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"Nessuno che ti abbia preso del tempo si sente tuo debitore. 

Eppure il tempo è l'unica cosa che nemmeno l'uomo più generoso 

del mondo sarà mai in grado di restituirti."  

(Seneca) 
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ABSTRACT 

Acetaminophen, commonly known as paracetamol, is an active ingredient 

possessing analgesic and antipyretic activity widely used in medical practice to 

alleviate acute and chronic pain and to reduce the body temperature when this 

exceeds physiological values. Paracetamol, conversely to the majority of 

commonly used analgesic drugs, is not an NSAIDs, since it is completely devoid 

of antiaggregant and anti-inflammatory activity. 

The most common pharmaceutical form is the solid one as tablet, granule form or 

suppositories. Moreover, solution containing paracetamol for IV infusion can 

also be found on the market. These are formulations indicated for short-term 

treatment of medium pain, in particular of the type experienced following a 

surgical intervention. IV administration is reserved for cases in which is needed 

to treat pain and/or hyperthermia urgentely or when other administration routes 

are not available. Paracetamol administration by alternative methods is still yet to 

be extensively explored and essentially no specific applications have been found 

in analgesic therapy. 

Acute postoperative pain is a normal response to surgical intervention and is a 

cause delayed recovery and discharge after surgery as well as increased risk of 

wound infection and respiratory/cardiovascular complications. Untreated acute 
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pain leads to reduced patient satisfaction and increased morbidity and mortality 

and also places a burden on the patient and health system finances. Acute pain 

that becomes intractable and persists is considered as CPSP. CPSP can have a 

significant impact on the patient’s quality of life and daily activities, including 

disturbances of sleep and affective mood. In clinical field, paracetamol is 

principally used as an antipyretic in the treatment of febrile states. Recently, 

much attention was focused on spinal administration of paracetamol, in order to 

overcome the possible hepatotoxicity after oral administration. The 

administration of injectable solutions by spinal administration generally presents 

limitations. First restriction is that drug is perfused in a defined and confined 

space in which a limited amount of solution can be infused. 

Our aim has been to verify effect of a new supersaturated aqueous solution of 

paracetamol (SIN) at different doses (100-500 µg/it) after IT administration in an 

animal model of postoperative pain. Mechanical hyperalgesia was evaluated by 

mechanical stimuli using the Randall-Selitto analgesimeter for rats. Hyperalgesia 

was assessed on incised paw 2, 4, 24, 48, 72 h after spinal administration. 

Data showed that SIN administration produced a significant antihyperalgesic 

effect, in dose- and time- manner. In particular, the highest dose (500 µg) 

produced a significant analgesic effect until 72 h after surgery.  



9 
 

Moreover, knowing the marked analgesic effect of paracetamol following oral 

administration, and considering the use of this drug as a premedication before 

surgery, we investigated the combination of oral and spinal routes 

administrations of PARA and SIN using inactive and active doses (PARA 200 

and 500 mg/kg and SIN 100 and 500 µg respectively). Surprisingly, a synergic 

effect was obtained after oral and intrathecal combination of inactive doses; in 

fact PARA 200 mg/kg/os and SIN 100 µg/it produced a prolonged analgesic 

effect up to 24 h after administration.  

Despite its medical use is consolidated by many years, paracetamol mechanism 

of action is still poorly understood. Our results indicated that in paracetamol-

induced analgesia cannabinergic, opioidergic and serotoninergic systems are 

involved.  

Finally, it is well known that orally high doses of paracetamol could cause 

perilobular hepatotoxicity, which is the main limit to use this drug, especially in 

fasting patients before chirurgical surgery. It very poor the knowledge about the 

possible toxicity of paracetamol after intrathecal administration. We examined if 

single or repeated SIN administration by spinal catheter showed physiological 

and/or morphological modification of cauda equina or nerve bundles of the 

lumbosacral spinal cord sections. Both acute (500µg) or repeated (200-500 µg 
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for 7 days) administration of SIN resulted in a mild degree of toxicity with little 

or no degeneration of nerve fibers and there was no difference between vehicle- 

and SIN-treated rats. Furthermore, we observed macroscopically, whether SIN 

administration for 7 days produced liver toxicity. No significant alteration of 

margins and sizes was observed in vehicle- and SIN-treated rats. 

In conclusion, during this my PhD, we evaluated the pharmacological and 

toxicological profile of a new supersaturated aqueous solution of paracetamol; 

our data confirm the efficacy of this drug in a postoperative pain model, offering 

a new therapeutic approach based on its spinal administration. 
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1 - PAIN PERCEPTION 

 

Pain is a complex and polyhedric universe, it is difficult to view only through a 

definition; it is a perception of pain that can also profoundly influence lives of 

patients. 

Recognition and management of pain continues to be one of the most commonly 

encountered clinical situations for practitioners. Pain has a considerable impact 

on biological, psychological, sociological and economical welfare of patient that 

cannot be underestimated. On a global scale pain impact has far to reaching 

effects upon social structure, function and economic welfare of society as a 

whole (Breivik H. et. al; 2006). Pain medicine has evolved over recent years into 

a large specialty area, being recognized as its own discipline within Australia in 

2005. 

Pain is the sensation that warns about a possible or real damage to tissues. We 

use the word pain to denote any sensation that hurts. Yet there are several distinct 

types of pain, which have different mechanisms and biological functions. 

Unpleasant sensation of hurt, discomfort, or distress acts in two main ways: one, 

is a useful response of the organism, an early-warning system that promotes 

survival in a hostile and dangerous environment, and two, is an expression of 
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pathological change in nervous system. Former pain is beneficial, or “good” 

pain, while latter is “bad” pain, responsible for causing persistent suffering in 

millions of patients, with a substantial cost to society due to lost work, disability, 

and medical expenses (Clifford J. et al. 2000). More precisely, the International 

Association for the Study of Pain defines pain as “an unpleasant sensory and 

emotional experience associated with actual or potential tissue damage, or 

described in terms of such damage” and underlies that pain “is unquestionably a 

sensation in a part or parts of the body, but it is also always unpleasant and 

therefore also an emotional experience” (Macintyre PE. et al. 2010).  

Pain is vital to avoid dangerous situations, protect the human body and allow 

healing processes to occur. Due to its importance as key mechanism of body 

defence and protection, pain has evolved as an intricate interplay between 

sensory and cognitive mechanisms, distinct from the classical senses: it is 

inherently variable and multifaceted, it is a discriminative sensation, an affective 

motivation, a potent autonomic drive and a reflexive motor stimulus (Craig A. D. 

2003; Perl E.R. 2011). Unlike other senses such as vision, hearing, and smell, 

pain has an urgent and primitive quality, a quality responsible for the affective 

and emotional aspect of pain perception. Moreover, the intensity with which pain 

is felt is affected by surrounding conditions, and the same stimulus can produce 
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different responses in different individuals under similar conditions (Tracey I. et 

al. 2007; Wiech K. et al. 2008).  

Pain cannot be described as a sensory phenomenon, but it has been considered as 

a composition of two part, the first defined “nociception”, which allows the 

reception and transport of stimuli to CNS, that are harmful for the organism, and 

a part of the experiential (the real experience of pain), which is the mental state 

of the perception of an unpleasant sensation. 

Only in Europe, for example, epidemiological studies have revealed the 19% of 

population suffers from chronic pain, with a greater prevalence in women or in 

adult aged between 41 and 50 years (figure 1). Furthermore, it has been reported 

a varying prevalence rates for this chronic condition among counties, ranging 

from 12 to 30% (figure 1.1), but also within the same country. In Italy, for 

example, the prevalence is above 32% in the northern part of the country and less 

than 22% in the southern part (Breivik H. et al. 2006). 
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Fig.1 Age and sex of 4839 responders suffering from chronic pain as described under Fig. 1. Population 
estimates are from US Census Bureau International Database (IDB), Summary of Demographic 
Information. October 2002. 

 

 

Fig. 1.1 Prevalence of chronic pain among 46,394 adults (>18 years) in 15 European countries 
and Israel responding to a computer-aided telephone screening interview. Chronic pain was 
defined as pain lasting more than 6 months, having pain during the last month, several times 
during the last week, and last experienced pain having an intensity 5 or more on a Numeric 
Rating Scale: 1 (no pain) to 10 (worst pain imaginable). 
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The needs of chronic pain sufferers are still largely unmet, creating an enormous 

emotional and financial burden to sufferers, careers and society. Improvements in 

our ability to diagnose chronic pain and develop new treatments are needed, 

together with robust and less subjective "readouts" of pain experience. Brain 

imaging techniques have provided novel insights into functional, anatomical and 

chemical changes in the human nervous system that allow to define new 

approaches that may assist current drug development efforts. Our knowledge 

about mechanisms of pain perception, especially in pathological conditions, is 

still far from be clear and complete, as well the processes involved in fine 

modulation of pain perception to adapt the appropriate behavioural responses to 

the surrounding environment are not completely understood (Borsook D. et al. 

2006; Borsook D. et al. 2007; Borsook D. et al. 2011). 

Multiple options are available for the clinical management of pain, most of which 

are usually pointed on pharmacological therapy. Use of these medications and 

the literature surrounding them, can often be conflicting, confusing and poorly 

understood. As an area of medicine there are continuous attempts to develop 

more effective analgesics that are easy to administer, safe and economically 

viable. As we continue to deepen our understanding of pain physiology, it can be 

hoped that this will allow for further research and development into treatments 
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that can improve quality of life for both the individual and society as a whole 

(Stephan A. et al. 2014) 

The research for new treatments of pain is important for several reasons: 

• to understand basic mechanisms of pain and neurobiological phenomena 

related to it; 

• for clinical research, to formulate more accurate and efficient therapeutic 

drawings for patients; 

• for public health, to reduce the costs of pain therapy; 

• to improve the quality of life of suffering patients. 

 

1.1 – PainTransmission 

 

Pain is a complex experience that involves not only the transduction of noxious 

environmental stimuli, but also cognitive and emotional processing of brain. 

Progress has been made in identifying cortical loci that process pain messages, 

but far greater advances have been made in understanding the molecular 

mechanisms whereby, primary sensory neurons detect pain-producing stimuli, a 

process referred to nociception. These insights have predominantly arisen from 

the analysis of sensory systems in mammals, as well as from studies of 

invertebrates. Of course, invertebrate organisms do not experience pain per se, 
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but they have transduction mechanisms that enable them to detect and avoid 

potentially harmful stimuli in their environment. 

These signalling pathways can be regarded as the evolutionary precursors of 

nociceptive processing in vertebrates, and genetic studies have facilitated the 

identification and functional characterization of molecules and signalling 

pathways that contribute to detection of noxious stimuli in animals (David J. et 

al. 2001). 

Nearly a century ago, Sherrington proposed the existence of the nociceptor, 

which has the task of recognizing pain stimuli, which can be chemical, 

mechanical or thermal. A primary sensory neuron is activated by stimuli capable 

of causing tissue damage (Sherrington C. et al. 1906). According this model, 

nociceptors have characteristic thresholds or sensitivities that distinguish them 

from other sensory nerve fibers. In fact, electrophysiological studies have shown, 

the existence of primary sensory neurons that can be excited by noxious heat, 

intense pressure or irritant chemicals, but not by innocuous stimuli such as 

warming or light touch (Burgess P.R. et al. 1967). 

Pain is unique among sensory modalities in that electrophysiological recordings 

of single primary sensory fibers have been made in awake humans, allowing 

simultaneous measurement of psychophysical responses when regions of the 
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head and body are stimulated (Weidner C et al. 1999). Fibers that innervate 

regions of the head and body arise from cell bodies in trigeminal and DRG, 

respectively, and can be divided into three main groups based on anatomical and 

functional criteria (Fig. 1.2). 

 

 

Fig.1.2-Different nociceptors detect types of pain. Peripheral nerves include small-diameter 
(Aδ) and medium-to large diameter (Aα, β) myelinated afferent fibres, as well as small-diameter 
unmyelinated afferent fibres (C). 

 

Fibers type A have a large diameter, are myelinated, and have the highest 

conduction velocity of all nerves in the body. Myelin is a fatty white substance 

that surrounds the axon of some nerve cells, forming an electrically insulating 

layer and is essential for the right functioning of nervous system. The main 

purpose of a myelin layer (or sheath) is to increase the speed at which impulses 
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propagate along the myelinated fiber. Along unmyelinated fibers, impulses move 

continuously as waves, but, in myelinated fibers, they "hop" or propagate by 

saltatory conduction. Myelin decreases capacitance and increases electrical 

resistance across the cell membrane. Thus, myelination helps to prevent the 

electric current from leaving the axon. It has been suggested that myelin permits 

larger body size by maintaining agile communication between distant body parts 

(Hartline DK., 2008). Most, but not all A fibers, detect innocuous stimuli applied 

to skin, muscle and joints and thus do not contribute to pain. Indeed, stimulation 

of large fibers can reduce pain, as occurs when they are activated by rubbing 

hand (Djouhri L. et al. 1998). By contrast, small- and medium-diameter cell 

bodies give rise to most of nociceptors, including unmyelinated slowly 

conducting C fibers and thinly myelinated, more rapidly conducting Aδ fibers, 

respectively. It has long been assumed that A and C nociceptors mediate ‘first’ 

and ‘second’ pain, respectively namely rapid or acute pain and delayed, more 

diffuse, dull pain evoked by noxious stimuli (Basbaum A. et al. 2000). 

There are two main classes of A nociceptors (Raja S.N. et al. 1999): Aβ and Aδ, 

both responding to intense mechanical stimuli, but can be distinguished by their 

differential responsiveness to intense heat or tissue injury. Most of C fiber 

nociceptors are polymodal, responding to thermal and mechanical noxious 
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stimuli, while others are mechanically insensitive, but respond to noxious heat 

(Raja S.N. et al. 1999).  

Spinal dorsal horn receives sensory information from primary afferent Aδ and C 

fibers after nociceptive stimuli (Figure 1.3) (Braz J. et al. 2014 ;Todd AJ. et al. 

