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…….You’ve got to find what you love. And that is as true for 

your work as it is for your lovers. Your work is going to fill a 

large part of your life, and the only way to be truly satisfied is 

to do what you believe is great work. And the only way to do 

great work is to love what you do. If you haven't found it yet, 

keep looking. Don't settle. As with all matters of the heart, 

you'll know when you find it. And, like any great relationship, 

it just gets better and better as the years roll on. So keep 

looking until you find it. Don't settle. 

 

                                                       Stay Hungry. Stay Foolish. 

                  

                                                        Steve Jobs, June 12, 2005. 

 

 

 

 

To Myself, my Strength, my Courage, my Determination, and 

especially to my PASSION….  
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                                                                                  Chapter 1 
 

                                             Introduction 

 

ABSTRACT. The most widely accepted definition of a biosensors is: “a self-contained 

analytical device that incorporates a biologically active material in intimate contact with an 

appropriate transduction element for the purpose of detecting (reversibly and selectively) the 

concentration or activity of chemical species in any type of sample [1].Clark and Lyons 

developed the first biosensor, an enzyme-based glucose sensor [1]. Since then, hundreds of 

biosensors have been developed in many research laboratories around the world. The 

objective of this chapter is to underline the principles of biosensors science and their potential 

applications in the food, agricultural industries and biomedical fields.  

1.1. Biosensors 

Molecular recognition events are some of the most significant features of biological and 

chemical systems. The biomolecular recognition is the ability of a biomolecule to interact 

selectively with another molecule even in the presence of structurally similar antagonist 

molecules [2]. This basic principle is not only important from a scientific point of view but 

also to open an important window in the field of biotechnological applications. The 

recognition process itself is governed by non-covalent interactions as salt bridges, hydrogen 

bonds, van der Waals forces, hydrophobic interactions, and entropic effects [3]. Molecular 

recognition is fundamental for biosensing technique. Before the various types of biosensor 

technologies and application are discussed, it is first important to understand and define 

‘biosensor’. A biosensor, according to IUPAC recommendations 1999, is an independently 

integrated receptor transducer device, which is capable of providing selective quantitative or 

semi-quantitative analytical information using a biological recognition element [4]. 

Essentially it is an analytical device made by a biological recognition element to detect 

specific analyte integrated with a transducer to convert a biological signal into an electrical 

signal [5]. The aim of a biosensor is to provide rapid, real-time, accurate and reliable 

information about the studied analyte [6]. In recent years biosensors acquired a significant 

analytical role in medicine, agriculture, food safety, homeland security, bio-processing, 

environmental and industrial monitoring [7]. A biosensor consists of three main elements, a 
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bioreceptor (antibody, proteins, peptide, nucleic acids, that are able to detect the specific 

target analyte,), a transducer (device that converts the biomedical signal between analyte and 

bioreceptor in an electrical or chemical signal), and a signal processing system ( it is 

responsible of signal amplification and data processing), [8]. Figure 1 shows a schematic 

diagram of the typical components in a biosensor.  

             

   Figure 1.1: Schematic diagram of the typical components in a biosensor.  

 

The first kind of biosensor device was developed in 1967 by Updike and Hicks and it 

consisted of a molecular recognition element and a transducer. This biosensor was able to 

detect glucose concentration in the blood basing its functionality on hydrogen peroxide 

production by glucose oxidase using dissolved oxygen without the aid of mediators and 

cofactors (Figure 2A). Based on this technology, Yellow Spring Instrument Company, 

launched the first commercial glucose biosensor in market in 1975 for the direct blood 

glucose measurement. This kind of device was quickly replaced by a second generation of 

glucose biosensor that utilized redox mediators to transfer electrons from the enzyme to the 

working electrode surface (Figure 2B). The use of redox mediators and cofactors eliminated 

the need of oxygen for electron transfer at the electrode surface overcoming the drawback of 

limited oxygen pressure observed in the first generation biosensor. In the recent period a third 

and fourth glucose biosensor generation were developed. The former is based on a direct 

electron transfer between active centre of enzyme and a carbon nanotube electrode surface 

(Figure 2C), while the latter is about the use of a non-enzymatic electrode surface such as 
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active metal micro and nano-particles that mediate oxidation of the adsorbed species (Figure 

2D).   

      

Figure 1.2: Schematic representation of glucose detection biosensors. A) First generation of 

glucose device made only by analyte and transducer component. Its functionality is based on 

hydrogen peroxide production by glucose oxidase using dissolved oxygen without the aid of 

mediators and cofactors. B) The second generation of glucose detection biosensor uses the 

help of redox mediators to transfer electrons from the enzyme to the working electrode 

surface, reducing oxygen high pressure observed in the first generation. C) and D) Third and 

fourth biosensors generation, respectively, based on use of carbon nanotube and metal active 

micro and nano-particles to a more accurate glucose detection in the blood. 

Over the years several techniques have progressively been associated to provide a more 

accurate detection of target analytes, including different kinds of transducers elements and 

several biorecognition elements. 

1.1.2 Classification of biosensors 

Biosensors can be classified on the basis of biological signaling mechanism used or by the 

type of signal transduction employed. Figure 3 shows the different categories of biosensor. 

 

A B

C
D



 

13 
 

                     

Figure 1.3: Diagram of different categories of biosensors based on bioreceptor and/or 

transducer element used. 

The bioreceptor or biological recognition element is the most important and significant 

feature of a biosensor. The bioreceptor is the heart of the recognition system of a sensor 

towards the target analyte. Essentially it is crucial for a bioreceptor to be selective and 

sensitive towards the specific target in order to prevent the interference by other substance 

from sample matrix [5]. Generally biosensors can be classified by the type of biological 

signaling mechanism they utilize. The biological signaling used by biosensors can be divided 

into three major mechanisms (Figure 3): 

Enzyme based sensor: Enzyme based biosensor is the first biosensor introduced by Clark 

and Lyons in 1962 as an amperometric enzyme electrode for glucose detection in the blood 

[9]. Since the first biodevice, enzyme based biosensor has a massive growth in usage for 

various biotechnological applications still present. Enzymes are very efficient biocatalysts, 

which have the ability to recognize their substrates and to catalyze their transformation in a 

specific way. These unique properties make the enzymes powerful tools to develop analytical 

devices [10]. Enzyme-based biosensors associate a biocatalyst-containing sensing layer with 

a transducer. These devices working primarily on catalytic action and binding capability in 

order to have a specific analyte detection [8]. The enzyme based biosensors were made of 

enzyme as bioreceptor which is specific to detect studied analyte from a sample matrix. The 

lock and key and induced fit hypothesis can apply to explain the mechanism of enzyme 

action which is highly specific for this type of biosensor. This specific catalytic reaction of 

the enzyme provides a biosensor with the ability to detect much lower limits than with 

normal binding techniques. This high specificity of enzyme–substrate interactions and the 

usually high turnover rates of biocatalysts are the origin of sensitive and specific enzyme-

based biosensor devices [10]. Ideally enzyme catalytic action can be influence by several 

factors such as the concentration of the substrate, temperature, presence of competitive and 

non-competitive inhibitor and pH [11]. Essentially the Michaelis-Menten equation can be 

used to further explain the detection limit of enzyme based biosensor [12]. Glucose oxidase 

Biosensor

TransducerBioreceptor

Enzyme Antibody
DNA e/or

Biomimetic
Electrochemical Optical

Piezoelectric
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13 (GOD) and horseradish peroxidase (HRP) are the most widely used enzyme based 

biosensor that has been reported in literature, even if some recent studies have shown that 

enzyme based biosensor can be used to detect cholesterol, food safety and environmental 

monitoring, heavy metals and also pesticides [13-17]. Moreover, a recent studies reported the 

used of an enzyme biosensor with nucleic acid incorporated for DNA detection [18,19]. 

Immunosensors: An antibodies based biosensor was applied for the first time in the 1950s, 

opening the doors of immuno-diagnosis [20]. Immunosensors are devices composed by an 

antigen/antibody as bioreceptor box. An antibody is a ‘Y’ shaped immunoglobin (Ig) made 

up of two heavy chains (H) and two light chains (L). However some of human antibodies 

form dimeric or pentameric structure by utilizing disulphide bonds and an extra protein called 

the joining or J- chain [21, 22]. Each of the chains has a constant and variable part and this 

latter one is specific to the antigen that is bound in an highly specific and selective way [23, 

20]. The specificity of an antibody towards the binding side of its antigen is a function of its 

amio acids [24]. Immunosensors play an important role in the improvement of public health 

in areas such as clinical chemistry, food quality and environmental monitoring thanks their 

rapid detection, high sensitivity, and specificity properties. The development of 

immunosensors for bacteria, pathogen and toxins detection opened the doors  in the point of 

care measurement (POC), [25-28]. Some recent studies shown that immunosensor is widely 

explored toward the detection of cancer/tumor. Because of the traditional diagnostics 

methods are poor in sensitivity, selectivity and time consuming, immunosensors seem to be 

promising tools for cancer detection also in its early stages [29]. 

Nucleic acid sensor: The use of nucleic acids sequences for specific diagnostic applications 

has developed since the early 1953 and still growing widely [30]. The highly specific affinity 

binding reaction between two single strand DNA (ssDNA) chains to form double stranded  

DNA (dsDNA) is utilized in nucleic acids based biosensor . This biosensor works primarily 

on recognition of the complementary strand by ssDNA to form stable hydrogen bond 

between two nucleic acids to become dsDNA. For this reason an immobilized ssDNA 

complementary to the target analyte is used as probe in bioreceptor box. Exposure of target to 

the probe results in hybridization of complementary ssDNA producing a biochemical reaction 

that will be amplified and converted in an electrical signal by a transducer. However, 

literature shows that the present of some linker such as thiol or biotin is needed in the effort 

to immobilize the ssDNA onto the sensing surface [31, 32]. An important property of DNA is 

that the nucleic acid ligands can be denatured to reverse binding and the regenerated by 

controlling buffer ion concentration [12]. DNA based biosensor has potential application in 
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clinical diagnostic for virus and disease detection [33-35]. In addition, this kind of biosensor 

possesses a remarkable specificity to provide analytical tools that can measure the presence 

of a single molecule species in a complex mixture as blood or other biological fluids [36]. 

Biomimetic sensor: A biomimetic biosensor is an artificial or synthetic sensor that mimics 

the function of a natural biosensor. These can include aptasensors, where aptamers are the 

biocomponent used [8]. Aptamers were reported for the first time in the early 1990s and they 

were described as artificial nucleic acid ligands. They are synthetic strands of nucleic acid 

that can be designed to recognize amino acids, oligosaccharides, peptides, and proteins. An 

aptamer has few advantages over antibody based biosensor such as high binding efficiency 

and avoiding the use of animal that reduces ethical problems. Aptamer properties such as 

their high specificity, small size, modification and immobilization versatility, regenerability 

or conformational change induced by the target binding have been successfully exploited to 

optimize a variety of bio-sensing formats [37]. Aptamer based biosensor has been widely 

used in various application. Recently great progresses have been made in biomimetics sensor 

and aptasensor for clinical application [38], including clinical diagnostics to detect pathogen, 

virus and infectious disease [39-42].  

Biosensor are normally categorized according to the transduction method they employ 

(Figure 3). The transducer plays an important role in the signal detection process. It can be 

defined as a device that converts a wide range of physical, chemical or biological effects into 

an electrical signal with high sensitivity and minimum disturbance to the measurement [5]. 

There are various numbers of transducer methods developed over the decade; but they can be 

divided in tree big categories: electrochemical, optical and piezoelectric.  These groups can 

be further divided into two general categories; labeled and label free type, which label free 

type biosensors growing further recently [12]. 

Electrochemical sensors: Electrochemical biosensors measure the change that results from 

the interaction between the analyte and the sensing surface of the detecting electrode. The 

electrical changes can be based on: 1) change in the measured voltage between the electrodes 

(potentiometric), 2) change in the measured current at a given applied voltage 

(amperometric), and 3) change in the ability of the sensing material to transport charge 

(conductometric). Due to their sensitivity, simplicity, low cost and fast response time, these 

sensors appear more suited for field monitoring applications such as clinical analysis, on-line 

control processes in industry or environment, and even in vivo studies [43,44].  

Optical biosensors: Optical sensors transduce a biological event using an optical signal such 

as absorbance, fluorescence, chemiluminescence, surface plasmon resonance or changes in 
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light reflectivity [45]. Although are advantageous for screening a large number of samples 

simultaneously, it is difficult to miniaturize them for insertion into the bloodstream as most 

optical methods still require sophisticated instruments [44].  

Piezoelectric biosensors: Piezoelectric biosensors operate applying an oscillating voltage at 

a resonance frequency of the piezoelectric crystal and measuring the change in this frequency 

when the analyte interacts with the crystal surface. Acoustic wave devices, including Surface 

Acoustic Wave (SAW) and Bulk Acoustic Wave (BAW) are the most common sensors, 

which bend when a voltage is applied to the crystal. Similarly to optical detection, 

piezoelectric detection requires large sophisticated instruments to monitor the signal [44].  

Piezoelectric biosensors technologies are applied in a wide range of fields for various 

purposes as environmental, food, clinical and national security uses [46]. Furthermore, 

pharmaceutical industry requires this kind of biosensors to accelerate the processes of drug 

discovery and screening. Additionally, public safety has fostered developments in the 

environmental and food/agricultural industry promoting devices for the detection of 

pathogens and pollutants in foodstuffs [47]. 

 

1.2 Peptide based biosensors 

Peptides have been used as components in biological analysis and fabrication of novel 

biosensors for a number of reasons, including ease of large-scale synthesis, handling, and 

storage, as well as ready access to multiply modified analogues containing an array of 

unnatural substituents, highly selectivity for enzymes substrates and low production costs. 

Bio-conjugation strategies can provide an efficient way to convert interaction information 

between peptides and analytes into a measurable signal, which can be used for fabrication of 

novel peptide-based biosensors. Many sensitive fluorophores can respond rapidly to 

environmental changing their spectral characteristics, hence environmentally-sensitive 

fluorophores have been widely used as signal markers to conjugate peptides developing the 

peptide-based molecular sensors. Additionally, nanoparticles, fluorescent polymers, 

grapheme and near infrared dyes are also used as peptide-conjugated signal markers. Peptides 

have been utilized as bio-recognition elements to bind various analytes including, proteins, 

nucleic acid, bacteria, metal ions, enzymes and antibodies in biosensors. The peptides possess 

the necessary properties as recognition flexibility to adapt sterically to any target, rigidity in 

secondary structure to converse the binding aptitude and the propensity to form different 

kinds of non-covalent bonds with potential targets. The recent progresses on microarray 
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techniques using peptides have facilitated the commercial application of chip-based peptide 

biosensors in clinical diagnosis. 

1.2.1 Peptides as recognition elements  

Miniaturized bio-macromolecules offer an alternative strategy to molecular recognition 

elements with selectivity and affinity properties comparable to their natural compound [48]. 

In this context, designed short peptides (up to 20 amino acids) are emerging as excellent 

opportunity for recognition elements development in biosensor field. Short peptides represent 

a clear option for the design of synthetic receptors for a series of reasons: 1) we can obtained 

a very high number of different peptides by the combination of the 21 natural amino acids; 2) 

the availability of both molecular biology and chemical techniques for the fast screening of 

peptide libraries is less time-consuming; 3) the automated synthesis and purification 

technologies are much easier than the technologies used for monoclonal antibody 

preparation; 4) the ease of modifications in a site-specific manner allows for fluorophore 

coupling and immobilization on solid support; 6) the relatively easy modeling permits more 

accurate computational studies. 

A growing number of peptide-based biosensors systems for different target analytes includes 

whole cells, proteins, small organic molecule and ions have been reported recently in 

literature [2]. 

1.2.2 Selection and synthesis strategies for peptide-based sensors 

In the recent years, peptide-based sensors have been developed according to different 

strategies.  

Synthetic design peptides have been designed on the basis of known interactions between 

single or few amino acids and targets, with attention being paid to the presence of peptide 

motifs known to allow intermolecular self-organization of the peptides over the sensor 

surface. Sensitive sensors have been obtained in this way for ions, small molecules and 

proteins (Figure 4). 

Peptides design using computational methods becomes a new and promising way for the 

rational design of peptide agents targeting specific protein-protein interactions (PPIs). The 

design is commonly based on bioinformatics methods or molecular modeling techniques, 

indirectly exploiting structure-activity relationship at the level of peptide sequence or directly 

deriving lead entities from protein complex architecture [49]. 

Short peptides from random phage display have been selected in a random way from 

large, unfocussed, and often preexisting and commercially available libraries with no design 
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element. Such peptides often perform better that antibodies, but they are difficult to select 

when the target is a small molecule because often it has no reactive groups for solid support 

immobilization. 

Peptide receptors for ligand sensing are artificial, miniaturized receptors obtained from 

reduction of the known sequence of a natural receptor down to a synthesizable and yet stable 

one. 

Finally, peptide ligands for receptor sensing are short peptides that have been used as 

active elements for the detection of their own natural receptors. The identification of these 

natural peptide ligands for cell-surface elements, transmembrane proteins, antibodies, and 

enzymes provides a good challenge for biosensor development in bacteria and virus detection 

field. [2]. 

 

                                     
 

Figure 1.4: Ethanol biosensors based on conducting polymers with peptide and ferrocene on 

the side chain [50]. 

1.2.3. Peptide-based fluorescent biosensors 

The development of peptide-based sensors over the last two decades has had a considerable 

success in biotechnology field.  

Fluorescent techniques, due to their high sensitivity, selectivity, fast response time, flexibility 

and experimental simplicity are the key of this approach. FRET (Fluorescence Resonance 

Energy Transfer) effects or environment-sensitive fluorophore provide reliable design 

strategies that can be safely implemented to study virtually any biological interaction with 

minimal efforts [51]. 



 

19 
 

Environment-sensitive fluorophores (Figure 5) are molecules that display emission 

responsive properties to the chemical surrounding [51]. Physiochemical changes include pH, 

viscosity, biological analytes and solvent polarity. By conjugating these probes to a molecule 

(i.e. protein), it is possible to obtain valuable information regarding the state of a protein with 

high spatial and temporal resolution [52].  

                               
 

Figure 1.5: Comparison of some environment-sensitive fluorophores and their solvachomatic 

properties [43]. Abbreviations: 4-DMNA: 4-(N,Ndimethylamino) naphthalimide alanine, 6-

DMNA: 6-(N,N-dimethylamino)-2,3-naphtalimide alanine, DANA/Aladan: 6-(2-

dimethylamino)-naphthoyl alanine, 4-DAPA: 4-(N,N-dimethylamino)-phalimido alanine, 4-

DMAP: 4-(N,N-dimethylamino) phthalimide, DnsA: Dansyl alanine, TAMRA: 5-(and-

6)carboxytetramethyl rhodamine, 6-DMN: 6-dimethylamino-1,8-naphthalimide, 4-DMN: 4-

dimethylamino-1,8-naphthalimide, NbdA: 7-nitrobenzo-2-oxa-1,3-diazole. 

 

Two main strategies for covalent incorporation of a fluorophore in the peptide can be 

distinguished. The first one involves post-synthetic coupling at the N-terminal or at the side 

chains of cysteines or lysines. The second one uses unnatural fluorescent amino acids for 

peptide synthesis [53]. However the insertion of the fluorophore is restricted topologically to 

sites in the protein that preserve function and activity while permitting the dye to make 

necessary contacts that result in measurable fluorescence changes. This consideration 
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necessitates the use of methods that offer precise control over dye placement within peptide, 

with minimal perturbation [52]. 

The Figure 1.6 illustrates the general principle of a fluorescent peptide biosensor, while Table 

1 summarizes environmentally sensitive peptide biosensors. 

Fluorescent sensor peptides have proven useful in a number of applications, ranging from 

analyte detection to elucidation PPIs. It is expected that their general applicability with 

respect to analyte quantification will be expanded by combining combinatorial methods for 

peptide design with further improvements of fluorophores and fluorescent amino acids in 

terms of sensitivity to environmental changes [53]. 

