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Abstract 

 
Application of the next-generation sequencing (NGS) technology has transformed epigenetic 

studies, generating large datasets that can be analyzed in different ways to answer a 

multitude of questions. Data integration is an essential step to understand intricate biological 

processes, such as the epigenetic control of gene regulation. 

Recent "multi-omic" studies proposed the intriguing possibility that the intragenic DNA 

methylation would play a role in processing of transcripts during transcription modulating 

the elongation or splicing. Indeed a kinetic model, in which epigenetic modifications affect 

the rate of transcriptional elongation, and/or a recruitment model, in which adaptor proteins 

bind to epigenetic modifications recruiting splicing factors have been proposed.  

Moreover, it was demonstrated that the intragenic methylation in highly transcribed genes is 

exclusively dependent on the DNMT3B function.  

However, whether a DNMT3B-dependent epigenetic regulatory network modulates exon 

usage and transcription of alternative isoforms remains to be determined. 

Through a large-scale integrative study we show that human DNMT3B germline mutations 

perturb its intragenic methyltransferase activity, affecting the relative abundance of 

transcript isoforms in the context of Immunodeficiency, Centromeric instability, Facial 

anomalies syndrome type-1 (ICF1). This correlates with changes of H3K4me3 and 

H3K27me3 at isoform-specific transcription start sites. Notably, the newly identified 

DNMT3B target genes might significantly contribute to ICF1 phenotype. 
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Chapter 1 

Introduction 
 

 

Within the last decade we have witnessed an important scientific 

metamorphosis. Indeed, the huge progresses in the field of molecular biology 

and in the same time technical engineering have led to the introduction of 

Next-Generation Sequencing (NGS) technologies (Margulies et al., 2005) 

changing the manner to study biological phenomena.  

In particular, the traditional approach to study a single isolated gene to 

understand the logic of complex systems, such as development and response 

to environmental stimulus, has been rapidly replaced by the use of genome-

scale data (Hawkins et al., 2010). This revolutionary process was already 

induced by "array" methods but it has been further speeded up in the era of 

NGS. Moreover, thanks to the new technology intrinsic advantages, making 

the NGS data not limited by a priori knowledge of the query genome or 

genomic features, the highly precise characterization and quantification of 

novel regions or isoforms has been possible (Hurd and Nelson, 2009).  

A second advantage is the reduction of the background signal in NGS 

experiment when compared with the hybridization methods, associated to 

higher levels of reproducibility for 

technical replicates.  Moreover, in 

experimental terms, to perform NGS 

analysis nanograms of sample are 

sufficient to obtain good data, allowing 

the reduction or the elimination of the 

reliance on PCR amplification (Hurd and 

Nelson, 2009).  
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All these advantages combined to the reduction of sequence costs are 

contributing to increase the number of single laboratories and big consortia 

that are using routinely the high-throughput sequencing to address their 

research. However, this "democratization" of genome-wide techniques led to 

the generation of a huge amount of large data sets (Berger et al., 2013). In this 

view, it is impressive that in the past decade the amount of published 

sequences outstrips the prediction based on the Moore's law (Kahn, 2011) with 

a new sequence data grown exponentially each year (Figure1, (Marx, 2013)).  

The big explosion of sequence data has introduced new challenges in the 

biology field, such as the analysis and the integration of all the big-data 

produced. 

At present, HiSeq by Illumina and Ion Torrent by Life Technologies represent 

the two main platforms for deep sequencing. Their output in terms of read 

number per run is 600Gb (read length 2x100bp) and 1.5-2Gb (read length 200-

400bp) respectively. Moreover, other sequencing technologies have been 

released, the Heliscope (15Gb and reads length ~30bp) from Helicos 

BioScience and the PacBio SMRT (5Gb and 50% reads > 10kb) from Pacific 

Biosciences. Nevertheless, there is an emerging sequencing platform that has 

the potential to make this field a step forward, the nanopore technology. It 

implies long read lengths, of up to 10kb, minimal requirements of reagents 

and sample preparation and high sequencing rate at low cost. Despite these 

advantages, several technical problems relative to the nanopore sequencing 

remain to be solved. 
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1.1 Quality control and mapping of sequencing data 

Raw sequencing data derive from the acquisition and processing of several 

images; this process can influence the quality of raw data. In order to evaluate 

the sequencing quality, several tools have been developed, allowing the 

evaluation of read (i.e., a consecutive sequence of nucleotides) quality, read 

duplication rate, GC content, nucleotide composition bias, etc. 

The base-calling quality from a Sanger sequencing was measured using the 

Phred quality score (Q), in which Q is depending by the probability P of 

erroneous call, according to the equation Q = −10 × log10(P). This suggests 

that if the quality score is 30 the probability of incorrect call is 1/1000. 

In most of the sequencing output files the Q value is not reported in number 

format but in ASCII code (e.g., 33–126 or “!” to “V”). 

 
Fig. 2 (a) The boxplot displays “per nucleotide quality score.” The Phred quality score 
distribution of all the reads is (Y-axis) is shown per each nucleotide position (X-axis). (b) 
“per sequence quality score” distribution, in this case the Phred score is calculated for each 
reads. 
 

 

The Figure 2 reports two types of graph showing the Phred quality. In the 

graph a the Phred is summarized per read position while in b the distribution 

of total tags based on the Phred average per read is reported. In general, it is 
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recommended to use reads with scores over 20. Phred score higher than 30 

indicates very good quality of the nucleotide sequencing, between 20 and 30 

the quality is still acceptable while <20 indicates poor quality. 

GC content (or guanine-cytosine content) is a further parameter that can be 

assayed after confirming the quality of raw data. This is a way to measure the 

DNA composition. Analysis tools often report a diagram, similar to what 

showed in Figure 3, in which it is reported for each base of the reads the 

nucleotide frequency (a) or the distribution of the sequences per GC content 

(b)  . In the graph a, the lines should be roughly flat around 0.25, even though 

in the first 12 nucleotides usually a large deviation from 0.25 is observed 

because these positions represent the random hexamer priming during PCR 

amplification. A serious bias in these analyses is caused by the 

overrepresentation of some sequences, and it could influence the coverage 

uniformity. The low-quality reads defined by the read parameter described 

above are unlikely to be informative and therefore should be removed. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3(a) Diagram displays nucleotide composition (expressed as nucleotide frequency) of all 

overlaid reads  (b) In the graph is reported the “per sequence GC content” distribution. 
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In order to extrapolate a biological meaning from millions of good quality 

reads produced by sequencing experiments, the short-sequences have to be 

aligned against the reference genome, to identify their genomic origin. The 

classical mapping approach, in which the single read is compared to the 

whole-genome sequence for each base position, would have high 

computational costs. Currently the running time of the mapping is reduced 

through an approach involving the pre-processing of the reference genome 

into a flexible and compact indexed format. The most common short-reads 

alignment tools, such as Burrows-Wheeler Aligner (BWA), Bowtie and SOAP 

software references, use as core-technique an indexed and compressed 

reference genome in FM-index format, which is a compressed data structure 

for sequence data obtained by the combination of two diverse algorithms: 

Burrows-Wheeler transformation (BWT) and the suffix array (Figure 4).  

The BWT (Burrows and Wheeler, 1994; Margulies et al., 2005) is a string 

transformation that converts highly redundant sequences producing an output 

string which can be easily compressed (Nelson, 1996). To obtain the 

transformation, the input sequence should be rotated in a matrix in which each 

position shifts in the start position exactly once, then the matrix is sorted in the 

lexicographical way, redundant rows are grouped together and the last column 

is extracted as output sequence (Manzini, 2001).  

On the other hand, the suffix array method indexes all possible suffixes of a 

string (Manber and Myers, 1990). They are reported and ranked in the 

alphabetical order. The suffix array can be used as an index to quickly locate 

every occurrence of a substring the clustered pattern within the sequence, 

allowing the efficiently finding with two binary searches.  
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Fig. 4 The figure summarizes (a) Burrows-Wheeler transformation and (b) suffix array steps. 

 

From the combination of BWT and suffix array it has been extrapolate an 

hybrid method ideal to index the short-reads, the FM-index (Ferragina and 

Manzini, 2005). The FM-index is a suffix-array-like format build starting from 

a BWT transformed reference sequence. This transformation and compression 

allows significant reduction in terms of storage space and of mapping time 

costs (Berger et al., 2013).  

To speed up the mapping process, the parallel dynamic programming in 

Bowtie2 software has been implemented few years ago. This implementation 

allows improving the powerful of the long-reads mapping reducing the used 

time (Langmead and Salzberg, 2012). 

The mapped reads contain a magnitude of potential information that needs to 

be pulled out in order to answer specific biological questions. The analysis 

pipeline that follows the mapping is strictly linked both to the feature of the 

sequenced sample and the used high-throughput technology. In fact, the NGS 

approach has been combined with different experimental protocols to have a 

genome-wide view in different studies of cellular processes, including 

expression analysis, epigenome and interactome. 
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However, even though improvements in the mapping algorithm development 

have been carried out, it is still not possible to map all the reads to the 

reference genome. This is caused perhaps by sequencing errors, structural 

rearrangements or insertions in the query genome, or deletions in the 

reference. Indeed, the unmapped reads can be highly informative in studies 

about structural variants and non-reference insertions.  

Other unsolved challenges in alignment field is the ambiguous mappability of 

some reads derived from regions containing low-degeneracy repeats or low-

complexity sequences. The ‘mappability’ (also known as uniqueness) of a 

sequence within a genome has a major influence on the average mapped depth 

and is an important source of false-negative single-nucleotide variant calls. 

Mappability improves with increased read length or using paired-end libraries, 

which increases the chance of one read of the pair mapping to a unique region 

outside the repeats.  
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1.2 Transcriptomics 

The first application of NGS to experimental protocol was in transcription 

studies. Indeed, the introduction of RNA sequencing (RNA-seq) allowed the 

estimation of the abundance level or the relative changes of each possible 

transcript. The RNA-seq is the set of experimental procedures that generates 

sequences starting from cDNA derived from RNA molecules. The RNA-seq is 

a very powerful technology because of the low background noise, the single 

base-pair resolution and the dynamic detection range. Moreover, the 

transcriptome analyses performed using this technology are not limited to the 

interrogation of a priori knowledge about specific sequences; this allows their 

application to identify completely novel and not annotated transcripts. 

This is the reason why the RNA-seq is also used to catalogue new different 

categories of non-coding RNAs (ncRNAs); to date, it allowed the annotation 

of long intergenic non-coding RNAs (lincRNAs, length>=200bp), microRNA 

(miRNA, length ~22bp), short interference RNAs (siRNAs) and other classes 

of small ncRNAs, such as snRNAs and piRNAs. Each of these ncRNA classes 

has its specific role in the regulation of molecular processes, including RNA 

stability and chromatin structure conformation. Moreover, strand-specific 

RNA-seq (which retain the orientation of original RNA molecules) studies 

have shown a much more complicated and not completely explained level of 

regulation mediated by antisense transcripts. Furthermore, using RNA-seq it is 

possible to get information about the expression of pseudogenes, 

retrotransposons and other repeats.  