2010; Prescott SA. et al. 2014). Terminals of C and Aδ fibers are concentrated in 

the superficial dorsal horn, and activate projection neurons and excitatory 

interneurons (Figure 1.3). On the contrary, the terminals of Aβ fibers are 

concentrated in the deeper dorsal horn, and mainly target excitatory and 

inhibitory interneurons (Figure 1.3) and projection neurons that are in the same 

area. Although Aβ fibers polysynaptically link to projection neurons in the 

superficial dorsal horn, the link is considered to be normally strongly repressed 

by inhibitory interneurons. Therefore, under normal conditions, Aβ fibers do not 

activate nociceptive projection neurons, not provoking pain. 

Unraveling the mechanisms of pain hypersensitivity caused by nerve damage is 

therefore essential for the development of new therapeutic drugs for neuropathic 

pain.  
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Fig 1.3 Schematic illustration of primary afferent sensory fibers and neuronal circuits in the 
dorsal horn. The dorsal root ganglion contains cell bodies of primary afferent neurons that 
transmit sensory information from the periphery to the spinal dorsal horn. Nociceptive 
information is mainly mediated by Aδ and C fibers, and innocuous mechanical information is 
mediated by Aβ fibers. C and Aδ fibers terminate in the superficial dorsal horn, and activate 
projection neurons and excitatory interneurons. The terminals of Aβ fibers are concentrated in 
the deeper dorsal horn, and connect to excitatory and inhibitory interneurons. 

 

1.2 Neurochemistry of nociceptors 

 

All sensory systems must convert environmental stimuli into electrochemical 

signals. Nociception is unique because individual primary sensory neurons of 

‘pain pathway’ have the remarkable ability to detect a wide range of stimulus 

modalities, including those of physical and chemical nature. Compared with 

sensory neurons of other systems, nociceptors have therefore be equipped with a 

diverse repertoire of transduction devices. At the same time, markedly different 
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stimuli of chemical (capsaicin and acid) or physical (heat) variety can excite 

nociceptors by activating a single receptor, enabling the cell to integrate 

information and respond to complex changes in the physiological environment. 

Primary afferent nociceptors are also unique in the extent to which their receptive 

properties can be modulated. Thus, nociceptors not only signal acute pain, but 

also contribute to persistent and pathological pain conditions (allodynia) that 

occur in the setting of injury, wherein pain is produced by innocuous stimuli 

(Basbaum A. et al. 2000; Raja S. N. et al. 1999; Schmidt R. F. et al. 

1995;Gebhart G. F. et al. 1996; Snider W. D. et al. 1998;Hökfelt T. et al. 1994; 

Woolf C. J. et al. 2000; Basbaum A. et al. 1999).  

Allodynia can result from two different conditions: increased responsiveness of 

spinal cord ‘pain’ transmission neurons (central sensitization), or lowering of 

nociceptor activation thresholds (peripheral sensitization). With central 

sensitization, pain can be produced by activity in non-nociceptive primary 

sensory fibers. Peripheral sensitization is produced when nociceptor terminals 

become exposed to products of tissue damage and inflammation, referred to 

collectively as the ‘inflammatory soup’ (Fig. 1.4). Such products include 

extracellular protons, AA and other lipid metabolites, 5-HT, BK, nucleotides and 

NGF, all of which interact with receptors or ion channels on sensory nerve 
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endings. Nociceptors can release peptides and neurotransmitters (for example, 

SP, CGRP and ATP) from their peripheral terminals when activated by noxious 

stimuli, they are able to facilitate production of the inflammatory soup by 

promoting the release of factors from neighbouring non-neuronal cells and 

vascular tissue, a phenomenon known as neurogenic inflammation (Woolf CJ. 

et al. 1999). As early as 1910, it was recognized that the application of mustard 

oil to the conjunctival sac in experimental models produces inflammation that 

can be blocked by sensory nerve ablation (Bruce A.N. et al. 1910; Bruce A.N. et 

al 1913). SP, NA and CGRP are now known to coexist in sensory neurons and to 

have potent vasodilatory properties (Tanaka D.T. et al. 1985; Uddman R. et al. 

1988). Direct stimulation of sensory nerves produces vasodilatation (Hinsey JC. 

et al. 1939; Jancso-Gabor A. et al. 1970), which can be blocked by depletion of 

SP with capsaicin (Gasparovic I. et al. 1964; Chahl LA. et al. 1988). The sensory 

fibers involved in neurogenic inflammation have been identified as C-fibers with 

a slow velocity of 1-2 m/sec (Ehrlanger J. et al. 1929). Progress has been made in 

understanding the regulation of neurogenic inflammation (Nadel JA. et al. 1991). 

A cell-surface enzyme, NEP, downregulates neurogenic inflammation by 

degradating SP. In the lung this enzyme is inhibited by cigarette smoke, viral 

infections, and toluene diisocynate, whereas corticosteroids increase NEP. 
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Neurogenic inflammation is now a well-defined physiological mechanism by 

which mediators are directly released from sensory nerves to produce-

vasodilatation, edema, and other manifestations of inflammation. The nerve 

fibers have been identified as slow velocity C-fibers, and the regulation of 

neurogenic inflammation has been studied. 

In addition to SP and CGRP, other substances such as Glu and PGs are 

synthesized and released from small diameter sensory neurons. The release of 

glutamate from central terminals of sensory neurons is well documented, but its 

peripheral actions and potential role in neurogenic inflammation are still to be 

determined. Evidence also suggests that sensory neurons contain 

cyclooxygenases and are capable of synthesizing proinflammatory prostaglandins 

(Vasko et al., 1994). Because glutamate and prostaglandin receptors are localized 

on small diameter sensory neurons (Carlton et al., 2001; Donaldson et al., 

2001;Southall MD. et al. 2001), it is intriguing to speculate that these substances 

have autocrine as well as paracrine actions when released. The questions remain 

as to what other potential mediators of neurogenic inflammation are released 

from capsaicin-sensitive sensory neurons and whether other types of sensory 

neurons contribute to the inflammatory symptoms.  
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Injury heightens our pain experience by increasing the sensitivity of nociceptors 

to both thermal and mechanical stimuli. This phenomenon results, in part, from 

production and release of chemical mediators from the primary sensory terminal 

and from non-neural cells (for example, fibroblasts, mast cells, neutrophils and 

platelets) in the environment (Zhang J. et al. 2006) (Fig. 1.4). Some components 

of the inflammatory soup (for example, protons, ATP, serotonin or lipids) can 

alter neuronal excitability directly by interacting with ion channels on the 

nociceptor surface, whereas others (for example, bradykinin and NGF) bind to 

metabotropic receptors and mediate their effects through second-messenger 

signaling cascades (Prescott SA. et al. 2014).  

Considerable progress has been made in understanding the biochemical basis of 

such modulatory mechanisms. 
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Fig.1.4 The molecular complexity of the primary afferent nociceptor is illustrated by its 
response to inflammatory mediators released at the site of tissue injury. Some of the main 
components of the ‘inflammatory soup’ are shown, including peptides (bradykinin), lipids 
(prostaglandins), neurotransmitters (serotonin (5-HT) and ATP) and neurotrophins (NGF). The 
acidic nature of the inflammatory soup is also indicated. Each of these factors sensitize (lower 
the threshold) or excite the terminals of the nociceptor by interacting with cell-surface receptors 
expressed by these neurons. Examples of these factors and representative molecular targets are 
indicated in the box. Activation of the nociceptor not only transmits afferent messages to the 
spinal cord dorsal horn (and from there to the brain), but also initiates the process of neurogenic 
inflammation. This is an efferent function of the nociceptor whereby release of 
neurotransmitters, notably substance P and calcitonin gene related peptide (CGRP), from the 
peripheral terminal induces vasodilation and plasma extravasation (leakage of proteins and fluid 
from postcapillaryvenules), as well as activation of many non-neuronal cells, including mast 
cells and neutrophils. These cells in turn contribute additional elements to the inflammatory 
soup. 
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1.3 Pain classification 

 

Even though the experience of pain varies from one person to an other, it is 

possible to categorize different kind of pain; clinically, we can distinguish two 

different types of pain, with specific characteristics of duration and therapeutic 

responsiveness: acute and chronic pain. 

Acute pain appears suddenly and allows the individual to prevent more damage 

to the body. It is normally localized, lasts for a few days and decrease with 

healing. Causes inducing pain are usually clear: surgery, trauma, infectious 

disease in place or tissue damage. However tissue damage causes the release of 

potassium ions, bradykinin (BK) and serotonin (5-HT) [Rosland, J.H. et al. 1990] 

5-HT is responsible of vasodilation and edema. BK activates C fibers receptors 

and PLA2/COX cascade that synthesize many eicosanoids (PGs, PGI2, LTs) 

responsible of pain amplification. Currently, treatment options for acute pain 

control are varied and effective in most cases. Whatever the origin, acute pain 

produces defense and security reactions, including: 

• mood swings (depression, anxiety, fear) 

• modifications in the autonomic nervous system (changes in heart rate and blood 

pressure, nausea, vomiting, sweating) 

• tendency to change posture. 
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Chronic pain oppresses hundreds of millions people in the world and alters their 

physical, emotional health and working conditions. It is long-lasting, often 

determined by the persistence of the damaging stimulus and/or by phenomena of 

self-maintaining, which retain the nociceptive stimulation even when the initial 

cause is limited. This kind of pain is characterized by a major emotional and 

psycho-relational components, strongly limits physical and social performance of 

patient and is often linked to chronic diseases (rheumatic, bone, cancer, 

metabolic). Chronic pain is hard to treat, requires a comprehensive and 

frequently multidisciplinary therapeutic interventions, managed with high level 

of expertise and specialization. From an etiopathogenetic standpoint, pain can be 

classified in: nociceptive, neuropathic and psychic. 

Nociceptive pain: is the process whereby a stimulus noxious (thermal, 

mechanical or chemical) is perceived in periphery by nociceptors (peripheral 

nerves), next transmitted to the CNS. It is a transient pain, proportional to noxius 

stimuli and disappear at the end of this one. It can be classified in:  

• "Superficial", as in case of injuries or minor burns, when triggered 

nociceptors activation on skin, looks like an acute pain and is well 

localized. 
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• "Somatic", when is caused by nociceptors stimulation in tendons, 

ligaments, bones, blood vessels and muscles; it is a dull ache. 

• "Visceral", as in endometriosis, intestinal obstruction or metastatic 

cancer; is a throbbing pain, piercing, hard to locate, generalized or 

reported (perceived in areas distant from the damaged area, often 

superficial) frequently accompanied by nausea, vomiting and feeling 

unwell. 

Post-operative pain can be classified as nociceptive pain, associated with changes 

in peripheral and CNS, in which psychological component may have a variable 

weight: is therefore a complex syndrome that requires a multimodal treatment. 

Neuropathic pain: is a chronic disease resulting from dysfunction of the 

nervous system often due to peripheral nerve injury. Hypersensitivity to sensory 

stimuli (mechanical, thermal or chemical) is a common source of pain in patients 

and ion channels involved in detecting these stimuli are possible candidates for 

inducing and/or maintaining the pain. 

Neuropathic pain is a multifactorial condition caused by damage or dysfunction 

of the nervous system resulting in loss of afferent sensory function, hyperalgesia 

and allodynia (Campbell JN. et al. 2006). Hyperalgesia is accentuated responses 

to painful stimuli while allodynia is pain in response to normally innocuous 
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stimuli, and spontaneous pain. The sites of injury are often peripheral nerves of 

DRG sensory neurons, which have an inherent plasticity. Changes in the 

biological properties and functions of neurons result in long-lasting hyperalgesia 

and/or allodynia that continue well after healing of the initial damage. The bases 

for these pathological conditions are gene expression changes in transmitters, 

receptors and ion channels that ultimately result in distorted connectivity, 

structure or survival of the neurons (Woolf CJ. et al. 2000). 

It is more frequently described as a feeling of electric shock, burning or tingling 

continuous, and is associated with diseases such as diabetes mellitus, AIDS, 

Herpes Zoster, multiple sclerosis, but also to physical trauma of the spine, 

amputation (limb ghost), stroke and as a side effect of some chemotherapy. 

(Treede RD. et al. 2008) 

Psychic pain: it is physical pain caused, increased or prolonged by emotional or 

behavioral factors. It can be seen in patients with mental disorders, but more 

frequently it accompanies events such as social rejection, the pain of love or the 

loss of a loved one, and is manifested as headache, backache or stomach ache. 

People who suffer of this pain are often stigmatized, because doctors tend to treat 

psychic pain as “not real” and therefore not in need of appropriate therapy, 

further exacerbating the mental state of the patient.  
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Fig. 1.5 Pain assessment and classification 

 

Everyone reacts in a unique way to a painful stimulus, based on past experiences 

and its pain threshold, and each person is able to assess, according to its 

parameter, how strong its pain and therefore is able to quantify by a 

measurement. It is important that everyone learn to measure pain (Carpenter JS. 

et al. 1995). 

Pain is measured through the use of official scales validated by international 

clinical trials. Intensity is the parameter less efficient, because it rests on 

subjective nature of pain perception (Fig. 1.6). 

The scales, validated by international clinical trials, include (“Pain Intensity 
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Instruments”. National Institutes of Health-Warren Grant Magnuson Clinical 

Center. July 2003): 

- Visual Analogue Scales (VASs): VAS is a measurement instrument that tries to 

measure a characteristic or attitude that is believed to range across a continuum 

of values and cannot easily be directly measured. For example, the amount of 

pain that a patient feels ranges across a continuum from none to an extreme 

amount of pain. From the patient's perspective this spectrum appears continuous 

± their pain does not take discrete jumps, as a categorization of none, mild, 

moderate and severe would suggest. It was to capture this idea of an underlying 

continuum that the VAS was devised.  

Operationally a VAS is usually a horizontal line, 100 mm in length, anchored by 

word descriptors at each end, as illustrated in Fig. 1. The patient marks on the 

line the point that they feel represents their perception of their current state. The 

VAS score is determined by measuring in millimetres from the left hand end of 

the line to the point that the patient marks.  

- Scale VDS . It is a one-dimensional scale that offers a succession of adjectives 

(None, Very soft, Feeble, Moderate, strong, very strong) that patient can choose 

the one that best characterizes their status. 

