

Academic Year 2015/2016

UNIVERSITY "FEDERICO II” – NAPLES

PhD In Computational biology and Bioinformatics

XXVIII CYCLE

A DISTRIBUTED ENVIRONMENT FOR HIGH
THROUGHPUT SEQUENCING AND OTHER

BIOINFORMATIC DATA ANALYSIS

Coordinator: Student:

Prof. Sergio Cocozza Mario Zanfardino

Tutor:

Prof. Giovanni Paolella 

FOREWORD

I wish to express my gratitude and appreciation to the many persons whose

ideas and help have strongly contributed to the development of this work. I

am really grateful to my tutor, professor Giovanni Paolella, who has followed

the development of my studies and work with continuous attention, supporting

my growth with precious suggestions and contributions. In particular, of all the

colleagues, I wish to thank Angelo Boccia, who has carefully followed my

progression during these years. He has been a good colleague, whose

support and encouragement have been very important for me, during the

entire PhD period. I would like to thank all the colleagues that shared with me

the laboratory life during these years. Finally I wish to thank my family and

especially my girlfriend Luciana, who have supported me since the beginning,

with encouragement, confidence and enthusiasm.	

FOREWORD 2

1. INTRODUCTION 4

1.1 LOCAL DATA PROCESSING 5
1.2 USE OF REMOTELY INSTALLED PROGRAMS 6
1.2.1 WEB INTERFACES 7
1.2.2 SCIENTIFIC WORKFLOW 8
1.2.3 WEB SERVICES 11
1.3 INCREASING PERFORMANCE BY MULTIPLE SERVERS 13
1.4 ARCHITECTURE MODELS USED IN DISTRIBUTED SYSTEMS 15
1.4.1 PEER-TO-PEER ARCHITECTURE 16
1.4.2 CLIENT-SERVER ARCHITECTURE 17
1.4.3 NODE COMMUNICATION AND MESSAGE PASSING 18
1.4.4 ENTERPRISE SERVICE BUS ARCHITECTURE 19

2. SCOPE 24

3. RESULT AND DISCUSSION 25

3.1 DESIGN OF A BIOINFORMATIC DATA PROCESSING SYSTEM BASED AROUND AN ESB
ARCHITECTURE 25
3.1.1 AN ESB PLATFORM FOR BIOINFORMATIC DATA ANALYSIS 25
3.1.2 THE ESB BASED SCHEDULER 27
3.1.3 CLIENT INTERACTION WITH BUS 30
3.1.4 ESBRUNNER CAN MIMIC LOCAL EXECUTION WHILE UPLOADING PROCESSING TO THE BUS 30
3.2 RESOURCE SELECTION AND TRANSFER OF THE REQUEST TO THE SERVICE PROVIDER 31
3.2.1 A RESOURCE BROKER TO SELECT THE RIGHT SERVICE PROVIDER 31
3.2.2 NODE SELECTION BASED ON HARDWARE FEATURES AND LOAD STATUS 32
3.3 EXEC: A CUSTOMIZED SERVER DESIGNED FOR PROGRAM EXECUTION 33
3.4 ACCESS CONTROL TO SYSTEM RESOURCES 37
3.5 A CENTRALIZED/DISTRIBUTED REPOSITORY FOR READY DATA ACCESS 38
3.6 THE EXECUTION FLOW 40
3.7 A SINGLE CONFIGURATION POINT: THE DASHBOARD 41

4. METHODS 46

4.1 LANGUAGES 46
4.2 DATABASE MANAGEMENT SYSTEMS 46

5. REFERENCES 47

5.1 ARTICLES AND REVIEWS 47
5.2 WEBSITES 49

6. ACKNOWLEDGEMENTS 51

1. INTRODUCTION
Current experimental procedures in life science and biotechnology produce huge data

volumes (an example is the growth, in recent years, of completed genome

sequencing, Fig.1) and require, as a consequence, increasingly complex analysis tools

as well as important hardware resources. An important cause of the exponential

increase in biological data production is related to improvements in sequence

technologies and, in particular in high-throughput sequencing. Compared to previous

technologies such as Sanger sequencing, current approaches, based on novel

sequence determination procedures implemented within a number a platforms such as

Illumina, Roche 454, Ion Torrent and SOLiD, allow fast DNA sequencing much more

rapidly and at lower costs. Analysis of this exponentially increasing amount of

genomic, trascriptomic and proteomic sequence data, and related information,

represents a challenge for biomedical research, with requirements for computer

storage and processing power that easily match and exceed the current growth of

available data processing power. Programs can also be developed through faster

algorithms that reduce the request of computational power for the most time

consuming tasks. Complex bioinformatic analyses require advanced programming

and database skills and the user is typically required to install, configure and update

various software tools and databases. Even though sometimes scientists with

biological background and laboratory experience have these skills, bioinformatic

programs may have hardware requirements, which cannot be satisfied by personal

computers. In these cases, access to remotely installed tools becomes typically

essential and different modes of access and execution are needed. The vast majority

of applications in the bioinformatics field are available through command line

interfaces, that make it possible to indifferently access local and remote applications.

Today, many bioinformatic tools are available via a web-browser interface which

facilitates their use also to the unsophisticated users. In both cases, the need to

transfer large amounts of data, limits the advantage offered by remotely accessible

tools and the search for more efficient access methods is important, especially for

large-scale biological data analysis.

Figure 1. Growth of completed genome sequencing for Eukaryotes, Prokaryotes and Viruses. Data
from NCBI Genome reports folder (ftp site).

1.1 Local data processing

A common scenario is based on local processing of personal data files and data

downloaded from remote resources and. This requires tools for data analysis which

can be made available by creating a local bioinformatics work environment, through

downloading and installing the necessary programs and support databases. Most

programs are available through command line interfaces, and have been developed by

using different programming languages (C, Perl, Python, Java etc.) to run on different

operating system. Commonly used operating systems are UNIX-based and provide

powerful command-line tools that make scripting and performing automated analyses

relatively easy. In this environment, processes can be automated by scripting and

there is no need for data transfer. However, the number of available software tools

� of �5 52

results in increasing amount of time and resources spent in installing, configuring

and maintaining software rather than in doing research work. To address these

problems many solutions are available, some of which include locally shared servers

based on customized Linux distributions, modified to fit the needs of the biomedical

researchers community. Examples are BioLinux, Scibuntu, Open Discovery,

BioSLAX, DNALinux, among others. However, the costs implied by maintaining

such environments often outdo the capacity of local environment and anyway these

solutions is restrictive for several reasons:

• in many cases, local computer power cannot satisfy the requests of some

bioinformatic tools and analyses;

• programs are often developed to operate under Linux based environments,

which may be not completely familiar for the user;

• some programs need large size databases or reference data such as entire

genomes, implying capacity and maintainability, as well as, regular updating;
• many programs require additional support installation of specific libraries an

software dependencies, which can increase the complexity of program

installation;

1.2 Use of remotely installed programs

Many problems of local data processing can be overcome through the use of remotely

installed programs. In this way a large variety of software tools for different types of

data analyses may be used remotely, thus eliminating the need for local installation,

software maintenance and updates, while providing up-to-date services for

bioinformatic data analysis. There are a number of different ways to connect to

machines that provide remotely installed programs, starting from the secure shell

� of �6 52

(SSH) command line interfaces, which provide a secure remote connection between

computers and has the advantage of being available on every Unix system.

