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I 

ABSTRACT 

The thesis is focused on the seismic behavior of existing RC precast buildings. This 

structural typology has been characterized by a very quick development since the time 

of the First World War, due to the reduction of construction time and to the possibility 

of a better check on each structural element produced in the factories through industrial 

processes. The main activities carried out in RC precast facilities are certainly 

associated to the industrial sector, thanks to large spans and high usable height. 

Therefore, the concept of loss for these buildings is not only related to human lives or 

to the repair costs, but also to the costs due to the interruption of the activities carried 

out in them. Emilia earthquake, occurred in May 2012, has sadly demonstrated the 

inadequacy of industrial facilities in absorbing horizontal seismic forces, causing 

deaths and injuries, as well as a huge economic loss. 

The earthquake consequences on industrial buildings are presented in the first part of 

the thesis, through the description of the reported damage of some facilities inspected 

after the earthquake. For each industrial building, the main geometrical issues are 

analyzed, along with the description of the principal structural elements.  

Among the investigated buildings, two industrial facilities located in Mirandola (MO), 

a few kilometers away each other, are considered as case-study buildings. The first 

structure reported the partial collapse due to the breaking of two central columns, with 

the fall of beams and tiles. The second facility reported only minor damages, such as 

the fall of a corner cladding element. 

A tridimensional numerical model has been implemented in order to first verify the 

seismic performance of the first building, according to the Italian code. Thus, nonlinear 

static and dynamic analyses have been performed. The N2 method by Fajfar was used, 

taking into account the flexibility of the roof. Therefore, two different methods for the 

definition of the displacement control point are followed: one is based on geometrical 

considerations (proposed method); the other is based on the procedure proposed by 

Casarotti in its Adaptive Capacity Spectrum Method. 

At the end of each analysis, both fragile and ductile mechanisms have been checked. 

The most suitable capacity models have been then selected. In particular, columns 

shear capacity evaluation have been conducted through the study of the models 

available in the technical literature. Then, rotations at the columns base have been 

investigated, as well as the frictional behavior of the tiles-to-beams and beams-to-
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columns connections. Nonlinear dynamic analysis gave less conservative results than 

the nonlinear static analysis. In both cases, the obtained results show the frictional 

connections to be inadequate to adsorb the seismic forces. Comparison between the 

nonlinear static analysis results obtained following both formulations for the control 

point definition demonstrated the validity of the proposed method. In order to validate 

the model, nonlinear dynamic analyses have been carried on using as input signals the 

acceleration components recorded by one of the Italian RAN stations. The comparison 

between experimental and theoretical results have been conducted in order to verify the 

numerical model capability to predict the real damages suffered by the building. For 

this reason, the model has been completed taking into account the crane, positioned as 

evidenced by the photos taken shortly after the earthquake. The numerical model has 

proven to be capable to predict the real damages reported by the building, showing the 

shear failure of the most stressed columns. In particular, the crane presence has proved 

to be fundamental in order to justify the columns shear failure. Furthermore, the 

theoretical-experimental comparison has corroborated the validity of the adopted 

models. The same modeling issues have been adopted implementing a tridimensional 

model of the second case-study building. Corresponding columns belonging to both 

structures have been considered in order to study the different behavior of the facilities. 

From the comparison it is shown that the first building is subjected to higher shear 

forces due to larger masses. Furthermore, the vertical component of the earthquake has 

significantly affected the columns shear capacity, reducing it in correspondence with 

the minimum axial load values. Finally, a tridimensional model of the second facility 

taking into account the horizontal cladding panels have been implemented, in order to 

study their influence on the vibration periods, comparing the seismic response with the 

bare model one. Results show that the choice, in the numerical model, of the panels 

constraint typology affects decisively the vibration periods values. In particular, the 

choice of rigid constraints reduces significantly all the vibration periods; the use of 

semi rigid constraints results in a reduction of the higher modes vibration periods. 

Keywords: industrial facilities, seismic behavior, nonlinear analyses, shear capacity, 

displacement control point, flexible diaphragm. 
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Chapter 1 INTRODUCTION 

The roots of the development of concrete precast buildings in Italy lie in the first 

postwar years, when the need to quickly rebuild the destroyed housing stock led the 

pioneering spirit of the engineers of that time. 

The necessity to build structures in less time, saving on production costs, resulted in 

the growth of manufacturing processes capable of ensuring the building of long spans 

structures, overcoming the unique of steel structures. 

The spread of concrete precast buildings in our Country has grown more and more, 

coming to cover, in the Nineties, the 85% of the whole industrial buildings stock 

(Toniolo, 2001). 

The rapidity of construction was made possible by a very simple basic construction 

system. Generally, this type of facilities is characterized by a simple structural layout, 

made of cantilevered monolithic columns placed into socket foundations; prestressed 

concrete beams are placed on columns corbels or directly at the top of the columns, 

serving as support beams for roof tiles.  

The described static scheme, because of the columns height, greater than ordinary cast-

in-place buildings, implies high flexibility and thus need greater attention in the design 

of the connections between structural elements, in order to withstand horizontal 

actions. 

 

1.1 MOTIVATIONS 

The seismic performance evaluation of existing concrete precast buildings has been 

emphasized once again after the earthquake that hit Emilia Romagna in May 2012, 

causing considerable damages mainly in the industrial hubs near the epicenters. 

The “emilian” seismic sequence happened with two main-shocks: the first shock, a 5.9 

moment magnitude earthquake, occurred on May 20, with epicenter located at Finale 

Emilia (Modena, Northern Italy); the second main-shock, characterized by 5.8 MW, 

occurred on May 29 near Medolla (Modena, Northern Italy) (Figure 1). 
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Figure 1 - Map in terms of recorded horizontal PGA – RAN (May 29, 2012). 

 

The hit areas were characterized by a high concentration of industrial facilities (about 

48,000, for a total of 190,000 employees); therefore, besides the losses in terms of 

human lives (27 casualties and more than 350 injured), the earthquake caused huge 

damages in economic terms. 

Economic losses, both direct and indirect ones, due to the earthquake amounted overall 

to more than 13 billion euros in the stricken northern Italy regions. In Emilia-Romagna 

region the estimated loss is about 12 billion euros: 3 billion euros to the residential 

buildings; more than 5 billion euros to the industrial facilities; 3 billion euros to 

historic-cultural and religious buildings (PCM, 2012).  

The earthquake revealed the structural deficiencies of precast buildings, whose seismic 

vulnerability was mainly associated to the inadequacy of the codes and standards used 

in the design phase. As a matter of fact, the seismic hazard maps of the stricken areas 

has been updated only in 2003, settling in the class of medium-low seismicity region. 

Furthermore, as allowed by the Law. n. 168 17/08/2005, art. n. 14-undevicies, 

application of the latest seismic technical code requirements (Ministerial Decree 

14/09/2005) become compulsory only in 2006. 
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(a) 

 
(b) 

Figure 2 - Industrial facilities damaged by the earthquake: infill cladding panels collapse (a); plastic 

hinge formation (b). 

 

Therefore, the majority of the damaged precast buildings was not designed to 

withstand seismic horizontal loads. The main cause of the recorded collapses is linked 

to the widespread use of frictional connections between elements. The lack of 

mechanical devices in columns-to-beam and roof-to-beam connections caused loss of 

support and subsequent falling of horizontal elements (Magliulo et al., 2014). 

What happened in Emilia not only emphasized the vulnerabilities of industrial 

buildings (Figure 2), but has also revived the theme of existing precast structures 

seismic assessment. This issue is not adequately supported by current codes, delivering 

to the professionals the burden to choose the most suitable structural models to be 

adopted and the most appropriate analysis method to be used. Therefore, there is an 

absolute need to identify the major deficiencies of such facilities, in order to provide 

professionals practical tools to deal the issues of seismic vulnerability. 

1.2 OBJECTIVES 

This thesis is focused on the seismic assessment of existing concrete precast buildings.  

One of the main objectives of the research study is to discuss available modeling 

techniques to predict the seismic response of industrial buildings. It is essential to 

conduct experimental tests in order to obtain a numerical-experimental comparison to 

calibrate a numerical model. In the present case, the experimental evidences of the 

earthquake of Emilia have been considered as reference to compare numerical models. 

Therefore, starting from the seismic effects of the earthquake on the industrial 

facilities, the attempt to justify the damages is pursued. This objective is followed 

through the conception of numerical models characterized by an increasing level of 
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accuracy, improved in a process that resulted in the definition of the accurate models 

herein presented.  

A critical review of the seismic assessment of existing precast buildings according to 

the current technical standards is another objective of the study. According to the 

Italian code (NTC2008), both linear or nonlinear static or dynamic analysis may be 

adopted to evaluate the seismic vulnerability of existing buildings.  

The aim of the performed analysis is to investigate different the analysis results, with 

particular attention to the code verification of the building. In particular, both nonlinear 

dynamic and static analysis have been performed in order to make a comparison 

between the relative results. Thus, nonlinear static analysis needs a particular attention 

in order to be correctly performed. In fact, nonlinear static analysis on a tridimensional 

building model is based on the assumption that a control point displacement is 

representative of the global behavior of the structure. According to national and 

international codes, nonlinear static analyses are supposed to be valid only when a 

series of important assumptions are made: first of all the irrelevance of the higher 

modes. Since the rigid diaphragm condition is not assured for concrete precast 

buildings, particular care has been paid to the choice of the displacement control point. 

A method to consider the displacement control point is proposed: technical literature 

seems to be poor in this terms.  

1.3 OUTLINE OF THE THESIS 

The thesis is focused on two main Chapters: Chapter 2, in which the seismic behavior 

of three inspected industrial buildings after the first Emilia earthquake mainshock is 

presented, and Chapter 3, that deals with the investigation of the seismic performance 

of two facilities considered as case-study buildings. 

In Section 2.1 the Emilia earthquake is described, with its main features. The recorded 

spectra obtained from the Italian RAN stations exhibits a good match with the design 

code spectra for type C soil with a return design spectrum period of 2.475 years. 

In Section 2.2 a brief structural codes development is presented. The analysis of the 

different code steps demonstrates that the constructions built until 2005 were not 

designed to adequately adsorb seismic horizontal forces. This explains the high seismic 

vulnerability of concrete industrial buildings. 

Section 2.3 deals with the description of three industrial facilities hit by the earthquake. 

The buildings have been inspected after the first Emilia earthquake mainshock. The 

reported damage for each building is described: the main criticalities affected the loss 

of support with subsequent fall of horizontal elements, the columns loss of verticality, 
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the development of plastic hinges at the column bases and the collapse of infill and 

cladding panels. 

Section 3.1 and 3.2 deals with the description of the principal analyzed building and 

the analysis of the earthquake consequencies. Among the presented facilities, the 

principal case-study building is the one which reported the highest damage. In fact, it 

reported the partial collapse due to the break of two central columns. 

In Section 3.3 the numerical modeling phase is described. A tridimensional building 

model in OpenSees has been implemented, considering a lumped plasticity model. 

Because of their frictional nature, element connections as internal hinges are modeled. 

Geometric eccentricities have also been considered. A practical tool has been 

implemented in order to define the plastic hinges behavior. 

Section 3.4 is focused on the seismic evaluation of existing buildings in compliance 

with the Italian code, according to which both linear or nonlinear static or dynamic 

analysis may be adopted in order to evaluate the seismic vulnerability of existing 

buildings. Therefore nonlinear static and dynamic analysis procedures are presented, 

with particular attention in the definition of the control displacement point for the static 

analysis, given that the rigid diaphragm condition is not ensured. At the end of each 

analysis checks in terms of both fragile and ductile mechanism are conducted, using 

the capacity models presented in Section 3.5. 

In Section 3.6 the analyses results are showed. A comparison between nonlinear static 

and dynamic analyses results is conducted. This study is motivated by the fact that the 

two different analyses, characterized by a different level of accuracy, could conduct to 

opposite results. 

Dynamic nonlinear analysis considering the Mirandola station recordings as input 

signals is presented in Section 3.7. The main objective of this procedure is the 

validation of the adopted numerical model, through a theoretical-experimental 

comparison. 

Section 3.8 introduces the second case-study building of the entire research program. It 

is an older structure than the previous one, located a few kilometers away from it, but 

suffered only minor damage because of the Emilia earthquake. A tridimensional model 

of the building is implemented, on the basis of the modeling issues adopted for the 

precious facility. Nonlinear dynamic analysis with the recorded acceleration signals are 

carried on in order to make a comparison with the principal case study seismic 

performance. Furthermore, a numerical model with the presence of the cladding panels 

is implemented, with the objective to study their influence in the facility vibration 

periods. 
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Chapter 2 INDUSTRIAL BUILDINGS 

BEHAVIOR DURING THE EMILIA 

EARTHQUAKE 

In this chapter the Emilia earthquake is analyzed on the basis of its consequences on a 

series of considered industrial buildings. Firstly, a brief description of the seismic event 

evolution is carried out. Its intrinsic features make it certainly one of the most peculiar 

Italian seismic events of the last years, especially for the maximum recorded 

accelerations. Then, a careful analysis of the evolution of the Italian anti-seismic 

regulatory framework is presented. In a curious way, even if Italy has been hit from a 

terrible seismic event in early 20
th
 century, with a subsequent detailed study of the 

territorial aspects linked with the earthquake occurrence and the development of 

seismic building technologies, the Italian code history shows a great inertia in the 

application of seismic regulations. This is one of the reasons which led to the built, up 

to less than ten years ago, of facilities inadequate from a seismic point of view. Finally, 

the seismic response to the Emilia earthquake of a group of concrete precast buildings 

is presented.  

2.1 THE EMILIA EARTHQUAKES 

In May 2012 Northern Italy has been hit by a series of seismic events that have 

highlighted especially the deficiencies of industrial facilities. The seismic sequence 

was characterized by two main shocks: the first, occurred on 20
th
 May, a 5.9 moment 

magnitude MW earthquake, was located at Finale Emilia (Modena, Northern Italy); the 

second main shock of 5.8 moment magnitude MW, with epicenter located at Medolla 

(Modena, Northern Italy), occurred on 29
th
 May. These main shocks belong to a 

sequence started on May 18
th
, as shown in Figure 3. 
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Figure 3 - The Emilia earthquakes distribution (Swiss Seismological Service). 

The hit areas, according to the national reference seismic hazard model, are in the field 

of medium level of seismic hazard. In fact, it is characterized by an expected horizontal 

peak ground acceleration (PGA) with a 10% probability of exceedance in 50 years that 

ranges between 0.10 g and 0.15 g. As shown in (Magliulo et al., 2014) (Meletti et al., 

2012), the recorded spectra for the horizontal components obtained from the Mirandola 

strong motion recording station (MRN) exhibits a good matching with the design code 

spectra for type C soil (CS.LL.PP., 2008) with a return period of 2,475 years. 

Therefore, such an earthquake represents a very rare event. 

In the epicentral areas, along with maximum horizontal accelerations of about 250-300 

cm/s
2
, maximum vertical accelerations up to 900 cm/s

2
 were also recorded. Therefore, 

several studies have been carried out in the areas hit by the earthquakes, also aimed to 

determine the influence of seismic site effects. In some sites, liquefaction phenomena 

evidences are also exhibited. (Priolo et al., 2012), through his preliminary analyses 

based on HVSR definition, found important amplification peaks in the 0.8 – 1.0 Hz 

frequency range. Many sites located in the Po Plain had shown frequency peaks due to 

site effects for medium-long periods (Bordoni et al., 2012). The experimental 

evidences confirmed the presence of cohesionless soils at the surface layers, such as 

silty-sandy soils. Therefore, it should be emphasized as the seismic response has often 

suffered from spectral amplification phenomena for medium-long periods, typical of 

precast buildings. 
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The area struck by the earthquakes is one of the most important Italian industrial hubs, 

with high concentration of productive activities. Therefore, extensive damage has been 

reported by industrial facilities. 

