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Abstract  

The main objective of the thesis is to explore the possible “cross-talk” between the brain, 

intestine and specific foods components (i.e. dietary fibres and blueberry polyphenols). This 

objective will be achieved through a short-term study and a long-term intervention in humans, 

with the non-invasive analysis of saliva samples and breath compositions. 

The short-term study aimed at evaluating the impact of dietary fibres on salivary NAEs 

during mastication and in the post-prandial phase. Three types of biscuits enriched with 3% 

barley β-glucan (βGB) or whole-wheat bran (WWBB) or without dietary fibre (control, CB) 

were developed. A crossover randomized human study with eighteen healthy and fasting 

participants was carried out. Saliva samples from subjects in a resting condition, upon 

mastication of parafilm and one of the three biscuits were collected. Subsequently, the amount 

of biscuits consumed in an ad-libitum breakfast was measured and post-prandial saliva 

samples, blood glucose, and questionnaires of appetite and food liking were collected over the 

following two hours. Data demonstrated that salivary NAEs concentration increased only 

upon food mastication instead of mastication itself, independently from dietary fibre 

composition of the food. The type of biscuits did not influence individual appetite nor post-

prandial blood glucose; on the contrary it influenced the persistence of NAEs in saliva over 

30 min after consumption. Future studies will clarify the mechanisms behind this finding and 

the role of salivary NAEs in food liking and appetite cues after food consumption.  

The aim of long-term intervention study was to test the influence of a one week-consumption 

of blueberries on the volatile organic compounds (VOCs) of breath and saliva in humans. 

Fourteen healthy volunteers participated in this three-week single blind study with a two-

week cross over design. After a one-week of baseline period with a low polyphenol-diet (BL), 

subjects were grouped randomly to continue the same diet  (control diet, CT) or to add 200 

g/day of fresh blueberries (intervention diet, INT) for one week. In the following week they 

switched to the other arm. At the end of each week, fasting subjects reached the laboratory to 

collect saliva samples and to have on-line analysis of breath by PTR-ToF-MS. After INT and 

CT, difference was found neither in VOC fingerprints nor in single VOC of breath and saliva 

samples. Nevertheless, a significant correlation was shown between saliva and breath 

composition for methanol, formaldehyde, ethanol, acetone and propanol. Numerous previous 

studies focused on VOCs composition of breath of patients and of healthy subjects, but very 

few studies focused on salivary VOCs. Therefore the link found in this study between saliva 
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and breath VOCs may open a new research path to clarify the mechanisms behind the 

metabolic effect of the dietary intervention in humans. 
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1. Brain-gut axis: gastrointestinal metabolism and reward system in appetite control  

Clinicians and researchers have long recognized the link between gastrointestinal function 

and the central nervous system (CNS) (Bercik et al., 2012). Since the original description of a 

gut-brain axis related to the modulation of cholecystokinin secretion by bombesin (Banks, 

1980), the concept actually refers to any interaction between the gastrointestinal (GI) tract and 

the CNS.  

The ‘gut-brain’ or ‘brain-gut’ axis refers to a bidirectional communication system between the 

gut and the brain, depending on whether we emphasize bottom-up or top-bottom pathways. It 

is comprised of humoral pathways, which include immune mediators such as cytokines, gut 

hormones, and neuropeptides as signalling molecules, and neural pathways, such as the 

enteric nervous system (ENS), vagus, sympathetic and spinal nerves (Bercik et al., 2012; 

Holzer et al., 2012). These mediators transmit information from the gut to the brain, while 

autonomic neurons and neuroendocrine factors carry outputs from the brain to the gut.  

The GI tract is a highly specialized sensory organ and represents the first site of interaction 

between ingested nutrients and the host, initiating crucial negative feedback systems aimed at 

controlling food intake and regulating energy balance partly via a gut–brain axis (Figure 1) 

(Duca et al., 2012; Sam et al., 2012). Specifically, enteroendocrine cells are located 

throughout the GI tract, where they can sense and respond to specific nutrients, releasing gut 

peptides that act in a paracrine, autocrine or endocrine fashion to regulate energy balance, 

thus controlling both food intake and possibly energy expenditure. For example, the release of 

gut hormones such as PYY, GLP-1, and oxyntomodulin (OXM) is stimulated by distension of 

the stomach and interactions between nutrients and the luminal wall of the intestine(Adrian et 

al., 1985; Sam et al., 2012).  
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Figure 1. Gut-brain axis: modulation of food ingestion. Nutrients deriving from the food 
digestion are suggested to activate G-protein coupled receptors on the intestinal 
enteroendocrine cells. This triggers the release of gut hormones and regulate energy intake at 
three sites, including brainstem, hypothalamus and the vagus nerve. Within the hypothalamus 
arcuate nucleus, the orexigenic neuropeptide Y/ agouti related peptide (NPY/AgRP) neurons 
and the anorexigenic propiomelanocortin (POMC) neurons are taken as critical conduits 
where peripheral signals are collected to change the drive to eat. Further links between 
hypothalamic nuclei and higher brain centres may regulate the hedonic aspects of food 
ingestion. Other abbreviations: arcuate nucleus (ARC), glucagon like peptide-1 (GLP-1), 
para-ventricular nucleus (PVN) and peptide YY (PYY) (Sam et al., 2012). 

It is believed that gut hormones contribute to the short-term feelings of satiety and hunger 

(Badman and Flier, 2005; Sam et al., 2012). They may reduce food intake by decreasing 

hypothalamic orexigenic signalling, and increasing anorectic signalling (Batterham et al., 

2003; Jobst et al., 2004; Sam et al., 2012). Another effect of these peptides is to mediate 

inhibitory feedback mechanisms on intestinal transit, contributing to prolonged gastric 

distension, and increased satiety between meals. Therefore, the combined CNS effects and 

‘intestinal brake’ mechanisms mediated by the gut peptides cholecystokinin (CCK), peptide 

YY (PYY) and oxyntomodulin (OXM) can facilitate the control of food intake and post-

prandial transit through the GI tract (Lin et al., 1996; Sam et al., 2012; Wen et al., 1995). 

Meanwhile, general visceral afferent signals in the vagus excite neurons that receive a host of 

gastrointestinal (GI) mechano- and chemosensory information (Travagli and Rogers, 2001) . 

The vascular supply of nerves is composed of fenestrated capillaries, thus large blood-borne 

proteins and peptides (e.g. hormones, serum albumin, IgG, the complement system) have 

direct access to the neural pathways (Broadwell and Sofroniew, 1993; Rogers et al., 1996; 

Travagli and Rogers, 2001). 

Although gut hormones can modulate GI function by acting on vagal afferents (Travagli and 

Rogers, 2001), physiological studies of the central nervous system (CNS) effects of insulin, 
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pancreatic polypeptide (PP), and peptide YY (PYY) suggest that gut hormones can also exert 

control over digestion by acting directly on neurons (Rogers et al., 1996). For instance, PP 

released exclusively from specialized pancreatic islet cells after meals can regulate pancreatic 

secretion and gastric motility by acting directly on neurons to control vagal efferent outflow 

to the viscera (Rogers et al., 1996). As it happens, “hormones” produced by the immune 

system can also dramatically affect the function of neurons that comprise the gastric 

vagovagal reflex control circuit (Travagli and Rogers, 2001). 

Moreover, recent evidence suggests that the gut microbiota, strongly participate in the gut-

brain communication, playing a key role in host physiology and metabolism, and controlling 

energy balance, at both the level of intestinal nutrient-sensing mechanisms, and, potentially, 

at the sites of integration in the central nervous system (CNS) (Duca and Lam, 2014). The 

intestinal microbiota consists of a community of bacteria that colonize the gastrointestinal 

tract after birth and persist throughout the adult life along with ‘transient’ bacteria, such as 

probiotic bacteria, which are temporarily acquired during ingestion of certain foods. The 

composition of the intestinal microbiota is established during the first few years of life and is 

likely shaped by multiple factors including maternal vertical transmission, the genetic make-

up of the individual, diet, medications including antibiotics, gastrointestinal infections and 

stress (Figure 2) (Dumas et al., 2006; Gronlund et al., 1999; Lewis and Cochrane, 2007; 

Zoetendal et al., 1998). Indeed, a well-balanced gut microbiota composition is fundamental 

for individual health status and well-being (Etxeberria et al., 2013a). In addition, to the known 

effects of intestinal microbiota and specific probiotics on mucosal and epithelial barrier 

function, there is experimental evidence to support the effects of microbes on muscle function 

(Banks, 1980; Eckburg et al., 2005; Hooper and Macpherson, 2010; Mayer, 2011; O’Mahony 

et al., 2011) and ENS function (Backhed, 2005; Hooper and Gordon, 2001; Husebye et al., 

2001; Verdu and Collins, 2004). The information is relayed to the CNS via the neural 

pathway (Dumas et al., 2006; Gronlund et al., 1999; Zoetendal et al., 1998)or humoral 

pathways (Hooper and Gordon, 2001). 
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Figure 2. Communication pathways and microbiota targets upon gut-brain axis (Bercik et al., 
2012). 

Recent evidence, mainly arising from animal models, supports the idea that microbes in the 

GI tract use signalling components in the gut-brain axis to manipulate host’s eating behaviour 

and to increase their fitness, sometimes at the expense of the host’s fitness. Microbes may do 

this through two potential strategies (Alcock et al., 2014):  

(i) Inducing cravings for foods which are utilised for enhanced colony health or, 

conversely, foods that suppress their competitors; 

(ii) Generating dysphoria until people intake foods to improve their fitness.  

Potential mechanisms for microbial control upon eating behaviour (Figure 3) includes: (1) 

microbial influence on reward and satiety pathways; (2) production of toxins that alter mood; 

(3) changes to receptors including taste receptors; (4) and hijacking of the vagus nerve, the 

neural axis between the gut and the brain (Alcock et al., 2014).  
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Figure 3. Potential mechanisms: the pathways of which gut microbes may manipulate hosts’ 
eating behaviour (Alcock et al., 2014; Amaral et al., 2008; Baraldi et al., 2009; Camilleri et 
al., 2008; Chen et al., 2011; Chiu et al., 2013; Clarke et al., 2014; Duca et al., 2012; 
Eisenhofer et al., 1997; Hill et al., 1991; Kim and Camilleri, 2000; Kortman et al., 2012; 
Medzhitov et al., 2012; Miras and le Roux, 2013; Njoroge and Sperandio, 2012; Njoroge et 
al., 2012; Raybould, 2010; Roth et al., 1985; Rousseaux et al., 2007; Sarr et al., 2012). 

Mounting evidences indicate that microbiota composition is modulated by prebiotics, 

probiotics, antibiotics, faecal transplants, and dietary changes. So, altering our microbiota 

offers a fine approach to counteract obesity and unhealthy eating behaviour (Alcock et al., 

2014). Therefore, a better understanding of the intricate host energy-regulating mechanisms 

working in the short-term and long-term period, is crucial for uncovering the possibilities 

responsible for appetite and body weight control and for potential therapeutic strategies of 

dietary intervention upon GI tract metabolism. 

2. Biological markers of gut metabolism and reward 

The gastrointestinal tract releases more than 20 different regulatory peptides working as 

hormones and modulating many physiological processes underpinning food intake (Sam et 

al., 2012). These peptide are considered as biological markers of gut metabolism and reward 

system. Among them the most studied molecules are ghrelin, CCK, PYY3-36 and OXM: 
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(i) Ghrelin is secreted from the stomach and is the only orexigenic gut hormone 

(Bewick et al., 2005; Sam et al., 2012). It can increase food intake as well as 

weight gain in rodents following administration in peripheral and in central 

(Lawrence et al., 2002; Tschop et al., 2000; Wren et al., 2000); 

(ii) CCK is a hormone produced by mucosal endocrine cells in the upper small 

intestine (Murphy and Bloom, 2006; Small and Bloom, 2004). It is released post-

prandial in response to saturated fats, long chain fatty acids, amino acids and small 

peptides that would normally result from protein digestion (Liddle et al., 1985; 

Rehfeld et al., 2003). Data suggest that CCK reduces food intake and increases the 

perception of fullness and it may play a role in acute rather than long-term energy 

homeostasis (Lieverse et al., 1995; Sam et al., 2012); 

(iii) PYY3-36, an endogenous form of another gut peptide PYY, has anorectic effects on 

satiety and central control of appetite and inhibits food intake in humans 

(Batterham et al., 2003). 

(iv) OXM is also a product of post-translational processing of preproglucagon in the 

intestine and the CNS (Holst, 1997; Small and Bloom, 2004). In addition, OXM 

delays gastric emptying and decreases gastric acid secretion (Schjoldager et al., 

1989), and reduces food intake (Cohen et al., 2003; Sam et al., 2012). 

A number of other gut-derived peptides have been found to control food intake, however, the 

physiological role of them in the regulation of food intake and energy homeostasis still 

remains unclear.  