In this perspective, the transcription process represents a tightly regulated 

system that allows the fine-tuning expression in time-, cell-type- and 

stymulus-dependent manner. The RNA-seq studies performed to evaluate this 

phenomenon provided us with information about the transcription of diverse 

isoforms from the same genomic locus. These events can derive by the 

selection of alternative transcriptional start sites (TSS), events of alternative 

splicing or premature transcription end sites (TES). 
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Although the RNA-seq is becoming a routinely analysis, it is an ever-evolving 

process that require powerful and updated algorithms able to answer all these 

biological questions. A variety of tools is available to analyze the RNA-seq 

data sets. 

The commonly used short-read alignment programs discussed above are not 

sufficient to an exhaustive RNA-seq mapping. In fact, they are not suitable to 

map reads located in poly(A) tails or exon-intron splice junctions. The reads 

originated from exon-intron boundaries are very helpful to identify splicing 

variant patterns. Accordingly, a number of tools as for instance TopHat and 

MapSplice are able to identify the junction from where the reads were 

originated.  

To measure the gene expression levels, the mapped reads in the gene locus are 

counted. The most common pipeline for the analysis of RNA-seq considers 

the expression of the full gene and counts the reads mapped on all the 

associated gene exons. A simple procedure for read counting is to use 

coverage commands available in several packages for NGS analysis, such as 

the coverageBed in the Bedtools utility; these algorithms starting from the 

position of mapped reads in bed (tab-delimited file in which are reported in a 

prefixed order the chromosome, the start and end position of each mapped 

read) or bam files (binary version of a tab-delimited text file, SAM file, that 

contains the complete sequence alignment data) are able to count reads 

mapped in specific genic regions (e. g. genes or exons) available in bed format 

file. Specialized tools for read counting are available, as for instance HTseq. 

HTseq is a very famous and accurate counter; it offers to the user the 

opportunity to control several parameter settings, in particular it is able to 

recognize reads covering more than one gene. This tool requires a reference 

list of genic features available in a General Feature Format (GFF) file (tab-

delimited file containing all the information about gene features). In the last 

years several other free counter-tools were published, most of them are 

available as packages for the statistical integrated suite R, such as 
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summarizeOverlap and featureCount; each tool presents specificity and 

settable parameters, thereby influencing the final read estimation. An other 

source of counting variability is the annotation used; indeed, the transcript 

annotation on which is based the gene model set is important for the 

expression analysis. Moreover, feature GFF from diverse databases (e. g. 

RefSeq or Ensembl) can include different structures for the same gene, that 

will result in discordant read estimations. Zhao and Zhang have recently 

analyzed this aspect (Zhao and Zhang, 2015) evaluating the weight of gene 

model on the estimation of gene expression. They found that the influence of 

the annotation is dependent on the region feature; in particular, the mapping of 

junction reads is more affected than the not-junction read mapping. Indeed, 

only the 53% of junction reads were mapped to exactly the same genomic 

location, while the non-junction reads aligned in the same position were the 

95%. From this perspective, it appears even more evident the importance to 

validate the results obtained from in silico analyses through independent "wet" 

experiments. 

To ensure accurate inference to differential expression analysis, counted reds 

need to be normalized before comparing them between different conditions. 

Multiple normalization methods have been developed to this purpose. For 

instance, the quantile normalization can improve the mRNA-seq data quality 

including those from low amounts of RNA.  

Several statistical tests can be applied on normalized count matrix to evaluate 

the significant changes in gene expression across different conditions. In 2008, 

Mortazavi (Mortazavi et al., 2008) proposed the RPKM (Reads Per Kilobase 

per Million of mapped reads) as a method of quantifying gene/transcript 

expression from RNA sequencing data by normalizing on the total number of 

mapped reads and length of the analized gene (or feature). In case of pair-end 

reads it is instead used the FPKM (Fragments Per Kilobase per Million 

mapped fragments, where a fragment), which describes the relative abundance 

of transcripts in terms of the expected biological objects (fragments) observed 
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from the RNA-Seq experiment. Recently, it has been shown that 

RPKM/FPKM do not represent the best approach for data normalization 

because they handle all the reads almost uniformly, without considering the 

gene composition (Dillies et al., 2013). In case of differential expression 

analysis, other normalization approaches included in the differential 

expression model are more indicated. The simplest analysis includes the 

application of count-based probability (e.g., Poisson) distributions followed by 

Fisher's exact test. However, this strategy has as bias that it does not consider 

the biological variability and this is the most important task in the differential 

expression analysis. Indeed, to statistically highlight the differences across 

samples it is mandatory to have a large number of replicates to build an 

efficient and powerful statistical model to describe the data. Working with 

biological and technical replicates allows the assessment of biological 

variability and the statistical measurement of differentially expressed genes 

can be performed simply applying an extended Poisson distribution. However, 

it has been noted that the Poisson distribution underestimates the variation 

seen in the data (Nagalakshmi et al., 2008), a problem known as over-

dispersion. Unfortunately, "wet" biologists know how it is often difficult to 

have a large number of replicates because of both the still high sequencing 

costs and, even more important, the scarcity of samples available for the 

sequencing. Therefore, several tools for the detection of significantly 

differentially expressed genes have overcome this problem applying the 

Negative Binomial distribution because of its ability to trade with the over-

dispersion problem. The improvements in the differential gene expression 

studies introduced by Negative Binomial distribution allowed this 

methodology to become the dominant one in the modeling of RNA-Seq counts 

(Zhang et al., 2014), Examples of tools based on the Negative Binomial 

distribution are Cuffdiff (tool included in Cufflinks package), EdgeR and 

DESeq (R packages). They are the most used algorithms in the biomedical and 

clinical published research. In the expression analysis a further level of 



 13 

complexity is added by the expression of different isoforms from the same 

genic locus. 

The isoform composition influences and modulates the efficiency of a large 

number of pivotal molecular processes; furthermore, its alteration is strictly 

associated to pathological conditions. 

The expression of different isoform is caused by the alternative splicing of not 

constitutive exons or by the selection of different TSS. The alternative splicing 

affects around 95% of multi-exonic genes; this phenomenon allows the 

expression of isoforms that differ for the inclusion/exclusion of one or more 

specific exons or just an exon portion, or the retention of the intron. The 

splicing is a very complex multifactorial process and it is regulated by RNA-

RNA molecule, RNA-protein and protein-protein interactions. Tissue-specific 

expression of RNAs and/or proteins that take part to the splicing machinery, 

also known as spliceosome, led to the contest-dependent expression of specific 

isoforms. 

RNA-seq technology allows the estimation of the isoform abundance in a 

genome-wide perspective. In this view, many methods and tools have been 

developed to quantify the isoform expression and most of them are based on 

Bayesian inference methodology, as for instance BitSeq and MISO (Mixture 

of Isoforms). BitSeq estimates the expression of individual transcripts from 

different RNA-seq experiments while MISO is able to discriminate the exon 

inclusion level, returning as output both the information about isoform 

abundance and exon usage. Among other algorithms, MATS (Multivariate 

Analysis of Transcript Splicing) is focused on the statistical detection of 

differential alternative splicing events from RNA-seq data. However, the field 

of RNA-seq usage in alternative splicing studies is still in the early stage of its 

development and certainly it will benefit of new methods and strategies. 
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1.3 Epigenomics 

NGS technology found a very broad application in the epigenetic field. 

Epigenetic studies focus their attention on the heritable features that modulate 

the genome–environment interaction without DNA sequence alterations. The 

epigenetic traits often reveal extensive flexibility, enabling the cell to adapt to 

environmental changes and leading to acquisition of appropriate gene 

expression profile. 

The accurate measurement of epigenetic marks is of crucial importance, not 

only to identify pathologic conditions associated to epigenetic aberrations, but 

also to deepen our insights into the mechanisms by which epigenetic drivers 

control biological processes. 

A widely studied subset of epigenetic marks is composed by the histone 

modifications. Histone modifications mark the genome and play a key role in 

regulation of its accessibility and spatial organization.  In fact, the DNA 

molecule is too long to be stored in a nucleus without any superior 

organization, and therefore a complex structure called chromatin evolved, in 

which the DNA is wrapped around the nucleosomes. Nucleosomes are 

composed by protein complexes, which are formed by one H3-H4 tetramer 

and two H2A-H2B histone dimers. The histone N-terminal tails are exposed 

outside the scaffold core of the nucleosome and can be affected by post 

translational modifications (e.g., methylation, acetylation, ubiquitination) 

leading to different expositions of the DNA sequences depending on the 

nature of the chemical change and the amino acid residue that is modified 

(Park, 2009).  

In the late 1920s, two different chromatin condensed states were 

microscopically identified as heterochromatin and euchromatin. It was early 

supposed that structural differences might correspond to functional 

distinctions. Later, the euchromatic regions have been described as permissive 

open regions associated to active transcription, while the heterochromatin has 

been described as highly condensed and transcriptionally repressed. The 
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heterochromatic status can be constitutive (as for instance the condensation of 

centromeres and telomeres) or can be temporary undergoing a transition from 

active to inactive state and vice versa. 

Up to 15 years ago, studies linking gene expression and chromatin 

organization were limited to a few genes. However, the novel genome-wide 

techniques have now radically increased the number of information that it is 

possible to obtain from a single experiment, providing a much more detailed 

view of functional regulation of genome accessibility and its role in the 

modulation of gene expression. 

The chromatin immunoprecipitation (ChIP) is the main used tool to go inside 

the study of the role of histone modifications. The ChIP is a technique for 

assaying protein–DNA interactions in vivo, in which the binding between 

protein and DNA is fixed using formaldehyde or UV and the chromatin is 

sheared by sonication into small fragments (around 200–500 bp). All the 

regions interacting with the target protein (or enriched for a specific histone 

modification) are precipitated using a specific antibody able to recognize the 

target protein or a particular histone modification. The DNA fragments 

enriched in the immunoprecipitation step can be analyzed in gene specific 

manner using the polymerase chain reaction (PCR) both quantitative and 

semi-quantitative (ChIP-(q)PCR) or in a whole genome view using the 

sequencing technology (ChIP-seq) (Comes et al., 2013).  

Data derived from ChIP experiments are crucially influenced by several 

aspects, first of all the quality of antibody-antigen recognition. A specific and 

sensitive antibody will result in a more clear enrichment signal.  

Other problems in ChIP-seq data can be the artefacts, which may derive from 

several potential sources. The open chromatin regions, for example, are more 

sensible to the shearing creating an unbalanced distribution of sequence tags 

across the genome (Park, 2009). Also, repetitive sequences can show 

enrichments because of imprecisions in the number of copies of the repeats in 

the assembled genome. Therefore, the ChIP-seq profile should be normalized 
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against a control sample to determine the significance of each single peak. 

