find correct solutions have been studied also.

In the second part of this thesis, a new algorithm for graph matching, called

GraphGrepVF, is presented. The new algorithm creates two data set fingerprints;

once the user gives the query, the algorithm tries to prune as many graphs in the

database as possible using the first fingerprint and as many paths as possible inside

graphs. The matching step is performed over the remaining reduced graphs. Graph-

GrepVF, moreover, deals with both exact and inexact matching using the GLIDE

query language [68, 69], which allows to the user to define his own query and to

define where an approximation must be.

1.3 Outline of the thesis

This thesis is organized into two main parts (see Fig. 1.3). In the first part, we

Figure 1.3: Structure of the thesis.

introduce several basic concepts and solutions for problems that can be modelled



8

by metric spaces. This section is divided in the following chapters: 1-median and

furthest pair algorithms, the Antipole clustering, applications of Antipole clustering.

Each chapter is composed as follows:

• 1-median and diameter (furthest pair) approximated algorithms. The

concept of “randomized tournament” is introduced. Through using this con-

cept we describe a general technique to solve optimization problems in metric

spaces. This chapter contains a core technique to solve the approximate 1-

median problem and the approximate diameter problem. In particular, this

chapter introduces an approximation scheme for the diameter computation in

the Euclidean space. Moreover, we present a new, very fast approximate algo-

rithm to solve the 1-median problem in a weighted graph where the metric is

the shortest path distance.

• The Antipole clustering: a clustering scheme to index generic metric

spaces. This chapter presents the Antipole clustering method to build a data

structure called Antipole Tree. The Antipole Tree is shown to be a suitable

data structure to index a generic metric space. By using Antipole Tree, two

problems are efficiently solved: range search problem and k-nearest neighbor

problem. This method is also successfully compared with four state-of-the-art

data structures: M-Tree, MVP-Tree, List of Clusters, TSVQ.

• Applications. Four important applications of the Antipole Tree clustering are

discussed. The first one shows how the clustering can be used to support the

discover, and study of gene correlations in a protein network environment. The

second application deals with an interesting method to cluster labeled graphs

by using Antipole data structure. We address concepts about documents and

text clustering, in particular, how to map a document on a Euclidean space.

The last two applications show how the Antipole Tree can be used to speed up



9

the synthesis of texture and the image colorization in computer graphics. The

nearest neighbor search is used as a basic step to synthesize and to colorize the

images.

The second part of the thesis presents GraphGrepVF, a new and efficient method of

graph matching that came out of the study of two well known algorithms, Graph-

Grep [68, 71, 117] and VF [46]. The chapter is entitled GraphGrepVF: a new efficient

method for exact and inexact graph matching. First of all, the chapter explains how

GraphGrep [68, 71, 117] and VF [46] work. Secondly, we show that these two methods

can be combined with a new filtering technique to create the superior GraphGrepVF.

GLIDE (Graph LInear DEscription) [69], a graph linear query language, its seman-

tics, syntax, and reasons for use are discussed and explained. Finally we explain how

to deal with inexact matching.



Chapter 2

Basic Definitions

In this chapter, we introduce the basic definitions of all the problems discussed in the

two parts of this thesis.

Definition 2.0.1. Metric Space. A metric space is a pair (X, d) such that X
denotes the universe of valid objects and d is a function defined as follows:

d : X ×X −→ R

with the following properties

1. positiveness. ∀x, y ∈ X d(x, y) ≥ 0;

2. symmetry. ∀x, y ∈ X d(x, y) = d(y, x);

3. reflexivity. ∀x ∈ X d(x, x) = 0;

4. triangle inequality. ∀x, y, z ∈ X d(x, y) ≤ d(x, z) + d(z, y);

5. identity of indiscernibles. ∀x, y ∈ X if d(x, y) = 0 then x = y.

Definition 2.0.2. Range query. Given a set of objects S, a query object q, and a
threshold t, a range query retrieves all elements in S that are within distance t from
q. That is {x ∈ S | d(x, q) ≤ t}.

Definition 2.0.3. Nearest neighbor query. Given a set of objects S, a query
object q, a nearest neighbor query retrieves the closest elements to q in S. That is
{x ∈ S | ∀ y ∈ S d(x, q) ≤ d(y, q)}.

10



11

Definition 2.0.4. k-Nearest neighbor query. Given a set of objects S, a query
object q, and an integer value k > 0, a k-nearest neighbor query retrieves the k clos-
est elements to q in S. That is {x1, . . . xk ∈ S | ∀ y ∈ S /{x1, x2, . . . , xk} d(xi, q) ≤
d(y, q) i = 1, . . . , k}.

Definition 2.0.5. k-Medians problem. Given a set of objects S, a finite subset M
of S, and an integer value k > 0, the k-medians problem asks k points c1, c2, . . . , ck

in M which minimize
∑

s∈M mini=1,...,k d(s, ci).

Definition 2.0.6. Furthest Pair problem. Given a set of objects S, a finite
subset M of S, the furthest pair problem asks a pair of points A and B such that
d(A,B) ≥ d(x, y)∀x, y ∈M .

Definition 2.0.7. Graph. A graph G is a pair of finite set (V,E). V = {v0, v1, . . . , vk}
is the set of vertices in G. E = {(vi, vj) | i, j ∈ {1, . . . , k}} is the set of edges in G.

Definition 2.0.8. Undirected graph. A graph G = (V,E) is called undirected if
(vi, vj) is the same of (vj, vi).

Definition 2.0.9. Directed graph. A graph G = (V,E) is called directed if the
edges have a direction. The (vi, vj) is an outgoing edge for vi and an incoming edge
for vj.

Definition 2.0.10. Labeled graph. Let L a set of labels, µ : V → L be a node
labeling function and ν : E → L be an edge labeling function. Then G = (V,E, µ, ν)
is a labeled graph. If L is a set of integers, real numbers or any type of quantity, an
edge labeled graph is called weighted graph.

Definition 2.0.11. Dense and sparse graph. A graph is called dense if the num-
ber of edges |E| is O(|V |2), otherwise is called sparse.

Definition 2.0.12. Complete graph. A graph is called complete if it is undirected
and exists an edge between every pair of vertices. That is |E| = |V |2.



12

Definition 2.0.13. Subgraph. A graph G′ = (V ′, E ′) is a subgraph of G = (V,E)
if V ′ ⊆ V and E ′ ⊆ E.

Definition 2.0.14. Path in a graph. A path of length k from a vertex u to a
vertex u′ in a graph G = (V,E) is a sequence (v0, v1, . . . , vk) of vertices such that
u = v0, u′ = vk and (vi−1, vi) ∈ E for i = 1, 2, . . . , k.

Definition 2.0.15. Graphs Isomorphism. Graphs G and H are isomorphic if
there is a one-to-one correspondence between the nodes of G and the nodes of H
such that an edge of H exists if and only if the corresponding nodes of G also are
connected by an edge of G.

Definition 2.0.16. Subgraphs Isomorphism. Graphs G and H1, subgraph of H,
are isomorphic if there is a one-to-one correspondence between the nodes of G and
the nodes of H1 such that an edge of H1 exists if and only if the corresponding nodes
of G also are connected by an edge of G.

Definition 2.0.17. Graphs Monomorphism. Graphs G and H1, subgraph di H,
are monomorphic if there is a correspondence between the nodes of G and the nodes
of H1 such that and edge of G exists if the corresponding nodes of H1 also are con-
nected by an edge of H1.



Part I

Antipole Tree Indexing to Support
Range Search and K-Nearest

Neighbor Search in Metric Spaces

13



Chapter 3

1-Median and Diameter (Furthest
Pair) Approximated Algorithms

Algorithms based on randomized tournaments for metric spaces have been widely

studied and analyzed in [110, 9]. This chapter is based on [110].

Let (M,d) be a metric space with distance function d : (M ×M) 7−→ R and let S

be a finite subset of M . Given k ∈ N, the k-median problem for S is the problem to

find k points c1, c2, . . . , ck in S which minimize
∑

s∈S mini=1,...,k d(s, ci).

This computational geometry problem is NP-complete (see [82]) and many ap-

proximation algorithms have been developed to solve it (see [32, 86]).

The 1-median problem, for k = 1, is therefore the problem of selecting an element

c in S which minimizes the sum
∑

s∈S d(s, c) of all the distances from c to any other

point of the input set S. It is sometimes referred to as “centroid” selection and its

main application fields deal with both Euclidean and non-Euclidean metric spaces.

The diameter (furthest pair) problem looks for a pair of points, A and B in S

such that d(A,B) ≥ d(x, y) ∀x, y ∈ S. This problems seems to be easier than the

1-median computation. In metric space it is not true. Also, differently from the

previous problem, this cannot be approximated with a linear randomized algorithm.

As observed in [86], we can construct a metric space where all distances among objects

are set to 1 except for one (randomly chosen) which is set to 2. In this case any

14



15

algorithm that tries to give an approximation factor greater than 1/2 must examine

all pairs, so a randomized algorithm will not necessarily find that pair. Nevertheless,

we expect a good outcome in nearly all cases.

Algorithmic solutions of computational geometry problems on metric spaces are

very much affected by the high computational cost of distance calculations among ob-

jects of the space. The exact 1-median problem, for instance, has an obvious quadratic

solution in the size of the input set but even a quadratic algorithm can be prohibitive

with an extremely large size of the input. Moreover, in many applications the real

solutions are not required, in the sense that it is sufficient to compute solutions close

enough to the optimal one. The algorithms we propose here address such situations,

allowing an efficient computation of an approximate solution to both problems.

3.1 The 1-Median Algorithm

Our randomized algorithm is based on a tournament played among the elements of

the input set S. At each round, the elements which passed the preceding turn are

randomly partitioned into subsets, say X1, . . . , Xk. Then, each subset Xi is locally

processed through a procedure which computes its exact 1-median xi. The elements

x1, . . . , xk move to the next round. The tournament terminates when we are left with

a single element x, the final winner. The winner approximates the exact 1-median in

S.

A possible implementation of the above general method consists of partitioning the

elements at each round in subsets having the same size t, with the possible exception

of one subset whose size must lie between t and 2t − 1. In addition, we can assume

that the iteration stops when the number of elements falls below a given threshold.

Finally the quadratic “brute force” computation returns the exact 1-median of the

residual set. This is summarized in Fig. 3.1, where the local optimization procedure

WINNER (X) returns the exact 1-median in X.



16

The approximate 1-Median Selection algorithm

WINNER (X)
1 for each x ∈ X do

2 σx ←
∑

y∈X d(x, y);

3 Let m ∈ X be an element such that σm = minx∈X(σx);
4 return m;

end WINNER.

APPROX 1 MEDIAN (S)
1 while |S| > Threshold do

2 W ← ∅;
3 while |S| ≥ 2t do

4 Choose randomly a subset T ⊆ S, with |T | = t;
5 S ← S \ T ;
6 W ←W ∪ {WINNER (T )};
7 end while;
8 S ←W ∪ {WINNER (S)};
9 end while;

10 return WINNER (S);
end APPROX 1 MEDIAN.

Figure 3.1: Pseudo-code of the approximate 1-Median Selection algorithm.

Notice that, each random partitioning phase can be simplified introducing efficient

pseudo-randomization methods (see [9]). It can be easily seen, in the case of unidi-

mensional Euclidean spaces, the resulting approximate algorithm reduces exactly to

the one given in [9].

A running time analysis, (see [29] for details), shows that above procedure takes

time t
2
n + o(n) in the worst case.



17

3.2 The 1-Median Algorithm over Graphs

In this section we describe a new approximated algorithm to solve 1-median problem

for graphs.

Over graphs, taking into account the shortest path distance, applying the above

approximate 1-Median Selection Algorithm is not a good idea: as described in [29],

given an input set of cardinality n = tr, with r ∈ N, the 1-Median Selection Algorithm

performs exactly t
2
(n− 1) distance computations. So we would have to call Dijkstra

t
2
(n−1) times where n is the number of nodes |V | getting a complexity ofO(|V |2 log V )

using heaps. A very simple method to compute an exact solution is to generate the

map of all possible pairs of distances by running the AllPairShortestPath algorithm;

the 1-median node v is the node such that the sum of the distances between the

node v and each other node is miminum. The complexity of the exact method is

O(|V |2 log V ) using heaps. This is the same complexity as would be gotten by using

the 1-Median Selection algorithm so it does not make sense to apply the 1-Median

Selection Algorithm.

The idea of this new method is to give importance to the nodes through which

the maximum number of shortest paths pass during the Dijkstra visit. For this the

algortihm is called Walking Path algorithm. The algorithm deals with graphs either

weighted or not and either directed or undirected.

Fig. 3.2 shows the two main routines of the algorithm. The main procedure,

WALKING PATH, starts finding the node u with greater degree. In the next lines

the algortihm initializes S visited to 0 and min to ∞; S visited will contain all the

nodes visited so far while min will contain the sum of the distances of the temporary

optimal solution.

Once INNER WALKING is executed, the number of Dijkstra shortest paths

passing for the nodes adjacent to u is computed. The sum of distances from u to



18

The approximate 1-Median Walking Path algorithm

INNER WALKING (G, u, min, S visited, v)
1 S visited← S visited ∪ {u};
2 compute the number of Dijkstra shortest paths passing for the nodes adjacents to u;
3 sum u← sum of distances from u to each other node;
4 if sum u < min then

5 v ← u;
6 min← sum u;
7 t← adjacent node to u with maximum number of Dijkstra shortest path;
8 if t /∈ S visited then

9 INNER WALKING(G, t, min, S visited, v);
10 end if;

11 strat max← greater distance of node q from u such that q is not adjacent to u;
12 strat min← smaller distance of node z from u such that z is not adjacent to u;

13 l← (strat max−strat min)
10 ;

14 let v1 the node not adjacent to u such that the distance between u and v1 is
greater or equal than strat min + l and less or equal than strat min + 2l and
v1 /∈ S visited;

15 if v1 6= NULL then

16 INNER WALKING(G, v1, min, S visited, v);
17 end if;

18 let v2 the node not adjacent to u such that the distance between u and v2 is
greater or equal than strat min + 2l and less or equal than strat min + 3l and
v2 /∈ S visited;

19 if v2 6= NULL then

20 INNER WALKING(G, v2, min, S visited, v);
21 end if;

22 let v3 the node not adjacent to u such that the distance between u and v3 is
greater or equal than strat min + 3l and less or equal than strat min + 4l and
v3 /∈ S visited;

23 if v3 6= NULL then

24 INNER WALKING(G, v3, min, S visited, v);
25 end if;

26 end if;

end INNER WALKING.

WALKING PATH (G, min, S visited)
1 find the node u with greater degree;
2 S visited← {∅};
3 min←∞;
4 INNER WALKING(G, u, min, S visited, v);
5 return v;

end WALKING PATH.

Figure 3.2: Pseudo-code of the approximate 1-Median Walking Path algorithm.



19

every other node is also determined, and the algorithm continues recursively only if

this sum is less than the temporary optimal min. Once v and min are updated, let t

be the node adjacent to u with the greatest number of Dijkstra shortest paths passing

through it. Then the algorithm proceeds recursively with the node t if t has not been

visited yet.

So far, (line 10) we have shown the basic algorithm and the basic idea of this

method; however, sometimes, the node t with the greatest number of Dijkstra shortest

path does not arrive to a good solution. In this case, the reason for the failure is that

centroids may exist that are local to a region of the graph and are not good for the

general graph. The next lines of this procedure provide a method to overcome such

a local minima.

The idea to overcome such a local minima is to build a stratification of the

nodes according to their distance from the temporary solution u. Let strat max

and strat min be respectively the greater and the smaller distance from u to a node

not adjacent to u. With l we divide the space of all distances of other nodes from u in

ten strips. Empirically, taking a node in first strip ([strat min + l, strat min + 2l]),

another in the second strip ([strat min+2l, strat min+3l]) and another in the third

strip ([strat min + 3l, strat min + 4l]), it is highly probable that the path visited by

the algorithm will come out from the local minima: the error is kept low, and also

the number of nodes to visit does not grow too much.

Such an approximated algorithm is very fast and also performs very well. The

experiments performed have been executed on 100 connected sparse random graphs,

100 connected dense random graphs and 100 grid connected graphs; the number nodes

has been fixed for all the experiments to 1000. Table 3.1 shows comparisons between

the exact method and our approximated method. The second and the third column

show the average time, respectevely, for the exact method and for our approximated

method; the forth and fifth column show respectevely the average number of nodes



20

our approximated method visits and the average number of nodes the exact method

visits (we remind that exact method visits 1000 nodes); the sixth column shows the

average position of the results returned by our method with respect to the exact

centroid; finally, last column shows the error.

For every graph, we have observed that our method is always faster than the exact

method and the error is kept low.

Graph Typology Avg Exact Avg Walking Avg Exact Size Avg Walking Size Avg Pos Error

sparse random 10.20 secs 0.85 secs 1000 24.16 2.66 0.006

dense random 32.86 secs 2.65 secs 1000 27.76 3.87 0.008

grid 1.4 secs 1.2 secs 1000 105.75 1.03 0.00004

Table 3.1: Average results on 100 sparse random graphs, 100 dense random graphs
and 100 grid graphs.

3.3 Diameter (Furthest Pair) Algorithm

Here we introduce a randomized algorithm inspired by the one proposed for the 1-

median computation [29] and reviewed in the preceding section. In this case, each

subset Xi is locally processed by a procedure LOCAL WINNER which computes

its exact 1-median xi and then returns the set X i, obtained by removing the element

xi from Xi. The elements in X1 ∪ X2 . . . ∪ Xk are used in the subsequent step.

The tournament terminates when we are left with a single set, X, from which we

extract the final winners A,B, as the furthest points in X. The pair A,B is called

the Antipole pair and their distance represents the approximate diameter of the set

S.

The pseudo-code of the Antipole algorithm, similar to that of the 1-Median algo-

rithm, is given in Fig. 3.3.

A faster (but less accurate) variant of APPROX ANTIPOLE (S) can be used.

Such variant, called FAST APPROX ANTIPOLE, consists of taking X i as the



21

farthest pair of Xi. Its pseudocode can therefore be obtained simply by replacing in

APPROX ANTIPOLE each call to LOCAL WINNER by a call to FIND ANTI-

POLE. In the next section we will prove that both variants have a linear running time

in the number of elements. We will also show that FAST APPROX ANTIPOLE

is also linear in the tournament size τ , whereas APPROX ANTIPOLE is quadratic

with respect to τ .

3.3.1 Running time analysis of Diameter (Furthest Pair) com-
putation

Two fundamental parameters present in the algorithm reported in Fig. 3.3 (also re-

ported in Fig 3.1), namely the splitting factor τ (also referred to as the tournament

size) and the parameter threshold , need to be tuned.

The splitting factor τ is used to set the size of each subset X processed by pro-

cedure LOCAL WINNER, with the only exception of one subset for each round

of the tournament (whose size is at most (2τ − 1)), and the argument of the last

call to FIND ANTIPOLE (whose size is at most equal to threshold). It is clear

that the larger values of τ are, the better the output quality is and the higher the

computational costs are. In many cases a satisfying output quality can be obtained

even with small values for τ .

A good trade-off between output quality and computational cost is obtained by

choosing as value for τ one unit more than the dimension that characterizes the

investigated metric space [35]. This suggestion lies on intuitive grounds developed in

the case of a Euclidean metric space R
m and is largely confirmed by the experiments

reported in [29]. The parameter threshold controls the termination of the tournament.

Again, larger values for threshold ensure better output quality, though at increasing

cost. Observe that the value (τ 2 − 1) for threshold forces the property that the last

set of elements, where the final winner is selected, must contain at least τ elements,



22

The approximate Antipole Selection algorithm

LOCAL WINNER (T )
1 return T \WINNER (T );

end LOCAL WINNER.

FIND ANTIPOLE (T )
1 return P1, P2 ∈ T such that dist(P1, P2) ≥ dist(x, y) ∀ x, y ∈ T ;

end FIND ANTIPOLE.

APPROX ANTIPOLE (S)
1 while |S| > threshold do

2 W ← ∅;
3 while S ≥ 2 ∗ τ do

4 Choose randomly a subset T ⊆ S : |T | = τ ;
5 S ← S \ T ;
6 W ←W ∪ {LOCAL WINNER(T )};
7 end while

8 S ←W ∪ {LOCAL WINNER(S)};
9 end while

10 return FIND ANTIPOLE(S);
end APPROX ANTIPOLE.

Figure 3.3: Pseudo-code of the Antipole Selection algorithm.



23

provided that |S| ≥ τ . Moreover, in order to ensure a linear computational complexity

of the algorithm, the threshold value need to beO(
√

|S|). Consequently, a good choice

is threshold = min
{

τ 2 − 1,
√

|S|
}

.

The algorithm APPROX ANTIPOLE given in Fig. 3.3 is characterized by its

simplicity and hence it is expected to be very efficient from the computational point

of view, at least in the case in which the parameters τ and threshold are taken small

enough. In fact, we will show below that our algorithm has a worst-case complexity

of τ(τ−1)
2

n + o(n) in the input size n, provided that threshold is o(
√

n).

Plainly, the complexity of the algorithm APPROX ANTIPOLE is domi-

nated by the number of distances computed by it within calls to procedure

LOCAL WINNER. We shall estimate below such a number.

Let W (n, τ, ϑ) be the number of calls to procedure LOCAL WINNER made

within the while-loops by APPROX ANTIPOLE, with an input of size n and

using parameters τ ≥ 3 and threshold ϑ ≥ 1. Plainly, W (n, τ, ϑ) ≤ W (n, τ, 1), for

any ϑ ≥ 1, thus it will suffice to find an upper bound for W (n, τ, 1). For notational

convenience, let us put W1(n) = W (n, τ, 1), where τ has been fixed. It can easily be

seen that W1(n) satisfies the following recurrence relation:

W1(n) =















0 if 0 ≤ n ≤ 2,

1 if 3 ≤ n < 2τ,
⌊

n
τ

⌋

+ W1

(

(τ − 1) ·
⌊

n
τ

⌋)

if n ≥ 2τ.

By induction on n, we can show that W1(n) ≤ n. For n < 2τ , our estimate is trivially

true. Thus, let n ≥ 2τ . Then, by inductive hypothesis, we have

W1(n) =
⌊n

τ

⌋

+ W1

(

(τ − 1) ·
⌊n

τ

⌋)

≤
⌊n

τ

⌋

+ (τ − 1) ·
⌊n

τ

⌋

=
⌊n

τ

⌋

· (1 + (τ − 1)) = n.