Besides gut peptides, another class of compounds that was recently shown to influence food 

intake is that of endocannobinoids (eCBs) and endocannabinoid-like (eCB-like) compounds 

N-acylethanolamines (NAEs). ECs are endogenous compounds that bind to the cannabinoid 

receptors CB1 and CB2. The major and most studied endocannabinoids are anandamide (N-

arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG), which are widely 

expressed in human and mammalian tissues. They control energy balance (i.e. pancreas, 

muscle, gut, adipose tissue, liver, and hypothalamus) and have a broad range of physiological 

effects, including regulating feeding behaviours and metabolism (Geurts et al., 2014; Kleberg 

et al., 2014; Matias and Di Marzo, 2007). The role of the eCB system in normal conditions is 

to facilitate energy intake and storage, which can promote obesity in pathological situations 

(Geurts et al., 2014; Pagotto et al., 2006). Together with other pharmacological effects, such 

as relaxation and analgesia, the eCBs intersect with many areas of biochemical and medicinal 
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research, in particular for obesity, pain and drug addiction (Kleberg et al., 2014; Makriyannis 

et al., 2005).  

Besides those ‘real’ eCBs, some other endogenous NAEs, such as oleoylethanolamide (OEA), 

palmitoylethanolamide (PEA), and linoleoylethanolamide (LEA), are widely distributed in 

animals, but the concentrations differ between tissues and species (Hansen, 2013; Kleberg et 

al., 2014). The structural resemblance of the NAEs to the eCBs makes them players in the 

eCB system, where they can interfere with the actions of the true eCBs. Structural analogues 

in several cases engage the same synthesizing and degrading enzymes and indirectly interfere 

with the eCB system, through an entourage effect. Moreover, NAEs have pharmacological 

actions through noncannabinoid receptors, which are particularly interesting in a nutritional 

and metabolic context. At present, NAEs are generally believed to have a signalling function 

in the small intestine, where they have been associated with a regulatory role in the control of 

food intake linking intestinal responses to nutrients with the appetite centre of the brain; a 

process mediated via activation of the transcription factor peroxisome proliferator activated 

receptor alpha (PPARα) (Artmann et al., 2008; Diep et al., 2011; Fu et al., 2003; Lo Verme et 

al., 2005). Additionally, NAEs are also activators of other receptors, for example, GPR119 

(Kleberg et al., 2014; Overton et al., 2006), a receptor found in both the intestine and pancreas 

(Kleberg et al., 2014; Odori et al., 2013), as well as GPR55, and the vanilloid receptor (Geurts 

et al., 2014; Ho et al., 2008; Hoareau et al., 2009; Kleberg et al., 2014; Muccioli et al., 2010; 

Ryberg et al., 2007). Furthermore, the concentrations of eCBs and NAEs in plasma could be 

impacted by food palatability during the cephalic phase response (CPR), thus 2-AG and 

pancreatic polypeptide can be taken as biomarkers of food liking (one type of the food reward 

in eating behaviour) (Mennella et al., 2015a). In general, eCBs and NAEs are associated with 

food wanting (referring to appetite, i.e. the disposition to eat) and food liking (referring to 

palatability, i.e. the pleasure derived from eating a provided food) (Havermans et al., 2009). It 

is worth of note that chewing behaviour is linked to food liking, therefore oral processing can 

affect the sensory sensations in humans (Jeltema et al., 2015). For instance, mastication could 

enhance specific sensations through changing the intensity of flavours released from foods 

(de Wijk et al., 2006; de Wijk et al., 2008). However, very few investigations have been done 

analysing the impacts of dietary fibre on mastication and post-prandial salivary response, 

which may correlate to both food liking and appetite. 

In addition to recent data showing the impact of the eCB system on gut barrier regulation, 

numerous reports have demonstrated that the altered eCB system homeostasis observed in the 
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gut and adipose tissue may be directly associated with specific changes in the composition of 

the gut microbiota (Bluher et al., 2006; Geurts et al., 2014; Muccioli et al., 2010). For 

instance, it was recently suggested that the regulation of the gut microbiota or the blocking of 

CB1 with an antagonist, impacted the gut barrier integrity and could reduce low-grade 

inflammation (Muccioli et al., 2010).  

Certain gas species are produced during the lifetime of the microbiome as by-products of their 

metabolic activities, as shown in figure 4 (Audrain et al., 2015; Nicholson et al., 

2012)(Audrain et al., 2015; Nicholson et al., 2012). It is becoming increasingly understood 

that these gas species affect both directly and indirectly the status of the gut and subsequently 

the health of the human. These gas species may be used as markers to assess gastrointestinal 

functions and the treatment of gastrointestinal-related diseases as well as many other illnesses 

that are affected by gut states (Carbonero et al., 2012; Ou et al., 2015). Consequently, 

examining the metabolites of gut microbiota, such as volatile organic compounds (VOCs), 

could be considered as non-invasive options for assessing the modulations of gut microbiome 

and arose many interests in medical and health researches. 

 

Figure 4. The volatile organic compounds (VOCs) released by bacteria fit six chemical 
classes, including hydrocarbons (I), ketones/alcohols (II), acids (III), sulfur compounds (IV), 
nitrogen-containing compounds (V) and terpenes (VI). Inorganic compounds are grouped in 
the grey box at the top of the diagram. Synthetic representation of VOCs could impact 
bacterial behaviour (Audrain et al., 2015). 

Audrain et al. 223

Figure 1. Chemical classes of volatile compounds released by bacteria. Synthetic representation of volatile compounds able to influence at-a-distance bacterial be-
havior and discussed in the review. The structure of biologically active organic volatile compounds are regrouped in six chemical classes, including hydrocarbons (I),
ketones/alcohols (II), acids (III), sulfur compounds (IV), nitrogen-containing compounds (V) and terpenes (VI). Inorganic compounds are grouped in the gray box in the
upper part of the diagram.

organisms, recent studies have revealed the role of BVC in bac-
terial interactions in various environments including soil, ani-
mal and plant microbiota, and biofilms. The aim of this review
is to present our current knowledge of the impact of volatile
molecules released by bacteria upon bacterial behavior, includ-
ing their effect on the host during infectious processes, and po-
tential applications in clinic or industry.

NATURE AND BIOSYNTHESIS OF BVC
Bacteria produce and emit highly diverse inorganic and organic
volatile compounds. In this section, we will present different
chemical subclasses and focus on biologically active BVC (Fig. 1).
For more details on the nature and biosynthesis of BVC, see
Schulz and Dickschat (2007).

Organic compounds

Bacterial volatiles compounds of organic origins include several
chemical classes such as fatty acid derivatives (hydrocarbons,
ketones, alcohols), acids, sulfur and nitrogen-containing com-
pounds and terpenes.

Hydrocarbons
Linear-chained hydrocarbons likely derived from products of
the fatty acid biosynthetic pathway via two routes either the
‘elongation–decarboxylation’ or the ‘head-to-head condensa-
tion’ pathways (Ladygina, Dedyukhina and Vainshtein 2006).
While short-chain alkanes (from decane to tetradecane) are oc-
casionally found in microbes, longer hydrocarbons such as hex-
adecane are particularly abundant in cyanobacteria, which are
also known for their ability to synthesize branched hydrocar-
bons (Tellez, Schrader and Kobaisy 2001; Ladygina, Dedyukhina
and Vainshtein 2006).

Ketones/alcohols
Methyl ketones are produced via decarboxylation of fatty
acids. Acetoin (3-hydroxy-2-butanone) and its oxidized form
2,3-butanedione are derived from pyruvate fermentation un-
der anaerobic conditions (Ryu et al., 2003). Acetolactate syn-
thase catalyzes the condensation of two pyruvate molecules
into acetolactate, which is decarboxylated to form acetoin,
and a further oxidative step leads to 2,3-butanedione for-
mation. The specific environmental and cell-life-cycle condi-
tions that regulate acetoin and 2,3-butanedione syntheses are
still unclear.
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Many microorganisms in the GI tract satisfy their energy needs predominantly through 

fermentation of undigested carbohydrates (e.g. dietary fibres, polyphenols and melanoidins), 

with the subsequent production of short-chain fatty acids and certain gas species including 

carbon dioxide, hydrogen, and methane (Nicholson et al., 2012; Tagliazucchi and Bellesia, 

2015; Vitaglione et al., 2012). Aromatic, nitrogen-containing, and other VOCs, such as 

methanethiol and dimethyl sulfide, are also generated by certain microorganisms in the gut, 

deriving from the fermentation of peptides and amino acids (Smith and Macfarlane; Thorn 

and Greenman, 2012). A proportion of the gas produced from microbial fermentation is 

absorbed into the systemic blood circulation and eventually excreted by the lungs (Shin, 

2014). The intestinal gas concentrations in the excreted breath are low and depend on many 

physiological parameters, resulting in inconsistencies between the detected composition of 

breath gases and those generated in the gastrointestinal tract (Ou et al., 2015; Sahakian et al., 

2010). 

In fact besides breath, a new approach may be to follow the metabolism of the intestinal 

microbiota by salivary VOCs analysis. Human saliva is a clear, slightly acidic (pH = 6.0 - 7.0) 

biological fluid containing a mixture of secretions from multiple salivary glands, including 

the parotid, submandibular, sublingual and other minor glands beneath the oral mucosa as 

well as gingival crevice fluid (Spielmann and Wong, 2011). Like blood, saliva is a complex 

fluid, containing approximately 99% water with minerals, nucleic acids, electrolytes, mucus 

and proteins such as enzymes, cytokines, immunoglobulins, mucins and other glycoproteins 

(De Almeida et al., 2008; Rehak et al., 2000; Zelles et al., 1995). These salivary constituents 

can be broadly classified into two groups: (1) constituents that enter saliva from the plasma 

and (2) constituents that are produced locally by the salivary glands. Reliable measurement of 

blood-borne constituents assumes a constant saliva/plasma ratio (SPR), which implies that the 

concentration in saliva truthfully follows intra- and inter-individual variations in plasma 

(Bosch, 2014). As one of the most complex, versatile, and important body fluids, it supplies a 

wide range of physiological needs and it is also called the “mirror of the body” or “a window 

on health status” (Wang et al., 2014).  

3. Foods in gut-brain axis mechanisms: the effect of dietary fibre and polyphenols 

Visceral information and gustatory could be taken as chemical senses during a meal (i.e. in 

short term). Thus they are cues to recognize food intake and to determine the nutrients 

stimulation on sensory organs. On one hand, the brain realizes food ingestion and predicts 

efficient digestion, to regulate each nutrient concentration in blood and in brain as well as to 
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maintain their levels within normal limits. Moreover, visceral senses for each nutrient from 

the digested products in the alimentary tract can also be used as intake signals of nutrients to 

notify the brain through inner body sensory organs (Nakamura et al. 2013; Torii et al., 2013).  

On the other hand, changes of glucose and free fatty acid concentration in the blood and 

related hormones secreted from specific endocrine tissues can also primarily be monitored by 

chemical senses (i.e. stimulation by nutrients) for the control of appetite and satiety as a major 

marker for energy balance in the body (Table 1, Orr and Davy, 2005). For example, 

metabolism of polysaccharides results in the production of short-chain fatty acids, such as 

butyrate and propionate, which provide an important source of nutrients to the gut microbiota 

as well as regulatory control of the host digestive system. This impact upon host metabolism 

is also seen in the ability of the prebiotic inulin to influence production of relevant hormones 

such as glucagon-like peptide-1, peptide YY, ghrelin, and leptin (Di Mauro et al., 2013). 

However, these chemosensory mechanisms remain poorly understood. Previous studies 

suggested that taste signalling mechanisms known from the oral epithelium also operate in the 

mucosal epithelium. Several nutrient-responsive G-protein coupled receptors (GPCRs) have 

been identified in enteroendocrine cells (EEC) including the sweet-taste responsive 

T1R2/T1R3 heterodimer or GPR120, responsive to free fatty acids (FFAs) (Steinert and 

Beglinger, 2011).  

Table 1. Peripheral hormones regulating energy intake, impact on energy intake, and 
influence of diet. 

Hormone Predominant 
secretion site  

Effect on 
energy intake  

Impact of dietary macronutrient composition  

Ghrelin  Stomach  Increase Decrease with fibre (psyllium) supplement a  
Decrease with dietary carbohydrate consumption b  

Peptide YY3-36 
(PYY3-36) 

Distal GI tract  Decrease Increase with dietary fat ingestion and increase with 
dietary protein relative to other macronutrients c  

Cholecystokinin (CCK) Upper GI tract  Decrease Increase with dietary fibre intake d  
a: (Nedvídková et al., 2003); b: (Erdmann et al., 2003; Greenman et al., 2004; Monteleone et al., 2003; Weigle et 
al., 2003); c: (Adrian et al., 1985; Pedersen-Bjergaard et al., 1996); d: (Heini et al., 1998). 

Recent information suggested that sense of taste profile adapts to modulate the intake of 

particular nutrient groups and forms a boundary concentration to feel specific basic tastes 

such as sweetness for energy, saltiness for electrolytes, and the umami taste for protein. But 

foods without smell and/or taste are hard to either stimulate appetite or to reach satiety. 

Therefore, some food components, with their ability of influencing the tastes and overall 

palatability, may be very interesting to develop new types of foods. 

Interestingly, dietary fibres were shown to provide health benefits (e.g. cholesterol lowering 
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effect) and have an impact on food structure. The texture of food is one of the strongest 

drivers of food aversion and could impact oral processing consequently influencing food 

liking (Jeltema et al., 2015). For instance, soluble fibres (e.g. β-glucan) can form gels and 

increase the viscosity of the contents in the gastrointestinal tract (Mudgil and Barak, 2013a). 

Its gel-forming ability could be used to change food structures, which might provide different 

oral senses and stimulations through changes in the viscosity of bolus or the tastes during 

mastication.  