 

 
 

Figure 1.6: Schematic representation of a fluorescent peptide biosensor. A) Peptide probe 

with environment-sensitive fluorophores assignal markers to respond to the target protein; 

(B)excimer-pair peptide sensor,the peptide binds to the target protein,changing the spectral  

property of the fluorophores;(C)FRET/probe–quencher pair  peptidesensor,where the distance 

between the donor–acceptor/probe–quencher was changed by binding of the peptide to the 

protein. 

                 

 

A 

B 

C 
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                   Table 1: Selected environmentally sensitive peptide biosensors [44]. 

 
ANALYTE RECEPTORS FLUOROPHORE 

DNaK chaperone 

Targeting sequence of 

precursor of 

aminotransferase 

Acrylodan 

Cholecystokinin 

(CCK) receptor 

Peptides agonist of the CCK 

receptor 
Alexa 488 

α-amilase 
Library of designed loop 

peptides 
Fluorescein 

Calmodulin 
Library of designed α-helical 

peptides 
TAMRA 

Double-stranded DNA 

Polypeptide derived from the 

Hin recombinase of 

Salmonella typhimurium 

Oxazole yellow 

Opioid-receptor Opioid antagonist DANA (Aladan) 

Class II MHC proteins HLA-DR-binding peptides 
4-DAPA and 6-

DMNA 

 

1.3 Conclusions and outlook 

The past decade has seen great advancements in the field of biosensor along many fronts. 

This dynamic tool has been applied in many area of life science research, health care, 

environmental, food and military application [6]. Biosensor technology seems to be a 

promising candidate for lower detection limit with rapid analysis time at relatively low cost. 

Technological advances have brought up use of materials as supports to construct biochip 

which integrated microfluidic system, probe, sampler, detector, amplifier and logic circuitry. 

This biochip could be a promising candidate for label free, reagentless, real time monitoring, 

miniaturization and low cost application. For medical application, this cost advantage will 

allow the development of extremely low cost, disposable biochips that can be used for in-

home medical diagnostics of diseases without the need of sending samples to a laboratory for 

analysis which time consuming [6]. 

The main aim of the thesis is the development of different miniaturized biosensors and 

microdevices based on peptides for food industry and healthcare.  

 

 

Molecular recognition events are some of the most significant features of biological and 

chemical systems. The biomolecular recognition is the ability of a biomolecule to interact 

selectively with another molecule even in the presence of structurally similar antagonist 

molecules  [1]. Molecular recognition is fundamental for biosensing technique. A biosensor, 

                       Aim and Outline of the Thesis 
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according to IUPAC recommendations 1999, is an independently integrated receptor 

transducer device, which is capable of providing selective quantitative or semi-quantitative 

analytical information using a biological recognition element [2]. A biosensor consists of 

three main elements, a bioreceptor (antibody, proteins, peptide, nucleic acids, that are able to 

detect the specific target analyte,), a transducer (device that converts the biomedical signal 

between analyte and bioreceptor in an electrical or chemical signal), and a signal processing 

system (it is responsible of signal amplification and data processing), [8]. The bioreceptor or 

biological recognition element is the most important and significant feature of a biosensor. 

The bioreceptor is the heart of the recognition system of a sensor towards the target analyte. 

Essentially it is crucial for a bioreceptor to be selective and sensitive towards the specific 

target in order to prevent the interference by other substance from sample matrix [5]. Peptides 

have been used as components in biological analysis and fabrication of novel biosensors for a 

number of reasons, including mature synthesis protocols, highly selectivity for enzymes 

substrates and low production costs [1]. Bio-conjugation strategies can provide an efficient 

way to convert interaction information between peptides and analytes into a measurable 

signal, which can be used for fabrication of novel peptide-based biosensors [1]. Peptides are 

formed by natural or synthetic amino acids which are linked by peptide bonds with shorter 

lengths than those of proteins [1]. Peptides have the same building block as proteins, so they 

may be possible substitutes for proteins in biological analysis [1]. Peptides can be obtained 

by screening and optimization of artificial peptide libraries and they can provide high affinity 

to a specific target. In addition, they have a lot of advantages than proteins, including: high 

chemical and conformational stability, standard synthetic protocol, easy modification and 

large chemical versatility [1]. For all of these reasons they are chosen as capture agents in the 

development of our biosystems. Following the outline of the thesis is reported with a brief 

description of each chapter. The first part of the thesis presents an introduction to the 

principles of biosensors science and their potential applications in the food, agricultural 

industries and biomedical fields. Furthermore, peptides based biosensors are presented with a 

description of their properties, features and advantages. The use of peptides as capture agents 

and the possibility to exploit their reversibility in biological applications, despite proteins and 

antibodies, is still very limited and has not been addressed yet. This aspect has been 

investigated in this first chapter. In Chapter 2 microfluidic synthesis of novel polymeric 

microparticles endowed with specific peptide due to its superior specificity for target binding 

in complex media, is reported. In more details, a peptide sequence is efficiently encapsulated 

into the polymeric network and protein binding occurred with high affinity (KD 0.1-0.4 µM). 
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Fluidic dynamics simulation is performed to optimize the production conditions for 

monodisperse and stable functionalized microgels. The results demonstrate the easy and fast 

realization, in a single step, of functionalized monodisperse microgels using droplet-

microfluidic technique, and how the inclusion of the peptide within polymeric network 

improves both the affinity and the specificity of protein capture. In Chapter 3 the 

development of a peptide-based biosensor for autofluorescence aflatoxin M1 detection in a 

sensitive, specific and unsophisticated manner, is reported. To this aim an integrated 

approach has been developed to select specific peptide motif to capture aflatoxin M1. The 

integrated approach provides a combination of computation modeling with combinatorial 

peptide synthesis to screen the sequence with the highest affinity. Peptides sequences selected 

by the proposed approach have been easily co-polymerized in PEGDA microparticles 

opening the route towards a direct detection of aflatoxins in small volume both in liquid and 

solid environments. Such approach can be applied also to other small molecules to develop 

materials able to sequestrate the target analytes allowing their direct detection directly in the 

materials. Finally in Chapter 4 a microdevice for endometriosis diagnosis is developed. In 

this work, three different peptides (CRP-1, VEGF-114 and ΦG6) are used as capture agents 

to detect serum levels of vascular endothelial growth factor (VEGF), tumor necrosis factor-

alpha (TNF-a), and C-reactive protein (CRP): three serum markers of endometriosis in 

menstrual blood. The selected peptides have been covalently immobilized on a microfluidic 

PDMS device, previously derivatized with 10% of PAA (Poly(acrylic acid)) solution. The so 

built device has been used to capture and recognize endometriosis markers both in buffer and 

biologic fluids matrices such as human serum with a good specificity and sensitivity.  

So the aim of the studies in this work, is to set up miniaturized microdevices that can be used 

in healthcare and food industry, using peptides as capture agents in order to have sensitive but 

not invasive and not expansive biosensors.  

. 

                                                                              References 

 

[1] De Corcuera J.I.R., and Cavalieri, R.P., Biosensors. Encyclopedia of Agricultural, Food, 

and Biological Engineering 2007,Dec; 13, DOI: 10.1081/E-EAFE 120007212. 

[2] Pavan S., Berti F., Short peptides as biosensor transducers. Anal Bioanal Chem 2012, 

402(10):3055-3070. 



 

24 
 

[3] Tewari A.K., Dubey R., Emerging trends in molecular recognition: Utility of weak 

aromatic interactions. Bioorg Med Chem 2008 16:126-143. 

[4] Thevenot D.R., Toth K., Durst R.A., Wilson G.S., Electrochemical Biosensors 

Recommended defnitions and classification. Pure Appl Chem 1999, 71: 2333–2348.  

[5] Lowe R.S., Overview of Biosensor and Bioarray Technologies. In Marks R.S., Lowe 

C.R., Cullen D.C., Weetall H.H., Karube I (ed): Handbook of Biosensors and Biochips. 

Wiley, Weinheim 2007. 

[6] Perumal V. and Hashim U., Advances in biosensors: Principle, architecture and 

applications. Journal of Applied Biomedicine 2014 Jan; 26. 

[7] Luong J.H.T., Male K.B., Glennon J.D., Biosensor technology: Technology push versus 

market pull. Biotechnol. Adv. 26: 492–500, 2008.  

[8] Homola J., Yee S.S., Myszka D., Surface plasmon resonance biosensors. In Ligler F, Taitt 

C 23 (ed): Optical biosensors: today and tomorrow. Elsevier, Amsterdam 2008, pp. 185-242. 

[9] Shantilatha R., Varma S., Mitra C.K, Designing a simple biosensor. In Biosensors: 

Perspectives. In Malhotra BD, Turner APF (ed): Advances In Biosensors: Perspectives In 

Biosensor. JAI Press, Stamford 2003, pp. 1-36.   

[10] Leca-Bouvier B.D., Blum L.J., Enzyme for Biosensing Applications. In Zourob M (ed): 

Recognition receptors in biosensors. Springer, New York 2010, pp. 177-220. 

 

[11] Cass T. Enzymology. In Marks R.S., Lowe C.R., Cullen D.C., Weetall H.H., Karube I 

(ed):Handbook of Biosensors and Biochips. Wiley, Weinheim 2007. 

 

[12] Parkinson G and Pejcic B. Using Biosensors to Detect Emerging Infectious Diseases, 

prepared for The Australian Biosecurity Cooperative Research Centre: pp.1-80, 2005. 

Retrieved from: http://www.abcrc.org.au/pages/project.aspx?projectid=75. 

[13] Amine A., Mohammadi H., Bourais I., Palleschi G., Enzyme inhibition-based biosensors 

for food safety and environmental monitoring. Biosens Bioelectron. 21: 1405–1423, 2006. 

 

[14] Zapp E., Brondani D., Vieira I.C., Scheeren C.W., Dupont J., Barbosa A.M.J.., Ferreira 

VS., Biomonitoring of methomyl pesticide by laccase inhibition on sensor containing 

http://www.abcrc.org.au/pages/project.aspx?projectid=75


 

25 
 

platinum nanoparticles in ionic liquid phase supported in montmorillonite. Sens Actuators B 

Chem. 155: 331–339, 2011. 

 

[15] Nomngongo P.N., Catherine Ngila J., Msagati T.A.M., Gumbi B.P., Iwuoha E.I., 

Determination of selected persistent organic pollutants in wastewater from landfill leachates, 

using an amperometric biosensor. Phys Chem Earth Pt A/B/C. 50-52: 252–261, 2012. 

 

[16] Soldatkin O.O., Kucherenko I.S., Pyeshkova V.M., Kukla A.L., Jaffrezic-Renault N., 

El’skaya A.V., Dzyadevych S.V., Soldatkin A.P., Novel conductometric biosensor based on 

three enzyme system for selective determination of heavy metal ions. Bioelectrochemistry. 

83: 25–30, 2012. 

 

[17] Ju H., and Kandimalla V.B., Biosensors for pesticides. In Zhang X, Ju H, Wang J (ed): 

Electrochemical Sensors, Biosensors and Their Biomedical Applications. Elsevier, San Diego 

2008, pp. 32-50. 

 

[18] He Y, Zhang S., Zhang X., Baloda M., Gurung A.S., Xu H., Zhang X., Liu G., 

Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and 

lateral flow strip biosensor. Biosens Bioelectron. 26: 2018–2024, 2011. 

 

[19] Lin L., Liu Q., Wang L., Liu A., Weng S., Lei Y., Chen W., Lin X., Chen Y., Enzyme-

amplified electrochemical biosensor for detection of PML-RARα fusion gene based on 

hairpin LNA probe. Biosens. Bioelectrons. 28: 277–83, 2011. 

 

[20] Donahue AC and Albitar M,. Antibodies in Biosensing. In Zourob M (ed): Recognition 

25 receptors in biosensors. Springer, New York 2010, pp. 221-248. 

 

[21] Wood, P. Understanding Immunology. Pearson Education Limited, Dorchester 2006. 

 

[22] Pohanka M., Monoclonal and polyclonal antibodies production-preparation of potent 

biorecognition element. J Appl Biomed. 7: 115–121, 2009. 

 

[23] Conroy P.J., Hearty S., Leonard P., O’Kennedy R.J., Antibody production, design and 

use for biosensor-based applications. Semin Cell Dev Biol. 20: 10–26, 2009. 



 

26 
 

 

[24] Fowler J.M., Wong D.K.Y., Halsall H.B., Heineman W.R., Recent developments in 

electrochemical immunoassays and immunosensors. In Zhang X, Ju H, Wang J (ed): 

Electrochemical Sensors, Biosensors and Their Biomedical Applications. Elsevier, San 

Diego 2008, pp. 115-140. 

 

[25] Skottrup P.D., Nicolaisen M., Justesen A.F., Towards on-site pathogen detection using 

2 antibody-based sensors. Biosens Bioelectron. 24: 339–348, 2008. 

 

[26] Barton A.C., Collyer S.D., Davis F., Garifallou G.Z., Tsekenis G., Tully E., O’Kennedy 

R.,Gibson T., Millner P.A., Higson S.P.J. Labeless A.C., Impedimetric antibody-based 

sensors with pgml(-1) sensitivities for point-of-care biomedical applications. Biosens 

Bioelectron. 24: 1090–1095, 2009. 

 

[27] Braiek M., Rokbani K.B., Chrouda A., Bakhrouf B.A., Maaref A., Jaffrezic-Renault N. 

An Electrochemical Immunosensor for Detection of Staphylococcus aureus Bacteria Based 

on Immobilization of Antibodies on Self-Assembled Monolayers-Functionalized Gold  

Electrode. Biosensors. 2: 417–426, 2012. 

 

[28] Holford T.R.J., Davis F., Higson S.P.J., Recent trends in antibody based sensors. 

Biosens Bioelectron. 34: 12–24, 2012. 

 

[29] Ushaa S.M., Nagar N.I., Rao G.M., Design and analysis of nanowire sensor array for 

prostate ancer detection. Int J Nano Biomater. 3: 239–255, 2011. 

 

[30] Liu A., Wang K., Weng S., Lei Y., Lin L., Chen W., Lin X., Chen., Development of 

electrochemical DNA biosensors. Trends. Anal. Chem. 37: 101–111, 2012. 

 

[31] Cagnin S., Caraballo M., Guiducci C., Martini P., Ross M., Santaana M., Danley D., 

West T.,Lanfranchi G.,Overview of electrochemical DNA biosensors: new approaches to 

detec the expression of life. Sensor. 9: 3122–3148, 2009. 

 

[32] Lazerges M., Perrot H., Rabehagasoa N., Compère C., Thiol- and Biotin-Labeled Probes 

for Oligonucleotide Quartz Crystal Microbalance Biosensors of Microalga Alexandrium 



 

27 
 

Minutum. Biosensors. 2: 245–254, 2012. 

 

[33] Chua A., Yean C.Y., Ravichandran M., Lim B., Lalitha P., A rapid DNA biosensor for 

the molecular diagnosis of infectious disease. Biosens Bioelectron. 26: 3825–3831, 2011. 

 

[34] Liu C.C., Electrochemical Based Biosensors. Biosensors. 2: 269–272, 2012. 

 

[35] Thuy N.T., Tam P.D., Tuan M.A., Le A.T., Tam L.T., Thu V.V., Hieu N.V., Chien 

N.D.,Detection of  pathogenic microorganisms using biosensor based on multi-walled carbon 

nanotubes dispersed in DNA solution. Curr Appl Phys. 12: 1553–1560, 2012. 

 

[36] Brett A.M.O., DNA based biosensors. In Gorton L (ed): Comprehensive Analytical 

Chemistry XLIV: Biosensors and Modern Biospecific Analytical Techniques. Elsevier, 

Amsterdam 2005, pp. 179-208. 

 

[37] Schneider H.J., Lim S., Strongin R.M., Biomimetic Synthetic Receptors as Molecular  

Recognition Elements. In Zourob M (ed): Recognition receptors in biosensors. Springer, New 

York 2010, pp. 777-818. 

 

[38] Vallet-Regí M and Arcos DA., Biomimetic Nanoceramics in Clinical Use: From 

Materials to Applications. RSC publishing, Cambridge 2008. 

 

[39] Strehlitz B., Nikolaus N., Stoltenburg R., Protein Detection with Aptamer Biosensors. 

Sensors. 8: 4296–4307, 2008. 

 

[40] Torres-Chavolla E., Alocilja E.C., Aptasensors for detection of microbial and viral 

pathogens., Biosens Bioelectron. 24: 3175–3182, 2009. 

 

[41] Wang Y., Zhang Z., Jain V., Yi J., Mueller S., Sokolov J., Liu Z., Levon K., Rigas B., 

Rafailovich M.H., Potentiometric sensors based on surface molecular imprinting: Detection 

of cancer biomarkers and viruses. Sens Actuators B Chem. 146: 381–387, 2010. 

 

[42] Weng C.H., Huang C.J., Lee G.B., Screening of Aptamers on Microfluidic Systems for 

Clinical Applications. Sensors. 12: 9514–9529, 2012. 



 

28 
 

 

[43] Dixon, B. M., Lowry, J. P., & D O'Neill, R. (2002). Characterization in vitro and in vivo 

of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. 

Journal of Neuroscience Methods, 119(2), 135-142. 

 

[44] Luong, J. H., Male, K. B., & Glennon, J. D. (2008). Biosensor technology: technology 

push versus market pull. Biotechnology advances, 26(5), 492-500. 

 

[45] Fan, X., White, I. M., Shopova, S. I., Zhu, H., Suter, J. D., & Sun, Y. (2008). Sensitive 

optical biosensors for unlabeled targets: A review. analytica chimica acta, 620(1), 8-26. 

 

[46] Kryscio, D. R., & Peppas, N. A. (2012). Critical review and perspective of 

macromolecularly imprinted polymers. Acta biomaterialia, 8(2), 461-473. 

 

[47] Terry, L. A., White, S. F., & Tigwell, L. J. (2005). The application of biosensors to fresh 

produce and the wider food industry. Journal of agricultural and food chemistry, 53(5), 1309-

1316. 

 

[48] Cooper, W. J., & Waters, M. L. (2005). Molecular recognition with designed peptides 

and proteins. Current opinion in chemical biology, 9(6), 627-631. 

 

[49] Zhou P., Wang C., Ren Y., Yang C., Tian F., Computational peptidology: a new and 

promising approach to therapeutic peptide design. Curr Med Chem. 2013;20(15):1985-96 

 

[50]  Kesik M., Akbulut H., Söylemez S., Cevher S.C., Hızalan G., Udum Y.A., Endo T., 

Yamada S., Çırpan A., Yağc Y. Toppare L., Synthesis and characterization of conducting 

polymers containing polypeptide and ferrocene side chains as ethanol biosensors. Polym. 

Chem., 2014, 5, 6295-6306. 

 

[51] Pazos, E., Vazquez, O., Mascarenas, J. L., & Vazquez, M. E. (2009). Peptide-based 

fluorescent biosensors. Chemical Society Reviews, 38(12), 3348-3359. 



 

29 
 

[52] Loving, G. S., Sainlos, M., & Imperiali, B. (2010). Monitoring protein interactions and 

dynamics with solvatochromic fluorophores. Trends in biotechnology, 28(2), 73-83 

 

[53] Choulier, L., & Enander, K. (2010). Environmentally sensitive fluorescent sensors based 

on synthetic peptides. Sensors, 10(4), 3126-3144.             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                              



 

30 
 

                                                                          Chapter 2 

  

Functionalized poly(ethylene glycol) diacrylate 

microgels by microfluidics: in situ peptide 

encapsulation for in serum selective protein detection 

 

ABSTRACT.  Polymeric microparticles represent a robustly platform for the detection of 

clinically relevant analytes in biological samples; they can be functionalized encapsulating a 

multiple types of biologics entities, enhancing their applications as a new class of colloid 

materials. Microfluidic offers a versatile platform for the synthesis of monodisperse and 

engineered microparticles. In this work, we report microfluidic synthesis of novel polymeric 

microparticles endowed with specific peptide due to its superior specificity for target binding 

in complex media. A peptide sequence was efficiently encapsulated into the polymeric 

network and protein binding occurred with high affinity (KD 0.1-0.4 µM). Fluidic dynamics 

simulation was performed to optimize the production conditions for monodisperse and stable 

functionalized microgels. The results demonstrate the easy and fast realization, in a single 

step, of functionalized monodisperse microgels using droplet-microfluidic technique, and 

how the inclusion of the peptide within polymeric network improves both the affinity and the 

specificity of protein capture. 
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2.1 INTRODUCTION 

 

In the recent years, hydrogels-based technologies has been widely developed for a range of 

biotechnology applications including diagnostic [1-3], drug delivery [4,5], and tissue 

engineering [6,7]. Due to their biocompatible and highly tunable nature they represent ideal 

candidates for biosensing applications. Their microstructure and interfacial proprieties can 

also be rendered responsive to various stimuli through chemical and physical cues resulting 

in “smart” materials which can respond to their local environment [9]. In particular, 

hydrogels can be engineer with different biological entities such as nucleic acids or peptides 

[5] for capture and detection of proteins, DNA, mRNA and microRNA [10]. Hydrogels are 

typically prepared and processed as bulk materials such as monolithic structures or supported 

films. However, emerging applications require miniaturization and tailoring of hydrogel 

architecture at increasingly small length scales for delivery and transport purposes in 

microscopic environments. This has spurred the development of various processes for the 

synthesis of colloidal and microparticle hydrogels, or “microgels” [9]. Hydrogel 

microparticles have been suggested as diagnostic tools for the rapid, multiplexed screening of 

biomolecules due to their advantages in detection and quantification [11-13]. Compared to 

traditional planar arrays, particle-based arrays offer easier probe-set modification, more 

efficient mixing steps, and higher degrees of reproducibility [14]. However appropriate 

methods for achieving the functionalization of large microparticles have not yet been 

developed [15].  