1.2.1	
 Web	
 interfaces	

An alternative way to access remotely installed bioinformatics services is through

WUI (Web User Interfaces) used as a front-end to programs. Being based on web

interfaces, use of these services remains independent from local hardware and

operating system. Examples of such user interfaces are PISE, Mobyle, wEMBOSS

and GenePattern.

• PISE and Mobyle provide a web interface for bioinformatics applications

originally developed to run through command-line and include methods for

biological databases management as well as conversion of commonly used

bioinformatic data formats. The use of Pise and its capacity to provide web page

structures for bioinformatics programs, has advantages such as a graphic interface

and the opportunity to know the available options without the need to access the

manual. Based on a similar approach,, Mobyle provides a unified web-based

framework through the integration of server installed programs with remotely

available ones. This web-based framework offers the advantage of a flexible user

interfaces with no costs associated with the maintenance of an exhaustive list of

local programs, simple configuration of the system, and multiple functions to

facilitate data reuse. Mobyle also embeds a workflow system engine, enabling the

automated merge of successive or even parallel tasks.

• wEMBOSS: it provides a web environment from which the user can access and

use EMBOSS tools in a easy-to-use modality. In addition to the user interfac e,

wEMBOSS organizes work in projects and the interface allows to use result files

from one project as input of others.

� of �7 52

• GenePattern provides a web interface for hundreds of tools for sequence variation,

copy number, proteomic and gene expression analysis. It uses a client-server

architecture to run programs on a single or on separate machines, thus allowing

the server to take advantage of more powerful hardware. More importantly,

GenePattern ensures the reproducibility of analysis methods by recording the used

analytic methods, the order in which methods were applied, and all parameter

settings. Moreover, the programming interface allows users to access diverse

collections of analyses and visualization methods.

1.2.2	
 Scien1fic	
 workflow	

For complex bioinformatic analyses a single program is often not enough and the

combination of different programs into a workflow is a solution frequently used to

produce a new behaviour from a library of available tools. WMS (Workflow

Management System) have been developed to allow the coordinate execution of

several programs and to give a uniform user interface, while overcoming some

problems related to data compatibility. Many of these systems also offer the

opportunity to access remotely installed programs, using dedicated web-service

solutions. Within this environment, when a client runs a program which includes a

remote service, it does not need to be concerned with the inner workings or the

programming language used in order to take benefit of its functionality. WMSs often

provide links to local and remote programs owned and maintained by multiple groups

or scientific organizations. As researchers require more sophisticated tools to solve

scientific problems, a scientific workflow system allows to create a sequence of

analysis steps, which corresponds to a given computational experiment. For example,

a data analysis process consisting of a series of preprocessing, analysis and post-

processing steps is a typical scientific workflow. In the bioinformatics field,

� of �8 52

workflows may involve analysis and transfer of big amounts of data (hundred

gigabyte or more) and require the workflow platform to be robust and reliable. The

lifecycle of a typical workflow (Fig. 2) is composed of four basic phases:

1. the editing phase, which includes the definition of the different processing steps

and their sequence, can be done through different means, and is typically based on

graphic or text tools. It may take advantage of previously used analyses. This

phase allows a user to specify the steps and dependencies also through reuse of

templates which support workflow sharing and reuse.

2. Mapping of the processing steps: it implies mapping from the composed abstract

workflow to the underlying real resources. Workflow systems can sometimes

automatically perform the mapping, but otherwise users can map appropriate

resources in a manual matter.

3. Execution is the running of a mapped workflow. This phase depends on the

several specific implementations of workflow systems.

4. Metadata storage implicates recording of metadata information during the several

step of the workflow lifecycle.

What is remarkable is that during the phase of mapping and execution many

optimizations and scheduling decisions can be made. Moreover, the data and linked

metadata are recorded in several registries, which can then be accessed to design a

new workflow. Although the metadata recording phase has been described as

� of �9 52

separated phase of the workflow lifecycle, this process is often part of the workflow

execution.

Figure 2. Schema of classic workflow lifecycle.

There are currently many bioinformatic workflow systems; some examples are:

• Kepler, a scientific workflow construction and orchestration system based on the

concept of actors, which represent operations or data sources involved in a

specific workflow. A useful feature of Kepler is the support for hierarchical

embedding of a workflow into another one. Kepler's web and grid service actors

allow scientists to use different types of computational resources in a single

scientific workflow.

� of �10 52

• Taverna is an application that allows use and integration of many tools and

databases available on the web, especially through services offering programmatic

interfaces, such as web services. It allows researchers to build workflows to

perform a range of common bioinformatic tasks, such as sequence analysis and

genome annotations. Moreover, Taverna allows to define data flows and convert

data from one format to another when the services are not compatible with each

other. Both local and remote resources can be integrated through this system and

the stored information gives a detailed trace of workflow execution.

• Galaxy allows users to manage data and execute biomedical computational

analyses, and can be used via public services or via a local installation (in this

case it can be customized to meet particular needs). An important feature of this

platform is that final users do not need to program or learn the implementation

details of the tools they need for specific computational analysis, because web-

based interfaces help in performing analyses in a simplified manner. Datasets to

be analyzed may be imported by the users into their workspaces from other data

warehouses or uploaded through an upload module. The Galaxy analysis

workspace is where users perform computational analyses. An essential step in

supporting the execution of a workflow is guaranteeing its reproducibility by

using metadata storing procedures, to preserve information such as input and

output datatypes, used tools, parameter values, etc. When a user executes an

analysis, Galaxy automatically generates metadata for each analysis step, to track

source of each step and ensure its repeatability. Overall, the use of this web-based

workflow system provides advantages such as easy execution of large-scale

analyses and display of the results using existing tools such as genome browsers.

1.2.3	
 Web	
 services	

Web services have been available for many years in bioinformatics, with a growing

adoption of standard technologies, allowing databases and programs to be accessed as

� of �11 52

remote resources within workflows and interactive analysis tools. As remotely

installed programs, web services have several advantages, such as uniform interface

and interoperability, easy maintainability and accessibility, and application level

interaction with remotely installed programs. Moreover, web services can be

included in pipelines to provide integration of many different tools and applications

in a single analysis tool.

Several research groups and institutes provide programmatic access to various data

resources and analysis programs via web service technology. The EBI (European

Bioinformatics Institute), one of the main providers of this type of services, offering a

large collection of programs available through SOAP and REST protocol based web

services, which allow interoperability and integration. At EBI, over 150 tools can be

used for analysis of data from almost 200 databases, (also available through web

services) or for analysis of users data.

A client (typically a program), through these web services, can execute many remote

functions or programs classified in application categories, such as those listed in

table 1

Category Example programs

Protein Function Analysis PROSITE, PfamScan, HMMER

Data Retrivial Uniprot, ArrayExpress, PDBe

Sequence Similarity Search BLAST, PSI-BLAST, FASTA

Multiple Sequence Alignment ClustalW, Clustal Omega, Kalign

Phylogeny ClustalW2 Phylogeny

Pairwise Sequence Alignment EMBOSS (matcher, needle, stracher, water), GeneWise,
Wise2DBA

RNA Anslysis MapMi, Infernal cmscan

Sequence Format Conversion EMBOSS seqret, MView, Readseq

Sequence Statistics SAPS, EMBOSS pepwindow, EMBOSS cpgplot

� of �12 52

Table 1. List of program categories currently available via web-services at EBI.

