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SUMMARY  

Na+- Ca2+ exchanger isoform 3 (NCX3) plays a fundamental role in the 

pathogenesis of stroke damage. Indeed its ablation worsens the 

experimentally-induced ischemic damage. Interestingly it has been found 

that NCX3 mRNA and protein are both reduced after stroke. However, the 

mechanism by which stroke-induced ncx3 gene reduction is still unclear. 

Notably, in the last decades it has been found that histone deacetylases 

(HDACs) inhibition by regulating specific neuroprotective genes 

ameliorates the neurodegeneration that occurs in brain ischemia.  

Interestingly, we found that neurons treated with Trichostatin A (TSA), a 

pan HDACs inhibitor (HDACi), and MC1568, a class II HDACs inhibitor, 

significantly increased ncx3 promoter activity, whereas MS-275 (class I 

HDACs inhibitor) had no significant effect. Notably, among the HDACs 

class II A, we found that when the HDAC4 and HDAC5 isoforms were 

overexpressed by construct transfection or knocked-down by small 

interfering RNA (siRNA) transfection, NCX3 mRNA and protein levels were 

downregulated or increased, respectively. Moreover, experiments of site 

direct mutagenesis of DREAM (downstream regulatory element antagonist 

modulator) consensus sequence on ncx3 promoter in MC1568 treated 

neurons, corroborated that NCX3 downregulation induced by HDACs is 

achieved by DREAM. Notably, Chromatin Immunoprecipitation (ChIP) 

assay demonstrated that HDAC4 and HDAC5 binding on ncx3 promoter 

was significantly increased after transient middle cerebral artery occlusion 

(tMCAO).  

Our findings identify a new epigenetic regulatory mechanism that controls 

NCX3 gene transcription and demonstrated that HDAC class II A 

inhibition, by blocking HDAC4 and HDAC5 and modulating the acetylation 

of ncx3 gene promoter sequence, could be a new therapeutic strategy in 

stroke treatment. 
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I. INTRODUCTION 

I.A. PATHOPHYSIOLOGY OF CEREBRAL ISCHEMIA 

Stroke has been described into two main forms: ischemic and 

hemorrhagic, however the ischemic form is more common than the 

hemorrhagic. Several drug trials have been directed to find a cure for the 

ischemic form since the ischemic event represents about the 87% of all 

the cases of stroke. 

Ischemic stroke can be caused by a reduction in the brain blood flow as 

consequence of a thrombosis, an embolism or a systemic hypo-perfusion. 

Within the ischemic core, where the oxygen and glucose reduction 

delivered by blood vessels is seriously restricted, excitotoxic and necrotic 

cell death occurs within minutes, whereas in the peripheral ischemic area, 

the collateral blood flow can buffer injury, leading to different outcome [1].  

 

I.A.1. Excitotoxicity and ionic imbalance  

In a resting neuron the cytoplasmic concentration of free Ca2+ is 

approximately around 100 nM, whereas at the extracellular side is 

estimated to be concentrated 1-2 mM. The intracellular ionic homeostasis 

of Ca2+ is regulated by several mechanisms including specific activation of: 

receptors, channels, and ionic pumps. The entry of extracellular Ca2+ is 

mediated by the activation of ligand-operated receptors and voltage-gated 

Ca2+ channels. The release of Ca2+ from inner stores such as the 

endoplasmic reticulum is allowed by the stimulation of inositol triphosphate 

(IP3) receptors and Na+ -Ca2+ exchanger activation. The extrusion of Ca2+ 

from the cell requires an active transport mediated by the Ca2+-ATPase or 

Na+ -Ca2+ exchanger in the plasma membrane. Furthermore, the 

intracellular Ca2+ buffering is regulated by specific target proteins that bind 

free Ca2+ causing a decrease in cytoplasmic free levels as well as by the 

sequestration of Ca2+ into the endoplasmic reticulum through Ca2+-
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ATPase or through mitochondria uniport mechanism activation [2,3,4,5]. 

Thus, energy failure in hypoxic ischemia will cause the accumulation of 

intraneuronal free Ca2+ (Ca2+ overload) by enhancing the entry and 

releasing from the stores, and by interfering with the ATP-dependent 

extrusion and sequestration of this ion. 

Blood flow interruption in the brain causes deprivation of oxygen and 

glucose that are used as energetic substrates. Furthermore, impairment in 

energy production increases glutamate release via membrane 

depolarization and subsequent voltage gated Ca2+ channels activation. It 

also interferes with the re-uptake of glutamate (primarily into astrocytes), 

leading to its abnormal accumulation into synapses [2]. After ischemia, the 

energetic depletion decreases the function of Na+/K+-ATPase and Ca2+-

ATPase, which are important plasma membrane ionic pumps found in 

neurons. A failure in energy production induces membrane depolarization, 

release of potassium into the extracellular space and entry of sodium and 

calcium into the cells [6]. The membrane depolarization is also responsible 

for the activation of the N-methyl-D-aspartate receptors (NMDA receptors). 

The heteromeric NMDA receptors are highly permeable to Ca2+, as well as 

Na+ and K+. NMDA receptors can be fully activated under plasma 

membrane depolarization thus abolishing its Mg2+ - induced inhibition. 

Since a brief (>3 min) activation of NMDA receptors is sufficient to trigger 

neuronal death, the activation of NMDA receptors has been proposed as a 

primary cause of neuronal death after the focal cerebral ischemia that is 

accompanied by the transient (~30- 60 min) elevation of extracellular 

glutamate [7,8]. The Ca2+ influx through NMDA receptors mediates the 

rapidly-triggered NMDA neurotoxicity, while Na+ influx contributes to the 

swelling of the neuronal cell body [9]. The entry of Ca2+ via NMDA 

receptors activation contributes further to the Ca2+ overload following 

hypoxic-ischemic injury, in fact NMDA antagonists prevent the entry and 

accumulation of Ca2+ in neurons exposed to oxygen and glucose 

deprivation (OGD), an hypoxic-ischemic condition in vitro [10,11]. 
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Prolonged increases in intracellular Ca2+ levels lead to  catabolic 

processes and irreversible neuronal death in the ischemic core through 

multiple mechanisms that involve the activation of Ca2+- binding effector 

proteins such as calcium dependent proteases, lipases and DNAses [12]. 

 

I.A.2. Oxidative and nitrosative stress 

Oxidative stress has been strongly implicated in triggering both necrosis 

and apoptosis processes in case of focal ischemia, above all when 

followed by reperfusion [13,14]. In physiological conditions, mitochondria 

are the major producer of superoxide. As the ischemia occurs, 

mitochondria probably contribute to increase oxidative stress in ischemic 

and post-ischemic brain [15]. 

The increase of intracellular calcium, sodium and adenosine diphosphate 

(ADP) induces mitochondria to produce the deleterious reactive species of 

oxygen (ROS), which consequently leads to cellular macromolecules 

(mainly lipids and proteins) destruction. ROS are involved in the activation 

of signaling mechanisms resulting in apoptotic cell death [16]. Moreover, 

the high production of superoxide and nitric oxide (NO) affects protein 

structure and leads to peroxynitrate levels increases. Thrombolytic therapy 

is effective just during the 4,5 hours after the occurrence of stroke. The 

reason for this limited therapeutic window is found in the surge of 

production of free radicals during the delayed reperfusion phase. The 

oxygen that newly perfuses tissue is responsible for the second wave of 

oxidative and nitrosative stress that increases the risk of brain hemorrhage 

and edema.  

 

I.A.3. Apoptosis 

Emergent evidence suggests a role for caspases during neuronal death 

after brain ischemia [17]. The caspases are a family of proteases that 

include in their catalytic site the cysteine-containing pentapeptide motif 
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QACXG (X being R, Q or G) and share the feature of an aspartate residue 

at the N-terminal end of the substrate cleavage site [18,19,20,21,22]. 

There is an huge evidence that during ischemic injury caspases are 

activated in the brain. In fact, up-regulation and activation of caspase-3 

was found to precede neuronal death. 

In the rat brain during transient global ischemia, the activation of caspase-

3 induces the cleavage of inhibitor of caspase-activated 

deoxyribonuclease (ICAD), thus resulting in the apoptotic degradation of 

DNA by caspase-activated deoxyribonuclease (CAD) [23]. 

Deoxyribonuclease activity resulting from transient focal ischemia in the 

rat could be prevented by inhibitors of caspase-3-like activity [24]. 

Focal brain ischemia was reported to increase levels of mRNA and protein 

of several procaspases, including -3, -6, and -8 [25,26,27], and to cause 

activation of caspases-3 [27] and -8. The activation of caspase-8 that has 

been documented in a few studies of experimental brain ischemia [27, 28] 

suggests that receptor-mediated activation of caspases could contribute to 

ischemic brain damage. The release of tumor necrosis factor alpha (TNF-

α), by ischemic neurons, glia, activated microglia and infiltrating 

inflammatory cells could stimulates many receptors linked to caspases 

[29,30,31]. The mitochondrial pathway of programmed cell death involves 

the release of cytochrome c, procaspase-9, and apoptotic protease 

activating factor 1 (Apaf-1) from the mitochondrial intermembrane space 

and a series of subsequent biochemical interactions that include the 

activation of caspase-9 and lead to the activation of caspase-3. 

Mitochondrial release of cytochrome c after brain ischemia is caused by 

the action of Bax (bcl-2-like protein 4) and other pro-apoptotic members of 

the B-cell lymphoma 2 (Bcl-2) family [32,21,33]. The death of neurons 

after brain ischemia is preceded by an increase in the level of Bax 

[34,35,36,37,38,39]. After transient focal brain ischemia, Bax translocates 

rapidly from the cytosol to the mitochondria, where it interacts with the 

mitochondrial adenine nucleotide translocator and the voltage-dependent 
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anion channel. The timing and regional distribution of the translocation of 

Bax coincides with the mitochondrial release of cytochrome c and 

caspase-9. 

 

I.A.4. Inflammation 

Inflammation plays an important role in the pathogenesis of ischemic 

stroke and other forms of ischemic brain injury [40]. Among the various 

types of leukocytes, neutrophils are the first to infiltrate ischemic brain (30 

min to a few hours after focal cerebral ischemia). Infiltrating neutrophils 

release several pro-inflammatory mediators stored in granules and 

vescicles, such as inducible nitric oxide synthase (iNOS) and matrix 

metalloproteinases (MMPs) [41], thus triggering inflammation and injury. 

Microglia could be rapidly activated within few  minutes in response to 

cerebral ischemia [42,43]. The inflammatory mediators released from the 

activated microglia lead to cell damage and death. 

By contrast, microglia can also produces the transforming growth factor β1 

(TGF-β1), which acts as a neuroprotective molecule [42]. These dual and 

opposite functions may be referred to the different activation time of 

microglia since data suggested that early activation is detrimental and later 

activation is beneficial [44]. 

After ischemic stroke, astrocytes proliferate and differentiate, a condition 

known as astrogliosis. Also the astrocytes release several inflammatory 

mediators [45,46] such as TNF-α, a potent pro-inflammatory cytokine, that 

was found  upregulated in the brain after both permanent [47] and 

transient middle cerebral occlusion (pMCAO and tMCAO) [48]. 

Matrix Metalloproteinase (MMPs), a family of zinc-dependent proteolytic 

enzymes, are normally as a pro- or inactivated forms and can be activated 

by the removal of amino-terminal pro-peptides. Their constitutive 

expression is low, but can be upregulated by many pathogenic events, 

including stroke. MMPs play important roles in brain injury after stroke. 

Among various MMPs, MMP-9 is most closely implicated in cerebral 
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ischemia [49]. MMP-9 was upregulated in brain tissue and also in serum of 

patients with acute ischemic stroke [50]. It was associated with blood brain 

barrier (BBB) disruption, edema development, and hemorrhagic 

transformation of ischemic stroke [51,52]. 

 

 

I.B. EPIGENETICS 

 

Epigenetics is a branch of molecular biology that investigates heritable 

changes in genic expression without alterations in the original DNA 

sequence. Among the various epigenetic modifications, three major 

categories have been described such as DNA methylation, histone 

posttranslational modifications, and noncoding RNAs (ncRNAs) which 

include microRNAs (miRNA), small noncoding RNAs (sncRNA), and long 

noncoding RNAs (lncRNA) [53].  

 

I.B.1. Nucleosome 

Chromatin is the complex of DNA wrapped around histonic proteins found 

in the  eukaryotic nuclei. The functional unit of chromatin, the nucleosome, 

represents the primitive structure allowing the packing of all the entire 

genome (Figure 1-A). Each nucleosome is composed of an octamer of 

histonic proteins and consists of two copies of each histones (H2A, H2B, 

H3 and H4) wrapping a segment of 147 base pairs long DNA [54]. 

Histones, enriched in basic amino acids, are proteins which structure is 

made of a globular domain and an N- terminal tail protruding from the 

nucleosome. Although the histones are classified among the most 

evolutionarily conserved proteins, they represent the most variable in 

terms of posttranslational modifications.  

The N- terminal tails of histones are usually targets for various covalent 

posttranslational modifications, including acetylation, phosphorylation, 



8 

 

methylation, sumoylation and ubiquitination (Figure 1-B). The specific 

combinations in posttranslational  modifications generate a sort of “histone 

code”. The role of these modifications is found in their particular 

combinatorial pattern since they decode for a selective chromatin affinity 

to the associated proteins, which determine whether the chromatin is 

active (relaxed state) or silent (condensed state) [55]. Thus, histone code 

influences the structure and pattern of chromatin condensation and 

consequently it has been found involved in the gene regulation [56].  

 

 

Figure 1.  Chromatine organization into nucleosomes (A) and epigenetic modifications (B).  

 

I.B.2. Epigenetic modifications 

The histone tail modifications are likely to act in concert with the rather 

more widely known mediator of chromatin structure and gene expression, 

namely DNA methylation that happens through the action of DNA 

methyltransferases (DNMT) (Figure 1-A).   
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DNA methylation is an important regulatory mechanism of gene 

expression in eukaryotes. In mammals and humans DNA methylation 

mostly affects the cytosine (C) base when it is followed by a guanine (G). 

These CpG sites can be clustered in the so-called “CpG islands” (GCI) but 

DNA methylation can also be present in non-CG contexts [57]. This 

modification is known to have a role in the constitutive silencing of 

chromatin regions, the inactivation of one of the X chromosomes in 

females, the imprinting of parental alleles, and the silencing of retroviral 

genes and other individual genes [58]. In addition to DNA methylation, 

also histone posttranslational modifications act on the chromatin 

conformation. In fact, methylation and especially trimethylation of histone 3 

(H3) at lysine site 27 (H3K27me3)/lysine 9 (H3K9me3) induces  gene 

repression. Conversely, methylation of H3K4 normally indicates active 

enhancers [59,60]. Hundreds of histone modifications have been found 

affecting histones into many different residues including  lysine (K), 

arginine (R), serine (S), threonine (T), and glutamate (E) [61]. 

Recent studies explored in more detail the complexity of information 

brought from the epigenetic modifications on histone tails. Currently, there 

are 50 different acetylated isoforms of the histones forming the 

nucleosome core, with a total of 16 different isoforms for  H2B, H3, and H4 

and only two for H2A. In addition, these isoforms have been found further 

modified via methylation on specific lysines and arginines sites (H3 and 

H4) and via phosphorylation on serine (H3, H4, H2B) [62].  