- Numerical Rating Scales (NRSs): NRS is an 11-point scale where 0 is no pain 
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and 10 the worst imaginable pain and is preferred by most patients (Hjermstad 

MJ. et al. 2011). There is, however, a discrepancy between patients and 

healthcare professionals regarding how the ratings from the pain assessment 

should be interpreted (van Dijk FM. et al., 2012). Several studies have described 

and compared the use of different pain scales (Hjermstad MJ. et al. 2011), but no 

study has described how patients perceive the use of a pain scale in postoperative 

care. Knowledge of patients' different perceptions can facilitate healthcare 

professionals' possibilities to meet individual needs (Sjöström B. et al. 2002) 

 

 

Fig. 1.6 Representation of pain scales  
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2 – POST OPERATIVE PAIN 

 

Effective control and management of post-operative pain are clearly of primary 

concern to the patient and also of importance to the surgeon, because of potential 

adverse effects of the physiologic response to pain from surgery. Inadequate 

treatment of postoperative pain continues to be an important clinical problem, not 

only leading to worse outcomes in the immediate postoperative period but also 

an increased risk for persistent postoperative pain. 

An estimated 25 million inpatient surgeries and an additional 35 million 

ambulatory surgeries are performed annually in the USA (Hall MJ. et al. 2010; 

Cullen KA. et al. 2009). Greater than 80% of surgical patients experience 

postoperative pain, and 39% experience “severe” to “extreme” postoperative pain 

(Apfelbaum JL. et al. 2003). The mismanagement of postoperative pain, whether 

undertreatment or overtreatment, is associated with a variety of negative 

consequences, including cardiac alterations and increased risk of myocardial 

ischemia or infarction, thromboembolic and pulmonary complications, immune 

alterations, increased risk of persistent postoperative pain, impaired 

rehabilitation, increased length of stay and/or hospital readmission, decreased 

quality of life, and adverse events related to excessive analgesic use (Taylor S. et 

al. 2003; Lucas CE. et al. 2007; Gandhi K. et al. 2011; Lavand’homme P. et al. 
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2011; American Society of Anesthesiologists Task Force on Acute Pain 

Management 2012). Consequences of overtreatment are often overlooked but can 

be life-threatening. Indeed, an observational study of surgical patients found high 

rates of analgesic-induced oversedation in the first 12 postoperative hours, with 

dangerous levels of sedation occurring in 72.7% of patients on PCA (Taylor S. et 

al. 2003). A variety of new analgesic medications and techniques have been 

introduced to more effectively manage acute postoperative pain during the 

preoperative, intraoperative, and postoperative periods, all of which may 

contribute to the development of acute postoperative pain. 

 

2.1 Pathophysiology of postoperative pain 

 

Acute postoperative pain is a normal response to surgical intervention and causes 

delayed recovery and discharge after surgery as well as an increased risk of 

wound infection and respiratory/cardiovascular complications (Khan R. et al 

2011). Untreated acute pain leads to reduced patient satisfaction and increased 

morbidity and mortality and also places a burden on the patient and health 

system finances. Acute pain that becomes intractable and persistent is considered 

as CPSP. CPSP can have a significant impact on the patient’s quality of life and 

daily activities, including disturbances of sleep and affective mood (Butterworth 
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et al. 2013; Khan R. et al 2011). Acute postsurgical pain occurs secondary to 

inflammation from tissue trauma or direct nerve injury and can be classified as 

nociceptive or neuropathic. Tissue trauma releases local inflammatory mediators, 

which can produce hyperalgesia (increased sensitivity to stimuli in the area 

surrounding an injury) or allodynia (misperception of pain to non noxious 

stimuli). Other mechanisms contributing to hyperalgesia and allodynia include 

sensitization of the peripheral pain receptors (primary hyperalgesia) and 

increased excitability of CNS neurons (secondary hyperalgesia) (Kodali BS. et 

al. 2014). It is increasingly recognized that genetic factors should be considered 

within the context of the interacting physiologic, psychological, and 

environmental factors that influence responses to pain and analgesia. Pain control 

has traditionally used opioid analgesia to target central machanisms involved in 

the perception of pain. A multimodal approach recognizing the pathophysiology 

of surgical pain uses several agents to decrease pain receptor activity and 

diminish the local hormonal response to injury (Kodali BS. et al. 2014;American 

Society of Anesthesiologists Task Force on Acute Pain Management 2012). This 

approach lessens the dependence on a given medication and mechanism. For 

example, local anesthetics can directly block pain receptors activity, anti-

inflammatory agents can decrease the hormonal response to injury, and drug such 



37 
 

acethaminophen, ketamine, clonidine, dexmedetomidine, gabapentin pregabalin 

can produce analgesia by targeting specific neurotransmitters (Kodali BS. et al. 

2014).  

 

2.2 Pain management approaches targeted at the postoperative period 

 

Traditional pharmacological approaches to pain management in postoperative 

period include oral or intravenous administration of opioids and oral 

administration of paracetamol or NSAIDs. These approaches are associated with 

a variety of adverse events, including respiratory depression (Dahan A. et al. 

2010), nausea and vomiting (Becker DE. et al. 2010), pruritus (Tey HL. et al. 

2011)and constipation (Camilleri M. et al. 2011) with opioids, and 

gastrointestinal injury (Scarpignato C. et al. 2010), myocardial infarction or 

stroke (Trelle S. et al 2011), and acute renal failure (Harirforoosh S. et al. 2009) 

with NSAIDs. Accidental overdose and death also is not uncommon after opioid 

use (Porucznik CA. et al 2011). New opioids, drug delivery approaches and 

systems, and PCA techniques have been developed to enhance the analgesic 

effects of NSAIDs and opioids and to minimize the risk of adverse events. 
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2.2.1 Paracetamol 

 

Oral, rectal, and parenteral paracetamol can be an effective component of 

multimodal anesthesia. Paracetamol significantly reduces pain intensity and 

spares opioid consumption after abdominal surgery. The analgesic effect is 30% 

less than that of NSAIDs, but side effects are fewer (Butterworth J. et al. 2013). 

Paracetamol can also be used in conjunction with an NSAIDs to improve 

postoperative analgesia and as an adjunct to PCA opioids to reduce morphine 

requirements (Elia N. et al. 2005; Remy C. et al. 2005). The primary concern 

with use of paracetamol is hepatotoxicity, which is most concerning in the 

elderly and patients who chronically consume alcohol [US Food and Drug 

Administration(FDA) 2005]. Even if paracetamol is one of the oldest and most 

used analgesics, the debate on its mechanism of action continues. Contrary to 

previous assumptions, the analgesia is most likely mediated centrally and may 

involve direct and indirect inhibition of central COX, but also the activation of 

the endocannabinoid system and spinal serotonergic pathways (Graham GG. et 

al. 2013).  

The more recent availability of a paracetamol preparation for infusion has 

increased its usefulness, in particular in the perioperative setting (Tzortzopoulou 

A. et al. 2011). Perioperative administration reduces postoperative nausea and 
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vomiting, in particular if prophylactically given at induction of anesthesia (Apfel 

CC. et al. 2013).  

With regard to adverse effects, concerns about hepatotoxicity with overdose, 

which is in 50% of cases unintentional, continue (Blieden M. et al. 2014) and has 

lead the FDA to enforce a reduced dose per tablet. However, in therapeutic doses 

below 4 g/day, hepatotoxicity is very unlikely to occur (Dart RC. et al. 2007); 

surprisingly, even excessive alcohol consumption seems to be no risk factor for 

paracetamol -induced hepatotoxicity (Graham GG. et al. 2013). 

 

2.2.1 Non-steroidal anti-inflammatory drugs (NSAIDs)  

 

NSAIDs such as ibuprofen, ketorolac, naproxen and COX-2 inhibitors are 

effective analgesics in a variety of acute pain states and have a broad spectrum of 

anti-inflammatory and antipyretic effects (Macintyre PA. et al. 2010). 

Intravenous ketorolac is widely used during the perioperative period for short-

term treatment of acute pain and as an adjunct to opioids for the treatment of 

moderate to severe postoperative pain. Maximal benefit occurs when the 

NSAIDs is continued for 3 to 5 days postoperatively (Elvir-Lazo O.  et al. 2010). 

The addition of NSAIDs to systemic opioids diminishes postoperative pain 

intensity, reduces opioid requirements, and decreases opioid side effects, such as 
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postoperative nausea and vomiting and respiratory depression (Butterworth J. et 

al. 2013). NSAIDs are the key components of multimodal analgesia but are 

generally inadequate as the sole analgesic agent in control of severe 

postoperative pain. When used in combination with opioids, NSAIDs improve 

analgesia, decrease opioid consumption and its adverse effects, such as 

postoperative nausea, vomiting, and sedation (Macintyre et al. 2010). 

NSAIDs increase the risk of gastrointestinal bleeding and postoperative bleeding, 

decreased kidney function, impaired wound healing, and risk of anastomotic 

leakage (Butterworth J. et al. 2013). Their use should therefore be guided by the 

type of surgery being performed and by consultation between the surgical and 

anesthesia teams. COX-2 inhibitors also reduce postoperative pain, with less risk 

of NSAID-related platelet dysfunction and bleeding, but are associated with 

cardiovascular risk in the perioperative period (Butterworth J. et al. 2013). The 

risk of adverse renal effects of nonselective NSAIDs and COX-2 inhibitors is 

increased in the presence of preexisting renal impairment, hypovolemia, 

hypotension, and use of other nephrotoxic agents and angiotensin-converting 

enzyme inhibitors.  
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2.2.3 Ketamine 

 

Ketamine can be used as an antihyperalgesic in the perioperative period (Grosu I. 

et al. 2011). Although traditionally used intraoperatively, low-dose ketamine has 

increasingly been given for postoperative analgesia (Hurley R. et al. 2010). 

Perioperative subanesthetic doses have been shown to decrease the opioid 

requirements and decrease the reported pain intensity (Hurley R. et al. 2010). At 

the low doses used in the postoperative period, ketamine does not result in 

hallucinations or cognitive impairment that are often seen with high doses. 

 

2.2.4 Local Anesthetics 

 

Lidocaine patch is primarily used for allodynia relief (painful hypersensitivity) 

and chronic pain in postherpetic neuralgia. Onset is approximately 4 hours. 

Absorption is dependent on dose, application site, and time exposure. Time to 

peak effect of 5% transdermal lidocaine is approximately 11 hours after 

application of 3 patches. Lidocaine patches have been used successfully for the 

treatment of pain secondary to rib fractures, back pain, and orthopedic surgeries. 

On-Q pain relief system is a non-narcotic elastomeric pump that automatically 

and continuously delivers a regulated flow of local anesthetic to a patient’s 
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surgical site or in close proximity to nerves, providing targeted pain relief for up 

to five days. Studies have suggested clinical benefit with use of this system after 

abdominal, gynecologic, and thoracic surgeries (Macintyre et al. 2010;Ventham 

NT. et al. 2013;Gebhardt R. et al. 2013). A meta-analysis of studies using the 

system after colorectal surgery via laparotomy (Karthikesalinigam A. et al. 2008) 

showed a reduction in pain with movement and decrease in total opioid 

consumption, but no decrease in length of stay or ileus. Definitive conclusions 

about the overall benefit of this approach await further study. 

 

2.2.5 Opioid analgesics 

 

Opioids remain the cornerstone of the management of surgical pain, despite their 

potential side effects, and can be given through IV, IM, oral or transdermal 

routes. IV opioids provide rapid and effective analgesia for patients with 

moderate to severe pain. Morphine is the prototypical opioid agonist and the 

standard for management of acute pain. It has moderate analgesic potency, slow 

onset, and intermediate duration of action. The half-life is 2 hours, and its 

duration of action is about 5 hours. The metabolites of morphine are excreted by 

the kidney and therefore the sedating effects can be prolonged in patients with 

renal failure (Gandhi G. et al. 2012). Hydromorphone is a semisynthetic opioid, 
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which is 4 to 6 times more potent than morphine; it is onset of action is more 

rapid than morphine, but short-acting. It is a better choice for patients with renal 

failure and has a lower incidence of pruritus and sedation than morphine. It is 

particularly useful in patients who are opioid tolerant. 

Fentanyl is a synthetic opioid, which is 50 to 80 times more potent than 

morphine. It has a rapid onset of within 5-7 minutes, with a short duration of 

only about 1 hour. IV fentanyl can be particularly effective when rapid analgesia 

is needed, such as in the post-anesthesia care unit or intensive care unit. 

Transdermal fentanyl is an alternative to sustained-release oral morphine and 

oxycodone preparations. This patches have a drug reservoir, which is separated 

from the skin by a microporous rate-limiting membrane, and provide medication 

that last for 2 to 3 days. Meperidine lowers seizure threshold, has a dysphoric 

effect, and is not recommended for postoperative pain control. In addition, 

meperidine has a slower rate of metabolism in the elderly and in patients with 

hepatic and renal impairment, leading to accumulation of meperidine and its 

active metabolite normeperidine, and consequent risk for seizures.  

Oxycodone is a potent opioid agonist, which is metabolized in the liver. In an 

experimental pain model, oxycodone was more effective than morphine for pain 

related to mechanical and thermal stimulation of the esophagus, suggesting that it 
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could be more effective than morphine for visceral pain.  

Tramadol is an effective analgesic for mild to moderate pain and neurophatic 

pain. The risk of respiratory depression is less compared with other opioids, and 

significant  respiratory depression has been reported only in patients with severe 

renal failure.  

 

2.2.6 Antidepressants 

 

Antidepressants are useful for patients with neurophatic pain, even when 

depression is not a diagnosis of the patient. The analgesic effects occur at lower 

doses than needed for antidepressant activity. Older tricyclic agents, such as 

amitriptyline and nortriptyline, which block the reuptake of 5-HT and NE, seem 

to be more effective than selective serotonin reuptake inhibitors (Butterworth J. 

et al. 2013). The onset of pain relief is usually not immediate and may take 

weeks to have a complete effect. Antidepressants work best for pain from nerve 

damage secondary to diabetes, peripheral neurophaty, spinal cord injury, stroke, 

and radiculopathy (Butterworth J. et al. 2013). 
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2.2.7 Anticonvulsants 

 

Anticonvulsant medications are useful for patients with neurophatic pain as well 

as for suppressing postoperative pain (Melemeni A. et al. 2007). The most 

commonly used agents include gabapentin, phenytoin, carbamazepine, and 

clonazepam. Pregabalin is a newer agent, which has been approved for all forms 

of neuropathic pain (Butterworth J. et al. 2013). The synergism between 

gabapentin and opioids results in an opioid sparing effect (Melemeni A. et al. 