NCBI (National Center for Biotechnology Information), even though it offers a

smaller number of services compared to EBI, is another important provider of remote

services. Again, SOAP and REST are the most used protocols, with SOAP more

represented. Available services include Entrez search, PubChem, eFetchSequnce,

eFetchSnpService, eFetchPubmedService, among others.

A whole and upgraded list of all available bioinformatic web services is available on

BioCatalogue (https://www.biocatalogue.org/), which aims to classify all the

available biomedicine web services. The number of bioinformatics web services

being developed are increasing every day and, as a result, the number of services

registered in BioCatalog is currently more than 1100.

1.3 Increasing performance by multiple servers

Choosing the best platform for a given problem requires an understanding of the

complexity of the involved data, as well as the memory, network bandwidth and

computational constraints. To address complex problems involving great amounts of

data, for example, there is a growing interest in multi-processor bioinformatic

solutions, each with its strengths and weaknesses. Certain types of data benefit from

targeted investments in distributed systems that accumulate memory or disk

bandwidth from several servers and clusters, and in some cases, take advantage of

expensive supercomputing resources. In some cases, software can benefit from the

use of specially designed hardware, such as processors adapted to process large data

Sequence Translation EMBOSS backtranambig, EMBOSS backtranseq

Structural Analysis DaliLite, MaxSprout

Literature and Ontologies BioModels, PMC, PICR, QuickGo

� of �13 52

vectors, as in the case of graphic processing unit (GPU). Simulating protein folding in

all-atom detail, for example, is computationally intensive, and programs for

molecular modelling are a classic example of a task that can take advantage of GPU

hardware.

Both single server image or other parallel platforms play an important role in

supporting biological research. From a computational point of view, different

architectures can be used, and a number of instruments are used to address the

relative lack of computing power for bioinformatics.

• Systems based on multiple servers, where each server provides the same services,

allow to get the advantage of distributing requests from multiple users on different

servers and intrinsically also provide a degree of redundancy to the system.

• On the other hand, the use of multiple processors allows to take advantage of this

additional power to produce powerful applications. In parallel computing more

cores and CPUs can be used simultaneously to execute tasks that require huge

amounts of hardware resources and can be used to reduce total processing time,

by distributing single tasks over many processors. The cooperation of many

processors to a single goal is typically made possible thanks to two distinct

operations, splitting the computational load into many parts which may be

executed in parallel and reconnecting the partial results in order to create the right

output. The use of parallel computing has been shown to be a valid way to deal

with tougher problems in bioinformatics, as it effectually exploits the available

hardware resources. In this approach, software should be modified in order to

directly support parallel execution, if more processors are available.

• Multiple computers linked together through a LAN (Local Area Network) can

effectively share jobs producing clusters of computational nodes. Many

bioinformatic applications can take advantages of a cluster architecture, for

example, by distributing the evaluation of a large number of DNA sequences over

several nodes to completes a search in significantly less time than by using a

� of �14 52

single computer. Compared with the single memory image, clusters are highly

scalable and, being based on readily available hardware solutions, allow a

substantial reduction in the costs associated with building and maintaining the

hardware architecture.

• Grid computing is a distributed computing system where loosely connected

resources are coordinated by standard protocols and interfaces to produce parallel

processing services. Basically it is based on a combination of networked

computers, that may even be separately maintained by independent research

institutional, that work together on common computational tasks. Contrary to the

cluster architecture, grids are typically more heterogeneous and geographically

dispersed and have proven to be an important tool for many scientific fields,

including bioinformatics and computational biology. Therefore, many research

groups have started to make use of grids and other distributed computing

environments, attracted by the idea of joining large-scale computational resources

at reduced costs. ABCGrid is an example of a grid computing application in the

bioinformatics field, designed to use heterogeneous computing resources and

access different bioinformatics applications. The extreme example of distributed

computing is found in projects such as folding@home, which aims to distribute

load over an extremely large number of small CPUs, taking advantage of a very

much parallelised approach.

1.4 Architecture models used in distributed systems

In a distributed system, computers located on a communication network transfer

information by passing data packets and instructions to execute programs with

specific arguments or to send and receive data. This is a valuable approach to provide

services, share data, or store data sets that are too large to fit on a single machine.

Computers in a distributed system can have different roles that depend on the

organization of the system. Distributed systems are often based on modular

� of �15 52

architectures, in which, the components of a system do not depend on how other

components implement their behaviour, as long as an interface is specified and the

inputs that should be accepted, as well as the outputs that should be returned in

response are defined. Main advantages linked to modularity are that:
• the system is easy to change, expand and to understand;
• system errors can be solved by replacing only the malfunctioning components and

bugs or breakdowns are easer to isolate.

Different architecture models are used in distributed systems.

1.4.1	
 Peer-­‐to-­‐peer	
 architecture	
 	

A peer-to-peer architecture consists in systems, where load and responsibility are

equally shared among all the components (peers) of the system (Fig. 3).

Figure 3. Peer-to-peer architecture.

� of �16 52

In this type of architecture, all the involved computers, typically have the capacity to

contribute processing power and memory, leading to growing computational

resources as the system increases in size. In order to make sure that peers are able to

communicate with each other on a reliable basis, peer-to-peer systems may have the

support of dedicated components that execute functions, such as maintaining

information about the location of different participants.

1.4.2	
 Client-­‐server	
 architecture	

A client-server architecture is based on a single central host (server), that provides a

number of services to multiple clients that communicate with it (Fig. 4). In this type

of architecture the task of the server is to respond to service requests from clients that

use the service. Clients do not need to know how the service is provided, or how the

data are processed, and the server does not generally know how data is going to be

used. Every machine in this approach can be a server or a client according to the

application, maybe at the same time, although often bigger machines are configured

as dedicated servers to be accessed by a small or large number of clients. A classical

example of this type of architecture is the use of remotely installed programs through

one of the methods described in paragraph 1.2, where one central server meets the

requests of many clients. The main benefits of the client/server architecture are:

• centralized data: data maintenance is far easier to manage than other type of

architectures, because data is stored only on one server;

• easier maintenance: a client cannot access a server during repair, upgrade, or

relocation activities, but is otherwise unaffected;

• security: storing data on a server offers better control of security.

� of �17 52

Figure 4. Client-server architecture.

However, the traditional client/server architecture has limitations related to system

extensibility and scalability, as its dependence on a central server can negatively

impact performance and reliability. In this architecture, resources become limited if

too many clients require a given service at the same time and it cannot grow

indefinitely with changing demand. Another disadvantage is that the server, is the

only component with the capacity to provide the service and is therefore a single

point of failure (SPOF) which, if it fails, will break the entire system.

1.4.3	
 Node	
 communica1on	
 and	
 message	
 passing	

In both architectures, and in general in all distributed systems, nodes communicate

with each other by passing data and messages over the network for invoking actions.