The number of distance computations made by a call LOCAL WINNER(X) is equal

to
∑|X|

i=1(i−1) = |X|(|X|−1)
2

. At each round of the tournament, all the calls to procedure



24

LOCAL WINNER have an argument of size τ , with the possible exception of the

last call, which can have an argument of size between (τ + 1) and (2τ − 1). We

notice that the last call to procedure FIND ANTIPOLE made within the return

instruction of APPROX ANTIPOLE has argument of size at most ϑ. Since there

are
⌈

logτ/(τ−1) n
⌉

rounds, it follows that the total number of distances computed by a

call of APPROX ANTIPOLE(S), with |S| = n, tournament size τ , and threshold

ϑ, is majorized by the expression

W (n, τ, ϑ) · τ(τ − 1)

2
+

⌈

logτ/(τ−1) n
⌉

·
[

(2τ − 1)(2τ − 2)

2
− τ(τ − 1)

2

]

+
ϑ(ϑ− 1)

2

=
τ(τ − 1)

2
n +O(log n + ϑ2) .

By taking ϑ = o(
√

n), the above expression is easily seen to be τ(τ−1)
2

n + o(n).

Summing up, we have:

Theorem 3.3.1. Given an input set of size n ∈ N, a constant tournament size
τ ≥ 3, and a threshold ϑ = o(

√
n), the algorithm APPROX ANTIPOLE performs

τ(τ−1)
2

n + o(n) distance computations. �

Concerning the complexity of the faster variant FAST APPROX ANTIPOLE,

we have the following recurrence relation W1(n) =
⌊

n
τ

⌋

+ W1

(

2 ·
⌊

n
τ

⌋)

, for n ≥
2τ . By induction on n, we can show that the number of calls to the subroutine

FIND ANTIPOLE is W1(n) ≤
⌈

n
τ−2

⌉

. For n < 2τ , our estimate is trivially true.

Thus, let n ≥ 2τ . Then, by inductive hypothesis, we have

W1(n) =
⌊n

τ

⌋

+ W1

(

2 ·
⌊n

τ

⌋)

≤
⌊n

τ

⌋

+

⌈

2 ·
⌊

n
τ

⌋

τ − 2

⌉

≤
⌊n

τ

⌋

·
⌈

1 +
2

τ − 2

⌉

≤
⌈

n

τ − 2

⌉

.

Finally, much by the same arguments as those preceding theorem 3.3.1, we can

show that the following holds:



25

Theorem 3.3.2. Given an input set of size n ∈ N, a constant tournament size τ ≥ 3,
and a threshold ϑ = o(

√
n), the algorithm FAST APPROX ANTIPOLE performs

τ(τ−1)
2(τ−2)

n + o(n) distance computations. �

3.3.2 A Diameter (Furthest Pair) computation on Euclidean
spaces

In this subsection we describe an approximation algorithm for the diameter compu-

tation on the Euclidean plane. Several studies in the literature [4, 8, 77, 31] have

provided efficient algorithms for the approximate diameter computation in multidi-

mensional Euclidean Spaces. Our approach can be regarded as the binary search

version of [4]. For the sake of simplicity, we will start with a finite set of points in the

plane S. We perform the Antipole search as follows. Let (PXm
, PXM

), (PYm
, PYM

) be

four points of S having minimum and maximum Cartesian coordinates: the so called

minimum area bounding box BBox. Notice that such four points belong to the convex

hull of the set S and all of S is included in the rectangle bounded by (PXM
.x−PXm

.x)

and (PYM
.y − PYm

.y) The two endpoints (A,B) of the diameter of such four points

constitute our Antipole pair. The Antipole distance (the pseudo-diameter) is not less

than Diagonal/
√

2. This yields Antipole
Diameter

≥ 1√
2

proving that our approximation ratio

in the plane is 1− 1/
√

2.

Now we describe a generalization of this method giving us an approximation al-

gorithm able to obtain an exponentially arbitrary low approximation factor δ for the

real diameter. We perform a π/4 rotation of our Cartesian coordinates, which implies

a bisection of the axes, and compute the maximum and minimum coordinate points

for such two new axes. We obtain 8 points. Let A,B be the diameter of this set.

It is easy to see (middle picture in Fig. 3.4) that dist(A,B)/ cos π
8

> diameter(S).

By iterating the bisecting process d times, we get dist(A,B)/ cos π
2d+2 > diameter(S)

(see the pseudocode in Fig. 3.5). Therefore the error introduced by the algorithm is:



26

Figure 3.4: Worst cases in the first three iteration of the algorithm.

δ =
|Diameter − Pseudo Diameter|

Diameter
≤

∣

∣

∣
1− cos

π

2(d+2)

∣

∣

∣

So we can conclude that:

Theorem 3.3.3. Let S be a set of points in the plane and let 0 < δ ≤ 1 −
√

2/2.

Iterating the algorithm for i = 0, · · · ⌈log
(

π
arccos(1−δ)

)

− 2⌉ the algorithm returns an

Antipole pair A,B (say Pseudo-Diameter) which approximates the diameter with an
error less than δ. �

Experiments in n-dimensional Euclidean spaces show that the Antipole pair dis-

tance is fully comparable with the first iteration of the above Pseudo Diameter al-

gorithm, for tournaments with subset size t = n + 1. This suggests that one could

calculate the intrinsic dimension n of a metric space S and then use tournaments of

size t = n + 1.



27

DIAGONAL(S)
1 Let BBox = {PXm , PXM

, PYm , PYM
} be the minimum bounding box of S;

2 V ← {{S}};
3 for i = 1 to ⌈ π

4×arccos(1−δ) − 1⌉ do

4 V ′ = ROTATE SET
(

V, π
2i+1

)

;
5 Let BBox π

2i+1
= {PXm , PXM

, PYm , PYM
}

be the minimum bounding boxes of the rotated sets in V ′;
6 V ← Set catalog of V ′;
7 BBox = BBox ∪ BBoxi;
8 end for

9 return FIND ANTIPOLE(BBOX);
end DIAGONAL.

Figure 3.5: Pseudo-Diameter Computation.



Chapter 4

The Antipole Clustering: A
clustering scheme to index generic
metric spaces

Clustering techniques have been studied in statistics, machine learning and database.

Each community focuses on different aspects of clustering. These techniques are able

to identify clusters in a very large data set, but usually they do not deal with the

efficiency of data search and data retrieval.

Recently clustering technique in high-dimensional spaces for efficient indexing have

been explored. The well-known problem in such cases is the one about the curse of

dimensionality. One solution to high dimensional settings consists in reducing the di-

mensionality of the input space. Traditional feature selection algorithms select certain

dimensions in advance. Methods such as Principal Component Analysis (PCA) [61]

transform the original input space into a lower dimensional space by constructing

dimensions that are linear combinations of the given features. While PCA may suc-

ceed in reducing the dimensionality, the new dimensions can be difficult to interpret,

making it hard to understand clusters in relation to the original space. Anyway this

scheme is not designed to tackle the search efficiency problem that this study focuses

on.

28



29

Here we present the Antipole Clustering method. It is an indexing scheme designed

to support Range search query and Nearest Neighbor search query.

Range and k-nearest neighbor searching are core problems in pattern recognition.

Given a database S of objects in a metric space M and a query object q in M , in a

range searching problem the target is to find the objects of S within some threshold

distance to q, whereas in a k-nearest neighbor searching problem, the k elements of S

closest to q must be produced. These problems can obviously be solved with a linear

number of distance calculations, by comparing the query object against every object

in the database. However, the goal is to solve such problems much faster.

We combine and extend ideas from the M-Tree, the Multi-Vantage Point structure,

and the FQ-Tree to create a new structure in the “bisector tree” class, called the

Antipole Tree. Bisection is based on the proximity to an “Antipole” pair of elements

generated by a suitable linear randomized tournament. The final winners a, b of such

a tournament are far enough apart to approximate the diameter of the splitting set.

If dist(a, b) is larger than the chosen cluster diameter threshold, then the cluster is

split. The proposed data structure is an indexing scheme suitable for (exact and

approximate) best match searching on generic metric spaces. The Antipole Tree

compares very well with existing structures such as List of Clusters, M-Trees and

others, and in many cases it achieves better results. The Antipole Tree has been

widely analyzed also in [110].

4.1 Introduction

Searching is a basic problem in metric spaces. Hence, much efforts have been spent

both in clustering algorithms, which are often included in the searching process as

a preliminary step (see BIRCH [142], DBSCAN [55], CLIQUE [6], BIRCH* [64],

WaveClusters [119], CURE [76], CLARANS [103]) and in the development of new

indexing techniques (see, for instance, MVP-Tree [22], M-Tree [41], SLIM-Tree [89],



30

FQ-Tree [140], List of Clusters [33], SAT [101]; the reader is also referred to [35]

for a survey on this subject). For the special case of Euclidean spaces, one can

see [5, 67, 14], X-Tree [11] and CHILMA [124].

We combine and extend ideas from the M-Tree, MVP-Tree, and FQ-Tree struc-

tures together with randomized techniques coming from the approximate algorithms

community [9], to design a simple and efficient indexing scheme called Antipole Tree.

This data structure is able to support range queries and k-nearest neighbor queries

in generic metric spaces.

The Antipole Tree belongs to the class of “bisector trees” [35, 28, 104], which are

binary trees whose nodes represent sets of elements to be clustered. Its construction

begins by first allocating a root r and then selecting two splitting points c1, c2 in the

input set, which become the children of r. Subsequently, the points in the input set

are partitioned according to their proximity to the points c1, c2. Then one recursively

constructs the tree rooted in ci associated with the partition set of the elements closer

to ci, for i = 1, 2.

A good choice for the pair (c1, c2) of splitting points consists in maximizing their

distance. For this purpose, we propose a simple approximate algorithm based on

tournaments of the type described in [9]. Our tournament is played as follows. At

each round, the winners of the previous round are randomly partitioned into subsets

of a fixed size τ and their 1-medians1 are discarded. Rounds are played until one

is left with less than 2τ elements. The farthest pair of points in the final set is our

Antipole pair of elements.

This chapter is organized as follows. In the next section, we give the basic defini-

tion of range search and k-nearest-neighbor queries in general metric spaces and we

briefly review relevant previous work, with special emphasis on those structures which

1We recall that the 1-median of a set of points S in a metric space is an element of S whose
average distance from all points of S is minimal.



31

have been shown to be the most effective, such as List of Clusters [33], M-Trees [41]

and MVP-Trees [22]. The Antipole Tree is described in Section 4.3. In section 4.4,

we present a procedure for range searching on the Antipole Tree. Section 4.5 presents

an algorithm for the exact k-nearest neighbor problem. The Antipole Tree is exper-

imentally compared with List of Clusters, M-Tree and MVP-Tree in Section 4.6. In

particular, cluster diameter threshold tuning is discussed. An approximate k-nearest

neighbor algorithm is also introduced in Section 4.7 and a comparison with the version

for approximate search of List of Clusters [27] is given with a precision-recall analy-

sis. In Section 4.8 we deal with the problem of the curse of dimensionality. Indeed in

high dimension, linear scan for uniform data sets may become competitive with the

best searching algorithms. However most of the real world data sets are non-uniform.

We successfully compare our algorithm with linear scan in non-uniform data sets of

very high dimensional Euclidean spaces. Next, in section 4.9 the secondary memory

management is discussed and comparisons with M-Tree are showed. Finally, in sec-

tion 4.10 we show how to deal with the dynamic updates.

4.2 Basic Definitions and Related Works

Let M be a non-empty set of objects and let dist : (M ×M) −→ R be a function

such that the following properties hold:

1. (∀x, y ∈M) dist(x, y) ≥ 0 (positiveness);

2. (∀x, y ∈M) dist(x, y) = dist(y, x) (symmetry);

3. (∀x ∈ M) dist(x, x) = 0 (reflexivity),

(∀x, y ∈M) (x 6= y → dist(x, y) > 0) (strict positiveness);

4. (∀x, y, z ∈ M) dist(x, y) ≤ dist(x, z) + dist(z, y) (triangle inequality);



32

then the pair (M, dist) is called a metric space and dist is called its metric function.

Well known metric functions include Manhattan distance, Euclidean distance, string

edit distance, or the shortest path distance through a graph. Our goal is to build a

low cost data structure for the range search problem and k-nearest neighbor searching

in metric spaces.

Definition 4.2.1. (Range query). Given a query object q, a database S, and a
threshold t, the Range Search Problem is to find all objects {o ∈ D|dist(o, q) ≤ t}.

Definition 4.2.2. (k-Nearest Neighbor query). Given a query object q and an integer
k > 0, the k-Nearest Neighbor Problem is to retrieve the k closest elements to q in S.

Our basic cost measure is the number of distance calculations since these are often

expensive in metric spaces, e.g. when computing the editing distance among strings.

Three main sources of ideas have contributed to our work. The FQ-Tree [140], an

example of a structure using pivots (see [35] for an extended survey), organizes the

items of a collection ranging over a metric space into the leaves of a tree data structure.

Viewed abstractly, FQ-Trees consist of a vector of reference objects r1, · · · , rk and a

distance vector vo associated with each object o such that vo[i] = dist(o, ri). A query

object q computes a distance to each reference object, thus obtaining a vq. Object o

cannot be within a threshold distance t from q if for any i, vq[i] > vo[i] + t. That is,

even if o is closer to q than ri, q cannot be closer to o than t.

We use a similar idea except that our reference objects are the centroids of clusters.

M-Trees [41, 39] are dynamically balanced trees. Nodes of an M-Tree store several

items of the collection provided that they are “close” and “not too numerous”. If one

of these conditions is violated, the node is split and a suitable sub-tree originating

in the node is recursively constructed. In the M-Tree, each parent node corresponds

to a cluster with a radius and every child of that node corresponds to a subcluster

with a smaller radius. If a centroid x has a distance dist(x, q) from the query object

and the radius of the cluster is r, then the entire cluster corresponding to x can be



33

discarded if dist(x, q) > t + r.

We take the idea that a parent node corresponds to a cluster and its children nodes are

subclusters of that parent cluster from the M-Tree. The main differences between our

algorithm and the M-Tree are the construction method, that clusters in the M-Tree

must have a limited number of elements, and the search strategy as our algorithm

produces a binary tree data structure.

VP-Trees [128, 141] organize items coming from a metric space into a binary tree.

The items are stored both in the leaves and in the internal nodes of the tree. The

items stored in the internal nodes are the “vantage points”. To process a query

requires the computation of the distance between the query point and some of the

vantage points. The construction of a VP-Tree partitions a data set according to the

distances that the objects have with respect to a reference point. The median value

of these distances is used as a separator to partition objects into two balanced subsets

(those as close or closer than the median and those farther than the median). The

same procedure can recursively be applied to each of the two subsets.

The Multi-Vantage-Point tree [22] is an intellectual descendant of the vantage

point tree and the GNAT [23] structure. The MVP-Tree appears to be superior

to the previous methods. The fundamental idea is that, given a point p, one can

partition all objects into m partitions based on their distances from p, where the

first partition consists of those points within distance d1 from p, the second consists

of those points whose distance is greater than d1 and less than or equal to d2, etc.

Given two points, pa and pb, the partitions a1, · · · , am based on pa and the partitions

b1, · · · , bm based on pb can be created. One can then intersect all possible a- and

b-partitions (i.e. ai intersect bj for 1 ≤ i ≤ m and 1 ≤ j ≤ m) to get m2 partitions.

In an MVP-Tree, each node in the tree corresponds to two objects (vantage points)

and m2 children, where m is a parameter of the construction algorithm and each

child corresponds to a partition. When searching for objects within distance t of



34

query point q, the algorithm does the following: given a parent node having vantage

points pa and pb, if some partition Z has the property that for every object z ∈ Z,

dist(z, pa) < dz and dist(q, pa) > dz + t, then Z can be discarded. There are other

reasons for discarding clusters, also based on the triangle inequality. Using multiple

vantage points together with pre-computed distances reduces the number of distance

computations at query time. Like the MVP-Tree, our structure makes aggressive use

of the triangle inequality.

Another relevant recent work, due to Chávez et al. [33], proposes a structure called

List of Clusters. Such list is constructed in the following way: starting from a random

point, a cluster with bounded diameter (or limited number of objects) centered in

that random point is constructed. Then such a process is iterated by selecting a

new point, for example the farthest from the previous one, and constructing another

cluster around it. The process terminates when no more points are left. Authors

experimentally show that their structure outperforms other existing methods when

parameters are chosen in a suitable way.

Other sources of inspiration include [25, 43, 60, 74, 118, 116, 89, 101].

4.3 The Antipole Tree

Let (M , dist) be a finite metric space, let S be a subset of M and suppose that

we aim to split it into the minimum possible number of clusters whose radii should

not exceed a given threshold σ. This problem has been studied by Hochbaum and

Maass [83] for Euclidean spaces. Their approximation algorithm has been improved

by Gonzalez in [75]. Similar ideas are used by Feder and Greene [56] (see [109] for an

extended survey on clustering methods in Euclidean spaces).

The Antipole clustering of bounded radius σ is performed by a recursive top-down

procedure starting from the given finite set of points S and checking at each step if

a given splitting condition Φ is satisfied. If this is not the case, then splitting is not



35

performed, the given subset is a cluster, and a centroid having distance approxima-

tively less than σ from every other node in the cluster is computed by the procedure

described in Section 3.1.

Otherwise, if Φ is satisfied then a pair of points {A,B} of S called the Antipole

pair is generated by the algorithm described in 3.3 and is used to split S into two

subsets SA and SB obtained by assigning each point p of S to the subset containing

the endpoint closest to p of the Antipole {A,B}. The splitting condition Φ states

that dist(A,B) is greater than the cluster diameter threshold corrected by the error

coming from the Euclidean case analysis described in 3.3.2. Indeed the diameter

threshold is based on a statistical analysis of the pairwise distances of the input set

(see Section 4.6.2) which can be used to evaluate the intrinsic dimension [35] of the

metric space. The tree obtained by the above procedure is called an Antipole Tree.

All nodes are annotated with the Antipole endpoints and the corresponding cluster

radius; each leaf contains also the 1-median of the corresponding final cluster. Its

implementation is described in Section 4.3.1.

4.3.1 The Antipole Tree data structure in general metric
spaces

The Antipole Tree data structure can be used in a generic metric space (M, dist)

where dist is the distance metric. Each element of the metric space along with its

related data constitutes a type called object. An object O (Fig. 4.1 (a)) in the

Antipole data structure contains the following information: an element x, an array

DV storing the distances between x and all its ancestors (the Antipole pairs) in the

tree, and a variable DC containing the distance from the centroid C of x’s cluster. A

data set S is a collection of objects drown from M . Each cluster (Fig. 4.1 (b)) stores

the following information:

• centroid, C, the element that minimizes the sum of the distances from the other



36


� 	�� � �
� 	� 
� 	�ZZZ~���:x DV arrayDC 

�

	
�



�

	
����


� 	�-HHHHj
� 	�CList...
Radius Size

O
C d(O;C)DV

(a) (b)

Figure 4.1: (a) A generic object in the Antipole data structure. (b) A generic cluster
in the Antipole data structure.

cluster members;

• radius, Radius , containing the distance from C to the farthest object;

• member list, CList , storing the catalogue of the objects contained in the cluster;

• size of CList , Size, stored in the cluster.

The Antipole data structure has internal nodes and leaf nodes.

• An internal node stores (i) the identities of two Antipole objects A and B, called

the Antipole pair of distance at least 2σ apart, (ii) the radii RadA and RadB

of the two sub-sets (SA, SB obtained by splitting S based on their proximity to

A and B respectively), and (iii) pointers to the left and right sub-trees left and

right ;

• A leaf node stores a cluster.

To build such a data structure, the procedure BUILD (see Fig. 4.2) takes as

input the data set S, a target cluster radius σ, and a set Q (empty at the beginning).

The algorithm starts by checking if Q is empty and if so, it calls the sub-routine



37

The Build Antipole Tree algorithm

BUILD(S, σ, Q)
1 if Q = ∅ then

2 Q← ADAPTED APPROX ANTIPOLE(S,σ);
3 if Q = ∅ then // splitting condition Φ fails
4 T.Leaf ← TRUE;
5 T.Cluster ← MAKE CLUSTER(S);
6 return T ;
7 end if;
8 end if;
9 {A,B} ← Q;

10 T.A ← A;
11 T.B ← B;
12 SA ← {O ∈ S | dist(O, A) < dist(O, B)};
13 SB ← {O ∈ S | dist(O, B) ≤ dist(O, A)};
14 for each O ∈ S;
15 O.DV ← O.DV ∪

{(A, dist(O, A)), (B, dist(O, B))};
16 end for each;
17 T.RadA ← maxO∈SA

dist(O, A);
18 T.RadB ← maxO∈SB

dist(O, B);
19 T.left ← BUILD(SA,σ,CHECK(SA,σ,A));
20 T.right ← BUILD(SB,σ,CHECK(SB,σ,B));
21 return T ;

end BUILD.

MAKE CLUSTER(S)
1 Cluster .C ← APPROX 1 MEDIAN(S);
2 Cluster .Radius ← maxx∈S dist(x,Cluster .C)
3 Cluster .CList ← S \ {Cluster .C};
4 for each x ∈ Cluster .CList ;
5 x.DC ← dist(x,Cluster .C);
6 end for each;
7 return Cluster ;

end MAKE CLUSTER.

Figure 4.2: The algorithm Build Antipole Tree and routine MakeCluster.



38

ADAPTED APPROX ANTIPOLE,2 which returns an Antipole pair. Then the

Antipole pair is inserted into Q. Next, the algorithm checks if the splitting condition

is true. If this is the case, the set S is divided into SA and SB, where the objects

closer to A are put in SA and symmetrically for B. Otherwise a cluster is generated.

The other subroutine used in BUILD is CHECK which checks whether there is an

object O in SA (or SB) that may become the Antipole of A (or B), by using the

distances already computed and cached. If an Antipole is found, it is inserted into

Q and then the recursive call in BUILD skips the computation of another Antipole

pair.

The routine MAKE CLUSTER (Fig. 4.2) creates a cluster of objects with

bounded radius. This procedure computes the cluster centroid C with the randomized

algorithm APPROX 1 MEDIAN and then computes the distance between each O

in the cluster and C.

The data structure resulting from BUILD is a binary tree whose leaves contain

a set of clusters, each of which has an approximate centroid and the radius, based

on that centroid, is less than σ. Fig. 4.3 (a) shows the evolution of the data set

during the construction of the tree. At the first step, the pair A, B is found by the

algorithm ADAPTED APPROX ANTIPOLE, then the input data set is split into

the subsets SA and SB. The second step proceeds as the first for the subset containing

A while, for the subset containing B, it produces a cluster since its diameter is less

than 2σ. The third and final step produce the final clusters for the subsets containing

A1 and B1. Fig. 4.3 (b) shows the corresponding Antipole data structure.

