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Introduction 

The road-safety is one of the most important 

priorities of socio-economic policy of E.U. 

which advanced several programs for 

enhancing and improving safety Standard in 

the member Countries. Italy is one of the 

European Countries that has not yet 

achieved the results envisioned in the 

"European Road Safety Action Program, 

Halving the number of road accident victims 

in the European Union by 2010: A shared 

responsibility”. The existing Italian road 

network, as indicated in the “Bozza per gli 

Interventi di Adeguamento delle strade 

esistenti” (2006), is composed by long 

planimetric development with geometrical, 

functional and multiform traffic conditions. 

The defined design criteria are very different 

and not quite congruent with the current 

operating conditions. The “Bozza per gli 

Interventi di Adeguamento delle strade 

esistenti”, according with D.M. 22/04/2004, 

disciplines the design criteria and 

implementation of treatments, structural or 

non-structural, on existing road network, 

approved and incorporated into the planning 

and programming schedule of government 

bodies and / or operators. These criteria are 

geared to improving the operational 

capability and safety of roads, in compliance 

with the existing environmental, 

archaeological, landscape and economy 

restrictions. The current regulation D.M. 

5/11/2001 states that treatments on existing 

roads for the improvement of road 

consistency, must be performed by adapting 

to these standards. The transition between 

sections that reflect the current regulation 

and sections where the adaptation has been 

considered not be possible, must be resolved 

to avoid the introduction of unsafe 

conditions.  The Directive 2008/96/EC of 

the European Parliament and of the Council 

on Road infrastructure Safety Management 

required the establishment and 

implementation of procedures relating to 

road safety impact assessments, road safety 

audits, the management of road network 

safety and safety inspections by the Member 

States that are essential tool for preventing 

possible dangers for all road users and also 

in case of road works. The research aims to 

provide integrated procedures to investigate 

the relationships between road alignment 

consistency and crash risk factors 

integrating safety into roadway management 

process. Factors directly related to road 

safety conditions are 

infrastructure/environmental features, 

human factors, vehicle conditions. On a road 

element, drivers usually appreciate two 

prevalent measures of good driving 

performance: speed and comfort. Drivers 

select speed using perceptual and “road 

message” cues. By identifying these cues, 

drivers can establish self-regulating speeds 

with minimal or no enforcement. In fact, 

crashes can be defined as the result of bad 

decisions made by drivers. One way to 

accommodate for human information 

processing limitations is to design roadway 

environments in accordance with driver 

expectations: a road design that’s aligned 

with the driver limitations and expectations 

can help increase the likelihood of drivers 

responding to particular situations and 

information correctly and quickly. When a 
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roadway alignment helps drivers anticipate 

changes, and meets previous requirements, 

it’s marked out a good geometric 

consistency. The road analyzed is the S.P. 

430, a variant of the state highway S.S. 18, 

the "Tirrenia Inferiore", which is the major 

road, after freeway A3, and is also one of 

the most important and long in Southern 

Italy, considering that go through 

Tyrrhenian coast along the road and railway 

Naples - Reggio Calabria, linking the two 

largest urban centers of Campania and 

Calabria. The road project dates back to 

1973, and was carried out prior to the 

development and introduction of the D.M. 

5/11/2001, having been subject during the 

years to a series of interventions that have 

changed the geometric regularity. By using 

project cartographies and information 

collected onsite and the help of Civil Design 

software, the horizontal-vertical alignment 

was drawn with the definition of the exact 

succession of the road elements. Road and 

crash features have been studied as follows: 

a) geometric and traffic data collected by 

site surveys and by verifying documents at 

the Land Registry of the roads; b) speed 

values collected at specific sections by using 

laser detectors placed in tactical locations 

and hidden from the view of drivers; c) 

crash reports analyzed at the administrative 

offices of the Province for a study period of 

8 years. Road alignment consistency was 

evaluated and a prediction model was 

calibrated by a sensitive analysis to match 

the road with one only global measure of 

consistency for the entire development, and 

no with speed reductions between two 

following elements. Nine homogenous road 

elements were identified. The starting point 

of the analysis was the operating speed 

profiles and the assessment of two 

parameters for each investigated road: a) the 

area bounded by the speed profile and the 

average weighted speed lines, and b) the 

standard deviation of speeds along a road 

horizontal alignment. Negative exponential 

function has been adopted to calibrate the 

model. Next step has been the evaluation of 

relationship between the road consistency, 

road alignment and crashes. The alignment 

consists of a variety of design elements that 

combine to create a facility that serves 

traffic safely and efficiently, consistent with 

the facility’s intended function. Each 

alignment element should complement 

others to achieve a consistent, safe, and 

efficient design. Each homogenous road 

element has been associated with the 

following information; parameter of 

consistency, design criteria not satisfied, 

size of the combinations not satisfied, the 

frequency of the combination, the number of 

times when in the presence of a combination 

were recorded crashes and the total number 

of accidents for combination. Lastly, the 

Empirical Bayesian evaluation method was 

applied to estimate the average crash rate 

frequency on the "sites" in the "before" 

configuration, current configuration 

referring to the CNR 80 regulation , and the 

"after" configuration, expected configuration 

with the adoption of the design criteria 

indicated in the DM 05/11/2001. The work 

presented can be an useful tool for body 

government to identify hot spot of the road 

network and evaluate the effective 

treatments to improve road safety.  
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1. Literature review 

The Directive 2008/96/EC of the European Parliament and of the Council on Road infrastructure 

Safety Management pointed up the need to carry out safety impact assessments and road safety 

audits, in order to identify and manage high accident concentration sections within the 

Community. It also had set the target of halving the number of deaths on the roads within the 

European Union between 2001 and 2010. This Directive required the establishment and 

implementation of procedures relating to road safety impact assessments, road safety audits, the 

management of road network safety and safety inspections by the Member States that are 

essential tool for preventing possible dangers for all road users and also in case of road works. 

One way to accommodate for human information processing limitations is to design roadway 

environments in accordance with driver expectations: a road alignment that it’s easy to be 

predicted by drivers, it’s characterized by a good consistency. Roads provided with a good 

horizontal-vertical alignment can help avoid abrupt reductions in speed between consecutive 

geometric elements and, consequently, they can help to decrease the crash frequency. 

Design consistency” refers to the condition where in the roadway alignment does not violate 

driver expectations (NCHRP, 2003) 

Many researchers (Transportation Research Circular E151 of TRB of the National Academies, 

July 2011: Modeling Operating Speed) have verified that one of the parameters to most influence 

a safe driving is the operating speed variable and the design consistency evaluation is one of 

several promising tools that can be employed by roadway designers to improve roadway safety 

management process. 

Glennon et al. (1978) were among the first to suggest that design consistency should be 

recognized as an underlying principle in highway design. However, there remains a general lack 

of explicit criteria for combining contiguous basic design elements. Without such criteria, 

designers will continue to incorporate inconsistent geometric elements into highways.  

Earlier, the American Association of State Highway Officials (AASHO) (1972) developed the 

Driver Expectancy Checklist, in which design consistency was a major parameter. The results 

strongly suggest that only proper coordination among all roadway and terrain features can 

achieve good design consistency.  

Messer (1980) presented a methodology to evaluate consistency based on driver-behavior 

principles associated with workload ratings for different geometric features. For example, 

because sharper curves are generally more troublesome, a driver’s workload increases with the 

degree of curvature and with the deflection angle of the curve. Using the same reasoning Messer 

also suggested that excessively long curves were accident inducing and should be discouraged. 

Similarly, he proposed some general design recommendations for consistent horizontal and 

vertical alignments and intersections.  

Polus and Dagan (1988) developed and tested several models to evaluate highway-design 

consistency, including a spectral analysis model for the horizontal alignment; the proposed 
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methods could be adopted for the vertical alignment, as well. They tested their consistency 

models on theoretical sample roads that they developed. The spectral model had the highest 

correlation with a logical consistency rating established in previous research and with 

engineering judgment. Earlier, Polus (1980) Investigated the relationship between longitudinal 

geometric measures (such as the average radius, or the ratio between the minimum and 

maximum radius of an alignment) and safety levels on two-lane rural highways. He proposed 

that safety correlated with a similarity in design elements (quantified by the proposed measures) 

and, therefore, with consistency. He reasoned that drivers tended to build up an expectation of 

what the upcoming roadway would be like, based on their immediate previous driving 

experience.  

Gibreel et al (1999) presented a comprehensive literature review of highway geometric design 

consistency mainly on two-lane rural highways in North America and Europe. Previous research 

work on highway geometric design consistency is categorized into three main areas: (1) Speed 

considerations; (2) safety considerations; and (3) performance considerations. (See Figure 1) 

Speed considerations address the different effects of geometric parameters on the prediction of 

operating speed. Based on operating speed, design consistency of highway elements can be 

evaluated. Safety considerations explain the different relationships between highway safety and 

highway/traffic elements, vehicle stability, and low-cost improvements. Performance 

considerations address the different effects on driver workload, driver anticipation, highway 

aesthetics, and interchange design. Based on this review, a framework for highway design 

consistency is proposed, and recommendations for future research work on design consistency 

are suggested, including the need to develop operating speed consistency models based on 3D 

analysis. 

 

Figure 1– Main Areas of Geometric Design Consistency 
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Speed is an important factor that is usually considered in the route selection or the choice of 

transportation mode. The attractiveness of different highways is weighed by the road user in 

terms of time, convenience, and cost. The actual operating speed is defined as the speed selected 

by the highway users when not restricted by other users [i.e., free-flow conditions (Poe et al. 

1996)] and is normally represented by the 85th percentile speed. Many factors affect prediction 

of operating speed, such as radius of horizontal curve, length of horizontal curve, sight distance, 

super elevation rate, side friction factor, and pavement conditions. There are various methods of 

predicting operating speed, followed by consistency evaluation measures on a single geometric 

element and successive elements. It should be noted that previous research work was limited to 

rural highway sections with the following characteristics: (1) Intersections are not present; (2) 

no physical features adjacent to or in the course of the highway section that may create abnormal 

hazard; (3) shoulders are paved and the sections are delineated; (4) pavement width does not 

change; and (5) grades are <5%. 

The most commonly used criteria to evaluate highway design consistency were based on 

operating speed. For a single geometric element, design consistency is evaluated by comparing 

the design speed Vd and operating speed V85. For successive geometric elements, design 

consistency is evaluated based on the operating speed on these elements. 

For a single element design speed is defined as the maximum safe speed that can be maintained 

over a specified section of a highway when conditions are so favorable that the design features of 

the highway govern (AASTHO 1994). Based on the difference between V85 and Vd, different 

approaches were developed to evaluate design consistency on a single highway element. 

Some of the approaches recommended by European countries to achieve consistency between 

operating and design speeds have been summarized by Brenac (1996). In the United Kingdom, 

the design speed is determined through an iterative method. An initial alignment is defined based 

on a trial design speed, and then the operating speed is predicted using a statistical model. By 

comparing operating and design speeds, the designer can, if necessary, adjust some parts of the 

alignment or change the design speed to make it close to V85. The advantage of this approach is 

that it ensures consistency between design and operating speeds. In the German standards, a 

design speed is used to determine the minimum radii of the horizontal and vertical alignments 

and the maximum values of gradient. Then, the operating speed is predicted for road sections 

according to the CCR and road width and is used to design other elements such as super 

elevation rates. However, it was suggested that the difference between operating and design 

speeds should not exceed 20 km/h, otherwise, the design speed should be raised or the alignment 

characteristics should be modified to reduce the operating speed (Brenac 1996).  

The French practice is similar to the German practice except that operating speed is defined at 

each point of the alignment. The operating speed is then used to check the available sight 

distance along the alignment. However, because these approaches can ensure design consistency 

on an individual element only, additional design rules were recommended to achieve consistency 

between successive elements (Brenac 1996).  
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In the United States, a design speed concept based on operating speed has been proposed by 

Leisch and Leisch (1977). The objective of this concept was to better meet driver expectations 

and achieve operational consistency. It was recommended that the difference between operating 

and design speeds on a specific highway section should not exceed a maximum of 15 km/h. 

Furthermore, the operating speed difference between passenger cars and trucks on a specified 

element should also be restricted to 15 km/h. In another study by Lamm et al. (1988b, 1995) to 

evaluate the design consistency of independent highway elements, the relationship among 

accident rate, geometric characteristics of horizontal curves, and difference between Vd and V85 

was investigated. Based on mean accident rates, the difference between Vd and V85 was 

suggested as a criterion to evaluate design consistency as follows (Lamm et al. 1988b, 1995): 

• Good design: V85 - Vd ≤ 10 km/h (no alignment corrections are necessary). 

• Fair design: 10 km/h < V85 - Vd ≤  20 km/h (corrections are required: superelevation rate and 

stopping sight distance must be related to the expected V85). 

• Poor design: V85 - Vd > 20 km/h (redesign of these hazardous locations is required based on the 

value of V85). 

In addition to using V85 as a guide for selecting Vd, the posted speed should also be selected 

based on V85. Fitzpatrick et al. (1997) studied the relationships between design speed, operating 

speed, and posted speed on two-lane rural highways and found that V85 on horizontal curves was 

less than Vd for all curves with Vd > 70 km/h and greater than Vd for most curves with Vd < 70 

km/h. It was concluded that when operating speed is higher than design speed, a speed 

inconsistency condition will arise at this location. This inconsistency results from using the 

minimum safe values for the design elements. Although liability concerns may arise when the 

posted speed exceeds Vd, it was concluded that V85 is an appropriate posted speed limit even for 

those highway sections that have Vd less than V85. 

For successive elements different measures were proposed to evaluate design consistency of 

highway sections with multiple elements, especially those with two successive elements. These 

measures include: (1) average curvature, which was defined as the sum of central angles of 

horizontal curves in a specific highway section divided by the length of this section; (2) average 

hilliness, which was defined as the sum of the distances between each crest vertical curve and the 

following sag vertical curve in a specific highway section divided by the length of this section; (3) 

length ratio, which was defined as the sum of horizontal and vertical curve lengths in a specific 

highway section divided by the length of this section; (4) average radius, which was defined as 

the average radius of a set of horizontal curves in a specific highway section; and (5) design 

radius, which was defined as the average radius divided by the minimum radius related to the 

design speed on a specific highway section (Lamm et al. 1986). It should be mentioned that the 

alignment consistency is directly proportional to the average radius and design radius, while it 

has an inverse relationship with average curvature, average hilliness, and length ratio. However, 

the simplest and most common method to evaluate design consistency on successive elements is 

based on operating speed values (Lamm et al. 1988a). Different combinations of successive 



5 

 

elements have been studied: long tangent followed by a horizontal curve and two successive 

horizontal curves with or without a short tangent.  

In Russia, Babkov (1968) concluded that consistent and safe design of horizontal alignment 

could be achieved when the difference in operating speed between two successive elements did 

not exceed 15% of the speed on the preceding element. Speed-profile models have subsequently 

been used in different European countries to determine the difference in V85 on the approach 

tangent and the following curve.  

Switzerland was the first country to incorporate this difference into its design practice as a 

consistency measure (Krammes et al. 1994). Kanellaidis et al. (1990) determined V85 on the 

tangent that is based on speed data and used the model of (5) to estimate V85 on the following 

horizontal curve. It was suggested that a good design can be achieved when the difference 

between V85 on the tangent and the following curve does not exceed 10 km/h. Based on mean 

accident rates; Lamm et al. (1995) suggested another criterion to evaluate design consistency 

between a tangent and the following curve as follows: 

• Good design: range of change in V85 ≤  10 km/h (consistency exists). 

• Fair design: 10 km/h < range of change in V85 ≤  km/h (minor inconsistency exists, traffic 

warning devices are required). 

• Poor design: range of change in V85 > 20 km/h (strong inconsistency exists, redesign is 

recommended). 

Other models were also developed to express the speed reduction between a tangent and the 

following curve as a function of the geometric parameters and pavement condition in terms of 

present serviceability rating (Al-Masaeid et al. 1995). The results indicated that the radius of 

curve (degree of curve), length of vertical curve within the horizontal curve, gradient, and 

pavement condition affected the design consistency significantly. Three models of operating 

speed reduction between a tangent and the following curve were formulated as follows: 

DV  58.130.3     (1) 

207.009.439.184.1 GPDV     (2) 
2

00004.0455.145.1 VLPDV   (3) 

Where ΔV = operating speed reduction between tangent and curve (km/h); P = pavement 

condition (for present serviceability rating ≥3, P = 0, otherwise P = 1); G = gradient (%); and Lv 

= length of vertical curve within the horizontal curve (m). It should be noted that the models of 

(1)–(3) were recommended for horizontal curves on a flat gradient, a specific gradient, and 

vertical curves, respectively. Based on (1) and the criterion suggested by Lamm et al. (1995) for 

good, fair, and poor design, it was concluded that a good design can be achieved if the degree of 

curve D on flat grades is <4.247. For a horizontal curve combined with another gradient or a 

vertical curve, values for the maximum degree of curve were suggested depending on the 

gradient or the length of vertical curve, respectively. For two successive horizontal curves with 

different V85 and a short intermediate tangent, the minimum tangent length that promotes 

operating speed consistency was investigated by Lamm et al. (1988a). It was recommended that 
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the tangent length that would guarantee speed consistency should be determined based on V85 of 

the two curves. Based on Newton’s laws of motion and the assumption that the average 

deceleration rate is equal to 0.85 m/s
2
 this length can be determined as follows (Lamm et al. 

1988a): 

064.11

85VV
L AV

T


       (4) 

Where LT = minimum tangent length (m); Vav = average of V85 on the two successive curves 

(km/h); and ΔV85 = difference between V85 on the two successive curves (km/h). For two 

successive horizontal curves without an intermediate tangent, the design guide by the American 

Association of State Highway and Transportation Officials (AASHTO) recommended that the 

ratio of the flatter radius to the sharper radius should not exceed 3:2 (AASHTO, 1994). The 

speed reduction between the two successive curves was modeled by Al-Masaeid et al. (1995) as 

follows: 
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Where r1 and r2 = radius of the first and second curves, respectively (m). Using a maximum 

speed reduction of 10 km/h that corresponds to a good design, the minimum and maximum radii 

of the second curve can be calculated for a specific radius of the first curve. However, it is 

expected to evaluate the design consistency of successive highway elements more accurately 

when considering the 3D nature of highway alignments. In addition, research work on 

consistency measures to evaluate successive highway elements should be extended, in terms of 

explicit and applicable design consistency criteria, to include the different combinations of 

highway elements. A common shortcoming in all of the preceding models is considering the 

horizontal curves in 2D alignment and vertical alignment separately except for the model of (3), 

which included, in addition, the length of vertical curve. 

Achieving highway geometric design consistency is an important issue in the design and 

evaluation of rural highways to attain smooth and safe traffic operation.  

Castro et al (2011) presented a research carried out in Colombia consisting of a study of vehicle 

speeds on tangents and curves of two-lane rural highways. Car speeds were measured on the 

approach tangent and at the beginning, middle, and end points of curves by using two radar 

meters. The operating-speed prediction models were developed. The speed change experienced 

by drivers from tangent to curve was also studied, and a model is presented that predicts this 

change. Finally, the model developed for operating-speed prediction at the midpoint of curves 

was compared with equivalent models calibrated in other countries and applied to a Colombian 

highway. This comparative study highlights the importance of using speed-prediction models 

calibrated according to local conditions. 

Polus et al. (2000) developed a family of nonlinear models for predicting operating speeds on 

tangent sections of two-lane highways. The independent variables were the length of the tangent 
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section and the radii of the curves prior to and after the tangent section. These models, jointly 

with those suggested by Krammes et al. (1995) for estimating operating speed on curves, were 

used during the development of speed profiles for formulating a consistency model for two-lane 

highways in the present research.  

Anderson and Krammes (2000) estimated the reduction in 85th percentile speeds from the 

approach tangent to the midpoint of the following curve. They found that a statistically 

significant relationship existed between mean speed reduction and mean accident rate: sites with 

higher speed reductions showed higher accident rates. This important finding was further 

investigated in this research through the development of a relationship between speed profile 

variability, as a measure of the design consistency of two-lane highways, and expected crash 

rates.  

Krammes and Hayden (2003) discussed the Interactive Highway Safety Design Model (IHSDM), 

which has been in development in the U.S. for several years. This model includes a consistency 

module with two aspects: large differences between the assumed design speed and the 85th 

percentile speed and large changes in the 85th percentile speed between tangents and curves. 

Polus and Mattar-Habib (2004) studied consistency of design on two-lane rural highways and to 

ascertain the existence of a relationship between consistency and safety level. The immediate 

objectives were to develop new, independent measures of consistency that could reflect the 

similarity (or lack thereof) of performance along an entire level or hilly section, to develop a new 

consistency model, and to find the relationship between the new model and crash rates on two-

lane rural highways. Two consistency measures were developed: the first was the relative area 

bounded by the speed profile and the average weighted speed; the second was the standard 

deviation of operating speeds in each design element along the entire section investigated. 

Following an extensive sensitivity analysis of these two measures, thresholds that quantified the 

design quality were suggested. Based on the two independent measures, a consistency model was 

developed; and thresholds for good, acceptable, and poor design consistency of any section were 

proposed. Additional analysis was conducted on the relationship between the proposed 

consistency model and the safety level of two-lane highways. This was done initially on a limited 

data set of nine local, two-lane highway sections. It was found that as design consistency 

increased, crash rates decreased significantly. In a second phase, the analysis was expanded and 

the same consistency model was applied to a data set of 28 two-lane U.S. highways. It was found 

that crash rates decreased when the consistency value increased. 

Camacho-Torregrosa at al. (2013) presented a new methodology to evaluate road safety in both 

the design and redesign stages of two-lane rural highways. This methodology is based on the 

analysis of road geometric design consistency, a value which will be a surrogate measure of the 

safety level of the two-lane rural road segment. The consistency model is based on the 

consideration of continuous operating speed profiles. The models used for their construction 

were obtained by using an innovative GPS-data collection method that is based on continuous 

operating speed profiles recorded from individual drivers. This new methodology allowed the 

researchers to observe the actual behavior of drivers and to develop more accurate operating 
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speed models than was previously possible with spot-speed data collection, thereby enabling a 

more accurate approximation to the real phenomenon and thus a better consistency measurement. 

Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several 

consistency measurements based on the global and local operating speed were checked. The final 

consistency model takes into account not only the global dispersion of the operating speed, but 

also some indexes that consider both local speed decelerations and speeds over posted speeds as 

well. 

After the statistical analysis, the proposed model for relating crash data to road geometry results 

as: where C is the design consistency index, calculated as: 

C
ECR
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Where C is the design consistency index, calculated as follows: 
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The development of this new model and consistency index provides a new design consistency 

measure for an entire road segment. Moreover, since the model presents the relationship between 

consistency and crash rate, it is possible to use that parameter as a surrogate measure to evaluate 

road safety and estimate the number of accidents with victims. Consequently, the results of this 

research can be an innovative tool for assisting engineers at the design or redesign stages, 

enabling them to evaluate the consistency and road safety of several possible solutions and to 

ultimately choose the safest one. In addition, the presented model can be also applied to 

estimation of the crash rates of an existing road where accident data are not available.  

Park and Saccomanno (2006) assessed the safety implications of using the conventional DV85 

and introduce a hierarchical model for considering individual vehicles speed consistency. A new 

speed differential measure called 85MSR was included in the study, measure that reflects the 

85th percentile maximum speed reduction between two successive highway elements as 

experienced by the same vehicle or driver. 

These findings lead to important implications for introducing engineering treatments to improve 

safety along in two-lane rural highways based on the criteria of speed consistency. Results show: 

 (1) The 85MSR measure is more flexible than conventional ΔV85 measure for estimating speed 

differential between successive highway elements. This is because the 85MSR does not require a 

strong independency assumption for speeds established by vehicles in these elements. The 

85MSR measure is better to capture the full speed variance between successive elements and 

hence is better able to identify safety problems for treatment: (2) The conventional ΔV85 

measure is tangible because of the problem called ‘‘ecologic fallacy’’. Inasmuch as this problem, 
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researchers tend to reach a misguided conclusion that the conventional ΔV85 suggests adequacy 

of explanation of their study data, when such a conclusion is not justified. Therefore, a 

disaggregated approach is necessary and required to be modeled: (3) A multi-level model (i.e. a 

hierarchical data analysis) provides additional insights that cannot be captured using a single-

level modeling approach. Using a multi-level model in this paper we found that the majority of 

speed differential in individual vehicle speeds can be accounted for by distinct vehicle/ driver 

characteristics rather than the geometric features of the corresponding highway section: (4) 

Decision makers in highway engineering fields should be more conservative when they decide to 

alter geometric features such as the curvature of a curve based solely on increasing safety. There 

might be other more cost-effective means to achieve these safety objectives. We note that this 

conclusion is based on an assumption that the speed differential is positively associated with the 

likelihood of accidents. However, this assumption has not been validated.  

Ng and Sayed (2004) presented eight accident prediction models that relate design consistency to 

road safety. Six models investigate the relationship between individual design consistency 

measures and accident occurrence and show the direction of correlation as expected. For a more 

comprehensive evaluation of the impact of design consistency on road safety, two models that 

incorporate several design consistency measures to quantify the impact are developed. The 

models show that when design consistency is considered, the safety performance of an alignment 

is improved. A qualitative comparison is made to compare accident prediction models that 

explicitly consider design consistency with those that rely on geometric design characteristics for 

predicting accident occurrence. The comparison, while limited to fictitious alignments and not 

real data, shows that the first type may be superior as it can potentially locate more 

inconsistencies and reflect the resulting effect on accident potential more accurately than the 

second. The prediction accuracy of accident prediction models is limited by the quality of their 

independent variables. As such, the models developed in this study depend heavily on the design 

consistency measures used. Therefore, future research effort should be devoted to improving the 

prediction of these measures. In addition, the models developed in this study are limited to 

horizontal curves and tangents only. More work is needed to expand the applicability to sections 

that are combined with vertical curves as well as to other types of highways. 

Hassan (2004) presented a critical review of the concept of highway geometric design 

consistency, criteria and parameters for its evaluation, and its relationship to safety performance. 

A number of concerns or challenges to the current state of knowledge and practice were outlined 

with the objective of refining and improving the concept and its applicability. The main 

conclusion that can be drawn based on this review is that despite these challenges and concerns, 

the theory remains promising but improvements are necessary. Some research work has already 

been carried out and more is still needed in a worldwide collaborative effort to overcome these 

challenges: 

• An optimum data collection procedure to capture actual drivers’speed behavior needs to be 

developed and agreed on. Such a procedure must not influence drivers’ behavior through the 

introduction of perceived speed enforcement. 
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• Operating speed is not strongly correlated to alignment features need to be further verified once 

the optimum data collection procedure has been developed. If this finding is confirmed using a 

larger database, alternative approaches to the simple regression analysis should be developed to 

predict operating speed on the different features of the highway alignment. In the following 

study, Misaghi and Hassan (2005) found, compared to the results of previous studies, the 

relationship between the operating speed at the middle of a horizontal curve and the horizontal 

curve radius or other alignment parameters is relatively weak. Many reasons could have 

contributed to this finding including the smaller number of restrictions in site selection, most 

importantly including curves with nearby intersections and driveways. It is also hypothesized in 

this study that another main reason for this observation is the nonintrusive approach for speed 

data collection using traffic counters/classifiers. As shown in the paper, the use of a radar gun 

causes drivers to slow down because of their perception of speed enforcement. The presence of 

such a potentially dominating factor as perception of speed enforcement might conceal other 

factors that would normally influence drivers’ speed selection. Such factors as length and 

urgency of trip as well as driver’s familiarity with the road and level of speed enforcement may 

be impossible to account for but might dominate the driver’s choice of speed in the absence of 

perceived speed enforcement. 

• Research on friction factors for highway design in general, including consistency evaluation, is 

long overdue, and so is a comprehensive research to examine how the friction assumed and 

demanded have changed with the evolution in the vehicle and pavement industries. This research 

will need to be updated frequently to keep the highway design parameters on track with the ever-

evolving automobile industry. 

• Driver workload is another area in which comprehensive research is urgently needed. • 

Evaluating design consistency on the basis of absolute values such as visual demand or ratio of 

curve radius to average radius of a section will always favor larger radii. Therefore, a criterion 

based on a differential value would be more appropriate and needs to be developed. 

• Analysis of the relationship between the different candidate evaluation criteria speed and safety 

performance should be performed using the more accurate Poisson or negative binomial 

regression. The results should then be put in a form usable by highway practitioners. 

• The optimum size of an area to be covered by a prediction model needs to be estimated. The 

trade-offs between developing a more general, but less accurate, model on the basis of the data 

from a large area and a more specific, but more accurate, model covering a smaller area must be 

considered. This consideration is particularly important for countries that extend over large areas 

with different dominant environmental, topographic, and even demographic characteristics. 