2007). Procedures in which gabapentin use for postoperative pain relief has been 

studied include breast surgery, hysterectomy, spinal surgery, postamputation, 

orthopedic surgery, and post thoracotomy (Melemeni A. et al. 2007). 

 

2.2.8 Corticosteroids 

 

Corticosteroids when used as an adjuvant decrease opioid consumption and help 

reduce postoperative pain (Elvir-Lazo O.  et al. 2010). Dexamethasone is the 

preferred corticosteroid, because it also reduces postoperative nausea and 

vomiting.  
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3.0 PARACETAMOL  

Paracetamol (an international name used in Europe) and acetaminophen (an 

international name used in the USA) are two official names of the same chemical 

compound derived from its chemical name: N-acetyl-para-aminophenol (the 

segment “cet” inserted between “para” and “amino”) and N-acetyl-para-

aminophenol. This drug has a long history and, as it often happens with 

important discoveries, it was found by chance. In the 80s of the 19th century, two 

young doctors at the University of Strasburg, in order to eradicate worms by 

mistake dispensed acetanilide to a patient instead of naphthalene (Fig. 3).  

 

Fig.3 Chemical structure of analgesics - aniline derivatives. Phenacetin until the 80s of the 
20th century was included in the composition of numerous mixtures. 

 

They noticed that the drug had a small impact on intestinal parasites, however, it 

significantly decreased high temperature. Young doctors -Arnold Chan and Paul 
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Heppa - quickly published their discovery and acetanilide was introduced into 

medical practice in 1886 under the name of antifebrin (Chan A. et al. 1886). 

Soon it appeared that although the production of this drug was very cheap, 

acetanilide could not be used as an antipyretic medicament due to its high 

toxicity, the most alarming of which was methemoglobinemia. This resulted in a 

great deal of research on less toxic derivatives of acetanilide. Phenacetin and N-

acetyl-p-aminophenol appeared to be the most satisfying compounds, which had 

been earlier synthesized by Harmon Northrop Morse in 1878 (Fig. 3) (Morse 

H.N. et al. 1878). The first clinical trials with those two acetanilide derivatives 

were performed by a German pharmacologist Joseph von Mering. On the basis of 

the obtained results, a faulty conclusion was drawn that paracetamol was 

characterized by high toxicity similar to acetanilide, therefore phenacetin was the 

first derivative to be introduced into medical practice in 1887. Phenacetin was 

widely used in analgesic mixtures until the time when it was associated with the 

development of analgesic nephropathy after a prolonged usage (von Mering J. et 

al 1893). In Poland, phenacetin was used as a component of very popular and 

available everywhere analgesic “tablets” with the “cross”. In fact, 

acethaminophen/paracetamol became popular half a year later in 1948 when 

Bernard Brodie and Julius Axelrod demonstrated that paracetamol was the main 
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active metabolite of acetanilide and phenacetin responsible for their analgesic 

and antipyretic action and that methemoglobinemia was induced by another 

metabolite, phenylhydroxylamine (Brodie B.B. et. al 1948). That discovery 

revolutionized the pharmaceutical market of analgesic drugs and since then 

paracetamol has started its staggering career. 

 

3.1 Use of paracetamol  
 

Paracetamol was introduced into pharmacological market in 1955 by McNeil 

Laboratories as a prescribed analgesic and antipyretic drug for children under its 

trade name Tylenol Children’s Elixir (the name tylenol derives from its chemical 

name N-acetyl-p-aminophenol). One year later, 500-mg tablets of paracetamol 

were available over the counter in Great Britain under the trade name of Panadol, 

which were produced by Frederick Stearns & Co, the branch of Sterling Drug 

Inc. In Poland, paracetamol became available in 1961 and since then it has 

belonged to the one of the most frequently sold analgesic medications. There are 

about 100 preparations in the trade offer, which contain paracetamol alone or in 

combination with other active substances. 

The paracetamol place on the WHO analgesic ladder, which precisely defines the 

rules for application of analgesic drugs, is impressive. This drug has been placed 
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on all three steps of pain treatment intensity. In different pains of moderate 

intensity, paracetamol as a weak analgesic together with NSAIDs or co-

analgesics (e.g., caffeine) is a basic non-opioid analgesic (the first step of the 

analgesic ladder). When pain maintains or increases, paracetamol is used as an 

additional analgesic with weak (e.g., caffeine, tramadol) or strong (e.g., 

morphine, phentanyl) opioids from the second and third step of the analgesic 

ladder, respectively. Paracetamol, if efficient, is a recommended first choice oral 

analgesic to be used for a long time, e.g., in symptomatic treatment of slight and 

moderate pain occurring in osteoarthritis as well as in muscle or tendon pains. 

Moreover, it is a drug of choice in patients in whom application of NSAIDs are 

contraindicated, e.g., in the case of gastric ulcers, hypersensitivity to aspirin, 

impairments in blood coagulation, in pregnant women, nursing mothers and 

children with fever accompanying a disease (Leung L. et al. 2012). The use of 

paracetamol in children requires special care and maintain in an adequate dosage 

(based on age), which significantly differs from standard adult. The 

recommended dosage for children consider the metabolism of paracetamol, 

which determines the toxicity of the drug, especially hepatotoxicity (see below). 

In children, paracetamol metabolism changes with age: in younger children the 

sulfation pathway is dominated route of paracetamol elimination (which is 
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Figure 3.1.Paracetamol  on the WHO analgesic ladder (the rules for using analgesics, which 
consider individual intensity of pain).

 

3.2 Mechanisms of action

 

More than 100 years after its synthesis, the mechanism of action of paracetamol 

remains unknown. In particular, it is sti
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peripherally and/or centrally and which analgesic pathway is mainly affected by 

its administration (Smith HS. et al. 2009). Potential mechanisms include an 

inhibition of COX isoenzymes (Graham GG. et al. 2005), interaction with the 

endogenous opioid pathway (Raffa RB. et al. 2004), activation of the 

serotoninergic bulbospinal pathway (Roca-Vinardell A. et al. 2003) involvement 

of NO pathway (Bujalska M. 2004), and an increase in cannabinoid/ vanilloid 

tone (Ottani A. et al. 2006). As the analgesic actions of paracetamol resemble 

those of NSAIDs, the first effort to explain its mechanism of action was directed 

at demonstrating that paracetamol also inhibits COX. Flower and Vane showed 

that the antipyretic effect of paracetamol is related to the inhibition of PGs 

synthetase in the brain (Flower R. et al. 1972). In the 1990s a major advance in 

physiology and pharmacology was the discovery of the two COX isozymes 

(COX-1 and COX-2), which catalyze the conversion of AA to PGs, TXs, and 

PGI2 and represent the targets of NSAIDs. PGs are mediators of fever, pain and 

inflammation. Both of the COX enzymes have cyclooxygenase and peroxidase 

activity. The cyclooxygenase activity converts AA to PGG2, which is a 

hydroperoxide, and then the peroxidase part of the enzyme catalyzes the 

metabolism of PGG2 to PGH2 (Chandrasekharan NV. et al. 2004). 
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COX is sensitive to the local oxidation environment, which is influenced by 

organic peroxides and by reducing or oxidizing agents. A reducing agent is 

required to convert the COX enzyme from the active oxidized form (Fe4+) to the 

inactive resting form (Fe3+). In broken cell preparations, a phenol that is 

commonly added to the cells represents the reducing agent (Lucas R. et al. 2005). 

Paracetamol (para-acetyl-amino-phenol) is a substituted phenol; therefore, it acts 

as a reducing agent (Aronoff DM. et al. 2006). Although it has no affinity for the 

active site of COX, it blocks its activity by reducing the active oxidized form of 

the enzyme to an inactive form. In intact cells, when the levels of the substrate 

AA are low (less than 5 µmol/L), paracetamol is a potent inhibitor of PG 

synthesis, because it blocks the physiological regeneration of peroxidases; thus, 

the process is stopped. However, in broken cells, when the concentration of 

hydroperoxides is high, paracetamol is a weak inhibitor of PG synthesis (Ouellet 

M. et al 2001). The inhibitory effect of paracetamol on PGI2 production is 

completely blocked by butyl-hydroperoxide (Boutaud O. et al. 2002).This 

peroxide-dependent COX inhibition explains why paracetamol is not active at 

peripheral sites of inflammation where peroxide concentrations are high, whereas 

it is active in the brain where peroxide concentrations are low. 
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Paracetamol selectively inhibits COX activity in cells with a low oxidant status 

(endothelial cells), rather than cells with a high oxidant status (platelets) (Lucas 

R. et al. 2005). The selective inhibition of COX in CNS explains why 

paracetamol is not associated with gastric side effects and inhibition of platelet 

activity that are typically observed with NSAIDs. On the other hand, these 

findings support the hypothesis that paracetamol does not possess anti-

inflammatory efficacy similar to NSAIDs, but rather it has only analgesic and 

antipyretic actions. However, due to the similarity of some of its in vivo effects 

to those of selective COX-2 inhibitors, some authors maintain that paracetamol 

has some anti-inflammatory activity; however, it clearly does not suppress the 

types of severe inflammation that accompany diseases such as rheumatoid 

arthritis (Graham GG. et al. 2005). 

A second hypothesis posits that paracetamol acts by selectively inhibiting a 

particular isoform of the COX enzyme; this isoform, which was characterized 

and cloned in dog brain, was designated COX-3 (Chandrasekharan NV. et al. 

2002). COX-3 is highly expressed in specific tissues, such as the brain and the 

heart. The presence of COX-3 could explain the pharmacological actions of 

paracetamol and other drugs that are weak inhibitors of COX-1 and COX-2 

(Botting R. et al. 2005). However, COX-3 is simply a variant of COX-1 that is 
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derived from the same gene on chromosome 9 and retains intron 1. The retained 

intron sequence could alter folding and may affect the active site of the enzyme; 

this might lead to altered enzymatic properties, as shown by the lower potency 

(about 1/5) in generating PGE2 (Schwab JM. et al. 2003). Therefore, as COX-3 

is unlikely to be the elusive target of paracetamol in human tissues, the mystery 

as to how paracetamol exerts an analgesic effect without affecting COX-1 and 

COX-2 remains unsolved. Recent findings have shown that the analgesic effect 

of paracetamol involves a “self-synergistic” interaction between spinal and 

supraspinal sites, with recruitment of endogenous opioid pathways. IT (spinal) 

administration of paracetamol in mice produced dose-related antinociception that 

was insensitive to the opioid antagonist naloxone, whereas ICV (supraspinal) 

administration had no effect. However, combined administration produced 

synergistic antinociception that was reversed when naloxone was given either 

spinally or subcutaneously (Raffa RB. et al. 2000). Moreover, each of the 

subtype-selective opioid receptor antagonists [beta]-funaltrexamine (µ), 

naltrindole (δ), and Norbinaltorphimine (κ) attenuated the site/site synergy 

produced by paracetamol; thus, each of the opioid receptor subtypes and 

endogenous pathways (endorphin, enkephalin, and dynorphin) were implicated to 

some degree in this synergy (Raffa RB. et al. 2004). As paracetamol does not 
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bind to opioid receptors (Raffa RB. et al 1996) and naloxone does not reverse its 

analgesic effect at a single site but only attenuates the spinal/supraspinal synergy 

(Raffa RB. et al. 2000) these findings support the hypothesis that the analgesic 

activity of paracetamol includes the activation of descending opioid pathways 

and a synergistic interaction at the level of the spinal cord. Many studies support 

the hypothesis that 5-HT participates in the central antinociceptive effect of 

paracetamol. 5-HT and NA are the two main neurotransmitters implicated in the 

endogenous descending pain inhibitory pathway, known as the “analgesic 

system”, which originates at the level of the midbrain in the periaqueductal gray 

and in the magnus raphe nucleus that lies within the medulla (Coluzzi F. et al. 

2005) 

 In rat brain, the antinociceptive action of paracetamol is associated with changes 

in the serotoninergic system. A significant down-regulation of 5-HT2A binding 

sites in the frontal cortex in response to 5-HT release was demonstrated in rats 

after the administration of paracetamol; this indicates that the serotoninergic 

system plays a major role in the mechanism underlying analgesia produced by 

this drug (Srikiatkhachorn A. et al 1999). 

The antinociceptive activity of intraperitoneally-administrated paracetamol in the 

hot-plate test in mice was increased by the selective blockade of 5-HT1A and 5-
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HT1B receptors, whereas it was antagonized by the administration of selective 

agonists for these receptors (Roca-Vinardell et al. 2003). IV and oral 

administration of paracetamol in rats, following intraplantar injection of 

formalin, reduced nociceptive behaviors (biting and licking) in both phases of the 

typical nocifensive response to the test. 

The antinociceptive activity of paracetamol was completely blocked by the IT 

administration of a 5-HT1A receptor antagonist. Conversely, intraplantar injection 

of paracetamol failed to induce any anti-inflammatory effect and reduced 

nociceptive behavior only at high doses in the early phase of the test; this 

suggested a lack of relevant local activity (Bonnefont J.  et al. 2003). The potent 

5-HT3 receptor antagonist tropisetron has been reported to reverse 

antinociceptive effect of paracetamol in the paw pressure test in rats (Pelissier T. 

et al. 1996). However, IT injection of other 5-HT3 receptor antagonists, such as 

ondansetron and granisetron, was unable to block its activity. This suggested that 

a specific spinal tropisetron-sensitive receptor could be involved in the 

antinociceptive mechanism of action of paracetamol (Libert F. et al. 2004).All 

these findings reinforce the evidence for a centrally-acting component of 

paracetamol that involves the serotoninergic inhibitory descending pathway. 