The total combination of the possible histone isoforms carrying the various 

modifications may give rise to a thousands possible patterns. Recent 

evidence explored the role of specific proteins which are recruited to 

particular post translational modifications (PTMs) on histones, thus 

sheding light to the so called “histone code hypothesis” [63]. Certain PTMs 

form a docking platform for the recruitment of subsequently acting histone 

modifiers that associate with the “readers” of these PTMs.  
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I.B.3. Acetylation and deacetylation  

Among the histone modifications, acetylation and deacetylation of specific 

residues of histone tails have been described having opposing effects on 

the chromatin activation. The activity of two principal classes of enzymes, 

the histone acetyltransferases (HATs) and histone deacetylases (HDACs), 

determines transcriptional activation state of a specific region in the 

genome. HATs acetylate the ε-groups of the lysine residues of the histone 

tails, whereas the acetyl groups removal, HDACs-mediated, restores 

positive charge on these residues. Consistently, active transcriptional 

regions of the chromatin generally associate with highly acetylated 

histones H3 and H4 in euchromatic regions of the genome [64]. Histone 

acetylation plays an important role in chromatin remodelling, affecting on 

the modulation of transcription [65,66]. In fact, the recruitment of HATs by 

transcription factors to specific genetic loci determines the grade of local 

acetylation of histones. Importantly, HATs work as integration hub in many 

various signaling cascade since they can interact with a large number of 

transcription factors [67]. Conversely, the histone deacetylation activity, via 

HDACs, removes acetyl moieties, serving as inactivating signal for 

chromatinic transcription. HDACs inhibition restores the grade of  histone 

acetylation, chromatin relaxation and gene expression. The imbalance 

between the activity of HATs and HDACs generally associates with the 

development of a pathophysiological state. Moreover, HATs and HDACs 

activity can also target non-histonic substrates such as the tubulin and 

transcription factors including the tumor suppressor p53, specificity protein 

1 (Sp1), Sma-Mothers against decapentaplegic homolog 7 (Smad7), 

cAMP response element-binding protein (CREB), the pleiotropic 

transcription factor nuclear factor kappa-light-chain-enhancer of activated 

B cells (NF-κB), and signal transducer and activator of transcription 1 

(STAT1) [68].  
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I.B.4. Histone Acetyltransferase (HAT) Families 

Histone acetyltransferases (HATs) catalyze the reaction of histones 

acetylation through addition of an acetyl group of the pseudo-substrate 

acetyl coenzyme A (acetylCoA) to the lysine residue on the ε-amino group 

on the N terminal side of histonic core. HATs may act also on non-histone 

proteic substrates, requiring a new specific nomenclature for these 

enzymes. For instance, “HATs” that acetylates lysine (K) residues should 

be referred to as KAT (lysine acetyl transferase) [69]. The family of HATs 

is found evolutionary well conserved from yeasts to humans.  

The most common HATs are classified as cytoplasmic (type A) and 

nuclear (type B). Nuclear HATs are further grouped into 5 major classes: 

1) Gcn5- related N-acetyltransferases (GNAT), 2) p300/cyclic adenosine 

monophosphate response element-binding protein (CREB) binding protein 

(CBP), 3) MOZ, yeast YBF2, SAS2, and TIP60 (MYST), 4) transcription 

factor-related HATs, and 5) nuclear receptor-associated HATs such as  

TATA-binding protein (TBP)-associated factor (such as TAF130/150) [70]. 

Most of these histone acetyltransferases show a tipical regulatory function 

in transcription. The TAF130/250 histone acetylase [71] is a subunit of the 

Transcription Factor II D (TFIID) complex, a basic component of the 

Polimerase II (Pol II) transcription machinery in all eukaryotic organisms; it 

is likely to be associated essentially with all promoters during 

transcriptional initiation. The p300/CBP histone acetylase [72,73] was 

described initially as a transcriptional coactivator that functions by 

interacting with a wide variety of enhancer-binding proteins [74]. However, 

p300/CBP is tightly associated with the Pol II holoenzyme [75], suggesting 

the possibility that this histone acetylase could be viewed as a more 

general component of the transcription machinery. p300/CBP is found in a 

variety of multicellular organisms from worms to humans, but it does not 

exist in yeast [76]. 
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I.B.5. Histone Deacetylases (HDACs): Structure–Function Analysis 

Two families of histone deacetylases have been described in eukaryotes: 

the histone deacetylases (HDACs), and the Sir2-like deacetylases 

(sirtuins).  

The HDAC enzymes possess an highly conserved domain, consisting in 

approximately 390 amino acids, which appears to deacetylate substrates 

by activation of a water molecule with a divalent zinc cation coupled to a 

histidine-aspartate exchange system [77]. The HDAC family members can 

be classified  into two classes according to their similarity to yeast histone 

deacetylases Rpd3 (reduced potassium dependency 3) for the class I, and 

Hda1 (Histone deacetylase-A) for the class II [78] (Figure 2). HDAC 11 is 

the unique member of class IV HDAC since it does not share the 

characteristics of Rpd3 (class I) and Hda1 (class II) histone deacetylases.  

Four class I (HDAC1, 2, 3, and 8) and five class II (HDAC 4, 5, 6, 7, and 9) 

HDACs have been identified and partially characterized in humans  

[79,80], and there are potentially more deacetylases in this family 

according to the genome sequence [81]. Recently, a second family of 

histone deacetylases, the sirtuins, was identified. This group of proteins is 

related to the yeast transcriptional repressor Sir2, and its members can be 

divided into five classes based on their primary structure [82]. The sirtuin 

deacetylases contain a conserved 275 amino acid catalytic domain, which 

is unrelated to that of the HDACs, and the sirtuins operate by a very 

different mechanism that requires nicotinamide adenine dinucleotide 

(NAD) as a substrate. Despite these structural and mechanistic 

differences, proteins from both families have been shown to silence 

transcription at specific promoters or chromosomal domains by localized 

histone deacetylation. However, it is likely that members of the two 

families function in other cellular processes with non-histone substrates 

[83].  
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I.B.5.1. HDAC family members 

HDAC1 was the first histone deacetylase to be identified and 

characterized. Sequence analysis of HDAC1 revealed the homology of the 

human form with yeast protein Rpd3, showing a regulatory transcriptional 

function. Subsequent fractionation of the histone deacetylase activity in 

yeast yielded at least two distinct protein complexes, one of which 

contained Rpd3, and the other of which contained a highly related protein, 

Hda1. Hda1 contains the conserved HDAC catalytic domain and 

possesses deacetylase activity, but it is significantly larger in size than 

Rpd3. Human HDACs group consist in eight cloned proteins classified 

according their structure and size into the class I, having homology to 

Rpd3 (HDAC1, 2, 3, and 8), and the class II, with greater similarity to Hda1 

(HDAC4, 5, 6, 7, and 9) [84]. All of these proteins share a conserved 

catalytic domain and in vitro histone deacetylase activity. Class II HDACs 

appears two to three times larger in size than the class I proteins. Class II 

HDACs protein are further subdivided into two main groups. Class IIa 

HDACs consist of four members (HDAC4, HDAC5, HDAC7 and HDAC9) 

with distinct tissue specific patterns of expression, predominantly in 

muscle and heart [85].  Class IIb HDACs include HDAC6 and HDAC10. 

The structure of HDAC6 is unusual in that it contains two independently 

functioning catalytic domains and a carboxy-terminal Zn2+-finger ubiquitin 

binding domain. HDAC6 functions in the cytoplasm where it deacetylates 

α-tubulin and alters microtubule stability [86,87]. Its close structural 

homologue HDAC10 lacks the second functional catalytic domain [88]. 

HDAC10 has been found in a complex with HDAC3, although the exact 

functions of this deacetylase are still unknown. 

HDAC1 and HDAC2 are the best characterized among the HDAC proteins 

generally found in stable, multicomponent complexes of proteins, which 

are then recruited by DNA binding proteins. Three complexes containing 

HDAC1 and HDAC2 have been characterized thus far: the Sin3, the NuRD 
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(Nucleosome Remodeling Deacetylase), and CoREST (REST 

Corepressor 1) complexes [83]. The Sin3 complex includes a central core 

composed of SAP18 (Sin3A-associated protein of 18 KDa) and SAP30 

(Sin3A-associated protein of 30 KDa) proteins, and mSin3A, which 

stabilizes the complex serving as scaffold structure for various DNA 

binding proteins [89]. The NuRD complex also contains a core complex of 

MTA2 (Metastasis-associated protein 2), which is related to protein MTA1 

(Metastasis-associated protein 1) and CHD3 (Chromodomain-helicase-

DNA-binding protein 3)  and CHD4 (Chromodomain-helicase-DNA-binding 

protein 4) also called Mi-2α and Mi-2β respectively, which possess DNA 

helicase/ATPase domains found in the SWI/SNF (SWItch/Sucrose Non-

Fermentable) family of chromatin remodeling proteins [90].  

The CoREST complex includes HDAC1 and HDAC2 but not RbAp46 (Rb-

associated protein 46) or RbAp48 (Rb-associated protein 48). Another 

member of this complex is p110 [78]. 

HDAC4 and HDAC5 associate with HDAC3 [78] to form a complex with  

N–CoR (nuclear receptor corepressor) and SMRT(silencing mediator for 

retinoid and thyroid receptors)  [91]. Interaction of HDAC4 or HDAC5 with 

14-3-3 proteins has been discovered as sequester mechanism of the 

protein into the cytoplasm. When they dissociate HDAC-4 and HDAC-5 

translocate to the nucleus where they bind HDAC-3  and repress gene 

expression [92,93]. 

 

I.B.5.2. Sirtuin Family Members   

The third family of histone deacetylases, sirtuins, are homologues of the 

yeast Sir2 gene, which function is related to chromatin silencing, cellular 

metabolism, and aging [94]. In humans have been described seven 

sirtuins, SIRT1-7, which sequences have a mean of 300-400 amino acids, 

except that for SIRT1 (747 amino acids). Sirtuins possess several 

conserved sequence motifs. The catalytic domain of about 275 amino 

acids consists of two sets of CXXC motifs, which may function as zinc 
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finger domains [95], and more hydrophobic regions that may function as 

leucine zippers [96]. Sirtuins deacetylase activity is dependent by the 

presence in the reaction of NAD+ [97], whereas yeast Sir2 possesses an 

intrinsic ADP-ribosyltransferase activity [95]. 

SIRT-1 deacetylates p53, repressing its activity of transcriptional promoter 

of anti-apoptotic genes in response to DNA damage [98,99-100,101].  

 

I.B.6. HDACs inhibitors 

HDACs inhibitors (HDACI) were developed initially like molecules of 

oncologic interest because of their anticancer potential. Subsequently, the 

spectrum of therapeutic applications of these drugs was extended also to 

other human pathologies such as central nervous system diseases, on the 

basis of promising in vivo applications to polyglutamine-repeat diseases. 

Great efforts have been made to develop other compounds with 

characteristics similar to already known HDACI, in order to treat brain 

disorders [102]. HDAC inhibitors such as trichostatin A (TSA) and 

suberoylanilide hydroxamic acid (vorinostat, also known as SAHA), inhibit 

all zinc-dependent HDACs and for this reason are called pan-HDACI 

(Figure 2). These molecules cross the blood–brain barrier (BBB) and 

share the mechanism of action, committed to their hydroxamate moiety 

that is able to bind the zinc ion at the HDAC active site to inactivate the 

enzyme. Sodium butyrate and 4-phenylbutyrate are fatty acid derivatives 

that inhibit most class I and II HDACs, except HDAC-6. Valproic acid is 

another HDACI that not only is capable to cross the BBB but possesses 

also anticonvulsant properties, in particular this molecule inhibits class I 

and class IIa HDACs, but not class IIb [103].  

MC1568 selectively inhibits the HDAC class IIa. MS-275 is a synthetic 

benzamide derivative that preferentially inhibits HDAC1, compared with 

HDAC2, 3 and 9, and has little or no activity against HDAC4, 6, 7, and 8. 

This drug also passes the BBB easily and appears to produce no severe 

side effects. Apicidin, a cyclic tetrapeptide, inhibits HDAC2 and 3 in the 
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low nanomolar range and HDAC8 in the high nanomolar range, but does 

not affect HDAC1 or class II HDAC [104]. Romidepsin (FK-228), another 

cyclic tetrapeptide, also potently inhibits HDAC1 and 2 [105]. Tubacin is a 

catalytic domain-targeting small molecule inhibitor showing high selectivity 

for HDAC6 and for the deacetylation of α-tubulin, a microtubule 

component [106]. Nicotinamide, also known as niacinamide, is a precursor 

of NAD+ and a competitive class III HDAC inhibitor that can be given orally 

[107]. 

 

 

 

Figure 2. Classification of HDACs and HDACI. Jessica E. Bolden, Melissa J. Peart and Ricky W. 

Johnstone Nature Reviews Drug Discovery 5, 769-784 (September 2006). 

 

 

I.B.7. Neuroprotection by HDAC Inhibition in Cellular Models 

HDAC inhibition exerts a neuroprotective effect in both in vivo and in vitro 

models of brain disorders. Pioneering study support that levels of the 

HATs CBP/p300 and histone proteins acetylation were decreased during 

MC1568
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apoptosis induced by potassium deprivation of cultured primary cerebellar 

granule cells, and during signaling activation of β-amyloid precursor 

protein (APP) in cultured primary cerebral cortical neurons from rodents 

[108]. Moreover, overexpression of CBP/p300 protected these neurons 

from proapoptotic insults. In cortical neurons, Ryu and colleagues showed 

that treatment with TSA, sodium butyrate, or vorinostat protected against 

glutathione depletion-induced oxidative stress; neuroprotection involved 

the acetylation and subsequent activation of the DNA binding activity of 

Sp1 [109]. However, it is well known that some HDAC inhibitors, such as 

TSA, have basal toxicity and prolonged treatment at high doses often 

induces neuronal death, so compromising their neuroprotective effects 

[110]. HDAC inhibitor-induced neurotoxicity could be partly due to 

‘derepression’ of genes involved in apoptosis including Bim and B-myb 

[111]. In fact, Langley and colleagues found that a two-hour pulse 

treatment with TSA sufficed to rescue cortical neurons from oxidative 

stress without obvious toxicity; protection was associated with 

transcriptional activation of the cell-cycle inhibitor p21waf1/cip [112]. 

Glutamate-induced excitotoxicity has been implicated in the 

pathophysiology of many neurodegenerative and neuropsychiatric 

diseases; these include stroke, Huntington’s disease, amyotrophic lateral 

sclerosis, spinal cord and traumatic brain injury, cerebellar degeneration 

and possibly Alzheimer’s disease, Parkinson’s disease and mood 

disorders. Notably, Leng and Chuang demonstrated that valproic acid, 4-

phenylbutyrate, or TSA treatment protected against glutamate-induced 

excitotoxicity in brain, with concomitant transcriptional activation and 

induction of α-synuclein, a presynaptic protein of unknown function. 

Recent experiments demonstrate that overexpression of endogenous α-

synuclein plays a neuroprotective role; this appears to involve upregulation 

of the cytoprotective protein B-cell lymphoma 2 (Bcl-2) but downregulation 

of Ube2n (Ubiquitin conjugating enzyme E2 N), a proapoptotic, ubiquitin-

conjugating enzyme. A subsequent study showed that α-synuclein 
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protected cerebellar granule cells from 6-dihydroxydopamine-induced 

death. It appears that α-synuclein is neuroprotective in the cytoplasm, but 

becomes neurotoxic once translocated to the nucleus, where it inhibits 

HAT activity [113,114, 115]. A more recent study found that valproic acid 

and other class I and II HDAC inhibitors (e.g. sodium butyrate, 4-

phenylbutyrate, and TSA) potentiated these neuroprotective effects 

against excitotoxicity, when used in conjunction with lithium, another mood 

stabilizer with a robust neuroprotective profile [116]. Taken together, these 

findings suggest that HDAC inhibitors induce the expression of multiple 

downstream targets that might work collectively to elicit neuroprotective 

effects. Furthermore, HDAC inhibitors increase the expression of 

neurotrophins, molecules that play prominent roles in neuronal 

development, synaptic plasticity, and neuronal survival. For instance, 

Yasuda et al. found that brain-derived neurotrophic factor (BDNF) was 

induced in rat cortical neurons by treatment with valproic acid, sodium 

butyrate or TSA [117]. Hong and colleagues found that both BDNF and 

glial cell line-derived neurotrophic factor (GDNF) were induced by class I 

and II inhibitors in primary cultures of astrocytes from rat midbrain [118, 

119, 120]. Considerable previous studies have reported that HDAC 

inhibitors exerted neuroprotective effects by preventing microglia 

activation, and anti-neuroinflammatory effects in some central nervous 

system (CNS) diseases [121]. The anti-inflammatory effects of HDAC 

inhibitors were also found in an animal model of cerebral ischemia. Taken 

together, the in vitro studies demonstrate that HDAC inhibitors exert their 

neuroprotective effects through multiple mechanisms and that, in addition 

to neurons, glia is also target of HDAC inhibition and neuroprotection 

[122]. 
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I.B.7.1. Huntington’s Disease (HD) 

The role of HDACs in neurodegenerative disorders was primarily 

discovered through experiments showing that HDAC inhibitors were able 

to improve the cognitive and motor deficits characteristic of Huntington’s 

disease (HD). HD is a neurodegenerative disorder with autosomal-

dominant inheritage. The late onset of this disease accompanies with 

progressive motor, psychiatric and cognitive decline. A typical feature of 

this disease is a massive death in cortical and striatal neurons which 

cause is thought to be in the polyglutamine (CAG) expansion in the 5’ 

coding region of the huntingtin (htt) gene [123, 124]. 