Construction time analysis

Let us compute the running time of each routine. Building the Antipole Tree takes

quadratic time in the worst case. For example, let us consider a metric space in which

2Notice that this algorithm is a variation of FIND ANTIPOLE that stops when a pair of objects
with distance greater than 2σ is found, otherwise it returns an empty set.



39

3 3333 3 3 3 3 333 3 3
A

B
3 3333 3 3 3 3 333 3 3

Input dataset. First step.
C1
A1B13 3333 3 3 3 3 333 3 3 C1

C2C3 3 3333 3 3 3 3 333 3 3

Se
ond step. Third step.

� 	�C1 RadC1 SizeCList


� 	�C3 RadC3 SizeCList
� 	�C2 RadC2 SizeCList

� 	�DC 
� 	�DC 
� 	�DC


� 	�

� 	�

���


�

	
� -HHHHj



�

	
� -HHHHj 


�
	
� -HHHHj
� 	� 
� 	�
� 	�

����	 ����R���/ SSSw���� ?
A B RadA RadBleft rightA1 B1 RadA1 RadB1left right

O1 O1 O1DV DV DV
... ... ...

(a) (b)

Figure 4.3: A clustering example (a) in a generic metric space and (b) the corre-
sponding Antipole data structure.



40

the distance between any pair of distinct objects is 2σ +1. In this case, if the subsets

SA and SB have size 1 and |S| − i respectively, where i is the i-th recursive call, then

the complexity becomes O(n2). Notice that ADAPTED APPROX ANTIPOLE

will take constant computational time in this case because all the pairwise distances

are supposed to be strictly greater than 2σ.

4.4 Range Search Algorithm

The range search algorithm takes as input the Antipole Tree T , the query object

q, the threshold t, and returns the result of the range search of the database with

threshold t. The search algorithm recursively descends all branches of the tree until

either it reaches a leaf representing a cluster to be visited or it detects a subtree that

is certainly out of range and therefore may be pruned out. Such branches are filtered

by applying the triangle inequality. Notice that the triangle inequality is used both

for exclusion and inclusion. The use for exclusion establishes that an object can be

pruned, thus avoiding the computation of the distance between such an object and

the query. The other usage establishes that an object must be inserted, because the

object is close to its cluster’s centroid and the centroid is very close to the query

object (see Figs. 4.4 and 4.5 for the pseudocode).

4.5 K-Nearest-Neighbor Algorithm

The k-nearest neighbor search algorithm takes as input the Antipole Tree T , the

query object q, and the k parameter indicating the number of objects requested. It

returns the set of objects in S which are the k-nearest neighbors of q. Hjaltason

and Samet in [81] propose a method called Incremental Nearest Neighbor to perform

k-nearest neighbor search in spatial databases. Their approach uses a priority queue

storing the subtrees that should be visited, ordered by their distance from the query



41

RANGE SEARCH(T , q, t, OUT )
1 if (T.Leaf = FALSE) then

2 DA ← dist(q, T.A);
3 DB ← dist(q, T.B);
4 if (DA ≤ t) then

5 OUT ← OUT ∪ {T.A};
6 end if;

7 if (DB ≤ t) then

8 OUT ← OUT ∪ {T.B};
9 end if;

10 q.DV ← q.DV ∪ {DA, DB};
11 if (DA ≤ t + T.RadA) then

12 RANGE SEARCH(T.left , q, t, OUT );
13 end if;

14 if (DB ≤ t + T.RadB) then

15 RANGE SEARCH(T.right , q, t, OUT );
16 end if;

17 q.DV ← q.DV \ {DA, DB};
18 return;

19 else // leaf case
20 OUT ← OUT ∪ {VISIT CLUSTER(T.Cluster , q, t, OUT )};
21 end if;

end RANGE SEARCH.

Figure 4.4: The Range Search Algorithm.



42

VISIT CLUSTER(Cluster , q, t, OUT )
1 q.DC ← dist(q, Cluster .C);
2 if (q.DC ≤ t) then

3 OUT ← OUT ∪ {Cluster .C};
4 end if;
5 if (q.DC ≥ t + Cluster .Radius) then

6 return;

7 end if;
8 if (q.DC ≤ t − Cluster .Radius) then

9 OUT ← OUT ∪ Cluster ;
10 return OUT ;
11 end if;
12 for each O ∈ Cluster .CList do

13 if (q.DC ≥ t + O.DC) then

14 continue;

15 end if;
16 if (q.DC ≤ t − O.DC) then

17 OUT ← OUT ∪ {O};
18 continue;

19 end if;
20 if (∄(dq ∈ q.DV and dO ∈ O.DV ) |

dq ≥ t + dO or dq ≤ t − dO) then

21 if (dist(q, O) ≤ t) then

22 OUT ← OUT ∪ {O};
23 end if;
24 else

25 if (dq ≤ t − dO) then

26 OUT ← OUT ∪ {O};
27 end if;
28 end if;
29 end for each;
30 return OUT ;

end VISIT CLUSTER.

Figure 4.5: The Visit Cluster algorithm.



43

object. The authors claim that their approach can be applied to all hierarchical data

structures. Here we propose an application of such a method to Antipole Tree.

The algorithm described below uses two different priority queues. The first one

stores the subtrees of the Antipole data structure which may be visited during the

search (left sub-tree, right sub-tree or leaf); the second one keeps track of the objects

that will be returned as output.

The incremental nearest neighbor algorithm starts by putting the root of the

Antipole Tree in the priority queue pQueue. Then it proceeds by extracting the

minimum from the priority queue. If the extracted node is a leaf (cluster) it visits

it. Otherwise it decides to visit each of its subtrees on the basis of the subtree’s

radius, the distance of the Antipole endpoint from the query, and a threshold t by

applying the triangle inequality. The threshold t, which is initialized to ∞, stores

the largest distance from the query q to any of the current k-nearest neighbors.

Subtrees which need to be visited will be put in the priority queue. All current k-

nearest neighbors found are stored in another heap outQueue in order to optimize

the dynamic operations (such as insertions, deletions and updates). Figs. 4.6 and 4.7

summarize the pseudocode.

4.6 Experimental Analysis

In this section we evaluate the efficiency of constructing and searching through an

Antipole Tree. We have implemented the structure using the C programming lan-

guage under Linux operating system. The experiments use synthetic and real data

sets. The synthetic data sets are based on those ones used by [22]:

• uniform 10-dimensional Euclidean space (sets of 100000, 200000, . . . , 500000

objects uniformly distributed in [0, 1]10);

• clustered 20-dimensional Euclidean space. More precisely a set of 100000 objects



44

K NEAREST NEIGHBOR(T , q, t, outQueue, k, pQueue)
1 Enqueue(pQueue, Tree, NULL);
2 while NotEmpty(pQueue) do

3 node = Dequeue(pQueue);
4 if (node.leaf = TRUE ) then

5 KNN VISIT CLUSTER(node, q, t, outQueue,k);
6 else

7 DA ← CHECK(q, node.A, t, outQueue);
8 DB ← CHECK(q, node.B, t, outQueue);
9 Enqueue(pQueue, node.left ,DA-node.RadA);

10 Enqueue(pQueue, node.right ,DB-node.RadB);
11 end if;

12 end while;
end K NEAREST NEIGHBOR.

Figure 4.6: The incremental k-nearest neighbor search algorithm.

CHECK(q, O, t, OUT )
1 DO ← dist(q, O);
2 if (|OUT | < k) then

3 HEAP INSERT(O, OUT );
4 t← HEAP EXTRACT MAX(OUT );
5 else

6 if (DO < t) then

7 HEAP INSERT(O, OUT );
8 t← HEAP EXTRACT MAX(OUT );
9 end if;

10 end if;
11 return DO;

end CHECK.

Figure 4.7: A procedure for checking wheter the object O should be added to the
OUT set.



45

obtained in the following way: by using uniform distributions, take 100 random

spheres and select 1000 random points in each of them.

The real data sets are respectively:

• a set of 45000 strings chosen from the Linux dictionary with the editing distance;

• a set of 42000 images chosen from the Corel image database with the metric L2;

• high dimensional Euclidean space sets of points corresponding to textures of

VISTEX database [1] with the metric L2.

For each experiment, we ran 100 random queries: half of them were chosen in the

input set, the remaining ones in the complement.

4.6.1 Construction Time

We measure construction time in terms of the number of distance computations and

CPU time on uniformly distributed objects in [0, 1]10, as described above. Fig. 4.8

(a) illustrates a comparison between the Antipole Tree, the MVP-Tree, and the M-

Tree, showing the distances needed during the construction. Data were taken again in

[0, 1]10 with size from 100000 to 500000 elements. The cluster radius σ used was σ =

0.625, as found by our estimation algorithm described below. We used the parameter

settings for MVP-Trees and M-Trees suggested by the authors [22, 39]. Fig. 4.8 (a)

shows also that building the Antipole Tree requires fewer distance computations than

the M-Tree but more than the MVP-Tree. The difference is roughly a factor of 1.5.

Fig. 4.9 shows that the difference in construction costs can be compensated by faster

range queries on less than 0.2% of the entire input database. Thus, unless queries

are very rare, the Antipole Tree recovers in terms of queries cost what it loses in

construction. Experiments proving this fact are reported in Section 4.6.3.



46

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

100 150 200 250 300 350 400 450 500

D
is

ta
nc

es
 c

om
pu

te
d

Dataset size (x1000)

Antipole Tree
MVP Tree

M Tree

0

20

40

60

80

100

120

140

160

100 150 200 250 300 350 400 450 500

C
P

U
 T

im
e 

(in
 s

ec
on

ds
)

Database size (x1000)

Antipole Tree 2σ = 1.25
3 * x/(Database size)

1.5 * x/(Database size)

(a) (b)

Figure 4.8: Construction complexity using uniformly generated data. (a) It is mea-
sured by the number of distance computations needed by the Antipole Tree with
cluster diameter 1.25 vs M-Tree and MVP-Tree. (b) CPU time in seconds needed to
build the Antipole Tree.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

100 150 200 250 300 350 400 450 500

Database size in thousands

Number of queries needed to match the construction cost as a fraction of the database size

Query threshold
0.5
0.6
0.7
0.8

Figure 4.9: Number of range queries, as a fraction of the data set size, which are
sufficient to recover the higher cost of Antipole Tree construction with respect to
MVP-Tree construction.



47

Fig. 4.8 (b) shows the CPU time needed to bulk load the proposed data structure;

it also shows that the CPU time needed to construct the Antipole Tree grows linearly

in many cases. Because the MVP-Tree entails sorting, it requires at least O(n log n)

operations (though not distance calculations) to build the data structure.

4.6.2 Choosing the best cluster diameter

In this section we discuss how to tune the Antipole Tree for range queries. We measure

the cost by the number of distance calculations among objects of the underlying metric

space.

Before the Antipole data structure can be used, it needs to be tuned. To tune the

Antipole Tree, we must choose the radius σ of the clusters very carefully by analyzing

the data set properties. In what follows we will show that optimal cluster radius

depends on the intrinsic dimensionality of the underlying metric space.

We performed, as described before, our experiments in 10 and 20 dimensional

spaces with uniform and clustered distributions having size 100000. However, the

methodology of finding the optimal diameter can be applied to other dimensions and

arbitrary data sizes.

Figs. 4.10 (Uniform) and (Clustered) show that across different values of the

threshold t of the range search, the best choice of the cluster diameter is 0.625 for the

uniform data set and 2.5 for the clustered one.

Experiments with real and synthetic data showed that choosing the cluster diam-

eter 10% less than the median pairwise distance value gives, regardless of the range

search threshold, a quite surprising result.

4.6.3 Range search analysis and comparisons

In this section we present an extensive comparison among the Antipole Tree, the

MVP-Tree, the M-Tree, and List of Clusters in terms of the number of distance



48

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

ta
nc

es
 c

om
pu

te
d

Query Threshold

2σ
0.25
0.75
1.25
1.75
2.5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
D

is
ta

nc
es

 c
om

pu
te

d

Query Threshold

2σ
0.25
1.25

2
3
4
5

Uniform Clustered

0

20000

40000

60000

80000

100000

0 0.5 1 1.5 2 2.5

D
is

ta
nc

es
 c

om
pu

te
d

Diameter 2σ

0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9

1  0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

D
is

ta
nc

es
 c

om
pu

te
d

Diameter 2σ

Uniform Clustered

Figure 4.10: Diameter tuning using uniformly and clustered generated points in di-
mensions 10 and 20, respectively.



49

computations for range queries. The number of distance computations required by

each query has been estimated as the average value in a set of 100 queries. In order

to perform a fair comparison with the three competing data structures, MVP-Tree,

M-Tree, and List of Cluster, we have set their implementation parameters to the best

values according to the ones suggested by the authors. For the MVP-Tree, in [22]

it is shown that its best performance is achieved by setting the parameters in the

following way:

1. two vantage points in every internal node v1 and v2.

2. m2 = 4 partition classes. Four children for each pair of vantage points.

3. k = 13 maximum number of objects in a leaf node.

4. p unbounded, the size of the vector storing the distances between the objects in

a leaf and their ancestors in the tree (the vantage points). Such a vector is used

during the range search to discard objects without having to compute their dis-

tance from the query object. Notice that the higher is the dimension of such a

vector the more distances from vantage points can be used to prune candidates

and this improves the performance of the MVP-Tree in terms of distance com-

putations. For this reason, we have set this parameter to its maximum value:

the height of the MVP-Tree.3

For the M-Tree implementation, we made use of the BulkLoading4 algorithm [39].

The two parameters needed to tune the data structure in order to obtain better

performance are the minimum node utilization and the secondary memory page size.

The best performance observed during the search was obtained with minimum node

utilization 0.2 and page size 8K.

3We are grateful to T. Bozkaya and M. Ozsoyoglu for providing us the program to generate the
input for the clustered data set.

4We are grateful to P. Ciaccia, M. Patella, and P. Zezula for providing us the source code of the
M-Tree.



50

Concerning List of Clusters, we used fixed bucket size according with heuristics

p3 and p5 suggested by the authors in [33]. p3 consists of choosing the center of the

i-th cluster as the furthest element from the (i − 1)-th center, whereas p5 picks the

element which maximizes the sum of distances from previous centers.

In the first experiment (Fig. 4.11) we compare the four data structures in a uniform

data set taken from [0, 1]n with n = 10, varying the query threshold from 0.1 to 0.8,

and using a data set of size 300000. For the Antipole, we used two different cluster

radii σ: 0.5 and 0.625, respectively. Antipole Tree performs better than the other

three data structures computing less distances during the search.

Notice that using a query threshold from 0.1 to 0.7, we capture in the output

data set from 0% to 1% of the elements of the entire data set (0.8 captures the 3%

of the entire set). Fig. 4.12 shows that with query thresholds from 0.4 to 0.6 we save

between 10% and 70% of the distance computations, which in the figure is indicated

as the gain percentage.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

D
is

ta
nc

es
 c

om
pu

te
d

Query Threshold

MVP-Tree
M-Tree

Antipole Tree 2σ = 1
Antipole Tree 2σ = 1.25

List of Clusters

Figure 4.11: Comparisons in R
10 using 300000 randomly generated vectors. The

query threshold goes from 0.1 to 0.8.

The next set of experiments (see Fig. 4.13) was designed to compare the four

data structures in different metric spaces: the clustered Euclidean space R
20, a string



51

 10000

 20000

 30000

 40000

 50000

 60000

 100  150  200  250  300  350  400  450  500

D
is

ta
nc

es
 c

om
pu

te
d

Dataset Size (x1000)

MVP-Tree
M-Tree

Antipole Tree 2σ = 1
Antipole Tree 2σ = 1.25

List of Clusters

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 100  150  200  250  300  350  400  450  500
D

is
ta

nc
es

 c
om

pu
te

d
Dataset Size (x1000)

Query Threshold 0.4 Query Threshold 0.5

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 100  150  200  250  300  350  400  450  500

D
is

ta
nc

es
 c

om
pu

te
d

Dataset Size (x1000)

 0

 10

 20

 30

 40

 50

 60

 70

 0.25  0.3  0.35  0.4  0.45  0.5  0.55  0.6

G
ai

n 
pe

rc
en

ta
ge

Query Threshold

MVP-Tree
M-Tree

List of Clusters

Query Threshold 0.6 Gain percentage

Figure 4.12: Each picture shows the number of distances computed by the compared
data structures using threshold from 0.4 to 0.6. The respective gain percentage (per-
centage of distances saved) of the Antipole Tree w.r.t. the MVP-Tree, the M-Tree,
and the List of Clusters is also plotted.



52

 0

 5000

 10000

 15000

 20000

 25000

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

D
is

ta
nc

es
 c

om
pu

te
d

Query Threshold

Antipole Tree
MVP-Tree

M-Tree
List of Clusters

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

G
ai

n 
pe

rc
en

ta
ge

Query Threshold

MVP-Tree
M-Tree

List of Clusters

(a)

 0

 10000

 20000

 30000

 40000

 50000

 1  2  3  4  5  6  7  8  9  10

D
is

ta
nc

es
 c

om
pu

te
d

Query threshold

Antipole Tree
MVP-Tree

M-Tree
List of Clusters

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1  2  3  4  5  6  7  8  9  10

G
ai

n 
pe

rc
en

ta
ge

Query Threshold

MVP-Tree
M-Tree

List of Clusters

(b)

 0

 5000

 10000

 15000

 20000

 25000

 0.1  0.15  0.2  0.25  0.3  0.35  0.4

D
is

ta
nc

es
 c

om
pu

te
d

Query Treshold

Antipole Tree
MVP-Tree

M-Tree
List of Clusters

 10

 20

 30

 40

 50

 60

 70

 80

 0.1  0.15  0.2  0.25  0.3  0.35  0.4

G
ai

n 
pe

rc
en

ta
ge

Query Threshold

MVP-Tree
M-Tree

List of Clusters

(c)

Figure 4.13: (top) Comparisons of Antipole Tree vs. MVP-Tree, M-Tree, and List of
Clusters in a clustered space from R

20 varying the query threshold from 0.1 to 1, with
cluster radius 2. (middle) Antipole Tree vs. MVP-Tree, M-Tree, and List of Clusters
using an editing distance metric with cluster radius 5. (bottom) Antipole Tree vs.
MVP-Tree, M-Tree, and List of Clusters using a set of image histograms with cluster
radius 0.4.



53

space under an editing distance metric, and an image histogram space with an L2

distance metric. The corresponding data sets are: 100000 clustered points, 45000

strings from the Linux dictionary, and 42000 image histograms from the Corel image

database,5 respectively. Results show a 30% of savings in distance computations.

Since List of Clusters reportedly works well in high dimension, in Fig. 4.14 we show

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 50  100  150  200  250  300  350  400  450  500

D
is

ta
nc

es
 c

om
pu

te
d

Query Treshold

Antipole Tree
List of Clusters

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 100  200  300  400  500  600  700  800  900 1000

D
is

ta
nc

es
 c

om
pu

te
d

Query Treshold

Antipole Tree
List of Clusters

Figure 4.14: A comparison between Antipole Tree and List of Clusters using real
database in R

147 (left) and R
267 (right).

a comparison in range search in very high dimension Euclidean Space R
147 and R

267,

with a database size 3000 obtained from the VISTEX [1] texture database. Notice

that by using the query thresholds depicted in Fig. 4.14 the output set captures from

0% to 5% of the elements of the entire data set in R
147 and from 0% to 10% of the

elements of the entire data set in R
267. Antipole Tree shows a better behavior w.r.t.

List of Clusters tuned with the best fixed bucket size we noticed.

4.6.4 K-Nearest Neighbor comparisons

In the Fig. 4.15 we present a set of experiments in which the K NEAREST NEIGHBOR

algorithm is compared with the M-Tree and the List of Clusters. Notice that we

5Obtained from the UCI Knowledge Discovery in Databases Archive, http://kdd.ics.uci.edu



54

compared the Antipole Tree with just the M-Tree and List of Clusters because the

k-nearest neighbor search is not discussed for the MVP-Tree (see [22]). As de-

scribed in Section 4.6.3, we choose uniform and clustered data in R
10 and R

20. Each

data set has size 100000. We run the K NEAREST NEIGHBOR algorithm with

k = 1, 2, 4, 6, 8, 10, 15, 20 using one hundred queries for each experiment (half belong-

ing to the data structure and half not). Using the Antipole Tree we save up to 85%

of distance computations.

Concerning experiments in very high dimension, in Fig. 4.16 we show a comparison

with List of Clusters using a data set of 3000 elements in Euclidean R
147 and R

267

from VISTEX [1]. Antipole Tree clearly outperforms List of Clusters.

4.7 Approximate K-Nearest Neighbor search Via

Antipole Tree

When the dimension of the space becomes very high (say ≥ 50) all existing data

structures perform poorly on range and k-nearest neighbor searches. This is due to

the well known problem of the curse of dimensionality [87]. Lower bounds [36] show

that the search complexity exponentially grows with the space dimension. For generic

metric spaces, following [34, 35], we introduce the concept of intrinsic dimensionality:

Definition 4.7.1. Let (M, dist) be a metric space, and let S ⊆ M . The intrinsic

dimension of S is ρ =
µ2

S

2σ2
S

, where µS and σ2
S are the mean and the variance of its

histogram distances.

A promising approach to alleviate, at least, the curse of dimensionality is to con-

sider approximate and probabilistic algorithms for k-nearest neighbor search. In

some applications, such algorithms give acceptable results. Several interesting algo-

rithms have been proposed in the literature [34, 40, 100, 66]. One of the most suc-

cessful data structure seems to be the Tree Structure Vector Quantization (TSVQ).

Here we will show how to use the Antipole Tree to design a suitable approximate



55

 0

 5000

 10000

 15000

 20000

1 2 4 6 8 10 15 20

D
is

ta
nc

es
 c

om
pu

te
d

K

Antipole Tree 2σ = 1
M-Tree

List of Clusters
 0

 20

 40

 60

 80

 100

1 2 4 6 8 10 15 20

G
ai

n 
pe

rc
en

ta
ge

K

M-Tree
List of Clusters

(a)

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

1 2 4 6 8 10 15 20

D
is

ta
nc

es
 c

om
pu

te
d

K

Antipole Tree 2σ = 4
M-Tree

List of Clusters

 0

 20

 40

 60

 80

 100

1 2 4 6 8 10 15 20

G
ai

n 
pe

rc
en

ta
ge

K

M-Tree
List of Clusters

(b)

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 6 8 10 15 20

D
is

ta
nc

es
 c

om
pu

te
d

K

Antipole Tree 2σ = 0.4
M-Tree

List of Clusters

 0

 20

 40

 60

 80

 100

1 2 4 6 8 10 15 20

G
ai

n 
pe

rc
en

ta
ge

K

M-Tree
List of Clusters

(c)

Figure 4.15: k-nearest neighbor comparisons. (a) 100000 uniformly generated points
in [0, 1]10. (b) 100000 points from R

20 generated in clusters. (c) Comparisons using
the image histogram database.