Usually, in ChIP experiments two types of control are used: positive and 

negative control. The positive control is always the input sample, which 

represents the starting chromatin.  By contrast, the negative control is achieved 

after immunoprecipitating a parallel sample with a not specific antibody, 

generally the rabbit IgG, or a mock sample, immunoprecipitated in absence of 

antibody.  

In ChIP-qPCR, the input sample is used to normalize for the amount of 

starting DNA the amplification obtained from the IP sample (defined as input 

percentage; %input), while IgG and mock can be used to estimate and correct 

for the background noise. 

In ChIP-seq, there is no consensus on which of these controls is the most 

appropriate. A huge fraction of all published ChIP-seq studies use the 

normalization against the Input DNA; in ChIP-seq context, this normalization 

corrects for bias related to the variable solubility of different regions or the 

differences in the shearing sensibility or the amplification artefacts. The use of 

mock or IgG IP as ChIP-seq controls is  less common, because a very little 

DNA amount can be pulled down in the absence of antibody or with a not 

specific one. Therefore the results of multiple mock or IgG IPs may not be 

consistent. 

To obtain a good control for ChIP-seq a large amount of sequencing reads is 

required because many of the sequenced tags for input DNA are spread evenly 

across the genome. To obtain accurate peak detection throughout the genome, 

sufficient numbers of tags are needed at each point; this will improve the 

power of peak detection reducing errors due to sampling bias. Therefore, the 

total number of tags to be sequenced is potentially very large. Alternatively, if 

the study involves only the detection of differential binding patterns between 

two or more conditions, starting from the same genomic background, it is 

possible to avoid the control sample sequencing (Park, 2009). 

The sequencing depth is important not only for the controls but also for the 
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analyzed samples. It is hard to define a priori the optimal amount of reads 

needed for a specific experiment. Intuitively, if the study is focused on a 

protein that binds the genome in a large number of sites or on an histone 

modification that covers spread genomic domain much higher number of tags 

will be needed to cover each bound region at the same tag density; conversely 

if the protein binds few and very defined target region in the genome the 

amount of needed reads for the binding detection will be smaller. 

To define the sufficient depth of ChIP-seq samples one considerable criteria 

would be the finding of a "saturation point" binding sites in which the number 

of identified peaks does not change adding more reads.  

In fact, as demonstrated in a recent simulation study (Kharchenko et al., 

2008), when the minimum sequence depth is achieved, the rate at which new 

sites were being discovered using more reads slows down, (described as 

plateau in the graph read number versus detected peaks) (Park, 2009).  

 

 
Fig. 5 (A) Diagram displays the rate of peak detection based increasing the sequencing 
depth. (B) Sequencing depth affects the peaks detection; the peak in panel Ba is not 
statistically significant even has the same Enrichment ratio of significant peak in panel Bb. 
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However, these considerations are true only if a threshold on the minimum 

fold enrichment between the peaks in the ChIP experiment and the peaks in 

the control is imposed (Figure5). 

After read alignment, it is important to detect genomic loci that are 

significantly highly enriched in the ChIP sample than in the control. To find 

these regions, the common pipelines include an analysis step in which the 

coverage level is typically transformed to count data for predefined DNA 

regions, for example, genes or promoters or equally sized bins or extracted 

from the data using peak detection algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Schematic representation of strand-specific profiles at enriched sites of DNA 
fragments from 5'-sequenced chromatin immunoprecipitated sample. 
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Algorithms able to scan the ChIP-seq enrichment along the genome are 

commonly known as  "peak callers". The first type of tools for the peak 

detection was based on the scoring of predefined regions by the number of 

tags in a window and then assessed by a set of criteria based on factors such as 

enrichment over the control and minimum tag density, whereas the more 

recent tools are based on the read directionality. As shown in figure, mapped 

reads form two distributions, one on the positive and one on the negative 

strand, because of the 5'end sequencing of the fragment (Figure6) (Park, 

2009). The two distributions are combined in a single distribution using an 

inclusion profile algorithm. This step combines the distributions by shifting 

each of them towards the center or by extending each mapped position into an 

appropriately oriented fragment length. This approach is more accurate in the 

profile description than the width of the binding, but it requires the estimation 

and the uniformity of the fragment size. Also in this type of analysis it is 

important to have a statistical estimation of the peak quality. For this reason, 

the putative peaks are compared with the background distribution, either by 

simulation (nonparametric) or by a statistical modeling approach. 

As already mentioned above, the binding profile of histone modification 

and/or transcription factors to the DNA might be very different depending on 

the role of the studied protein; indeed, transcription factors and histone 

modification that marks regulatory elements, such as promoters and/or 

enhancer, give rise to very sharp peaks, whereas broad signals are often 

associated with histone modifications that mark domains. Although specific 

algorithms for the detection of both these types of peaks have been published 

and widely used, tools able to discover enrichment of proteins or histone 

modifications that have mixed binding profiles are still not optimized. 

In order to assay significant differences in ChIP-seq experiment carried out in 

various conditions, basic statistical methods can be applied, as for instance 

Wilcoxon rank–sum and t-test. However, the distribution of reads in ChIP-seq 
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experiment can also be modelled as a negative binomial distribution. This 

allows to take advantage of RNA-seq data processing tools, such as DESeq or 

EdgeR, especially in experiments with a low number of replicates. These types 

of experiments can take advantage also from the statistical power of Hidden 

Markov models (Rabiner, 1989), as for instance the ChIPDiff tool in which 

the correlation between consecutive bins is adapted an Hidden Markov model 

(HMM). Here, the transmission probabilities were automatically instructed in 

an unsupervised way, followed by the inference of the states of histone 

modification changes using the trained HMM parameters (Park, 2009). 

The downstream analyses from peak detection include the discovery of 

binding motif and/or the positional association with genomic features. 

The search for specific binding sequences is a characteristic step in the 

description of protein-DNA interactions; in particular it is recommended in 

studies of proteins with very sharp peaks. The sequence can be obtained using 

top-scoring peaks as input data into motif-finding tools, such as meme, weeder 

and webmOTIF. These tools return potential motifs associated to their 

statistical significance. 

 After the identification of the peaks, their localization in the genomic context 

can be analyzed. This step is also known as "peak annotation", which means to 

annotate the proximity of each peak to specific genomic features,  as 

transcriptional start site, exon–intron boundaries and the 3'ends of genes . 

However, it is also possible to customize these analyses looking for other 

features of interest, such as repetitive elements or enhancer regions. A 

common analyses, that is performed in ChIP-seq experiments for the histone 

H3 trimethylated at lysine 4 (H3K4me3), is the identification of TSS marked 

by this histone modification. In fact, it is known that H3K4me3 is enriched on 

the TSS of active genes. 
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DNA methylation is an additional important epigenetic player (Bird, 2002); it 

has an impact on gene regulation, chromatin structure, development and 

disease. Generally, most mammalian genomes are largely methylated except at 

active or “poised” promoters, enhancers and CpG islands, where DNA 

methylation has a repressive effect (Jones, 2012). Nevertheless, gene bodies 

DNA methylation has been associated with high expression levels. DNA 

methylation is established and maintained by the combined function of three 

active DNA methyltransferases DNMT3A, DNMT3B, and DNMT1 (Goll and 

Bestor, 2005). In mammalian cells, these enzymes catalyze the covalent 

addition of a methyl group preferentially to cytosine of CpG dinucleotides, 

and most CpG sites in the genome are methylated. DNA methylome studies 

took advantages from the introduction of NGS technologies. In particular, the 

single-base resolution in a genome-wide view allowed to discover that 

approximately 25% of methylated cytosine in stem cells was in a non-CG 

context in contrast to what observed in differentiated cells (Bock, 2012).  

These studies have been carried out using the bisulfite sequencing technology, 

in which genomic DNA is treated with the sodium bisulfite allowing the 

conversion of unmethylated cytosines (Cs) in thymines(Ts) whereas 

methylated Cs are largely protected from bisulfite-induced conversion. The 

bisulfite treated DNA molecules are sequenced and then aligned to the 

reference genome with short‐read aligners that have to take into account the 

depletion of Cs after the bisulfite treatment. Two alternative approaches have 

been developed. Aligners as BSMAP, GSNAP and RRBSMAP replace Cs in 

the genomic DNA sequence by the letter Y, which matches both Cs and Ts in 

the read sequence, or they modify the alignment-scoring matrix in a way that 

mismatches between Cs and Ts in the read sequence are not penalized. 

Conversely, tools as Bismark and BS-Seeker are defined three-letter aligners 

because they use to convert all Cs into Ts in the reads and for both strands of 

the genomic DNA sequence (Bock, 2012). This way, they can carry out the 
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alignment exclusively on a three-letter alphabet (namely, A, G and T) using a 

standard aligner, such as Bowtie.  

The three-letter approach is more accurate in the definition of the methylation 

level even though the decrease of the sequence complexity increases the 

possibility of ambiguous alignments.  

After the alignment, the methylation level of each covered genomic Cs can be 

estimate. The most common and simple way to perform this analysis is to 

calculate the methylation percentage of each C of the reference genome by 

dividing the sequenced Cs number on the total number of aligned nucleotides 

(Cs and Ts). However, to improve the accuracy additional steps can be added 

to the analysis, such as local realignment, analysis of sequence quality scores 

and statistical modeling of allele distributions. The use of variant caller, such 

as Bis‐SNP, can reduce a common error source in the analysis of DNA 

methylation data, helping to distinguish bisulfite-induced changes from 

genetic variants. This is possible considering that the nucleotide variations 

induced by bisulfite treatment exhibit a G on the opposing strand, whereas 

genetic C-to-T variants exhibit an A.  

The sequencing of genomic DNA can be performed on genomic scale or on 

enriched regions and these two different strategies are defined as "whole-

genome bisulfite sequencing" (WGBS-seq) and "reduced-representation 

bisulfite sequencing" (RRBS-seq), respectively. 

The key advantages of the WGBS-seq are the higher coverage, the 

quantitative accuracy and the reproducibility. However, the WGBS-seq is still 

too much expensive. In order to reduce the costs of analysing the methylation 

status of CpG-rich regions, the RRBS-seq is extensively used. This strategy 

combines the bisulfite sequencing with enrichment strategies using restriction 

enzymes. However, methylation studies can be performed also with 

enrichment-based strategies. In particular, methylated DNA can be enriched 

using methylation‐specific antibodies  (MeDIP–seq) or methyl‐CpG‐binding 
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domain (MBD) proteins (MBD‐seq) and the pulled-down mehylated DNA can 

be sequenced. 