Mutant huntingtin accumulates in the nucleus where its aggregates in 

polyQ proteins bind many different transcription factors and coactivators 

such as CBP [123, 124], thus mutant huntingtin is thought be responsible 

for transcriptional dysregulation. In fact, a lower CBP availability leads to 

dysregulation in CBP/CREB - mediated gene expression, histone 

deacetylation and neuronal loss. Early studies demonstrated the ability of 

HDAC inhibitors to rescue lethality and photoreceptor neurodegeneration 

in a Drosophila model of polyglutamine disease [125]. These findings were 

extended to the mouse models of HD by several laboratories, who showed 

that treatment with HDAC inhibitors such as sodium butyrate and 

phenylbutyrate attenuate neuronal loss, increase motor function and 

extend survival in R6/2 mice [126, 127]. 

These findings strengthen the idea that epigenetic dysregulation plays a 

critical role in the pathogenesis of HD further suggesting the efficacy of 

therapeutics as cure for the alterations in epigenetic modifications, since 

they have also beneficial effects after the onset of the disease [67]. 

 

I.B.7.2. Parkinson’s disease 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that 

affects 1% of the population over 65 [128]. 
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Although the etiology of PD is not well defined, familiar PD cases share a 

lack of nuclear α-synuclein. Recent studies explored the role of HDAC 

inhibitors as therapeutics of this progressive neurodegenerative disease. 

The initial link between PD and epigenetic dysregulation came from 

studies on Drosophila. Using a Drosophila model of PD, Feany and 

colleagues demonstrated that nuclear targeting of α-synuclein promotes its 

toxicity and that sequestration of α-synuclein to the cytoplasm is protective 

[113]. It was further shown that α- synuclein binds directly to histones, 

reduces levels of acetylated histone H3 and inhibits HAT mediated 

acetyltransferase activity [113]. One study reported that nuclear α-

synuclein binds histones to inactivate HATs including CBP, p300 and 

P/CAF, causing histone hypoacetylation and apoptosis in human 

neuroblastoma cells. These findings implicate α-synuclein in the 

degeneration associated with PD. Administration of HDAC inhibitors in 

vivo or in vitro rescued α-synuclein- induced toxicity [113]. These findings 

underline the potential of HDAC inhibitors for therapeutic intervention in 

the neurodegeneration and cognitive impairments in PD. Future studies 

are needed to examine the efficacy of HDAC inhibitors in animal models 

for PD [67].  

 

I.B.7.3. Alzheimer’s disease  

Alzheimer’s disease (AD) is the fourth most common cause of mortality in 

the USA, affecting approximately the 50% of people over their eighties in 

industrialized countries. The clinical onset is characterized by progressive 

memory and mood changes, ultimately leading to dementia. The typical 

hallmark of the disease is the accumulation of the extracellular β-amyloid 

(Aβ) in the brain, and hyperphosphorylation of Tau protein. Toxic Aβ 

peptides derivate by the aberrant double cleavage of the APP (amiloid 

precursor protein) which normal processing produces physiological and 

non toxic substrates. Tau protein is an important protein involved in the 
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stabilization of microtubules structure, whereas its phosphorylation 

induces disassembling of cytoskeleton filaments.  

A follow-up study by Guan et al. elegantly demonstrated that mice 

overexpressing HDAC2, but not HDAC1, exhibited decreased dendritic 

spine density, a decreased synaptic number, a reduced synaptic plasticity, 

and impaired memory formation [129]. Conversely, Hdac2 knockout mice 

show memory improvement. Further, HDAC2 is involved in the regulation 

of hippocampal mouse synaptic formation and in neuronal plasticity by 

exerting its deacetylase activity on several promoter genes related to 

neuronal activity, synaptic formation and plasticity.  

The memory impairment showed by HDAC2 overexpressing mice was 

prevented via administration of the HDAC inhibitor vorinostat. These 

findings shed light on the role of chromatin modifications caused by  

HDAC2 in neuronal mechanisms of synaptic plasticity and memory 

formation. Experiments performed on animal models of AD such as 

Tg2576 mice, consistently demonstrated that in these animals daily 

injections of 4-phenylbutyrate reversed spatial memory deficits via 

normalization of hippocampal tau phosphorylation level, without affecting 

Aβ levels [130]; whereas on APP23 mice a daily administration of low 

dose of valproic acid (30 mg/kg, i.p.) significantly reduced Aβ plaques 

formation, and this effect was highly visible by administrating the drug 

during the early mouse life (seven months as minimum) [131].  

Nicotinamide administration induced chronic but slight increase in 

endogenous p25, leading to improvement in learning and memory skills. 

Although nicotinamide possesses a class III HDAC inhibitor effect, it has 

been demonstrated that it has both sirtuin-dependent and -independent 

functions. These findings suggest a therapeutic beneficial role of 

nicotinamide via oral administration as medical treatment for this disease.  
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I.B.7.4. Amyotrophic Lateral Sclerosis (ALS) 

The Amyotrophic Lateral Sclerosis (ALS) is a multifactorial disease where 

the motor neurons are injured. Among the multiple mechanisms that 

trigger neuronal death, alterations in genes transcription is crucial to 

perturb the cellular homeostasis, leading to the activation of many 

deleterious pathophysiological cascades. Recent findings demonstrate 

that the administration of sodium phenylbutyrate, an HDAC inhibitor, 

significantly extended survival and improved both clinical and 

neuropathological phenotypes in the G93A transgenic ALS mice model. 

Phenylbutyrate administration ameliorated histone hypoacetylation 

observed in G93A mice and induced expression of Nuclear Factor-kB (NF-

kB) p50, the phosphorylated inhibitory subunit of NF-KB (pIKB) and beta 

cell lymphoma 2 (bcl-2), but reduced cytochrome c and caspase 

expression. Moreover, curcumin, an NF-KB inhibitor, and mutation of the 

NF-KB responsive element in the bcl-2 promoter, were found able to block 

the butyrate-induced bcl-2 promoter activity. Several evidence 

demonstrated that the pharmacological induction of NF-KB dependent 

transcription and bcl-2 gene expression is neuroprotective in ALS mice by 

inhibiting programmed cell death. Phenylbutyrate phosphorylates IKB, 

allowing the translocation of NF-KB p50 to the nucleus, or acts directly on 

the acetylation of NF-KB p50. NF-KB p50 mediates the transactivation of 

bcl-2 gene expression which up-regulation blocks the cytochrome c 

release and the subsequent caspase activation, slowing motor neuron 

death. Several studies report that transcriptional and post-translational 

pathways ultimately promote motor neuron survival and ameliorate 

disease progression in ALS mice. According with these findings, it has 

been provided a possible role of phenylbutyrate as therapeutic approach 

for the treatment of patients with ALS [132]. 
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I.B.8. HDAC Inhibition in Animal Models of cerebral ischemia 

Stroke is the third cause of mortality in the United States and the first in 

terms of  disabilities in adults [133]. It displays an annual incidence of 

600,000 new victims which 30% remains severely disabled. Several stage 

III clinical trials failed and their inefficiency is mostly due to a limited time 

windows for medical first aid. In order to shed light to new neuroprotective 

strategies to rescue and repair the ischemic injury, new molecular 

mechanisms need to be discovered.  

In this field, modulation of translational mechanisms could be efficient 

subject of study among molecular strategies. Ischemic stroke could 

involve the whole brain (global ischemia) or just a limited area (focal 

ischemia). Global ischemia occurs in case of cerebral blood flow accidents 

such as cardiac arrest, surgery, hemorrhage and gaseous asphyxia via 

monoxide poisoning. Focal ischemia, instead, refers to localized 

cerebrovascular interruptions leading to selective damages. Hippocampal 

neurons in CA1 region are very sensible to the blood pressure decrease 

and their injury usually associates with severe cognitive disabilities.   

The substantial delay occurring between ischemic injury and neuronal 

death is consistent with a role for transcriptional changes. The 

transcriptional repressor RE1 silencing transcription factor REST (also 

named NRSF), widely expressed during the embryonic development, 

plays a crucial role in terminal neuronal differentiation [134, 135]. REST 

represses specific neural genes involved in synaptic plasticity such as 

vescicular proteins that play a pivotal role in trafficking mechanisms, 

structural proteins, voltage-gated channels and ligand-operated receptors 

[134,135]. REST activity is expressed both in neural progenitors that in 

non neural cells. During neuronal differentiation, REST orchestrates a 

large set of epigenetic modifications splitting up neuronal cells from non-

neuronal cells. Recent studies report that the high vulnerability of 

hippocampal neurons during a global ischemia strictly associates with 

anomalous accumulation of nuclear REST that  represses some 
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transcriptional mechanisms needed for the neural function [136]. In fact, 

REST represses specific target genes via binding of MeCP2 and other 

corepressor complexes that possesse Histone 3 Lysine 9 (H3K9) 

deacetylase and methylase functions. Recent findings proved further the 

role of REST on hippocampal selective neuronal loss via recruitment of 

CoREST, G9a and MeCP2 to the promoters of specific genes which 

epigenetic remodeling is cause of deleterious effects of the global 

ischemia [137]. The abnormal regulation of REST remodelling also affects 

a widespread number of others disorders such as the pathogenesis of the 

Down’s Syndrome, Alzheimer’s disease, Huntington’s disease, epilepsy 

and X-linked mental retardation [134, 135]. Two recent studies 

demonstrate the therapeutic role of HDAC inhibitors in the field of neuronal 

loss and cognitive decline in neurons injured by ischemia.  In fact, Chiarugi 

and collegues reported that intraperitoneal SAHA injection (HDAC 

inhibitor) in mice from 0 to 6 h after ischemic insult obtained through the 

middle cerebral artery occlusion (MCAO), was able to prevent H3 

deacetylation and promote the neuroprotective expression of Bcl-2 and 

Hsp70. Thus, the resulting reduction in volume infarct suggests a 

neuroprotective effect for SAHA [138]. Furthermore, Moskowitz, Dirnagl 

and collegues observed that the abnormal DNA methylation in mice 

subjected to ischemic MCAO model was prevented by administration of a 

combination of the demethylating agent 5-aza-2’-deoxycytidine and 

trichostatin A (HDAC inhibitor), conferring stroke protection. This effect 

was evident in mice subjected to mild but not to severe ischemic insult 

[139]. These findings highlight the potential therapeutic role of HDAC 

inhibitors in case of ischemic stroke as neuroprotective intervention [67].  
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I.C. SODIUM CALCIUM EXCHANGER  

 

The Na+/Ca2+ exchanger (NCX) is a nine transmembrane protein, 

distributed throughout the brain and the heart. NCX was primarily 

discovered and characterized in late 1960s from many independent 

laboratories: from Baker et al. in the UK [140, 141], also from Reuter and 

Seitz in Germany and Switzerland [142], and from Martin and De Luca in 

the United States [143].  

These laboratories individually discovered the presence of a 

countertransport mechanism that exchanged Na+ and Ca2+ ions across the 

plasma membrane of different excitable but also non excitable cells. In 

1988 and in 1990, Philipson and colleagues successfully performed the 

purification and cloning of the first isoform of NCX, the so-called NCX1, 

and some years later, the same investigation group cloned NCX2 [144] 

and NCX3 [145]. Among NCX isoforms, NCX2 and NCX3 are selectively 

expressed in the brain [146] and in the skeletal muscle [145]. The 

regulation of intracellular ionic concentrations of the previously mentioned 

cations, plays important roles in several cellular homeostasis mechanisms 

in excitable cells. In fact, sodium regulates cellular osmolarity, plays a 

crucial role in the induction of action potential [147], and also acts in 

transducing signaling pathways [148].  

Importantly, also calcium is involved in several cytosolic intracellular 

signaling mechanisms as second messenger. The sodium calcium 

exchanger works in association with other selective ionic channels and  

ATP-dependent pumps involved in the physiological mechanism of 

regulation of cytosolic ions concentrations [149]. NCX exchanges one Ca2+ 

ion with three Na+ ions in a bidirectional working manner (forward and 

reverse). The forward mode operates extruding one Ca2+ ion with the 

influx of three Na+ ions. This mechanism plays a crucial role in restoring 

intracellular Ca2+ levels as consequence of physiological rises of the 

cation. By contrast, in the reverse mode NCX carries out three Na+ and 
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one Ca2+ enters the cell. This operating mode is essential to re- equilibrate 

the Na+ concentration after membrane potential depolarization rises, thus 

reducing the transmembrane Na+ electrochemical gradient. The typical 

accepted stoichiometry 3:1 for NCX has been revisited in the last years. In 

addition to the major 3:1 stoichiometry, new ionic flux ratios from the 1:1 to 

a maximum of 4:1 are validated as functional working mode. The 

exchanging depends on the intracellular concentration of the two cations 

[150-151].  

 

I.C.1. State of Art of NCX1, NCX2 and NCX3 isoforms 

The knocking-out of NCX1 brings to embryonic lethality, whereas the 

overexpression of this exchanger isoform triggers heart dysfunction. To 

overcome these limitations and to shed light on neuroprotective role of 

NCX1, two conditional genetically modified mice have been generated. 

These animals, under tamoxifen administration, were able to decrease or 

increase NCX1 expression in neurons belonging to cortex and 

hippocampus, the two main regions involved in stroke. It has been 

demonstrated that the conditional overexpression of NCX1 in hippocampal 

and cortical neurons was able to trigger the phosphorylation of Akt [152], 

that elicits neuronal survival during brain ischemia. By constrast, the 

conditional knock-out of NCX1 in the same neuronal populations reduced 

the amount of phospho-Akt (p-Akt), leading to a  worsening ischemic brain 

damage [153].   

The neuroprotection exerted by the ischemic preconditioning is reached 

through different molecular effectors. It has been found that the isoforms 1 

and 3 of the Na+/Ca2+ exchanger play a crucial role in this protective 

mechanism. It has been demonstrated that the reduction of NCX1 

expression induced by ischemia was prevented when the animals were 

exposed preventively to preconditioning stimulus. After preconditioning 

plus tMCAO, NCX1 and NCX3 expression was markedly increased 



27 

 

compared to ischemic non preconditioned animals. Preconditioning 

triggers also the increase in the phosphorylation of Akt, further 

demonstrating the neuroprotective role of this protein related to NCX1 and 

NCX3 [154]. The neuroprotective preconditioning effects are dependent on 

several mechanisms, among these the activation of sensor molecules 

(such as hypoxia inducible factor-1 - HIF-1)  is crucial for neuroprotection. 