Communication protocols may act through two principal modality:
• synchronously, when the calling process is blocked until the operation completes;

� of �18 52

• asynchronously, when the request only starts the operation and other tasks may be

executed by the caller while processing continues. The caller can discover

completion by different methods, like, for example, status request.

In order to be working, all messages sent over the network must be structured

according to a reliable communication protocol, based on a set of fixed rules for

encoding and decoding messages. The interacting components must know the

protocol in order to communicate with each other. A classic example of message

protocols is HTTP (Hypertext Transfer Protocol), used today in many Internet

distributed systems.

Asynchronous modes often rely on message passing, where requests are forwarded

by a sender to a recipient via the net. Applications based on a set of services that

interact with each other by sending messages are built according to a paradigm called

Service-Oriented Architecture (SOA), and is often implemented using a service-based

technology, such as SOAP or REST. This approach can be used even when the parties

requesting and providing services are programs running on different operating

systems or written in different programming languages.

1.4.4	
 Enterprise	
 Service	
 Bus	
 architecture	

The need for effective communication between processes running on different

machines and often based on incompatible architectures within the same application,

led to the development of the concept of Enterprise Service Bus (ESB), a software

architecture model able to extend middleware functionality through the connection of

heterogeneous components and systems and to offers integration and adaptation of

different services. Within this model the point-to-point approach is superseded by a

bus with which all different components interact. In this way a lightweight integration

solution may be obtained even when many additional systems are added and the

number of point-to-point connections required to create a comprehensive integrated

architecture begins to increase exponentially. The limits of infrastructures that use a

� of �19 52

point to point approach have been addressed by EAI (Enterprise Application

Integration) solutions, which use various models of middleware to centralize and

standardize integration practices. One of the first designed EAI solutions was based

on incorporation of all the functionality required for integration (such as all message

transformation, routing, and any other inter-application functionality) into central

hubs and founded on the principle that all communication between applications must

flow through the hub. One of the great benefits of this EAI solution is the ability of

integrated applications to communicate asynchronously. This means that an

application can do a request and, in the meanwhile the task is completed, continue to

work, without waiting for a response. However, since in this model all messages

between applicants must pass through a central hub, the latter represents a single

point of failure.

In order to overcome these limits a new bus-based EAI solution was proposed, where

a central component, the bus, is still used to pass messages between the applications,

but the bus architecture resolve the single point of failure problem by distributing

some of the integration tasks to other parts of the platform. This new bus-based EAI

solution is called Enterprise Service Bus, or ESB. The latter includes several features,

such as location transparency, protocol conversion and transformation of messages

into a usable format for service consumer, routing, monitoring and administration,

security etc. ESB acts as a communication bus in a service-oriented architecture (Fig.

5), translating client requests into the suitable message types and routes them to the

various providers. In this scenario, a service requester does not know where the

service provider is physically located and an efficient communication between

services and applications is produced by a messaging architecture, which takes care

of handling protocol conversion, message format transformation, orchestration,

routing, etc. The ESB framework also provides methods for integrating web-service

based applications and is extensible because new services can easily be integrated

into the bus. A fundamental aspect of this architecture is the indirect interaction

� of �20 52

between service providers and consumers, because the interaction always happens via

the ESB, which acts as a message broker between the applications.

Figure 5. Enterprise Service Bus architecture.

Usually, in a ESB architecture, a common message format is used. Transformations

are only executed at inbound entry points to the ESB or, when the flow is at its end,

at outbound endpoint. In that way, the internal processing logic of the ESB works

with a one format. The user of ESB does not have to work with transport specific

formats, given that an ESB implementation is generally able to support multiple

different communication protocols, such as HTTP, JMS or FTP. ESB architectures

support synchronous and asynchronous communication styles and should be able to

poll resources like file systems, databases and scheduler systems.

� of �21 52

In an ESB, custom integration services may be created, extended, and reused.

Exposed services can be assembled together with specialized integration enablers to

form merged services that can be recombined and recycled for various tasks. A

typical life cycle for a message that originates outside of the ESB, and goes through

the bus to be delivered to another service, uses one or more flows (or sub-flow).

Typically, a flow is a flexible mechanism that enables orchestration of services and it

can be a simple sequence of steps, or a complex process orchestration with parallel

execution, using conditional splits and joins. Flows allow creating solutions that

closely match specific requirements. Flow processing can be controlled by message

metadata or through the use of an orchestration language. Process flow can also

include dedicated integration services that perform intelligent routing of messages

based on content. A flow can be represented as a series of message processors (Fig.6),

where each message processor is a block of flow. It includes also a message source

(the source of messages that are processed by the Message Processor).

Figure 6. ESB flow schema.

When a message is generated by the message source (or is received from an external

source), the flow is started and the message processors are invoked, each one giving

rise to another one (in the same order as they are configured). In most cases, an ESB

flow can also provide one or more response blocks. If it is used, then any message

processors configured in this element are used to process the response message. If it

� of �22 52

is not used and if none of the message processors performs any processing, then the

response uses the result from the last message processor in the flow. Another typical

structure of ESB is routers, which allow to route messages to several destinations in

an ESB flow. Routers can incorporate logic to analyze and, if required, transform

messages before routing takes place. In a flow, for example, a message can be split

into some parts and each part can be routed to a different building block. In

alternative, more messages can be also combined into a single message before

sending it to the next block in the flow. Through routers, messages can be ordered or

evaluated to determine which of several possible building blocks represents the next

processing step. This flow can then route the message to other flows or sub-flows to

perform specific tasks. Flows and sub-flows can process messages

either synchronously or asynchronously (Fig. 7).

Figure 7. Synchronously and asynchronously flows. Flow 1, trigger of Flow 3, await the response

of Flow 3 and then continues the execution (Synchronously flow). Flow 2, another trigger of Flow 3,
executes in a parallel manner with the latter (Asynchronously flow).

� of �23 52

2. SCOPE
To explore the benefits of sharing distributed computational and storage resources, in

this work a platform was developed, able to allow integration of experimental data

and bioinformatic services by taking advantage of an Enterprise Service Bus (ESB)

architecture. An important requirement of the proposed platform is the choice of a

modular organization which allows interfacing with other purpose developed

modules and distribution and adaptation of computer services. The modular approach

allows easy extension by introduction of new services and scaling by duplication of

the most used resources. A redundant approach guaranties smooth maintenance and

progressive introduction of changes to essentially all modules.

� of �24 52

3. RESULT AND DISCUSSION
3.1 Design of a bioinformatic data processing system based around an ESB

architecture

In this work, an ESB platform has been used to design a software infrastructure able

to integrate applications of different type and to isolate services and databases from

one another by providing a middle service layer with the potential to have develop

bioinformatic data processing systems. The Enterprise Service Bus architecture has

been used as a platform around which a full data processing system could be centred.

This type of architecture is intrinsically able to integrate different service resources

through a bus-like infrastructure and provides significant features such as lightweight

interfacing and easy expansion. Unlike traditional tools used for data and service

integration, an ESB isolates services from one another by building a middle service

layer that reduces dependencies by decoupling systems and provides flexibility. The

reasons why this type of architecture was used for the development of this system are

many and include several important features, such as being:
• lightweight: This is because an ESB is made up of many interoperating

services;

• easy to expand: ESB allows easy integration of additional services into their

architecture;
• scalable and distributable: ESB functionality can be distributed across a local

or even a geographical network. Moreover, because individual modules are

used to offer each service, it is much simpler to ensure high availability and

scalability by replicating critical parts of the architecture.