56

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 6 8 10 15 20

D
is

ta
nc

es
 c

om
pu

te
d

K

Antipole tree
List of Clusters

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2 4 6 8 10 15 20

D
is

ta
nc

es
 c

om
pu

te
d

K

Antipole tree
List of Clusters

Figure 4.16: k-nearest neighbor search using real data from the VISTEX database in
dimension R

147 and R
267.

search algorithm for the nearest neighbor search. A first simple algorithm, called

BEST PATH SEARCH, follows the best path in the tree from the root to the

leaf, and returns the centroid stored in the leaf node. This algorithm uses the same

strategy of the TSVQ to find quickly an approximate nearest neighbor of a query

object.

In what follows we present a set of experiments where TSVQ and Antipole Tree

are compared. The experiments refer to uniformly generated objects in spaces whose

dimension ranges from 10 to 50. For each input data set one hundred queries were

executed. In order to evaluate the quality of the results, we run the exact search first.

Then the error δ is computed in the following way:

δ =
|dist(Oopt, q)− dist(OTSV Q/Antipole, q)|

dist(Oopt, q)
.

In Fig. 4.17 (a) the errors introduced by the two approximate algorithms in uniformly

generated set of points (upper figures) and clustered set of points (lower figures) are

depicted. On the other hand, Figs. 4.17 (b), (d) show the number of distances

computed by the two algorithms.



57

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

10 20 30 40 50

A
ve

ra
ge

 E
rr

or

Space Dimension

Antipole Tree σ = 0.5
TSVQ

 0

 5

 10

 15

 20

 25

 30

 35

 40

10 20 30 40 50

D
is

ta
nc

es
 c

om
pu

te
d

Space Dimension

Antipole Tree σ = 0.5
TSVQ

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4

A
ve

ra
ge

 E
rr

or

σ

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

D
is

ta
nc

es
 c

om
pu

te
d

σ

Antipole Tree
TSVQ

(a) (b)

Figure 4.17: A comparison between the approximate Antipole search and TSVQ
search. (a) shows the average error introduced by the two algorithms in uniformly
generated points with σ = 0.5 varying the space dimension from 10 to 50. (b) shows
the number of distances computed. (c) shows the average error introduced using
points generated in clusters of space dimension 20 varying the cluster radius σ. (d)
shows the corresponding number of distances needed.



58

The experiments clearly show that the Antipole Tree improves on TSVQ. We

think that this is due to the better position of the Antipole pairs.

A more sophisticated approximation algorithm to solve the k-nearest neighbor

problem can be obtained by using the K NEAREST NEIGHBOR algorithm. The

idea is the following: for each cluster reached during the search, the algorithm com-

pares the query object with the cluster centroid without taking into consideration the

objects inside it.

This search is slower than the BEST PATH SEARCH but is more precise and

can be used to perform k-nearest neighbor search. Fig. 4.18 (a) shows a set of

experiments done in uniform spaces in dimension 30 with radius σ set to 1 and 1.5.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

1 2 4 6 8 10

K

2σ = 2
2σ = 3

 0

 20

 40

 60

 80

 100

1 2 4 6 8 10

K

2σ = 2
2σ = 3

(a) (b)

Figure 4.18: An experiment with the approximate k-nearest neighbor algorithm in
dimension 30. In (a) the average error is showed. (b) depicts the gain percentage in
the number of distance computations.

In approximate matching, precision and recall [93] are important metrics. Follow-

ing [93], we call the k-nearest neighbor elements of a query q: the k golden results.

Then, the recall after quota distances can be defined as the fraction of the k top

golden elements retrieved fixing a bound, called quota, in the number of distances



59

that can be computed during the search. The precision is the number of golden

elements retrieved over the number of distances computed. On the other hand if

0

20

40

60

70

 30  35  40  45  50

D
is

ta
nc

es
 c

om
pu

te
d 

(x
10

00
)

Space Dimension

Recall 0.5 10-nn
Recall 0.5 20-nn

Recall 0.75 10-nn
Recall 0.75 20-nn
Recall 0.9 10-nn
Recall 0.9 20-nn

0

0.2

0.4

0.6

0.8

1

 1000  1100  1200  1300  1400  1500  1600

R
ec

al
l

Number of Distances (quota)

Antipole Tree 10-NN
Antipole Tree 20-NN

List of Clusters 10-NN
List of Clusters 20-NN

(a) (b)

Figure 4.19: (left) Analysis of curse of dimensionality using Antipole Tree from di-
mension 30 to 50. Number of distances needed fixing the recall. (right) Comparisons
using the image histogram database between the Antipole Tree and List of Clusters
w.r.t. approximated k-nearest neighbor. The recall varying the quota is depicted.

the recall R is fixed (i.e. 50%), the R-precision (precision after R recall) gives the

number of distances which must be computed to obtain such recall. We performed

precision-recall analysis between Antipole Tree and the approximate version of List

of Clusters [27]. Experiments in Fig. 4.20 made use of 100000 elements of dimension

30. We fixed several quotas and recalls ranging from 7000 to 42000 and from 0.5 to

0.9 respectively. Results clearly show that Antipole Tree gives precision-recall factors

better than List of Clusters (with fixed bucket size). Fig 4.19 (left) makes the same

comparison but using Image histogram database, also it illustrates (right) the effect of

curse of dimensionality in precision-recall factor analysis for the Antipole Tree using

uniformly distributed objects in Euclidean spaces of dimension ranging from 30 to

50.



60

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5  10  15  20  25  30  35  40  45

R
ec

al
l

Number of Distances (x 1000)

Antipole Tree 10-NN
Antipole Tree 20-NN

List of Clusters 10-NN
List of Clusters 20-NN  20000

 30000

 40000

 50000

 60000

 70000

 80000

 0.5  0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95

D
is

ta
nc

es
 n

ee
de

d

Recall %

Antipole Tree 10-NN
Antipole Tree 20-NN

List of Clusters 10-NN
List of Clusters 20-NN

(a) (b)

Figure 4.20: Comparing Antipole Tree and List of Clusters w.r.t approximated K-
nearest neighbor. In (a) Recall varying the quota. (b) Number of distances compu-
tation with fixed recall.

4.8 A comparison with linear scan

In this section we present a set of experiments in which we compare the proposed data

structure with a naive linear scan. We used a set of very high dimensional Euclidean

data sets. Such data sets were obtained from a set of textures taken from the VISTEX

database [1]. Starting from a given texture, the data sets of tuples were built in the

following way: for each pixel p in the texture we considered, per color channel, half

of its h × h neighborhood (see [133] for more details). We obtained data sets of

dimension ranging from 63 to 267. Results, which are plotted in Fig. 4.21, show that

the proposed data structure outperforms the linear scan in such high dimensional

data sets. We have also noticed that the intrinsic dimension of these spaces goes from

5 to 10.



61

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

1 2 4 6 8 10 15 20

R
un

ni
ng

 T
im

e 
(in

 s
ec

s)

K

Antipole Tree σ = 700

Linear scan

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  2000  4000  6000  8000  10000

T
im

e 
in

 s
ec

on
ds

Query Threshold

 0

 0.02

 0.04

 0.06

 0.08

 0.1

1 2 4 6 8 10 15 20

R
un

ni
ng

 T
im

e 
(in

 s
ec

s)

K

Antipole Tree σ = 500

Linear Scan

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  2000  4000  6000  8000  10000

T
im

e 
in

 s
ec

on
ds

Query Threshold

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

1 2 4 6 8 10 15 20

R
un

ni
ng

 T
im

e 
(in

 s
ec

s)

K

Antipole Tree σ = 400

Linear Scan

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  500  1000  1500  2000  2500  3000

T
im

e 
in

 s
ec

on
ds

Query Threshold

Figure 4.21: Comparing Antipole Tree and linear scan w.r.t. k-nearest neighbor (left
side) and range search (right side) in R

267 top, R
147 middle, and R

63 bottom.



62

Field size (in byte)

A1 Antipole Node sizeof(Object)
A2 Antipole Node sizeof(Object)
RA1

Subset radius 4
RA2

Subset radius 4
Left pointer to the left subtree 4
Right pointer to the right subtree 4

Table 4.1: Internal node information together with the byte needed by each field.

Field size (in byte)

C Centroid sizeof(Object)
CList Member List sizeof(Object)× |CList|
Dv Ancestor’s distance vector for each object 4 ×|Dv|
R Cluster radius 4

Table 4.2: Leaf node information together with the byte needed by each field.

4.9 Secondary Memory management

As reported in [110], despite growing main memories, it is often not possible to hold

the entire database in main memory. Access methods need to integrate secondary and

tertiary storage in the same way. For multidimensional spaces several papers have

been presented (see [62] for an extended survey). On the other hand for generic metric

spaces just the M-Tree [41] and next the SLIM-Tree [89] deal with the secondary

storage problem.

Even if the Antipole Tree data structure is a binary tree designed for main memory in

this section we present a secondary memory representation of such a data structure.

In the Antipole Tree data structure we have two kind of nodes: internal nodes and

leaf nodes.



63

h+1

Figure 4.22: Representation of an Antipole Tree in main memory.

Levels from 0 to h

Levels from h+1

Figure 4.23: Representation of an Antipole Tree in secondary memory.

The internal nodes as reported in table 4.1 (taken from [110]) store information rel-

ative to the antipole objects. Each Antipole internal node needs 2×sizeof(Object)+

16 byte. A leaf node (see table 4.2 (taken from [110])) of the Antipole Tree store a clus-

ter of objects. The size of a leaf node is (CList+1)×sizeof(Object)+CList×|DV |×4+4.

The strategy we use to represent the tree in secondary memory was to represent

the Tree by level in disk page. Fig. 4.22 (taken from [110]) depicts an Antipole Tree

where the first h levels are captured inside a dashed box. These h levels of the tree

are relative to internal nodes of the tree and in our representation will be stored in a

suitable disk page.

In order to evaluate how many levels can be stored in a single disk page, suppose

that each page allow us to store a certain amount of kilobyte m. We can observe we

do not need to store the pointer of each node in the page but we need to store the

children’s pointers for the last level of the Antipole. We call h the maximum depth of

the tree stored which can be stored in a single disk page. Using this information we

want to obtain the depth h as function of the page size m. Notice that the number



64

of pointers we need to store in a page are at most 2h+1 and given that an address

requires 4 byte, we can write:

m−4×2h+1 =
h

∑

i=0

2i×[2×sizeof(Object)+8] = (2h+1−1)×[2×sizeof(Object)+8];

then we obtain:

2h+1 × [8 + 2× sizeof(Object) + 4] = m + 8 + 2× sizeof(Object);

2h =
m + 8 + 2× sizeof(Object)

24 + 4× sizeof(Object)

h = lg

(

m + 8 + 2× sizeof(Object)

24 + 4× sizeof(Object)

)

-2

-1

0

1

2

3

4

5

6

0 2 4 6 8 10

Le
ve

ls
 o

f t
he

 tr
ee

 s
to

re
d 

in
 a

 d
is

k 
pa

ge

Disk page size in KB

Space dimension
10
20
30

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35 40 45 50

Le
ve

ls
 o

f t
he

 tr
ee

 s
to

re
d 

in
 a

 d
is

k 
pa

ge

Space Dimension

Disk page size
2KB
4KB
8KB

(a) (b)

Figure 4.24: Tree levels inside a disk (internal) node function of (a) page size (b)
space dimension.

If we suppose that the objects are in a multidimensional space R
k we obtain that

sizeof(Object) = n∗4 and Fig. 4.24 (a) (taken from [110]) shows the maximum depth

which can be stored in a single page while Fig. 4.24 (b) (taken from [110]) shows the

maximum depth with respect to the space dimension.



65

For the leaf nodes of the Antipole Tree in the secondary memory representation

instead of store all the distance from the ancestor for each database object O we can

maintain just the distances between the object and the cluster centroid. Each cluster

will need (1 + CList) × (sizeof(Object) + 4). Furthermore in a disk page of size m

will be store more clusters in order to reduce the fragmentation.

MAKE TREE(Dataset S, Diameter σ, AntipoleFile fp)
1 Q ← RAND ANTIPOLE(S,σ);
2 {A,B} ← Q;
3 if dist(A, B) ≤ σ then

4 return MAKE CLUSTER(S,fp);
5 end if;
6 MAKE NODE(S, σ,0,Vset,fp);
7 for each X ∈ Vset do

8 MAKE TREE(X, σ, fp);
9 end for each;

10 return;
end MAKE TREE.

Figure 4.25: Antipole Tree construction on secondary memory.

To build the Antipole Tree on secondary memory we used the recursive procedure

of Fig. 4.25(taken from [110]). It makes use of the function MAKE NODE (see

Fig. 4.26 (taken from [110])) to construct an internal page (I PAGE) recursevely

until the maximum depth (say MAXDEPTH) is reached. MAKE NODE returns

a set of subsets of S (say Vset) and for each subset X ∈ Vset is called recursively

MAKE NODE. The MAKE CLUSTER function builds a disk page storing the

all cluster informations.

Fig. 4.27 (taken from [110]) shows an Antipole Tree and its secondary memory rep-

resentation.



66

MAKE NODE(Dataset S, Diameter σ, int Cdepth, set Vset, AntipoleFile APfile, int I PAGE)
1 Q ← RAND ANTIPOLE(S,σ);
2 {A,B} ← Q;
3 if dist(A, B) ≤ σ then

4 Vset ← Vset ∪ S;
5 return;
6 end if;
7 if Cdepth ≤MAXDEPTH then

8 Sl ← {O ∈ S | dist(O, A) < dist(O, B)};
9 Sr ← S \ Sl;

10 ADD DATA(Q, I PAGE);
11 MAKE NODE (Sl, σ,Cdepth + 1,Vset,APfile, I PAGE);
12 MAKE NODE (Sr, σ,Cdepth + 1,Vset,APfile, I PAGE);
13 else

14 Vset ← Vset ∪ S;
15 return;

end MAKE NODE.

Figure 4.26: Internal disk page node construction.

4.9.1 Searching in Secondary memory via Antipole Tree

As widely discussed in [110], the Antipole Tree in secondary memory allows range

search as the one presented for the main memory. The visit starts from the root page

of the tree. The internal structure of a disk page is an Antipole Tree and comparisons

based on triangle inequality can be applied. Once the page is accessed a catalog

containing the pages which need to be visited is returned and the search proceeds

starting from the first element in the catalog.

A preliminary experimentation of this technique (see Fig. 4.28 (taken from [110]))

was done using a uniformly generated data set from R
10 with 100 queries with disk

page size 4kb. The average number of I/O needed (the number of disk pages) to

perform the search were computed and the results obtained were compared with the

one obtained by using the M-Tree. As can be seen from the picture the Antipole Tree



67

C1 C2 C3 C4 C5 C6 C7 C8

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6 Page 7

Page 8

(a)

C1

Page 2 Page 4 Page 6 Page 7

Page 8Page 3 Page 5

C2 C3 C4 C5 C6 C7 C8

Page 1

(b)

Figure 4.27: (a) An Antipole Tree main memory representation with 8 clusters. (b)
Antipole Tree secondary memory representation with MAXDEPTH = 1, storing up
to 3 clusters in each leaf.



68

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 I/
O

s

Range Query Threshold

Antipole Tree

M-Tree
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 I/
O

s

Range Query Threshold

Antipole Tree

M-Tree

(a) (b)

Figure 4.28: Range search queries in secondary memory using Antipole Tree and
M-Tree: (a) Database size 100000, (b) Database size 200000.

needs much less I/O accesses than the M-Tree to perform range search.

4.10 Dealing with Dynamic Updates

The construction of the Antipole Tree we presented builds the data structure from

scratch. Thus it is suitable when data is static. In several applications databases

change dynamically due to insertions and deletions of objects. As reported in [110],

here we discuss an approach to make the Antipole Tree able to deal with dynamic

insertions. Notice that we do not deal with the deletion problem because we use the

assumption that objects will be never removed from the database.

The process to insert an object into the Antipole Tree proceeds as follows. Starting

from the root it follows the best path in the tree as performed during the approximate

search seen in section 4.7. During the search process the object O will be closer to one

of the antipole objects (say A) but can have distance from A greater than RadA, in

such a case we update Rada = dist(A,O). The search goes until a cluster is reached,

then the distance between the object O and the cluster centroid C is computed.

Depending on this distance two cases might occur:



69

1. the distance is less than σ then the object is inserted into the cluster;

2. the distance is greater or equal than σ and the cluster is splitted into two new

clusters introducing one new internal node and one new leaf node.

For the secondary memory version of the Antipole Tree the insertion follows the

same approach. The algorithm looks for the leaf disk page containing the cluster by

traversing the tree. When the page is reached wether the cluster needs to be splitted

or the its dimension exceeds the available size in the disk page two cases are possible:

1. if the father of such a page is full, then a new internal disk page must be

allocated, the addresses stored inside the father page must be updated and

this new internal page will contain the address of a new leaf page that will be

inserted to store the cluster;

2. if the page is not full, then the new antipole obtained by splitting the cluster

will be inserted into it and the address pointing the leaf nodes will be updated.



Chapter 5

Applications

This chapter will introduce four successful applications of the Antipole Clustering.

These applications lie in different computer science areas. The first one deals with

the BioInformatic area; given a protein network, we use the Antipole clustering to

group the proteins according to their connections. Next we will present an innovative

technique to cluster a set of labeled graphs.

The two final applications lie in the field of computer graphics. We use the Antipole

clustering and its nearest neighbor algorithm to solve the two problems of texture

synthesis and the image colorization. A texture is an image which has a pattern

characterizing it. The pattern of the texture or the texture sample can be used to

synthesize a new image that, when perceived by a human viewer, seems to be gener-

ated by the same underlying stochastic process. Texture synthesis has applications

in image compression and image zooming. In the image colorization application the

Antipole clustering is used to transfer colors from a source image (colored) to a des-

tination image (gray-scaled).

70



71

5.1 Protein Interaction Network

Recent advances in proteomics technologies such as two-hybrid, phage display and

mass spectrometry have created the possibility of developing a detailed map of biomolec-

ular interaction networks. Initial mapping efforts have already produced a wealth

of data. As the size of the interaction set increases, databases and computational

methods will be required to store, visualize, and analyze the information in order to

effectively aid in knowledge discovery. In this section, the Antipole Clustering will

be used as a graph clustering algorithm that detects densely connected regions in

large protein-protein interaction networks that may represent molecular complexes.

Recent papers published in Science and Nature, among others, describe large-scale

proteomics experiments that have generated large data sets of protein-protein inter-

actions and molecular complexes [57, 127]. Protein structure [38] and gene expression

data [90] is also accumulating at a rapid rate. Bioinformatics systems for storage,

management, visualization and analysis of this new wealth of data must keep pace.

Currently, most proteomics data is available for the model organism Saccha-

romyces cerevisiae, by virtue of the availability of a defined and relatively stable

proteome, full genome clone libraries [136], established molecular biology experimen-

tal techniques and an assortment of well designed genomics databases [37, 97, 48].

Predicting molecular complexes from protein interaction data is important because

it provides another level of functional annotation above other guilt-by-association

methods. Since sub-units of a molecular complex generally function towards the

same biological goal, prediction of an unknown protein as part of a complex also

allows increased confidence in the annotation of that protein.

Algorithms for finding clusters, or locally dense regions, of a graph are an ongoing

research topic in computer science and are often based on network flow/minimum

cut theory [59, 72] or more recently, spectral clustering [102]. We present a simple



72

scheme to find such regions. In a protein network, the nodes of the graph (protein)

are the objects of the metric space where the metric is the shortest path distance. In

our discussion we will assume that the protein network will be a connected graph.

The Antipole algorithm, given the radius σ, starts to create clusters of proteins

in which nodes inside will be at distances no greater than σ. Now, executing the

Antipole algorithm again with different radii we can obtain clusters that are bigger

or smaller according to σ. In this way we will be able to understand how far apart

the proteins are and if there is any relationship between them.

We have just described the case which occurs when one considers only one kind

of edges, where there are only hops, not weights; if x is the distance between two

nodes a and b, it means that x edges exist to go from a to b following the shortest

path. Of course, in a protein network, each protein may have several kinds of edges.

In this situation we simply weight the edges according to their importance and the

Antipole will be built by considering the weights of the edges rather than the hops.

For example if nodes a and b have three different edges T1, T2 and T3, the edges will

be removed and replaced by a new edge with weight
∑3

i=0 w(Ti). Now, if a and b are

x distance apart, it means that a shortest path of weight x from a to b exists.

This work is still in progress with NYU bioresearchers, and no report is ready yet;

however, thanks to the speed of the Antipole clustering building, interesting results

have already shown the possibility of predicting important proteins functions.

5.2 Graphs Clustering

In the last few years, developing algorithms for clustering data represented by graphs

has been recognized as a problem in the pattern recognition community [24]. Never-

theless, graph clustering is still an open problem for two reasons. First, exact graph

matching problems, i.e. subgraph isomorphism, maximum common subgraph, etc.,

are NP-complete. So exact graph clustering algorithms using graph matching are



73

extremely time consuming. Second, the proper distance metric between graphs is a

matter of debate.

Spectral methods try to represent the most interesting properties of the input

graphs using vectors, thus reducing the graphs clustering problem to a problem in a

vector space [18, 19, 91]. In this paper, a new spectral method taking advantage of

text retrieval concepts is presented.

Text retrieval (see [94, 51, 13, 92]) has focussed on the need to locate textual

information efficiently. Widely-researched text searching method (see [51]) involves

modelling a text collection in document-term matrix, and evaluating a document’s

relevance to a query using a linear algebraic dot product. In a term-document ma-

trix A, A[i, j] gives the number of occurrences of term j in document i. Queries

are normally represented as a bit vector over the same set of terms. The similarity

between document vectors (the rows of document-term matrices) can be found by

their inner product. This corresponds to determining the number of term matches

(weighted by frequency) in the respective documents. Another commonly used simi-

larity measure is the cosine of the angle between the document vectors. This can be

achieved computationally by first normalizing (to 1) the rows of the document-term

matrices before computing inner products. Singular Value Decomposition (SVD) has

been shown to work well for text retrieval in several recent works [52, 84]. Singular

Value Decomposition achieves rank reduction as follows.