In particular, HIF-1 is a nuclear effector, which expression is induced by 

OGD or ischemic preconditioning and upregulates the transcription of 

NCX1 determining a neuroprotective effect in ischemic brain [155]. The 

regulation of NCX1 transcription has been widely investigated and it has 

been found that during tMCAO in rats Sp3 (specificity protein 3) and Re-1 

silencing transcription factor (REST) colocalize with HDAC1 and HDAC2 

on ncx1 promoter thus repressing NCX1 expression, whereas after 

preconditioning stimulus NCX1 transcription is elicited by the 

transcriptional activators Sp1 and HIF-1 forming a complex with histone 

acetyltransferase p300 on ncx1 promoter. Changes in NCX3 mRNA and 

protein expression were not associated with either the 

REST/Sp3/HDAC1/HDAC2 complex in tMCAO or the Sp1/HIF-1/p300 

complex in ischemic brain preconditioning [156]. Nowadays, the regulation 

of ncx3 promoter activity is not yet investigated during ischemia or after 

ischemic preconditioning. It has been demonstrated by Jeon et al. that 

NCX2 has also a neuroprotective role, in fact knockout mice for NCX2 

subjected to tMCAO displayed an increased neuronal loss with a 

consequential enlargement of infarct volume compared to wild-type 

animals. In a model of ischemia in vitro on hippocampal slices from ncx2-/- 

mice, it has been reported an increase of intracellular calcium level with 

membrane depolarization and slower recovery in population spike 

amplitudes compared to wild-type. These results indicate that NCX2 

working in forward mode plays a neuroprotective role, removing calcium 

from the cells during ischemia  [157].   
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I.C.2. Distribution of NCX isoforms in different tissues 

NCX1 is the most expressed protein of the SLC8 gene (solute carrier 

gene) family encoding for the Na+- Ca2+ exchangers. It was chiefly 

characterized and cloned as cardiac protein, then it has been disclosed in 

brain and kidney and minimally in other tissues [158–159]. NCX1 gene is 

alternatively spliced into two well-known sites giving tissue specificity [146, 

160]. 

The first site is located at the 5' untranslated region (5′ UTR) and does not 

alter the structure of the encoded protein. Otherwise, the presence of 

three different promoters independently drives the tissue specific 

expression for NCX, supposedly in response to different physiological 

requirements. [161,162]. 

The second site of splicing takes place into the coding region of NCX 

transcript, whereas two mutually exclusive and four cassette exons 

encode for a huge number of isoforms that differs just for the cytosolic 

inner portion of the exchanger [146,160,163]. 

The two mutually exclusive exons includes the exon A in the transcript of 

excitable cells, primarily muscular and nervous cells,  and the exon B in 

non-excitable cells. Nowadays, a combinatory pattern for cassette exons 

in tissues is not still available. Unlike NCX1, the other members of the 

SLC8 family show a more stringent tissue-specific expression pattern. In 

fact, NCX2 is present in neurons, but minimally in other sites and NCX3 

was found mainly expressed in the brain and skeletal muscle [164]. 

Recently, NCX3 has been detected also in the immune system and bones. 

Remarkably, NCX3, but not NCX2, is alternatively spliced and these 

spicing variants differ for the cytoplasmic region as it has already been 

demonstrated for NCX1. Since the three Na+ - Ca2+ exchangers, NCX1, 

NCX2 and NCX3 isoforms display a high homology of sequence, it is 

widely accepted that structure and the functional role of  NCX1 can be 

generally extended also to NCX2 and NCX3 isoforms [159-165]. 
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I.C.3. Molecular Biology of NCX3 

The cloning of the Na+- Ca2+ exchanger isoform 3 (NCX3) was achieved 

from rat at the Philipson’s laboratory in 1996 [145]. NCX3 displays 

approximately the 80% sequence homology with the other isoforms of the 

Na+-Ca2+ exchanger family NCX, including NCX1 and NCX2. The NCX 

structure expresses a different percentage of homology within the isoforms 

sequence. For istance, the 9 transmembrane domains share more than 

the 75% of homology within NCX1 and NCX2, but not the cytoplasmic f-

loop with just the 60%, thus suggesting that the transport mechanism 

requires the conservation of the transmembrane regions, whereas the 

NCX3 capacity is specifically restricted to the cytoplasmic loop. The exact 

structure of calcium-binding domain (CBD1) of NCX3 remains unknown. 

Nonetheless, the conservation of some key acidic and basic residues 

leads to the same Ca2+ binding sites and a structure most likely similar to 

NCX1. Therefore, the regulation of NCX3 capacity of exchange by CBD1 

is probably comparable to NCX1 [166]. The comparison of CBD2 has 

proven to be more difficult because of the alternative splicing of the NCX 

family causing various possibilities of sequence for CBD2. 

The NCX gene is spliced in different variants. It has been described more 

than 15 splicing variants for the isoform 1 and a exiguous number of 

variants for NCX3. NCX2 is the unique gene that does not present 

alternative splicing forms. NCX1 gene displays a tissue specific 

distribution [160,163;167]. The NCX3 gene is composed of 9 exons (exons 

from 1 to 9) [163]. Interestingly, exon 2 and 3– also named exon A and B, 

respectively - are mutually exclusive, whereas exon 4, named exon C, is 

optional. Thus, in the rat, three splice variants are detected. A variant 

containing exon A and C is found in skeletal muscle (NCX3-AC), while 

variants expressing the exon B are expressed in the brain (NCX3-B and 

NCX3-BC). Furthermore, in humans three truncated forms of NCX3 have 

been discovered of which two variants are expressed in the fetal brain 

(exons4- 9 and 6-9) [168]. The third truncated variant is expressed in 
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skeletal muscle (exons 2 and 6- 9) [169]. These human truncated forms 

are likely to be under the control of alternative promoters. Recently, the 

comparison of CBD2 deriving from NCX3-B and NCX1-AD exhibited a 

similar conformation in structures like the β-sandwich and the α-helix of 

the F-G loop [170]. The splicing variants of NCX1 display a various 

orientation in the α-helix which has been found associated with the 

activation or inhibition during the rise in intracellular calcium [Ca2+]I [171]. 

Conversely, the NCX3 helix found subsequently to the splicing region 

shows a unique orientation among the splicing variants, expressing an 

[Ca2+]i-dependent activation. NCX1 exons A and B have been found not 

only individually involved in the signal transmission to the transmembrane 

domains, but also in the mechanism to relieve the Na+-mediated 

inactivation [166]. The other NCX1 exons (C, D, E, and F) may regulate 

the Ca2+-binding affinity of CBD1 [172]. Overall, NCX3 splicing exons A, B 

and C are evolutionary well conserved among species, even a minor 

sequence homology compared with the NCX1 and NCX2 exons, which 

has been estimated approximatively around 55 and 65 %.Thus, it is quite 

impossible to apply the effect observed during the alternative splicing of 

NCX1 to NCX3. In addition, among the splicing variants, NCX3 exhibited 

different Ca2+ binding sites, which were identified three for NCX3-B and 

two for NCX3-AC. Interestingly, they expressed a different affinity for the 

Ca2+ [173]. 

According to the NCX structure, we can infer that differences among the 

axon A and B may have effect both on the Na+-dependent inactivation 

[166] and on the sensitivity to Ca2+ through changes in conformation of 

CBD1-CBD2. Finally, we can assume that in the last years important 

works elegantly investigated the mechanism of translocation in NCX and 

its regulation though CBD1 and CBD2 domains. Remains to reveal the 

mechanism that allows to the intracellular loop to influences the 

transmembrane segments and shed light on the role of the different 

alternatively splicing form of NCX3 [174]. 
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I.C.4. Identification of  NCX3 minimal promoter sequence 

In the 250 bp region immediately upstream of the exon 1 it has been 

identified the human SLC8A3 minimal promoter that displays similarities 

with SLC8A1 brain promoter. SLC8A3 minimal promoter includes in its 

sequence Sp1 and AP-2 (Activating Enhancer Binding Protein 2 Alpha) 

elements that are able to confer constitutive transcription and tissue 

specific expression, respectively. GC bases enrich both the sequences of 

SLC8A3 promoter and of exon 1, forming typical cytosine and guanine 

dinucleotide (CpG) island as it occurs at the 5' end of several 

housekeeping genes and oncogenes. The sequence of SLC8A3 promoter 

includes multiple AP-2 sites important for the regulation of physiological 

functions in nervous system, in fact members of the AP-2 transcription 

factor family are crucial for the vertebrate development of neuronal tube 

and neuronal crest derivatives. During mouse development, these 

transcription factors also differentiate in spatial and temporal expression 

[175]. The members of AP-2 family display an high tissue specific 

expression in neuroepithelium and neural crest [176]. Several consensus 

elements for AP-2 factors are present in promoters of peculiar neuronal 

genes such as choline acetyltransferase, proenkephalin; human fragile 

mental retardation promoter [FMR1], [177,178] as well as in other cellular 

types and genes (i.e., keratin, sodium-phosphate cotransporter [Npt2] of 

kidney proximal tubules and viral genomes as MMTV [179–180]). A single 

promoter region is required for the tissue-specific expression of the 

SLC8A3 gene, whereas the transcription of SLC8A1 gene depends from 

multiple tissue-specific promoters. SLC8A3 gene contains elements for the 

muscle-specific transcription factors MyoD (Myogenic Differentiation) and 

GATA factors 2/3; in agreement with the fact that the ortholog rodent gene 

is predominantly expressed in brain and skeletal muscles [145]. The 

SLC8A3 promoter has also consensus sequences for transcription factors 

AP1 (activating protein-1) , and Egr-1 (Early growth response protein 1 -  
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also known as NGF1-A, Krox24, Zif/268, or Tis 8). These are a subgroup 

of immediate early genes (IEGs) that are activated rapidly and transiently 

in neuronal cells in response to environmental stimuli, such as 

neurotransmitters and neurotrophin receptor stimulation, regulating the 

expression of subset of genes termed delayed-response genes. The 

dimerization of the Jun proteins (c-Jun; JunB and Jun D) and Fos proteins 

(c-Fos, FosB, Fra-1, etc.) through their leucine zipper motifs leads to the 

formation of AP-1 complex that binds to the consensus sequence 

TGACTCA. This sequence was first named as the element responsive to 

phorbol ester activation of protein kinase C (PKC). Jun proteins can also 

homodimerizes or heterodimerizes with Fos or with transcription factors of 

the ATF/CREB family. The composition of the AP1 complex can affect the 

affinity for consensus sequences and influence transactivation potential. 

Many different stimuli can regulate the transcription factors of the Egr 

family in mammalian brain, since they lack of bZip domain their binding to 

DNA can be achieved through zinc finger motifs. Egr-1 is induced rapidly 

after the activation of the NMDA receptor [181]. This increase of Egr-1- 

mRNA has been demonstrated in primary cultures of cerebellar, 

corticostriatal, cortical, and hippocampal neurons after stimulation by 

intraperitoneal administration of NMDA [182]. The MK-801, a blocker of 

NMDA receptors, downregulates the expression of Egr-1 [183]. The 

physiological synaptic activity can stimulate NMDA receptor and 

upregulates the Egr-1 expression, whereas kainate triggers the induction 

of all four members of the Egr family [184,185]. The link between Egr-1 

and SLC8A3 gene transcription is not yet clarified, however it seems that 

NMDA receptor activation triggers the upregulation of SLC8A3 

transcription. The physiological role of this functional link may be due to 

the role played by NCX3 in extruding calcium after NMDA receptor 

activation. A functional link between NMDA receptor and NCX3 is also 

suggested by their high expression in the hippocampus, especially in the 

CA1 region [182,164]. The SLC8A3 gene promoter contains the sequence 
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TGACGTGC identified like a CRE element [186, 187]. The CRE element is 

included in several other cAMP-responsive gene promoters, such as cfos, 

Zif/268, or Egr-1 and proenkefalin [188]. Calcium influx as well as cAMP 

triggers the activation of the c-fos gene through the CRE element that, for 

this reason, is called Ca2+ response element (CaRE). The presence of the 

CRE element has attracted much attention since it could confer rapid 

inducibility to the SLC8A3 gene, similar to that of IEGs. Several DRE 

elements are present in the SLC8A3 gene in the region downstream of the 

TATA box and in the exon 1; these sites are able to bind DREAM 

(downstream regulatory element antagonist modulator) [189,190,191-192].   

 

Figure 3. Regulation of ncx3 human gene transcription: role of DREAM and CREB. Gabellini 

N . Molecular Neurobiology, 2004.  
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I.D. PUTATIVE TRANSCRIPTION FACTORS REGULATING 

NCX3 AND THEIR ROLE IN NEUROPATHOLOGICAL 

CONDITIONS 

 

I.D.1. CREB 

In neurons, a wide range of extracellular stimuli activates signaling 

pathways like so CREB family members. Gene expression dependent by 

CREB pathway activation has been implicated in a complex and various 

series of processes ranging from development to plasticity, and eventually 

related also to diseases. CREB (cAMP response element binding protein) 

belongs to the bZIP superfamily of transcription factors. Within this 

superfamily, CREB and the closely related factors CREM (cAMP response 

element modulator) and ATF-1 (activating transcription factor 1) include a 

subcategory referred to as the CREB family. Belonging to the bZIP 

transcription factors, CREB family members contain a leucine zipper 

domain that facilitates CREB dimerization, and a C-terminal basic domain 

which role is binding with DNA. There is a high degree of homology 

among CREB, CREM, and ATF-1, allowing them to form both homo- and 

heterodimers, and each of these complexes takes place at the same side 

of cis-regulatory element as reviewed in De Cesare et al. 1999; Mayr and 

Montminy 2001 and Shaywitz and Greenberg 1999 [193, 194, 195]. The 

remaining domains of CREB family members mediate the interaction with 

coactivators and components of the transcriptional machinery to the DNA, 

facilitating RNA synthesis of genes having an important role in the nervous 

system. The most common CREB isoforms, CREBα and CREBΔ, display a 

kinase inducible domain (KID) between two domains enriched of 

glutamine residues, the so-called Q1 and Q2/CAD (constitutive active 

domain). The unique difference between these two activators is the 

presence of an α domain.  Following stimulation, the KID domain 
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phosphorylated  at the residue of Serine 133 (Ser-133), can bind the 

transcriptional coactivator, CREB binding protein (CBP) via its KIX 

domain [196, 197, 198, 199]. As result of the interaction stimulus-

dependent between these two domains, the transcriptional machinery 

starts the synthesis of the inducible genes. Q2/CAD domain interacts with 

components of the basal transcriptional machinery allowing the stimulus-

independent CRE-driven gene expression [200, 201, 202, 203].  

 

I.D.2. DREAM 

DREAM was primarily identified as the transcriptional repressor of the 

human gene for the opioid peptide dynorphin. Dynorphins are members of 

the opioid peptide family which are involved in memory formation and 

chronic pain adaptation. Dynorphin peptide controls the release of 

neurotransmitters as well as it can block LTP in the hippocampus by 

inhibiting excitatory neurotransmission from synaptic terminals [204, 205]. 

The DNA sequence required for the transactivation of prodynorphin 

transcription via cAMP and Ca2+ has been identified in the first exon of the 

gene (at position +40), and termed dynorphin downstream regulatory 

element (DRE) [190]. The transcription factor binding to the DRE was 

subsequently identified and includes four Ca2+ binding domains of the EF 

hand type. Nowadays, it represents the unique transcription factor known 

to be directly regulated by Ca2+. When loaded with Ca2+, DREAM 

undergoes conformational changes causing its detachment from DRE 

sites, thus relieving the transcriptional repression [206,207]. The ability to 

bind DNA of some members of the basic helix-loop-helix (bHLH) 

transcription factor family is also regulated by Ca2+, through the interaction 

with Ca2+-loaded calmodulin [208,209]. 

The DREAM sequence presumably includes four EF-hands, displaying 

high homology to Ca2+-binding proteins of the recoverin subfamily. 

Mutation of two residues within any of the functional EF-hands, the so-

called EFmutDREAMs, did not affect the binding to the DRE but 
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completely prevented the unbinding in the presence of increasing 

concentrations of Ca2+. It seems like the derepression of DRE-dependent 

gene expression after PKA activation [190] is related to specific protein–

protein interactions between DREAM and nuclear effectors of the 

transcriptional effects of cAMP. Analysis of the 5’ regulatory regions of 

many Ca2+-regulated genes has shown the presence of one or several 

functional DRE sites downstream from their TATA boxes [190, 191]. This 

suggests that DREAM mediated transcriptional derepression is a generally 

required step prior to transcriptional activation of many genes.  