The enrichment‐based DNA methylation derived tags are aligned to reference 

genome using a standard aligner, such as Bowtie. Further analysis is the 

estimation of enrichment scores by counting the number of unique reads that 

overlap with each CpG or with the genomic regions of interest. A bias can 

derive from this kind of analysis if the enrichment score is not normalized on 

the CpG density of the region. To correct this bias, several algorithms have 

been developed. For example, the BATMAN algorithm uses a Bayesian 

method, which provides accurate results but it is too slow when applied to 

large data sets. The MEDME method is based on a logistic regression model 

for data normalization, but it is rarely used owing to the need for calibration 

using a fully methylated reference sample. The MEDIPS software combines 

the previous reported tools into a data normalization and analysis pipeline that 

is sufficiently fast and easy to use to be practical for routine processing of 

MeDIP–seq and related data types (Bock, 2012). 

After the estimation of the absolute methylation level, the typical next step is 

the identification of differentially methylated regions (DMRs) between 

samples (for example, cases versus controls).  

The vast majority of interesting DMRs fall within a size range of a few 

hundred to a few thousand bases, although a single methylated CpG may 

occasionally modulate the expression of a gene. In the most basic form of 

DMR detection, T-tests or Wilcoxon rank sum tests compare the DNA 

methylation levels of each C between two sample groups. Several more 

advanced methods have been described that aim to improve DMR detection 

using mixture models, feature selection, aggregation of genomic regions by 

type.  
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1.4 Data integration 

Nowadays, all these different "omic" approaches are widely used to measure 

gene expression or to obtain genome-wide maps of transcription factor and 

epigenetic signature profiles. Although several computational tools have been 

developed for their analysis demonstrating the	
   interplay between 

transcriptomic and epigenomic profiles, efficient pipelines for complete multi-

omic analyses are still limited. However, performing integrative analyses is 

helpful to address comprehensive studies to investigate some long-standing 

questions related to fundamental mechanisms of genome function and disease 

(Hawkins et al., 2010).	
  	
  

Data integration can be achieved in several ways, starting from the simple 

multidimensional view on Genome browser for the visualization of 

sequencing data. Looking at the expression and histone modification and/or 

DNA methylation profiles at few loci of interest can help to formulate new 

functional hypothesis. Anyway, to take advantage from the whole-genome 

approach, visualization tools are not sufficient. The first and easily used 

approach is the analysis of the overlap between lists of differentially expressed 

genes (resulted by RNA-seq experiments) and of genes enriched for a protein 

binding or for specific epigenetic changes. The enrichment for genes 

associated to interesting pathways or gene ontology can be calculated from the 

resulting subsets. 

In one of the first ChIP-seq and RNA-seq integration studies, the expression 

was considerated as a response variable to different interaction of transcription 

factor (TF) and a log-linear regression model was proposed (Ouyang 2009). 

The use of this regression strategy on a small number of histone modifications 

has shown its high precision also with these epigenetic marks (Karlic 2010). 

Cheng and collaborators used a different approach in which they measured 

epigenetic signals directly on genic features, such as TSS and TTS. Without a 

priori assumption on the relation between expression and specific profiles of 
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TF and histone modifications, they were able to capture much more complex 

functional interactions (Cheg 2011, 2012). 

The used strategies can be also applied in the evaluation how the epigenetic 

alteration impact on expression changes comparing two conditions. For 

example, Althammer and colleagues in 2012 analyzed the relationship 

between expression profiles in two conditions with the status of 13 features. In 

fact, they classified the genes as upregulated, downregulated and unchanged 

expression and associated to each of them a resuming vector with a value for 

each feature (included TF, histone modification and DNA methylation). 

Recently, a Bayesan mixture model has been proposed to estimate the weight 

of epigenetic variations on differential gene expression (Klein et al., 2014). 

Although realistic quantitative models of genome-wide regulatory networks 

are still missing, it is possible to discover the main interactions and the most 

relevant players combining in a unique pipeline supervised analysis to 

addressed biological questions. Therefore, from a biological point of view the 

integration step open up several possibilities to growth up new hypothesis 

(Angelini and Costa, 2014). 

 

Taking advantages from the integrative analyses, it has been reported that the 

DNA methylation is not only restricted to promoter regions but it is present at 

the intragenic regions, supporting the hypothesis of a more complex function 

for this epigenetic modification. Indeed, in transcribed regions DNA 

methylation might potentially silence alternative promoters, enhancers, 

transcription factor binding sites, retrotransposon elements, and other 

functional elements to ensure the efficiency of transcription (Maunakea et al., 

2010; Wolff et al., 2010; Kulis et al., 2012). Even more interestingly, this 

multi-omic approach led to discovery that DNA methylation plays a role in the 

processing of mRNAs during transcription modulating the elongation or 

splicing (Chodavarapu et al., 2010; Anastasiadou et al., 2011; Gelfman et al., 
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2013). Accordingly, DNA methylation has been recently found positively 

and/or negatively correlated with inclusion level of alternative exons 

(Maunakea et al., 2010; Shukla et al., 2011; Yearim et al., 2015). 

Moreover, integration studies can be very helpful for the molecular defects 

underlying the chromatin diseases, which represent group of human genetic 

disorder in which proteins modifying the chromatin and/or histone marks are 

mutated.  

In this thesis, an integrative analysis to heterogeneous genome-wide datasets 

of samples derived from patients of the rare chromatin disease, the 

Immunodeficiency Centromeric instability and Facial anomalies (ICF) 

syndrome, has been carried out. The multi-omic approach will support the 

discovery and the comprehension of still unknown defective molecular 

processes in this human disease (Angelini and Costa, 2014). 
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Chapter 2 

MATERIALS AND METHODS 
 

 

2.1 Cell culture 

Epstein Barr Virus immortalized lymphoblast cell lines (B-LCL) were derived 

from peripheral blood mononuclear cells  (PBMCs) of two unrelated ICF 

patients with missense mutations in DNMT3B, ICF1p1 (female, heterozygous 

A603T and intron 22 G to A mutation resulting in insertion of three amino 

acids (STP) in DNMT3B, Coriell Cell Repository) and ICF1p2 (male, 

heterozygous V699G and R54X mutation in DNMT3B, provided by Dr. R.S. 

Hansen). Control EBV-immortalized B-LCLs were from unaffected unrelated 

individuals (Ctrl1 and Ctrl4) and phenotypically normal parents of ICF1p1 

patient (Ctrl2 and Ctrl3). The B-LCLs from the ICF patients’ parents had a 

similar passage history as the patients’ B-LCLs. We confirmed the genome-

wide results in additional B-LCLs (kindly provided by Dr. Francastel, 

INSERM) deriving from ICF1 patients (ICF1pT and ICF1pY, with 

homozygous mutations D817G/D817G and T775I/T775I, respectively). DNA 

extraction was performed using Wizard Genomic DNA (Promega). For drug 

treatment, 1x106 control cells were plated and treated with 1uM 5-AzaC 

(Sigma) for 24h. Then, the medium containing 5-AzaC was removed and 

replaced with RPMI+FBS10% and cells were harvested at different time 

points (48h, 72h and 120h) for further analyses. Total RNA was extracted 

using the TRIzol reagent (Life Technologies) according to the manufacturer’s 

instructions. RNA quality was checked on the Agilent 2100 Bioanalyzer and 

quantity was measured on a Qubit instrument (Life Technologies). 

 

 

2.2 Reference genome and transcriptome 
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For sequencing alignment we used the human reference genome assembly 

GRCh37/hg19 

(http://ftp.ensembl.org/Homo_sapiens.GRCh37.75.dna_sm.primary_assembly.

fa.gz), while for transcriptome annotation the version 82 of the GRCh37 

(http://ftp.ensembl.org/pub/grch37/release-

82/gtf/homo_sapiens/Homo_sapiens.GRCh37.82.chr.gtf.gz) was used. 

 

 

2.3 Reduced representation bisulfite sequencing (RRBS) and data 

processing 

1-10ug of DNA was used for RRBS library preparation according to Illumina's 

instructions. Libraries were generated and sequenced at IGA Technology 

Services (Italy), by using the NuGEN Ovation Ultralow Methyl-Seq Library 

System and 50bp single-end sequencing on the Illumina HiSeq2500 platform. 

Sequence reads were processed by adaptor trimming (Illumina Pipeline 

Casava) and filtering for low quality reads and subjected to quality control 

(FastQC).  

Two technical replicates for each DNA sample with independent bisulfite 

conversion and library preparation were produced.  

Reads were aligned to the reference genome using the Bismark aligner 

(Krueger and Andrews, 2011) and methylation call was performed with 

methylation extractor script. A summary of mapped reads using the BisMark 

aligner against the reference genome is presented in TableS2. The overall 

DNA methylation correlation between the two technical replicates was 0.95 

for both Ctrl1 and Ctrl2, 0.96 for the ICF1p1 and 0.91 for the ICF1p2. The 

highly correlated replicates were pooled for further analyses. We used the R 

library package methylKit (Akalin et al., 2012) to calculate methylation 

percentages per each single CpG, by dividing the number of methylated Cs by 

the total coverage on that base. CpGs with at least 10X read coverage were 

retained for calling CpG methylation. We calculated DNA methylation state at 
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1,291,564 CpG sites of genomic regions including promoters, exons, introns, 

intergenic regions and a high percentage of CpG islands (FigS1A). 

Differentially methylated regions (DMRs) between samples were defined as 

sequences with minimum 10 (less than 2Kb apart) common CpGs with 

concordant methylation difference (≥ |25%|). The whole genome bisulfite 

sequencing (WGBS) data were downloaded from the Gene Expression 

Omnibus (GSE37578)(Heyn et al., 2012). DMR annotation to genes was 

performed using the R library package ChIPpeakAnno v.2.16.4 (Zhu et al., 

2010). Distances between peaks and genes were calculated with a home-made 

script and TSS-2Kb/TTS+2Kb was considered as distance. 

 

Gene-specific DNA methylation level was evaluated by MethylMiner 

Methylated DNA Enrichment Kit (Invitrogen) according to the manufacturer's 

instructions. Primer sequences are reported in TableS3. 

 

 

 

2.3 RNA sequencing and data processing 

RNA isolation and library construction was performed according to Illumina's 

instructions. After mapping the reads to the reference genome using TopHat2 

(Kim et al., 2013), differential gene expression between two different cell 

conditions was calculated using DEseq implemented in R (Anders and Huber, 

2010), while the relative isoform abundance estimation was performed using 

BitSeq (Glaus et al., 2012).  

Two independent RNA-seq experiments were carried out and the results were 

compared after performing the analysis of the two datasets separately. Reads 

were mapped to the reference genome using TopHat2 v.2.0.13 (Kim et al., 

2013). In the first step we aligned the reads against the transcriptome. We used 

the following non-default TopHat2 parameters: -r 250, -m 2, --min-coverage-

intron 50, --max-coverage-intron 100000, —mate-std-dev 50, —segment-
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length 17. The total tag number obtained for each sample is listed in TableS2. 

The counts of sequenced reads per annotated gene were derived with the use 

of htseq-count script distributed with HTSeq (Anders et al., 2015). We used 

the R library package DESeq v.1.20.0 (Anders and Huber, 2010) for 

measuring differential gene expression between two different cell conditions. 

