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I 

ABSTRACT 

Worldwide coasts are globally threatened by the effects of shore erosion, with 

increasing consequences from both a social and economic point of view. In 

recent decades the use of environmentally friendly artificial submerged barriers 

have been receiving an increasing interest from the research, due to a high 

biological compatibility associated to shore protection. 

Among them, Reef Ball
TM

 (RB) represents one of the most commonly used 

environmentally friendly modules. The latter was originally employed for 

biological enhancement, and more recently for the shoreline stabilization of 

high valued sites. To this specific aim, RBs modules can be arranged in rows, 

according to different configurations, to realize submerged breakwaters even of 

significant width.  

However, in spite of the clear environmental benefit deriving from the adoption 

of similar structures, their application is still affected by large uncertainties in 

the estimation of the hydraulic characteristics of the wave-barrier interaction. In 

particular, very limited studies exist providing equations for the prediction of 

the effectiveness of Reef ball structures, generally focused on very peculiar and 

uncommon configurations. 

In order to produce a systematic characterization of the hydraulic properties of 

these breakwaters, and overcome the abovementioned limitations, a wide 

experimental campaign consisting in 1,440 tests has been conducted with 

irregular waves in the flume of the Department of Civil, Architectural and 

Environmental Engineering (DICEA) of the University of Naples “Federico II”. 

In these tests a wide range of submergences, wave attacks and configurations 

was investigated, in order to analyse the behaviour or RB barriers under 

breaking and non-breaking waves. To the Author‟s knowledge, this represents 

the widest experimental investigation on this specific type of submerged 

barrier.   

The most relevant aspects related to the wave-barrier interaction have been 

addressed, namely the wave breaking , the rate of energy dissipation, the wave 

set-up and the variation in the wave spectrum.  
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II 

In particular, predictive equations have been proposed for the estimation of the 

transmission coefficients defined both in terms of wave heights and periods. 

More specifically, the comparison between the DICEA data and literature 

equations allowed to develop a new conceptual approach for the assessment of 

the rate of energy dissipation of RB barriers.  

Furthermore, the analyses performed allowed a better comprehension of the 

overall hydraulic behaviour of these structures, especially for what concerns 

breaking occurrence and typological characterization, and RB barrier‟s 

influence on nearshore circulation. 

 

Keywords:  Wave Transmission, Wave Set-up, Wave breaking, Submerged 

Breakwaters, Reef Ball, Physical Modelling. 
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LIST OF SYMBOLS 

A0 [-] scale factor of the model of Armono; 

A1 [m
2
] area of the surface roller in the vertical plane; 

Arect [m
2
] area of rectangle inscribing RB configurations. 

ARB [m
2
] base area of one RB module. 

At [m
2
] cross-section area of the breakwater; 

B [m] crest width of the breakwater; 

B0 [m] wave peakedness parameter; 

BbR [m] crest width of Reef Ball structures; 

Beq [m] equivalent rectangular crest width; 

Bm [m] berm crest width; 

Bt [m] nominal crown width of Reef Ball structures; 

Bt
*
 [m] effective crown width of Reef Ball structures; 

c [ms
-1

] phase speed; 

Cv [-] discharge coefficient; 

d [m] water depth; 

dI [m] still water depth offshore the barrier; 

dII [m] still water depth inshore the barrier; 

db [m] still water depth at incipient breaking; 

dgI  [m] still water depth offshore entrance of gap between 

breakwaters; 

Dn50 [m] nominal rock diameter, Dn50=(M50/ρr)
1/3

; 

DR [m] base diameter of Reef Ball; 

dsI [m] still water depth at offshore of the barrier; 

dsII [m] still water depth at inshore of the barrier; 

E [Wm-2] wave energy; 

F [m] freeboard. i.e. the difference between the 

height of structure and the water depth; 

f [m1/3s-1] friction parameter of Glaukler-Strickler‟s 

formula; 

f‟ [-] friction factor; 
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f0 [-] drag coefficient for close modules with no-

breaking waves; 

G [-] geometrical quantities related to equivalent 

water thickness over breakwater; 

g [ms-2] gravity acceleration; 

G‟, G1, G2 [-] dissipation factors; 

GR [-] dissipation factor of RB modules in CA for 

bermed layout; 

 ̅  [m]  average wave height; 

H0 [m]  deep water wave height; 

HI [m]  offshore wave height at the toe of the structure; 

HII  [m]  onshore wave height at the toe of the structure; 

Hb [m]  wave height at incipient wave breaking; 

Hbcr [m] wave height at incipient wave breaking on the 

crown of a breakwater; 

Hen [m]  energetically equivalent wave height; 

Hen,i [m]  energetically equivalent incident wave height; 

Hi [m]  incident wave height; 

hm [m]  height of berm; 

Hm0 [m]  spectral wave height; 

Hm0,i [m]  incident significant spectral wave height; 

Hm0,t [m]  transmitted significant spectral wave height; 

HR [m]  reflected wave height; 

hR [m]  height of Reef Ball; 

Hrms [m] energetically equivalent wave height, 

Hrms= √  ); 

hs [m]  height of structure; 

hse [m]  equivalent height of Reef Ball structure; 

Hsi [m]  incident significant wave height; 

Hst [m]  transmitted significant wave height; 

Hμ [m]  mean wave height, Hμ=√    ; 

kI [m
-1

] wave number offshore the barrier; 

kII [m
-1

] wave number inshore the barrier; 
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KR [-]  reflection coefficient; 

KT [-]  transmission coefficient; 

KT,calc [-]  calculated transmission coefficient; 

KT,meas [-]  measured transmission coefficient; 

Kt,over [-] partial transmission coefficient over the 

breakwater; 

Kt, thru [-] partial transmission coefficient through the 

breakwater; 

K
s
t,0, K

nt,0 
[-] transmission coefficients for triangular 

breakwaters; 

L [m] wave length; 

L0 [m] deep water wave length; 

L0p [m] deep water wave length calculated in function of 

Tp; 

Lb [m] wave length at incipient breaking; 

Lbs [m] distance between the breaking point and onshore 

toe of structure; 

Lg [m] mean length of gaps between breakwaters; 

Li [m] incident wave length; 

Lip [m] incident wave length calculated in function of Tp; 

Ls [m] mean length of breakwater; 

m [-] bottom slope; 

m0 [m
2
] zero order spectral moment; 

M50 [Kg] 50% value of rock mass distribution curve; 

m0,i [m
2
] incident zero order spectral moment; 

m0,T [m
2
] transmitted zero order spectral moment; 

n [-] number of Reef Ball rows at the top of the 

structure; 

qin [m
2
s

-1
] incoming flux per unit of length; 

qover [m
2
s

-1
] outgoing flux over breakwater per unit of length; 

qthrough [m
2
s

-1
] outgoing flux through breakwater per unit of 

length; 

Rc [m] submergence of the structure, Rc = d-hs; 
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Rce [m] equivalent submergence of Reef Ball structure, 

Rc = d-hse; 

Rcm [m] submergence of the Reef Ball mound, Rcm = d-hm; 

Rsu [m] significant wave run up; 

Ru [m] wave run up; 

Sw [-] slope of the energy grade line; 

s0 [-] deep water wave steepness, s0 = Hi/L0; 

s0p [-] deep water wave steepness, s0p = Hsi/L0p; 

T [s] wave period; 

Tpi [s] incident peak wave period; 

TpT [s] transmitted peak wave period; 

Ub [ms
-1

] bottom velocity; 

ugI [ms
-1

] rip current velocity offshore breakwaters; 

UR [-] Ursell‟s number; 

ws [m] width of structure at sea bottom; 

xI [m] distance between the shoreline and the offshore toe 

of the breakwater; 

xII [m] distance between the shoreline and the inshore toe 

of the breakwater; 

xb [m] distance between breaking point and seaward edge 

of structure; 

αin [-] inshore breakwater slope; 

αoff [-] offshore breakwater slope; 

γf [-] roughness factor for wave overtopping; 

δ [m] total wave set up; 

δ‟ [m] difference between the water level shoreward and 

seaward the breakwater; 

δ1DH [m] wave set up for continuous breakwater; 

δBT [Wm
-2

] energy dissipation per unit area; 

δc [m] mass flux contribution to set up; 

δmf [m] breaking momentum flux contribution to set up; 

δns [m] wave set-up without RB barriers; 

δs [m] wave set-up inducted by RB barriers; 
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η [-] ratio between the transmitted wave height and the 

wave height at landward edge of the crest; 

λ [-] friction factor; 

ν [-] dissipation factor; 

νφ [-] arrangement dissipation factor; 

νbr [-] breaking factor; 

ξ [-] Iribarren parameter ξ = tgαoff/s0
0.5

; 

ξp [-] Iribarren parameter ξp = tgαoff/s0p
0.5

); 

∏ [-] transmission coefficient for structures with Rc = 0. 

ρr [kgm
-3

] rock density; 

ρw [kgm
-3

] water density; 

τb [kgm
-1

s
-2

] unitary shear stress at bottom; 

ʋ [-] transmission factor for through-passing; 

Ф [-] dissipation factor for breaking waves; 

φ [-] configuration density; 

φp [-] thickness coefficient; 
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LIST OF ABBREVIATIONS 

B Bermed Reef Ball layout; 

BS Bottom Seated Reef Ball layout; 

CA Conceptual Approach; 

DICEA Dipartimento di Ingegneria Civile Edile ed 

Ambientale (Department of Civil, Architectural, 

Hydraulic and Environmental Engineering); 

ERDC/CHL Engineering Research and Development Centre 

Coastal and Hydraulics Laboratory; 

QUCERL Queen‟s University Coastal Engineering Research 

Laboratory; 

RB Reef Ball; 
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Chapter 1 – INTRODUCTION 

World's total coasts extend for about 1,635,000 km and are characterized by an 

ample variety of geomorphological features, weather regimes and biomes 

(Burke et al., 2001). Whatever coasts‟ characteristics, their ecological, 

economic and social importance is beyond dispute. In fact, coastal ecosystems 

provide a complex of goods and services which are indispensable for the human 

life. Furthermore, they sustain biodiversity and offer a greatly valued habitat, as 

well as areas for recreation and tourism (van der Meulen et al., 2004). These 

services are estimated at some 25,780 x10
9
 US Dollars per year (Martinez et al., 

2007), which roughly correspond to 77% of global ecosystem-services value 

(Costanza et al, 1997). On a global scale, coastal ecosystems are threatened by 

the rapidly-growing concentrations of people and socio-economic activities 

(Bijlsma et al., 1996), and nowadays 28% of them results to be altered by 

human activities (Figure 1.1).  

 

 
Figure 1.1. Coastal population and shoreline degradation (UNEP, 2002). 
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It has been estimated that the average population density in coastal areas is now 

twice as high as the global average (UNEP 2005). Worldwide, about 60% of the 

world‟s population live in the coastal zone (Nicholls et al., 2007) and more than 

100 million people live in areas no more than 1 m above sea level (Douglas and 

Peltier 2002).  

Coastal erosion is among the most common and important phenomena affecting 

world‟s coasts. In fact, over 70% of the World‟s beaches experiences coastal 

erosion (Dar and Dar, 2009) and the total coastal area, including houses and 

buildings, currently being lost in Europe is estimated to be about 15 km2 per 

year (Van Rijn, 2011). 

From one hand, Coastal erosion is a natural, long-term, process able to pose 

serious threats to life and property (Rangel-Butrago and Anfuso,  2009). Suffice 

to say, the annual property loss in the US due to coastal erosion is estimated in 

500 million US Dollars, and about 150 million US Dollars are spent every year 

by the US Government in erosion control measures (NOAA, 2013). 

On the other hand, coastal erosion is a process which can be triggered or 

exacerbated by anthropic actions, such as:  

 coastal development and land reclamation, which can change the 

alongshore sediment transportation;  

 modification of river catchments, which can modify the sediment 

delivery to the coast; 

 global climate change, which is expected to worsen the exposure of 

coasts, due to rising sea levels, increased erosion and salinity and 

degradation of wetlands (IPCC, 2007). 

The engineering solution most widely employed in the practical applications for 

the mitigation of beach erosion is the use of submerged detached breakwaters, 

often in conjunction with beach nourishment. Traditional submerged 

breakwaters are rubble-mound structures stretched along the coast for several 

kilometres and characterized by a crown height under the mean sea water level 

(m.s.w.l.), that favours the water exchange at the back of the structures. The 

main purpose of these structures is to force the wave breaking and cause the 

turbulent dissipation of wave energy.  

In many countries of the world, Italy, Spain and Japan among them, submerged 

breakwaters are considered the sole structural measure for shore erosion control 
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that is consistent with a policy of protection of the natural and historical 

beauties of coastal areas. For this reason, their structural, hydraulic and 

environmental responses have been intensively investigated in the recent 

decades. The EU-funded project DELOS (Lamberti, 2005, Burcharth et al., 

2007) is among the most fruitful research efforts.  

In spite of their undoubted advantages, conventional submerged breakwaters 

generally require the quarrying of a large amount of rocky material; in addition 

to the expense, especially when the structures are long and wide, quarrying 

inflicts noticeable harm to the environment, and for this reason, it is often 

forbidden or extremely difficult to achieve.  

The use of prefabricated concrete modular elements can represent an alternate 

to traditional rubble-mound structures, thanks to relatively low costs, durability, 

manageability and standardization of the construction process. Similar artificial 

reefs can efficiently reproduce most of the characteristics of natural reefs 

(Jensen, 1998). In fact, they were initially used for purposes such as fish 

production, in Japan, recreational diving, in the USA, prevention of trawling, in 

Europe (Baine, 2001) or for the protection of areas with a particularly high  

environmental and landscape value (Calabrese et al., 2011). In these cases great 

attention should be paid on the chemical characteristic of the concrete, because 

of its potential interaction with the coastal ecosystem.  

The use of environmentally friendly concrete units may represent a suitable 

trade-off between, shore erosion control and environmental compatibility. In 

fact, in addition to reducing the volume of rock to be employed, these units are 

able to interact with marine life, favouring a number of recreational activities, 

such as surfing, snorkelling and fishing. This may ultimately increase the 

appeal of the beach, generating economic benefits. Nevertheless, in the face of 

the advantages above, larger uncertainties in the prediction of the response of 

the beach in the protected area exist for these structures (Dean et al., 1997). 

In this study, one of the most popular environmentally friendly units for 

submerged breakwaters, the Reef Ball
TM

 (Barber, 2001), has been analysed. 

These modules were originally designed for biological enhancements, due to 

their peculiar shape and high biocompatibility, which render them particularly 

suitable for use in delicate and fragile ecosystems, such as coral reefs. Their use 

was later expanded to shoreline stabilization and interventions were done in 



Chapter 1 – Introduction 
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

4 

highly-valuable beaches, although limited studies exist in the literature 

providing readily available design equations and reliable predictions of their 

overall behavior. In fact, the main studies dedicated to Reef Ball structures are 

those by Armono (2003) and Ward (2011), who mainly focused on the 

assessment of wave transmission for structures arranged according to peculiar 

configurations.  

The present study intends to fill this gap in the literature, on the basis of the 

results of an extensive experimental campaign performed at the Department of 

Civil, Architectural and Environmental Engineering (Dipartimento di 

Ingegneria Civile, Edile ed Ambientale, DICEA) of the University of Naples 

Federico II, Italy. This campaign was designed to investigate the main features 

of submerged breakwaters made of Reef Balls, namely wave breaking, 

transmission, set-up and spectral variations. To the Author‟s knowledge, the 

DICEA campaign represents the widest investigation performed to date on these 

specific structures. 

1.1 Objectives of the Study 

The general objective of this thesis is to contribute to the understanding of the 

physical behaviour of submerged barriers made of Reef Ball modules and 

provide predictive models for the estimation of main hydraulic parameters. To 

achieve this, the results of the DICEA experimental campaign have been 

analysed and compared to previous literature experiences. 

More specifically, this thesis intends to: 

 characterize the occurrence and typology of wave breaking at Reef Ball 

barriers, as a fundamental step in the comprehension of the energy 

dissipation phenomena;  

 overcome the lack in reliable predictive tools for the design of Reef Ball 

Barriers, through the definition of predictive equations for the 

transmission coefficients.  In fact, this is the main parameter measuring 

wave attenuation and allowing to assess the level of protection ensured 

by a submerged breakwater; 

 investigate the presence and amount of the wave set-up, i.e. the variation 

of the mean water level induced by the presence of the barrier, in order 
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to obtain indications about the influence of RBs on the nearshore 

currents; 

 Provide predictive equations for the spectral variations, to further 

characterize wave-barrier interaction in the case of Reef Ball modules. 

1.2 Organization of the thesis 

This thesis presents the analysis of the behaviour of Reef Ball submerged 

breakwaters on the basis of the results of the DICEA experimental campaign.  

The thesis is divided into twelve Chapters and structured in three main parts, 

described below.  

The first part provides a general description of Reef Ball modules (Chapter 2) 

and presents main projects in which Reef Balls were employed, mainly for 

shore protection purposes (Chapter 3).  

The second part is dedicated to the review of existing studies and to analyses 

based on literature data. More specifically, previous studies on traditional 

breakwaters (Chapter 4) and Reef Ball breakwaters (Chapter 5) are firstly 

presented. Subsequently, the assessment of the transmission coefficient of Reef 

Ball barriers, based on previous literature data, is presented (Chapter 6). 

The third part of the work is completely devoted to the DICEA experimental 

campaign.  After a description of the experimental setup and a presentation of 

the analysis carried out (Chapter 7), the results of the DICEA campaign are 

analysed and critically discussed, separately for what concerns the wave 

breaking (Chapter 8), wave transmission (Chapter 9), wave set-up (Chapter 10) 

and spectral variations (Chapter 11). The thesis concludes with a summary of 

the most important outcomings deriving from the analysis of the DICEA 

campaign and final remarks (Chapter 12). 
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Chapter 2 – REEF BALL
TM

 MODULES 

2.1 General characteristics and properties 

Reef Balls (RBs; Barber, 2001) are hollow hemispherical-shaped artificial units 

(Figure 2.1), originally designed for biological enhancement and coral reef 

restoration and subsequently employed for shore erosion control. 

Reef Balls are characterized by a central cavity, a complex system of lateral 

holes, peculiar surface textures and a neutral pH. These peculiarities allow 

modules to recreate a suitable habitat for benthic and pelagic species and make 

them suitable to be used in areas with a fragile ecosystem, as the one typical of 

coral reefs. 

In particular, the central cavity represents a possible repair for fishes from 

predators. Furthermore, the system of lateral holes, which may vary in number 

and diameter, determines turbulences that attract fishes following the current. 

Their particular superficial textures exhibit a roughness that favours the 

colonization of modules by fouling and non-fouling communities 

(Armono, 2003). 

RBs are made of concrete with a pH of about 8.3, close to that of the sea. This 

allows to insert RB modules in the marine environment minimizing potential 

negative impacts and fostering the development of the existing ecosystem.  

In order to provide a rapid colonization of RB units, it is possible to implant 

oysters (Figure 2.2a) or other types of filter-feeding communities on RB‟s 

lateral surface, through the use of epoxy glue. In case RB modules are 

employed for coral reef restoration, corals can be implanted on their surface. 

For this aim, star-shaped supports made of sand and resin can be attached on 

modules via stainless steel screws (Figure 2.2b). Otherwise, it is possible to 

allocate corals in appropriate grooves, realized beforehand (Figure 2.3). 

To date a number of different types of RB units are commercially available, 

characterized by different size, weight and hole pattern, as reported in 

Table 2.1. 
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Figure 2.1. Example of Reef Ball units (www.reefball.org). 

 

 
Figure 2.2. a) Ostrea Edulys applied through epoxy glue on a Reef Ball, 20 days after 

the installation of the module in Venice, Italy, in 2012 (courtesy of Reef Ball Italia); b) 

coral implanted on a Reef Ball module through star-shaped supports in Dominica, 

Caribbean Island, in 2000 (Whitford, 2001). 

a) b)

http://www.reefball.org/
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Figure 2.3. a) RB module with grooves (small holes) realized on their surface for coral 

settlement (www.ioseaturtles.org); b) Coral transplanted in groove. (Reef Ball 

Foundation, 2008). 

 

Unit Types 
Base Diam. 

(m) 

Height 

(m) 

Weight  

(Kg) 

Concrete Volume. 

 (m
3
) 

# of 

holes 

Goliath Ball 1.83 1.52 1800-2700 1.0 25-40 

Super Ball 1.83 1.37 1800-2700 1.0 22-34 

Ultra Ball 1.83 1.31 1600-2000 0.7 22-34 

Reef Ball 1.83 1.22 1350-1900 0.6 22-34 

Pallet Ball 1.22 0.9 700-1000 0.25 17-24 

Bay Ball 0.9 0.61 170-340 0.08 11-16 

Mini-Bay Ball 0.76 0.53 70-90 less than 0.04 8-12 

Lo-Pro Ball 0.61 0.46 35-60 less than 0.02 6-10 

Oyster Ball 0.46 0.30 15-20 less than 0.01 6-8 

Table 2.1. Reef Balls characteristics (www.reefball.org). 

 

All the above-mentioned characteristics motivated a first application of RB 

modules for purely rehabilitation purposes. Subsequently, their use was 

expanded to shore erosion control. In fact, submerged breakwaters, even of 

significant width, can be realized through RB modules (Figure 2.4). To this 

aim, units with significant heights (Table 2.1) are generally employed, arranged 

according to different layouts. Conversely, smaller modules are usually 

employed in aquaculture and for coral transplanting and propagations. 

a) b)
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Figure 2.4. Example of Reef Ball submerged breakwater (www.reefball.org). 

2.2 Construction process 

Reef Balls are made of concrete and additives, providing to the mixture a rapid 

pouring and allowing the installation of modules within 24 48 hours from the 

cast. These additives also reduce the mixture pH to a value very close to that 

one of sea.  

The peculiar shape is obtained by casting concrete into a fiberglass assembled 

mold (Figure 2.5a) with a system of buoys. The central buoy (Figure 2.5b) is 

usually a polyform-type one, which is resistant to high pressure and 

temperature, whereas smaller buoys (Figure 2.6a) are used to realize holes on 

the lateral surface. As shown in Figure 2.6b, the concrete mixture is poured 

through the central hole on the top of the mold. After hardening, the central 

buoy can be deflated and removed or it can be left in place, to facilitate the 

floating and positioning of the module. Subsequently, RBs are washed to 

provide an adequate roughness to the surface and to further reduce the pH 

(Sherman et al, 2002; Harris, 2007a). 

Modules are generally located to their final position though the use of cranes 

and barges (Figure 2.7). Alternatively, they can be equipped with lift bags 

(Figure 2.8a) and moved to their final destination by floating. In case the 

modules are directly realized on site, the most economical solution is to move 

them without deflating the central buoy (Figure 2.8b). 

http://www.reefball.org/
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Figure 2.5. a) Construction of RBs in Puerto Rico. On the bottom-left corner a mold 

can be observed (www.coralations.com); b) Mold and central buoy used in the 

construction of RB, Maryland Reef Ball Project (www. reefball.org). 

 

 
Figure 2.6. a) Inner part of a mold with the system of buoys used to create lateral holes 

(Harris, 2007a); b) Concrete pouring at the top of a mold (www.nj.gov). 

 

 
Figure 2.7. Transportation of modules to their final location through the use of cranes 

(panel a) or barges (panel b) (www.reefballitalia.it; www.reefball.com). 

a) b)

a) b)

a) b)

http://www.nj.gov/
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Figure 2.8. a) Example of lift bag (Arnouil, 2008); b) Arrangement of Reef Ball with 

inflated central buoy (Harris, 2007a). 

 

In case the design requires modules higher than Goliath Ball-type (Table 2.1) it 

is possible to increase the height of each module by placing it on the crest of a 

traditional mound, or using Goliath Booster Ring
1
. The latter is a concrete base 

in which a Goliath Ball can be placed (Figure 2.9). The characteristics of the 

ring are listed in Table 2.2. 

 

 
Figure 2.9. Goliath Booster Ring (Harris, 2009). 

 

Base Diam. (m) Height m) Weight (Kg) Concrete. Volume (m
3
) # of holes 

2 1 1816-2727 1.19 15-25 

Table 2.2. Goliath Booster Ring characteristics. 

                                                 
1
 Goliath Booster Ring were firstly employed for a submerged breakwater in Malaysia 

 

a) b)
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2.3 Anchoring systems 

The stability of modules is definitely one of the most important conditions to 

verify, both in case of a submerged breakwater for shore erosion control and of 

biological enhancement interventions. This is particularly important for coral 

planting, due to their high value. 

In order to avoid the occurrence of instability phenomena, different types of 

anchors can be used, depending on the bottom and on the displacement that it is 

necessary to limit. In particular, sliding generally occurs when Reef Balls are 

disposed on a rocky bottom and arranged with a low submergence or in areas 

with high energy rates. Conversely, in the presence of a sandy bottom, 

settlement phenomena may often take place.  

The largest stabilizing contribution to the overall equilibrium of the module is 

provided by its weight, that can be increased employing so-called “heavy 

modules”, i.e. units characterized by a high weight in their bottom third.  

Main anchor types which can be used for RBs are: 

 cone anchors; 

 spike anchors; 

 battered piles; 

 friction piles; 

 mattresses. 

The first two types (Figure 2.10) are generally used to prevent the occurrence 

sliding phenomena. 

Cone anchors (Figure 2.10a) are suitable in the case of soft bottoms and consist 

of four cones cast monolithically with the Reef Ball. Hollow cones 

(Figure 2.11) are a special type of cone anchors which can be used when it is 

necessary to preserve sea grass under the base of modules. This can be 

particularly important for both the biological preservation of the area and 

preventing/limiting module sliding and sinking, due to subsoil enhancement 

produced by roots. 
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Figure 2.10. a). Anchoring cones; b) Anchoring spikes (Reef Ball Foundation, 2008). 

 

 
Figure 2.11. Hallow anchoring cones (Reef Ball Foundation, 2008). 

 

Spikes anchors (Figure 2.10b) are tapered pre-cast concrete anchors, reinforced 

by five fibreglass rebar each. The size of the spikes is designed after pressure 

tests and calibrated to penetrate inside the rocky bottom. 

Battered piles (Figure 2.12) are generally used in order to limit both the 

horizontal and vertical displacements. This anchor system consists of three or 

four piles driven, either hydraulically or by means of compressed air, through 

the Reef Ball‟s lateral holes, up to the pre-drilled bottom. Each pile, 

characterized by a maximum length of 2.4 m and a diameter of 10 cm, is 

reinforced by a maximum of three fibreglass rebar and equipped with a 1 cm 

thick PVC pipe, allowing the pile to be jetted into the bottom.  

a) b)
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Another type of anchoring is provided by the friction piles. These piles are 

similar to the previous ones, but characterized by a larger diameters, to increase 

the surface in contact with the subsoil and, therefore, the friction resistance. 

In order to control the development of settlements, it is also possible to 

distribute the RB weight on a larger surface and reduce the pressure applied at 

bottom through the use of adequate concrete mattresses (Figure 2.13).  

These are generally realized during the construction of Reef Balls by means of 

dedicated formworks. 

 

  
Figure 2.12. Battered piles (Reef Ball Foundation, 2008). 

 

 
Figure 2.13. Concrete mattress (Reef Ball Foundation, 2008). 

 

a) b)
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Besides, different mattresses at the base of RBs can be connected each other by 

means of steel bars, to realize a so-called articulated mattress (Figure 2.14). 

This allows to distribute the weight of the structure on larger areas and to 

significantly increase the overall stability of the modules.  

Another type of mattress can be realized by the use of Armorflex modules 

(ARMORTEC
TM

). These are prefabricated permeable elements which can be 

connected each other by means of longitudinal cables laid down in dedicated 

holes (Figure 2.15). These modules allow the free growth of the vegetation and 

are generally employed for revetments. Nevertheless, they can be employed as a 

base for Reef Ball modules providing a contribution in limiting their settlement 

and sinking. Furthermore, this type of mattress could play a role in sediment 

transport by trapping the sand in the central holes. 

 

 
Figure 2.14. Articulated mattress. (Harris, 2007a). 

 

 
Figure 2.15. Armorflex mattress (Ward, 2011).
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Chapter 3  – REEF BALL PROJECTS 

To date, Reef Balls have been employed in approximately 7,600 projects 

throughout the World. In 80% of the cases the main objective of the 

intervention was biological enhancement and reef ecosystem restoration, the 

remaining part was aimed at shore erosion control too. 

In the following, the most relevant projects providing indications regarding the 

effectiveness of the intervention and the increase in the beach after the 

installation of RBs are presented. Although very limited information was 

available regarding the meteorological and marine conditions as well as design 

assumptions, it is believed these can provide useful insights about the feasibility 

of interventions aimed at finding the best trade-off between the need for coastal 

protection and biological enhancement. 

3.1 Gran Dominicus Resort and Iberostar Hotel, Carribbean 

Coast, Dominican Republic 

The first documented project, firstly realized for shoreline stabilization and 

secondly for environmental enhancement and recreation, is that of the Gran 

Dominicus Resort (Figure 3.1), in southern Caribbean, Dominican Republic.  

In order to contrast the phenomenon of coastal erosion, a segmented submerged 

breakwater made of RB units and a beach nourishment were realized offshore 

the Grand Dominicus Resort, in August 1998 (Harris, 2001). 

400 Reef Ball and 50 Ultra Ball modules (Table 2.1) were arranged to form 3 

structures, each composed of 3 rows. The total length of the breakwater was 

about 250 m and the submergence was variable between 0.3 m and 0.8 m. The 

m.s.w.l was ranging between 1.6 to 2.0 m. 

A comparison between the beach profiles observed at 6 and 32 months since the 

end of the project resulted in an average increment of the protected beach of 

about 12 m (35 m
3
/m of sand volume) and a stable shoreline was observed for 

the adjacent beaches (Harris, 2001). The three sections monitored over time, 
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namely the “west gap”, the “east gap” and the “phase 2” profile lines, are 

depicted in Figure 3.2. 

 

 
Figure 3.1. Satellite view of the Gran Dominicus Resort (Google Earth, 05/19/2014, 

18°20‟33.63”N - 68°49‟15.27‟‟O, elev. 0 m, alt.436 m). 

 

 

 
Figure 3.2. Profile lines of the beach of Grand Dominicus Resort. (Harris, 2001). 
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Reportedly, shoreline increments of 13 m and 10 m were respectively observed 

for the “west gap” (Figure 3.3) and for the “east gap” profile lines (Figure 3.4). 

At “phase 2” section the beach profile resulted to be stable (Figure 3.5). Worth 

noting, this monitoring was performed by comparing the beach profiles in two 

different seasonal periods, in which different beach behaviours are generally 

expected (April 2001 and February 1999). In fact it is well-known the cross-

shore sediment transport is deeply influenced by seasonal phenomena. 