3.1.1	
 An	
 ESB	
 plaHorm	
 for	
 bioinforma1c	
 data	
 analysis	

The general idea is to let the modules collaborate via a shared bus infrastructure, with

which each component is able to interact. In this way, modules are well separated

from each other and mostly independent of the language and code of other modules

� of �25 52

and applications. The central bus architecture results in the integration of the

numerous and different applications and services while distributing the requests

across different service providers. Using a heterogeneous set of protocols, the

platform can be configured to give access to software resources provided by multiple

servers. It allows users to run several types of programs with standard interfaces, such

as command line execution, through the use of independent modules that can interact

with one another through a series of web services. The ESB module is involved in

message routing and communication between the components.

In order to select a specific ESB platform able to reach the stated objectives, several

features were considered, such as:

• flexible customization;

• usage level in scientific community and businesses;
• support of developer community;

• open source license;

• documentation quality.

Considering these aspects, a short list of several ESB software was initially produced,

including:

• JBoss ESB;

• Apache ServiceMix;
• OpenESB;

• Mule.

A detailed evaluation was carried out on the short listed ESB platforms. Tests were

based on the evaluation of performance, capacity for integration with external tools

and applications and on the ESB introduction impact in terms of communication

overhead. In particular, some bioinformatic tools including tools from Emboss,

Samtools, BWA and others were used to perform tests on the diverse ESB platform,

directed to evaluate response time with and without the ESB. The results of this

analysis, together with architectural consideration, led to the choice of Mule ESB,

� of �26 52

which provides all the above mentioned features and introduced a small delay in

response time, which, in our non optimised tests, remained within 2-300

milliseconds.

3.1.2	
 	
 The	
 ESB	
 based	
 scheduler	

The core concept of the ESB is the integration of different applications able to talk to

the bus. Thanks to the Bus module and linked components the entire platform allows

simplified access to multiple resources even if located on remote servers.

Communication with the bus is via a number of alternative protocols and is based on

flows built on sub-flows, which together implement the message communication

concept. In the present implementation most interactions are based on the HTTP

protocol. Requests may be processed in synchronous or asynchronous modality. In

the first case, the Bus processes messages just in one thread, which remans active

until the execution is finished. In the asynchronous case, a queue is used to unbundle

the thread from the outside flow.

Figure 8. Main internal modules of Bus.

The Bus module is comprised of several internal modules (Fig. 8) and was developed

in collaboration with Unlimited Software. The first module provides an entry point to

the Bus for external messages and is directly triggered by a HTTP call. In the case of

� of �27 52

a request for program execution, the following parameters, necessary to execution of

the requested programs, are obtained from the call;

• Package name: name of requested package (for example, Emboss);

• Release: in conjunction with Package name defines the specific package

version requested (for example, EMBOSS_6.6.0);
• Tool: name of the requested package tool (for example, Matcher);

• TokenUser: univocal code that ensures users authentication and used for

authorization purpose;
• Method: defines the request type;

• Parameters: this field contains all parameters that not are included in fields

described above (for example the parameters of command line used to execute

a tool).

The above described operation is executed (Fig.9) by the “Params Filter” block and

the extracted information is passed to the next steps, where the “Token Verifier”,

interacting with the external Auth module (see below) verifies user credentials and

privileges. If user authorization is successful then the “UserCredential” block

communicates with the Broker module (see below), verifies if the requested Package

is available on the Bus, and selects a suitable resource for execution.

Figure 9. The basic flow of execution within the Bus module.

The value returned from the Broker module is a list of server IDs, able to provide

execution of the requested tool. A serverID may point to one or more servers and/or

� of �28 52

cluster nodes; the real server will be selected for execution by another block, which

with the help of a scheduler module, identifies a specific cluster and node. Another

block, Choice (Fig. 10), is used to choose the protocol used in calling service

provider, which can be based on REST or SSH.

Figure 10. The Choice component of the bus

This depends on two features: original protocol used to execute the first Bus call and

available interface (REST or SSH) of the selected servers. If the two are not

matching, the Bus uses specific synchronous/asynchronous adaptors/converters. This

organization allows to adapt the Bus workflow with the requests of clients. In the

REST-based scenario, client requests follow the usual chain of commands:

• Run: to submit requested HTTP call and to get in return a univocal JobID;
• Status: to allow controlling of process status;

• Result: to obtain the result of call.

� of �29 52

3.1.3	
 Client	
 interac1on	
 with	
 bus	

A client of this system, can be a user that requires a specific service or program to

execute a given analysis or an advanced interface such as, for example, a Galaxy

project installation, that uses the service providers available to the platform to process

data by running typical bioinformatic programs. The client is to be able to do requests

to the bus through the described interface to communicate essential information such

as program name, version, command and parameters. The request, that consist of a

call to the bus, can be done through different modality (synchronous or

asynchronous) and using different communication protocol (such as SSH and REST)

depending on user needs.

3.1.4	
 ESBrunner	
 can	
 mimic	
 local	
 execu1on	
 while	
 uploading	
 processing	
 to	
 the	
 bus	

Client interaction with the bus may occur through different modules. As an example,

we have developed ESBrunner, a shell script that can run on many LINUX and other

UNIX based client computers, where it simulates program execution creating the

illusion that the executed program is running on the local machine. ESBrunner gets

from the user the provided information (i.e. program name, version, command and

parameters) by reading the classic execution command line and constructs and runs

the above-mentioned call to the bus. The execution resembles a standard local

program:

>./emboss_6.6.1/matcher -asequence seq1.fa -bsequence seq2.fa -outfile output_aln

In the above example a standard execution of Matcher from the Emboss package is

used to identify local similarities between two input sequences (seq1.fa and seq2.fa).

When a user runs a command like this, a symbolic link system associates the name of

the package with the ESBrunner script and starts the execution of a series of

operations. The first is the extraction, from command line and configuration file, of

� of �30 52

the necessary values to build the bus call. After that, ESBrunner executes a call to the

bus by using the appropriate synchronous or asynchronous protocol.

ESBrunner is of course only an example of a client. Different clients can be

developed with different modality and using different communication protocols

supported by the Bus (an example might be SSH). Other clients may interact with the

ESB within specific packages, such as web servers or workflow management

systems.

3.2 Resource selection and transfer of the request to the service provider

In order to allow the selection of the right service provider that has the ability to run

the requested program and meets the additional requirements proposed by the user,

the bus relies on additional external modules. In particular, resource selection is

carried out with the help of two independent modules, the Broker and the Scheduler,

each based on its own SQL database. Resource selection is based on these modules

because, when a user requests a program, the bus flow makes a query to the broker

and asks whether there is one or more servers with the requested feature. The broker

answers with a series of server IDs and then the bus module queries the scheduler for

each server ID. In this way the scheduler replies with the address of a free node if

available and the identified host will eventually execute the requested command.