Similarly, polyphenols have increasingly elicited interest in the scientific community due to 

their proposed health benefits, mostly focused on their bioavailability in foods. Polyphenols 

are present in a broad range of plant foods (e.g. fruits, vegetables, herbs, seeds and cereals) as 

well as beverages (e.g. coffee, tea and wine) (Dueñas et al., 2015; Vinson et al., 2001). In 

particular, compared to many other fruits, blueberries are rich in polyphenols, for example, 

every kilo of fresh blueberry could provide 250 ~ 5000 mg of anthocyanins (Manach et al., 

2004). Passing through the small intestine without being absorbed, most polyphenols (about 

70% of the ingested dose) encounter the gut microbiota in the colon (Scalbert and 

Williamson, 2000). Therefore, the two-way mutual reaction (i.e. in long term) between the 

biotransformation of polyphenols into their metabolites by gut microbiota and the modulation 

of gut microbiota composition by polyphenols contributes to positive health outcomes. Thus 

some polyphenols may act as a prebiotic metabolite and enrich the beneficial bacteria (Lee et 

al., 2006). Although there are many studies on the in vivo bioavailability of polyphenols, the 

mutual relationship between polyphenols and gut microbiota is not fully understood (Ozdal et 

al., 2016). Furthermore, the wide variety of polyphenol compounds and their food sources, as 

well as their coexistence with other bioactive compounds within a normal diet make it 

difficult in understanding of the interactions between dietary polyphenols and gut microbes 

(Valdés et al., 2015).  

4.Current research  

Saliva is now considered as an excellent diagnostic tool has it contains a large array of 

metabolites and low molecular weight compounds such as VOCs, eCBs, NAEs, selected 

pesticides, and some specific trace elements (Michalke et al., 2014). Salivary diagnostics 

contribute a non-invasive, fast, safe and inexpensive approach for disease detection. In 

addition, discovery of salivary biomarkers that could be used to scrutinize health and disease 

surveillance has advanced its diagnostic value for clinical applications. Availability of 

emerging metabolomic techniques gives optimism that saliva can eventually be reliably used 
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for non-invasive clinical analysis (Zhang et al., 2012). Hence comprehensive salivary 

metabolome will be an important resource for researchers who are studying metabolite 

chemistry, such as eCBs, NAEs and VOCs, etc. 

Individual members of the microbiota, and consortia of those microbes, have been shown to 

be highly dependent on the nutrient composition of the diet (Alcock et al., 2014). Many foods 

commonly found in the normal diet are rich in polyphenols or in dietary fibre. However, little 

is known about the impact of these ingested polyphenols and dietary fibres upon the human 

intestinal microbiota. Studies involving humans enable the direct analysis of the interactions 

between food and microbiota, but in vivo intervention trials have practical and ethical 

limitations (Hervert-Hernández and Goñi, 2011). Up to now, most of the studies have focused 

on single polyphenol molecules and selected bacterial populations while only a few studies 

have examined the in vivo impact of dietary polyphenols on the human gut microbiota 

(Dueñas et al., 2015; Vitaglione et al., 2015).  

To the best of our knowledge, very few studies have been performed in view of taking VOCs 

as metabolites to investigate effects of rich polyphenols diet on human health, although many 

have claimed that the positive impact through evaluating biomarkers in blood, faeces and 

urine. Furthermore, it makes sense to discovery VOCs biomarkers derived from intervention 

of polyphenols as well as to discuss any possible correlations among VOCs in saliva and 

breath, gut microbiota and human physiological metabolism. Therefore, it is a very promising 

direction and deserves a better understanding.   
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Abstract  

The primary objective of this study was to evaluate whether the amount and type of food 

dietary fibre influenced salivary concentrations of N-acylethanolamines (NAEs) and glucose 

upon food mastication and in the post-prandial phase. 

Three types of biscuits enriched with 3% barley β-glucan (βGB) or whole-wheat bran 

(WWBB) or without dietary fibre (control, CB) were developed. A crossover randomized 

human study with 18 healthy and fasting participants collecting saliva samples in a resting 

condition, upon mastication of parafilm and one of the three biscuits was carried out. 

Subsequently, the amount of biscuits consumed in an ad-libitum breakfast was measured and 

post-prandial saliva samples, blood glucose, appetite, and food liking were collected over the 

following two hours. 

The concentration of oleoylethanolamide (OEA) in saliva collected upon food mastication 

was ~222 and ~138 folds higher than that present in saliva collected during parafilm 

mastication or in a resting condition, respectively. Subjects consumed always 75g of biscuits 

at breakfast. Salivary OEA and linoleoylethanolamide (LEA) peaked at 15 min only after CB 

and WWBB and returned to baseline within one hour after breakfast. No difference of biscuit 

type on post prandial blood glucose was recorded.  

Data demonstrated that NAEs were released in saliva during biscuit mastication, 

independently from dietary fibre composition. However, the type of dietary fibre could 

influence the persistence of NAEs in saliva over 30 min after consumption. Future studies 

will clarify the mechanisms behind this finding and the role of salivary NAEs in food liking 

and appetite cues after food consumption. 

Keywords: N-acylethanolamines, oleoylethanolamide, saliva, dietary fibres, β-glucan, 

appetite 
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1. Introduction 

Satiation is the satisfaction of appetite developing during eating and eventually resulting in 

the termination of eating (Slavin and Green, 2007; Suzuki et al., 2012). Satiation is influenced 

by a series of fine physiological factors comprised in the cephalic phase response to eating 

and including the action of homeostatic and tonic signals from the gastro-intestinal tract and 

adipose tissue as well as the reward signals (Hansen, 2014).  

Food composition and structure can modulate satiation by influencing chewing time and 

individual hedonic value of the food (Blundell and Halford, 1994; De Graaf et al., 2004). 

Among food constituents, fats and sugars are positively associated with food palatability and 

overeating (D’Addario et al., 2014; Ifland et al., 2009) whereas dietary fibres can increase 

satiation through their bulking and textural properties thus possibly beneficing the control of 

energy balance (Howarth et al., 2001; Slavin and Green, 2007). This is well documented in 

short-term studies where reduced appetite feelings and energy intake at the meal containing 

dietary fibre and to that following dietary fibre consumption were associated with the amount 

of fibre consumed and, sometimes, to its viscosity (Slavin and Green, 2007). 

However, the reduced palatability of dietary fibre rich foods is often an issue for long-term 

consumption of these products thus failing the possibility to work for weight management 

(Anne et al., 1995; Hess et al., 2011). A better understanding of the physiological factors 

underpinning sensory mechanisms may help to develop new foods being both satiating and 

palatable.  

In this context we have recently demonstrated that tasting of a food (before swallowing) 

influences plasma levels of the endocannabinoids (eCBs) - 2-acylglicerol (2-AG) and 

anandamide (AEA) -, of the congeners N-aceylethanolamines (NAEs) - oleoylethanolamide 

(OEA), linoleoylethanolamide (LEA) and palmitoyelethanolamide (PEA) – and of gut 

peptides in a manner that is dependent from the individual liking of the tasted food (Mennella 

et al., 2015a). This finding was in line with the well-known role of gustatory system on the 

cephalic phase of eating and suggested that some mediators could act during mastication and 

elicit the plasma response. 

Post-prandial variation of plasma eCBs and NAEs were also reported in the literature with 

different effect on appetite: eCBs being mainly associated with an increase and NAEs with a 

decrease of appetite (Hansen, 2014; Nielsen et al., 2004). In addition, intestinal levels of 

NAEs and AEA were correlated with the levels of the constituting fatty acids (Hansen, 2014). 
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Matias et al. (Matias et al., 2012) demonstrated that eCBs and NAEs are present in human 

saliva at a concentration dependent from people nutritional status: higher is individual body 

mass index, higher is the salivary eCBs and NAEs level. Moreover they showed no variation 

of salivary eCBs and NAEs concentration one hour after meal consumption. 

To the best of our knowledge, no studies are present in the literature about NAEs presence in 

saliva during mastication.   

In this study the hypothesis that NAEs could be formed in the mouth during food mastication 

and might influence satiation upon eating biscuits with different content and types of dietary 

fibre was tested. Moreover, the appetite sensations and liking of the different biscuits over 

two hours after biscuit consumption was monitored together with salivary NAEs and blood 

glucose. 

To this purpose, biscuits enriched with 3% barley beta-glucan (βGB), 3% whole-wheat bran 

(WWBB) and without dietary fibre (control biscuits, CB) were developed and a crossover 

randomized design protocol was performed in healthy normal weight subjects. 

2. Materials and methods 

2.1 Foods  

Three types of biscuits containing 3.0% barley β-glucan (βGB), 3.0% whole-wheat bran fibre 

(WWBB), or without dietary fibre (control, CB) were developed using a traditional recipe for 

biscuits. All the biscuits were prepared with the following ingredients purchased by local 

supermarket: flour (Divella, Bari, Italy), sugar (Eridania, Bologna, Italy), margarine (Vallé, 

Milan, Italy), yeast (PaneAngeli, Brescia, Italy). To produce βGB, 3% wheat flour were 

replaced by a barley β-glucan concentrate (GlucagelTM, containing more than 77.5% dietary 

fibre) purchased from DKSH (Miribel Cedex, France); whereas for WWBB, a whole-wheat 

bran concentrate (VITACEL, containing 97% dietary fibre) purchased from ITALI (Reggio 

Emilia, Italy) was used.	

The dough was prepared and after layering, circular biscuits with a diameter of 3.5 cm were 

formed and baked at 190°C for 15 minutes. 

2.2 Subjects selection 

The recruitment was performed among the students of the Department of Agricultural 

Sciences University of Naples, who were interviewed about their medical status, subjective 
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eating habits and food preferences (100 recipes, scores from 1 to 9). The selected subjects 

were healthy, they were not undergoing any medication or drug therapy, they usually had 

breakfast, they were not on a restrictive diet and had a normal eating behaviour as assessed by 

the Three Factor Eating Questionnaire (TFEQ) (Stunkard and Messick, 1985). 

Eligible subjects signed an informed written consent before entering this study. They were 

advised not to vary their physical activity during all the period of the study, always avoiding it 

the day before the study days. 

2.3 Study design 

The study design and protocol was approved by the Ethics Committee of University of 

Naples. 

The protocol had a crossover, single blind, randomized design. It was characterized by three 

treatments per each subject that were conducted on separate days with a 1-week washout 

period from each other (Figure 1). Each subject participated to three tests. 

 
Figure 5. Study design 

The subjects were instructed to consume a standardized dinner in the evening before the 

experimental days within the 22:00 h. On the experimental days fasting subjects reached the 

nutritional laboratory of the Department of Agricultural sciences at 08:30 h and after 10 

minutes of rest, baseline blood glucose was measured and they were asked to collect baseline 

non-stimulated and mechanically stimulated (by parafilm and by food) saliva samples.  

Immediately after, participants were offered a breakfast comprising 150 g of the same type of 
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biscuit they had just masticated and were asked to eat biscuits until they felt satisfied within 

15 min. A glass of water (125 mL) was also offered. The remaining biscuits in subject plates 

were weighted and energy intake consumed was calculated. After breakfast and 15, 30, 60 

and 120 min after breakfast, subjects were asked to collect saliva for 5 min, and to rate 

appetite feelings and actual liking of the biscuit on VAS questionnaires. Blood glucose at the 

same time points was also measured. 

2.4 Saliva sample collection and preparation for analysis 

Resting drooling was used to collect non-stimulated saliva from the oral cavity. Participants 

were asked to sit comfortably in an upright position, to have their heads down slightly to pool 

saliva in the mouth and to let saliva fall into a pre-labelled sterile container for 5 minutes. 

To collect mechanically stimulated saliva samples, the participants were asked to chew onto a 

piece of inert and tasteless paraffin film (0.29 g; PARAFILM purchased by Sigma-Aldrich, St 

Louis, USA) for 160s at a speed of one mastication per second (every 40s saliva were 

collected as performed with real biscuits, rhythm was given by a metronome) and then 

expectorate only the saliva into a pre-labelled sterile container.  

Once collected both types of sample were immediately placed on ice to minimize degradation 

of components until further processing. Saliva samples were aliquoted in pre-labelled 

Eppendorf tubes (2 mL) and frozen for storage until analysis. Saliva was separated from the 

bolus immediately after collection by centrifuging samples at 4000 rpm/min per 10 min at 4 

°C. Then the supernatant saliva was collected and treated as above. 

2.5 Salivary N-acylethanolamines measurement 

NAEs (OEA, LEA, and PEA) were simultaneously quantified in saliva samples prepared as 

described above by liquid chromatography tandem mass spectrometry (LC/MS/MS). 

Extractions were performed using the solid-phase method. Saliva samples (1 mL) were 

centrifuged at 16000×g for 5 min at 4°C. The supernatants were collected and 1 mL were 

separated in another tube and spiked with 200 µg/mL of AEA-d8 internal standards. Oasis 

HLB 1 cc, 30 mg cartridges (Waters) were preconditioned using 1 mL methanol and 1 mL 

H2O under a vacuum manifold. Samples were introduced onto the cartridges and drawn under 

gentle vacuum at a flow rate of approximately 1 mL/min. The cartridges were washed with 1 

mL 40% aqueous methanol and NAEs were eluted in 1 mL acetonitrile. The eluents were 

dried under a stream of nitrogen before reconstitution in acetonitrile/water (50 : 50 v/v) (100 
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µL) for HPLC/MS/MS analysis. To estimate the extraction efficiency, peak areas obtained for 

deuterated internal standards extracted from saliva were compared with non-extracted 

controls in 100 µL acetonitrile:water (50 : 50) (Lam et al., 2010).  