In 1998, the breakwater was interested by the direct hit of the Hurricane George 

(Category 3) and by the large waves produced by the Hurricane Mitch 

(Category 5). A survey conducted after these events revealed that no modules 

were displaced or damaged (Harris, 2007a).  

In September 2001, 278 Ultra Balls (Table 2.1) were placed to realize an 

additional segmented breakwater for the protection of the Iberostar Hotel, 

adjacent to the Grand Dominucs Resort (Figure 3.6). 9 months after the end of 

the construction a survey of both projects was conducted. This resulted in a 

slightly increment of the beaches and no adverse impacts were observed for the 

adjacent ones (Harris, 2002). 

 

 
Figure 3.3. Shoreline changes for the “west gap” profile (Harris, 2001). 
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Figure 3.4. Shoreline changes fort the “east gap” profile (Harris, 2001). 

 

 

 
Figure 3.5. Shoreline changes fort the “phase 2” profile (Harris, 2001). 
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Figure 3.6. View of Iberostar (Google Earth, 05/19/2014, 18°20‟32.75”N – 

68°49‟15.31”O, elev. 0 m, alt. 693 m). 

 

3.2 Marriott beach Hotel, Cayman Island. 

The project of a Reef Ball breakwater at Marriott Beach Resort was aimed at 

producing the shoreline stabilization and favouring an equilibrate growth of 

flora and fauna, thus increasing the general appeal of the beach. 

The Resort, located in the southern part of Seven Mile Beach, Cayman Island, 

was affected by a significant erosion phenomenon due to the alongshore 

sediment transport, directed from south to north (Figure 3.7).  

Figure 3.8 shows the alonghshore beach profile evolution from April 1994 to 

November 2002. In these years the beach retreated up to the perimetral seawall 

of the hotel structure. In particular a 30.5 m erosion was registered from 1997 to 

2002 (Harris, 2003). 

In 2002, a segmented submerged breakwater made with 5 rows of Ultra Ball 

units (Table 2.1) was set up shoreward a natural reef (Figure 3.9), about 49 m 

far from the beach. A gap between the two structures was left approximately in 

the central part of the natural reef, where the latter achieved minimum 

submergence values of about 0.30 to 0.61 m below the mean sea water level. 
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The two RB breakwaters were, respectively, 43.9 m and 29.26 m long, 7.62 m 

and 9.14 m wide, with a submergence of 0.10 and 0.55 m. 

 

 
Figure 3.7. Satellite view of Marriott Beach Resort (Google Earth, 03/11/2014, 

19°19‟05.05”N – 81°22‟51.58”O, elev. 5 m, alt.651 m). 

 

 
Figure 3.8. Marriot beach profiles in the period 1994-2002. (Adapted from 

Arnouil, 2008). 
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Figure 3.9. Graphic representation of the RB breakwater at Marriot Beach Resort. 

(Adapted from Harris, 2003). 

 

In order to avoid sliding, each module was anchored by 5 fiberglass rebar (see 

section 2.3), driven through the lateral holes of the module to reach the rocky 

bottom. In addition, several types of corals were implanted on RB surfaces 

(Figure 3.10) to promote the ecotourism and encourage recreational activities 

such as snorkeling and diving. 

 

  
Figure 3.10. Coral on Reef Ball at Marriott Beach.(www.reefball.org). 

 

In order to investigate the response of the beach, several surveys were 

conducted after the end of the project. As shown in Figures from 3.11 to 3.13, 

a) b)
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an initial average increment of the shore line of 14.5 m was observed from 

November 2002 to February 2003 (Harris, 2003).  

 

 
Figure 3.11. Comparison between the cross shore beach profile between November 

2002 and February 2003 at Southern end of RB breakwaters (Harris, 2003). 

 

 
Figure 3.12. Comparison between the cross shore beach profile between November 

2002 and February 2003 at 9 m North of Southern end of RB breakwaters 

(Harris, 2003). 
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Figure 3.13. Comparison between the cross shore beach profile between November 

2002 and February 2003 at 40 m North of Southern end of RB breakwaters 

(Harris, 2003). 

 

Subsequently, after the hurricane season and the tropical storms of 2003, the 

beach reached a width of about 5.8 m, while a complete retreatment of adjacent 

beaches was observed (Harris, 2003). 

After Charley (category 1/2), Ivan (category 5) and Emily (category 4/5) 

Hurricanes, in 2004 and 2005, the state of the units was verified, resulting to be 

stable and undamaged (Harris, 2009). 

In order to increase the protection of the beach from SW waves, in November 

2005 the existing breakwaters, made of 200 modules, was extended with 32 

additional units (Figure 3.14). Ultimately 232 modules, at a cost of US$ 1,000 

per Reef Ball installed (Harris, 2007b), were placed for the protection of the 

Marriott Beach. 

Furthermore, approximately 15 m
3
/m of beach nourishment were placed along 

3 km in the southern Seven Mile Beach area, including the Marriott Beach 

(Harris, 2007a). 

An extensive monitoring of the beach profile between November 2002 and June 

2008 was performed by Arnouil, 2008. Results are shown in Figure 3.15 from 

which an overall increment of the beach from 0 - 9.14 m to 7.62 - 21.3 m can be 

observed. 
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Figure 3.14. Original scheme of Reef Ball submerged breakwaters. The red circle 

identifies the area of the subsequent expansion of the structures. (Adapted from 

Harris, 2003). 

 

 
Figure 3.15. Beach lines after the installation of Reef Ball Breakwaters at Grand 

Cayman Marriott Hotel during the period 2003-2008. (Adapted from Arnouil, 2008). 
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The first biological monitoring was conducted in February 2003 (three months 

after the end of the project) and a significant growth of marine species was 

found. Some photographic documents of the biological enhancement produced 

in the period 2006-2008 are shown in Figure 3.16. 

 

  

  
Figure 3.16. a)Encrusting Gorgonia; b) Finger Coral and hermit crabs; c) several fishes 

including Yellowstail Snapper, Black Margate and Schoolmaster; d) some fishes 

belonging to the family of Snappers. (www.reefball.com). 

3.3 Maiden Island, Antigua project 

The Maiden Island, Antigua was a “bio-engineering” project aimed at the 

realization of an artificial fringing reef
2
 (Figure 3.17). 

                                                 
2
 Coral reefs are generally classified in: fringing reefs, barrier reefs and atolls. The first 

one is the most common type of coral reef, characterized by the absence of a backreef 

(lagoon). This peculiarity makes them the most vulnerable to pollutants which can‟t be 

properly diluted. Less diffused then the previous, barrier reefs are generally located in 

a) b)

c) d)
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The main goals of this project were, on the one hand, to recreate the natural reef 

destroyed by the 1995 Hurricane Luis (category 4) and, on the other hand, 

foster the ecotourism and protect the beach nourishment.  

 

 
Figure 3.17. Satellite view of Maiden Island, about 0.5 MN off the coast of Antigua 

(Google Earth 1/2/2015, 17°07‟34.52”N-61°44‟55.51”O, elev.11 km, alt. 15.49 km). 

 

In this project 1,200 RB modules (Table 2.1) were employed, placed at depths 

ranging between 1 and 2 m., For large part of the structure, the modules were 

arranged in 5 rows and different snorkelling and diving paths were realized 

(Figure 3.18). 

Modules were anchored by means of 4 different systems, namely fiberglass 

rebar, cones, spikes and battered concrete piles with fibreglass rebar (see 

Section 2.3). 

About 5,000 new corals were placed on the surface of Reef Balls, as well as 

17.4 tons of adults corals, taken from Antigua Island where environmental 

conditions were compromising their life. 

 

                                                                                                                                  
the Atlantic Ocean. In this case, the coral reef is linear and detached from shoreline by 

a wide backreef. Atolls are circular coral reefs characterized by a large lagoon. They 

are mostly spread in the Pacific Ocean. 
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Figure 3.18. Plan view of Maiden Island submerged breakwater (www.reefball.org). 

 

In order to avoid the expansion of algae and favour the growth of corals, 500 

sea urchins (Echinometra lucunter) were inserted into grooves realized ad-hoc 

on Reef Ball surface (Figure 3.19). 

According to the indications provided by the Nova Southeastern University 

FL,USA (www.reefball.com), a number of modules were filled for one-third of 

their height with stones to reproduce the typical habitat of juveniles. Moreover, 

some units were equipped with meshes to attract young lobsters. 

Several pinnacles were built for spawning protection in the area offshore the 

barrier (represented by violet lines in Figure 3.18). The layout of these 

structures was expressly designed so that juveniles could be transported by 

currents to the back of the reef, finding protection from predators.  

Throughout the structure, corridors were provided to allow fish migration from 

shallow to deep water. 

One peculiar aspect of this project is the installation of Reef Balls lifted from 

the bottom through the use of dedicated supports (Figure 3.20). This way it was 

possible to preserve the seagrass representing the habitat for the conch 

Strombus gigas. Worth noting, the preservation of seagrass also produces 

important consequences from an engineering point of view, because roots are 

able to limit the sinking of modules and generally allow to avoid the use of 

geotextiles. 
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Figure 3.19. Sea Urchin into Reef Ball lateral groove (www.reefball.com). 

 

 
Figure 3.20. Marine life under the base of a lifted Reef Ball (www.reefball.com). 

 

The environmental response to the installation of the fringing reef was 

monitored in 2010. The results showed a general increase in the number and 

type of marine species in the area, in particular several spawns of Lutjanus 

grisou, 73 different species of fishes, 71 of invertebrates, 30 of corals and 26 of 

algae (Figure 3.21). 

 

http://www.reefball.com/
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Figure 3.21. Colonization of Reef Ball surface 7 years after the end of the project: a) 

numbers of fish including French Grunt, Tomtate and Sailors choice; b) Gorgonia; c) 

Branching fire coral and the Finger coral; d) Several marine organism including 

Spotfin Butterflay Graved Brain coral and an Anemone. (www.reefball.com). 

 

3.4 Venice lagoon, Italy, project 

At the time being, the only significant RB project realized in Italy is that of the 

Venice lagoon. This project was completed in March 2012 for the 

morphological and environmental recovery of the area of the channel of Bastia, 

close to the Lake of Ripola and to the access to the Venice lagoon (Figure 3.22). 

 

a) b)

c) d)
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Figure 3.22. Satellite view of the Lake of Ripola and surrounding area (Google Earth 

3/28/2015; 45°20‟24.99”N – 12°23‟00.29”E, elev. -11 m, alt. 70.45 km). 

 

This intervention was required because the intensification of currents directed 

to the lagoon and the deepening of its accesses, performed on behalf of the 

MOSE project, produced an erosion of the “Barene” and “Velme”
 3

 areas. To 

contrast the loss of sediments, a 3 Km long submerged levee was realized, 

made of gravelly material, confined through geogrid. This barrier was realized 

at a distance of 500 m from the mouth of the port. In order to allow a certain 

degree of water exchange, a 200 m long permeable submerged barrier was 

realized through artificial modules, 93 of which were Reef Balls (Figure 3.23).  

In particular, Goliath Ball-type modules (Table 2.1) were arranged in 3 rows, 

with a distance between units of 1 m. Units were placed on a gravel confined 

mattress, characterized by a height of 1 m and by a crest width of 8 m. The total 

height of the structures (including Goliath Ball and mattress) was about of 

2.40 m with a submergence of 0.20 m. The main characteristics of the Reef Ball 

structure are shown in Figure 3.24. 

 

                                                 
3
 The venetian word “Barene” indicates the vegetated areas of a lagoon, while “Velme” 

describes the submerged areas emerging only during low tide periods. 



Chapter 3 – Reef Ball
 
 Projects 

________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

32 

 
Figure 3.23. Satellite view of the Reef Ball barrier in the Venice lagoon, Italy (Google 

Earth 3/28/2015; 45°20‟19.14”N – 12°13‟54.43”E, elev. 0 m, alt. 599 m). 

 

 

 
Figure 3.24. Cross-section of the Reef Ball structure of the Venice lagoon, Italy project 

(measures in meters). 

 

To favour an environmental enhancement, about 10 Ostrea edulis were 

implanted on surface of each unit. The biological response was monitored over 

time and already 20 days after the end of the project the colonization of Reef 

Balls by different types of sea species was observed, such as sponges 

brotozoan, green algae and brown algae, hermit crabs and snails (Figure 3.25). 

In Figure 3.26 the presence of marine organisms in September 2013 is also 

shown. 
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Figure 3.25. Reef Ball surface in May 2012. a) Green algae and hermit crabs; b) 

Sponges Brotozoan (www.reefballitalia.it). 

 

 
Figure 3.26. Reef Ball colonization in September 2013 by bivalve molluscs (oysters), 

calcareous red algae and Porifera sponges. (www.reefballitalia.it). 

a) b)

a) b)
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Chapter 4  – STATE OF THE ART ON SUBMERGED AND 

LOW-CRESTED TRADITIONAL 

BREAKWATERS  

4.1 Wave-breaking occurrence and macro-features  

The wave breaking is one of the most important turbulent energy dissipation 

processes influencing coastal dynamics. It is defined as the transformation of 

the particle motion form the irrotational to the rotational state, generating 

vortices and turbulences (Basco, 1985). This phenomenon plays a central role 

not only in the reduction of the wave height, but also in the wave set up/set-

down and in the creation of nearshore currents, which are an important factor in 

the sediment transportation. 

This local and non-stationary phenomenon typically occurs in the open sea, or 

during the wave propagation from deep to shallow water. In the former case, 

waves lose their stability originating the so called “whitecap”; in the latter case 

the breaking occurs when either a steepness limit or a depth limit are reached. 

Apart from its natural occurrence, wave breaking, is often induced by coastal 

defence structures, as a main mechanism for the energy dissipation. 

Although several studies have been carried out to define suitable wave breaking 

criteria for natural beaches (Stokes, 1847, 1880; Miche, 1944; Battjes and 

Janssen, 1978; Goda,1970; Kamphius, 1991) or induced by structures (Dean et 

al. 1997; Ranasighe and Turner, 2006, Calabrese et al., 2008a), no studies have 

been performed to date in order to investigate whether the presence of RB 

structures is able to induce the wave breaking and to assess its typology. These 

aspects will be investigated in Section Chapter 8. 

In the following, a review of the state of art concerning the occurrence, 

classification and wave breaking criteria for natural beaches and in presence of 

submerged traditional structures is reported. 
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4.1.1. Wave breaking phenomenon in natural beaches  

4.1.1.1. Occurrence of wave breaking for flat or gentle sloped natural beaches 

The first studies conducted for gentle sloped bottoms (slopes in the range of 

1:100 1:50) are those proposed by Stokes in 1847 and 1880. In these studies, 

focused on regular waves, the incipient breaking was defined as the condition in 

which the horizontal component of the wave velocity at the crest equals or 

exceeds the wave propagation celerity.  

According to these studies, the wave breaking can be expressed by two different 

breaker indices: the s0  index, identifying the achievement of a limit of wave 

steepness, defined as the ratio between the incident wave height, Hi, and the 

deep wave length, L0; and the Hi/d index, addressing the exceedance of a given 

incident wave height, with respect to the water depth, d. The former index is 

typical of a deep water breaking criteria, while the latter is most commonly 

used in shallow water.  

Starting from the previous studies, several Authors focused on the identification 

and definition of an incipient wave breaking condition, mainly through 

experimental tests.  

A shallow water breaking criteria was proposed by McCowan (1894) in the 

case of solitary waves shoaling, on a quasi-horizontal bottom (1:100). The 

Author defined that the wave breaking occurred when the wave height at the 

condition of incipient breaking equals 0.78 the water depth (Eq. 4.1). 

 

  

  
      (4.1) 

 

It is worth noting that in the previous Equation, and elsewhere in this Thesis, 

the b subscript refers to the incipient wave breaking condition. 

The aforementioned limit was subsequently increased by Southgate (1995) to a 

value of 0.83, while 0.55 was proposed by Le Mehauté (Allsop, 1998).  

In 1944, Miche proposed a semi-theoretical breaking criterion for periodic 

waves, expressed by the following general Equation:  
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          (

    
  

) (4.2) 

 

By applying the Equation above in deep water, the Author retrieved a deep 

water breaker index of 0.88, similar to that observed by Southgate (1995). 

Subsequently, Danel (1952) modified the previous wave breaking criteria 

proposing a coefficient equal to 0.12 instead of 0.142. This variation returned a 

breaker index equal to 0.75, more similar to that proposed by McCowan (1894) 

than to the others. 

 

4.1.1.2. Occurrence of wave breaking for sloped natural beaches 

 

The most widely employed criterion for identifying the wave breaking for 

sloped natural beaches and for the design of structures is that proposed by 

Weggel in 1972 (Allosop et al., 1998). Analysing regular waves, the Author 

developed the following shallow water breaking criterion: 

 

  

  
 

 

(   
  
   )

 
(4.3) 

 

where the wave breaking condition is assumed as a function of the wave period, 

T, of the water depth at the incipient breaking, db, and of the seabed slope, m, 

by means of the a and b coefficients, reported below. 

 

                    )) 
(4.4) 

 

                   ) (4.5) 

 

In the previous Equations, a and b decrease as the slope bottom decreases, until 

they reach constant values. These are, respectively, zero and 0.78 in the case of 

an horizontal bottom. By substituting these values into Equation (4.3), the 
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model provides a breaker index value of 0.78, i.e. the same proposed by 

McCowan (1894). 

Subsequently, Goda (1974) proposed an alternate criterion after the analyses of 

the experimental data obtained by several researchers (Iversen, 1951; 

Mitsuyasu, 1962 and Goda, 1964), summarized in Equation (4.6). As it is 

possible to observe, the breaker index increases as m and Hb/L0 terms do.  

 

  

  
     {     [    

   
  

(     
 
 ⁄ )]} (4.6) 

 

In the same years, Battjes (1974) observed that the wave breaking phenomenon 

is able to directly and indirectly influence the main hydraulic properties of wave 

shoaling ( e.g. phase difference across the surfzone, run-up, set-up, reflection), 

and that these are governed, to some extent, by the so-called “surf-similarity” 

parameter, ξ. The latter, also known as “Iribarren parameter”, is defined as the 

ratio between the slope of the bottom, and the root square of the wave steepness 

(Eq. 4.7). 

 

  
 

  
    (4.7) 

 

The study also showed that the surf-similarity parameter can be used to estimate 

the wave breaking limit and to classify the typology of breaking from a 

macroscopic point of view (Galvin, 1968). 

Similar considerations were done by Iribarren and Nogales (1949), who 

identified the condition of incipient breaking for values of ξ approximately 

equal to 2.3. 

Subsequently, the formula by Miche (1944) was modified by Battjes and Jansen 

in 1978 and by Ostendorf and Madsen in 1979. 

The former suggested to include the ratio between the breaker index (Hi/d) and 

0.88 in Equation (4.2); furthermore, the breaker index was considered as an 

adjustable parameter, whose best fit was found at 0.8 (Eq. 4.8). 
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          (    

    
  

) (4.8) 

 

Ostendorf and Madsen (1979) proposed to include the bottom slope in 

Equation (4.2), thus obtaining two different equations (Eq. 4.9), valid in two 

different ranges of bottom slopes:  

 

  

  
         [       )

     

  
]                               

  

  
         [        )

     

  
]                              

(4.9) 

 

Another study addressing breaking conditions was that proposed by Moore 

(1982), who assumed the wave breaker index as a function of the deep wave 

steepness and of the bottom slope. This led to Equation (4.10), where a and b 

are the same previously defined in Equations (4.4) (4.5). 

 

  

  
          (

  

  
)

 
 ⁄

 (4.10) 

 

In 1991 Kamphuis developed a new criteria for identifying the breaking of 

regular waves, starting from the model of Danel (1952) and introducing the 

exponential form of the bottom slope into its formulation: 

 

  

  
            )     (

    
  

) (4.11) 

 

Moreover, after calibrating the model for irregular breaking wave data, the 

Author proposed the following modification: 

 

   

  
            )     (

    
  

) (4.12) 
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where, Hsb is the significant wave height at the incipient braking, and Lp is the 

wave length calculated as a function of the wave peak period, Tp. 

4.1.1.3. Wave breaking classification based on macroscopic wave features 

Further to the definition of the breaking condition, Galvin (1968) proposed the 

following typological classification of the breaker, based on shape and strength 

of the jet at the incipient breaking.  

In particular, the Author distinguished: 

  “spilling” breaker; 

 “plunging” breaker  

  “surging/collapsing” breaker. 

Spilling and plunging breakers are both characterized by the same overall 

mechanism, but they differ for the scale of the process (Basco, 1985).  

The plunging breaker is characterized by a so-called “plunging jet” (Figure 

4.1a), starting from the crest, overturning, and reaching the water surface at the 

so-called “plunging point” (Figure 4.1b). This cause a surface disturbance, 

called “splash”, and the entering of the plunging jet in the oncoming wave 

trough (Figure 4.1c). 

Since the horizontal velocity components are opposite to the wave propagation 

direction, the plunging jet is pushed backwards and towards the crest, where the 

velocity component and the wave propagation are equally directed. This 

generates the so-called "plunger vortex" immediately under the wave crest, 

which traps and compresses an air core. The creation of air bubbles and the 

sudden air ejection from the breaker follow. The plunger vortex also translates 

horizontally, pushes on the oncoming trough to create a secondary wave 

disturbance and increases the size and strength of the so-called “surface roller”, 

which was generated by the splash (Figure 4.2).  
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Figure 4.1. Phases of a plunging breakers. (Basco,1985). 

  

 

 
Figure 4.2. Graphical representation of the plunger vortex and of the surface roller 

(Basco, 1985). 

a) b)

c)
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Subsequently, the plunger vortex tents to extinguish (Figure 4.3a) while the toe 

of the surface roller slides down until it reaches the trough of the oncoming 

wave (“equilibrium position”, Figure 4.3b). After this, the shape of the breaker 

changes very slowly. 

   

   
Figure 4.3. Plunging breakers toward the equilibrium position. (Basco, 1985). 

 

As discussed by Galvin (1968), four characteristic sections can be identified in 

a plunging breaker (Figure 4.4): 

1. section at which the wave becomes instable; 

2. section at which the wave front becomes vertical (incipient wave 

breaking condition); 

3. section at which the plunging jet impacts on the oncoming wave trough; 

4. section at which the splash impacts on the free surface. 

These sections also allow to define the  approach distance, xa, the plunge 

distance, xp, and the splash distance, xs. 

The main differences between plunging and spilling breaking are related to the 

strength of vortexes and the consequent presence of air accompanying the 

macro-feature of wave breaking. In fact, while plunging is characterized by a 

plunger vortex stronger than the surface roller and by air bubbles (Figure 4.5), 

in the spilling breaking the plunging jet impacts with the free surface very close 

to the wave crest (Figure 4.6). This causes that no air is entrapped by the 

plunger vortex that is weaker than the surface roller. 

 

a) b)
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Figure 4.4. Breaker travel. (Galvin, 1968). 

 

 

 

Figure 4.5. Evolution of a plunging breaker. 

 

 

 

Figure 4.6. Evolution of a spilling breaker. 

 

Differently from the two abovementioned types of breaking, the collapsing one 

(Figure 4.7) is characterized by a wave break that occurs at the wave‟s toe, 

accompanied by the creation of foam and air bubbles. 

As regards the surging breaking, it is quite similar to the previous one but, 

instead of the collapse of the wave, it shows an unbroken wave profile, with the 

lower part of the wave characterized by some air running up to the shore 

(Figure 4.8).   
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Figure 4.7. Collapsing breaker. (Galvin, 1968). 

 

 
Figure 4.8. Surging breaker. (Galvin, 1968). 

 

In addition to the above, Galvin (1968) observed that the spilling generally 

occurs in the case of gentle sloped bottoms and steep waves. Furthermore, 

spilling breaker tends to a plunging or a collapsing/surging one as the bottom 

slope increases and the wave steepness decreases.  

More specifically, the Author observed that the wave breaking shape can be 

classified according to the surf-similarity parameter (Battjes, 1974): 

 Spilling         ξ0<0.5; 

 Plunging  0.5<ξ0<3.3; 

 Collapsing/surging         ξ0>3.3; 

4.1.2. Wave breaking for submerged breakwaters 

Several studied are available in literature for the prediction of wave breaking 

induced by submerged breakwaters. In fact, the main purpose of a conventional 

breakwater is to force the breaking of higher waves, to induce a turbulent 

energy dissipation phenomenon, which is generally accompanied by a reduction 

of the transmission coefficient. Nevertheless, wave breaking often determines a 
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scour at the toe of the structures and the suspension of sedimentary material, 

which is often carried away by coastal currents. Moreover, it is able to induce 

hydraulic gradients, which may lead to erosive currents in the nearshore area.  

For all the reasons above, the wave breaking represents one of the most 

important aspects to define for a proper design of a structure. One of the first 

studied aimed at the prediction of wave breaking occurrence for submerged 

breakwaters was that proposed by Nakamura et al. (1966). The Authors, 

analyzing 2D experimental data conducted with regular waves and impermeable 

structures, proposed the graph shown in Figure 4.9, allowing to distinguish 

breaking from non-breaking waves. The thresholds given in the graph depend 

on three main parameters: the deep wave steepness, H0/L0; the ratio between the 

submergence of the structure, Rc (defined as the difference between the water 

depth, d, and the height of a structures, hs) and structure width, B; and Rc/L0. 

In particular, as it is possible to observe from Figure 4.9, the curves 

characterized by a constant value of Rc/B allow to define an upper region, 

characterized by the absence of wave breaking, and a lower one, where the 

wave breaking occurs. Furthermore, Figure 4.9 shows that an increase of the 

width of the structure (i.e. lower Rc/B values) corresponds to upper curves with 

an increase in the probability of observing the wave breaking. 

 
Figure 4.9 Wave breaking limit (Nakamura,1966). 

H0/L0

Rc/L0

Rc/B
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In 1991 Smith and Krouse analyzed the breaking of regular waves in the 

presence of natural bars and submerged breakwaters. The Authors observed that 

the breaking index Hb/db increases as the Irribarren parameter, ξ0, increases, 

until the latter reaches a value of 0.85,while for larger values a decrease in the 

breaker index was observed (Figure 4.10).  

This different behaviour was attributed to the influence on incipient wave 

breaking condition of an offshore current velocity. In particular, it was observed 

that, for higher values of the aforementioned current velocity, the wave 

breaking occurred before the attainment of the limit value of the wave height to 

depth ratio.  

 
Figure 4.10 Wave breaking index for bar profiles (Smith and Kraus, 1991). 

 

Moreover, according to the Authors, the aforementioned current had a 

destabilizing effect at low values of ξ0. In fact, as it is possible to observe in 

Figure 4.11, the xp/Hb, ratio decreases as ξ0 increases, until it reaches a constant 

value for higher ξ0. The Figure also shows that flat bottoms are characterized by 

higher values of the plunge distance than the sloped ones. An influence of the 

Iribarren parameter was also observed on the ratio between the plunge point and 

the splash one, xs. In fact, the ratio xp/xs decreases as ξ0 increases in case of bar 

profiles, while a unit value was obtained in the case of a flat bottom. It was also 

observed that for a given wave steepness, the Hb/H0 ratio decreases as the bar 

Hb/db

ξ0
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slope increases; while for low values of the wave steepness the same ratio 

assumes higher values than those retrieved for high wave steepness.  

In the same study, a classification of the wave breaking was conducted 

according to that proposed by Galvin for natural beaches (Galvin, 1968). The 

results, summarized in Figure 4.12 show that in case of bar profiles the 

transition between different types of wave breaking occurs at values of the 

Iribarren parameter lower than those referred to flat bottoms.  

 
Figure 4.11. Influence of the Iribarren parameter on the xp to Hb  ratio (Smith and 

Kraus, 1991). 

 

 
Figure 4.12. Types of breaking for plane slopes and for barred profiles. (Smith and 

Kraus, 1991). 
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In 1992 Hara et al. analysed the occurrence of wave breaking performing 

extensive numerical experiments on the transformation of a solitary wave, 

passing across an impermeable trapezoidal type breakwater, located on 

horizontal sea bottom. After regression analyses of the numerical computations, 

the study demonstrated that an increment of the barrier‟s slope corresponds to a 

larger probability of wave breaking, while the wave morphology plays a minor 

role.  

Differently from natural beaches, where the breaking was assumed to be a 

function of the slope of the bottom and of the wave steepness only (through the 

Iribarren parameter), in the case of structures, the dependency on the 

submergence must also be taken into account. In particular, the Authors 

modified the surf-similarity parameter according to the following Equation for 

trapezoidal structures with height hs and width B:  

 

   (
 

 
 

    

       
)
       

    )   
 (4.13) 

 

In the previous Equation, d and H were computed at the offshore toe of the 

structures. differently from what discussed  

Differently from what observed for natural beaches, the breaking probability 

increases with the modified surf-similarity parameter. Moreover, as already 

observed by Nakamura et al. (1966), the breaking probability increases at 

increasing crest widths and submergences.  

All the studies described above did not explicitly address the influence of the 

porosity of the barrier on the breaking phenomenon. One of the first studies on 

this topic was that by Hattori and Sakai (1994), in which the occurrence and the 

typology of wave breaking for structures characterized by fixed shapes and 

different porosities (0 to 0.52) were investigated. 

The Authors observed that the wave breaking is influenced by an offshore 

current over the breakwater, the intensity of which decreases as the porosity of 

the barrier increases. This current determines the collapsing of the waves when 

the latter achieves a limit steepness, defined by the following Equation: .  
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   (

  

  
)
  

  
   (4.14) 

 

In this Equation, the hydraulic characteristics are computed at the offshore toe 

of the structure; ξ’ is calculated by means of Equation (4.13); Ab is a function of 

the relative submergence, Rc/d, and of the permeability of the structures, ε, 

according to Equation (4.15). 

As a consequence, the increment of permeability corresponds to an overall 

reduction of wave breaking probability. 

 

   (      
  

 
     )      (4.15) 

 

In the addition to the above, the Authors proposed the following two Equations 

for the definition of the location of the breaker: Equation (4.16) provides the 

minimum value of wave height necessary for the wave breaking on the crest of 

the structures, while Equation (4.17) returns the maximum value after which 

breaking occurs on the offshore slope.  

 

  

  
 (

  

  
)

 
 ⁄

            ) (4.16) 
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)

 
 ⁄

            ) (4.17) 

 

Furthermore the breaking point was found to be influenced by the permeability 

of the structure, as well as by Hb/L0 and Rc/L0, as per the Equation (4.18). It can 

be noticed, the breaking moves from the slope of the structures to its crest as the 

permeability increases. 
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A subsequent study conducted by Kawasaki and Iwata (1996), on impermeable 

and rectangular structures with monochromatic waves, underlined the 

importance of the crest width on the wave breaking phenomenon. In particular, 

the Authors observed a reduction of breaker index occurring at increasing crest 

widths and at decreasing relative depths. Moreover, a reduction of the limit of 

wave breaking leads to a shoreward motion of the breaking point. 