 

2.2 THE CODE DEVELOPMENT 

As mentioned in the previous paragraph, the Emilia earthquakes, in terms of peaks 

values, represents a really rare event. Nevertheless, most of the damaged buildings 

have been realized with structural codes deficient from the seismic point of view. To 

well understand the regulatory framework from which these structures derive, a brief 

description of the Italian seismic code development is reported.  

The birth of the first shape of Italian seismic code is generally associated to the 1908 

Messina earthquake: the Royal Decree n. 193 18/04/1909 (in Italian Regio Decreto 18 

aprile 1909 n. 193) is in fact the first Italian seismic regulation. Therefore, since 1909 

(and until 1974), municipalities were classified as seismic only after being heavily 

damaged by an earthquake. In some cases, in order to encourage the construction of 

new buildings for economic growth, municipalities were even declassified. The 

regulatory framework essentially does not change until the enactment of the Law n. 64 

(Legge n. 64) 02/02/1974, which states that the seismic classification should be made 

on the basis of proven scientific and technical reasons, by means of Ministerial 

Decrees. Moreover, Law n. 64 provided the opportunity to update the seismic 

standards whenever it was justified by the evolution of knowledge of seismic 

phenomena. While the seismic classification is operated, as in the past, by inserting the 

municipalities affected by the new seismic events. 

Later, the seismological studies performed after the Friuli Venezia Giulia earthquake of 

1976 and the Irpinia earthquake of 1980, inserted in the “Geodinamica” project by the 

CNR (National Research Centre), led to a proposal for a new seismic classification 

process. Therefore, in 1981 the national territory was classified in three seismic 

categories. By means of apposite Ministerial Decrees, between 1981 and 1984, the 

45% of the entire national territory has been classified and complied with specific 

technical regulations. It is important to emphasize that the proposal by the CNR 

involved for the first time a probabilistic approach to the issue of the seismic risk. 

After the Puglia and Molise earthquake of 2002, the Prime Minister Ordinance n. 

3274/2003 is enacted, which reclassified the whole country in four different hazard 

zones, removing non-hazardous areas. Each seismic zone was identified according to 

four different design bedrock acceleration values: 0.35 g, 0.25 g, 0.15 g and 0.05 g. 

From this point on, no area of our country is excluded from the seismic classification. 
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In parallel with the procedures for the seismic classification, the update of the technical 

provisions on constructions took place with the Ministerial Decree 03/03/1975, which 

laid the background for the latest Ministerial Decree 16/01/1996, later replaced by the 

Ministerial Decree 14/09/2005. The most recent regulation step is the Ministerial 

Decree 14/01/2008 (NTC 2008), which approves the new Italian technical standards 

for buildings, which are nowadays compulsory in Italy. 

It’s important to emphasize that the OPCM 3274/2003, binding from 23th October 

2005, grant a transitory period of 18 months in which it was not mandatory to take into 

account the new seismic classification, except for some facilities, such as strategic 

buildings. Similarly, even the release of the DM 14/09/2005 allowed a transitional 

period of 18 months in which it was possible to design “normal” structures according 

the old buildings codes (Law n. 1086 05/11/1971 and Law n. 64 02/02/1974). This 

explains why most of the buildings in the area affected by the earthquake were 

inadequate from the point of view of seismic capacity. 

Beyond the legislative inertia, another deep limit for precast buildings concerns the 

slow understanding of their seismic behavior from a technical point of view. In fact, 

specific indications for precast structures appeared for the first time in the DM 

03/12/1987, which gave some indications for the design of the connections, especially 

in seismic zones. Later, OPCM 3274/2003 provided more detailed design indications 

for precast buildings, recognizing the important role of the connection in the whole 

building static and dynamic behavior. Finally, the most recent technical Italian code 

(NTC 2008), on the basis of the EC8 provisions for precast buildings, spend a large 

section to the development of technical issues for these facilities. In particular, 

confirmed the implication to use mechanical devices in the connections, in order to 

transfer horizontal forces between structural elements (beam-to-column and roof-to-

beam connections). For the support of the beams, it is provided that only one end is 

sliding: in this case, the support must be capable to absorb the relative horizontal 

displacements. In any case, connections must be designed to absorb seismic forces 

without considering the frictional contribute. 

Based on the above, the Emilia territory struck by the earthquake was inserted in 

seismic zone 3 only in 2003, according to the OPCM 3274/2003 provisions. However, 

as already mentioned previously, this seismic zonation becomes mandatory only on 23 

October 2005. Therefore, the high vulnerability shown by the industrial buildings 

during the earthquake is related to the fact that constructions built until 2005 were not 

designed to adequately adsorb seismic horizontal forces. 
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2.3 SEISMIC BEHAVIOR OF PRECAST FACILITIES 

The piece of land affected by the earthquake is one of the most important centers of 

industrial production of Italian territory. In the hit areas there were about 48.000 

industrial facilities: the damaged buildings reported economic losses of more than 5 

billion euros. 

As previously cited, most of the damaged facilities were not designed according to 

seismic criteria. As a matter of fact, the principal cause of collapse is linked to the 

presence of connections unable to transfer horizontal forces. Therefore, the loss of 

support of the tiles or beams caused the fall of them and the consequent building 

collapse. Another critical issue is associate with the cladding panels breaking. The 

principal cause of panel collapse is the lack of adequate connection devices between 

panel and structure. The main damage reported by the precast columns was the loss of 

verticality: this happened because of the lack of rigid constraint at the columns base. 

Furthermore, the excessive brackets spacing in the critical zone, or the small diameter 

of the bars, have resulted in the formation of plastic hinges. 

As part of emergency operations carried out in the immediate post-earthquake, five 

industrial buildings were inspected. The buildings in question, located in Mirandola 

(MO) and Finale Emilia (MO), were realized between 1990 and 2011. They are typical 

one-story industrial facilities, and have been designed and realized by the same precast 

facilities construction company. Therefore, it’s clearly visible the same constructive 

ideology, with the recurrent use of the same assemblage schemes. Except for the only 

structure built in 2011, designed according to the NTC2008 indications, DM 

16/01/1996 has been used in the design phase, and then the buildings appear to be 

designed to support only vertical loads. Also wind effects are modeled as vertical 

forces. The facility names adopted in the present thesis are the acronyms given 

according to the building clients or owners. Therefore, in the following, the structures 

will be referred to as A, D1, M, D2 and U (see Table 1) buildings. 

 

Client/Owner Year of building 
Short name 

adopted 

ACEA - ARIES 1990 A 

DI QUATTRO S.r.l. 1995 D1 

IMMOBILIARE 

MANTOVANI S.r.l. 
2001 M 

DI QUATTRO S.r.l. 2004 D2 

UNIFER S.r.l. 2011 U 

Table 1 - Case study buildings: clients and years of construction. 
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For each building it was possible to get the final design reports. Thus, the starting point 

of the present study is represented by the building design report analysis, consisting in 

calculation reports and graphic designs. Furthermore, a photographic archive has been 

made, with the photos taken immediately after the first main shock (20
th
 May 2012). 

Photos were taken during the buildings inspection phase, made as part of emergency 

relief operations guided by DPC (Civil Protection Department). 

In the present chapter the D1 and D2 buildings are not described. In fact, they are 

assumed as benchmark facilities and will be deeply analyzed in a separate chapter of 

this thesis. Here it is merely stated that D2 building is, among the above-mentioned 

buildings, the one that suffered the heavier damage. In fact it reported the partial 

collapse due to the breakdown of two central columns. In contrast, for D1 building, 

even if older than D2 and located in its vicinity, only light damage was reported. 

2.3.1 A BUILDING (ACEA-ARIES) 

A building is a single story precast facility constructed in 1990 in Mirandola (MO). It is 

the oldest among the inspected facilities. It is characterized by 50 x 120 meters 

rectangular plan. The structural building scheme is composed by seven column rows in 

the transverse direction, 20 m spaced, and six column rows spaced 10 m in the 

orthogonal direction. Columns have 50x50 square cross sections, or 40x50 rectangular 

cross sections. The columns total height is 7.3 m. Warping in the major direction is 

realized by double slope beams (Figure 4). In the transversal direction, the building 

scheme is completed by secondary girders and Greek-pi tiles. The structure is closed 

with vertical precast panels 8.9 m height. As shown in Figure 5, the building is 

internally divided by means of masonry infill walls. The foundation system is 

constituted by discrete socket foundations. 

 

Figure 4 - A building: two bays scheme in the longitudinal direction. 

Roof-to-beams and beams-to-columns connections are made of neoprene pads. 

Therefore no mechanical devices are present, with the exception of small bolted steel 

angles, used for the secondary beams connection. 
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(a) 

 
(b) 

 
(c) 

Figure 5 – A building: main area view (a); vertical cladding panels (b); masonry infill wall (c). 

The damage suffered by the A building concerns the loss of support of tiles and beams 

and their falling, the loss of verticality of the columns, the development of plastic 

hinges at the column bases, the break of some portions of the masonry infill walls 

(Figure 6). As reported in (Magliulo et al., 2014; Belleri et al., 2014), the damage 

correlated to the structural elements loss of support is to associate with the lack of 

mechanical devices between the elements. In the case of A building, the loss of support 

caused the tiles falling, emphasizing the extreme inadequacy of pure frictional 

connections (Figure 6 (a)). The loss of verticality (Figure 6(b)) has to be associated 

with an inappropriate foundation element design. Generally, the column-foundation 

connection real behavior is not really clear (Canha et al., 2009). In this case the 

foundation elements design has been probably conducted considering design practices 

rather than accurate models. The development of plastic hinges at the column bases 

(Figure 6(c))is certainly due to the elevate stirrups spacing in the embedded column 

portions and in the relative critical zones. The collapse of masonry infill walls (Figure 

6(d))and the falling of non-structural elements such as metal storage shelves caused 

several injures, as well as the facilities condemn. In the present case, as is possible to 

see in Figure 6(a), the shelves suffered the overturning because of the lack of 
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connections between the metal vertical elements and the building. The collapse of the 

upper portion of the masonry infill walls is certainly due to the high drift value reached 

because of the earthquake. As demonstrated by (Petrone et al., 2014), brick internal 

partitions can show the spalling of pieces of bricks for an interstorey drift close to 1%. 

In the case of industrial buildings, this value of interstorey drift is equal to a top 

displacement of about 7 cm, which is generally overcome. 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Figure 6 - Damage reported by the A building: tiles loss of support (a); columns loss of verticality 

(b); plastic hinges formation at the column bases (c); collapse of brick infill walls(d). 

2.3.2 M BUILDING (IMMOBILIARE MANTOVANI S.R.L.) 

M building, located in Mirandola (MO), is a 2001 single-story construction, with a 

46x32 meters rectangular plan (Figure 7). The structure total height is 9.50 m and the 

maximum span is 13.90 m. The main warping is realized by three T beams 100x120 

rows positioned in the transversal direction; also the central longitudinal line is 

constituted by T 100x100 cross section beams. Two spans with double slope beams 

complete the structure at the western side, while at the opposite building end the 

construction is completed by rectangular 50x60 cross section beams. The ceiling deck 
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is composed by concrete shed roof. The external structural envelope is granted by 

horizontal cladding panels, linked to the main structure by means of metal anchors. 

The beams are supported by 50x70 or 50x50 cm cross section columns, arranged in 

three rows and filled in discrete socket foundations. Beam-to-beam and beam-to-

column connections are realized by means of neoprene pads and steel rods. As could 

be seen in the design graphic documents, steel rods have a purely constructive function 

rather than structural. In fact, they are designed considering the load condition that 

occurs during the assembly phase. Tiles-to-beams connections are purely frictional and 

the resistance to horizontal forces is delivered to the friction between concrete and 

neoprene surfaces. 

Columns longitudinal reinforcement is constituted by ∅20 bars and ∅6 stirrups with 

spacing equal to 20 cm. The amount of longitudinal reinforcement is not uniform along 

the entire vertical element: it decreases in the upper element segment. The stirrups 

spacing appears to be constant. 

 

Figure 7 - M building plan: excerpt from the original design documents. 

Concrete precast elements were designed and verified according to the DM 

14/02/1992, while the loads analysis was carried on according to the DM 16/01/1996. 

Thus, as stated in the calculation report, the admissible tensions method is applied in 

order to verify each single concrete element. Horizontal elements have been verified 

statically, considered as simply supported beams. Flexural rupture check has been 

made comparing the ultimate bending beam resistance with the maximum stresses 

under operating conditions, obtaining safety factors on average equal to 2. Concrete 

cracking check was also conducted. Shear check is conducted in order to verify the 

principal stresses admissibility.  
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Columns design has been conducted in a more refined way considering a global 

building model by means of WinStrand software. In particular, 13 load conditions have 

been considered, for a total of 31 load combinations. Wind action is considered 

horizontally acting. However, columns check has been conducted according to the 

admissible tensions method. 

An important consideration deals with the presence, in the finite elements model, of the 

crane supporting beams. The crane is taken in account exclusively through its 

reactions. The concrete corbels have also been verified through strut-and-tie model. It 

is not reported any information about the design of the socket foundation. 

The principal damage suffered by the building because of the earthquake is the 

formation of plastic hinges at the column bases for the central rows (Figure 8(a)(b)). 

The latter are the most stressed because they have to support the greater roof portion. 

Also in this case, the development of plastic hinges is due to the high stirrups spacing 

in the columns critical zones. From the technical reports is possible to assess that the 

columns stirrups spacing show a reduction in the top extremities or in correspondence 

with the concrete corbels. Another damage suffered by the building is the breaking of 

the masonry infill walls (Figure 8). Generally, the drift values reached during the 

earthquakes in this type of building overcome the infill wall resistance, causing in 

plane and out-of-plane walls mechanisms. In the present case, breaking of masonry 

infill walls happened because of the pounding of the crane support steel beams, as is 

possible to observe in Figure 8 (b). 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 8 - M building damages: plastic hinge development (a) (b); collapse of internal infill 

wall(c)(d). 

Among the reported damages is important to emphasize the collapse of non-structural 

elements, as cable ducts or ceiling lights. In fact, as reported in (Magliulo et al., 2014), 

non-structural elements damage caused by an earthquake can highly influence the 

repairing costs estimation. 

2.3.3 U BUILDING (UNIFER S.R.L.) 

The U industrial facility construction began in 2011 in Finale Emilia (MO) and it has 

been realized for the society Unifer. It is the most recent among the considered 

constructions. In fact, it was nearing completion at the earthquake time. It is a single-

story precast building, with a 90x51 m rectangular plan (Figure 9). The building is 

characterized by a 30x8 meters intermediate roof located in the South East building 

area. The maximum span is about 27.80 meters and the total height is 9.7 m. Columns 

are arranged in three rows. They are characterized by several cross section dimensions 

(ranging from 50x50 to 60x80). Columns support beams in the longitudinal direction: 

perimeter beams have L 70x60 and rectangular 70x50 cross sections, while the central 

beam line is composed by T 150x100 cross section elements. In the orthogonal 

direction, beams support shed roof tiles. The intermediate roof part is composed of 

Greek-pi tiles. The foundation system is made of discrete shallow foundations. 

Structure is completed by horizontal cladding panels. 
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Figure 9 - U building plan (design document). 

The design has been conducted according to the Italian NTC code, even if in the 

calculation report still appear the “seismic zone” and “allowable stress design” 

concepts. A global structure model has been realized with WinStrand software 

(Enexsys, 2013) in order to make a static resolution of the entire building. As in the 

loads computation the seismic action is mentioned, it is assumed that have been 

adopted the linear elastic analysis method for the resolution of the structure. Horizontal 

and vertical elements resistance checks are reported, as well as the foundation elements 

ones. 