Among various mechanisms proposed to account for the analgesic action of 
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paracetamol is the nitric oxide pathway. The L-arginine-NO pathway is activated 

by SP and NMDA, and its activation results in the facilitation of nociception 

transmission. Paracetamol inhibited SP-mediated hyperalgesia. Moreover, 

inhibitors of nitric oxide synthase activity produced antinociception and 

markedly increased the analgesic action of paracetamol (Bujalska M. et al. 2004). 

Recent investigations have demonstrated that analgesic effect of paracetamol is 

due to the indirect activation of cannabinoid CB1 receptors (Bertolini A. et al. 

2006). In brain and spinal cord, paracetamol, following deacetylation to its 

primary amine (p-aminophenol) and conjugation with AA by the action of 

FAAH, is converted to the bioactive metabolite N-acylethanolamine (AM404) 

(Hogestatt ED. Et al. 2005). 

As it is an inhibitor of the cellular reuptake of anandamide (the first recognized 

endocannabinoid), AM404 can indirectly activate CB1 receptors by increasing 

the levels of endogenous cannabinoids in the brain. Moreover, AM404 is a potent 

activator of vanilloid subtype 1 receptor (TRPV1) (Zygmunt PM. Et al. 2000). 

The antagonism of CB1 receptor activity completely prevents the analgesic 

efficacy of paracetamol (Ottani A. et al. 2006). AM404 inhibits in a dose-

dependent manner both COX-1 and COX-2, and because of the consumption of 

AA, it reduces the production of PGs (Zygmunt PM. et al. 2000) . This could 
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explain why paracetamol inhibits prostaglandin production in the brain. 

Moreover, besides inhibiting nociception, cannabinoids markedly lower body 

temperature via activation of CB1 receptors. Therefore, the potential involvement 

of the cannabinoid system could also help explain antipyretic effect of 

paracetamol. Finally, the well-known effects of cannabinoids (relaxation, 

euphoria and feelings of wellness) are shared by aniline analgesics, such as 

paracetamol, acetanilide, and phenacetin (Bertolini A. et al. 2006). 

 

3.3 Potential toxicity and safety profile  

 

Paracetamol has been used safely and effectively for many years. At therapeutic 

doses, it is considered to be safer than NSAIDs, specially for chronic pain 

management (Courtney P. et al. 2002). Indeed it is currently recommended by 

several international guide-lines as the first line treatment for chronic conditions, 

such as osteoarthritis pain (Recommendations for the medical management of 

osteoarthritis of the hip and knee: 2000 update. American College of 

Rheumatology Subcommittee on Osteoarthritis Guidelines). However, in a small 

minority of patients paracetamol is responsible for life-threatening liver injury. 

This potential hepatotoxicity could still represent a perceived barrier to its use 

among some physicians. 
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The liver is the organ that is most affected by acute paracetamol toxicity. 

Damage to the liver following paracetamol ingestion is not due to the drug itself, 

but to the toxic metabolite NAPQI. Once absorbed, approximately 90% of 

paracetamol is metabolized by conjugation (mainly glucoronidation) via UDP-

glucuronosyltransferase (isoform UGT1A6) and sulfation via two 

sulfotransferases (SULT1A1 and SULT1A3); the end-products are inactive 

metabolites that are eliminated in urine. A small fraction (5%) is eliminated 

unchanged. The remaining 5% is oxidized by the CYP2E1 subfamily of 

CYP450, which leads to the formation of NAPQI (Gelotte CK. et al. 2007). 

Other human CYP450 isoforms, including CYP1A2, CYP3A4, and CYP2A6, 

have been reported to form NAPQI in vitro, but their contributions in vivo seem 

negligible (Manyike PT. et al. 2000). Paracetamol is also oxidized by CYP2A6 

to form inert catechols, such as methoxyparacetamol. 

In the liver, NAPQI is quickly combined with the endogenous antioxidant 

glutathione to form non-toxic conjugates that are eliminated in the urine. 

However, after an overdose (when glutathione stores in the liver become 

depleted), free NAPQI begins to accumulate and causes centrilobular necrosis of 

the liver. Critical events that lead to cell death include the oxidation of enzymes, 

DNA fragmentation, and mitochondrial injury. Hepatic injury can be limited 
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through administration of N-acetylcysteine, which replenishes the levels of 

glutathione in the liver (Gelotte CK. et al. 2007). Risk factors that may 

predispose patients to paracetamol-induced hepatotoxicity are excessive dosing, 

increased CYP450 activation (as in patients treated with anticonvulsants and 

isoniazid, etc.), decreased gluthatione availability, and chronic severe ethanol 

abuse (Bertolini A, et al. 2006). 

Paracetamol overdose remains a significant clinical problem, accounting for as 

many as 40% of acute liver failure cases in the United States and the United 

Kingdom. Furthermore, recent data suggest an increase in paracetamol 

intoxications in recent years. Besides suicide attempts, unintentional overdoses 

constitute at least half of paracetamol related hospitalizations. It is important to 

emphasize that the median dose ingested by individuals who developed acute 

liver failure was 24 g (equivalent to 48 tablets 500 mg) (Larson AM. et al. 2005). 

Risk factors include repeated dosing in excess of package labeling, use of 

multiple paracetamol containing products, simultaneous use or abuse of alcohol 

and narcotics, age, and comorbidities that include liver diseases and depression 

(Myers RP. et al. 2008). Conversely, when used at an appropriate dosage, 

paracetamol is a safe drug for both acute and chronic pain management. The 

maximum daily dosage is 4 g; this is consistent with the decline in analgesic 
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activity, which normally occurs over a period of 6 hours. The recommended dose 

for IV paracetamol injection in adults is 1 g. 

The perception that paracetamol should be avoided in patients with chronic liver 

disease arose from an awareness of the association between massive paracetamol 

overdose and acute liver failure. However, there is no evidence in the literature of 

an increased risk of hepatotoxicity in these patients with the recommended doses. 

Alcoholic patients treated with the maximum recommended daily dose of 

paracetamol (4 g per day for three consecutive days) did not develop increases in 

serum transaminases or other measures of liver injury (Kuffner EK. et al. 2007). 

Therefore, paracetamol can also be used safely in patients with liver disease.  

Paracetamol -induced nephrotoxicity occurs in 1-2% of patients with paracetamol 

overdose, and this becomes evident after hepatotoxicity. It can be differentiated 

from hepatorenal syndrome, which may complicate fulminant hepatic failure. 

The pathophysiology of renal toxicity in paracetamol poisoning has been 

attributed to CYP450 mixed function oxidase isoenzymes that are present in the 

kidney. The role of N-acetylcysteine therapy in the setting of paracetamol -

induced renal failure is unclear. Paradoxically, glutathione conjugates have been 

implicated in the formation of nephrotoxic compounds (Mazer M. et al. 2008). 
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Generally, paracetamol is thought to have only minor effects on renal function, 

as it does not affect constitutively expressed COX-1.  

In contrast to traditional NSAIDs, paracetamol is usually not considered to 

influence platelet function. However, recent investigations have shown that IV 

paracetamol is a weak inhibitor of platelet COX-1, with a dose-dependent 

antiaggregatory effect observed in healthy volunteers for at least 90 min after its 

administration (Munsterhjelm E. et al. 2005).  

Paracetamol causes a mild degree of COX-1 inhibition when associated with 

parecoxib and it potentiates the antiaggregatory effects of aspirin and diclofenac 

(Galliard-Grigioni KS. et al. 2008). Platelet aggregation is more impaired by 

diclofenac than paracetamol, even when administrated at the loading dose of 3 g 

(Silvanto M. et al. 2007).  

The antiaggregatory effect of paracetamol does not seem to be clinically relevant, 

and surgical bleeding attributable to paracetamol seems unlikely (Munsterhjelm 

E. et al. 2005). However, in chronic treatment, although paracetamol is 

considered the analgesic of choice in patients receiving anticoagulants, the 

combination of paracetamol and warfarin is not as safe, as is generally believed. 

A recent international study showed a significant increase in the INR and 

significant reductions in vitamin K-dependent clotting factors in patients 



63 
 

receiving a stable treatment of warfarin who received 4 g paracetamol per day for 

14 days. These results suggest that an intensified INR monitoring in patients 

treated with oral anticoagulants and paracetamol is advisable (Mahel I. et al. 

2006). 

The identification of drug-drug interactions is an important aspect of patient care. 

Paracetamol is widely metabolized by UDP-glucuronosyl transferase (UGT) 

enzymes that play a key role in drug-drug interactions, as they catalyze the 

conjugation of various endogenous and exogenous substances. Experimental 

evidence indicates that ranitidine, propanolol, and cisapride inhibit paracetamol 

glucuronidation, whereas estrogen-containing oral contraceptives increase it. The 

effects of carbamazepine, phenytoin, phenobarbital, and rifampin on paracetamol 

glucuronidation remain to be determined. 
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4.0 AIM OF STUDY 

 

Paracetamol is an active ingredient possessing analgesic and antipyretic activity. 

In clinical field, paracetamol is principally used as an analgesic in mild and 

medium pain and as an antipyretic in the treatment of febrile states in adults and 

children. 

The most common pharmaceutical form is the solid one as tablet, granule form or 

suppositories. Moreover, solution containing paracetamol for IV infusion can 

also be found on the market. These are formulations indicated for short-term 

treatment of medium pain, in particular of the type experienced following a 

surgical intervention. IV administration is reserved for cases in which is needed 

to treat pain and/or hyperthermia urgentely or when other administration routes 

are not available. 

Paracetamol administration by alternative methods is still yet to be extensively 

explored and essentially no specific applications have been found in analgesic 

therapy. Recently, much attention was focused on spinal administration, in order 

to overcome the hepatotoxicity after oral administration of high doses. 

However spinal administration of injectable solutions generally shows some 

limitations. First restriction is that drug is perfused in a defined and confined 

space in which a limited amount of solution can be infused. 
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In case of hypersaturated paracetamol solution, this limitation is overcome, since 

a therapeutically effective dose of paracetamol is dissolved in a lower volume 

compared to an unsaturated conventional solution. 

In this regard, our aim has been to verify the effect of a supersaturated aqueous 

solution of paracetamol (SINTETICO; SIN) after spinal administration in a post-

operative pain model. This solution was supplied by pharmaceutical company 

“Sintetica S.A”. Moreover, knowing the marked analgesic effect of paracetamol 

following oral administration (PARA) and considering the use of this drug as a 

premedication before surgery, we investigated the efficacy of paracetamol 

combination by oral and spinal routes. 

Furthermore, despite paracetamol medical use is consolidated by many years, its 

mechanism of action is still poorly understood. There are several hypothesis 

concerning the possible mechanism of action, showing that paracetamol has 

pleiotropic effects on several receptors. In fact, we studied the possible 

mechanism of the analgesic effect of paracetamol following spinal 

administration; in particular, on basis of literature’s data, we evaluated the 

involvement of cannabinergic (CB1 and CB2), opioidergic (µ and κ) and 

serotoninergic (5HT3) systems. 
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Finally, is well known that orally high doses of paracetamol could cause 

perilobular hepatotoxicity, which is the main limit to use this drug, particularly in 

fasting patients before surgery. 

To date, paracetamol toxicity after spinal administration is still poorly known; so 

we examined if single or repeated administration showed physiological and/or 

morphological modification of cauda equina or nerve bundles of the lumbosacral 

spinal cord sections. 
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5.0 MATERIALS AND METHODS  

     5.1 Animals  

 

The experiments were performed on Wistar Han rats (175–199 g rats Harlan, 

Italy) housed in the animal care facility of the Department of Pharmacy - 

University of Naples. Animals were housed in a room with controlled 

temperature (22±1°C), humidity (60±10%) and light (12 h per day); food and 

water were available ad libitum. Rats were randomly allocated to each 

experimental group. Each group was composed by at least 6 animals. 

Following surgery, rats were housed singly in cages containing clean soft 

bedding. All procedures involving rats were carried out in accordance with 

institutional guidelines and complied with Italian Ministry of Health Decree 

Law no.116 of 27 Jan 1992 and associated guidelines from European 

Communities Council Directive 86/609/EEC of 24 Nov 1986. 

 

5.2 Drugs 

 

SIN 3-5% (batch RD039, EXP. 05/2014-batch RD040, EXP. 05/2014) were 

synthesized in Sintetica laboratories (Mendrisio, Switzerland). This 

formulation is an paracetamol supersaturated injectable aqueous solution for 
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analgesic use by spinal administration, wherein said supersaturated injectable 

aqueous solution comprises paracetamol in a concentration ranging from 2 to 

5 % w/v. The doses of SIN used were 100, 200,300 and 500 µg; 10 µl/it/rat 

and dissolved in sterile saline. SIN was administrated before incisional paw. 

PARA was purchased from Sigma-Aldrich (Milan, Italy). It was dissolved in 

sterile saline. Drug was os administrated at the doses of 200, 300 and 500 mg/

kg (0.5 ml/rat ), 15 min before surgery, but during combination with spinal 

route, acetaminophen was administrated 5 min before spinal injection. 

Moreover, CB1 and CB2 antagonists (AM281/AM630), µ, δ and κ 

antagonists (Naloxone and Nor-Binaltorphimine) and 5HT3 antagonist 

(Tropisetron) were purchased from Tocris (Tocris Bioscience, Bristol, UK). 

All antagonists were administrated at the dose of 10 µg/ IT. Antagonists were 

injected by spinal route 5 min before SIN administration. 

 

5.3  Spinal administration 

 

Animals were anesthetized by inhaling enflurane/O2 mixture and the 

anesthesia was maintained by a mask during the IT drug administration 

procedure. A foam block was placed under the animal’s abdomen, in order to 
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produce a larger field for the needle insertion. After disinfecting the area with 

betadine, a 26G needle connected to a Hamilton syringe was introduced 

through the intervertebral space L4-L5. Puncture of the dura was followed by 

a marked tail flick, indicating the good practice of injection. The volume used 

for single spinal administration was 10 µl. The injection lasted 30-40 sec., 

Rats with tail movement or motor dysfunction in the hindlimbs following 

spinal injection have not been used for our experiments, and were sacrificed. 

Incisional paw model was made 5 min following spinal administration. 