DESeq treats gene expression data as count data modeled under a negative 

binomial distribution. We picked out genes with p-value <0.05. We considered 

as list of differentially expressed genes (DE-genes) only the overlapping group 

of genes between the two independent RNA-seq experiments. 

The relative isoform abundance estimation was performed using BitSeq 

(Glaus et al., 2012), which is a tool for inferring transcript expression with a 

probabilistic model of the read generation process based on a Markov chain 

Monte Carlo (MCMC) algorithm for Bayesian inference over the model. We 

used the default settings (-p) and we extract as optput the RPKM (-outType). 

From BitSeq output we selected only the genes shared by two independent 

replicates, which were associated to isoforms with: (σ2
ICF + σ2

wt) < 95th 

percentile, RPKM ≥ 0.1 (at least in one condition), log2(RPKMICF/RPKMwt) ≥ 

|1.5|.  

Gene ontology analysis was performed using DAVID Bioinformatics 

Resource (Huang da et al., 2009), while enrichment of specific pathways was 

analysed using Ingenuity pathway analysis (IPA; http://www.ingenuity.com). 

 

 

 

 

2.4 Quantitative Real time PCR 

Total RNA from B-LCLs was reverse-transcribed using iScript cDNA 

Synthesis kit (Bio-Rad San Diego, California). Quantitative real-time PCR 

(qRT-PCR) was performed using SsoAdvanced™ universal SYBR® Green 

supermix (Bio-Rad) on Bio-Rad iCycler according to the manufacturer’s 
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protocols. The ΔΔCt method was used to determine relative quantitative 

levels.  GAPDH was used to normalize the data. Primer sequences for gene 

expression analysis are shown in TableS3. 

 

 

 

2.5 ChIP sequencing and data processing 

Chromatin immunoprecipitation was performed as previously described 

(Matarazzo et al., 2004). Suitable amount of chromatin was incubated with 5 

µg of the indicated antibodies against H3K27me3, H3K4me3, H3K9me3, 

H3K36me3, H3K4me2, Pol II, DNMT1 (Abcam) and anti-DNMT3B 

(Diagenode). Immunoprecipitated complexes were recovered with protein A 

sepharose (Pharmacia), washed with low and high salt buffers, reverse-

crosslinked, and purified. Primers sequences are reported in TableS3.  

Immunoprecipitated samples were used for preparing libraries and sequenced 

at NGS Core facility (IGB, Naples) or at IGA Technology Services (Italy).  

DNMT3B immunoprecipitated samples were sequenced at IGA Technology 

Services (Udine, Italy). 50bp single end reads were aligned on the reference 

genome using Bowtie v. 1.1.1 (Li and Durbin, 2009).  

The parameters used for Bowtie were –a, –m3, –-best, and –-strata.  

H3K4me3 and H3K27me3 immunoprecipitated samples were sequenced at 

IGB NGS Core facility (Naples, Italy) with SOLiD System 4.0 (Applied 

Biosystems). Reads were first analyzed by the Applied’s pipeline software for 

quality filtering and aligned to the reference genome by using Bowtie; we 

selected as parameters -C, -k1, -m3, --best, and --strata.  

The total tag number obtained for each sample is listed in TableS2. We 

selected for further analysis only uniquely mapped reads and removed the 

PCR amplification artefacts and the technical replicates were pooled together.  

All the reported results were obtained by normalizing for the total library size. 

DNMT3B peak calling was performed using MACS v.1.4.2 (Feng et al., 
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2012). The sample enrichments were normalized for cell line specific input. 

MACS parameter settings were: band width of 200bp (--bw), p-value 1e-4 (-p) 

and the range of high-confidence enrichment ratio against background 

including setting between 8 and 30 (-m). Moreover, we detected large peaks 

using EDD (Lund et al., 2014), setting a bin size of 2Kb (log_ratio_bin_size), 

a gap penalty of 5 (-g) and 20000 Monte Carlo trials (-n). Confidence intervals 

were calculated using the normal approximation method for binomial 

proportions. The SICER v.1.1 (Zang et al., 2009) peak-finding algorithm was 

used to identify the H3K4me3- and H3K27me3-enriched sites throughout the 

genome. For all these histone marks we selected peaks with a false discovery 

rate (FDR) of 1e-5. We used as window size and gap different values 

accordingly with the profile of analyzed histone marks. In particular, for 

H3K4me3 we used window size 200 bp and gap size 200 bp, while for 

H3K27me3 500 bp and 1000 bp. The gap size selection was performed as 

described (Zang et al., 2009). We counted the reads on each detected histone 

mark peak in all conditions using Bedtools (Quinlan and Hall, 2010) and we 

detected differentially enriched domain using DESeq. We picked out 

differentially enriched regions with p-value <0.01. Density plots were 

obtained using NGSplot tool (Shen et al., 2014). We calculated the read count 

per million mapped reads using fragment length (-FL) 300, as reference region 

(-R) the position of interesting regions extended of (-L) 2000 and smoothing 

window (-MW) 10 were used. 

DNMT3B peak annotation to genes was performed using the R library 

package ChIPpeakAnno v.2.16.4 (Zhu et al., 2010). The distances between 

peaks and genes were calculated with a home-made script and TSS-

2Kb/TTS+2Kb was considered. The pericentromeric domains were defined as 

the regions between the nearest gene to the centromere and the centromere, 

and filtering out the 10 kb proximal to the gene. Bedtools and Bedops (Neph 

et al., 2012) toolkits were used for the above described data analysis. 
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Gene-specific ChIP assays were carried out by quantitative Real Time PCR, 

by using SYBR Green quantitative PCR (SsoAdvanced Universal SYBR 

Green Supermix, Biorad) according to CFX96TM Real Time PCR Detection 

Systems. The enrichment of DNA was calculated in terms of % input = 2-ΔCt x 

100, where ΔCt (threshold cycle) is determined by CtIP sample - CtInput and 100 

refers to the input, which is 1% of the starting chromatin. 

 

 

 

2.6 Statistical analysis 

Gene expression, ChIP-qPCR, RIP-qPCR and gene specific methylation 

analysis were presented as means ± standard deviations (SD) from at least 3 

independent experiments. Statistical analyses were performed using T-student 

test (two-tails). P-values were adjusted with BH method and we generally 

considered the following values as statistically significant: *p-adj<0.05; **p-

adj<0.005; ***p-adj<0.0005. The significance of the overlapping between two 

and/or three gene lists was calculated using the hypergeometric test available 

in R. Statistics relative to DNA methylation comparison between samples was 

analyzed using Kolmogorov-Smirnov test and values were corrected with 

Bonferroni method. 

 

 

 

2.7 RNA-Immunoprecipitation (RIP) 

RNA immunoprecipitation experiments were performed using the Magna 

RIP™ RNA-Binding Protein Immunoprecipitation Kit (Millipore) according 

to the manufacturer’s instructions. Antibodies for RIP assays were anti-

DNMT3B (Diagenode) and anti-hnRNPLL (Aviva). Immunoprecipitated 

fractions were retrotranscribed and cDNAs were used for qPCR with gene-

specific primers. 
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2.8 Flow cytometry analysis 

Determination of cell surface expression of CD45RABC and CD45RO 

molecules was carried out by cytofluorimetric analysis using the FACS ARIA 

cell-sorting system and DIVA software (BD Biosciences). Direct 

immunofluorescence was performed using PerCP and FITC mouse anti-

human CD45RABC and CD45RO antibodies respectively, along with the 

appropriate mouse IgG isotype controls (BioLegend). Staining, washing and 

analysis were performed following the manufacturer's recommendations. 

 

 

2.9 Co-immunoprecipitation 

Co-immunoprecipitation experiments were performed using Nuclear Complex 

Co-IP kit (Active Motif) and following the manufacturer’s instructions. The 

antibodies used were the following: DNMT3B (Diagenode), Suz12 (Abcam), 

hnRNPLL (Aviva). 
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Chapter 3 

RESULTS 
 

 

3.1 ICF1-specific DNMT3B mutations mainly affect CpG methylation at 

intragenic regions 

In humans, hypomorphic DNMT3B mutations are sufficient to cause majority 

of the rare autosomal recessive disorder Immunodeficiency, Centromere 

instability and Facial anomalies (ICF) syndrome (MIM 242860) cases, 

reported as ICF type1 (Hagleitner et al., 2008; Matarazzo et al., 2009; 

Weemaes et al., 2013). Patients are characterized by DNA hypomethylation 

and decondensation of specific heterochromatic and euchromatic regions, and 

show alterations in tissue-specific gene silencing (Jin et al., 2007; Matarazzo 

et al., 2007). ICF1-specific DNA methylation defects give rise to severe 

chromosomal rearrangements only in lymphocytes, probably acting in the 

onset of immunological phenotype. Defective steps of B-cell terminal 

differentiation might contribute to the agammaglobulinemia in ICF syndrome, 

given that ICF peripheral blood only contain naive B cells, while memory and 

gut plasma cells are absent (Blanco-Betancourt et al., 2004). 

Most ICF1 patients carry missense mutations in or near the catalytic domain 

of DNMT3B (Weemaes et al., 2013). Nonsense mutations always occur as 

compound heterozygous, highlighting that the DNMT3B protein is essential 

for life, according to mouse models (Okano et al., 1999); (Ueda et al., 2006; 

Velasco et al., 2010). Mutations dramatically perturb the DNA methylation 

profile at satellite 2 and 3 of juxtacentromeric heterochromatin and at 

telomeric/subtelomeric repeats, where it associates with chromosomal 

instability and abnormal shortening of telomeres, respectively (Jeanpierre et 

al., 1993; Gisselsson et al., 2005; Yehezkel et al., 2008). 

Previous candidate gene approaches were unsuccessful in identifying ICF1-
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specific DNA hypomethylation at CpG island-associated promoters of DE-

genes, indicating either that only few of them are direct target of DNMT3B or 

that differences in DNA methylation level are outside promoters (Ehrlich et 

al., 2001; Jin et al., 2007). Methylome studies carried out in one ICF1 B-LCL 

suggested that DNA methylation defects might be more extended than what 

supposed until now (Heyn et al., 2012; Simo-Riudalbas et al., 2015). 

However, the study did not explore how DNA methylation defects 

functionally impact on gene expression regulation and whether this effect 

occurs through the modulation of other epigenetic marks.  

In this light, we carried out Reduced Representation Bisulfite Sequencing 

[RRBS; (Smith et al., 2009)] to quantify methylation differences at single CpG 

sites in B-LCLs derived from peripheral blood of two unrelated ICF patients 

with DNMT3B missense mutations, ICF1p1 and ICF1p2, compared to control 

B-LCLs. These cells represent a suitable model for ICF studies because of the 

central role of B cells in abnormal immunoglobulin production in ICF cases 

and the scarcity of primary B cells from patients, of which only few reach 

adulthood.  Despite cell culturing, B-LCLs maintain highly significant ICF-

specific differences in mRNA levels of immunoglobulin genes [(Ehrlich et al., 

2001; Gatto et al., 2010) and the present study)] and high frequencies of 

karyotypic anomalies described in mitogen-stimulated ICF lymphocytes 

(Gisselsson et al., 2005).  