Among the various approaches for synthesizing hydrogel microparticles, microfluidics 

represent one of the most promising methods for the production and the functionalization of 

monodisperse microgels, including droplet microfluidics [16-18] and flow lithography [18]. 

In particular, droplet microfluidics facilitates fabrication of spherical microparticles (i.e., 

microspheres) or microparticles with complex chemical compositions [18], and potentially 

enables higher throughput synthesis [19]. Prior reports have demonstrated the ability of 

microfluidic-based platforms to synthesize, functionalize and encode microparticles with 

multiple bioactive agents [18,20,21], in a single step, overcoming the conventional emulsion 

polymerization methods [9]. Here we present a novel droplet microfluidics method that 

allows an easy and fast functionalization of polymeric microparticles for selective 

biomolecules detection in complex biologic matrix. 



 

32 
 

Due to its biocompatibility and low-biofuling properties poly(ethylene glycol) (PEG) has 

been widely used for hydrogels particles-based assays [10]. Various approaches have 

explored PEG’s utility as biosensor platform including direct physical entrapment [22] or 

covalently linking the biomolecules  to the polymer network [23].  

Most of the validated detection strategies use monoclonal antibodies as target recognition 

moieties, however the use of these large macromolecules has several limitations, including 

poor stability and high production costs [24,25]. Contrariwise, small molecules like peptides 

can be prepared synthetically and mimic the antibody binding site by using only a small 

cluster of residues, even though with lower affinity and specificity toward biomolecule target 

[26]. Hydrogel networks endowed with bioactive peptides have been already reported for 

applications such as tissue engineering, where short peptide sequences were demonstrated to 

elicit specific cell functions or change the materials network upon specific cell responses 

[27]. However, the capability of hydrogel microparticles, functionalize with a small 

molecules in a single step, to increase the affinity and the specificity of a protein capture has 

not yet been explored.  

In this work, we use droplet microfluidics for one step synthesis of monodisperse and stable 

micrometer poly(ethylene glycol) diacrylate (PEGDA) hydrogels, in which label Strep-tagII 

peptide sequence was incorporated in order to create a functional microparticles for selective 

protein detection in complex fluid (Figure 1). Droplet-microfluidics was used to produce 

water in oil emulsion in which reactive and label peptide was included directly in flow, 

eliminating the need for costly and time-consuming labeling steps. Computational fluidic 

dynamics simulation (CFD) was used to optimize the design of the device investigating the 

parameters that influence droplet formation. After UV polymerization the capability of 

PEGDA-peptide microgels to detect Streptavidin protein in buffer and in complex biological 

medium was demonstrated by confocal and fluorescence spectroscopy methods. This tool-

system promises to be useful for producing a novel, efficient and sensitive polymeric 

microparticles to detect bio-molecular targets with higher affinity in complex medium. 
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Figure 2.1: Schematic representation of Strep-tagII microgels synthesis able to detect 

Streptavidin protein in human serum. Such approach includes: phase modeling; microfluidic 

fabrication and validation; and assay validation for selective protein detection. 

 

 

2.2 MATERIALS AND METHODS 

2.2.1 Materials   

Poly(ethylene glycol) diacrylate (PEGDA, 700 MW), the non polar solvent light mineral oil 

and the nonionic detergent sorbitan monooleate (Span 80) were purchased from Sigma 

Aldrich. Crosslinking reagent Darocur 1173 was purchased from Ciba. Reagents for peptide 

synthesis (Fmoc-protected amino acids, resins, activation, and deprotection reagents) were 

purchased from Iris Biotech GmbH (Waldershofer Str. 49-51 95615 Marktredwitz, 

Deutschland) and InBios (Naples, Italy). Solvents for peptide synthesis and HPLC analyses 

and Streptavidin ATTO-425 were purchased from Sigma-Aldrich; reversed phase columns 

for peptide analysis and the LC–MS system were supplied respectively from Agilent 

Technologies and Waters (Milan, Italy). Pooled human serum from healthy donors was 

supplied by Lonza (Life Technology Ltd, Paisley, UK). All chemicals were used as received. 

2.2.2 Microfluidic device 

Microfluidic device consists of two inlets for the continuous and disperse phase, a narrow 

orifice in which the main channel and the two opposite channels converge, and a serpentine 

in which droplets were polymerized. The dimensions of the device are 50 × 35 µm (width × 

depth) for the channels solutions, 35 × 35 µm at the junction (width × depth); the serpentine 

is 10 cm long. The microfluidic device was fabricated by combining the conventional 

photolithographic and soft-lithographic techniques. Briefly, negative photoresist (Mr-DWL 

40 phtoresist, Microresist technology) was spun onto a silicon wafer at 2000 rpm for 30 s to 

make a 35 µm thick layer of photoresist. Then, the photoresist was baked and subsequently 
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exposed using DWL 66 Fs LASER technology system (Heidelberg instruments). After the 

exposed sample had been post-baked and developed, the microfluidic flow focusing device 

master was prepared. The surface of the device mold was treated with tridecafluoro-1,1,2,2-

tetrahydrooctyl-1-trichlorosilane to facilitate the peeling off of the polydimethyl-siloxane 

(PDMS, Sylgard 184, Dow Corning) replica. PDMS (10:1 polymer to curing agent) was 

poured on the patterned silicon wafer containing negative-channels. The PDMS-based 

microfluidic device was peeled off from the wafer and bonded on a glass slide with oxygen 

plasma treatment.  

2.2.3 CFD simulation 

To optimize the design of the device, computational fluid dynamics simulations were 

performed using COMSOL Multiphysics 4.2b software. During the simulation, all geometries 

were created two-dimensional based on the dimensions of the designed microfluidic device. 

A two-dimensional model was chosen to reduce complexity and computation time. The 

momentum and mass balances were modeled by Navier-Stokes equations and the level set 

method (LSM) was used to model the two phases. The principle on which LSM is based is 

the assignment of a so-called level set function Φ(x, t) to the space occupied by an interface, 

where x denotes the co-ordinates of a point within that space at a time t. The function is 

initialized at time t0, and then a numerical scheme is used to approximate the value of Φ(x, t) 

over small time increments, thus enabling the propagation of the interface to be tracked in 

time. The interface is represented by the zero contour of the level set function Φ. Φ > 0 on 

one side of the interface and Φ < 0 on the other. The level set function is chosen such that the 

position of the water–oil interface is described by the 0.5 contour of the level set function Φ 

and for Φ > 0.5 the break off occurs and the droplet is formed.(Dendukuri and Doyle 2009) 

Channel geometries were meshed using the free meshing tool and the channel walls were 

specified as wetted walls with a constant contact angle, measured experimentally using the 

instrument Contact Angle CAM 200. The interfacial tension between the continuous phase 

and the prepolymer solution was changed from 4.27 to 1.68 mN/m to investigate the 

influence of the surface tension (γ) on the droplet sizes. In particular, three prepolymer 

solutions of PEGDA (20, 40, 60 wt %) and three oil solutions (with 5, 10, 15 % of surfactant) 

were chosen and for each PEGDA/oil solutions γ was measured by pendant drop CAM 200. 

The viscosity of the two fluids was measured with 50 mm flat-plate geometry by rheometer.  
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2.2.4 Microgel synthesis 

Microgels were synthesized using light mineral oil containing nonionic surfactant Span 80 (5 

wt%) as a continuous phase and poly(ethylene glycol)diacrylate (PEGDA) (20 wt%) with 

photoinitiator (0.1 wt%) and Strep-tagII-FITC (0.5 mg/mL) as disperse phase. Droplet 

emulsions were formed injecting prepolymer solution, disperse phase, through the central 

channel and oil solution, continuous phase, through two opposite side channels. The uniform 

PEGDA-peptide droplets were crosslinked in flow to form monodisperse microgels. To 

photopolymerize droplets DAPI microscopy filter (9.8 mW, λ=360 nm) was used, focusing 

the UV light on the serpentine and regulating the diaphragm aperture of the microscope, for 

15 s. After photopolymerization, microgels were collected in an eppendorf and washed three 

times with a solution of ethanol (35 v/v%) and acetone (10 v/v%) to remove the oil. After 

washing, microgels containing Strep-tagII-FITC were analyzed by confocal microscopy. 

Polyethylene tubes were connected to the inlets and outlets and the solutions were injected 

using high-precision syringe pumps (neMesys-low pressure) to ensure a reproducible, stable 

flow. This system was mounted on an inverted microscope (IX 71 Olympus) and the droplets 

formation was visualized using a 4× objective and recorded with a CCD camera Imperx IGV-

B0620M.  

2.2.5 Peptide synthesis 

Strep-tagII-peptide ((WSHPQFEKD(OAll))) synthesis was performed on a fully automated 

multichannel peptide synthesizer Biotage® Syro Wave™. Preparative RP-HPLC was carried 

out on a Waters 2535 Quaternary Gradient Module, equipped with a 2489 UV/Visible 

detector and with an X-Bridge
TM

 BEH300 preparative 10× 100 mm C18, 5μm column. LC–

MS analyses were carried out on an Agilent 6530 Accurate-Mass Q-TOF LC/MS 

spectrometer. Zorbax RRHD Eclipse Plus C18 2.1 x 50 mm, 1.8 µm columns were used for 

the analyses. The Strep-tagII-peptide was synthesized in the acetylated/amidate version, 

employing the solid phase method on a 50 μmol scale following standard Fmoc strategies. 

Rink-amide resin (substitution 0.45 mmol/g) was used as solid support. Activation of amino 

acids was achieved using HBTU/HOBt/DIPEA (1:1:2). All couplings were performed for 

15 min and deprotections for 10 min. To monitor peptide entrapment, Lysine side chain 

amine fluorescein labeling was achieved by on-resin treatment with fluorescein 

isothiocyanate (FITC) after removing methyltrityl (Mtt) protecting group using 1% TFA in 

DCM for 30 min. Peptide was then removed from the resin, by treatment with a 

TFA/TIS/H2O (95:2.5:2.5, v/v/v) mixture for 90 min at room temperature; then, crude peptide 

was precipitated in cold ether, dissolved in a water/acetonitrile (1:1, v/v) mixture, and 
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lyophilized. Product was purified by RP-HPLC applying a linear gradient of 0.1% TFA 

CH3CN in 0.1% TFA water from 5% to 70% over 30 min using an X-Bridge
TM

 BEH300 

preparative 10× 100 mm C18, 5μm column at a flow rate of 10 mL/min. Peptide purity (95%) 

and identity (1488 amu) was confirmed by LC–MS (data not shown). Purified peptide was 

lyophilized and stored at −20 °C until use. 

2.2.6 Peptide encapsulation and characterization 

Peptide was encapsulated adding Strep-tagII-FITC (0.5 mg/mL) to the disperse phase prior to 

microgel synthesis. Fluorescent microgels without peptide, used as negative control, were 

obtained dissolved 0.1 mg of Rhodamine B in 10 mL of water solution. Fluorescence analysis 

was performed by Leica SP5 confocal microscope. Bright field and fluorescence images 

using a HCX IRAPO L 25×/0.95 water objective were acquired; 488nm line of the Argon 

laser as excitation sources for FITC-peptide was used and detection occurred at the 500-530 

nm band. Images were acquired with a resolution of 1024 × 1024 pixels, zoom 1, 2.33A.U. 

pinhole. All our experiments were performed at room temperature.  

 

2.2.7 CD analysis  

CD spectra were recorded using a JascoJ-1500 spectropolarimeter in a 1.0 cm quartz cell at 

room temperature. The spectra were recorded from 300 to 190 nm, with a band width of 1 

nm, a time constant of 16 s, and a scan rate of 10 nm/min. Spectra were recorded subtracting 

them from blank samples.  

2.2.8 Streptavidin Atto-425 binding and characterization 

Binding experiments were performed incubating Strep-tagII-microgels and microgels without 

peptide (Control-microgels) with Streptavidin-Atto-425 (peptide/protein ratio 5/1) in PBS 

(pH 7.4) and human serum from healthy donors (final volume 200 mL) at room temperature 

for 2 h. After incubation Strep-tagII-microgels and Control-microgels were centrifuged for 5 

min at 10000 rpm and the supernatant was measured by fluorescence spectroscopy (λ exc 436 

– λ em484) using a Perkin Elmer 2300 Enspire Plate Reader. 

To demonstrate the ability of our system to detect specific protein, 100 µL of Strep-tagII-

microgels were suspended in 1 mL of PBS and different concentrations of Streptavidin 

protein, ranging from 0.16 µM to 1.6 µM (Figure S4), were added and these solution were 

incubated for 2 h. After the incubation, microgels were washed three times and their 

fluorescence was analyzed. The same protocol was used for microgels without peptide, as a 
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negative control, and for Strep-TagII-microgels in serum analysis as well. Fluorescence 

analysis was performed by Zeiss LSM700 confocal microscope. For this experiment 20× dry 

objective was used. Two-channel fluorescence images, simultaneously, using multitrack 

mode were acquired. 480 nm and a 405 nm DAPI solid state lasers as excitation sources were 

used for peptide-FITC and Streptavidin-Atto-425-protein 435, respectively. Their detection in 

fluorescence was 500-530 nm and 410-450 nm bands, respectively.  

2.2.9 Statistical analysis 

The results of confocal experiments were analyzed by software GraphPad Prism version 5.04 

and experimental data were expressed as mean ± standard deviation. One-tailed analysis of 

variance with an Unpaired t-Test was performed to compare all experimental groups and to 

determine statistical significance of p < 0.05. The evaluation of KD was calculated by a non-

linear fitting approach using GraphPad Prism version 5.04 software. 

 

2.3 RESULTS AND DISCUSSIONS 

2.3.1 Microfluidic design 

Microfluidic design, showed in Figure 2.2, is optimized to obtain monodisperse and stable 

functionalized microgels in order to create a tool-system for diagnostic and sensing. Droplet 

formation process is affected by several physical parameters such as flow rates, viscosity of 

the fluid, dimensions of the geometry, capillary number (Ca) and surface tension [28]; 

therefore, the design of optimal microfluidic device for the production of monodisperse and 

stable emulsion relies on controlling such parameters.  

 

Figure 2.2: Microfluidic flow-focusing device. Scale bar are 100 µm. 

 

In the first set of simulations the influence of geometry and Ca on droplet production was 

investigated. Firstly the dimensions of the junction were changed; in particular, different 

widths (25, 30, 35 and 40 µm) and lengths (50, 100 and 500 µm) were modeled. These 

studies revealed that monodispersity and stability of droplets can be ensured choosing 
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junction geometry appropriately, maintaining the flow rate constant. Based on the simulation 

results, junction size of 50 × 35 × 50 µm (width × depth × length) was chosen. 

Droplet formation is driven by the competition between the viscous stress and the surface 

tension of two immiscible fluids, and occurs at a critical Capillary number (Ca), Ca=µU/γ 

[29]. For this reason, the influence of Ca on emulsion stability was investigated, maintaining 

the dimensions of the device constant. Ca can be modified by varying the flow rate of the 

continuous phase (Qoil); a diagram of flow patterns was used to investigate on stable droplet 

formation (Figure 2.3). Simulation results shows three different flow patterns after the 

junction: elongation flow pattern, stable emulsions and unstable emulsions (Figure 2.3 A, 2.3 

B, 2.3 C).  

          

Figure 2.3: Flow diagram as function of PEGDA prepolymer flow rate (Qp) and capillary 

number (Ca). Three distinct regions were observed: a) elongation flow of thread, b) stable 

droplets, c) unstable droplet formation. 

 

It is difficult generate stable emulsion at high flow rates of prepolymer solution (Qp > 8×10
-2

 

µl/min) (Figure 2.3); in fact, W/O emulsion could not separate uniformly from the junction 

due to the unstable hydrodynamic pressure of PEGDA prepolymer phase. When the flow of 

the oil phase relatively increases, the flow of prepolymer solution reverses into channels. 

When the value of Ca is in a limited range 0.005 ~ 0.055 and the value of PEGDA flow rate 

is between 3×10
-2

 µl/min and 8×10
-2

 µl/min, the prepolymer phase breaks into a stable 

emulsions (regime of stable emulsions Figure 2.3B). Choi et al. also investigated on the flow 

patterns to obtain stable polymeric droplets [30]. They found that stable and monodisperse 

emulsions were generated in a limited range of Ca (0.5×10
-2

~ 0.5×10
-1

) and a flow rate of 

disperse phase (0.2~1.1 µL/min). it is higher than the flow rate chosen in our simulation due 

to the different channels dimensions. 
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Precise control of particle size and monodispersity are critical for many applications of 

microgels; microfluidic platform allows this control over a wide range of sizes [31]. For this 

reason, in the second set of simulations the influence of Qoil on the droplet size was 

investigated, while Qp was kept constant. Once the dimensions of the device had been fixed, 

microgels with a wide range of sizes, ranging from 10 to 90 µm, were produced. Droplets 

diameter was calculated during the simulation analysis. In particular, droplet size was 

determined by the flow rates of the two phases and the flow rate ratio, as proposed by Collins 

et al. Therefore, maintaining the ratio of the disperse and the continuous phase flow rates 

appropriate [30], droplets size decreased as Qoil increased. In order to stabilize droplets 

against uncontrolled coalescence, the use of a surfactant is necessary. These molecules 

populate the water/oil interface and prevent droplet coalescence. In emulsification processes, 

the effect of the interfacial tension on droplet size and stability is significant [32, 33]. For this 

reason, we investigated on the influence of the surface tension (γ); in particular, γ was 

changed from 4.27 to 1.68 to mN/m (Figure 2.4) and it was observed that when γ increased, 

droplets diameter increased (Figure 2.5).  

                       

Figure 2.4: The measures of surface tension between PEGDA prepolymer solution (20, 40, 60 

wt %) and oil solution (with 5, 10, 15 % of surfactant) by pendant drop CAM 200 were 

showed. With increase of the concentration of the surfactant (Cs) the surface tension 

decrease. The surface tension depends also on the PEGDA concentration, in particular 

increasing PEGDA concentration the surface tension decrease. 
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Figure 2.5: The mean diameter of generated microgels as a function of surface tension. 

Simulation results of 3 groups of cases with various values of interfacial tension: (a) 1.6 

mN/m, (b)2.3 mN/m, (c) 4.2 mN/m, at different Qpeg. 

 

Another parameter that influences the viscosity and, consequently, the interfacial tension 

between the two phases is the polymer concentration in water solution. A solution with 

prepolymer concentration lower than 20 wt % can be used to form droplets, but UV curing 

requires long time and these droplets could be display deformation and loss of mechanical 

stability under flow conditions [10]. Instead, a solution with PEGDA concentration higher 

than 60 wt % can be cured by UV light in less time; however, it is difficult to control the 

stability of the droplets because of its high viscosity [34]. For this reason, a prepolymer 

solution at 20 wt.% of PEGDA was used and the length of the serpentine at 10 cm was 

optimized to ensure droplet polymerization.  