 

5.4  Intrathecal catheterization 

 

The procedure of IT catheterization has been described earlier (Malkmus and 

Yaksh, 2004). Briefly, the animals were anesthetized with a mixture of 

ketamine and xylazine (respectively 100 and 5 mg/kg, intraperitoneal). The 

head was fixed in a stereotaxic frame. An incision was made over the back of 

the neck and scalp and the underlying muscle detached from the occipital 

crest. The muscle on either side of the external occipital crest was detached 

and retracted to expose about 3-4 mm2 of the atlanto-occipital membrane. The 

membrane was incised by a needle, which led to the escape of cerebrospinal 
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fluid. The caudal edge of the cut was lifted and about 8.5 cm of 28G 

polyurethane catheter (Alzet 7741, Charles River, Lecco, Italy) was gently 

inserted into the IT space in the midline, dorsal to the spinal cord until the 

lumbar enlargement. 

The out-dwelling part of the catheter (3 cm) was closed with a wire plug. The 

skin was sutured (polyamide 4-0 Ethicon). Animals showing motor 

abnormalities were euthanized. The rats were allowed to recover for 5 days. 

On the 3rd day, rats were observed for temporary hind limb paralysis after 

intrathecal 2% lidocaine (Xylocaine) injection (10µl). The placement of the 

catheter was also confirmed randomly by dissection at the end of the study. 

 

5.5  Incisional pain 

 

All rats were anesthetized with enflurane /O2 mixture and anesthesia was 

maintained by a mask during the administration procedure. The left paw was 

disinfected with Betadine; a 1 cm longitudinal incision was made with a 

number 12 blade, through skin and fascia of the plantar aspect of the foot, 

starting 0,5 cm from the proximal edge of the heel and extending toward the 

toes. In all animals the plantaris muscle was elevated and incised 

longitudinally. The wound was closed with a 5-0 nylon thread. After surgery, 
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the animals were allowed to recover in their cages. The incisions were 

checked daily and any signs of wound infection or dehiscence excluded the 

animal from the study. 

 

5.6  Paw edema and hyperalgesia by carrageenan 

 

Initial paw volumes of all animals (before treatment) were measured using a 

plethysmometer apparatus (Ugo Basile, Milan, Italy). Paw edema was induced 

by a subplantar injection of 50 µl of saline containing 1% λ-carrageenan into 

the left hind paw. 

SIN was spinal administrated before carrageenan challenge. Paw volume was 

measured at different time intervals by plethysmometer. The increase in paw 

volume was evaluated as the difference between the paw volume measured at 

each time point and the basal paw volume measured immediately before 

carrageenan injection. 

 

5.7 Mechanical hyperalgesia 

 

Latencies of paw withdrawal (g) was evaluated by mechanical stimuli using 

the Randall-Selitto analgesimeter for rats (UgoBasile, Varese, Italy). 
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Hyperalgesia was assessed on ispsilateral (incision) paw before (basal), 2, 4, 

24, 48, 72 h after spinal administration. Each paw was tested twice per 

session. Cut-off force was set at 250 g.for rats and 100g for mice. 

 

5.8 Perfusion and tissue fixation 

 

Fixation by intracardiac perfusion is recommended for fixation of tissues 

which rapidly autolyse, such as nervous tissue or endocrine tissue. The rat is 

anesthetized with an intrperitoneal injection of Ketamine/Xylazine (see 

above). Once deep anesthesia is attained (absence of withdrawel reflex when 

the foot is firmly pinched with forceps), the rat is pinned in dorsal 

recumbancy. The chest is opened, and the right atrium incisioned with 

scissors. A 21G butterfly needle is placed in the left ventricle, and 120 ml of 

Phosphate Buffer Saline (PBS) 1X were flushed in over the course of about a 

minute. Thereafter, 120 ml of fixative (4% paraformaldehyde) is flushed in 

until rat body becomes stiff. 
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5.9 Spinal cord histological analysis 

5.9.1 Decalcification 

 

Each sample of column was then placed in 500 mL of electrolytic decalcifier 

for 30 h. 

 

5.9.2 Processation 

 

All samples were processed in paraffin wax and embedded on cutting surface, 

maintaining the orientation and the sequence of the samples during all 

working phases. 

 

5.9.3 Cutting 

 

Each block was cut to obtain 4 transversal slices of 5 µm thickness, far 200-

250 µm one from each other. The slices were collected on slides 

progressively numbered starting from 1, as indicated in the drawn below. The 

total number of cross-sections collected from each animal was 20, that is 4 

levels of cut per 5 spinal samples. 

Block 

 

Block 

 
Block 

 
Block 
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5.9.4 Staining 

 

All slides were stained with haematoxylin and eosin according to the 

following procedure: 

• Deparaffinize in three changes of xylene (each of 2 min). 

• Hydrate in 100%ethyl alcohol for 2 min. 

• Hydrate in 95% ethyl alcohol for 2 min. 

• Hydrate in 70% ethyl alcohol for 2 min. 

• Wash in distilled water for 3 min. 

• Place in Mayer’s hematoxylin for 2 min. 

• Wash in tap water for 10 min. 

• Place in Eosin Y solution 5 wt. % in water for 2 min. 

• Rinse in tap water for 4 sec. 

•  Dehydrate in two changes of 95% ethyl alcohol (each of 30 sec). 

•  Dehydrate in two changes of 100% ethyl alcohol (each of 30 sec). 

•  Clear in two changes of xylene (each of 1 min). 

•  Mount with resinous medium. 

Spinal cord damage was graded on a scale of 0–3 as follows: grade 0, no edema 

and no injured nerve fibers; grade 1, edema and little or no nerve fiber 
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degeneration; grade 2, less than 50% of nerve fibers with degeneration; grade 3, 

more than 50% of nerve fibers with degeneration. 

 

5.10 Statistical Analysis  

 

All data were presented as % vs control group (animals operated that received 

only saline) of the mean of raw data and calculated by the formula: (T-C)/C 

X100: 

� T= medium value (expressed in g) of analgesic effect evoked in rat 

treated with drug 

� C= medium value (expressed in g) of effect evoked in control rat 

treated with vehicle (CTR) 

Analysis of data was conducted using GraphPad Prism (GraphPad Software Inc., 

San Diego, CA).The significance of differences between groups was determined 

by two-way analyses of variance (ANOVA) followed by Bonferroni post hoc 

tests for multiple comparisons. The level of significance was set at P< 0.05. 
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6.0 RESULTS AND DISCUSSION  

 

6.1 Dose-effect of SIN following spinal administration in a post-

operative pain model and in carregeenan-induced paw edema 

 

Previous results showed that pretreatment with paracetamol (100ug) spinal 

administration was associated with a significant decrease in hind limb motor 

dysfunction due to ischemic spinal cord injury 24 hours after 

ischemia/reperfusion in rats (Sahin M. et al. 2014). On basis of these data we 

evaluated the effect of SIN in a postoperative pain model. 

Following incision of paw, operated animals showed signs of hyperalgesia if 

compared to basal data. In particular, in mechanical hyperalgesia experiments, 

single spinal treatment with SIN 100 µg/IT produced a significant 

antihyperalgesic effect only at 24 h, while no effect was observed at all other 

experimental time. SIN 200 µg/IT showed a significant antihyperalgesic effect 

from 2 to 48 h post dose, and the highest doses (SIN 300 µg/IT and 500 µg/IT) 

produced a more significant and prolonged effect until 72 h (Fig. 1; **p<0.01 

and *p<0.05).  
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Fig. 1: Effect of SIN in incision paw-induced mechanical hyperalgesia. Rats received SIN 100-
500 µg before incision paw. Mechanical hyperalgesia was assessed at 2, 4, 24, 48, 72 h after 
spinal administration. Data are shown as mean ± SEM of 6 animals per group and are presented 
as % analgesia vs CTR (*p<0.05 and ** p<0.01 vs CTR group). 
 

 

Rezende RM and co-workers (2008), showed that subcutaneous pretreatment 

with paracetamol reversed hyperalgesia induced by λ-carrageenan. In this study 

paracetamol raised nociceptive thresholds also in non-inflamed paw. 

Although bilateral anti hyperalgesia after paracetamol had been earlier noted 

(Alloui et al., 2002), it sharply contrasted with the unilateral (only in the inflamed 

paw) analgesia induced by systemically administered inhibitors of PGs 

biosynthesis (catalysed by both COX-1 or COX-2). 
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We also evaluated SIN efficacy after IT administration in carrageenan-induced 

paw edema in mice; edema was measured after 2, 4, 6 and 24 hours: 10 µg SIN 

did not reduce edema if compared to the control group mice, while the dose of 

100 µg produced a slight edema reduction (27 % approximately) after 2 hours 

from induction (Fig.2). Similar data were also obtained in carragenan-induced 

hyperalgesia; in fact SIN 100 µg produced a slight effect on paw pressure by 

Randall-Selitto test (vehicle 45g vs SIN 75g, data not shown). 

 

 

 

 

 

 

 

 

 

Fig.2 Effect of Sintetico in a model of inflammatory pain in mice, induced by intraplantar 
injection of carrageenan. Mice received Sintetico (SIN 10-100 µg/it) after carrageenan injection. 
Paw edema was assessed at 2, 4, 6 and 24h after spinal administration. Data are shown as mean 
± SEM of 6 animals per group  
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For better clarify this weak effect obtained by spinal injection, we studied SIN 

activity in a postoperative animal pain model. Injury to peripheral tissues may 

produce prolonged pain, increased sensitivity to painful stimuli (hyperalgesia) 

and/or pain following innocuous stimulation (allodynia).  

As reported, paracetamol can be used alone or in combination with an NSAID to 

improve postoperative analgesia (Elia N. et al. 2005; Remy C. et al. 2005). 

Furthermore, Bujalska M. and colleagues (2001) showed that oral administration 

of paracetamol, increased the nociceptive thresholds for both mechanical 

(Randall-Selitto test) and chemical (writhing test) stimuli. Previously, Pelissier 

and colleagues (1996) demonstrated that oral paracetamol at dose of 400 mg/kg 

produced an antinociceptive effect comparable to 800 mg/kg, suggesting that 

with 400mg was observed the ceiling effect. 

On the basis of these results, we selected a range of oral doses of PARA between 

200-500 mg/kg to evaluate its efficacy in a postoperative pain model. As 

expected, following paw incision, single oral treatment with PARA (200mg/kg) 

produced a significant antihyperalgesic effect at 2 h, whereas PARA 300 and 500 

mg/kg showed a significant antihyperalgesic effect form 2 to 6 h post dose (Fig.3 

*p<0.05, **p<0.01 and ***p<0.001).  
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Fig.3: Effect of PARA  on incision paw-induced mechanical hyperalgesia. Rats received PARA 
200-500 mg/Kg/os 15 min before incision paw. Mechanical hyperalgesia was assessed at 2, 4, 6 
and 12 h after oral administration. Data are shown as mean ± SEM of  6 animals per group, and 
are presented as % analgesia vs CTR. *p<0.05, ** p<0.01 and ***p<0.0001 vs CTR group. 
 

 

Our data confirm PARA efficacy in reduction of both acute and postoperative 

pain, underlining the limited activity after oral administration (within 6 h), while 

shows prolonged analgesia by intrathecal administration. Moreover, our results 

suggest that to achieve a significant and prolonged analgesia is preferable to 

administer paracetamol by intrathecal administration, and using this therapeutic 

approach it is possible to bypass all side effects caused by oral administration. 
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6.2 Effect of combination of active or inactive doses of oral 

paracetamol  (PARA) and intrathecal Sintetico (SIN) in incisional pain 

model-induced mechanical hyperalgesia. 

 

Injury to peripheral tissues may produce prolonged pain, increased sensitivity to 

painful stimuli (hyperalgesia) and/or pain following innocuous stimulation 

(allodynia) (Woolf CJ. et al. 1983). These changes are usually accompanied by 

enlargement of the peripheral receptive field and increased excitability of spinal 

nociceptive cells to peripheral stimulation (Hylden JL. et. al. 1989). A current 

hypothesis states that excitatory amino acids activating NMDA receptors in the 

spinal cord produce excessive cell depolarization that contributes to increased 

pain sensation (Dubner R. et al. 1991). According to this hypothesis, the 

amplification of pain long after the initial stimulus may be avoided if the 

treatment of pain is introduced before its initiation (Woolf CJ et. al. 1994). Some 

studies have reported the efficacy of such "preemptive analgesia" in laboratory 

animals following pre-surgical administration of opioids (Woolf CJ. et al. 1986). 

Gaspar AF.et al. (2007) showed that pre or postoperative injection of MK886 (an 

inhibitor of 5-lipoxygenase-activating protein), combined with indomethacin 

significantly reduced the mechanical allodynia. However, the combination was 
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significantly more effective when used before than after surgery, thus fulfilling 

the criteria for preemptive analgesia. 

For this reason, during our study we investigated the efficacy and the activity of 

pretreatment with oral paracetamol, following up by spinal administration of SIN 

in postoperative pain. For this purpose we used inactive and active doses of oral 

PARA (200 and 500 mg/kg, respectively) in combination with inactive and active 

doses of inthratecal SIN (100 and 500 µg/it/rat, respectively). Firstly, we 

investigated whether the analgesic effect obtained with an active dose is modified 

when administered an active dose for the other route of administration. 

As expected, oral treatments with a paracetamol high dose (300 mg/Kg) 

increased pain threshold from 2 h to 6 h after administration; at same way, 

intrathecal SIN injection (300 µg/it) produced a significant analgesic effect from 

2 h to 48 h after administration (Fig. 4; fuchsia and blue columns). This 

antihyperalgesic effect was also obtained using the combination of these drugs 

and was comparable to single treatment (Fig.4 *p<0.05,**p<0.01 ***p<0.001 vs 

CTR).  
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Fig. 4: Effect of single or combination of paracetamol and Sintetico on incision paw-induced 
mechanical hyperalgesia. Rats received Paracetamol (PARA 300 mg/Kg), Sintetico (SIN 300 
µg/it) and Paracetamol +Sintetico (PARA 300 mg/Kg +SIN 300 µg/it). Mechanical hyperalgesia 
was assessed at 2, 4, 6, 24 and 48 h after administration. Data are shown as mean ± SEM of 6 
animals per group (*p<0.05, **p< 0.01, and *** P<0.001 vs CTR group). 