A new search showed identity between DREAM and calsenilin, a protein 

able to interact with presenilin-2 found in a yeast two-hybrid screen using 

the carboxy terminal part of presenilin-2 as a bait [210]. Double 

immunostaining after overexpression of N-tagged calsenilin in Cos cells 

showed the colocalization with presenilin-2 in the cytoplasm and the 

endoplasmic reticulum and suggested that the colocalization at the ER, in 

particular, was increased after calcium stimulation [210]. More recently, 

also using a yeast two-hybrid screen to identify components of the protein 

complex responsible for the A-type potassium currents, a protein identical 

to DREAM called KchIP-3 (potassium channel interacting protein 3) was 

found to selectively interact with the amino terminal region of Kv4 

potassium channels [211].  

Interestingly, the interaction with the potassium channel does not depend 

on the presence of calcium. However, the change in KchIP-3/DREAM 

conformation that follows binding to Ca2+ profoundly affects channel 

properties [211]. Interestingly, in this study two other proteins related to 

DREAM, KchIP-1 and -2, were identified. In terms of the interaction with 

potassium channels, KchIP-1 and -2 are similar to KchIP-3. 

However, it is not known whether they are also able to interact with 

presenilin-2 and especially, whether they are able to specifically bind to 

DNA. Thus, the possible existence of a DREAM family of nuclear 

repressors remains to be investigated. Taken together these results 
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indicate that DREAM/KchIP-3/calsenilin might have pleiotropic functions 

through the interaction with specific DNA sequences and/or with proteins 

in different cell compartments [212-213].  

DREAM, calsenilin, and KChIP3 are the products of a unique gene [214, 

215], although the proteins are localized in different cellular compartments: 

nucleus, endoplasmic reticulum, or lysosomes and plasma membrane, 

respectively. Regulation of mRNA translation at alternative start codons 

may generate proteins with variable N-terminal peptides, which could be 

important for their localization and function. Furthermore, isoforms lacking 

the EF-hand domains are generated by alternative splicing in mouse 

[215,192]. 

 

I.D.3. SP transcription family factors 

The Sp/XKLF family (Specificity protein/Kruppel-like factor) is a family of 

transcription factors that share a common structure of cysteine histidine 

zinc fingers. The so-called Cys2His2zinc are conserved sequences placed 

in specific pattern and allow to the factors to bind DNA sequences [216].  

The Kruppel-like factor name comes from the studies performed on the 

segmentation gene discovered in Drosophila. In fact, this gene has been 

discovered to express the same zinc finger motif as well as in the human 

orthologue. In humans, it is well known as Sp1 transcription factor [217]. 

Sp1 factors contact the DNA in threes specific regions of their sequence at 

level of residues KHA, RER and RHK, respectively for the first, second, 

and third zinc finger. 

Sp/XKLF factors bind DNA sequences having the box sequence GC-

(GGGGCGGGG) and GT-(GGTGTGGGG), even changes in aminoacidic 

zinc finger are responsible for their binding affinity. GC and GT boxes play 

a crucial role in the transcriptional events related to the expression of 

housekeeping genes as well as tissue specific and viral genes [216]. 

Interestingly, these motifs have been found to have a role in maintaining 
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the demethylated state in CpG islands, as well as for the adenine 

phosphoribosyltransferase (APRT) genes.  

Sp family includes two major subcategories: Sp1 and KLFs. Sp1 factors 

share a similar structure at the N-terminal side but not at level of their zinc 

finger. KLFs, instead, represent a more heterogeneous group of factors 

[216]. Nowadays, Sp/XKLF family includes many homologies in the 

transcription factors members. In fact, among this family has been 

detected 8 Sp and 15 KLFs factors. Sp factors from 1 to 8 (Sp1-8) 

sequence takes place near the HOX gene cluster. 

Sp1 and Sp7 (Osterix) are placed on the Chromosome 13 at 12q13.13 

(HOX C); whereas Sp2 and Sp6 (KLF14) on 17q21.31/32 (HOXB); Sp3 

and Sp5 on 2q31.1 (HOX D); Sp4 and Sp8 on 7p21.2 (HOX A). The 

regulation mechanism for the transcription of these genes through GC and 

GT boxes is extremely complicated. Moreover, EKLF (Erythroid Kruppel-

like Factor), Sp4 and Sp7 has been discovered to be expressed 

specifically in same tissues as confirmed in in vivo experiments with mice 

[218, 219]. Sp1 and Sp3 are homely expressed albeit expressing specific 

functions are shown in gene ablation studies [220]. 

 

I.D.4. Structural Characteristics of the Sp Factors 

Sp1 was primarily identified as trans-activator factor of the SV40 early 

promoter [221]. In the past, many works considered Sp1 as an essential 

factor for the regulation of transcription of the genes having GC or GT 

boxes . Anyway, this thought was abandoned when different transcription 

factors, called Sp2, 3 and 4, were cloned. Later, they discovered also Sp5, 

Sp6 or KLF14, Sp7 or Osterix and Sp8 [222]. Sp5-8 share various brief 

domains with Sp1-4. Among the Sp factors from 1 to 4, (Sp1, Sp2, Sp3 

and Sp4) the presence of similar modular structure make possible to 

include these four factors in a subgroup. Instead, Sp1, Sp3 and Sp4 

contain two principal glutamine-rich transactivation domains named A and 

B  involved in the transcription activation. A series of serine/threonine-rich 
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sequences are placed adjacent to the A and B domain, being a possible 

target of post-translational modification. Sp2 factor has a unique 

glutamine-rich domain albeit it presents a highly charged domain C and a 

serine/threonine-rich region in common with the other factors. Sp2 

displays a different consensus-binding site as consequence of a 

substitution of a residue of histidine with a leucine residue in zinc finger 1 

[223]. The Sp factors generally have in their sequence a box following N-

terminal to the zinc finger domain named Buttonhead box [224]. The 

Buttonhead box (Btd element) includes a sequence of 11 conserved 

amino acids having a possible role in the transactivation potential of the 

factors as confirmed by the deletion of an overlapping region that induce a 

reduction in Sp1 activity in vitro [225].  Moreover, domain C, and primarily 

its Btd element  [226], are involved in activation SREBP-mediated (sterol-

regulatory element-binding proteins) of Sp1 or Sp3. Harrison and 

collegues in 2000 identified another conserved sequence, named Sp box 

(SPLALLAATCSR/KI), at level of the N-terminus of the proteins. Closely to 

the N-terminus, this element contains an endoproteolytic cleavage site that  

functions as target proteasome-dependent degradation in vitro [227]. 

Even not required for cleavage, the highly conserved sequence of the Sp1 

box indicates that could have a role in regulation of Sp factors proteolysis. 

Another possible role for the Sp box could refer to the control of 

transactivation potential through interaction with a presumed repressor 

[228]. Although the functions of the Btd and Sp boxes are not completely 

clear, their absence in the XKLF subgroup suggest a relationship between 

the Sp transcription factors. Moreover, the N-terminal regions of Sp5-8 are 

completely different, except for the Btd and the Sp boxes, from those of 

Sp1-4 and more closely related to each other.  
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I.D.5. Early growth response-1 (EGR-1) 

Egr-1 is a member of immediate early genes and it has three C2H2 zinc 

fingers DNA-binding domains that can recognize GC- rich sequences of 

target genes. This transcription factor can be induced rapidly by various 

stimulants such as growth factors, neurotransmitters, stress and injury. 

EGR-1 is widely expressed in the brain and regulates the transcription of 

different target genes, among these BDNF is one of the most important. In 

particular, several studies suggest a detrimental role for EGR-1 because 

of its upregulation after ischemic stroke [229]. Interestingly, it has been 

demonstrated that after ischemic insult, EGR-1 was upregulated and by 

binding the promoter of BDNF gene decreased its expression. This 

mechanism leads to a worsening of ischemic injury by attenuating 

neuroprotective effects of BDNF [230].     

 

I.D.6. Activator protein 2 (AP-2) 

Transcription factor AP-2α (TFAP2α) belongs to AP-2 family transcription 

factors which consists of five members either in humans and in mice. All 

AP-2 transcription factors are encoded by seven exons except for AP-2δ, 

and they share, at the carboxyl terminus, a highly conserved domain 

consisting in a helix-span-helix that is able to determine the dimerization 

and the binding to DNA in concert with a central basic region. In fact, 

these transcription factors are capable of forming heterodimers or 

homodimers. The N-terminal region comprises the transactivation domain, 

rich in proline and glutamine. AP-2 transcription factors have a nuclear 

localization because of their particular role in regulating gene transcription.  

AP-2 proteins are able to establish a cross-talk with several transduction 

pathways; for example they modulate the pathway of the developmental 

signaling molecule Wnt. AP-2 factors are susceptible of several 

posttranslational modifications such as PKA phosphorylation and 

sumoylation, and they can associate with other various transcription 

factors like p300, Sp-1, p53. In mice AP-2α, AP-2β and AP-2 γ, are widely 
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expressed in neural crest cells, in nervous system and throughout the 

epithelia [231].  

 

I.E. PHARMACOLOGICAL REGULATION OF NCX3  

EXCHANGER ACTIVITY 

The search for drugs capable of modulating the activity of NCX is evidently 

more important in function of its possible therapeutic use for those 

pathological states in which NCX has been proved to be altered. 

  

I.E.1. Inhibitors 

 

Inorganic cations 

The Sodium Calcium Exchanger NCX is well known to bind many different 

cations [232]. Among these, many exert an inhibitory effect due to the 

direct binding to NCX molecules or via competition with Ca2+ thus working 

as substrate for the antiporter. In fact, Ni2+ inhibits the exchanger when it  

works in reverse mode [232], probably through a competition mechanism 

that hinders the external transport of Ca2+[232]. The affinity of Ni2+ for the 

three isoforms of NCX is variable. Notably, NCX3 displays a minor 

sensitivity to Ni2+ or Co2+ in the order of 10-fold compared to NCX1 or 

NCX2 [232]. Recently, in NCX1 it was discovered a sequence of three 

aminoacids involved in the Ni2+ specific sensitivity, respectively Asp-130 at 

level of the alpha1-repeat, and Asp-825 and Glu-837 in the alpha2-repeats 

[233]. 

Peptides 

A wide number of peptides are mentioned to inhibit the activity of the 

exchanger. 
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Endogenous Exchange Inhibitory Peptides 

Within the f loop dwells a sequence of 20 amino acids, called XIP, which  

plays its auto-inhibitory effect via a mechanism dependent by Na+ 

[234,235]. The same sequence in a synthetic peptides exerts the same 

inhibitory function on the exchanger. XIP is reported to block both forward 

that reverse operation mode of all the three isoforms of NCX, since they 

share a similar XIP structure sequence. The three specific regions, named 

XIP1, XIP2, and XIP3 have a very conserved sequences despite some 

little amino acidic-residue variations [236,237]. When the ligand binds the 

XIP sequence, a conformational change in C-terminus of the f loop occurs,  

leading to inhibition of ionic transport [238]. This effect is selectively 

allowed by the presence of a specific sequence between the aminoacids 5 

and 16 of XIP [236,238]. Remarkably, basic and aromatic residues found 

in this sequence play a crucial role of the XIP-mediated inhibition. It has 

been synthetized a XIP bearing a molecule of glucose attached to the 

Tyrosine 6 residue, since the glycosylated peptide more efficiently 

penetrates the cells. In fact, the link with the glucose allows to the peptide 

associated to enter the cell via the glucose transporters 1 and 3 [239]. It is 

interesting to note that male rats infused intracerebroventricularly with the 

glycosylated form of XIP, express an enormous increase of the infarct 

volume after Permanent Middle Cerebral Artery Occlusion (pMCAO) [240]. 

These findings suggest a possible important role for NCX modulation in 

case of the dramatic effect of neuronal death under ischemia. 

Heterocycles 

 

Amiloride Derivatives 

Amiloride has been discovered to block NCX activity when used at 

millimolar concentrations [241].  Its effects are also evident in the inhibition 

of both epithelial Na+ channel when used in micromolar concentrations 

that in Na+/H+ exchanger when it is used in the order of millimolar. 
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Remarkably, this further effect is cause of lack of specificity for the 

exchanger Na+/Ca2+ NCX. To this aim, in the last year new amiloride 

analogs have been synthetized. Among the different classes of analogs for 

amiloride developed, the first class of molecules does not display an 

inhibitory effect on the epithelial Na+ channel and plasma membrane NCX, 

albeit its effect is more evident on Na+/H+ exchanger, when it is used in 

concentrations that may oscillate between 1 to 10 μM [242, 243,244]. 

Conversely, the second class of amiloride analogs are selective for 

epithelial Na+ channel and NCX but not for the Na+/H+ exchanger. Notably, 

three specific compouds belonging to the second group, the 

dimethylbenzamyloride (DMB),  the 3’-4’-dichlorobenzamyl, and the alpha-

phenylbenzamil, have been discovered to selectively block the NCX in 

excitable cells like neurons  [242, 243]. Another analogue, the [N-(4-

chlorobenzyl)]2,4-dimethylbenzamyl (CB-DMB), is described as the better 

inhibitor for NCX activity, whereas it does not present an inhibitory effect 

on Na+/H+ antiporter neither for the epithelial Na+ channels (Ki > 400 μM) 

[241]. Amiloride analogs efficiency is evident in blocking NCX activity both 

in forward [243] than in reverse operating mode [245], in fact they compete 

with Na+ ion in a reversible manner binding.  Notably, it has been recently 

proposed this category of molecules as Na+ analogs, indeed they interact 

with the third Na+-binding site, acting as inactivators of the exchanger 

[246]. 

 

Diarylaminopropylamine Derivatives: Bepridil 

Among the dyarilaminooripylamine derivates, the inhibitory effect of 

Bepridil is exerterd on various ionic mechanisms, including the Ca2+ 

current mediated through L- [247] and T-Type channels [248], the delayed 

rectifier K+ currents, the transient outward current [249], the K+ current, 

activated by intracellular Na+ [250]. Moreover, Bepridil acts also blocking 

the NCX activity, albeit the effect is dependent by the operation mode of 

the exchanger [251]. In fact, the Bepridil is more specific in blocking the 
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NCX activity working in the forward mode than in reverse. Recently, it has 

been discovered that Bepridil acts on the intracellular portion of the NCX, 

since its inhibitory effect is lost when cells were treated intracellularly with 

trypsine [251]. Experimental use of Bepridil, respectively in a model of 

Chemical Hypoxia in vitro and Ischemia in vivo (pMCAO), induced a 

further glial and neuronal damage [252,240]. 

I.E.2. Activators 

 

Inorganic Cations 

Lithium may stimulate, even if with minimum affinity, the Ca2+ intake 

through a mechanism dependent by the intracellular concentrations of Na+ 

for all the NCX isoforms. Its effect is quite low for NCX1 rather than in 

NCX2 or NCX3 [232]. NCX1 chimeras generated by substitution with the 

α-2 repeat of NCX3, present a greater sensitivity to Lithium similar to that 

one described for the isoform 3 of the exchanger NCX. By contrast, the 

chimeras containing the α-2 repeat of NCX1 expressed in NCX3 

presented a loss on lithium sensitivity in NCX3 with values similar to the 

native NCX1. These findings suggest that the the α-2 repeat is required for 

both stimulation of NCX isoforms, either in NCX1 that in NCX3 [232,253]. 