Large document-by-term matrices have a significant amount of redundant data.

Removing this information allows a more precise and efficient search. However, given

that in this paper we will only show a tecnique to map graphs in a k-dimensional

space, without performing any kind of search, the Singular Value Decompositon, will

not be used. Latent Semantic Indexing (LSI, [85]) attempts to project term and

document vectors into a lower dimensional space spanned by the true “factors” of

the collection. This uses a truncated Singular Value Decomposition (SVD) of the



74

term-document matrix.

Subdue is another method to capture essential structure information from graphs.

The Subdue substructure discovery system ([2]) discovers repetitive subgraphs in a

labeled graph representation by using the minimum description length principle. Ex-

periments show Subdue’s applicability to several domains, such as molecular biology,

image analysis and computer-aided design.

In this section, GraphClust, a new algorithm for clustering labeled graphs, will

be presented. The problem of mapping the graphs as feature vectors is solved by

creating some substructures such that the frequency of substructure j in the graph i

is stored at A[i, j]. After this, the rows of the matrix A are finally clustered.

5.2.1 Design

GraphClust assumes that the nodes of the database graphs have an identification

number and a label. Edges are unlabeled (for purpose of this paper).

GraphClust deals with either directed or undirected graphs. The substructures

can be discovered in two ways:

• by using the AllPairShortestPath algorithm; in this case, for each graph of the

dataset and for each vertex v, all the shortest paths of length 1 up to a small

constant lp are generated from v.

• by using the Subdue substructure discovery system ([2]); in this case, for each

graph g of the dataset, Subdue finds common or approximately common sub-

structures of g.

A matrix having a number of columns equal to the number of the found sub-

structures and a number of rows equal to the number of the graphs in the dataset is

created. Each entry A[i, j] equals the number of times in which the substructure j is

contained in the graph i.



75

Basic Algorithm

GraphClust Basic(DataBase)
- - - Start first step - - -

1 Creates substructures of the data graphs;
- - - End first step - - -

- - - Start second step - - -

2 Creates a matrix A having as number of rows, the number
of data graphs, and as number of columns, the number of
substructures;

3 for each graph i
4 Fills the entry A[i, j] with the number of occurrences

of substructure j in the graph i;
5 end for each;

- - - End second step - - -

- - - Start third step - - -

6 Clusters the rows of A;
- - - End third step - - -

7 end GraphClust Basic.

Figure 5.1: GraphClust. the three steps of the basic algorithm.



76

Subdue is more suitable when the graphs in the database have few labels compared

to the number of nodes. In that case, there is a high chance of common substructures.

If AllPairShortestPath is run, it finds for each graph all the paths of length 1 up to a

small constant lp and therefore it creates more columns in the matrix A than Subdue.

For example, on chemical compounds, where usually there are not so many nodes and

edges, Subdue provides a better solution. For time-critical applications or graphs with

many edges, AllPairShortestPath should be used because it takes less time.

Once the matrix A is built, there are two possible clustering algorithms to use:

one is the k-means algorithm in which the user chooses the number of clusters k to

create; the other is the Antipole Clustering [30] in which the user chooses a “tightness”

measure (an integer value in the range 1 to 4) where the higher the measure the

smaller the cluster radius and hence the larger the number of generated clusters.

Antipole clustering is much faster than k-means even if it is not possible to know

a-priori the number of clusters that will be created. The metric distance used in both

clustering algorithms just described can be either the Euclidean distance or the inner

product. The Euclidean distance has an intuitive appeal as it is useful for evaluating

the similarity of objects in a multidimensional space.

The three steps of the basic GraphClust algorithm are shown in Fig. 5.1. In

table 6.2, a matrix obtained from the patterns generated by applying the AllPair-

ShortestPath algorithm, with lp = 3 to the dataset in Fig. 6.1, is shown.

5.2.2 Algorithms

It turns out that GraphClust consists of 16 different algorithms broken down along

the four binary dimensions described in the section 5.2.1. The main concept of Graph-

Clust is the mapping of the data graphs into k-dimensional vectors. To perform this

step we have introduced the concept of substructures and the methods used to find

these substructures.



77

�
�

�
�

�
�

A C

AB

@
@

@
@

@
@

A B

C

(a) (b)

Figure 5.2: Dataset of two graphs.

Graph (a) Graph (b)
Initial Node Substructures generated Initial Node Substructures generated

top-left A {A,AC,AB,ABA} A {A,AB,AC}
B {B,BC,BA,BA} B {B,BA,BAC}
bottom-right A {A,AB,ABC,ABA} C {C,CA,CAB}
C {C,CA,CB,CBA}

Table 5.1: Patterns generated from the dataset of Fig. 6.1 using AllPairShortestPath
with lp = 3.

A AC AB ABA B BC ABC BAC

graph (a) 2 2 4 2 1 2 2 0

graph (b) 1 2 2 0 1 0 0 2

Table 5.2: Matrix generated from the pattern of Table 6.1.



78

In this section, the algorithms used by GraphClust in the three steps of its main

procedure will be discussed.

Subdue discovers interesting and repetitive subgraphs in a labeled graph rep-

resentation using the minimum description length principle; Subdue discovers sub-

structures that compress the original data and represent structural concepts in the

data. By replacing previously-discovered substructures in the data, multiple passes

of Subdue produce a hierarchical description of the structural regularities in the data.

Subdue uses a computationally-bounded inexact graph match that identifies similar,

but not identical, instances of a substructure and finds an approximate measure of

closeness of two substructures when under computational constraints. In addition to

the minimum description length principle, other background knowledge can be used

by Subdue to guide the search towards more appropriate substructures. Once the

substructures and the matrix A have been created, the clustering is performed by

the k-means or Antipole clustering method. In our implementation of k-means, k

centroids are computed by using the Gonzalez (see [74]) algorithm, and, then, the

remaining vectors are assigned to the closest centroid.

As already seen in 4 the randomized algorithms used by Antipole clustering makes

its construction much faster than k-means’s.

5.2.3 Complexity

Here is a description of the worst case complexity for the three steps of Graph-

Clust. Let |D| the number of graphs in a database D. The first and the second

steps of the algorithm depend on which algorithm is used to create the patterns. If

AllPairShortestPath is used, then the complexity of the first step is O(
∑|D|

i (V i
3)),

where Vi are the nodes of the graph i; in this case the complexity of the second

step is O(|D||words|∑|D|
i (nim

lp
i )), where |words| is the number of patterns gener-

ated. If the Subdue algorithm is used, then the complexity of the first step becomes



79

O(
∑|D|

i (
∑nsubs

j=1 (ninstj × gmj))), where ninsti is the maximum possible number of

non-overlapping instances for substructure j and gmj is the user-defined maximum

number of partial mappings that are considered during a graph match between sub-

structure definition j and a potential instance of the substructure. In this case the

complexity of the second step is O (|D||words|∑|D|
i (

∑nsubs
j=1 (ninstj × gmj))), where

ninsti and gmj have already been described above. Details of the Subdue complexity

analysis can be found in [111].

The third step depends on the clustering algorithm used. K-means takes time

O(tkn), where n is the number of objects, k is the number of clusters, and t is the

number of iterations. Normally, k, t ≤ n. The Antipole algorithm has a worst-case

complexity of τ(τ−1)
2

n + o(n) in the input size n, where τ is the bounded radius (see

[30] for further details).

Hence, given the higher complexity of Subdue, GraphClust by using Subdue for

finding the substructures should be used with small datasets having graphs with not

so many edges. In this case it is highly probable that Subdue is able to find at least a

meaningful substructure for each graph and, thus, the quality of the clustering will be

of higher quality. As mentioned above, Subdue is more suitable than AllPairShort-

estPath when GraphClust is used to cluster a dataset of chemical compounds.

Conversely, when GraphClust is used to cluster big datasets having large numbers

of edges, the speed of AllPairShortestPath makes it preferable to Subdue.

5.2.4 Performance Studies

GraphClust is written in C language and it is freely downloadable to [112]. In this

section, a systematic evaluation of the quality of the clusters will be discussed. The

Silhouette method [20] is used to show how good the clustering obtained is. Moreover,

we want to show how well the final clustering captures the graphs present in different

categories known a priori. For this, we have used an artificial graph benchmark to



80

create a database containing five different categories of undirected graphs. The five

categories includes randomly graphs, regular 2D-meshes, regular 3D-meshes, irregular

2D-meshes, irregular 3D-meshes. For each category we have generated 1000 graphs

with 30 nodes and 1000 graphs with 80 nodes. The number of edges vary from 48

to 189. Each group of 1000 graphs differs for the 20% of the edges. Thus, our

artificial dataset contains 10000 graphs. An optimal clustering creates 10 clusters,

each one containing one structural group of graphs. Tables 5.3 and 5.4 depict the

global silhouette values, GSu, for each partition, and the silhouette values, Si, for each

number of clusters c, for c = 10 to 15. Clustering in table 5.3 is based on GraphClust

with the Antipole Tree data structure whereas clustering in table 5.4 uses GraphClust

with the k-means algorithm. For both clustering algorithms, the substructures have

been discovered by using the AllPairShortestPath fixing the constant lp = 3. In both

tables c = 10 is suggested as the best clustering configuration for the examined data

set and this is also the optimal number of clusters known for when the data set has

been created.

c GSu S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

10 0.712 1 0.86 1 0.82 0.05 0.71 1 0.88 0.12 0.66
11 0.665 1 0.86 1 0.82 0.03 0.81 0.11 1 0.88 0.12 0.66
12 0.693 1 0.86 1 0.82 0.03 0.81 0.11 1 1 0.88 0.12 0.66
13 0.607 1 0.86 1 0.82 0.03 0.81 0.11 1 1 0.21 0.24 0.12 0.66
14 0.518 1 0.12 0.10 1 0.82 0.03 0.81 0.11 1 1 0.21 0.24 0.12 0.66
15 0.489 1 0.05 0.13 0.12 1 0.82 0.03 0.81 0.11 1 1 0.21 0.24 0.12 0.66

Table 5.3: Global Silhouette values for clustering obtained by using GraphClust with
Antipole Tree data structure.

Now, we have to show that this clustering is also coherent with the a priori clas-

sification of the data set. Recall that in the optimal clustering each cluster contains

a single structural group where in each group the graphs differ by 20% of their edges.

Table 5.5 shows the similarity in percent between the best clustering obtained in ta-

ble 5.3 and 5.4 for c = 10 and the optimal clustering. A value x% for the cluster



81

c GSu S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

10 0.886 1 1 0.66 0.88 1 0.86 0.82 0.81 0.81 1
11 0.830 1 1 0.66 0.89 1 0.86 0.82 0.81 0.81 1 0.25
12 0.714 1 1 0.66 0.20 1 0.87 0.82 0.81 0.81 1 0.25 0.12
13 0.678 1 1 0.66 0.20 1 0.11 0.82 0.81 0.81 1 0.25 0.12 1
14 0.643 1 1 0.66 0.20 1 0.14 0.82 0.81 0.81 1 0.25 0.16 1 0.10
15 0.660 1 1 0.66 0.20 1 0.09 0.82 0.81 0.81 1 0.25 0.11 1 0.10 1

Table 5.4: Global Silhouette values for clustering obtained by using GraphClust with
k-means algorithm.

Ci obtained with GraphClust means that Ci is equal to x% of the optimal cluster

Ci. To measure the robustness of the clustering obtained, a pair of graphs g1 and g2

are considered to be consistent in the two clusterings if they are in the same cluster

in both cases or in different clusters in both cases. Otherwise they are inconsistent.

In table 5.6, for c = 10, the output clustering generated by GraphClust has been

compared with the optimal clustering. The value consistent value shows the number

of graphs pairs that are consistent divided by the total number of graphs pairs for

the output obtained.

Clustering Algorithm C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Antipole Tree 100% 100% 100% 100% 66.0% 95.14% 100% 100% 28.9% 50%
K-means 100% 54.4% 50% 100% 100% 100% 100% 100% 100% 45.6%

Table 5.5: Similarity in percentual between the best clustering found (c = 10) in
Tables 5.3, 5.4 and the optimal clustering.

Clustering Algorithm Number of consistent pairs Total number of pairs consistent value
Antipole Tree 48704861 49995000 0.97

K-means 48746936 49995000 0.97

Table 5.6: Robustness between the best clustering found in Tables 5.3, 5.4 and the
optimal clustering.



82

5.3 Texture synthesis

The exciting world of “texture”, with its different applications and results has been for

years a challenging research area [12]. Texture classification, discrimination, retrieval,

mapping and/or rendering represent only a partial view if the various lines of research

and application fields. Among others, to be able to realize fast and effective algorithm

for texture synthesis, with high performance both in term of real time generation and

perceived quality is a fascinating goal. Two different strategies or line of research have

been followed in the literature. The more ambitious one tries to “learn”, by using

properly filtering, the underlying stochastic model (e.g. Markov Random Fields [50])

of an input texture; the synthesis is then obtained by a suitable sampling (see Fig. 5.3).

Main drawbacks of these methodologies are related with the computation time that

(a) (b)

Figure 5.3: A synthesis example.

tends to be impractical for real-time applications ([137, 144, 143]). More efficient

techniques tend to properly match texture features ([107]), measured at different

resolution levels (see [26, 105]). In some sense a series of heuristics are used without

explicitly derive a real mathematical model.

In [78, 21] impressive results using respectively marginal histograms of image pyramids

and maintaining cross-scale dependencies were obtained (see also [Bat00a], [Bat01b]).



83

More recently [54] and [132] pointed out to a series of simple but effective techniques

showing excellent results on large class of textures. In particular the work presented

in [Wey00] has been furtherly generalized in [79] to realize a computational framework

where analogies between pairs of images can be deduced. Other techniques such as

those presented in [138] and [139] combine together smart patch merging. This section

describes a series of possible solutions trying to improve existing algorithmic solutions

by making use of advanced approximated search data structures. The procedural

approach described in [132] applies a multiresolution technique tracking neighborhood

dependance level by level. The synthesis is realized using a classical sampling strategy

over the data collected in the analysis phase. The entire process is then accelerated

using the TSVQ (Tree Structure Vector Quantization) [66] which introduces some

approximation but speeds-up the overall process. The TSVQ considers the input

neighborhoods as vectors in a multi-dimensional space in order to replace them by

a codebook of few vectors. The goal is to find the nearest neighborhood from the

current neighborhood as fast as possible. The time is reduced by more than one

order of magnitude. As a drawback such approximation introduces, in some cases,

undesired artifacts. We claim that the overall computation time needed to perform a

full-search sampling strategy can be avoided using suitable advanced data structures

and searching strategies. In our approach, image pixels are grouped into clusters of

bounded radius by the Antipole Tree Clustering and the synthesis is performed by

using the nearest neighbor algorithm (see chapter 4 for the description of the data

structure).

The clustering probability model of spatial neighborhoods derived from a texture was

introduced for the first time by [106].



84

5.3.1 Texture synthesis via Antipole Tree Clustering

The Wei-Levoy algorithm [132] uses the locality and stationarity properties of the

textures to synthesize an image by a raster scan order. Each pixel in the input sample

is mapped into the pixel of the nearest neighborhood vector. The input consists of an

example texture patch (Fig. 5.3 left side picture) together with a random noise image

having the desired size of the output image. The algorithm modifies this random

noise to make it looks like the given example. The algorithms consists in a raster

scan order synthesis of the pixels. The process starts from the upper left side corner

pixel and proceeds from left to right line after line. The picture in Fig. 5.4 shows an

example of such a synthesis process.

Nearest neighbor pixels

and its neighborhood

A generic pixel

Next pixel to be inserted

Figure 5.4: The right scan order synthesis method.

This technique is flexible and easy to use, since only an example texture patch

is required. Since this process is quite computationally expensive, multi-resolution

pyramids and quantization acceleration are used (see [7, 15, 131]). In [132, 131] a

speed-up is obtained using TSVQ [66] which takes as input a set of training vectors

and generates a binary tree of codebooks having a depth specified by he user, which

will be representative of the dataset. First the process finds a centroid c of the training

vector and uses it as root of the tree. After that, the same centroid c and a properly



85

perturbated centroid are chosen as children of the root. The process proceeds recur-

sively until the specified depth is reached. The approximation introduced considers

a variable number of training codebooks allowing also a limited backtracking in the

tree traversal to trade-off between computation time and final image quality.

In our approach the synthesis process is performed by using the Antipole Tree,

as reported in [10]. The positive cluster radius σ, is used to guarantee that pixels

with a similar neighborhood lie in the same cluster. Once the Antipole Tree is built

the nearest neighbor procedure is used to perform the search needed to synthesis the

image.

The results obtained with the proposed Antipole Clustering were compared with the

work of [132]. The notation {R1 × C1, 1}, · · · , {Ri × Ci, kj}, · · · , {Rm × {Cm, kn}
indicates multi-resolution n levels each with neighbor size Ri × Ci at the top level

merged with the previous kj − 1 levels each one having neighborhood size Ri − 2 ×
Ci − 2, · · · , Ri − 2 ∗ (kj − 1) × Ci − 2 ∗ (kj − 1). For example the expression {7 ×
7, 1}{9 × 9, 2}{11 × 11, 3} means: synthesize 3 levels multi-resolution with the first

level neighbor size 7 × 7, the second level neighbor 9 × 9 merged with the previous

level with neighbor size 7× 7 and the third level 11× 11 merged with 9× 9 and 7× 7.

The other term of comparison of our approach with respect to the classical full-search

strategy is based on timing.

We implemented our algorithm in standard C (GNU gcc compiler v2.96) and all

experiments were carried out on a PC Pentium III 900Mhz with Linux Operating

System (Mandrake 8.2), while the input texture database used was the VisTex [1].

Each time as reported in [132] is referred to the synthesis process obtained starting

from a random equalized noise image. Furthermore to stress the synthesis process the

size of the output image is always two times the size of the input image. The timing

comparison has been realized, using different neighborhood size (e.g. 3×3, 5×5, 7×7,

. . .), single level and/or multi-resolution. In all cases the computation time of the



86

Antipole strategy was better than the classical full search.

Table 5.7 reports some results, showing the average time and the corresponding

percentage gain obtained over several textures. One crucial point of the proposed

method is to find a suitable clustering radius to perform a fast synthesis. The results

presented in Table 5.7 show that the Antipole Clustering running time over different

textures with same levels and neighborhood size may be different. This means that

the underlying vector space distribution generated during the synthesis process affects

the performance of the proposed method. The running time of the Antipole Tree

reported in Table 5.7 includes the building time of the tree which takes only few

seconds with respect to the overall synthesis process. The TSVQ (Tree Structure

Vector Quantization) acceleration used by [132], whose details are better discussed

in [131], is able to run two orders of magnitude faster. It works well over a large data

set of texture [1], but introduces some approximation. As shown in [7], the texture

that are composed of various small objects (and many edges) do not give output

images of good quality as in the case of most natural textures (e.g. leaves, flowers,

etc.). In many cases only the full neighborhood search guarantees satisfactory results.

But Fig. 5.8 shows a series of examples and comparisons where TSVQ acceleration

produces noticeable artifacts while our proposed method provides satisfactory results.

For each experiment the TSVQ tree is constructed using the maximum number of

codewords and the search is implemented as suggested in [132]. Fig. 5.8 shows that

our proposed acceleration technique seems to be more robust. This can be associated

with the experiments done in chapter 3 section 4.7 were the approximated search with

the Antipole Tree returns objets nearer to the exact nearest neighbor with respect

to the TSVQ. Furthermore the time of the approximate Antipole search are fully

comparable to the one of the TSVQ.



87

Images

texture flowers money straw bubble

kinks circuit greenlines blackberries tomatoes

Images Neighbor Full Antipole %

texture {5× 5, 1} 728 44 93,96
{7× 7, 1} 1386 69 95,02

{5× 5, 1}{5× 5, 2} 1260 84 93,33
{7× 7, 1}{7× 7, 2} 2580 206 92,02

flowers {3× 3, 1} 221 38 82,81
{9× 9, 1} 2820 427 84,86

{5× 5, 1}{5× 5, 2} 1260 205 83,73
{5× 5, 1}{7× 7, 2} 2520 428 83,02

money {5× 5, 1} 728 179 75,41
{3× 3, 1}{5× 5, 2} 1221 374 69,37

straw {9× 9, 1} 2820 965 65,78

bubble {9× 9, 1} 2820 783 72,23
{13× 13, 1} 4020 2340 41,79

{7× 7, 1}{9× 9, 2} 3900 2038 47,74

kinks {9× 9, 1}{9× 9, 2}{9× 9, 3} 4800 1001 79,14
{9× 9, 1}{9× 9, 2} 4200 829 80,26

{7× 7, 1} 1386 264 80,95

circuit {5× 5, 1}{5× 5, 2} 1573 480 69,48
{9× 9, 1}{9× 9, 2}{9× 9, 3} 5400 1155 78,61

greenlines {7× 7, 1}{7× 7, 2} 3120 446 85,70
{7× 7, 1}{7× 7, 2}{7× 7, 3} 3480 381 89,05

{9× 9, 1} 3240 365 88,73

blackberries {7× 7, 1} 1724 302 82,48
{9× 9, 1}{9× 9, 2} 4897 907 81,47
{13× 13, 1}{13× 13, 2} 8086 1407 82,59

tomatoes {7× 7, 1} 1723 370 78,52
{9× 9, 1}{9× 9, 2} 4896 2651 45,83

Table 5.7: Running time comparison between full search and Antipole data structure.
The second column describes the size of each neighbor level by level. The third and
fourth columns show the running time (in seconds) needed by the full search and the
Antipole search.



88

Input image Antipole Approx Antipole TSVQ

Table 5.8: A comparison between the Antipole exact search (second column), ap-
proximate Antipole search (third column), TSVQ search (last column). The exam-
ples show, for complex textures, that the synthesis using the approximated Antipole
search is able to capture more details than TSVQ.



89

5.4 Image Colorization

The general problem of inverting a gray palette to a color palette is an undetermined

problem and generally has no unique solution. For this reason to accomplish this

task, for example in restoration of old photos, the (costly!) semantic knowledge of an

expert is required. In this section a semi-automatic method to minimize the amount

of human work required for this task is proposed. The early published methods to

perform the image colorization rely on heuristic techniques for choosing RGB colors

from a palette and applying them to regions of the target gray-scaled image. The

proposed method, instead, transfers the color from a source image to a target image

by matching luminance information between the images. This approach, inspired to

a recently published algorithm by Welsh et al [135], hence inscribes itself among the

similarity based image enhancing techniques [80]. With the adoption of the Antipole

data structure we fastly retrieve color words from a very large vocabulary (see [17]).