 

Other aim was to investigate the efficacy of combination of active or inactive 
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Oral treatment with a inactive dose of Paracetamol  (PARA 200 mg/Kg) showed 
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antihyperalgesic effect at all experimental time. The co-administration of these 

doses showed an antihyperalgesic activity from 2 h to 48 h after administration 

(Fig. 5A., *p<0.05 and **p<0.01 vs CTR). These data suggested that 

combination of inactive oral dose of paracetamol and an active intrathecal dose 
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comparator at the effect of IT SIN injection (Fig. 5A). The same results were 

obtained using active oral doses of paracetamol and an inactive dose intrathecal 

of Sintetico. In fact, oral treatment with high dose of Paracetamol (PARA 300 

mg/Kg) produced a significant analgesic effect from 2 to 6 h after oral 

administration; no significant activity was obtained following intrathecal 

administration of Sintetico (SIN 100 µg/it). Combination of these two doses 

showed a significant antihyperalgesic effect until 24 h (Fig. 5B, *p<0.05 and 

**p<0.01 vs CTR). 

 

 

 

 

 

 
 
 
 
Fig. 5A: Effect of single or combnation of paracetamol  and Sintetico on incision paw-induced 
mechanical hyperalgesia. Rats received paracetamol (PARA 200 mg/Kg/os), Sintetico (SIN 300 
µg/it) and Paracetamol +Sintetico (PARA 200 mg/Kg +SIN 300 µg/it). Mechanical hyperalgesia 
was assessed at 2, 4, 6, 24 and 48 h after administration. Data are shown as mean ± SEM of 6 
animals per group (*p<0.05 and **p< 0.01 vs CTR group). 
Fig. 5B: Effect of single or combination of paracetamol  and Sintetico on incision paw-induced 
mechanical hyperalgesia. Rats received paracetamol (PARA 300 mg/Kg), Sintetico (SIN 100 
µg/it) and paracetamol +Sintetico (PARA 300 mg/Kg +SIN 100 µg/it). Mechanical hyperalgesia 
was assessed at 2, 4, 6 and 24 h after administration. Data are shown as mean ± SEM of  6 
animals per group (*p<0.05 and **p< 0.01, vs CTR group). 
 

2 4 6 24 48
0

20

40

60

80

100

PARA 300 mg/Kg/os
SIN 100 µg it
PARA 300 mg/Kg/os + SIN 100 µg it

**
**

**
**

*
* **

TIME (h)

%
 a

n
al

ge
si

a 
vs

 C
TR

 

2 4 6 24 48
0

20

40

60

80

100

PARA 200 mg/Kg/os
SIN 300 µg it
PARA 200 mg/Kg/os + SIN 300 µg it

** ***

**

**
**

**
*** **

**

TIME (h)

%
 a

n
al

g
es

ia
 v

s 
C

T
R

A B 



85 
 

Finally, we investigated the activity of the combination of two inactive doses. 

Results showed that oral paracetamol (PARA 200 mg/Kg) had a weak analgesic 

effect only 2 h after administration, while single intrathecal injection of Sintetico 

(SIN 100 µg/it) did not produce analgesic effect in all experimental time. 

Surprisingly, oral and intrathecal combination of Paracetamol and Sintetico 

produced a prolonged analgesic effect from 2 up to 24 h after administration (Fig. 

6, *p<0.05). The analgesic effect obtained after combination of two inactive 

doses of drug, has produced an synergic effect (Fig. 6). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Effect of single or co-administration of paracetamol and Sintetico on incision paw-
induced mechanical allodynia. Rats received oral paracetamol (PARA 200 mg/kg), intrathecal 
Sintetico (SIN 100 µg/it), paracetamol+Sintetico (PARA 200 mg/Kg+SIN 100 µg/it); 
mechanical allodynia was assessed at 2, 4, 6 and 24 h after administration. Data are shown as 
mean ± SEM of 6 animals per group (*p<0.05 vs CTR group). 
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6.3 Role of cannabinergic, opioidergic and serotoninergic systems  

      after SIN IT administration.  

 

After well more than a century of clinical use, and in spite of being one of the 

most prescribed and consumed drugs in the world, paracetamol’s mechanism of 

action has remained a mystery. Several data suggest the possibility that the site of 

action of its antinociceptive effect may be in the CNS. Moreover, endogenous 

cannabinoids (anandamide and 2-arachidonylglycerol) seem to be tonically 

released and to control basal nociceptive threshold (Meng et al. 1998). 

Cannabinoids produce antinociceptive effects by descending spinal inhibition, 

and cannabinoid CB1 receptors are almost exclusively involved.  

Ottani A. et al. 2006 have demonstrated that analgesic activity of paracetamol is 

prevented by the blockade of cannabinoid CB1 receptors in rats. Moreover 

acethaminophen dose-dependently decreased mechanical allodynia and lowered 

nociceptive scores associated with hyperalgesia testing. These effects were 

inhibited by the administration of cannabinoid CB1 (AM251) and CB2 (AM630) 

receptor antagonists (Dani M. et al. 2007). On the basis of these evidences, we 

have investigated whether the analgesic pathways observed following PARA oral 

administration, could be involved after SIN IT administration.  
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In our experiments we evaluated the role of cannabinergic, opioidergic and 

serotoninergic receptors: specific anatgonist were IT administrated 5 min before 

SIN spinal injection in both non operated rats (naïve) and in operated rats 

(incisional paw).  

In mechanical hyperalgesia experiment, single spinal treatment with Sintetico 

(SIN 300µg) incresed pain threshold from 2 to 4 h in naive rats; using the same 

dose in operated rats, SIN produced a significant antihyperalgesic effect lasted 

until 6 h post dose.  

In naive rats, analgesic effect of SIN was reverted using a CB1 antagonist, 

AM281 (10 µg/it), while a CB2 antagonist, AM630 (10 µg/it), did not produce 

any effect (Fig. 7A). 

In operated rats, results showed that both receptors CB1 and CB2 are involved. In 

fact, AM281 (10 µg/it) reduced SIN analgesic effect from 2 until 6 h after spinal 

administration, while AM630 (10 µg/it) reverted SIN effect up to 4 h (Fig.7B; 

*p<0.05,**p<0.01 and ***p<0.001 vs CTR; ## p<0.01 and ### p<0.001 vs SIN 

300 µg). Our data suggested the involvement of cannabinergic system in pain 

modulation; in particular, CB1 receptors are involved in pain modulation both in 

naïve and operated rats, while CB2 receptors modulated analgesic effect only in 

operated rats.  
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Fig. 7: Effect of Sintetico and AM281/AM630 on naive (A) and operated rats (B) in Randall 
Selitto test. Rats received Sintetico (SIN 300µg/it), AM281 10µg/it (SIN+AM281) and AM6330 
10 µg/it (SIN+AM630). Mechanical hyperalgesia was assessed at 2, 4 and 6 h after spinal 
administration. Data are shown as mean ± SEM of 6 animals per group. *p<0.05, **p< 0.01, 
and *** P<0.001 vs CTR group; ## p<0.01 and ### p<0.001 vs SIN 300µg/it. 

 

Moreover it has been reported that the antinociceptive action of oral PARA high- 
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caused by morphine is enhanced by PARA low-dose and this effect is due to an 

interaction with opioidergic systems (Bujalska M. et al. 2004;Sandrini M. et al. 

1999). 

Furthermore, there is evidence that the antinociceptive effects of opiaces are 

potentiated by some NSAIDs (Poggioli et al., 1980; Maves et al., 1994) and by 

paracetamol (Pircio A.W. et al., 1978), whereas naloxone is able to revert 
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antinociception induced by diclofenac in rats (Björkman R. et al., 1990). Thus 

studying paracetamol effect on serotonergic and opioidergic systems, might 

throw some light on the complex antinociceptive activity of this widely used 

drug. 

For this purpose, our experiment was conducted to gain insight into the 

mechanism of the analgesic action of spinal paracetamol and the influences of 

opiod system, using a specific antagonists (naloxone and nor-Binaltorphimine) in 

Randall-Selitto test.  

As reported in Fig. 8A, in mechanical hyperalgesia, spinal dose of SIN (SIN 

300µg) incresed pain threshold up to 4 h after administration in naive rats; while, 

in operated rats, the same dose used before the incisional paw, has prolonged 

analgesic effect to 6 h after administration (Fig. 8B).  

Analgesic effect of Sintetico was reverted by Naloxone (10 µg/it), and Nor- 

Binaltorphimine administration (10 µg/it), in both groups and in all experimental 

time (Fig. 8 A and B *p<0.05, **p<0.01 and ***p<0.001 vs CTR; # p<0.05 and 

### p<0.001 vs SIN 300 µg). Therefore we have hypothesized that opioidergic 

system is involved in paracetamol mechanism of action. 
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Fig. 8:Effect of administration of Sintetico and Naloxone/Nor-Binaltorphimine (Nalo/NorBi) on 
naïve (A) and operated rat (B)-induced mechanical hyperalgesia. Rats received Sintetico 
(SIN300µg/it), Naloxone 10µg/it (SIN+Nalo) and Nor-Binaltorphimine 10 µg/it (SIN+NorBi). 
Mechanical hyperalgesia was assessed at 2, 4 and 6 h after spinal administration. Data are 
shown as mean ± SEM of 6 animals per group. *p<0.05, **p< 0.01, and *** P<0.001 vs CTR 
group; # p<0.05 and ### p<0.001 vs SIN 300µg/it. 

 

Multiple serotonin receptor subtypes have been identified in CNS: 5-HT1, 5-HT2 

and 5-HT3 seem to be involved in the 5-HT-mediated antinociceptive mechanism 

(Sufka KJ. et al. 1992). There are conflicting findings concerning the relationship 

between the antinociceptive effects of 5-HT to specific subtypes of 5-HT 

receptors. Recently it has been suggested that 5-HT2 and 5-HT3 receptors mediate 

antinociception to chemical stimuli in the spinal cord (Sasaki M. et al. 2001). 

In rat paw pressure test, Courade JP. and co-workers showed that the 

antinociceptive action of paracetamol intravenously was inhibited by 

intrathecally injection of 5-HT1B, 5-HT2A, 5-HT2C antagonists and by 
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Tropisetron, known as a 5-HT3 specific antagonist (Alloui A. et al. 2002; Alloui 

A. et al. 1996; Pelissier T. et al 1996).  

Our data reveal that spinal administration of Sintetico (SIN 300µg/it) had a 

significant analgesic effect from 2 up to 4 h after administration in naive rats, 

while in operated animals this effect resulted more evident until 6 h. Also in this 

case, Tropisetron (10 µg/it) reduced the analgesic effect of Sintetico in both 

naive and operated rats (Fig.3 A and B *p<0.05,**p<0.01 and ***p<0.001 vs 

CTR, # p<0.05, ## p<0.01 and ### p<0.001 vs SIN 300µg).  

 

 

 
 
 
 
 
 
 
 

 
 
 
Fig. 9:Effect of single administration of Sintetico and Tropisetron (TROP) on naïve (A) and 
operated rat (B) induced mechanical hyperalgesia. Rats received Sintetico 300 µg (SIN300 
µg/it), Tropisetron 10µg/it (SIN+TROP). Mechanical hyperalgesia was assessed at 2, 4 and 6 h 
after spinal administration. Data are shown as mean ± SEM of 6 animals per group. *p<0.05, 
**p< 0.01, and *** P<0.001 vs CTR group; # p<0.05,, ## p<0.01 and ### p<0.001 vs SIN 
300µg. 
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Therefore, also our results suggested an involvement of serotoninergic system in 

pain modulation. 

 

6.4 Spinal cord and liver toxicity after SIN IT administration  

Paracetamol toxicity is not due to drug per se, but to one of its metabolites, 

NAPQ1. Paracetamol biotransformation involves conjugation with glucoronide 

and sulphate. A small amount of paracetamol is metabolized by mixed function 

oxidase enzymes to form highly reactive compound NAPQ1, which is 

immediately conjugated with glutathione (GSH) and subsequently excreted as 

cysteine and mercapturic conjugates. In overdoses, large amounts of paracetamol 

are metabolized by oxidation because of saturation of the sulphate conjugation 

pathway (Benjamin N. et al. 2002;Pajoumand A. et al 2003), but once the 

protective intracellular glutathione stores are depleted, hepatic and renal damage 

may ensue. Hepatotoxicity is the most remarkable feature of paracetamol 

overdose (Rumack BH. et al 1975). Paracetamol acute overdoses can cause 

potentially fatal liver damage and, in rare individuals, a normal dose can do the 

same; the risk is heightened by alcohol consumption. Paracetamol toxicity is the 

foremost cause of acute liver failure. Renal effects of paracetamol overdose are 

less commonly seen than hepatic effects. 
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Venkatesan P.S. and colleagues (2014) suggest that in Sprague Dowley rats of 

either sex paracetamol oral administration up to 500 mg/kg did not show any 

impact on feeding, body weight gain, behaviour, physiological and biochemical 

parameters; moreover the suspected target organ, liver and kidney, were found to 

be normal on histopathological analysis. These results indicated that paracetamol 

NOAEL in rats following oral administration is found to be 500 mg/kg. 

Furthermore, El-Kott AF. (2015) showed that oral single-dose administration of 

paracetamol (800mg/kg) was hepatotoxic in rats as shown by the significant 

increases in plasma ALT and AST activities as well as ALP concentration. 

Abnormal levels of hepatic enzymes in plasma are believed to be an indicator of 

hepatocyte injury (Ozer J. et al. 2008).  

According to these data, our aim has been to studied if SIN administration 

produced side effects in spinal cord and in liver after single and repeated 

injection.  

After single, three and ten SIN administrations at higher dose (500 µg/it), 

histopathological results of rat spinal cord region indicated a low toxicity degree 

of SIN within 24 h. In particular, single injection did not produce 

histopathological alteration while, both three and ten IT administrations produce 

a weak cell infiltration (not significant) in submeningeal and/or perifascicular 
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region and/or in spinal cord. These data were considered a sequel to the technical 

procedures of administration, so no-treatment-related effects were observed in 

vehicle animals (data not shown). 