The analysis was performed using an HPLC apparatus equipped with two micropumps 

Perkin-Elmer series 200 (Norwalk, CT, USA). A Synergi Max RP 80 column, 50 × 2.1 mm 

(Phenomenex, USA) was used with flow rate set to 0.2 mL/min. Injection volume was 20 µL, 

as well as mobile phases and the gradient program were the same as reported by Lam et al. 

(2010). MS/MS analyses were performed by an API 3000 triple quadrupole mass 

spectrometer (Applied Biosystems, Canada) equipped with a TurboIonSpray source. The 

acquisition was carried out in Multiple Reaction Monitoring (MRM) in positive ion mode for 

each compound. Data acquisition and processing were performed using Analyst software v. 

1.4. Acquisition parameters (Mennella et al., 2015b).  

2.6 Appetite and food liking questionnaires 

In the appetite VAS questionnaires, three main questions (‘How satiated do you feel?’, ‘How 

full do you feel?’ and ‘How hungry do you feel?’) were asked and subjects indicated 

“satiety”, “fullness” and “hunger” on 100 mm VAS, anchored to a minimum on the left as 

“not at all” and a maximum on the right as “extremely”, the point corresponding to their 

sensations (Green et al., 1997).  

Similarly, in the food liking VAS subjects were asked to evaluate the hedonic value for 

sweetness, salty, fatty perception, consistency and overall palatability of the biscuit they had 

for breakfast (‘How do you like for sweetness?’, ‘How do you like for saltiness?, ‘How do 

you like for fatness?’, ‘How do you like for consistency?’ and ‘How do you like for overall 

palatability?’). 

2.7 Blood and salivary glucose  

Blood glucose by finger pricking and using a bedside glucometer (One Touch Ultra Easy; 

LifeScan Inc., Milpitas, CA) was measured. Accuracy of the glucometer has been evaluated 

by the manufacturer using least-squares linear regression analysis and found to be 97% 

“clinically accurate” when compared with reference (YSI2700) results. 

Salivary sugar concentration was measured using the same glucometer as previously reported 

(Neyraud et al., 2003). One sensor strip for each saliva sample (10 µL) was used. 
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2.8 Statistical analysis 

Results were expressed as means ± SEM. Statistical analyses were performed with the 

statistical package SPSS for Windows (version 16). The biochemical analyses were analysed 

and expressed as the absolute variations from the baseline to eliminate the possible effects of 

inter-subject fasting variability. The total area under the curves (AUC) for hunger, fullness 

and satiety (from baseline over 2 h from breakfast consumption) were estimated using the 

linear trapezoidal rule. 

By the analysis of variance (ANOVA) for repeated measures the subjective appetite and 

hedonic sensations recorded after the consumption of the three types of biscuit and the 

response curves of salivary glucose and NAEs were compared and tested for the effect of 

treatment and of time as factors. For all the tests, following a significant main effect in the 

ANOVA, individual means were compared using the Bonferroni test (p < 0.05). 

Results were considered significant at p < 0.05. All values were reported as means and 

standard errors. 

3. Results and discussion 

3.1 Foods 

The nutritional compositions of the three types of biscuit are reported in Table 1. 

They differed only for the content and type of dietary fibre being the soluble and gel-forming 

barley β-glucan or the insoluble whole-wheat bran.    

Table 1: Nutritional composition of 100 g biscuits 

  CB βGB WWBB 
Energy (kcal) 419 395 396 
Protein (g) 6.5 6.0 6.0 
Fat (g) 8.5 8.3 8.2 
Carbohydrate (g) 79 74 74 
Beta-glucan (g) 0 3.0 0 
Whole-wheat bran (g) 0 0 3.0 

 

3.2 Subjects 
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Eighteen volunteers (7 M/11 F), with mean age of 27 ± 1 years (range 20 – 37) and with mean 

body mass index (BMI) of 23.3 ± 0.58 kg/m2 (range 19.5-28.0 kg/m2), participated in this 

study. Among them, 8 subjects were overweight with BMI ≥ 25 kg/m2. 

3.3 Salivary NAEs upon mastication  

The concentration of NAEs in saliva samples collected upon mastication is reported in Figure 

2.  

	
Figure 6.  Concentration of salivary NAEs from fasting subjects at baseline (resting 

condition) and upon mastication of parafilm or control (CB), β-glucan-enriched (βGB) or 
whole wheat bran-enriched (WWBB) biscuits. Different letters on the bars indicate p<0.05. 
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The concentration of OEA in saliva samples collected upon food mastication was 

significantly higher than in non-stimulated (baseline) and parafilm-stimulated saliva samples, 

whereas no difference between the last two was found. On the contrary, the concentration of 

LEA and PEA did not vary significantly among the saliva samples.  

3.4 Salivary glucose upon mastication  

Concentration of salivary glucose in baseline and non-stimulated saliva samples was below 20 

mg/dL. It was significantly different from glucose concentration of food-stimulated saliva 

being about 303.7 mg/dL. No significant difference between salivary glucose released upon 

different food mastication was found because it was 374.3 ± 44.7 mg/dL upon βGB, 282.3 ± 

20.9 mg/dL upon WWBB and 261.9 ± 31.1 mg/dL upon CB (p > 0.05).  

Interestingly, a significant positive correlation between the concentrations of OEA and 

glucose in saliva from chewed CB and WWBB was found (Figure 3).  

 

Figure 3. Correlations between salivary glucose and OEA in chewed biscuits. 
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3.5 Food intake  

No significant different food intake was recorded upon the three food conditions as energy 

intake at breakfast was 282 ± 40 kcal, 313 ± 33 kcal and 307 ± 40 kcal when subjects were 

offered βGB, CB and WWBB, respectively. 

3.6 Postprandial salivary NAEs 

The variation from baseline of salivary NAEs concentration over 2 hours following biscuit 

consumption and the area under the curve (AUC) of each NAE are reported in Figure 4. 

Salivary concentration of all NAEs, except PEA following βGB, peaked at 15 minutes post-

breakfast compared to baseline, this increase being significant for OEA after all types of 

biscuits and for LEA only after WWBB. From 15 min to 60 min, a general trend towards 

reduction of mean concentrations following consumption of all three types of biscuit was 

found. At 60 min, concentrations of LEA and OEA returned to the baseline values (Figure 4). 

At 15 min, significant difference of OEA between βGB and WWBB was found (p = 0.017). 

Similarly, significant difference for lower LEA (p = 0.001) and PEA (p = 0.038) after βGB 

compared to WWBB was observed. The AUCs of NAEs did not significantly change after the 

consumption of the different biscuits (although the mean magnitude was always in the order 

WWBB > CB > βGB) (Figure 4). 
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Figure 4. Concentration-time curves and AUC(0-120) of postprandial salivary NAEs. *, +, #p < 
0.05 vs baseline.  
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3.7 Postprandial appetite and food liking 

Table 2 shows mean appetite and hedonic scores recorded over the 2 hours post-breakfast. 

Data showed no effect of the types of biscuit on postprandial appetite sensations as well as on 

liking of biscuits for sweetness, salty, fat perception, consistency and overall palatability. 

Interestingly, fullness and satiety sensations positively correlated with salivary OEA 

concentration at 30 min post breakfast (R = 0.424; p = 0.031 and R = 0.451; p = 0.021, 

respectively).  

In addition, an inverse correlation between liking of biscuits for sweetness and salivary OEA 

concentration at 15 min (R = -0.55; p = 0.002) was found. 



Chapter	2	
	

	44	

Table 2: Appetite and hedonic scores (means ± SEM) collected over 120 min after consumption of the three types of biscuits. 

 Baseline 15 min 30 min 60 min 120 min 
 CB βGB WWBB CB βGB WWBB CB βGB WWBB CB βGB WWBB CB βGB WWBB 
Appetite                
Hunger 70±7 57±6 52±8 25±4 22±5 17±3 38±7 29±4 24±4 45±6 34±5 28±4 60±7 64±6 57±5 
Fullness 24±7 29±7 36±8 53±7 66±6 59±8 60±6 54±6 57±7 51±6 48±6 48±6 30±6 28±6 30±5 
Satiety 29±8 32±7 28±7 50±6 66±5 49±7 51±7 56±6 50±7 49±6 46±5 45±7 32±5 27±6 29±6 
Liking                
Sweetness 49±6 44±7 48±5 44±7 42±6 38±6 43±6 41±6 34±5 40±7 38±6 33±5 38±7 35±6 33±6 
Saltiness 31±5 26±6 37±8 24±5 26±6 28±6 26±5 26±5 30±6 25±5 23±4 32±6 30±6 22±4 31±6 
Fatness 40±7 36±7 34±8 36±7 34±7 29±6 32±7 26±6 33±7 36±7 28±6 29±7 34±7 26±5 30±7 
Consistency 33±7 30±6 28±6 24±5 26±5 24±5 27±6 24±5 28±6 24±5 30±5 28±6 27±5 31±5 24±5 
Overall palatability 39±6 43±6 39±6 37±7 33±5 37±5 40±6 36±4 39±6 38±6 39±5 39±6 40±7 46±6 33±4 
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3.8 Blood glucose response 

Blood glucose concentration peaked at 15 min after βGB and CB, and at 30 min after WWBB 

consumption (Figure 5). In particular, considering concentration values measured at peak 

point, a mean concentration of 133 ± 8 mg/dL vs a mean baseline value of 93 ± 5 mg/dL was 

found when βGB was consumed, while concentrations of 136 ± 6 mg/dL vs 93 ± 3 mg/dL, 

and 143 ± 6 mg/dL vs 93 ± 2 mg/dL, respectively, were elicited by WWBB and CB. 

	

Figure 5. Concentrations (Means ± SEM) of blood glucose over 2h following consumption of 
CB, βGB or WWBB. 

The AUC of blood glucose was 13,835 ± 546 mg min/dL, 14,231 ± 604 mg min/dL and 

13,824 ± 372 mg min/dL after βGB, WWBB and CB, respectively and no significant 

difference among the types of biscuit was found (glycaemia × treatment interaction; p > 0.05). 

Pearson’s analysis showed a negative correlation between salivary OEA concentration and 

blood glucose at 30 min  (-0.480, p = 0.044) and a tendency at 15 min (-0.456, p = 0.066).   

4. Discussion 

For the first time in this study, the concentration of NAEs was measured in stimulated saliva 

samples and it was demonstrated that mastication itself did not cause variation of these 

compounds compared to baseline resting saliva in healthy normal weight subjects. Indeed the 

salivary concentrations of all NAEs meanly increased in saliva only upon biscuit mastication, 

independently from the type of biscuit, compared to non-food (parafilm) condition 

mastication. 

In particular data showed that OEA increased more (~138 folds) than LEA (~7 folds) and 

PEA (~2 folds) and was the only NAE to reach a significant increase upon food mastication.  

All in all these findings strongly suggested that NAEs directly derived from the food or they 
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were biotransformation products of their NAPE precursors during mastication. 

In fact, although it is known that NAEs can be endogenously formed in the intestine (Artmann 

et al., 2008; Hansen, 2014; Hansen and Diep, 2009; Petersen et al., 2006; Sarro-Ramirez, 

2013), brain (Artmann et al., 2008; Hansen, 2014; Simon and Cravatt, 2010; Tsuboi et al., 

2013), liver (Artmann et al., 2008) and other mammalian tissues (Hansen & Diep, 2009; 

Hansen, 2014 (Hansen, 2014; Hansen and Diep, 2009), they are also largely diffused together 

with their natural precursors N-acylphospatidylethanolamines (NAPEs) in both plant and 

animal kingdoms being found in plants, yeast, slime molds, insects, and mammals (Coulon et 

al., 2012; Fezza et al., 2003; Hansen, 2014; Hansen and Diep, 2009; Hayes et al., 2013; 

Muccioli et al., 2009). So both NAEs and NAPE are present in wheat flour (Bomstein, 1965) 

and, as a consequence, they can be found in biscuits. From the biscuits NAEs could be 

directly delivered in the mouth due to the mechanical and salivary enzyme disruption of the 

food matrix upon mastication as well as be formed by the NAPEs upon the action in the 

mouth of NAPE-PLD  (Matias et al., 2012).  

In this view, the lacking differences of salivary NAEs upon mastication of different types of 

biscuits (in the case of OEA) or even under different stimuli (in the case of LEA and PEA) 

suggested that the substitution of 3% wheat flour with dietary fibres in the enriched biscuits 

did not significantly influence the content of NAEs or NAPEs in the biscuits as well as the 

oral factors that might underpin the release of NAEs in the mouth. A further study to clarify 

the mechanisms and individual factors behind salivary NAEs formation should be performed. 

The fixed rate of bites during mastication protocol excluded that individual way of 

masticating food might have influenced NAEs formation as well as glucose release in the 

mouth upon different food conditions. The individual mastication speed was established on 

the basis of preliminary experiments (data not shown) where participants’ behaviour and 

possibility to chew the biscuits and spit the chewed food without swallowing were evaluated. 