Mattar-Habib et al (2008) presented the calibration of an enhanced-consistency model which was 

developed initially by Polus et al (2005). The values of the consistency were calculated using 

data collected from two countries: Israel and Germany. 26 Israeli road segments and 83 German 

road segments were investigated in order to examine the relationship between crash occurrence 

and road consistency. The relationship between crash probabilities and road consistency was 

described by a Poisson model. The model’ s parameters were calibrated using maximum 
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likelihood method. It was found that the German and Israeli calibrated models were relatively 

close to each other. It can be noticed clearly that the trend of the two calibrated models is similar; 

as road consistency improves, the average crash numbers estimated decrease significantly. The 

enhanced-consistency model and the software may be used to determine consistencies of 

different alternatives during the planning of new highways or the reconstruction of existing roads. 

Adherence to high consistency levels adds another dimension to the planning process, beyond 

the use of minimum criteria of geometric design, and therefore consequently assures a higher 

level of safety. 

Dell’Acqua and Russo (2011) illustrated the use of new, different variables to better analyze the 

performance of drivers on some Italian low-volume roads. Four operating speed prediction 

models were calibrated and validated for tangents and circular curves to improve the design of 

the operating speed profiles for two travel directions. The operating speed prediction models 

were prepared by using the remainder of the speed values collected that did not fall in the 

transitions. Two operating speed models were produced for the tangents: the first one for lengths 

of greater than 500 m and the second one for lengths of less than 500 m. Two operating speed 

models were also produced for the circular curves: the first for a mean CCR for a homogeneous 

roadway segment greater than 240 gon/km and the second for a CCR of less than 240 gon/km. 

All models were then validated by analysis of some statistical parameters by comparing 

predicted speed values with observed speed values not included in the calibration phase. A 

continuous operating speed profile can be designed for the total length of the low-volume roads 

analyzed by using the results of the preceding transition study and one of four operating speed 

prediction models, depending on the tangent length and the CCR. Different variable types were 

used to properly analyze actual driver speed behavior: functional factors—that is, a pavement 

distress indicator, an intersection indicator, and the number of residential driveways per 

kilometer; geometric factors—that is, the length of the single element, the radius of the circular 

curve, the CCRS, the CCR of the homogeneous roadway segment, and the width of the travel 

lane plus shoulders; and speed factors—that is, the speed on the preceding curve. Pavement 

distress indicators are important for improving operating speed prediction models. The severity 

of each distress is identified by use of a four-point scale ranging from 0 to 3. The results obtained 

illustrate improvements to preceding prediction models: the values of the residuals between the 

observed and predicted operating speed values are lower than the initial residuals, and their 

distribution around the mean is low, which was confirmed by the performance diagrams. In 

conclusion, the V85 profiles can be used to develop safety analyses of existing low-volume roads. 

In fact, it is possible to design measures to improve roadway safety conditions by estimating at 

each road element the difference between the operating speed value obtained by using speed 

prediction models and the speed value suggested by standards. The countermeasures needed to 

improve roadway conditions can be derived from analysis of each explanatory variable 

introduced in the prediction models, which can help to improve or worsen driver speed behavior. 

Moreover, the four operating speed prediction models described for tangents and circular curves 

are transferable to other low-volume roads, provided that these roads have the features of those 
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adopted in the calibration phase. Four models in particular can be applied to all roads located in 

areas with level terrain and vertical grades of less than 6%; however, these models may not be 

used for rural roads with spiral transition curves between the geometric tangent and circular 

elements on the horizontal alignment. The results are valuable for practitioners because they can 

use the difference between the operating speed obtained with the models and the standard design 

speed to determine the best solution that allows the standard design speed to be similar to the 

predicted operating speed by use of the explanatory variables introduced in the operating speed 

prediction models. Finally, the explanatory variables introduced in the prediction models 

presented can be used to improve road safety, as mentioned above, but various structural and 

nonstructural operations to improve roadway safety conditions are driven more by economic 

requirements than by social needs. 

Russo et al (2012) illustrated an investigation on two-lane rural roads in the Southern Italy 

without spiral horizontal transition curves to check a prediction consistency model. Original 

results were compared with consistency-prediction models available in the scientific literature to 

check several alternative designs and select the alternative with the highest consistency. A 

negative exponential consistency model was tested based on the relative area measure and the 

standard deviation of speeds; this consistency formulation well-analyzes the design consistency 

of the examined roads and the coefficients of the equations move away slightly from the values 

proposed in the literature and similar assessment of design consistency as Lamm and Choueiri’s 

indicators. 

Morcillo et al (2014) calculated consistency based on operating speed on two-lane rural 

highways of the province of Granada. Three consistency measures were calculated for 506 

homogeneous road sections: the relative area, which represents the area bounded by the speed 

profile and average speed of a road segment, the standard deviation of the operating speed in 

each design element along the road segment and the consistency model defined by Polus and 

Mattar-Habib (2004), based on the previous measures introduced. Some discrepancies have been 

found in the results obtained. 

Dell’Acqua et al (2013) described a revision of a prediction model illustrated in the scientific 

literature that makes it possible to assess the consistency of the total length of a highway by 

using a single parameter. This prediction consistency model makes it possible to define 

alternative road interventions to improve road safety by selecting the solution with the highest 

consistency. Speed data collection was carried out by placing the KV laser at selected stopping 

places on the studied two-lane rural road, and the V85-value for each investigated geometric 

element was calculated according to the requirements shown earlier. Because two V85-values for 

each surveyed road element are available by changing the travel direction, two speed profiles 

were traced and the criterion of Lamm and Choueiri was used to define the worst result among 

those derived from this analysis between the two travel directions on each administrative road 

segment. The consistency prediction model available in the scientific literature was tested by 

obtaining a single measurement of horizontal consistency for the total highway length: two 

independent operating speed measures (Ra and σ) were calculated to calibrate the consistency 
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model. The prediction model for consistency C is performed by using a sensitivity analysis; the 

consistency of the overall road segment length results, not just the individual speed differentials 

between two successive elements. A negative exponential consistency model was tested based on 

the relative area measurement and the standard deviation of speed. Finally, a model to relate the 

crash number with the congruency measure was developed and a negative exponential function 

was obtained that links horizontal consistency and accidents.  

Garcia et al (2013) presented a new model of design consistency for evaluating the quality of 

tangent-to-curve transitions on two-lane rural roads. The proposed model is based on the 

hypothesis that “design consistency” may be defined as the difference between drivers’ 

expectations and road alignment behavior. The road alignment behavior at one station may be 

estimated by means of the operating speed at that point. Drivers’ expectations may be estimated 

by the inertial operating speed, defined as the average operating speed of the previous 1 km road 

segment, at the same point. The difference between those two parameters, the ICI, results in a 

new approach to the evaluation of road consistency. The ICI and the associated consistency 

thresholds were developed by studying the operating speed profiles of 88 two-lane rural road 

segments and considering both driving directions, which included 1,686 tangent-to-curve 

transitions. V85inertial − V85 was calculated at the beginning point of the curve of each transition. 

The relationship between those results and the crash rate associated to each transition from 2001 

to 2010 was examined. This relationship highlighted that higher crash rates corresponded to 

higher ICI values. Therefore, a high ICI is linked to a higher crash probability. Both a graphical 

and a statistical analysis were performed to establish the thresholds of the consistency model. 

According to those analyses, the consistency of road alignment at every location may be 

considered good when the ICI is lower than 10 km/h, fair when it is between 10 and 20 km/h, 

and poor when it is higher than 20 km/h. The proposed consistency model was validated through 

its application to the empirical operating speed profiles of 20 road segments that included 370 

tangent-to-curve transitions. The ICI values obtained were correlated to the number of crashes 

that occurred at the studied transitions. The validation process revealed that the transitions with a 

higher ICI value presented more collisions. 

Each of these models, therefore, while providing important results of a general nature and 

identifying a number of independent variables to correlate the road elements geometry to the 

speed, cannot be considered universally valid; the reason is to be found in the differences, 

sometimes substantial, including a national reality and the other (and sometimes even between 

different local realities within countries) in terms of the topography of the surrounding territory, 

weather conditions, , user habits. The effort of all the experts, at the time of calibration and 

calibration of a prediction model, is, in any case, addressed to overcoming the problems that 

prevent the translation of a complete and reliable predictive model. 
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2. Data Collection 

2.1 Introduction 

The Road Safety Center of the Salerno Provincial Department of Transportation since 1999 

started an extensive monitoring campaign of vehicular traffic conditions, as part of a project 

aimed at developing a strategy to dynamically plan rural drivability, and treatments for 

improving road safety. Monitoring activities are generally a valuable tool for an administration to 

identify critical network situations and assess its effectiveness. The considerable human and 

social costs related to the accident phenomena led, in the last two decades, researchers around 

the world to the development of procedures to improve road safety; in particular there have been 

improvements in the relevant legislation of many countries, not excluding Italy. The current 

regulation D.M. 5/11/2001 expects that Infrastructure Administrations adopt monitoring 

campaigns for the analysis of driver behavior and the relationships that govern its interaction 

with the road. This research work was carried out in accordance with the expectation set by the 

D.M. 5/11/2001. The campaigns were planned and executed by the road section of the 

Department of Civil, Architectural and Environmental Engineering of the University of Naples 

"Federico II", in collaboration with the Road Safety Center of the Salerno Provincial Department 

of Transportation. One of the first monitoring steps was developed during the biennium 2003 - 

2004, where the data collection campaign was organized to examine the driver behavior on two-

lane rural roads. During the experimental campaign more than 80 infrastructures were analyzed, 

some of which are not under the control of Salerno Province (state highways), to include all the 

characteristics of the entire road network. A monitoring campaign more complex, compared to 

that developed in the years 2003 and 2004 was performed in 2006 with the adoption of high 

performance equipment. During planning, data collection sections were selected in strategic 

positions along the road corridors to collect speed values on the tangent, circular curve and spiral 

transition elements; a sample of the results is used for the analysis of  the research work 

presented here. 

 

2.2 Road Analyzed and Geometric Characteristics Detected 

The road analyzed is the S.P. 430, a variant of the state highway S.S. 18, the "Tirrenia Inferiore", 

which is the major road, after freeway A3, and is also one of the most important and long in 

Southern Italy, considering that go through Tyrrhenian coast along the road and railway Naples - 

Reggio Calabria, linking the two largest urban centers of Campania and Calabria (Figure 2).  

S.P. 430 is part of the road network of Salerno Province (Southern Italy), passing through the 

National Park of Cilento and Vallo of Diano.   

http://www.wordreference.com/enit/critical%20situation
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Figure 2- S.S. 18 (blue line), S.P. 430 (dot line) e A3 (green line) 

 

Figure 3 shows sample cross sections of the S.P. 430.  

 
Figure 3- S.P. 430 cross sections 

 

The road project dates back to 1973, and was carried out prior to the development and 

introduction of the D.M. 5/11/2001.  

S.P. 430 is a single carriageway with a width equal to 10.50 m, lanes width equal to 3.75 m and 

shoulder width equal to 1.50 m. SP430 is composed by 91 circular curves elements with a radius 

varying in the range 250m-3000m; by 121 tangent  element with a maximum length of 1757 m; 

by 17 tunnels with a variable length between 40m (tunnel Mascale km 150+320) to 1368m 

(tunnel San Vito Km 143 +200); and by 48 viaducts with a minimum length of 32 m and a 

maximum length of 717 m. The hinterland connections are made possible by 17 road interchange. 

The grade level is in the order of six percent (6%).The general speed limit is 90 km/h and is 

reduced to 80/60 km / h in sections with local speed limits. 

Table 1 shows an overview of the Main Geometric Features of SP430 road. 
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Table 1- Overview of the Main Geometric Features of S.P. 430 road 

 

Tangent Length  

(m) 

Curve Length    

(m) 

Circular 

Radius  (m) 

Transition 

Curve Length   

(m) 

Grade 

(%) 

Min Value 11.32 1.21 250 53.67 0.10 

Med Value 281.38 202 696.08 150.69 2.97 

Max Value 1626.33 800 3700 616.03 6.00 

Standard 

Deviation 
272.58 157.30 644.11 79.60 2.03 

CV 0.97 0.78 0.93 0.53 0.68 

Table 2 shows the Average Daily Traffic (ADT) detected for the main Municipalities crossed by 

the S.P. 430. The ADT is defined as the ratio between the number of vehicles transiting in a year 

and the number of days of the same and is measured in veh/day. 

Table 2- ADT of the Main Municipality crossed by S.P. 430 road 

Municipality AADT (veich/day) 

Capaccio 9560 

Agropoli 7405 

Lustra 5973 

Casal Velino 5907 

Castelnuovo Cil. 5291 

Vallo della Luc. 4288 

Ceraso 3745 

Celle di Bulgheria 2032 

Roccagloriosa 2029 

S. Giovanni a P. 2283 
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The preliminary task was the design of the infrastructure. This step is mandatory, since the 

analyzed road during the years has been subject to a series of interventions that have changed the 

geometric regularity. By using project cartographies and information collected onsite, the 

horizontal-vertical alignment was drawn. This activity was carried out with special software 

called "Civil Design” (Figure 4). The geometric layout was carried out referring to the previous 

Italian Standard CNR 80, because the S.P. 430 has been built in the 70s-80s. 

This task led to the definition of the exact succession of the road elements, including information 

on the progressive start and end of the road element, the length, the angle of deviation in grads, 

the radius of curvature etc. 

 

Figure 4 - Output of the geometric layout of S.P. 430 by using Civil Design Software 

Based on the geometric layout output, S.P. 430 is composed by 398 geometric elements; of 

which 91 tangent elements, 121 circular curves and 186 spiral transition curves, which are 

divided into 154 tangent-curve-tangent spiral transitions, 28 curve-tangent-curve spiral 

transitions and 4 curve-curve spiral transitions, for a total road length equal to 72.65 km. 

Figures 5-10 show the different histograms of frequencies for each geometric element, in order 

to highlight which class contains more elements. To determine the number of classes on the basis 

of intervals of equal size, the Sturges formula was used which gives the size of the group as 

follow: 

m = 1 + 3.322 * log (n)    (8) 

 

Where n is the number of elements to be grouped into different classes. 
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Figure 5 - Histogram of Frequency of Tangent Length Class 

The class that includes the largest number of elements is the one that includes the tangent 

element length between 11.315 and 242.031 m, the smallest classes include the tangent element 

length between: (703.465-934181) m, (934.181-1164.898) m, (1164.898-1395.615) m and 

(1395.615-1626.332) m. 

 
Figure 6 - Histogram of Frequency of Circular Curve Radius Class 

The class that includes the largest number of elements is the one that includes the circular curve 

radius between 250.00m and 681.25m, and the smallest class is between 3268.75m and 3700.00 

m. 
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Figure 7 - Histogram of Frequency of Circular Curve Length Class 

The 121 circular curves show a length histogram of frequency divided into seven classes, the 

largest class includes circular curves with a length between 101.061 and 200.909 m, there are no 

circular curves in the range between 600.303 and 700.151 m while the smallest class ranges 

between 700.151 m and 800.00 m. 

 
Figure 8 - Histogram of Frequency of Tangent-to-Circular Curve Transition Curve Length Class 

The class with the largest number of the Tangent-to-Circular Curve Transition elements is the 

range between 53.667 m and 110.879 m, while the least are the ranges 339.727m - 396.939  m 

and 454.151 - 511.364 m. 
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Figure 9 - Histogram of Frequency of Circular Curve-to-Tangent-to-Circular Curve Transition Curve 

Length Class 

The histogram of the frequencies of the Circular Curve-to-Tangent-to-Circular Curve Transition 

is divided into 6 classes, the most frequent class includes elements between 204.13m and 243.99 

m, while the class with the least number of elements ranges between 283.86 and 323.73 m. 

 

Figure 10 - Histogram of Frequency of Circular Curve-to- Circular Curve Transition Curve Length Class 

The S.P. 430 geometric layout showed the presence of 4 Circular Curve-to- Circular Curve 

Transition Curve with moderate length. The length of the largest class is in the range between 

54.251 m and 67.735 m. 

The next step in the analysis was to calculate the medium curvature change rate (CCRm) of the 

infrastructure. The CCRm, measured in gon/km is defined as the sum of the absolute values of 

angular changes in the horizontal alignment divided by the total length of the road section. 

Figure 11 shows the CCRm of S.P. 430 which equals 61.34 gon/km. 
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Figure 11 - CCRm of S.P. 430 

 

Table 3 includes the geometric features of each element of S.P. 430 road 
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Table 3 - Geometric Features of each element of S.P. 430 road 
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(m
) 

1 T 98.100 98.381 280.94 
                

2 C 98.381 98.864 
 

3700 482.734 
              

3 T 98.864 99.484 620.705 
                

4 ST 99.484 99.630 
   

500 270 145.8 
           

5 C 99.630 100.044 
 

500 414.156 
              

6 ST 100.044 100.190 
   

500 270 145.8 
           

7 T 100.190 100.402 211.381 
                

8 ST 100.402 100.577 
   

700 350 175 
           

9 C 100.577 100.765 
 

700 188.453 
              

10 ST 100.765 100.940 
   

700 350 175 
           

11 T 100.940 101.132 192.023 
                

12 ST 101.132 101.296 
   

550 300 163.636 
           

13 C 101.296 101.441 
 

550 145.273 
              

14 ST 101.441 101.605 
   

550 300 163.636 
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15 T 101.605 101.880 275.664 
                

16 C 101.880 102.090 
 

1300 209.473 
              

17 T 102.090 102.557 467.23 
                

18 C 102.557 102.798 
 

1300 241.156 
              

19 T 102.798 103.329 530.825 
                

20 ST 103.329 103.579 
   

1100 525 250.568 
           

21 C 103.579 103.905 
 

1100 325.964 
              

22 ST 103.905 104.133 
   

1100 500 227.273 
           

23 T 104.133 104.235 102.675 
                

24 C 104.235 104.412 
 

1000 176.901 
              

25 T 104.412 104.679 266.505 
                

26 ST 104.679 104.860 
   

600 330 181.5 
           

27 C 104.860 105.121 
 

600 260.764 
              

28 ST 105.121 105.303 
   

600 330 181.5 
           

29 T 105.303 105.811 508.864 
                

30 C 105.811 106.267 
 

2500 455.391 
              

31 T 106.267 106.394 126.884 
                

32 C 106.394 106.664 
 

1300 270.697 
              

33 T 106.664 107.067 402.912 
                

34 ST 107.067 107.200 
   

400 230 132.25 
           

35 C 107.200 107.732 
 

400 532.539 
              

36 ST 107.732 107.864 
   

400 230 132.25 
           

37 T 107.864 107.907 43.068 
                

38 ST 107.907 108.018 
   

400 210 110.25 
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39 C 108.018 108.147 
 

400 129.33 
              

40 ST 108.147 108.257 
   

400 210 110.25 
           

41 T 108.257 108.330 72.861 
                

42 ST 108.330 108.466 
   

800 330 136.125 
           

43 C 108.466 108.538 
 

800 72.248 
              

44 ST 108.538 108.675 
   

800 330 136.125 
           

45 T 108.675 108.891 215.969 
                

46 C 108.891 109.362 
 

3000 471.856 
              

47 T 109.362 109.468 105.651 
                

48 ST 109.468 109.605 
   

550 274.928 137.428 
           

49 C 109.605 109.851 
 

550 245.525 
              

50 CF 109.851 110.123 
          

550 285.684 148.392 0 500 248.421 123.426 

51 C 110.123 110.183 
 

500 59.997 
              

52 CF 110.183 110.418 
          

500 247.447 122.46 0 450 224.952 112.452 

53 C 110.418 110.807 
 

450 389.681 
              

54 ST 110.807 110.915 
   

450 219.97 107.526 
           

55 T 110.915 110.955 40 
                

56 ST 110.955 111.043 
   

500 210 88.2 
           

57 C 111.043 111.105 
 

500 62.096 
              

58 ST 111.105 111.193 
   

500 210 88.2 
           

59 T 111.193 112.139 945.352 
                

60 ST 112.139 112.237 
   

450 210 98 
           

61 C 112.237 112.380 
 

450 143.254 
              

62 ST 112.380 112.478 
   

450 210 98 
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63 T 112.478 112.821 342.585 
                

64 ST 112.821 112.913 
   

500 215 92.45 
           

65 C 112.913 113.124 
 

500 211.002 
              

66 ST 113.124 113.217 
   

500 215 92.45 
           

67 T 113.217 113.377 160.58 
                

68 C 113.377 113.603 
 

1500 225.457 
              

69 T 113.603 113.896 293.765 
                

70 ST 113.896 114.032 
   

800 330 136.125 
           

71 C 114.032 114.097 
 

800 64.586 
              

72 ST 114.097 114.233 
   

800 330 136.125 
           

73 T 114.233 114.346 113.047 
                

74 C 114.346 114.805 
 

1500 458.898 
              

75 T 114.805 114.863 57.597 
                

76 ST 114.863 114.951 
   

500 210 88.2 
           

77 C 114.951 115.295 
 

500 344.074 
              

78 ST 115.295 115.383 
   

500 210 88.2 
           

79 T 115.383 116.170 787.125 
                

80 ST 116.170 116.278 
   

450 219.97 107.526 
           

81 C 116.278 116.340 
 

450 61.726 
              

82 CF 116.340 116.625 
          

450 253.552 142.864 0 450 253.552 142.864 

83 C 116.625 116.736 
 

450 110.811 
              

84 ST 116.736 116.844 
   

450 219.97 107.526 
           

85 T 116.844 117.176 332.626 
                

86 ST 117.176 117.256 
   

500 199.698 79.759 
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87 C 117.256 117.429 
 

500 173.315 
              

88 CF 117.429 117.625 
          

500 221.207 97.865 0 500 221.207 97.865 

89 C 117.625 118.198 
 

500 573.391 
              

90 ST 118.198 118.278 
   

500 199.698 79.759 
           

91 T 118.278 118.670 392.265 
                

92 C 118.670 119.001 
 

2500 330.789 
              

93 T 119.001 119.072 70.512 
                

94 ST 119.072 119.262 
   

2000 616.026 189.744 
           

95 C 119.262 119.485 
 

2000 223.427 
              

96 CC 119.485 119.580 
      

2000 217.604 400 94.703 
       

97 C 119.580 119.733 
 

400 152.923 
              

98 CF 119.733 119.995 
          

400 229.04 131.148 0 400 229.04 131.148 

99 C 119.995 120.105 
 

400 109.935 
              

100 CF 120.105 120.322 
          

400 223.917 125.347 0 450 203.561 92.083 

101 C 120.322 120.392 
 

450 70.232 
              

102 CF 120.392 120.716 
          

450 289.29 185.975 0 750 321.433 137.759 

103 C 120.716 121.066 
 

750 350.139 
              

104 ST 121.066 121.279 
   

750 399.74 213.056 
           

105 T 121.279 121.611 331.717 
                

106 ST 121.611 121.709 
   

800 279.98 97.986 
           

107 C 121.709 121.727 
 

800 17.517 
              

108 ST 121.727 121.825 
   

800 279.98 97.986 
           

109 T 121.825 121.891 66.479 
                

110 ST 121.891 122.021 
   

1000 360 129.6 
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111 C 122.021 122.082 
 

1000 61.52 
              

112 ST 122.082 122.212 
   

1000 360 129.6 
           

113 T 122.212 122.368 156.159 
                

114 ST 122.368 122.600 
   

1500 590.429 232.404 
           

115 C 122.600 123.023 
 

1500 422.267 
              

116 CC 123.023 123.077 
      

1500 266.841 700 54.251 
       

117 C 123.077 123.458 
 

700 381.493 
              

118 ST 123.458 123.617 
   

700 333.387 158.782 
           

119 T 123.617 123.882 264.473 
                

120 ST 123.882 124.067 
   

700 360 185.143 
           

121 C 124.067 124.309 
 

700 241.927 
              

122 ST 124.309 124.494 
   

700 360 185.143 
           

123 T 124.494 125.062 568.61 
                

124 ST 125.062 125.183 
   

400 220 121 
           

125 C 125.183 125.625 
 

400 442.006 
              

126 ST 125.625 125.746 
   

400 220 121 
           

127 T 125.746 125.819 73.036 
                

128 ST 125.819 126.015 
   

700 370 195.571 
           

129 C 126.015 126.428 
 

700 412.719 
              

130 ST 126.428 126.623 
   

700 370 195.571 
           

131 T 126.623 126.902 278.195 
                

132 ST 126.902 127.155 
   

800 450 253.125 
           

133 C 127.155 127.506 
 

800 351.44 
              

134 ST 127.506 127.759 
   

800 450 253.125 
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135 T 127.759 127.764 5.17 
                

136 ST 127.764 128.006 
   

800 440 242 
           

137 C 128.006 128.166 
 

800 159.895 
              

138 ST 128.166 128.408 
   

800 440 242 
           

139 T 128.408 128.527 118.529 
                

140 ST 128.527 128.677 
   

600 300 150 
           

141 C 128.677 128.875 
 

600 198.446 
              

142 ST 128.875 129.025 
   

600 300 150 
           

143 T 129.025 129.106 80.839 
                

144 C 129.106 129.906 
 

3086.488 800 
              

145 T 129.906 129.917 11.315 
                

146 ST 129.917 130.092 
   

700 350 175 
           

147 C 130.092 130.256 
 

700 163.773 
              

148 ST 130.256 130.431 
   

700 350 175 
           

149 T 130.431 130.448 17.292 
                

150 ST 130.448 130.548 
   

400 199.948 99.948 
           

151 C 130.548 130.574 
 

400 25.258 
              

152 CF 130.574 130.776 
          

400 190.367 90.599 0 250 166.989 111.541 

153 C 130.776 130.781 
 

250 4.734 
              

154 CF 130.781 131.025 
          

250 182.469 133.18 0 300 182.469 110.983 

155 C 131.025 131.176 
 

300 151.49 
              

156 CF 131.176 131.400 
          

300 174.865 101.915 0 250 174.856 122.298 

157 C 131.400 131.542 
 

250 141.83 
              

158 ST 131.542 131.665 
   

250 175.076 122.606 
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159 T 131.665 131.679 13.634 
                

160 ST 131.679 131.779 
   

400 200 100 
           

161 C 131.779 131.888 
 

400 109.626 
              

162 ST 131.888 131.988 
   

400 200 100 
           

163 T 131.988 132.202 214.324 
                

164 ST 132.202 132.377 
   

700 350 175 
           

165 C 132.377 132.675 
 

700 297.223 
              

166 ST 132.675 132.850 
   

700 350 175 
           

167 T 132.850 133.250 400.333 
                

168 ST 133.250 133.761 
   

1100 750 511.364 
           

169 C 133.761 134.184 
 

1100 422.502 
              

170 ST 134.184 134.695 
   

1100 750 511.364 
           

171 T 134.695 134.878 182.936 
                

172 ST 134.878 135.228 
   

350 350 350 
           

173 C 135.228 135.586 
 

350 357.418 
              

174 ST 135.586 135.936 
   

350 350 350 
           

175 T 135.936 136.081 145.52 
                

176 ST 136.081 136.241 
   

1000 400 160 
           

177 C 136.241 136.574 
 

1000 332.564 
              

178 ST 136.574 136.734 
   

1000 400 160 
           

179 T 136.734 136.914 180.582 
                

180 ST 136.914 137.059 
   

350 225.297 145.025 
           

181 C 137.059 137.364 
 

350 305.173 
              

182 CF 137.364 137.588 
          

350 217.263 134.867 0 300 163.365 88.951 
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183 C 137.588 137.628 
 

300 39.693 
              

184 CF 137.628 137.848 
          

300 209.082 145.718 0 300 149.344 74.346 

185 C 137.848 137.850 
 

300 1.986 
              

186 CF 137.850 138.053 
          

300 174.407 101.393 0 300 174.407 101.393 

187 C 138.053 138.102 
 

300 48.791 
              

188 ST 138.102 138.209 
   

300 179.493 107.393 
           

189 T 138.209 138.566 356.885 
                

190 ST 138.566 138.691 
   

500 250 125 
           

191 C 138.691 139.220 
 

500 529.152 
              

192 ST 139.220 139.345 
   

500 250 125 
           

193 T 139.345 139.356 11.071 
                

194 ST 139.356 139.599 
   

300 270 243 
           

195 C 139.599 139.941 
 

300 341.688 
              

196 ST 139.941 140.184 
   

300 270 243 
           

197 T 140.184 140.186 2.112 
                

198 ST 140.186 140.288 
   

250 160 102.4 
           

199 C 140.288 140.417 
 

250 128.452 
              

200 ST 140.417 140.519 
   

250 160 102.4 
           

201 T 140.519 140.733 214.105 
                

202 ST 140.733 140.958 
   

2500 750 225 
           

203 C 140.958 141.009 
 

2500 50.739 
              

204 ST 141.009 141.234 
   

2500 750 225 
           

205 T 141.234 141.247 12.919 
                

206 ST 141.247 141.392 
   

350 225 144.643 
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207 C 141.392 141.431 
 