One wishes to add colors to a gray-scaled image for many reasons: colors increase

the visual appeal of an image such as an old black and white photo; they make an

old movie nicer, and help to make a scientific illustration more attractive (example:

a scanning electron microscopy image, SEM). The problem of colorization of a gray-

scaled image involves assigning three-dimensional (RGB) pixel values to an image

whose elements (pixels) are characterized only by one feature (luminance). Since

different colors may carry the same luminance in spite of differences in hue and/or

saturation, the problem of gray-scaled images colorization has no inherently correct

solution. Due to these ambiguities, human interaction usually plays a large role in

the colorization process [121]. Even in the case of pseudo-colorization [73], where the

mapping of luminance values to color values is automatic, the choice of the colormap

is commonly determined by human decision. Detailed technical documents describing

the colorization process are generally not publicly available because of the economical



90

relevance of such applications for the movie industries. There also exist a number of

applications for the use of color in information visualization. Further, color can be

added to a range of scientific images for illustrative and educational purposes. Our

concept of transferring color from one image to another is inspired by work of Welsh

et al. [135]. In their work, colors from a source image are transferred to a target

gray-scaled image using a simple procedure. Their basic method matches the one-

dimensional distribution of luminance values between the images and then transfers

the other components from the source image to the target image. To perform the

matching they use the pixel luminance and the standard deviation of the luminance

in a pixel neighborhood with size of 5x5 pixels. The matching is performed on a

sample set of pixels of the source image using a sequential search. We claim that

the overall computation time needed to perform a full-search sampling strategy can

be avoided using a suitable advanced data structure and a more refined searching

strategy. To use the Antipole Data Structure we map the hole space of pixels as the

set X and the normal Euclidean distance between pixels as the metric function d. In

our approach, as detailed in [17], image pixels are grouped into clusters of bounded

radius by the Antipole Tree Clustering. In this section we report and discuss three

different variations over the base idea reported above: in a first approach (named

in the following LPN) we use the luminance values of the pixel neighborhood (using

a 5x5 size), in a second approach (named in the following L&S) we use the pixel

luminance and the standard deviation of the pixel neighborhood (using a 5x5 size),

and in the last approach (named in the following UnA) we unify the two previous

methods. Observe that the L&S technique is essentially the same proposed by [135],

but our implementation of it takes advantage of the Antipole Tree. Experimental

results show the improvement in term of computation time with respect to full-search

strategy while maintaining the same final quality.



91

5.4.1 Image Colorization using Antipole Tree Clustering

In this section, we describe the algorithm for transferring color, as described in [17].

The general procedure for color transfer requires a few simple steps. First RGB source

image is converted into the YUV color space. This color space has been chosen because

it promptly provides the luminance value (channel Y) which is a crucial datum for

our procedure. It also grants a more faithful modeling of human perception. Next

the Antipole tree is constructed, each vector contains the information necessary to

perform the Antipole search and the UV components of the pixel color (see chapter 4

for details). After the data structure has been completed, in scan-line order, for each

pixel in the gray-scaled image we construct its vector and perform the Antipole search

to select the best matching vector in the Antipole tree. The UV components of the

best matching vector are then transferred to the gray-scaled image to form the final

image, while the Y component (luminance) of the pixel in the gray-scaled image is

retained to its original value. Although this procedure is very simple and direct the

experimental results show that it works very well on a large set of images. Even if at

this stage of research we focused on homogeneous images it is likely to imagine that

the algorithm will also work well on nonhomogeneous (segmented) images.

This section reports all the experimental results obtained with the proposed

method. Performances of the proposed approach with respect to [135] work are com-

pared. Figures 5.11 show some examples of colored images obtained with the Antipole

strategy. Table 5.9 reports the timing results and the corresponding percentage gain

obtained. The running time of the Antipole Tree reported in Table 5.9 includes the

building time of the tree which takes only few seconds with respect to the overall

synthesis process. Table 5.10 reports the Peak Signal Noise Ratio (PSNR) obtained

with the three different methods. The PSNR is defined as:

PSNR = −10× log(
MSE

S2
)



92

where

MSE =
1

nRow × nCol
×

∑

x,y

[I(x, y)− J(x, y)]2

and S=255, nRow is the row number, nCol is the column number, I(x, y) is the

pixel value of the target image and J(x, y) is the pixel value of the recolored image.

Firstly, we compute the PSNR on the tree (RGB) channels and, secondly, we evaluate

the mean value. As reported in the previous section the Antipole strategy speeds-

up the process without quality loss. We implemented our algorithm in standard C

(GNU gcc compiler v3.2) and all experiments were carried out on a PC dual Athlon

XP 2000+, 1 GB RAM, with Linux Operating System (Red Hat 8.0). In all cases

the computation time of the Antipole strategy was better than the classical full search.



93

IMAGES LPN L&S UnA

Time 229s 44s 27s 11s 235s 64s

Gain 81% 59% 73%

Time 157s 49s 18s 9s 160s 69s

Gain 69% 50% 57%

Time 766s 144s 90s 39s 788s 159s

Gain 81% 57% 80%

Time 739s 130s 86s 38s 762s 146s

Gain 82% 56% 81%

Time 3900s 724s 448s 194s 3942s 796s

Gain 81% 57% 80%

Time 953s 93s 98s 48s 978s 105s

Gain 90% 51% 89%

Time 2700s 542s 280s 133s 2980s 627s

Gain 80% 53% 79%

Time 951s 149s 112s 48s 982s 205s

Gain 84% 57% 79%

Time 946s 153s 111s 48s 974s 190s

Gain 84% 57% 80%

Table 5.9: Running time comparison (expressed in seconds) between full search and
Antipole search.



94

IMAGES LPN L&S UnA

38,31 36,45 38,27

25,85 24,69 26,20

21,32 21,45 21,42

26,98 25,21 27,42

27,60 22,66 27,61

29,15 24,06 28,25

32,69 30,15 31,42

26,18 25,07 25,68

27,19 27,44 27,70

Mean Value 28,36 26,35 28,22

Table 5.10: PNSR (mean on the RGB channels) comparison between the LPN, L&S
and UnA methods described above using the Antipole search, the last row shows the
mean values obtained.



95

Source Image Target Image Recolored Image Original Colored Image

Table 5.11: Some examples of colored images obtained with the Antipole strategy.



Part II

Graph Searching Based on
Indexing Techniques

96



Chapter 6

GraphGrepVF: a new efficient
method for exact and inexact
graph matching

Graphs are data structures widely used for representing information both in low-level

and high level vision tasks. One of the problems of interest, with graphs, is matching

a sample graph against a reference graph. Depending on the nature of the considered

vision task and on the characteristics of the graphs, either exact or inexact matching

may be required. In both cases, different types of morphism are possible for the

matching: we will mainly consider graph isomorphism.

A relevant problem when matching graphs is that of limiting the computational

cost of the process. Purpose of this second part of the thesis is to illustrate a novel

graph matching algorithm and to compare its performance with two of the most

commonly used algorithms performing the same task by taking into account the

problem of reducing the matching time. The algorithms considered for comparison

are GraphGrep [71, 68, 117] and VF [46]. For a detailed description of GraphGrep

see [68].

In real pattern recognition applications, the variability of the samples is such

that they are seldom identical to prototypes so that pattern recognition can only be

97



98

achieved by inexact graph matching methods.

6.1 Introduction

The increasing size of application databases requires efficient structure searching al-

gorithms [68]. Examples of such database and substructure searching methods can

be found in computational chemistry [88, 130], vision [53], and web exchange data

(XML) [95, 42]. Finding occurrences of a subgraph in a set of graphs is known to

be NP complete [65]. Although graph-to-graph matching algorithms [44, 129] can

be used, efficiency considerations suggest the use of special techniques to reduce the

search space and the time complexity. There is an extensive literature on graph

(or substructure) searching. For a review see [130, 123, 117]. Most of the existing

methods however, are designed for specific applications. For example several query-

ing methods for semistructured databases, and in particular for XML databases, have

been proposed ( [95, 42, 120, 63, 123, 114]). These methods use different data models,

query languages and indexing strategies. The data objects used in XML databases

are viewed as rooted labeled graphs. Regular path expressions are used to address

substructures in the database. Cycles are searched by evaluating recursion functions

or by formulating complex queries. To avoid unnecessary traversals of the database

during the evaluation of a path expression, indexing methods are introduced in [95]

and [98]. Daylight [88] proposes a searching system for a database of molecular

graphs. It finds all the molecules that contain, as a subgraph, at least one occurrence

of the query. Daylight uses fingerprints consisting of bit vectors, where each position

represents a small path. It also provides a graph expression language based on the

SMILES [134] molecule representation to formulate queries. Frowns [16] is another

chemoinformatics toolkit based on PyDaylight geared toward rapid development of

chemistry related algorithms. Messmer and Bunke [96] propose an application inde-

pendent method. The method indexes the graphs in a database and computes a graph



99

isomorphism. Both indexing and matching are based on all possible permutations of

the adjacent matrices of the graphs. This algorithm works extremely well on small

graphs, but does not scale well to larger graphs or large databases of graphs.

The quite few approaches to inexact matching proposed in literature, try to ex-

tend the applicability of exact matching methods, by introducing criteria allowing

matching in presence of syntactic and/or semantic deformations. In [125], a pattern

deformational model is proposed, while a generalization of the method, including

the possibility of deleting nodes and branches, is discussed in [126]. The algorithm,

though powerful enough for some practical applications, is not effective when large

variations among the members of a same class may exist. In these cases inexact

matching approaches based on the definition of a distance measure between graphs,

seem more appropriate [115, 113]. An extension of an ARG matching algorithm which

uses a set of feasibility rules and taking into account deformations on syntactic and

semantic parts of the graphs is described in [44].

In this section we present an application-independent method to perform exact

and inexact subgraph queries in a database of graphs. Our system, GraphGrepVF,

finds all the occurrences of a graph in a database of graphs. GraphGrepVF is a

merging of two powerful method for graph matching: GraphGrep [71] and VF [46]

algorithms. Both GraphGrep and VF are available online [70, 3, 45]. In the section 6.4

the new method will be explained in detail.

To formulate queries we use a graph query language which we term GLIDE: Graph

LInear DEscription language [68, 70]. GLIDE descends from two query languages

Xpath [42] for XML documents and SMART [88] for molecules. In Xpath, queries are

expressed using complex path expressions where the filter and the matching conditions

are included in the notation of the nodes. GLIDE uses graph expressions instead of

path expressions. SMILES is a language designed to code molecules and SMART is

a query language to discover components in a SMILES databases. GLIDE borrows



100

the cycle notation from SMILES and generalizes it to any graph application.

In this chapter we will explain the two basic algorithms we have started with; in

particular, GraphGrep [71] will be discussed in the section 6.2 while VF [46] will be

discussed in section 6.3. Finally in section 6.4 the new method will be explained. In

the two final sections, Graph LInear DEscription language (GLIDE) [68, 69], will be

described together with the extension of GraphGrepVF to inexact matching.

6.2 GraphGrep

As reported in [71], GraphGrep is a general method to find all the occurrences of a

query graph in a database of graphs. It is focused on undirected graphs whose edges

are unlabeled but it generalizes to directed graphs with labeled edges. Due to the

intractable complexity of the graph searching problem, GraphGrep is based on the

idea to reduce the space of the possible matches. Its main algorithmic component

is the storage of all paths up to a fixed length. These paths are used to perform

the filtering and the matching. More precisely, GraphGrep filters out graphs of the

dataset that do not contain the query graph. Moreover, for each candidate graph, it

filters out the parts of the graph that do not contain the query. Once we have the

set of candidate paths, the matching is performed by combining those. GraphGrep

is divided into three basic step:

• Building the index to represent the database of graphs as sets of paths (this

step is done only once).

• Filtering the database based on the submitted query and the index to reduce

the search space.

• Performing the exact matching.



101

In subsections 6.2.1, 6.2.2 and 6.2.3 the three steps will be dealt and in subsection 6.2.5

the complexity analysys of the method will be presented.

6.2.1 Building the sets of paths

GraphGrep, as reported in [71], assumes that vertices of the data graphs have an

identification number (id-vertex ) and a label (label-vertex ) (string of any length). An

id-path of length n is a list of n id-vertices with an edge between any two consecutive

vertices. A label-path of length n is a list of n label-vertices.

(a) (b) (c)

Figure 6.1: A database of three graphs.

In Fig. 6.1(taken from [71]), A-C is a label path of graph (a) and 1-3 is the id-

path corresponding to it. The index of the database is constructed by using the

label-paths and id-paths of the graphs in the following way: for each graph and for

each vertex, we find all paths that start at this vertex and have length one (single

vertex) up to a small fixed constant value (lp). lp is used as sample for all graphs of

the database. Several paths may contain the same label sequence, so we group the

id-paths associated with the same label-path in a hash table. The keys of this hash

table are the hash values of the label paths. Each row contains the number of id-paths



102

associated with a key in each graph. We will refer to the hash table as the fingerprint

of the database (see Table 6.2 (taken from [71])). In Table 6.1 (taken from [71]) there

is a path representation of the graph in Fig. 6.1(a).

The query graph is decomposed in a set of intersection paths. The branches

of a depth-first traversal tree of the query graph are decomposed into sequences of

overlapping label-paths, called patterns, of length lp or less. (see Fig. 6.2 (taken

from [71])).

(a) (b) (c)

Figure 6.2: (a) A query graph. (b) The depth first tree of the graph in (a). (c)
Patterns obtained with lp = 4. Overlapping labels are marked with asterisks or
underlining. Labels with same mark represent the same vertex

.

Overlaps may occur in the following cases:

• for consecutive label-paths, the last vertex of a pattern coincides with the first

vertex of the next pattern (e.g. A/B/C/B/ with lp = 3 is decomposed into two

patterns: A/B/C/ and C/B/);

• if a vertex has branches, it is included in the first pattern of every branch (see

vertex C in Fig. 6.2(c));

• the first vertex visited in a cycle appears twice: in the beginning of the first



103

Label-Path Id-Path

A/ {(1)}
A/B/ {(1, 0)(1, 2)}
A/C/ {(1, 3)}

A/B/C/ {(1, 0, 3)(1, 2, 3)}
A/C/B/ {(1, 3, 0)(1, 3, 2)}

A/B/C/A {(1, 0, 3, 1)(1, 2, 3, 1)}
A/B/C/B/ {(1, 0, 3, 2)(1, 2, 3, 0)}
A/C/B/A/ {(1, 3, 0, 1)(1, 3, 2, 1)}

B/ {(0)(2)}
B/A/ {(0, 1)(2, 1)}
B/C/ {(0, 3)(2, 3)}

B/A/B/ {(0, 1, 2)(2, 1, 0)}
B/A/C/ {(0, 1, 3)(2, 1, 3)}
B/C/A/ {(0, 3, 1)(2, 3, 1)}
B/C/B/ {(0, 3, 2)(2, 3, 0)}

B/A/B/C/ {(0, 1, 2, 3)(2, 1, 0, 3)}
B/A/C/B/ {(0, 1, 3, 0)(2, 1, 3, 2)(2, 1, 3, 0)(0, 1, 3, 2)}
B/C/B/A/ {(0, 3, 2, 1)(2, 3, 0, 1)}
B/C/A/B/ {(0, 3, 1, 0)(2, 3, 1, 2)(2, 3, 1, 0)(0, 3, 1, 2)}

C/ {(3)}
C/B/ {(3, 0)(3, 2)}
C/A/ {(3, 1)}

C/B/A/ {(3, 0, 1)(3, 2, 1)}
C/A/B/ {(3, 1, 0)(3, 1, 2)}

C/B/A/B/ {(3, 0, 1, 2)(3, 2, 1, 0)}
C/B/A/C/ {(3, 0, 1, 3)(3, 2, 1, 3)}
C/A/B/C/ {(3, 1, 0, 3)(3, 1, 2, 3)}

Table 6.1: Path representation of the graph in Fig. 6.1(a) with lp = 4.



104

Key Graph g1 Graph g2 Graph g3

h(C/A/) 1 0 1

h(C/B/) 2 2 2

h(A/B/C/A/) 2 0 0

. . .

h(A/B/C/B/) 2 2 0

Table 6.2: The fingerprint of the database.

pattern of the cycle and at the end of the last pattern of the cycle (the first and

last pattern can be identical, as in Fig. 6.2(c)).

6.2.2 Filtering the database

This section shows the filtering method, as reported in [71]. The query graph is parsed

to build its fingerprint (hashed set of paths). The fingerprint of the query is compared

with the fingerprint of the database in order to filter the database. When the exact

graph matching is performed, a graph for which at least one value in its fingerprint

is less than the corresponding value in the fingerprint of the query is discarded. For

example, with the query graph of Fig. 6.2 with lp = 4 and the dataset of Fig. 6.1, the

graphs (b) and (c) would be filtered out because they do not contain the label-path

A/B/C/A/. The remaining graphs represent the candidates and they may contain

one or more subgraphs matching the query. We continue filtering out parts inside

of the candidate graphs in the following way: we decompose the query in patterns

and only the parts of each candidate graph whose label-path sets correspond to the

patterns of the query are selected and then compared with the query. The above

method requires finding all the label-paths up to a length lp starting from each node

in the query graph.

Although this fingerprint produced a better filtering result, sometimes the its



105

size is too big while we have many graphs in the database. Moreover, the filtering

construction running time is not linear to the number of graphs in the database. The

file size of fingerprint was depending on two variables, the number of the graphs in the

database and the number of rows in the hash table. For big complex database graphs,

if we want to have better filtering results, the hash rows must be bigger enough to

hold all possible patterns without collisions. The size of the hash table can be huge.

Thus, another filtering tecnique, useful for such a kind of graphs, is the one used in

Frowns and Daylight [16, 88]. In this method, we store a fingerprint as an fix-length

array of integers (the default length is 256). Each integer has a certain number of

bits (usually 32 in most platform) that can be flipped. The process of adding a path

to a fingerprint is simply choosing the index and bit position for a path. The above

procedure does this in a deterministic fashion. The advantage of this fingerprint is

that each fingerprint is fix sized (1K bytes in this case), and we can produce and

compare each fingerprint in procedure.

6.2.3 Matching

This section shows how to match a query graph against a graphs database taken

from [71]. After filtering, we look for all matching subgraphs in the remaining graphs.

We use the path representation of the graphs to look for occurrences of the query.

Only the parts of each (candidate) graph whose id-path sets correspond to the pat-

terns of the query are selected and compared with the query. After the id-path sets

are selected, we identify overlapping id-path lists and concatenate them (removing

overlaps) to build a matching subgraph. For overlapping cases (1) and (2) a pair of

lists is combined if the two lists contain the same id-vertex in the overlapping position.

In overlapping case (3), a list is removed if it does not contain the same id-vertex in

the overlapping positions; finally, lists are removed if equal id-vertices are not found

in overlapping positions.



106

Example. Let us consider the steps to match the query in Fig. 6.2(a) with the

graph g1 in Fig. 6.1(a).

1. Select the set of paths in g1 (Fig. 6.1) matching the patterns of the query

(Fig. 6.2(c)): A/B/C/A/= f{1, 0, 3, 1), (1, 2, 3, 1)} C/B/= {(3, 0), (3, 2)}.

2. Combine any list l1 from A/B/C/A/ with any list l2 of C/B/ if the third id-

vertex in l1 is equal to the first id-vertex of l2 and the first id-vertex in l1 is

equal to the fourth id-vertex of l1: A/B/C/A/C/B/= {(1, 0, 3, 1), (3, 0)), ((1,

0, 3, 1),(3, 2)), ((1, 2, 3, 1), (3, 0)), ((1, 2, 3, 1), (3, 2))}.

3. Remove lists from A/B/C/A/ C/B/ if they contain equal id-vertices in non-

overlapping positions (the positions in each list not involved above). The two

substructures in g1 whose composition yields A/B/C/A/ C/B/ are ((1, 0, 3, 1),

(3, 2)) and ((1, 2, 3, 1), (3, 0)).

The matching algorithm depends on the number of query graph patterns p that

need to be combined; p is somewhat difficult to determine for the average case.

Roughly speaking, it is directly proportional to the query size and to the maxi-

mum valence of the vertices in the query. The larger lp, the smaller p, though this

relationship is data-dependent.

6.2.4 Data storage with BerkeleyDB

Berkeley DB is an open-source embedded database library that provides scalable,

transaction-protected data management services to applications. It provides a variety

of storage/access methods including dynamic hash tables, B+trees, persistent queues,

and numbered records. In short, it is a toolkit for writing customized databases. Un-

like standard databases that function as standalone servers, embedded databases such



107

as Berkeley DB are software libraries that developers can embed into their applica-

tions. The database functions in the application’s process. The application itself can

be a server and can use the embedded database library to implement custom database

logic. Berkeley DB has a performance advantage over general-purpose databases be-

cause it does not have interprocess communication (IPC) overhead with application

servers. Nor does Berkeley DB provide a generic complex query language like SQL.

Instead, a developer can customize the database for specific access patterns. In Graph-

Grep, we use BerkeleyDB to store the mass data of the result of index construction

process.

6.2.5 Complexity Analysis

Here is a description of the worst case complexity for GraphGrep as given in [71]. Let

|D| be the number of graphs in a database D. Let n, e and m be the number of nodes,

the number of edges and the maximum valence (degree) of the nodes in a database

graph, respectively. The worst case complexity of building a path representation

for the database is O(
∑|D|

i (nim
lp
i )), whereas the memory cost is O(

∑|D|
i (lpnim

lp
i )).

Given a query with nq nodes, eq edges and mq maximum valence, finding its patterns

takes O(nq + eq) time; building its fingerprint takes O(nqm
lp
q ). Filtering the database

takes linear time in the size of the database. The matching algorithm depends on the

number of query graph patterns p, that need to be combined; p is somewhat difficult

to determine for the average case. Roughly speaking, it is directly proportional to

the query size and to the maximum valence of the nodes in the query. The larger

lp, the smaller p, though this relationship is datadependent. In general if ñ is the

maximum number of nodes having the same label, the worst case time complexity

for the matching is O(
∑|Df |

i ((ñim
lp
i )p)) with |Df | the size of the database after the

filtering. For a query containing w pairs of nodes connected with wildcards the

complexity for the matching is O(
∑|Df |

i ((ñim
lp
i )p + wei)).



108

6.3 VF

Purpose of this section is to illustrate VF [44, 46, 47], a graph matching algorithm of

Attributed Relational Graphs (ARG) which, using a set of feasibility rules, allows to

reduce the computational cost of the matching process.