Kawasaki and Iwata (2001) further proposed a breaking index based on the 

ratio between the incident wave height and the submergence of the structure, on 

the basis of the results of an experimental campaign on impermeable submerged 

breakwaters with trapezoidal section. According to this study, the offshore 

slope of the barrier, tanα, does not influence the breaker index to a significant 

extent, but impacts on the position of the breaking point, that moves offshore as 

the offshore slopes increases.  

The Hi/Rc term was assumed to be a function of the ratio between the water 

depth and the the incident wave length, d/Li. In particular, the breaker index 

increases as d/Li increases, independently from the slope of the barrier.  

Subsequently, a new study was conducted by Calabrese et al. (2008a), with the 

aim of indentifying the macro-features and the incipient condition of wave 

breaking, in the presence of submerged breakwaters. The Authors classified the 

wave breaker by means of the visual analysis of 2D regular tests, conducted by 

varying the permeability and the offshore slope of rubble mound submerged 

breakwaters  

In particular, both hydrodynamics and morphological considerations were 

employed as discriminating criteria for the identification of: the incipient 

breaking condition; the shape of wave profile at breaking; and the breaker 

evolution. On the basis of the first two aforementioned aspects, the Authors 

identified the following main typologies of wave breaking: 

 “spilling” breaker; 

 “plunging” breaker; 

 “bore” breaker; 

 “collapsing-surging” breaker; 

 “two-steps” breaker. 
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While the first two types are characterized by breaking occurring at the wave 

crest, the others correspond to a rupture at the toe of the wave. 

In agreement with the classification proposed by Galvin (1968) for natural 

beaches, the Authors defined the spilling as the breaking characterized by a 

plunging jet weakly impacting close to the crest, not accompanied an increment 

of the wave steepness nor by air bubbles under the wave trough (Figure 4.13). 

In a similar fashion, the plunging breaking is very similar to that characterizing 

natural beaches, i.e.it occurs when the presence of air trapped by the plunger 

vortex is significant (Figure 4.14). 

 

  
Figure 4.13. Evolution of a spilling breaker on a conventional breakwater. (Courtesy of 

M. Buccino). 

 

  
Figure 4.14.Evolution of a plunging breaker on a conventional breakwater. (Courtesy 

of M. Buccino). 

 

a) b)

a) b)
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Moreover intermediate cases were also observed and classified as “spilling-to-

plunging” breaker. As it can be observed in Figure 4.15, this typology of wave 

breaking is characterized by a plunging, that detaches from the crest and then 

impacts very close to the wave crest, similarly to the spilling, as well as by the 

presence of air under the wave trough, as typical of a plunging. These types of 

breakers were observed by when the structure was wide enough, compared to 

the incident wavelength (Calabrese et al., 2008a). 

All the previous types of breaker exhibit a steep wave profile; whereas the bore-

type one is characterized by a nearly horizontal stretches, connected by a central 

bore. This bore originates from one or more plunging jets, detaching from the 

wave crest, and stationary evolves on the crest of the breakwater (Figure 4.16). 

In some cases, the Authors observed that, after a first bore-like rupture, the 

breaker evolves in a way quite similar to the spilling-to-plunging one, i.e. with a 

descending slope profile in the offshore direction. This hybrid breaking 

condition was called “Bore – spilling-to-plunging” breaker (Figure 4.17). 

Bore breakers were typically observed by the Authors in the case of permeable 

steep-faced breakwaters (1:2 slope). 

 

  
Figure 4.15 Evolution of a spilling-to-plunging breaker on a conventional breakwater. 

(Courtesy of M. Buccino). 

 

 

a)

 

b)
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Figure 4.16.Evolution of a bore breaker on a conventional breakwater. (Courtesy of M. 

Buccino). 

 

   
Figure 4.17.Evolution of a bore-spilling-to plunging breaker on a conventional 

breakwater. (Courtesy of M. Buccino). 

 

The collapsing and the surging breakers are characterized by a plunging jet that 

detaches from the lower part of the wave profile and by a rise in slope towards 

offshore direction. In particular, similar to natural beaches, the first breaker was 

identified by a collapse in the lower part of the wave profile (Figure 4.18 a), 

while the surging one by an unbroken wave profile (Figure 4.18 b). This type of 

breaking was observed only for impermeable and steep-faced structures (1:2).  

Two different types of intermediate breakings were also identified, namely the 

“collapsing – bore” and the “collapsing – spilling-to-plunging”. The former, 

typical of lower heights, feature a wave profile on the top of the breakwater 

similar to an hydraulic jump; the latter is characterized by a supplementary jet 

a) b)

 
a) b)
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projected forward from a skewed wave crest on the crown of the structure, and 

a wave profile with a descending slope in the offshore direction.  

Finally, the Authors identified the so-called “two-step” breaker, made by two 

different and subsequent wave ruptures: a first characterized by a plunging jet 

moving from the middle part of the front; and the second, similar to a spilling–

to-plunging breaker (Figure 4.19). 

 

  
Figure 4.18. a) Collapsing breaker; b) Surging breaker. (Courtesy of M. Buccino). 

 

  
Figure 4.19. Example of a two-step breaker. (Courtesy of M. Buccino). 

 

This type of braking was observed only for 1:10 seaward slope breakwaters, 

exposed to longer waves.  

The Authors also identified the condition of incipient breaking for permeable 

and impermeable breakwaters, according to the following Equation, originally 

proposed by Goda (1974): 

 

a) b)

a) b)



Chapter 4 – State of the Art on Submerged and Low-crested Traditional Breakwaters 
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

54 

  

  
  

  
  

[     (    
   

  
)] (4.19) 

 

In the previous Equation, A represents a tuning parameter, which varies with the 

permeability, P, and with the offshore slope of the structure (Eq. 4.20): 

 

                        ) (4.20) 

 

Results of the analyses were summarized in a graph, shown in Figure 4.20, 

allowing to classify the wave breaker based on two non-dimensional 

parameters: 

 

  
   

  

  
          ) (4.21) 

 

   
  

  
   

√     (4.22) 

 

 
Figure 4.20. Breaker type parameterization. 

 

The Authors observed that the collapsing breaker was the only one occurring 

for Rd
* 

>3.5. Conversely, for lower values of Rd
* 

it was possible to observe 



Chapter 4 – State of the Art on Submerged and Low-crested Traditional Breakwaters 
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

55 

different breaking conditions and to classify them according to the ξB parameter. 

The spilling and plunging breakers occurred for ξB approximately less than 

1.7 1.8, while the bore breaker was mainly observed in the case of permeable 

and steep-faced structures, with ξB > 2.4. A transition region where bore –

 spilling-to-plunging breaking is more likely was also observed between 1.8 and 

2.4. 

4.2 Wave transmission for submerged and low-crested 

traditional breakwaters 

The wave attenuation phenomenon induced by the introduction of a nearshore 

breakwater is one of the most investigated aspects of the wave-barrier 

interaction and definitely the primary effect to study from an engineering point 

of view. This is generally measured by the transmission coefficient, KT, defined 

as the ratio between the wave height shoreward the barrier (transmitted wave 

height, Ht) and that immediately seaward of it (incident wave height, Hi). This 

coefficient provides a concise measure of the degree of protection afforded to 

the coast. In the following, a review of the main studies available in the 

literature for the assessment of the transmission coefficient of conventional 

submerged and low-crested breakwaters is presented. In Figure 4.21 the main 

variables that influence the transmission process are shown. 

 

 
Figure 4.21. Graphic representation of the main geometrical and hydraulic variables 

influencing the transmission process. 
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One of the first studies investigating the transmission coefficient at submerged 

breakwaters was produced by Dattatri et al. (1978). In this study several types 

and shapes of permeable and impermeable submerged breakwaters were tested 

with 2D regular waves.  

The influence of several geometrical and hydraulic characteristics on KT was 

investigated, namely the crest width, B, the crest freeboard (defined as the 

difference between the height of the structure, hs, and the water depth, d), F, the 

incident wave height, Hi, the water depth, d, and the incident wave length, Li.  

Results firstly indicated that the relative depth of the crest submergence, F/d, 

plays the major role in influencing the performance of an impermeable 

submerged breakwaters. This results also applies to permeable structures since 

the energy transmitted across the structure is a small percentage of the energy 

transmitted over the crest. The study also showed that KT generally increases as 

F/d increases. Moreover, for large values of F/d (0.2 to 0.4) an influence of the 

relative depth of water, d/Li was also observed (the larger d/Li, the greater the 

transmission), as a consequence of deeper water waves and more energy 

concentrated near the surface, easily transmitted across the structures. 

Another significant parameter was identified in the relative crest width, B/Li. 

The Authors also observed a decrement of KT at increasing B/Li values, until the 

transmission assumes a minimum value, depending on F/d. After this minimum 

is reached, KT tends to further increase with B/Li, before stabilizing around an 

asymptotic value (Figure 4.22). 
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Figure 4.22. Transmission coefficient versus relative crest width for different F/d 

values (Dattatri et al., 1987). 

 

Similarly to what observed by Goda et al. (1967) and by Jonson et al. (1951), 

the transmission coefficient appears to be not significantly influenced by the 

incident wave steepness, Hi/Li when this parameter reaches high values 

(0.037-0.083 according to Dattatri et al., 1978). 
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On the bases of about 108 tests performed on submerged breakwaters, Gómez 

and Valdéz (1990) confirmed the dependence of KT on the ratio between the 

crest width, B, and the deep wave length, L0. Furthermore the dimensionless 

parameter Hi/d was observed to influence the amplitude of the transmission 

coefficient (KT increases at increasing Hi/d), as shown in Figure 4.23. 

 

 
Figure 4.23. Transmission coefficient versus relative crest width for different Hi/d 

values (Gomez and Valdès, 1990). 

 

In order to take into account the wave breaking, a new parameter was 

introduced by Gomez and Valdès, namely ξB/F, where ξ is the Iribarren 

parameter, computed according to the following equation: 

 

  
      

  
    (4.23) 

 

In the previous equation tgαoff is the seaward slope of the structure and s0 is the 

deep water wave steepness, Hi/L0. 

In 1990 a new formula for the prediction of the KT was proposed by van der 

Meer, on the basis of the tests by Seelig (1980), Allsop (1983), Powell and 

Allsop (1985), Daemrich and Kahle (1985), Ahrens (1987) and van der Meer 

(1988). In this case, KT was considered to be a linear function of the 

dimensionless parameter F/Hsi, according to the following experimental 

formula:  
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   (4.24) 

 

where Hsi is the incident significant wave height and the coefficients of the 

linear regression, a, and b are equal to -0.3 and 0.46, respectively.  

The Equation (4.24) returns values larger than 1 for low relative submergences 

(F/Hsi < -1.13) and values slightly larger than 0 for structures characterized by a 

considerable relative freeboard (F/Hsi > 1.2). For this reasons, the Author 

suggested to employ the previous equation for the range of values 

0.2 < F/Hsi < 1.13. In fact, constant values of KT equal to 0.8 and 0.1 were 

observed, respectively for 1.13 < F/Hsi < 2 and -2 < F/Hsi < -1.2 (Figure 4.24). 

 

 
Figure 4.24. Wave transmission versus relative crest height (van der Meer, 1990). 

 

One year later, a new formula for the prediction of wave transmission at 

permeable low crested structures was presented by Daemen in his Master‟s 

thesis (Daemen, 1991) and subsequently published by van der Meer et al. 

(1991). 

The latter was based on 316 tests; in fact the data set employed by van der 

Meer (1990), was re-analyzed excluding data by Ahrens (1987), due to the 

different hydraulic response of reef breakwater tested in this study, with respect 

to that of the others. According to the Authors, part of the scatter previously 
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observed between predicted and calculated KT was due to the permeability of 

armour layer, in particular for structures with crest slightly above m.s.w.l. 

The formula proposed had the same linear expression of Equation (4.24), but 

the ratio between the freeboard and the nominal rock diameter
4
 of armour layer, 

Dn50, was introduced (Eq. 4.25). 

 

    
 

     
   (4.25) 

 

The slope of the previous equation, a, is a function of the relative wave height, 

Hsi/Dn50: 

 

       
   

    
      (4.26) 

 

Intercept b depends on Hsi/Dn,50, B and on the wave steepness, s0p:  

 

                     
   

    
       (

 

    
)
    

 (4.27) 

 

The wave steepness is defined as           ⁄    
 , i.e. the ratio between the 

significant incident wave height and the deep water wave length, L0p, calculated 

in function of the incident peak wave period, Tpi. 

The validity of Eq. (4.25) is limited to 1< Hsi/Dn50 <6; 0.01 < sop < 0.05 and 

0.075 < KT < 0.75. A comparison between the measured and predicted 

transmission coefficient is shown in Figure 4.25. 

 

                                                 
4
 The nominal rock material is defined as the cubic square of the ratio between the 50% value of 

rock mass distribution curve, M50, and the rock density, ρr. 
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Figure 4.25. Comparison between measured and calculated transmission coefficient 

(Deamen, 1991) 

 

One of the most employed design equations is that proposed by d‟Angremond 

et al. (1996). The Authors extended the database employed in Daemen (1991) 

with 82 tests conducted at the Delft Hydraulics. Including impermeable 

structures and considering only data characterized by -2.5 < F/Hsi < 2.5; 

s0p < 0.6 and Hsi/d < 0.54, the Authors developed the following predictive 

transmission formula: 

 

       (
 

   
)   (         ) (

 

   
)
     

 (4.28) 

 

where x is a coefficient equal to 0.64 for permeable structures and 0.8 for 

impermeable ones. ξp is the Iribarren parameter, given in Equation (4.29), 

where s0p is computed using the wave peak period. 

 

   
      

   
    (4.29) 

 

Results of the comparison between computed and predicted KT are shown in 

Figure 4.26 and Figure 4.27, respectively for permeable and impermeable 
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structures and d‟Angremond et al. (1996) proposed an applicability range of 

0.075 < KT < 0.8, that is similar to that defined by Daemen (1991). 

 

 
Figure 4.26. Comparison between measured and calculated transmission coefficient for 

permeable structures (d'Angremond, 1996). 

 

 
Figure 4.27. Comparison between measured and calculated transmission coefficient for 

impermeable structures (d'Angremond, 1996). 

 

Few years later, in 1998, Seabrook and Hall (1998) performed an experimental 

study at the Queen‟s University Coastal Engineering Research Laboratory in 

Kingston, Canada, on submerged rubblemound breakwaters. In these tests, 
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conducted in two-dimensional and three-dimensional conditions, a wide range 

of the geometrical characteristics was investigated including several crest 

widths. The Authors considered the relative submergence, the incident wave 

height and the crest width as the main variables that influence the transmission 

process (Eq.(4.30) and Figure 4.28). 

 

     ,   [     (
 

  
)      (

  

 
)]       (

  

       
)       (

   

     
)- (4.30) 

 

In the previous Equation, Lip represents the incident peak wave length, 

BF/LipDn50  identifies load losses connected to the water flow, while the ratio 

FHsi/BDn50 represents energy dissipations due to the structure roughness. 

The applicability range was fixed to 0 ≤ BF/LipDn50 ≤ 7.08 and 

0 ≤ FHsi/BDn50 ≤ 2.14. 

 

 
Figure 4.28. Comparison between the observed and the predicted transmission 

coefficient (Seabrook and Hall, 1998). 

 

The previous predictive equations ware applied by Calabrese et al. (2003) on 48 

large-scale experiments carried out at the “Grosser WallenKanal” of Hannover, 

Germany, on low-crested and submerged breakwaters in shallow water (in the 

following referred to as GWK data set). In particular, it was observed that for 

structures with a small crest width (B/Dn50 = 4) the equations proposed by van 

der Meer (1990), Daemen (1991), d‟Angremond et al. (1996) and Seabrook and 

Hall (1998) return similar values of bias (close to 1), while a minimum Root 
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Mean Squared Error (RMSE) was observed for van der Meer‟s ones (8.5%). 

The latter was 50% less than that obtained by Seabrook and Hall (16.4%). 

Conversely for large crest width (B/Dn50 = 16), the equation proposed by van 

der Meer (1990) significantly overestimates the data, while the formulae of 

Daemen (1991) and Seabrook and Hall (1998) underestimate them. The model 

by d‟Angremond et al. (1996), characterized be the lower values of RMSE, was 

found to be almost undistorted, although a certain scatter was observed. 

The Authors considered that a better prediction of the transmission coefficient 

could be obtained considering a reduction rate that is function of B instead a 

constant one.  

The developed model is expressed by Equation (4.31):  

 

    
 

 
   (4.31) 

 

where the slope, a, and the intercept, b, are defined according to the following 

equations: 

 

       (      
 

    
) (4.32) 

 

       (        
 

    
) (4.33) 

 

The term a1 is a function of the breaking index, the latter expressed as the ratio 

between the incident significant spectral wave height, Hm0i, and the water depth, 

d: 

 

         
    

 
        (4.34) 

 

While b1 is an exponential function of the Iribarren parameter: 

 

              (         ) (4.35) 
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In this case the application range is: -0.4 ≤ F/B ≤ 0.3; 1.06 ≤ B/Hmoi ≤ 8.13; 

0.31 ≤Hmoi/d ≤ 0.61 and 3 ≤ ξp ≤ 5.20. 

In Figure 4.29 and Figure 4.30 the comparison between the measured and 

predicted KT are shown respectively for the tests GWK data set and for the 

entire database. 

 

 
Figure 4.29. Comparison between the measured and predicted transmission coefficient 

for the GWK dataset (Calabrese et al., 2003). 

 

             
Figure 4.30. Comparison between measured and predicted transmission coefficient for 

the entire analysed database (Calabrese et al., 2003). 
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Wemsley and Ahrens in 2003 proposed an alternate formula for the prediction 

of KT, defined as the Square Root of the Sum of Squares (SRSS) of two 

separate contributions: the first one related to the energy transfer through the 

porous structure, Kt,thru, and a second one related to the energy transfer over the 

barrier, Kt,over:  

 

   √       
         

  (4.36) 

 

The two partial transmission coefficients are: 

 

        
 

       
 (4.37) 

 

        
 

       
 (4.38) 

 

According to the Authors the two terms fthru and fover can be calculated, for low-

crested breakwaters, by means of the following Equations:  
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] (4.40) 

 

Hs/Dn50 allows to consider that the transmission process becomes inefficient if 

the disturbance exceeds the size of void spaces in the structures, while the ratio 

between the cross-section area of the breakwater, At, and the height of the 

structures, hs, takes into account the influence of an equivalent crest width. 

The Authors also considered that the transmission process is dominated by 

runup and overtopping in case of low-emergent breakwaters, while in case of 

submerged ones, the transmission over the structures is the prevalent 
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contribution. In this case a value of 9.0 is assumed for fthru while the following 

expression is provided for fover: 

 

         *            
 

   
        

  

    
 + (4.41) 

 

In the same study, the performance of the predictive formulae proposed by van 

der Meer et al. (1991), d‟Angremend et al. (1996) and Seabrook and Hall 

(1998) were compared with the curves of Tanaka (1976). These curves, 

developed for submerged and emergent structures through the use of 

monochromatic wave tests, allow to calculate a transmission coefficient defined 

as the ratio between the transmitted wave height and the deep water one, H0. 

These are given as a function of the relative freeboard, F/H0, (Figure 4.31a) and 

of the relative crest width, B/L0 (Figure 4.31b). 
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Figure 4.31. Curves providing the transmission coefficient as a function of: a) relative 

freeboard; b) relative crest width (Tanaka, 1976). 

 

An inverted S-shape function, similar to that shown in Figure 4.31a, was 

observed in van der Meer (1991) and Wamsley and Ahrens (2003). Moreover, 

the same qualitative trend was exhibited by equations proposed by van der 

Meer and d‟Angremond in the range 0.1 < KT < 0.7 and by Seabrook and Hall, 

in case of submerged structures.  

A comparison between the above-mentioned predictive formulae in the B/L0 vs 

KT plane showed similar trends for the equations proposed by Seabrook and 

Hall and that by d‟Angremond, in the range -0.75 < F/H0 < 0.5.  

a)

b)
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The Authors considered the van der Meer formula suitable for narrow-crested 

breakwaters with a freeboard close to zero only. Furthermore, advise is given 

against the use of their formula (Eq. (4.36) in the specific case of submerged 

structures.  

A new predictive formula (Eq. (4.42) was proposed by Friebel and Harris in 

2004, developed from the analysis of experimental data provided by Seelig 

(1980), Deamirich and Kahle (1985), van der Meer (1988), Deamen (1991) and 

Seabrook e Hall (1998): 
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(4.42) 

 

The validity of the previous formulation is limited to the following restrict 

ranges: -8.696 < F/H < 0; 0.286 < B/d < 8.750; 0.440 < hs/d < 1; 

0.024 < B/L < 1.89 and -1.05 < F/B < 0. 

 

An extensive study on the prediction of transmission coefficient past low-

crested and submerged breakwaters was made by van der Meer et al. (2005) on 

more than 2,300 tests. The wide database employed consisted of data 

previously analyzed by d‟Angremond (1996), Seabrook and Hall (1998) and 

Calabrese et al. (2002), with the addition of the experiments conducted on 

behalf of the DELOS project at the University of Cantabria (Garcia et al., 2004) 

and at the Polytechnic of Catalonia, Spain (Gironella, 2002). Moreover, the 

results of tests performed on artificial reefs by Hirose et al. (2002) and Melito 

and Melby (2002) were considered, respectively on Acquareef and 

Coreloc-armoured breakwaters. 

The equation proposed by d‟Angremond (1996) resulted to adequately fit data 

characterized by B/Hi < 8. In the range B/Hi > 12 the following modified 

equations was proposed: 

 

       
 

  
     (

 

  
)
     

(         ) (4.43) 

 



Chapter 4 – State of the Art on Submerged and Low-crested Traditional Breakwaters 
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

70 

A linear interpolation between the Equations (4.28) and (4.43) was proposed in 

the range 8 < B/Hi < 12.  

The upper limit, KTu, was assumed as a linear function of the relative crest 

width, according to the Equation (4.44) and the lower limit was fixed at 0.05. 

 

          
 

  
      (4.44) 

 

Buccino and Calabrese (2007a) considered a wide database composed of about 

1,200 experimental data obtained from Loveless et al. (1997), Pilarczyk (2003) 

and those tests conducted on traditional submerged and low-crested breakwaters 

from the dataset analysed in van der Meer (2005). 

Differently from the major part of the equations describe above, which were 

experimentally derived, the model by Buccino and Calabrese (2007a), called 

“Conceptual Approach” (CA), is theoretically deduced. The model was 

developed under some simplifying assumptions and has different formulations 

depending on the submergence of the structures. In particular, the model 

assumes that in the transmission process the wave breaking represents the 

dominating factor in case of submerged structures. In case of deep water the 

predominant factor is considered to be the mass flux over the structure, and for 

low-crested structures the overtopping and wave runup. 

The CA for submerged breakwater will be presented in the Section 4.2, whilst.  

The model developed by Buccino and Calabrese (2007a) for emerged 

breakwater is briefly discussed hereinafter.  

The Auhtors, following the approach of Wamsley and Ahrens (2003), suggested 

the following formula for the prediction of the transmission coefficient:  
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 (4.45) 

 

where П is the transmission coefficient for null freaboard, expressed by 

Equation (4.56), γf represents the surface roughness, R
*
 is the dimensionless 

crest height, Rus is the significant wave runup, which can be computed as a 

function of the Iribarren parameter (van der Meer, 1992), and ʋ is a coefficient 
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depending on the incident wave height, the water depth, the width of the 

rectangular structure and of the friction factor for trough-passing. The latter was 

assumed as a function of the porosity of the structure and of the diameter of the 

porous material. 

4.2.1. Conceptual Approach for traditional submerged breakwaters 

The Conceptual Approach (Buccino and Calabrese, 2007a) assumes the wave 

breaking on the crest of a submerged breakwater is the main energy dissipation 

mode. The energy loss is macroscopically modelled using the bore-like breaker 

approach, originally developed by Le Mehautè (1962) and subsequently 

employed by several Authors, such as Battejes and Stieve (1985), Thornton and 

Guza (1983), Svendsen and Petrevu (1993).  

Under the hypotheses of wave attack normal to the breakwater and negligible 

mean currents over the crest, the model is developed starting from the following 

time-average energy balance equation:  

 

    

  
   (4.46) 

 

where Ple represents the wave power per unit of span at the landward edge of 

the crest; db is an infinitesimal increase of the crown width (Figure 4.32) and Δ 

is the mean dissipated power per unit area of horizontal surface. 
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Figure 4.32. Main parameters employed in the energy balance at the basis of the 

Conceptual Approach for rubble mound submerged breakwaters. 

 

According to the „bore breaker‟ theory, Δ can be computed as follows: 
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 (4.47) 

 

where g is the gravity acceleration, c is the wave phase speed, Ф is the 

dissipation factor for breaking waves (Ф ≈ 1) and Rc is the submergence of the 

breakwaters, defined as the difference between the water depth and the height 

of the structures (Figure 4.33). 

 

 
Figure 4.33. Main parameters of the Conceptual Approach. 
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After same algebra, a nonlinear differential equation is derived, which links the 

transmission coefficient to the main structure and wave quantities, such as the 

crest level, the crown width, the incident wave height and the peak period: 

 

   

  
  

 

  
 
  

 
 ⁄

√    
 
  

  
 

 

(  
   
    

)
   

(  
    
   

)

 (4.48) 

 

In the previous equation, η is the ratio between the transmitted wave height and 

wave height at the landward edge of the breakwater crown and G’ is a global 

dissipation factor which accounts for a number of constants. 

The differential equation has been found to have two asymptotic solutions. The 

first applies to the case of deeply submerged structures, Rc/Hsi >> 1, and reads 

as follows:  
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(4.49) 

 

where Kt0
s
 is the transmission coefficient obtained for triangular breakwaters 

(B = 0), function of the relative submergence (Hsi/Rc), and G1 is the dissipation 

factor. 

For shallow relative submergences, Rc/Hsi << 1, the second asymptotic solution 

applies, which is independent from Rc/Hsi: 
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√      
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 (4.50) 

 

In the equation above, K
n

t0 and G2 represent, respectively, the transmission 

coefficient for B = 0 and the dissipation factor.  

In both the asymptotic solutions the effect of the structure crown is represented 

by B/(HsiL0p)
0.5

, which can be considered as the geometrical mean of the two 
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most popular crown widths employed in existing transmission models, namely 

B/Hsi „(d‟Angremond et al., 1996)‟ and B/L0 (Tanaka, 1976).  

Equation (4.50) describes a parabola, i.e. the transmission coefficient decreases 

until it reaches a zero value and then unrealistically increases with the crown 

width (Figure 4.34). 

For this reason the Authors suggested to horizontally cut the curve at the value 

of B/(HsiL0p)
0.5

, referred to as B* hereafter, beyond which the transmission 

coefficient is reduced to less than 5%. Accordingly, the following expression is 

obtained: 

The two asymptotic solutions described in the Equations (4.50) and (4.51) 

respectively apply to deeply submerged structures and low submergence ones, i. 

e. for values of Rc/Hsi respectively grater and less than two thresholds, S1 and 

S2. These can be define after a calibration of the theoretical model on real 

experimental data. A linear interpolation is suggested for intermediate 

situations, i.e. for S1<Rc/Hsi<S2 (Eqs. 4.52-4.54). 

The CA model assumes that the relationship between KT and the main 

predictors depends on the relative submergence. This is believed to be related to 

a change in the dissipation mechanism that would occur when the water depth 

over which waves propagate reduces. Overall, the model has 6 parameters to be 

calibrated, namely two Kt0, two G, S1 and S2. 
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Figure 4.34. Theoretical cut of Equation (4.50). (Buccino and Calabrese 2007a). 
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      (4.54) 

 

The calibration was performed by the Authors on a dataset of about 1,000 data 

specifically dedicated to submerged breakwaters, composed as follows: 

 The data set used for the calibration of the Seabrook and Hall formula 

(Seabrook and Hall, 1998); acronym SH; 

 Results of physical model tests conducted at the Coastal Engineering 

Laboratory of the University of Cantabria, Spain, (Garcia et al., 2004); 

UCA; 

 Data from tests carried out at the CIEM wave flume of the Laboratori 

d‟Enginyeria Maritima of Barcelona, Spain, (Gironella et al., 2002); 

UPC; 

 Results of experiments conducted at the Grosser WellenKanal of 

Hannover, Germany (Calabrese et al., 2002); GWK; 
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 Data from experiments performed at the University of Bristol, U.K. 

(Loveless et al., 1997); UBr; 

  Data from physical model tests conducted at Delft Hydraulics for the 

Amwaj Islands Development project (Pilarczyk, 2003); AID. 

 The database used for calibration of d‟Angremond et al. formula (de 

Jong, 1996). This database collects a number of studies from 1980 to 

1991 (among which Seelig, 1980; Daemrich and Kahle, 1985; Powell 

and Allsop,1985; van der Meer, 1988, Daemen, 1991 were employed for 

calibrating CA for submerged breakwaters) and tests conducted at Delft 

Hydraulics, (acronym H2061 from the report number). 

Results of the calibration are summarized in the following equations:  
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        (4.57) 

 

The upper limit of validity of Equation (4.55), Rc/Hsi < 2, represents a threshold 

beyond which it is reasonable to assume that the breaking waves occur in the 

crest of the structures. However, employing data from Seabrook and Hall 

(1998), the Authors showed the applicability of the model until Rc/Hs reaches 

values around 3 (Buccino and Calabrese 2007b). 

As far as K
s
t0 is concerned, a slight dependence on Rc/Hsi has been found for 

deeply submerged breakwaters. K
n

t0 has been shown to be related to the 

Iribarren number. This is deemed to be related to the influence of the run-up 

height on the transmission process at low-submerged structures. In particular, 

for triangular structures it is assumed that: 
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 (4.58) 

 

In fact, from Equation (4.56) it can be noticed the K
n

t0 increase at increasing 

Iribarren parameter, ξ. A similar trend is also shown by Ru/Hi. at increasing ξ, as 

results from experimental tests. Furthermore, as already observed in other 

models, this trend should approach a constant value for high values of ξ.  