350 39.529 
              

208 ST 141.431 141.576 
   

350 225 144.643 
           

209 T 141.576 141.603 26.888 
                

210 ST 141.603 141.703 
   

400 200 100 
           

211 C 141.703 141.725 
 

400 22.571 
              

212 ST 141.725 141.825 
   

400 200 100 
           

213 T 141.825 142.392 566.426 
                

214 ST 142.392 142.658 
   

600 400 266.667 
           

215 C 142.658 143.123 
 

600 464.596 
              

216 ST 143.123 143.390 
   

600 400 266.667 
           

217 T 143.390 143.520 130.226 
                

218 ST 143.520 143.733 
   

750 400 213.333 
           

219 C 143.733 143.909 
 

750 175.915 
              

220 ST 143.909 144.122 
   

750 400 213.333 
           

221 T 144.122 145.749 1626.332 
                

222 ST 145.749 145.850 
   

500 225 101.25 
           

223 C 145.850 145.906 
 

500 55.62 
              

224 ST 145.906 146.007 
   

500 225 101.25 
           

225 T 146.007 146.160 153.544 
                

226 ST 146.160 146.317 
   

400 250 156.25 
           

227 C 146.317 146.420 
 

400 103.013 
              

228 ST 146.420 146.576 
   

400 250 156.25 
           

229 T 146.576 146.649 72.748 
                

230 ST 146.649 146.849 
   

450 300 200 
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231 C 146.849 146.977 
 

450 128.377 
              

232 ST 146.977 147.177 
   

450 300 200 
           

233 T 147.177 147.658 481.167 
                

234 ST 147.658 147.783 
   

500 250 125 
           

235 C 147.783 147.993 
 

500 209.939 
              

236 ST 147.993 148.118 
   

500 250 125 
           

237 T 148.118 148.124 5.608 
                

238 ST 148.124 148.188 
   

400 160 64 
           

239 C 148.188 148.235 
 

400 47.317 
              

240 ST 148.235 148.299 
   

400 160 64 
           

241 T 148.299 148.367 68.366 
                

242 ST 148.367 148.421 
   

800 207.204 53.667 
           

243 C 148.421 148.623 
 

800 201.971 
              

244 CC 148.623 148.688 
      

800 228.333 400 65.17 
       

245 C 148.688 149.180 
 

400 491.692 
              

246 ST 149.180 149.249 
   

400 166.483 69.291 
           

247 T 149.249 149.594 344.735 
                

248 ST 149.594 149.694 
   

400 200 100 
           

249 C 149.694 149.839 
 

400 145.575 
              

250 ST 149.839 149.939 
   

400 200 100 
           

251 T 149.939 149.982 42.78 
                

252 ST 149.982 150.069 
   

375 180 86.4 
           

253 C 150.069 150.525 
 

375 456.217 
              

254 ST 150.525 150.611 
   

375 180 86.4 
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255 T 150.611 150.704 92.65 
                

256 ST 150.704 150.769 
   

260 130 65 
           

257 C 150.769 150.967 
 

260 198.54 
              

258 ST 150.967 151.032 
   

260 130 65 
           

259 T 151.032 151.360 327.214 
                

260 ST 151.360 151.445 
   

600 225.646 84.86 
           

261 C 151.445 151.619 
 

600 174.23 
              

262 CF 151.619 151.754 
          

600 209.288 73.002 0 275 130.805 62.218 

263 C 151.754 151.868 
 

275 113.761 
              

264 CF 151.868 152.073 
          

275 171.489 106.94 0 260 160.27 98.794 

265 C 152.073 152.076 
 

260 2.125 
              

266 CF 152.076 152.199 
          

260 149.006 85.395 0 350 114.62 37.536 

267 C 152.199 152.202 
 

350 3.162 
              

268 ST 152.202 152.260 
   

350 142.444 57.973 
           

269 T 152.260 152.413 153.496 
                

270 ST 152.413 152.478 
   

260 130 65 
           

271 C 152.478 152.645 
 

260 166.617 
              

272 ST 152.645 152.710 
   

260 130 65 
           

273 T 152.710 152.740 30.091 
                

274 ST 152.740 152.806 
   

260 131.105 66.11 
           

275 C 152.806 152.918 
 

260 111.956 
              

276 CF 152.918 153.107 
          

260 175.287 118.175 0 300 146.073 71.124 

277 C 153.107 153.156 
 

300 48.42 
              

278 ST 153.156 153.232 
   

300 150.914 75.916 
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279 T 153.232 153.591 359.21 
                

280 ST 153.591 153.656 
   

300 139.642 65 
           

281 C 153.656 153.852 
 

300 195.716 
              

282 ST 153.852 153.917 
   

300 139.642 65 
           

283 T 153.917 154.142 225.677 
                

284 ST 154.142 154.208 
   

300 140.436 65.741 
           

285 C 154.208 154.300 
 

300 91.885 
              

286 CF 154.300 154.464 
          

300 159.917 85.244 0 400 177.685 78.93 

287 C 154.464 154.473 
 

400 8.775 
              

288 ST 154.473 154.535 
   

400 157.448 61.974 
           

289 T 154.535 154.725 190.426 
                

290 ST 154.725 154.788 
   

325 142.477 62.46 
           

291 C 154.788 155.036 
 

325 247.932 
              

292 CF 155.036 155.188 
          

325 157.525 76.351 0 325 157.525 76.351 

293 C 155.188 155.196 
 

325 7.555 
              

294 CF 155.196 155.284 
          

325 117.113 42.202 0 300 117.113 45.718 

295 C 155.284 155.474 
 

300 190.047 
              

296 CF 155.474 155.609 
          

300 142.35 67.545 0 300 142.35 67.545 

297 C 155.609 155.732 
 

300 123.134 
              

298 ST 155.732 155.798 
   

300 140.436 65.741 
           

299 T 155.798 155.817 18.852 
                

300 ST 155.817 155.901 
   

2000 411.955 84.853 
           

301 C 155.901 156.240 
 

2000 338.227 
              

302 CC 156.240 156.311 
      

2000 188.403 400 70.991 
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303 C 156.311 156.514 
 

400 203.787 
              

304 CF 156.514 156.725 
          

400 229.9 132.135 0 300 153.267 78.302 

305 C 156.725 156.734 
 

300 8.914 
              

306 CF 156.734 156.818 
          

300 130.206 56.512 0 400 105.859 28.015 

307 C 156.818 156.991 
 

400 172.761 
              

308 ST 156.991 157.053 
   

400 157.448 61.974 
           

309 T 157.053 157.378 324.842 
                

310 ST 157.378 157.490 
   

800 300 112.5 
           

311 C 157.490 157.929 
 

800 439.021 
              

312 ST 157.929 158.042 
   

800 300 112.5 
           

313 T 158.042 158.283 241.164 
                

314 T 158.283 158.434 151.155 
                

315 ST 158.434 158.594 
   

250 200 160 
           

316 C 158.594 158.670 
 

250 76.013 
              

317 ST 158.670 158.830 
   

250 200 160 
           

318 T 158.830 158.837 7.074 
                

319 ST 158.837 159.026 
   

400 275 189.063 
           

320 C 159.026 159.445 
 

400 418.234 
              

321 ST 159.445 159.634 
   

400 275 189.063 
           

322 T 159.634 159.642 8.409 
                

323 ST 159.642 159.752 
   

250 165.559 109.639 
           

324 C 159.752 159.919 
 

250 167.386 
              

325 CF 159.919 160.142 
          

250 180.286 130.012 0 300 166.931 92.887 

326 C 160.142 160.168 
 

300 25.535 
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327 ST 160.168 160.272 
   

300 176.617 103.979 
           

328 T 160.272 160.797 525.322 
                

329 ST 160.797 160.930 
   

300 200 133.333 
           

330 C 160.930 160.940 
 

300 10.041 
              

331 ST 160.940 161.074 
   

300 200 133.333 
           

332 T 161.074 161.398 324.877 
                

333 ST 161.398 161.543 
   

350 225 144.643 
           

334 C 161.543 161.604 
 

350 60.421 
              

335 ST 161.604 161.748 
   

350 225 144.643 
           

336 T 161.748 163.050 1302.095 
                

337 ST 163.050 163.189 
   

450 250 138.889 
           

338 C 163.189 163.291 
 

450 101.723 
              

339 ST 163.291 163.430 
   

450 250 138.889 
           

340 T 163.430 163.454 24.403 
                

341 ST 163.454 163.554 
   

1500 387.298 100 
           

342 C 163.554 163.588 
 

1500 34.239 
              

343 ST 163.588 163.688 
   

1500 387.298 100 
           

344 T 163.688 164.031 342.895 
                

345 ST 164.031 164.176 
   

350 225 144.643 
           

346 C 164.176 164.317 
 

350 141.016 
              

347 ST 164.317 164.462 
   

350 225 144.643 
           

348 T 164.462 164.492 30.407 
                

349 ST 164.492 164.661 
   

300 225 168.75 
           

350 C 164.661 164.770 
 

300 108.752 
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351 ST 164.770 164.938 
   

300 225 168.75 
           

352 T 164.938 164.960 21.891 
                

353 ST 164.960 165.086 
   

350 210 126 
           

354 C 165.086 165.380 
 

350 293.433 
              

355 ST 165.380 165.506 
   

350 210 126 
           

356 T 165.506 165.785 279.22 
                

357 ST 165.785 165.940 
   

500 278.375 154.986 
           

358 C 165.940 166.141 
 

500 200.731 
              

359 CF 166.141 166.363 
          

500 222.391 98.916 0 400 222.391 123.644 

360 C 166.363 166.431 
 

400 67.903 
              

361 CF 166.431 166.521 
          

400 151.897 57.682 0 250 89.351 31.935 

362 C 166.521 166.522 
 

250 1.213 
              

363 ST 166.522 166.577 
   

250 117.03 54.784 
           

364 T 166.577 166.590 13.295 
                

365 ST 166.590 166.667 
   

500 196.81 77.468 
           

366 C 166.667 166.850 
 

500 182.376 
              

367 CF 166.850 167.024 
          

500 189.171 71.571 0 350 189.171 102.245 

368 C 167.024 167.201 
 

350 177.769 
              

369 CF 167.201 167.330 
          

350 182.801 95.475 0 1000 182.801 33.416 

370 C 167.330 167.437 
 

1000 107.129 
              

371 ST 167.437 167.547 
   

1000 330.984 109.55 
           

372 T 167.547 167.773 225.922 
                

373 ST 167.773 167.946 
   

500 294.362 173.298 
           

374 C 167.946 168.067 
 

500 120.928 
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375 ST 168.067 168.240 
   

500 294.362 173.298 
           

376 T 168.240 168.263 22.715 
                

377 ST 168.263 168.379 
   

250 170 115.6 
           

378 C 168.379 168.567 
 

250 188.309 
              

379 ST 168.567 168.683 
   

250 170 115.6 
           

380 T 168.683 168.903 220.49 
                

381 ST 168.903 169.063 
   

1000 400 160 
           

382 C 169.063 169.411 
 

1000 348.113 
              

383 ST 169.411 169.571 
   

1000 400 160 
           

384 T 169.571 169.607 35.448 
                

385 ST 169.607 169.692 
   

300 160 85.333 
           

386 C 169.692 169.860 
 

300 168.15 
              

387 ST 169.860 169.956 
   

300 170 96.333 
           

388 T 169.956 169.962 5.873 
                

389 ST 169.962 170.122 
   

250 200 160 
           

390 C 170.122 170.127 
 

250 4.649 
              

391 ST 170.127 170.287 
   

250 200 160 
           

392 T 170.287 170.323 36.546 
                

393 C 170.323 170.665 
 

2500 341.979 
              

394 T 170.665 170.683 18.003 
                

395 ST 170.683 170.772 
   

450 200 88.889 
           

396 C 170.772 170.800 
 

450 27.5 
              

397 ST 170.800 170.889 
   

450 200 88.889 
           

398 T 170.889 170.968 79.42 
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2.3 Instrument used for speed data collection 

Speed data collection was carried out in environmental and traffic conditions using a laser. 

The conditions were the following: dry roads, free flow conditions, daylight hours and good 

weather conditions. 

The device used to measure the speed was a "KV Laser". The principle of operation of the 

laser gun is based on the emission and reception of a pair of laser beams, directed 

perpendicularly to the geometric road axis; the laser beams are harmless to drivers. 

The KV Laser is composed of a laser detection system, software to collect data, a 

rechargeable battery and physical supports for installation. The instrument was installed on a 

tripod placed beside the highway, as shown in Figure 12, and suitably hidden from the drivers 

view, because perceptible presence of the device could affect drivers’ speed, possibly 

assuming it to be a police control. 

 
Figure 12 - Detection device setup 

The instrument records the time for each vehicular transit (date, time, minutes and seconds), 

speed (in km / h), the length (in meters) and the travel direction in binary variables (in 

“direction 0” and “direction 1”); it is worth mentioning that the instantaneous speed is 

deduced by calculating the time lag associated with the transit of the vehicle from the first to 

the second photocell. The velocity measurements are not free from errors, not exceeding 10% 

and observed in the following two circumstances: 

- Time interval of less than 0.5 seconds between consecutive passing vehicles, in the opposite 

direction, corresponding to the same measuring station; 

- Axis of the laser beams projected on low refractive surfaces. 

The data sample does not include measurements on heavy vehicles, or vehicles with temporal 

spacing of less than five seconds between two successive moving vehicles. These conditions 

are necessary to ensure the free flow conditions. 

2.4  Speed Data Collection Results 

The data was collected in 2011, between the months of October and November; and in 2012 

between the months of February and July. The KV Laser was placed in 40 different sections 

along the S.P. 430 starting in kilometer 98 + 850 (Capaccio Municipality) and km 169 + 350 

(Santa Marina Municipality). The above 40 sections were further subdivided as follows: 

• 25 sections on tangent element (indicating the two speed measurements, one in each 

direction);  
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• 15 sections on the middle circular curve (indicating the two speed measurements, one in 

each direction); 

Table 4 shows the lists of the main sections listing the kilometers, day of measurement and 

the Municipality . 

Table 4 - Speed Data Collection Section Details 

Day Km Municipality Direction 

3/18/2012 98+850 Capaccio A 

3/18/2012 103+500 Agropoli B 

11/3/2011 106+800 Agropoli A 

2/28/2012 120+700 Lustra B 

11/3/2011       

6/30/2012 126+900 Casal Velino A 

7/2/2012       

7/4/2012 127+500 Salento A 

7/3/2012       

7/9/2012 127+700 Salento B 

7/10/2012 128+680 Castelnuovo 

Cilento 

B 

7/11/2012       

10/29/2011 129+170 Castelnuovo 

Cilento 

A 

10/28/2011       

4/28/2012 129+750 Castelnuovo 

Cilento 

B 

7/17/2012 131+700 Vallo della 

Lucania 

B 

4/22/2012 132+150 Vallo della 

Lucania 

A 

4/22/2012 132+650 Vallo della 

Lucania 

B 

4/2/2012 133+900 Vallo della 

Lucania 

A 

4/2/2012 134+800 Vallo della 

Lucania 

A 

3/23/2012 136+450 Vallo della 

Lucania 

B 

3/23/2012 136+950 Vallo della 

Lucania 

A 

7/13/2012 137+400 Vallo della 

Lucania 

B 

7/16/2012 139+350 Ceraso A 

3/27/2012 141+850 Ceraso A 

7/31/2012 157+950 Celle di Bulgaria B 

6/21/2012 158+300 Celle di Bulgaria B 

6/18/2012 158+850 Celle di Bulgaria A 

6/19/2012       

6/22/2012 159+500 Celle di Bulgaria B 

6/24/2012       

7/6/2012 159+850 Celle di Bulgaria A 

6/23/2012 160+500 Celle di Bulgaria A 

6/25/2012       

6/26/2012 160+800 Celle di Bulgaria A 

6/29/2012       

6/26/2012 161+220 Celle di Bulgaria B 

6/27/2012       

7/4/2012 161+950 Celle di Bulgaria A 
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3/14/2012 162+400 Celle di Bulgaria B 

3/14/2012 163+000 Roccagloriosa B 

7/19/2012 164+200 Roccagloriosa A 

7/20/2012 165+300 Roccagloriosa B 

7/16/2012 165+900 Roccagloriosa B 

7/25/2012 166+600 San Giovanni a 

Piro 

B 

7/19/2012 166+950 San Giovanni a 

Piro 

A 

7/20/2012 167+950 San Giovanni a 

Piro 

A 

7/26/2012 168+600 San Giovanni a 

Piro 

B 

7/27/2012 169+250 San Giovanni a 

Piro 

A 

7/27/2012 169+630 Santa Marina B 

 

Table 5 shows the time of the survey for each section, and then the total hours of 

measurements to provide context on the amount of time used to collect information. 

Table 5 - Road Element, Length and hours of measurements 

km Road Element Length 

(m) 

Hours of 

measurements 

98+850 tangent 223.418 13:00:00 

103+500 circular curve 190.979 13:00:00 

106+800 circular curve 282.892 13:00:00 

120+700 circular curve 566.721 26:00:00 

126+900 tangent 218.28 14:00:00 

127+500 circular curve 662.833 14:00:00 

127+700 tangent 182.542 7:00:00 

128+680 circular curve 385.787 14:00:00 

129+170 circular curve 776.955 13:00:00 

129+750 circular curve 776.955 13:00:00 

131+700 tangent 105.124 7:00:00 

132+150 tangent 327.468 13:00:00 

132+650 circular curve 515.631 13:00:00 

133+900 circular curve 1010.869 13:00:00 

134+800 tangent 547.901 13:00:00 

136+450 circular curve 232.84 13:00:00 

136+950 tangent 344.019 13:00:00 

137+400 circular curve 454.052 7:00:00 

139+350 tangent 165.874 7:00:00 

141+850 tangent 745.699 13:00:00 

157+950 tangent 147.652 7:00:00 

158+300 tangent 143.713 7:00:00 

158+850 circular curve 654.955 15:00:00 

159+500 circular curve 315.784 14:00:00 

159+850 tangent 616.092 7:00:00 
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160+500 circular curve 178.125 14:00:00 

160+800 tangent 445.442 14:00:00 

161+220 tangent 1452.694 14:00:00 

161+950 tangent 1452.694 7:00:00 

162+400 tangent 1452.694 13:00:00 

163+000 tangent 134.922 13:00:00 

164+200 circular curve 329.925 7:00:00 

165+300 tangent 403.725 7:00:00 

165+900 tangent 152.672 7:00:00 

166+600 tangent 102.474 7:00:00 

166+950 tangent 77.671 7:00:00 

167+950 tangent 143.391 7:00:00 

168+600 tangent 388.656 7:00:00 

169+250 tangent 198.889 7:00:00 

169+630 tangent 120.572 7:00:00 

TOTAL   13947.238 440:00:00 

 

A total of 440 hours were recorded, of which 43% were made of the sections with 7 hours of 

measurements, 35% with 13 hours of measurements; 18% with 14 hours of measurements 

and  3% with 15 and 26 hours of measurements. In total 440 hours were recorded, of which 

238 hours were recorded on tangent elements while the remaining 202 hours belong circular 

curves elements.  

2.5 Crash Data Analysis 

The Draft for the interventions of adjustment of existing roads (Bozza per gli Interventi di 

Adeguamento delle strade esistenti) dated March, 21st 2006, indicate that the characterization 

of hazardous road elements have to consider a lapse of time of five years, be extended to a 

significant portion of the road elements and refer to total accidents or only to accidents 

involving deaths and injuries as defined by ISTAT. 

A crash data collection has been conducted from 2003 to 2010. 

The aim of the crash data analysis is to identify the possible relationships existing between 

the geometric and functional characteristics of the road analyzed and the crash types and 

numbers of accidents. 

First, it was create an informatic database through the use of Traffic Police Report. The 

database includes the following information about the incident: Section relief accident 

(progressive Km), environmental conditions, crash type, road surface conditions and the 

vehicles type involved (with information about the passengers and their consequences caused 

by the accident). Table 6 shows an Overview of the Main Crash Features. 
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Table 6 - Overview of the Main Crash Features 

N. 

Element 

Element 

Type 

N. 

crashes 

N. crashes 

with injuries 

N. crashes 

with death 

N. 

crashes. 

PDO 

N. 

injury 

crashes 

1 T 1 1 0 0 1 

2 C 1 1 0 0 1 

3 T 5 3 0 2 3 

4 ST 1 1 0 0 1 

5 C 0 0 0 0 0 

6 ST 0 0 0 0 0 

7 T 1 0 0 1 0 

8 ST 1 1 0 0 1 

9 C 0 0 0 0 0 

10 ST 0 0 0 0 0 

11 T 2 2 0 0 2 

12 ST 1 1 0 0 1 

13 C 5 3 0 2 3 

14 ST 1 1 0 0 1 

15 T 0 0 0 0 0 

16 C 1 1 0 0 1 

17 T 1 1 0 0 1 

18 C 0 0 0 0 0 

19 T 5 3 0 2 3 

20 ST 3 3 1 0 3 

21 C 3 3 1 0 3 

22 ST 0 0 0 0 0 

23 T 0 0 0 0 0 

24 C 3 1 0 2 1 

25 T 3 0 0 3 0 

26 ST 0 0 0 0 0 

27 C 1 1 1 0 1 

28 ST 1 1 0 0 1 

29 T 4 4 0 0 4 

30 C 1 0 0 1 0 

31 T 0 0 0 0 0 

32 C 0 0 0 0 0 

33 T 2 1 0 1 1 

34 ST 0 0 0 0 0 

35 C 8 5 1 3 5 

36 ST 1 1 0 0 1 

37 T 1 0 0 1 0 

38 ST 2 2 0 0 2 

39 C 3 2 0 1 2 

40 ST 0 0 0 0 0 

41 T 1 1 0 0 1 
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42 ST 1 0 0 1 0 

43 C 1 1 0 0 1 

44 ST 3 2 1 1 2 

45 T 1 0 0 1 0 

46 C 0 0 0 0 0 

47 T 0 0 0 0 0 

48 ST 0 0 0 0 0 

49 C 0 0 0 0 0 

50 ST 3 1 0 2 1 

51 C 1 0 0 1 0 

52 ST 0 0 0 0 0 

53 C 1 0 0 1 0 

54 ST 0 0 0 0 0 

55 T 0 0 0 0 0 

56 ST 0 0 0 0 0 

57 C 0 0 0 0 0 

58 ST 0 0 0 0 0 

59 T 7 4 0 3 4 

60 ST 0 0 0 0 0 

61 C 1 0 0 1 0 

62 ST 0 0 0 0 0 

63 T 1 0 0 1 0 

64 ST 1 0 0 1 0 

65 C 0 0 0 0 0 

66 ST 1 1 0 0 1 

67 T 0 0 0 0 0 

68 C 3 3 0 0 3 

69 T 0 0 0 0 0 

70 ST 0 0 0 0 0 

71 C 1 1 0 0 1 

72 ST 2 0 0 2 0 

73 T 0 0 0 0 0 

74 C 0 0 0 0 0 

75 T 0 0 0 0 0 

76 ST 0 0 0 0 0 

77 C 2 1 0 1 1 

78 ST 1 0 0 1 0 

79 T 8 4 0 4 4 

80 ST 0 0 0 0 0 

81 C 0 0 0 0 0 

82 ST 0 0 0 0 0 

83 C 0 0 0 0 0 

84 ST 0 0 0 0 0 

85 T 0 0 0 0 0 



45 

 