In other words, the mastication protocol was suited on the participants and the best conditions 

to collect all chewed food avoiding any loss due to unwanted swallowing were used. So, it 

was assumed that individual way of eating biscuits during the protocol to assess satiation at 

breakfast was similar to that adopted during mastication protocol and caused similar 

concentrations of NAEs in the food bolus that, in that occasion, were ingested. Data showed 

that in parallel with the lacking differences of salivary OEA during different biscuits 

mastication, no effects of the different types of biscuits on satiation was present. 
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Interestingly, the types of dietary fibres in the biscuits influenced immediate post-prandial 

salivary concentration of NAEs. Moreover, salivary OEA was associated with fullness and 

satiety sensations as well as actual liking of the biscuits for sweetness. 

To the best of our knowledge no one before us studied saliva composition in the immediate 

post-prandial phase. Matias and co-workers (2012) collected saliva after 1h from meal 

consumption and demonstrated that eCBs and NAEs (AEA, 2-AG, OEA and PEA) did not 

change in the post-prandial compared to the pre-prandial phase.  On the contrary, data of the 

present study clearly showed that in the immediate post-prandial phase NAEs formed during 

mastication was still present in the mouth and did not reduce equally after eating the different 

types of biscuits. In particular, a faster and dramatic rebound of all salivary NAEs after βGB 

consumption than CB or WWBB was observed. This finding might depend from the physical 

properties of the βGB bolus. In fact, it could be hypothesized that the βGB bolus, thanks to its 

content of barley β-glucan having a gel-forming capacity and binding ability (Hughes and 

Swanson, 1989; Mudgil and Barak, 2013b), could better entrap compounds and let the mouth 

free from NAEs upon swallowing determining a better effect of mouth cleaning compared to 

WWBB and CB. This hypothesis would take into account the food origin of NAEs in saliva 

and it is in accordance with the recommendation to study saliva composition by avoiding 

eating before the collection because residues of foods present in the mouth can influence 

results (Kaufman and Lamster, 2002; Yoshizawa et al., 2013). However, it should be noticed 

that together with biscuits, participants had a glass of water they partly drank after eating 

causing a rinsing of their mouths that was supported by the fact that the post-prandial saliva 

samples appeared free from evident food residues at all the time points. Another hypothesis 

might be that β-glucan in the βGB might differently influence the activity of oral NAPE-PLD 

or FAAH, the enzyme degrading NAEs (Matias et al., 2012), compared to WWBB and CB, 

and this effect could be evident in presence of few food residue that might remain in the 

mouths even after drinking. On the other hand an effect of the gel-forming beta-glucan on 

salivary enzyme activities (including α-amylase) could be also suggested from the lacking 

association between salivary OEA and glucose in the mastication study, despite the positive 

associations found in the cases of WWBB and CB. Further studies should test these 

hypotheses and clarify the mechanisms behind the present findings.  

Worth of notice were some associations found between post-prandial (at 15 min and 30 min) 

salivary OEA and liking of biscuits (sweetness and overall palatability) as well as fullness and 

satiety sensations. These findings suggested that salivary OEA might be implicated in the 



Chapter	2	
	

	48	

sensory mechanisms occurring in the post-ingestive phase and influencing the flavor-

consequence learning that underpin individual food preference and choice (Yeomans, 2006). 

In this study fasting subjects were asked to eat the biscuits until they felt comfortably satisfied 

and no other food was available. However, in a normal life condition it may also be possible 

that the salivary OEA may have a role on the amount or type of foods people can eat when 

exposed to different food cues, as it happens for example in a buffet-style meal. Appropriate 

studies should be performed to test these hypotheses. 

Finally, in this study no effect of βGB consumption on the postprandial blood glucose was 

found compared to WWBB and CB. The amount of biscuits eaten by subjects (75g on 

average) could explain this result. In fact considering the amount of biscuit consumed and the 

3% enrichment with β-glucan, βGB provided 2g of barley β-glucan corresponding to a 3.9% 

β-glucan by available carbohydrates. In these conditions the lacking effect of βGB in 

modulation of blood glucose was in line with a previous study from our research group 

showing that a meal providing 3g β-glucan (2.3% by available carbohydrates) did not 

influence blood glucose response compared to the control meal (Barone Lumaga et al., 2012). 

On the contrary meals providing 3g of β-glucan (5.2% by available carbohydrates) 

(Vitaglione et al., 2009) or 6.2g - 7.3g β-glucan (12.4% or 14.6% by available carbohydrates) 

(Jenkins et al., 2002) showed the hypoglycaemic effect of the β-glucan-enriched meal 

compared to the control.  

5. Conclusions 

Data of this study clearly demonstrated that no salivary response of NAEs is elicited by 

mastication itself in healthy and normal weight subjects but NAEs can be originated in the 

mouth from foods upon mastication. Enrichment of biscuits with a 3% dietary fibre did not 

influence NAEs released in the mouth upon mastication as well as the biscuits-induced 

satiation in fasting subjects. However, the types of dietary fibre (gel-forming or insoluble) 

influenced the concentration of these compounds in the mouth within the first hour from food 

consumption. The associations found between salivary OEA concentration in the immediate 

post-prandial phase and actual liking of the biscuits consumed as well as fullness and satiety 

sensations suggested some role of OEA in the sensory mechanisms underpinning food 

behaviour and choice. Further studies are warranted to clarify the mechanisms and the 

individual factors underpinning NAEs release from different types of foods and subjects. 
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Abstract 

Blueberry is a rich dietary source of polymerized polyphenols. Previous studies showed that 

these compounds may behave as dietary fibre and have a prebiotic effect. 

The aim of this study was to test the influence of a one week-consumption of blueberries on 

the volatile organic compounds (VOCs) of breath and saliva in humans. 

Fourteen healthy volunteers (7 M/7 F; mean age of 31.2 years and BMI 22.5 ± 2.0 kg/m2) 

participated in this three-week single blind study with a two-week cross over design. After a 

one-week of baseline period (BL) where all subjects had a low polyphenol diet, in a 

randomized manner subjects continued with this diet  (control, CT) or added 200 g/day of 

fresh blueberries for one week (intervention, INT) switching to the other arm for the 

following week. Before and after each week fasting subjects reached the laboratory to collect 

saliva samples and to have on-line analysis of breath by Proton Transfer Reaction Time-of-

Flight Mass Spectrometry (PTR-ToF-MS). Saliva samples were analysed by PTR-ToF-MS 

and Headspace Gas Chromatography Mass Spectrometry (Headspace GC-MS). 

No difference in VOC profiles of breath and saliva after INT and CT was found. Interesting 

correlations between saliva and breath composition especially for methanol, formaldehyde, 

ethanol, acetone and propanol were shown. 

Keywords: VOCs, saliva, breath, blueberry polyphenols
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1. Introduction 

The relationship between breath composition and health is well known since many centuries. 

As early as 2500 years ago in Greece, physicians considered that breath odor could be 

associated with diseases and health status (Ajibola et al., 2013)as a non-invasive approach, 

nowadays analysis of volatile organic compounds (VOCs) in breath, not only endogenously 

generated biomarkers but also derived from exogenous substrates or drugs for patients, holds 

great promise as a potential new diagnostic tool.  

Actually, VOCs can be determined not only in breath but also in faeces, urine, blood, saliva 

and skin (de Lacy Costello et al., 2014; Kusano et al., 2011; Kusano et al., 2013). De Lacy 

Costello (2014) and co-workers recently listed a total of 1840 VOCs in several biological 

samples and fluids including breath (872), saliva (359), blood (154), milk (256), skin 

secretions (532) urine (279), and faeces (381) from apparently healthy individuals. In the 

literature studies VOCs were studied as metabolites deriving from physiological processes, as 

in the case of isoprene that can be generated during cholesterol biosynthesis (Stone et al., 

1993a), or as diseases biomarkers (e.g. lung cancer and hepatocirrhosis) (Fernández del Río et 

al., 2015; Li et al., 2016; Matsumura et al., 2010; Morisco et al., 2013). 

Moreover, Nagler et al. (2002) found high correlation between the salivary and blood 

concentrations of relevant components. Therefore saliva, to some extent, reflects the 

biochemical and metabolic information in blood, which could be considered as a potential 

way to study human physiological and pathological conditions (Al-Kateb et al., 2013). 

Indeed, metabolic by-products of bacterial species in the oral cavity, as well as 

environmental organic chemicals exposure, such as consumption and ingestion of 

contaminated food, could influence salivary composition. However, few studies focused on 

the correlation of VOCs between breath and saliva under conditions of diet intervention 

(Soini et al., 2010). 

Diet, either altering the gut microbiota or impacting directly on metabolism, was suggested to 

modify breath composition (Ajibola et al., 2013; El Oufir et al., 1996; Pauling et al., 1971). In 

particular, plant polysaccharides-rich diets contain resistant starch and oligosaccharides 

that can modify microbiota composition thus eliciting local and systemic health benefits 

through the gut. These mechanisms were also suggested to underpin the health benefits of 

polyphenols-rich diets (Vitaglione et al., 2008; Vitaglione et al., 2012). However, despite 

many evidence in animal studies, few intervention studies could prove the association 
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between polyphenol intake and metabolic and disease biomarkers in humans (Vitaglione et 

al., 2015). Most of studies specifically focused on the impact of dietary polyphenols or 

specific compounds on the human gut microbiota or selected bacterial populations. Red fruits, 

including strawberries, cherries, raspberries, blueberries and cranberries are a rich dietary 

source of polyphenols mainly proanthocyanidins (oligomers of flavan-3-ols). These 

compounds are known to pass unmodified through the first part of gastro-intestinal tract and 

to reach the colon where they can be metabolized by, and in turn modify, local microbiota, 

sometimes exerting a prebiotic effect (Etxeberria et al., 2013b). This effect was demonstrated 

after blueberry drink consumption for six-weeks and after red wine consumption for twenty 

days causing the increase of the faecal number of Bifidobacterium spp. (Queipo-Ortuño, 

2012; Vendrame et al., 2011; Yoshizawa et al., 2013).  

As a result of actual knowledge in the field, it might be supposed that red fruit polyphenols, 

especially the polymerized ones, can influence the intestinal microbiota and initiate gut-

derived or metabolic changes of VOCs in breath and saliva. 

Numerous publications have reported the capability of instrumental analysis to measure large 

variety of VOCs, including gas-chromatography MS (GC-MS), selected- ion-flow-tube MS 

(SIFT-MS), ion-mobility MS (IMS) and proton-transfer- reaction MS (PTR-MS) (Herbig et 

al., 2009; Schwarz et al., 2009). Due to the high sensitivity for VOCs measurements, the fast 

response time and the possibility of direct analysis without sample pre-treatment, PTR-MS 

has been repeatedly applied for both single and real-time measurements of VOCs in breath 

(Herbig et al., 2009). 

The aim of this study was to verify the hypothesis whether a one-week intervention with 200g 

day of blueberry, providing 440 mg/day of polyphenols (as total anthocyanins), could 

influence breath and saliva VOCs in healthy humans.  A PTR-ToF-MS profile of VOCs in 

breath and saliva samples was obtained and possible correlations between them were 

discussed.   

2. Subjects and methods 

2.1 Subjects 

The recruitment was performed among the students and researchers of the Fondazione 

Edmund Mach (FEM, San Michele All'Adige, Trento, Italy), who were interviewed about 

their medical status, subjective eating habits and food preferences. The selected subjects were 
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healthy, without undergoing any medication or drug therapy and with no symptoms of food 

allergy or intolerance. They were not on a restrictive diet and had normal eating behaviour on 

the basis of scores obtained filling the Three Factor Eating Questionnaire (TFEQ) (Stunkard 

and Messick, 1985).  

Eligible subjects signed an informed written consent before the enrolment. They were advised 

not to vary their physical activity during the whole period of the study, and to avoid sport 

activities the day before the experimental days.  

2.2 Study design 

Study design and protocol were approved by the Ethics Committee of University of Naples 

“Federico II” and all participants signed the informed consent before the enrolment. A scheme 

of the study design is shown in Figure 1. The study had a cross-over, single blind, 

randomized design.  

Once enrolled in the study participants were asked to control polyphenols as much as possible 

in their diets for one week (baseline, BL). In particular, subjects were advised to avoid high 

polyphenol foods, including fruits, vegetables and drinks, such as apples, pears, grapes, wine 

and coffee. After the baseline week, subjects were randomized for the intervention (INT) or 

control (CT) week and they switched on the other arm after one week. During INT subjects 

added to the low polyphenol diet 200g/day of fresh blueberries that were purchased by a local 

supermarket and were provided to the participants every working day (i.e. from Monday to 

Friday); the last two portions for the weekend were provided on Friday evening. During CT 

subjects were advised to keep their own diets as in BL.  

At the end of each week fasting participants reached the research centre at 07:30 h for the 

analysis of VOCs in the breath, and for collection of saliva samples and dietary data.  

For breath and saliva collection in the evening before the experiments participants were 

instructed to consume a standardized dinner within the 22:00 h and were asked to refrain from 

eating foods containing garlic, onion, mint. Moreover, in the morning since the measurement, 

they were not allowed to smoke, eating chewing gum or drinking alcohol and coffee, using 

mouthwash, brushing teeth. 

To analyse VOCs in the breath, subjects were required to rest in the test lab for at least 30 

minutes, breathing with the ambient air to balance the differences of air inside and outside. 

During this period, they were asked to collect saliva in a clean tube (50 mL) for 5 minutes. 
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Then, after rinsing their mouth with pure water, they performed for three times the on-line 

breath test by PTR-TOF.  