B1 in Equation (4.53) was conventionally assumed equal to 2.2, because for 

B/(HsiL0p)
0.5 

≥ 2.2 the transmission coefficient assumes values less than 0.05, so 

that it can be considered negligible. Coefficient b of the linear Equation (4.57) 

is the same reported in Equation (4.56), while the slope a is: 

 

           ) (4.59) 

 

where: 

 

  
 

           
 

√      

 
(4.60) 

 

 

A comparison between the measured and calculated transmission coefficients is 

shown in Figure 4.35. In this case the index of linear determination, R
2
, is 

slightly greater than 95% and the standard error is less than 0.05. 
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Figure 4.35. Comparison between measured and predicted KT (Buccino and Calabrese, 

2007a). 
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4.3 Wave Set-up for submerged and low-crested conventional 

breakwaters 

Since the 1960‟s, the scientific community has dedicated several efforts to the 

study of the wave-barrier interaction, especially regarding the transmission 

coefficient, while few studies have been conducted in order to investigate the 

the increment of the medium sea water level following the introduction of a 

submerged or low-crested breakwaters, also known as “setup”. Indeed, the 

knowledge of this phenomenon is important for a full comprehension of 

shadow zone hydrodynamic. 

In fact, due to the reduction of the momentum flux caused by wave breaking 

and the mass transport process associated with wave overpassing, the wave 

setup behind the structures influences longhshore currents and the occurrence of 

dangerous rip currents. These are currents directed seaward, that may cause 

both an intense localized erosions and a serious risk for the safety of people 

(MacMahan et al., 2006). 

First studies providing a qualitative description of these phenomena are those 

by Homma and Sokou (1959) and Homma and Hoikawa, (1961). 

Longuet-Higgins in 1967 aimed at establishing the main parameters influencing 

the phenomenon, providing an analytical equation for the quantitative 

prediction of the water setup (Eq. (4.61). The latter allowed to estimate the 

difference, δ’, between the water level shoreward and seaward of a submerged 

breakwater. The equation was developed, according to second order theory 

(Longuet-Higgins and Stewart, 1962), under the hypothesis of small amplitude 

waves and irrotational motion, considering the time-average flux of a vertical 

momentum into a column of water delimitated by the still water level and the 

free surface.  
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              )

 (4.61)  

 

In Equation (4.61) kI and dI represent, respectively, the offshore wave number 

and water depth; kII and dII the same parameters evaluated inshore the 
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structures; KR is the reflection coefficient, defined as the ratio between the 

reflected wave height, HR, and incident one (Figure 4.36). Worth noting, in the 

previous equation, δ’ increases with the reflection coefficient, while the 

transmission coefficient plays the opposite role. 

 

 
Figure 4.36. Definition of the main parameters used in wave setup models. 

 

A comparison between the predictions obtained through the previous model and 

experimental tests conducted on impermeable rectangular breakwaters under 

2D regular waves was performed by Dick (1968), who founded a substantial 

underestimation of real data. 

In 1970, Diskin et al. developed an empirical formula (Eq. (4.62) based on 

about 190 regular wave experiments, performed in a flume at the Technion 

Israel Institute of Technology of Haifa (Israel). These tests were carried out 

using homogeneous trapezoidal breakwaters with fixed slopes, crest width and 

rock diameter. For this reason, the influence of porosity and side slope was not 

investigated. Conversely several F values were considered, in order to 

investigate the wave setup for both submerged and emerged structures. 
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According to Equation (4.62) the set-up, δ, is a function of two parameters: the 

difference between the height of the structure and the water depth, F, and the 
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deep water height, H0, calculated as the ratio between Hi and the linear shoaling 

coefficient. 

The equation provides a maximum value for F = 0.7Hi , i.e. structures with 

crest elevation just above the sea level. For water levels above and below, δ 

decreases and tends to zero. The validity of this equation is limited in the range 

-2.0 < F/Hi < 1.5 and for dI/H0 variable between 0.1 and 0.83. 

As reported in the discussion note following the Diskin et al. (1970) paper, 

Dalrymple and Dean (1971) attributed the scatter between experimental data 

and Equation (4.62) to the influence of KR and KT on the setup process, which 

were neglected by Diskin et al. (1970). 

Besides, the Authors proposed a predictive equation (Eq. 4.63), according to 

which the setup is the sum of two contributions: δmf, representing the 

momentum flux due to wave collapsing on the seaward slope of the breakwater; 

and δc, that is the mass flux caused by a return current over the structure, which 

equilibrates the flux entering into the control volume. The latter extends for the 

structure width and is delimitated by the bottom and free surface. 

 

         (4.63)  

 

In particular, δmf is considered as the wave setup at the beach. This can be 

computed from the conservation of the horizontal momentum, under the 

hypotheses of shallow water and constancy of wave height to depth ratio:  

 

             ) (4.64)  

 

In the previous Equation the water depth at incipient breaking, db, can be 

computed according to the solitary waves breaking criterion: 

 

          (4.65)  

 

The setup on the crest of the structure was not considered in Equation (4.64). In 

fact, the formula returns δmf = 0 for waves breaking on the structures (db = F). 

As regards δc, it is calculated as a function of the mass flux balance equation, 

according to which the entering mass flux, qin, is equal to the sum of outgoing 
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fluxes passing through the barrier, qthrough (this term is generally omitted in the 

practical applications) and that over the structure, qover : 

 

                   (4.66)  

 

qin is considered as a fraction of the incident wave Stokes drift and can be 

computed according to the Equation (4.67): 

 

     
 

   
 (4.67)  

 

where E is the incident wave energy; ρw is the water density; c represents the 

phase speed of incident waves, calculated according to the linear theory at the 

offshore toe of the barrier. β is a factor less than 1, depending on the time 

interval, calculated in a wave period in which the water surface exceeds the 

crest of the structure.  

Using the small amplitude wave theory, Dalrymple and Dean (1971) obtained 

the following expression of the β factor: 
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where the quantity 
  (      )  

  
 represents the relative crest freeboard, in which 

the setup, δ, is included. 

The following equation was proposed to calculate the flux over the structure: 

 

       √    (
      

 
  ) (4.69)  

 

in which δc was considered as an hydraulic head, converted into kinetic energy. 

The overall wave set-up, δ, can be obtained via the iterative solution of 

Equation (4.66). 

An extensive test campaign was conducted by Loveless and Debski (1997) on 

permeable submerged and low-crested breakwaters in the flume of the 
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Hydraulic Laboratory of Civil Engineering Department at the University of 

Bristol. In these 253 tests, conducted with regular and irregular waves, eight 

homogenous structures with different crest width, front slope angle and rock 

diameter were investigated.  

Based on the assumption that the wave setup essentially represents the mean 

hydraulic gradient needed to drive back the net inshore rate, pumped by waves 

by a dominant turbulent flow through the structure, Loveless et al. (1998) 

developed the following expression for regular waves: 
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+ (4.70)  

 

in which the setup is a function of both the hydraulic characteristics (i.e. the 

incident wave height, the period, the wave length and the water depth at the toe 

of the structure) and of the geometric parameters of the breakwater (i.e. the 

height of the structure, the water freeboard and the diameter of the rouble 

mound material). 

In agreement with Diskin et al. (1970), the influence of F was modelled through 

the Gauss function, the maximum value of which was reached for F=0 instead 

of 0.7H0, as in Equation (4.62). 

In the same study a comparison between the Equation (4.70) and the formula 

proposed by Diskin et al. (1970) Equation (4.62) was also presented. In 

particular, the Authors founded that Equation (4.63) is able to accurately predict 

the wave setup for submerged structures, whereas it largely overestimates data 

in the other cases. This gap was essentially related to the different size of the 

material employed in the two different experimental campaigns. In fact, in the 

tests conducted by Diskin et al. (1970) this was 40% less than the smallest 

model employed in the Lovelless et al. (1998) ones.  

The Authors also suggested the use of the average wave height in the 

Equation (4.70) for irregular sea states. 

Subsequently, Ruol et al. (2003) carried out about 60 two-dimensional irregular 

wave tests on low-crested rubble mound structures, in order to investigate the 

influence of the flux passing over and through the breakwaters on the setup. In 

this experimental campaign, conducted in the flume of the Hydraulic, Maritime, 
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Geotechnical and Environmental Engineering of the University of Padua (Italy), 

isolated and segmented breakwaters, with different porosities, were both 

investigated. In order to study the influence of the gap between structures, the 

recirculation flow rate, previously stored in a reservoir, was changed. The setup 

measured for permeable structures was compared with that provided by Diskin 

et al. (1970) formula, resulting into an overestimation of about 30% with 

respect to the previous formula. This was due to the different sea states 

employed in the two studies: regular according to Diskin et al. and irregular for 

Ruol et al. Conversely, the application of the model by Loveless et al. (1998) 

resulted in a significant underestimation of data. 

Afterward, the models by Diskin et al. (1970) and Loveless et al. (1998) were 

applied by Calabrese et al. (2003) to a database composed by 48 irregular-

waves experiments, performed in the large-scale (1:2) flume of the Grosser 

WellenKanal, Coastal Research Centre of Hannover (Germany). In this study 

the influence of both crest width and permeability, on submerged and low-

crested rubble mound breakwaters, was investigated. 

In order to apply the aforementioned models and considering the close link 

between the wave setup and the energy loss due to the passage of waves over 

the structure, the Authors employed the equivalent energetic wave, Hen, as a 

characteristic one. The latter was defined as the ratio between the significant 

spectral wave height, Hmo, and the square root of 2. Hmo was computed 

integrating the power spectrum for frequencies larger than 0.5 times the peak 

ones. 

Calabrese et al. (2003) found that Equations (4.62) and (4.70) adequately 

reproduce the trend of measures, both for submerged and low-crested 

structures. However, the model by Diskin et al. overestimated data with low 

crest widths and underestimated the others, while Loveless‟ formula greatly 

overestimated the wave setup in case of wide structures. Furthermore, a lack of 

fit was observed for low values of B, in case of low-crested structures. 

For these reasons, following the scheme proposed by Dalrymple and Dean 

(1971), a new formula for the prediction of wave setup was proposed by the 

same Authors, starting from the following assumptions: constancy of the wave 

period; impermeable and non-reflecting submerged breakwater; average 

hydrostatic distribution of forces acting onto the structure. In addition, the 



Chapter 4 – State of the Art on Submerged and Low-crested Traditional Breakwaters 
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

85 

Authors considered that wave setup presents a linear trend in the surf zone, 

delimited seaward from the breaking point and shoreward from the toe of the 

structure. 

Under these simplifying hypotheses, the Authors calculated δm from the 

momentum balance, projected in the horizontal direction, applied to the control 

volume delimited by the sea bottom, the free surface and by two vertical 

sections taken at the toe of the structure. The equation proposed is the 

following: 

 

      [         )   ] (4.71)  

 

where  
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 ) (4.73)  

 

In Equation (4.72) a is assumed as a function of the geometric parameters of the 

structure, i.e. crest width and height, and of the breaking characteristics, 

namely: xb, i.e. the distance between the breaking depth (db) and the seaward 

crest edge; and Lbs, i.e. the distance between db and the landward toe of the 

breakwater (Eq. (4.74).  
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Equation (4.73) accounts for the influence of KT on δm, in fact the c term is a 

function of the incident energetic wave height, Heni, and of the so-called 

transmitted coefficient, defined as the ratio between the transmitted Hmo and the 

incident one. 

In order to estimate the breaking water depth, the Authors proposed to combine 

the linear shallow water shoaling theory with the breaking criterion of 

Kamphuis (1991), thus obtaining the following expression: 
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     (4.75)  

 

Assuming the total setup is a function of the sole momentum flux contribution, 

so that it can be computed by means of Equation (4.71), a good agreement was 

found for submerged structures with low values of crest width. Conversely, a 

significant underestimation was observed for structures characterized by greater 

values of B and for low submergences. In order to reduce this lack of fit, a 

contribution δc was added to δm, calculated employing the formula of 

Gauckler-Strickler for uniform turbulent flows: 
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In the previous equation, f is the friction parameter and F represents the 

hydraulic radius. The flow rate, qin, and the rectangular equivalent crest width, 

Beq, are respectively computed according to the following Equations: 

 

    
 

 
    

 √
 
 ⁄  (4.77)  

 

      
  (              )

 
 (4.78)  

 

The friction parameter f accounts for the energy loss due to the interaction 

between the breakwater and the return flow, as well as the permeability of the 

structure. Its value has to be calibrated on the basis of experimental data. As 

suggested in Calabrese et al. (2008b), f can be calculated by equating the 

following two expressions for the determination of the unitary shear stress at 

bottom, τb:  

 

          (4.79)  
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  (4.80)  

 

where Sw is the slope of the energy grade line, computable by means of 

Glaukler-Strickler formula, Ub is the bottom velocity and λ is the dimensionless 

friction. The latter can be retrieved from Nelson (1996) for coral reefs or from 

Lamberti et al. (2007) for low-crested breakwaters.  

Substituting Equations (4.71) and (4.76) in Equation (4.63), the final model can 

be obtained. Its application to the abovementioned dataset returned a good 

agreement. 

Bellotti (2004) proposed a new model for the prediction of the wave setup for 

submerged and impermeable detached breakwaters interrupted by gaps. The 

conceptual model assumed that incident short waves cause a current over the 

structures that transport water at the back of the breakwater. This phenomenon 

is partially compensated by an offshore undertow current (Svendsen and Bhur 

Hansen, 1986), while the remaining quantity of water is forced by the sloping 

water level (so-called feeders) toward rip channel, thus returning offshore. This 

model is based on four main equations  employed: depth-integrated continuity 

and momentum equation across the structure, a free discharge relationship at 

the gap, and a barrier-shore system continuity equation. After several algebra 

steps, the following expression was proposed: 
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(4.81)  

 

where, g and s subscripts indicate quantities respectively referred to the gap and 

to the structure; I and II refer to the offshore and onshore quantities, calculated 

at the toe of the breakwater (Figure 4.37). 
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Figure 4.37. Representation in section of the main variables of Bellotti‟s model 

(adapted from Bellotti 2004). 

 

In addition to the aforementioned quantities, Ls and Lg respectively represent 

the alonghshore length of the structures and of the gap; ws the base width of the 

breakwaters; Cv is a discharge coefficient; and f’ the bottom friction factor, 

which is assumed to be negligible. The geometrical quantity G, related to the 

equivalent water thickness over the breakwater, can be computed by the 

following expression: 

 

  ∫
    
     

  

  
  

  

  

 (4.82)  

 

in which x2 and x1 are, respectively, the distance from the shoreline of the 

inshore and the offshore toe of the structure, hence the difference between the 

two quantities represent ws (Figure 4.38). 
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Figure 4.38. Plan view of the main variable of the Bellotti‟s formula. 

 

In case of continuous breakwaters, i.e. not interrupted by gaps, the term Lgis 

zero and Equation (4.81) assumes the simplified expression reported in 

Equation (4.83). The latter  can be also employed as a first attempt in the 

iterative solution of Equation (4.81).  

 

            
 

 
√     

     
        

               (4.83) 

 

Bellotti (2004) also stated that the effect of the rip currents on setup can be 

better supported neglecting O(δ
2
) terms providing the following approximate 

expression: 
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 (4.84) 

 

The discharge coefficient, representing the hydraulic head loss coefficient, is 

considered as a tuning parameter which can be computed employing standard 

methods for open channels.  

Once the setup has been calculated by means of Equation (4.84), the depth-

integrated velocity of rip currents can be determined as follows: 
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      √    (4.85) 

 

The model was validated on experiments performed by Haller et al. (1997) in 

the basin of the Center for Applied Coastal Research of the University of 

Delaware (USA). These tests were conducted on submerged structures, 

characterized by a parabolic cross-section shape, under six sea state conditions 

and with monochromatic waves. 

The application of the model on this database showed a dependence of the 

Equation (4.81) on the friction parameter and discharge coefficient. However, 

Bellotti (2004) founded that the variation in the rip currents‟ velocity was less 

than 2% and, therefore negligible for -0.02<f’<0.02, while Cv and Lg/Ls had a 

greater influence.. In particular, the best performance of the model was obtained 

for Lg<0.5Ls, due to the better evaluation of so-called “confined” rip current 

flow (Bellotti, 2004). 

In 2005 Calabrese et al., applied the model previously developed in 2003 on a 

database composed of about 300 experimental tests, from three different 

laboratories (Calabrese et al., 2005): 253 tests carried out at the Hydraulic 

Laboratory of Bristol‟s Civil Engineering Department, including the regular 

ones employed by Loveless et al. (1998) for the calibration of the 

Equation (4.70); 25 tests previously employed for the calibration of the model 

of Calabrese et al. (2003); and 21 tests conducted with 2D regular waves at the 

University of Naples “Federico II”. 

The model was firstly applied on regular data only, for which the braking 

criteria proposed by Moore in 1982 was adopted: 

 

(
 

 
)
 
            

 
 ⁄  (4.86) 

 

In the previous Equation, a and b are functions of the bottom slope, m, and the 

deep water wave height is calculated from the incident one employing the linear 

shoaling coefficient.  

The application of the model to the regular tests showed an underestimation of 

experimental data, which was particularly evident for the data from Bristol.  
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The reason for these different behaviours was attributed by the Authors to the 

different positioning of structures employed in the tests, which was deeper for 

those performed in Bristol with respect to those carried out in Naples. In fact, 

an increment of water depth corresponds to a decrease of the mass drift 

(Eq. 4.77) and of δc, with a consequent increasing in the error (Calabrese et al., 

2005). Moreover, an increasing in the difference between the measured and the 

calculated setup was observed at decreasing relative crest freeboard.  

In order to take in account these parameters, a new expression for q was 

proposed by the Authors, according to the Svendsen‟s theory (1984). The latter 

considers the total drift as the sum of the Stokes drift, that is connected to the 

orbital motion, and the contribute due to the surface roller. Furthermore, using 

the shallow water theory, the Equation (4.87) was proposed for the estimation 

of qin. 

 

    √  
 ̅ 

 
(  

  

 ̅ 

 

 
) (4.87) 

 

In the Equation above the water depth was assumed equal to the absolute value 

of the submergence of the structures and the wave height was calculated as the 

average wave height across the structure: 

 

 ̅  
        )

 
 (4.88) 

 

The A1 term in Equation (4.87) is the area of the surface roller in the vertical 

plane, which can be computed by means of the following expression (Okayasu, 

1989): 

 

          (4.89) 

 

The term B0 is a shape factor to be calibrated on the base of experimental data. 

Calabrese et al. (2008b) considered this factor as a function of the Ursell‟s 

parameter, UR, for a wave breaking located near the crest: 
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Substituting the Eq. (4.87) in the Eq. (4.76) it is possible to determine the 

continuity contribution. 

The model was calibrated on the database employed by Loveless et al. (1998) 

and was applied on the experimental data from Naples, leading to a good 

agreement between measured and estimated values.  

A similar good agreement also resulted from the application of Equation (4.75) 

to irregular data. In this case the peak wave period and the Kamphuis‟ breaking 

criteria were considered for the application of the model. Moreover, by 

assuming random sea states as the sum of regular waves and employing the 

Rayleigh distribution, the incident wave height, was calculated, as in the 

following Equation: 

 

    
√  

 
    (4.91) 

 

The model proposed by Calabrese et al. (2005), was subsequently applied by 

the same Authors (Calabrese et al., 2008b), but employing the breaking criteria 

of Iwata and Kiyono (1985) for the determination of the incident wave height: 

 

   
 

    
(           

    

    
)       (  

  
  

) (4.92) 

 

where Lb represents the wave length at the incipient breaking. The 

Equation (4.92) returns the Miche criteria (1944) for progressive waves and the 

model of Daniel (1952) for standing waves. 

The application of this model, under the hypothesis of shallow water, returned a 

breaking index H/d=0.88, which is larger than the one found by Sawaragi 

(1995) in the analyses of submerged breakwaters, which was H/d=0.625. This 

suggested to employ another breaking criteria for breaking waves on the crest 

of the structure. In fact, Calabrese et al. (2008b) assumed that the breaking 
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occurs for Hi larger than the limit wave height expressed by the relationship 

proposed by Hur et al. (2003): 

 

  
              (

  |  |

  
) (4.93) 

 

The equation above returned a shallow water breaking index H/d = 0.6,  which 

was deemed to be in good agreement with that found by Sawaragi (1995). 

 

The model was applied on the same database employed by Calabrese et al. 

(2005) widen with other 63 regular tests conducted at the University of Naples 

(described in Pasanisi et al., 2006 and Di Pace, 2006).  

The application of the aforementioned model on regular experimental data 

returned a good agreement, with a determination index, R,
2
 equal to 0.89. The 

model was compared with the formulae proposed by Loveless et al (1998), 

Dalrymple and Dean (1971) and Diskin (1970) resulting to be the fitting one. 

Moreover a significant underestimation was found applying Equation (4.70) to 

the database already employed by Calabrese et al. (2005), while a certain 

overestimation was observed employing the model by Dalrymple and Dean 

(1971) and that by Diskin (1970). A more reliable predictive capability of the 

Equation (4.62) was found employing the incident wave height instead of the 

deep water one. 

The results obtained for monochromatic waves were transferred to spectral ones 

employing the peak period and defining two heights, namely Hrms and the 

average wave height Hμ. 

The Kamphuis (1991) breaking criteria was assumed for computing Hrms and 

Hμ: 
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In the previous two Equations, m was assumed equal to zero if the wave 

breaking occurred on the crown of the breakwaters, otherwise it was equal to 

tanαoff . 

The application of the model suggested a recalibration of the f term when Hrms  

was employed. On the contrary, the model resulted to be able to predict the 

wave setup when Hμ was adopted. 

A comparison between the previously presented formulae can be found in 

Soldini et al. (2009). In this study a database of about 40 experimental tests 

conducted in four different European and American laboratories was employed. 

The Italian tests were partially carried out in portioned basin of the Polytechnic 

of Bari, where segmented submerged rubble mound structures were 

investigated with regular and irregular waves (as described in Lorenzoni et al. 

2004), and partially conducted in the flume of Coastal Laboratory of Civil 

Engineering Department of the Florence University, where both submerged and 

low-crested structures were tested with monochromatic waves. In the last tests 

several berm widths, structure heights and offshore slopes were investigated. In 

addition to the above, tests conducted at the Alborg University for the European 

Project DELOS (Kramer et al., 2005) were considered. In particular only those 

aimed at investigating the hydrodynamic of submerged and low-crested 

breakwaters with a central rip channel were considered. 

The American experiments, described in Haller et al. (2000), were conducted 

on bar systems with regular waves in the wave basin of the Ocean Engineering 

Laboratory of the University of Delaware (USA). 

As reported in Soldini et al. (2009), the application of the model by  Diskin et 

al. (1970) provided a substantial overestimation of data, probably due to the 

differences in F/H0 and in wave characteristics employed in the studies. 

Conversely, an over-prediction was found for the data from Delaware, ascribed 

by the Authors to the inability of the Diskin‟s model to represent the horizontal 

flume.  

In agreement to what observed by Calabrese et al. (2003), an overestimation of 

data was also found applying the Loveless‟ formula to tests performed in Bari 

and in Florence while a good agreement was observed for data from Alborg. 

Finally, the inapplicability of the model resulted from the use of Delaware data, 

due to different experimental conditions.  
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In the same study, results obtained from the application of the model proposed 

by Bellotti (2004) were also discussed and a good agreement was found 

employing the simplified Equation (4.84). A good interpretation of the data was 

also found employing the model of Calabrese et al. (2005), in which the only 

momentum flux contribution was employed.  
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Chapter 5  – REVIEW OF STUDIES ON REEF BALL 

BREAKWATERS  

In recent years, few studies have been dedicated to the analysis of the 

transmission coefficient at breakwaters made of RB modules.  

Early studies aimed at the characterization of the wave transmission of Reef 

Ball structures were performed by Armono in 2003, further developed and 

published, with some modifications, by Armono and Hall (2003). These studies 

were aimed at developing a predictive equation for different types of Reef Ball 

breakwaters, based on the results of an experimental campaign. The Authors 

investigated two different Reef Ball layouts, namely modules placed directly on 

the bottom and on the crest of a mound, and several configurations, including 

multi-layered ones. 

More recently, Ward (2011) performed an experimental campaign in order to 

optimize the design of an offshore submerged breakwater in Florida (USA). In 

these tests, RB units were arranged according to one layout only, i.e. in a single 

layer and directly placed on the bottom, while different configurations were 

obtained by varying the distance between the units.  

As result of the rising interest in the use of RB modules for shore protection 

purposes, the aforementioned studies were analysed by Del Vita in 2012, and a 

new model for the prediction of the transmission coefficient was proposed by 

Buccino et al. (2014). 

In the following, a description of the studies performed by Armono (2003) and 

Ward (2011) are presented, whereas findings of Buccino et al. (2014) will be 

discussed in the next Chapter. 
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5.1 The Armono (2003) study 

5.1.1. Description of the experimental campaign 

The database employed in Armono (2003) was composed of about 300 two-

dimensional random tests, conducted at the Queen‟s University Coastal 

Engineering Research Laboratory (QUCERL, Canada). 

These experiments, hereafter referred to as QUCERL data, were performed in a 

47 m long, 0.9 m wide and 1.2 m deep flume, provided with a flap-type wave-

maker (Figure 5.1). Reef Balls were placed on an horizontal bottom, at a 

distance of 17 m from the paddle. The modules were characterized by an height, 

hR, equal to 0.13 m and by a base diameter, DR, of 0.20 m; the weight of the 

units ranged from 2.189 to 2.944 Kg and the number of holes over the lateral 

surface was averagely 20.  

These characteristics correspond to Pallet Balls (Table 2.1), scaled down at a 

1:7 ratio. 

 

 
Figure 5.1. Cross-section of the flume at QUCERL. 

 

RBs modules were arranged in two different layouts: 

 “Bottom Seated” (BS) layout, with modules seated directly on the 

horizontal bottom; 

 “Berm layout” (B), with modules placed onto the crown of a 

conventional mound. 

In each of the layouts above, the number of RB layers was varied from one to 

three, to create different configurations. 

Configurations investigated for the BS layout are shown in Figure 5.2. In 

particular, the configuration BS-3 (Figure 5.2a) was composed of 3 RB levels, 

with the second layer arranged upside-down to improve the interlocking with 

the first one and provide a planar base for the top level (Armono and Hall, 
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2003). The BS-2 configuration (Figure 5.2b) was obtained from BS-3 by simply 

removing the upper layer. 

 

 

 

 
Figure 5.2. Representation of BS layout. a) Configuration BS-3;b) Configuration BS-2. 

 

As far as the type “B” layout is concerned, Reef Balls were assembled in 1 or 2 

levels. In the former case, modules covered the entire crown (configuration 

referred to as B-F1, where “F” stands for “full cover”, Figure 5.3a) or only part 

of it (configuration referred to as B-P1, where “P” stands for “partial cover”, 

Figure 5.3b). Finally, in the configuration B-F2, RBs were arranged in two 

levels, to cover the entire crest of a berm (Figure 5.3c). 

The rubble mound was made of a core with Dn50 =0.01 m and two armour 

layers with Dn50 =0.037 m. The height of the berm, hm, the crown width of the 

mound, Bm, and the slope angles (αoff. and αin.) were kept constant for all the 

tests.  

 

 

a)

b)

a)
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Figure 5.3. Representation of B layout: a) configuration BF-1; b) configuration BP-1; 

c) configuration BF-2. 

 

Table 5.1 shows, for each configuration tested, the number of observations 

(#data); the number of RB rows at the top of the structure, n; and the variation 

ranges of the hydraulic characteristics observed during the tests, i.e. water 

depth, significant incident wave height, peak period and measured transmission 

coefficient, KT,meas. The transmitted wave height, used in the computation of the 

transmission coefficient, was calculated by means of two arrays of five probes, 

placed 13 m away from the toe of the structure and 2 m behind the reefs. 

Configuration  # data n d [m] Hsi [m] Tp [s] KT,meas  

BS-3 54 3 0.35-0.45 0.05-0.20 1.0-3.5 0.56-1.06 

BS-2 60 4 0.21-0.30 0.05-0.20 1.0-3.5 0.33-0.99 

BF-2 49 4 0.43-0.60 0.05-0.20 1.0-2.5 0.37-0.89 

BF-1 56 5 0.35-0.50 0.05-0.20 1.0-2.5 0.33-0.95 

BP-1 56 3 0.35-0.50 0.05-0.20 1.0-2.5 0.39-0.95 

Table 5.1. Summary of QUCERL tests. 

 

b)

c)
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5.1.2. Description of the model 

From the analysis of QUCERL data, Armono (2003) developed the following 

predictive model for RB submerged breakwaters, via a linear regression 

analysis at least squares: 
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(5.1) 

 

where hs is the total height of the structure; BbR is the crest width of Reef Ball 

structures, computed as the sum of RBs‟ base diameters, DR, at the lower layer 

(Eq. 5.25.2); and A0, is a scale factor, assumed as a function of the analysed 

configuration.  

According to Equation (5.1), the transmission coefficient is related to four 

fundamental parameters, each one raised to a different constant exponent: the 

wave steepness (Hsi/gTp
2
); the relative depth (hs/d); the ratio between the 

geometric characteristics of the structure (hs/BbR); and the ratio between the 

crest width and the period (BbR/gTp
2
). 

 

        (5.2) 

 

In Table 5.2 the value of the A0 coefficient, the determination index, R
2
, and the 

Standard Error, SE, are summarized, for each configuration.  

 

Configuration A0 R
2
 SE 

BS-2 10.719 0.922 0.049 

BS-3 7.949 0.867 0.042 

B-F2 15.318 0.856 0.058 

B-F1 14.527 0.953 0.036 

B-P1 14.527 0.953 0.036 

Table 5.2. Values of the scale factor, determination index and standardized error 

according to the Armono model (2003). 
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Subsequently, Armono and Hall (2003) proposed the modification of the 

previous model reported in Equation (5.3) to be applied only for configurations 

B-F1 (Figure 5.3a) and B-P1 (Figure 5.3b): 
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) (5.3) 

 

In the previous Equation, instead of four parameters, only three were considered 

to be significant for the prediction of the transmission coefficient, because the 

influence of BbR/gTp
2 
was deemed to be negligible.  

The model described by Equation (5.3) is characterized by a R
2
 value of 0.841, 

resulting to be lower than that found by Armono (2003), which was equal to 

0.95 for the same configurations. 

5.2 The Miami Beach 63rd Street Hotspot case-study 

The project of the Miami Beach 63
rd

 Street “Hotspot” was part of the National 

Shoreline Erosion Control Development and Demonstration Program - Section 

227, developed by the U.S. Army Engineer Research and Development Center 

(ERDC) with the objective of advancing the state of the art of shoreline 

protection, through a series of demonstrative projects of innovative and non-

tradition solutions. 

The project site extended along the 63
rd

 Street of Miami, for approximately 

762 m (Figure 5.4). This site had experienced a significant shoreline 

retreatment, with a rate exceeding those observed on adjacent shorelines.  

 

 
Figure 5.4. Beach near 63rd Street (Ward, 2011). 
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The main goal of the project was to measure the energy reduction 

corresponding to different arrangements of RB units and to identify the best 

configuration to employ for the shoreline stabilization. 