3.2.1	
 A	
 resource	
 broker	
 to	
 select	
 the	
 right	
 service	
 provider	

The broker database stores information linked to the various packages and programs

installed on servers. When a user requests a program, this database is interrogated and

one or more service providers are selected. In this context a provider can be a host or

a cluster of servers with same properties. The broker database includes a catalogue of

servers on which packages and tools are installed, together with the role permissions

associated to each tool. The bus verifies if a requested tool (for example, Matcher) is

available for execution by the applicant user by making a query to the broker. In

� of �31 52

addition to the bus module, that uses the Broker in read-only access modality,

administrators, in particular, servers and packages installers, awarded the specific

privileges, can catalogue new servers or packages that are installed on the platform

through a web-interface.

3.2.2	
 Node	
 selec1on	
 based	
 on	
 hardware	
 features	
 and	
 load	
 status	

The scheduler database stores the status of each server and node of a cluster. The

scheduler, receiving a set of resource requests from the Bus module, selects an

appropriate service provider node to execute the request based on several hardware

resources evaluated: free ram, free swap, load system average, total running process.

This scheduling architecture, operating at the application level, is used on a

previously developed scheduler (Boccia et al., 2007) modified to be able to support

multiple servers and distribute jobs over a large number of hierarchically organized

nodes. The system provides the basic functionality necessary to node selection and

service monitoring, and may loosely combine linked computational resources, such

as those located in geographically distinct sites. To match the request to the current

load and to the resources available on the nodes, the scheduler makes use of the

information contained in the related database (a relational database continuously

updated with information coming from the nodes). A script, running as a daemon,

periodically collects several information, and immediately stores it in the scheduler

database. This periodic update is also used as a heartbeat signal, which flags the node

itself as active to the system. The information contained in the database is also used

to interactively display the status of the clusters. In detail the status of node consists

of load level, memory usage, swap memory state, total number of processes, number

of running processes, etc. The relational database contains the status information

provided by each node, together with info on the recent usage of each node by the

scheduling system. For each node, the database stores the information indicated

above, which reports the organization of the “nodes” table. Another table, “hosts”, is

� of �32 52

used to keep track of the node requests, granted to each client host. The table is used

to limit the number of node assignments granted to each host and is periodically

flushed to guarantee acceptable performance.

3.3 EXEC: a customized server designed for program execution

Program execution within the platform is based on the idea that adaptors may be

designed to integrate different type of application servers, even if heterogeneous.

However, a specially designed server was developed to use all available features of

the platform, including fast access to data and easy configuration. The server software

is based on a standard Linux installation, complemented by a software layer able to

interface with the bus. This interface was designed in such a way as to permit various

access modes to programs, including synchronous and asynchronous execution and

commonly used protocols as SSH or REST. The same software layer may also be

used to build an interface server able to pass execution requests to an external server

which eventually provides the programs (an example can be a front-end/adaptor for

EBI - European Bioinformatics Institute - services). In this case the immediate

availability of a large number of programs may be granted without installation, while

having the ability to configure and maintain the server as in standard installations. In

order to meet the described requirements, the interface was designed to:
• support installation of different type of programs;

• provide access to programs through different modalities;

• inform the Scheduler on server status and availability;
• access to installed package information to facilitate some configuration phases.

The software interface toward the Bus interprets the call to the server and builds the

final command line for execution of the requested application. The interface is based

on a web service constituted from two separated modules, one for REST call-

wrapping and the other for SSH call-wrapping. The REST wrapper was developed

following the standard of a classic REST architecture, based on the HTTP protocol,

� of �33 52

where software packages available on the platform are seen as ‘resources’ accessible

through a global identifier (URL - Uniform Resource Locator) which looks like

this:

http://server/resource/operation/job_id

with job_id only present if operation is a STATUS or RESULT request . The Package

Server verifies that the requested application is installed and available on the platform

and whether it supports access to files on a shared storage before making the

necessary steps to make files such as an input file available on the local machine

through a download operation.

Package installation is accompanied by the creation of configuration files, which

describe all the features of the package necessary for tool execution, such as

installation path and list of authorized roles/users. The following table (Tab. 3)

includes the main information stored in the configuration file.

Table 3. Information contained in “exec.ini” configuration file. In the first column, are listed the tags
used for each information. In the second column, are listed the descriptions for each tag.

The final execution command line of a particular tool of package is being built on the

basis of information stored in the configuration file of a package, in particular of

RO Roles/users	
 authorized	
 to	
 execute	
 the	
 package	

EP Execu8on	
 path	
 of	
 package

SG Communica8on	
 protocol	
 (HTTP,	
 SSH)

RU Flag	
 that	
 indicatesi	
 if	
 the	
 package	
 support	
 direct	
 read	
 of	
 remote	
 file	
 available	

through	
 a	
 URL

TO List	
 of	
 all	
 tool	
 available	
 in	
 the	
 package

SE Server	
 Iden8fier

� of �34 52

http://server/resource/operation/job_id

exec.ini files, and on the basis of information wrapped from the HTTP call to this

interface, as illustrated in the Figure 13.

Figure 13. Schema of Web service for REST calls wrapping

The SSH call-wrapping module is largely based on the same functionality described

for the previous module. In particular, they share the routines for local download of

remote data and the routines for the management and access to the several package

configuration files described above. In this case operating model is based on a BASH

script that interprets the SSH call from Bus module and extract the arguments.

Afterwards, a second script is executed for integration of functionality linked to

configuration files.

This software interface is also involved in the automated retrieval of package-specific

informations by the Dashboard module (3.7) to facilitate the configuration phases of

� of �35 52

package installation when the various packages and tools have to be added to the

database of Broker module. To fill the broker database with the catalogue of server

packages installed the information on the package may be manually retrieved and

annotated, but may also be recovered through an automated procedure that starts by

running a command line tool and ends with the creation of one or more structured

files containing the retrieved package and tool related information. These files are

later used to add the retrieved informations to the Broker database. The procedure

checks if a method exists to retrieve information from the specific package and calls

it. Each package require a customized method that depends on how the package can

be queried to obtain the requested information, for example from a README file or

from a manual. Then, if a package-specific method exists, the latter will be used to

recover data, if not, the user can write all the necessary information in a proper file.

a hierarchical structure of the configuration files and directories includes common

information stored in a general configuration file (exec.ini in Package1, Fig. 12),

while specific information is stored in a configuration file for each tool (exec.ini in

Tool1 and Tool2 folders, Fig. 12).

Figure 12. Hierarchy structure of configuration files for a package.

� of �36 52

3.4 Access control to system resources

When developing an open platform accessible from different types of users, one of

the most important considerations is how users will be authenticated and privileges

will be managed. When choosing an authentication protocol, in addition to ensuring

access security, it is expected that the last thing a user wants to do is to have to use

different username and password in order to access a different functions of platform.

An authentication protocol might also be able to provide information about the user,

such as a unique identifier, an email address, associated roles, etc. In keeping with

these requirements and with the modern access management systems, an

authentication/authorization system, based on access tokens and a modified OAuth

protocol, was designed and developed with support of an external informatics

company. In our system, an access token is a string denoting a specific scope,

lifetime, and other access attributes and representing an authorization released to the

client. Tokens represent specific scopes and durations of access and are enforced by

the authorization server. Access tokens are released to third-party clients by the

authorization server with the approval of the resource owner. The client uses the

access token to access the protected resources provided by the resource server.