Columns longitudinal reinforcement is composed by ∅ 24 bars, while transversal 

reinforcement is made of ∅8 bars with 10 cm spacing in the critic zones and 20 cm 

along the remaining segments. 

Foundation elements are cast in situ, with metal tubes 70 cm long, inside of which are 

inserted steel bars anchored at the column bases (Figure 10). Element solidarity is 

achieved with completion mortar cast. 

Principal beams are characterized by slotted holes at the ends. As showed in Figure 11, 

this beam geometric feature make possible the beam-to-beam connection: in the slotted 

holes between two consecutive beams a steel rod is positioned, locked at the bottom by 

a threaded bush and at the head by a bolted plate. Beam-to-column connection is 

completed by rubber pads, in order to offer a frictional constraint capable to withstand 

horizontal forces. Tiles are leaned by the beams with rubber plates at the interface. The 

link is completed by 10 cm ∅ 22 steel pins. 
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Figure 10 – Column-to-foundation plinth connection. 

 

Figure 11 - Beam-to-column connection. 

Cladding panels are anchored to the principal structure by means of steel corner braces, 

with bolt and nut system. In order to facilitate the assembly phases, the panels 

connection is made through cables profiles embedded in the concrete, within which can 

slide adjusting bolts (Figure 12). 
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Figure 12 - Panel-to-column connection. 

Because of the earthquake the building suffered the breaking of some horizontal 

cladding panel. This happened because of the rupture of the metal pins, as showed in 

Figure 13 (b). 

 

 
(a) 

 
(b) 

Figure 13 - U building reported damage: falling of panels (a); breaking of metal support (b). 

Another reported damage is the localized breaking of the beams at the tiles support, as 

showed in Figure 14. The breaking coincides with the positioning of the metal 

connecting rods. 
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(a) 

 
(b) 

Figure 14 - U building reported damage: localized supporting beams breaking. 

2.3.4 CONCLUSIONS 

The principal damage suffered by five inspected industrial buildings after the first 

mainshock is described in this chapter. The considered facilities differ in year of 

construction, but have been but built according to the same criteria. Therefore, they are 

linked by the same construction philosophy, with recurrence of mechanical and 

geometric features of precast elements. As happened for the majority of industrial 

structures damaged by the Emilia earthquake (Belleri et al., 2014), even the case-study 

structures reported the most damage because of the lack of mechanical connecting 

devices between the elements. The idea of entrusting the horizontal forces resistance, 

significantly underestimated, by using only frictional connections, led to the fall of the 

horizontal elements because of the loss of support. 

The updating of the design codes has definitely helped in improving the seismic 

response of this type of building: is an example the seismic behavior of the most recent 

U building before analyzed. In that case, the presence of mechanical connections 

between elements, even if minimal, avoided the critical displacements and falling of 

tiles or beams. In Table 2 some significant building features are reported.  
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BUILDING 

ACRONYM 

DISTANCE 
FROM 

EPICENTRE                   

[Km] 

PLAN 

DIMENSIONS       
[m x m] 

HEIGHT 

[m] 

GEOMETRICAL 
REINFORCEMENT 

RATIO 

 [maximum value] 

COLUMNS               

TRANSVERSAL 
REINFORCEMENT 

A 15 50x120 7.3 0.008 ∅6/20 

D1 15 50x20 7 0.008 ∅6/20 

M 15 46x32 9.5 0.008 ∅6/20 

D2 15 90x45 8 0.008 ∅6/20 

U 8 93x51 9.7 0.011 ∅8/10 

Table 2 - Inspected structures features. 

 

Although the U building is the closest to the epicenter, it reported the slightest damage 

among the analyzed structures. This is certainly to be attributed to the improved 

structural design of the building, from a seismic point of view. First, it must be 

emphasized the presence of mechanical devices between the elements. This avoided 

damages due to excessive displacements, as happened for the other considered 

structures. In addition, the presence of transverse reinforcement with adequate diameter 

and spacing, implemented the column shear strength. Falling of horizontal cladding 

panels, one of the main problems encountered in the industrial structures in Emilia hit 

by the earthquake, demonstrates how, during the building design phase, it didn’t exist 

an adequate model to check the panels anchorage system seismic behavior. 
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Chapter 3 ANALYSIS OF THE SEISMIC 

PERFORMANCE OF TWO INDUSTRIAL 

BUILDINGS 

This chapter focuses on the main objectives of the thesis. Following what described in 

the previous chapter, it is enriched with the in-depth description of two structures 

considered as case study buildings. From the group of industrial facilities previously 

described, the remaining buildings are therefore considered, with the objective to find 

out the principal reasons for their actual seismic behavior. Section 3.1 deals with the 

careful description of the first case study, from the territorial context to the detailed 

description of the main structural elements. The considered building is the principal 

case-study example, because it reported the heaviest damage among the whole 

considered structures. In Section 3.2 the description of the real damages suffered by the 

building is reported with the support of photographs taken shortly after the first 

mainshock. Photos show the partial collapse of the facility, due to the braking of two 

central columns. In Section 3.3 the structure numerical model implementation is 

described. The building is modeled in OpenSees, with two important goals: 

a. Apply the most refined methods of analysis indicated by the Italian technical 

standards, in order to verify the seismic behavior of the building from a 

regulatory point of view; 

b. Test a numerical model in terms of the prediction of the real building behavior. 

Therefore, a tridimensional building model is realized, characterized by 

unidimensional beam elements. Also the geometrical eccentricities are taken into 

account. For the definition of the plastic hinge behavior, a simple tool is presented in 

Section 3.3.1. Section 3.4 deals with the nonlinear analysis methods allowed by the 

Italian code, useful to evaluate the seismic performance of existing buildings. The first 

analysis method presented in Section 3.4.1 is the nonlinear static one. Because of the 

hypothesis of rigid diaphragm cannot be assumed, particular attention has been given 

in the displacement control point selection. In Section 3.4.2 nonlinear dynamic analysis 

is presented. The goal to pursuit is the check, after each analysis, of both fragile and 
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ductile mechanism. Thus, in Section 3.5 capacity models are presented: in Section 

3.5.1 the shear capacity formulas adopted in the present study are described. In 

particular, Sezen and Mohele formulas and Biskinis shear resistance relationships are 

presented. Finally, a further shear strength value is obtained by means of the software 

Response2000, based on the Vecchio and Collins “Modified Compression Field 

Theory”. In Sections 3.5.2 and 3.5.3 the connections and rotations capacity models are 

described. Section 3.6 concerns the great results presentation phase. All the obtained 

results are described and compared between the different analysis methods. In Section 

3.7 the model validation has been carried out: the comparison between theoretical and 

experimental building performance is made in order to get an assessment on the 

modeling performed. In fact, in Section 3.8 the damage prediction is described: with 

the try to compare the model behavior with the real building performance exhibited 

during the Emilia earthquake. Section 3.9 deals with the description of the second 

important case-study facility. This industrial building, even if have been built out ten 

years earlier than the above-mentioned one, has suffered minor damage because of the 

earthquake. Nonlinear dynamic analyses have been performed in order to verify one 

more time the accuracy of the adopted numerical modeling issues. 

3.1 STATE OF KNOWLEDGE AND STRUCTURE DESCRIPTION 

The principal case-study structure (D2 building in the following) was located in an 

industrial hub in Mirandola (MO) (Figure 15). The building design and construction 

dates back to 2001-2004. Since Mirandola was not included in any seismic zone in 

2001, the structure was not designed to withstand seismic forces (Magliulo et al., 

2014). 

  
Figure 15 - Pre-event view of case-study building, placed in Mirandola (MO) (Google Earth™). 

Hence, the building was designed exclusively for gravity and vertical loads. Also wind 

and snow actions, inserted among the accidental loads, are considered as vertical 

forces. Geometric and material details are available in the original project. All the 

building features are taken from the technical report of the construction, containing 
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also information about the materials characteristics; the drawings are also analyzed. 

Since the building was demolished shortly after the earthquake, photos taken in the 

immediate post-earthquake become essential in order to well understand and justify the 

damages suffered by the structure. 

The investigated facility is a single-story industrial building with an annexed L-shaped 

two-story secondary RC structure located in the north-east side of the main building 

(Figure 16). The principal building has a rectangular plan of approximately 3500 

square meters. The longitudinal axis of the building is aligned in the East-West 

direction (“X direction” in the following). The orthogonal direction (“North-South 

Direction” or “Y Direction” in the following) locates the roof warping. The columns 

are 6.70 and 6.90 m high, according to the superior beams cross section height; the 

main building usable height is 7.30 m.  

 

 

Figure 16 - Building plan: main building (blue); secondary annex structure (red). 

 

The structural layout is characterized by cantilever precast columns placed into socket 

foundations. The columns are arranged in three rows in the X direction spaced about 8 

m; span length in the Y direction is about 11 m. Twenty-eight different column 

typologies are used, as shown in Table 3. Columns differ in both geometric and 

mechanical details. Essentially they are characterized by different amount of 

longitudinal reinforcement and differ in the location of the concrete corbels. 

Longitudinal reinforcement consists of 20 mm diameter bars; longitudinal 

reinforcement is typically reduced with the height: its amount decreases from bottom to 
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top. Transverse reinforcement is made of 8 mm diameter stirrups spaced each 200 mm 

in the central part of the column and 50 mm at the top. All the stirrups are closed with 

90-degree end hooks. In Table 3 for each column type some important geometric 

features are reported:    is the longitudinal tension reinforcement, while   and   are 

respectively the geometrical and mechanical reinforcement ratio. Columns are 

connected at the top by prestressed rectangular-shaped beams. These principal beams 

act as the support for the roof. Secondary beams, the ones which connect the two-story 

annex building, are characterized by L-shaped and inverted T-shaped cross sections. 

Beam-to-column connection is assured through slotted holes at the end of the beams 

where steel rods are allocated (Figure 17). The steel rods are important also to realize 

beam-to-beam connections: in the slotted holes between two consecutive beams a steel 

rod is positioned, locked at the bottom by a threaded bush and at the head by a bolted 

plate. An integrative concrete casting should assure the monolithic nature of the joint. 

However the integrative mortar is not visible from the pictures and the joint behavior is 

supposed to be absolutely frictional. 

 

 

Figure 17 - Beam-to-beam connection. 
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Figure 18 - Longitudinal section and plan view of a beam. 

The roof is composed of prestressed V-shaped beams and shed elements supported on 

neoprene pads (Figure 19). The building is completed by horizontal precast cladding 

panels connected to columns. According to the “industrial” nature of the building, also 

one or more industrial cranes are provided inside the main structure with their 

supporting rectangular shaped steel beams. 

 

Figure 19 - Roof beam section: neoprene pads position. 
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Figure 20 – Building schematic plan and columns identification. 

 

COL TYPE 
b(m) h(m) TOTAL 

HEIGHT 

(m) 

As 

(mmq) 
r w 

PF01-PF03-

PF04 

0.5 0.5 8.20 1884.96 0.0075 0.121 

PF02 0.5 0.5 8.00 2513.27 0.011 0.162 

PF05-PF06 0.5 0.5 9.10 1884.96 0.008 0.121 

PF07 0.5 0.5 8.60 1884.96 0.008 0.121 

PF08 0.5 0.5 8.00 2513.27 0.011 0.162 

PF09 0.5 0.5 4.20 2513.27 0.011 0.162 

PF10 0.5 0.5 7.88 2513.27 0.011 0.162 

PF12-PF13-

PF14-PF15-

PF16-PF17 

0.5 0.5 7.90 1884.96 0.008 0.121 

PG01-PG03-

PG06-PG07 

0.5 0.6 8.20 1884.96 0.008 0.100 

PG02-PG04-

PG05 

0.5 0.6 8.00 1884.96 0.008 0.100 

PG08-PG09-

PG10 

0.5 0.6 7.90 1884.96 0.008 0.100 

PG11 0.5 0.6 7.90 2513.27 0.008 0.133 

PH01 0.5 0.7 7.90 2513.27 0.007 0.113 

Table 3 - Columns main characteristics. 

The secondary structure is characterized by an intermediate roof made of “Greek-pi” 

panels supported by L-shaped prestressed beams. The maximum span is 7.50 m 

whereas the interstorey height is 3.00 m. The roof-to-beams connections are made of 

neoprene pads. 

C35/45 concrete and steel B450C for the prestressed elements are adopted. Neoprene 

pads are according to the code CNR 10018/85 (CNR, 1986). The steel rods are made of 

1_1 1_2 1_3 1_4 1_5 1_6 1_7 1_8 1_9

2_1 2_2 2_3 2_4 2_5 2_6 2_7 2_8 2_9

3_1 3_2 3_3 3_4 3_5 3_6 3_7 3_8 3_9

A_5 A_6 A_7 A_8 A_9

A_1

A_2
A_3

A_4

A_10

MOD ID COL TYPE MOD ID COL TYPE MOD ID COL TYPE MOD ID COL TYPE

1_1 PF03 2_1 PF02 3_1 PF01 A_1 PF17

1_2 PG06 2_2 PG04 3_2 PG03 A_2 PG11

1_3 PG01 2_3 PG02 3_3 PG04 A_3 PF13

1_4 PG01 2_4 PG02 3_4 PG05 A_4 PF16

1_5 PG01 2_5 PG02 3_5 PG06 A_5 PF15

1_6 PG01 2_6 PG02 3_6 PH01 A_6 PF12

1_7 PG01 2_7 PG02 3_7 PG08 A_7 PF13

1_8 PG07 2_8 PG05 3_8 PG09 A_8 PF13

1_9 PF04 2_9 PF08 3_9 PG10 A_9 PF15
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M24 bars whose mechanical properties are not specified. The building is completed by 

horizontal cladding panels: in the structural report is not showed how the panel is 

made, but it is reported just the width to be 20 cm. Panels through metal hooks are 

linked to the structure. 

 

 

 

 
Figure 21 – Structural drawings: “PF” column features. 

3.2 REAL DAMAGES 

D2 building, among the considered facilities, was the most damaged during the Emilia 

earthquake in 2012. After the earthquake it exhibited the collapse of a portion of the 

structure. Top beams and precast roof tiles fell down due to the failure of two central 

columns (Figure 22). In order to investigate the collapse causes, photos taken shortly 

after the earthquake are analyzed. The failure involved three bays and the relative roof 

structure as shown in Figure 23. The failed columns, belonging to the “PG02” type (see 

Table 3), were in the central columns row (ID 2_6 and 2_7 in Figure 20). They are 

characterized by 50x60 cm cross section with the strong axis in the X direction. From 

the photos the crane is shown, whose position appears to be fundamental to the 

columns load condition: the crane was close to one of the two failed columns during 

the seismic event. The failure pattern of the columns, as described below, lead to 

believe that a brittle failure of the columns occurred. Because of the significant 

damage, the building has been demolished shortly after the earthquake event. However, 
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through the analysis of the photos, it is possible to estimate the height where the failure 

occurs. 

 

 

Figure 22 - D1 building: falling of a roof tile. 

 

(a) 
 

(b) 
Figure 23 - Case study: point of view (a); injured columns (b). 

Pictures observation allows to assume two different interpretations about the collapse 

causes: one is linked to the longitudinal reinforcement reduction, the other is based on 

a “impulsive” mechanism, associated with the hammering phenomenon due to the fall 

of an upper concrete element. Both are hence analyzed. 

The first hypothesis, based on a decrease in resistance due to the reduction of 

reinforcement, is supported by the construction details reported in the technical report 
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of the building. From the pictures metric evaluation, it can be stated that both columns 

collapsed at the same height; failure surfaces were located at about 2.75 m from the 

ground. Columns drawings show that “PG02” columns have a longitudinal bar 

reinforcement reduction at about 4.00 m from the lower end. Therefore, since the 

column portion in the footing is about one meter (1.30 m from the ground), the failure 

occurred corresponding to the longitudinal bar reduction (Figure 24). Moreover, while 

deformed bars have been used as longitudinal reinforcements, the pictures of the failed 

columns show the presence of open stirrups with smooth bars.  