Because of the sand bottom, Reef Balls were placed on Armorlefex mattress 

(Figure 2.15). The latter allowed to avoid silting phenomena, working as a sand 

trap. As a final result, the protection of the site was achieved, mainly due to 

wave dissipation and reduction of the near-shore slope of the bottom. 

On behalf of this project, 64 experiments were carried out at the USACE 

Engineering Research and Development Centre Coastal and Hydraulics 

Laboratory (ERDC/CHL, USA), to investigate the effectiveness of different RB 

configurations.  

These experiments were conducted in a wave basin 51.82 m long, 30.48 m wide 

and 1.21 m deep, provided with a 27 m wide multi-directional wave generator. 

The tank was partitioned at nearly 15 m from the paddle to form a 20.73 m by 

2.44 m flume, normal to the generator. The flume‟s profile, which reproduced 

the topography of the site at a 1:10 length-scale, included a 1:20 slope, for the 

first 4.87 m, followed by a 1:250 slope, for 9.75 m, and finally a 1:7.5 slope, for 

4.87 m (Figure 5.5). 

 

 
Figure 5.5. Profile of the flume employed in the ERDC/CHL tests. 

 

1:10 models of Goliath Balls (Table 2.1) were arranged in a single layer and 

placed directly on the bottom, according to a layout typically employed in the 

practical applications. The modules were placed in different rows on the 1:250 

slope, with the offshore row beginning where the slope transitioned from 1:20 

to 1:250. Different configurations were obtained by varying the spacing 

between the units, both in the direction of the wave propagation (cross-shore) 

and the normal one (along-shore). Moreover, the number of rows was changed 

to investigate the influence of the structure width. 

1.22 m
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The configuration BS-1a was made up of 10 modules in each row, with an 

alongshore spacing of 0.55 m in the prototypal scale (Figure 5.6). Up to 7 rows 

were used, with the cross-shore spacing also set at 0.55 m. RB rows were 

realized in such a way that the centre of each unit was aligned with the gap 

between two units in the preceding and following row. The configuration BS-1b 

was obtained from BS-1a by removing the even rows. Consequently, the 

modules appear perfectly aligned cross-shore (Figure 5.7).  

 

 
Figure 5.6. Plan view of the configuration BS-1a. 

 

 
Figure 5.7. Plan view of the configuration BS-1b. 

 

The configuration BS-1c was obtained from the BS-1a one, with a number of 

rows equal to 7, after eliminating row number 2 (Figure 5.8).  

The configuration BS-1d was identical to BS-1b, but the modules were not 

aligned (Figure 5.9). The structure BS-1e included 3 rows with no spacing 
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between the units (Figure 5.10). Finally, the configuration BS-1f was obtained 

from BS-1b, by halving the number of modules in each row (Figure 5.11).  

 

 
Figure 5.8. Plan view of the configuration BS-1c. 

 

 
Figure 5.9. Plan view of the configuration BS-1d. 

  

 
Figure 5.10. Plan view of the configuration BS-1e. 

0

0
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Figure 5.11. Plan view of the configuration BS-1f. 

 

Reef Ball breakwaters were placed at a submergence of about 30 cm under the 

mean sea water level, so that the major part of the tests were referred to a depth 

of 0.183 m. Moreover, some tests were also performed at a depth of 0.256 m. 

This allowed to take into account for the average tide variation and the 

maximum sea level oscillation at the site, which were about 0.7 m and 0.8 m, 

respectively.  

In Table 5.3 the investigated configurations, the number of observations, the 

main hydraulic characteristics and the measured KT are summarized. 

 

Configurations #data n d [m] Hsi [m] Tp [s] Kt,meas 

BS-1a 28 1 7 0.183;0.256 0.076;0.152 1.58;2.53 0.50;0.99 

BS-1b 12 2 4 0.183  0.076;0.152 1.58;2.53 0.62;0.92 

BS-1c 4 5 0.183  0.076;0.152 1.58;2.53 0.59;0.77 

BS-1d 12 3 4 0.183;0.256 0.076;0.152 1.58;2.53 0.60;0.91 

BS-1e 4 3 0.183  0.076;0.152 1.58;2.53 0.63;0.84 

BS-1f 4 4 0.183  0.076;0.152 1.58;2.53 0.81; 0.92 

Table 5.3. Summary of ERDC/CHL tests for each configuration investigated. 

 

The transmitted and incident wave heights were measured, respectively with 

and without the breakwater, by means of three probes placed shoreward the 

structure. Accordingly, KT was expressed as follows: 
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                   )

                      )
 (5.4) 

 

where Hm,0 is the spectral significant wave height. 

The study resulted in a transmission coefficient variable between 0.5 and 0.99. 

The maximum wave attenuation was observed for the configuration BS-1a with 

7 rows of Reef Ball modules. Moreover, no significant variation of KT was 

observed by changing the distance between the units. 
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Chapter 6  – ANALYSIS OF THE TRANSMISSION 

COEFFICIENT BASED ON LITERATURE DATA 

(BUCCINO ET AL., 2014) 

In 2014, Buccino, Del Vita and Calabrese analysed the results of the two 

previously-discussed experimental campaigns (Sects. 5 and 5.2) and applied 

two different approaches for the development of new predictive models for the 

transmission of RB barriers. 

The first model was directly derived from the one by Armono (2003), described 

by Equation (5.1). The result was characterized by a relatively high 

determination index (R
2 

= 0.80) and by normality of the residuals, but it was 

less able to interpret the ERDC/CHL data than the QUCERL ones. The main 

reasons were attributed by the Authors to the peculiar functional relationship of 

the Armono‟s model, which was considered to be unable to adequately 

reproduce the physics governing the wave dissipation process. 

For these reasons, a new model was developed, starting from the so-called 

“Conceptual Approach” (Buccino and Calabrese, 2007a), previously proposed 

for traditional submerged breakwaters. 

In the following, the study by Buccino et al. (2014) is described starting from 

the analyses of the QUCERL and the ERD/CHL datasets (see Chapter 5). 

Subsequently, the application of the Conceptual Approach (Buccino and 

Calabrese 2007a) is presented. 

6.1 Analysis of QUCERL and ERDC/CHL data 

The starting point of the study by Buccino et al. (2014) was the analysis of the 

functional form of the model by Armono (2003) . 

The Equation (5.1) was assumed by the Author as a function of BbR/gTp
2
 which 

is, except the constant term π, equal to the ratio between the width of the 

structure and the deep wave length. This variable had been often employed as a 

main predictor of the transmission coefficient for traditional breakwaters (e.g. 
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Tanaka, 1976). Generally speaking, a decrement of the energy dissipation was 

observed for structures characterized by a crest width less stretched than the 

wave length. Thus, an increment of the transmission coefficient is expected for 

structures characterized by low values of the B/L0 ratio and, therefore, also of 

BbR/gTp
2
. Contrariwise, the BbR/gTp

2
 term in Equation (5.1) was raised to a 

negative exponent, so that the transmission coefficient increased as the above-

mentioned term did. As an example, this trend is shown in Figure 6.1, where the 

transmission coefficient, calculated by means of Equation (5.1) for 

hs/BbR = 0.32, Hsi/gT
2 

= 0.157, hs/d = 0.8, hs/BbR = 0.32 and A0 = 7.949, is 

plotted against BbR/gTp
2
. 

 

 
Figure 6.1. Increment of the transmission coefficient calculated by means of Eq. (5.1) 

with BbR/gTp
2
 (Del Vita, 2012). 

 

The model of Armono was linearized according to the following expression: 

 

        (6.1) 

 

where Y and X are respectively expressed by means of the Equations (6.2) and 

(6.3). 
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Figure 6.2 shows the results of the application of the Armono‟s model in the 

plane of the transformed variables (X, Y) for the configuration BS-2 

(Figure 5.2b) and BS-3 (Figure 5.2a). 

It is worth noticing that the QUCERL data exhibits a certain curvature around 

the mean trend line, especially for small values of X. Moreover, in case of the 

configuration BS-2, a certain scatter is exhibited for large X values 

(Figure 6.2a).This suggests that Armono‟s equation might suffer some lack of 

fit, at least with respect to the BS arrangements.  

In addition to the above, Figure 6.3 shows the errors, ei, associated to Armono‟s 

model versus X, which were estimated as the difference between measured and 

predicted Y values. 

From the Figure 6.3, a dependence of the residuals on X emerges, suggesting 

the presence of a non-linear term, omitted in the model by Armono. 

The application of the linearized model (Eq.6.1) on ERDC/CHL data revealed 

that, differently from the QUCERL experiments (Figure 6.2), this data are not 

adequately fitted by the Armono‟s model (Figure 6.4). In fact, when plotted on 

the X-Y plane, ERDC/CHL data splits into two distinct sub-arrays. Furthermore, 

a clear lack of correlation between X and Y emerges for the configurations 

BS-1c, BS-1e and BS-1f (Figure 6.5).  
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Figure 6.2. Comparison between Equation (6.1) and QUCERL data: a) configuration 

BS-2; b) configuration BS-3. 
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Figure 6.3. Scatter plot of errors ei vs. X: a) configuration BS-2; b) configuration BS-3. 
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Figure 6.4. Application of Eq. (6.1) to ERDC/CHL data. 

 

 

Figure 6.5. Application of Eq. (6.1) to BS-1c, BS-1e and BS-1f data. 
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performing subsequent partial regressions with respect to each variable and then 

plotting the residuals against the remaining ones.  

To this purpose, the model by Armono was again linearised according to the 

following equation: 

 

                          (6.4) 

 

where, YT is the transformed dependent variable: 

 

     (
 

  
  ) (6.5) 

 

while the predictors are: 

 

     (
  
 
)        (

  
   

)        (
   

   
 
)        (

   

   
 
) (6.6) 

 

By applying the AVP technique on the BS-subset of QUCERL data, 

Buccino et al. (2014) observed that the X3 predictor is not sufficient to 

completely describe the effect of the wave period on the transmission process. 

Therefore, a tentative correction of the model by Armono was performed, 

including both QUCERL and ERDC/CHL data, which resulted into a R
2
 of 0.8 

and a standard error of 0.071. 

Moreover, by observing that the wave steepness influenced the ERDC/CHL 

data less than the QUCERL ones, the Authors concluded that the BS-1 

configuration differs from the others in the mechanisms underlying the 

attenuation of the incoming waves. This could represents the reason why the 

Armono‟s approach fails in capturing the mean features of the interaction 

between waves and modules. 

For this reasons, the same Authors proposed another model for the prediction of 

transmission coefficient, based on the Conceptual Approach (Buccino and 

Calabrese 2007a), presented in the next Section. 
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6.2 Conceptual Approach for Reef Ball submerged breakwaters 

(Buccino et al., 2014) 

The “Conceptual Approach” (Buccino and Calabrese, 2007a; see Section 4.2) 

was chosen as an alternate model for the prediction of the transmission 

coefficient of submerged breakwaters made of Reef Balls, both placed on the 

bottom and on the crown of a conventional rubble mound. 

In the following the model developed and the procedure employed for its 

calibration will be explained. 

6.1.1. Conceptual Approach for Bottom Seated Reef Balls 

In order to calibrate the CA model, a preliminary redefinition of the main 

structural variables, namely the crown width and the height of the structure, was 

considered to be necessary, due to the different characteristics of the RBs with 

respect to common armour units, as well as to the heterogeneity of the 

investigated configurations. 

6.1.1.1. Variable redefinition 

In those cases in which the upper layer of the structure was made of modules 

placed upright (configurations BS-1 and BS-3), the nominal crown width, Bt, 

was defined as follows: 

 

       )   (6.7) 

 

On the contrary, when RBs were placed with the base upwards (configuration 

BS-2), Bt was simply assumed as the sum of the base diameter of the modules: 

 

       (6.8) 

 

Moreover, the equivalent structure height, hse, was introduced. This was 

considered equal to the height of the units, hR, for the configuration BS-1 

(Eq. 6.9), while for configuration BS-2 it was assumed to be computable by 

means of the Eq. (6.10). 
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       (6.9) 

 

            )   (6.10) 

 

In the previous Equation, φp is a thickness coefficient, equal to the ratio 

between the total height of the stricture and 2hR. 

Finally, because the layout BS-3 originates from BS-2 after adding a third level 

of RBs in the normal (upright) position, hse was set as follows: 

 

            )   (6.11) 

 

Obviously, the introduction of an equivalent structure height corresponds to the 

definition of an equivalent crest level, Rce: 

 

          (6.12) 

 

A graphic representation of the above-defined variables is shown in Figure 6.6 

for the configurations BS-1 (Figure 6.6a) and BS-2 (Figure 6.6b), respectively. 
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Figure 6.6. Representation of the variables used in the application of CA to RB barriers 

for the configuration BS-1(a) and configuration BS-2 (b). 

 

6.1.1.2. Calibration of the asymptotic solution for low-submerged structures  

The calibration of the CA in the case of bottom-seated layout started from the 

calibration of the Eq. (4.53). The latter, hereunder reported for the reader‟s 

convenience, represents the asymptotic solution of the Buccino and Calabrese 

(2007a) model, for low-submerged structures. 
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In a plane defined by Bt/(HsiL0p)
0.5

 as the abscissa and KT
0.5

 as the ordinates, the 

aforementioned Equation represents a straight line with intercept K
n

T,0
0.5

 and 

slope G2 (see Sect. 4.2).  However, a significant dispersion in data was found by 

the Authors, due to the different responses of ERDC/CHL and QUCERL 
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experiments. This problem was solved by introducing a dissipation factor, ν, 

varying according to Table 6.1.  
 

Configurations ν 

BS-1a 0.6 

BS-1b 0.6 

BS-1c 0.6 

BS-1d 0.6 

BS-1e 1 

BS-1f 0.25 

BS-3 1.4 

BS-2 1.5 

Table 6.1. Configuration factor, ν, for Bottom Seated configurations. 

 

The introduction of this factor allowed to correct the width of the structure Bt, 

via the definition of an effective crown width, Bt
*
: 

 

  
       (6.13) 

 

By employing this parameter, instead of the nominal crest width, the previous 

plane was transformed into a Bt
*
/(HsiL0p)

0.5
 vs. KT

0.5
one. The plotting of data in 

this plane (Figure 6.7), allowed to obtain a satisfactory grouping around the 

trend line expressed by Equation (6.14), testified by a determination index 

R
2
 =0.90.  

 

√                    (6.14) 

 

In the Equation above b
*
 is a dimensionless variable expressed as follows: 

 

   
  
 

√      
 (6.15) 
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Figure 6.7. Calibration of Eq. (4.53) on all BS data (QUCERL and ERDC/CHL data).  
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n
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*
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0.5
, as well as the negligible role of Rce, the residuals, ei, 

computed as the difference between KT,meas and KT,calc, were plotted against b
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(Figure 6.8) and Rce/Hsi (Figure 6.9). 
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Figure 6.8. Plot of the residuals of Eq. (6.14) vs b

*
. 

 

  
Figure 6.9. Residuals of Eq. (6.14) vs Rce/Hsi. 
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required the application of a procedure different from that employed by the 

Authors for conventional submerged breakwaters. 

In fact, the RB database (QUCERL and ERDC/CHL data) was not as large as 

the one by Seabrook and Hall (1998), which was employed by Buccino and 

Calabrese (2007a) for the calibration of the CA model on conventional 

breakwaters.  

For the reason above, the calibration of the Equation (4.52) was conducted by 

firstly linearising it as follows: 

 

       (6.16) 

 

where,  

 

  
 

  
 (6.17) 

 

and  

 

    (
   

   
)
   

 (6.18) 

 

In order to define whether any agreement exists with the Equation (6.16) and 

obtain the eventual limit of application, data was grouped in classes of breaker 

index, Hsi/Rce, and progressively plotted in the plane (Z,Y). Results showed a 

curvature of the fitting line in the interval 0.29 ≤ Hsi/Rce < 0.68 (Figure 6.10). 

The Authors attributed this behaviour to the progressively loss of dependence 

of KT form the leading variables, as the probability of wave breaking decreases.  

Conversely, a linear trend was obtained for 0.68 ≤ Hsi/Rce < 1.1 (Figure 6.11). In 

this range of values, the Equation  (6.16) resulted to be reasonably verified, as 

shown by a determination index of 0.90. Moreover, by extending the interval up 

to a value of about 1.4, the linear trend still persisted (Figure 6.12), in face of a 

slight reduction of the determination index (R
2
 =0.88).  

For higher values of the breaker index a significantly loss of linearity emerged 

(Figure 6.13), similarly to what already observed in Figure 6.10. 
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Figure 6.10. Plot of experimental data in the (Z-Y) plane for Hsi/Rce <0.68. 

 

 

 
Figure 6.11. Plot of experimental data in the (Z-Y) plane for 0.68≤ Hsi/Rce ≤1.1. 
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Figure 6.12. Plot of experimental data in the (Z-Y) plane for 0.68 ≤ Hsi/Rce ≤ 1.4. 

 

 
Figure 6.13. Plot of experimental data in the (Z-Y) plane for 0.68 ≤ Hsi/Rce ≤ 2. 
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The calibrated form of the mode is given by the following Equation: 

 

   
 

     (
   

   
)
   

  
 

(6.19) 

 

Similarly to what already retrieved from the calibration of Equation (4.53), the 

dissipation factor was 0.3, i.e. a value similar to that found for conventional 

breakwaters (0.33). It is worth noting that the minimum breaker index (0.68) for 

Equation (6.18) is 36% larger than that estimated for conventional breakwaters 

(0.5). This delay in wave breaking occurrence can be likely explained by the 

larger porosity of the RB barriers with respect to traditional ones (Buccino et al. 

2014).  

In order to verify the dependence of KT on (Hsi/Rce)
1.5

 and on b
*
,
 
the model was 

firstly linearised in the logarithmic plane according to Equation (6.20), and 

subsequently a regression analyses was performed at a 5% significance.  

 

         
     

   (6.20) 

 

In Equation (6.20) the predictors X’ and X’’ were respectively defined by the 

following logarithmic expressions: 

 

     (
   

   
) (6.21) 

 

         ) (6.22) 

 

and 

 

     (
 

  
) (6.23) 

 

Results of the regression analysis are summarized in Table 6.2. As it can be 

observed from this Table, p-values lower than 0.05 ensure that both the relative 
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submergence and the relative structure width are significant to the prediction of 

KT. Moreover, the theoretical values of β1 and β2, respectively 1.5 and 1, 

resulted to be included in the 95% confidence interval (β1 = 1.27 2.21; 

β2 = 0.81 1.09). As far as the parameter β0 is concerned, its value varies 

between -1.29 and -1.08, which approximately corresponds to the ln(0.3). 

 

Coefficients SE T-stat p-value 95% confidence bands 

β0 -1.187 0.0526 -22.587 7.01x10
-27

 -1.293 -1.081 

β1 1.736 0.234 7.4316 1.82x10
-09

 1.266 2.206 

β2 0.950 0.069 13.7054 4.91x10
-18

 0.811 1.090 

Table 6.2. Results of the regression analyses. 

 

Finally, the calibrated CA model for the BS configuration is expressed by the 

following Equations: 
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)
   

  
                                          

   

   
        

(6.24) 

   [              )        ]             
   

   
       (6.25) 

    
   

   
                                                             

   

   
        (6.26) 

 

The Equation (6.24) applies in the case of deeply-submerged breakwaters 

(0.71≤ Rce/Hsi≤ 1.47); Equation (6.25) is valid in the opposite cases 

(Rce/Hsi≤ 0.4), and a linear interpolation (Eq. 6.26) is proposed for the 

intermediate cases (0.4≤ Rce/Hsi≤ 0.71). 

In the Equation (6.25) an empirical threshold of 4 was introduced, 

corresponding to the zero value of a parabola (see Sect.4.2).  

A comparison between the predicted and measured transmission coefficient is 

shown in Figure 6.14. The data show a good agreement, apart from two 

outliers, relative to the BS-2 configuration, which are circled in red in the 

Figure. 
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Figure 6.14. Comparison between calculated (Eqs. 6.24- 6.26) and measured 

transmission coefficient. 
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and 0.052 for BS-1. The values relative to the QUCERL datasets resulted to be 

slightly larger than those returned by the formula of Armono (Eq. 5.1) which 

was 0.044 and 0.048 for BS-3 and BS-2, respectively. 

6.1.2. Conceptual Approach for Bermed Reef Balls 

According to the CA model, two different solutions were calibrated in case of 

low and deep submergences. The transition between these two conditions was 

defined trough an empirical threshold, i.e. the ratio between the submergence of 

the mound, Rcm, and its height, hm, (Figure 6.15).  

 

 
Figure 6.15. Representation of the main variables of the CA for bermed configurations. 

 

More precisely, a structure was considered to be deeply submerged when 

Rcm/hm ≥ 0.95. In this range of values, it was assumed that the CA model 

calibrated for BS layouts still reasonably predicts KT. On the contrary, a 

behaviour similar to that of conventional breakwaters was assumed for 

low-submerged structures. In Figure 6.16, the application of the 

Equations (6.24) to (6.26) on deeply submerged structures is shown. As it is 

possible to observe in the graph, a good agreement was found, even though 

nearly 12% of the 105 data exceed the 90% confidence intervals (red dotted 

lines). Furthermore, a slight overestimation of calculated values can be 

observed, which was attributed to the effect of the berm, reducing the 

permeability of the structure and thus increasing both reflection and dissipation. 

In this case, a value of the determination index of 0.90 was found, similar to 

that found by Armono in 2003 (R
2
 = 0.92).  
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Figure 6.16. Comparison between calculated (Eqs. 6.24-6.26) and measured 

transmission coefficient, for bermed layouts with Rcm/hm ≥ 0.95. 

 

In the case of low-submerged structures (Rcm/hm < 0.95), the whole structure 

(berm and RBs) was modelled as a submerged conventional breakwater 

characterized by a submergence Rcm and a crown width Bm (Figure 6.15). RB 

modules were supposed to be an added resistance, so that their role was taken 

into account by the dissipation factor, GR.  

Under this assumption, the model was expressed by the following Equation: 
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(6.27) 

 

The dissipation factor, GR, was calibrated on the bases of about 55 data, and 

resulted to be: 
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In the Equation above, the exponential term represents the percentage of the 

berm crown occupied by RBs. 

The comparison between the calibrated model and the experimental data is 

shown in Figure 6.17. This model was assumed valid in the range 

0.6 ≤ Rcm/Hsi ≤ 3.5, which is broader than the one typically used for 

conventional breakwaters. 

A determination index of 0.90 was found, that is slightly larger than the 0.85 

value, found by Armono and Hall (2003) on the same database. 

 

 
Figure 6.17. Comparison between calculated (Eqs. 6.27 and 6.28) and measured 

transmission coefficient, for bermed layouts with Rcm/hm < 0.95. 

 

The prediction capacity of this model was compared to that of Equation (5.3), 

proposed by Armono and Hall (2003) for B-F1 and B-P1 configurations. A 

determination index of 0.90 was found, vs. 0.85 of the Equation (5.3).  

Moreover, the performance of a conventional breakwater (Figure 6.18a) was 

compared to that of a barrier made of Reef Balls, arranged according to the 

configuration BF-1 and placed on a low berm (Figure 6.18b). 
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Figure 6.18. Main characteristics of the barriers employed for the comparison: a) 

conventional breakwater; b) Reef Ball structure. 

 

The mean water depth was 3 m, the submerged depth was 0.5 m and the slopes 

of the mound were both 1:2. Moreover, the significant wave height was 1.8 m 

with a peak period of 7 s. The results of the comparison are shown in 

Figure 6.19, where the transmission coefficient is plotted vs. the structural 

width. As it is possible to observe, the RB barrier dissipates less than the 

traditional one because of its larger porosity and lower slope, nonetheless a 

50% reduction in the incoming wave height is reached for RB structure realized 

with 7 rows. Such a rate of dissipation may be appropriate for many situations 

of practical interest. Besides, this could be increased employing additional rows 

of Reef Balls.  

The same target could be reached by a conventional breakwater characterized 

by a crown width of 5 m, which on the other hand would require a significant 

amount of quarried rocks. 
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Figure 6.19. Comparison between a conventional breakwater and a structure made of 

Reef Ball (values of KT for the conventional breakwater were estimated by means of 

Eqs. 4.55-4.57). 

 

As a final result of the analyses described above (Buccino et al., 2014), it can be 

noticed that the predictive model shows, on the one hand, encouraging 

properties, such as an high determination indexes. Nevertheless, on the other 

hand, the dataset employed for the calibration of the model appears to be not 

wide enough to guarantee a sufficient reliability of the predictions; moreover, 

the base hypothesis of the model, i.e. breaking occurring on the crest of the 

breakwaters, requires to be further investigated by means of dedicated tests.  

The DICEA experimental campaign, described in the following Chapter, was 

expressly designed to address, among the others, the aforementioned issues and 

to overcome the previous shortcomings 
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Chapter 7  – THE DICEA EXPERIMENTAL CAMPAIGN  

In order to investigate the main aspects of wave-structure interaction and 

compare the macroscopic behaviour of RB barriers to that of conventional 

breakwaters, an extensive experimental campaign was performed at the 

Department of Civil, Architectural and Hydraulic Engineering (DICEA) of the 

University of Naples “Federico II”, Italy.  This campaign was designed to 

overcome the limitations affecting previously described studies (see Chapter 6) 

and extend the range of configurations analyzed through experimental tests. For 

these reasons, about 1,500 experiments were carried out in the flume of the 

DICEA laboratory. 

7.1 Experimental set-up 

7.1.1. Flume and main equipment features 

The flume of the DICEA laboratory employed in the experimental campaign is 

a 0.80 m high and 26 m long structure with a variable section. The first 13.6 m, 

starting from the wave maker, are characterized by a width progressively 

decreasing from 80 cm to 50 cm; thereafter the section remains constant for all 

the remaining part. This portion of the flume is characterized by 11 glass 

windows from which visual observations can be made (Figure 7.1).  

Starting from the wave maker, the flume profile is characterized by a 8.23 m 

long horizontal bottom, connected to a steel flat by a 1:18 slopped junction. The 

flat was ad-hoc realized for the DICEA experimental campaign, with a length of 

4 m and a distance of 0.32 m from the flume bottom. This was used as a 

foundation for Reef Balls structures (Figure 7.2).  

The wave maker is a piston-type one located at 3 m from the end of the channel 

(Figure 7.3a), controlled by a position sensor. It is moved by an oildynamic 

pump powered by an electric motor, allowing a maximum semi-stroke of 

20 cm. Signals generated by the software WAVEGEN (developed by HR 

Wallingford) are sent to the control cabinet (Figure 7.3b), and then transferred 

to the wave maker, allowing to reproduce regular and irregular sea states. 
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Figure 7.2. Reef Balls arranged on a steel flat in the DICEA flume. 

 

With specific reference to the DICEA campaign, irregular waves were 

employed, generated according to a medium Jonswap spectrum. Moreover, in 

order to minimize the effect of wave reflection, two passive absorbers were 

placed on the back of the wave generator and at the other end of the channel, 

respectively with a slope of 1:3 and 1:10. 

 
Figure 7.3. a) Wave maker; b) control cabinet. 

 

Measures of the water level and wave characteristics were conducted by means 

of 4 “twin wire” resistive probes (Figure 7.4a), powered by a dual-power supply 

(Figure 7.4b) operating at a differential voltage of about ±15V.  

 

a) b)
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Figure 7.4. a) Array of probes; b) dual power supply. 

 

The differential voltage returned by the sensors is transformed into a 16 bit 

digital signal through an Analogical Digital Converter (ADC) and stored in a 

PC by means of an acquisition card. 

7.1.2. Probes’ positioning 

The mutual position of the probes was established as result of a reflection 

analysis, conducted by means of the “REL-RIFLINC” software, aimed at 

minimizing the interaction between incident and reflected waves.  

Given the number and position of probes, the water depth, the duration of the 

test and the sampling frequency (25 Hz), the program returned a reliability 

versus frequency graph. In such a graph peaks greater than 1.2 represent ideal 

resonance frequencies, where the interactions are greater. 

The optimal mutual position of probes was therefore obtained via an iterative 

procedure for the different wave depths and series lengths of interest. 

As an example, Figure 7.5 shows the reliability graphs returned by the program 

for a series length of 600 sec and for local water depths equal to 0.1 m. These 

water depth values correspond to a submergence of Reef Ball structures equal 

to 0, 0.20 m, 0.50 m and 1 m in the prototype scale. 

Worth noting, a good reliability index was obtained for frequencies between 

0.25 and 2.2 Hz. The suitability of this range of values was evaluated in the 

light of wave peak frequencies, fp, employed in the tests, which are, as it will be 

discussed more in detail in Section (7.2) , equal to 0.5, 0.67, 1 and 1.43 Hz.  

a) b)
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Figure 7.5. Reliability index returned by the program Rel-reflinc for a submergence of 

0.1 m. 

 

Based on the above, a good reliability was observed in the range 0.5 fp and 

1.5 fp. This allowed to find a unique relative position of probes, for all of the 

tests. The four probes were finally arranged over a length of 1 m, at a distance 

of 60 cm, 13 cm and 27 cm from one another. 

Furthermore, the probes were located behind the RB modules, with the first one 

at a distance of 16.48m form the wave maker. This position was kept constant 

for all the tests (Figure 7.1). 

 

7.1.3. Probes’ calibration 

On a daily base, or whenever required by external conditions, a check of the 

probe‟s signals and their subsequently calibration were performed.  

The signal test was done by means of the “Measurement and Automation 

Explorer” program (by National Instruments), allowing to identify any eventual 

noise or drift during an acquired continuous signal. Figure 7.6 shows an 

example of the acquired signal for the four probes employed. The absence of 

drift for all the probes can be noticed, while some noise affects the fourth one 

(red signal in Figure 7.6). 

 

a)
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Figure 7.6. Example of acquired signal. 

 

After eliminating such a noise, generally due to the accumulation of calcium 

carbonate on the immerged portion of the probe, it was possible to proceed with 

the calibration.  

This operation required to establish a correspondence between the position of 

the probes (with respect to the water level) and the voltage returned. Starting 

from a given position of the probes, each one was moved with incremental steps 

of 2 cm and the correspondent voltage returned by probes was read. 

The calibration was conducted by means of the “Calibration Define” software 

(Figure 7.7), employing 8 calibration points corresponding to moving probes in 

a range of ± 6 cm around the initial position.  

The same software also allowed to verify that probes were properly working, by 

computing the signal to noise ratio, S/N, expressed by the Equation (7.1). 

 

 

 
        (

 

 
) (7.1) 

 

In the previous equation, μ represents the average of the signals acquired for 5 

seconds with a sampling frequency of 25 Hz, while ζ is standard deviation, i.e. 

the noise of the signals. 
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The minimum value of S/N calculated during the experimental campaign was 

about 45 db, that ensured the correct operation of probes. 