In the context of our platform, when the Bus module takes a call, authentication/

authorization process, that involves an authorisation server, it execute three

operations:

• Check for two tokens (user token and program token – for the latter see above)

in the client request (this operation is performed by Bus module).
• Verify the validity of two tokens.
• Verify if program token allows user to execute the requested program.

In these operation, the user token is responsible for providing secure access to Bus

and to linked services, while program token is responsible for providing certification

that program requested is available for a specific user.

� of �37 52

The database described above contains information and data linked to all user that

can be access the platform an their functionality (such as the possibility of running a

program). Thanks to a series of developed web services several module of platform

uses this authentication and authorization system to authorize several operation in the

system. Example are the login on the Dashboard module, adding of new package or

new server etc., operations allowed only if the authorization system, questioned by

one of the module, provides the authorization. The communication between several

modules and the authentication system is ordinarily executed through exchange of

user tokens.

3.5 A centralized/distributed repository for ready data access

Data access and management is an important aspect of any platform able to allow

integration of several experimental data and bioinformatic services. However,

particularly in a distributed contest, several problems are linked to implementation of

a effective solutions. The first of these is related to the availability of data input/

output options on the servers that execute the users requested programs. A possible

solution would be to enable client machines (that contains the data input) and server

machines (that provide the programs) to access the same data storage through a

shared volumes implementation. However, this solution is only applicable inside a

local network and is not enforceable to a geographically distributed contest. An

alternative solution can be based on a system able to make the necessary files directly

available on local filesystem of server that provide the programs. In that respect, it

should be considered that a number of programs have the ability to directly access

remote files that are available through several network protocols, such as HTTP and

FTP. Examples are a few tools of Picard package, a set of programs used to next

generation sequencing data manipulation. Obviously, other programs do not include

this functionality and then the development of a systems for data access and

� of �38 52

management are needed which can take into account permission management related

to use of data.

In view of these aspects, a system for ready data access was developed in

collaboration with an external informatics company (NEATEC), based on a

centralized/distributed repository manager (Resource Manager) and on several

functions distributed in the other platform modules, in particular in ESBrunner and

EXEC.

The Resource Manager allows users to access files, with several levels of

authorisation, providing visualization and sharing of remote/local files and the

generation of tokens that allow safe access to files through a unique URL identifier.

Visualization and sharing of files is available through a web user interface while

token generation is done through a suitable web service. Connectors may be created

that allow to directly make available data located on a client computer, to visualise

the folder files on the web user interface and to create tokens for these user files.

After token creation, the corresponding file can be accessed through a specific URL

as if it were on the server.

Furthermore, the platform provide an alternative data access modality which is

independent from installation of the standalone application on local machine and is

based on sharing of volumes between Resource Manger server, user machine and

service provider, using the same mount point. Thanks to this last aspect a file path is

valid on all involved machines. This system take advantage of several functions of

Esbrunner and Exec modules. In particular, when a client execute a command line

program with their input files, ESBrunner perform the following operations:
• identify the command line strings that represent data;

• verify if the volume of identified data is a shared volume (thanks to

information stored in a configuration file);
• if the volume is shared then the web service for the creation of a token for each

file is invoked. This operation use the resource manager system to create

� of �39 52

token. Indeed, the latter is able to access the client files because it mounts the

same volume of client machine;

• command line strings that represent data are replaced with their tokens (each

token is represented by URL);
• call the Bus with final parameters.

If data is not on a shared volume, ESBrunner uses alternative functions to create the

tokens, and can transfer the data on the Resource Manger server for token creation.

In all cases, the service providers receive for each input data a URL, containing a

specific token for a file, and can operate, using one of several functions of EXEC:

• if the requested program is able to directly access remote files that are

available through a URL (for example, Picard) then the URL is directly used

as the input;
• if the URL identifies a file available from a shared volume with client machine

then the file is directly used;

• in other cases, using the URL, the file will be downloaded on the service

provider server before execution.

3.6 The execution flow

The platform has the capacity to allow users to run a program as if it were installed

on the local user machine, even without having to change the syntax of command line

program. The execution flow (Fig. 13) starts with the invocation, through the

execution of a program command line, of the ESBrunner module, that will parse the

command line, and do a call to Bus module. This places a call to Auth module to gain

associated user roles and to check authorization to execute the requested tool. If the

user is authorized then the flow continues with the following steps:

• the Bus module builds and executes a query to Broker module. This query aims

to ask if one or more service provider, that meets the requests of user, is

� of �40 52

available. If the response is positive then the Bus module receives a list of

univocal IDs that identify the selected service provider(s);

• upon receiving the ID/IDs, the Bus module, for each ID, calls the Scheduler

module following a priority order. The Scheduler evaluates the most appropriate

server node for execution, if any, and sends the response;
• upon receiving the selected address, the Bus module builds and executes a call to

the service provider, which, builds the final command line to run the requested

tool.

Figure 13. Schema of the execution flow.

3.7 A single configuration point: the Dashboard

The management and configuration of the platform includes several operations that

include the installation of new servers and the installation of new packages on the

� of �41 52

platform. In order to facilitate these operations and to supervise the various

components of the system, a web interface, defined Dashboard, was developed.

Through this interface it is possible to list all programs installed on each cluster. Most

operations may be directly run from the web interface, depending on the user

privileges.

Figure 14. The dashboard web interface.

A "package servers" page shows the list of servers available on the Broker database

indicating hardware features, such as RAM, cores and architecture, are indicated

together with the number of packages installed. As for the programs page, a new

server can be configured, if the user has the specific privileges.

� of �42 52

!

Figure 15. The "package servers" tab of the dashboard web interface.

The “clusters” tab (Fig. 16) contains the list of clusters, which are groups of physical

machines, on which the same type of programs are installed. Adding a new cluster,

which can include one or more nodes, means creating a new entry in the scheduler

database (Fig 17).

!

Figure 16. The "clusters" tab of the dashboard web interface.

� of �43 52

!

Figure 17. The "cluster node" tab of the dashboard web interface.

In the “cluster nodes” tab the single machine are shown here together with the cluster

they belong to. Additional characteristics are included, such as the operating system,

ram and swap memory (these data are stored in scheduler database). As in the

previous cases a new node can be added to a particular cluster.

In order to add a new package to the platform, first the package is installed on a

physical cluster node. As soon as the package is usable on the cluster node, it has to

be recorded on the Broker by transferring the package-related information to the

Broker database with a file, containing package name, release, documentation,

reference, and all the information about the server on which it is installed and the

regarding the tools and the way to access both the entire package and the distinct

tools. In the “Package servers” tab of the dashboard, the user, which has the necessary

privileges, can add a new package to the Broker through a automated package

installation procedure. These operation are implemented thanks to a series of web

services that work as an interface between the Dashboard and broker database.

In order to add a new server or cluster of nodes to the Bioframe platform, several

steps are necessary. The first operation involves the installation, on each node of the

cluster, of the script that run as daemon and that periodically collects several status

� of �44 52

informations and stores it in the scheduler database. At this point, through the

Dashboard interface it is possible to add first a new cluster from “Clusters” tab

(stating the several information on cluster such as name, Ram, Cores, operating

system etc. which will be stored on Broker database) and then several nodes of

cluster stating IP and owner for each node. These operations allow having a new

cluster in scheduler database with a specific ID.