  

Figure 24 - Reduction in longitudinal bars and failure surface height for the injured column. 

The failure is characterized by 45-degree shear cracks, with the same inclination of the 

failure plan. Since cracks are visible in both directions, is not entirely clear which is the 

crisis predominant direction. The analyzed factor suggest that the shear failure is due to 

both the lack of adequate transverse reinforcement and to the reduction of the 

longitudinal reinforcement which certainly affects the column shear capacity. Because 

of the central position, collapsed columns are those most stressed, given the flexible 

roof; moreover, the seismic demand of the collapsed columns was aggravated by the 

crane, weighing about 82 kN. 

According to the second rupture hypothesis, the crisis has been caused because of an 

impulsive mechanism. The rupture could have been caused by the hammering of a 

superior longitudinal beam which, losing the support due to the oscillations, bumped 

one of the two columns. Maybe it has been a tile which lost the support before the 

beam. This idea is certainly consistent because of the frictional conception of the 

beam-column and tile-beam joints. In fact, as it will be showed later in the results 

section of this paper, the frictional beam-to-column constraint didn’t ensure a good 

safety margin in terms of horizontal displacements. The same applies to the roof-to-

beam connections. 
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(a) 

 
(b) 

Figure 25 - Case study: presence of the crane near the collapsed columns (a); partial collapse of the 

facility - photo taken during the demolition operations (b). 

It’s important to say that also the corbels reported severe damage (Figure 26). 

Therefore, the cranes support beams had a significant role in the collapse mechanism: 

beam link is made of steel plates with clamps. For this reason, it is possible to assume, 

for the involved columns, an increase in shear demand because of a reduction in shear 

span.  

 

 

Figure 26 - State of one column during the structure demolition phases: damages in the upper 

portion. 
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(a) 

 
(c) 

 
(b) 

Figure 27 - Case study: view of the injured structure (a); photo of the collapsed columns after the 

demolition operations (b); one of the two columns break details (c). 

Furthermore, it should be considered that also the vertical component had a significant 

role in the collapse: axial force can modify both shear and frictional capacity of the 

columns. 

From the photos is possible to asses that a plastic mechanism at the columns base has 

not been reached. Nevertheless, loss of verticality has been recorded. The majority of 

the columns, except for those collapsed which appeared to be damaged, had not shown 

plastic hinge formation at the base. Some column showed detachment of concrete 

cover in the corbels zone or some dents due to the panels hits. 

Another damage typology has affected the horizontal cladding panels. The steel link 

appears to be safe, although the panels fall. The external windows appear to be 

undamaged (Figure 28). 
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(a) 

 
(b) 

Figure 28 - Case study: damage of the horizontal panels (a); failure of a panel (b). 

 

3.3 NUMERICAL MODELLING 

A tridimensional building model in OpenSees (PEERC, 2007) is created in order to 

both evaluate the structure seismic performance according to the Italian and European 

codes, and to eventually justify the real damages suffered after Emilia earthquakes. The 

tridimensional building model is composed by beam elements (Figure 29). A lumped 

plasticity model with a zero length plastic hinge at the columns base is chosen. 

Structural elements are modeled as rigid mono dimensional elements, whose mechanic 

and geometric features are obtained from the original technical report. Every beam 

cross section is deducted from the drawings, as well as their inertial characteristics and 

the material properties: these parameters are required to define each 

ElasticBeamElement used in the model. As explained in the §3.1, when the material 

adopted have been described, concrete C35/45 and steel B450C features are used in 

order to obtain the constructive materials models. 
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Figure 29 - 3D building model implemented in OpenSees. 

A backbone curve for the moment rotation relation is defined for the plastic hinges. 

Ibarra-Krawinkler deterioration model (Ibarra L.F., 2005) with bilinear hysteretic 

response is assumed in order to consider the cyclic behavior of the system. The relation 

between the moment and rotation of the spring according to Haselton is adopted 

(Haselton, 2006), considering the yielding rotation according to Fardis (Fardis MN, 

2003). In fact, as evidenced by Fischinger et al. (Fischinger et al., 2008), the expression 

given by Fardis provides a better estimation of the yielding rotation in the case of 

cantilever RC columns subjected to cyclic loading. The cracking point is also 

considered (Figure 31a). 

Therefore, the considered moment-rotation behavior is represented by a multi-linear 

envelope, characterized by the following principal four points (the cracking, yielding, 

capping and post-capping points): 

 

    
   

    

  

 
 

 

( 1 ) 

 

 

        ⁄          
  

    
 
         

√  
 

 

( 2 ) 

 

 

                                        
                          

 

( 3 ) 

 

 

                             
         ( 4 ) 

 

 



Analysis of the seismic performance of two industrial buildings 

 

 

39 

 

where: 

    
  

  ⁄
 (

 

  
     ) is the cracking moment; 

   is the gross moment of inertia; 

  is the cross section height; 

  is the axial force; 

   is the gross cross section area; 

     is the concrete tensile strength; 

   is the column shear span; 

   is the yield curvature; 

   is the yield strain of the tension reinforcement; 

     is the distance between the tension and compression reinforcement; 

   is the bar diameter; 

   and    are respectively the tension reinforcement yield stress and the concrete 

compressive strength; 

    is a variable representative of the bar slip from their anchorage (1 indicates slip; 0 

indicates no slip); 

  is the axial load ratio; 

    and   are the transverse and longitudinal reinforcement ratios. 

 

Because of the different geometric issues of the columns, four “material” typologies 

are obtained in order to define different columns material (moment-rotation relations): 

one for each belonging row; for the appendix another material group is defined. Then, 

moment-rotation relationships in both X and Y direction and for both rectangular and 

square cross sections are evaluated: twelve “material” types at all. Each “material” has 

been evaluated with the help of a useful tool specifically realized (§3.3.1). 
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Figure 30 - Concrete stress-strain model proposed by Mander et al. 

Yielding moment is estimated from the bilinear envelope of the moment curvature 

diagram. In particular, a fiber approach is used considering concrete and steel fibers 

with their different constitutive laws to estimate the moment-curvature behavior. Steel 

fibers reflect the real steel reinforcement bars position. Concrete core confinement 

effect is neglected because of the lack of shear reinforcement. Hence, stress-strain 

approach proposed by Mander et al. for unconfined concrete is adopted (Figure 30) 

(Mander JB, 1988). Concrete tensile strength is also considered (Table 4). 

A bilinear with hardening relationship for the steel is used, considering the B450C 

mechanical properties. 

 

Concrete C35/45 

     [MPa] 45.35 

      [MPa] 3.35 

    0.23% 

    0.35% 

Steel B450C 

    [MPa] 506 

    [MPa] 517.5 

Table 4 - Materials main mechanical properties. 

In Figure 31a moment-rotation relation is reported. The moment–curvature curve is 

idealized into a bi-linear relationship where the initial slope was defined by either the 

first yield in the reinforcement bars or the reaching of the     in the concrete; the slope 

of the second branch was defined by the equal energy rule (Figure 31b). The failure of 

the cross-section occurs as the ultimate resisting value is reached in concrete core or 

steel reinforcement. 
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(a) 

 
(b) 

Figure 31 – PG02 Column: Moment-Rotation relationship (a); Moment-curvature curve and 

bilinearization (b). 

Beam-to-column connections geometrical eccentricities are taken into account (Figure 

32): vertical eccentricity is equal to half of the beam height; horizontal eccentricity 

depends on the connection position. Given the real beam-to-column connection type, 

as internal hinges nodes are modeled. Permanent gravity loads and masses are 

distributed to every element. Even if a bare frame structure model is implemented, the 

mass of the panels is applied on the supporting beams. The same idea has been applied 

to the intermediate roof horizontal panels. It should be noted that a specific model 

considering the crane in its actual position after the earthquake occurred has been 

defined. The model obtained as described above is correlated to the real roof situation: 

for the studied facility is not possible to ensure the rigid diaphragm condition. 

 

Figure 32 - Model of building bays in Y direction: particular of the horizontal and vertical 

eccentricities (not in scale). 
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3.3.1 PLASTIC HINGES MATERIAL TOOL 

The entire amount of results obtained from the analyses are post processed in Matlab 

(MathWorks, 2004). However, the software has also been used to define the 

parameters useful to obtain the moment-rotation relation seen in the previous 

paragraph. For this purpose, a simple tool has been developed as a Graphical User 

Interface in Matlab: in Figure 33 the GUI main screen is showed.  

 

 

Figure 33 - Matlab GUI created in order to define the plastic hinges moment-curvature and 

moment-rotation behavior. 

The tool is calibrated on the specific column type studied. However it can be adapted 

to most of concrete columns subjected to axial load. The purpose of the tool developed 

is to quickly obtain in the output window a *.tcl file usable in OpenSees environment 

as a “material” which characterizes ZeroLength Elements adopted as plastic hinges.  

Using an intuitive interface, the created tool requires geometric and mechanical issues 

as input parameters. In particular, the software needs to know the following material 

properties:  

- Concrete characteristic cubic compressive strength    ; 

- Ultimate concrete strain    ; 

- Steel characteristic yield strength    ; 

- Steel modulus of elasticity   ;  

- Ultimate steel strain    . 
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Moreover, column height and axial load values are required. Concerning to the cross 

section properties definition, the requested values are: 

- Section dimensions; 

- Concrete cover value; 

- Longitudinal and transversal reinforcement bars diameter; 

- Stirrups spacing; 

- Number of steel bars layers; 

- Number of steel bars placed in a single cross section quadrant; 

- Bars spacing. 

Finally, the direction indication is used in order to name the output file. Once inserted 

the input values, the “CALCOLA” button allows to obtain a *.tcl file ready to be used 

in OpenSees, for the material definition. In addition to the file, the described tool plots 

moment-curvature and moment-rotation diagrams, along with stress-strain diagrams 

for preselected concrete and stress fibers. 

3.4 SEISMIC EVALUATION ACCORDING TO THE ITALIAN CODE 

Seismic evaluation of the studied building is carried out to verify the structure safety 

according to actual building codes. Moreover, for precast buildings with flexible 

diaphragm it is not possible to find code specific assessments to be done. Question 

arises as to whether nonlinear static analyses can be employed for this structural 

typology.  

According to the Italian code (NTC2008) (CS.LL.PP., 2008), both linear or nonlinear 

static or dynamic analysis (NLSA and NLDA in the following) may be adopted to 

evaluate the seismic vulnerability of existing buildings.  

The aim of the performed analysis was to analyze the different obtained results, with 

particular attention to the code verification of the building. Moreover, the idea to 

perform nonlinear static analysis on a tridimensional building model is based on the 

purpose to understand the role played by the control point displacement in this type of 

facilities. In fact, according to national and international codes, nonlinear static 

analyses supposed to be valid only when a series of important assumptions are made: 

first of all, the irrelevance of the higher modes. Therefore, a further aim of the 

conducted analysis concerns the comparison between static and dynamic procedures 

results. NLSA is often implemented because offers a good compromise between results 

accuracy and computational burden. However, it could lead to unacceptable 

approximations in some cases. 
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3.4.1 NONLINEAR STATIC ANALYSIS 

Nonlinear static (pushover) analysis is useful to evaluate the seismic capacity of 

existing buildings. This type of analysis can be used only when the structure is 

characterized by a predominant mode of vibration with a large participating mass 

(CS.LL.PP., 2009). It consists in applying to the gravitational load model a specified 

system of horizontal forces monotonically increasing till the building collapse. 

As in (Fajfar et al., 2005a) confirmed, pushover analysis is a quite simple tool for 

seismic assessment of existing buildings. The first method applications were limited to 

the planarity of the models. In the years, a great intellectual effort has been made to 

make the method applicable also to asymmetric structures, which needs tridimensional 

analysis (Chopra and Goel, 2004; Fajfar et al., 2005b; Fujii, 2011; Magliulo et al., 

2012). In fact, one of the most important assumptions made in the N2 method (Fajfar, 

2000) concerns the definition of the equivalent SDOF. The transformation from the 

MDOF to an equivalent SDOF requires the displacement shape to be time-invariant. 

This hypothesis is acceptable for regular buildings, where the influence of the higher 

modes and the torsional effects are negligible, and the oscillations follow 

predominantly the fundamental mode shape. 

In the case study, there is a further peculiarity represented by the presence of 

deformable roof. However, in order to assess the possibility of applying the code 

procedure and eventually estimate its acceptability,, the analysis on the tridimensional 

model is carried out according to the N2 method (Fajfar and Gašperšič, 1996) in both 

X and Y direction. 

As required by the code, two horizontal forces distributions to the structure are applied: 

one proportional to the masses (“MASSA” distribution), the other proportional to the 

product of masses and the principal vibration mode displacements (“MODO” 

distribution). In particular, forces on the columns top joints are applied. Therefore, 

eight capacity curves are obtained, four in each direction (X and Y), evaluated as base 

shear-control node displacements relationships. In Figure 34 capacity curves in X 

direction (E-W) are reported. 
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Figure 34 - Capacity curves in x direction (X+ and X-) for both "MASSA" and "MODO" 

distributions. 

The innovative aspect in applying this method to this kind of facility concerns the 

displacement control point choice. Typically, the control point is considered as the 

mass center on the upper roof of the building. In this case, since the rigid diaphragm is 

not ensured, the control point is established in a different way for each plane direction. 

One of the most interesting methods on evaluating the control displacement for flexible 

diaphragms is reported in Casarotti and Pinho (Casarotti and Pinho, 2007) in the 

definition of the Adaptive Capacity Spectrum Method (ACSM). In fact, the mentioned 

method is proposed for the assessment of continuous concrete bridges with flexible 

superstructure. As pointed out by Nakamura et al. (Nakamura et al., 2014), the most 

significant aspects of the Adaptive Capacity Spectrum Method proposed by Casarotti 

and Pinho is the fact that the control node doesn’t need to have a physical location: the 

system displacement is evaluated according to energetic considerations. 

In particular, the SDOF control point displacement is evaluated step by step as the 

displacement which do the same amount of work of the MDOF. The system equivalent 

displacement is evaluated at each load step   as: 
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Therefore, the equivalent displacement as the inverse of the modal participation factor 

is calculated. 
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In the present study, a different control point displacement evaluation procedure is 

proposed. In particular, for each plane direction, in order to take into account the 

tridimensional effects, an average displacement is considered obtained as the weighted 

average of the top column displacements. In both X and Y directions the control 

displacement is evaluated as the arithmetic mean of the mean top displacements of the 

columns aligned in X and Y directions (considering the average displacement obtained 

as the sum of the top displacement of the aligned columns in X and Y direction, 

divided by the number of rows in that direction.).  

 

 
 

                             ⁄  

 
 

                          ⁄  

Figure 35 - Control displacement point choice in X and Y direction. 

In Figure 36 and Figure 37, comparison between the control displacements obtained 

applying the proposed procedure and the one derived from the Casarotti and Pinho 

method is showed. In particular, on the horizontal axis the total shear value recorded at 

the column bases is reported. Both “MASSA” and “MODO” distributions are 

considered. The diagrams show that the Casarotti method involves smaller 

displacements with respect to the proposed method, appearing less conservative. 
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Figure 36 - Control point displacement vs total shear in N-S direction: comparison between the 

proposed method (grey lines) and the ACSM procedure (black lines). 

 

 

Figure 37 - Control point displacement vs total shear in E-W direction: comparison between the 

proposed method (grey lines) and the ACSM procedure (black lines). 
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where { } is the influence vector, which represents the displacements of the masses 

resulting from static application of a unit ground displacement. The denominator 

represents the system’s generalized mass matrix. 