The matching process is carried out by using a State Space Representation: a state

represents a partial solution of the matching between two graphs, and a transition

between states corresponds to the addition of a new pair of matched nodes. The

feasibility rules prune states corresponding to partial matching solutions not satisfying

the required graph morphism.

6.3.1 The Algorithm

This section shows the VF algorithm as reported in [46]. A matching process between

two graphs G1 = (N1, B1) and G2 = (N2, B2) consists in the determination of a

mapping M which associates nodes of the graph G1 to nodes of G2 and viceversa.

As it is well known, different constraints can be imposed to M and consequently

different mapping types can be obtained: monomorphism, strict isomorphism and

graph-subgraph isomorphism are the most frequently used. We will consider the

monomorphism known also as graph matching.

Generally, the mapping is expressed as the set of ordered pairs (n,m) (with n ∈ G1

and m ∈ G2) each representing the mapping of a node n of G1 with a node m of G2.

Each pair is here denoted as component mi of the mapping M . The State Space

Representation (SSR) can be effectively used to describe a graph matching process, if

each state s of the matching process represents a partial mapping solution. A partial

mapping solution M(s) is a subset of M , i.e. it contains only some components of

M . In the adopted SSR representation a transition between two states corresponds

to the addition of a new pair of matched nodes. In principle, the solutions to the



109

matching problem could be obtained by computing all the possible partial solutions

and selecting the ones satisfying the wanted mapping type (Brute Force approach). In

order to reduce the number of paths to be explored during the search, for each state on

the path from s0 to a goal state, we impose that the corresponding partial solution

verifies some coherence conditions, depending on the desired mapping type. The

rationale of our algorithm is that of introducing, given a state s, criteria for foreseeing

if s has no coherent successors after a certain number of steps. It is clear that these

criteria (feasibility rules) should allow to detect as soon as possible conditions leading

to incoherence. States which do not satisfy a feasibility rule can be discarded from

further expansions.

The VF Matching Algorithm

VF(G1,G2)
1 C(s0)← ∅;
2 S(0)← {s0};
3 k ← 0;
4 repeat

5 S(k + 1)← ∅;
6 for each s in S(k)
7 Compute the set P (s) of all possible pair of nodes

of G1 and G2 not yet included in C(s), and set
Q(s) ⊆ P (s) of the pairs that, if inserted into C(s),
produce a coherent partial mapping;

8 for each (n, m) in Q
9 Add to S(k + 1) the state obtained adding (n, m) to C(s);

10 end for each;

11 end for each;

12 k ← k + 1;
13 until k = Card(N1) or S(k) = ∅;
14 end VF.

Figure 6.3: The VF Matching Algorithm.



110

In Fig. 6.3 (taken from [46]) the proposed algorithm is outlined. At each iteration

of the outer loop, the algorithm considers the set P (s) of node pairs that can be added

to the state s, discarding those pairs which does not satisfy the feasibility rules. There

are two kinds of feasibility rules, respectively regarding the syntax and the semantics

of the graphs. The syntactic feasibility rules defined for an exact isomorphism has

been described in [44]. Semantic compatibilities can be introduced very easily in

the matching process: each time a node of the sample is compared to a node of the

prototype to determine if a new pair can be added to the current partial solution, the

attributes of the two nodes and of the branches linking them to the nodes already in s

are tested for semantic compatibility (which obviously has to be defined with reference

to the specific application domain). The exact matching algorithm can be extended

by considering both transformations on the structure of the graph and on nodes and

branches attributes. The considered syntactic transformations are the split of a node

into a subgraph, the merge of a subgraph into a node and the insertion or deletion

of a branch. Syntactic transformations are taken into account, during the expansion

process of the search graph, by generating new states. When examining a state in the

search process, the algorithm checks if there is a syntactic transformation that can be

applied to it. For each applicable transformation, a new state s is added to the SSR

graph. The nodes involved in a syntactic transformation are marked, in order to avoid

reconsidering them in successive transformations. In this way we avoid the possible

generation of infinite length paths in the search graph and prevent the possibility that

a prototype is matched with a too different sample, as a consequence of the repeated

application of some transformation.The conditions a state s has to meet in order that

a transformation can be applied, depend on the transformation type. For each type

of transformation, only the nodes in P (s) are considered as candidates so as to ensure

that, in the next step of the algorithm, the nodes generated by the transformation

(or at least some of them) will be tested using the feasibility rules. In this way, if the



111

new paths are fruitless, they will be pruned as soon as possible.

To evaluate the computational complexity of the VF algorithm, we have to con-

sider both the best and the worst case. The computational complexity of the matching

algorithms depends on two factors: the number of the SSR states currently visited

and the time needed for visiting each state. In [47] it is proven that the total cost

for exploration of a single state is Θ(N) where N is the number of the nodes of the

larger graph.

The best case happens when in each state only one of the potential successors

satisfies the feasibility predicate (in the hypothesis that an isomorphism exists). In

this situation, the number of explored states is equal to N , and thus the computational

complexity in the best case is Θ(N2).

In the worst case, in each state the predicate will not be able to avoid the visit

of any of the successors, and the algorithm will have to explore all the states before

reaching a solution. In [47] it is shown how the number of the states in this case is

proportional to N ! and the computational complexity is Θ(N !N)

6.4 GraphGrepVF for exact graph matching

In this section we will present GraphGrepVF, a new graph matching method, able

to filter much more than GraphGrep, hence reducing the matching time needed to

VF algorithm to perform the match. GraphGrepVF uses GraphGrep’s filtering and

VF’s matching algorithm but it also introduces a new technique to prune paths of

candidates graphs which will not contain for sure a solution. The idea is to use

GraphGrep to construct the fingerprint of the database, a new hash table where it

saves for each pattern of each graphs in the database of length 1 up to lp, the edges of

the idx-paths referred to that pattern. This hash table is stored into the BerkeleyDB

for the same reasons of the index construction process built by GraphGrep. For

example, if we have a dataset of Fig. 6.4 we will have the hash table like in table 6.3.



112

G1-ab 0 2

G1-ba 2 0

G1-baa 2 0

0 1

G1-aab 1 0

0 2

G1-aa 0 1

1 0

G2-aa 0 1

1 0

G2-ab 1 2

G2-ba 2 1

G2-aab 0 1

1 2

G2-baa 2 1

1 0

G3-ab 0 1

G3-bc 1 2

G3-ba 1 0

G3-cb 2 1

G3-abc 0 1

1 2

G3-cba 2 1

1 0

Table 6.3: New hash table of GraphGrepVF.



113

(a) (b) (c)

Figure 6.4: Dataset with three graphs.

When the query is parsed and it is decomposed in patterns, only among the graphs

not pruned by the filtering, we retrieve the edges of the idx-paths corresponding to

the query patterns. In this way the size of edges of the new graphs is much less than

originals.

Figure 6.5: A graph query.

For example if we have the query of Fig. 6.5 and the graphs (a) and (b) of Fig. 6.4

are the candidates after the filtering, we will retrieve only the edge (0 − 1) for the

graph (a) and the edge (0− 1) for the graph (b) reducing the size of both graphs.

By experiments we have seen that even when no one graph is filtered, with this

further technique, we are able to prune many parts of graphs obtaining reduced

graphs, that is the same graphs but with a smaller number of edges.

6.5 Performance Analysis and Results

GraphGrepVF is written in C++ and it is an extension of GraphGrep whose source

code is freely downloadable in [70, 3]. GraphGrepVF will be soon available for



114

Table 6.4: Comparisons between FG,GV,GV2,FG,FV,FV2 methods for 1000 irregular
meshes2D with 100 nodes and 10 labels.

free download. The machine used for the experiments is a Mobile Intel Pentium

4 with 512MB of RAM. We performed a set of numerical experiments on two kinds

of datasets. The first one has been generated by using a graph benchmark created

by us. The following kinds of graphs have been considered: regular and irregular

meshes2D, regular and irregular meshes3D, random, valence with val 3,5,7.

For each category we have generated datasets of 1000 and 5000 graphs with 100

nodes for each graph; the number of labels varies from 4 to 60. The number of nodes

for the queries is 4 up to 75. The second kind of dataset is the NCI databases. We have

generated two datasets, one having 10.000 molecules and one having 50.000 molecules.

Graphs in both datasets have an average number of 20 nodes; several graphs have up

to 190 nodes. We have varied the query size for the NCI databases (23 to 189 nodes).

For all the experiments, the lp constant has been fixed to 4. We used a PC equipped



115

Table 6.5: Comparisons between FG,GV,GV2,FG,FV,FV2 methods for 1000 irregular
meshes2D with 100 nodes and 60 labels.

with 2.30 GHz Pentium 4 Processor. We have compared six different methods. The

six methods differ for the filtering tecnique, and for the matching tecnique. They are:

• GG : it performs the filtering and the matching by using GraphGrep.

• GV : it performs the filtering by using GraphGrep and the matching by using

VF algorithm.

• GV2 : it performs the filtering by using GraphGrep and the matching by us-

ing VF algorithm. Moreover it uses the new filtering tecnique to reduce the

dimension of the graphs to visit.

• FG : it performs the filtering by using Frowns and the matching by using Graph-

Grep.



116

Table 6.6: Comparisons between FG,GV,GV2,FG,FV,FV2 methods for 1000 regular
meshes3D with 100 nodes and 10 labels.

• FV : it performs the filtering by using Frowns and the matching by using VF

algorithm.

• FV2 : it performs the filtering by using Frowns and the matching by using VF

algorithm. Moreover it uses the new filtering tecnique to reduce the dimension

of the graphs to visit.

As shown into the tables 6.4, 6.5, 6.6, 6.7 , 6.8, 6.9, 6.10, the GV2 or FV2 method,

that is the ones which use the new filtering tecnique, performs always better in terms

of time for every kind of query.



117

Table 6.7: Comparisons between FG,GV,GV2,FG,FV,FV2 methods for 5000 valence
with 100 nodes, 4 labels and valence equal to 7.

6.6 Graph LInear DEscription language (GLIDE)

In this section we present GLIDE (Graph LInear DEscriptor), (see [68, 69]), a query

language for a database of undirected graphs. The design of GLIDE has been influ-

enced by two query languages: SMART [134, 88], and Xpath [42]. SMART is a query

language for molecule databases coded using SMILES (Simplified Molecular Input

Line Entry Specification) which is a nomenclature to represent a molecule. SMILES

describes atoms and bonds of a molecule using their properties (element identity,

isotope, formal charge, and implicit hydrogen count for the atoms; single, double,

triple and aromatic for the bonds). SMART enriches SMILES’s syntaxis including

wildcards symbols to match any sequence of atoms and bonds. XML Path Language

(XPath) is a query language to address parts of an XML document as a tree of nodes



118

Table 6.8: Comparisons between FG,GV,GV2,FG,FV,FV2 methods for 5000 random
with 100 nodes and 4 labels.

where adjacent nodes specifications are separated by the symbol ‘/’ used in Unix file

systems to describe the location of a file. It also contains wildcards to match unspec-

ified paths. GLIDE uses graph expressions instead of path expressions, it represents

the vertices with their labels (strings) and it uses the symbol ‘/’ to separate two

vertices.

6.6.1 Syntaxis and semantic of GLIDE

The main idea in GLIDE is to represent a graph, in linear notation, as a set of

branches where each vertex is presented only once. Vertices are represented using their

labels (see Table 6.11(a) (taken from [68, 69])) and they are separated using slashes

(Table 6.11(b) (taken from [68, 69]); branches are grouped using nested parentheses

‘(’ and ‘)’ (Table 6.11(c)-(d) (taken from [68, 69])) and cycles are broken by cutting



119

Table 6.9: Comparisons between FG,GV,GV2,FG,FV,FV2 methods for NCI database
with 10000 molecule.

an edge and labeling it with an integer (Table 6.11(c)-(d) (taken from [68, 69])). The

vertices of the cut edge are represented by their labels followed by ‘%’, the integer

and ‘/’. If the same vertex is a vertex of several cut edges the label of the vertex

is followed by a list of ‘%’ and integers (Table 6.11(g) (taken from [68, 69])). Non

specified components in a graph are described using wildcards {∗+ .?} (see Fig. 6.12

(taken from [68, 69])). The wildcards represent single vertices or paths. The semantic

of the wildcards is given in based on the elements in a graph that during a search

they can match: ‘.’ matches any single vertex; ‘*’ matches zero or more vertices; ‘?’

matches zero or one vertex; ‘+’ matches one or more vertices.



120

Table 6.10: Comparisons between FG,GV,GV2,FG,FV,FV2 methods for NCI
database with 50000 molecule.

6.7 Extension of GraphGrepVF for inexact graph

matching

In this section we will explain how GraphGrepVF is used to perform inexact matching

with query expressed in GLIDE query language.

When a query in GLIDE is given, a parser computes all the wildcards and prepares

a table of them (parser table) for the next phase, the matching. The idea is to try

to filter the dataset using only the piece of query graph which for sure will be in the

solution: each graph in the dataset not cointaning these pieces will be pruned out.

Each entry of the parser table is composed by 4 objects: two indexes of the two nodes

which share the wildcard (-1 if only one node is involved), another integer value L

and the operator. The integer value L counts how many times the operator must be



121

Graph GLIDE Representation

a/

a/b/

a/h/c/f/

a/(h/c/)b/

i/(b/a/(l/)h/c)d/

i%1/c/d%1/

a%1/h/c%1%2/d/i%2

Table 6.11: GLIDE representation of graphs. (a) A vertex. (b) An edge. (c) A path.
(d)-(e) Branches. (f)-(g) Graph with cycles. The dashed edges are the cut edges.

Wildcard Semantic (matching with) Example
GLIDE Expression Graph

. any single vertex a/./b/

* zero or more vertices a/*/b/

? zero or one vertex a/?/b/

+ one or more vertices a/+/b/

Table 6.12: Wildcards in GLIDE.



122

Query in GLIDE Parser Table

a/./././+/*/*/b/ w[0]=[0 1 4 G]

a/*/*/*/b/ w[0]=[0 1 0 G]

a/././*/*/b/ w[0]=[0 1 2 G]

a/././b/ w[0]=[0 1 2 E]

a/././?/b/ w[0]=[0 1 3 L]

a/(./b/)(*/d/e/f/)(./) w[0]=[0 1 1 E]
w[1]=[0 2 0 G]
w[2]=[0 -1 1 E]

a(./)(+/./c/) w[0]=[0 -1 1 E]
w[1]=[0 1 2 G]

Table 6.13: Examples of parser tables for some queries.

applied. The operator can assume the following values under the hypothesis that the

two indexes are a and b:

• ‘G′ when there is some ‘+’ or ‘*’ and it means that we are looking for a path

from ‘a′ to ‘b′ with the number of internal nodes greater or equal than the value

L associated with this entry;

• ‘L′ when there is some ‘?’ and it means that we are looking for a path from ‘a′

to ‘b′ with the number of internal nodes less or equal than the value L associated

with this entry;

• ‘E ′ when there is some ‘.’ and it means that we are looking for a path from ‘a′

to ‘b′ of with the number of internal nodes equal to the value L associated with

this entry.

In the table 6.13 there are some examples of query in GLIDE with the associated

list of entries.



123

Once that the filtering process has been completed for the pieces of the query, the

matching step is performed on each entry of the list generated by the parser.

@
@

@
@

@
@

�
�

�
�

�
�

a b

cd g e

f

Figure 6.6: A graph.

Let us consider the query and its parser table in the last row of table 6.13. The

filtering will prune all the graphs which do not contain neither ‘a′ nor ‘c′ vertices.

Let us suppose that we have only one graph remained after the filtering, the one in

figure 6.6. The next step is to perform the matching on every entry w[i] of the parser

table. Thus first of all we check if there is any paths satisfying w[0]. w[0] asks for

paths of length 1 starting from a node ‘a′ to anything else. In the graph in figure 6.6

the paths ab and ad satisfy w[0]. For w[1] we check if there is some path from ‘a′ to

‘c′ of length ≥ 2. Valid local solutions paths are abgc of length 3 and abgfc of length

4.

At this point we have a list of local solutions for every w[i] of the parser table.

All the local solutions of different w[i] must be merged together and checked to see if

they can be considered valid global solutions.

The rules we have decided to introduce to decide when global solutions are valid

wheter not are the following:

1. if one solution x for w[i], with i = 1, . . . , n, is contained in another one y for



124

w[j], with j = 1, . . . , n and j 6= i, then xy will not belong to any valid global

solutions;

2. if one solution x for w[i], with i = 1, . . . , n, shares the same initial node of a

solution y for w[j], with j = 1, . . . , n and j 6= i, then xy will not belong to any

valid global solutions;

3. if one solution x for w[i], with i = 1, . . . , n, shares the same final node of a

solution y for w[j], with j = 1, . . . , n and j 6= i, then xy will not belong to any

valid global solutions.

Reminding that in the example above we had as solutions for w[0], the paths ab

and ad, and as solutions for w[1] we had paths abgc and abgfc; now we have to make

the cartesian product of all local solutions to see which global solution satisfies the

rules just introduced.

The four possible global solutions are {ab, abgc}, {ab, abgfc}, {ad, abgc} and

{ad, abgfc}: {ab, abgc} and {ab, abgfc} are not two valid global solutions because

in both the local solution ab is contained in the other local solution. Instead, the

other two global solutions {ad, abgc} and {ad, abgfc} are valid and they are the out-

put of the inexact match of the graph in Fig. 6.6 and query in the last row of the

table 6.13.

Of course, dealing with inexact matching with the above procedure could be very

expensive in terms of time complexity. However a simple scheme of optimization

without losing solutions is possible but not for all the wildcards. For ‘.’ and ‘?’ we

can reduce the number of nodes to visit for each graph in the dataset to be processed.

Infact, during a visit, if the current path length is greater than the value L of the

parser table entry, then we can skip the visit of this path and continue with others.

Hence, performing inexact matching in presence of ‘.’ and ‘?’ lets us prune many

vertexes and the overall process is enough fast. However, for ‘*’ and ‘+’, we do not



125

have any optimization step yet and the inexact matching could be very expensive; of

course it depends on the structure of the graphs in the dataset to be matched.



Chapter 7

Conclusions

In the first part of this thesis, we have extended the ideas of the most successful

best match retrieval data structures, such as M-Tree, MPV-Tree, FQ-Tree, and List

of Clusters, by introducing pivots based on the farthest pairs (Antipoles) in a data

set. The resulting Antipole Tree is a bisector tree using pivot-based clustering with

bounded diameter. Both range and k-nearest neighbor searches are performed by

eliminating those clusters which cannot contain the result of the query. Antipoles

and clusters centroids are found by playing a linear time randomized tournament

among the elements of the input data set.

A data-dependent aspect of the algorithm is to control the proliferation of clusters

through the introduction of a suitable diameter threshold. In order to properly define

such a threshold we propose a statistical analysis on the set of pairwise distances. To

decide when to split, we need an estimate of the ratio between the pseudo-diameter

(Antipole length) and the real diameter. Since no guaranteed approximation al-

gorithm for diameter computation in general metric spaces can exist, we use the

approximation ratio given by a very efficient algorithm for diameter computation in

Euclidean spaces together with the intrinsic dimension of the given metric space.

By using the tournament size equal to 3 or d−1, where d is the intrinsic dimension of

the metric space, we obtained good experimental results. However, we are currently

126



127

investigating from a theoretical point of view how to determine an optimal value for

the tournament size parameter. Extensive experimentations have been performed on

both synthetic and real data sets, with normal and clustered distributions. All the

experiments have shown that our proposed structure outperforms the most successful

data structures for best match search by a factor ranging between 1.5 and 2.5.

This thesis has also shown how the Antipole Tree has been applied successfully over

four different applications, each showing the Antipole Tree’s strength and efficiency.

In the second part of the thesis, we presented a new graph search algorithm,

GraphGrepVF, which is able to filter many more graphs than the previous algorithms,

GraphGrep and VF. GraphGrepVF is realized by introducing a new filter method

that can filter paths that do not contain the solution. Experiments have shown that

GraphGrepVF performs faster than GraphGrep and VF.

This thesis also discussed how to deal with inexact matching. For inexact match-

ing, we used GLIDE, a graph query language, to express the graph queries and the

kind of inexactness the user wants. GraphGrepVF, speeded up during inexact match-

ing by a new optimization step, returns all the subgraphs which satisfied the query.

There are numerous directions for future research. First of all, an improved version

of the Antipole Tree is under study. Also it has been already applied in networks as

a dynamic clustering algorithm. Furthermore, a first version of parallelized Antipole

tree will be released soon. New algorithms to find an approximated solution to 1-

median centroid are being explored; one new idea to use an approximated algorithm

to solve the k-median problem and to transform the Antipole Tree as a tree with k

children. Finally, new clustering algorithm over graphs who clusters regions of nodes

will be investigated; the idea is to use the approximated 1-median algorithm seen in

section 3.2 to find a centroid of such regions and hence to create the clusters according

to such nodes.

As far as graph matching is concerned, other filtering tecniques to speed-up the



128

process are under study. We are exploring other ways to make the inexact matching

faster.



Bibliography

[1] http://graphics.stanford.edu/projects/texture/demo/synthesis VisTex 192.html,

Texture Synthesis: VisTex Texture.

[2] http://cygnus.uta.edu/subdue, The SUBDUE Knowledge Discovery System.

[3] http://alpha.dmi.unict.it/ ctnyu/. University of Catania and New York Uni-

versity.

[4] P. Agarwal, J. Matousek, and S. Suri. Farthest neighbors, maximum spanning

trees and related problems in higher dimensions. In Comput. Geom.: Theory

and Appls, 1:189–201, 1992.

[5] C. Aggarwal, J.L. Wolf, P.S. Yu, and M. Epelman. Using unbalanced trees

for indexing multidimensional objects. Knowledge and Information Systems,

1(3):157–192, 1999.

[6] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace

clustering of high dimensional data for data mining applications. Proceedings

of ACM SIGMOD, pages 94–105, 1998.

[7] M. Ashikhmin. Synthesizing natural textures. ACM Symposium on Interactive

3D Graphics, pages 217–226, 2001.

[8] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume

bounding box of a point set in three dimensions. Proceedings of the 10th Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 82–91, 1999.

129



130

[9] S. Battiato, D. Cantone, D. Catalano, G. Cincotti, and M. Hofri. An efficient

algorithm for the approximate median selection problem. Proceedings of the 4th

Italian Conference on Algorithms and Complexity (CIAC 2000), volume 1767

of Lecture Notes in Computer Science, Springer-Verlag, pages 226–238, 2000.