86 ST 0 0 0 0 0 

87 C 1 0 0 1 0 

88 ST 0 0 0 0 0 

89 C 0 0 0 0 0 

90 ST 0 0 0 0 0 

91 T 1 0 0 1 0 

92 C 3 0 0 3 0 

93 T 0 0 0 0 0 

94 ST 0 0 0 0 0 

95 C 0 0 0 0 0 

96 CC 0 0 0 0 0 

97 C 0 0 0 0 0 

98 ST 1 0 0 1 0 

99 C 0 0 0 0 0 

100 ST 1 0 0 1 0 

101 C 0 0 0 0 0 

102 ST 1 0 0 1 0 

103 C 2 2 0 0 2 

104 ST 0 0 0 0 0 

105 T 3 0 0 3 0 

106 ST 0 0 0 0 0 

107 C 0 0 0 0 0 

108 ST 0 0 0 0 0 

109 T 0 0 0 0 0 

110 ST 3 1 0 2 1 

111 C 0 0 0 0 0 

112 ST 0 0 0 0 0 

113 T 0 0 0 0 0 

114 ST 3 0 0 3 0 

115 C 2 1 0 1 1 

116 CC 0 0 0 0 0 

117 C 1 1 0 0 1 

118 ST 0 0 0 0 0 

119 T 0 0 0 0 0 

120 ST 0 0 0 0 0 

121 C 1 1 1 0 1 

122 ST 1 1 0 0 1 

123 T 3 2 0 1 2 

124 ST 0 0 0 0 0 

125 C 1 1 1 0 1 

126 ST 1 0 0 1 0 

127 T 0 0 0 0 0 

128 ST 0 0 0 0 0 

129 C 1 1 1 0 1 
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130 ST 0 0 0 0 0 

131 T 3 2 0 1 2 

132 ST 1 0 0 1 0 

133 C 1 0 0 1 0 

134 ST 1 1 0 0 1 

135 T 0 0 0 0 0 

136 ST 1 0 0 1 0 

137 C 0 0 0 0 0 

138 ST 1 1 0 0 1 

139 T 1 0 0 1 0 

140 ST 2 1 0 1 1 

141 C 1 0 0 1 0 

142 ST 7 2 0 5 2 

143 T 1 0 0 1 0 

144 C 5 4 0 1 4 

145 T 0 0 0 0 0 

146 ST 1 0 0 1 0 

147 C 1 1 0 0 1 

148 ST 0 0 0 0 0 

149 T 0 0 0 0 0 

150 ST 0 0 0 0 0 

151 C 0 0 0 0 0 

152 ST 0 0 0 0 0 

153 C 0 0 0 0 0 

154 ST 4 1 0 3 1 

155 C 1 0 0 1 0 

156 ST 6 3 0 3 3 

157 C 1 0 0 1 0 

158 ST 5 4 0 1 4 

159 T 0 0 0 0 0 

160 ST 4 1 0 3 1 

161 C 2 0 1 1 1 

162 ST 0 0 0 0 0 

163 T 0 0 0 0 0 

164 ST 0 0 0 0 0 

165 C 2 2 0 0 2 

166 ST 4 3 1 1 3 

167 T 8 2 0 6 2 

168 ST 1 0 0 1 0 

169 C 1 0 0 1 0 

170 ST 10 5 0 5 5 

171 T 3 2 0 1 2 

172 ST 2 1 0 1 1 

173 C 16 6 1 10 6 
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174 ST 7 3 2 4 3 

175 T 6 1 0 5 1 

176 ST 8 4 0 4 4 

177 C 3 2 0 1 2 

178 ST 1 0 0 1 0 

179 T 0 0 0 0 0 

180 ST 0 0 0 0 0 

181 C 0 0 0 0 0 

182 ST 2 1 0 1 1 

183 C 1 0 0 1 0 

184 ST 0 0 0 0 0 

185 C 0 0 0 0 0 

186 ST 0 0 0 0 0 

187 C 0 0 0 0 0 

188 ST 0 0 0 0 0 

189 T 1 1 1 0 1 

190 ST 0 0 0 0 0 

191 C 2 2 1 0 2 

192 ST 0 0 0 0 0 

193 T 0 0 0 0 0 

194 ST 1 0 0 1 0 

195 C 0 0 0 0 0 

196 ST 10 4 1 6 4 

197 T 0 0 0 0 0 

198 ST 3 3 0 0 3 

199 C 1 1 0 0 1 

200 ST 0 0 0 0 0 

201 T 0 0 0 0 0 

202 ST 0 0 0 0 0 

203 C 0 0 0 0 0 

204 ST 0 0 0 0 0 

205 T 0 0 0 0 0 

206 ST 0 0 0 0 0 

207 C 0 0 0 0 0 

208 ST 0 0 0 0 0 

209 T 0 0 0 0 0 

210 ST 0 0 0 0 0 

211 C 0 0 0 0 0 

212 ST 0 0 0 0 0 

213 T 4 1 0 3 1 

214 ST 0 0 0 0 0 

215 C 1 1 0 0 1 

216 ST 0 0 0 0 0 

217 T 0 0 0 0 0 
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218 ST 1 1 0 0 1 

219 C 2 0 0 2 0 

220 ST 4 0 0 4 0 

221 T 8 3 0 5 3 

222 ST 0 0 0 0 0 

223 C 0 0 0 0 0 

224 ST 1 1 0 0 1 

225 T 0 0 0 0 0 

226 ST 0 0 0 0 0 

227 C 0 0 0 0 0 

228 ST 0 0 0 0 0 

229 T 0 0 0 0 0 

230 ST 0 0 0 0 0 

231 C 0 0 0 0 0 

232 ST 0 0 0 0 0 

233 T 1 1 0 0 1 

234 ST 1 1 0 0 1 

235 C 0 0 0 0 0 

236 ST 0 0 0 0 0 

237 T 0 0 0 0 0 

238 ST 0 0 0 0 0 

239 C 0 0 0 0 0 

240 ST 0 0 0 0 0 

241 T 0 0 0 0 0 

242 ST 0 0 0 0 0 

243 C 0 0 0 0 0 

244 CC 0 0 0 0 0 

245 C 1 1 0 0 1 

246 ST 0 0 0 0 0 

247 T 0 0 0 0 0 

248 ST 0 0 0 0 0 

249 C 0 0 0 0 0 

250 ST 0 0 0 0 0 

251 T 0 0 0 0 0 

252 ST 0 0 0 0 0 

253 C 0 0 0 0 0 

254 ST 0 0 0 0 0 

255 T 0 0 0 0 0 

256 ST 0 0 0 0 0 

257 C 0 0 0 0 0 

258 ST 0 0 0 0 0 

259 T 0 0 0 0 0 

260 ST 1 0 0 1 0 

261 C 0 0 0 0 0 
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262 ST 0 0 0 0 0 

263 C 0 0 0 0 0 

264 ST 0 0 0 0 0 

265 C 0 0 0 0 0 

266 ST 0 0 0 0 0 

267 C 0 0 0 0 0 

268 ST 0 0 0 0 0 

269 T 0 0 0 0 0 

270 ST 0 0 0 0 0 

271 C 0 0 0 0 0 

272 ST 0 0 0 0 0 

273 T 0 0 0 0 0 

274 ST 0 0 0 0 0 

275 C 0 0 0 0 0 

276 ST 0 0 0 0 0 

277 C 0 0 0 0 0 

278 ST 0 0 0 0 0 

279 T 1 1 0 0 1 

280 ST 0 0 0 0 0 

281 C 1 0 0 1 0 

282 ST 0 0 0 0 0 

283 T 0 0 0 0 0 

284 ST 0 0 0 0 0 

285 C 0 0 0 0 0 

286 ST 0 0 0 0 0 

287 C 0 0 0 0 0 

288 ST 0 0 0 0 0 

289 T 0 0 0 0 0 

290 ST 0 0 0 0 0 

291 C 0 0 0 0 0 

292 ST 0 0 0 0 0 

293 C 0 0 0 0 0 

294 ST 0 0 0 0 0 

295 C 0 0 0 0 0 

296 ST 0 0 0 0 0 

297 C 0 0 0 0 0 

298 ST 0 0 0 0 0 

299 T 0 0 0 0 0 

300 ST 0 0 0 0 0 

301 C 1 1 0 0 1 

302 CC 0 0 0 0 0 

303 C 0 0 0 0 0 

304 ST 0 0 0 0 0 

305 C 0 0 0 0 0 
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306 ST 0 0 0 0 0 

307 C 0 0 0 0 0 

308 ST 0 0 0 0 0 

309 T 0 0 0 0 0 

310 ST 0 0 0 0 0 

311 C 1 1 0 0 1 

312 ST 0 0 0 0 0 

313 T 0 0 0 0 0 

314 T 0 0 0 0 0 

315 ST 0 0 0 0 0 

316 C 0 0 0 0 0 

317 ST 0 0 0 0 0 

318 T 0 0 0 0 0 

319 ST 0 0 0 0 0 

320 C 5 4 0 1 4 

321 ST 3 2 0 1 2 

322 T 0 0 0 0 0 

323 ST 0 0 0 0 0 

324 C 0 0 0 0 0 

325 ST 0 0 0 0 0 

326 C 0 0 0 0 0 

327 ST 1 0 0 1 0 

328 T 1 0 0 1 0 

329 ST 0 0 0 0 0 

330 C 0 0 0 0 0 

331 ST 3 2 1 1 2 

332 T 0 0 0 0 0 

333 ST 0 0 0 0 0 

334 C 0 0 0 0 0 

335 ST 0 0 0 0 0 

336 T 0 0 0 0 0 

337 ST 1 1 1 0 1 

338 C 0 0 0 0 0 

339 ST 0 0 0 0 0 

340 T 0 0 0 0 0 

341 ST 0 0 0 0 0 

342 C 0 0 0 0 0 

343 ST 0 0 0 0 0 

344 T 0 0 0 0 0 

345 ST 0 0 0 0 0 

346 C 0 0 0 0 0 

347 ST 0 0 0 0 0 

348 T 0 0 0 0 0 

349 ST 0 0 0 0 0 
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350 C 0 0 0 0 0 

351 ST 3 2 0 1 2 

352 T 0 0 0 0 0 

353 ST 1 0 0 1 0 

354 C 0 0 0 0 0 

355 ST 0 0 0 0 0 

356 T 1 1 0 0 1 

357 ST 0 0 0 0 0 

358 C 0 0 0 0 0 

359 ST 0 0 0 0 0 

360 C 0 0 0 0 0 

361 ST 0 0 0 0 0 

362 C 0 0 0 0 0 

363 ST 0 0 0 0 0 

364 T 0 0 0 0 0 

365 ST 0 0 0 0 0 

366 C 0 0 0 0 0 

367 ST 1 0 0 1 0 

368 C 1 0 0 1 0 

369 ST 0 0 0 0 0 

370 C 0 0 0 0 0 

371 ST 0 0 0 0 0 

372 T 0 0 0 0 0 

373 ST 0 0 0 0 0 

374 C 1 1 0 0 1 

375 ST 6 3 0 3 3 

376 T 0 0 0 0 0 

377 ST 0 0 0 0 0 

378 C 0 0 0 0 0 

379 ST 0 0 0 0 0 

380 T 0 0 0 0 0 

381 ST 4 4 1 0 4 

382 C 0 0 0 0 0 

383 ST 1 0 0 1 0 

384 T 1 1 0 0 1 

385 ST 0 0 0 0 0 

386 C 1 1 0 0 1 

387 ST 0 0 0 0 0 

388 T 0 0 0 0 0 

389 ST 0 0 0 0 0 

390 C 0 0 0 0 0 

391 ST 0 0 0 0 0 

392 T 0 0 0 0 0 

393 C 4 1 2 1 3 
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394 T 1 1 0 0 1 

395 ST 0 0 0 0 0 

396 C 0 0 0 0 0 

397 ST 0 0 0 0 0 

398 T 0 0 0 0 0 

 

Table 7 shows the partition of the total accidents in property damage only (PDO) and injury 

crashes for the different road element type.  

Totally, 344 accidents were observed on the S.P. 430 from 2003 to 2010, which of 167 PDO, 

and 177 that have registered at least one injured or dead. 

Table 7 - Overview of the Main Crash Features for the different road element type 

 
Tangent 

Circular 

Curve 

Transition 

Curve 
TOT 

N. PDO crashes 48 43 76 167 

N. Injury crashes 43 62 72 177 

 

Figure 13 and 14 show the largest number of accidents, have occurred on a transition curve, 

with 46% for PDO and 41% for injury crashes. 

 
Figure 13 - Percentage of PDO crashes for the different road element type 

 

Figure 14 - Percentage of injury crashes for the different road element type 
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Figure 15 shows the Crash Severity for the different road element type. In particular the 

largest number of injured was observed in crashes occurring on circular curve elements; 124 

out of a total of 321 observed. The largest number of deaths was observed on transition curve 

elements, 16 out of a total of 33 observed. 

 
Figure 15 - Crash Severity for the different road element type 

Figure 16 shows the crashes by varying the crash type. 

 
Figure 16 - Percentage of Crash Type 
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3. Element of Design 

3.1 Introduction 

The alignment of a highway or street produces a great impact on the environment, the fabric 

of the community, and the highway user. The alignment consists of a variety of design 

elements that combine to create a facility that serves traffic safely and efficiently, consistent 

with the facility’s intended function. Each alignment element should complement others to 

achieve a consistent, safe, and efficient design. Common to all classes of highways and 

streets are several principal elements of design. These include sight distance, super elevation, 

traveled way widening, grades, horizontal and vertical alignments, and other elements of 

geometric design.  

The D.M. 5/11/2001 identifies different functional classes of highways and streets with an 

associate value of design speed (See Figure 17). The functional class A refers to freeway with 

a value of design speed Vp of 90 km/h if rural context and 80 km/h in urban context. Local 

street are indicated with the functional class F with a VP = 40 Km/h for rural roads and 25 

Km/h for urban roads. 

 
Figure 17 - Overview of the main characteristics by varying rod type 

 

3.2 Horizontal Alignment 

To achieve balance in highway design, all geometric elements should, as far as economically 

practical, be designed to operate at a speed likely to be observed under the normal conditions 

for that roadway for a vast majority of motorists. Generally, this can be achieved through the 

use of design speed as an overall design control. The design of roadway curves should be 

based on an appropriate relationship between design speed and curvature and on their joint 

relationships with super elevation (roadway banking) and side friction. Although these 

relationships stem from the laws of mechanics, the actual values for use in design depend on 
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practical limits and factors determined more or less empirically. These limits and factors are 

explained in the following discussion. When a vehicle moves in a circular path, it undergoes 

a centripetal acceleration that acts toward the center of curvature. This acceleration is 

sustained by a component of the vehicle’s weight related to the roadway super elevation, by 

the side friction developed between the vehicle’s tires and the pavement surface, or by a 

combination of the two. Centripetal acceleration is sometimes equated to centrifugal force. 

However, this is an imaginary force that motorists believe is pushing them outward while 

cornering when, in fact, they are truly feeling the vehicle being accelerated in an inward 

direction. In horizontal curve design, “lateral acceleration” is equivalent to “centripetal 

acceleration”; the term “lateral acceleration” is used in this policy as it is specifically 

applicable to geometric design. 

From the laws of mechanics, the basic equation that governs vehicle operation on a curve is:  

R
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     (9) 

Where: 

q = rate of roadway superelevation, percent 

 f = side friction (demand) factor 

 v = vehicle speed, m/s 

g = gravitational constant, 9.81 m/s
2
 

V = vehicle speed, km/h  

R = radius of curve measured to a vehicle’s center of gravity, m 

Equation 2, which models the moving vehicle as a point mass, is often referred to as the basic 

curve equation. When a vehicle travels at constant speed on a curve super elevated so that the 

f value is zero, the centripetal acceleration is sustained by a component of the vehicle’s 

weight and, theoretically, no steering force is needed. A vehicle traveling faster or slower 

than the balance speed develops tire friction as steering effort is applied to prevent movement 

to the outside or to the inside of the curve. On non-super elevated curves, travel at different 

speeds is also possible by utilizing appropriate amounts of side friction to sustain the varying 

lateral acceleration. 

3.2.1 Circular Curve 

Limiting values for super elevation rate (qmax) and side friction demand (fmax) have been 

established for curve design in the D.M. 5/11/2001. Using these established limiting values in 

the basic curve formula permits determining a minimum curve radius for various design 

speeds. Use of curves with radii larger than this minimum allows super elevation, side 

friction, or both to have values below their respective limits.  

Table 8 shows side friction (demand) factor by varying road functional class and vehicle 

speed. 
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Table 8 – Side friction value for the different road functional class 

Vehicle speed (km/h) 25 40 60 80 100 120 140 

fmax for A, B, C, F rural roads - 0.21 0.17 0.13 0.11 0.10 0.09 

fmax for D, E, F, urban roads 0.22 0.21 0.20 0.16 - - - 

 

The minimum radius is a limiting value of curvature for a given design speed and is 

determined from the maximum rate of super elevation and the maximum side friction factor 

selected for design (limiting value of f). Use of sharper curvature for that design speed would 

call for super elevation beyond the limit considered practical or for operation with tire friction 

and lateral acceleration beyond what is considered comfortable by many drivers, or both. The 

minimum radius of curvature is based on a threshold of driver comfort that is sufficient to 

provide a margin of safety against skidding and vehicle rollover. The minimum radius of 

curvature is also an important control value for determining super elevation rates for flatter 

curves. The minimum radius of curvature, Rmin, can be calculated directly from the 

simplified curve Equation 9 . This equation can be recast to determine Rmin as follows: 

 maxmax

2

min
127 fq

V
R


       (10) 

Based on the maximum allowable side friction factors from Table 9 gives the minimum 

radius for the different road functional classes calculated using Equation 10. 

Table 9 – Minimum Radius value for the different road functional class 

 
 

For radius value more than Rmin are used the abacus in Figure 18. 
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Figure 18 - Abacus for the determination of circular curve radius value 
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A circular curve, to be correctly perceived by the drivers, needs to have a length 

corresponding to a travel time of at least 2.5 seconds, referring to the design speed of the 

circular curve. 

The relationships between the radii R1 and R2 of two circular curves are regulated by the 

abacus shown in Figure 19. In particular, for the road with class A and B the ratio must lie in 

the "good area"; for the other classes can be lie in the “acceptable area". 

 

 
Figure 19 - Relations between two consecutive circular radius curves 

Between a tangent element with length Lr and the smallest radius among the two curves 

connected to the tangent element, even with the interposition of a spiral curve, it must be 

respected the relations: 

RLR   if mLR 300      (11) 

mR 400  if mLR 300      (12) 

3.2.2 Tangent Element 

To avoid high operating speed, the monotony, the difficult assessment of sight distances and 

to reduce glare when driving at night, the maximum tangent length Lr can be evaluated with 

Equation 6. 

max22 VpLR      (13) 

Where Vp max is the upper limit of the design speed of the road, in km / h. 

Also, a tangent element, in order to be perceived by the user, must have a length not less than 

the values reported in the Table 10. 
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Table 10 – Minimum Tangent Length Design criteria by varying Design Speed Value 

Design Speed (km/h) 40 50 60 70 80 90 100 110 120 130 140 

Min Tangent Length (m) 30 40 50 65 90 115 150 190 250 300 360 

 

3.2.3 Spiral Curve Transitions  

Any motor vehicle follows a transition path as it enters or leaves a circular horizontal curve. 

The steering change and the consequent gain or loss of lateral force cannot be achieved 

instantly. For most curves, the average driver can follow a suitable transition path within the 

limits of normal lane width. However, combinations of high speed and sharp curvature lead 

to longer transition paths, which can result in shifts in lateral position and sometimes actual 

encroachment on adjoining lanes. In such instances, incorporation of transition curves 

between the tangent and the sharp circular curve, as well as between circular curves of 

substantially different radii, may be appropriate to make it easier for a driver to keep the 

vehicle within its own lane.  

The principal advantages of transition curves in horizontal alignment are the following:  

1. A properly designed transition curve provides a natural, easy-to-follow path for drivers, 

such that the lateral force increases and decreases gradually as a vehicle enters and leaves 

a circular curve. Transition curves minimize encroachment on adjoining traffic lanes and 

tend to promote uniformity in speed. A spiral transition curve simulates the natural 

turning path of a vehicle.  

2. The transition curve length provides a suitable location for the super elevation runoff. The 

transition from the normal pavement cross slope on the tangent to the fully super elevated 

section on the curve can be accomplished along the length of the transition curve in a 

manner that closely fits the speed-radius relationship for vehicles traversing the transition. 

Where super elevation runoff is introduced without a transition curve, usually partly on 

the curve and partly on the tangent, the driver approaching the curve may need to steer 

opposite to the direction of the approaching curve when on the super elevated tangent 

portion to keep the vehicle within its lane. 

3. A spiral transition curve also facilitates the transition in width where the traveled way is 

widened on a circular curve. Use of spiral transitions provides flexibility in 

accomplishing the widening of sharp curves.  

4. The appearance of the highway or street is enhanced by applying spiral transition curves. 

The use of spiral transitions avoids noticeable breaks in the alignment as perceived by 

drivers at the beginning and end of circular curves. Figure 20 illustrates such breaks, 

which are more prominent with the presence of super elevation runoff. 
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Figure 20 – Transition Spirals 

In the alignment transition section, a spiral or compound transition curve may be used to 

introduce the main circular curve in a natural manner (i.e., one that is consistent with the 

driver’s steered path). Such transition curvature consists of one or more curves aligned and 

located to provide a gradual change in alignment radius. As a result, an alignment transition 

gently introduces the lateral acceleration associated with the curve. While such a gradual 

change in path and lateral acceleration is appealing, there is no definitive evidence that 

transition curves are essential to the safe operation of the roadway and, as a result, they are 

not used by many agencies.  

When a transition curve is not used, the roadway tangent directly adjoins the main circular 

curve. This type of transition design is referred to as the “tangent-to-curve” transition.  

The equation of the transition curve is shows in Equation 7: 

1 nn Asr       (14) 

Where: 

r = Radius of Circular curve at the end of the spiral in the generic point  

s = Length measured along the spiral curve in the generic point  

A = Parameter of spiral curve (clothoid) 

n = shape parameter; if n = 1, si Spiral Transition Curve  
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Figure 21 shows the evolution of the generic transition curve. 

 

 
Figure 21 - Evolution of the generic transition curve 

Where: 

F = Final point of the spiral  

R (m) = Radius of Circular curve  

L (m) = Length of the spiral curve 

τ P = Angle of curve in the first point P on the spiral 

τ F= Angle of curve in the final point F on the spiral 

Generally, the Euler spiral, which is also known as the clothoid, is used in the design of spiral 

transition curves. The radius varies from infinity at the tangent end of the spiral to the radius 

of the circular arc at the end that adjoins that circular arc. By definition, the radius of 

curvature at any point on an Euler spiral varies inversely with the distance measured along 

the spiral. In the case of a spiral transition that connects two circular curves having different 

radii, there is an initial radius rather than an infinite value. The following equation, developed 

in 1909 by Shortt (1909) for gradual attainment of lateral acceleration on railroad track 

curves, is the basic expression used by some highway agencies for computing minimum 

length of a spiral transition curve: 

RC

V
L

30214.0
     (15) 

 

Where: 

L = minimum length of spiral, m  

V = speed, km/h  

R = curve radius, m  

C = rate of increase of lateral acceleration, m /s
3
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The factor C is an empirical value representing the comfort and safety levels provided by the 

spiral curve. The value of C = 0.3 m/s
3
 is generally accepted for railroad operation, but values 

ranging from 0.3 to 0.9 m/s
3
 have been used for highways. This equation is sometimes 

modified to take into account the effect of super elevation, which results in much shorter 

spiral curve lengths. Highways do not appear to need as much precision as is obtained from 

computing the length of spiral by this equation or its modified form. A more practical control 

for the length of spiral is that it should equal the length needed for super elevation runoff. 

The most important transition curves types are Tangent-to-Curve Transition, Curve-to-

Tangent-to-Curve Transition, and Curve-to-Curve Transition. 

Figure 22 shows the design criteria for the different transition curves type. 

 
Figure 22 – Design criteria for different transition curves type 
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3.2.4 General Control for Horizontal Alignment 

A number of general controls are recognized in practice. These controls are not subject to 

theoretical derivation, but they are important for efficient and smooth-flowing highways. 

Excessive curvature or poor combinations of curvature limit traffic capacity, cause economic 

losses from increased travel time and operating costs, and detract from a pleasing appearance. 

To avoid these poor design practices, the general controls that follow should be used where 

practical: 

 Alignment should be as directional as practical, but should be consistent with the 

topography and help preserve developed properties and community values. A flowing line 

that conforms generally to the natural contours is preferable to one with long tangents that 

slashes through the terrain. With curvilinear alignment, construction scars can be kept to a 

minimum and natural slopes and growth can be preserved. Such design is desirable from 

a construction and maintenance standpoint. In general, the number of short curves should 

be kept to a minimum. Winding alignment composed of short curves should be avoided 

because it usually leads to erratic operation. Although the aesthetic qualities of curving 

alignment are important, long tangents are needed on two lane highways so that sufficient 

passing sight distance is available on as much of the highway length as practical. 

 In alignment developed for a given design speed, the minimum radius of curvature for 

that speed should be avoided wherever practical. The designer should attempt to use 

generally flat curves, saving the minimum radius for the most critical conditions. In 

general, the central angle of each curve should be as small as the physical conditions 

permit, so that the highway will be as directional as practical. This central angle should be 

absorbed in the longest practical curve, but on two-lane highways, the exception noted in 

the preceding paragraph applies to preserve passing sight distance. 

  Consistent alignment should always be sought. Sharp curves should not be introduced at 

the ends of long tangents. Sudden changes from areas of flat curvature to areas of sharp 

curvature should be avoided. Where sharp curvature is introduced, it should be 

approached, where practical, by a series of successively sharper curves. 

 Sharp curvature should be avoided on long, high fills. In the absence of cut slopes, shrubs, 

and trees that extend above the level of the roadway, it is difficult for drivers to perceive 

the extent of curvature and adjust their operation accordingly. 

 The “broken-back” or “flat-back” arrangement of curves (with a short tangent between 

two curves in the same direction) should be avoided except where very unusual 

topographical or right-of-way conditions make other alternatives impractical. Except on 

circumferential highways, most drivers do not expect successive curves to be in the same 

direction; the preponderance of successive curves in opposite directions may develop a 

subconscious expectation among drivers that makes successive curves in the same 

direction unexpected. Broken-back alignments are also not pleasing in appearance. Use of 

spiral transitions or compound curve alignments, in which there is some degree of 

continuous super elevation, is preferable for such situations. The term “broken-back” 

usually is not applied when the connecting tangent is of considerable length. Even in this 
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case, the alignment may be unpleasant in appearance when both curves are clearly visible 

for some distance ahead. 

 Changing median widths on tangent alignments should be avoided, where practical, so as 

not to introduce a distorted appearance. 

 

3.3 Vertical Alignment 

Vertical curves to effect gradual changes between tangent grades may be any one of the crest 

or sag types depicted in Figure 23. Vertical curves should be simple in application and should 

result in a design that enables the driver to see the road ahead, enhances vehicle control, is 

pleasing in appearance, and is adequate for drainage. The major design control for crest 

vertical curves is the provision of ample sight distances for the design speed; while research 

(Fambro et al, 1997) has shown that vertical curves with limited sight distance do not 

necessarily experience frequent crashes, it is recommended that all vertical curves should be 

designed to provide at least the stopping sight distances. Wherever practical, longer stopping 

sight distances should be used. Furthermore, additional sight distance should be provided at 

decision points. 

For driver comfort, the rate of change of grade should be kept within tolerable limits. This 

consideration is most important in sag vertical curves where gravitational and vertical 

centripetal forces act in opposite directions. Appearance also should be considered in 

designing vertical curves. A long curve has a more pleasing appearance than a short one; 

short vertical curves may give the appearance of a sudden break in the profile due to the 

effect of foreshortening. 

 
Figure 23 – Type of Vertical Curves 
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3.3.1 Crest Vertical Curves 

Minimum lengths of crest vertical curves based on sight distance criteria generally are 

satisfactory from the standpoint of safety, comfort, and appearance. An exception may be at 

decision areas, such as ramp exit gores, where longer sight distances and, therefore, longer 

vertical curves should be provided; Figure 24 illustrates the parameters used in determining 

the length of a parabolic crest vertical curve needed to provide any specified value of sight 

distance. The basic equations for length of a crest vertical curve in terms of algebraic 

difference in grade and sight distance follow: 

 2121

2

22 hhhh

SA
L




   when S > L  (16) 
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hhhh
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2  when S < L  (17) 

Where: 

L = length of vertical curve, m 

A = algebraic difference in grades, percent 

S = sight distance, m 

h1 = height of eye above roadway surface, m 

h2 = height of object above roadway surface, m 

 

 

Figure 24 - Parameters Considered in Determing the Length of a Crest Vertical Curve to Provide Sight 

Distance 
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3.3.2 Sag Vertical Curves 

At least four different criteria for establishing lengths of sag vertical curves are recognized to 

some extent. These are (1) headlight sight distance, (2) passenger comfort, (3) drainage 

control, and (4) general appearance. 

Headlight sight distance has been used directly by some agencies and for the most part is the 

basis for determining the length of sag vertical curves recommended here. When a vehicle 

traverses a sag vertical curve at night, the portion of highway lighted ahead is dependent on 

the position of the headlights and the direction of the light beam. A headlight height of 0.60 

m and a 1-degree upward divergence of the light beam from the longitudinal axis of the 

vehicle are commonly assumed. The upward spread of the light beam above the 1-degree 

divergence angle provides some additional visible length of roadway, but is not generally 

considered in design. The following equations show the relationships between S, L, and A, 

using S as the distance between the vehicle and point where the 1-degree upward angle of the 

light beam intersects the surface of the roadway: 
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Where: 

L = length of sag vertical curve, m 

A = algebraic difference in grades, percent 

S = light beam distance, m 

For drivers to see the roadway ahead, a sag vertical curve should be long enough that the light 

beam distance is approximately the same as the stopping sight distance. Accordingly, it is 

appropriate to use stopping sight distances for different design speeds as the value of S in the 

above equations. 

 

3.3.3 General Controls for Vertical Alignment 

In addition to the specific controls for vertical alignment discussed previously, there are 

several general controls that should be considered in design. 

 A smooth grade line with gradual changes, as consistent with the type of highway, road, 

or street and the character of terrain, should be sought for in preference to a line with 

numerous breaks and short lengths of grades. Specific design criteria are the maximum 

grade and the critical length of grade, but the manner in which they are applied and fitted 

to the terrain on a continuous line determines the suitability and appearance of the 

finished product. 

 The “roller-coaster” or the “hidden-dip” type of profile should be avoided. Such profiles 

generally occur on relatively straight, horizontal alignment where the roadway profile 
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closely follows a rolling natural ground line. Examples of such undesirable profiles are 

evident on many older roads and streets; they are unpleasant aesthetically and difficult to 

drive. Hidden dips may create difficulties for drivers who wish to pass, because the 

passing driver may be deceived if the view of the road or street beyond the dip is free of 

opposing vehicles. Even with shallow dips, this type of profile may be disconcerting, 

because the driver cannot be sure whether or not there is an oncoming vehicle hidden 

beyond the rise. This type of profile is avoided by use of horizontal curves or by more 

gradual grades. 

 Undulating grade lines, involving substantial lengths of momentum grades, should be 

evaluated for their effect on traffic operation. Such profiles permit heavy trucks to operate 

at higher overall speeds than where an upgrade is not preceded by a downgrade, but may 

encourage excessive speeds of trucks with attendant conflicts with other traffic. 

 A “broken-back” grade line (two vertical curves in the same direction separated by a short 

section of tangent grade) generally should be avoided, particularly in sags where the full 

view of both vertical curves is not pleasing. This effect is particularly noticeable on 

divided roadways with open median sections. 

 On long grades, it may be preferable to place the steepest grades at the bottom and flatten 

the grades near the top of the ascent or to break the sustained grade by short intervals of 

flatter grade instead of providing a uniform sustained grade that is only slightly below the 

recommended maximum. This is particularly applicable to roads and streets with low 

design speeds. 

 Where at-grade intersections occur on roadway sections with moderate to steep grades, it 

is desirable to reduce the grade through the intersection. Such profile changes are 

beneficial for vehicles making turns and serve to reduce the potential for crashes. 

 Sag vertical curves should be avoided in cuts unless adequate drainage can be provided. 

 

3.4 Combination of Horizontal and Vertical Alignment 

Horizontal and vertical alignments are permanent design elements for which thorough study 

is warranted. It is extremely difficult and costly to correct alignment deficiencies after a 

highway is constructed. On freeways, there are numerous controls such as multilevel 

structures and costly right-of-way. On most arterial streets, heavy development takes place 

along the property lines, which makes it impractical to change the alignment in the future. 

Thus, compromises in the alignment designs should be weighed carefully because any initial 

savings may be more than offset by the economic loss to the public in the form of crashes and 

delays. Horizontal and vertical alignment should not be designed independently. They 

complement each other, and poorly designed combinations can spoil the good points and 

aggravate the deficiencies of each. Horizontal alignment and profile are among the more 

important of the permanent design elements of the highway. Excellence in the design of each 

and of their combination enhances vehicle control, ages uniform speed, and improves 

appearance, nearly always without additional cost (Fambro et al; AASHTO; ASCE; Cron; 

Leisch; SHRP, Smith and Lamm; Tunnard; USFS) 
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Common situation with bad combination of Horizontal and Vertical Alignment are shown in 

the Figures 25-32. 

 

 

Figure 25 – Circular Radius and/or Vertical Curve too small  

 

Figure 26 – Broken-back grade line 

 

Figure 27 – Circular Curve hidden by a crest 
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Figure 28 – Misalignment between horizontal curvature and sag vertical curve 

 
Figure 29 – Small Length vertical curvature 

 
Figure 30 – Misalignment between horizontal and vertical curvature 

 

Figure 31 – Sag vertical curve near Circular Curve-to-Tangent-to-Circular Curve Transition Curve 
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Figure 32 – Examples of distorted appearance 

Appropriate combinations of horizontal alignment and profile are obtained through 

engineering studies and consideration to avoid situation shows in the following general 

guidelines: 

 Curvature and grades should be in proper balance. Tangent alignment or flat curvature at 

the expense of steep or long grades and excessive curvature with flat grades both 

represent poor design. A logical design that offers the best combination of safety, 

capacity, ease and uniformity of operation, and pleasing appearance within the practical 

limits of terrain and area traversed is a compromise between these two extremes. 