 

2.3.2 PEGDA-peptide microgels synthesis and characterization 

Here microfluidic synthesis of biodegradable PEGDA-peptide microgels for diagnostic 

applications is reported. The encapsulated peptide is Strep-tagII, an eight amino acid peptide 

(H2N–WSHPQFEK–COOH) selected from a random peptide library as an artificial ligand for 

streptavidin protein [35]. It is usually used for efficient protein purification in a simple single 
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step and -because of its independence from metal ions- it is also important in the study of 

metallo-proteins [36]. Microgels synthesis is shown in Figure 2.6 A and described in 

Experimental Section. Briefly, the pre-polymer solution containing peptide Strep-tagII-FITC 

was injected through the central channel of the microfluidic device, as disperse phase, and oil 

solution with surfactant through its two opposite side channels, as continuous phase. Under 

optimized flow rate conditions, estimated by CFD simulation, disperse phase was sheared 

into monodisperse droplets by continuous phase. The amount of embedded peptide was 

calculated to be 50 µg in 100 µL of microgels (data not show). Based on flow conditions, the 

yield of microgel production was around 300 microgel/minutes. 

With regards to the homogeneity of microgels size and the peptide encapsulation, 

microfluidic set up allows robust and rapid synthesis of functionalized and uniform polymeric 

microparticles in a single step, overcoming the limits of the conventional suspension 

polymerization methods. Strep-tagII-microgels obtained are monodisperse in size with a 

coefficient of polydispersity (PDI) < 0.003 and peptide encapsulation was confirmed by 

confocal image (Figure 2.6). Despite the addition of such biologics may lead to a slight 

increase in the deviation of diameter, the resulting microgels remained largely uniform, 

thereby demonstrating the ability of our approach to encapsulate biomolecules in polymeric 

microparticles.  

                                    

 

Figure 2.6: PEGDA-peptide microgel (20%PEGDA, 0.1%Darcour,0.5mg/ml peptide).  

A) StreptagII microgels synthesis by microfluidic device. B) Size distribution of PEGDA-

peptide peptide microgels. C) Fluorescent image of StreptagII FITC encapsulation. D) Phase 

contrast image of microgels. Scale bare are 100µm. 
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PEGDA has been chosen for its advantages over other polymers and its specific proprieties, 

such as good biocompatibility, non-toxicity, low immunogenicity in vivo, and resistance to 

protein adsorption. Moreover, polyethylene glycol (PEG) hydrogels are widely used in 

biomedical fields such as drug delivery and tissue engineering [37, 38]. 

Finally, to verify the secondary structure of the peptide in solution and inside the microgels 

circular dichroism (CD) was performed. CD spectra of peptide registered in aqueous buffer 

solution (Figure 2.7A) revealed a random coil content due to the absence of Cotton bands at 

205, 222 nm that are typical of helix conformations. As showed in Figure 2.7A the addition 

of different TFE concentrations results in an increase of helical content, in particular at 60% 

of TFE peptide spectrum shows a presence of little Cotton bands at 205 and 222 nm. The 

same experiments were carried out for peptide incorporated into the microgels. CD data 

confirmed that Strep-tagII peptide retains its structure (random-coil as it expect for small 

peptides) after its encapsulation, as previously reported for other peptides [39, 40]. Figure 2.7 

B shows CD spectrum of Step-tagII peptide and Strep-TagII microgels. In order to analyze 

the structural behavior of the peptide encapsulated into the microgels, CD spectrum at 60% of 

TFE was recorded. In contrast of peptide spectrum at 60% of TFE, peptide encapsulated 

didn’t change its conformation even with high TFE content, showing only a slight band at 

220nm. Figures 2.7 C and D show CD data of Strep-tagII-microgels recorded at 0 and 60% of 

TFE and peptide spectrum in solution and incorporated inside microgels at the same TFE 

concentration.                                                                               
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Figure 2.7: CD analysis of Strep-tagII peptide and Strep-tagII peptide-microgels, in 

phosphate buffer 10 mM pH 7. Overlay of Strep-tagII peptide CD spectra recorded (A) with 

increasing amounts of TFE (from 0 to 60%), Overlay of StreptagII-peptide and StreptagII-

microgels CD spectra  in buffer solution (B), Overlay of StrepTagII microgels CD spectra 

recorded (C) with 0% and 60% of TFE and Overlay of StrepTagII peptide and microgels 

recorded  (D) with 60% of TFE.  

 

Because of the uniformity of the microgels diameter and the homogeneity of the peptide into 

the microgels, this approach may serve as a consistent method for selective protein detection. 

Importantly, our strategy is relatively simple and robust, and encapsulated molecules retain 

their structure during microgels processing. Moreover, we demonstrate that CFS allows a 

robust control over microgels synthesis, avoiding fabrications of many different microfluidic 

devices. 
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2.3.3 Protein-binding analysis in PBS and human serum 

One motivation for using peptide-binding proteins in polymeric networks is employ them as 

platform to have a selective protein detection in complex mixtures [41]. Protein-binding 

peptide is described in Experimental Section with more details. It occurred adding to Strep-

tagII-microgels different concentrations of Streptavidin protein, ranging from 0.16 µM to 1.6 

µM. Figure 2.9B shows Streptavidin-Atto-425 fluorescence on Strep-tagII- microgels after 2h 

of incubation at room temperature in PBS. The selective binding of our system was 

demonstrated using the same protocol for Control-microgels labeled with Rhodamine B 

(Figure 2.8 E). Atto-425 fluorescence signal occurred only on Strep-tagII-microgels and its 

intensity increased with increasing protein concentration (Figure 2.8 L), giving a reasonable 

specific binding signal. It is evident that Streptavidin-Atto-425 recognition is specific and 

dose-response on Strep-tagII-microgels, unlike Control-microgels (Figure 2.9 A), with an 

estimated KD of 0.40±0.11 µM, which demonstrate a good affinity toward Streptavidin 

protein. As reported the maximum constant affinity between such peptide and protein is about 

70 µM [42, 43], therefore microgel is able to improve the sensitivity and specificity of protein 

detection. Furthermore we assumed an uniform distribution of bound protein on microgels 

and a saturation point at 1.6 µM (Figure 2.9). Limit of detection of 0.2 µM is obtained with 

about 3.6 × 10
3
 particles in 100 µL of volume reaction. Indirect-assay, performed by 

spectrofluorometer, confirmed the ability of Strep-tagII-microgels to recognize Streptavidin, 

unlike Control-microgels (Figure 2.10).  
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Figure 2.8: Fluorescence detection of specific and unspecific binding both in PBS and in 

human serum. Single component detection: (A) strep-tagII-microgels (green) and (B) 

Streptavidin binding microgels (blue); (C) Overlay image. The single component images 

demonstrate that there is no occurrence of overlapping signals. (D) PEGDA microgels 

labeled with Rhodamine B (red) as a control of unspecific signal; (E) fluorescence image of 

streptavidin on control microgels; (F) overlay channel; (G) Strep-tagII-microgels (green) and 

(H) Streptavidin binding microgels (blue) in human serum; (I) Overlay image for specific 

protein-binding peptide in human serum; (L) Bioassay system efficiency of microgels-

bounding; (M) Performance of bioassay system for protein detection in PBS and in human 

serum. The binding event is detected by measuring the fluorescence intensity of Atto-425 

conjugated Streptavidin directly on 50 microgel particles. Statistical difference between Strep 

tag II-microgels and control microgels *p<0.05 (mean±SD n=2) in PBS and *p>0.05 

(mean±SD n=2) in human serum. 

Since most of the interesting proteins are located in biological complex matrices such as 

human serum, we evaluated the accuracy of our system directly in biological environment. 

Fluorescence image (Figure 2.9H) confirms the protein-binding peptide and the accuracy of 

the microgel-based assay also in complex matrix. Moreover Figure 2.10B shows that the 
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fluorescence intensity of the Streptavidin-Atto-425 is dose-responsive and specific in serum 

as well, with a KD of 0.12±0.047 µM [44-46]. Such performance is ascribable to the 

capability of the polymeric network to offer antifouling properties, thus improving the 

specificity of the capture.  

                   

Figure 2.9: Strep-tagII-microgels-protein binding confocal results. (A) the Streptavidin-

ATTO-425 recognition (red curve) is specific, unlike Control-microgels (black curve) 

(mean±SD n=2). (B) Comparison of confocal binding by non linear fitting in buffer (red  

curve) and in serum (blue curve). 
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Figure 2.10: Fluorescence spectroscopy binding assay between Strep-tagII-microgels and 

Streptavidin-Atto 425 protein. Different amount of unbound protein, ranging from 0.16 to 

1.6uM, were collected and analyzed by spectrofluorometer (λ exc 436 – λ em484). The fraction 

of bound protein reported was calculated by subtracting the emission of the unbound protein 

to total one. Inset the tritation curve of Streptavidin-Atto 425 used for the total protein 

fluorescence calculation. The differences in the amount of bound protein between Strep-tagII-

microgels (dark grey) and Control-microgels (light grey) were underlined by a lack of a 

specific binding in the control one. 

With our approach we synthesized “smart” microgels for selective protein detection both in 

PBS and in complex fluid, using droplet-microfluidics. This method is relative simple, rapid 

and support the use of the microfluidic device as a manufacturing platform for diagnostic use. 

We believe that the reported system can be broadly applicable for rapid synthesis of 

microgels for different application like biosensing or food and environmental contaminants 

detection, using different biopolymers and small molecules. 

2.4 CONCLUSIONS 

In conclusion, here we report droplet-microfluidics method for the easy and rapid synthesis of 

biodegradable PEGDA-peptide microgels for selective biomolecules capture in complex 

medium, unlike conventional techniques. Based on numerical simulations, we fabricate 

microfluidic device to produce stable and monodisperse microgels. Uniform distribution of 

the specific peptide within the microgel was achieved and the efficiency of peptide-to–protein 
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binding both in PBS and human serum was confirmed. The use of microfluidic platform 

easily leads the control on size, shape, and chemical proprieties of microgels as well as on the 

content and distribution of the encapsulated peptide. Such peptide-functionalized 

microparticles allows the enhancement of binding affinity and the specificity in complex 

media. About this point it is very important to modulate the peptide density into microgels, in 

order to avoid proteins crowding or to leave many gaps using very low peptide concentration. 

So the amount of  integrated peptide plays a strong and a limiting role in the affinity studies. 

Our system is easy and flexible towards the detection of different molecules, does not require 

additional reagents and allows for the specific detection in complex media because of its 

antifouling properties. The control of physical and chemical properties of polymeric 

microparticles obtained by droplet microfluidic, the hydrophilic characteristics and the 

flexibility of the molecular encapsulation of proposed microgel represent a modular platform 

that can be generalized for any direct bio-detection in complex media, and, thus, applied to a 

wide spectrum of biomedical applications. 
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                                                                          Chapter 3 
 

Miniaturized peptide-based biosensor for Aflatoxin M1 

in milk samples: from Peptide Screening to Biosensor 

Development. 

ABSTRACT. Mycotoxins are fluorescent low-molecular-weight natural products produced 

as secondary metabolites by fungi in milk and dried fruits. These metabolites are chemically 

stable molecules that cause disease and death in human beings [1]. In particular, they are 

teratogenic, mutagenic, nephrotoxic, immunosuppressive and carcinogenic. They are highly 

resistive in nature and hence remain in the food chain. Therefore, a rapid, sensitive and 

specific assay technique is required for the routine analysis of foods, and beverages. Current 

analytical determination includes immuno-and bio-luminescent assays, HPLC (fluorescence 

detection), TLC, gas and liquid chromatography coupled to mass spectroscopy [2]. However 

all of them present high costs and skilled quality control operators. Our idea is to develop a 

peptide-based biosensor for aflatoxin M1 detection in a sensitive, specific and 

unsophisticated manner. To this aim an integrated approach has been developed to select 

specific peptide motif to capture aflatoxin M1. The integrated approach provides a 

combination of computation modeling with combinatorial peptide synthesis to screen the 

sequence with the highest affinity. In particular,   computation modeling using a C-docker 

alghoritm was performed to determine the Binding energy of all possible peptide 

combinations against toxin, using as building blocks eight different amino-acids chosen by 

considering their different chemical properties. The combinatorial peptide libraries were 

obtained with the same building blocks and best alfatoxin binders were selected by SPR 

(Surface Plasmon Resonance). Peptides sequences selected by the proposed approach have 

been easily integrated in PEGDA microparticles opening the route towards a direct detection 

of aflatoxins in small volume both in liquid and solid environments. Such approach can be 

applied also to other small molecules to develop materials able to sequestrate the target 

analytes allowing their direct detection directly in the materials. 
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3.1 INTRODUCTION 

Mycotoxins are low-molecular-weight natural products (i.e., small molecules) produced as 

secondary metabolites by filamentous fungi. These metabolites constitute a toxigenically and 

chemically heterogeneous assemblage that are grouped together only because the members 

can cause disease and death in human beings and other vertebrates. Not surprisingly, many 

mycotoxins display overlapping toxicities to invertebrates, plants, and microorganisms [1]. 

The term mycotoxin was coined in 1962 in the aftermath of an unusual veterinary crisis near 

London, England, during which approximately 100,000 turkey poults died. This mysterious 

turkey X disease was linked to a peanut (groundnut) meal contaminated with secondary 

metabolites from Aspergillus flavus (aflatoxins) [1]. 

Mycotoxins are not only hard to define, they are also challenging to classify. Due to their 

diverse chemical structures and biosynthetic origins, their myriad biological effects, and their 

production by a wide number of different fungal species, classification schemes tend to 

reflect the training of the person doing the categorizing. Clinicians often arrange them by the 

organ they affect [3]. Thus, mycotoxins can be classified as hepatotoxins, nephrotoxins, 

neurotoxins and immunotoxins [4]. Cell biologists put them into generic groups such as 

teratogens, mutagens, carcinogens, and allergens. Organic chemists have attempted to 

classify them by their chemical structures (e.g., lactones, coumarins); biochemists according 

to their biosynthetic origins (polyketides, amino acid-derived,etc.); physicians by the illnesses 

they cause (e.g., St. Anthony’s fire, stachybotryotoxicosis), and mycologists by the fungi that 

produce them (e.g., Aspergillus toxins, Penicillium toxins) [1].  

Currently, more than 300 mycotoxins are known, but most of studies are focused on 

aflatoxins, ochratoxin, trichothecenes, zearalenone and fumonisin [5]. The synthesis of 

mycotoxins occurs during different stages of food production, and in particular, they are 

found in the growing and storage. They can cause several pathologies in animals and people. 

Aflatoxins, for example, cause liver damage, decreased production of milk and eggs and 

immune deficiency in animals which have consumed low amounts of contaminated food 

without any obvious clinical manifestations. Typical clinical signs are: gastrointestinal 

dysfunction, reduced reproduction, loss of appetite and anemia [6,7]. Aflatoxins are a group 

of toxins furanocoumarins polyketides produced by certain species of Aspergillus and their 

most toxic and carcinogenic member is the aflatoxin B1. By reported cases seems that the 

mold Aspergillus is diffused in warmer climates, and the optimum temperature for its growth 

is 30°C but it can also grow in a temperature range between 10°C and 45°C.  
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Numerous types of aflatoxins have been identified but the most important are: the aflatoxin 

B1, B2, G1, G2 and their metabolic derivatives M1 and M2 present in particular in the milk 

of animals that have ingested contaminated food [8]. 

The metabolism of AFB1 is determined primarily by cytochrome P450 (CYP450). Typically 

isoforms CYP1A2 and CYP3A4 are the most involved in the activation of AFB1 with the 

formation of the 2,3 epoxide responsible for binding with nucleic acids and the subsequent 

activity on protein synthesis and hepato-carcinogenic function (Figure 3.1). The AFM1 

derives its name from "milk" and it is the unique AFB1 metabolite that passess in significant 

quantities in milk; However, it is also present in other body fluids (blood and urine), as well 

as in organs such as liver and kidney. 

                              

      Figure 3.1: Mechanism of AFM1-DNA binding [8]. 

 

It is formed by aflatoxin B1 through a process of hydroxylation in the liver and kidney and is 

subsequently eliminated in the milk, while a small portion is deposited in the muscle. The 

AFM1 in milk begins to appear after about 12 hours from start of administration of 

contaminated food. The toxic effect is due to the toxin-nucleic acids and toxin-nucleoproteins 

binding, and the result is a weakening of the immune system, carcinogenicity and 

teratogenicity (birth defects). AFM1 food limits are regulated by Normativa 10 del 9-6-99; 

recepimento Reg.CEE 1528/98 as follows: 

• Milk products 0.05 ppb (50 ppt). 

• Infant food 0.01 ppb. 
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Most of the mycotoxin are molecules chemically stable that remain unchanged during storage 

and production. The best strategy to control the mycotoxin presence in the food chain is the 

prevention. Low molecular weight mycotoxins possess a variety of chemical structures which 

is the main constraint to develop one standard technique for analysi. There has been a major 

international research effort, aimed at the identification and quantification of mycotoxins and 

evaluation of their biological effects in humans and animals [3].  

Conventional techniques used for the detection of mycotoxins 
The analytical determination is important for the evaluation of toxins: immuno-

chemiluminescent and bioluminescent assays are generally used for the analysis of 

mycotoxins. Currently, however, the most used techniques for the determination of 

mycotoxins are chromatographic ones: HPLC (fluorescence detection), TLC, gas and liquid 

chromatography coupled to mass spectroscopy [2], (Figure 2.1). Also the comparison of 

genomic DNA sequences can be used for the identification of the fungal species responsible 

for the synthesis of mycotoxins and this cDNA can also be useful to determine if the genes 

for the biosynthesis of these molecules are expressed in a specific way or not. 

The determination at molecular level is carried out by: PCR and RT-PCR. Another method 

used for the detection of toxins is the ELISA assay. In this assay, the wells of the plate 

containing an antibody against these toxins. The detection reagent is a covalent complex 

between the mycotoxin and an enzyme, usually horseradish peroxidase or alkaline 

phosphatase. ELISA typically uses a fluorimetric or colorimetric method for the detection. 

However, substrates may also be used with products that can be measured electrochemically; 

in this case the immunoreagent are immobilized on the surface of an electrode. The 

advantage of electrochemical assays is the low cost of production of the electrodes. 

Applications based on these types of assays have included the detection of AFM1 in milk [9], 

AFB1 in barley and rice  [10,11] and OTA in wheat [12]. Though these methods are well 

known for their accurate and precise detection of mycotoxin in  food or feed samples, they 

require skilled operators, extensive sample pretreatment, equipment and may lack accuracy at 

low analyte concentration [13,14]. Therefore, a rapid, sensitive and specific assay technique 

is required for the routine analysis of foods, and beverages.  

The biosensors are instruments that use biological molecules, such as antibodies or enzymes, 

which come into contact with a substance, such as a toxin, react and undergo changes which 

are then "translated" into a measurable electrical signal or impulse. These devices have an 

high sensibility, high selectivity, low cost, offering the chance to be reborn and have many 

potential applications. Biosensors can be easily used in the food industry to determine the 
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presence of mycotoxins in food [15]. Among the most widely used for this purpose there are: 

the piezoelectric biosensors (simple, rapid and highly selective) and microarray 

(simultaneous detection of molecules with high, medium and low molecular weight). Over 

the last few years the use of "Lateral flow tests" also increased. The lateral flow tests are 

simple devices designed to detect the presence (or absence) of a target analyte in the sample 

(matrix) without the need for specialized, expensive equipment; one of the most recent used 

for the detection of aflatoxin M1 was designed by the CHARM. It is the only lateral flow test 

that detects the presence of aflatoxin M1 in parts per trillion (ppt) in raw milk. It is designed 

to respect the U.S.A. FDA limit of 500 ppt (0.5 ppb). 

      

 

      Figure 3.2: HPLC detection of AFM1 in raw milk (advantages and disadvantages). 