Therefore, total shear–displacement relation of the equivalent SDOF model is obtained 

from the MDOF system as: 

   
 

 
 

 

( 7 ) 
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where   is the control displacement calculated as    stated above. The equivalent 

SDOF behavior is then idealized into a bilinear relation as shown in Figure 38, where 

   
 .is the maximum shear resistance of the equivalent system evaluated as: 

  

   
  

   

 
 

 

( 9 ) 

 

and     is the maximum shear resistance of the real system. 

 

Figure 38 - Equivalent SDOF model and F-d bilinearization scheme. 

Definitely, indicated   
  the displacement characterized by a reduction in shear 

resistance equal to         
 , and forced the elastic graph section to pass through the 
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point were   is equal to        
 , the yielding point is obtained applying the equal 

area method. 

The SDOF demand displacement is evaluated considering the corresponding elastic 

spectral displacement      
   for a period: 

 

     √
  

  
 

 

( 10 ) 

 

 

according to the equal displacement assumption (valid if       - where    is the 

transition period between the elastic design spectrum plateau and the constant velocity 

section). 

Checks in terms of both ductile and fragile mechanisms are performed considering the 

Life Safety limit state (i.e. 475 years return period earthquake). 

3.4.2 NONLINEAR DYNAMIC ANALYSIS – ACCELEROGRAMS SELECTION 

Nonlinear dynamic analysis for the Life Safety limit state (i.e. 475 years return period 

seism) are performed on the model of the building in order to compare the results with 

the ones obtained from the nonlinear static analysis. A bidirectional input is taken into 

account and the analysis is conducted as prescribed by EC8 (Normalisation, 2005). 

As mentioned previously, the Emilian seismic sequence occurred in May 2012 was 

characterized by two main shocks of local magnitudes 5.9 (20th May) and 5.8 (29th 

May), respectively.  

The case-study structure was very close to the epicenter of the second main shock, 

whose hypocenter depth was equal to 10.2 km (ITACA, 2009). 

The accelerograms selection with the software Rexel is made (Iervolino, 2010), 

considering the geographic coordinates of Mirandola (MO) (longitude: 11,068°, 

latitude: 44,900°) and a “C” soil type. In particular, for the soil characterization, many 

works demonstrate that the lithology of the studied areas is mainly dominated by clays 

and silts (Lombardi D., 2014; Presti et al.; Lo Presti et al., 2013). 7 pairs of natural 

accelerograms are obtained. 
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3.5 CAPACITY MODELS 

3.5.1 SHEAR CAPACITY MODELS 

Different approaches for the shear capacity assessment were considered through an 

extensive literature survey (De Luca F., 2012; Hakuto, 2000; Committee, 2005; Lejano 

et al., 1992). Particular care should be taken also considering that this study deals with 

columns characterized by large shear span ratio. A lack of experimental data of 

columns with such a large shear span ratio, which exhibited a failure in shear, is 

denoted. Another issue to be deepened is the influence of open stirrups on 

reinforcement shear capacity contribute. In this study three shear resistance models are 

evaluated in order to determine columns shear capacity. The first shear capacity model 

selected is the one by Sezen-Moehle (Sezen H., 2004). It takes into account both axial 

and lateral behavior of reinforced concrete columns with poorly detailed transverse 

reinforcement. This formulation was evaluated considering laboratory tests where 

specimens have been subjected to both axial and lateral loads. This model has been 

chosen because the shear capacity is evaluated on columns characterized by 90° bent 

shear reinforcement, such as the case study condition. This approach is based on the 

idea that with increasing displacement ductility, both the concrete and the 

reinforcement (hooks opening) and the interaction between concrete and reinforcement 

(bond-splitting cracks) contributed to progression of strength degradation. Thus, a 

strength degradation factor is applied to both concrete and reinforcement contributions 

to the shear strength. The shear capacity model is expressed by the following 

equations: 
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where Vn is the nominal shear strength, Vc represents the nominal concrete contribution 

to shear strength, Vs is the nominal transverse reinforcement contribution to shear 

strength and k is a ductility-related factor to account for effects of inelastic 

displacement cycles on shear strength degradation. 

The factor k is defined to be equal to 1.0 for displacement ductility less than 2, and 0.7 

for displacement ductility exceeding 6. For displacement ductility between 2 and 6, the 

factor k varies linearly. 

According to this model, shear resistance increases with the axial force while it is 

inversely proportional to the shear span. 

The second shear resistance model considered is the Biskinis et al. shear formula 

(Biskinis DE, 2004). This approach is based on a regression model calibrated on 239 

specimens that failed in shear. Two different formulas are developed: one attempts to 

give shear resistance in the case of RC members failing in shear due to diagonal 

compression; the other is calibrated for RC elements failing in shear after yielding in 

flexure. Both formulas consider shear cyclic degradation through the displacement 

ductility factor   
  

equal to the ratio of the plastic component of chord rotation at 

failure to the calculated yield chord rotation   . 

The Biskinis formulas by EC8 part 3 are adopted suggesting the choice according to 

the shear span ratio: for shear span ratio higher than 2, shear strength is controlled by 

the stirrups. 

Therefore shear resistance   is given according to the formula: 
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Where   is the cross-section height;   is the compression zone depth;    ⁄  is the shear 

span ratio;   is the axial force;      is the total reinforcement ratio of the element end 

section;    is the transverse reinforcement shear resistance contribute given as: 

 

               

 

( 15 ) 

 

Where    is the transverse reinforcement ratio;   is the cross section width;   is the 

internal lever arm;      is the reinforcement yield stress. 
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The last shear capacity model adopted is evaluated through the software Response2000 

(Bentz, 2001). This software is based on the Modified Compression Field Theory by 

Vecchio and Collins (Vecchio and Collins, 1986a). It makes a non-linear sectional 

analysis of concrete reinforced elements subjected to axial force, shear and moment, 

starting from simple input values. The interesting approach adopted by the software to 

evaluate RC elements shear resistance, make possible a comparison between the 

different results derived from the literature most widespread models.  

 

3.5.2 CONNECTIONS CAPACITY MODELS 

All the connections are modeled as internal hinges. However, checks in terms of 

frictional forces are carried out at the end of the analysis. In particular, for each 

connection, a safety factor SF is evaluated as the ratio between the frictional 

connection capacity Vc and the maximum shear force acting Vd. 

For each connection, friction capacity is evaluated as the product between the vertical 

force N acting at the moment of maximum shear and the static friction coefficient μ, 

whose value is taken from the literature (Capozzi et al., 2009). 

The safety factor is evaluated as follows: 

 

   
    

  

    
  

 
      

       
 

 

( 16 ) 

 

where t* is the time instant when shear force is maximum. Frictional coefficient μ 

ranges from 0.09 to 0.13. 

3.5.3 ROTATION CAPACITY MODELS 

At the end of the analysis checks in terms of ultimate rotations at the column bases are 

carried out. A safety factor SF as the ratio between the rotation capacity θc and the 

maximum analysis recorded rotation θd is considered. 

Two different rotation capacity models are considered. 

According to EC8 (Normalisation, 2005), the value of total chord rotation capacity 

under cyclic loading, following a mechanical approach, is given by: 
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where: 

    is equal to 1.25 for primary seismic elements; 

  is the section height; 

          ⁄  is the nominal axial force; 

             ⁄  longitudinal bars in tension; 

       
         ⁄  longitudinal bars in compression; 

            ⁄  takes into account the transverse reinforcement bars; 

   takes into account eventual diagonal bars; 

  takes into account the concrete confinement. 

Hence, another total chord rotation capacity model of RC columns under cyclic forces 

is considered. In particular, since theoretical calculations can highly overestimate the 

ultimate drift in precast columns, chord rotation capacity has been defined as a 

reduction in bending resistance by 20% after the peak in the moment-rotation backbone 

curve (Fischinger et al., 2008). According to what stated by (Haselton, 2006), ultimate 

drift in cyclic load increases with shear span in a mild way. On the contrary, most of 

the available formulas to estimate the cyclic ultimate drift show a significant increase 

with the increase of shear span. 

 

3.6 RESULTS COMPARISON 

In this section, code analysis results are presented and compared. At the end of each 

analysis, checks in terms of both fragile and ductile mechanisms are conducted. In 

particular, shear checks on columns are conducted comparing the maximum shear 

demand and the shear capacity according to the model presented above. Ductile 

mechanism checks are obtained comparing the chord rotation demand with the chord 

rotation capacity for each column in the model. Finally, beam-to-column connections 

are investigated in order to verify if the frictional force generated at the neoprene pad 

interfaces are sufficient to withstand the maximum horizontal seismic forces. 

Comparison of nonlinear static analysis and nonlinear dynamic analysis is useful to 

determine the reliability of the code procedures for precast buildings with flexible 

diaphragm. 
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3.6.1 NLSA RESULTS 

Results of nonlinear static analysis are presented in this section. The seismic demand 

according to the N2 method is evaluated (Fajfar, 2000). Results of modal analysis in 

terms of mass participation ratio show the larger stiffness of the building in EW 

direction, where the participating mass is concentrated almost totally in the third mode 

(translational). In NS direction the higher modes of vibration are not negligible, with a 

discrete coupling between translational and torsional modes (Table 5).  

 

DIRECTION 
VIBRATION 

MODE 

MASS PART. 

RATIO 
G 

N-S 

1 79.8% 

1.259 
2 15.0% 

3 3.4% 

4 14.7% 

E-W 

1 1.1% 

1.261 
2 0.0% 

3 96.8% 

4 2.0% 

Table 5 - Mass participation ratio and modal participation factor values in X (E-W) and Y (N-S) 

directions. 

A thorough study of literature highlighted the lack of appropriate methodologies 

suggested to apply the non-linear static analysis to structures for which it is not 

possible to consider the rigid diaphragm. As explained in Section 3.4.1, two methods 

are herein proposed: one based on geometric considerations, the other based on the 

ACSM method by Casarotti and Pinho (Casarotti and Pinho, 2007).  
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Figure 39 - Capacity curves in X direction derived from the proposed control displacement point 

procedure (grey) vs the Casarotti and Pinho formulas (black). 

In Figure 39 the comparison between the capacity curves obtained using the two 

different methodologies to determine the control point displacement is showed. From 

the graph is possible to asses that the Casarotti and Pinho method produces smaller 

displacement. The same happens in the N-S direction (Figure 40). 

 

Figure 40 - Capacity curves in Y direction derived from the proposed control displacement point 

procedure (grey) vs the Casarotti and Pinho formulas (black). 
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Both methods are conducted until the end of analysis. As it will be showed in the 

results analysis section (Section 3.6.3), the two procedures for the displacement control 

point selection lead to almost identical results. Therefore, in what follows it will be 

showed the result obtained by the proposed method, as a matter of originality. 

Capacity curves show that the demand displacements are smaller than the building 

capacity (Figure 41). In Table 6 Safety Factors defined as capacity-demand ratio are 

pointed out, considering the seismic demand as the displacement which generates the 

first flexional plasticization. While in Table 7 the vibration periods of the first four 

modes are indicated. 

 

  
Figure 41 - Capacity curves in X and Y direction: circles indicates the demand displacements, 

squares indicates first plasticization points. 
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Life Safety State Limit 

Load 

Distribution 
Dir 

Capacity 

[m] 

Demand           

[m] 
SF 

MASSA 

X- 0.24 0.10 2.4 

X+ 0.25 0.10 2.4 

Y- 0.33 0.12 2.8 

Y+ 0.35 0.12 2.9 

MODO 

X- 0.30 0.11 2.7 

X+ 0.30 0.12 2.5 

Y- 0.25 0.10 2.5 

Y+ 0.24 0.10 2.4 
Table 6 - Checks in terms of displacements for the Life Safety Limit State considering the first 

plasticization point (NLSA – Real System). 

 

MODE T [sec] 

1 0.83 

2 0.74 

3 0.73 

4 0.61 

Table 7 - Periods of vibration for the first four modes. 

For the sake of completeness, in Figure 42 the building modes of vibrations are 

depicted. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 42 - Modes of vibration: 1st (a); 2nd (b); 3rd (c); 4th(d). 
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Figure 43 - Capacity Curves plotted in the Acceleration Displacement Response Spectrum Plane (X 

direction). 

 

 

Figure 44 - Capacity Curves plotted in the Acceleration Displacement Response Spectrum Plane (Y 

direction). 

In Figure 43 and Figure 44 a graphic check is made: bilinear curves are reported in the 

ADRS plane. It can be deduced that it is not expected that the structure fails due to 
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bending for a 475 year return period seism. In fact, the structural capacity in terms of 

displacements (bilinear ending points) far exceeds the seismic demand (intersection of 

the elastic demand with the LSLS spectrum). In Table 9 the numerical results for the 

equivalent system are reported, with the relative Safety Factors. 

 

Life Safety State Limit 

Load 

Distribution 
Dir 

Capacity 

[m] 

Demand           

[m] 
SF 

MASSA 

X- 0.19 0.10 1.8 

X+ 0.20 0.10 1.8 

Y- 0.26 0.11 2.3 

Y+ 0.28 0.11 2.5 

MODO 

X- 0.24 0.11 2.2 

X+ 0.24 0.11 2.2 

Y- 0.20 0.12 1.7 

Y+ 0.19 0.12 1.8 
Table 8 - Checks in terms of displacements for the Life Safety Limit State (NLSA – Equivalent 

System). 

Hence, the same graphic check is made using the Casarotti and Pinho procedure. As is 

possible to see in both Figure 45 and Figure 46, also considering the Casarotti and 

Pinho method, the graphic check is positive. As previously mentioned, this method 

results in smaller displacements. From the graphic check is possible to find out how 

this method provides lower capacity values than the proposed method. 
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Figure 45 - ADRS spectrum graphic check using the Casarotti and Pinho method to establish the 

control displacement point (X direction). 

 

 

Figure 46 - ADRS spectrum graphic check using the Casarotti and Pinho method to establish the 

control displacement point (Y direction). 

In order to investigate the shear response, fragile mechanism checks are performed. In 

Figure 47 nonlinear static analysis results in terms of shear are represented. For each 
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is compared with the shear resistance for each column. Therefore, the graphs show the 

columns on the horizontal axis and the maximum shear on the ordinate. Shear 

resistance is evaluated with the Sezen and Moehle formulas. It is important to 

emphasize that the terminology used to identify the columns is the one shown in Figure 

20, with the particularity that the adopted numbering is anticipated by the word "Pil" or 

"Pilapp" (in the case of the appendix columns), as shown in Table 9. 

 

Columns ID Graph ID 

1_1 Pil1-01 

2_7 Pil2-07 

A_3 Pilapp-03 

Table 9 - Example of columns numbering adopted in the graphs. 

 

The building seems to withstand the maximum seismic forces especially in EW 

direction, where columns have the high resistance because of their geometric section 

layout. Three of the appendix columns (A_1, A_2, A_8) show shear failure. 

In NS direction the number of weak columns increases significantly, even if the 

demand is generally lower. Specifically, almost all the appendix columns, because of 

their lower shear span, are subjected to larger shear forces. 
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(b) 

Figure 47 - NLSA results in terms of shear in EW direction (a) and NS direction (b). 

This result is basically due to two factors: in NS direction columns are shear weaker 

because their geometrical issues; in that direction the appendix building sector appears 

to be more rigid and then is subjected to higher solicitations. 

Results in terms of chord rotation at the column base demonstrate that no ultimate 

chord rotation occurs in the EW direction (Figure 48a). In the NS direction the analysis 

shows that the most stressed columns are those placed at the eastern end of the 

building. The diagrams show the higher stiffness of the eastern part of the structure due 

to the appendix presence (Figure 48b). Moreover, diagrams show how code formulas 

lead to obtain less conservatives values. 

Checks in terms of yielding rotation demonstrate that plasticity occurs in both 

directions, and especially in the X direction (EW), even if in that direction the 

geometric configuration of the columns cross sections make the building stronger. 