Subsequently, for each probe, the calibration points were fitted with a liner 

regression line, with a determination index, R
2
, always greater than 0.99 

(Figure 7.8).  

 

 
Figure 7.7. Probes calibration. 

 
Figure 7.8. Fitting of the calibration points 
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7.2 Description of the DICEA tests 

Reef Balls employed in the DICEA tests were characterized by a base diameter, 

DR, of 12 cm, by an height, hR, of 10 cm and by a weight of 0.78 Kg 

(Figure 7.9), corresponding to 1:15 models of Goliath Ball (Table 2.1).  

Each module was equipped with 3 magnets under the base, to anchor it to the 

steel flat and avoid any type of displacement during the tests (Figure 7.9). 

 

 

Figure 7.9. a) Reef Ball model employed in the DICEA tests; b) magnets placed under 

the base of model. 

 

In all the tests carried out, RB units were placed in a single layer, in order to 

reproduce the most common layout employed in the practical applications, 

which is the one with bottom-seated Reef Balls. Modules were arranged in a 

variable number of rows, with the first one always placed 14.1 m far from the 

wave maker.  

Three main configurations were investigated, namely DICEA-A, DICEA-B and 

DICEA-C  

The DICEA-A configuration (Figure 7.10) was obtained by arranging modules 

side-by-side, to form structures with a number of rows variable between 1 and 

10. Each row was composed by 4 RB units. 

The remaining configurations were obtained by arranging Reef Balls 

respectively in 3, 5 and 7 rows, each one composed by 3 modules. In particular, 

a distance between units of 3.3 cm (50 cm in the prototype scale) was assumed 

a) b)
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for the DICEA-B configuration (Figure 7.11), while 6.6 cm (1 m in the 

prototype scale) was fixed for the DICEA-C one (Figure 7.12). 
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As previously stated, the main objective of this Thesis is the characterization of 

Reef Ball barriers for what concerns wave breaking, transmission and set-up. 

While wave breaking was analyzed through visual observations, measures of 

wave characteristics were required to investigate the other two aspects.  

In particular, to evaluate wave transmission and set-up in the presence of RB 

modules, tests were conducted with (Figure 7.13a) and without the structures 

(Figure 7.13b). This way, it was possible to measure, respectively, the 

transmitted and the incident wave height, as well as the variation of the medium 

water level due to the RB structures. 

Accordingly, the position of the probes was set behind the barrier and kept 

constant in all the tests (Figure 7.14).  

 

 

Figure 7.13. Test conducted with and without RB modules to determine the 

characteristics of the transmitted wave (a) and of the incident one (b). 

 

 
Figure 7.14. Position of probes for investigating transmission and wave set-up due to 

RB modules. 

a) b)

Reef BallsProbes Steel flat
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In order to cover a wide range of design conditions, involving breaking and 

non-breaking waves, the tests without the barrier were carried out for six wave 

heights, four peak periods and four water depths, leading to an overall number 

of 96 tests. Tests were conducted for a variable duration, to collect 300 waves 

independently from the peak frequency employed. 

Table 7.1 shows the target wave characteristics, the local water depths, and the 

duration of tests performed without the barrier.  

  

fp (Hz) Hi (m) d (m) 
Duration 

(sec) 

0.13 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 0.1, 0.11, 0.13, 0.17 600 

0.17 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 0.1, 0.11, 0.13, 0.17 450 

0.26 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 0.1, 0.11, 0.13, 0.17 300 

0.37 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 0.1, 0.11, 0.13, 0.17 210 

Table 7.1.Summary of the tests conducted without structure. Measures are reported in 

the prototype scale. 

The same tests were conducted in the presence of RB structures, except for the 

DICEA-A configuration composed by 8 and 10 rows, for which only the two 

submergences Rc = 0.5 m and Rc = 1 m were investigated. Worth recalling, the 

submergence of the barrier is defined as the difference between the local water 

depth, d, and the height of Reef Ball modules, hR. For each configuration, 

Table 7.2 shows the numbers of rows employed, the submergences investigated 

and the total number of test performed. The overall number of tests carried out 

on behalf of the DICEA experimental campaign was 1,440. 

 

Configurations # rows Rc (m) # tests 

DICEA A 
1-7, 9 0.0, 0.2, 0.5, 1 768 

8, 10 0.5, 1 96 

DICEA B 3, 5, 7 0.0, 0.2, 0.5, 1 288 

DICEA C 3, 5, 7 0.0, 0.2, 0.5, 1 288 

   Total=1,440 

Table 7.2. Summary of the DICEA tests. Measures are reported in the prototype scale. 
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Chapter 8  – ANALYSIS OF THE WAVE BREAKING FOR THE 

DICEA TESTS  

As discussed in Section (1), the wave breaking is a complex phenomenon, able 

to impact on wave transmission and set-up and cause different, often 

contrasting, effects, such as energy dissipation, scour and erosion. 

For these reasons, the first objective of the DICEA experimental campaign was 

to assess whether RB structures are able to determine the wave breaking, its 

significance and typology. 

Before analyzing in detail the results, it is required to preliminarily define the 

wave breaking condition considered in this study. In fact, because random 

waves were employed during the tests, the condition of incipient breaking was 

identified by the presence of at least one breaking wave during the whole 

duration of the experiments. The identification of this state required a detailed 

visual observation of the tests and the visual examination of camera recordings. 

Although a frame-by-frame analysis was carried out, the assessment is 

qualitative in nature and, therefore, intrinsically affected by some uncertainties 

and subjectivity. 

The analysis was performed for the tests of DICEA-A configuration only, for 

which a sufficient number of observations was available.  

8.1 Wave breaking without RB structures 

Tests conducted without the structures were firstly investigated, with the aim of 

differentiating the cases in which the breaking condition occurred from those 

where it did not. In Table 8.1 to Table 8.4, breaking and non-breaking tests are 

reported, for each target peak frequency investigated. As it is possible to deduce 

from the Tables, about 78% of the tests was characterized by wave breaking 

occurring without the RB barrier. 
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Hi 

(m) 

Rc=1 

(m) 

Rc=0.5 

(m) 

Rc=0.2 

(m) 

Rc=0 

(m
3
) 

0.3 - - - - 

0.6 - - - x 

0.9 - - - x 

1.2 - x x x 

1.5 x x x x 

1.8 x x x x 

Table 8.1. Summary of the breaking (x) and non-breaking (-) tests, conducted without 

the barrier, for a peak frequency equal to 0.37 Hz (values given in the prototype scale). 

 

Hi 

(m) 

Rc=1 

(m) 

Rc=0.5 

(m) 

Rc=0.2 

(m) 

Rc=0 

(m
3
) 

0.3 - - - - 

0.6 - x x x 

0.9 x x x x 

1.2 x x x x 

1.5 x x x x 

1.8 x x x x 

Table 8.2.Summary of the breaking (x) and non-breaking (-) test, conducted without 

the barrier, for a peak frequency equal to 0.26 Hz (values given in the prototype scale). 

 

Hi 

(m) 

Rc=1 

(m) 

Rc=0.5 

(m) 

Rc=0.2 

(m) 

Rc=0 

(m
3
) 

0.3 - - - - 

0.6 - - - x 

0.9 x x x x 

1.2 x x x x 

1.5 x x x x 

1.8 x x x x 

Table 8.3. Summary of the breaking (x) and non-breaking (-) test, conducted without 

the barrier, for a peak frequency equal to 0.17 Hz (values given in the prototype scale). 
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Hi 

(m) 

Rc=1 

(m) 

Rc=0.5 

(m) 

Rc=0.2 

(m) 

Rc=0 

(m
3
) 

0.3 - - - - 

0.6 - - x x 

0.9 x x x x 

1.2 x x x x 

1.5 x x x x 

1.8 x x x x 

Table 8.4. Summary of the breaking (x) and non-breaking (-) test, conducted without 

the barrier, for a peak frequency equal to 0.13 Hz (values given in the prototype scale). 

 

Data from the previous Tables have been plotted in a plane reporting Hm0,i/d on 

the horizontal axis and hR/d on the vertical one (Figure 8.1).  

Hm0,i represents the spectral significant wave height, in the following referred to 

as Hi for brevity; d is the water depth; hR is the height of RB modules. Worth 

noting, hR is constant for all performed test and the all the investigated 

configurations are made of a single layer, therefore hR coincides with the height 

of the structure, hs. 

In Figure 8.1, the outcomes of the tests are depicted with different marks 

(crosses identify the breaking condition in the absence of the structure: “NO 

STRUCTURE BR”; blue diamond marks address the absence of breaking for 

tests conducted without the structure: “NO STRUCTURE N-BR”).  

In the same Figure, it is possible to observe the presence of two clusters of data, 

roughly separated by a value of Hi/d equal to 0.28. This value is deemed to be 

the threshold of the incipient breaking condition. 

The previous distinction is also evident from Figure 8.2, reporting the same data 

in a Hi/d versus d/L0 plane.  

It is worth noting that according to the definition of wave braking employed in 

this study, i.e. the presence of at least one breaking wave during tests, it is 

reasonable to assume that the wave breaking occurred for the highest waves of 

the irregular wave train. Under the Reyleigh hypothesis, this corresponds to 

assuming that the condition of incipient breaking occurs for Hmax/d >0.56, that 

is a value very similar to that proposed by Le Méhauté (Allsop, 1998) for 

natural beaches (Sect. 1). 



Chapter 8 – Analysis of the Wave Breaking for the DICEA Tests  
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

147 

 
Figure 8.1. Breaking and non-breaking tests conducted without structures, plotted in a 

Hi/d vs d/hR plane. The red line identifies the incipient breaking condition (Hi/d =0.28). 

 

 
Figure 8.2. Breaking and non-breaking tests conducted without structures, plotted in a 

Hi/d vs d/L0 plane. The red line identifies the incipient breaking condition (Hi/d =0.28). 

 

In particular, results show that the probability of wave breaking is equal to 0% 

for values of Hi/d ≤0.28 and 100% for Hi/d >0.365. Thus, a condition of 
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breaking was observed for Hmax/d >0.73, quite close to the breaker index 

proposed by Danel (1952).  

The condition of incipient breaking was observed for values included in the 

aforementioned limits, where the breaking probability is equal to 72%. 

Table 8.5 summarizes the number of breaking and non-breaking tests included 

in the aforementioned bands. 

 

 
Figure 8.3. Bands identifying different probabilities of breaking for tests conducted 

without structures in the Hi/d vs. d/L0 plane. 

 

 Hi/d≤0.28 0.28<Hi/d≤0.365 Hi/d>0.365 

# Breaking tests 0 16 52 

# No-breaking tests 22 5 0 

Table 8.5. Summary of tests conducted without the structures and relevant Hi/d classes. 

8.2 Wave breaking in the presence of RB structures 

The influence of RB structures was investigated following the same approach 

previously employed for tests performed without the structures.  
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In particular, a comparison between no-structure and no-breaking tests and 

those conducted with RBs arranged according to the DICEA-A configuration is 

shown in Figure 8.4. 

 

 
Figure 8.4. Breaking tests conducted without structures (blue dots) and with RB 

structures (red dots), plotted in a Hi/d vs d/L0 plane. The red lines (Hi/d =0.28 and 

Hi/d =0.365) identify different probabilities of breaking. 

 

As shown in the graph above, the presence of Reef Ball barriers does not 

influence the occurrence of breaking for Hi/d ≤0.28, while it increases the 

probability of breaking in the range 0.28< Hi/d ≤0.365.  

In the following Tables a summary of the number of the breaking tests for each 

region is reported. 

 

 Hi/d≤0.28 0.28<Hi/d≤0.365 Hi/d>0.365 

# without structures 0 138 458 

# with RB barrier 0 192 458 

Table 8.6. Summary of tests conducted with the structures and relevant Hi/d classes. 

 

As it is possible to observe from Figures 8.5  to 8.8, where RB-breaking tests 

are represented by red marks, RB barriers don‟t influence the wave breaking in 
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the case of deeply submerged structures (Figure 8.5) nor for Rc=0 m (Figure 

8.6), independently from the number of rows employed to build the structure. 

Contrariwise, they are able to induce the wave breaking in case of intermediate 

submergences (Figure 8.7 and Figure 8.8). 

 
Figure 8.5. Comparison between breaking (red dots) and non-breaking (blue dots) tests 

for the DICEA-A configuration and for a submergence equal to 1 m. 

 
Figure 8.6.Comparison between breaking (red dots) and non-breaking (blue dots) tests 

for the DICEA -A configuration and for a submergence equal to 0 m. 
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Figure 8.7. Comparison between breaking (red dots) and non-breaking (blue dots) tests 

for the DICEA-A configuration and for a submergence equal to 0.5 m. 

 

 
Figure 8.8.Comparison between breaking (red dots) and no-breaking (blue dots) tests 

for the DICEA-A configuration and for a submergence equal to 0.2 m. 

 

0

1

2

3

4

5

6

7

8

9

10

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

n

Hi/d

DICEA A test

DICEA A BR-test

0

1

2

3

4

5

6

7

8

9

10

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

n

Hi/d

DICEA A test

DICEA A BR-test



Chapter 8 – Analysis of the Wave Breaking for the DICEA Tests  
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

152 

Starting from the above considerations, the presence of Reef Balls seems to not 

able to systematically induce the wave breaking, but rather to destabilize waves 

shoaling in a condition of incipient breaking. In particular, RB structures are 

able to increase the breaking probability up to 95% for 0.28<Hi/d ≤0.365. 

As a general result of the breaking analysis in the presence of RB modules, 

three main classes of breaking conditions can be distinguished: 

 non-breaking waves, observed for Hi/d ≤0.28; 

 slightly-breaking waves, observed in the range 0.28<Hi/d ≤0.365; 

 hardly-breaking waves, observed for Hi/d >0.365. 

This distinction will be employed in the following analyses of the transmission 

as different breaking condition are likely associated to different dissipation 

mechanisms and, therefore, KT values. 

 

8.2.1 Classification of breaking based on macroscopic features 

A classification of breakers was conducted according to Calabrese et al. (2008), 

who distinguished different typologies of wave breaking occurring in the 

presence of traditional submerged breakwaters (see Sect 4.1.2). This 

classification is mainly based on the characterization of breaker shape, via 

visual analysis. 

In the following, some figures deemed to be the most representative of the 

evolution of wave breaking on RB barriers are shown. 

The condition of incipient breaking for structures made of one row of modules, 

has been identified by the rupture at the toe of the incident wave (Figure 8.9), 

according to a classical mechanism of “collapsing” breaking (Figure 4.18a). 
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Figure 8.9. Example of collapsing breaker for structures made of 1 row (Rc= 0.5 m, 

fp= 0.37 Hz and Hi= 0.9 m). 

 

  

a) b)

c) d)

c) f)
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In particular, for Rc=0.5 m a gradual transition from a “collapsing” to a 

“collapsing – spilling-to-plunging” breaker  was observed, moving from one-

row structures to multiple-rows ones (Figure 8.10 and Figure 8.11). This is even 

more evident for wider structures (Figure 8.12 and Figure 8.13). 

 

 

  
Figure 8.10. Example of a collapsing – spilling-to-plunging breaker for structures made 

of 2 rows (Rc= 0.5 m, fp= 0.37 Hz and Hi= 0.9 m). 

 

a) b)

c) d)
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Figure 8.11.Example of a collapsing – spilling-to-plunging breaker for structures made 

of 2 rows (Rc= 0.5 m, fp= 0.13 Hz and Hi= 0.6 m). 

 

 
Figure 8.12. Plunging breaker for structures made of 3 rows (Rc= 0.5 m, fp= 0.13 Hz 

and Hi= 0.6 m). 

  

a) b)

a) b)
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Figure 8.13. Evolution of a plunging breaker for structures made of 6 rows (Rc= 0.5 m, 

fp= 0.37 Hz and Hi= 0.9 m). 

 

On the contrary, in case of Rc= 0.2 m, wave breaking generally occurred 

according to a “collapsing” breaker, for structures composed by 2 rows (Figure 

8.14). This typology generally turned into a “spilling-to-plunging” breaker 

(Figure 4.15) starting from structures composed by 3 rows; although collapsing 

was still observed for wider barriers, as it is possible to observe in Figure 8.16. 

 

a) b)

c) d)
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Figure 8.14. Example of evolution of a collapsing breaker for Rc= 0.2 m, fp= 0.37 Hz 

and Hi= 0.6 m. 

  

a) b)

c) d)
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.  

  
Figure 8.15.Example of evolution of a spilling-to-plunging breaker for Rc= 0.2 m, 

fp= 0.17 Hz and Hi= 0.6 m. 

  

a) b)

c) d)
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Figure 8.16. Collapsing breaker for structures with a number of rows variable between 

1 to 7; (Rc= 0.2 m, fp= 0.37 Hz and Hi= 0.9 m). 

 

 

a) b)

c) d)

e) f)
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Chapter 9  – ANALYSIS OF THE WAVE TRANSMISSION FOR 

THE DICEA TESTS  

This Chapter deals with the application of existing and new methods to the 

results of the DICEA experimental campaign, for the prediction of the rate of 

wave energy transmitted in the lee of submerged barriers composed of Reef 

Ball modules. 

In the following Sections, criteria for the definition of a suitable transmission 

coefficient and for the applicability of a predictive model will be given first. 

Subsequently, the results of the random wave experiments described in Chapter 

7 will be analysed via literature predictive models, suited for Reef Ball barriers; 

finally new models will be proposed and analysed. 

9.1 The measure of the transmission coefficient  

It is worth recalling that the rate of energy dissipation is usually measured via 

the so-called transmission coefficient, KT, which equals the root square of the 

transmitted to incident wave energy ratio: 

 

   √
  

  
 √

    

    
 (9.1) 

 

where m0 represents the zero order spectral moment and the suffixes i and t 

stand for “incident” and “transmitted”, respectively. 

KT can also be defined as the ratio between the spectral significant wave height 

rear the structure and that just seaward of it (Eq. 9.2). 

 

   
     

     
 (9.2) 
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In both the experiments conducted at the DICEA and ERDC/CHL, the 

transmission coefficient has been calculated according to Equation (9.2), as the 

ratio between the significant spectral wave height leeward the structure, and the 

wave height measured at the same position, without the structure in place. For 

brevity, Hm0,t and Hm0,i have been, in the following, referred to as HT and Hi. 

This method allows assessing the real effectiveness of the barrier in damping 

the wave motion, especially in the surf zone, where the “natural” transmission 

coefficient, KT,n, (i.e. without the structure) between “in front” and “at rear” is 

less than one (Figure 9.1): 

 

     
     

      
 (9.3) 

 

 
Figure 9.1. Natural transmission coefficient, KT,n. 

 

It is then obvious that 

 

   
     

        
 

     

          
 

    

    
 (9.4) 

 

where KT,c is the transmission coefficient, as usually calculated. It follows that, 

if KT,n ≅ 1 (i.e. no natural dissipation occurs between in front and at rear), then 

KT ≅ KT,c; whereas, if KT,n <1 (e.g. within a surf zone, or due to frictional effects 

for a very long structure), then KT >KT,c. 

The values of KT calculated at each probe have been averaged to obtain a single 

value, representative of a given test. 

swl
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Hfront 
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9.2 On the accuracy of a predictive model 

When comparing a predictive model with experimental data, the question arises 

as to the produced estimates are accurate enough. This depends, of course, on 

the specific variable under consideration, e.g. the reflection coefficient, the rate 

of overtopping, the wave run-up, etc. 

As for the transmission coefficient, a conventional threshold of accurateness 

may be established, based on the results of the former analyses conducted on a 

great deal of data with conventional breakwaters. In this respect, the Standard 

Error (SE) between predictions and measures can be used, defined as follows: 

 

   √
∑       ̅) 
 
   

 
 (9.5) 

 

where ei indicates the difference between the measured and the predicted values 

of the output variable (residual),   ̅ represents the average of the residuals (or 

bias) and N is the number of observations. 

As mentioned in Section (4.2), the first systematic analysis on wave 

transmission at rubble mound breakwaters was conducted by d‟Angremond et 

al. (1996). The Authors proposed a formula, based on 328 data, which produced 

a SE of 0.060. Lately, Seabrook and Hall (1998) performed a multiple 

regression analysis on nearly 670 results of experiments conducted at QUCERL 

and their predictive equation had SE=0.063. 

Among the most recent studies, Van der Meer et al. (2005) modified the 

d‟Angremond et al. (1996) formula and obtained a SE =0.074, with respect to a 

wide database of nearly 2,000 points. Furthermore, the Conceptual Approach 

by Buccino and Calabrese (2007 a) yielded to SE ≅ 0.05 on a 1,000 

experiments dataset. 

From the previous review, one may conclude that a reasonable threshold for the 

accurateness of a prediction model for the transmission coefficient is of the 

order of 0.06.  

It is useful to highlight that if the residuals were randomly distributed and the 

model was undistorted (  ̅ =0) then SE =0.06 would imply that 90% of the 

measurements would be included in a band of amplitude ±0.1 around the 
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predictions. As shown in Figures from 9.2 to 9.4, this is approximately verified 

for Seabrook and Hall (1998), Van der Meer et al. (2005) and Buccino and 

Calabrese (2007 a). 

 

 
Figure 9.2. Comparison between measured and predicted transmission coefficient 

according to Seabrook and Hall (1997) and 90% confidence bounds (dotted lines) . 

 

 
Figure 9.3. Comparison between measured and predicted transmission coefficient 

according to Van der Meer (2005) and 90% confidence bounds (dotted lines). 
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Figure 9.4. Comparison between measured and predicted transmission coefficient for 

submerged structures according to Buccino and Calabrese (2007a) and 90% confidence 

bounds (dotted lines).  

 

It is interest to discuss that, to test the accurateness of a prediction model, the 

SE seems to be more appropriate than the determination index, R
2
. The latter is, 

in fact, defined as: 

 

     
   

  
 (9.6) 

 

in which S
2
 is the total variance of measurements (i.e. the variance of the 

measured transmission coefficients). 

It follows that, for a given standard error, the higher S
2
, the higher R

2
. In the 

case of Reef Balls, the values of the transmission coefficient are generally 

higher than conventional rubble mound breakwaters, due to their larger 

permeability. Thus, the variance of data is far lower than ordinary structures 

and consequently lower values of R
2
 are expected. Figures from 9.5 to 9.7 show 

KT for the DICEA data, against the number of rows, n. It is found that 95% of 

the points is included in the range of 0.5 1 for the DICEA-A and DICEA-C 

configurations, whilst the range is 0.65 1 for DICEA-B. 
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Conversely, the 95% range is 0.02 0.89 for the Seabrook and Hall (1998) data 

and 0.08 0.95 for Buccino and Calabrese (2007 a), referred to submerged 

structures only. As a consequence, the values of S
2
 reported in Table 9.1 have 

been obtained.  

 

 
Figure 9.5. Measured transmission coefficient vs. number of rows, for the DICEA-A 

configuration. 

 

 
Figure 9.6.Measured transmission coefficient vs. number of rows for the DICEA-B 

configuration. 
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Figure 9.7.Measured transmission coefficient vs. number of rows for the DICEA-C 

configuration. 

 

Studies   S
2
 # data 

Seabrook and Hall (1998)  0.063 633 

Buccino and Calabrese 

(2007 a) 

 0.047 1,000 

DICEA 

DICEA-A 0.021 864 

DICEA-B 0.009 288 

DICEA-C 0.019 288 

Table 9.1. S
2
 values and number of observations for Seabrook and Hall (1997), 

Buccino and Calabrese (2007 a) and DICEA experimental campaign. 

 

It is seen that the variance of the DICEA-A data is 1/3 of that from Seabrook 

and Hall and 1/2 of that from Buccino and Calabrese, which have a R
2
 statistic 

of 0.93 and 0.96, respectively. 

Another relevant issue in computing the determination index is related to the 

so-called “influential points”, which are measurements rather far from the bulk 

of observations, that lead to an unrealistic increase in R
2
. As an example, in 

Table 9.2 the case of a model returning a constant value for most of the 
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predictions and only two points far from the bulk of data is given. As shown in 

Figure 9.8, a linear regression on these data would lead to R
2
 =0.95, which is 

very high notwithstanding the poor overall fitting . 

 

Measured Predicted 

0.5 5 

1 5 

1.5 5 

…. … 

10 5 

45 44 

60 51 

Table 9.2. Example of a model giving two predictions far from the bulk of data. 

 

 
Figure 9.8. Linear regression of data reported in Table 9.2. 

9.3 Application of existing models to the DICEA data 

In this Section, the application of existing models developed for Reef Balls, 

namely Armono (2003) and Buccino et al. (2014), to the DICEA experimental 

data is presented, along with a calibration of their parameters.  
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More specifically, the two existing models have been firstly applied to the 

DICEA dataset only and, subsequently, compared to the ERDC/CHL data. 

To perform such a comparison it is necessary to introduce a configuration 

density, φ, allowing to discriminate among the different placements of RB 

units. The latter is calculated as follows: 

 

  
  
  

 (9.7) 

 

where nr is the “real” number of RB modules employed and nt is the 

“theoretical” one. The latter is defined as the ratio between the area of the 

rectangle inscribing the configuration, Arect, and the base area of one RB 

module, ARB (Figure 9.9). 

 

Figure 9.9. Example of density computation 

 

The abovementioned densities have been subsequently averaged ( ̅) for each 

configuration (Table 9.3). 

It might be useful to remark that the DICEA tests represent the sole ensemble of 

data systematically collected on Reef Ball units, composed of 1,440 data. In 

fact, as already mentioned, the Armono‟s (2003) work focused on uncommon 

configurations (modules placed on the top of each other), which can be hardly 

compared to the DICEA data, whilst the ERDC/CHL campaign only included 

64 experiments. Furthermore 24 out of these 64 tests were characterized by 

Hi/d =0.83 which was considered to be far high for irregular waves on mild 

foreshores. It is in fact likely that such a value includes infragravity waves, 

which have been not addressed in this Study. For this reason the comparison 

with ERDC/CHL has been performed considering only 40 data. This suggests 
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that a validation of the DICEA tests should be performed against future 

experimental campaigns. 

 

Laboratory Configurations  ̅ 

ERDC/CHL 

BS-1a 0.54 

BS-1b 0.35 

BS-1c 0.44 

BS-1d 0.31 

BS-1e 0.80 

BS-1f 0.26 

DICEA 

DICEA-A 0.79 

DICEA-B 0.55 

DICEA-C 0.41 

Table 9.3. Average density for each configuration,. 

 

9.3.1 Application of the Armono (2003) formula to the DICEA dataset 

As already mentioned in Section (5), Armono (2003) proposed the following 

approach for the prediction of KT:  
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(5.1) 

 

in which A0 is a scale parameter depending on the layout and arrangement of 

modules. The Author found that Equation (5.1) provides good estimates for 

multi-layered configurations, with values of A0 of the order of 10. Conversely, a 

significant spread around the prediction curve was observed by Buccino et al. 

(2014) for the 64 ERDC/CHL experiments, where Reef Balls were arranged in 

single-layered layouts.  
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For this reason it seems worth to investigate the applicability of the Armono‟s 

model to the DICEA dataset, which is composed of about 1,440 tests performed 

on single-layered structures.  

As already discussed in Section (6), the most immediate way to check the 

validity of Equation (5.1) is to plot the experimental data in a plane of 

transformed variables, reported below for the Reader‟s convenience.  

 

  
 

  
 (6.2) 
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 (6.3) 

 

In such a plane, the points should draw a straight line passing through one and 

with an A0 slope. 

Figures from 9.10 to 9.12 display the DICEA-A data series on the 

aforementioned plane, respectively for all the data, for Hi/d ≤0.28 (i.e. non 

breaking waves) and for Hi/d >0.28 (i.e. breaking waves). Figures from 9.13 to 

9.18 report the same information for DICEA-B and DICEA-C configurations. 

 

 
Figure 9.10. Plot of the DICEA-A data in the plane of transformed variables 

(Eqs. 6.2-6.3). 
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Figure 9.11. Plot of the DICEA-A data with Hi/d ≤0.28 in the plane of transformed 

variables (Eqs. 6.2-6.3). 

 
Figure 9.12. Plot of the DICEA-A data with Hi/d >0.28 in the plane of transformed 

variables (Eqs. 6.2-6.3). 
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Figure 9.13. Plot of the DICEA-B data in the plane of transformed variables 

(Eqs. 6.2-6.3). 

 
Figure 9.14. Plot of the DICEA-B data with Hi/d≤ 0.28in the plane of transformed 

variables (Eqs. 6.2-6.3). 
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Figure 9.15. Plot of the DICEA-B data with Hi/d>0.28 in the plane of transformed 

variables (Eqs. 6.2-6.3). 

 

 
Figure 9.16. Plot of the DICEA-C data in the plane of transformed variables 

(Eqs. 6.2-6.3). 

 

y = 4.0716x + 1
R² = 0.4865

0

0.5

1

1.5

2

2.5

3

3.5

0 0.04 0.08 0.12 0.16 0.2

Y

X

Y = 5.2859X+ 1
R² = 0.4702

0

0.5

1

1.5

2

2.5

3

0 0.04 0.08 0.12 0.16 0.2

Y

X



Chapter 9 – Analysis of the Wave Transmission for the DICEA Tests  
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

174 

 
Figure 9.17. Plot of the DICEA-C data with Hi/d≤0.28 in the plane of transformed 

variables (Eqs. 6.2-6.3). 

 

 
Figure 9.18. Plot of the DICEA-C data with Hi/d >0.28 in the plane of transformed 

variables (Eqs. 6.2-6.3). 

 

After fitting the straight lines forced to 1, the values of A0 reported in Table 9.4 

have been obtained. In the same Table, the statistical characteristics, R
2
 and SE, 

are reported, as obtained from the comparison of the measured and predicted 

transmission coefficient. 
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Configurations Hi/d #data A0 R
2
 SE 

DICEA-A 

All 864 7.26 0.73 0.076 

≤0.28 214 10.81 0.66 0.088 

>0.28 650 6.96 0.75 0.069 

DICEA-B 

All 288 4.28 0.56 0.073 

≤0.28 69 6.87 0.47 0.081 

>0.28 219 4.07 0.57 0.067 

DICEA-C 

All 288 5.29 0.51 0.099 

≤0.28 69 8.39 0.56 0.095 

>0.28 219 5.04 0.49 0.097 

Table 9.4. Summary of results for each configuration investigated. 