The compliance to the protocol was assessed through dietary questionnaires that were filled 

before the three test sessions. Each subject was asked to indicate the average portion and the 

frequency of intake of over 60 foods belonging to the following groups: fruits and vegetables, 

fish, meat products, eggs, cereals and cereal products, milk and dairy products, snacks and 

soft drinks and alcohol. The food questionnaires were compiled with the help of photographs 

and images to calculate the energy and polyphenols intake. The food questionnaires, mainly 

included two questions (‘How many portions do you consume per week?’ and ‘How many 

grams is each portion?’), (Morisco et al., 2013).	

Figure 7. Study design 
2.3 Breath analysis by PTR-ToF-MS 

Real time breath analysis was performed using a buffered end- tidal (BET) on-line sampler 

(Herbig et al., 2009) coupled to a Proton Transfer Reaction Time-of-Flight Mass 

Spectrometer 8000 (PTR-ToF-MS 8000, Ionicon Analytik GmbH, Innsbruck, Austria). The 

subject was required to sit in front of the interface and to breathe normally room air. After a 

short time, the subject was given a single exhalation in a disposable mouthpiece, as well as a 

sputum trap, which were connected to the BET system. With the BET system, collection of 

the end-tidal fraction of exhaled breath gas was performed, middle part of which is considered 

as the richest in those molecules derived from exchange at the alveolar-capillary membrane 

and less affected by inhaled breath air gas. BET system help avoiding the effect of 

hyperventilation on volatile concentration. Fractions of exhaled gas, collected through the 

BET system, were drawn directly to the drift tube of the PTR-ToF-MS as an on-line 

detection, recording the volatile organic compound spectra (Morisco et al., 2013). 
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Instrumental conditions for the proton transfer reaction were the following: Inlet temperature 

110 °C, drift voltage 500 V, drift temperature 80 °C and drift pressure 2.4 mbar affording an 

E/N value of 120 Townsend (1Td = 10
-17 

cm
2 V

-1 s
-1

). Sampling was performed with a flow 

rate of 43 sccm. The mass resolution (m/Δm) was at least 3500 (Aprea et al., 2012).  

Herbig et al. (2009) reported the application of the PTR-MS technique for breath analysis in 

their research. Briefly, water vapor in the ion source is used to produce primary ions (H3O+). 

In the drift tube, the proton transfer reaction occurs between the formed H3O+ and neutral 

analyte molecules (M): M + H3O+ èMH++H2O.  

It was also considered the effect of different reactant species (H3O+, NO+, and O2
+). In our 

pilot study, all three ionization reagents were applied as chemical ionization (CI), to analyse 

breath and saliva. Considering the fragmentation of the VOCs, as well as effects of multi 

precursor ions, H3O+ mode was applied in all tests, and these data were used for further 

analysis (Trefz et al., 2013). 

2.4 Saliva VOCs analysis by PTR-ToF-MS 

Saliva VOCs were immediately quantified by HeadSpace PTR-ToF-MS whereas the rest of 

each sample (~1 mL) was immediately frozen. Part of that was re-analysed by Headspace 

PTR-ToF-MS after 6 hours of freezing and part was stored until HeadSpace SPME-GC/MS 

for further VOC identification which is not discussed here. Injections were performed by 

using a multipurpose GC automatic sampler (Gerstel GmbH, Mulheim am Ruhr, Germany). 

Each vial was closed with a Teflon/Silicon cap through which during measurements 

headspace air was sampled via a needle entering the vial and connected to the inlet of PTR-

ToF-MS via a peek tube. A second needle provided clean air generated by a gas calibration 

unit (GCU, Ionicon Analytik GmbH, Innsbruck, Austria), which was used as zero air 

generator. Test cycle for each vial consisted of flushing the headspace of the sample with 

clean air for 1 min at 43 sccm, then incubation for 30 min at 37 °C and finally measurement. 

The analysis order was randomized to avoid possible systematic memory effects. The sample 

headspace was measured by direct injection into the PTR-ToF-MS drift tube via a heated (110 

°C) peek inlet. Each sample was measured for 30 s, at an acquisition rate of one spectrum per 

second.  

2.5 Saliva VOCs analysis by SPME-GC/MS 



Chapter	3	
	

	60	

Frozen saliva samples were also analysed by SPME-GC/MS (Agilent 6890, Agilent 

Technologies, USA). Collected saliva samples ready for the analysis were accurately handled 

according to the work of Kusano (2011) and Wang (2009). The extraction of volatile 

compounds was performed according to Soini et al. (2010), slightly modified. Five hundred 

microliters of saliva were transferred into a 10 mL vial, previously added with 2 mL of 

deionised water and 0.84 g of NaCl (Wang and Lu, 2009). The vial was put in an apparatus 

regulating water temperature and stirring of sample at 200 rpm. The sample was kept for 180 

min at 40 °C in the apparatus and the SPME fibre was inserted through the Teflon septum in 

the vial and exposed to the sample headspace.  

The SPME device (Supelco Co., Bellefonte, USA) was equipped with a 75µm thickness 

carboxen/ polydimethylsiloxane (CAR/PDMS) fibre coated with 1 cm length stationary phase 

(Wang and Lu, 2009).  

VOCs were analysed by GC coupled with a mass spectrometer using a GC/MS 6890N 

(Agilent Technologies, Palo Alto, CA, USA) equipped with a J&W HP-5MS capillary 

column (30 m×0.25 mm i.d.×0.25 µm Film Thickness; J&W Scientific, Folsom, CA, USA). 

Temperature was set at 50 °C for 1 min and increased from 50 to 160 °C at the rate of 

5°C/min and from 160 to 200 °C min-1 at 3°C min-1 and where is kept for 10 min, according 

to (Kusano et al., 2011). The injector was kept at 250 °C. Helium was used as carrier gas (0.7 

mL min-1). VOCs thermal desorption was carried out by exposing SPME fibre in the injector 

for 10 min. A blank test was performed before each analysis to prevent the release of 

undesirable compounds. Frozen saliva was firstly held in a thermal bath at 37 °C and shaken 

in order to dissolve any suspension. 

2.6 Statistical analysis 

2.6.1 PTR-ToF-MS data analysis 

Spectral data acquisition was performed by means of the software TOF-DAQ (Tofwerk AG, 

Switzerland), with a mass range of 10 - 400 Th and data were stored in HDF5 format for 

further analysis. Signal distortions derived from detector dead time were corrected before 

mass calibration, peak detection and area extraction through a cumulative peak fitting, 

following the procedure described by (Cappellin et al., 2011). Internal calibration was based 

on two peaks: 1) m/z = 21.0221 (H3
18O+) and 2) m/z = 29.9974 (NO+), which were always 

present in PTR-MS spectra. Peak intensity, expressed as ppbv, was estimated by the formula 

in (Lindinger et al., 1998), using a constant value for the reaction rate constant (k = 2.10-9 cm3 
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s-1). Results were then analysed by repeated non-parametric ANOVA (Tukey test) using 

RStudio (Version 3, USA) software.  

2.6.2 SPME-GC/MS data analysis 

Compound identification was performed by comparing retention times and mass spectra 

obtained by analysing pure reference compounds in the same conditions. Moreover, the 

identification was confirmed by comparing mass spectra with those of NIST database. Mass 

spectra were recorded at 70 eV. The source temperature was 230 °C and the interface 

temperature was 250 °C. Before using it, the fibre was conditioned at 270 °C for 1 h for the 

analysis. Peak data were processed with the software Chemstation (Agilent Technologies, 

Palo Alto, USA).  

3. Results  

3.1 Subjects and dietary records 

Fourteen healthy volunteers 7 M/7 F with mean age of 31.2 years (range 15 – 52 years) and 

with body mass index BMI 22.5 ± 2.0 kg/m2, participated in this study.  

The participation of subjects to all the experimental sessions and the analysis of food diaries 

showed a high compliance to the protocol by all subjects (Table 1). No significant change of 

diets as regards macronutrient composition as well as intake of other polyphenols but the 

blueberry polyphenols during INT was found. Data showed that during INT subjects almost 

doubled their dietary polyphenols mainly including anthocyanins, proanthocyanidins and 

hydroxycinnamic esters. 

Table 1: Nutritional composition of individual daily diets over the study period. Data are 
expressed as means ± SEM (*P<0.05 vs control week). 

 Baseline week 
(BL) 

Intervention week 
 (INT) 

Control week 
(CT) 

 Means ± SEM % Energy Means ± SEM % Energy Means ± SEM % Energy 
Energy (kcal) 1472±165  1657±151  1703±217  
Energy (kJ) 5723±805  6440±795  6619±1019  
Carbohydrates (g) 196±22 54±2 220±22 53±2 228±32 53±2 
Proteins (g) 53±6 14±1 55±5 13±1 60±7 15±1 
Fats (g) 48±7 28±2 56±6 30±2 55±7 29±2 

Saturated 17±3  18±2  17±3  
Unsaturated 26±4  32±4  29±5  

Dietary Fibre (g) 13±1 2±0.1 15±2 2±0.2 15±3 1±0.1 
Alcohol 3±0.8 2±0.5 3±1 2±0.5 4±1 2±0.6 
Polyphenols (mg)       

from blueberries  0  440*  0  
from all foods 578±138  543±140  590±158  
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3.2 VOC tentative identification  

Through the analysis of PTR-ToF-MS (using H3O+), The breath VOC dataset obtained via 

PTR-ToF-MS analysis (using H3O+ as primary ion) consisted of 724 mass peaks and the 

saliva VOC dataset generated 574 mass peaks. Among them, finally in total 28 mass peaks 

were associated with a compound in saliva and breath respectively, based on the SPME-

GC/MS analysis of saliva samples and literature (Table 2). 
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Table 2: List of measured peaks and identified VOCs in saliva and breath 

Chemical class Tentative identification Protonated 
Molecular Formula 

Theoretical 
mass (Th) 

Saliva Breath 
Measured 
m/z (Th) Error (mTh) Measured 

m/z (Th) Error (mTh) 

Carboxylic acids/ 
esters 

Formic acid CH3O2
+ 47.0133 47.0130 -0.32 47.0143 0.98 

Acetic acid  C2H5O2
+ 61.0290 61.0285 -0.47 61.0299 0.93 

Propanoic acid C3H7O2
+ 75.0446 75.0445 -0.11 75.0462 1.59 

Butanoic acid/ ethyl acetate C4H9O2
+ 89.0603 89.0613 1.03 89.0645 4.23 

Ethyl propanoate/ methyl isobutyrate (t) C5H11O2
+ 103.0759 103.0780 2.08 103.0799 3.98 

Alkene Ethylene C2H5
+ 29.0391 29.0400 0.87 29.0364 -2.73 

Isoprene  C5H9
+ 69.0704 69.0704 -0.03 69.0713 0.87 

Aldehydes/ ketones/ 
unsaturated alcohols 

Formaldehyde  CH3O+ 31.0184 31.0182 -0.20 31.0189 0.50 
Acetaldehyde  C2H5O+ 45.0341 45.0335 -0.55 45.0341 0.05 

Pentanal/ 3-methyl-3-buten-1-ol (t) C5H11O+ 87.0810 87.0813 0.30 87.0830 2.00 
Hexanal/ 3-methyl-2-pentanone (t)/ 2-hexanone (t) C6H13O+ 101.0967 101.0982 1.55 

  Heptanal C7H15O+ 115.1123 115.1146 2.30 115.1168 4.50 
Octanal/ 6-methyl-2-heptanone (t) C8H17O+ 129.1280 129.1295 1.55 

  Nonanal C9H19O+ 143.1436 143.1472 3.60 
  Decanal C10H21O+ 157.1593 157.1585 -0.75 
  Acetone  C3H7O+ 59.0497 59.0490 -0.69 59.0475 -2.19 

2-butanone C4H9O+ 73.0654 73.0640 -1.35 
  2,3-butanedione C4H7O2+ 87.0446 87.0450 0.39 87.0477 3.09 

Alcohols Methanol  CH4O.H+ 33.0341 33.0338 -0.25 33.0342 0.15 
Ethanol  C2H7O+ 47.0497 47.0492 -0.49 47.0502 0.51 

Phenols Phenol (t) C6H7O+ 95.0497 95.0486 -1.09 95.0525 2.81 

Nitrogen 
compounds 

Acetonitrile CH3CN.H+ 42.0344 42.0338 -0.57 42.0353 0.93 
Hydrogen cyanide  HCN.H+ 28.0187 28.0188 0.08 28.0191 0.38 

Indole (t) C8H8N+ 118.0657 118.0683 2.63 118.0685 2.83 

Sulphur compounds 

Methanethiol (Methyl mercaptan) CH5S+ 49.0112 49.0103 -0.90 49.0111 -0.10 
Dimethyl disulfide (t) C2H6S2

.H+ 94.9989 94.9988 -0.11 
  Dimethyl sulphide  C2H6SH+ 63.0268 63.0268 -0.04 63.0279 1.06 

Hydrogen sulphide H2S.H+ 34.9956 34.9953 -0.25 34.9951 -0.45 
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3.3 Breath and saliva VOC dataset analysis  

3.3.1 Principal components analysis (PCA) 

Spectra were analysed by PCA to highlight possible systematic differences between dietary 

treatments and to check for possible outliers.  