In this work we described a miniaturized peptide-based biosensor for rapid, sensitive and 

specific detection of Aflatoxin M1 in complex milk samples. To this aim we developed an 

integrated approach to select specific peptide motif to capture aflatoxin M1. The integrated 

approach provides a combination of computation modeling with combinatorial peptide 

synthesis to screen the sequence with the highest affinity.  In particular, computation 

modeling using a C-docker alghoritm was performed to determine the Binding energy of all 

possible peptide combinations against toxin, using as building blocks eight different amino-

acids chosen by considering their different chemical properties.  The combinatorial peptide 

libraries were obtained with the same building blocks and best alfatoxin binders were 

SAMPLE PREPARATION 

Reconstitute sample if 
necessary. 

Centriguge. 
Separate fat from skim. 

AFFINITY CHROMATOGRAPHY 
Pass skim milk over affinity column. 

Wash column with water. 
Elute Aflatoxin M1 from column with 
CH3CN/CH3OH and collect eluate in a 

cuvette. 

MEASURE AFLATOXIN M1 

Inject eluate into HPLC. 

         
         SENSITIVE METHOD 

                        BUT 

•  TOO EXPENSIVE 

• TIME CONSUMING 

•  EQUIPPED 
LABORATORIES 

•  TRAINED WORKERS 
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selected by SPR (Surface Plasmon Resonance). Peptide sequences selected by proposed 

approach were easily integrated in PEGDA microparticles through a droplet microfluidic 

strategy in order to open the route towards a direct detection of aflatoxins in small volume 

both in liquid and solid environment. Droplet-microfluidics was used to produce water in oil 

emulsion in which reactive peptide was included directly in flow, eliminating the need for 

costly and time-consuming labeling steps. Computational fluidic dynamics simulation (CFD) 

was used to optimize the design of the device investigating the parameters that influence 

droplet formation. After UV polymerization the capability of PEGDA-peptide microgels to 

detect Aflatoxin M1 in buffer and in complex milk medium was demonstrated by confocal 

spectroscopy. This tool-system could be useful for producing a novel, efficient and sensitive 

peptide integrated microparticles to detect bio-molecular targets with higher affinity in 

complex medium. Our approach could be also applicable to other small molecules or 

contaminants whose sensitive detection is indispensable for food, biochemical or medical 

applications. 

 

 

3.2 MATERIALS AND METHODS 

3.2.1 Materials    

Poly(ethylene glycol) diacrylate (PEGDA, 700 MW), the non polar solvent light mineral oil 

and the nonionic detergent sorbitan monooleate (Span 80) were purchased from Sigma 

Aldrich. Crosslinking reagent Darocur 1173 was purchased from Ciba. Reagents for peptide 

synthesis (Fmoc-protected amino acids, resins, activation, and deprotection reagents) were 

purchased from Iris Biotech GmbH (Waldershofer Str. 49-51 95615 Marktredwitz, 

Deutschland) and InBios (Naples, Italy). 1-ethyl-3-(3-dimethylaminopropyl)car-bodiimide 

hydrochloride(EDC) ,N-hydroxysuccinimide(NHS aflatoxinM1 (AFM1) and the conjugate of 

AFM1 with bovine serum albumin(BSA–AFM1) were fromSigma-Aldrich. Solvents for 

peptide synthesis and HPLC analyses were purchased from Sigma-Aldrich; reversed phase 

columns for peptide analysis and the LC–MS system were supplied respectively from Agilent 

Technologies and Waters (Milan, Italy). All SPR reagents and chips were purchased from 

AlfaTest (Rome, Italy ). All chemicals were used as received. 
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3.2.2 Peptide Synthesis 

Peptide libraries and single peptides were prepared by the solid phase method on a 50 μmol 

scale following the Fmoc strategy and using standard Fmoc-derivatized amino acids. Briefly, 

synthesis were performed on a fully automated multichannel peptide synthesizer Biotage® 

Syro Wave™. Rink amide resin (substitution 0.71 mmol/g) was used as solid support. 

Activation of amino acids was achieved using HBTU-HOBt-DIEA (1:1:2), whereas Fmoc 

deprotection was carried out using a 40% (v/v) piperidine solution in DMF. All couplings 

were performed for 15 minutes and deprotections for 10 minutes. For peptides library; 8 

different amino acids were chosen to build the library based on their chemical and physical 

properties. The selected amino acids for the library construction were Arg, Asn, Pro, Trp, 

Leu, Ala, Asp and Thr. The resin (4,55g) was split into 64 different tubes and each reactor 

holds the combination of the eight amino acids, selected for the library construction, as first 

and second coupling. At the end of coupling procedures previously reported, we obtained 64 

different di-peptides that constituted the first peptide library. The di-peptide with the best 

binding properties (selected by SPR technique) was chosen for the second library as  two 

fixed amino acids present at the C-terminal of the new tetrapeptide library . Thus we split   

the dipeptide resin into 64 different tubes and we bound the third amino acid to the  amine 

group of the second amino acid. At the end the fourth amino acid was linked to the third one 

by the same synthesis procedures. We obtained a second library composed by 64 

tetrapeptides that have the same two amino acids at the C-terminus but the first two amino 

acids at the N-terminal are randomized with eight different building blocks . The best binding 

tetra-peptides, selected by SPR, were functionalized with rhodamine to monitor their 

entrapment in microparticles. Lysine side chain amine rhodamine labeling was achieved by 

on-resin treatment with rhodamine isothiocyanate (TRITC) after removing methyltrityl (Mtt) 

protecting group using 1% TFA in DCM for 30 min. 

3.2.3 Computer Modeling 

Modeling and docking studies were conducted with software package Discovery Studio 

version 4.5, (BIOVIA 5005 WateridgeVista Drive, San Diego, CA 92121,USA). 
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3.2.3.1 The aflatoxin M1 structure .  

The first part of the work was to determine the structural conformation of the aflatoxin M1 

molecule. A search was executed in the Protein Data Bank (PDB) for structures which 

contain the aflatoxin M1 molecule. Several molecules were found  with the AFB1 -8, 9-exo-

epoxide bound to a DNA chain; however none contained the aflatoxin M1 molecule alone. 

Since no structure of the aflatoxin M1 molecule was available,  we tried to design it, through 

the Discovery Studio software with “Sketch and Edit molecules tools”. Aflatoxin M1 does 

not contain any chiral centres. The molecule was then charged by CharMm method and 

molecular mechanics was applied to minimized structure using the We perfomed 200 steps of 

energy minimization using the "Smart Minimizer algorithm" which performs Steepest 

Descent, followed by Conjugate Gradient minimization. In figure 3.3 the Aflatoxin M1 

sketched structure was reported. 

                       

Figure 3.3: Aflatoxin M1 sketched structure by “Sketch and Edit molecules tools”. 

3.2.3.2 Library design. 

The dataset for the monomers was set using a customized protocol to build peptides of a 

given length   developed through the Pipeline Pilot software (version 9.5) following the 

scheme showed in figure 3.4. Only 8 amino acids, selected on the basis of their chemical 

properties, were used as building blocks of the library (A,T,D,N,R,P,W,I). The generated di-

library was validated using a computational approach composing by molecular dynamics, 

docking algorithms and binding energy estimation.   The docking procedure was used to 

obtain a scoring of the best di-peptide binding sequences, against the target toxin, that were 

used as start point to generate another tetra-peptide library using the same amino-acids, 

previously mentioned, as building blocks. All 64- tetra-peptides generated were validated 

again by the same computational approach.. 
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Figure 3.4: Flow chart of the protocol implemented in the Pipeline Pilot software used in this 

work to generate di- and tetra- peptide library. 

 

 

3.2.3.3 Molecular dynamics simulation and C-docker procedure 

All the 64 peptides of the di-and tetrameric library were typed with CHARMn (Biovia) force 

field. We perfomed 200 steps of energy minimization using the "Smart Minimizer algorithm" 

which performs Steepest Descent, followed by Conjugate Gradient minimization. Minimized 

peptide structures were solvated inside an orthorombic water box ionized with a 0.145 M salt 

concentration. We performed molecular dynamics simulation of the solvated peptides using 

the following protocol: an initial minimization stage using 1000 steps of Steepest Descent 

algorithm, a second minimization stage 2000 steps of Conjugate Gradient method, an 4 ps 

heating stage to increase the temperature from 50 K to 300 K, a 10 ps equilibration stage at 

300 K and a production stage 1 ns molecular dynamics at 300 K in the NPT ensemble. Final 

peptide conformations from molecular dynamics were used as input receptor structures for a 

docking procedure. We used the CDocker protocol (BIOVIA) to generate a complex of each 

peptide with Aflatoxin molecule in order to calculate the binding energies between the two 

species and obtain the most interactive peptides against the Aflatoxin. For the best Aflatoxin 

M1 binding peptide discovered at the end of all screening steps, we calculated  the  binding 

energy of the complex with the “Calculate Binding Energies protocol” that estimates the 

binding energy between a receptor and a ligand. The binding energy was calculated using the 

following equation: EnergyBinding = EnergyComplex - EnergyLigand – EnergyReceptor 

[22]. 
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3.2.4 Surface plasmonic resonance 

The interactions between all 64 di-peptides and tetra-peptides were measured using the SPR 

technique with SensiQ Pioneer from AlfaTest  (Rome, Italy). In order to measure the affinity 

of the peptides (analyte) against the aflatoxin (ligand), AflatoxinM1-conjugated BSA  was 

immobilized at a concentration of 50 µg/mL in a 10 mM acetate buffer pH 3.7 (flow 10 

µL/min, injection time 20 min) on a COOH1 SensiQ sensor chip, using EDC/NHS chemistry 

(0.4 M EDC - 0.1 M NHS, flow 25µl/min, injection time 4 min), achieving a 7000 RU signal. 

Groups reactive residues were deactivated by treatment with ethanolamine hydrochloride 1 

M, pH 8.5. In order to study the aspecific binding of peptides against BSA, the reference 

channel was prepared by activation with EDC/NHS and immobilized with the BSA protein 

alone at a concentration of 50ug/mL and reaching the same RU signal of the toxin-BSA 

(7000). The binding assays were performed at 25 μL/min, with a contact time of 4 min, all 

peptides were diluted in the buffer stroke, HBS (10 mM Hepes, 150 mM NaCl, 3 mM EDTA, 

pH 7.4).The injection of analytes (100 μL) was performed at the indicated concentrations. 

The association phase (kon) was followed for 180 s, whereas the dissociation phase (koff) was 

followed for 300 s. The complete dissociation of formed active complex was achieved by 

addition of 10 mM NaOH, for 60 s before each new cycle start. To subtract the signal of the 

reference channel and evaluate the kinetic and thermodynamic parameters of the complex, 

the software QDAT analysis package (SensiQ Pioneer, AlfaTest) was used. For tetra-peptide 

library binding experiments were conducted by Fast step injection. Fast Step is an in situ-

dilution method that enables stepped analyte gradient injections to be performed, where the 

concentration of sample steps up, or down, according to a predefined profile without reliance 

on dispersive mixing in a flow channel. The analyte concentration is modulated en route to 

the flow cell on-the-fly. This eliminates the overhead associated with multiple loading, 

injecting and clean up cycles making substantial reductions in time and complexity possible. 

The dissociation of analyte can be accurately estimated from a single dissociation phase 

curve recorded after the step injection is complete. The sample throughput can be increased 

by >10-fold compared to conventional methods. In this case an analyte concentration of 1mM 

was used with a flow rate of 200µL/min , a contact time of 20 sec and a dissociate time of 

120 sec. As to bulk standard cycles, a 20% of sucrose was used. Kinetic parameters for all 

tetra- peptides were estimated assuming a 1:1 binding model and using QDAT software 

(SensiQ Technologies). 
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3.2.5 Microfluidic device 

Microfluidic device consists of two inlets for the continuous and disperse phase, a narrow 

orifice in which the main channel and the two opposite channels converge, and a serpentine 

in which droplets were polymerized. The dimensions of the device are 50 × 35 µm (width × 

depth) for the channels solutions, 35 × 35 µm at the junction (width × depth); the serpentine 

is 10 cm long. The microfluidic device was fabricated by combining the conventional 

photolithographic and soft-lithographic techniques. Briefly, negative photoresist (Mr-DWL 

40 phtoresist, Microresist technology) was spun onto a silicon wafer at 2000 rpm for 30 s to 

make a 35 µm thick layer of photoresist. Then, the photoresist was baked and subsequently 

exposed using DWL 66 Fs LASER technology system (Heidelberg instruments). After the 

exposed sample had been post-baked and developed, the microfluidic flow focusing device 

master was prepared. The surface of the device mold was treated with tridecafluoro-1,1,2,2-

tetrahydrooctyl-1-trichlorosilane to facilitate the peeling off of the polydimethyl-siloxane 

(PDMS, Sylgard 184, Dow Corning) replica. PDMS (10:1 polymer to curing agent) was 

poured on the patterned silicon wafer containing negative-channels. The PDMS-based 

microfluidic device was peeled off from the wafer and bonded on a glass slide with oxygen 

plasma treatment.  

3.2.6 Synthesis of Hybrid Peptide-Microgels . 

Microgels were synthesized using light mineral oil containing nonionic surfactant Span 80 (5 

wt%) as a continuous phase and poly(ethylene glycol)diacrylate (PEGDA) (20 wt%) with 

photoinitiator (0.1 wt%) and the three best Aflatoxin binding peptides (WNDNRD-(O-allyl)), 

WNDDRD-(O-allyl)), WNDPRD-(O-allyl)) at 80µM as disperse phase. Droplet emulsions 

were formed injecting prepolymer solution, the disperse phase, through the central channel 

whereas an oil solution, the continuous phase, through two opposite side channels. The 

uniform PEGDA-peptide droplets were crosslinked in flow to form monodisperse microgels. 

To photopolymerize droplets DAPI microscopy filter (9.8 mW, λ=360 nm) was used, 

focusing the UV light on the serpentine and regulating the diaphragm aperture of the 

microscope, for 15 s. After photopolymerization, microgels were collected in an eppendorf 

and washed three times with a solution of ethanol (35 v/v%) and acetone (10 v/v%) to 

remove the oil. After washing, microgels containing selected rhodamine-derivatized peptides 

were analyzed by confocal microscopy. Polyethylene tubes were connected to the inlets and 

outlets and the solutions were injected using high-precision syringe pumps (neMesys-low 

pressure) to ensure a reproducible, stable flow. This system was mounted on an inverted 
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microscope (IX 71 Olympus) and the droplets formation was visualized using a 4× objective 

and recorded with a CCD camera Imperx IGV-B0620M.  

Peptides were dissolved into the disperse phase and thanks to the allyl group at the C-

terminus of the sequences  they could co-polymerize with the PEG for the microgels 

synthesis. Fluorescent rhodaminated peptides were used to control the efficient microgels 

synthesis. Fluorescence analysis was performed by Leica SP5 confocal microscope. Bright 

field and fluorescence images using a HCX IRAPO L 40×/0.95 water objective were 

acquired; 540 nm line of the Argon laser as excitation sources for Rhodamine-peptide was 

used and detection occurred at the 600-700 nm band. Images were acquired with a resolution 

of 1024 × 1024 pixels, zoom 1, 2.33A.U. and maximum of pinhole (Figure 3.5). All our 

experiments were performed at room temperature.  

 

                                  

 

Figure 3.5: Confocal microscope images of Rhodamine-peptide microgels. A and B) Bright 

field and fluorescence images using a HCX IRAPO L 40×/0.95 water objective were 

acquired; 540 nm line of the Argon laser as excitation sources for Rhodamine-peptide was 

used and detection occurred at the 600-700nm band. C) Overlay of Bright field and 

fluorescent channels. 

 

3.2.7 Microgels Recovery by washing steps and SEM (Scanning electron miscroscopy) 

characterization 

Oil-dispersed microgels were recovered by an optimized washing protocol. Briefly, 1 mL of  

a mixed acetone/isopropanol/water solution (30:10:60) was added to the biphasic-system 

followed by centrifugation at 10000 rpm for 5 minutes, two times [16]. In this way the 

supernatant containing oil was eliminated and microgels were re-suspended in PBS buffer pH 

7.4 and stored at 4°C.   

In order to evaluate the correct oil elimination, SEM characterization with EDS analysis 

(Energy Dispersive X-ray Spectroscopy) was performed. SEM analysis was performed with a 

A B C 
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Ultra Plus FESEM scanning electron microscope (Zeiss, Germany). 10 µL of peptide 

microgels and PEG-microgels (without peptides, control negative microgels) solution of 

0.1mg/mL were mounted on microscope stubs, dried overnight  and sputter coated with gold 

(approximately 7 nm thickness). The same conditions were used for microgels before and 

after washing protocol. 

3.2.8 Fluorescamine assay 

Thanks to  the α amino group of the Aflatoxin binding peptides,  we evaluated the efficient 

and homogeneous peptide co-polymerization into microgels by a fluorescamine-based assay 

[17]. Fluorescamine was dissolved  in HPLC grade acetone (3 mg/mL) to obtain a 1 mM 

solution.. After 250 µΜ solution of fluorescamine was added to prepared samples and mixed 

for 15 minutes. Sample was loaded in ibidi channels and fluorescence analysis was performed 

by multiphoton confocal laser scanning microscopy (Leica SP5) using a two photon laser at 

700nm. Objective: HCX IRAPO L 40.0x0.95 WATER section thickness 3 µm, scan speed 

400 Hz, excitation MP laser 700nm, λem range 500–540nm, image size 1024 × 1024 µm
2
, 

zoom 1, 2.33A.U. and 600µm pinhole. All experiments were conducted at room temperature. 

The fluorescamine assay was perfomed both for peptide microgels and control negative 

microgels. All captured images were analysed with a public domain image-processing 

program, IMAGEJ (v. 1,43i, NIH, Bethesda, MD, USA). The images were briefly thresholded 

by the Otsu algorithm and then processed with the ImageJ Analyze Particles function to 

computationally determine the number of single fluorescent particles in the range of 20 µm. 

3.2.9 Aflatoxin binding and characterization in buffer and milk samples 

Binding experiments were performed incubating Aflatoxin binding peptide-microgels and 

microgels without peptide (Control-microgels) with Aflatoxin M1-BSA conjugated in PBS 

(pH 7.4) at room temperature for 2 h. To demonstrate the ability of our system to detect 

aflatoxin, 5µL of Aflatoxin binding peptide-microgels were suspended in 100µL of PBS and 

different concentrations of AFM1-BSA ranging from 0.0025nM to 2nM were added and 

incubated for 2 h. After the incubation, microgels were directly loaded in ibidi channels 

without any washing in order to not affect binding equilibrium between microgels and 

AFM1-BSA molecules; and the auto-fluorescence of AFM1-BSA in microgels was analyzed. 

The same protocol was used for microgels without peptide, as a negative control. 

Fluorescence analysis was performed by multiphoton confocal laser scanning microscopy 

(Leica SP5) using a two photon laser at 700nm. Objective: HCX IRAPO L 40.0x0.95 

WATER section thickness 3 µm, scan speed 400 Hz, excitation MP laser 700nm, λem range 
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400-500nm, image size 1024 × 1024 µm
2
, zoom 1, 2.33A.U. and 600µm pinhole. All 

experiments were conducted at room temperature. The same experiments were performed 

both for peptide-microgels and control microgels dispersed into milk solutions. Skim milk 

was purchased from a local grocery store and spiked with the same AFM1-BSA solutions 

used in the protocol for buffer samples. Before binding experiments, the milk was diluted 

with water (1:10) in order to decrease milk-proteins concentrations and avoid aspecific 

signals. For milk samples experiments, even AFM1 toxin without BSA conjugation was used. 

All captured images were analysed with a public domain image-processing program, IMAGEJ 

(v. 1,43i, NIH, Bethesda, MD, USA). The images were briefly thresholded by the Otsu 

algorithm and then processed with the ImageJ Analyze Particles function to computationally 

determine the number of single fluorescent particles in the range of 20 µm. 

 

3.3 RESULTS AND DISCUSSIONS 

The aim of this work was to obtain a synthetic system that could mimic recognition 

properties of the antibodies and possibly substitute them into the affinity media. We exploited 

combinatorial chemistry to synthesize libraries from which we could select a compound with 

recognition properties towards Aflatoxin M1. We performed two different combinatorial 

approaches: Computational and Experimental. Peptides sequences selected by proposed 

approach was then easily co-polymerized into PEGDA microparticles opening the route 

towards a direct detection of aflatoxins in small volume both in liquid and solid 

environments. 