 Vertical curvature superimposed on horizontal curvature, or vice versa, generally results 

in a more pleasing facility, but such combinations should be analyzed for their effect on 

traffic. Successive changes in profile not in combination with horizontal curvature may 

result in a series of humps visible to the driver for some distance which represents an 

undesirable condition. 

 Sharp horizontal curvature should not be introduced at or near the top of a pronounced 

crest vertical curve. This condition is undesirable because the driver may not perceive the 

horizontal change in alignment, especially at night. The disadvantages of this 

arrangement are avoided if the horizontal curvature leads the vertical curvature (i.e., the 

horizontal curve is made longer than the vertical curve). Suitable designs can also be 

developed by using design values well above the appropriate minimum values for the 

design speed. 

 Somewhat related to the preceding guideline, sharp horizontal curvature should not be 

introduced near the bottom of a steep grade approaching or near the low point of a 

pronounced sag vertical curve. Because the view of the road ahead is foreshortened, any 

horizontal curvature other than a very flat curve assumes an undesirable distorted 

appearance. Further, vehicle speeds, particularly for trucks, are often high at the bottom 

of grades, and erratic operations may result, especially at night. 

The Swiss Standards provides diagram shows in Figure 33, for a given value V of the 

vehicle speed, the values of the distance Dr to which must reappear the road distorted 

appearance; when Dr falls in zone 2 must change the profile. 
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Figure 33 – Vehicle Speed and Sight distance relation 

Similarly, the Italian Standard indicate, for each speed, the minimum distance Dr listed in 

Table 11. 

Table 11 – Minimum Sight distance Dr by varying Design Speed Value 

Design Speed (km/h) 25 40 50 60 70 80 90 100 110 120 130 140 

Dr (m) 150 180 220 280 350 420 500 560 640 720 800 860 

 

 On two-lane roads and streets, the need for passing sections at frequent intervals and 

including an appreciable percentage of the length of the roadway often supersedes the 

general guidelines for combinations of horizontal and vertical alignment. In such cases, it 

is appropriate to work toward long tangent sections to assure sufficient passing sight 

distance in design. 

 Both horizontal curvature and profile should be made as flat as practical at intersections 

where sight distance along either roads or streets is important and vehicles may have to 

slow or stop. 

 On divided highways and streets, variation in width of median and the use of independent 

profiles and horizontal alignments for the separate one-way roadways are sometimes 

desirable. Where traffic justifies provision of four lanes, a superior design without 

additional cost generally results from such practices. 

 In residential areas, the alignment should be designed to minimize nuisance to the 

neighborhood. Generally, a depressed facility makes a highway less visible and less noisy 

to adjacent residents. Minor horizontal adjustments can sometimes be made to increase 

the buffer zone between the highway and clusters of homes. 

  The alignment should be designed to enhance attractive scenic views of the natural and 

manmade environment, such as rivers, rock formations, parks, and outstanding structures. 

The highway should head into, rather than away from, those views that are outstanding; it 



72 

 

should fall toward those features of interest at a low elevation, and it should rise toward 

those features best seen from below or in silhouette against the sky. 

3.5 Horizontal Vertical Design Specification 

In according to the Italian Standard, design control for Horizontal and Horizontal-Vertical 

Alignment, were checked. Table 12 and 13shows the design controls checked with the 

associated code. 

Table 12 – Horizontal Alignment Design Control Code 

Design Control Road Element Code 

Min Tangent Length (m) Tangent 1p 

Max Tangent Length  (m) Tangent 2p 

R > Lr  se Lr < 300 (m) Tangent 3p 

R ≥ 400 se Lr ≥ 300 (m) Tangent 4p 

Min Radius Cricular Curve (m) Circular Curve 5p 

R/3 < A < R Transition Curve 6p 

R1/3 < A < R2 Curve- to-Curve Transition 7p 

R2 < R1 Curve-to-Tangent-to-Curve Transition 8p 

R1/3 < A1 < R1 Curve-to-Tangent-to-Curve Transition 9p 

R2/3 < A2 < R2 Curve-to-Tangent-to-Curve Transition 10p 

2/3 < A1/A2 < 3/2 Curve-to-Tangent-to-Curve Transition 11p 

Lr ≤ A1+A2/12.5 Curve-to-Tangent-to-Curve Transition 12p 

R1 / R2 acceptable area Curve-to-Tangent-to-Curve Transition 13p 

 

Table 13 – Horizontal - Vertical Alignment Design Control Code 

Design Control Code 

Broken-back gradeline 1a 

Crest Vertical Curve separated by small tangent grade 2a 

Circular Curve hidden by Crest Vertical Curve 3a 

Circular Curve after Sag Vertical Curve Dir. A-B 4a 

Circular Curve after by Sag Vertical Curve Dir. B-A 5a 

Circular Curve before Sag Vertical Curve Dir. A-B 6a 

Circular Curve before by Sag Vertical Curve Dir. B-A 7a 

Sag Vertical Circular and Curve-to-Tangent-to- Curve Transition Correspondence 8a 

Difference in grades  9a 

Crest Vertical Curve  before Sag Vertical Circular Dir A-B 10a 

Crest Vertical Curve  before Sag Vertical Circular Dir B-A 11a 
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Table 14 and 15 show the results of test of the design control for each road element type, 

respectively for Horizontal and Horizontal-Vertical Alignment. 

Table 14 – Test of the Horizontal Alignment Design Control 

N.  Element Road  Element Type 
1                               

p 

2 

p 

3                   

p 

4                   

p 

5          

p 

6          

p 

7            

p 

8 

p 

9  

p 

10 

p 

11 

p 

12 

p 

13 

p 

1 T OK OK 
           

2 C 
    

OK 
        

3 T OK OK NO OK 
         

4 ST 
     

OK 
       

5 C 
    

OK 
        

6 ST 
     

OK 
       

7 T OK OK OK NO 
         

8 ST 
     

OK 
       

9 C 
    

OK 
        

10 ST 
     

OK 
       

11 T OK OK OK NO 
         

12 ST 
     

OK 
       

13 C 
    

OK 
        

14 ST 
     

OK 
       

15 T OK OK OK NO 
         

16 C 
    

OK 
        

17 T OK OK 
           

18 C 
    

OK 
        

19 T OK OK NO OK 
         

20 ST 
     

OK 
       

21 C 
    

OK 
        

22 ST 
     

OK 
       

23 T v OK 
           

24 C 
    

OK 
        

25 T OK OK OK NO 
         

26 ST 
     

OK 
       

27 C 
    

OK 
        

28 ST 
     

OK 
       

29 T OK OK NO OK 
         

30 C 
    

OK 
        

31 T NO OK 
           

32 C 
    

OK 
        

33 T OK OK NO OK 
         

34 ST 
     

OK 
       

35 C 
    

OK 
        

36 ST 
     

OK 
       

37 T NO OK OK NO 
         

38 ST 
     

OK 
       

39 C 
    

OK 
        

40 ST 
     

OK 
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41 T NO OK OK NO 
         

42 ST 
     

OK 
       

43 C 
    

OK 
        

44 ST 
     

OK 
       

45 T OK OK OK NO 
         

46 C 
    

OK 
        

47 T NO OK OK NO 
         

48 ST 
     

OK 
       

49 C 
    

OK 
        

50 ST 
       

OK OK OK OK OK OK 

51 C 
    

OK 
        

52 ST 
       

OK OK OK OK OK OK 

53 C 
    

OK 
        

54 ST 
     

OK 
       

55 T NO OK OK NO 
         

56 ST 
     

OK 
       

57 C 
    

OK 
        

58 ST 
     

OK 
       

59 T OK OK NO OK 
         

60 ST 
     

OK 
       

61 C 
    

OK 
        

62 ST 
     

OK 
       

63 T OK OK NO OK 
         

64 ST 
     

OK 
       

65 C 
    

OK 
        

66 ST 
     

OK 
       

67 T OK OK OK NO 
         

68 C 
    

OK 
        

69 T OK OK OK NO 
         

70 ST 
     

OK 
       

71 C 
    

OK 
        

72 ST 
     

OK 
       

73 T NO OK OK NO 
         

74 C 
    

OK 
        

75 T NO OK OK NO 
         

76 ST 
     

OK 
       

77 C 
    

OK 
        

78 ST 
     

OK 
       

79 T OK OK NO OK 
         

80 ST 
     

OK 
       

81 C 
    

OK 
        

82 ST 
       

NO OK OK OK OK OK 

83 C 
    

OK 
        

84 ST 
     

OK 
       

85 T OK OK NO OK 
         

86 ST 
     

OK 
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87 C 
    

OK 
        

88 ST 
       

NO OK OK OK OK OK 

89 C 
    

OK 
        

90 ST 
     

OK 
       

91 T OK OK NO OK 
         

92 C 
    

OK 
        

93 T NO OK OK NO 
         

94 ST 
     

NO 
       

95 C 
    

OK 
        

96 CC 
      

NO 
      

97 C 
    

OK 
        

98 ST 
       

NO OK OK OK OK OK 

99 C 
    

OK 
        

100 ST 
       

NO OK OK OK OK OK 

101 C 
    

OK 
        

102 ST 
       

NO OK OK OK OK OK 

103 C 
    

OK 
        

104 ST 
     

OK 
       

105 T OK OK NO OK 
         

106 ST 
     

OK 
       

107 C 
    

OK 
        

108 ST 
     

OK 
       

109 T NO OK OK NO 
         

110 ST 
     

OK 
       

111 C 
    

OK 
        

112 ST 
     

OK 
       

113 T OK OK OK NO 
         

114 ST 
     

OK 
       

115 C 
    

OK 
        

116 CC 
      

NO 
      

117 C 
    

OK 
        

118 ST 
     

OK 
       

119 T OK OK OK NO 
         

120 ST 
     

OK 
       

121 C 
    

OK 
        

122 ST 
     

OK 
       

123 T OK OK NO OK 
         

124 ST 
     

OK 
       

125 C 
    

OK 
        

126 ST 
     

OK 
       

127 T NO OK OK NO 
         

128 ST 
     

OK 
       

129 C 
    

OK 
        

130 ST 
     

OK 
       

131 T OK OK OK NO 
         

132 ST 
     

OK 
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133 C 
    

OK 
        

134 ST 
     

OK 
       

135 T NO OK OK NO 
         

136 ST 
     

OK 
       

137 C 
    

OK 
        

138 ST 
     

OK 
       

139 T NO OK OK NO 
         

140 ST 
     

OK 
       

141 C 
    

OK 
        

142 ST 
     

OK 
       

143 T NO OK OK NO 
         

144 C 
    

OK 
        

145 T NO OK OK NO 
         

146 ST 
     

OK 
       

147 C 
    

OK 
        

148 ST 
     

OK 
       

149 T NO OK OK NO 
         

150 ST 
     

OK 
       

151 C 
    

OK 
        

152 ST 
       

OK OK OK OK OK OK 

153 C 
    

OK 
        

154 ST 
       

NO OK OK OK OK OK 

155 C 
    

OK 
        

156 ST 
       

OK OK OK OK OK OK 

157 C 
    

OK 
        

158 ST 
     

OK 
       

159 T NO OK OK NO 
         

160 ST 
     

OK 
       

161 C 
    

OK 
        

162 ST 
     

OK 
       

163 T OK OK OK NO 
         

164 ST 
     

OK 
       

165 C 
    

OK 
        

166 ST 
     

OK 
       

167 T OK OK NO OK 
         

168 ST 
     

OK 
       

169 C 
    

OK 
        

170 ST 
     

OK 
       

171 T OK OK OK NO 
         

172 ST 
     

NO 
       

173 C 
    

OK 
        

174 ST 
     

NO 
       

175 T NO OK OK NO 
         

176 ST 
     

OK 
       

177 C 
    

OK 
        

178 ST 
     

OK 
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179 T OK OK OK NO 
         

180 ST 
     

OK 
       

181 C 
    

OK 
        

182 ST 
       

OK OK OK OK OK OK 

183 C 
    

OK 
        

184 ST 
       

NO OK OK OK OK OK 

185 C 
    

OK 
        

186 ST 
       

NO OK OK OK OK OK 

187 C 
    

OK 
        

188 ST 
     

OK 
       

189 T OK OK NO NO 
         

190 ST 
     

OK 
       

191 C 
    

OK 
        

192 ST 
     

OK 
       

193 T NO OK OK NO 
         

194 ST 
     

OK 
       

195 C 
    

OK 
        

196 ST 
     

OK 
       

197 T NO OK OK NO 
         

198 ST 
     

OK 
       

199 C 
    

OK 
        

200 ST 
     

OK 
       

201 T OK OK OK NO 
         

202 ST 
     

NO 
       

203 C 
    

OK 
        

204 ST 
     

NO 
       

205 T NO OK OK NO 
         

206 ST 
     

OK 
       

207 C 
    

OK 
        

208 ST 
     

OK 
       

209 T NO OK OK NO 
         

210 ST 
     

OK 
       

211 C 
    

OK 
        

212 ST 
     

OK 
       

213 T OK OK NO OK 
         

214 ST 
     

OK 
       

215 C 
    

OK 
        

216 ST 
     

OK 
       

217 T NO OK OK NO 
         

218 ST 
     

OK 
       

219 C 
    

OK 
        

220 ST 
     

OK 
       

221 T OK OK NO OK 
         

222 ST 
     

OK 
       

223 C 
    

OK 
        

224 ST 
     

OK 
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225 T OK OK OK NO 
         

226 ST 
     

OK 
       

227 C 
    

OK 
        

228 ST 
     

OK 
       

229 T NO OK OK NO 
         

230 ST 
     

OK 
       

231 C 
    

OK 
        

232 ST 
     

OK 
       

233 T OK OK NO OK 
         

234 ST 
     

OK 
       

235 C 
    

OK 
        

236 ST 
     

OK 
       

237 T NO OK OK NO 
         

238 ST 
     

OK 
       

239 C 
    

OK 
        

240 ST 
     

OK 
       

241 T NO OK OK NO 
         

242 ST 
     

NO 
       

243 C 
    

OK 
        

244 CC 
      

NO 
      

245 C 
    

OK 
        

246 ST 
     

OK 
       

247 T OK OK NO OK 
         

248 ST 
     

OK 
       

249 C 
    

OK 
        

250 ST 
     

OK 
       

251 T NO OK OK NO 
         

252 ST 
     

OK 
       

253 C 
    

OK 
        

254 ST 
     

OK 
       

255 T NO OK OK NO 
         

256 ST 
     

OK 
       

257 C 
    

OK 
        

258 ST 
     

OK 
       

259 T OK OK NO NO 
         

260 ST 
     

OK 
       

261 C 
    

OK 
        

262 ST 
       

OK OK OK NO OK OK 

263 C 
    

OK 
        

264 ST 
       

OK OK OK OK OK OK 

265 C 
    

OK 
        

266 ST 
       

NO OK OK OK OK OK 

267 C 
    

OK 
        

268 ST 
     

OK 
       

269 T OK OK OK NO 
         

270 ST 
     

OK 
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271 C 
    

OK 
        

272 ST 
     

OK 
       

273 T NO OK OK NO 
         

274 ST 
     

OK 
       

275 C 
    

OK 
        

276 ST 
       

NO OK OK OK OK OK 

277 C 
    

OK 
        

278 ST 
     

OK 
       

279 T OK OK NO NO 
         

280 ST 
     

OK 
       

281 C 
    

OK 
        

282 ST 
     

OK 
       

283 T OK OK OK NO 
         

284 ST 
     

OK 
       

285 C 
    

OK 
        

286 ST 
       

NO OK OK OK OK OK 

287 C 
    

OK 
        

288 ST 
     

OK 
       

289 T OK OK OK NO 
         

290 ST 
     

OK 
       

291 C 
    

OK 
        

292 ST 
       

NO OK OK OK OK OK 

293 C 
    

OK 
        

294 ST 
       

OK OK OK OK OK OK 

295 C 
    

OK 
        

296 ST 
       

NO OK OK OK OK OK 

297 C 
    

OK 
        

298 ST 
     

OK 
       

299 T NO OK OK NO 
         

300 ST 
     

NO 
       

301 C 
    

OK 
        

302 CC 
      

NO 
      

303 C 
    

OK 
        

304 ST 
       

OK OK OK OK OK OK 

305 C 
    

OK 
        

306 ST 
       

NO OK OK OK OK OK 

307 C 
    

OK 
        

308 ST 
     

OK 
       

309 T OK OK NO OK 
         

310 ST 
     

OK 
       

311 C 
    

OK 
        

312 ST 
     

OK 
       

313 T OK OK OK NO 
         

314 T OK OK OK NO 
         

315 ST 
     

OK 
       

316 C 
    

OK 
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317 ST 
     

OK 
       

318 T NO OK OK NO 
         

319 ST 
     

OK 
       

320 C 
    

OK 
        

321 ST 
     

OK 
       

322 T NO OK OK NO 
         

323 ST 
     

OK 
       

324 C 
    

OK 
        

325 ST 
       

NO OK OK OK OK OK 

326 C 
    

OK 
        

327 ST 
     

OK 
       

328 T OK OK NO NO 
         

329 ST 
     

OK 
       

330 C 
    

OK 
        

331 ST 
     

OK 
       

332 T OK OK NO NO 
         

333 ST 
     

OK 
       

334 C 
    

OK 
        

335 ST 
     

OK 
       

336 T OK OK NO NO 
         

337 ST 
     

OK 
       

338 C 
    

OK 
        

339 ST 
     

OK 
       

340 T NO OK OK NO 
         

341 ST 
     

NO 
       

342 C 
    

OK 
        

343 ST 
     

NO 
       

344 T OK OK NO NO 
         

345 ST 
     

OK 
       

346 C 
    

OK 
        

347 ST 
     

OK 
       

348 T NO OK OK NO 
         

349 ST 
     

OK 
       

350 C 
    

OK 
        

351 ST 
     

OK 
       

352 T NO OK OK NO 
         

353 ST 
     

OK 
       

354 C 
    

OK 
        

355 ST 
     

OK 
       

356 T OK OK OK NO 
         

357 ST 
     

OK 
       

358 C 
    

OK 
        

359 ST 
       

OK OK OK OK OK OK 

360 C 
    

OK 
        

361 ST 
       

OK OK OK NO OK OK 

362 C 
    

OK 
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363 ST 
     

OK 
       

364 T NO OK OK NO 
         

365 ST 
     

OK 
       

366 C 
    

OK 
        

367 ST 
       

OK OK OK OK OK OK 

368 C 
    

OK 
        

369 ST 
       

NO OK OK OK OK NO 

370 C 
    

OK 
        

371 ST 
     

NO 
       

372 T OK OK OK NO 
         

373 ST 
     

OK 
       

374 C 
    

OK 
        

375 ST 
     

OK 
       

376 T NO OK OK NO 
         

377 ST 
     

OK 
       

378 C 
    

OK 
        

379 ST 
     

OK 
       

380 T OK OK OK NO 
         

381 ST 
     

OK 
       

382 C 
    

OK 
        

383 ST 
     

OK 
       

384 T NO OK OK NO 
         

385 ST 
     

OK 
       

386 C 
    

OK 
        

387 ST 
     

OK 
       

388 T NO OK OK NO 
         

389 ST 
     

OK 
       

390 C 
    

OK 
        

391 ST 
     

OK 
       

392 T NO OK OK NO 
         

393 C 
    

OK 
        

394 T NO OK OK NO 
         

395 ST 
     

OK 
       

396 C 
    

OK 
        

397 ST 
     

OK 
       

398 T NO OK OK NO 
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Table 15 – Test of the Horizontal – Vertical Alignment Design Control 

N. 

Road 

Element 

Type 

Vertical 

Curve 

Type 

Vertical 

Curve 

Length 

(m) 

Vertical 

radius 

Rv (m) 