 

Redox agents 

NCX activity is highly sensible to the redox state, since the presence of 

reducing compounds and oxidating agents induces the activation of the 

Sodium Calcium Exchanger. Among molecules that influence the redox 

state and consequently the functional activity of NCX we remember 

reducing substrates in the form of glutathione (GSH), 1,4-Dithiothreitol 

(DTT), Fe2+, O2
- superoxide and oxidating agents like Fe3+, H2O2, 

glutathione disulfide (GSSG) and O2  [254]. It was proposed that these 

agents could activate the exchanger activity by promoting thiol-disulfide 

interchange in the protein carrier [254]. Recent studies suggest that the 



45 

 

activation of NCX activity may be due to the reduction of disulfide bond 

with a consequently formation of new link [254]. Cystein residues 

associated with the formation of disulfide bonds are presumably the Cys-

14, Cys-20, and Cys-780 [255]. The analysis of mutated exchangers has 

indicated that cysteines are not responsible for the stimulation of the 

exchange activity induced by a mixture of redox agents [255]. It has been 

suggested that the stimulation of wild-type exchanger by Fe-DTT is mainly 

due to the removal of the Na+-dependent inactivation process [255]. Since 

redox changes in NCX activity have been implicated in several aspects of 

cell physiology and pathophysiology, it is possible to speculate that agents 

capable of stimulating NCX might constitute a possible therapeutic 

strategy in those pathological conditions in which oxidative stress is 

involved [256]. 

 

Organic compounds 

Agonists of G-Protein-Coupled Receptors 

It has been reported that the agonists of G-protein-coupled receptors, 

such as α- and β-receptors, histamine, 5HT2c, and endothelin-1 and 

angiotensin-II receptors, are capable of stimulating NCX activity by a 

pathway which involves either PKA and/or PKC [257, 258, 259, 260, 261, 

262]. 

 

Peptides 

Among the peptides capable of stimulating NCX activity, only insulin and 

concanavalin A have been proven to exert such effect. In fact, both 

peptides stimulate Na+-dependent Ca2+ uptake [263, 264]. 
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I.F. ROLE OF NCX3 EXCHANGER IN 

PATHOPHYSIOLOGICAL CONDITIONS 

 

NCX3 by controlling intracellular homeostasis of calcium and sodium, may 

play a crucial role in ischemic event. NCX3 assumes two different 

behaviours in the ischemic core region and in the penumbral region. In the 

first case, ischemic insult brings to an accumulation of intracellular Na+ 

ions because of Na+/K+ pump failure, forcing NCX3 to operate in reverse 

mode. In the penumbral region, NCX3, sustained by ATPase activity,  

operates in forward mode extruding calcium ions and decreasing cell 

injury. It has been demonstrated that permanent middle cerebral artery 

occlusion (pMCAO) is able to cause changes in NCX protein expression in 

ischemic core and in penumbral region. In particular, 6 to 24 hours after 

pMCAO, NCX3 decreased in the ischemic core; this event was probably 

due to the cleavage of NCX3 protein, aroused by the activation of 

caspases and calpain during ischemia suggesting that the decrease of 

NCX3 can be involved in the process leading to cell death. By the injection 

of specific antisense oligodeoxynucleotides (AS-ODNs), NCX1, NCX2 and 

NCX3 gene products were knocking down. The rats knocking down for 

NCX3 displayed enlargement of the infarct volume with a worsening of 

neurological deficits [265]. It has been demonstrated that BHK (Baby 

hamster kidney) cells stably transfected with the isoform 3 of sodium 

calcium exchanger, unlike those transfected with NCX1, NCX2 or wild-

type cells,  displayed a major resistance to chemical hypoxia plus 

reoxygenation by virtue of their Ca2+ buffering properties in conditions of 

ATP depletion. NCX3 is the unique isoform able to operate in absence of 

ATP, whereas NCX1 and NCX2 are strictly dependent by this nucleotide 

for their action [266]. These data suggest a relevant role for NCX3 in 

counteracting ischemic damage. 
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A further demonstration of the neuroprotective role of NCX3 in brain 

ischemia is provided by knockout mice (ncx3-/-) for this isoform of the 

exchanger. In primary cortical neurons and in organotypic hippocampal 

cultures obtained from NCX 3 -/-  mice and subjected to OGD plus 

reoxygenation, neuronal death was increased after ischemic insult 

compared to wild-type mice.  Furthermore, ncx3 gene suppression leads 

to a worsening of brain damage  after tMCAO [267]. 

It has been demonstrated that NCX3 is potentially neuroprotective in a 

model of Alzheimer’s disease. In neurons, the exposure to amyloid-β 1-42 

(Aβ 1-42) determines an early increase in intracellular calcium concentration 

that triggers the activation of calpain. Calpain generates NCX3 

hyperfunctional proteolytic fragment with a consequential increase of 

NCX3 currents in reverse mode of operation. In particular, the enhanced 

NCX3 activity contributes to increase calcium content in endoplasmic 

reticulum (ER), thus delaying ER stress and cell death. In the late phase, 

when the NCX3  proteolytic cleavage cesead, a reduction in ER calcium 

content happens, thus triggering ER stress and consequential neuronal 

death. These results suggest that neurons activate via NCX3, an early 

survival strategy against the deleterious stimulus represented by Aβ- 1-42 in 

the early phase of their exposure to this peptide [268]. NCX3 is highly 

expressed in CA1 and CA3 regions, the hippocampal subfields involved in 

long term potentiation (LTP), suggesting a role for this exchanger isoform 

in learning and memory [269, 256]. Because of NCX3 plays a crucial role 

in removing calcium at the synaptic site of hippocampal neurons [270], it 

has been investigated its role in LTP modulation. Ncx3 -/- neurons showed 

an alteration of LTP caused by the reduction of NCX currents in the 

forward mode of operation. Indeed, the ablation of NCX3 gene, delaying 

intracellular calcium removal after neuronal activation and increasing  the 

intracellular concentration of this ion in resting conditions, decreases the 

magnitude of LTP at hippocampal Schaffer collateral-CA-1 synapse level. 

NCX3 knockout mice displayed a significant reduction in spatial-learning 
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and memory performances compared to wild-type mice, demonstrating a 

key role of this exchanger isoform in learning phenomena [271]. 

 

I.G. TRANSCRIPTIONAL REGULATION OF NCX3 GENE IN 

NEURONS AND NEURONAL CELLS 

 

I.G.1. Regulation of NCX3 promoter activity by DREAM in cerebellar 

neurons 

The human NCX3 proximal promoter contains specific enhancers such as 

cAMP response element (CRE) [169]. Gomez- Villafuertes and colleagues 

have demonstrated a specific role for DREAM in regulating Ca2+ 

homeostasis and viability in cerebellar neurons. NCX3 is the most 

abundant Na+/Ca2+ exchanger in cerebellar granules, and excitotoxins 

through the action of calpains trigger the rapid degradation of this 

exchanger isoform. NCX3 plays a crucial role in the maintenance of Ca2+ 

homeostasis in these neurons, underlying the importance of sheding light 

on the mechanism regulating NCX3 expression in neurons. DREAM 

through a mechanism Ca2+ dependent can modulate the expression of 

several genes and it has been found to bind to specific DRE sites to 

repress transcription [272]. Binding of Ca2+ to DREAM via EF-hand motifs 

reduces its affinity for DNA, leading to its detachment from the DRE sites 

and to derepression of target genes. DREAM – dependent transcriptional 

derepression is also observed after protein kinase A (PKA) activation 

through a mechanism that involves the interaction of DREAM with 

phosphorylated α-CRE modulator (α-CREM). DREAM interacts with CREB 

in Ca2+- dependent manner and represses CRE- dependent transcription, 

preventing the recruitment of CBP [191].  In the kinase‐inducible domain 

(KID) of CREB and in leucine zipper of αCREM there are two 

leucine‐charged residue‐rich domains (LCD) that are able to interact with 
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other two LCDs in DREAM, this physical interaction led to the loss of 

DREAM binding to DRE sites and derepression. 

Since the LCD motif located within the KID in CREM is also present in 

CREB, and maps in a region critical for the recruitment of CBP, in the 

absence of Ca2+ DREAM binds to the LCD in the KID of CREB [191]. As a 

result, DREAM impairs recruitment of CBP by phospho CREB and blocks 

CBP‐mediated transactivation at CRE sites in a Ca2+‐dependent manner.  

Gomez-Villafuertes and colleagues have demonstrated that DREAM 

mediates ncx3 gene repression in the cerebellum of transgenic mice 

overexpressing the Ca2+- insensitive EF-hand mutant EF-m-DREAM. So, 

transgenic cerebellar granules have increased levels of cytosolic Ca2+ and 

are less viable when cultured under mild membrane-depolarizing 

conditions. Importantly, their viability is normalized when their 

Ca2+ extruding ability is restored by lentiviral-mediated overexpression of 

NCX3. Thus, the Ca2+-modulated transcriptional repressor DREAM 

controls the expression of the NCX3 protein, which is fundamental for the 

maintenance of the Ca2+ homeostasis and viability of the neurons [272]. A 

cAMP-dependent regulation of the NCX3 promoter has been associated 

with the presence of a CRE site [169].The EFmDREAM mutant has an 

intact leucine-charged residue rich domain, which is responsible of the 

interaction with CREB but does not respond to Ca2+ stimulation, so it 

should heterodimerize with CREB and function as a dominant mutant to 

also block the CRE-dependent transcription of the NCX3 gene [191]. 

Thus, the synergistic stimulation of the NCX3 gene by Ca2+ and cAMP 

signaling would be blocked by the dominant EFmDREAM. The regulation 

by DREAM is specific for the NCX3 gene, because the DREAM mutant 

does not affect the transcription of NCX1 and NCX2 [191, 272]. 
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I.G.2. Regulation of NCX3 promoter activity by CREB in SH-SY5Y cell 

line 

In proliferating and differentiated SH-SY5Y cells, it has been investigated  

the regulation of the transcription of SLC8A3 promoter following the 

elevation of cAMP and the intracellular calcium increase obtained by 

partial depolarization of the plasma membrane with KCl.  In proliferating 

and differentiated cells, the SLC8A3- reporter activity was increased about 

two fold following treatment with the membrane permeable cAMP 

derivative N6, 2′-O-Dibutyryladenosine-3′:5′- cyclic monophosphate 

(Bt2cAMP). The induction triggered by cAMP was abolished owing to the 

reporter construct lacking the CRE site in both proliferating and 

differentiated cells, demonstrating a pivotal role of CRE site in the increase 

of the SLC8A3- reporter activity cAMP-dependent. In proliferating cells, a 

partial depolarization of the plasma membrane is achieved through KCl 

and allows calcium entry. This depolarization that affects the plasma 

membrane downregulated the transcription of the SLC8A3 promoter via 

calcium of about 40% compared to untreated control cells. The activity  of 

the reporter construct lacking the CRE site decreased by the Ca2+, was 

similar to that displayed by the wild-type promoter, indicating that the CRE 

was not involved in this downregulation. The downregulation that occurs in 

basal transcription activity could be produced by CaMKII (Ca2+ 

/calmodulin-dependent protein kinase II) phosphorylation of CREB at Ser-

142 [169,192]. The negative effect of Ca2+ on basal SLC8A3 transcription 

could depend on the downregulation of AP2 consequent to the activation 

of PLC (phospholipase C) and PKC (protein kinase C) after depolarization 

with KCl, shown to occur in SH-SY5Y cells [273,274]. When cAMP and 

Ca2+  levels were raised simultaneously, it is possible to appreciate the 

inhibitory effect of the Ca2+ elevation. In this case, the CaMKII inhibitor KN-

93 reversed the downregulation of the cAMP-stimulated activity by Ca2+ 

[275]. 
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Furthermore, to support the involvement of CaMKII activity in this 

downregulation, it has been evaluated the immunoreactivity of anti-

phospho Ser-133 following the cAMP and Ca2+ elevation. CREB was 

strongly phosphorylated following the cAMP increase, contrary to what 

happens after the depolarizing treatment. However, when cAMP and Ca2+ 

were elevated simultaneously, phospho-CREB was reduced, raising the 

possibility that phosphorylation of the Ser-142 by the CaMKII could 

decrease the affinity of the antibody to anti-phospho Ser- 133. However, 

data were not conclusive because the possibility that KN-93 inhibitor could 

instead block Ca2+ entry through VGCC was not ruled out [276,277]. 

Furthermore, the cAMP-stimulated activity of the promoter lacking the 

CRE site was strongly downregulated by Ca2+ in proliferating cells.  

By contrast, calcium induced SLC8A3 promoter in fully differentiated 

neurons exposed to BDNF for 4 days via ATF/CREB family, in fact the 

absence of CRE/CaRE sequence disrupted this induction. BDNF is one of 

the main regulators of CREB-induced gene transcription and it is an 

activator of SLC8A3 gene expression in stably transfected cells. The 

deletion of the CRE element in the SLC8A3 promoter causes the loss of 

stimulation by BDNF [275]. The phosphorylation of CREB obtained via 

CaMKII and CaMKIV leads to an increase of promoter activity, in fact 

CaMKs activation could be triggered during the differentiation promoted by 

BDNF in neuroblastoma cell line. It was also observed a different 

phosphorylation pattern of ATF/CREB polypeptides in response to the 

cAMP elevation in differentiating neurons. BDNF, during the first day of 

exposure, induces cAMP elevation and apparently causes the 

phosphorylation of transcription factor ATF1 instead of CREB [275]. It is 

possible that specific isoforms of CaMKs could be upregulated in 

differentiated neurons. CaMKII can phosphorylate Ser-63 of ATF-1, 

corresponding to Ser-133 of CREB, but is unable to phosphorylate Ser-72 

of ATF-1, corresponding to the inhibitory Ser-142 of CREB. Therefore 

transcription factor ATF-1 can be only positively regulated by CaMKII, 
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suggesting that transcriptional activation of cAMP-responsive genes by 

CaMKII may be mediated by ATF-1 [278], in fact the Ca2+ elevation does 

not change the extent of anti-phospho Ser-133 immunoreactivity; however 

it is also possible that the activation of CaMKII and CaMKIV by BDNF 

induces the phosphorylation of CREB at Ser-142 and Ser-143. The triple 

phosphorylation of CREB at Ser-133, Ser- 142, and Ser-143 [279] is 

induced by calcium influx, thus these phosphorylations that occur in these 

peculiar serines disrupt the interaction of the KIX domain of CREB with 

CBP, forming a transcription complex different from that induced by cAMP. 

For this reason, calcium pathway may trigger a specific program of gene 

expression that is different from that induced by cAMP. The triple 

phosphorylation of CREB, responsible of the increased transcription status 

of the SLC8A3 gene via calcium, occurred in embryonic cortical neurons 

(E18) cultured for 6–8 d but was absent in the earlier stages. In 

conclusion, the upregulation of SLC8A3 transcription by Ca2+ influx is 

greater in fully differentiated SH-SY5Y exposed to BDNF for 4 d than in 

cells exposed to BDNF for 1 d [169-192].  

 

I.H. MODULATION OF NCX3 EXPRESSION IN IN VIVO AND 

IN VITRO MODELS OF STROKE 

I.H.1. NCX3 gene is downregulated in brain ischemia and upregulated 

in postconditioned ischemic brain  

Recent studies explored a new neuroprotective mechanism as potential 

therapeutic treatment in case of an ischemic stroke episode. A short but 

sublethal ischemic event, the so-called ischemic post-conditioning, has 

been found to prevent the harmful effects of primary prolonged ischemia 

[280]. It has been investigated the role played by the different isoforms of 

the Na+-Ca2+ exchanger NCX (NCX1, NCX2 and NCX3) during the post-

conditioning. To this aim, it has been evaluated the expression of the NCX 
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isoforms in the ipsilateraltemporoparietal cortex of rats exposed to 

ischemic post-conditioning event. The expression levels of NCX isoforms 

in postconditioned rats were compared with those of rats which received 

the tMCAO alone [281]. 

The reduction in NCX3 expression occurring in cerebral ischemia alone 

was completely prevented by ischemic post-conditioning. Interestingly, the 

NCX3 protein expression showed an increase 24 hours after post-

conditioning. 

In order to evaluate whether this NCX3 protein increase was due to a 

stimulation of transcriptional events, the levels of mRNA coding for NCX3  

were analyzed. Notably, mRNA levels from the ipsilateraltemporoparietal 

cortex of rats subjected to ischemic post-conditioning at different 

reperfusion time intervals were analyzed through Real-Time Polymerase 

chain reaction (RT-PCR) and were compared with those of the same brain 

region of rats subjected to ischemia alone [281]. 