Finally, repeated SIN (200 and 500 µg/it) administrations for 7 days showed a 

mild toxicity degree with little or no degeneration of nerve fibers; there was no 

difference between SIN-treated and vehicle-treated rat (Fig. 10). 

 

 

FFig.10 Hematoxylin-eosin stained spinal cord sections from different animal groups . Naive is 
animal group without catheter, Vehicle is animal group with catheter and that recevied only 
salina for 7 days. SIN 200µg and SIN 500µg are animal groups that received for 7 day Sintetico 
by spinal catheter. 
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Furthermore, in this last experiment, we also observed macroscopically whether 

SIN administrations for 7 days produced liver changes, in terms of margins and 

sizes. As shown in Fig. 11, no significant alterations were observed between 

vehicle- and SIN-treated rats. 

 

 

 

          Vehicle                      SIN 200µg                      SIN 500µg 

Fig.11 Liver photos of Vehicle, SIN 200 µg and SIN 500 µg after chronic administration 
(7days). 
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7.0 CONCLUSION 

Acute pain after surgery and trauma represent two of the biggest concern of 

hospital in patients and the management of pain is of utmost importance 

(Macintyre PE. et al. 2010). Acute and chronic pain states account for a large 

proportion of presentations to general practitioner and the emergency 

department. The past ten years have witnessed a far greater focus upon the 

management of acute, cancer and chronic pain; these efforts have culminated an 

international pain summit leading to the declaration of Montreal that access to 

pain management is a fundamental human right (International Pain Summit Of 

The International Association For The Study Of P. Declaration of Montreal 

2011).  

Despite massive progress in the understanding of the physiology and 

pharmacology of pain there is only a limited number of new compounds used 

into clinical practice. In an ideal world the management of pain should be 

associated to one medication that produces little to no side effects, and capable to 

treat multiple types of pain. To date, pain management is hard to reach, because 

of the complex nature of pain physiology and the associated social, psychological 

and economical components. 
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Therefore, pharmacological pain treatment is centered on a multimodal approach 

with old medications that have new uses and indications. Combined with the 

increasing understanding of pain perception, and an appreciation of the 

multifactorial nature of pain, this could lead to future personalization of analgesic 

therapy.  

During our study, the attention was focused on treatment of postoperative pain. 

Postoperative pain is an individual multifactorial experience influenced by 

patient culture, psychology, genetics, previous pain events, beliefs, mood and 

ability to cope, as well as the type of procedure performed. Inadequate treatment 

of postoperative pain continues to occur, despite advances in analgesic 

techniques, placing patients at risk and significant disability.  

Optimal pain results from proper management in the preoperative, intraoperative, 

and postoperative periods, requires appropriate education of physicians, nurses, 

other health care providers, and patients. An understanding of the 

pathophysiology of postoperative pain and the various options available for 

analgesia often results in a procedure-specific, multimodal approach, optimizing 

pain relief, decreasing adverse effects, and creating a better patient experience. 

Many new analgesic medications and techniques have been developed to reduce 

acute postoperative pain. These include preoperative use of NSAIDs, anxiolytics, 
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and anticonvulsants; intraoperative use of neuraxial analgesia, continuous local 

anesthetic wound infusion, epidural morphine, intravenous paracetamol, 

intravenous ketamine; and postoperative use of intravenous ibuprofen, new 

opioids (eg, tapentadol) or opioid formulations (morphine- oxycodone). 

Many of these drugs have demonstrated analgesic superiority to placebo and a 

comparable activity to traditional therapy, coupled with a reduction in adverse 

events. Several of the newer medications and techniques improve analgesia and 

minimize the risk of adverse events, although additional research is needed to 

establish their efficacy and safety profile. New approaches to acute postoperative 

pain management may provide safer and more effective analgesia than traditional 

therapy such as postoperative spinal analgesics. The development of chronic pain 

syndromes following surgery is not rare and may be unappreciated by clinicians. 

The risk factors for developing chronic pain after surgery are several: 

preoperative pain, repeat surgery, prolonged surgery, younger age, severe 

postoperative pain, surgical approaches with a higher risk of nerve damage, 

chemotherapy or radiation, and some psychological or depressive symptom 

(Kehlet H. et al. 2006).  

To help prevent these, it is important to inform the patient about the management 

of postoperative pain and patients should be also educated about analgesic 
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agents, their risks and benefits, and encouraged to ask questions. It is usual to 

find that many patients underestimate or overestimate the potential risks of 

opioid analgesics. 

Moreover, a written protocol for best practices for postoperative pain should be 

developed. This should encompass certain established benchmarks: patients 

should be educated about the risk, benefits, and dosing instructions of their 

medicines and prescribed break-through pain medication (where appropriate) and 

antiemetic agents, if required. The protocol should also allow for adjustments to 

the regimen in patients who are at risk for cardiorespiratory morbidity. Shortfalls, 

gaps, or failures of the analgesic protocol should be promptly detected and 

rectifed, in no more than 2 hours. Further, the protocol set forth by a hospital 

should be subject to periodic audit. It has previously show that postoperative 

epidural analgesia decreased 30-day postoperative mortality, pneumonia, and 

deep vein thrombosis and shortened intensive care unit and hospital length of 

stay, nevertheless epidural analgesia should be evaluated for postoperative 

analgesia only in highly selected cases and for patients who are otherwise at high 

risk for other analgesic regimens (Rawal N. et al.. 2012; Low JA. et al. 2008). 

Today the most widely drug used for treatment of acute and postoperative pain is 

paracetamol. This drug place on the WHO analgesic ladder, which precisely 
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defines the rules for application of analgesic drugs, is impressive. It is a 

recommended oral analgesic of a first choice to be used for a long in time, e.g., in 

symptomatic treatment of slight and moderate pain occurring in osteoarthritis as 

well as in muscle or tendon pains. Moreover, it is a drug of choice in patients in 

whom application of non- steroidal anti-inflammatory drugs (NSAIDs) are 

contraindicated, e.g., in the case of gastric ulcers, hypersensitivity to aspirin, 

impairments in blood coagulation, in pregnant women, nursing mothers and 

children with fever accompanying a disease (Leung L.; 2012).  

Although paracetamol was discovered several years ago, its mechanism of action 

has not been elucidated until now (Smith HS. et al. 2009; Graham GG. et al. 

2005; Raffa RB. et al. 2004; Roca-Vinardell A. et al. 2003; Bujalska M. 2004; 

Ottani A. et al. 2006). The mechanism of action is complex and includes the 

effects of both the peripheral (COX inhibition), and central (COX, serotonergic 

descending neuronal pathway, L-arginine/NO pathway, cannabinoid system) 

antinociception processes and  redox mechanism. These evidences underline the 

possibility of paracertamol to interact with several systems: cyclooxygenase, 

opioidergic, cannabinergic and serotoninergic. Although higher doses are not 

associated with hepatotoxicity, the recommended dose at present is 1 g in a 15 

min infusion every 6 hours. However, administration of paracetamol by means of 
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methods alternative (as spinal administration) to traditional methods (oral or 

intravenous) is still yet to be explored extensively, and essentially no specific 

applications have been found in the field of analgesic therapy. 

In present study we used a new supersaturated aqueous solution of paracetamol 

(SIN) to verify the effect of this solution in a postoperative pain model in rat after 

spinal administration. This solution is highly stable, has an increased 

concentration of acetaminophen in the solvent, and can be mixed with other 

drugs in order to obtain a solution with a total volume that is compatible with the 

volume injectable by a single spinal administration. As above reported, the 

administration of injectable solutions presents physical limitations that could be 

overcome by this supersaturated solution. 

Our data suggested that SIN spinal administration before paw incision, produced 

an significant, marked and prolonged analgesic effect, that was dose- and time- 

dependent. Our data support the hypothesis that an alternative administration 

route, as the spinal one, could be used in both acute and postoperative pain. 

Moreover, it was observed that in order to obtain an adequate analgesic 

postoperative effect is necessary to administer high doses of analgesics or opioid 

(Kodali BS. et al. 2014;American Society of Anesthesiologists Task Force on 

Acute Pain Management 2012). Both of these therapeutic approaches not only 
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expose patients to many side effects but in most cases, do not provide an 

adequate analgesic response. In this regard, the analgesic activity was assessed 

using combinations of paracetamol of inactive and active oral doses (100 and 500 

mg/kg, respectively) with inactive and active IT doses (100 and 500µg/it, 

respectively). The most important data of this set of experiments was obtained 

using the combination of oral and spinal inactive doses. In fact, results showed 

that this combination produced a synergic and significant antihyperalgesic effect. 

The possible mechanism of action underlying the prolonged analgesic activity of 

paracetamol was also investigated, deepening the involvement of cannabinergic 

(CB1 and CB2), opioidergic (µ and κ receptors) and serotonin (5HT3) systems, in 

naive (not operated) and in operated rats. 

The recent discovery that paracetamol acts as a prodrug (a donor of a moiety of 

an endogenous cannabinomimetic) by triggering CB1-mediated effects, provided 

explanation of the peculiar effects of this drug.  

Ottani et co-workers suggest a so far unforeseen mechanism for the analgesic 

effect of paracetamol; i.e the activation of cannabinoid system, or at least of the 

components of such system that are involved in the modulation of nociception 

and whose signal trasduction requires the availability of CB1 receptors. 
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Our results showed that analgesic effect with single spinal treatment with 

Sintetico 300 µg was reverted using AM281 (CB1 antagonist) in naive rats; 

while, in operated rats both receptors CB1 and CB2, are involved.  

Many of the documented analgesic effects of cannabinoids are based on the 

interaction of these compounds with CB1 receptors on spinal cord interneurons in 

the superficial levels of the dorsal horn, known for its role in nociceptive 

processing. In particular, CB1-receptors are heavily expressed in layers 1 and 2 of 

spinal dorsal horn and in lamina 10. These localizations of CB1 receptors are 

responsible for analgesic and antihyperalgesic effects observed in naive and 

operated animals. 

CB2 receptors are manly localized on the mast cells, known to facilitate the 

inflammatory response, and are not expressed on nociceptive sensory neurons; 

these underline the key role of this receptor only in pathological condition such 

as inflammation due to surgery.  

It has been reported that the antinociceptive action of oral high dose of 

paracetamol is antagonized by naloxone, which is a non selective opioid receptor 

antagonist (Bujalska M. et al. 2004, Bujalska M. et al. 2004;Godfrey L, et al. 

2005). Our results are in agreement with these data, in fact, IT administration of 

naloxone reduced SIN analgesic effect, both in naive and operated animals. 
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Same results were obtained using k-opioid antagonist (Nor-Binaltorphimine). 

These data clearly indicated the role of opioids receptors in SIN-induced 

analgesia. Finally, as reported by Sandrini M. et al. (1999) the antinociceptive 

action obtained by morphine is enhanced by paracetamol low-dose and this effect 

is dependent on the cross-talk between opioidergic and serotoninergic systems. 

Moreover, the involvement of serotonergic system in analgesia induced by non- 

opioid analgesics has been demonstrated (Bjo ̈rkman R. et al. 1995), but the 

detailed mechanism by which serotonin acts, together with the exact nature of the 

receptor subtypes involved, has not yet been elucidated (Richardson BP. et al. 

1990; Courade JP. et al. 2001). 

Paracetamol antinociceptive effect may be mediated by different serotonin 

receptor subtypes at spinal and supraspinal levels. This is suggested by results 

obtained by some authors, indicating that paracetamol activity is prevented by 5-

HT3 receptor antagonist Tropisetron IT injected (Pellissier T. et al. 1995). 

Many studies support the hypothesis that 5-HT participates in the central 

antinociceptive effect of paracetamol. 5-HT and NA are the two main 

neurotransmitters involved in the endogenous descending pain inhibitory 

pathway, known as the “analgesic system”, which originates at the level of the 

midbrain in the periaqueductal gray and in the magnus raphe nucleus that lies 
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within the medulla. In rat brain, the antinociceptive action of paracetamol is 

associated with changes in the serotoninergic system. A significant down-

regulation of 5HT2A binding sites in the frontal cortex in response to 5-HT 

release was demonstrated in rats after the administration of paracetamol; this 

indicates that the serotoninergic system plays a major role in the mechanism 

underlying analgesia produced by this drug. Moreover, the potent 5-HT3 receptor 

antagonist Tropisetron has been reported to reverse the antinociceptive effect of 

paracetamol in the paw pressure test in rats. However, IT injection of other 5-

HT3 receptor antagonists, such as Ondansetron and Granisetron, were unable to 

block its activity. This suggested that a specific spinal Tropisetron-sensitive 

receptor could be involved in the antinociceptive mechanism of action of 

paracetamol (Courade JP. et al. 2001) In agreement with this, our data showed 

that spinal administration of Tropisedron reverted analgesic effect of SIN both in 

naive and operated rats, underlying the involvement of this receptor.  

During our studies we also investigated the possible spinal cord toxicity, 

following acute or repetitive spinal administration of SIN. As we know, liver is 

the largest complex organ in the body, which plays an important role in the 

internal environment maintenance by its multiple functions. It plays a central role 

in the metabolic pathways of carbohydrates, lipids and proteins. It is also 
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involved in the detoxification and excretion of many endogenous and exogenous 

compounds by its xenobiotic metabolism. The liver is the organ that is most 

affected by acute paracetamol toxicity. This potential hepatotoxicity could still 

represent a perceived limitation to its use among some physicians. 

This problem could be overcome, using an alternative route of administration, 

such as the spinal one. In fact, our results showed that single and repetitive 

treatment with SIN, using low and high doses, showed no signs of spinal and 

liver toxicity. 

These results open a new scenario for treatment of postoperative pain, because 

this new formulation and administration route allow to obtain a prolonged 

analgesic effect using low doses of paracetamol. Considering these evidences and 

lower toxicity, this new therapeutic approach to postoperative pain could be a 

great benefit for public health; more studies and researches are needed for 

developing more information guidelines and education activities to fight pain. 

When patients receive effective postoperative analgesia, it can reduce 

postoperative morbidity, enhance and accelerate recovery, shorten the hospital 

stay, and improve patient satisfaction (Kehlet H. et al. 1994). Considering the 

relatively low cost of analgesic agents, this type of treatment has a very favorable 

cost-to-benefit ratio.  
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