[10] S. Battiato, A. Pulvirenti, and D. Reforgiato. Antipole clustering for fast texture

synthesis. Proceedings of Winter School of Computer Graphics (WSCG), 2003.

[11] S. Berchtold, D.A. Keim, and H.P. Kriegel. The x-tree: An index structure for

high-dimensional data. Proceedings of the 22th Intl. Conference on Very Large

Database, pages 28–39, 1996.

[12] J.R. Bergen and B. Julesz. Rapid discrimination of visual patterns. IEEE

Transactions on Systems Man and Cybernetics, 13:857–863, 1993.

[13] M.W. Berry, Z. Drmac, and E.R. Jessup. Matrices, vector spaces, and informa-

tion retrieval. SIAM Review, 41(2):335–362, 2003.

[14] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest

neighbor meaningful? Proceedings of the 7th Intl. Conference on Database

Theory, 1540:217–235, 1999.

[15] P. Billault. Texture synthesis algorithms. Image Signal Departement de Math-

ematiques Appliquees, Technical report, 2001.

[16] M. Birgmeier. Frowns chemoinformatics system.

http://frowns.sourceforge.net/.

[17] G. Di Blasi and D. Reforgiato Recupero. Fast colorization of gray images.

Euroraphics Italian Chapter, 2004.

[18] B.Luo, R.C.Wilson, and E.R.Hancock. Spectral feature vectors for graph clus-

tering. Proceedings of joint Syntactical and Structural Pattern Recognition and

Statistical Pattern Recognition, 2396:83–93, 2002.



131

[19] B.Luo, R.C.Wilson, and E.R.Hancock. Spectral clustering of graphs. Proceed-

ings of 4th IAPR-TC15 Graph based Representations in Pattern Recognition,

pages 190–201, 2003.

[20] N. Bolshakova and F. Azuaje. Improving expression data mining through cluster

validation. Information Technology Applications in Biomedicine, 2003, pages

19–22, 2003.

[21] J.S. De Bonet. Multiresolution sampling procedure for analysis and synthesis of

texture images. Computer Graphics, ACM SIGGRAPH, pages 361–368, 1997.

[22] T. Bozkaya and M. Ozsoyoglu. Indexing large metric spaces for similarity search

queries. ACM Transaction on Database Systems, 24(3):361–404, 1999.

[23] S. Brin. Near neighbor search in large metric spaces. Proceedings of the 21th

International Conference on Very Large Data Bases, pages 574–584, 1995.

[24] H. Bunke. Graph-based tools for data mining and machine learning. Proceedings

of Machine Learning and Data Mining in Pattern Recognition, pages 7–19, 2003.

[25] W.A. Burkhard and R.M. Keller. Some approaches to best-match file searching.

Communication of the ACM, 16(4):230–236, 1973.

[26] P.J. Burt and E.H. Adelson. The laplacian pyramid as a compact image code.

IEEE Transactions on Communications, 31:532–540, 1983.

[27] B. Bustos and G. Navarro. Probabilistic proximity searching algorithms based

on compact partitions. Proceedings of SPIRE, pages 284–297, 2002.

[28] I. Calantari and G. McDonald. A data structure and an algorithm for the

nearest point problem. In IEEE Transaction on Software Eng., 9(5), 1983.

[29] D. Cantone, G. Cincotti, A. Ferro, and A. Pulvirenti. An efficient algorithm for

the 1-median problem. SIAM Journal on Optimization (to appear), 2004.



132

[30] D. Cantone, A. Ferro, A. Pulvirenti, D. Reforgiato, and D. Shasha. Antipole

tree indexing to support range search and k-nearest-neighbor search in metric

spaces. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2004.

[31] T.M. Chan. Approximating the diameter, width, smallest enclosing cylinder,

and minimum-width annulus. In International Journal of Computational Ge-

ometry and Applications, 12(1-2):67–85, 2002.

[32] M. Charikar, S. Guha, E. Tardos, and D. Shmoys. A constant factor approxima-

tion for the k-median problem. Proceedings of the 31st Annual ACM Symposium

on Theory of Computing, pages 1–10, 1999.

[33] E. Chavez and G. Navarro. An effective clustering algorithm to index high

dimensional metric spaces. Proceedings of SPIRE, pages 75–86, 2000.

[34] E. Chavez and G. Navarro. A probabilistic spell for the curse of dimensionality.

Proceedings of Third Workshop on Al-gorithm Engineering and Experimentation

(ALENEX01) volume 2153 of Lecture Notes in Computer Science, pages 147–

160, 2001.

[35] E. Chavez, G. Navarro, R. BaezaYates, and J.L. Marroquin. Searching in metric

spaces. ACM Computing Surveis, 33(3):273–321, 2001.

[36] B. Chazelle. Computational geometry: a retrospective. Proceedings of the 26th

Annual ACM Symposium on Theory of Computing, pages 75–94, 1994.

[37] S.A. Chervitz, E.T. Hester, C.A. Ball, K. Dolinski, S.S. Dwight, and M.A.

Harris. Using the saccharomyces genome database (sgd) for analysis of protein

similarities and structure. Nucleic Acids Res, 27:74–78, 1999.

[38] D. Christendat, A. Yee, A. Dharamsi, Y. Kluger, A. Savchenko, and J.R. Cort.

Structural proteomics of an archaeon. Nat Struct Biol 2000, 7:903–909, 2000.



133

[39] P. Ciaccia and M. Patella. Bulk loading the m-tree. Proceedings of the 9th

Australasian Database Conference (ADC), 1998.

[40] P. Ciaccia and M. Patella. Pac nearest neighbor queries: Approximate and

controlled search in high-dimensional and metric spaces. Proceedings of the

IEEE 16th International Conference on Data Engineering, pages 244–255, 2000.

[41] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method

for similarity search in metric spaces. Proceedings of the 23th International

Conference on Very Large Data Bases, pages 426–435, 1997.

[42] J. Clark and S. DeRose. http://www.w3.org/TR/xpath, 1999.

[43] K.L. Clarkson. Nearest neighbor queries in metric spaces. Proceedings of the

29th Annual ACM Symposium on Theory of Computing, 1997.

[44] L. Cordella, P. Foggia, C. Sansone, and M. Vento. An efficient algorithm for the

inexact matching of arg graphs using a contextual transformational model. In

proceedings of the 13th ICPR. IEEE Computer Society Press, 3(180-184), 1996.

[45] L.P. Cordella, P. Foggia, C. Sansone, F. Tortorella, and M. Vento. Vf algorithm.

http://amalfi.dis.unina.it/graph/.

[46] L.P. Cordella, P. Foggia, C. Sansone, F. Tortorella, and M. Vento. Graph match-

ing: a fast algorithm and its evaluation. Proceeding of the IEEE International

Conference in Pattern recognition (ICPR), 1998.

[47] L.P. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance evaluation

of the vf graph matching algorithm. Proceeding of the IEEE International

Conference in Pattern recognition (ICPR), 1999.

[48] M.C. Costanzo, M.E. Crawford, J.E. Hirschman, J.E. Kranz, P. Olsen, and L.S.

Robertson. Ls ypd, pombepd and wormpd: model organism volumes of the



134

bioknowledge library, an integrated resource for protein information. Nucleic

Acids Res 2001, 29:75–79, 2001.

[49] T.M. Cover and P.E. Hart. Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, 13(1):21–27, 1967.

[50] G.R. Cross and A.K. Jain. Markov random field texture models. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 5:25–39, 1983.

[51] D.R. Cutting, D.R. Karger, J.O. Pedersen, and J.W. Tukey. Scatter / gather:

A cluster-based approach to browsing large document collections. Proc. ACM

SIGIR 92, pages 318–329, 1992.

[52] S. Deerwester, S.T. Dumais, T.K. Landauer, G.W. Furnas, and R.A. Harshman.

Indexing by latent semantic analysis. Journal of the Society for Information

Science, 41(6):391–407, 1990.

[53] S. Dickinson, M. Pelillo, and R. Zabih. Introduction to the special section on

graph algorithms in computer vision. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 23(10), 2001.

[54] A. Efros and T. Leung. Texture synthesis by a non-parametric sampling. Pro-

ceedings of the IEEE International Conference on Computer Vision, 2:1033–

1038, 1999.

[55] M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. Proceedings of the

2nd International Conference on Knowledge Discovery in Databases and Data

Mining, 1996.

[56] T. Feder and D.H. Greene. Optimal algorithms for approximate clustering. Pro-

ceedings of the 20st Annual ACM Symposium on Theory of Computing, pages

434–444, 1988.



135

[57] S. Fields. Proteomics. proteomics in genomeland. Science 2001, 291:1221–1224,

2001.

[58] E. Fix and J. Hodgens. Discriminatory analysis: Nonparametric discrimination:

Consistency properties. Technical Report 4, Project Number 21-49-004, School

of Aviation Medicine, Randoplh Air Force Base, TX, 1951.

[59] G.W. Flake, S. Lawrence, C.L. Giles, and F.M. Coetzee. Self-organization of

the web and identification of communities. IEEE Computer 2002, 35:66–71,

2002.

[60] A. Wai Chee Fu, P. M.S. Chan, Y.L. Cheung, and Y.S. Moon. Dynamic vp-

tree indexing for n-nearest neighbor search given pair-wiewdistances. VLDB

Journal, pages 311–321, 1999.

[61] K. Fukunaga. Introduction to statistical pattern recognition. Academic Press,

1, 1990.

[62] V. Gaede and O. Gunther. Multidimensional access methods. ACM Computing

Surveys, 30(2):170–231, 1998.

[63] L. Galanis, E. Viglas, D.J. DeWitt, J.F. Naughton, and D. Maier. Following the

paths of xml data: An algebraic framework for xml query evaluation. Submitted,

2001.

[64] V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and J. French. Cluster-

ing large datasets in arbitrary metric spaces. Proceedings of the IEEE 15th

International Conference on Data Engineering, pages 502–511, 1999.

[65] M. Garey and D. Johnson. Computers and intractability: A guide to the theory

of np-completeness. Freeman and Company, 1979.



136

[66] A. Gersho and R. Gray. Vector Quantization and Signal Compression. Kluwer

Academic, 1991.

[67] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via

hashing. Proceedings of 25th VLDB Conference, pages 518–529, 1999.

[68] R. Giugno. Searching algorithms and data structures for combinatorial, tem-

poral and probabilistic databases. PhD Thesis. University of Catania 2002.

[69] R. Giugno and D. Shasha. Glide, a graph linear query language.

http://www.cs.nyu.edu/shasha/papers/graphgrep/graphgrep 2002.html.

[70] R. Giugno and D. Shasha. Graphgrep matching tool.

http://www.cs.nyu.edu/shasha/papers/graphgrep/.

[71] R. Giugno and D. Shasha. Graphgrep, a fast and universal method for querying

graphs. Proceeding of the IEEE International Conference in Pattern recognition

(ICPR), 2002.

[72] A.V. Goldberg. Finding a maximum density subgraph. Technical Report

UCB/CSD University of California, Berkeley, CA, 1984.

[73] R.C. Gonzales and P. Wintz. Digital image processing. Addison-Wesley Pub-

lishing, Reading MA, 1987.

[74] T.F. Gonzalez. Clustering to minimize the maximum intercluster distance.

Theoretical Computer Science, 38:293–306, 1985.

[75] T.F. Gonzalez. Covering a set of points in multidimensional space. Information

Processing Letter, 40:181–188, 1991.

[76] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for

large databases. Proceedings of ACM SIGMOD, pages 73–84, 1998.



137

[77] S. HarPeled. A practical approach for computing the diameter of a point set.

Proceedings of the 17th Symposium on Computational Geometry, pages 177–186,

2001.

[78] D.J. Heeger and J.R. Bergen. Pyramid-based texture analysis/synthesis. Com-

puter Graphics, ACM SIGGRAPH, pages 229–238, 1995.

[79] A. Hertzmann, C.E. Jacobs, N. Oliver, B. Curless, and D.H. Salesin. Image

analogies. Proceedings of ACM-SIGGRAPH, pages 327–340, 2001.

[80] A. Hertzmann, C.E. Jacobs, N. Oliver, B. Curless, and D.H. Salesin. Image

analogies. In Proceedings of ACM SIGGRAPH 2001, 2001.

[81] G.R. Hjaltsson and H. Samet. Distance browsing in spatial database. ACM

Transaction on Information Systems, 24(2):265–318, 1999.

[82] D.S. Hochbaum. Approximation Algorithms for NP-Hard Problems. PWS Pub-

lishing Compagny, 1997. D.S. Hochbaum editor.

[83] D.S. Hochbaum and W. Maass. Approximation schemes for covering and pack-

ing problems in image processing and vlsi. Journal of the ACM, 32:130–136,

1985.

[84] David Hull. Improving text retrieval for the routing problem using latent se-

mantic indexing. In Proceedings of the 17th ACM/SIGIR Conference, pages

282–290, 1994.

[85] P. Husbands, H. Simon, and C. Ding. On the use of singular value decomposition

for text retrieval. Proc. of SIAM Comp. Info. Retrieval Workshop, pages 145–

156, 2001.

[86] P. Indyk. Sublinear time algorithms for metric space problems. Proceedings

of the 31st Annual ACM Symposium on Theory of Computing, pages 428–434,

1999.



138

[87] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing

the curse of dimensionality. Proceedings of the 30th Annual ACM Symposium

on Theory of Computing, pages 604–613, 1998.

[88] C.A. James, D. Weininger, and J. Delany. Daylight theory manual-daylight

4.71. Daylight Chemical Information Systems, www.daylight.com, 2000.

[89] C.Traina Jr, A. Traina, D. Seeger, and C. Faloutsos. Slim-trees: High per-

formace metric trees minimizing overlap between nodes. Proceedings of the

7th International Conference on Extending Database Technology, pages 51–56,

2000.

[90] S.K. Kim, J. Lund, M. Kiraly, K. Duke, M. Jiang, and J.M. Stuart. A gene

expression map for caenorhabditis elegans. Science 2001, 293:2087–2092, 2001.

[91] S. Kosinov and T. Caelli. Inexact multisubgraph matching using graph

eigenspace and clustering models. Proceedings of joint Syntactical and Struc-

tural Pattern Recognition and Statistical Pattern Recognition, 2002.

[92] G. Kowalski. Information retrieval systems: Theory and implementation.

Boston: Kluwer Academic Publishers, 1997.

[93] Chen Li, E. Chang, and H. Garcia-Molina G. Wiederhold. Clustering for ap-

proximate similarity search in high-dimensional spaces. IEEE Transactions on

Knowledge and Data Engineering, 14(4):792–808, 2002.

[94] Steinbach M., Karypis G., and Kumar V. A comparison of document clustering

techniques. Proc. Text Mining Workshop, KDD 2000, pages 1–11, 2000.

[95] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A

database management system for semistructured data. SIGMOD Record, 26:54–

66, 1997.



139

[96] B.T. Messmer and H. Bunke. Subgraph isomorphism detection in polynomial

time on preprocessed model graphs. ACCV, Lecture Notes in Computer Science.

Springer, pages 383–392, 1996.

[97] H.W. Mewes, D. Frishman, C. Gruber, B. Geier, D. Haase, and A. Kaps. Mips:

a database for genomes and protein sequences. Nucleic Acids Res 2000, 28:37–

40, 2000.

[98] T. Milo and D. Suciu. Index structures for path expressions. ICDT, pages

277–295, 1999.

[99] M. Minsky and S. Papert. Perceptrons. MIT Press, Cambridge MA, 1969.

[100] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[101] G. Navarro. Searching in metric spaces by spatial approximation. The VLDB

Journal, 11:28–46, 2002.

[102] A.Y. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an

algorithm. Advances in Neural Information Processing Systems 14: Proceedings

of the 2001, 2001.

[103] R.T. Ng and J. Han. Clarans: a method for clustering objects for spatial data

mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003–

1016, 2002.

[104] H. Noltemeier, K. Verbarg, and C. Zirkelbach. Monotonous bisector* trees -

a tool for efficient partitioning of complex schemes of geometric objects. Data

Structure and Efficient Algorithms volume 594 of Lecture Notes in Computer

Science, pages 186–203, 1992.

[105] J.M. Ogden, E.H. Adelson, J.R. Bergen, and P.J. Burt. Pyramid-based com-

puter graphics. RCA Engineer, 30:4–15, 1985.



140

[106] K. Popat and R. Picard. Novel cluster-based probability model for texture

synthesis, classification, and compression. Visual Communications and Image

Processing, pages 756–768, 1993.

[107] J. Portilla and E.P. Simoncelli. A parametric texture model based on joint

statistics of complex wavelet coefficients. International Journal of Computer

Vision, 40(1):49–71, 2000.

[108] F.P. Preparata and M.I. Shamos. Computational Geometry, An Introduction.

pringer-Verlag, New York, 1985.

[109] C.M. Procopiuc. Geometric techniques for clustering theory and practice. Ph.D.

Dissertation - Duke University, 2001.

[110] A. Pulvirenti. Algorithms and data structures for optimization and advanced

search problems on metric spaces of high dimension and their applications. PhD

Thesis. University of Catania 2002.

[111] S. Rajappap. Interactive biasing in graph-based data mining. Master Thesis in

Computer Science and Engineering, 2003.

[112] D. Reforgiato and D. Shasha. Graphclust.

http://www.cs.nyu.edu/cs/faculty/shasha/papers/GraphClust.html.

[113] A. Sanfeliu and K.S. Fu. A distance measure between attributed relational

graphs for pattern recognition. IEEE Trans. on SMC, 13:353–362, 1983.

[114] J. Shanmugasundaram, H. Gang., K. Tufte, C. Zhang, D. De Witt, and J.F.

Naughton. Relational databases for querying xml documents: Limitations and

opportunities. VLDB Journal, 1999.

[115] L.G. Shapiro and R.M. Haralick. Structural description and inexact matching.

IEEE Trans. on PAMI, 3:505–519, 1981.



141

[116] M. Shapiro. The choice of reference points in best-match file searching. Com-

munication of the ACM, 20:339–343, 1997.

[117] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of

tree and graph searching. Symposium on Principles of Database Systems, 2002.

[118] D. Shasha and T.L. Wang. New techniques for best-match retrieval. ACM

Transaction on Information Systems, 8(2):140–158, 1990.

[119] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: A wavelet based

clustering approach for spatial data in very large databases. VLDB Journal,

8(3-4):289–304, 2000.

[120] L. Sheng, Z.M. Ozsoyoglu, and G. Ozsoyoglu. A graph query language and its

query processing. ICDE, pages 572–581, 1999.

[121] J. Silberg. http://www.cinesite.com/core/press/articles/1998/10 00 98-

team.html, 1998.

[122] T.F. Smith and M.S. Waterman. Identification of common molecular subse-

quences. Journal of Molecular Biology, 147(1):195–197, 1981.

[123] D. Suciu. An overview of semistructured data. SIGACTN: SIGACT News

(ACM Special Interest Group on Automata and Computability Theory), 29,

1998.

[124] S. Sumanasekara and M.V. Ramakrishna. Chilma: An efficient high dimensional

indexing structure for image database. Proceedings of the First IEEE Pacific-

Rim Conference on Multimedia, pages 76–79, 2000.

[125] W.H. Tsai and K.S. Fu. Error-correcting isomorphisms of attributed relational

graphs for pattern analysis. IEEE Trans. on SMC, 9:757–768, 1979.



142

[126] W.H. Tsai and K.S. Fu. Subgraph error-correcting isomorphisms for syntactic

pattern recognition. IEEE Trans. on SMC, 13:48–62, 1983.

[127] P. Uetz, L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, and J.R. Knight. A

comprehensive analysis of protein-protein interactions in saccharomyces cere-

visiae. Nature 2000, 403:623–627, 2000.

[128] J.K. Uhlmann. Satisfying general proximity/similarity queries with metric.

Information Processing Letters, 40:175–179, 1991.

[129] J. Ullmann. An algorithm for subgraph isomorphism. Journal of the Association

for Computing Machinery, 23:31–42, 1976.

[130] J. Wang, B. Shapiro, and D. Shasha. Pattern discovery in biomolecular data.

New York Oxford, oxford university press edition, 1999.

[131] L.Y. Wei. Texture synthesis by fixed neighborhood searching. Ph.D. Disserta-

tion - Stanford University, 2002.

[132] L.Y. Wei and M. Levoy. Fast texture synthesis using tree-structured vector

quantization. Proceedings of ACM-SIGGRAPH, pages 479–488, 2000.

[133] L.Y. Wei and M. Levoy. Texture synthesis over arbitrary manifold surfaces.

Proceedings of ACM-SIGGRAPH 2001, pages 355–360, 2001.

[134] D. Weininger. Smiles, introduction and encoding rules. Journal Chemical In-

formation in Computer Science, 28(31), 1988.

[135] T. Welsh, M. Ashikmin, and K. Mueller. Transferring color to greyscale images.

Proceedings of ACM SIGGRAPH 2002, 2002.

[136] E.A. Winzeler, D.D. Shoemaker, A. Astromoff, H. Liang, K. Anderson, and

B. Andre. Functional characterization of the s. cerevisiae genome by gene dele-

tion and parallel analysis. Science 1999, 285:901–906, 1999.



143

[137] Y.N. Wu, S.C. Zhu, and X.W. Liu. Equivalence of julesz ensemble and frame

models. International Journal of Computer Vision, 38(30):245–261, 2000.

[138] Y. Xu, B. Guo, and H.Y. Shum. Chaos mosaic: Fast and memory efficient tex-

ture synthesis. Technical Report MSR-TR-2000-32, Microsoft Research, 2000.

[139] Y. Xu, S.C. Zhu, B. Guo, and H.Y. Shum. Asymptotically admissible texture

synthesis. Proceedigns of International Workshop on Statistical and Computa-

tional Theories of Vision, 2001.

[140] R. Baeza Yates, W. Cunto, U. Manber, and S. Wu. Proximity matching using

fixed-queries trees. The 5th Combinatorial Pattern Matching, volume 807 of

Lecture Notes in Computer Science, pages 198–212, 1994.

[141] P. Yianilos. Data structures and algorithms for nearest neighbor search in

general metric spaces. Proceedings of the 3rd Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 311–321, 1993.

[142] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering

method for very large databases. Proceedings of the ACM SIGMOD Conference

on Management of Data, pages 103–114, 1996.

[143] S.C. Zhu, X. Liu, and Y. Wu. Exploring texture ensembles by efficient markov

chain monte carlo. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 22(6), 2000.

[144] S.C. Zhu, Y.N. Wu, D. Mumford, and Filters. Random fields, and maximum

entropy: Towards a unified theory for texture modeling. International Journal

of Computer Vision, 12(2):1–20, 1998.