 

The inspection of Table 9.4 suggests that: 

 the standard errors are all larger than 0.06, indicating an unsatisfactory 

degree of accurateness, according to what discussed in Section (9.2); 

 the DICEA-C configuration exhibits a larger scatter compared to that of 

-A and -B; 

 the model seems more effective for breaking waves (Hi/d >0.28) than 

non-breaking ones (Hi/d ≤0.28); 

The Table also shows that A0 coefficients for the DICEA-A are larger than the 

corresponding ones for -B and -C. This is obviously due to the fact that a most 

scattered arrangement of modules leads to a reduction in the dissipation. 

However, the values for DICEA-C appear slightly larger than those 

characterizing -B. This unexpected, and possibly fortuitous, result deserves to 

be deepened through supplementary data analyses.   

Figure 9.16 highlights the presence of possible outliers (circled in red), which 

correspond to the experiments performed with n =5 and Rc =0.2 m. When these 

data are removed, the scatter plot on the X-Y plane suggests that the response of 

the configuration -B and -C are quite similar each other (Figure 9.19).  
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Figure 9.19. Plot of the DICEA-C* (without outliers) and DICEA-B data in the plane of 

transformed variables (Eqs. 6.2-6.3). 

9.3.1.1 Comparison with ERCD/CHL data 

As a matter of fact, ERCD/CHL data are very few compared to those of the 

DICEA campaign and this practically limits the significance of the comparison 

reported below.   

The density of the ERCD/CHL arrangements (Table 9.3) is such that the 

configurations BS-1a and BS-1c have values of  ̅ respectively close to the 

DICEA-B and the DICEA-C, whereas BS-1e (crossed rows with no-distance) is 

similar to DICEA-A. On the other hand, the densities of BS-1b and BS-1d are 

slightly less than that of DICEA-C, while BS-1f has a minimum density 

 ̅ =0.26. The fundamental difference between BS-1a and DICEA-B is that in the 

former case the rows are “crossed”, leading to a lower distance along the wave 

direction (0.22 cm, vs. 0.5 cm in DICEA-B). Conversely, in case of BS-1b, the 

analogy with DICEA-C data is more stringent, as the rows are aligned in both 

the cases. Figure 9.20 shows the results obtained for BS-1e data together with 

DICEA-A ones. Figure 9.21 and Figure 9.22 plot BS-1a vs. DICEA-A and vs. 

DICEA-B, respectively. Figure 9.23 shows BS-1c vs. DICEA-C. 

Figures from 9.24 to 9.26 display the low density data, BS-1b, BS-1d and BS-1f, 

vs. DICEA-C. It is useful to remark that all the ERDC/CHL data have Hi/d 

larger than 0.28.  
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The inspection of the graphs suggests that the ERDC/CHL data are generally 

located upwards the DICEA ones which corresponds to a dissipation associated 

to the former case larger than that observed for the latter. An exception to the 

above is represented by BS-1f, nevertheless it should be considered that only 

two data are available, besides characterized by the lowest density value.  

 

 
Figure 9.20. Plot of the DICEA-A and BS-1e in the plane of transformed variables 

(Eqs. 6.2-6.3). 

 

 
Figure 9.21. Plot of the DICEA-A and BS-1a in the plane of transformed variables 

(Eqs. 6.2-6.3) 
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. 

 

 
Figure 9.22. Plot of the DICEA-B and BS-1a in the plane of transformed variables 

(Eqs. 6.2-6.3). 

 

 
Figure 9.23. Plot of the DICEA-C and BS-1c in the plane of transformed variables 

(Eqs. 6.2-6.3). 
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Figure 9.24. Plot of the DICEA-C and BS-1b in the plane of transformed variables 

(Eqs. 6.2-6.3). 

 
Figure 9.25. Plot of the DICEA-C and BS-1d in the plane of transformed variables 

(Eqs. 6.2-6.3) 
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Figure 9.26. Plot of the DICEA-C and BS-1f in the plane of transformed variables 

(Eqs. 6.2-6.3) 

9.3.2 Application of the Buccino et al. (2014) formula to the DICEA dataset 

As discussed in Section (4.2), the leading hypothesis of the Buccino et al. 

(2014) method is that the barrier always causes waves to break on the crest. 

This has been demonstrated to be not necessarily true in case of DICEA tests 

(see Chapter 8), in fact the measures indicate that RB modules may force the 

occurrence of breaking only in situations where waves are about to break on the 

shoal without the structure (0.28 <Hi/d ≤0.365). Therefore, the model can be 

considered to be: 

 not justified for Hi/d ≤0.28; 

 partially justified for Hi/d >0.28. 

This means that while for Hi/d ≤0.28 the dissipation occurs via macro-

roughness, for larger waves RBs may enhance the strength of breaking, leading 

to a damping mechanism similar to that imagined by Buccino et al. (2014) (see 

Sect. 6.2). 

In Figures from 9.27 to 9.29 the results obtained via the prediction model are 

compared to the DICEA-A data. In these Figures, points have been partitioned 

depending on the value of Hi/d. A value of berm correction factor ν =0.6 has 

been used, which corresponds to that of the majority of data analysed in 

Buccino et al., 2014 (see Sect. 6.1).  
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Figure 9.27. Comparison between the measured transmission coefficient and the 

predicted one according to Buccino et al. (2014) assuming ν =0.6: DICEA-A data with 

Hi/d≤ 0.28.  

 

 
Figure 9.28. Comparison between the measured transmission coefficient and the 

predicted one according to Buccino et al. (2014) assuming ν =0.6: DICEA-A data with 

0.28<Hi/d≤ 0.365. 
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Figure 9.29. Comparison between the measured transmission coefficient and the 

predicted one according to Buccino et al. (2014) assuming ν =0.6: DICEA-A data with 

Hi/d> 0.365. 

 

Surprisingly, the trend is almost the same for the three groups, even if some less 

scatter is detected for Hi/d >0.365. The physical meaning of these results might 

be that vortices originated by macro-roughness have the same macroscopic 

effect as breaking, as discussed by the Authors in Buccino et al. (2014). 

However, it seems clear that the model provides acceptable results for higher 

values of KT, when the structures are deeply submerged or include a small 

number of rows.  

On the other hand, as the width of the structure increases and/or the 

submergence reduces, the prediction heavily underestimates the measures, 

indicating that the rate of dissipation is greatly overestimated. 

It of interest to highlight that the failure of the model becomes more evident for 

KT less than approximately 0.6; as it can be observed from Figure 9.30 where 

all the DICEA-A data are plotted. In fact, it is seen that most of data for KT >0.6 

are internal to the ideal acceptance bands   0.1. 

In this regard, it can be observed that in the original database of Buccino et al. 

(2014) nearly 80% of data (142 out of 178) had a measured value of KT >0.6. 

In the following a tentative adjustment of the aforementioned model is 

presented, consisting in a simple recalibration of the width factor, ν. 
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Figure 9.30. Comparison between the measured transmission coefficient and the 

predicted one according to Buccino et al. (2014) assuming ν =0.6: all DICEA-A data. 

9.3.2.1 Recalibration of the Buccino et al. (2014) model on the DICEA data 

For each DICEA configuration, the value of the width factor has been changed 

by imposing a minimum standard error, SE, with the constraint of an almost 

undistorted model. The latter means that the average of residuals has to be 

included between -0.01 and +0.01.  

Accordingly, the values reported in Table 9.5 have been obtained. 

 

Configuration ν SE 

DICEA-A 0.35 0.076 

DICEA-B 0.24 0.072 

DICEA-C 0.24 0.084 

Table 9.5 Values of the width factor, ν, and of the standard error, SE, after calibrating 

the Buccino et al. (2014) model. 

 

As it is possible to observe from the previous Table, the behaviour of 

configurations DICEA-B and -C is nearly the same. Despite the values of the 

standard errors are well beyond the acceptance limits, it has been observed the 

CA model to become particularly effective when the wave height to depth ratio 
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exceeds 0.365, i.e. under rough breaking. This result appears to be physically 

consistent. In Figures from 9.31 to 9.33, the measured transmission coefficients 

are plotted against the predicted ones for the three configurations and, 

respectively, for Hi/d ≤0.28; 0.28< Hi/d ≤0.365 and Hi/d >0.365. Figure 9.34 

shows all the data in the aforementioned plane. 

 

 
Figure 9.31. Comparison between the measured transmission coefficient and the 

predicted one according to Buccino et al. (2014), after ν calibration, for Hi/d≤ 0.28. 

 

 
Figure 9.32. Comparison between the measured transmission coefficient and the 

predicted one according to Buccino et al. (2014), after ν calibration, for 

0.28< Hi/d≤ 0.365. 
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Figure 9.33. Comparison between the measured transmission coefficient and the 

predicted one according to Buccino et al. (2014), after ν calibration, for Hi/d >0.365. 

 

 
Figure 9.34. Comparison between the measured transmission coefficient and the 

predicted one according to Buccino et al. (2014), after ν calibration. 
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0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

KT,meas

KT,calc

DICEA-A

DICEA-B

DICEA-C

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

KT,meas

KT,calc

DICEA-A

DICEA-B

DICEA-C



Chapter 9 – Analysis of the Wave Transmission for the DICEA Tests  
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

186 

also for the Armono‟s model, as discussed in the previous Section. The 

Table 9.6 summarizes the values of the SE and R
2
 for the various groups of 

data. 

 

 
Figure 9.35. Comparison between the measured transmission coefficient and the 

predicted one according to Buccino et al. (2014), after ν calibration and outliers 

removal. 
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Data-set Hi/d # data R
2
 SE 

DICEA-A 

All 864 0.78 0.076 

≤0.28 214 0.77 0.086 

0.28 0.365 192 0.75 0.088 

>0.365 458 0.80 0.064 

DICEA-B 

All 288 0.63 0.071 

≤0.28 69 0.60 0.090 

0.28 0.365 63 0.64 0.079 

>0.365 156 0.61 0.058 

DICEA-C 

All 288 0.64 0.083 

≤0.28 69 0.70 0.081 

0.28 0.365 63 0.69 0.086 

>0.365 156 0.55 0.083 

DICEA-C* 

All 264 0.72 0.077 

≤0.28 65 0.69 0.080 

0.28 0.365 58 0.74 0.075 

>0.365 141 0.64 0.065 

Table 9.6. Summary of the statistical characteristics for each group of the DICEA data 

according to Buccino et al. (2014), after ν calibration. 

 

9.3.2.2 Comparison with ERCD/CHL data 

The comparison between the Buccino et al. (2014) recalibrated model with 

ERDC/CHL is shown in Figure 9.36. As it can be observed, the outcome is 

similar to that obtained from the Armono‟s model (Sect. 9.3.1.1). In fact, the 

transmission coefficients for the Miami Beach project are generally lower than 

those measured at the DICEA and data is generally overestimated. 
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Figure 9.36. Comparison between the measured transmission coefficient and the 

predicted one according to Buccino et al. (2014), after ν calibration, for ERDC/CHL 

data. 

9.4 Development of a predictive model based on DICEA 

experimental campaign 

So far, it has been observed that slight modifications of the existing predictive 

models don‟t lead to the desired accurateness in the prediction of the 

transmission coefficient. For this reason, existing models from the literature 

have been firstly adapted and partially modified and, subsequently, new ones 

have been proposed. 

9.4.1 Generalized Armono’s model 

In the present Section, the Armono‟s model has been simply generalized, by 

keeping the same regressors, as well as the same structure of the design 

Equation (5.1). The latter can be written as follows: 
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and arranged into the following linear model: 
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) (9.10) 

 

In the fitting of Equation (9.9) to the experimental data, KT values larger than 

0.95 have been initially censored, to avoid Y to diverge, as its argument tends to 

zero (KT ≅1). 

9.4.1.1 Calibration on DICEA-A data 

As a first step of the analysis, the Equation (9.9) has been calibrated on the 

DICEA-A data. Results of the regression analyses for the three groups of Hi/d 

are reported in Table 9.7 to Table 9.9.  

 

Coefficients SE T-stat p-value 95% confidence bands 

ln(A0) -0.1872 0.254 -0.736 0.462672 -0.689 0.315 

β1 0.484 0.128 3.782 2.19x10
-4

 0.231 0.737 

β2 -0.434 0.152 -2.864 4.742x10
-3

 -0.734 -0.135 

β3 -0.938 0.160 -5.857 2.6x10
-08

 -1.255 -0.622 

β4 4.404 0.224 19.673 1.45x10
-44

 3.962 4.846 

Table 9.7. Results of the regression analysis for DICEA-A and Hi/d ≤0.28. 

 

Coefficients SE T-stat p-value 95% confidence bands 

ln(A0) 1.162 0.480 2.419 0.01673 0.213 2.110 

β1 1.428 0.356 4.008 9.53x10
-05

 0.724 2.132 

β2 -1.221 0.354 -3.445 7.37x10
-4

 -1.921 -0.521 

β3 -1.88 0.360 -5.229 5.49x10
-07

 -2.59 -1.169 

β4 4.603 0.3819 12.053 5.52x10
-24

 3.849 5.358 

Table 9.8. Results of the regression analysis for DICEA-A and 0.28< Hi/d ≤0.365. 
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Coefficients SE T-stat p-value 95% confidence bands 

ln(A0) 0.445 0.273 1.63 0.104 -0.092 0.982 

β1 0.386 0.196 1.972 0.049 0.001 0.771 

β2 0.008 0.185 0.046 0.964 -0.356 0.372 

β3 -0.769 0.188 -4.098 4.94x10
-05

 -1.137 -0.400 

β4 2.404 0.261 9.198 1.36x10
-18

 1.890 2.917 

Table 9.9. Results of the regression analysis for DICEA-A and Hi/d >0.365. 

 

It is seen that data referring to non-breaking and slightly breaking experiments 

(Hi/d ≤0.365) may belong to the same population. This is clear from the 

inspection of the confidence intervals of the coefficients shown in Table 9.7 and 

Table 9.8. In fact, for Hi/d ≤0.28 and 0.28< Hi/d ≤0.365, the intervals overlap 

for all the variables X1 X4, indicating that some common values of the 

parameters may exist. For example, the range of variation of β1 for Hi/d ≤0.28 is 

0.23 0.74, whereas for 0.28< Hi/d ≤0.365 is 0.72 2.13. Hence, an overlap 

exists in the interval 0.72 0.74. 

On the contrary, no overlapping is observed for all the variables when 

comparing the first two groups (Table 9.7 and Table 9.8) with Hi/d >0.365 

(Table 9.9); here it is also noticed that the variable X2 is not even significant. 

Accordingly, slightly breaking and non-breaking wave data have been gathered 

to get the predictive Equation (9.11), which produces a SE of 0.06. 
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The Figure 9.37 shows the comparison between measures and predictions, 

along with the acceptance bands ±0.1 around the line of perfect agreement. 

Table 9.10 reports the results of the regression analysis for Hi/d ≤0.365.  
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Figure 9.37. Comparison between the measured transmission coefficient and the 

predicted one, according to the generalized Armono‟s model, for DICEA-A with 

Hi/d ≤0.365. 

 

Coefficients Standard Error T-stat p-value 95% confidence bands 

ln(A0) -0.145 0.164 -0.886 0.376 -0.468 0.178 

β1 0.486 0.06 8.075 1.33x10
-14

 0.367 0.604 

β2 -0.385 0.073 -5.274 2.44x10
-7

 -0.529 -0.241 

β3 -0.962 0.082 -11.753 8.13x10
-27

 -1.123 -0.801 

β4 4.123 0.137 30.044 8.3x10
-96

 3.853 4.393 

Table 9.10. Results of the regression analysis for DICEA-A and Hi/d ≤0.365. 

 

From the inspection of the graph above, the residuals seem some structured, 

with the cloud of points which appears to be rotated compared to the line of 

perfect agreement. This is clearer in Figure 9.38, where the residuals 

ei = KT,meas-KT,calc are plotted against the predictions. The values of ei are almost 

all negative for KT,calc <0.6, indicating a lack of fit, the reason of which is not 

clear till now. 
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Figure 9.38. Plot of the residuals ei vs. KT,calc according to Eq. (9.11) for DICEA-A 

with Hi/d ≤0.365.  

 

It is also worth to notice that the ranges of variation of the parameters for 

Hi/d ≤0.365 (Table 9.10) do not overlap with those related to Hi/d >0.365 

(Table 9.9); apart from the not significance of the variable X2, the values for X4 

are external from one another. 

Hence, a new regression analysis has been performed for the data with heavy 

breaking (Hi/d >0.365), removing the variable X2 from the predictors set. 

The following formula has been obtained: 
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(9.12) 

 

which exhibits a standard error of 0.049. Additionally, as shown in Figure 9.39 

the cloud of data seems to properly follow the line of perfect agreement; as also 

clearly shown from the plot of the residuals in Figure 9.40.  

Finally, the Table 9.11 reports the results of the regression analysis. 
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Figure 9.39. Comparison between the measured transmission coefficient and the 

predicted one, according to the generalized Armono‟s model, for DICEA-A with 

Hi/d >0.365. 

 

 

Figure 9.40. Plot of the residuals ei vs. KT,calc according to Eq. (9.12) for DICEA-A 

with Hi/d >0.365. 
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Coefficients Standard Error T-stat p-value 95% confidence bands 

ln(A0) -0.455 0.169 2.695 7.31x10
-3

 0.123 0.787 

β1 0.395 0.028 14.312 1.38x10
-38

 0.341 0.449 

β3 -0.777 0.022 34.582 4.8x10
-129

 -0.821 -0.733 

β4 2.415 0.087 27.812 6x10
-100

 2.244 2.586 

Table 9.11. Results of the regression analysis for DICEA-A and Hi/d >0.365 omitting 

the variable X2. 

 

Configurations Hi/d # data R
2
 SE 

DICEA-A 

All 864 0.87 0.054 

≤0.365 406 0.86 0.060 

>0.365 458 0.86 0.049 

Table 9.12. Summary of the statistical characteristics for DICEA-A data. 

 

9.4.1.2 Inclusion of DICEA-B and DICEA-C data 

Before investigating configurations DICEA-B and DICEA-C, it seems worth to 

recall that these experiments have not been conducted systematically for all the 

number of rows; but only for n equal to 3, 5 and 7. This renders an ad-hoc 

recalibration of the predictive model somehow questionable. 

The behaviour of low-density configurations can be discussed by means of the 

graphs reported from Figures 9.41 to 9.44, where the transmission coefficient is 

plotted against the number of rows, for fixed values of the relative 

submergence, hs/d. It is seen that the difference in the response is generally 

small and this practically means that the effect of n rows of RB is roughly the 

same, whatever the distance between the modules. However, from a closer 

insight, the following considerations can be drawn: 

 no relevant difference has been noticed between DICEA-B and -C; 

 the low density data tends to mix into the DICEA-A cloud for well 

submerged barriers (hs/d =0.60 1.75);  
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 on the other side, when the crest of the structure approaches the still 

water level, the experimental points of DICEA-B and DICEA-C tend to 

lie above DICEA-A (hs/d =0.88 1); 

 a group of data belonging to DICEA-C and characterized by hs/d =0.88 

and n =5 seems to behave as an outlier. This is particularly evident from 

the Figure 9.45, where the low density data have been isolated. Since for 

this group the values of KT are particularly small, it seemed cautious to 

exclude them from subsequently analyses.  

 

 
Figure 9.41. Plot of the measured transmission coefficient vs. the number of RB rows 

for hs/d =0.60. 
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Figure 9.42. Plot of the measured transmission coefficient vs. the number of RB rows 

for hs/d =0.75. 

 

 
Figure 9.43. Plot of the measured transmission coefficient vs. the number of RB rows 

for hs/d =0.88. Outliers are circled in red. 
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Figure 9.44. Plot of the measured transmission coefficient vs. the number of RB rows 

for hs/d =1. 

 

 
Figure 9.45. Plot of the measured transmission coefficient vs. the number of RB rows 

for low density configurations with hs/d =0.88. Outliers are circled in red. 
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1. trying to capture the peculiarities of these data, via the application of the 

previously calibrated equations to low density data; 

2. ignoring the differences between the DICEA dataset, by refitting the 

previous predictive equation to all the available experiments. 

 

The first approach represents the simplest way to include the effect of the 

spacing between modules. In fact, by the application of Equations (9.11) and 

(9.12) to DICEA-B and –C, values of KT were found to be reasonably predicted, 

apart from an average underestimation, equal to 0.053 for Hi/d≤ 0.365 and 

0.073 for Hi/d>0.365. Hence the following Equations can be proposed:  

 

KT = Eq. (9.11) +0.053      for Hi/d≤ 0.365 

 (9.13) 

KT = Eq. (9.12) +0.073      for Hi/d >0.365 

 

The comparison between measures and predictions is shown in Figure 9.46 and 

Figure 9.47. The statistical characteristics of the model are summarized in 

Table 9.13; as it can be noticed, values of standard error larger than 0.06 have 

been obtained. 
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Figure 9.46. Comparison between the measured transmission coefficient and the 

predicted one, according to Eq.(9.13), for DICEA-B and DICEA-C* data with 

Hi/d ≤0.365. 

 

 
Figure 9.47. Comparison between the measured transmission coefficient and the 

predicted one, according to Eq. (9.13), for DICEA-B and DICEA-C* data with 

Hi/d >0.365. 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

KT,meas

KT,calc

DICEA-B

DICEA-C*

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

KT,meas

KT,calc

DICEA-B

DICEA-C*



Chapter 9 – Analysis of the Wave Transmission for the DICEA Tests  
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

200 

Configurations Hi/d # data R
2
 SE 

DICEA-B+DICEA-C* 

All 552 0.67 0.068 

≤0.365 255 0.68 0.074 

>0.365 297 0.64 0.061 

DICEA-B 

All 288 0.66 0.067 

≤0.365 132 0.68 0.074 

>0.365 156 0.61 0.060 

DICEA-C* 

All 264 0.64 0.070 

≤0.365 123 0.69 0.079 

>0.365 141 0.68 0.062 

Table 9.13. Summary of the statistical characteristics for DICEA-B and DICEA-C* 

data. 

 

The second approach (point two of the previous list) consists in neglecting the 

effect of the spacing and treating all the data as they would come from the same 

population. After gathering all the datasets, two regressions have been 

performed depending on whether Hi/d ≤0.365 or Hi/d >0.365; the results of 

which are reported in Table 9.14 and Table 9.15. It is seen that, for heavy 

breaking waves, the transmission coefficient is independent from Hi/gTp
2
 and 

BbR/gTp
2
. In practical terms, this would imply that KT is not affected by the 

wave period.  

For this reason a new regression analysis has been performed for Hi/d >0.365, 

neglecting the two abovementioned predictors. The results are shown in 

Table 9.16. 

Finally, the predictive Equations (9.14) and (9.15) have been obtained, valid for 

Hi/d≤ 0.365 and Hi/d >0.365, respectively: 
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(9.15) 

 

Coefficients Standard Error T-stat p-value 95% confidence bands 

ln(A0) -0.424 0.141 -3.006 2.77x10
-3

 -0.701 0.147 

β1 0.390 0.050 7.789 2.50x10
-14

 0.292 0.489 

β2 -0.273 0.060 -4.538 7.03x10
-6

 -0.392 -0.155 

β3 -0.852 0.069 -12.285 9.45x10
-31

 -0.989 -0.716 

β4 3.519 0.109 32.209 0.00 3.304 3.733 

Table 9.14. Results of the regression analysis for DICEA data with Hi/d ≤0.365. 

 

Coefficients Standard Error T-stat p-value 95% confidence bands 

ln(A0) -0.041 0.308 -0.133 0.894 -0.646 0.564 

β1 0.102 0.22 0.466 0.64 -0.329 0.533 

β2 0.286 0.205 1.391 0.165 -0.117 0.688 

β3 -0.47 0.207 -2.267 0.024 -0.876 -0.063 

β4 1.608 0.295 5.45 6.89x10
-8

 1.029 2.187 

Table 9.15. Results of the regression analysis for DICEA data with Hi/d >0.365. 

 

Coefficients Standard Error T-stat p-value 95% confidence bands 

ln(A0) -2.097 0.052 -40.061 4.3x10
-187

 -2.20 -1.99 

β3 -0.74 0.029 -25.777 6.6x10
-105

 -0.797 -0.684 

β4 1.64 0.092 17.56 5.34x10
-59

 1.461 1.824 

Table 9.16. Results of the regression analysis for DICEA data with Hi/d >0.365 where 

X2 (Hi/gTp
2)

 and X3 (BbR/gTp
2
) were neglected. 

 

The comparison between predictions and measures is shown, for different 

ranges of Hi/d, from Figures 9.48 to 9.50.  

Table 9.17 summarizes the statistics of the model, whereas the graphs depicted 

in Figure 9.51 Figure 9.56 display the residuals vs. the predicted transmission 

coefficient and the normality plot.  
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The following items deserve to be highlighted: 

 the obtained standard errors slightly exceed the acceptance value of 

0.06. The percentage of data exceeding the ±0.1 bands is 16% for both 

Hi/d ≤0.365 and Hi/d >0.365; 

 Compared to the model calibrated on DICEA-A only (Sect 9.4.1.1), the 

inclusion of low density configurations, as expected, increases the 

scatter. 

 the SE are almost uniform for all the three arrangements; 

 the residuals are Gaussian distributed; 

 the residuals for Hi/d ≤0.365 exhibit a certain curvature, probably due to 

a lack of fit, which had been already observed for DICEA-A. 

 

 
Figure 9.48. Comparison between the measured transmission coefficient and the 

predicted one, according to Eqs. (9.14) and (9.15), for the whole DICEA dataset. 
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Figure 9.49. Comparison between the measured transmission coefficient and the 

predicted one, according to Eq. (9.14), for the whole DICEA dataset with Hi/d≤ 0.365. 

 

 
Figure 9.50. Comparison between the measured transmission coefficient and the 

predicted one, according to Eq. (9.15), for the whole DICEA dataset with Hi/d >0.365. 
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Configurations Hi/d # data R
2
 SE 

All DICEA 

All 1416 0.71 0.074 

≤0.365 661 0.77 0.072 

>0.365 755 0.71 0.076 

DICEA-A 

All 864 0.82 0.069 

≤0.365 406 0.62 0.067 

>0.365 458 0.76 0.068 

DICEA-B 

All 288 0.57 0.066 

≤0.365 132 0.68 0.066 

>0.365 156 0.37 0.065 

DICEA-C* 

All 264 0.66 0.073 

≤0.365 123 0.71 0.076 

>0.365 141 0.57 0.071 

Table 9.17. Summary of the statistical characteristics for DICEA data. 

 

 

 
Figure 9.51. Plot of the residuals ei vs. KT,calc according to Eqs. (9.14) and (9.15), for 

the whole DICEA dataset.  
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Figure 9.52. Plot of the residuals ei vs. KT,calc according to Eq. (9.14), for the whole 

DICEA dataset with Hi/d≤ 0.365. 

 

 
Figure 9.53. Plot of the residuals ei vs. KT,calc according to Eq. (9.15), for the whole 

DICEA dataset with Hi/d >0.365. 
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Figure 9.54. Normality plot of the standardized residuals. 

 

 
Figure 9.55. Normality plot of the standardized residuals for Hi/d≤ 0.365. 

 

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

Z

est

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

Z

est



Chapter 9 – Analysis of the Wave Transmission for the DICEA Tests  
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

207 

 
Figure 9.56. Normality plot of the standardized residuals for Hi/d> 0.365. 

9.4.1.3 Comparison with ERCD/CHL data 

Figure 9.57 shows the ERCD/CHL data vs. the prediction obtained from the 

Armono‟s generalized model, given in Eqs. (9.14) and (9.15). The experimental 

points appear largely overpredicted, as already observed after the application of 

the Armono (2003) and Buccino et al. (2014). In this case the number of points 

out of the acceptance bands is even larger than what expected (43%). 

 
Figure 9.57. Comparison between the measured transmission coefficient and the 

predicted one, according to Eqs. (9.14) and (9.15), for the ERDC/CHL dataset. 
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9.4.2 Development of a conceptual approach based on friction  

In the following paragraphs a conceptual predictive approach is developed, 

similar to the one suggested by Buccino and Calabrese (2007a) but based on 

friction as the main mechanism of dissipation. This in order to understand 

whether a closer modelling of the physics characterising the interaction between 

modules and waves may lead to more effective predictions. The analysis may 

also be helpful in clarifying some aspects of the transmission response, such as 

the effect of spacing.  

9.4.2.1 Bases of modelling 

The results shown in the Chapter 8 clearly indicate that a barrier in Reef Ball 

hardly produces the breaking of incoming waves. If the structure is located out 

of the surf zone (Hi/d ≤0.28), the wave energy is dissipated by macro-

roughness; on the other hand the effectiveness of a barrier within the surf zone 

is probably related either to a friction mechanism or to a breaking enhancement 

induced by modules.  

Here we firstly assume that the leading dissipation mechanism is macro-

roughness, so that the presence of broken waves is simply modelled as a 

variation of the friction factor. Then, the possibility that wave transmission in 

the surf zone is dominated by breaking effects is explored.  

The basic assumption is that, in absence of breaking, the Reef Ball modules can 

be treated as a bottom friction, with a characteristic dimension hs. 

As shown by Putnam and Johnson (1949), the average rate of energy 

dissipation per plan area due to bottom friction for shallow water is: 

  

     
     

   
(
 

 
)
 
 ⁄

 (9.16) 

 

in which ρ is the water density and f’ is a friction factor (drag coefficient), 

dependent on flow and bottom characteristics.  

The Equation (9.16) can be easily rearranged as follows: 
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 (9.17) 
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where it is seen that the dissipated power is proportional to the energy flux 

(    
  √  ) in shallow water and to the reciprocal of the water depth. The 

proportionality factor is finally equal to the product of the drag coefficient, f’, 

and the wave height to depth ratio (HT/d). So, for an infinitesimal trunk of 

structure of width (  ), the wave energy balance reads: 

 

   
  

      
  

 
 
   

 √  

 
 (9.18) 

 

where P denotes the energy flux. In the Equation (9.18) it has been assumed 

that no dissipation occurs when the waves travel from the landward end of the 

structure to the free bottom (see Sect. 4.2).  

Remembering that RBs are here modelled as a simple roughness of the bottom 

at the “constant” depth d, we have: 
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 (9.19) 

 

and then,  

 

   
 

  
      

  

 
 
   

 

 
 (9.20) 

 

After some algebra one gets: 

 

   

  
      

   
 

  
 (9.21) 

 

Considering HT = KTHi, it follows that: 

 

   

  
      

     
 

  
 (9.22) 

 

and separating the variables,  



Chapter 9 – Analysis of the Wave Transmission for the DICEA Tests  
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

210 

   

  
      

     

  
 (9.23) 

 

By integrating the previous Equation from zero to B: 

 

 

  
 

 

    
    

    

  
 (9.24) 

 

where KT,0 represents the transmission coefficient for B =0. If B =Bt is assumed 

(Eq.6.7, reported below for ease of the reader), consistently with Buccino et al. 

(2014) , then KT,0 is the transmissivity of a single row of Reef Balls. 