We first quantified the methylation level of 1,291,564 CpGs spanning a 

number of different functional regions in the genome and belonging to 

different CpG contexts (FigS1A), and with sequencing depth of at least 10 

reads in each condition (the median depth was >23 reads among these CpGs in 

each condition). We identified 79,521 and 174,030 hypo-methylated CpGs in 

ICF1p1 and ICF1p2 respectively, as compared to the mean CpG methylation 

percentage of control samples (Fig1A,B). CpG clustering and PCA analysis 

showed that samples from patients and controls are distinguishable by their 

methylome (FigS1B,C).  
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When we compared DNA methylation values from RRBS and the whole-

genome bisulfite sequencing (WGBS), previously reported for one ICF1 

sample (Heyn et al., 2012), we found that they were concordant (FigS1D). 

Moreover, because the DNA methylation profile may be heavily influenced by 

immortalization and culture condition, we validated our results by comparing 

the RRBS results with DNA methylation assessment by Infinium 

HumanMethylation 450K in PBMCs of ICF1 patients (Dr. Francastel, 

personal communication). We found that the examined CpGs corresponding to 

the hypomethylated probes in 450K at all the genic features (promoter, TSS, 

gene body and 3’UTR) were significantly hypomethylated also in both our 

ICF1 samples (FigS1E). As a whole, we observed that PBMCs and B-LCLs 

(ICF1p1 and ICF1p2) shared 52% and 57% of hypomethylation sites 

respectively, confirming the validity of B-LCLs to study the ICF1 DNA 

methylation defects.  

Besides the expected hypomethylation, ICF1 samples also showed 75,573 and 

35,872 hypermethylated CpGs (ICFp1 and ICFp2 respectively), as compared 

to the mean CpG methylation percentage of control samples (Fig1B). In 

contrast to observations in ICF1 iPSCs (Huang et al., 2014) and similar to a 

recent report in cancer (Berman et al., 2012), our results did not show 

substantial levels of DNA methylation at non-CpG sites in ICF1 or control B-

LCLs (data not shown).  According to RRBS results, we calculated 

differentially methylated regions (DMRs) as sequences with at least 10 

common CpGs (less than 2Kb apart) with concordant methylation difference 

(D≥ |25%|). We identified 2,381 in ICF1p1 (1,833 hypo-DMRs and 548 

hyper-DMRs) and 3,520 DMRs in ICF1p2 (3,053 hypo-DMR and 467 hyper-

DMRs), which affected all the chromosomes (FigS2A).  Of note, 74% of 

hypomethylated DMRs in ICF1p1 were shared with ICF1p2, while 13% of 

hypermethylated DMRs were shared between the two ICF1 samples. As 

previously reported, pericentromeric heterochromatin and other repetitive 

sequences (satellite, LINE, SINE, LTRs, etc) were considerably 
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hypomethylated in ICF1 samples (FigS2B,C).  

Remarkably, most hypo and hyper-DMRs in both ICF1 samples affected CpG-

dense regions at gene-bodies, particularly at exons and introns rather than at 

promoters (Fig1C,D). To gain insights into the functions of DMR associated 

genes (DMR-genes) we performed gene ontology (GO) analysis for each ICF1 

sample. Interestingly, hyper-DMR and hypo-DMR genes were significantly 

enriched at genes involved in developmental and transcriptional regulation 

processes (Fig1E and TableS1). Moreover, they were enriched for 

transcription factors with homeobox and DNA binding domains (Fig1E), 

which were consistently differentially expressed in RNA-seq experiments and 

qPCR suggesting that these genes are preferential DNMT3B target genes. This 

may explain the transcriptional deregulation of other, DNMT3B independent, 

downstream genes. For instance, hypomethylated and aberrantly expressed 

DNMT3B target genes known to act as transcription factors and/or as 

modulator of RNA Polymerase II (Pol II) mediated transcription were 

BCL11B, PRRX1, NR2F2, TCF12 and SATB1 (FigS2D). Intriguingly, all of 

them are functionally involved in developmental processes altered in ICF 

syndrome. Overall, we found that DMRs associated genes and genes bound by 

DNMT3B, identified by ChIP-Seq experiment, in ICF1 and control samples 

significantly overlapped (p-value: <10-10; <<10-10; Fig1F and TableS1), 

confirming that DNA methylation defects occur mostly at DNMT3B target 

genes and that are dependent on DNMT3B mutations. However, when we 

compared the DMR and/or DNMT3B associated genes with DE-genes 

identified by RNA-Seq we found overlaps extending over approximately 10% 

of DE-genes, indicating that the transcription of most genes is indirectly 

affected by DNMT3B dysfunction (Fig1F).  Moreover, we also identified 

DNMT3B target genes, which were transcriptionally deregulated without 

showing a clear difference in DNA methylation profile, confirming that 

DNMT3B may modulate the gene expression independently from DNA 

methyltrasferase activity (Fig1F;(Bachman et al., 2001).  
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Overall, we found that nearly 35-38% of DE-genes were shared by the two 

ICF1 samples when compared to controls. Consistently with previous 

findings, we identified some germline genes as target of DNMT3B, 

hypomethylated at CpG islands and derepressed, like SYCE1, MAEL, TDRD1 

and TDRD9 (Velasco et al., 2014); FigS3A). Moreover, up- and down-

regulation of ICF1-specific genes previously reported were confirmed in our 

RNA-Seq datasets [(Ehrlich et al., 2001; Jin et al., 2007); TableS1].  
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Fig1. Large-scale DNA methylation profile shows CpG hypo- and hypermethylation at 
intragenic regions. A, Scatter plots and density color codes for DNA methylation data of all 
autosomes. Pairwise comparisons of methylation percentage between controls (Ctrls) and 
between ICF1p1 or ICF1p2 and average Ctrls are shown; B, Histogram showing total 
number of hypo- and hypermethylated CpGs in ICF1p1 and ICF1p2 compared to controls; 
C,D, Distribution of hypo and hyper-DMRs (D≥ |25%|) along the gene features; E, Gene 
Ontology (DAVID) of hypo- and hyper-DMRs associated genes (from TSS-2kb to 
TTS+2kb; p-values corrected by BH method were considered; F, Venn Diagram showing 
overlaps between DMR-associated genes, DE-genes and DNMT3B-bound genes (p-values 
were calculated with hypergeometric test (one-tail); for the three lists overlap we considered 
the DMR-genes/DE-genes and DNMT3B-genes/DE-genes subsets).  
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3.2 DNMT3B deficient activity correlates with H3K27me3 redistribution 

at genic and intergenic regions 

As mentioned above, we found that most CpG methylation alterations were 

not associated with marked differences in expression of the associated genes. 

This suggests that DNA methylation defects alone are prevalently not 

sufficient to perturb gene expression. In these cases, proper transcription 

might be preserved by other epigenetic signals. For instance, H3K27me3 is a 

repressive histone mark cooperating with DNA methylation in ensuring proper 

gene silencing in somatic cells. Therefore, we hypothesized that the DNMT3B 

deficient activity might influence the genome wide signature of these histone 

marks, by igniting compensatory mechanisms. We analyzed H3K27me3 

profile in ICF1p1 and control sample by ChIP-Seq, finding a redistribution of 

this mark, with a general increase of H3K27me3-enriched, which prevalently 

overlap to genic regions (Fig2A and FigS3B). 

To determine the direct relationship between histone and DNA methylation, 

we integrated RRBS and ChIP-Seq datasets to calculate the normalized 

average density of histone mark enrichment at differentially methylated 

genomic regions. We found a significant increase of H3K27me3 at 

hypomethylated DMRs, whereas it was not enriched at hyper-DMRs in all 

samples (Fig2B and FigS3C). This indicates that DNMT3B mutations alter 

the H3K27me3 profile at the hypomethylated target regions, likely affecting 

the recruitment of PRC2 complex (Vire et al., 2006). Interestingly, a 

significant number of regions increasing in H3K27me3 were also targeted by 

mutant-DNMT3B in ICF1p1 sample (Fig2C). In the context of transcriptional 

regulation, most hypomethylated genes showed unaffected and/or increased 

H3K27me3 (Log2FC ICF1/Ctrl H3K27me3 >= 0) and genes associated to this 

mark did not change their expression, suggesting that the repressive 

H3K27me3 mark is presumably balancing the loss of DNA methylation 

(Fig2D). 

One interesting case is given by the HOXC gene cluster, which belongs to the 
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hypomethylated subset of genes (Fig2E, left panel). Here, the H3K27me3 

mark profile in ICF1p1 sample was not affected in most part of the cluster 

area (Fig2E, left panel), thereby preserving the silencing of most HOXC 

genes. Interestingly, HOXC4 gene that is supposed to be normally expressed 

in B-LCLs, being essential for immunoglobulin class switch recombination, 

resulted abnormally silenced in disease samples and this correlated with CpG 

hypomethylation and H3K27me3 increase mediated by PRC2 complex 

binding (Fig2E, right panels). Intriguingly, mutant-DNMT3B efficiently 

bound the H3K27me3-enriched region of HOXC4 in ICF1 samples, 

suggesting that it may influence the recruitment of PRC2 complex to the 

neighboring nucleosomes. Consistently, SUZ12 binding at HOXC4 was 

preferentially enriched in ICF1 samples when compared to controls (Fig2E, 

right panels). Notably, we found that mutant-DNMT3B, which is known to 

have a correct folding according to our and previous observations (Geiman et 

al., 2004) was able to interact with SUZ12 protein (FigS3D).  

Overall, we found that the ability of mutant-DNMT3B to bind DNA was not 

impaired in terms of total number of peaks, but rather in terms of their 

extension depending on the DNMT3B variant. Indeed, DNMT3B peaks larger 

than 100kb were increased in ICF1p1 sample, compared to ICF1p2 sample 

and two controls (data not shown). Remarkably, by examining the distribution 

of DNMT3B binding sites along the genic features, we found that wild-type 

and mutant-DNMT3B preferentially bound gene bodies (Fig2F), where most 

DNA methylation defects occurred (Fig1D,E). CpG methylation level at 

mutant-DNMT3B genomic targets clearly decreased compared to controls, as 

demonstrated in both RRBS and WGBS, indicating that ICF1-specific 

mutations prevalently cause hypomethylation (FigS3E), while the 

hypermethylation probably reflects the compensatory activity of DNMT3A 

and/or DNMT1. Consistently, the ICF1p1 sample showing higher level of 

DNA hypermethylation than ICF1p2 sample (Fig1E) also presented a lower 

number of DNMT3B peaks at gene body regions (Fig2F). 
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Given that the extensive loss of DNA methylation at pericentromeric 

heterochromatin represents an hallmark of ICF molecular phenotype, we 

examined the DNMT3B binding at repetitive regions, finding that it was 

unaltered in ICF1 samples compared to controls, as for genes (FigS4A-C). 