The frictional checks of the column-to-beam connections in both X and Y direction 

determine that the building needs strong dowel connections. Even using the maximum 

frictional coefficient, no connection appears to be verified at the end of the analysis. In 

both directions, most of the elements exhibits 0.2-0.4 as the ratio between demand and 

capacity (Figure 49). So the only neoprene pads are not sufficient to adsorb the 

maximum shear forces. 

Hence, the building seems to be lacking in shear resistance.  
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(a) 

 
(b) 

Figure 48 - NLSA results in terms of chord rotation in EW direction (a) and NS direction (b): 

maximum demand (black), Fischinger capacity (grey). EC8 capacity (white). 

 

3.6.2 NLDA RESULTS 

Nonlinear dynamic analyses with 5% damping have been performed using seven 

accelerograms as seismic input signals (Table 10) in both horizontal directions. In 

order to evaluate the building seismic performance, the demand is evaluated as the 

mean of the most unfavourable effects obtained from the analyses. 
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Earthquake 

Name 
Date Mw 

PGA_X 

[m/s2] 
PGA_Y [m/s2] 

PGV_X 

[m/s] 

PGV_Y 

[m/s] 

EC8 

Site 

class 

Alkion 24/02/1981 6.6 2.2566 3.0363 0.2234 0.2262 C 

Umbria 

Marche 
26/09/1997 6 1.951 2.1834 0.1735 0.1399 C 

Chenoua 29/10/1989 5.9 2.8302 2.2604 0.1311 0.1312 C 

NE of Banja 

Luka 
13/08/1981 5.7 4.3397 3.9657 0.2633 0.1648 C 

Komilion 25/02/1994 5.4 1.7162 1.9593 0.1283 0.1441 C 

Ionian 04/11/1973 5.8 5.1459 2.4983 0.57 0.255 C 

Dinar 01/10/1995 6.4 2.6739 3.1306 0.2937 0.4059 C 

MEAN 5.9 2.9876 2.7191 0.2547 0.2095 
 

Table 10 - NLDA: selected seismic input records. 

Results of nonlinear dynamic analyses are herein reported. At the end of each analysis, 

check diagrams have been made. As written above, particular attention is given to the 

columns shear response. The analyses show that all the columns are verified against 

shear failure (Table 11 and Table 12). Shear capacity is evaluated with the Sezen 

formula. Demand in the Y direction are generally lower than the X direction ones. As 

reported in Table 11 and Table 12, shear demand values appear to be lower than the 

columns capacity. In X direction, the mean value of capacity demand ratios is about 2; 

in Y direction the same value is about 2.2. 

In terms of chord rotation, the building is well within the rotation limits, with a Safety 

Factor in the range between 2 and 4 in both X and Y direction. 

As reported in Figure 49, connections capacity in both directions is not sufficient to 

absorb seismic forces; so the friction force is not sufficient to ensure the resistance to 

horizontal shear forces. 

 

Dir X (EW) 

1st Column Row 2nd Column Row 3rd Column Row Appendix 

Vc [kN] Vd [kN] Vc [kN] Vd [kN] Vc [kN] Vd [kN] Vc [kN] Vd [kN] 

74.79 38.85 105.85 49.14 75.93 43.52 87.87 47.11 

104.77 56.11 117.64 64.03 100.55 52.84 98.69 45.24 

101.23 47.93 113.25 55.07 101.17 52.11 96.57 43.56 

101.20 47.94 113.36 55.10 101.17 51.73 104.18 52.38 

101.20 47.98 113.34 55.33 101.36 51.50 130.47 51.35 

101.16 48.02 113.34 55.72 136.57 61.39 143.24 65.66 

103.32 48.89 115.34 56.54 117.31 62.00 107.84 46.93 
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102.00 51.85 113.01 57.38 83.10 56.93 68.99 40.52 

78.07 38.69 103.10 56.36 144.45 71.15 96.87 59.23 

Table 11 - NLDA: shear capacity (Vc) and shear demand (Vd) in EW direction. 

Dir Y (NS) 

1st Column Row 2nd Column Row 3rd Column Row Appendix 

Vc [kN] Vd [kN] Vc [kN] Vd [kN] Vc [kN] Vd [kN] Vc [kN] Vd [kN] 

74.79 32.63 87.28 35.26 75.93 35.16 87.87 49.75 

86.39 34.02 97.00 36.83 82.91 36.35 98.69 52.41 

83.47 35.29 93.38 38.18 83.42 37.43 96.57 45.19 

83.44 36.34 93.47 39.31 83.42 38.57 104.18 46.76 

83.44 37.01 93.46 40.14 83.58 39.30 130.47 43.11 

83.42 37.07 93.46 40.13 92.51 60.03 143.24 42.24 

85.19 38.04 95.10 40.92 96.73 53.86 107.84 38.56 

84.11 34.85 93.18 37.77 68.52 56.42 68.99 34.95 

78.07 31.40 103.10 50.91 119.11 49.38 96.87 81.87 

Table 12 – NLDA: shear capacity (Vc) and shear demand (Vd) in NS direction. 
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Figure 49 – Connections frictional checks for both static and dynamic nonlinear analysis: Safe 

Factors evaluated as the ratio between Demand and Capacity. 

 

3.6.3 NONLINEAR STATIC AND DYNAMIC RESULTS COMPARISON 

Comparison between nonlinear static and dynamic analysis results are presented in this 

section. As written above, NLSA have been conducted in a particular condition, where 

the facility roof cannot be assumed to be rigid. In this way, the comparison presented 

in this section can be a useful compare tool to calibrate the accuracy in the selection of 

the displacement control point as mentioned above. 

In general, nonlinear static analyses appear to be quite conservative in predict buildings 

seismic performances (Tehrani and Maalek, 2006; Magliulo et al., 2007). This is due to 

the fact that, in principle, the method of analysis is much less conservative, the higher 

is its accuracy. In the case study, the seismic demand derived from the static analysis is 

larger than the demand obtained from dynamic analysis. First of all, this could be 

linked to the facility plan asymmetry. Moreover, seismic response of the building is 

much more complex because of its torsionally deformable nature. The N2 method 
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applied to tridimensional models neglects the displacement amplification due to the 

torsional rotation of the structure (Fajfar et al., 2005b). In EW direction, the maximum 

shear demand derived from the NLSA is lower than about 50% respect to the same 

demand evaluated with NLDA. In Figure 50 shear check between the different results 

is depicted. NLSA results (black) results in higher shear values than the NLDA ones. 

Thus, the building appears to be capable to avoid fragile mechanism if the dynamic 

analyses results are considered.  

 

 

Figure 50 - Nonlinear analysis result comparison in terms of shear (EW direction). 

 

This difference between NLSA and NLDA is less uniform in NS direction, especially 

for the appendix columns. As shown in Figure 51, NLSA provides low shear demand 

values in correspondence with the building extremities. This is probably due to the fact 

that the planimetric facility configuration makes the building much deformable, in the 

Y direction, in the central part. In fact, the “MODO” force distribution is essentially 

determined by the product of the columns modal displacement and the relative mass. 

This explains the provision of lower shear values when the building is less deformable. 

For the appendix columns, where the shear span is smaller, probably the greatest shear 

demand derives from the “MASSA” distribution.  
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Figure 51 - Nonlinear analysis result comparison in terms of shear (NS direction). 

 

The same happens in relation to the chord rotation values: static analyses provide lower 

values. Therefore, the static code procedure, although the building shows a high 

participative mass value at the first vibration mode, provides far more conservatives 

results than that the one to be expected. 

The control point choice is particularly important for the purpose of analysis results. 

However, as above-mentioned, although the two adopted methods result in a different 

outcome in terms of displacement, they lead to very similar values in terms of final 

result. This happens because the loading steps so that in each method the demand 

displacements are reached are about the same. Generally in the method proposed by 

Casarotti, the demand displacement is reached a couple of steps later with respect to 

the proposed method. The total number of load steps for the pushover curves obtained 

from both methods is about the same. In Figure 52and Figure 53 the maximum shear 

resulting from having used the two different displacement control evaluation 

methodologies are reported. The proposed method conduces to the black shear demand 

histograms, while the Casarotti and Pinho formulas produce the white maximum shear 

demand histograms. As is possible to determine from the values in the diagrams, the 

two procedures lead to almost identical values. 

For this reason it can be said that the proposed method, based on geometrical 

considerations, is practically equivalent to the method based on energy considerations 

as in the scheme proposed by Casarotti and Pinho. Sometimes it might be easier to 

apply, since it is less onerous from the computational point of view. 
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Figure 52 - Shear check in EW direction: comparison between the results obtained using the 

proposed method and the Casarotti and Pinho procedure for the control point displacement 

evaluation. 

 

 

Figure 53 - Shear check in NS direction: comparison between the results obtained using the 

proposed method and the Casarotti and Pinho procedure for the control point displacement 

evaluation. 

3.7 MODEL VALIDATION 

Until now it has been evaluated the structural behavior of the D2 building according to 

the Italian structural code. Thus, the most refined analysis procedures have been 
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conducted to assess the building capacity to withstand the design seismic demand. 

However, as explained in Section 2.1, the Emilia earthquake was characterized by a 

peculiarity which made him incredibly more intense than the expected event. 

Therefore, in order to prove the reliability of the adopted modelling, and so as to make 

a model validation in terms of code analysis results, nonlinear dynamic time history 

analyses are performed using as seismic input signal one of the Mirandola station 

records. In Figure 54 the adopted signals are showed. Also the vertical seismic 

component is considered. The implemented signals have been recorded on 20
th
 May 

2012, during the first mainshock of the Emilia sequence, by one of the italian RAN 

(Rete Accelerometrica Nazionale) stations. Recording features in Table 13 are 

reported. Moreover, in order to justify the reported damages because of the earthquake, 

a further numerical model characterized by the presence of the crane is implemented. 

In fact, as reported in §3.2, the pictures taken in the immediate post seism show the 

crane to be located next to one of the broken columns. Hence, the crane, with its static 

features, as a hinged beam is modelled, supported by the 1_7 and 2_7 columns (Figure 

20). The crane weight assumed from the manufacturer’s catalogue is 82 kN. 

 

 

 

 

Figure 54 – MRN Station signals recorded on 20th May 2012. 
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Event id IT-2012-0008 MW 6.1 ML 5.9     R epi. [km] 12.300 
    

 

Late triggered 

record? 
NO     Instrument type Digital 

 

Filter type BUTTERWORTH 

Max PGA [cm/s2] 
297.304   corrected horizontal 258.797 corrected vertical -297.304 uncorrected 

303.29

6 
 

Max PGV [cm/s] 46.333 

Max PGD [cm] 10.376 

Arias intensity 

[cm/s] 

86.869 

Housner Int. [cm] 157.654 

T90 Effective 

duration [s] 

5.985 

Table 13 – Features of the 1st Emilia seismic mainshock recorded by the MRN station. 

The primary objective to be pursuit concerns the assessment of model capacity to 

predict the real building behavior. It was therefore carried out a detailed theoretical and 

experimental comparison with a special focus on the columns shear strength. All the 

considered shear capacity models have been considered to study the collapsed columns 

numerical behavior.  

3.7.1 DAMAGE PREDICTION 

Nonlinear time history dynamic analyses considering the Mirandola station 

acceleration recorded signal as seismic input are conducted (“MRN analysis” in the 

following) in order to justify the real damages suffered by the building because of the 

earthquake. In particular, in order to recreate the real seismic event conditions, the 

structure model is completed taking into account the crane as explained in the previous 

paragraph. The crane as a further link between the first and the second column rows is 

modelled: it represents not only an additional connection element, but also a critic load 

for the supporting columns. The increase in seismic mass because of the crane presence 

makes higher seismic forces. But, on the other hand, an increase in axial force leads the 

column to express a larger shear resistance.  

In order to make an accurate shear evaluation, Biskinis (Biskinis DE, 2004) shear 

resistance model is also evaluated and compared with the Sezen-Moehle (Sezen H., 

2004) shear predictions. Lastly, a further evaluation of column shear resistance is 

carried on through the software Response2000 (Bentz, 2001). 

As explained in §3.2, one of the most corroborated hypothesis to justify the partial 

collapse is correlated to the decrease of columns resistance because of the reduction in 

longitudinal reinforcement. In particular, as shown in Figure 55, the cross section of 

the two collapsed columns passes from a value of longitudinal reinforcement ratio r 

equal to 0.0126, to a value equal to 0.0084, at about 2.75 m from the ground.  

 

http://itaca.mi.ingv.it/ItacaNet/CadmoDriver?_action_do_single=1&_criteria=CZ001%3d%20AZ014itaca_event_idIAZ012IT%2d2012%2d0011%27&_page=ACC_Events_D&_rock=INVALID&_state=find&_tabber=3&_token=NULLNULLNULLNULL
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Figure 55 - 2_06 and 2_07 columns reduction in longitudinal reinforcement. 

According to the analysis results, shear failure occurs for the crane supporting columns 

(1_07 and 2_07) and for three of appendix columns only in the NS directions. In Figure 

56 shear check for the first columns row in NS direction is depicted. Shear resistance is 

evaluated considering the effects due to the axial force influence in shear capacity 

formulas. Therefore, shear capacity not only with the Sezen formula, but also 

according to the Biskinis formula in both AA and BB sections is evaluated, since the 

latter shear resistance calculation allows to evaluate the shear strength taking into 

account the longitudinal reinforcement amount.  

SEC A-A

( = 0.0126)

SEC B-B

( = 0.0084)
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LEGEND 

 
 

Figure 56 - 1st columns row shear check diagrams in Y direction: shear load (black), Sezen-Mohele 

shear capacity (dark grey), Biskinis shear capacity sez. BB (grey), Biskinis shear capacity sez. AA 

(light grey). 

As showed in Figure 56, Sezen formula is more conservative than the Biskinis one. As 

was expected, reduction in longitudinal reinforcement involves a clear fall in 

resistance. The diagram shows that the 1_7 column, one of the two crane supporting 

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-1

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-2

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-3

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-4

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-5

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-6

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-7

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-8

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-9

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-1

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-2

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-3

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-4

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-5

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-6

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-7

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-8

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-9

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-1

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-2

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-3

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-4

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-5

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-6

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-7

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-8

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-9

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-1

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-2

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-3

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-4

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-5

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-6

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-7

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-8

0

50

100

150

200

250

V
 [

k
N

]

T ime [s]

Pil 1-9

 

 

Vrd
S&M

Vrd
B
 sez BB

Vrd
B
 sez AA

Ved



Seismic Behavior of RC Precast Buildings: The Case Of Emilia Earthquake 

 

 

74 

columns, overcomes its shear strength. As showed in the following (Figure 61), the 

same happens for the 2_7 column and for three appendix columns. 

It must be considered that these latter, because of the presence of the intermediate roof, 

are characterized by a lower shear span, i.e. 2.50-5.60 m. Analysis results in terms of 

shear demonstrate the building to be vulnerable just in Y direction. In Figure 60, model 

shear collapsed columns are circled. 

Diagrams in terms of shear for the second columns row are herein reported (Figure 61), 

just for the Y direction: the absolute shear demand signal (black) with the capacity 

obtained through the Sezen-Moehle (dark grey) and the Biskinis (grey-sec AA; light 

grey–sec BB) shear capacity models is plotted. Also in this case Biskinis shear capacity 

model is quite conservative if compared with Sezen-Moehle one. Both capacity models 

show the variability due to the axial load signal. 

Definitely, from the results in terms of shear it could be assessed that the stress regime 

becomes critic in Y direction, where the columns are weaker because of the geometric 

cross section dimensions. 

In that regard, it must be considered that, as shown in Figure 57, in the same period 

range (the building fundamental period in about 0.8 seconds – see Table 7), maximum 

recorded accelerations in NS direction (Y direction) are much greater than in the EW 

direction ones (X direction). This is related to the peculiarities of the specific recorded 

earthquake. 