 

       )   (6.7) 

 

In a plane with 1/KT on ordinates and the quantity BtHi/d
2
 on the abscissa, the 

experimental points are expected to draw straight-line with a slope equal to 4f 

and an intercept of 1/KT,0. If we assume f’ to be of the order 0.1, then the slope 

of the line would be 0.4 as an order of magnitude. As for 1/KT,0, we expect it to 

be slightly larger than 1.  

Under the hypothesis of rough turbulent flow, the drag coefficient is assumed as 

an increasing function of the relative roughness hs/d, which corresponds to the 

well-known Nikuradse ratio ε/D (i.e. the ratio between the characteristic 

dimension of the roughness, ε, and the diameter of a pipe, D). Moreover, it has 

been assumed that f’ is a function of both the RB arrangement (shape of 

roughness) and the rate of breaking, which affects the characters of the 

dissipation. 

In particular it has been set: 
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) (9.25) 

 

where: 

    is an arrangement correction factor; 

     is related to the occurrence of breaking; 
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    is a basic drag coefficient, valid for very close modules and absence 

of breaking. 

Since hs/d also represents the relative submergence of the structure, it can be 

reasonably assumed that KT,0 is a function of this parameter. 

In a first approximation, it has been hypothesized that neither φ nor H/d affect 

KT,0. The latter assumption comes from the absence of experiments with a 

single row in DICEA-B and DICEA-C; moreover, it is reasonable that KT,0 

slightly varies around 1, so that a detailed prediction of the latter is not really 

necessary. 

As obvious, the transmission coefficient for a single row will increase with 

reducing hs/d. 

It is clear that the just derived model is rigorously appropriate in the absence of 

breaking, i.e. for Hi/d ≤0.28. For structures located within the surf zone, a 

correction might be introduced through the factor    , under the hypothesis that 

the dissipation mechanism is still dominated by macro-roughness. 

9.4.2.2 Calibration of the CA friction model for non- breaking waves 

In Figures form 9.58 to  9.61, the reciprocal of the measured transmission 

coefficient, 1/KT, is plotted against the quantity   
   

  , for Hi/d≤ 0.28. The 

following values of the density factor have been found, with no differences 

between DICEA-B and DICEA-C. 

 

hs/d    

0.60 1 

0.75 1 

0.88 0.5 

1 0.4 

Table 9.18. Values of the density factor, νφ, for DICEA-B and DICEA-C 

configurations. 
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Figure 9.58. Plot of DICEA data in the plane (1/KT,meas;    
    

  ) for Hi/d≤ 0.28 and 

hs/d =0.6. 

 

 

Figure 9.59. Plot of DICEA data in the plane (1/KT,meas;    
    

  ) for Hi/d≤ 0.28 and 

hs/d =0.75. 
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Figure 9.60. Plot of DICEA data in the plane (1/KT,meas;    
    

  ) for Hi/d≤ 0.28 and 

hs/d =0.88. 

 

 

Figure 9.61. Plot of DICEA data in the plane (1/KT,meas;   
    

  ) for Hi/d≤ 0.28 and 

hs/d =1. 

 

It is seen that the spacing between modules produces a significant effect for 

structures with crests close to the still water level, whereas the response of 
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As a general remark, it is to mention that the DICEA-B and DICEA-C data 

respond to the variables in a weaker way, compared to the DICEA-A, with 

points the more scattered the smaller the submergence. Form a physical point of 

view this can be explained considering that when modules are placed very close 

to each other, they behave “like a structure” (say as single body) and, 

accordingly, the transmission coefficient appears rather predictable. On the 

other hand, when the spacing increases, the modules tend to respond like 

isolated units and the experimental data become more scattered.  

Finally, after a least square fitting of the data plotted in Figures from 9.58 to  

9.61, the following values of f0 and KT,0 have been found:      

 

hs/d f0 1/KT,0 

1 0.74 1.26 

0.88 0.29 1.20 

0.75 0.17 1.03 

0.60 0.15 1 

Table 9.19. Values of drag coefficient, f0, and the reciprocal of the transmission 

coefficient for a single row of RB modules, 1/KT,0. 

 

The quantities above can be interpolated through the following relationships: 

 

         (
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 (9.26) 
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 (9.27) 

 

As shown in Figure 9.62, the model fits the data rather well, with an R
2
 of 0.83 

and a global standard error of 0.06, that matches with our target.  

The design Equations appear particularly suited to DICEA-A, where a standard 

error of 0.052 and R
2
 =0.88 has been detected, although some scatter still exists 

for low-density configurations (Table 9.20).  
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Figure 9.62. Comparison between measured and predicted (Eq. 9.24) transmission 

coefficients for DICEA data with Hi/d≤ 0.28. 

 

Configurations SE R
2
 

All 0.060 0.83 

DICEA-A 0.052 0.88 

DICEA-B 0.070 0.62 

DICEA-C 0.075 0.79 

Table 9.20. Summary of the statistical characteristics for the DICEA data with 

Hi/d≤0.28. 

9.4.2.3 Calibration of the CA friction model for slightly breaking waves 

Appling the same approach described above to slightly breaking waves 

(0.28< Hi/d ≤0.365), the following correction factors,    , have been found: 

hs/d     

0.60 1 

0.75 1 

0.88 0.8 

1 0.6 

Table 9.21. Values of the breaking factor, νbr for 0.28< Hi/d ≤0.365. 
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Results suggest that the presence of broken waves leads to a reduction of 

efficiency only for structures with a crest close to the still water level.  

The comparison between predictions and measures is shown in Figure 9.63. 

Like for Hi/d ≤0.28, the model returns a standard error of 0.06 with a R
2
 equal 

to 0.83; in particular, a good performance has been especially found for 

DICEA-A, with R
2
=0.88 and SE=0.052 (Table 9.22). 

 

 
Figure 9.63. Comparison between measured and predicted (Eq. 9.24) transmission 

coefficients for DICEA data with 0.28< Hi/d≤ 0.365. 

 

Configurations SE R
2
 

DICEA 0.060 0.83 

DICEA-A 0.052 0.88 

DICEA-B 0.069 0.79 

DICEA-C 0.073 0.71 

Table 9.22. Summary of the statistical characteristics for the DICEA data with 

0.28< Hi/d≤ 0.365. 

 

Considering all the DICEA data with Hi/d ≤0.365, and applying the same 

methodology already discussed, the plot shown in Figure 9.64 has been 
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obtained, corresponding to a determination index of 0.83 and a standard error of 

0.06 (Table 9.23) Summary of the statistical characteristics for the DICEA data 

for Hi/d≤ 0.365. The latter is internal to the acceptance bounds.  

Moreover, Figure 9.65 and Figure 9.66 shown the comparison between the 

residuals and the predicted transmission coefficient and the normality plot, 

respectively. 

 

 
Figure 9.64. Comparison between measured and predicted (Eq. 9.24) transmission 

coefficients for DICEA data with Hi/d≤ 0.365. 

 

Configurations SE R
2
 

DICEA 0.060 0.83 

DICEA-A 0.052 0.89 

DICEA-B 0.070 0.68 

DICEA-C 0.072 0.71 

Table 9.23. Summary of the statistical characteristics for the DICEA data for 

Hi/d≤ 0.365. 
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Figure 9.65. Plot of the residuals ei vs. KT,calc according to Eq. (9.24), for the whole 

DICEA dataset with Hi/d ≤0.365. 

 

 
Figure 9.66. Normality plot for Hi/d≤ 0.365. 

 

9.4.2.4 Calibration of the CA friction model for heavily breaking waves 

When applied to heavily breaking waves (Hi/d >0.365), the conceptual 

approach based on the bottom dissipation produces a surprisingly large scatter. 

After introducing the corrections reported in Table 9.24, a standard error of 

0.071 has been obtained on the configuration DICEA-A (Figure 9.67).  
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hs/d     

1 0.3 

0.88 0.45 

0.75 1 

0.60 1 

Table 9.24.Values of the breaking factor, νbr for Hi/d >0.365. 

 

 
Figure 9.67. Comparison between measured and predicted (Eq. 9.24) transmission 

coefficients for DICEA-A data with Hi/d >0.365. 

 

This deviation could indicate that the damping mechanism is no longer 

dominated by friction effects, but also by an increase of the strength of 

breaking. 

Two hypotheses have been then formulated: one is that the structure influences 

the breaking process only if the crest is close to the still water level, the other is 

that dissipation is entirely dominated by breaking. The models developed 

according to these assumptions are presented hereinafter. 
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9.4.3 Development of a conceptual approach based on friction and breaking 

Assuming that the dissipation can be governed, depending on the relative 

submergence, by either friction or breaking, a “mixed” model has been 

developed. The latter consists in using the asymptotic solution for small 

submergences (Eq. 9.28) of the model by Buccino et al. (2014) in the range of 

hs/d =1 0.88, whereas the predictive equations based on friction (Eq. 9.24) is 

assumed to be valid for hs/d =0.75 0.60. Thus, the “mixed” model results to 

be:  

 

  
 
 ⁄      

 
 ⁄   

  
 

√    
                         (9.28) 

 

  
 

 

    
    

    

  
                                       (9.24) 

 

As shown in Figure 9.68 and Figure 9.69, the Equation (9.28) can fit the 

experimental data quite reasonably when a configuration factor ν =0.55 is 

introduced for DICEA-B and -C. The configuration factor is rather close to the 

value 0.6 found by Buccino et al. (2014).  

As for G and KT,0
1/2

, the estimated values are summarized in Table 9.25. 

 

 
Figure 9.68. Fit of Eq. (9.28) for hs/d =0.88. 
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Figure 9.69. Fit of Eq. (9.28) for hs/d =1. 

 

hs/d G KT,0
1/2

 

0.88 0.0565 0.93 

1 0.0914 0.93 

Table 9.25. Estimated values of the dissipation factor, G, and KT,0
1/2

. 

 

The “mixed-predictions” produce a standard error of 0.057 on DICEA-A and an 

overall scatter of 0.061 for all data with Hi/d >0.365. The comparison between 

predictions and measures are shown in Figure 9.70; the points lie clearly within 

the acceptance bands, even if a certain funnel structure of residuals is evident.  

Figure 9.71 and Figure 9.72 display the residuals vs. the predicted transmission 

coefficient and the normality plot. The statistical characteristic are summarized 

in the Table below. 

Configurations SE R
2
 

DICEA 0.061 0.75 

DICEA-A 0.057 0.82 

DICEA-B 0.058 0.49 

DICEA-C 0.069 0.60 

Table 9.26. Summary of the statistical characteristics for the DICEA data for 

Hi/d >0.365. 
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Figure 9.70. Comparison between measured and predicted transmission coefficients via 

the “mixed” model for DICEA data with Hi/d >0.365. 

 

 
Figure 9.71. Plot of the residuals ei vs. KT,calc according to the “mixed” model, for the 

whole DICEA dataset with Hi/d >0.365. 
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Figure 9.72. Normality plot of the “mixed” models. 

9.4.3.1 Comparison with ERCD/CHL data 

To have a first idea of the robustness of the previous method, the results 

provided by their application to ERDC/CHL data have been analyzed. Similarly 

to what already performed, the data characterized by Hi/d =0.83 have been 

removed.It is evident from Figure 9.73 that ERDC/CHL data agree rather well 

with the “mixed-model”, in which both    and     have been set equal to 1 for 

hs/d lower than 0.83.  

 
Figure 9.73. Comparison between measured and predicted transmission coefficients via 

the “mixed-model” for ERDC/CHL data.4 
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9.4.4 Development of a conceptual approach based on breaking 

Under the hypothesis that the damping of waves occurs essentially by breaking, 

the set of Equations suggested by Buccino and Calabrese (2007a) can be used 

(Sect. 4.2). 

First of all, the deeply submerged solution, given in Equation (4.52), has been 

applied to DICEA-A, for increasing values of Hi/Rc. Form Figures 9.74 to 9.76 it 

can be seen that the theoretical equation fits data rather well till a relative 

submergence Hi/Rc =1.34. 

 

 
Figure 9.74. Application of Buccino and Calabrese (2007a) model for deeply 

submerged structures to DICEA-A data with Hi/Rc ≤1.19. 
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Figure 9.75. Application of Buccino and Calabrese (2007a) model for deeply 

submerged structures to DICEA-A data with Hi/Rc ≤1.34. 

 
Figure 9.76. Application of Buccino and Calabrese (2007a) model for deeply 

submerged structures to DICEA-A data with Hi/Rc ≤1.54. 

 

Moreover, the Figure 9.77 shows a good agreement between data with Rc =0 

and the second asymptotic solution of the Buccino and Calabrese (2007a) 

model, given in Equation(4.53). This result appears to be consistent with what 

previously observed in the “mixed” model.  
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Figure 9.77. Application of Buccino and Calabrese (2007a) model for deeply 

submerged structures to DICEA-A data with Rc =0. 

 

Finally, the predictive model expressed by Equation (9.29) has been defined for 

DICEA-A, while a linear interpolation is suggested for Hi/Rc ≥1.34. 
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The model exhibits R
2 
=0.83 and SE =0.055. 

As far as DICEA-B and DICEA-C are concerned, the model expressed by 

Equation (9.29) has been used for KT predictions, and a mean configuration 

factor, ν, has been searched for, by minimizing the standard error, SE, and 

imposing a bias included between ±0.01. As a result, an average configuration 

factor of 0.65 has been found, which leads to a standard error of 0.054 for 

DICEA-B and 0.068 for DICEA-C. 

Overall, the Figure 9.78 shows the comparison between predictions and 

measures for all data with Hi/d >0.365 under the hypothesis of breaking 
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dominated dissipation process. A standard error of 0.061 has been obtained, 

which is slightly larger than that found with the “mixed-model” discussed 

before. Figure 9.80 and Figure 9.81 show the plot of the residuals vs. the 

predicted transmission coefficient and the normality plot. 

 

 
Figure 9.78. Comparison between measured and predicted transmission coefficients via 

the “purely breaking” model for DICEA data with Hi/d >0.365. 

 

Configurations SE R
2
 

All 0.061 0.76 

DICEA-A 0.055 0.83 

DICEA-B 0.054 0.60 

DICEA-C 0.068 0.68 

Table 9.27. Summary of the statistical characteristics for the DICEA data with 

Hi/d >0.365, obtained from the application of the “purely breaking” model. 
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Figure 9.79. Plot of the residuals ei vs. KT,calc according to the “purely breaking” model, 

for the whole DICEA dataset with Hi/d >0.365. 

 

 
Figure 9.80. Normality plot of the “purely breaking” models. 
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can be reasonably predicted by the models while for Hi/d =0.41 a large 

overestimation con be observed. 

 

 
Figure 9.81. Comparison between measured and predicted transmission coefficients via 

the “purely-breaking” model for ERDC/CHL data. 
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Chapter 10  – ANALYSIS OF THE WAVE SET-UP FOR THE 

DICEA TESTS  

 

As already discussed in Sect. (4.3), submerged breakwaters generally induce an 

increment of the medium see water level shoreward the structure (wave set-up), 

that often causes erosive nearshore currents in the protected area. More 

specifically, the wave set-up phenomenon is related to the reduction of the 

momentum flux due to the occurrence of the wave breaking on a conventional 

breakwater. Although the latter represents the main mechanism of energy 

dissipation for rubble mound breakwaters, it has been observed that, in case of 

Reef Ball barriers, a reduction of the transmission coefficient may occur even 

for non-breaking tests (Hi/d ≤0.28), suggesting a different hydraulic behaviour 

of this type of structures (Chapter 9). 

In order to study the effect of Reef Ball barriers on the shadow zone 

hydrodynamics, the results of the DICEA experimental campaign have been 

employed in this study. This represents the first attempt in literature to 

investigate wave set-up for this type of barriers. 

Following the approach proposed by Diskin et al. (1970) for traditional 

breakwaters (Sect. 4.3), the ratio between the wave set-up measured in presence 

of the structure, δs, and the energetic wave height, Hen, has been plotted vs. 

Rc/Hen. 

The results are shown from Figures 10.1 to 10.3, for each investigated 

configuration. From the observation of these graphs, the following 

considerations can be drawn: 

 non-breaking (Hi/d <0.28) and weakly-breaking (0.28< Hi/d <0.365) 

tests are characterized by an almost negligible value of the wave set-up, 

while slightly higher values are exhibited by heavily-breaking tests 

(Hi/d >0.365). In the latter case the dimensionless set-up, δs/Hen, 

assumes values less than 0.2; 
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 no significant differences have been observed between DICEA-A, -B 

and -C; 

 the Diskin‟s model (Eq. 4.62)  provides δs/Hen values which are, for 

each configuration investigated, larger than the experimental ones, 

especially at low values of Rc/Hen.  

 

 
Figure 10.1. Wave set-up computed in the presence of structures for the DICEA-A data, 

grouped by Hi/d. 
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Figure 10.2. Wave set-up computed in the presence of structures for the DICEA-B data, 

grouped by Hi/d. 

 

 
Figure 10.3. Wave set-up computed in the presence of structures for the DICEA-C* 

data, grouped by Hi/d. 
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Figure 10.4. Wave set-up computed in the presence of structures for the DICEA-A data, 

grouped by hs/d. 

 

 
Figure 10.5. Wave set-up computed in the presence of structures for the DICEA-B data, 

grouped by hs/d. 
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Figure 10.6. Wave set-up computed in the presence of structures for the DICEA-C data, 

grouped by hs/d. 

 

It is worth noting that the wave set-up measured in presence of structures can be 
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without the structures, δns. Hence, instead of δs, the use of the difference 
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barrier on the littoral current. In fact, δs-δns represents the hydraulic gradient 

leading to nearshore currents. 

As it possible to observe from Figures 10.7 to 10.9, the presence of RB 
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level. Furthermore, for heavily-breaking waves and low submergences, an 
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 to negative ones can be observed, 

which could indicate an inversion of the direction of nearshore currents, 

potentially reducing the erosion effect in the protected area.  

 

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-6-5-4-3-2-10

δs

Hen

Rc/Hen

Diskin et al. (1970)

DICEA-C hs/d=0.60

DICEA-C hs/d=0.75

DICEA-C* hs/d=0.88

DICEA-C hs/d=1



Chapter 10 – Analysis of the Wave Set-Up for the DICEA tests  
________________________________________________________________________________________________________________________________ 

 

__________________________________________________ 
 

235 

 
Figure 10.7. Wave set-up computed as difference between δs and δns for the DICEA-A 

data, grouped by hs/d. 

 

 
Figure 10.8. Wave set-up computed as difference between δs and δns for the DICEA-B 

data, grouped by hs/d. 
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Figure 10.9. Wave set-up computed as difference between δs and δns for the DICEA-C 

data, grouped by hs/d.
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Chapter 11  – WAVE PERIODS TRANSMISSION  

It has long been known that the cross shore beach response to a wave attack 

strongly depends on wave period.  

After a detailed review of literature, Kraus (1992) indicated a set of predictors 

by which engineers may infer the presence of a berm (beach accretion) or a bar 

(beach erosion) after a storm of given characteristics. The Author concluded 

that the most effective parameters are:  

 the offshore wave steepness,     
    

   ; 

 the offshore Dean parameter     
  

  
  where w indicates the fall 

velocity of sediments. 

 

It was recognized that each of the above quantities must be small for a beach to 

accrete. The lower wave steepness, the more narrow the surf zone and 

accordingly the weaker the effects of the undertow current. 

Analogously, a small Dean number implies a suspended sand particle to 

undergo a net movement in the shoreward direction instead of the seaward one. 

Hence, the reduction of wave height alone does not lead necessarily to an 

improvement of the beach response predictors. The final behavior, rather 

depends on the rate of transmission of wave periods.  

In fact, after the interaction with the structure, the wave height reduces from HI 

to HT and the shore is actually loaded by a different storm, which deep water 

wave height can be estimated as: 

 

    
  

    
 (11.1) 

 

where K’sh is the shoaling coefficient
5
, that also depends on the transmitted 

wave period. 

                                                 
5
A simple normal attack is assumed. 
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From the definition of transmission coefficient, it follows that: 

 

  
  

    

    
 

       

    
 (11.2) 

 

where Ksh  is calculated with reference to the incident storm without the 

structure. Since at the normal depths of placement of submerged breakwater it 

can be reasonably assumed Ksh ≅ K’sh  ≅1, it is readily obtained that the 

transmitted wave attack is equivalent to an ideal offshore wave steepness equal 

to: 

 

    (
  

  
   

)    (11.3) 

 

where KT,T generically indicates a transmission coefficient of the wave period. 

The previous relationship suggests that the efficiency of a barrier in 

transforming an erosion event into an accretion one, actually depends on the 

quantity: (
  

  
   
), which mixes the transmission coefficient of the wave height, 

KT, with the square of the transmission coefficient of the wave period, KT,T. 

Following a similar path for the Dean number, it is readily obtained: 

  

    (
  

    

)   (11.4) 

 

From the Equations (11.3)-(11.4), it is clear that from the point of view of 

cross-shore sediment transport, a barrier should minimize KT and maximize 

KT,T. In particular, it would be convenient that the structure returned KT,T >1 

(low pass filter) or at most KT,T =1. 

To render the discussion on wave period more specific, it is worth noticing that 

while for the wave height Hm0 is universally considered, in the engineering 

practice three characteristic periods are commonly employed: the peak period, 

Tp, the mean zero crossing wave period, T01, and the “harmonic” average 

period, T-10. 
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T01 and T-10 are defined in terms of spectral moments as follows: 

 

    
  

  

 (11.5) 

 

     
   

  

 (11.6) 

 

Hence, for the transmission coefficient of T01 to be unitary, it is necessary that: 

 

    )      )  ⇒
    

    

 
    

    

 (11.7) 

 

and then: 

 
    

    

     
    

    

   
  (11.8) 

 

Analogously, for T-10: 

  

    )      )  ⇒        
  (11.9) 

 

Recalling that also the invariance of the peak period (Tp,T = Tp,I) is desirable it 

can be concluded that an efficient barrier should generate a transmitted 

spectrum as similar as possible to the incident one (whenever an increase of the 

characteristic periods is not possible). Unfortunately, a great deal of literature 

indicates that conventional breakwaters tends to increase the amount of high 

frequency power, so that KT,T <1.    

As an example, Calabrese and Buccino (2007) found:  

 

          
  (11.10) 

 

which implies a transmission coefficient of T01 equal to: 
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(    )   
  

 

    
      (11.11) 

 

Combining the Equations (11.11) and (11.3), it is argued that a conventional 

breakwater produces a reduction of the equivalent offshore wave steepness only 

if  

 

  

(    )  
  ⇒               (11.12) 

 

In other words, as long as the transmission coefficient does not fall below 0.69, 

the mean steepness of the waves attacking the shore will not reduce. If 

KT =0.80, then waves behind the structure would steepen, likely aggravating the 

erosional response.    

A similar reasoning can be repeated for T-10, the transmission coefficient of 

which has been found to be 0.9 (Del Vecchio, 2006). 

Figures from 11.1 to 11.6 plot Km1 and Km-1 vs. KT
2
 for DICEA-A, -B and -C. In 

the graph also the straight line found by Calabrese and Buccino (2007) and Del 

Vecchio (2006) are depicted.  

It appears pretty clearly that the great permeability of modules reduces the 

generation of high frequency components, which is typical of conventional 

barriers, producing a transmitted wave spectrum more similar to the incident 

one. The following findings deserve to be highlighted: 

 for DICEA-A, the transmitted spectrum appears substantially similar to 

the incident one for non-breaking waves. When the wave height to depth 

ratio overcomes 0.28 and KT
2
 <0.4, Km,1 and Km,-1 tend to be close to the 

curves of  Calabrese and Buccino and Del Vecchio respectively;  

 the spacing between the modules leads to a lower generation of high 

frequency components, with the transmitted spectrum which remains in 

similitude with the incident one.  
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Figure 11.1 Comparison between KT

2
 and Km,1 for the DICEA configurations with 

Hi/d ≤0.28. 

 

 
Figure 11.2 Comparison between KT

2
 and Km,1 for the DICEA configurations with 

0.28<Hi/d≤0.365. 
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Figure 11.3 Comparison between KT

2
 and Km,1 for the DICEA configurations with 

Hi/d >0.365. 

 

 
Figure 11.4 Comparison between KT

2
 and Km,-1 for the DICEA configurations with 

Hi/d ≤0.28. 
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Figure 11.5 Comparison between KT

2
 and Km,-1 for the DICEA configurations with 

0.28< Hi/d ≤0.365. 

 

 
Figure 11.6 Comparison between KT

2
 and Km,-1 for the DICEA configurations with 

Hi/d >0.365. 

 

Altogether, a power form equation can be proposed for the prediction of Km1 
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   (11.13) 

 

The values of a and b are reported in Table 11.1. The cases in which the 

transmitted spectrum remains almost undistorted are characterized by a =b =1. 

In the Figures from 11.7 to 11.9 the incident peak period, Tpi, is compared to the 

transmitted one, TpT. 

In all cases no-systematic variation of the dominant frequency has been 

detected, like observed for traditional breakwaters. However, in a few 

experiments TpT is lower than Tpi; no specific explanation has been found for 

this result, which might be also due to the technique used for smoothing the 

spectra. 

 

Data-set Hi/d Km,1 Km,-1 

  a b a b 

DICEA-A 

≤0.28 1.0 1.0 1.0 1.01 

0.28 0.365 1.1 1.0 1.0 1.0 

>0.365 1.0 0.9 1 1.1 

DICEA-B 

≤0.28 1.0 1.0 1.0 1.0 

0.28 0.365 1.0 1.0 1.0 1.01 

>0.365 1.0 0.9 1 1.1 

DICEA-C* 

≤0.28 1.0 1.1 1.0 1.0 

0.28 0.365 1.1 1.0 1.0 1.0 

>0.365 1.0 1.0 1.0 1.0 

Table 11.1. Summary of a and b coefficients for the DICEA configurations. 
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Figure 11.7 Comparison between TpT and Tpi for the DICEA configurations with 

Hi/d ≤0.28. 

 

 
Figure 11.8 Comparison between TpT and Tpi for the DICEA configurations with 

0.28< Hi/d ≤0.365. 
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Figure 11.9 Comparison between TpT and Tpi for the DICEA configurations with 

Hi/d >0.365.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

TTp

Tpi

DICEA-A Hi/d>0.365

DICEA-B Hi/d>0.365

DICEA-C* Hi/d>0.365



 

__________________________________________________ 
 

247 

Chapter 12  – CONCLUSIONS  

The Reef Ball modules represent an endearing solution for beach erosion 

control, due to their capability of interacting with marine ecosystems.  

Despite some evidences of successful protection has been provided, no 

systematic analysis on the hydrodynamic properties of such units has been 

developed so far.  

In this study a great deal of random wave experiments have been conducted at 

the Department of Civil, Architectural and Environmental Engineering of the 

University of Naples “Federico II” with the purpose of having a deeper insight 

on several aspects of engineering significance, such as wave breaking 

occurrence, wave transmission, barrier induced wave set-up and characteristics 

of the transmitted spectrum. 

Altogether, 1,440 tests have been collected on single layer bottom seated RB 

arrangements including different spacing among the modules. The results 

achieved can be summarized as follows. 

 

 Reef Balls have been not observed to cause waves to break. Rather, in 

some cases they may accelerate the breaking occurrence in nearly 

unstable sea states. The dominant mode of dissipation is then macro-

roughness, although when models are placed in a surf zone the rate of 

dissipation by breaking may be enhanced. 

 

 Prediction of wave transmission appears more complicate than for 

traditional breakwaters, mainly because of the complex shape of the 

units in their large permeability. Generally, the presence of spacing 

among the modules leads to a less predictability essentially because the 

structure tends to behave like a series of isolated elements rather than an 

unique barrier. This produces a considerable scatter of data, even if the 

expected values of transmission coefficients is nearly the same. The 

derivation of a predictive equations capable of reducing the scatter up to 

the values commonly accepted for traditional breakwaters (a standard 
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error around 0.06) required actually a large number of parameters; this 

reflects the complexity of the process. 

 

 A simple log-linear model proposed by Armono has been tested, which 

though did not lead to a reduction of data scatter consistent with our 

target. In particular a standard error around 0.07 has been obtained. 

 

 The use of a conceptual approach to estimate KT revealed itself rather 

fruitful, since allowed calibrating a number of parameters based on a 

clear physical meaning. In particular, a predictive scheme bearing on a 

dissipation mechanism dominated by friction has been developed, which 

provided promising results mainly when the structures are located 

outside the surf zone or in presence of a low number of breaking waves. 

Interestingly, a correction for taking into account the distance among the 

modules was necessary only for barrier with crest close to the still water 

level. As soon as the barrier becomes submerged the effect of spacing 

weakens.  

With increasing the number of breaking waves (structures located in the 

inner surf zone) a predictive method based on wave breaking proved 

more appropriate, especially for poorly underwater structures. In this 

case, a mixed model has been proposed in which the main dissipation 

mechanism is breaking for structure height to depth ratios larger than 

0.88, and friction for deeper submerged barriers. Altogether the 

conceptual approach allowed keeping the standard error within the 

desired value of 0.06.  

 

 As a counterpart of a larger rate of transmission compare to the 

traditional breakwaters, RB modules produce a nearly zero wave set-up 

in the sheltered area. The latter is in fact responsible of a structure 

generated rip currents which may heavily affect the shoreline response. 

As a relevant variable in this process the difference between the wave 

set-up with and without structures have been studied. The latter 

represents the alongshore hydraulic gradient which activates the feeder 

of rear rip. Surprisingly, it has been found that when the crest of the 
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barrier is close to the sea level, the difference above becomes negative, 

indicating a favorable (accreting) circulation from the heads to the 

center of the structure. This result appears rather important and deserves 

to be further verified, also with a direct comparison with conventional 

breakwaters.  

 

 For the beach response, also the transmission of wave periods must be 

accounted for. It has been shown that the permeability of RB modules 

lead to transmitted spectra rather similar to the incident ones, reducing 

the generation of high frequency components typical of conventional 

breakwaters. The latter leads waves to steepen and may trigger 

unwanted erosional mechanisms. A set of predictive formulae for the 

mean spectral periods T01 and T-10 have been provided for design 

purposes.  

 

The effect of this study on the Italian engineering community has been 

interesting till now. Based on preliminary results on wave transmission a shore 

protection barrier consisting of three rows of modules has been designed at lido 

Onda Azzura in Duna Verde, Caorle (VE). 

At the same time a contract has been stipulated with the City of Riccione (RI) 

for a desk and experimental study aimed to the placement of a 150 m long 

structure including five rows of modules. The latter is of interest because it 

would represent the first structural protection measure in the region of Emilia 

Romagna (ER) after nearly 10 years. The government of ER accepted to 

derogate in virtue of the highly environmental compatibility of RBs.  
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