After ischemia, the NCX3 mRNA expression was found reduced 

approximately of 50% at 24 hours after reperfusion, whereas in post-

conditioned animals from 5 to 24 hours after reperfusion NCX3 mRNA 

expression progressively increased compared with sham-operated 

animals [281].  

 

I.H.2. NCX3 sumoylation participates in SUMO1 protective role during 

ischemic preconditioning 

NCX3 is susceptible also for new post-transcriptional modifications such 

as sumoylation. The Small Ubiquitin-like Modifier (SUMO) conjugation has 

been described as enzymatic modification of target proteins via covalent 

binding of SUMO substrate. As the sumoylation protects the target 

proteins from degradation, it allows the modulation of intracellular protein 

localization, activity and stability [282]. Among the SUMO proteins, four 

isoforms have been identified (SUMO 1 to 4). SUMO 1, SUMO 2 and 

SUMO 3 are expressed in the brain, whereas the fourth isoform (SUMO 4) 
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is mainly localized in the kidney [283]. The sumoylation modification is 

promoted by different stress conditions. In case of focal cerebral ischemia, 

a different cerebral sumoylation pattern was described [284], and it may 

play a neuroprotective role. In fact, SUMO-1 knock down mice showed 

decreased cell survival to the Oxygen-Glucose Deprivation (OGD) model, 

whereas overexpression of SUMO 1 has been found to protect neurons 

from OGD-induced injury. Interestingly, among the several neuroprotective 

molecules supposed to play a crucial role in the ischemic preconditioning, 

some of these have been described also as possible substrates for 

sumoylation [285]. Emerging evidences support the role for sumoylation in 

ionic homeostasis modulation. In fact, recent studies confirmed the 

presence of sumoylation enzymes and substrates at the plasma 

membrane, thus sumoylation might regulate stability and expression of the 

transmembrane proteins interested in the brain ischemia event, 

specifically NCX3. SUMO1 is involved in the neuroprotective mechanisms 

elicited by in vivo ischemic preconditioning. NCX3, a downstream key 

player of neuroprotection in stroke [265,154,286] has also been proposed 

as a new possible target of SUMO1. In rats subjected to tMCAO, the 

silencing of SUMO1 significantly worsens the ischemic injurious outcome 

and partially reverted the preconditioning-mediated neuroprotective 

effects. 

Double immunofluorescence analysis for NCX3 and SUMO1 revealed a 

neuronal signal increase of the two proteins in both preconditioning and  

preconditioning followed by tMCAO, suggesting a possible spatial and 

temporal interaction between NCX3 and SUMO1. Bioinformatic analysis of 

NCX3 sequence displayed the presence of nine putative sumoylation sites 

that might be recognized by SUMO1. In fact, deletion mutagenesis 

experiments demonstrated that the removal of either the whole f-loop 

(252-750 aa), or its subregion (528-676 aa), prevented the co-

immunoprecipitation of NCX3 with SUMO1. This suggests that NCX3 

sumoylation site was located in the 528-676 aa region of the f-loop, a 
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region involved in the regulation of NCX stability and activity [34,35].  

Interestingly, the SUMO1 silencing produced a downregulation of NCX3 

protein levels during preconditioning plus tMCAO ischemic model, 

suggesting a role for SUMO1 in mediating a protection related to NCX3. 

Consequently, all these findings present a possible neuroprotective role in 

which the NCX3 sumoylation mediated by SUMO1 may prevent 

degradation of NCX3 occurring during ischemic conditions. Furthermore,  

NCX3 might be one of the SUMO1-mediated neuroprotective mechanisms 

involved in ischemic preconditioning [287]. 

I.H.3. OGD/Reoxygenation - induced NCX3 downregulation at post-

transcriptional level 

Cortical neurons deprived for three hours of oxygen and glucose (OGD in 

vitro model) expressed lower amount of NCX3 protein compared to control 

neurons. Interestingly, this effect was not found for NCX1 which protein 

expression levels remained unaffected [288]. The downregulation of NCX3 

did not affect the relative transcript decrease in turn, suggesting a possible 

effect exerted by anoxic and scarce energetic conditions on protein 

expression through post-transcriptional modifications [288]. In fact, the 

downregulation of NCX3 in cortical neurons exposed to OGD conditions 

was prevented by using the inhibitor for the proteasomal system, the MG-

132, safeguarding the basal protein expression, whereas three hours of 

OGD has been found to downregulate NCX3 protein expession via 

proteasomal system activation [288].



 

 

 

 

Aim of Study 
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II. AIM OF STUDY 

The human gene for member 3 of solute carrier family 8 (SLC8A3), 

encoding the Na+/Ca2+ exchanger isoform 3 (NCX3), was identified on 

chromosome 14q24 and consists of nine exons. Three different splicing 

isoforms have been found for NCX3, and specifically in the brain the 

exons 3 and 5 are spliced to form an mRNA that contains only seven 

exons [275]. NCX3 minimal promoter sequence has been described and it 

is located at 250 bp region upstream of exon-1 [275]. The consensus 

sequences for specific transcription factors have been identified in this 

minimal promoter via bioinformatic analysis. Among the transcription 

factors able to bind this promoter sequence, it has been found that the 

transcriptional repressor DREAM and the transcriptional activator CREB 

decrease and increase NCX3 promoter activity, respectively [275,272]. 

NCX3  plays an important role in neuronal survival in in vitro and in vivo 

models of cerebral ischemia [267]. In fact, the ischemic brain damage is 

significantly increased by NCX3 knocking - down [267], whereas during 

ischemic preconditioning (a well-known mechanism of neuroprotection) 

there is an increase of NCX3 [154]. About transcriptional regulation of 

NCX3 it has been found that after ischemia NCX3 mRNA expression was 

reduced approximately of 50% at 24 hours [281] while in ischemic  

postconditionig ncx3 mRNA is increased of 40% [154,281]. Regarding the 

transcription factors and the epigenetic mechanisms regulating NCXs, it 

has been found that NCX1 isoform is reduced in brain ischemia by 

Sp3/REST/HDAC1/HDAC2 complex [156] whereas it is increased in 

ischemic brain preconditioning by Sp1/HIF- 1/p300 complex [155], and 

these changes in NCX1 expression are achieved trought modifications of 

histone acetylation status of ncx1 promoter. The epigenetic mechanisms 

such as histone acetylation of NCX3 promoter and consequent changes in 

NCX3 expression in neurons have never been investigated. The first aim 

of this study was to evaluate the role of HDACs inhibitors (acting on class I 
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and II of HDACs) on the modulation of NCX3 gene and protein in primary 

cortical neurons (DIV 7). We found that pan HDAC inhibitor TSA and 

HDAC class IIa inhibitor MC1568 both increased ncx3 promoter activity. 

Importantly, MC1568 increased NCX3 mRNA at 24h and 48h. 

Furthermore, the other aims of this thesis were to identify the specific 

isoform or isoforms of HDACs belonging to class II involved in the 

regulation of ncx3 expression and the correlation between the expression 

of specific HDACs isoforms and ncx3 gene activity in in vivo models of 

ischemic stroke. 



 

 

 

Material and Methods 
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III. MATERIALS AND METHODS  

III.1. Materials 

Luciferase reporter kits and luciferase vectors were from Promega (Milan, 

IT). Synthetic oligonucleotides were from Primm (Milan, IT). siRNAs for 

HDAC4 (siHDAC4) (SI01836492), HDAC5 (siHDAC5) (SI01521002), 

HDAC7 (siHDAC7) (SI05620702), HDAC9 (siHDAC9) (SI02024995) were 

from Qiagen (Milan, IT). The HDAC inhibitor MS-275 (EPS002), MC1568 

(M1824) and trichostatin A (TSA) were obtained from Sigma (Milan, IT). 

These three compounds were dissolved in dimethyl sulfoxide (DMSO) and 

diluted before application to a final DMSO concentration lower than 0.2%. 

All common reagents were of the highest quality and were purchased from 

Sigma (Milan, IT).  

 

III.2. Primary Cortical Neurons 

Primary cortical neurons were prepared from 17-day-old Wistar rat 

embryos (Charles River, Calco, IT) and used after 7 days. Cytosine 

arabinoside (2.5 μM) was added the second day to reduce glial 

contamination. The experiments on primary cortical neurons were 

performed according the procedures described in experimental protocols 

approved by Ethical Committee of the “Federico II” University of Naples. 

Briefly, dissection and dissociation were performed in Ca2+/Mg2+-free 

phosphate-buffered saline (PBS) containing glucose (30 mM/l). Tissues 

were incubated with papain for 10 minutes at 37°C and dissociated by 

trituration in Earl’s Balanced Salt Solution (EBSS) containing DNAse (0,16 

U/ml), bovine serum albumin (10 mg/ml), and ovomucoid (10 mg/ml). 

Neurons, were plated in plastic Petri dishes (Falcon™ Becton-Dickinson, 

Buccinasco, IT) pre-coated with poly-D-lysine (20 µg/ml), were grown in 

MEM/F12 containing glucose, 5% of deactivated fetal bovine serum (FBS) 

and 5% of horse serum (HS), glutamine (2 mM/l), penicillin (50 Units/ml), 

and streptomycin (50 μg/ml) (Invitrogen, Milan, IT). Cell density was 2x106 

cells/well for 12-well plate for luciferase assay, 5x106 cells/well for 60 mm 



59 

 

for qRT-PCR and 15x106 cells/well for 100 mm for Western Blot analysis 

and ChIP analysis. 

 

III.3. Transfection with Expression Plasmids or Small Interfering RNA 

(siRNA) and Luciferase Reporter Assay, in Cortical Neurons  

Cortical neurons were transfected with 50nM of siCTL, siHDAC4, 

siHDAC5, siHDAC7 or  siHDAC9. For RNA interference, 50nM of specific 

siHDAC4, siHDAC5, siHDAC7 or siHDAC9 were used. To overexpress 

HDAC4, HDAC5, and HDAC9 neurons were transfected with above 

mentioned constructs in the following amounts: 1.3 μg for 12-well plates, 7 

μg for 60 mm plates and 15 μg for 100 mm plates. Each transfection was 

performed at 7 DIV in Optimem with Lipofectamine LTX (15338-100, 

Invitrogen, Milan, IT), as suggested by the producer. After 2 hours it was 

replaced with fresh medium. For luciferase assay experiments, cortical 

neurons at 7 DIV were transfected in 12-well plates. Cells were co-

transfected with 1.2 μg of total DNA vectors; the reporters (800 ng each) 

were the following: (1) the pGL3 construct, (2) the pGL3-ncx3 (short ncx3 

promoter), (3) the pGL3-ncx3-CREmut (GACGT), (4) the pGL3-ncx3-

DREmut (GTCAGTCA). Mutagenesis of the CRE and DRE sites in the 

promoter was performed using the QuickChange site-directed 

mutagenesis kit from Stratagene. Each transfection mix also contained 

140 ng of the pRL-TK control vector expressing renilla luciferase gene. 

After a 2h incubation period, the medium was replaced with a fresh one 

and analyzed after 24h with Dual-Luciferase Reporter Assay System kit 

(E1910) (Promega, Milan, IT), as already reported [289].  

 

III.4. Quantitative Real-Time PCR (qRT-PCR) Analysis 

The first-strand cDNA and quantitative real-time PCR was carried out as 

previously described [289, 290]. Using 1/10 of the cDNAs as a template, 

the quantitative real-time PCR was carried out in a 7500 fast real-time 

PCR system (Applied Biosystems, Monza, IT) by Fast SYBR Green 
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Master Mix (cod. 4385610; Applied Biosystems, Monza, IT). Samples 

were amplified simultaneously in triplicate in one assay as follows: heating 

2 min @ 50º C, denaturation 10 min @ 95º C, amplification and 

quantification 35 cycles of 15 sec @ 95º C; 1 min @ 60º C with a single 

fluorescence measurement. PCR data was collected using ABI Prism 

7000 SDS software (Applied Biosystems). After PCR, products were 

electrophoretically separated on 1,5% agarose gels and bands were 

visualized with ethidium bromide and documented using a Gel Doc 

Imaging System (Bio-Rad, Hercules, CA). Normalization of the data was 

performed by HPRT as an internal control. Differences in mRNA content 

between groups were calculated as normalized values by using 2-ΔΔct 

formula and results were tested for significance using Relative Expression 

Software Tool (REST ©) [290]. The oligonucleotide sequences for NCX3 

and Hypoxanthine phosphoribosyltransferase (HPRT) were already 

published. 

III.5. Western Blotting 

For Western blot analysis, cells (or tissues) were collected in ice-cold lysis 

buffer [289] containing anti-protease cocktail (P8340 Sigma, Milan, IT). For 

HDAC4, HDAC5 (50 µg) and NCX3 (30 µg), proteins were separated on 

8% SDS polyacrylamide gels, whereas for DREAM expression, proteins 

(30 µg) were separated on 12% SDS-polyacrylamide gels. Both were 

transferred onto Hybond ECL nitrocellulose membranes (Amersham, 

Milan, IT). Membranes were blocked with 5% non fat dry milk in 0.1% 

Tween 20 (Sigma, Milan, IT) (2 mM Tris-HCl and 50 mM NaCl pH 7.5) for 

2 hours at room temperature, and then they were incubated overnight at 

4°C in the blocking buffer with the 1:1000 monoclonal antibodies against 

HDAC4 (sc-11418), HDAC5 (sc- 11419), DREAM (sc-9142) (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA),  and 1:2000 β-actin (A 4700) 

(Sigma, Milan, IT), 1:5000 α-tubulin (Sigma, Milan, IT), and NCX-3 (Swant, 

Bellinzona, Switzerland). Finally, after the incubation with primary 
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antibodies, membranes were washed with 0.1% Tween 20, followed by 

incubation with secondary antibodies for 1 h at room temperature. 

Immunoreactive bands were detected with the ECL reagent (Amersham). 

The optical density of the bands, normalized to β-actin, was determined by 

Chemi-Doc Imaging System (Bio-Rad, Hercules, CA). 

 

III.6. Chromatin Immunoprecipitation (ChIP)  

Brain tissue and cortical neurons were processed into chromatin by use of 

published protocols [289, 290] with some modifications. Cells and tissues 

were cross-linked with 1% formaldehyde, and then reaction was stopped 

by adding glycine to a final concentration of 0.125 M. Brain tissue and 

cells were washed three times in cold PBS containing proteinase inhibitors 

and then collected in a buffer containing: 50mM Tris pH 8.1, 1% SDS, 10 

mM EDTA, and anti-protease cocktail. For cell and tissue samples, 

chromatin was fragmented by sonication into 200–500 bp fragments (6 

rounds for cells and 15 rounds for brain tissue of 15 1-s pulses at 50% of 

maximum potency) by a Bandelin Sonopuls HD 2070 ultrasonic 

homogenizer (Bandelin, Berlin, Germany). Equal amounts of chromatin 

lysates (50 μg for cells and 70 μg for tissues) were incubated overnight 

with 5μg of antibody for HDAC4, HDAC5 (Santa Cruz Biotechnology, 

Santa Cruz, CA, USA), acetyl-Histone H4, RNA Polymerase II (Millipore, 

Milan, IT), and normal rabbit or mouse IgG were used as negative 

controls. After immunoprecipitation, the DNA-histone complex was 

collected with 40 μl of salmon sperm DNA/protein A or G -agarose beads 

for 2 hours (16-157, 16-201) (Millipore, Milan, IT). After rotating for 2 hours 

at 4°C on a spinning wheel, the beads were washed once with each of the 

following buffers in the order shown: high-salt buffer (0.1% SDS, 1% 

Triton, 2mM EDTA, 20mM Tris HCl pH 8.1, 500 mM NaCl); low-salt buffer 

(0.1% SDS, 1% Triton, 2mM EDTA, 20mM Tris HCl pH 8.1, 150mM NaCl); 

LiCl buffer (0.25M LiCl, 1% NP40, 1% deoxycholate, 1mM EDTA, 10mM 

Tris HCl pH 8.1), and two times at room temperature with TE buffer (10mM 
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Tris pH 8.1 and 1mM EDTA). The precipitated fragments were eluted with 

a buffer containing 1% SDS and 0.1M NaHCO3. DNA was analyzed by 

qRT-PCR using Fast SYBR Green Master Mix (cod 4385610; Applied 

Biosystems, Milan, IT). Heating 2 min @ 50ºC, denaturation 10 min @ 

95ºC, amplification and quantification 35 cycles of 30 sec @ 95ºC; 1 min 

@ 60°C with a single fluorescence measurement. The binding activity was 

graphically represented as the percentage of total input of chromatin and 

the results were analyzed using a previously described formula [291]. 