 

Figure 57 - Recorded signals seismic spectra in both X and Y direction. 

Columns 1_07 and 2_07 are particularly stressed: they overcome the limit shear 

resistance as visible in the related graphs in Figure 56, Figure 59 and Figure 61. 

Consequently, in X direction, where the columns are stronger, shear demand shows 

lower values compared to the orthogonal direction and shear capacity has been never 

overcome (Figure 58). 
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Figure 58 - Time history MRN analysis results: shear check in EW direction. 

 

Figure 59 - Time history MRN analysis results: shear check in NS direction. 

 
 

Figure 60 - Checks in terms of shear: shear failures in NS direction. 
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LEGEND 

 
 

Figure 61 – 2nd columns row shear check diagrams in Y direction: shear load (black), Sezen-Mohele 

shear capacity (dark grey), Biskinis shear capacity sez. BB (grey), Biskinis shear capacity sez. AA 

(light grey). 

In order to make a constructive comparison between different shear capacity models, 

another shear capacity value is considered with the software Response 2000 (Bentz and 

Collins, 2000). This software is based on the Modified Compression Field Theory by 
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Vecchio and Collins (Vecchio and Collins, 1986b). The MCFT allows to predict the 

response of RC elements subjected to in-plane shear and axial stresses just using 

equilibrium conditions, compatibility requirements and stress-strain relationships, all 

expressed in terms of average strains. In the shear capacity evaluation, the Vecchio and 

Collins formulation takes into account the contribute of shear friction between cracks. 

In fact, according to the method, the concrete contribution to the global shear element 

strength is given by tensile stresses acting across diagonal cracks: this value is 

determined by the aggregate interlock forces. Roughly, shear stress between cracks 

depends on cracks width, as well as on concrete strength and aggregate size.  

Based on this assumptions, Response 2000 makes possible to analyze reinforced 

concrete elements subjected to axial force, shear and moment, starting from simple 

input values. In particular, the software does the sectional analysis of concrete elements 

starting from the cross section geometric and mechanic features. It also allows to make 

incremental analysis. The principal software assumptions are the validity of plane 

sections law (compatibility), and the absence of transverse clamping stress across the 

depth of the beam. 

Response2000 allows making both flexural and shear analysis on beam segments. In 

each case, as the software is a sectional analysis tool, the appropriate section to verify 

has to be chosen. Hence, on the bases of experimental evidence for the case study 

facility, shear analysis of 2_07 column is carried out considering the column breaking 

section (i.e. sec. BB in Figure 55). Thus, the base constraint has been defined as fixed 

end. As mentioned above, the software needs a unique axial force value in the input 

phase. So, in order to estimate the Response2000 shear strength of the 2_07 column, 

the minimum and maximum axial values obtained from the analysis are considered. 

Therefore, the section characterized by the reduction in longitudinal reinforcement has 

been evaluated just in the Y direction (column weaker direction). Because of the 

reduction in rebar amount, the cross section is characterized by 8 Ø20 longitudinal 

bars. Mechanical characteristics of concrete and steel are also implemented (Figure 

62). Basically, a five meters RC element has been considered, subjected to incremental 

horizontal forces. 
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Figure 62 - Cross section features in Response2000. 

In Figure 63 the comparison between shear demand and capacity for the 2_07 column 

is reported. Shear capacity is evaluated according to the Sezen-Moehle model, 

according to the Biskinis model considering the weaker cross section (            in 

the legend), and according to the Response2000 results for the maximum (Nmax = 936 

kN) and the minimum axial force (Nmin = 110 kN) derived from the nonlinear dynamic 

analysis. 

The shear resistance value obtained from the MCFT appears to be constant during the 

entire analysis time history because is linked to a single axial load value. The other 

shear capacity time-histories are highly influenced by the axial load time variability. 
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Figure 63 – 2_07 column shear Capacity versus Demand comparison. 

The graph shows that the 2_07 column shear capacity is lower than shear demand: this 

justifies the column shear failure. Response 2000 shear capacity for the maximum axial 

force is roughly equal to the Sezen-Moehle shear strength value; the value given by the 

Biskinis formula applied to the reinforcement reduced cross section gives the more 

conservative result.  

From the photographs is certainly possible to state that the column 1_07 has been 

highly stressed because of the shaking: it has reported visible cracks in the Y direction. 

At the end of the earthquake it has reported a loss in verticality (Figure 64): maybe the 

failure first of the 2_07 column reduced its loading condition avoiding the breaking.  
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Figure 64 - D2 building during the demolition phases: in the foreground on the right the 1_07 

column. 

Another important and useful feature of Response2000 is the capacity to predict the 

crack pattern of the element. Hence, sectional analysis of AA section is carried on, in 

order to compare the software prevision with the real crack pattern on the lower 

column segment inferable from the photographs. In Figure 65 a comparison between 

real damages suffered by the 2_07 column and Response 2000 cracks diagram is made. 

It must be noted that the crack diagram is referred to the lower column segment, the 

one characterized by the section AA features. The software crack pattern prevision 

includes also the predicted angle and width of cracks in inches. 

The cracks inclination seems to be compatible with the real crack pattern in the lower 

column part. Thus, Response2000 cracks prediction show a compatibility with the real 

damages. 
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(a) 

 
(b) 

Figure 65 - 2_07 column failure: comparison between real damages (a) and Response 2000 crack 

prevision (b). 

3.8 DI QUATTRO 1995 BUILDING 

The inspection carried out shortly after the first Emilia mainshock exposed an evident 

peculiarity: it has been highlighted as two typologically similar facilities, located a 

short distance from one another, can have significantly different responses to the 

earthquake. This paragraph introduces the second important case study of this thesis, 

trying to give a reasonable explanation for the deep difference between the seismic 

response of two similar buildings located in the same area. 

3.8.1 STRUCTURAL DESCRIPTION AND TERRITORIAL CONTEXT 

The Di Quattro 2 building (D2 building in the following, according to the convention 

adopted in paragraph §2.3) is located in Mirandola (MO). It was built in 1995 in an 

area not too far from the site that would be chosen for the construction, some years 

later, of the D1 building. In fact, the distance between the facilities was equal to about 

200 meters (Figure 66).  
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Figure 66 - Mirandola (MO) aerial view: D1(rectangular boundary) and D2 (circled boundary) 

location. 

D2 is a concrete precast industrial building, with a rectangular 50x20 meters plan, 

characterized by a principal single-story area of about 800 mq and an intermediate roof 

of about 200 mq in the western part of the whole building (Figure 67). The building 

total height is 7.70 m. The structural layout is composed by principal 100x50 H beams 

in the longitudinal direction, with shed roof tiles in the orthogonal direction. The 

principal beams are supported by square 50x50 or 40x40 columns, 10 meters spaced in 

the major direction, allocated in discrete socket foundations. Thirteen columns types 

are used, characterized by different geometric issues.  
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Figure 67 - D2 plan taken from the building final design report. 

Generally they are constituted by ∅20 longitudinal reinforcements and ∅6 stirrups 

spaced each 200 mm in the central part of the column and 50 mm at the top. On the 

superior face of each column are anchored threaded steel rods with a diameter of 20 

mm, useful to obtain the design beam-to-column and beam-to-beam connections. In 

fact, these steel bars have a predominantly constructive function, rather than structural. 

As with the D1 building, also in this case the steel rods help to give stability to the 

connections. Therefore, the bars positioned in the space between two consecutives 

beams are locked on the top by a bolted steel plate. An integrative concrete casting 

should assure the monolithic nature of the joint. All columns are characterized by ∅12 

downpipe cast in the middle (Figure 68). The intermediate roof is composed by Greek-

pi roof tiles supported by secondary 60x70 T beams. The nature of intermediate roof 

support is purely frictional, such as the shed roof tiles-to-beams connections. The 

structural layout of the two-story building portion is completed by two 2.90 height 

40x40 supporting columns. The outer cladding is made of horizontal panels. Concrete 

equivalent to the present C35/45 has been used for the precast elements, while FeB44K 

steel bars have been adopted for the elements reinforcement.  
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Figure 68 - A typical D2 column: on the top the steel rods are visible and the downpipe in the 

middle. 

3.8.2 REAL DAMAGES 

The damages reported by the building after the first Emilia earthquake mainshock are 

herein described. From the pictures taken shortly after the earthquake is possible to 

ascertain how the structure has been damaged in a very mild way. In fact, the principal 

damage concerns the cladding panels displacements of about 15 cm, with the falling of 

one of the vertical angular elements (Figure 69(a)). From the inside it was possible to 

detect the displacement of the roof tiles (Figure 69(b),(c),(d)) and the formation of 

cracks at the column bases. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 69 - D2 building damages: falling of the corner cladding element (a); cracks due to the tiles 

displacement (b),(c),(d). 

3.8.3 MODELLING IN OPENSEES 

As well as in the case of the D1 building, also D2 facility has been modeled in 

OpenSees. Hence, a tridimensional numerical model of the building has been 

implemented, following the modeling choices reported in §3.3. A lumped plasticity 

model with structural elements modeled as rigid mono dimensional elements is chosen.  

For the definition of plastic hinges material, the tool described in §3.3.1 is used, 

obtaining every cross section property from the design drawings. Thus, the plastic 

hinges moment-rotation behavior is represented by a multi-linear envelope, 

characterized by four principal points (the cracking, yielding, capping and post-capping 

points). 

Also in this case, because of the frictional nature of the connections, beam-to-columns 

joint as internal hinges are modeled, taking into account the geometrical eccentricity 

between elements. 
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3.8.4 NONLINEAR DYNAMIC ANALYSIS RESULTS 

The goal to be pursued is to compare the numerical model behavior with the actual 

seismic response of the structure. Thus, nonlinear dynamic analysis with the recorded 

MRN station acceleration have been conducted. Signals in the horizontal and vertical 

directions have been considered. In Figure 70 (a) the adopted columns identification is 

showed. While on the right, in Figure 70 (b), the numerical model layout is depicted. 

Analyses have been performed with particular attention to the seismic building 

response in terms of shear, base rotations and frictional check of beam-to-column 

connections. 

 

 
(a) 

 
(b) 

Figure 70 - D2 building plan scheme and numerical model tridimensional view in OpenSees. 

Results in terms of frictional checks of tiles-to-beams connections show the high 

inadequacy of purely frictional connection type. In fact, safety factors evaluated as the 

ratio of maximum shear force acting on the connections and friction developed at the 

concrete-neoprene interface are all less than one, as showed in Table 14. 

These values are obtained considering a frictional coefficient equal to 0.09, which is 

the minimum value according to some literature studies (Capozzi et al., 2009). 

The experimental evidences highlight actually a displacement of the tiles, meaning that 

the friction force has been overcome. However it should be considered that in reality 

the connections are of the "wet" type, i.e. characterized by steel bars and cast-in-situ 

concrete mortar that, even in small part, help to increase the shear strength of the 

connections. 
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 Direction  Direction 

 N-S E-W  N-S E-W 

1
st

 c
o
lu

m
n

 r
o
w

 c
o

n
n

ec
ti

o
n

s 
0.42 0.05 

2
st

 c
o
lu

m
n

 r
o
w

 c
o

n
n

ec
ti

o
n

s 

0.16 0.18 

0.42 0.05 0.66 0.05 

0.09 0.07 0.14 0.06 

0.31 0.04 0.38 0.04 

0.19 0.05 0.19 0.04 

0.69 0.04 0.77 0.04 

0.60 0.05 0.54 0.04 

0.17 0.05 0.19 0.05 

0.44 0.06 0.56 0.05 

0.31 0.39 0.23 0.27 

Table 14 - Frictional Safety Factors. 

 

In Table 15 the maximum recorded base rotations in both X and Y directions are 

reported. The Safety Factors (SF) herein reported are evaluated as the ratio between 

maximum rotation demand and the EC8 ultimate rotation capacity values. The SF 

values are smaller in the N-S direction, where are also recorded values less than one.   

 

E-W          

DIRECTION 

N-S 

DIRECTION 

Pil ID θed SF θed SF 

Pil1_1 0.009 1.45 0.012 1.07 

Pil1_2 0.009 2.06 0.015 1.13 

Pil1_3 0.008 1.86 0.019 0.89 

Pil1_4 0.008 1.92 0.020 0.77 

Pil1_5 0.008 2.03 0.019 0.84 

Pil1_6 0.008 1.89 0.018 0.63 

Pil2_1 0.013 0.95 0.012 1.20 

Pil2_2 0.013 1.27 0.015 1.16 

Pil2_3 0.013 1.39 0.019 0.81 

Pil2_4 0.012 1.38 0.020 0.82 

Pil2_5 0.012 1.36 0.019 0.77 

Pil2_6 0.012 1.08 0.018 0.89 

Table 15 - Maximum rotation recorded in E-W and N-S directions and related Safety Factors. 
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Results in terms of shear resistance are herein reported. As it is possible to see from the 

graphs, in both horizontal directions shear capacity is not overcome. In particular, the 

diagrams plot the absolute value of the recorded shear, along with shear resistance 

evaluated according to the Sezen formula, which has proved to be the less 

conservative. 

 

 

Figure 71 - Shear check in E-W direction for the first columns row: shear demand (blue) vs shear 

capacity according to the Sezen formula (cyan). 
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Figure 72 - Shear check in N-S direction for the first columns row: shear demand (blue) vs shear 

capacity according to the Sezen formula (cyan). 

 

 

Figure 73 - Figure 54 - Shear check in E-W direction for the second columns row: shear demand 

(blue) vs shear capacity according to the Sezen formula (cyan). 
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Figure 74 - Figure 54 - Shear check in N-S direction for the second columns row: shear demand 

(blue) vs shear capacity according to the Sezen formula (cyan). 

The obtained results seem to be consistent with the experimental evidence. In fact, the 

facility did not show brittle crisis, but cracks at the column bases: this is supported by 

the analysis results. In addition, the fall of the cladding corner element, as well as the 

internal cracks visible between roof tiles are linked to displacements caused by the 

inadequacy of frictional connections. 

3.8.5 CASE STUDIES RESULTS COMPARISON 

Comparison between D1 and D2 buildings analyses results is here reported. The 

importance of this evaluation lies in the attempt to justify the real behavior of the 

structures. As explained in §3.8.1, D1 and D2 buildings were located 200 meters apart. 

They were characterized by the same plan orientation. Therefore it is absolutely 

legitimate to ask why they showed different behaviors afterwards the same earthquake. 

The question is further supported by the fact that the two facilities are not only both 

characterized by the same structural typology, but have been designed and built by the 

same prefabrication company. This means that the concrete precast elements have been 

produced with the same constructive details, and have been assembled together 

following the same construction technique. The first important note concerns the fact 

that, although the two buildings were built almost 10 years apart, from the design point 

of view there is no difference. The most recent one, built in 2004, in contrast to the 

older, is regulated by the Italian DM 16/01/1996 - Technical standards for construction 
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in seismic zones. According to the considerations reported in the second chapter of the 

present thesis, at the time of the D2 building design, the site of construction resulted 

already inserted in seismic zone 3. However, as already mentioned previously, because 

of this seismic zonation becomes mandatory only after 23
th
 October 2005, no seismic 

resistance features have been applied. The loads analysis differs for the presence, in the 

most recent facility, of the wind actions, evaluated as vertical actions. From a 

geometrical point of view, the D2 building appears to be much larger than the other. In 

fact, the plan area is four times larger. This explains the choice of larger elements, able 

to cover high spans equal to about 22 meters. D2 building’s roof was in fact 

characterized by 100 cm high tiles. In the case of D1 roof, elements 70 cm high have 

been adopted. 

 

 
(a) 

 
 

(b) 
Figure 75 - Roof tiles adopted for D1(a) and D2(b) buildings. 