1 

a 

2 

a 

3 

a 

4 

a 

5 

a 

6 

a 

7 

a 

8 

a 

9 

a 

10 

a 

11 

a 

1 T 
              

2 C 
              

3 T Sag 150 15000 
   

OK OK OK OK 
 

OK 
 

NO 

4 ST 
              

5 C 
              

6 ST 
              

7 T 
              

8 ST 
              

9 C 
              

10 ST Crest 141.6 8000 
  

OK 
      

NO NO 

11 T Crest 141.6 8000 
           

12 ST 
              

13 C 
              

14 ST 
              

15 T 
              

16 C 
              

17 T 
              

18 C Sag 217.2 12000 
   

OK OK OK OK 
 

OK NO NO 

19 T 
              

20 ST 
              

21 C Crest 78 6000 
  

OK 
       

NO 

22 ST Sag 206 20000 
   

NO 
 

NO NO 
 

OK 
 

NO 

23 T Sag 206 20000 
           

24 C 
              

25 T Crest 194.4 8000 
  

NO 
      

NO NO 

26 ST Crest 194.4 8000 
           

27 C Sag 188 8000 
   

OK OK OK OK 
 

OK NO 
 

28 ST Sag 188 8000 
   

OK OK OK OK 
    

29 T 
    

OK 
         

30 C 
    

OK 
         

31 T 
    

OK 
         

32 C 
    

OK 
         

33 T Sag 80.8 8000 
   

OK OK OK OK 
 

OK 
  

34 ST 
    

OK 
         

35 C Sag 247.2 8000 
   

NO 
 

OK NO 
 

OK 
  

36 ST Sag 247.2 8000 
     

OK 
     

37 T Sag 247.2 8000 
     

OK 
     

38 ST Sag 247.2 8000 
     

OK 
     

39 C 
    

OK 
         

40 ST 
    

OK 
         

41 T 
    

OK 
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42 ST 
    

OK 
         

43 C 
    

OK 
         

44 ST Sag 41.6 8000 
   

OK NO NO OK 
 

NO 
  

45 T 
              

46 C 
              

47 T 
              

48 ST 
              

49 C 
              

50 ST Crest 30.4 8000 
  

OK 
     

NO 
  

51 C 
              

52 ST 
              

53 C 
              

54 ST 
              

55 T Crest 369 10000 
  

NO 
        

56 ST Crest 
             

57 C Crest 
             

58 ST 
              

59 T 
              

60 ST 
              

61 C 
              

62 ST Crest 284.8 8000 
  

NO 
        

63 T Crest 
             

64 ST 
              

65 C Crest 148.8 8000 
  

NO 
      

NO 
 

66 ST Crest 
             

67 T 
              

68 C 
              

69 T 
              

70 ST 
              

71 C 
              

72 ST 
              

73 T Sag 13.6 4000 
   

NO OK OK OK 
 

NO NO 
 

74 C 
    

OK 
         

75 T 
    

OK 
         

76 ST 
    

OK 
         

77 C 
    

OK 
         

78 ST 
    

OK 
         

79 T Sag 200.4 6000 
   

OK OK OK OK 
 

OK 
  

80 ST 
              

81 C 
              

82 ST 
              

83 C Crest 36 8000 
  

NO 
        

84 ST 
              

85 T 
              

86 ST 
              

87 C Crest 103.2 8000 
  

NO 
      

NO 
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88 ST 
              

89 C Sag 55.2 8000 
   

OK OK OK OK 
 

NO NO 
 

90 ST 
    

OK 
         

91 T 
    

OK 
         

92 C Sag 66.4 8000 
   

OK NO OK OK 
 

NO 
  

93 T Sag 
     

OK 
 

OK OK 
    

94 ST 
              

95 C 
              

96 CC 
              

97 C Crest 6 4000 
  

NO 
        

98 ST 
              

99 C 
              

100 ST 
              

101 C 
              

102 ST Sag 23.2 4000 
   

NO OK OK OK OK NO 
  

103 C 
    

OK 
         

104 ST 
    

OK 
         

105 T Sag 53.6 8000 
   

OK OK OK OK 
 

NO 
 

NO 

106 ST 
              

107 C 
              

108 ST 
              

109 T 
              

110 ST 
              

111 C Crest 32.4 3000 
  

NO 
      

NO NO 

112 ST 
              

113 T 
              

114 ST 
              

115 C Sag 48 20000 
   

OK OK OK OK 
 

NO NO 
 

116 CC 
    

OK 
         

117 C 
    

OK 
         

118 ST 
    

OK 
         

119 T 
    

OK 
         

120 ST 
    

OK 
         

121 C Sag 8 10000 
   

OK OK OK OK 
 

NO 
  

122 ST 
    

OK 
         

123 T 
    

OK 
         

124 ST 
    

OK 
         

125 C Sag 90 6000 
   

OK OK OK OK 
 

OK 
 

NO 

126 ST 
              

127 T 
              

128 ST 
              

129 C Crest 261.6 8000 
  

OK 
       

NO 

130 ST Sag 244.8 3615.953 
   

OK OK OK OK 
   

NO 

131 T Sag 
             

132 ST Crest 816 10355.33 
  

NO 
      

NO NO 

133 C Crest 
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134 ST Sag 204 5298.701 
   

OK OK OK OK 
 

OK NO 
 

135 T Sag 
             

136 ST Sag 
             

137 C 
    

OK 
         

138 ST 
    

OK 
         

139 T Sag 71.4 10984.62 
   

OK OK OK OK 
 

NO 
  

140 ST Sag 
             

141 C 
    

OK 
         

142 ST 
    

OK 
         

143 T 
    

OK 
         

144 C 
    

OK 
         

145 T 
    

OK 
         

146 ST Sag 132.6 4652.632 
   

NO NO OK NO 
 

OK 
  

147 C Sag 
             

148 ST 
              

149 T 
              

150 ST 
              

151 C 
              

152 ST 
              

153 C 
              

154 ST 
              

155 C 
              

156 ST 
              

157 C 
              

158 ST 
              

159 T 
              

160 ST 
              

161 C 
              

162 ST 
              

163 T 
              

164 ST Crest 102 6144.578 
  

NO 
        

165 C Crest 
             

166 ST 
              

167 T 
              

168 ST Sag 153 4146.341 
   

OK OK OK OK 
   

NO 

169 C 
              

170 ST 
              

171 T 
              

172 ST 
              

173 C 
              

174 ST Crest 346.8 10260.36 
  

OK 
       

NO 

175 T 
     

OK 
        

176 ST Sag 135.8 3782.73 
   

NO OK OK OK 
    

177 C Sag 
             

178 ST Crest 164.9 4752.161 
  

NO 
      

NO 
 

179 T Sag 155.2 5173.333 
   

NO OK OK OK 
 

OK NO NO 
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180 ST Sag 
             

181 C Crest 126.1 4653.137 
  

OK 
      

NO NO 

182 ST Sag 97 5418.994 
   

NO NO OK OK NO OK NO NO 

183 C 
              

184 ST 
              

185 C 
              

186 ST Crest 620.8 27348.02 
  

NO 
       

NO 

187 C Crest 
             

188 ST Crest 
             

189 T Crest 
             

190 ST 
              

191 C Crest 543.2 8963.696 
  

NO 
      

NO 
 

192 ST Crest 
             

193 T 
              

194 ST 
              

195 C Sag 281.3 3677.124 
   

OK OK OK OK 
 

OK NO NO 

196 ST Crest 194 4961.637 
  

OK 
      

NO NO 

197 T Crest 
    

OK 
        

198 ST Crest 
    

OK 
        

199 C Sag 164.9 2960.503 
   

OK NO NO OK 
  

NO 
 

200 ST Sag 
             

201 T Sag 
             

202 ST Crest 358.9 17254.81 
  

OK 
        

203 C Crest 
    

OK 
        

204 ST 
              

205 T 
              

206 ST 
              

207 C 
              

208 ST 
              

209 T 
              

210 ST 
              

211 C 
              

212 ST 
              

213 T Crest 116.4 11757.58 
           

214 ST Sag 116.4 13857.14 
   

NO OK OK OK 
 

NO 
  

215 C Sag 
             

216 ST Crest 139.5 15000 
  

NO 
        

217 T Crest 
             

218 ST 
              

219 C 
              

220 ST Crest 452.8 8000 
  

OK 
        

221 T Crest 
    

OK 
        

222 ST Crest 600 20000 
  

NO 
      

NO 
 

223 C Crest 
             

224 ST Crest 
             

225 T Crest 
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226 ST Crest 
             

227 C 
              

228 ST Sag 315 15000 
   

NO NO NO OK 
 

OK NO 
 

229 T Sag 
             

230 ST Sag 
             

231 C 
    

OK 
         

232 ST 
    

OK 
         

233 T Sag 374 20000 
   

OK OK OK OK 
 

OK 
 

NO 

234 ST 
              

235 C Crest 397 10000 
  

NO 
       

NO 

236 ST Crest 
             

237 T Crest 
             

238 ST Crest 
             

239 C Crest 
             

240 ST Crest 
             

241 T 
              

242 ST 
              

243 C Sag 425 5000 
   

NO NO NO OK 
 

OK 
 

NO 

244 CC Sag 
             

245 C Sag 
             

246 ST 
              

247 T 
              

248 ST Crest 210 10000 
  

NO 
      

NO NO 

249 C Crest 
             

250 ST Crest 
             

251 T 
              

252 ST Sag 70 5000 
   

NO OK OK OK 
 

OK NO NO 

253 C Sag 
             

254 ST Crest 936 12000 
  

OK 
      

NO NO 

255 T Crest 
    

OK 
        

256 ST Crest 
    

OK 
        

257 C Crest 
    

OK 
        

258 ST Crest 
    

OK 
        

259 T Crest 
    

OK 
        

260 ST 
              

261 C 
              

262 ST 
              

263 C 
              

264 ST 
              

265 C 
              

266 ST Sag 500 10000 
   

NO OK OK NO NO OK NO NO 

267 C Sag 
             

268 ST Sag 
             

269 T Sag 
             

270 ST Sag 
             

271 C Sag 
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272 ST 
              

273 T Crest 600 10000 
  

OK 
      

NO NO 

274 ST Crest 
    

OK 
        

275 C Crest 
    

OK 
        

276 ST Crest 
    

OK 
        

277 C Crest 
    

OK 
        

278 ST Crest 
    

OK 
        

279 T Crest 
    

OK 
        

280 ST 
              

281 C 
              

282 ST 
              

283 T 
              

284 ST 
              

285 C 
              

286 ST 
              

287 C 
              

288 ST 
              

289 T Sag 60 6000 
   

OK NO OK OK 
 

OK NO 
 

290 ST 
              

291 C 
              

292 ST Crest 80 10000 
  

NO 
        

293 C Crest 
             

294 ST Crest 
             

295 C 
              

296 ST 
              

297 C 
              

298 ST 
              

299 T 
              

300 ST Sag 75 3000 
   

NO NO OK OK 
    

301 C Sag 
   

OK 
         

302 CC 
    

OK 
         

303 C 
    

OK 
         

304 ST 
    

OK 
         

305 C 
    

OK 
         

306 ST 
    

OK 
         

307 C Sag 297.6 3000 
   

OK NO OK OK 
 

OK 
 

NO 

308 ST Sag 
             

309 T Sag 
             

310 ST 
              

311 C 
              

312 ST 
              

313 T 
              

314 T 
              

315 ST 
              

316 C 
              

317 ST 
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318 T 
              

319 ST 
              

320 C Crest 389.61 11131.71 
  

NO 
      

NO NO 

321 ST 
              

322 T 
              

323 ST 
              

324 C 
              

325 ST Sag 157.95 5230.132 
   

NO NO OK OK NO OK NO NO 

326 C 
              

327 ST 
              

328 T 
              

329 ST 
              

330 C 
              

331 ST 
              

332 T Crest 484.38 12986.06 
  

OK 
      

NO NO 

333 ST Crest 
    

OK 
        

334 C Crest 
    

OK 
        

335 ST 
              

336 T Sag 84.24 3569.492 
   

OK OK OK OK 
 

OK NO NO 

337 ST 
              

338 C Crest 494.91 13980.51 
  

OK 
       

NO 

339 ST Crest 
    

OK 
        

340 T Crest 
    

OK 
        

341 ST Crest 
    

OK 
        

342 C Crest 
    

OK 
        

343 ST Crest 
    

OK 
        

344 T Crest 863.46 13904.35 
  

NO 
      

NO 
 

345 ST Crest 
             

346 C Crest 
             

347 ST Crest 
             

348 T Crest 
             

349 ST Crest 
             

350 C Crest 
             

351 ST Sag 136.89 5519.758 
   

NO OK OK OK 
 

OK NO NO 

352 T Sag 
             

353 ST Sag 
             

354 C 
              

355 ST 
              

356 T 
              

357 ST Crest 473.85 20424.57 
  

NO 
       

NO 

358 C Crest 
             

359 ST Crest 
             

360 C 
              

361 ST 
              

362 C 
              

363 ST 
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364 T 
              

365 ST 
              

366 C 
              

367 ST 
              

368 C 
              

369 ST 
              

370 C Crest 42.12 38290.91 
  

NO 
        

371 ST 
              

372 T 
              

373 ST 
              

374 C 
              

375 ST 
              

376 T 
              

377 ST 
              

378 C Sag 294.84 10345.26 
   

OK NO NO OK 
 

OK 
 

NO 

379 ST Sag 
             

380 T Sag 
             

381 ST 
              

382 C Crest 294.84 11001.49 
  

NO 
      

NO NO 

383 ST Crest 
             

384 T Crest 
             

385 ST 
              

386 C 
              

387 ST 
              

388 T 
              

389 ST 
              

390 C 
              

391 ST 
              

392 T 
              

393 C 
              

394 T 
              

395 ST Sag 494.91 5761.467 
   

OK NO OK 
  

OK NO 
 

396 C Sag 
             

397 ST Sag 
             

398 T Sag 
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Table 16 shows the total combination of horizontal-vertical design criteria not satisfied for 

each road element type. 

 

Table 16 – Overview of horizontal vertical alignment Design Control not satisfied 

N. 

Road 

Element 

Type 

N. Horizontal 

Design 

Criteria not 

satisfied 

Combination 

Horizontal 

Design 

Criteria not 

satisfied 

N. Vertical 

Design 

Criteria not 

satisfied 

Combination 

Vertical 

Design 

Criteria not 

satisfied 

N. 

Horizontal/ 

Vertical 

Design 

Criteria not 

satisfied 

Combination 

Horizontal/ 

Vertical Design 

Criteria not 

satisfied 

1 T 
    

0 
 

2 C 
    

0 
 

3 T 0 
 

1 11a 1 11a 

4 ST 
    

0 
 

5 C 
    

0 
 

6 ST 
    

0 
 

7 T 
    

0 
 

8 ST 
    

0 
 

9 C 
    

0 
 

10 ST 0 
 

2 1011a 2 1011a 

11 T 
    

0 
 

12 ST 
    

0 
 

13 C 
    

0 
 

14 ST 
    

0 
 

15 T 
    

0 
 

16 C 
    

0 
 

17 T 
    

0 
 

18 C 0 
 

2 1011a 2 1011a 

19 T 
    

0 
 

20 ST 
    

0 
 

21 C 0 
 

1 11a 1 11a 

22 ST 1 1p 5 456711a 6 1p456711a 

23 T 
    

0 
 

24 C 
    

0 
 

25 T 0 
 

3 31011a 3 31011a 

26 ST 
    

0 
 

27 C 0 
 

1 10a 1 10a 

28 ST 
    

0 
 

29 T 
    

0 
 

30 C 
    

0 
 

31 T 
    

0 
 

32 C 
    

0 
 

33 T 0 
 

0 
 

0 
 

34 ST 
    

0 
 

35 C 1 1p 3 457a 4 1p457a 

36 ST 
    

0 
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37 T 
    

0 
 

38 ST 
    

0 
 

39 C 
    

0 
 

40 ST 
    

0 
 

41 T 
    

0 
 

42 ST 
    

0 
 

43 C 
    

0 
 

44 ST 0 
 

3 569a 3 569a 

45 T 
    

0 
 

46 C 
    

0 
 

47 T 
    

0 
 

48 ST 
    

0 
 

49 C 
    

0 
 

50 ST 0 
 

1 9a 1 9a 

51 C 
    

0 
 

52 ST 
    

0 
 

53 C 
    

0 
 

54 ST 
    

0 
 

55 T 1 1p 1 3a 2 1p3a 

56 ST 
    

0 
 

57 C 
    

0 
 

58 ST 
    

0 
 

59 T 
    

0 
 

60 ST 
    

0 
 

61 C 
    

0 
 

62 ST 0 
 

1 3a 1 3a 

63 T 
    

0 
 

64 ST 
    

0 
 

65 C 0 
 

2 310a 2 310a 

66 ST 
    

0 
 

67 T 
    

0 
 

68 C 
    

0 
 

69 T 
    

0 
 

70 ST 
    

0 
 

71 C 
    

0 
 

72 ST 
    

0 
 

73 T 1 1p 3 4910a 4 1p4910a 

74 C 
    

0 
 

75 T 
    

0 
 

76 ST 
    

0 
 

77 C 
    

0 
 

78 ST 
    

0 
 

79 T 0 
 

0 
 

0 
 

80 ST 
    

0 
 

81 C 
    

0 
 

82 ST 
    

0 
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83 C 0 
 

2 39a 2 39a 

84 ST 
    

0 
 

85 T 
    

0 
 

86 ST 
    

0 
 

87 C 0 
 

2 310a 2 310a 

88 ST 
    

0 
 

89 C 0 
 

2 910a 2 910a 

90 ST 
    

0 
 

91 T 
    

0 
 

92 C 1 1p 2 59a 3 1p59a 

93 T 
    

0 
 

94 ST 
    

0 
 

95 C 
    

0 
 

96 CC 
    

0 
 

97 C 0 
 

2 39a 2 39a 

98 ST 
    

0 
 

99 C 
    

0 
 

100 ST 
    

0 
 

101 C 
    

0 
 

102 ST 1 8p 2 49a 3 8p49a 

103 C 
    

0 
 

104 ST 
    

0 
 

105 T 0 
 

2 911a 2 911a 

106 ST 
    

0 
 

107 C 
    

0 
 

108 ST 
    

0 
 

109 T 
    

0 
 

110 ST 
    

0 
 

111 C 0 
 

3 31011a 3 31011a 

112 ST 
    

0 
 

113 T 
    

0 
 

114 ST 
    

0 
 

115 C 0 
 

2 910a 2 910a 

116 CC 
    

0 
 

117 C 
    

0 
 

118 ST 
    

0 
 

119 T 
    

0 
 

120 ST 
    

0 
 

121 C 0 
 

1 9a 1 9a 

122 ST 
    

0 
 

123 T 
    

0 
 

124 ST 
    

0 
 

125 C 0 
 

1 11a 1 11a 

126 ST 
    

0 
 

127 T 
    

0 
 

128 ST 
    

0 
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129 C 0 
 

1 11a 1 11a 

130 ST 0 
 

1 11a 1 11a 

131 T 
    

0 
 

132 ST 0 
 

3 31011a 3 31011a 

133 C 
    

0 
 

134 ST 1 1p 1 10a 2 1p10a 

135 T 
    

0 
 

136 ST 
    

0 
 

137 C 
    

0 
 

138 ST 
    

0 
 

139 T 1 1p 1 9a 2 1p9a 

140 ST 
    

0 
 

141 C 
    

0 
 

142 ST 
    

0 
 

143 T 
    

0 
 

144 C 
    

0 
 

145 T 
    

0 
 

146 ST 0 
 

3 457a 3 457a 

147 C 
    

0 
 

148 ST 
    

0 
 

149 T 
    

0 
 

150 ST 
    

0 
 

151 C 
    

0 
 

152 ST 
    

0 
 

153 C 
    

0 
 

154 ST 
    

0 
 

155 C 
    

0 
 

156 ST 
    

0 
 

157 C 
    

0 
 

158 ST 
    

0 
 

159 T 
    

0 
 

160 ST 
    

0 
 

161 C 
    

0 
 

162 ST 
    

0 
 

163 T 
    

0 
 

164 ST 0 
 

1 3a 1 3a 

165 C 
    

0 
 

166 ST 
    

0 
 

167 T 
    

0 
 

168 ST 0 
 

1 11a 1 11a 

169 C 
    

0 
 

170 ST 
    

0 
 

171 T 
    

0 
 

172 ST 
    

0 
 

173 C 
    

0 
 

174 ST 2 16p 1 11a 3 16p11a 



95 

 

175 T 
    

0 
 

176 ST 0 
 

1 4a 1 4a 

177 C 
    

0 
 

178 ST 0 
 

2 310a 2 310a 

179 T 0 
 

3 41011a 3 41011a 

180 ST 
    

0 
 

181 C 0 
 

2 1011a 2 1011a 

182 ST 0 
 

5 4581011a 5 4581011a 

183 C 
    

0 
 

184 ST 
    

0 
 

185 C 
    

0 
 

186 ST 2 48p 2 311a 4 48p311a 

187 C 
    

0 
 

188 ST 
    

0 
 

189 T 
    

0 
 

190 ST 
    

0 
 

191 C 0 
 

2 310a 2 310a 

192 ST 
    

0 
 

193 T 
    

0 
 

194 ST 
    

0 
 

195 C 0 
 

2 1011a 2 1011a 

196 ST 1 1p 2 1011a 3 1p1011a 

197 T 
    

0 
 

198 ST 
    

0 
 

199 C 0 
 

3 5610a 3 5610a 

200 ST 
    

0 
 

201 T 
    

0 
 

202 ST 1 6p 0 
 

1 6p 

203 C 
    

0 
 

204 ST 
    

0 
 

205 T 
    

0 
 

206 ST 
    

0 
 

207 C 
    

0 
 

208 ST 
    

0 
 

209 T 
    

0 
 

210 ST 
    

0 
 

211 C 
    

0 
 

212 ST 
    

0 
 

213 T 0 
 

2 39a 2 39a 

214 ST 0 
 

2 49a 2 49a 

215 C 
    

0 
 

216 ST 1 1p 2 39a 3 1p39a 

217 T 
    

0 
 

218 ST 
    

0 
 

219 C 
    

0 
 

220 ST 0 
 

0 
 

0 
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221 T 
    

0 
 

222 ST 0 
 

2 310a 2 310a 

223 C 
    

0 
 

224 ST 
    

0 
 

225 T 
    

0 
 

226 ST 
    

0 
 

227 C 
    

0 
 

228 ST 1 1p 4 45610a 5 1p45610a 

229 T 
    

0 
 

230 ST 
    

0 
 

231 C 
    

0 
 

232 ST 
    

0 
 

233 T 0 
 

1 11a 1 11a 

234 ST 
    

0 
 

235 C 1 1p 2 311a 3 1p311a 

236 ST 
    

0 
 

237 T 
    

0 
 

238 ST 
    

0 
 

239 C 
    

0 
 

240 ST 
    

0 
 

241 T 
    

0 
 

242 ST 
    

0 
 

243 C 1 7p 4 45611a 5 7p45611a 

244 CC 
    

0 
 

245 C 
    

0 
 

246 ST 
    

0 
 

247 T 
    

0 
 

248 ST 0 
 

3 31011a 3 31011a 

249 C 
    

0 
 

250 ST 
    

0 
 

251 T 
    

0 
 

252 ST 0 
 

3 41011a 3 41011a 

253 C 
    

0 
 

254 ST 2 14p 2 1011a 4 14p1011a 

255 T 
    

0 
 

256 ST 
    

0 
 

257 C 
    

0 
 

258 ST 
    

0 
 

259 T 
    

0 
 

260 ST 
    

0 
 

261 C 
    

0 
 

262 ST 
    

0 
 

263 C 
    

0 
 

264 ST 
    

0 
 

265 C 
    

0 
 

266 ST 1 8p 5 4781011a 6 8p4781011a 
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267 C 
    

0 
 

268 ST 
    

0 
 

269 T 
    

0 
 

270 ST 
    

0 
 

271 C 
    

0 
 

272 ST 
    

0 
 

273 T 3 148p 2 1011a 5 148p1011a 

274 ST 
    

0 
 

275 C 
    

0 
 

276 ST 
    

0 
 

277 C 
    

0 
 

278 ST 
    

0 
 

279 T 
    

0 
 

280 ST 
    

0 
 

281 C 
    

0 
 

282 ST 
    

0 
 

283 T 
    

0 
 

284 ST 
    

0 
 

285 C 
    

0 
 

286 ST 
    

0 
 

287 C 
    

0 
 

288 ST 
    

0 
 

289 T 0 
 

2 510a 2 510a 

290 ST 
    

0 
 

291 C 
    

0 
 

292 ST 1 8p 2 39a 3 8p39a 

293 C 
    

0 
 

294 ST 
    

0 
 

295 C 
    

0 
 

296 ST 
    

0 
 

297 C 
    

0 
 

298 ST 
    

0 
 

299 T 
    

0 
 

300 ST 1 6p 2 45a 3 6p45a 

301 C 
    

0 
 

302 CC 
    

0 
 

303 C 
    

0 
 

304 ST 
    

0 
 

305 C 
    

0 
 

306 ST 
    

0 
 

307 C 0 
 

2 511a 2 511a 

308 ST 
    

0 
 

309 T 
    

0 
 

310 ST 
    

0 
 

311 C 
    

0 
 

312 ST 
    

0 
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313 T 
    

0 
 

314 T 
    

0 
 

315 ST 
    

0 
 

316 C 
    

0 
 

317 ST 
    

0 
 

318 T 
    

0 
 

319 ST 
    

0 
 

320 C 0 
 

3 31011a 3 31011a 

321 ST 
    

0 
 

322 T 
    

0 
 

323 ST 
    

0 
 

324 C 
    

0 
 

325 ST 1 8p 5 4581011a 6 8p4581011a 

326 C 
    

0 
 

327 ST 
    

0 
 

328 T 
    

0 
 

329 ST 
    

0 
 

330 C 
    

0 
 

331 ST 
    

0 
 

332 T 1 4p 2 1011a 3 4p1011a 

333 ST 
    

0 
 

334 C 
    

0 
 

335 ST 
    

0 
 

336 T 1 4p 2 1011a 3 4p1011a 

337 ST 
    

0 
 

338 C 2 16p 1 11a 3 16p11a 

339 ST 
    

0 
 

340 T 
    

0 
 

341 ST 
    

0 
 

342 C 
    

0 
 

343 ST 
    

0 
 

344 T 2 14p 2 310a 4 14p310a 

345 ST 
    

0 
 

346 C 
    

0 
 

347 ST 
    

0 
 

348 T 
    

0 
 

349 ST 
    

0 
 

350 C 
    

0 
 

351 ST 1 1p 3 41011a 4 1p41011a 

352 T 
    

0 
 

353 ST 
    

0 
 

354 C 
    

0 
 

355 ST 
    

0 
 

356 T 
    

0 
 

357 ST 0 
 

2 311a 2 311a 

358 C 
    

0 
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359 ST 
    

0 
 

360 C 
    

0 
 

361 ST 
    

0 
 

362 C 
    

0 
 

363 ST 
    

0 
 

364 T 
    

0 
 

365 ST 
    

0 
 

366 C 
    

0 
 

367 ST 
    

0 
 

368 C 
    

0 
 

369 ST 
    

0 
 

370 C 0 
 

2 39a 2 39a 

371 ST 
    

0 
 

372 T 
    

0 
 

373 ST 
    

0 
 

374 C 
    

0 
 

375 ST 
    

0 
 

376 T 
    

0 
 

377 ST 
    

0 
 

378 C 0 
 

3 5611a 3 5611a 

379 ST 
    

0 
 

380 T 
    

0 
 

381 ST 
    

0 
 

382 C 1 1p 3 31011a 4 1p31011a 

383 ST 
    

0 
 

384 T 
    

0 
 

385 ST 
    

0 
 

386 C 
    

0 
 

387 ST 
    

0 
 

388 T 
    

0 
 

389 ST 
    

0 
 

390 C 
    

0 
 

391 ST 
    

0 
 

392 T 
    

0 
 

393 C 
    

0 
 

394 T 
    

0 
 

395 ST 1 1p 2 510a 3 1p510a 

396 C 
    

0 
 

397 ST 
    

0 
 

398 T 
    

0 
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Table 17 shows the combination type of horizontal-vertical design criteria not satisfied with 

the indication of the size and the percentage 

 

Table 17 – Overview of horizontal vertical alignment design criteria not satisfied on the total length road 

 N. Combination Horizontal/ 

Vertical Design Criteria not satisfied 

  

 1 % 2 % 3 % 4 % 5 % 6 % Tot N. 

Combination 

Horizontal/ 

Vertical 

Design 

Criteria not 

satisfied 

1011a   0.0% 17 8.1%   0.0%   0.0%   0.0%   0.0% 17 

10a 4 1.9%   0.0%   0.0%   0.0%   0.0%   0.0% 4 

11a 11 5.2%   0.0%   0.0%   0.0%   0.0%   0.0% 11 

11p 2 1.0%   0.0%   0.0%   0.0%   0.0%   0.0% 2 

1p 23 10.9%   0.0%   0.0%   0.0%   0.0%   0.0% 23 

1p1011a   0.0%   0.0% 3 1.4%   0.0%   0.0%   0.0% 3 

1p10a   0.0% 1 0.5%   0.0%   0.0%   0.0%   0.0% 1 

1p31011a   0.0%   0.0%   0.0% 1 0.5%   0.0%   0.0% 1 

1p3a   0.0% 1 0.5%   0.0%   0.0%   0.0%   0.0% 1 

1p41011a   0.0%   0.0%   0.0% 1 0.5%   0.0%   0.0% 1 

1p45610a   0.0%   0.0%   0.0%   0.0% 1 0.5%   0.0% 1 

1p456711a   0.0%   0.0%   0.0%   0.0%   0.0% 1 0.5% 1 

1p457a   0.0%   0.0%   0.0% 1 0.5%   0.0%   0.0% 1 

1p4910a   0.0%   0.0%   0.0% 1 0.5%   0.0%   0.0% 1 

1p510a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

1p59a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

1p9a   0.0% 1 0.5%   0.0%   0.0%   0.0%   0.0% 1 

31011a   0.0%   0.0% 11 5.2%   0.0%   0.0%   0.0% 11 

310a   0.0% 16 7.6%   0.0%   0.0%   0.0%   0.0% 16 

311a   0.0% 10 4.7%   0.0%   0.0%   0.0%   0.0% 10 

39a   0.0% 7 3.3%   0.0%   0.0%   0.0%   0.0% 7 

3a 6 2.8%   0.0%   0.0%   0.0%   0.0%   0.0% 6 

41011a   0.0%   0.0% 6 2.8%   0.0%   0.0%   0.0% 6 

457a   0.0%   0.0% 5 2.4%   0.0%   0.0%   0.0% 5 

4581011a   0.0%   0.0%   0.0%   0.0% 1 0.5%   0.0% 1 

49a   0.0% 2 1.0%   0.0%   0.0%   0.0%   0.0% 2 

4a 2 1.0%   0.0%   0.0%   0.0%   0.0%   0.0% 2 

4p 1 0.5%   0.0%   0.0%   0.0%   0.0%   0.0% 1 

4p1011a   0.0%   0.0% 4 1.9%   0.0%   0.0%   0.0% 4 

510a   0.0% 4 1.9%   0.0%   0.0%   0.0%   0.0% 4 

511a   0.0% 3 1.4%   0.0%   0.0%   0.0%   0.0% 3 

5610a   0.0%   0.0% 3 1.4%   0.0%   0.0%   0.0% 3 
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5611a   0.0%   0.0% 3 1.4%   0.0%   0.0%   0.0% 3 

569a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

6p 6 2.8%   0.0%   0.0%   0.0%   0.0%   0.0% 6 

6p45a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

7p 3 1.4%   0.0%   0.0%   0.0%   0.0%   0.0% 3 

7p45611a   0.0%   0.0%   0.0%   0.0% 1 0.5%   0.0% 1 

813p   0.0% 1 0.5%   0.0%   0.0%   0.0%   0.0% 1 

8p 9 4.3%   0.0%   0.0%   0.0%   0.0%   0.0% 9 

8p39a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

8p4581011a   0.0%   0.0%   0.0%   0.0%   0.0% 1 0.5% 1 

8p4781011a   0.0%   0.0%   0.0%   0.0%   0.0% 1 0.5% 1 

8p49a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

910a   0.0% 2 1.0%   0.0%   0.0%   0.0%   0.0% 2 

911a   0.0% 1 0.5%   0.0%   0.0%   0.0%   0.0% 1 

9a 3 1.4%   0.0%   0.0%   0.0%   0.0%   0.0% 3 

456711a   0.0%   0.0%   0.0%   0.0% 1 0.5%   0.0% 1 

59a   0.0% 1 0.5%   0.0%   0.0%   0.0%   0.0% 1 

1p11a   0.0% 2 1.0%   0.0%   0.0%   0.0%   0.0% 2 

8p311a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

4p311a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

45610a   0.0%   0.0%   0.0% 2 1.0%   0.0%   0.0% 2 

45611a   0.0%   0.0%   0.0% 2 1.0%   0.0%   0.0% 2 

4781011a   0.0%   0.0%   0.0%   0.0% 5 2.4%   0.0% 5 

8p1011a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

45a   0.0% 1 0.5%   0.0%   0.0%   0.0%   0.0% 1 

6p11a   0.0% 3 1.4%   0.0%   0.0%   0.0%   0.0% 3 

4p310a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

1p310a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

1p39a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

1p311a   0.0%   0.0% 1 0.5%   0.0%   0.0%   0.0% 1 

Tot 70   73   48   8   9   3   211 

 

  



102 

 

Figure 34 shows the overall percentage of combination of design criteria control not satisfied. 

In 33% of cases it was observed only one inconsistency on the geometric element, two 

inconsistencies in the 35% of cases and 23% of cases with three inconsistencies. Elements 

with combinations of four, five and six design criteria not satisfied recur rarely along the road. 

 

Figure 34 – Percentage of combination of design criteria not satisfied for each road element  

Table 18 shows the overview of horizontal-vertical design criteria not satisfied with the 

associated number of crashes observed for each road element type. In particular, 211out of a 

total of 398 elements show problems of geometric inconsistency or horizontal and vertical 

alignment misalignment. 

Table 18 – Overview of horizontal vertical alignment design criteria with crashes for each road element 

N.  