� of �45 52

4. METHODS

4.1 Languages

PHP is the main language used during the development of the large majority of

modules and web services of platform. PHP is a scripting language. The version

currently in use is PHP 5.5.

Bus, Resource manager and Authentication modules rely heavily on JAVA as the

main language.

Bash (version 3.2.x and 4.1.x) was used during the development of ESBrunner script.

4.2 Database management systems

The relational model is the pattern selected to implement all database involved in the

platform, and PostgreSql is the DBMS selected and installed to manage these

database. It relies on a global community of developers and companies and is based

on Structured Query Language (SQL), the standard query language for relational

database.

� of �46 52

5. REFERENCES
5.1 Articles and reviews

• Labarga A. et al. (2007). Web Services at the European Bioinformatics Institute. (Nucleic Acids

Res)

• Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures.

• Richardson L, Ruby S. (2000). Restful Web Services. (O'Reilly).

• Samik G. et al. (2011). Software for systems biology: from tools to integrated platforms. (Nature

Reviews Genetics)

• Aisling O’Driscol et al. (2013). ‘Big data’, Hadoop and cloud computing in genomics.

(Methodological Review)

• Casey S. Greene et al. (2014). Big data bioinformatics. (Journal of Cellular Physiology)

• Ivan Merelli et al. (2014). Managing, Analysing, and Integrating Big Data in Medical

Bioinformatics: Open Problems and Future Perspectives. (BioMed Research International)

• Yuichi Kodama et al. (2011). The sequence read archive: explosive growth of sequencing data.

(Nucleic Acids Res)

• Charles E. Cook et al. (2016). The European Bioinformatics Institute in 2016: Data growth and

integration. (Nucleic Acids Res)

• Pieter B. T. et al. (2005). Evolution of web services in bioinformatics. (Briefings in Bioinformatics)

• Ewa Deelman et al. (2009). Workflows and e-Science: An overview of workflow system features

and capabilities. (Future Generation Computer Systems)

• Bioinformatics: Concepts, Methodologies, Tools, and Applications

• Joel T. Dudley et al. (2009). A Quick Guide for Developing Effective Bioinformatics

Programming Skills. (PLoS Comput Biol)

• Elmar Krieger et al. (2001). Folder@Home: distributed computing in bioinformatics using a

screensaver based approach. (Bioinformatics)

• K. Erciyes (2015). Distributed and Sequential Algorithms for Bioinformatics. (Springer)

• Ashley Shade et al. (2015). Computing Workflows for Biologists: A Roadmap. (PLoS Biol)

� of �47 52

• Belinda Giardine et al. (2005). Galaxy: A platform for interactive large-scale genome analysis.

(Genome Res)

• Robert D. Stevens et al. (2003). myGrid: personalised bioinformatics on the information grid

• Boccia A. et al. (2007). A Fast Job Scheduling System for a Wide Range of Bioinformatic

Applications (IEEE Transactions on NanoBios)

• Ronald C Taylor. et al. (2010). An overview of the Hadoop/MapReduce/HBase framework and its

current applications in bioinformatics (BMC Bioinformatics)

• Anthony R. Et al. (2003). The discovery net system for high throughput bioinformatics.

(Bioinformatics)

• Alberto Labarga et al. (2007). Web Services at the European Bioinformatics Institute. (Nucleic

Acids Res)

• Mickael Goujon et al. (2010). A new bioinformatics analysis tools framework at EMBL–EBI.

(Nucleic Acids Res)

• Jiten Bhagat et al. (2010). BioCatalogue: a universal catalogue of web services for the life sciences.

(Nucleic Acids Res)

• Hamish McWilliam et al. (2010). Analysis Tool Web Services from the EMBL-EBI. (Nucleic

Acids Res)

• Weizhong Li et al. (2015). The EMBL-EBI bioinformatics web and programmatic tools

framework. (Nucleic Acids Res)

• Pieter B. T. Neerincx et al. (2005). Evolution of web services in bioinformatics (Briefings in

Bioinformatics)

• Duncan Hull et al. (2006). Taverna: a tool for building and running workflows of services (Nucleic

Acids Res)

• Bertrand Néron et al. (2009). Mobyle: a new full web bioinformatics framework. (Bioinformatics)

• He, H. et al. (2003). What is service-oriented architecture. (O’Reilly Press)

• Huhns, M. et al. (2005). Service-oriented computing: Key concepts and principles. (Internet

Computing, IEEE)

� of �48 52

• Schmidt, M. T. et al. (2005). The Enterprise Service Bus: Making service-oriented architecture

real. (IBM Systems Journal)

• Kuehn H. et al. (2008). Using GenePattern for gene expression analysis. (Curr Protoc

Bioinformatics)

• Sarachu M. et al. (2005). wEMBOSS: a web interface for EMBOSS. (Bioinformatics)

• Altintas, I. et al. (2004) Kepler: an extensible system for design and execution of scientific

workflows (Scientific and Statistical Database Management)

• Bauler, P et al. (2006) Implementing a Service-Oriented Architecture for Small and Medium

Organisations. (EMISA)

• Schmdt, M. et al. (2005) The Enterprise Service Bus: Making Service Oriented Real. (IBM

Systems Journal)

• Keen, M. et al. (2005) Patterns: Integrating Enterprise Service Buses in a Service-Oriented

Architecture. (IBM RedBooks)

• Ying Sun. et al. (2007) ABCGrid: Application for Bioinformatics Computing Grid

(Bioinformatics)

5.2 Websites

• “Web Services Architecture” (http://www.w3.org/TR/ws-arch/)

• “EMBL-EBI Web Services” (http://www.ebi.ac.uk/Tools/webservices/)

• “NCBI APIs” (http://www.ncbi.nlm.nih.gov/home/api.shtml)

• The BioCatalogue: providing a curated catalogue of life science Web services (https://

www.biocatalogue.org/)

• ncbi_genomes software (https://github.com/zyndagj/ncbi_genomes)

• Mule ESB (https://www.mulesoft.com/)

• Postgres (http://www.postgresql.org)

• OAuth community site (http://oauth.net/2/)

� of �49 52

https://www.mulesoft.com/
http://www.postgresql.org
http://oauth.net/2/

� of �50 52

6. ACKNOWLEDGEMENTS
The work presented here includes parts developed in collaboration with other
researchers in the hosting laboratory as well as with two industrial partners: NEATEC
and Unlimited Software, and in many cases the described procedures and tools have
been designed and developed by working in close association with some colleagues.
In particular I wish to mention Angelo Boccia and Antonio Mariniello from the
hosting laboratory at DMMBM/CEINGE, Michele di Capua and Antonio Liguori
from Unlimited Software and Vincenzo Piccolo and Manolo Forastiere from
NEATEC. My contribution to the work has been principally connected to the
development of the ESBRunner, EXEC, DashBoard and Scheduler modules and to
the planning of most procedures involving the ESB, FileServer, Broker and AUTH
Modules. The role played by the industrial collaborators in developing the different
modules is specifically mentioned in the text.

� of �51 52

� of �52 52