Principal beams adopted as tiles support have to cover roughly the same spans (i.e. 10 

meters) for the two buildings. D1 principal beams are H 100 cm high cross section 

beams (Figure 76). For D2 building, principal beams were 70x50 rectangular beams. 
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Figure 76 - D1 facility H cross section principal beams. 

As regards the column, in the case of D1 building only 50x50 cross section elements 

have been used, while D2 building was characterized by both square and rectangular 

cross section columns. For both cases, the designer used the same reinforcement bar 

diameters and the same stirrups spacing. Also the longitudinal reinforcement reduction 

is present in both structures. The two case-study buildings are characterized by an 

intermediate roof which partially cover the whole plan. The presence of an “L” 

appendix in the case of D2 building make it plan-irregular. In the following table a 

comparison between D1 and D2 building features is reported.  

 

 D1 building D2 building 

Year of Building 1995 2004 

Design Code D.M. 14/02/1992 D.M. 16/01/1996 

Plan [m] 50x20 90x45 

Maximum Span [m] 19.5 22 

Total Height [m] 7.70 8.80 

Roof tiles  V-shaped beams 

(h=70) 

V-shaped beams 

(h=100) 

Principal beams H beams (h=100) 50x70 beams 

Columns 50x50 50x50; 50x60 

Long. bar diameter 

[mm] 

20 20 

Stirrups 6/20" 6/20" 

Table 16 - Main D1 and D2 buildings general features. 
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According to the nonlinear analysis, one of the most significant results is linked with 

the buildings principal periods. In fact, the first period of vibration of the D1 structure 

is 0.94 seconds (Table 17), slightly greater than the D2 building fundamental period 

(i.e. 0.83 sec). This result was expected given that the D1 building total height, which 

is smaller than the D2 building one. 

 

 D1 building D2 building 

MODE T [sec] T [sec] 

1 0.94 0.83 

2 0.93 0.74 

3 0.75 0.73 

4 0.41 0.61 

Table 17 – D1 and D2 model periods of vibration. 

This aspect, according to the recorded Emilia spectra, could be relevant in E-W 

direction, where a difference of 0.1 sec in the range of 0.5-1 sec could mean a 

difference of maximum acceleration equal to about 0.1g (see Figure 57). This first 

explains the highest shear demand values for the D2 building in that direction obtained 

from the analyses. 

Furthermore, considered the maximum values of mass belonging to the single column 

(i.e. from 200 kN for D1 to more than 400 kN for D2), a variation of maximum 

acceleration as the one above proposed can be decisive for the column capacity. On the 

basis of these considerations, is possible to justify the occurrence of higher shear forces 

on the central columns of the D2 structure. In particular, as already previously 

mentioned, the columns most stressed are those characterized by the further presence 

of the industrial crane. 

One of the most relevant differences between the facilities concerns the columns cross 

section: D1 building is characterized only by square 50x50 cross section columns. 

Therefore, in order to make a comparison between the different seismic behaviors of 

the two structures, in the following, a parallelism between comparable columns is 

showed. The considered columns, showed in Figure 77, are characterized by the same 

50x50 cross section, and by the same amount of reinforcement. 
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D1 building D2 building 

  
 

Figure 77 - Comparison between similar D1 and D2 building columns. 

In the following a comparison in terms of recorded shear and axial force is presented. 

In Figure 78, recorded shear in N-S direction is considered. As is possible to check 

from the diagram, D1 1_1 column is subjected to smaller shear forces, while for the D2 

columns, the shear values are very similar. Between the signals, also a different 

frequency content is showed. The difference between the maximum shear values for 

the two building columns in N-S direction is of about 40%. 

 

Figure 78 - Columns comparison: recorded shear in N-S direction. 

In Figure 79 the same comparison is showed, taking into account the recorded shear 

signals in E-W direction. In this direction the signals are much more similar, showing a 
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good correlation in terms of frequencies and in terms of maximum recorded shear. In 

this case the difference between the maximum recorded shear values is of about 25%.  

 

Figure 79 - Columns comparison: recorded shear in E-W direction. 

One of the most important consideration to make concerns the differences in axial 

loads. D1 and D2 buildings differ in plan dimensions and in total height. In general, 

because of the greater spans, D2 building is characterized by heavier beams and tiles. 

Therefore, the buildings relative columns are subjected to different axial loads. 

Furthermore, in the case of D2 building, the central columns row is even more loaded 

because of it have to support the two bays tiles. This is clearly showed in Figure 80, 

where the recorded axial forces signals is plotted. If for the D1 1_1 and the D2 1_1 

columns the difference is of about 60 kN, for the D2 2_1 the recorded axial forces is 

almost double, if compared to the previous. It must be emphasized that for the D2 2_1 

column, the signal is characterized by high oscillation amplitudes, with minimum shear 

values close to the minimum shear forces recorded for the other columns. This is really 

relevant because, as explained in the previous paragraphs, the axial stress has a great 

influence in determining the columns shear capacity. According to Response2000, 

which is based on the MCFT theory, considering a concrete element subjected to 

compressive and bending stress, the lower is the axial force, the smaller is the shear 

capacity. This is also true in the case of the other shear capacity models considered. 

Therefore, in view of the great difference in terms of recorded shear, the different 

0 5 10 15 20 25 30
-80

-60

-40

-20

0

20

40

60

80

Time [s]

S
h

ea
r 

E
-W

 [
k

N
]

 

 

D1 1-1

D2 1-1

D2 2-1



Seismic Behavior of RC Precast Buildings: The Case Of Emilia Earthquake 

 

 

96 

columns shear capacity is about the same. Hence, the D2 building columns had to 

withstand great shear forces due to higher masses, with a shear capacity more 

appropriate to lighter facilities such as the D1 building. 

 

Figure 80 - Columns comparison: recorded axial forces. 

3.8.6 D1 BUILDING CLADDING PANELS INFLUENCE 

As the last starting point of reflection for this thesis, in this paragraph the influence of 

the horizontal cladding panels on the seismic behavior of the D1 building numerical 

model is studied. Its regularity and simplicity makes it a very common industrial 

building model. Therefore, it seemed interesting to carry out this study. In particular, a 

comparison has been made between the bare structure behavior and the infilled model 

one. 

(Ercolino et al., 2012) made an interesting study to assess the influence of vertical 

cladding panels on the seismic behavior of precast buildings. A parametric study is 

carried on considering a number of 288 case studies, in order to find a good correlation 

between some important geometrical building features and the principal period of 

vibration. Results of the study reveal a great influence of vertical cladding panels on 

the vibration periods of the buildings: their influence results in a reduction of about 

75%. Moreover, the study found out that the Italian code simplified formulas to 
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evaluate the principal vibration period seems to underestimate the bare buildings 

period and highly overestimate the infilled structures one. 

Hence, the influence of horizontal cladding panel on the seismic response of the 

building is investigated. As widely explained above, cladding panels are anchored to 

the building principal elements by means of steel corner braces, with bolt and nut 

system (Figure 81). 

 

Figure 81 - Cladding panels anchoring system. 

These steel braces act as hooks and allow the panels anchoring. The anchor points are 

located at the panels extremities, and coincide with the steel shelves positioned on the 

concrete columns. An infill building model has been implemented in OpenSees (Figure 

83). Panels are modeled as quadrangular element constituted by unidimensional beam 

elements. The vertical elements as rigid beams have been implemented, while the 

panels geometric and static features are associated to the horizontal segments. As it is 

possible to verify from the photos and from the design drawings, the panels anchor 

system is made of steel elements which inhibit slips and rotations. Generally, precast 

beams and columns are produced with the predispositions for the panels anchoring. 

Thus, the steel anchoring elements are an integral part of the structural concrete 

elements.  

Because of the importance of the constraints adopted to link the panels to the principal 

building elements, two different constraint types are used: in the first case, the panels 

are linked to the structure with constraints that do not allow relative slip between panel 

and column (semi-rigid constraints), but only relative rotations out of the panel plane; 
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in a second phase rigid constraints are used (rigid constraints). Two different panel 

types have been modeled (Figure 82): type 1 is 1.4 meters height, type 2 is 2.5 meters 

height. Both panel typologies are characterized by 0,2 m thickness. 

 

 

Figure 82 - Case study front elevation: simple scheme of panels type 1 and 2. 

The purpose of this modeling phase is to investigate the horizontal cladding panels 

influence on the whole building seismic behavior. Therefore, modal analysis has been 

conducted to evaluate the periods of vibration of the first four modes of vibration. 

 

Figure 83 - Infilled building model in OpenSees. 

 

3.8.6.1 RESULTS ANALYSIS 

Ercolino et al. in the conducted study proposes a simplified formula to obtain the infill 

building principal period starting from simple geometric facility features. The formula 

is: 
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where   is the building total height and    is the principal plan dimension of the 

building. 

For the considered building, the formula proposed by Ercolino et al. gives a principal 

vibration period equal to 0.09 seconds. However it must be considered that the 

proposed formula has been calibrated considering vertical cladding panels. 

In Table 18 the modal analysis results are reported. The results obtained using rigid 

constraints are compatible with the Ercolino et al. proposed formula for the principal 

period of vibration. Semi-rigid constraints result in the same principal vibration period, 

with a sensible reduction for the second, third and fourth vibration periods. 

 

 BARE 

STRUCTURE 

SEMI-RIGID 

CONTRAINTS 

RIGID 

CONSTRAINTS 

MODES T [sec] 

1 0.83 0.83 0.10 

2 0.74 0.36 0.10 

3 0.73 0.27 0.10 

4 0.61 0.27 0.09 

Table 18 - Modal analysis results for the base structure and for the infill model structure. 

As already mentioned above, this could be a preliminary study for future 

developments, such as the study of a numerical model capable of predicting panels 

collapse due to the earthquake. 
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Chapter 4 CONCLUSIONS 

The Emilia earthquake occurred on 20 and 29 of May 2012 demonstrated one more 

time the high vulnerability of concrete precast buildings. The low attitude in adsorbing 

horizontal seismic forces is associated essentially to the inadequateness of the building 

codes used during design and construction phases. 

Some studies concerning the seismic response of industrial buildings highly damaged 

during the mentioned earthquake are described in this thesis. Five existing buildings hit 

by the earthquake, accompanied by their final designs, are firstly catalogued. A 

classification is carried out, based on facilities geometrical and mechanical details, as 

well as in terms of reported damages because of the earthquake. 

The considered facilities have been constructed between 1990 and 2011 and, for four 

out of five cases, have been designed for vertical loads only. Overall, the reported 

damages have been: (a) breaking of infill precast panels; (b) plastic hinge development 

at the column bases; (c) columns loss of verticality; (d) partial collapse due to the loss 

of support of precast tiles or beams on columns. 

A principal case-study building is individuated, as the most damaged among the 

analyzed ones: the building, composed by a principal structure and an appendix, 

exhibited a partial collapse because of the failure of two central columns. The study of 

photographs taken immediately after the earthquake allows identifying the critical 

issues of the building, in order to well estimate the collapse causes. It is found that the 

failure of the columns occurred where there is a decrease of longitudinal 

reinforcement. The presence of an industrial crane next to the collapsed columns 

emphasize its significant influence in the failure mechanism. Columns did not show 

plastic rotations, denoting that the collapse had a brittle nature. The seismic response of 

the building is evaluated according to the current codes. In particular, nonlinear static 

and dynamic analyses have been performed. The whole research program has been 

conducted with the intention to use the real earthquake evidences in order to validate 

capacity models currently available in the technical literature. 

A tridimensional building model in OpenSees has been implemented, in order to 

perform nonlinear codes procedures to evaluate the seismic response of the structure. A 

lumped plasticity model has been implemented, considering a multi-linear moment-

rotation relationship. Because of their frictional nature, element connections as internal 

hinges are modeled. Geometric eccentricities have also been considered. Mechanical 
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and geometric features of the building from the final design have been taken. Nonlinear 

static analysis has been performed in both horizontal directions considering that rigid 

diaphragm condition is not ensured. Thus, the analysis has been conducted considering 

two different methods in order to evaluate the displacement control point: one is based 

on geometric considerations, the other follows the Casarotti procedure defined in its 

Adaptive Capacity Spectrum Method (ACSM). Both procedures follows the N2 

method in order to evaluate the seismic demand. Nonlinear dynamic analysis 

considering seven bidirectional acelerograms have been also performed. 

After each analysis, checks in terms of both fragile and ductile mechanism are made. 

Hence, capacity-demand comparisons have been carried on. Because of shear poor 

detailed columns, with the combined presence of 90 degree hooks stirrups and axial 

force, Sezen-Mohele capacity model has been considered to estimate the columns shear 

resistance. Biskinis formula, adopted by EC8 to predict RC elements shear resistance, 

is also implemented. Finally, since the most widespread literature shear capacity 

models derived, in large part, from experimental evidences on ordinary concrete 

elements, a more refined modeling has been used. In fact, software Response 2000 has 

been used, which is based on the Modified Compression Field Theory by Collins and 

Vecchio. To estimate the connections response, given its features, simple frictional 

checks are conducted comparing shear and friction forces on connections, considering 

literature values for the friction coefficient. Since EC8 procedure to estimate total 

chord rotation capacity under cyclic loading for industrial precast concrete building 

with cantilever columns can highly overestimate the real rotation capacity, the more 

conservative Fischinger approach has been adopted. 

Results deriving from the code analyses are firstly described. Nonlinear analyses 

results, both static and dynamic, applied according to the NTC code, reveal the 

frictional connections to be not sufficient to withstand horizontal seismic forces. 

Comparison between code nonlinear static and dynamic analyses results shows the 

former to be more conservatives. For instance, shear failure cases just in nonlinear 

static analysis results are showed. Furthermore, comparison between the considered 

shear capacity models shows that the Biskinis formula tends to overestimate the shear 

resistance of slender columns. Moreover, technical literature is lacking in guidance on 

selection of the displacement control point for pushover analysis in the case of flexible 

roof structures. 

Secondly, in order to justify the real damages suffered by the building during the 

Emilia earthquake occurred on the 20, May 2012, and validate the implemented model, 

dynamic time history analysis have been performed using as seismic input one of the 

Italian RAN station recorded accelerograms during the first Emilia mainshock. The 

vertical component is also considered. The crane, with its static features, as a hinged 
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beam is modeled and has been positioned where it was during the earthquake. Results 

of analysis show strikingly how the crane has been decisive in the breaking 

mechanism, justifying the collapse of the central columns. In this regard, the model 

results comparison with and without the crane is essential. Therefore, neglecting the 

crane in the model could represent a critical issue in validating the results. 

Finally, a second case-study facility has been analyzed, following the same modeling 

features above described. In particular, the considered building, with plan dimensions 

equal to about one third of the above mentioned building, was located less than 200 

meters from the latter one. Although it was characterized by the same structural 

features of the first, no serious damages were reported because of the earthquake. A 

comparison between similar columns belonging to both buildings show the second 

case-study building to be characterized by lower masses, resulting in lower shear 

forces on the columns. Furthermore, the highest axial loads on the first building 

columns are correlated with very high signal amplitudes, with minimum values close to 

the second building columns axial values. Hence, the two facility similar columns are 

subject to the same shear capacity, even if the shear demand on the first building is 

much greater. This explain the lower damage suffered by the second facility. The good 

theoretical-experimental correlation confirms, also in this case, the validity of the 

adopted modeling. As a last reflection, the influence of horizontal cladding panels on 

the periods of vibration of the second case-study building is evaluated. Horizontal 

cladding panels have been modeled as quadrilateral beam elements anchored to the 

principal building elements by means of rigid and semi-rigid constraints (out-of-plane 

rotations allowed). The influence of panels on the principal vibration period using 

semi-rigid constraints is negligible. The use of rigid constraints results in a great 

reduction of the vibration periods. This result could be used as the starting point for the 

improvement of numerical modeling capable to take into account the cladding panels 

influence and their collapse during the earthquake. 
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