Road 

Element 

Combination 

Horizontal/ 

Vertical Design Criteria 

not satisfied 

N. Combination of 

Design Criteria not 

satisfied  

N. crashes 

1 0 0 1 

2 0 0 1 

3 11a 1 5 

4 0 0 1 

5 0 0 0 

6 0 0 0 

7 0 0 1 

8 0 0 1 

9 0 0 0 

10 1011a 2 0 

11 1011a 2 2 

12 0 0 1 

13 0 0 5 

14 0 0 1 

15 0 0 0 
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16 0 0 1 

17 0 0 1 

18 1011a 2 0 

19 0 0 5 

20 0 0 3 

21 11a 1 3 

22 456711a 5 0 

23 1p456711a 6 0 

24 0 0 3 

25 31011a 3 3 

26 31011a 3 0 

27 10a 1 1 

28 10a 1 1 

29 0 0 4 

30 0 0 1 

31 1p 1 0 

32 0 0 0 

33 0 0 2 

34 0 0 0 

35 457a 3 8 

36 457a 3 1 

37 1p457a 4 1 

38 457a 3 2 

39 0 0 3 

40 0 0 0 

41 1p 1 1 

42 0 0 1 

43 0 0 1 

44 569a 3 3 

45 0 0 1 

46 0 0 0 

47 1p 1 0 

48 0 0 0 

49 0 0 0 

50 9a 1 3 

51 0 0 1 

52 0 0 0 

53 0 0 1 

54 0 0 0 

55 1p3a 2 0 

56 3a 1 0 

57 3a 1 0 

58 0 0 0 

59 0 0 7 

60 0 0 0 

61 0 0 1 
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62 3a 1 0 

63 3a 1 1 

64 0 0 1 

65 310a 2 0 

66 310a 2 1 

67 0 0 0 

68 0 0 3 

69 0 0 0 

70 0 0 0 

71 0 0 1 

72 0 0 2 

73 1p4910a 4 0 

74 0 0 0 

75 1p 1 0 

76 0 0 0 

77 0 0 2 

78 0 0 1 

79 0 0 8 

80 0 0 0 

81 0 0 0 

82 8p 1 0 

83 39a 2 0 

84 0 0 0 

85 0 0 0 

86 0 0 0 

87 310a 2 1 

88 8p 1 0 

89 910a 2 0 

90 0 0 0 

91 0 0 1 

92 59a 2 3 

93 1p59a 3 0 

94 6p 1 0 

95 0 0 0 

96 7p 1 0 

97 39a 2 0 

98 8p 1 1 

99 0 0 0 

100 8p 1 1 

101 0 0 0 

102 8p49a 3 1 

103 0 0 2 

104 0 0 0 

105 911a 2 3 

106 0 0 0 

107 0 0 0 
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108 0 0 0 

109 1p 1 0 

110 0 0 3 

111 31011a 3 0 

112 0 0 0 

113 0 0 0 

114 0 0 3 

115 910a 2 2 

116 7p 1 0 

117 0 0 1 

118 0 0 0 

119 0 0 0 

120 0 0 0 

121 9a 1 1 

122 0 0 1 

123 0 0 3 

124 0 0 0 

125 11a 1 1 

126 0 0 1 

127 1p 1 0 

128 0 0 0 

129 11a 1 1 

130 11a 1 0 

131 11a 1 3 

132 31011a 3 1 

133 31011a 3 1 

134 10a 1 1 

135 1p10a 2 0 

136 10a 1 1 

137 0 0 0 

138 0 0 1 

139 1p9a 2 1 

140 9a 1 2 

141 0 0 1 

142 0 0 7 

143 1p 1 1 

144 0 0 5 

145 1p 1 0 

146 457a 3 1 

147 457a 3 1 

148 0 0 0 

149 1p 1 0 

150 0 0 0 

151 0 0 0 

152 0 0 0 

153 0 0 0 
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154 8p 1 4 

155 0 0 1 

156 0 0 6 

157 0 0 1 

158 0 0 5 

159 1p 1 0 

160 0 0 4 

161 0 0 2 

162 0 0 0 

163 0 0 0 

164 3a 1 0 

165 3a 1 2 

166 0 0 4 

167 0 0 8 

168 11a 1 1 

169 0 0 1 

170 0 0 10 

171 0 0 3 

172 6p 1 2 

173 0 0 16 

174 6p11a 2 7 

175 1p11a 2 6 

176 4a 1 8 

177 4a 1 3 

178 310a 2 1 

179 41011a 3 0 

180 41011a 3 0 

181 1011a 2 0 

182 4581011a 5 2 

183 0 0 1 

184 8p 1 0 

185 0 0 0 

186 8p311a 3 0 

187 311a 2 0 

188 311a 2 0 

189 4p311a 3 1 

190 0 0 0 

191 310a 2 2 

192 310a 0 0 

193 1p 1 0 

194 0 0 1 

195 1011a 2 0 

196 1011a 2 10 

197 1p1011a 3 0 

198 1011a 2 3 

199 5610a 3 1 
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200 5610a 3 0 

201 5610a 3 0 

202 6p 1 0 

203 0 0 0 

204 6p 1 0 

205 1p 1 0 

206 0 0 0 

207 0 0 0 

208 0 0 0 

209 1p 1 0 

210 0 0 0 

211 0 0 0 

212 0 0 0 

213 39a 2 4 

214 49a 2 0 

215 49a 2 1 

216 39a 2 0 

217 1p39a 3 0 

218 0 0 1 

219 0 0 2 

220 0 0 4 

221 0 0 8 

222 310a 2 0 

223 310a 2 0 

224 310a 2 1 

225 310a 2 0 

226 310a 2 0 

227 0 0 0 

228 45610a 4 0 

229 1p45610a 5 0 

230 45610a 4 0 

231 0 0 0 

232 0 0 0 

233 11a 1 1 

234 0 0 1 

235 311a 2 0 

236 311a 2 0 

237 1p311a 3 0 

238 311a 2 0 

239 311a 2 0 

240 311a 2 0 

241 1p 1 0 

242 6p 1 0 

243 45611a 4 0 

244 7p45611a 5 0 

245 45611a 4 1 
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246 0 0 0 

247 0 0 0 

248 31011a 3 0 

249 31011a 3 0 

250 31011a 3 0 

251 1p 1 0 

252 41011a 3 0 

253 41011a 3 0 

254 1011a 2 0 

255 1p1011a 3 0 

256 1011a 2 0 

257 1011a 2 0 

258 1011a 2 0 

259 4p1011a 3 0 

260 0 0 1 

261 0 0 0 

262 11p 1 0 

263 0 0 0 

264 0 0 0 

265 0 0 0 

266 8p4781011a 6 0 

267 4781011a 5 0 

268 4781011a 5 0 

269 4781011a 5 0 

270 4781011a 5 0 

271 4781011a 5 0 

272 0 0 0 

273 1p1011a 3 0 

274 1011a 2 0 

275 1011a 2 0 

276 8p1011a 3 0 

277 1011a 2 0 

278 1011a 2 0 

279 4p1011a 3 1 

280 0 0 0 

281 0 0 1 

282 0 0 0 

283 0 0 0 

284 0 0 0 

285 0 0 0 

286 8p 1 0 

287 0 0 0 

288 0 0 0 

289 510a 2 0 

290 0 0 0 

291 0 0 0 
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292 8p39a 3 0 

293 39a 2 0 

294 39a 2 0 

295 0 0 0 

296 8p 1 0 

297 0 0 0 

298 0 0 0 

299 1p 1 0 

300 6p45a 3 0 

301 45a 2 1 

302 7p 1 0 

303 0 0 0 

304 0 0 0 

305 0 0 0 

306 8p 1 0 

307 511a 2 0 

308 511a 2 0 

309 511a 2 0 

310 0 0 0 

311 0 0 1 

312 0 0 0 

313 0 0 0 

314 0 0 0 

315 0 0 0 

316 0 0 0 

317 0 0 0 

318 1p 1 0 

319 0 0 0 

320 31011a 3 5 

321 0 0 3 

322 1p 1 0 

323 0 0 0 

324 0 0 0 

325 8p4581011a 6 0 

326 0 0 0 

327 0 0 1 

328 4p 1 1 

329 0 0 0 

330 0 0 0 

331 0 0 3 

332 4p1011a 3 0 

333 1011a 2 0 

334 1011a 2 0 

335 0 0 0 

336 4p1011a 3 0 

337 0 0 1 
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338 11a 1 0 

339 11a 1 0 

340 1p11a 2 0 

341 6p11a 2 0 

342 11a 1 0 

343 6p11a 2 0 

344 4p310a 3 0 

345 310a 2 0 

346 310a 2 0 

347 310a 2 0 

348 1p310a 3 0 

349 310a 2 0 

350 310a 2 0 

351 41011a 3 3 

352 1p41011a 4 0 

353 41011a 3 1 

354 0 0 0 

355 0 0 0 

356 0 0 1 

357 311a 2 0 

358 311a 2 0 

359 311a 2 0 

360 0 0 0 

361 11p 1 0 

362 0 0 0 

363 0 0 0 

364 1p 1 0 

365 0 0 0 

366 0 0 0 

367 0 0 1 

368 0 0 1 

369 813p 2 0 

370 39a 2 0 

371 6p 1 0 

372 0 0 0 

373 0 0 0 

374 0 0 1 

375 0 0 6 

376 1p 1 0 

377 0 0 0 

378 5611a 3 0 

379 5611a 3 0 

380 5611a 3 0 

381 0 0 4 

382 31011a 3 0 

383 31011a 3 1 



111 

 

384 1p31011a 4 1 

385 0 0 0 

386 0 0 1 

387 0 0 0 

388 1p 1 0 

389 0 0 0 

390  0 0 

391  0 0 

392  1 0 

393  0 4 

394  1 1 

395  2 0 

396  2 0 

397  2 0 

398  3 0 

 Total 344 

Table 18 shows the overview of horizontal-vertical design criteria not satisfied with the 

associated number of crashes observed for each road element type. In particular, 211out of a 

total of 398 elements show problems of geometric inconsistency or horizontal and vertical 

alignment misalignment. 

With the use of pivot tables, were valued all the possible combinations of design criteria 

control not satisfied, the size and the corresponding number of crashes observed. (See Table 

19). 

Table 19 – Overview of horizontal vertical alignment design criteria not satisfied with crashes 

Horizontal/ 

Vertical Design 

Criteria not 

satisfied 

1 2 3 4 5 6 7 8 10 N. crashes 

1011a 
 

1 1 
     

1 3 

10a 4 
        

4 

11a 4 
 

2 
 

1 
    

7 

1p 3 
        

3 

1p31011a 1 
        

1 

1p457a 1 
        

1 

1p9a 1 
        

1 

31011a 3 
 

1 
 

1 
    

5 

310a 4 1 
       

5 

39a 
   

1 
     

1 

3a 1 1 
       

2 

41011a 1 
 

1 
      

2 

457a 3 1 
     

1 
 

5 

4581011a 
 

1 
       

1 

49a 1 
        

1 

4a 
  

1 
    

1 
 

2 
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4p 1 
        

1 

4p1011a 1 
        

1 

5610a 1 
        

1 

569a 
  

1 
      

1 

6p 
 

1 
       

1 

8p 2 
  

1 
     

3 

8p49a 1 
        

1 

910a 
 

1 
       

1 

911a 
  

1 
      

1 

9a 1 1 1 
      

3 

59a 
  

1 
      

1 

1p11a 
     

1 
   

1 

4p311a 1 
        

1 

45611a 1 
        

1 

45a 1 
        

1 

6p11a 
      

1 
  

1 

           

Total 37 16 30 8 10 6 7 16 10 140 

 

The combination 1011a was observed 17 times along the road, but only in three cases were 

observed crashes. Also, in presence of a single combination, the number of observed crashes 

varies by a minimum of one crash to a maximum of ten crashes.. 

Table 20 shows a summary of the results of the two previously tables, with the indication for 

each combination of design criteria not satisfied, the total size along the road, the frequency 

out of the total of the combinations and the number of times with observed crashes. 

Table 20 – Overview of horizontal vertical alignment design criteria not satisfied with crashes 

Combination 

Horizontal/ 

Vertical Design 

Criteria not 

satisfied 

N. combination not 

satisfied 

%. Combination of 

design criteria not 

satisfied on the total 

of the design criteria  

N. case with 

combination 

not satisfied 

with crashes  

1011a 17 8.06% 3 

10a 4 1.90% 4 

11a 11 5.21% 7 

11p 2 0.95% 0 

1p 23 10.90% 3 

1p1011a 3 1.42% 0 

1p10a 1 0.47% 0 

1p11a 2 0.95% 1 

1p31011a 1 0.47% 1 

1p310a 1 0.47% 0 

1p311a 1 0.47% 0 
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Combination 

Horizontal/ 

Vertical Design 

Criteria not 

satisfied 

N. combination not 

satisfied 

%. Combination of 

design criteria not 

satisfied on the total 

of the design criteria  

N. case with 

combination 

not satisfied 

with crashes  

1p39a 1 0.47% 0 

1p3a 1 0.47% 0 

1p41011a 1 0.47% 0 

1p45610a 1 0.47% 0 

1p456711a 1 0.47% 0 

1p457a 1 0.47% 1 

1p4910a 1 0.47% 0 

1p510a 1 0.47% 0 

1p59a 1 0.47% 0 

1p9a 1 0.47% 1 

31011a 11 5.21% 5 

310a 16 7.58% 5 

311a 10 4.74% 0 

39a 7 3.32% 1 

3a 6 2.84% 2 

41011a 6 2.84% 2 

45610a 2 0.95% 0 

45611a 2 0.95% 1 

456711a 1 0.47% 0 

457a 5 2.37% 5 

4581011a 1 0.47% 1 

45a 1 0.47% 1 

4781011a 5 2.37% 0 

49a 2 0.95% 1 

4a 2 0.95% 2 

4p 1 0.47% 1 

4p1011a 4 1.90% 1 

4p310a 1 0.47% 0 

4p311a 1 0.47% 1 

510a 4 1.90% 0 

511a 3 1.42% 0 

5610a 3 1.42% 1 

5611a 3 1.42% 0 

569a 1 0.47% 1 

59a 1 0.47% 1 

6p 6 2.84% 1 

6p11a 3 1.42% 1 
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Combination 

Horizontal/ 

Vertical Design 

Criteria not 

satisfied 

N. combination not 

satisfied 

%. Combination of 

design criteria not 

satisfied on the total 

of the design criteria  

N. case with 

combination 

not satisfied 

with crashes  

6p45a 1 0.47% 0 

7p 3 1.42% 0 

7p45611a 1 0.47% 0 

813p 1 0.47% 0 

8p 9 4.27% 3 

8p1011a 1 0.47% 0 

8p311a 1 0.47% 0 

8p39a 1 0.47% 0 

8p4581011a 1 0.47% 0 

8p4781011a 1 0.47% 0 

8p49a 1 0.47% 1 

910a 2 0.95% 1 

911a 1 0.47% 1 

9a 3 1.42% 3 

 
211 100% 64 

In conclusion, as shows in Table 21, 211 design criteria not satisfied were observed on the 

road, but only in 64 cases were observed crashes. On a total of 344 crashes observed from 

2003-2008, only 140 are associated to design inconsistency. This was confirmed through a 

deep evaluation of the dynamics described in the crash report which confirmed that the 

majority is due to factors related to the geometry of the road, but also to user behavior, 

weather conditions etc., which guarantees the goodness of the analysis performed. 

Table 21 – Overview of horizontal vertical alignment design criteria not satisfied with crashes 

Combination 

Horizontal/ 

Vertical Design Criteria 

not satisfied 

N. Crashes 

N. Case with  

Combination 

Horizontal/Vertical 

Design Criteria not 

satisfied 

N. Crashes with Design 

Criteria not satisfied 

211 344 64 140 
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4. Road Design Consistency Model 
 

4.1 Introduction 

As documented in the literature review section, the traditional principles of road design even 

if they are based on theoretical and analytical observations of general effectiveness, are not 

able to represent the driver behaviour. 

In the scientific community, the procedure mostly used to verify the consistency a road 

course, refers to the three Lamm criteria shown in Table 22. 

Table 22 – Lamm Criteria 

Criteria Good Accettable Poor 

I 

   

II 
  

 

III 
  

 

These criteria don’t give an overall road consistency evaluation of the entire road but refer 

only to two following elements. 

The aim is the formulation of a parameter showing the global consistency that reflects the 

entire operating speed profile. 

Nine homogenous road element, considering the distance between two following interchange, 

were identified  (See Table 23). 

 

Table 23 – Road homogenous element of S.P.430 

 

Road Element 

1° Capaccio - Prignano Km (98-110,915) 

2° Prignano - Cicerale Km ( 110,915-116,170) 

3° Cicerale - Omignano Km (116,170-121,825) 

4° Omignano - Vallo Scalo Km (121,825-126,623) 

5° Vallo Scalo - Vallo Luc. Km (126,623-135,936) 

6° Vallo Luc. - Futani Km (135,936-147,177) 

7° Futani - Poderia Km (147,177-158,283) 

8° Poderia - Roccagloriosa Km (158,283-163,688) 

9° Roccagloriosa - Policastro Km (163,688-170,968) 

 

 

 

 

1018585  VV

1085  PVV

2018585  VV

2085  PVV

2018585  VV

2085  PVV

02.0 trtd ff002.0  trtd ff0 trtd ff



116 

 

4.2 Road consistency model 

The two parameters for the assessment of the road consistency are addressed to define a 

procedure for the calibration of a road consistency model. 

The first step is the plot of operating speed profile for each road element. The final operating 

speed profile does not show, therefore, constant lines by varying the curvature. 

To simplify the procedure and to obtain, by a sensitivity analysis, a simple and effective 

model for evaluate road consistency, it has been estimated the predicted average operating 

speeds for each road element type. 

The first parameter defined as a measure of road consistency is shown symbolically in the 

following Equation with Ra that represents the sum of the area bounded between the profile 

of the operating speeds and the average operating speed (V85_P) on the total length of the 

homogenous road element (L). 

Indicating ai, the area bounded between the profile of the operating speeds (V85i) and the 

average operating speed (V85_P), positive or negative depending if placed above or below the 

average operating speed, as in Figure 35, the first measure of road consistency is given by the 

following equation: 


L

a
R i

a       (14) 

 

Figure 35 – Operating Speed Profile for the generic homogenous road element 

The second parameter of road consistency is the standard deviation of the operating speeds 

along the total road length, as shown in Equation 20. 





n

i

Pi n
VV

1

_8585 )(     (20) 

Where: 

V85i is the predicted operating speed on the i - th road element type (tangent or circular curve) 

in km / h 

n = number of geometric elements along the homogenous road element. 
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Figure 36-44 show the operating speed profile for the nine homogenous road element, 

starting point to calculate the two consistency parameters. 

 

Figure 36 – Operating Speed Profile for the homogenous road element n.1 

 

 

Figure 37 – Operating Speed Profile for the homogenous road element n.2 

 

 

Figure 38 – Operating Speed Profile for the homogenous road element n.3 
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Figure 39 – Operating Speed Profile for the homogenous road element n.4 

 

 

Figure 40 – Operating Speed Profile for the homogenous road element n.5 

 

Figure 41 – Operating Speed Profile for the homogenous road element n.6 

 

Figure 42 – Operating Speed Profile for the homogenous road element n.7 
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Figure 43 – Operating Speed Profile for the homogenous road element n.8 

 

 

Figure 44 – Operating Speed Profile for the homogenous road element n.9 

The peculiarity of these two parameters is to appreciate, a quality of the road consistency, 

without stopping to specific speed differences between following elements. 

The parameters Ra and s were determined on the nine homogeneous road elements identified 

previously as shown in Table 24. 

Table 24 – Overview of Road Element Consistency 

 

Road Element Ra[m/s] s[km/h]  I° Lamm Criteria 

 1 Capaccio - Prignano Km (98-110.915) 0.57 2.30 Good |V85 -Vp| ≤ 10 7.5 

2 Prignano - Cicerale Km ( 110.915-116.170) 0.51 1.85 - - 

3 Cicerale - Omignano Km (116.170-121.825) 0.59 2.43 Good |V85 -Vp| ≤ 10 7.5 

4 Omignano - Vallo Scalo Km (121.825-126.623) 0.48 1.75 - - 

5 Vallo Scalo - Vallo Luc. Km (126.623-135.936) 1.16 5.82 Acceptable | V85 -Vp | ≤ 20 11,5 

6 Vallo Luc. - Futani Km (135.936-147.177) 1.10 5.66 Acceptable | V85 -Vp | ≤ 20 11,0 

7 Futani - Poderia Km (147.177-158.283) 1.09 5.99 - - 

8 Poderia - Roccagloriosa Km (158.283-163.688) 1.02 7.02 Acceptable | V85 -Vp | ≤ 20 12,5 

9 Roccagloriosa - Policastro Km (163.688-170.968) 1.12 6.28 Acceptable | V85 -Vp | ≤ 20 11,7 

 

For each homogenous road element as shown in Table 24, it was evaluate the road 

consistency, with the maximum difference between design speed and operating speed 

observed on the road element by using the I Lamm Criteria shown in Table 22. 
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Table 25 shows the results of the first criterion of Lamm applied to SP 430, where the 

maximum difference between operating speed and design speed was equal to 7.7 km/h, 

adequate for a good road consistency. 

Table 25 – Overview I Lamm Criteria applied onSP430 

N. 

Road 

Element 

Type 

Initial Post 

(Km) 

Final Post 

(Km) 

Length 

Element 
VP V85 

ΔV I° 

Lamm 

Criteria 

Quality 

1 T 98.100 98.381 280.94 100.0 104.3 4.3 GOOD 

20 ST 103.329 103.579 250.568 100.0 98.0 2.0 GOOD 

33 T 106.664 107.067 402.912 100.0 107.5 7.5 GOOD 

102 ST 120.392 120.716 323.334 100.0 107.5 7.5 GOOD 

131 T 126.623 126.902 278.195 100.0 95.0 5.0 GOOD 

133 C 127.155 127.506 351.44 100.0 99.5 0.5 GOOD 

134 ST 127.506 127.759 253.125 100.0 106.5 6.5 GOOD 

141 C 128.677 128.875 198.446 100.0 103.0 3.0 GOOD 

144 C 129.106 129.906 800 100.0 107.5 7.5 GOOD 

160 ST 131.679 131.779 100 98.3 102.0 3.7 GOOD 

165 C 132.377 132.675 297.223 100.0 101.0 1.0 GOOD 

169 C 133.761 134.184 422.502 100.0 105.0 5.0 GOOD 

171 T 134.695 134.878 182.936 100.0 100.0 0.0 GOOD 

177 C 136.241 136.574 332.564 91.5 91.0 0.5 GOOD 

182 ST 137.364 137.588 223.818 92.5 90.0 2.5 GOOD 

213 T 141.825 142.392 566.426 100.0 107.0 7.0 GOOD 

321 ST 159.445 159.634 189.063 98.3 100.0 1.7 GOOD 

328 T 160.272 160.797 525.322 100.0 97.5 2.5 GOOD 

367 ST 166.850 167.024 173.816 95.8 103.5 7.7 GOOD 

374 C 167.946 168.067 120.928 100.0 98.5 1.5 GOOD 

 

Table 23 shows that in the presence of good consistency evaluated with I Lamm Criteria, Ra 

[m / s] <1 and s [km / h] <5 km / h. 

In according to this result, it was set for a good road consistency evaluation, a range of value 

limits (Ra; s), with Ra [m / s] <1 s [km / h] <5 km / h, as found in the scientific literature. 

Road consistency was evaluated acceptable when 1 <Ra [m / s] <2 and 5 <s [km / h] <10 

and poor when Ra [m / s] >2 and s [km / h] >10. 

Table 26 illustrates the thresholds of value (Ra; s) to define good, acceptable and poor road 

consistency. 

Table 26 – Design Consistency Quality thresholds 

GOOD ACCETTABLE POOR 

Ra<1 1<Ra<2 Ra>2 

s < 5 5< s < 10 s>10 

C>2 1<C<2 C< 1 
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Table 27 compares the two road consistency evaluation, the first defined according to the 

Lamm criteria, the second by using the innovative procedure that, through the evaluation of 

parameters such as Ra and s, reflects the operating speed profile on the total homogenous 

road element by defines a measure of the overall consistency in according to the thresholds 

(Ra; s). 

Table 27 – Design Consistency Quality thresholds for the homogenous road element 

 
Road Element Ra[m/s] s[km/h] 

 
I Lamm Criteria ° 

 
1° Capaccio - Prignano Km (98-110,915) 0.57 2.3 C>2 Good |V85 -Vp| ≤ 10 7,5 

2° Prignano - Cicerale Km ( 110,915-116,170) 0.51 1.85 C>2 - - 

3° Cicerale - Omignano Km (116,170-121,825) 0.59 2.43 C>2 Good | V85 -Vp | ≤ 10 7,5 

4° Omignano - Vallo Scalo Km (121,825-126,623) 0.48 1.75 C>2 - - 

5° Vallo Scalo - Vallo Luc. Km (126,623-135,936) 1.16 5.82 1<C<2 Acceptable | V85 -Vp | ≤ 20 11,5 

6° Vallo Luc. - Futani Km (135,936-147,177) 1.1 5.66 1<C<2 Acceptable | V85 -Vp | ≤ 20 11,0 

7° Futani - Poderia Km (147,177-158,283) 1.09 5.99 1<C<2 - - 

8° Poderia - Roccagloriosa Km (158,283-163,688) 1.02 7.02 1<C<2 Acceptable | V85 -Vp | ≤ 20 12,5 

9° Roccagloriosa - Policastro Km (163,688-170,968) 1.12 6.28 1<C<2 Acceptable | V85 -Vp | ≤ 20 11,7 

The road consistency model assume the following functional form: 

)]6,3([ 
 aRB
eAC     (21) 

Where 

C = Road Consistency for undivided rural roads 

A and B = coefficients of the predictive model 

The calibration of the model can only be implemented starting from the known values of 

Consistency for each homogenous road element analyzed, by defining the values of A and B 

through a sensitivity analysis. 

In scientific community there are numerous research where specific thresholds of value 

assigned to the dependent variable C, are recommended for the evaluation of the road 

consistency; the limits assigned, in this study, were assigned in according to the most 

researcher works. In particular, Table 28 assign a good consistency for value of C greater 

than 2 , acceptable with 1<C<2 and poor with C<1. 

Table 28 – Design Consistency Quality thresholds 

Good Accettable Poor 

C > 2 1 < C ≤ 2 C ≤ 1 

Assigning, preliminarily, at the parameters A and B the values suggested by the scientific 

literature, equal respectively to 10 and 1, it was determined for each homogenous road 

element shown in Table 26 the specific road consistency. 

Through a sensitive analysis, the parameters A and B have been changed, in order to have a 

solution to the pair of values that would satisfy, in a univocal way, the 9 road consistency 

evaluations shown in Table 27. Table 29 shows the result of the sensitivity analysis. 
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Table 29 – Definition of Consistency parameter by sensitive analysis 

 

Road Element Ra[m/s] s [km/h] A B C 

1 Capaccio - Prignano Km (98-110.915) 0.57 2.30 2.550 0.150 2.42 

2 Prignano - Cicerale Km ( 110.915-116.170) 0.51 1.85 
  

2.46 

3 Cicerale - Omignano Km (116.170-121.825) 0.59 2.43 
  

2.41 

4 Omignano - Vallo Scalo Km (121.825-126.623) 0.48 1.75 
  

2.47 

5 Vallo Scalo - Vallo Luc. Km (126.623-135.936) 1.16 5.82 
  

1.93 

6 Vallo Luc. - Futani Km (135.936-147.177) 1.10 5.66 

  

1.97 

7 Futani - Poderia Km (147.177-158.283) 1.09 5.99 

  

1.95 

8 Poderia - Roccagloriosa Km (158.283-163.688) 1.02 7.02 

  

1.90 

9 Roccagloriosa - Policastro Km (163.688-170.968) 1.12 6.28 

  

1.91 

 

The final equation of the road consistency predictive model is the following: 

)]6,3([150.0
550.2


 aR

eC     (22) 

 

4.3 Relation Road Consistency and crash phenomena 

Next step has been the evaluation of relationship between the road consistency, design 

criteria not satisfied and crashes. 

Each homogenous road element has been associated with the following information; 

parameter of congruence, design criteria not satisfied, size of the combinations not satisfied, 

the frequency of the combination, the number of times when in the presence of a combination 

were recorded crashes and the total number of accidents for combination (See Table 30-38). 

Table 30 – Overview results for road homogenous element n.1 

Road Homogenous 

Element 
C 

Crash 

Rate 

N. 

Crashes 

Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied with 

crashes 

N. crashes 

Capaccio - Prignano  

Km (98-110.915) 
2.42 0.17 74 1011a 3 1 2 

    
10a 2 2 2 

    
11a 2 2 8 

    
1p 3 1 1 

    
1p456711a 1 0 0 

    
1p457a 1 1 1 

    
31011a 2 1 3 

    
456711a 1 0 0 

    
457a 3 2 11 

    
569a 1 1 3 

    
9a 1 1 3 
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Table 31 – Overview results for road homogenous element n.2 

Road Homogenous 

Element 
C 

Crash 

Rate 

N. 

Crashes 

Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied with 

crashes 

N. crashes 

Prignano - Cicerale Km 

( 110.915-116.170) 
2.46 0.14 28 1p3a 1 0 0 

    
1p 1 0 0 

    
1p4910a 1 0 0 

    
310a 2 1 1 

    
3a 4 1 1 

 

Table 32– Overview results for road homogenous element n.3 

Road Homogenous 

Element 
C 

Crash 

Rate 

N. 

Crashes 

Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied with 

crashes 

N. crashes 

Cicerale - Omignano 

Km (116.170-121.825) 
2.41 0.06 13 1p59a 1 0 0 

    
310a 1 1 1 

    
39a 2 0 0 

    
59a 1 1 3 

    
6p 1 0 0 

    
7p 1 0 0 

    
8p 4 2 2 

    
8p49a 1 1 1 

    
910a 1 0 0 

    
911a 1 1 3 

 

Table 33 – Overview results for road homogenous element n.4 

Road Homogenous 

Element 
C 

Crash 

Rate 

N. 

Crashes 

Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied with 

crashes 

N. crashes 

Omignano - Vallo Scalo 

Km (121.825-126.623) 
2.47 0.10 17 1p 2 0 0 

    
11a 3 2 2 

    
31011a 1 0 0 

    
7p 1 0 0 

    
910a 1 1 2 

    
9a 1 1 1 
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Table 34 – Overview results for road homogenous element n.5 

Road Homogenous 

Element 
C 

Crash 

Rate 

N. 

Crashes 

Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied with 

crashes 

N. crashes 

Vallo Scalo - Vallo Luc. 

Km (126.623-135.936) 
1.93 0.30 104 11a 2 2 4 

    
10a 2 2 2 

    
1p 4 1 1 

    
1p10a 1 0 0 

    
1p9a 1 1 1 

    
31011a 2 2 2 

    
3a 2 1 2 

    
457a 2 2 2 

    
6p 1 1 2 

    
6p11a 1 1 7 

    
8p 1 1 4 

    9a 1 1 2 

 

Table 35 – Overview results for road homogenous element n.6 

Road Homogenous 

Element 
C 

Crash 

Rate 

N. 

Crashes 

Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied with 

crashes 

N. crashes 

Vallo Luc. - Futani Km 

(135.936-147.177) 
1.97 0.13 60 1p11a 1 1 6 

    
1011a 4 2 13 

    
1p 3 0 0 

    
1p1011a 1 0 0 

    
1p39a 1 0 0 

    
1p45610a 1 0 0 

    
310a 8 3 4 

    
311a 2 0 0 

    
39a 2 1 4 

    
41011a 2 0 0 

    
45610a 2 0 0 

    4581011a 1 1 2 

    49a 2 1 1 

    4a 2 2 11 

    4p311a 1 1 1 

    5610a 3 1 1 

    6p 2 0 0 

    8p 1 0 0 

    8p311a 1 0 0 
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Table 36 – Overview results for road homogenous element n.7 

Road Homogenous 

Element 
C 

Crash 

Rate 

N. 