A further filtering was performed by VOC concentration above 1 ppbv, which finally 

recorded only 89 mass peaks in breath dataset and 85 mass peaks in saliva dataset. Then data 

were analysed by PCA among baseline week (BL), intervention week (INT) and control week 

(CT) (Figure 2). The score plot of PCA components revealed no systematic difference. 

     

                                        (a)                                                                     (b) 

Figure 2. PCA score plot (VOC concentration above 1 ppbv). (a) Saliva VOC. (b) Breath 
VOC. 

3.3.2 Tukey's honest significant difference (HSD) test  

Data of VOCs in saliva and breath with concentration above 1 ppbv were filtered by Tukey’s 

HSD test. Upon Bonferroni correction’s post hoc comparison test, with respect to its trace 

level, no significant differences were found among pre-filtered dataset. Setting significance at 

p=0.05, 33 mass peaks of saliva VOCs and 36 mass peaks of breath were finally selected.  

Among the selected peaks, 6 mass peaks in saliva and 6 mass peaks in breath were either 

identified by GC/MS or referred by literature (Table 3). For instance, the one with m/z 

33.0338 (p = 0.030) in saliva was identified as methanol (by GC/MS), although its 

counterpart m/z 33.0342 in breath showed no significant difference (p = 0.235). Boxplot of 
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salivary methanol during the protocol was shown in Figure 3. Data indicated a significant 

difference of salivary methanol between BL and INT week. 

 

Figure 3. Boxplot of salivary methanol. 

Table 3: Concentrations (Mean ± SEM, ppbv) of tentatively identified mass peaks in saliva 
and breath detected by PTR-ToF-MS. Mean concentrations are reported for each sample with 
Tukey letters (p < 0.05) showing the significant difference among dietary treatments. p-values 
were obtained on the basis of Tukey’s HSD.  

Sample Measured 
mass (m/z) Tentative identification BL INT CT p-Value 

Saliva 
VOC 

33.0338 Methanol 99.3±9.1b 163.9±34.8a 153.2±25.7ab 0.030 
47.0130 Formic acid 8.89±0.23a 5.79±0.54b 5.07±0.53b <10-3 
59.0490 Acetone 297±52.9b 343±70.3b 775±273.5a 0.008 
69.0703 Isoprene 4.35±0.48a 2.93±0.33b 2.93±0.39b 0.001 
87.0813 Pentanal/ 3-methyl-3-buten-1-ol (t) 1.35±0.16a 0.87±0.13b 1.01±0.17ab 0.006 
103.0780 Ethyl propanoate/ Methyl isobutyrate (t) 3.83±1.32a 1.02±0.31b 1.57±0.74b 0.005 

Breath 
VOC 

31.0189 Formaldehyde 0.69±0.06b 1.17±0.15a 1.48±0.25a <10-3 
47.0143 Formic acid 5.21±0.35b 6.76±0.55a 6.67±0.67a 0.007 
59.0475 Acetone 1497±206b 1439±171b 2896±821a 0.006 
63.0279 Dimethyl sulphide 7.04±0.79b 12.63±2.44a 8.76±1.28ab 0.004 
69.0713 Isoprene 91.1±4.26b 178±31.7a 181±19.4a <10-3 
87.0477 2,3-butanedione 1.32±0.06b 1.56±0.09ab 1.73±0.18a 0.004 

 

3.3.3 Spearman’s Rank correlation coefficient 

Spearman’s Rank Correlation Coefficient analysis was performed among measured mass 

peaks. Interestingly, three groups of VOC indicated significant correlation.  

The first group consisted of the measured mass m/z 33.034, m/z 51.045 and m/z 31.018. They 

were tentatively identified as methanol, methanol water cluster and formaldehyde, 
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respectively. In saliva VOC dataset, those three masses showed significant correlation. 

Similarly, among them, a strong significant correlation was found in breath dataset. 

Moreover, data analysis revealed significant correlations between VOC in saliva and in 

breath. For instance, correlation between methanol in saliva and in breath showed a strong 

link (Rho = 0.537, p < 10-3). The correlations were summarized in Table 4. The determined 

concentration of formaldehyde in breath was at the level of its instrumental limit of 

quantitation (LOQ = 0.96 ppbv), therefore, it was excluded in this analysis. 

Table 4: Spearman’s Rank Correlation between VOCs in saliva and in breath 

VOC  Spearman 
correlation 

Methanol (CH5O+) 

Saliva Breath 

Methanol (CH5O+) 
Saliva 

Rho 
—— 

0.537** 
Sig. (2-code) <10-3 

Breath 
Rho 0.537** 

—— Sig. (2-code) <10-3 

Formaldehyde (CH3O+) Saliva 
Rho 0.369* 0.21 
Sig. (2-code) 0.02 0.18 

* p-value < 0.05. 
** p-value < 0.01. 

To better understand the correlation between methanol in saliva and methanol in breath, the 

tentatively identified methanol (m/z 33.034) and methanol water cluster (m/z 51.044), their 

concentrations were summed for each specimen (i.e. saliva and breath) and it was indicated a 

strong Spearmen’s rank correlation (Rho = 0.546, p < 10-3). 

The concentrations of ethanol, acetone, propanol and dimethyl sulphide of saliva and breath 

were significantly correlated (Table 5). 

Table 5: Spearman’s Rank Correlation between VOC in saliva and in breath 

VOC  Spearman correlation between 
VOC in saliva and in breath 

Ethanol Rho 0.368* 
Sig. (2-code) 0.016 

Acetone Rho 0.746** 
Sig. (2-code) <10-3 

Propanol Rho 0.605** 
Sig. (2-code) <10-3 

* p-value < 0.05. 
** p-value < 0.01. 

Lastly, a group of short chain fatty acids (SCFAs), including acetic acid, propanoic acid and 

butanoic acid. No links were shown between SCFA in saliva and breath. Neither was a 
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correlation found among SCFAs in breath. But links were found in saliva dataset (Table 6). 

Table 6: Spearman’s Rank Correlation Coefficient of VOC (short chain fatty acids) in saliva 

VOC Spearman 
correlation 

Acetic acid Propanoic acid Butanoic acid 

Acetic acid 
Rho 

—— 
0.879** 0.865** 

Sig. (2-code) <10-3 <10-3 

Propanoic acid 
Rho 0.879** 

—— 
0.899** 

Sig. (2-code) <10-3 <10-3 

Butanoic acid 
Rho 0.865** 0.899** 

—— 
Sig. (2-code) <10-3 <10-3 

* p-value < 0.05. 
** p-value < 0.01. 

4. Discussion 

To the best of our knowledge, this is the first attempt to investigate the impact of the 

consumption of blueberry polyphenols on whole VOCs in both saliva and breath.  

Data showed that a daily consumption of 200 g blueberries did not modify the VOC 

fingerprints of saliva and breath, and did not significantly impact any specific single VOC in 

saliva and breath of the 14 subjects who participated in the study.  

Interestingly, data on breath VOCs obtained by PTR-ToF-MS indicated that some VOCs 

could derive from the metabolism of dietary nutrients. For instance, phenol was the major 

tyrosine metabolite produced in casein and peptide fermentations, and indole was the sole 

product of tryptophan metabolism forming from the free amino acid (Smith and Macfarlane, 

1997). Moreover polyphenols can be fermented by the primary degrader bacteria resulting in 

the release of a wide range of SCFAs (mainly acetate, propionate and butyrate) and a number 

of other metabolites (lactate, pyruvate, ethanol, succinate, soluble oligosaccharides, gases) 

that are the “fuel” for secondary degrader bacteria (Duda-Chodak et al., 2015). These 

processes are tightly controlled by environmental factors such as pH and carbohydrate 

availability, and this ultimately influences the types and amounts of fermentation products 

that can be formed in different regions of the large bowel. Similarly, dimethyl sulfide was the 

product from methionine metabolism, which is dependent from intestinal bacteria (Chen et al, 

1970; (Ajibola et al., 2013) and isoprene could derive from cholesterol metabolism that is in 

turn highly impacted by individual exercise, age, haemodialysis and stain therapy (Gelmont et 

al, 1981; (Karl et al., 2001; Stone et al., 1993b).  
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Unfortunately, the high inter-individual variability among individual diets during the study 

(except few dietary indications) did not allow to find associations between these VOCs and 

the consumption of specific foods. 

On the contrary this association was evident for methanol that was found to increase in saliva 

after the intervention week compared to the baseline week. 

Methanol naturally occurs in human blood, urine, saliva and breath, together with formic acid. 

The two most important sources of body burdens for methanol and formic acid are diet and 

mainly the intake of fresh fruit, vegetables and fruit juices and metabolic processes. Hence, 

after consuming blueberries and other fruits, the concentration of methanol in the human body 

could increase because of the degradation of natural pectin (esterified with methyl alcohol) in 

the human colon (Lindinger et al., 1997). The metabolism of methanol occurs primarily in the 

liver, through a series of oxidative steps to formaldehyde, formic acid and carbon dioxide 

(WHO, 1997; Woods, 1999). This might explain the significant correlations between 

methanol and formaldehyde in saliva and in breath.  

Interestingly in this study, besides methanol and formaldehyde, several other VOCs (such as 

acetone and propanol) showing strong links between their respective levels in saliva and 

breath, were found. It is known that metabolites, which derive either from physiological 

metabolism or from gut microbiota processing, finally diffuse in blood and circulate in human 

body. So in whole saliva, a number of constituents, including some VOCs, derive from 

circulating serum (sero-salivary constituents) (Forde et al., 2006). Likewise, VOCs transferred 

into blood are transported to lung and are exchanged at alveoli into exhalation. Thus to 

discuss the correlations of VOCs in saliva and in breath, the diffusion of substances from 

blood into saliva, as well as their solubility in saliva, becomes a key factor. For example, 

alcohols in serum, including methanol, ethanol and propanol, are unionized, non-protein-

bound and lipid soluble, with a low molecular weight (Kaufman and Lamster, 2002; 

Yoshizawa et al., 2013), allowing them to readily diffuse into saliva and then to volatilize 

during headspace injection. On the contrary, VOCs with low solubility in saliva, such as 

isoprene, with much higher concentration in breath (120 ~ 180 ppbv) than that of in saliva (2 

~ 4 ppbv), showed no correlation between two types of specimens. 

Furthermore, significant correlations among SCFA (i.e. acetic acid, propanoic acid and 

butanoic acid) were found only in saliva probably because of saliva buffer capacity, which 

allows saliva to neutralize large amounts of hydrogen or hydroxyl ions without showing 
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appreciable changes in the pH (Clark and Kenneth L. Carter, 1927), i.e. to ‘accumulate’ more 

acids and then release them out during incubation. In fact, the mean concentrations of SCFA 

released from saliva are all higher than SCFA in breath.  

Large numbers of studies on saliva VOCs have been done in the past decade. Analysis of 

saliva offers great advantages since its collection is convenient and non-invasive and it is easy 

to be handled and stored. Therefore, the discovery of correlations of VOCs in saliva and in 

breath found in this study might provide another approach to assess the influence of dietary 

compounds on human health. 

Another strong point of the design of this study was to align subjects to a low intake of 

polyphenol-rich foods in the preliminary baseline week and in the control week. This choice 

reduced the impact of other dietary polyphenols but blueberry polyphenols on the outcomes 

and might allow us to majorly address the potential findings to the blueberry polyphenols 

intake. In fact the main difficulty in approaching studies of the effect of polyphenols on health 

is often due to the wide range of different phenolic compounds in foods (Cheynier, 2005), 

together with their high variability of bioavailability and bioactivity (Scalbert et al., 2005), as 

well as the complex relationship established between these compounds and the intestinal 

microbiota (Etxeberria et al., 2013b) and other food components such as fibres (Cuervo et al., 

2014; Valdes et al., 2015). 

This study has also some limitations including the quite low number of subjects, the duration 

of intervention and the absence of a washout period between intervention and control week. 

These factors due to the high inter-individual variability of VOC profiles in breath and saliva 

might have influenced the lack of effect found by blueberry consumption (Kemperman et al., 

2010). However, it is also worth to notice that increasing the duration of the studies is the 

main cause of increased dropouts and reduced study compliance by the participants  (Queipo-

Ortuño, 2012).  

5. Conclusions 

In this pilot study for the first time the impact of a daily consumption of 200 g of blueberries 

(providing 440 mg of polyphenols) on VOCs profile of saliva and breath was tested in healthy 

subjects. 

All in all data of this study demonstrated that: 

• One week consumption of blueberries did not influence breath and salivary VOCs 
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profile in fasting subjects; 

• Salivary methanol increased after blueberry intervention compared to a low 

polyphenol diet; 

• Five VOCs including methanol, formaldehyde, ethanol, acetone and propanol were 

significantly correlated between saliva and breath; 

• Salivary concentrations of short chain fatty acids including acetic acid, propanoic acid 

and butanoic acid were significantly associated. 

The exact mechanisms of action of polyphenols on the human gut microbial ecosystem have 

not yet been fully established and further studies with longer intervention period are needed to 

demonstrate in humans the link between breath and saliva VOCs with gut microbiota 

composition, human metabolism of polyphenols and individual health status.  
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1. Summary and conclusions  

In this thesis we discussed the possible ‘cross-talk’ between the brain, intestine and specific 

foods components (i.e. dietary fibres and blueberry polyphenols) using the analysis of saliva 

and breath composition as non-invasive methods (Figure 1).  