Taken together, these evidences indicate that ICF1-specific mutations do not 

affect the DNMT3B targeting at genomic regions, which are nonetheless 

hypomethylated because of the deficient methyltransferase activity.  

When examining the DNMT3B target genes in terms of gene ontology 

analysis, we observed that most of them were associated to developmental 

processes and in particular to neurogenesis, presumably accounting for the 

variable cognitive defects reported in ICF1 patients (FigS4D). However, 

among them we found genes, functions of which were linked to ICF-specific 

immune system phenotype, such as genes contributing to the immunoglobulin 

production (e.g. FAS, FOXP1) and to the humoral immune response mediated 

by circulating immunoglobulin (e.g. BCL11, PTPRC, CR1, FYN, CD247). 

Moreover, we identified genes functionally involved in chromosome 

condensation and segregation at centromeric regions (e.g. KIF2B, CENPU, 

KNTC1, SPC25, ZWINT), which may account for the chromosomal instability 

and the mitotic missegregation (Gisselsson et al., 2005). Genes involved in 

chromatin binding and remodeling, and genes regulating histone deacetylation 

(e.g. HDAC9) and methylation (e.g. MLL5, SMYD3, MLL3) were also detected 

as DNMT3B target genes, suggesting the occurrence of an even more complex 

regulatory cross-talk between DNA methylation and histone modifications. 

Nevertheless, our finding from DESeq analysis was that only few DNMT3B 

bound genes resulted differentially expressed (Fig1F). This prompted us to 

better and deeper investigate the potential defects of the ICF1 transcriptome. 
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Fig2. CpG hypomethylation correlates with H3K27me3 increase.  A, Volcano plot 
showing that DNMT3B mutations associate with H3K27me3 redistribution in ICF1p1 
sample, with up and down regions; B, Density plot of H3K27me3 (read count per million 
mapped reads) at hypo- and hyper-DMRs (-2kb upstream/+2kb downstream); C, Scatter plot 
showing the correlation between differential DNMT3B-enriched regions (Log2 Fold change 
ICF1p1/Ctrl1) and differential H3K27me3-enriched regions (Log2 Fold change 
ICF1p1/Ctrl1); D, Scatter plot showing the expression status of hypomethylated genes and 
differential H3K27me3-enrichment (Log2 Fold change ICF1p1/Ctrl1); E, HOXC gene 
cluster is represented in the genome browser UCSC screenshot, showing RNA-Seq, WGBS, 
RRBS and H3K27me3 ChIP-Seq (left panel). The setting of vertical viewing range is the 
same for ICF1 and control samples in each experiment. Right panels show mRNA and CpG 
methylation level (qPCR and DNA methylation enrichment assay), H3K27me3 enrichment 
and DNMT3B or SUZ12 binding (ChIP-qPCR) at HOXC4 gene in ICF1 samples compared 
to controls (p-values were calculated with T-student test (two-tails) and adjusted with BH 
method); F, Distribution of DNMT3B peaks along the genic features (promoter, 5’UTR, 
exon, intron, 3’UTR and TTS) calculated using Homer tool (Heinz et al., 2010).  
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3.3 Isoform-specific transcriptional regulation is severely impaired in 

DNMT3B deficient cells 

By analyzing the gene ontology of DNMT3B ChIP-Seq and RRBS global 

profiles, we surprisingly found that DNMT3B target genes and DMR-genes 

were significantly enriched for the alternatively splicing functional category in 

both control and disease samples [~45% of DNMT3B targets and DMR-genes 

(Fig1E and FIgS4D)]. This suggested that DNMT3B might play a role in the 

regulation of alternative isoform expression. To address this possibility and 

investigate whether this process is perturbed by ICF1-specific DNMT3B 

mutations, we analyzed the RNA-Seq datasets by using BitSeq tool, which 

evaluates the exon-exon junction usage to measure the transcript isoform 

abundance (Glaus et al., 2012). We found significant differences among the 

isoforms expressed in disease and control cell lines revealing major alterations 

at a larger number of genes not identified from previous RNA-Seq analysis 

(Fig3A, upper panel and TableS1).  We found that nearly 55% of DE-

isoform associated genes were shared by the two ICF1 samples when 

compared to controls. The newly identified genes belonged to functional 

categories relevant for ICF immunological phenotype, such as 

phosphoproteins, proteins with GTPase regulatory activity and chromatin 

modifiers (Fig3B).  

Remarkably, among the genes with the most altered isoform abundance we 

identified key players of immunoglobulin production regulation and 

immunoglobulin mediated immune response, such as FOXP1 and IL10, which 

were not detected before based on the classical gene expression analysis. The 

most significant pathway affected in both ICF1 samples was the B cell 

receptor signaling, as identified based on IPA analysis (36% of genes within 

the pathway showed differential isoform expression; Benjamini- Hochberg 

(BH) adjusted p-value: 1x10-3 and 1x10-7 for ICF1p1 and ICF1p2, respectively) 

(FigS4E). Furthermore, critical genes modulating chromosome condensation 

especially at centromeric regions, such as the centromeric protein CENPU, 
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components of the spindle-assembly checkpoint MAD1L1, KNTC1 and 

SPDL1, the component of the condensin complex SMC4, were identified. 

Intriguingly, the newly identified genes with differential isoform abundance 

were significantly enriched in DNMT3B-bound and differentially methylated 

genes (hypo- and hyper-DMR associated genes) compared to DESeq-derived 

dataset, suggesting a functional effect of DNA methylation changes on 

isoform selection (Fig3A, lower panel).  

Coherently, CpG hypomethylation (-500bp/TSS covered by RRBS) was 

observed at about 80% of up-regulated isoform-specific intragenic TSS (i-

TSS; FigS5A). Moreover, the enriched gene ontology categories of DE-

isoforms and DNMT3B target genes were largely overlapping, supporting the 

idea that these defects are possibly direct consequence of DNMT3B deficient 

activity.  

In addition, we evaluated the H3K4me3 and H3K27me3 pattern at TSS of DE-

isoforms, finding changes of these histone marks at 57% and 25% of 

hypomethylated and hypermethylated TSS, respectively (Fig3C). Namely, 

H3K4me3 increased or decreased based on TSS methylation status (hypo- or 

hypermethylation, respectively), while H3K27me3 increased at 

hypomethylated TSS, according to our previous results at genomic DMRs 

(Fig2B). As an example, the longest isoform of TCEA2 gene including the 

most upstream TSS was abnormally silenced in both ICF1 samples. Moreover, 

the memory B-cell marker CD27 was downregulated, while the overlapping 

antisense transcript CD27-AS1 resulted upregulated, as revealed by isoform-

specific analysis. Both transcriptional deregulation events correlated with 

DNA methylation and H3K4me3 changes (Fig3D). Of note, H3K4me3 level 

also changed at all genomic hypo- and hyper-DMRs consistently, suggesting 

that CpG methylation defects induce H3K4me3 changes  (Fig3E). 

Intragenic DNA methylation has been proposed as mechanism potentially able 

to modulate alternative splicing events (Lev Maor et al., 2015). Therefore, to 

test whether ICF1-specific DNA methylation defects may affect this process, 
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we extrapolated the annotated splicing events (i.e. alternative 5' or 3’ splice 

site, cassette exon, intron retention, etc) and searched for a significant 

association with hypo- and hypermethylated CpGs (at least 5 differentially 

methylated CpGs within 150bp from the alternative splice site) in ICF1 

samples. We found 129 splicing events in proximity of regions showing 

decreased or increased CpG methylation (118 associated to hypo-CpGs and 11 

to hyper-CpGs, respectively) common between ICF1p1 and ICF1p2 samples 

compared to controls. A significant percentage (17-20%; p-value adjusted 

=3.2x10-6 and 3.6x10-4, respectively) of these identified splicing events 

overlapped with the differentially expressed transcript isoforms identified by 

BitSeq analysis. To confirm this result at wider scale and to examine these 

events in detail, we performed the same analysis taking advantage of WGBS. 

This allowed us to extensively measure the correlation between specific 

splicing events associated to DE-isoforms and differential CpG methylation. 

We found that the most affected splicing events were variations at the 5' 

and/or 3' splicing sites of introns in both ICF1 samples (Fig3F). These results 

support a role for gene body DNA methylation in regulating alternative 

splicing events, which are perturbed in presence of DNMT3B-mediated CpG 

hypo- and hypermethylation in ICF1 B-LCLs.  

Among the differentially spliced genes, we identified the Protein Tyrosine 

Phosphatase, Receptor type, C gene (PTPRC; also known as CD45), which is 

a trans-membrane protein tyrosine phosphatase essential for antigen receptor-

mediated signaling in lymphocytes (Rhee and Veillette, 2012). Differences in 

exon skipping and glycosylation of the protein produce various isoforms of 

CD45 that are present in a cell-specific manner. CD45RO, the smallest 

isoform, distinguishes effector-memory T cells, whereas primary B cells are 

known to express predominantly the largest CD45 protein isoform (encoded 

by RABC, including exons 4-5-6). In line with the in vivo findings, the 

cultured B cells and B-LCLs express almost uniquely the RABC and RBC 

isoforms (Hermiston et al., 2003). When we carried out isoform-specific PCR, 



 48 

we found that ICF1 cells exhibited significantly higher CD45RO isoform 

expression compared to controls, while the CD45RABC isoform decreased, 

suggesting that a proper DNMT3B activity is necessary to ensure the inclusion 

of the exons 4-5-6 (Fig4A-C). The altered isoform transcription led to a 

change from CD45RABChigh/CD45ROlow population in control cells to 

CD45RABClow/CD45ROhigh population in ICF1 cells, which is more or less 

pronounced depending on DNMT3B mutations (Fig4D). 

Given the growing evidence for chromatin-mediated regulation of 

spliceosome assembly and alternative exon recognition, we tested the 

enrichment of various histone marks known to be involved in this regulation, 

as for instance H3K36me3, H3K4me3, H3K9me3 and acetylated histone H3 

(Zhou et al., 2014). While H3K36me3 and H3K9me3 did not show significant 

differences at the exons 4-6, we observed a clear decrease of H3K4me3 in all 

ICF1 samples indicating that this histone mark is associated with the proper 

inclusion of alternative exons 4-6 (Fig4E). Notably, very recent observations 

positively linked H3K4me3 enrichment with inclusion level of exons 

displaying cell type-specific splicing (Curado et al., 2015). In this light, 

H3K4me3 decrease in ICF1 samples may contribute to aberrant exclusion of 

alternative exons 4-6. 