3.3.1 Experimental library design and synthesis 

The aim of this work was to obtain a synthetic system that could mimic recognition 

properties of the antibodies and possibly substitute them into the affinity media. We decided 

to exploit combinatorial chemistry to synthesize libraries from which we could select a 

compound with recognition properties towards Aflatoxin M1 with high affinity. We 

combined two different approaches: Computational and Experimental. Peptides sequences 

selected by proposed approach were then easily integrated in PEGDA microparticles opening 

the route towards a direct detection of aflatoxins in small volume both in liquid and solid 

environments. 

Because of their chemical properties (i.e. solubility, different functional groups), their high 

availability and their low cost, we decided to use amino-acids to construct our library [18]. 

The amino-acids chosen to prepare library were Alanine (A), Arginine (R),  Aspartic Acid 
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(D), Asparagine (N), Threonine (T), Proline (P), Isoleucine (I), Tryptophan (W), which have 

different functional groups in their side chains and different chemical properties; in particular 

we tried to choose one amino-acid for each chemical category and so we simplified the 

composition of the library by neglecting other amino-acids. In this way we could easily 

obtain a known linear peptide sequence using an 8x8 amino-acids matrix as reported in figure 

3.6. As a solid phase Rink amide resin (substitution 0.71 mmol/g) was used; this support was 

suitable for the synthesis work because of their large size (50–100 mesh) and their easiness to 

handle and separate. In this way 64 different linear di-peptides were obtained. After SPR 

screening (See Chapter 3.3.3 for details), di-peptide “ND” with the best binding properties 

towards the aflatoxin M1 was used as starting point for the synthesis of a new linear 

tetrapeptide library. The same amino-acids previously employed were added as building 

blocks. The Aflatoxin M1 binding tetra-peptides were subsequently screened by SPR 

technique (See Chapter 3.3.3.2 for details) in order to find a high affinity binder. 

 

                          

    

Figure 3.6: Design of parallel peptide simplified library (one amino-acid for each chemical 

property): 8x8 aminoacids library matrix : 8
2 

= 64 possible di-peptides for each step. The 

same scheme was used for the construction of the tetra-peptide library using as starting point 

(first and second amino-acid) the best Aflatoxin M1 binding peptides screened by SPR. 
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3.3.2 In silico screening – Cdocker results 

In silico is an expression used to mean "performed on computer or via computer simulation." 

It is a computational technique used in drug discovery to search libraries of small molecules 

in order to identify those structures which are most likely to bind to a drug target, typically a 

protein receptor or enzyme [19]. Given a set of structurally diverse ligands that bind to a 

receptor, a model of the receptor can be built by exploiting the collective information 

contained in such set of ligands. These are known as pharmacophore models. A candidate 

ligand can then be compared to the pharmacophore model to determine whether it is 

compatible with it and therefore likely to bind [20]. CDOCKER is a CHARMm-based 

docking algorithm. Using a CHARMm-based MD simulation scheme,CDOCKER docks 

ligands in a receptor binding site. In this method, random ligand conformations generated 

from a high-temperature MD are first translated into the binding site. The binding poses are 

searched using random rigid-body rotations, followed by simulated annealing with a grid 

potential. A final minimization with full forcefield potential is used to refine the ligand poses 

[21]. Molecular Docking experiments between Aflatoxin M1 and 64 different peptides were 

performed using Cdocker, an algorithm available within Discovery Studio software. In 

particular, all 64 structures obtained from the library (See Experimental Section for details of 

library construction) have been properly designed, parameterized and minimized. After this 

both the toxin and peptide sequences were balanced by molecular dynamic. For the 

assignment of the charges we have chosen CharMm method and the force-field used was the 

“Momany-Rone” available within the program. So the minimized sequences and toxin were 

analyzed by Cdocker algorithm in order to have a binding energy of the interaction. This 

screening was repeated twice in order to have tetrapeptides able to bind Aflatoxin M1. As to 

the second screening, in according to Cdocker data of the first one and the SPR data, the di-

peptide sequence “ND” was chosen as starting point for the construction of the tetra-peptide 

library. In Figure 3.7 the binding energies of the first and second screening were reported, 

while best sequences of first and second screening were reported in figure 3.8. The docking 

results of all sequences for first and second screening were reported in Appendix of chapter 3. 
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Figure 3.7: Cdocker results of first and second screening: A) Binding energy values of di-

B 

A 
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peptide library towards Aflatoxin M1. B) Binding energy values of tetra-peptide library 

towards Aflatoxin M1. 
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FIGURE 3.8: Best Aflatoxin M1 binding di-peptide sequences selected from first screening 

performed by Cdocker results. From top left to the bottom the di-peptide sequences are: 

AD,AN,AR,DD,DN,DR,II,IN,IW,NI,NN,NW,PI,PW,PA,RW,RT,RD,TW,TR,TT,WW,WR,

WN. 

 

FIGURE 3.9: Best Aflatoxin M1 binding tetra-peptide sequences selected from second 

screening performed by Cdocker results.  

From top left to the bottom the tetra-peptide sequences are: 

NDAP,NDAW,NDDI,NDDP,NDID,NDIP,NDNR,NDNI,NDPR,NDPD,NDTP,NDTW,NDR

P,NDRW,NDWN,NDWT. 
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3.3.2.1 Calculation of binding energy of the complex between the best tetra-peptide 

sequences and Aflatoxin M1. 

In according to SPR screening (See paragraph 3.3.3 for details) and Cdocker results for the 

tetra-peptide library, three best Aflatoxin M1 binding peptides (WNDNR,WNDDR,WNDPR) 

were selected to calculate also the real Binding Energy value of the formed complex between 

peptides and toxin [22]. In addition, we also added a tryptophan residue (W) at the N-

terminal end of these three sequences in order to increase the affinity of them towards 

Aflatoxin M1. We decided to add this amino- acid as a sort of tag because of its aromatic 

properties that seem to be preferred by toxin both in Docking and SPR experiments. The tag 

addition increased the affinity between WNDPR peptide and toxin but it was negligible for 

WNDNR and WNDDR peptides. For this last two sequences, in-fact, it was not able to 

calculate the Binding Energy value of the total complex formed within the toxin. Despite of 

this we decided to use even this two peptides for material integration in according to good 

SPR obtained  results. In figure 3.10, the complex formed by toxin and WNDPR peptide was 

reported and the Binding Energy value was calculated to be -48.4442 kcal/mol. 

 

 

Figure 3.10: Binding Energy calculation of Aflatoxin M1/WNDPR complex. 

 

3.3.3 Surface plasmonic resonance (SPR) results  

All 64 synthesized peptides were analyzed by SPR experiments in order to evaluate their 

ability to bind aflatoxin. In SPR experiment Aflatoxin-M1-conjugated BSA was used as 

ligand and immobilized on the chip COOH1, achieving 7000 RU immobilization level 

according to reported conditions (see Experimental section for details).  

For the first screening, the direct binding between toxin-BSA and all 64 peptides were 

performed by injecting a fixed concentration of 3mM of all 64 peptides using a standard 

WNDPR Binding Energy= -48.4442 kcal/mol  
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protocol. As it is possible to see in figure 3.11, the highest RU signal was given by di-

peptides containing W (tryptophan) residues but they gave a high non specific signal on BSA 

reference channel as well (data not shown, we reported the RU values from channel one 

subtraction to channel 3). For this reason the Asparagine-Aspartic acid di-peptide (one letter 

code: ND) was chosen as starting point for the tetra-peptide library construction. This 

sequence, in-fact, gave a reasonable RU signal on toxin channel and no signal on BSA 

reference channel, highlighting the presence of a real specific binding between this di-peptide 

and Aflatoxin M1. For the “ND” peptide, a dose response experiment towards aflatoxin-BSA 

was also performed by injecting peptide solutions at increasing concentrations from 1.5µM to 

1mM. Employing a 1:1 interaction model, a high micromolar dissociation value for ND 

peptide/ Aflatoxin M1-BSA complex was shown. A good fitting was obtained using a 1:1 

interaction model. In figure 3.12 the dose-response overlay of ND sensorgrams and KD 

calculation was reported. All fitted sensorgrams for entire library were reported in Appendix 

of chapter 3. 

                          

 

Figure 3.11: RU values of all 64 di-peptides of first screening towards Aflatoxin-M1 channel. 

For each peptides a fixed concentration of 3mM was injected. The final RU signal was 

obtained by subtracting the BSA reference channel. 
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Figure 3.12: Binding of ND peptide and Aflatoxin M1 molecule. Conventional SPR 

experiment, analyte concentration from 1.5 µM to 1mM. 

In order to improve the affinity of selected ND peptide towards toxin, a tetra-peptide library 

was synthesized using ND sequence as starting point. So a SPR screening of this second 

library was performed. To avoid aspecific signals on reference channels (Channel 2 and 

BSA-channel 3), due to the entrapment of small peptides on polymer surface of sensor chip 

using conventional method, we decided to perform a Fast injection for the second screening. 

Fast Step is an in situ-dilution method that enables stepped analyte gradient injections to be 

performed where the concentration of sample steps up, or down, according to a predefined 

profile without reliance on dispersive mixing in a flow channel. The analyte concentration is 

modulated en route to the flow cell on-the-fly [23]. This eliminates the overhead associated 

with multiple loading, injecting and clean up cycles making substantial reductions in time and 

complexity possible (Figure 3.13). The dissociation of analyte can be accurately estimated 

from a single dissociation phase curve recorded after the step injection is complete. The 

sample throughput can be increased by >10-fold compared to conventional methods. 

 

Figure 3.13: Fast step methodology. 

     ND [  ] = From 1mM to 1.5µM  

KD = 1.5mM 
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So returning on our experiment, a fixed concentration of 500 M of all 64 tetra-peptides was 

injected and diluted directly into instrument flow-cell. Employing a 1:1 interaction model, a 

micromolar dissociation value (both with kinetic and equilibrium parameters) for six peptides 

(NDNR, NDRN, NDDR, NDRD, NDRP, NDPR) of the entire library was calculated as 

reported in figure 3.14a and b and in table 2, while for the other tetra-peptides there was no a 

clear association to the toxin showing typical aspecific sensorgrams with a low millimolar 

dissociation value, (See Appendix of chapter 3 for all fitted sensorgrams) 

 

 

 

   

 

 

 

 

 

 

 

 

A B C

D
E F

  a 



 

77 
 

b 

 

Figure 3.14: Fast step results of the best six tetra-peptides from the second screening. Fast 

step fitted sensorgrams using kinetic parameters (a) and equilibrium parameters (b). (a)From 

the top left the sequences reported are: NDRN, NDRD, NDRP, NDDR, NDNR, NDPR. The 

KD values are reported in table below. 

 

 

 

   Table 2: KD evaluation with kinetic and equilibrium parameters. 

 

In according to Docking experiments three of these sequences (NDNR,NDDR,NDPR)  were 

selected for material integration and for biosensors development. In particular even if the 
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sequence NDPR had a high KD constant value, we decided to choose it on the basis of 

docking  results because it was the best Aflatoxin M1binding peptide selected from docking 

screening. 

To these three sequences, we decided as previously mentioned to add a W residue at the N-

terminal portion with the aim to improve more the affinity of the NDNR, NDDR and NDPR 

peptides towards Aflatoxin M1.  

As Docking results, the tag addition was very satisfying for NDPR sequence but was 

negligible for  NDNR and NDDR peptides. Even in this experiment a Fast step injection was 

performed using a fixed concentration of 500µM for all three peptides.  A low micro-molar 

dissociation value, employing a 1:1 interaction model was calculated as reported in figure 

3.15. All RU signal were subtracted to BSA reference channel. 

 

 

Figure 3.15: Fast step injection of the best three selected tetra-peptides with tag (W residue) 

addition. From the top left the sequence are: WNDDR, WNDNR,WNDPR. For all peptides a 

concentration of 500µM was used and a low micro-molar dissociation value, employing a 1:1 

interaction model was calculated. For WNDDR the KD was about 81±0.5µM, for WNDNR 

was 138±0.02 µM and for WNDPR was about 233±0.05µM. 



 

79 
 

So at the end of all library screening we decided to use the sequences: WNDNR, 

WNDDR,WNDPR to development and synthesized the final biosensor. 

3.3.4 PEGDA-peptide microgels synthesis and characterization 

Here microfluidic synthesis of biodegradable PEGDA-peptide microgels for Aflatoxin M1 

detection was reported. To functionalize the microgels we used three different tetra-peptides 

sequences selected from Docking experiments and SPR technology. In order to co-

polymerize these sequences with PEG into microgels, an allyl group at the C-terminal end of 

each peptide was added. Microgels synthesis and peptide attachment was described in 

Experimental Section. Briefly, the pre-polymer solution containing selected peptides 

(WNDNRD(allyl), or WNDDRD(allyl), or WNDPRD(allyl)) was injected through the central 

channel of the microfluidic device, as disperse phase, and an oil solution with surfactant was 

flushed through its two opposite side channels, as continuous phase. Under optimized flow 

rate conditions, estimated by CFD simulation, disperse phase was sheared into monodisperse 

droplets by continuous phase. Based on flow conditions, the yield of microgel production was 

around 300 microgel/minutes and the number of microgels was about 2x10
6
 particles/mL. 

This number was calculated using a cell counting chamber (data not shown). Alfatoxin M1 

binding peptide-microgels obtained are monodisperse in size and peptide encapsulation was 

confirmed by confocal image (Figure 3.5 in Experimental section). PEGDA has been chosen 

for its advantages over other polymers and its specific proprieties, such as good 

biocompatibility, non-toxicity, low immunogenicity in vivo, and resistance to protein 

adsorption. Moreover, polyethylene glycol (PEG) hydrogels are widely used in biomedical 

fields such as drug delivery and tissue engineering [24, 25]. 

3.3.5 Microgels Recovery by washing steps and SEM (Scanning electron miscroscopy) 

characterization 

In order to evaluate the correct oil elimination, SEM characterization with EDS analysis 

(Energy Dispersive X-ray Spectroscopy) was performed. For recovery protocol a solution of 

acetone/isopropanol/water (30/10/60) was used. This mixture caused a significant change in 

particle shape and surface morphology, as shown in Figure 3.16 A and B, where microgels 

washed and not washed were represented. In particular washed microgels had a good 

sphericity and a rough surface. The roughness was once more due to use of dehydrating 

solvents. Water extraction appears to change the PEGDA microgels network. Unlike, not 

good sphericity and smooth surface was detected on not washed microgels structure. The 

smooth and dense microgels surface were due to residual surfactants and oil (data confirmed 



 

80 
 

also by UV spectra, not shown here), as it is possible to see in EDS experiments (figure 3.17) 

[16].  All these considerations were validated both for peptide-microgels and control-negative 

microgels. 
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Figure 3.16: SEM images of peptide and control negative microgels. A) Washed microgels: 

From the top left the WNDPR, WNDNR, WNDDR and PEG microgels were represented. 

They showed a good sphericity and a rough surface. The roughness was once more due to use 

of dehydrating solvents. B) No washed microgels: From the top left the WNDPR, WNDNR, 

WNDDR and PEG microgels were represented; They had not good sphericity and smooth 

surface. The smooth and dense microgels surface were due to residual surfactants and oil. 

 

 

Figure 3.17: Example of EDS images for control negative microgels and WNDPR ones. On 

the top the no washed microgels were represented. In this image it is possible to see the 

presecence of oil and surfactants retained on microgels surface. On the bottom of the figure, 

the washed microgels were reported. In this case it is possible to see only the presence of 

cationic and anionic elements presented in buffer solution. 

 

3.3.6 Fluorescamine assay 

Thanks to the α amino group of the Aflatoxin binding peptides, we evaluated the efficient and 

homogeneous peptide co-polymerization into microgels by a fluorescamine-based assay. 

Fluorescamine is a common probe used to quantify protein or peptides in complex solutions. 

The non-fluorescent compound, fluorescamine, reacts rapidly with primary amines in 

PEG microgels no washed WNDPR microgels no washed

WNDNPR microgels washedPEG microgels washed
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proteins, such as the terminal amino group of peptides and the e-amino group of lysine, to 

form highly fluorescent moieties [26-28]. In our work, four different samples for each peptide 

microgels were treated with 250µM of fluorescamine solution for 15 minutes. The images 

were performed by multiphoton confocal laser scanning microscopy using a two photon laser 

at 700nm and the fluorescence analyzed by ImageJ tools (Figure 3.19), (See Experimental 

section for details). As we can see in the figure 3.18, the amount of peptides all over 

microgels structure was homogeneous. The same experiment was performed for control 

negative microgels. 

          

Figure 3.18: Fluorescamine assay. Multiphoton confocal laser scanning miroscopy images, 

excitation laser 700nm. The amount of peptide into microgels was homogeneous. For control 

negative microgels, the signal was very low similar to the laser background. 

WNDDR WNDPR

WNDNR PEG
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Figure 3.19: Fluorescence quantification by Image J tool. The amount of peptides into 

microgels was reproducible and homogeneous. The fluorescence signal of control negative 

microgels was very low, similar to no functionalized microgels. 

 

3.3.7 Aflatoxin M1-BSA conjugated binding and characterization in buffer samples 

The use of peptide-binding small molecules in polymeric networks is useful to have a 

selective platform for small molecules detection in complex mixtures. The binding between 

Aflatoxin M1-conjugated BSA and WNDNR,WNDDR,WNDPR peptides were determined 

suspending peptide-microgels in several buffer solutions containing different concentrations 

of toxin (see Experimental section for details). The selective binding of our system was 

demonstrated using the same protocol for control negative-microgels synthesized without 

peptide. All images were perfomed by multiphoton confocal scanning microscopy using 700 

nm as excitation laser. The quantification of Aflatoxin M1-BSA into microgels was 

performed by ImageJ tools, analyzing the fluorescence of the toxin into the single microgel. 

All three peptides were able to bind toxin, even if the best sequence is the peptide WNDPR in 

according with Docking results as well. In particular, in-fact, the WNDNR and WNDDR 

were not able to reach a saturation point in the range of concentrations used in this work, 
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while the WNDPR peptide reached a saturation just at concentration of 0.1nM, that was the 

legal accepted limit by Normativa 10 del 9-6-99; recepimento Reg.CEE 1528/98. So the 

integration of this new discovered peptide in a PEGDA microgel was very useful for the 

development of a biosensor for Aflatoxin contamination detection in foodstuff at very low 

concentrations. In figure 3.20 A, B, and C the fluorescence images of binding between 

aflatoxin and peptide-microgels were reported, also the control-negative microgel images 

were represented (Figure 3.20 D). In figure 3.21, the quantification of fluorescence intensity 

of WNDPR microgels after binding was reported. It was dose-responsive and specific with a 

KD about picomolar range. The fitting of other sequences was not reported because of their 

not saturation point reaching. For this reason and because of the accepted limit of Aflatoxin 

M1 in food are very low, we decided to select only WNDPR peptide for experiments in milk 

solutions.  
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Figure 3.20: Multiphoton confocal images of binding between Aflatoxin M1-BSA conjugated 
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and WNDNR (A), WNDDR (B), WNDPR (C) and control negative microgels (D). Excitation 

laser 700nm, emission 400-500nm. 

 

Figure 3.21: Quantification of fluorescent intensity of WNDPR microgels. A) Quantification 

of fluorescent of single microgels using ImageJ tools. B) Fitting of binding event between 

WNDPR peptide and Aflatoxin M1-conjugated BSA using a One-site specific binding as 

model with a non linear regression approach (C). 

 

3.3.8 Aflatoxin M1-BSA conjugated binding and characterization in milk samples 

Aflatoxin M1 (AFM1) in milk and milk products is considered to pose certain hygienic risks 

for human health.  Human beings that ingest aflatoxin B1 contaminated diets eliminate into 

milk amounts of the principal 4-hydroxylated metabolite known as “milk-toxin” or aflatoxin 

M1,(figure 3.1) [29]. International Agency for Research on Cancer (IARC, 1993) classified 

AFB1 and AFM1 as class 1 and 2B (or probable) human carcinogens, respectively, (milk 

review). It seems that milk has the greatest demonstrated potential for introducing aflatoxin 

residues from edible animal tissues into human diet. Moreover, as milk is the main nutrient 

for growing young, whose vulnerability is notable and potentially more sensitive than that of 

adults, the occurrence of AFM1 in human breast milk, commercially available milk, and milk 
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products is one of the most serious problems of food hygiene [29].  Because of the 

complexity of milk matrix, it is very difficult to process and destroy Aflatoxin M1 

contamination without losing milk properties. For this reason we develop a peptide-based 

biosensor that is able to recognize aflatoxin in a very sensitive way. 