 

Figure 1.  “Cross-talk” among brain, intestine and foods 

The thesis starts with a general introduction of the gut-brain axis as well as its research 

description of its mechanisms and biomarkers (e.g. eCBs and NAEs) together with possible 

directions to develop new foods and healthy diets for human (Chapter 1). 

In Chapter 2, based on short-term cues in this thesis, the pioneering mastication study 

investigated the concentration of NAEs in stimulated saliva. To the best of our knowledge, no 

previous investigation has studied the saliva composition in the immediate post-prandial 

phase. Interestingly, it was demonstrated that salivary NAEs concentration increased only 

upon food mastication instead of mastication itself in healthy, normal-weight subjects. 

Moreover an association between OEA and glucose in chewed food was found in control 

biscuit (CB) and whole-wheat bran biscuit (WWBB) but not in β-glucan biscuits (βGB) thus 

allowing us to hypothesize that the enzymatic activity of saliva and the gel-forming ability of 

β-glucan (βGB) might affect the link between OEA and glucose and, as a consequence, the 

learning processes behind food liking.  

We also discussed the post-prandial NAEs in saliva in Chapter 2. Salivary OEA was 

associated with fullness and satiety sensations as well as the actual liking of the biscuits for 

sweetness (Matias et al., 2012). It is worth mentioning that some associations were found 

between the salivary OEA and the liking of the biscuits (sweetness and overall palatability) as 
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well as between the fullness and satiety sensations in the post-prandial phases (at 15 min and 

30 min). Consequently, these links might hint at a possible involvement of salivary OEA in 

the sensory mechanisms during the post-ingestive phase, as well as its potential role upon 

food preference and individual choice (Yeomans, 2006).  

In addition, compared to CB, no effect of dietary fibre consumption was found in: 1) NAEs 

oral release during mastication; 2) the satiation in fasting subjects; and 3) the postprandial 

blood glucose. An overall graphical summary of this chapter was shown in Figure 2.  

 

Figure 2. The graphical summary of Chapter 2: salivary NAEs during mastication and post-
prandial phase. 

Chapter 3 described the first pilot study that was performed to investigate the influence of 

blueberry polyphenols (long-term cues) on whole VOCs in both saliva and breath among 14 

healthy subjects. Data indicated that a daily consumption of 200 g blueberries (providing 440 

mg polyphenols) neither modified the VOC fingerprints of saliva and breath nor significantly 

impacted any single, specific VOC. Nevertheless, salivary methanol increased after blueberry 

intervention compared to a low polyphenol diet, due to the degradation of natural pectin 

(esterified with methyl alcohol) in the human colon (Lindinger et al., 1997). Furthermore, 

intra-individual analysis between the saliva and the breath showed interesting effects between 

known metabolites.  

Worth of notice is that five VOCs including methanol, formaldehyde, ethanol, acetone and 

propanol were significantly correlated between saliva and breath. Additionally, the salivary 

concentrations of short chain fatty acids, including acetic acid, propanoic acid and butanoic 

acid, were significantly correlated. Figure 3 gives an overall graphical summary of this 

chapter. 



Chapter	4	
	

	78	

 

Figure 3. The graphical summary of Chapter 3: Impact of blueberry polyphenols diet (7 days) 
on VOCs in saliva and in breath. 

2. Future perspectives  

Both studies described in this thesis aimed to explore the influence of food components (i.e. 

dietary fibres and blueberry polyphenols) on saliva composition in humans. 

In the future, more knowledge of the mechanism of NAEs oral-release can be obtained by 

further investigating the chewing effect of different types of foods such as biscuits (solid) or 

puddings (semi-solid) also considering the addition of an aroma. In fact, the flavours were 

proved to enhance the satiety and this effect could be mediated by eCBs, NAEs and gut 

hormones (Ruijschop et al., 2009a; Ruijschop et al., 2009b; Ruuschop et al., 2009). In 

addition, it may be of interest to design some studies to demonstrate the food origin of NAEs 

in the mouth upon different types of foods and to clarify the mechanisms behind this 

formation. 

In chapter 3, we have illustrated that the effect of a one-week intervention with a low daily 

dose of polyphenols on whole VOCs in saliva and breath. However, despite much evidence 

from animal studies, only a few human intervention studies could prove the association 

between polyphenol intake and metabolic biomarkers in humans (Vitaglione et al., 2015).Of 

note is that most of the studies specifically focused on the impact of dietary polyphenols or 

specific compounds on the human gut microbiota or selected bacterial populations. 

Furthermore, little is known about the effective dose during a polyphenol intervention study 

in vivo.  
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In this respect a longer intervention study with blueberry polyphenols (at least one month with 

a daily intake of 300 to 400 g blueberry), and a ‘wash-out’ period  (at least one week) 

between diets-arm are recommended. In addition, a simultaneous evaluation of the gut 

microbiota and gut hormones is warranted to get a clearer understanding of the effect of 

polyphenol on intestine microbiota and human metabolism. 

Will a prolonged intervention elicit the modulation of intestinal microbiota and their 

metabolism? Will there be associations between the VOC fingerprints in the saliva, the breath 

and the regulation of gut flora? What are the principal contributors linked to specific intestine 

microbiota? These are the import questions for future investigations and their results thereof 

will most likely affect the health strategy aiming for the guidance of diet, in addition to the 

concept of non-invasive evaluation of the effects of functional supplements. 

3. Final note  

High correlations were found between the salivary and blood concentrations of relevant 

components (Nagler et al., 2015). Saliva, to some extent, ‘shares’ the biochemical and 

metabolically active information in the blood and thus could be considered as a potential non-

invasive easy-handling choice to study human physiological and pathological conditions (Al-

Kateb et al., 2013). In this thesis, we investigated saliva components (NAEs), sensory 

response (food liking) and satiety, not only upon mastication but also after consumption of 

dietary fibre enriched biscuits. Additionally in the blueberry polyphenols human intervention 

study, we evaluated the whole and specific VOC profile in saliva in comparison to VOC in 

the breath. 

We propose that a better mechanism understanding the saliva composition is needed to aid the 

development of new types of foods and the proposal of a healthy diet. Hopefully, the ensuing 

emergence of new technologies can enable saliva to be used as a rapid trace-level assessment 

of dietary intervention both in the short-term and in the long-term.  
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Abstract (Italiano) 

Il principale obiettivo della tesi è stato quello di esaminare il possibile “cross-talk” tra il 

cervello, l’intestino e componenti specifici degli alimenti (fibre alimentari e polifenoli dei 

mirtilli). Questo obiettivo potrebbe essere raggiunto attraverso uno studio a breve termine e 

un intervento a lungo termine nell’uomo, con analisi non-invasive sulla composizione della 

saliva e del respiro. 

Lo studio a breve termine è stato proposto per valutare l’impatto delle fibre alimentari sui 

NAEs della saliva durante la masticazione e nella fase post-prandiale. A tal scopo, sono stati 

preparati tre tipi di biscotti: arricchiti con il 3% di β-glucani (βGB) dell’orzo o con crusca di 

frumento (WWBB) o senza fibra alimentare (controllo, CB). 

Uno studio randomizzato nell’uomo è stato condotto su diciotto partecipanti. I campioni di 

saliva sono stati raccolti da soggetti in condizioni di riposo, subito dopo la masticazione di 

parafilm e dopo il consumo di uno dei tre biscotti. 

Successivamente, è stata misurata la quantità di biscotti consumata in una colazione ad-

libitum. Nelle due ore successive è stata raccolta la saliva post prandiale ed è stato misurato il 

livello di glucosio nel sangue, inoltre, attraverso la compilazione di questionari, sono stati 

valutati l’appetito ed il gradimento per l’alimento.  

I dati hanno dimostrato che la concentrazione salivare di NAEs è aumentata solo dopo la 

masticazione dell’alimento, ciò indipendentemente dalla composizione delle fibre 

dell’alimento. 

Il tipo di biscotto non ha influenzato l’appetito individuale e i livelli di glucosio nel sangue 

dopo il pasto; al contrario ha influenzato la persistenza dei NAEs nella saliva entro 30 minuti 

dal consumo. Studi futuri spiegheranno i meccanismi alla base di queste evidenze  e il ruolo 

dei NAEs salivari sul gradimento degli alimenti e sui segnali dell’appetito dopo il consumo di 

alimenti.  

Lo scopo dello studio a lungo termine è stato quello di testare, per una settimana, l’influenza 

del consumo di mirtilli sui composti volatili organici (VOCs) del respiro e della saliva umana. 

Quattordici volontari sani hanno partecipato ad uno studio randomizzato controllato a singolo 

cieco. Questo ha avuto una durata di tre settimane.  
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Dopo la prima settimana, che corrispondeva al periodo basale (BL), con una dieta a basso 

contenuto di polifenoli, i soggetti sono stati indirizzati in maniera randomizzata ad un 

trattamento basato sulla stessa dieta  (dieta controllo, CT) oppure basato sulla stessa dieta 

aggiunta di 200 g di mirtilli freschi al giorno per una settimana (INT). Nella settimana 

successiva i soggetti venivano sottoposti all’altro ramo di trattamento.  

Alla fine di ogni settimana i soggetti a digiuno hanno raggiunto il laboratorio per la raccolta 

dei campioni di saliva ed è stata effettuata un’analisi on-line del respiro con PTR-ToF-MS. 

Dopo le diete INT e CT, non sono state riscontrate differenze nei fingerprints dei VOCs e nei 

singoli VOCs del respiro e della saliva. 

Ciò nonostante, è stata mostrata una correlazione significativa tra la composizione della saliva 

e del respiro per il metanolo, la formaldeide, l’etanolo, l’acetone e il propanolo. Numerosi 

studi precedenti sono stati incentrati sulla composizione dei VOCs nel respiro di pazienti e di 

soggetti sani, ma pochi sono stati incentrati sui VOCs della saliva  

Pertanto, in questo studio il legame tra i VOCs della saliva e del respiro può aprire una nuova 

strada di ricerca per chiarire i meccanismi alla base dell’effetto metabolico degli interventi 

alimentari sull’uomo. 
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Overview of completed training activities 
 

Discipline	specific	activities • 3rd	MS	Food	Day;	October	2013;	Trento,	Italy	(Poster	presentation)	
• 7th	International	Immunonutrition	Workshop	“Eating	for	Preventing”;	

May	2014;	Carovigno,	Italy	(Poster	presentation)	
• Molecular	Physics	Workshop;	July	2015;	Caen,	France	(Poster	

presentation)		
• 29th	EFFoST	International	Conference	“Food	Science	Research	and	

Innovation:	Delivering	sustainable	solutions	to	the	global	economy	and	
society”;	November	2015;	Athens,	Greece	(Poster	presentation)		

• 7th	International	PTR-MS	Conference;	February	2016;	Innsbruck,	
Austria	(Poster	presentation)	

 

 

 

General	courses	and	trainings	

 

 

 

• PhD	course:	Progettazione	e	gestione	dei	programmi	di	ricerca,	
October	2014;	University	of	Naples	

• PhD	course:	Data	analysis,	July,	2014;	University	of	Naples	
• PhD	course:	How	to	write	a	scientific	paper	and	present	experimental	

results,	September	2014;	University	of	Naples 
• Course	in	“Writing	journal	articles	and	proposals,	general	principles	of	

scientific	writing,	and	sustainable	development	communication”,	April	
2014;	University	of	Birmingham	and	Scriptoria	Ltd.,	UK.	

• Course	in	“Basic	management	skills,	effective	scientific	
communications”,	November	2014;	University	of	Birmingham	and	
Scriptoria	Ltd.,	UK.	

• Marie	Curie	PIMMS	training	in	“Hands-on	PTR-MS	Training	Session”,	
October	2013;	Ionicon,	Innsbruck,	Austria.	

• Marie	Curie	PIMMS	training	in	“PTR-MS	data	analysis	and	multivariate	
statistics”,	October	2013;	Fondazione	Edmund	Mach	di	San	Michele	
all’Adige	(FEM),	Italy.	

• Marie	Curie	PIMMS	training	in	“Instrumental	Diagnostics”,	April	2014;	
Kore	Technology	Ltd.,	Ely,	UK.	

• Marie	Curie	PIMMD	training	in	“Materials	and	instruments	spare	parts	
design”,	November	2014;	University	of	Birmingham	and	Kore	
Technology	Ltd.,	UK.	

	
	

 

Scientific	visiting	 • Marie	Curie	PIMMS	secondment	“PTR-ToF-MS	analysis	and	Blueberry	
polyphenols	intervention	project”,	September	to	November	2013;	
Fondazione	Edmund	Mach	di	San	Michele	all'Adige	(FEM),	Italy.	

• Marie	Curie	PIMMS	secondment	“PTR-MS	data	analysis	training”,	
September	to	October	2015;	Ionicon,	Innsbruck,	Austria.	

• Intern	with	training	in	“Analysis	of	food	contaminants	with	GC-MS”,	
August	to	September	2013;	SOFIA	GmbH,	Berlin,	Germany.	
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List of Publications 

• Xianghui Kong, Rosalia Ferracane and Paola Vitaglione. Salivary concentration of N-
acylethanolamines upon food mastication and after meal consumption: influence of 
food dietary fibre. Food Research International. (In submission) 

 

• Xianghui Kong, Iuliia Khomenko, Luca Cappellin, Franco Biasioli, Vincenzo 
Fogliano, Alessandro Genovese, Paola Vitaglione. Impact of blueberry consumption 
on volatile organic compounds of human breath and saliva: a pilot study. (In 
submission) 
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