Crashes 

Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied with 

crashes 

N. crashes 

Futani - Poderia Km 

(147.177-158.283) 
1.95 0.01 8 11a 1 1 1 

    
1011a 8 0 0 

    
11p 1 0 0 

    
1p 3 0 0 

    
1p1011a 2 0 0 

    
1p311a 1 0 0 

    
31011a 3 0 0 

    
311a 5 0 0 

    
39a 2 0 0 

    
41011a 2 0 0 

    
45611a 2 1 1 

    45a 1 1 1 

    4781011a 5 0 0 

    4p1011a 2 1 1 

    510a 1 0 0 

    511a 3 0 0 

    6p 1 0 0 

    6p45a 1 0 0 

    7p 1 0 0 

    7p45611a 1 0 0 

    8p 3 0 0 

    8p1011a 1 0 0 

    8p39a 1 0 0 

    8p4781011a 1 0 0 

Table 37 – Overview results for road homogenous element n.8 

Road Homogenous 

Element 
C 

Crash 

Rate 

N. 

Crashes 

Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied with 

crashes 

N. crashes 

Poderia - Roccagloriosa 

Km (158.283-163.688) 
1.90 0.06 14 1011a 2 0 0 

    
11a 3 0 0 

    
1p 2 0 0 

    
1p11a 1 0 0 

    
31011a 1 1 5 

    
4p 1 1 1 

    
4p1011a 2 0 0 

    
6p11a 2 0 0 

    
8p4581011a 1 0 0 
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Table 38 – Overview results for road homogenous element n.9 

Road Homogenous 

Element 
C 

Crash 

Rate 

N. 

Crashes 

Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied with 

crashes 

N. crashes 

Roccagloriosa - 

Policastro Km (163.688-

170.968) 

1.91 0.06 26 4p310a 1 0 0 

    
11p 1 0 0 

    
1p 5 1 1 

    
1p31011a 1 1 1 

    
1p310a 1 0 0 

    
1p41011a 1 0 0 

    
1p510a 1 0 0 

    
31011a 2 1 1 

    
310a 5 0 0 

    
311a 3 0 0 

    
39a 1 0 0 

    41011a 2 2 4 

    510a 3 0 0 

    5611a 3 0 0 

    6p 1 0 0 

    813p 1 0 0 

 

Subsequently the data was processed further, creating a table that shows how each specific 

combination of tests is not met, it is distributed on the different sections of the track. For each 

trunk it is associated with a different value of consistency. The same work was then done for 

accidents. 

Table 39 shows for each homogenous road element the associated consistency value, number 

of combination of design criteria not satisfied when an accident occurs, and the number of 

crashes observed. 

Table 39 – Overview of the results for each homogenous road element 

 

Road Element C 

N. Combination 

Horizontal/Vertical 

design criteria not 

satisfied with 

crashes 

N. crashes 

1 Capaccio - Prignano Km (98-110.915) 2.32 15 6 

2 Prignano - Cicerale Km ( 110.915-116.170) 2.50 9 2 

3 Cicerale - Omignano Km (116.170-121.825) 2.31 9 4 

4 Omignano - Vallo Scalo Km (121.825-126.623) 2.47 14 5 

5 Vallo Scalo - Vallo Luc. Km (126.623-135.936) 1.43 52 36 

6 Vallo Luc. - Futani Km (135.936-147.177) 1.41 40 46 

7 Futani - Poderia Km (147.177-158.283) 1.68 20 9 

8 Poderia - Roccagloriosa Km (158.283-163.688) 1.67 20 10 

9 Roccagloriosa - Policastro Km (163.688-170.968) 1.35 32 31 
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Figure 45 and 46 confirm when road consistency increases, the number of crashes decreases. 

 

 

 

Figure 45 – Relation Consistency - Crashes 

 

 

Figure 46 – Relation crashes – ΔV – horizontal/vertical combination not satisfied 
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4.4 Safety Effectiveness Evaluation Procedure 

The Highway Safety Manual indicates an observational before/after evaluation can be 

conducted for a single project at a specific site to determine its effectiveness in reducing 

crash frequency or severity. The empirical Bayes (EB) before/after safety evaluation method 

is used to compare crash frequencies at a group of sites before and after a treatment is 

implemented. The EB method explicitly addresses the regression-to-the-mean issue by 

incorporating crash information from other but similar sites into the evaluation. This is done 

by using an SPF and weighting the observed crash frequency with the SPF-predicted average 

crash frequency to obtain an expected average crash frequency. Figure 47 provides a step-by-

step overview of the EB before/after safety effectiveness evaluation method. 

 

 
Figure 47 – Overview of EB Before/After Safety Evaluation 
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The data needed as input to an EB before/after evaluation include: 

 At least 10 to 20 sites at which the treatment of interest has been implemented 

 3 to 5 years of crash and traffic volume data for the period before treatment 

implementation 

 3 to 5 years of crash and traffic volume for the period after treatment implementation 

 SPF for treatment site types 

An evaluation study can be performed with fewer sites and/or shorter time periods, but 

statistically significant results are less likely. 

 

Step 1. The predicted crash frequency, Npredicted for each site during each year of the before 

period, was calculated with equation 23: 

 

      𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝐵= 𝑁𝑠𝑝𝑓𝑥 × (𝐴𝑀𝐹1𝑥 × 𝐴𝑀𝐹2𝑥 × … × 𝐴𝑀𝐹𝑦𝑥) × 𝐶𝑥   (23) 

 

Where: 

Npredicted = predicted average crash frequency for a specific year for site type x; 

Nspf x = predicted average crash frequency determined for base conditions of the SPF 

developed for site type x; 

AMFyx = Accident Modification Factors specific to site type x and specific geometric design 

and traffic control features y; 

Cx = calibration factor to adjust SPF for local conditions for site type x. 

 

AMFs are the ratio of the estimated average crash frequency of a site under two different 

conditions. Therefore, an AMF represents the relative change in estimated average crash 

frequency due to a change in one specific condition (when all other conditions and site 

characteristics remain constant). 

Four AMF were included in the analysis: Lane width (AMF1), Shoulder width and Type 

(AMF2), Horizontal Curves (AMF3), Grades (AMF5), Driveway Density (AMF6). 

 

The Accident Modification Factor for the effect of lane width on total accidents was 

calculated using Equation 24: 

 

AMF1 = (𝐴𝑀𝐹𝑟𝑎 − 1,0) ∗ 𝑝𝑟𝑎 + 1,0                       (24) 

 

 

Where, 

AMFra = Accident Modification Factor for the effect of lane width on related accidents (i.e., 

single-vehicle run-off-the-road and multiple-vehicle head-on, opposite-direction sideswipe, 

and same-direction sideswipe accidents), such as the AMF for lane width shown in Figure 48 

(HSM Exhibit 10-14); 

pra = proportion of total accidents constituted by related accidents. The proportion of related 

accidents, pra, (i.e. single-vehicle run-off-road, and multiple-vehicle head-on, opposite-

direction sideswipe, and same-direction sideswipes accidents) is estimated as 0.574 (i.e., 

57.4%) based on the default distribution of crash in Minnesota.  
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Figure 48 – AMF for Lane Width on Roadway Segments (AMFra) 

The AMF for shoulders has an AMF for shoulder width (AMFwra) and an AMF for shoulder 

type (AMFtra). The AMFs for both shoulder width and shoulder type are 

 

AMF2r = (𝐴𝑀𝐹𝑤𝑟𝑎 ∗ 𝐴𝑀𝐹𝑡𝑟𝑎 − 1,0) ∗ 𝑝𝑟𝑎 + 1,0                  (25) 

 

Where, 

AMF2r = Accident Modification Factor for the effect of shoulder width and type on total 

accidents 

AMFwra = Accident Modification Factor for related accidents (i.e., single-vehicle run-off-the-

road and multiple-vehicle head-on, opposite-direction sideswipe, and same-direction 

sideswipe accidents), based on shoulder width shown in Figure 49 (HSM Exhibit 10-16); 

AMFtra = Accident Modification Factor for related accidents based on shoulder type shown in 

Figure 50 (from Exhibit 10-18); 

pra = proportion of total accidents constituted by related accidents. 

 

 
Figure 49 – AMF for Shoulder Width on Roadway Segments (AMFwra) 

 

 
Figure 50 – AMF for Shoulder Types and Shoulder Widths (AMFtra) 
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The AMF for horizontal curves was determined using the Equation 26.  

AMF3r = (
( 1,55∗𝐿𝑐)−(0,012∗𝑆)+

80,2 

𝑅

(1,55∗𝐿𝑐)
)                                                               (26) 

Where, 

AMF3r = Accident Modification Factor for the effect of horizontal alignment on total 

accidents; 

Lc = length of horizontal curve (miles) which includes spiral transitions, if present; 

R = radius of curvature (feet); 

S = 1 if spiral transition curve is present; 0 if spiral transition curve is not present; 0.5 if a 

spiral transition curve is present at one but not both ends of the horizontal curve. 

 

The AMF for Grade was evaluated in according to Figure 51 (HSM Exhibit 10-19). 

 

 
Figure 51 – AMF for Grade (AMF5r) 

 

 

The AMF for driveway density was determined using Equation 27. 

 

AMF6r = (
0,322+𝐷𝐷∗[0,05−0,005∗ln(𝐴𝐴𝐷𝑇)]

0,322+5∗[0,05−0,005∗ln(𝐴𝐴𝐷𝑇)
)                                                 (27) 

 

Where, 

AMF6r = Accident Modification Factor for the effect of driveway density on total accidents; 

AADT = average annual daily traffic volume of the roadway being evaluated (vehicles per 

day); 

DD = driveway density considering driveways on both sides of the highway (driveways/mile). 

 

If driveway density is less than 5 driveways per mile, AMF6r is 1.00. 

 

Step 2. The estimate of expected average crash frequency, Nexpected,B, for each site summed 

during each year over the before period, was calculated with equation 28: 

 

 

                              𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐵 = 𝑊𝑖,𝐵𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝐵 + (1 − 𝑊𝑖,𝐵)𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝐵                   (28) 

 

Where the weight, wi,B, for each site i, is determined as: 
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                                                    𝑊𝑖,𝐵 =
1

1+𝑘 ∑ 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝐵𝑒𝑓𝑜𝑟𝑒
                                             (29) 

 

And: 

Nexpected = Expected average crash frequency at site i for the entire before period 

Nspf x = Predicted average crash frequency determined with the applicable SPF (from Step 1) 

Nobserved,B = Observed crash frequency at site i for the entire before period 

k = Overdispersion parameter for the applicable SPF 

 

Step 3. Using the applicable SPF, calculate the predicted average crash frequency, PRi,y,A,for 

each site i during each year y of the after period. 

 

Step 4. Calculate an adjustment factor, ri, to account for the differences between the before 

and after periods in duration and traffic volume at each site i as: 

 

 ri =
∑ Npredicted,AAfter

∑ Npredicted,BBefore
                                                        (30) 

 

Step 5. Calculate the expected average crash frequency, Ei,A, for each site i, over the entire 

after period in the absence of the treatment as: 

 

                                    Nexpected,A = Nexpected,B × ri     (31) 

 

Step 6. Calculate an estimate of the safety effectiveness of the treatment at each site i in the 

form of an odds ratio, ORi, as: 

 

                                                   𝑂𝑅𝑖 =
𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝐴

𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴
     (32) 

 

Where, 

ORi = Odd ration at site i 

Nobserved,A = Observed crash frequency at site i for the entire after period 

 

Step 7. Calculate the safety effectiveness as a percentage crash change at site  i, AMFi, as: 

 

                                            𝐴𝑀𝐹𝑖 = 100 × (1 − 𝑂𝑅𝑖)     (33) 

 

Step 8. Calculate the overall effectiveness of the treatment for all sites combined, in the form 

of an odds ratio, OR’, as follows: 

 

                                       𝑂𝑅′ =
∑ 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝐴𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠

∑ 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠
                  (34)                                   

 

Step 9. The odds ratio, OR’, calculated in Equation 34 is potentially biased; therefore, an 

adjustment is needed to obtain an unbiased estimate of the treatment effectiveness in terms of 

an adjusted odds ratio, OR. This is calculated as follows: 
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𝑂𝑅 =
𝑂𝑅′

1+
𝑉𝑎𝑟(∑ 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴)𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠

(∑ 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 )𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠
2

     (35) 

 

Where, 

 

𝑉𝑎𝑟(∑ 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠 ) = ∑ [(𝑟𝑖)
2 × 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐵 × (1 − 𝑊𝑖,𝐵)]𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠   (36) 

 

and wi,B is defined in Equation 29 and ri is defined in Equation 30. 

 

 

 

Step 10. Calculate the overall unbiased safety effectiveness as a percentage change in crash 

frequency across all sites, AMF, as: 

 

𝐴𝑀𝐹 = 100 × (1 − 𝑂𝑅)      (37) 

 

To assess whether the estimated safety effectiveness of the treatment, AMF, is statistically 

significant, one needs to determine its precision. This is done by first calculating the precision 

of the odds ratio, OR, in Equation 35. The following steps show how to calculate the variance 

of this ratio to derive a precision estimate and present criteria assessing the statistical 

significance of the treatment effectiveness estimate. 

 

Step 11. Calculate the variance of the unbiased estimated safety effectiveness, expressed as 

an odds ratio, OR, as follows: 

 

𝑉𝑎𝑟(𝑂𝑅) =
(𝑂𝑅′)2  [

1

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝐴
+

𝑉𝑎𝑟(∑ 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴   )𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠

(∑ 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴)2
𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠

]

1+
𝑉𝑎𝑟(∑ 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴)𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠

(∑ 𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑,𝐴)2
𝐴𝑙𝑙 𝑠𝑖𝑡𝑒𝑠

  (38) 

 

Step 12. To obtain a measure of the precision of the odds ratio, OR, calculate its standard 

error as the square root of its variance: 

 

𝑆𝐸(𝑂𝑅) = √𝑉𝑎𝑟 (𝑂𝑅)     (39) 

 

Step 13. Using the relationship between OR and AMF shown in Equation 29, the standard 

error of AMF, SE(AMF), is calculated as: 

 

SE(AMF)=100×SE(OR)      (40) 

 

Step 14. Assess the statistical significance of the estimated safety effectiveness by making 

comparisons with the measure Abs[AMF/SE(AMF)] and drawing conclusions based on the 

following criteria: 
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 If Abs[AMF/SE(AMF)] < 1.7, conclude that the treatment effect is not significant at 

the (approximate) 90-percent confidence level. 

 If Abs[AMF/SE(AMF)] ≥ 1.7, conclude that the treatment effect is significant at the 

(approximate) 90-percent confidence level. 

 If Abs[AMF/SE(AMF)] ≥ 2.0, conclude that the treatment effect is significant  at the 

(approximate) 95-percent confidence level. 

 

 

The Empirical Bayesian evaluation method was applied to estimate the average crash rate 

frequency on the "sites" in the "before" configuration, current configuration referring to the 

CNR 80 regulation, and the "after" configuration, expected configuration with the adoption of 

the design criteria indicated in the DM 05/11/2001. The guidelines in Section indicate that at 

least 10 to 20 sites generally need to be evaluated to obtain statistically significant results. 

The HSM procedure has been applied on 15 sites, which of 5 sites on tangent elements, 4 on 

circular curve and 6 on transition curves for a total length equal to 12.48 km (See Table 40). 

Table 41 shows the results of the EB procedure from step 1 to 7 to evaluate the safety 

effectiveness of the treatment at each site i. Table 42 shows the results of the estimation of 

precision of the treated effectiveness for all site combined. 
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Table 40 – Overview of the results for homogenous road element with acceptable consistency 
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"BEFORE"- DESIGN CRITERIA CNR 80 

   
"AFTER" DESIGN CRITERIA D.M. 05/11/2001 

1 CF 
 

347.51 
  

C C 341.68 128.45 300 250 13 10 2 
 

186.46 
  

C C 598.36 340.48 360 400 

2 C 
  

400 532.53 TC TC 132.25 132.25 
  

8 9 1 
  

400 547.1 TC TC 98.01 302.66 
  

3 R 804.62 
   

TC TC 88.20 107.52 
  

8 7 0 813.66 
   

TC TC 88.20 73.49 
  

4 CL 
 

160.00 
  

T C 121.33 332.56 
 

1000 8 6 0 
 

115.60 
  

T C 167.81 376.96 
 

1000 

5 R 1626.33 
   

TC TC 213.33 101.25 
  

8 12 0 1691.69 
   

TC TC 120.00 64.80 
  

6 R 945.35 
   

TC TC 88.20 98.00 
  

7 9 0 949.46 
   

TC TC 80.00 98.00 
  

7 CL 
 

150.00 
  

C T 198.44 80.83 600 
 

7 2 0 
 

66.66 
  

C T 281.77 246.18 600 
 

8 CF 
 

224.21 
  

C C 151.49 141.83 300 250 6 3 0 
 

256.00 
  

T C 191.33 93.86 
 

400 

9 R 145.52 
   

TC TC 350.00 160.00 
  

6 1 0 167.81 
   

TC TC 350.00 115.60 
  

10 CF 
 

311.61 
  

C C 120.92 188.92 500 250 6 7 0 
 

190.37 
  

C C 130.82 400.69 400 400 

11 C 
  

550 145.27 TC TC 163.63 163.63 
  

5 3 0 
  

550 145.27 TC TC 163.63 163.63 
  

12 R 530.82 
   

C TC 241.15 250.56 1300 
 

5 3 0 446.92 
   

TC TC 161.55 227.27 
  

13 C 
  

3086.49 800 T T 80.83 11.31 
  

5 8 0 
  

1500 222.12 TC TC 166.66 166.66 
  

14 CF 
 

236.23 
  

C C 141.83 109.62 250 400 9 6 0 
 

268.52 
  

C C 93.86 70.76 400 400 

15 C 
  

400 418.23 TC TC 356.13 307.09 
  

5 8 0 
  

400 486.29 TC TC 243.24 239.36 
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Table 41 – Overview of the results to evaluate the safety effectiveness of the treatment at each site i 

 
EB Estimation of the Expected Crash Frequency in the Before Period EB Estimation of the Expected Crash Frequency in the After Period 

Safety 

Effectiveness  

at each site 

N. site Nspf Cx AMF1x AMF2x AMF3x AMF5x AMF6x Npredicted,B K Wi,B Nexpected,B PRi,y,A Cx AMF1x AMF2x AMF3x AMF5x AMF6x Npredicted,A ri Nexpected,A ORi AMFi 

1 
0.216 1.10 1.00 1.08 1.10 1.00 1.00 0.280 1.093 0.765 0.596 0.117 1.1 1.00 1.08 1.17 1.00 1.00 0.162 0.578 0.344 0.000 100.000 

2 
0.987 1.10 1.00 1.08 1.06 1.00 1.00 1.241 0.473 0.630 1.152 1.165 1.1 1.00 1.08 1.05 1.00 1.00 1.452 1.169 1.347 0.000 100.000 

3 
0.894 1.10 1.00 1.08 1.00 1.00 1.00 1.057 0.472 0.667 1.038 0.904 1.1 1.00 1.08 1.00 1.00 1.00 1.069 1.011 1.050 0.952 4.751 

4 
0.351 1.10 1.00 1.08 1.04 1.00 1.00 0.431 0.771 0.751 0.573 0.351 1.1 1.00 1.08 1.04 1.00 1.00 0.431 1.000 0.573 0.000 100.000 

5 
0.963 1.10 1.00 1.08 1.00 1.00 1.00 1.139 0.234 0.790 1.110 1.002 1.1 1.00 1.08 1.00 1.00 1.00 1.185 1.040 1.154 0.866 13.379 

6 
1.173 1.10 1.00 1.08 1.00 1.00 1.00 1.387 0.402 0.642 1.204 1.173 1.1 1.00 1.08 1.00 1.00 1.00 1.387 1.000 1.204 0.727 27.311 

7 
0.306 1.10 1.00 1.08 1.10 1.00 1.00 0.399 1.090 0.697 0.544 0.306 1.1 1.00 1.08 1.10 1.00 1.00 0.399 1.000 0.544 0.230 77.006 

8 
0.511 1.10 1.00 1.08 1.06 1.10 1.00 0.701 0.653 0.686 0.717 0.331 1.1 1.00 1.08 1.12 1.10 1.00 0.482 0.686 0.492 0.000 100.000 

9 
0.104 1.10 1.00 1.08 1.00 1.10 1.00 0.135 2.610 0.740 0.295 0.119 1.1 1.00 1.08 1.00 1.10 1.00 0.155 1.153 0.340 0.000 100.000 

10 
0.118 1.10 1.00 1.08 1.08 1.10 1.00 0.167 1.219 0.831 0.265 0.064 1.1 1.00 1.08 1.11 1.10 1.00 0.092 0.552 0.146 0.000 100.000 

11 
0.581 1.10 1.00 1.08 1.07 1.00 1.00 0.736 0.804 0.628 0.695 0.581 1.1 1.00 1.08 1.07 1.00 1.00 0.736 1.000 0.695 0.900 10.026 

12 
0.653 1.10 1.00 1.08 1.00 1.00 1.00 0.772 0.716 0.644 0.719 0.549 1.1 1.00 1.08 1.00 1.00 1.00 0.650 0.842 0.606 0.206 79.364 

13 
0.703 1.10 1.00 1.08 1.01 1.00 1.00 0.839 0.475 0.715 0.778 0.488 1.1 1.00 1.08 1.01 1.00 1.00 0.582 0.693 0.539 0.000 100.000 

14 
0.168 1.10 1.00 1.08 1.11 1.10 1.00 0.243 1.608 0.719 0.491 0.191 1.1 1.00 1.08 1.08 1.10 1.00 0.269 1.104 0.543 0.000 100.000 

15 
0.348 1.10 1.00 1.08 1.05 1.00 1.00 0.432 0.368 0.863 0.459 0.327 1.1 1.00 1.08 1.05 1.00 1.00 0.407 0.941 0.432 0.290 71.046 
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Table 42 – Overview of the results to evaluate the treated effectiveness for all site combined 

OR' OR AMF Var(OR) SE(OR) SE(AMF) AMF/SE(AMF) 

0.064 0.061 93.940 0.010 0.246 24.616 3.820 

 

Table 42 shows the Abs[AMF/SE(AMF)] ≥ 2.0, concluding that the treatment effect is 

significant  at the (approximate) 95-percent confidence level. 

 

Lastly, in order to check the improvements in terms of consistency on the road element with 

acceptable consistency before the treatments, the road consistency model was re-applied. The 

values of operating speed have been calculated referring to operating speed prediction models 

carried out by Russo et al (2015). The HSM procedure has been re-applied to check the safety 

improvements in terms of reduction of expected crashes. The result are shown in Table 43. 

 

Table 43 – Overview of the results to evaluate the treated effectiveness for all site combined 

 
Before After 

Homogenous road 

element 
C 

ΔV85 

[km/h] 

N. 

crashes 

N. Design 

criteria 

not 

satisfied 

C 
ΔV85 

[km/h] 

N. 

predicted 

crashes 

N. Design 

criteria 

not 

satisfied 

5 1.43 14 36 52 2.33 5 2 0 

6 1.41 15 46 40 2.35 5 2 0 

7 1.68 11 9 20 2.38 2 1 0 

8 1.67 11 10 20 2.37 2 1 0 

9 1.35 17 31 32 2.35 7 1 0 
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5. Conclusions and future development  

The Directive 2008/96/EC of the European Parliament and of the Council on Road 

infrastructure Safety Management pointed up the need to carry out safety impact assessments 

and road safety audits, in order to identify and manage high accident concentration sections 

within the Community. This Directive required the establishment and implementation of 

procedures relating to road safety impact assessments, road safety audits, the management of 

road network safety and safety inspections by the Member States that are essential tool for 

preventing possible dangers for all road users and also in case of road works. 

One way to accommodate for human information processing limitations is to design roadway 

environments in accordance with driver expectations: a road alignment that it’s easy to be 

predicted by drivers, it’s characterized by a good consistency. 

The importance and seriousness of the accident phenomenon has also been implemented by 

the Italian regulation, in fact, the recent D.M. n.35 / 11 (Ministero delle Infrastrutture e dei 

Trasporti, 2012) developed the "Guidelines for the safety management of road 

infrastructures". Criteria and procedures are defined for the execution of road safety checks 

on projects, for safety inspections of existing infrastructure and for the implementation of the 

process for the classification of the safety of the road network. 

Other regulation focuses on adaption treatments on existing roads (Ministero delle 

Infrastrutture e dei Trasporti, 2005), in particular providing useful tools to develop 

probabilistic analysis on the effects of adaptation treatments, which may vary by data 

available, the design level of detail and specific characteristics of each project. 

In this scenario, the research work has focused on, first of all, a meticulous study of S.P. 430, 

a variant of the state highway S.S. 18, the "Tirrenia Inferiore", which is the major road, after 

freeway A3, and is also one of the most important and long in Southern Italy. The road 

project dates back to 1973, and was carried out prior to the development and introduction of 

the D.M. 5/11/2001, having been subject during the years to a series of interventions that 

have changed the geometric regularity. By using project cartographies and information 

collected onsite and the help of Civil Design software, the horizontal-vertical alignment was 

drawn with the definition of the exact succession of the road elements, including information 

on the progressive start and end of the road element, the length, the angle of deviation in 

grads, the radius of curvature etc. Based on the geometric layout output, S.P. 430 is 

composed by 398 geometric elements; of which 91 tangent elements, 121 circular curves and 

186 spiral transition curves, which are divided into 154 tangent-curve-tangent spiral 

transitions, 28 curve-tangent-curve spiral transitions and 4 curve-curve spiral transitions, for a 

total road length equal to 72.65 km. 

Speed data collection was carried out in environmental and traffic conditions using a laser. 

The conditions were the following: dry roads, free flow conditions, daylight hours and good 

weather conditions. Speed data collection includes 40 sections, which of 25 sections on 

tangent element and 15 sections on the middle circular curve. 

Crash data analysis from 2003 to 2010. was carried out to identify the possible relationships 

existing between the geometric and functional characteristics of the road analyzed and the 

crash types and numbers of accidents. Totally, 344 accidents were observed on the S.P. 430 
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from 2003 to 2010, which of 167 PDO, and 177 that have registered at least one injured or 

dead. In according to the current regulation, design control for Horizontal and Horizontal-

Vertical Alignment, were checked. These included sight distance, super elevation, traveled 

way widening, grades, horizontal and vertical alignments, and other elements of geometric 

design.  The horizontal-vertical design criteria not satisfied were correlated with the 

associated number of crashes observed for each road element type. In particular, 211out of a 

total of 398 elements show problems of geometric inconsistency or horizontal and vertical 

alignment misalignment. On a total of 344 crashes observed from 2003-2008, only 140 are 

associated to design inconsistency. This was confirmed through a deep evaluation of the 

dynamics described in the crash report which confirmed that the majority is due to factors 

related to the geometry of the road, but also to user behavior, weather conditions etc., which 

guarantees the goodness of the analysis performed.  

Road alignment consistency was evaluated and a prediction model was calibrated by a 

sensitive analysis to match the road with one only global measure of consistency for the 

entire development, and no with speed reductions between two following elements.  

Nine homogeneous road elements identified. The starting point of the analysis was the 

operating speed profiles and the assessment of two parameters for each investigated road: a) 

the area bounded by the speed profile and the average weighted speed lines, and b) the 

standard deviation of speeds along a road horizontal alignment. Negative exponential 

function will be adopted to calibrate the model. Four homogeneous road elements were 

associated with good road consistency, and the remaining  with acceptable road consistency. 

Next step has been the evaluation of relationship between the road consistency, design 

criteria not satisfied and crashes. The results shown on the first four homogenous road 

element with good consistency, the number of combinations of design criteria not satisfied is 

equal to 18 for a total of 59 crashes, less than the 26 combinations of design criteria not 

satisfied for a total of 89 accidents observed on the remaining five homogenous road 

elements with acceptable consistency. Lastly, an observational before/after evaluation was  to 

determine treatments effectiveness in reducing crash frequency or severity, by changing the 

current roadway layout in according to the current regulation D.M. 5/11/2001. The Empirical 

Bayesian evaluation method was applied to estimate the average crash rate frequency on the 

"sites" in the "before" configuration, current configuration referring to the CNR 80 

regulation, and the "after" configuration, expected configuration with the adoption of the 

design criteria indicated in the DM 05/11/2001. The HSM procedure has been applied on 15 

sites, which of 5 sites on tangent elements, 4 on circular curve and 6 on transition curves for a 

total length equal to 12.48 km. The results show that the treatment effect is significant at the 

(approximate) 95-percent confidence level. The work presented can be an useful tool for 

body government to identify hot spot of the road network and evaluate the effective 

treatments to improve road safety.  

Possible future development are oriented to include several roadway in the analysis, 

considering also the urban context. Also, is suggested an evaluation of relationship between 

the road consistency and safety data by changing the crash type to identify the common 

factors effecting a specific crash types. In addition, is suggested the use of operating speed 

models, in conjunction with micro traffic simulations. The information can be used in the 

design of devices for the traffic management for the analyzed infrastructures.  
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