On the basis of experiments of previous paragraphs, we decided to use only WNDPR as 

selected peptide to synthesize and develop our final biosensor. This peptide sequence, in-fact, 

showed the best binding properties towards Aflatoxin M1 when it was integrated in PEGDA 

microgels. These results were consistent with Docking experiments as well. Skim milk was 

purchased from a local grocery store and spiked with the same AFM1-BSA solutions used in 

the protocol for buffer samples (See Experimental section for details). Before binding 

experiments, the milk was diluted with water (1:10) in order to decrease milk-proteins 

concentrations and avoid aspecific signals. The selective binding of our system was 

demonstrated using the same protocol for control negative-microgels synthesized without 

peptide. All images were performed by multiphoton confocal scanning microscopy using 700 

nm as excitation laser and 400-500 nm as emission laser. The quantification of Aflatoxin M1 

autofluorescence into microgels was performed by ImageJ tools, analyzing the fluorescence 

of the single microgel. Even in this case, the peptide WNDPR showed a very good and 

specific recognition properties towards toxin also at very low aflatoxin concentrations 

respecting the legal accepted limit by Normativa 10 del 9-6-99; recepimento Reg.CEE 

1528/98. This confirm the ability of our peptide to detect aflatoxin also in milk sample in a 

very sensitive way. In figure 3.22 A the fluorescence images of binding between aflatoxin 

and WNDPR microgels were reported, also the control-negative microgel images were 

represented (Figure 3.22 B). In figure 3.23 A the quantification of fluorescence intensity of 

WNDPR microgels after binding was reported. It was dose-responsive and specific signal 

with a KD about low nanomolar range (B-C). For control negative microgels the fluorescence 

signal was very low respect to WNDPR microgels  and the fitting was not evaluable, (figure 

3.24 A,B,C,D). 
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Figure 3.22: Multiphoton confocal images of binding between Aflatoxin M1-BSA conjugated and (A) 

WNDPR peptide and (B) control negative microgels in milk sample. Excitation laser 700nm, emission 

400-500nm. 
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Figure 3.23: Quantification of fluorescent intensity of WNDPR microgels in milk sample. A) 

Quantification of fluorescent signal of single microgels using ImageJ tools. B) Fitting of 

binding event between WNDPR peptide and Aflatoxin M1-BSA conjugated using a One-site 

total binding as model with a non linear regression approach (C). 

0

100

200

300

400

500

600

700

800

If
lu

o

[  ] nM  Toxin 

PRW milk

PRW milk

One site -- Total

Best-fit values

Bmax 923.3

Kd 0.8075

NS -127.5

Background 245.5

Std. Error

Bmax 1569

Kd 1.575

NS 398.2

Background 42.49

95% Confidence Intervals

Bmax -3432 to 5279

Kd -3.566 to 5.181

NS -1233 to 977.9

Background 127.5 to 363.4

Goodness of Fit

Degrees of Freedom 4

R² 0.9067

Absolute Sum of Squares 20908

Sy.x 72.30

Number of points

Analyzed 8

KD= 0.81±1.57nM

  WNDPR 
WNDPR 

A 
B 

C 



 

90 
 

 

 

 

Figure 3.24: Quantification of fluorescent intensity of control negative microgels in milk 

sample. A) Quantification of fluorescent signal of single microgels using ImageJ tools. B) 

Fitting of binding event between control negative microgels and Aflatoxin M1-BSA 

conjugated using a One-site total binding as model with a non linear regression approach, KD 

not evaluable. C) Comparison of fitting of WNDPR microgels and control negative microgels 

using a One-site total binding as model with a non linear regression approach. 

 

In order to improve sensibility of our biosensor, we decided to change microgels numbers in 

binding experiments. A dilution of 1:10 about microgel solution was used to perform new 

binding experiments, in this case the number of microgels in contact with aflatoxin was about 

80. Using a lower number of microgels, we were able to improve biosensor sensibility in 

aflatoxin recognition at very low concentrations (Figure 3.25). On the basis of these new 

results, we can confirm that our system could be a promising discovery in aflatoxin detection 

in milk samples.  
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3.3.8.1 Aflatoxin M1 binding and characterization in milk samples 

With the aim to confirm the real specificity and  sensibility of our biosensor, a binding assay 

between WNDPR microgels and the only Aflatoxin M1 without BSA conjugation was 

performed. For this experiment four different concentrations of aflatoxin were used: 0, 0.01, 

0.1, 2 nM. All images were performed by multiphoton confocal scanning microscopy using 

700 nm as excitation  laser and  400-500 nm  as emission  laser. The quantification of 

Aflatoxin M1 auto-fluorescence into microgels was performed by ImageJ tools, analyzing the 

fluorescence of the single microgel. As it is possible to see in figure 3.26 A and B,C,D, the 

biosensor developed in this work was able to recognize aflatoxin contamination in milk 

sample in a very specific manner, opening an important way in aflatoxin food contamination 

in the agricultural and industrial fields. 

 

Figure 3.25: Binding between Aflatoxin M1-BSA conjugated and WNDPR microgels using a number 

of microgels diluted 1:10. A) Multiphoton confocal images of binding between Aflatoxin M1-BSA 

conjugated and WNDPR peptide microgels in milk sample. Excitation laser 700nm, emission 400-
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500nm. B) Comparison of fluorescence signal between WNDPR microgels and WNDPR one diluted 

1:10 after toxin binding. Using a lower number of microgels, there was an improvement on biosensor 

sensibility.  

 

 

Figure 3.26: Binding assay between WNDPR microgels and Aflatoxin M1 no BSA 

conjugated in milk sample. A) Multiphoton confocal images of binding between Aflatoxin 

M1 and WNDPR peptide microgels in milk sample. Excitation laser 700nm, emission 400-

500nm. B) Quantification of fluorescent signal of single microgels using ImageJ tools. C) 

Fitting of binding event between WNDPR peptide and Aflatoxin M1 using a One-site total 

and no specific binding as model with a non linear regression approach (D). The KD 

evaluated was about low picomolar range. 

 

3.4 CONCLUSIONS 

Aflatoxins are a group of highly toxic secondary metabolites produced by Aspergillus flavus 
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to eliminate them from contaminated food. For this reason, over the last few decades, several 

methods for the identification and quantification of the aflatoxins have been developed [13]; 

however all of them present high costs and skilled quality control operators. So our work was 

based on the development of  a peptide-based biosensor for autofluorescence aflatoxin M1 

detection in milk samples, in a sensitive, specific and unsophisticated manner. With our 

synthetic and computational combinatorial approach we discovered a new synthetic peptide 

WNDPR that was able to recognize Aflatoxin M1. The affinity power of this peptide 

sequence was after improved, integrating it in PEGDA microgels and developing a real 

sensitive and specific biosensor for Aflatoxin detection in milk samples. The use of our 

biosensor could be open the rout towards a direct detection of aflatoxins in small volume both 

in liquid and solid environments. Our approach could be also applicable to other small 

molecules or contaminants whose sensitive detection is indispensable for food, biochemical 

or medical applications. 
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                                                                          Chapter 4 
 

Miniaturized microfluidic peptide-based device for 

biomedical and diagnostic applications; a specific case: 

Endometriosis disease 

ABSTRACT. There is always a great interest in the fabrication of protein-detecting arrays 

using immobilized capture agents in biomedical and diagnostic field [1]. While most efforts 

in this area have focused on the use of biomolecules such as antibodies and nucleic acid 

aptamers as capture agents, synthetic peptides might present many potential advantages. 

However, synthetic molecules isolated from combinatorial libraries generally are able to bind 

target proteins with the high affinity necessary for array applications. In this work three 

different peptides (CRP-1, VEGF-114 and ΦG6) were used as capture agents to detect serum 

levels of vascular endothelial growth factor (VEGF), tumor necrosis factor-alpha (TNF-a), 

and C-reactive protein (CRP): three serum markers of endometriosis in menstrual blood [2]. 

The selected peptides have been covalently immobilized on a microfluidic PDMS device, 

previously derivatized with 10% of PAA (Poly(acrylic acid)) solution. The so built device has 

been used to capture and recognize endometriosis markers both in buffer and biologic fluids 

matrices such as human serum with a good specificity and sensitivity. Our idea is to make up 

a miniaturized microdevice that is able to diagnose endometriosis from the earliest stages 

using peptides as capture agents in order to have a sensitive but not invasive and not 

expansive biosensor tool. 
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4.1 INTRODUCTION 

There is great interest in the development of micro-arrays that are able to monitor the levels 

and activities of a large numbers of proteins simultaneously [1]. One approach is to construct 

protein-detecting arrays using DNA, antibody and/ or aptamers as capture agents that 

recognize target protein with high affinity and specificity [3, 4]. The use of these 

macromolecules  are very expensive and for this reason the biosensor applications in medical 

fields are still very low. A significant challenge in the development of such technology could 

be the isolation of large numbers of suitable protein binding compounds [1]. Synthetic 

molecules can be produced in large quantities with efficient quality control and can be 

tailored to allow attachment to surfaces in a defined manner [1]. Also, macromolecules can 

easily lose their folded structure and so their activity at surface-solution interfaces, whereas 

this is not an evident issue with synthetic molecules. However, synthetic molecules isolated 

from combinatorial libraries generally can be able to bind target proteins with the high 

affinity necessary for array applications. Finally, some types of protein binding synthetic 

molecules like peptides can be economically produced and purified in large quantities than 

antibodies or aptamers. In this work three different peptides, were selected as ligand of three 

different biomarkers in menstrual blood related to endometriosis insurgence: tumor necrosis 

factor-α (TNF-α), vascular endothelial growth factor (VEGF), and C-reactive protein (CRP) 

respectively. These sequences screened by SPR, phage display and FACS methodology 

respectively, showed high affinity for studied biomarkers [5-11]. Their affinity was 

confirmed by SPR-One step injection in this work. The selected peptides was covalently 

immobilized on a microfluidic PDMS device, previously derivatized with 10% of PAA (Poly 

(acrylic acid)) solution. The so built device was used to capture and recognize endometriosis 

markers both in buffer and biologic fluids matrices such as human serum with a good 

specificity and sensitivity. Endometriosis is an often painful disorder in which tissue that 

normally lines inside of uterus, the endometrium, grows outside uterus (endometrial implant) 

[12, 13]. The generation of new capillary blood vessels is probably required for the implant to 

grow larger than 2–3 mm, favoring an angiogenesis-dependent mechanism in endometriosis 

disease [12, 13]. Tumor necrosis factor-alpha (α) and vascular endothelial growth factor 

(VEGF) are important angiogenic factors. TNF-α is secreted by macrophages and it is a 

potent inducer of new blood vessel growth that produces proliferation of endometriotic 

stromal cells [14]. VEGF is a heparin binding growth factor with potent mitogen, morphogen 

and chemoattractant properties for endothelial cells. It increased in endometrium of 
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endometriosis patients, reflecting a critical pathogenic role. Serum C-reactive protein (CRP) 

is widely used as a marker of ongoing inflammation in several clinical diseases. CRP seems 

to be increased in women with endometriosis, especially in those with more advanced disease 

[15]. Although the use of serum biomarkers was still controversial, because of their low 

specificity in endometriosis disease and the low sensitivity of detection techniques 

performed, a non-surgical diagnostic approach could be of great benefit to both physicians 

and women alike [16].  In recent years, many efforts were made up to try to identify an easy 

way to diagnose endometriosis. The direct visualization of lesions at surgery preferably 

coupled with histologic confirmation of endometrial glands and stroma is the gold standard 

detection for endometriosis diagnosis. A surgical diagnosis has multiple drawbacks such as 

the risks inherent to the procedure (organ damage, hemorrhage, infection, and adhesion 

formation), as well as general anesthetic complications. Also patients need to travel to a 

hospital or outpatient surgicenter, with associated financial costs to the patient and the 

healthcare system [17].  For all these reasons, to develop a non-surgical diagnostic approach 

is very important in order to detect this disease from early stages. So the aim of this project 

was to make up a miniaturized microdevice that was able to diagnose endometriosis from the 

earliest stages using specific peptides as capture agents for these three VEGF, TNF-α and 

CRP biomarkers in order to have a sensitive but not invasive and not expansive biosensor 

tool for their determination and quantification. 

4.2 MATERIALS AND METHODS 

4.2.1 Materials    

Reagents for peptide synthesis (Fmoc-protected amino acids, resins, activation, and 

deprotection reagents) were purchased from Iris Biotech GmbH (Waldershofer Str. 49-51 

95615 Marktredwitz, Deutschland) and InBios (Naples, Italy). 1-ethyl-3-(3-

dimethylaminopropyl)car-bodiimide hydrochloride(EDC), N-hydroxysuccinimide 

(NHS),PDMS and CRP (C-Reactive Protein)protein were fromSigma-Aldrich. VEGF 

(Recombinant Human VEGF165) was purchased from Peprotech.  Anti-CRP (Anti-C Reactive 

Protein antibody (FITC) (ab19174)) and Anti-VEGF (Anti-Recombinant Human VEGF 

antibody (FITC)) were from Abcam. TNF-α and Anti-TNF-α (Anti-Tumor Necrosis Factor-α 

antibody (FITC)) were from Prospec. Solvents for peptide synthesis and HPLC analyses were 

purchased from Sigma-Aldrich; reversed phase columns for peptide analysis and the LC–MS 

system were supplied respectively from Agilent Technologies and Waters (Milan, Italy). All 
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SPR reagents and chips were purchased from AlfaTest (Rome, Italy). PMMA substrates used 

in this study were purchased from the same batch of the polymer supplier (GoodFellow 

Cambridge Limited, England), Fluorolink S10 was from Solvay. Pooled human serum from 

healthy donors was supplied by Lonza (Life Technology Ltd, Paisley, UK). All chemicals 

were used as received. 

4.2.2 Peptide Synthesis 

Solid phase peptide synthesis of CRP-1, VEGF-114, G6 peptides and a model peptide was 

performed on a fully automated multichannel peptide synthesizer Biotage® Syro Wave™. 

The peptides were synthesized in the amidate version, employing the solid phase method on a 

50 μmol scale following standard Fmoc strategies. Rink-amide resin (substitution 0.7 

mmol/g) was used as solid support. Activation of amino acids was achieved using 

HBTU/HOBt/DIPEA (1:1:2). All couplings and deprotections were performed for 15 and 10 

min, respectively. Peptides were then removed from the resin, by treatment with a 

TFA/TIS/H2O (95:2.5:2.5, v/v/v) mixture for 90 min at room temperature; then, crude 

peptides were precipitated in cold ether, dissolved in a water/acetonitrile (1:1, v/v) mixture, 

and lyophilized. Products were purified by preparative RP-HPLC on a Waters 2535 

Quaternary Gradient Module, equipped with a 2489 UV/Visible detector and with an X-

Bridge
TM

 BEH300 preparative 10 × 100 mm C8, 5μm column, applying a linear gradient of 

0.1% TFA CH3CN in 0.1% TFA water from 5% to 70% over 30 min at a flow rate of  5 

mL/min. Peptides purity (97%) and identity was confirmed by LC–MS analyses carried out 

on an Agilent 6530 Accurate-Mass Q-TOF LC/MS spectrometer with Zorbax RRHD Eclipse 

Plus C18 2.1 x 50 mm, 1.8 µm columns. CRP-1 and VEGF-114 peptides were cyclized to 

obtain their active version. The cyclization process was performed using a concentration of 

0.1 mg/mL of peptides dissolved in 10mM phosphate buffer pH 7.4 for two days. The 

occurred reaction was confirmed by LC–MS analyses (See Appendix Chapter 4). Products 

were purified by preparative RP-HPLC applying a linear gradient of 0.1% TFA CH3CN in 

0.1% TFA water from 5% to 95% over 5 min at a flow rate of 5 mL/min. Purified peptide 

were lyophilized and stored at −20 °C until use. 

4.2.3 PDMS-PAA (Poly (acrylic acid)) derivatization  

All PDMS samples were submerged for 1’ in a 10% Benzophenone solution in ethanol and 

after they were treated with 15uL of different concentrations of PAA solution and covered 

with a rim glass [18-21]. They were irradiated with UV lamp at 360nm from 3 minutes to 1h. 
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The correct PAA- derivatization at different time of irradiation was monitoring by IR (Infra-

Red) spectroscopy, analyzing the presence of the acid band at 1717 cm
-1

. 

4.2.4 Peptide grafting on PDMS-PAA surface optimization by IR (Infra-red 

spectroscopy) and HPLC (High performance liquid chromatography) 

The peptide grafting was optimized with a model peptide: Ac-βA-G-R-A-A-Y-A-K-NH2. 

Different concentrations of peptide from 0 to 2mg/mL were used to grafted it on PDMS-PAA 

surface. In order to have a better and more stable complex we decided to link the peptide on 

our substrate with a covalent bond. The PAA surface was at first treated with 0.1M EDC/ 

0.2M NHS mixture in water for 10 minutes [22] and after peptide was grafted dissolving it in 

carbonate buffer 10 mM pH 8.5 at different concentrations. The formation of amide-bond 

was monitoring by IR analyzing the presence of peaks corresponding to amide I and amide II 

at 1660 and 1550 nm, respectively. In order to confirm the good amidation of PAA surface 

and to calculate the amount of adsorbed moles, peptide solutions were analyzed before and 

after PDMS-PAA grafting process by RP-HPLC, following tyrosine signal at 275nm.  

4.2.5 SPR (Surface Plasmonic Resonance) 

In order to evaluate and confirm the binding constant between peptide and biomarkers, SPR 

experiments were performed by One step injection. VEGF and CRP protein were 

immobilized at a concentration of 100 µg/mL in a 10 mM acetate buffer pH 4.5 and 3.5 

respectively, (flow 10 µL/min, injection time 20 min) on a COOH1 SensiQ sensor chip, using 

EDC/NHS chemistry (0.4 M EDC - 0.1 M NHS, flow 25µl/min, injection time 4 min), 

achieving a 800 RU signal. Groups reactive residues were deactivated by treatment with 

ethanolamine hydrochloride 1 M, pH 8.5. The reference channel was prepared by activation 

with EDC/NHS and deactivation with ethanolamine Analyte concentration of 30 µM for 

VEFG -114 peptide and 245 µM for CRP-1 peptide was used with a flow rate of 100 µL min
-

1
 and a 300 sec of dissociation time.  In this kind of experiment, the volume of sample was 

configured as a percentage of the dispersion loop volume so in order to have a longer plateau 

at full concentration, the largest percentage (100%) was used. As to bulk standard cycles, a 

3% of sucrose was used. For all experiments Kinetic parameters for both peptides were 

estimated assuming a 1:1 binding model and using QDAT software (SensiQ Technologies). 

For G6 peptide, the affinity against TNFα was previously estimated by our research group in 

a recent study [9]. 
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4.2.6 Microfluidic device 

The depth and width of the three microchannel is equal, 300 µm width and 300 µm depth, 

and the chamber with an area of 67 mm
2
 is located at the end of the parallel microchannels. 

The pillars are 300 µm in diameter and 300 µm depth. The fabrication process consists of 4 

steps: (1) preparing the chip draft using Draftsight (Cad Software), (2) micromachining of 

PMMA layers; (3) the double PDMS replica (4) and finally the bonding process via oxygen-

plasma treatment. A micromilling machine (Minitech Machinery Corporation) was used to 

fabricate the PMMA master with the features of the final device. The certified positioning 

accuracy of the three-axis are 12”/300mm in x-axis, 9”/228mm in y-axis, and 9”/228 mm in 

z-axis. To standardize the fabrication process, the PMMA substrates used in this study were 

purchased from the same batch of the polymer supplier (GoodFellow Cambridge Limited, 

England). The microtools used in the microfabrication process were two flute endmills 300 

and 889 µm in diameter (Performace microtool, USA). During micromilling, spindle speed, 

feed speed and plunge rate per pass were set to 12.000 rpm, 15 mm s-1, and 20, respectively. 