 The following oligonucleotides were used for the amplification of 

immunoprecipitated DNA:  A) Forward 5’-

CGAGGAGCGTTCTGAGAGTCTCC -3’ and Reverse 5’-

GCTTAGCGGTGACTGGAATCTACG -3’. For each amplification, melting 

curves and gel electrophoresis of the PCR product were used to verify 

their identities. Samples were amplified simultaneously in triplicate in one 

assay run. 

 

III.7. Experimental groups 

Male Sprague-Dawley rats (Charles River) weighing 250 to 300 g were 

housed under diurnal lighting conditions (12 h darkness/light). 

Experiments were performed according to the international guidelines for 

animal research. All experiments were approved by the Institutional 

Animal Care and Use Committee of the “Federico II” University of Naples, 

IT. 

 

III.8. Transient Focal Ischemia  

Transient focal ischemia was induced as previously described [155], by 

suture occlusion of the middle cerebral artery (MCA) in male rats 

anesthetized using 1.5% sevoflurane, 70% N2O, and 28.5% O2. 

Achievement of ischemia was confirmed by monitoring regional cerebral 

blood flow through laser Doppler (PF5001; Perimed). Animals not showing 

a cerebral blood flow reduction of at least 70% were excluded from the 
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study. Animals that did not show a cerebral blood flow reduction of at least 

70% were excluded from the experimental group, as well as animals that 

died after ischemia induction. Rats were divided into 2 experimental 

groups: (1) sham-operated (CTL); (2) ischemic, subjected to transient 

MCA occlusion (tMCAO). The sham-operated animals underwent the 

same experimental conditions except that the filament was not introduced; 

in the ischemic group, the MCA was occluded for 100 minutes. All animals 

were euthanized 24 h after the 100 min tMCAO. Rectal temperature was 

maintained at 37±0.5°C with a thermostatically controlled heating pad and 

a catheter was inserted into the femoral artery to measure arterial blood 

gases before and after ischemia (Rapid Laboratory 860, Chiron 

Diagnostic). All surgical procedures were performed under an operating 

stereomicroscope. 

 

III.9. Statistical analysis 

The data were evaluated as means ± SEM. Statistically significant 

differences among means were determined by ANOVA followed by 

Student-Newman-Keuls test. The threshold for statistical significance data 

was set at p<0.05. 



 

 

 

 

Results 
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IV RESULTS  

IV.1. HDAC class II A inhibitor MC1568 increases ncx3 promoter 

activity 

To evaluate whether a specific class of HDACs could regulate NCX3 

expression, experiments of luciferase assays were performed in neurons 

pre-treated for 2 hours with the pan-HDAC inhibitor Trichostatin A (TSA) at 

100 nM [292] or with class I HDAC inhibitor MS-275 at 5 μM [156], and 

with the class IIA HDAC inhibitor MC1568 at 5 μM [293]. For these 

experiments we used a pGL3 construct containing the human NCX3 

proximal promoter region named (pGL3-ncx3) already used in a previously 

paper [272]. At 24 hours TSA and MC1568 increased ncx3 promoter 

activity compared to cells transfected with pGL3-ncx3 alone. By contrast, 

no modification of NCX3 promoter activity was observed after MS-275 

pretreatment (Figure 4).  

 
Figure 4.  Effect of HDACI on ncx3 promoter activity. Cortical neurons were transfected with 

pGL3-ncx3 promoter and then treated with the pan-HDACI (TSA), with MS-275 an inhibitor for 

HDACs of class I and with MC1568 an HDACI specific for HDACs of class IIA. 24 hours post-

treatment, neurons were lysed in 1x passive lysis buffer. Lysates were analyzed for luciferase 

pGL3-

basic

pGL3-

ncx3

pGL3-

ncx3
+

TSA

100nM

pGL3-

ncx3
+

MS-275

5 μM

pGL3-

ncx3
+

MC1568

5 μM

L
u

c
if

e
ra

s
e

a
c
ti

v
it

y
 o

f 

n
c
x
3
  g

e
n

e
 p

ro
m

o
te

r 

1

0,5

0

* *



65 

 

activity. The luciferase activity was expressed as firefly-to-renilla ratio. Each column represents the 

mean ± s.e.m. of n=3 independent experiments (*P<0.05 vs pGL3-ncx3). 

 

IV.2. MC1568 increases ncx3 luciferase activity in time - dependent 

manner 

NCX3 lucifarase activity was significantly increased by MC1568 at 24 

hours compared to the cells transfected with pGL3-ncx3 alone. This 

increase in NCX3 luciferase activity reached a maximum after 48 h of 

incubation (Figure 5). 

 

Figure 5. Effect of MC1568 in time dependent manner on ncx3 promoter activity. Cortical 

neurons were transfected with pGL3-ncx3 promoter and then treated with MC1568 (5 µM) at 

different time. 24 hours post-treatment, neurons were lysed in 1x passive lysis buffer. Lysates were 

analyzed for luciferase activity. The luciferase activity was expressed as firefly-to-renilla ratio. Each 

column represents the mean ± s.e.m. of n=3 independent experiments (*P<0.05 vs pGL3-ncx3, 

**P<0.05 vs all). 
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IV.3. MC1568 regulates ncx3 promoter activity via DREAM sequence 

Luciferase assays were conducted to evaluate whether the DRE site 

(GTCAGTCA) and CRE site (GACGT) on ncx3 promoter were responsible  

of the MC1568-induced NCX3 increase. In particular, DREAM and CREB 

binding sites were mutated in the pGL3-ncx3 construct by site-directed 

mutagenesis to generate the pGL3-ncx3-DREmut (CACACACA) and 

pGL3-ncx3-CREmut (ACGGT) constructs. These two constructs were 

transfected in cortical neurons treated or not with MC1568 (5μM). The 

transfection of pGL3-ncx3-DREmut construct caused a significant increase 

of promoter activity compared to neurons transfected with pGL3-ncx3 

alone or transfected with pGL3-ncx3 and subsequently treated with 

MC1568. In neurons transfected with pGL3-ncx3 carrying mutations in 

DRE sites and treated with MC1568, ncx3 promoter activity was not 

increased significantly compared to cells transfected with pGL3-ncx3-

DREmut alone. The transfection of pGL3-ncx3-CREmut construct caused 

a significant decrease of promoter activity (Figure 6).  
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Figure 6. Effect of MC1568 on the transcriptional activity of the pGL3-ncx3 after site-directed 

mutagenesis of DREAM and CREB binding sites. Mutated nucleotides of ncx3 promoter are 
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underlined; replaced nucleotides are highlighted in yellow on the wild-type sequences. (a) Cortical 

neurons were transfected with pGL3-ncx3 wildtype or pGL3-ncx3-DREmut and then treated or not 

with MC1568. (b) Cortical neurons were transfected with pGL3-ncx3 wildtype or pGL3-ncx3-

CREmut. 24 hours post-transfection, neurons were lysed in 1x passive lysis buffer. Lysates were 

analyzed for luciferase activity. The luciferase activity was expressed as firefly-to-renilla ratio. Each 

column represents the mean ± s.e.m. of n=3 independent experiments. (*P<0.05 vs pGL3-ncx3, 

**P<0.05 vs all). 

 

IV.4. HDAC class IIA isoforms 4 and 5 reduce NCX3 mRNA and 

protein expression 

HDAC Class IIa is composed of HDAC 4, 5, 7 and 9 [122]. Thus, to detect 

which of these isoforms was possibly involved in the MC1568-dependent  

increase of NCX3 mRNA and protein, neurons were silenced by specific 

siRNAs against HDAC 4, 5, 7 and 9 named siHDAC4, siHDAC5, siHDAC7 

and siHDAC9. 

Real Time PCR (qRT–PCR) at 24 hours and western blot analysis at 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

hours revealed that in neurons, NCX3 mRNA and protein increased with 

siHDAC4 and with siHDAC5 whereas any changing was detected with 

siHDAC7 and siHDAC9 all compared to Control (CTL).  

To further confirm the role of HDAC4 and HDAC5 in regulating NCX3 

expression, neurons were transfected with constructs overexpressing 

HDAC 4, 5, 7 and 9. In neurons overexpressing HDAC4 and HDAC5, 

NCX3 mRNA and protein were both reduced whereas cells 

overexpressing the other two HDAC isoforms belonging to class IIA did 

note determine any modification of NCX3 (Figure 7). 
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Figure 7. Effects of HDACs class IIA on ncx3 gene and protein. (a,c). qRT–PCR and 

representative WB with quantification of NCX3 in cortical neurons transfected with constructs for 

HDAC4, HDAC5, HDAC7 and HDAC9. Each column represents the mean ± s.e.m. of n=3 

independent experiments (*P<0.05 vs CTL). (b,d). qRT–PCR and representative WB with 

quantification of NCX3 in cortical neurons transfected with siHDAC4, siHDAC5, siHDAC7 and 
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siHDAC9.  Each column represents the mean ± s.e.m. of n=3 independent experiments (*P<0.05 vs 

CTL). 

                          

IV.5. DREAM, HDAC4 and HDAC5 protein expression   

is increased in brain ischemia 

NCX3 isoform has been deeply investigated in the pathophysiology of 

stroke. In particular it has been found that its knock-down worsens the 

ischemic damage or reduces preconditioning-induced neuroprotection, 

respectively [265,281]. Western blot analysis, performed in the cortex of 

rats at 24 and 48 h after tMCAO, revealed a significative increase of 

DREAM, HDAC4 and HDAC5 in parallel with a reduction of NCX3 protein 

(Figure 8). 
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Figure 8. Effect of tMCAO on DREAM, HDAC4, HDAC5 and NCX3 expression. (a, b, c, d) 

Representative WB with quantification of DREAM, HDAC4, HDAC5 and NCX3 protein expression 

in: (1) control group (CTL), (2) tMCAO at 24h and (3) tMCAO at 48h. Each column represents the 

mean ± s.e.m. (n= 5 animals for each column) (*P<0.05 vs CTL).  

 

IV.6. Stroke induces an increase of HDAC4 and HDAC5 binding on 

ncx3 promoter 

The deacetylation of histones is a modification associated generally to 

transcriptional repression that is achieved through the reduction of access 

of the transcription machinery to the genes [67]. By ChIP analysis we 
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found that tMCAO determined at level of the ncx3 promoter sequence an 

increase of the binding of DREAM, HDAC4 and HDAC5 and a reduction of 

the amount  of the ncx3 promoter associated with acetylated histone H4 

protein and RNA-Pol II (Figure 9).  

 

Figure 9. Stroke induces transcriptional modifications on ncx3 promoter.  ChIP analysis with 

anti-HDAC4, HDAC5, anti- H4acetyl and anti- RNA polymerase II of ncx3 promoter in CTL and  in 

tMCAO. IgG was used as negative control. Each column represents the mean ± s.e.m. (n= 5 

animals for each column) (*P<0.05 vs CTL). 
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V DISCUSSION 

 

The results of this thesis indicate that in rat cortical neurons ncx3 

luciferase activity is increased by the class IIa HDAC inhibitor MC1568, 

but not by the class I inhibitor MS-275. Furthermore, the effect of MC1568 

on NCX3 promoter activity occurs via DREAM sequence. Among the 

HDAC class IIA only HDAC4 and HDAC5 isoforms are able to regulate 

ncx3 expression. In addition, during brain ischemia HDAC4 and 5 were 

increased in parallel with a reduction of NCX3.  

Many studies demonstrated that the ODNs, not only for NCX1 but also for 

NCX3 gene product, caused a worsening of ischemic damage in animals 

subjected to pMCAO [265] and that NCX3 may play a great protective role 

in chemical hypoxia since it seems to be the unique isoform of the 

exchanger able to function in spite of ATP depletion [266]. 

NCX3 is neuroprotective in brain ischemia, in fact knockout mice ncx3-/-  

displayed a worsening of neuronal death after an ischemic insult [267]. 

About transcriptional regulation of NCX3 it has been found that after 

ischemia NCX3 mRNA expression was reduced approximately of 50% at 

24 hours [281] while in ischemic postconditionig ncx3 mRNA is increased 

of about 40%[154,281]. Recently it has been found that in preconditioned 

rats NCX3 protein reduction is blocked by the binding of SUMO-1 at 72 

hours after ischemia [287]. Previous studies demonstrated that MC1568 

by regulating HDAC4 reverts DEHP-induced neuronal cell death [294] and 

protects neural processes against neurotoxic insult [295] .  

A crucial finding of this work is that only HDAC4 and HDAC5 isoforms are 

able to regulate the transcription and the expression of NCX3. 

Interestingly, the other two isoforms belonging to the HDAC class IIA 

HDAC7 and 9, did not change the expression of NCX3. NCX3 promoter 

has putative consensus sequences for the CRE binding protein (CREB) 

and for the Ca2+-binding protein downstream regulatory element (DRE) 
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antagonist modulator (DREAM) [275]. CRE sequence is involved in the 

stimulation of ncx3 promoter [275], whereas DRE sequence for its 

repression [272].  We found that mutation of DRE and CRE sequences 

causes an increase or a reduction of ncx3 promoter activity, respectively. 

Specifically, MC1568 by inhibiting HDAC class IIA increases NCX3 

promoter activity via DREAM sequence, indeed mutation of DRE  

sequence on ncx3 promoter (pGL3-ncx3-DREmut) together with HDAC 

class IIA inhibition due to MC1568 treatment did not cause any significant 

effect compared to pGL3-ncx3-DREmut. 

About DREAM and HDAC4, it has been reported that the former is a 

repressor of NCX3 transcription [272], whereas the latter is a mediator of 

neuronal cell death. Indeed, the exposure of cultured cerebellar granule 

neurons (CGNs) to low potassium medium, reported as apoptotic stimulus, 

triggers rapidly the translocation of HDAC4 into the nucleus with 

subsequent neuronal death [296]. Interestingly we found that DREAM, 

HDAC4 and HDAC5 protein expression is increased at 24h and 48h after 

brain ischemia. NCX3 isoform has been deeply investigated in the 

pathophysiology of stroke. In particular, we found that  the increase in the 

expression of HDAC4, HDAC5 and DREAM occurred in parallel with the 

NCX3 reduction. The deacetylation of histones is an epigenetic 

modification determining a transcriptional repression due to restricted  

access of the transcriptional machinery to the promoter regions of genes 

[67]. In particular, by ChIP analysis we found that in brain ischemia 

HDAC4 and HDAC5 are recruited to ncx3 promoter decreasing H4 

acetylation and RNA-Pol II binding. By these experiments it could be 

hypothesized that HDAC4 and HDAC5 by binding ncx3 promoter could 

lead to ncx3 reduction and consequent neuronal cell death. Collectively, 

these data demonstrate that MC1568 increases ncx3 promoter activity 

through DRE site and that the transcription factor DREAM by recruiting 

HDAC4 and 5 could reduce ncx3 mRNA and protein expression at basal 

level and in brain ischemia. Intriguingly, the development of new HDACs 
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inhibitors specific for each isoform can be considered a new step for the 

improvement of therapeutic strategies against cerebral ischemia and all 

neurodegenerative diseases where HDACs-increased activity or 

expression are involved. 
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