After preparation of a PMMA master with negative features, open microchannels in PDMS 

were obtained by double replica molding onto the starting master. PDMS replica were 

fabricated from a mixture of PDMS precursor mixed in ratio 10:1 with curing agent and by 

using a thermal curing protocol at 80 °C for 2 h. Particularly, in order to prevent adhesion of 

the negative PDMS replicas on the positive PDMS mold, the latter was treated with oxygen 

plasma to activate the surface using a plasma chamber (Plasma prep II, SPI) for 1 min at a 

pressure of 0.3 mbar and power of 37 W and then immersed for about 2 min into a silane 

solution (i.e., a mixture of 94% v/v isopropanol,1% acetic acid, 1% Fluorolink S10 and 4% 

deionized water) and then placed in an oven at 75 °C for 1 h, thus allowing a complete 

reaction of the master surface with the fluorinated polymer [23]. To obtain the closed PDMS 

chip, we treated the final PDMS replica and a glass slide preciously coated with a thin PDMS 

layer through oxygen plasma activation , using a plasma chamber (Plasma prep II, SPI) for 1 

min at a pressure of 0.3 mbar and power of 37 W. The glass coating process involved 

depositing a small undiluted PDMS droplet (around 1 ml) onto the center of the glass and 

then spinning at high speed (2000 rpm for 20 s). Finally the bonding was then finalized in a 

controlled environment (temperature 80 °C for 2 h). 

 

 



 

103 
 

4.2.7 Selection of protein-binding peptides for specific marker detection and 

quantification 

Three peptides, V114; CRP-1; φG6, whose sequences are reported in Table 3 were derived 

from biopanning procedures[9-11], and synthesized by solide phase peptide synthesis. Table 

3 peptide sequences binnding endometriosis biomarkers VEGF, CRP, TNF-α. 

 

Peptide  Biomarker target Sequence 

φG6 TNF-α SSYYPQWPTDRF 

V114 VEGF VEPNCDIHVMWEWECFERL 

CRP-1 CRP EWACNDRGFNCQLQR 

 

The sequences were selected as ligand of three different biomarkers in menstrual blood 

related to endometriosis insurgence: tumor necrosis factor-α (TNF-α), vascular endothelial 

growth factor (VEGF), and C-reactive protein (CRP) respectively. 

Each peptide was immobilized on the PDMS-PAA surface in a microfluidic channels 

following the procedure above described (4.2.4) and filling the channel with a peptide 

solution at a concentration of 2 mg/mL.  Different concentrations of pure human recombinant 

TNF-α (Abcam) VEGF (Abcam), and CRP (Sigma Aldrich) proteins were solubilized in 

Phosphate-buffered saline (PBS) and incubated by flushing 25 µl of biomarker solutions into 

the corresponding channel for 2 hours. After incubation, the channels were washed 3 times 

with 3 ml of PBS.  

Biomarkers detection was performed by immunofluorescent detection through primary anti-

TNF-α, anti-VEGF, and anti-CRP antibody (Abcam), labeled with Alexa Fluor® 488, Alexa 

Fluor® 568, and Pacific Blue™ dye, respectively, by Molecular Probes® Antibody Labeling 

Kits (ThermoFisher Scientific). Fluorescence analysis was performed by Leica SP5 confocal 

microscope. Bright field and fluorescence images using a HCX IRAPO L 25×/0.95 water 

objective were acquired; Images were acquired with a resolution of 1024 × 1024 pixels, zoom 

1, 2.33A.U. All experiments were performed at room temperature. LOD range related to each 

was determined by image analysis through ImageJ tool [31] (https://imagej.nih.gov/ij/). 



 

104 
 

4.2.8 Setting of microfluidic device for endometriosis biomarkers 

Microfluidic device channels were functionalized for multiplex detection of endometriosis 

biomarkers. V114, CRP-1, and φG6 peptides were immobilized filling any channel with a 

PBS solution containing 2 mg/mL of one peptide as wall as previously described in 4.2.6.  the 

device was tested flushing 1 ml of a testing solution containing 5pmol of VEGF, CRP and 

TNF-α proteins in PBS. Functionalization through a scramble peptide (Ac-βA-G-R-A-A-Y-

A-K-NH2) was used for negative controls. The resident time of the testing solution was 2 

hours. After proteins incubation, the device was washed by 30ml of PBS and incubated with 

a mixed solution of primary fluorescent anti-VEGF, anti-CRP and anti-TNF-α antibody 

(dilution 1:10 in PBS) overnight.  Fluorescence analysis was performed by Leica SP5 

confocal microscope. Bright field and fluorescence images using a HCX IRAPO L 25×/0.95 

water objective were acquired; Images were acquired with a resolution of 1024 × 1024 pixels, 

zoom 1, 2.33A.U. Analogous experiments were performed detecting endometriosis 

biomarkers in human serum (1x), dissolved at 5 nM final concentration. Autoflorescence and 

background signal was determined by analysis of each channel surface incubated with PBS or 

human serum solution not containing biomarkers. All experiments were performed in 

triplicate at room temperature. For each sample 10 images of different zone of the surface 

was acquired under the microscope.  

 

4.3 RESULTS AND DISCUSSIONS 

In this work three different peptides (CRP-1, VEGF-114 and φG6), selected by literature, 

have been used as capture agents for human biomarkers: VEGF, TNF-α and CRP. The area of 

interest for these biomarkers spread in several diagnostic research fields. In particular, it has 

been postulated a future diagnostic tool for endometriosis will consist of a panel containing 

these proteins as biomarkers. As a fact, recent studies suggested that peritoneal fluid of 

endometriosis patients contains an increased number of activated macrophages that secrete 

local products with important angiogenic properties, including VEGF and TNF-α [24-26]. 

Moreover, serum C-reactive protein (CRP) is widely used as a marker of ongoing 

inflammation in clinical practice [2].  A health history and a physical examination can lead 

the health care practitioner to suspect endometriosis. Although doctors can often feel the 

endometrial growths during a pelvic exam, and these symptoms may be signs of 

endometriosis, diagnosis cannot be confirmed by exam only. Use of pelvic ultrasound may 

identify large endometriotic cysts (called endometriomas) [27]. However, smaller 
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endometriosis implants cannot be visualized with ultrasound technique. Our idea is to set up a 

miniaturized microdevice that is able to diagnose endometriosis from the earliest stages using 

peptides as capture agents in order to have a sensitive but not invasive and not expansive 

biosensor tool. Thus, the selected peptides were covalently immobilized on a microfluidic 

PDMS device, previously derivatized with 10% of PAA (Poly(acrylic acid)) solution, and 

tested for detection of VEGF, TNF-α and CRP in solution.  

4.3.1 PDMS-PAA (Poly (acrylic acid)) derivatization  

PAA brushes were grown on PDMS surface previously actived with a 10% Benzophenone 

solution in ethanol. The correct PAA-derivatization at different UV-irradiation time was 

monitoring by IR (Infra-Red) spectroscopy, analyzing the presence of the acid band at 1717 

cm
-1

. In figure 4.1, IR spectra of PDMS-PAA functionalization (10% of PAA-solution) at 

different UV-irradiation time periods, from 3 to 10 minutes were reported. The improvement 

of acid band at 1710 nm with the increasing time was very clear. From 7 to 10 minutes the 

saturation was reached.  
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Figure 4.1: IR spectra of PDMS-PAA functionalization at different time periods from 

3 to 10 minutes. It was clear the improvement of acid band at 1710 cm
-1 

with the 

increasing time. From 7 to 10 minutes the saturation was reached. 
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The figure 4.2 displayed the deconvolution of carbonyl stretching regions showed in figure 

4.1. The PAA-grafted surface increased during the time, reaching the saturation point of 

around 1.3-1.4 mg/cm
2 

between 10 and 15 minutes. 

    

    

 

 

 

 

 

  

 

Figure 4.2: Deconvolution of  carbonyl stretching region  at different time periods. The PAA 

grafted surface increased during the time, reaching the saturation point of around 1.3-

1.4mg/cm
2 

 between  10 and 15 minutes.   

4.3.2 Peptide grafting on PDMS-PAA surface optimization by IR (Infra-red 

spectroscopy) and HPLC (High performance liquid chromatography)  

The peptide grafting was optimized with a model peptide: Ac-βA-G-R-A-A-Y-A-K-NH2. 

Different concentrations of peptide from 0 to 2mg/mL were used to grafted it on PDMS-PAA 

surface. The PAA surface was at first treated with 0.1M EDC/ 0.2M NHS mixture in water 

for 10 minutes [22] and after with different concentrations of model peptide dissolved in 

carbonate buffer 10 mM pH 8.5. Figure 4.3 A showed the overlay of infrared spectra of 

PDMS-PAA surface before and after activation of PAA brushes with EDC/NHS mixture. The 

characteristic infrared bands classified as NHS-ester showed triplex bands at 1740, 1780, and 

1815 cm
-1

; while the degradation product of reaction, N-acylurea was associated to doublet 

bands of amide at 1550 and 1650 cm
-1

 (Figure 4.3 B). 
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Figure 4.3: A) IR spectra of PDMS-PAA surface before and after activation treatment with 

EDC/NHS (0.1M-0.2M). B) Zoom of the observed region before and after EDC/NHS 

treatment: NHS-ester three bands (1740-1780-1815cm
-1

), N-acylurea, degradation product of 

reaction, two bands (1550-1640cm
-1

). The dotted line showed the acid band (1710cm
-1

) 

before treatment that disappeared after activation. 

The main goal of EDC/NHS activation of carboxylic acids is to couple free amine-containing 

biomolecules [22]. Figure 4.4 showed the occurred amidation on PDMS-PAA surface after 

incubation with different solutions of model peptide (from 0.125 mg/mL to 2mg/mL), (figure 

4.4 A). The presence of two bands at 1550 and 1670 cm
-1

, corresponding to amide I (peptide 

C=O stretch) and amide II (mostly peptide N=H bend), stressed the proper peptide grafting 

on the surface (figure 4.4 C). Unlike, the presence of two amide bands on PDMS-PAA 

surface without pre-activation by EDC/NHS solution was very weak, (figure 4.4 B, D). In 

figure 4.5 (A,B) the quantification of the area of the amide and acid bands according to 

peptide concentrations, both for EDC/NHS treated surface and not was showed. The data 

were analyzed by software GraphPad Prism version 5.04. 
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Figure 4.4: IR spectra of PDMS-PAA after peptide amidation. A) Whole IR spectra of 

amidation reaction after EDC/NHS reaction at different concentrations of peptide from 

0.125mg/mL to 2mg/mL. B) IR spectra of amidation reaction without EDC/NHS treatment. 

C) and D) Zoom of observed area with activation treatment and without it respectively. In the 

first case the presence of the two amide bands (1550 and 1670 cm
-1

, amide I and II) was clear 

and they increase with improving peptide concentration. In the second one the presence of 

two amide bands was very weak. 
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Figure 4.5: Quantification of the area of the amide and acid bands according to peptide 

concentrations. A) Sample treated with activation reaction. In this case the amide band was 

increased with peptide concentration, while acid band at 1710 cm
-1

 decreased. B) Sample 

without activation reaction. In this case only the acid band at 1717 cm
1 

was observed. 

In order to confirm the good amidation of PAA surface and to calculate the amount of 

adsorbed moles, peptide solutions were analyzed before and after PDMS-PAA grafting 

process by RP-HPLC, following tyrosine signal at 275nm. In the table 4 and 5 the amount of 

adsorbed moles were reported both for EDC/NHS treated surface and not treated PDMA-

PAA. The adsorbed moles were evaluated measuring peptide concentrations of unbound 

fraction after grafting process. A saturation point on treated surface was reached at 1 mg/mL 

of peptide concentration. A no linear response was obtained for not treated surface. The 

titration curve used for quantification was reported in the Appendix of chapter 4. In figure 4.6 

A the absorbance of bound fractions corresponding to different concentrations of peptide was 

reported for both surface. Also the amount of adsorbed moles/cm
2
 was reported, (Figure 4.6 
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B). For 2 mg/mL of peptide concentration, about 500 nanomoles/cm
2 

were linked on our 

device. 

Table 4: Quantification of adsorbed moles by RP-HPLC on PDMS-PAA surface previously 

activated by EDC/NHS 

 

Table 5: Quantification of adsorbed moles by RP-HPLC on PDMS-PAA surface not activated 

by EDC/NHS 

 

 

[ ] peptide mg/mL (surface 
with EDC/NHS treatment)

C bound mg/mL Moles adsorbed

0.25 0.18 53nmol

0.5 0.19 56nmol

1 0.43 126nmol

1.5 0.43 126nmol

2 0.43 126nmol

[ ] peptide mg/mL (surface 
without EDC/NHS treatment)

C bound mg/mL Moles adsorbed

0.25 0.036 10nmol

0.5 0.022 6.5nmol

1 0.09 26nmol

1.5 0.09 26nmol

2 0 0nmol
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Figure 4.6:  A) the absorbance of bound fractions corresponding to different concentrations of 

peptide was reported for both surface. B) the amount of adsorbed moles/cm
2
 was reported, 

For 2 mg/mL of peptide concentration, about 500 nanomoles/cm
2 

were linked on our device. 

4.3.3 SPR (Surface Plasmonic Resonance) 

In order to evaluate and confirm the binding constant between peptide and biomarkers SPR  

experiments were performed by One step injection. Analyte concentration of 30 µM for 

VEFG -114 peptide and 245 µM for CRP-1 peptide was used. One step experiment was based 

on Taylor dispersion theory, so a unique concentration of peptide was dispersed into running 

buffer directly in the flow cell in order to have a final sigmoidal profile [28-30] (Figure 4.7 

A,B). Employing a 1:1 interaction model, a low micromolar dissociation value for 

peptides/biomarkers was shown; it was in according to conventional SPR experiment 

reported in literature [10, 11]. For G6 peptide, the affinity against TNFα protein was 

previously estimated by our research group in a recent study (data not shown), [9]. 

A B 
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Figure 4.7: One Step injection experiments. A) Binding of CRP-1 (245µM) and CRP protein. 

The evaluated KD was 12±0.1 µM. B) Binding of VEGF-114 (30µM) and VEGF protein. 

The evaluated KD was 10 ±0.7 µM.  

4.3.4 Microfluidic device 

Microfluidic chip was obtained by coupling micromilling and soft lithography technology 

based on polydimethylsiloxane (PDMS). PDMS has been the most widely used material in 

the research and development of microfluidics for several reasons including its optical 

transparency. In addition, the fabrication of systems of microchannels in PDMS is 

particularly straightforward. They can be replicated on masters of different materials 

including poly methyl methacrylate (PMMA). Such material can be easily machined by a low 

cost and fast prototyping technique such as micromilling. Microfluidic chips can then be 

easily sealed by oxygen plasma treatment of the PDMS substrate. As shown in figure 4.8 by 

the CAD (Figure 4.8 A) and SEM image (Figure 4.8B) the microfluidic device is composed 

CRP-1

VEGF-114

A 

B 
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of three parallel channel converging in a chamber with micropillars which function is to 

support the large channel once bonded.  

 

Figure 4.8 CAD layout (A) and SEM image (B) of the microfluidic chip. 

4.3.5 Endometriosis biomarkers detection through peptide functionalized microfluidic 

device 

The affinity peptides V114; CRP-1; φG6, identified from phage display peptide libraries and 

FACS methodology [9-11], were employed here as biorecognition element for human VEGF, 

CRP and TNF-α biomarkers. 

The conjugation of each peptide to the channel surface was carried out allowing specific 

binding and detection of only one biomarker per channel. Thus, each channel was tested with 

different concentrations of the corresponding protein target in PBS and biomarker 

sequestration was revealed by immunofluorescent detection through primary fluorescent 

labeled antibodies. For each biomarker the LOD was determined by image analysis of the 

fluorescence detectable on the surface as reported in figure 4.9. 
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Figure 4.9: LOD determination and fluorescence analysis of studied biomarkers. 

The device is able to reveal the presence of biomarkers in solution at a nM order 

concentration, compatible with the physiological range of VEGF, CRP and TNF-α in 

menstrual blood of patient affected by endometriosis. In order to test suitability and 

specificity of the functionalized channels for multiplex analysis of endometriosis biomarkers, 

the microfluidic device was tested by flashing 1ml of PBS solution containing recombinant 

human VEGF, CRP and TNF-α proteins at 5nM final concentration. In this case the 

immunodetection was performed by incubating each microchannel of our device with a 

unique solution containing fluorescent anti-VEGF, anti-CRP and anti-TNF-α antibodies. The  

device was able to specifically detect the presence od each biomarker displaying the 

fluorescent signal only in the dedicated microchannel (figure 4.10)   
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Figure 4.10: Detection of endometriosis biomarkers dissolved in PBS solution flushed in 

functionalized microfluidic channel device. From left to the right the channels were 

functionalized with three different binding peptides as follow: V114; CRP-1; φG6 (figure 

4.10 A). immunofluorescence was performed with three different fluorescent antibodies: anti-

VEGF (figure 4.10 B), anti-CRP (figure 4.10 C), anti-TNF-α (figure 4.10 D). 

 

Finally, we conducted the same experiments in a complex biological modelby processing an 

human serum sample that contained the human EGF, CRP and TNF-α biomarkers at 5nM 

final concentration (figure 4.11). The fluorescence analysis display that the presence of 

human serum proteins does not affect the interaction of biomarkers with the corresponding 

binding peptides. Thus, the reported data confirmed the effective applicability of our system 

in the multiplex analysis for diagnostic purposes.  

 

 

Figure 4.11: Detection of endometriosis biomarkers dissolved in human serum solution 

flushed in functionalized microfluidic channel device. From left to the right the channels 

were functionalized with three different binding peptides as follow: V114; CRP-1; φG6 

(figure 4.11 A). Immunofluorescence was performed with three different fluorescent 

antibodies: anti-VEGF (figure 4.11 B), anti-CRP (figure 4.11 C), anti-TNF-α (figure 4.11 D). 

A merge of the fluorescent signals is reported in figure 4.11 E.  
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4.4 CONCLUSIONS 

There is great interest in the construction of protein-detecting microarrays agents in 

biomedical and diagnostic fields [1]. One approach is to construct protein-detecting arrays 

using macromolecules as capture agents [3,4]. The use of these macromolecules are very 

expansive and for this reason the biosensor applications in medical fields are still very low. A 

significant challenge in the development of such technology could be the isolation of large 

numbers of suitable protein binding compounds [1]. Synthetic molecules can be economically 

produced in large quantities with efficient quality control and can be tailored to allow 

attachment to surfaces in a defined manner. In this work three different peptides, selected by 

literature, was used as capture agents for three endometriosis protein markers: VEGF, TNF-α 

and CRP [5-8]. The selected peptides was covalently immobilized on a microfluidic PDMS 

device, previously derivatized with 10% of PAA (Poly (acrylic acid)) solution. The so built 

device was used to capture and recognize endometriosis markers both in buffer and biologic 

fluids matrices such as human serum with a good specificity and sensitivity. With our 

approach, we proposed a simply but efficient strategy to bind a peptide on a polymer surface 

in order to use it as capture protein agent. Our idea was to set up a miniaturized microdevice 

that was able to diagnose endometriosis from the earliest stages in order to have a sensitive 

but not invasive and not expansive biosensor tool. The obtained results could represent a new 

challenge in endometriosis diagnosis avoid all drawbacks (organ damage, hemorrhage, 

infection, and adhesion formation) connected to surgical diagnosis that today seems to be the 

gold standard method used in the diagnosis of endometriosis disease. 
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Tetra-peptide sequences of Cdocker results. 
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Di-peptide screening by SPR ( [ ] 3mM of each sequence) 
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Tetra-peptide screening by SPR ([ ] 1mM of each sequence), KD= high micromolar range. No good 

fitting for all sequences. 
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LC-MS of VEGF-114, ΦG6 and CRP-1 peptides.  

VEGF 114:VEPNCDIHVMWEWECFERL 
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         ΦG6: SSYYPQWPTDRF 

CRP-1: EWACNDRGFNCQLQR 
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[M/3]+3

[M/2]+2

[M/3]+3

LC-MS of VEGF-114 and CRP-1 oxidized peptides.  

VEGF 114:VEPNCDIHVMWEWECFERL 

CRP-1: EWACNDRGFNCQLQR 
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