Conversely, the alternative exons were highly CpG methylated, either in 

control or ICF1 samples, without showing significant changes between the 

two conditions (Fig4F). Considering that RNA polymerase II (Pol II) 

elongation rate may influence exon inclusion, we also examined its binding at 

skipped exons in ICF1 and control samples. We found that the disease 

associated splice variant correlated with a reduced binding of Pol II 

throughout the exons 4, 5 and 6, according to a faster transcriptional 

elongation rate (Fig4E), thereby accounting for the increased exclusion of 

these exons. Taken together, our results identified an additional layer of 

epigenetic regulation of the transcription that is impaired in ICF1-specific 

condition, with unprecedented and interesting functional implications. In 



 49 

CD45 gene specific case, chromatin changes may directly perturb the exon 

recognition presumably through modulating the kinetics of Pol II elongation, 

but do not explain how DNMT3B-mediated defects do alter the transcript 

splicing. 
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Fig3. Differential expression of transcript isoforms in ICF1 samples and alteration of 
intragenic epigenetic marks. A, Venn Diagram showing overlap between DE-genes 
obtained using DESeq and DE-isoform associated genes obtained using BitSeq tools (upper 
panel); Histograms showing the distribution of DE-genes and/or DE-isoform associated 
genes among DNMT3B bound and hypo- and hyper-DMRs genes (lower panel; p-values 
were calculated with hypergeometric test one-tail); B, Gene ontology (DAVID) showing 
enriched molecular functions and biological processes from the list of DE-isoforms 
associated genes (p-values corrected by BH method were considered); C, Histogram 
representing H3K4me3 and H3K27me3 changes (p-value <0.05) at hypo- and 
hypermethylated TSS of DE-isoforms; D, UCSC genome browser screenshots of TCEA2 and 
CD27 genes showing differentially expressed transcript isoforms, CpG methylation status 
and H3K4me3 enrichment at corresponding TSS E, Density plot of H3K4me3 (read count 
per million mapped reads) at hypo- and hyper-DMRs (-2kb upstream, +2kb downstream); F, 
Percentage of differentially methylated alternative splicing events (from UCSC list) 
associated to differentially expressed isoforms identified using BitSeq analysis (left panel; p-
values were calculated with hypergeometric test one-tail and corrected with BH method); 
schematic representation of the most affected alternative splicing events linked to DNA 
methylation defects in ICF1 samples (right panel). 
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Fig4. Alternative exons 4-6 of PTPRC (CD45) gene are aberrantly excluded in ICF1 
samples. A, Human CD45 gene structure with constitutive and alternative (dark gray) exons 
reported; B, Semiquantitative PCR amplification of splicing isoforms of CD45 gene in 
controls and ICF1 samples. Primers used are F and R as shown in A; C, Expression level 
(qPCR) of CD45RABC using isoform specific oligonucleotides; D, FACS analysis 
confirming that ICF1 samples express higher level of CD45RO than CD45RABC compared 
to controls; E, Enrichment of H3K36me3, H3K4me3, H3K9me3 marks and Pol II binding at 
alternative exons 4-6 by ChIP-qPCR; F, DNA methylation assay (methylated DNA 
enrichment method) at exons 5 and 6 of CD45 gene. P-values in C, E and F were calculated 
with T-student test (two-tails) and adjusted with BH method. 
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3.4 Mutant-DNMT3B might affect the alternative splicing of CD45 

transcript by interacting with premRNA and hnRNP-LL  

In one study DNMT3B has been reported capable to bind components of the 

Pol II-mediated transcriptional machinery, transcript elongation factors and 

heterogeneous ribonucleoprotein during in vitro hESC differentiation (Rigbolt 

et al., 2011), thus supporting a possible role in modulating mRNA processing. 

Therefore, in order to understand the mechanism leading to the altered CD45 

isoform expression we further examined whether and how mutant-DNMT3B 

was involved in the exon 4-6 skipping. We explored the hypothesis that 

DNMT3B modulates the splicing exons by directly interacting with the 

transcript, considering the well-known affinity of DNA methyltransferases for 

RNA molecules (Jeffery and Nakielny, 2004; Holz-Schietinger and Reich, 

2012; Di Ruscio et al., 2013). By carrying out anti-DNMT3B RNA 

immunoprecipitation we found that the mutant protein significantly bound the 

CD45 pre-mRNA. In contrast, this interaction was barely appreciable in 

control cells, or absent examining a different gene, thereby representing a 

negative control (e.g. HOXC4) (Fig5A).  

We next sought to identify molecules potentially participating to this novel 

regulatory mechanism. CD45 alternative splicing is tightly controlled by a 

tissue-specific ribonucleoprotein, the heterogeneous nuclear RNA-binding 

protein L-Like (hnRNP-LL). It is specifically induced in terminally 

differentiated lymphocytes, including effector T cells and plasma cells, where 

it mediates the transition from CD45RA or CD45RABC to CD45RO, 

respectively (Oberdoerffer et al., 2008; Chang et al., 2015).   

Latest models of combinatorial alternative splicing propose that hnRNP-LL 

cooperates with the heterogeneous ribonucleoprotein hnRNP-L on CD45 pre-

mRNA, bridging exons 4 and 6 and looping out exon 5, thereby achieving full 

repression of the three variable exons (Preussner et al., 2012). Remarkably, 

hnRNP-LL was derepressed in ICF1 cells compared to controls, and this 

correlated with mutant-DNMT3B mediated CpG hypomethylation of the 
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regulatory region (Fig5B-D and FigS5B). Conversely, the transcription of the 

protein interactor hnRNP-L was unaffected (data not shown). As further 

demonstration of the altered hnRNP-LL-mediated regulation of CD45 

splicing, we observed that hnRNP-LL upregulation was associated to an 

increased interaction with CD45 pre-mRNA compared to controls, by 

performing anti-hnRNP-LL RNA immunoprecipitation (Fig5E). Importantly, 

hnRNP-LL and mutant-DNMT3B physically interacted in ICF1 cells, 

suggesting the formation of a multi-protein complex presumably perturbing 

the correct inclusion of exons 4-6 (Fig5F).  To directly test whether DNA 

hypomethylation resulted in defects of CD45 pre-mRNA splicing, we treated 

control cell lines with 5-AzaC and harvested cells at different times after 

treatment. Intriguingly, after modulating DNA methylation we observed a 

shift toward the exons 4-5-6 exclusion in the mature CD45 transcript and a 

decrease of CD45RABC, as it occurs in mutant-DNMT3B ICF1 cells 

(Fig5G,H). This evidence linked DNA hypomethylation to the aberrant 

exclusion of CD45 exons 4-5-6. However, CpG methylation profile at 

differently spliced exons did not exhibit dramatic defects (Fig4F), indicating 

that DNA hypomethylation may also indirectly alter the CD45 alternative 

splicing, through affecting the regulators of this process. To highlight the 

mechanism and investigate whether it involved the heterogeneous 

ribonucleoproteins known to modulate the CD45 alternative splicing, we 

further tested the hnRNP-LL expression after 5-AzaC treatments. Notably, we 

found an aberrant up-regulation of hnRNP-LL transcription, thereby 

explaining the increase of exon 4-5-6 exclusion in 5-AzaC treated cells 

(Fig5I,J).  Overall, these results demonstrate that ICF1-specific DNMT3B 

mutations lead to CpG hypomethylation and derepression of hnRNP-LL gene, 

and to the recruitment of the protein to CD45 pre-mRNA, where it is engaged 

in a protein complex through interacting with the mutant-DNMT3B. 
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Fig5. Skipping of alternative exons 4-6 of CD45 correlates with ectopic activity of 
hnRNPLL. A, RNA immunoprecipitation assay (RIP-qPCR) showing binding of DNMT3B 
to CD45 pre-mRNA. Binding to HOXC4 mRNA is reported as negative control; B, 
Expression level of hnRNP-LL in ICF1 samples and controls by qPCR (upper panel) and 
western blot (lower panel); C, DNA methylated enrichment assay reporting the 
hypomethylation at the hnRNP-LL regulatory region; D, DNMT3B binding to hnRNP-LL 
regulatory region by ChIP-qPCR; E, RIP-qPCR  showing hnRNP-LL binding to CD45 exons 
4 and 6 exclusively in ICF1 samples; F, DNMT3B and hnRNP-LL physically interact in 
ICF1p2 sample as shown in co-immunoprecipitation experiments; G,H, Control B-LCLs 
exhibit increased CD45RO expression, with concomitant decrease of CD45RABC 
expression after 5-AzaC treatment (1uM 5-AzaC for 48h, 72h and 120h); I,J DNA 
hypomethylation and upregulation of hnRNP-LL gene induced by 5-AzaC treatment. P-
values in A,B,C,D,E,H and I were calculated with T-student test (two-tails) and adjusted 
with BH method.  
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3.5 ICF1-specific DNA methylation defects associate with deregulation of 

alternative intragenic transcription initiation sites. 

The current models describing the relationship between DNA methylation and 

gene expression report that promoter methylation is associated with gene 

silencing, and gene body methylation is associated with expression (Ball et al., 

2009; Rauch et al., 2009; Aran et al., 2011; Varley et al., 2013). So far, our 

findings would support a role of DNMT3B methylation activity in regulating 

the transcription of alternative transcript isoforms from differentially 

methylated TSS or the alternative exons inclusion in the mature transcript. 

Recent studies have proposed that cryptic or alternative promoters, marked by 

H3K4me3 and detected by the capped analysis of gene expression (CAGE) 

sequencing, may be characterized by promoter-like methylation in gene bodies 

(Illingworth et al., 2010; Maunakea et al., 2010; Deaton et al., 2011). To 

deeper investigate the status of these potential transcription initiations that 

could be affected by DNMT3B deficient activity, we predicted the annotation 

of potential i-TSS by integrating several datasets from ENCODE Project 

(from many different cell types). We overlapped CAGE tags, Polymerase II 

binding sites and H3K4me3-enriched sites filtering them for intragenic 

position and excluding the annotated TSS. First, we measured the differential 

expression of the predicted i-TSS between ICF1 samples and controls by DE-

Seq (about 1,251 and 2,793 i-TSS for ICF1p1 and ICF1p2, respectively) and 

subsequently associated the DE-sites covered by RRBS (156 and 314 for 

ICF1p1 and ICF1p2, respectively) to differentially methylated CpGs (D> 

|25%|). Remarkably, we found that about 50-60% of differentially expressed i-

TSS subset covered by RRBS was differentially methylated in both ICF1 

samples (p-value< 10-10 and 8.2x10-7 for ICF1p1 and ICF1p2, respectively). 

We found consistent results after analyzing the WGBS, with 80% of putative 



 56 

i-TSS which was differentially methylated (Fig6A; p-value< 10-10 and 8.2x10-7 

for ICF1p1 and ICF1p2, respectively). These results indicate that the activity 

of putative alternative i-TSS is compromised in the context of DNMT3B-

mediated DNA methylation defects. Indeed, CpG island hypomethylation 

within the exon 5 of NEURL gene, corresponding to an intragenic Polymerase 

II binding site, resulted in the activation of a cryptic H3K4me3-enriched i-TSS 

in ICF1 samples (Fig6B). The activation of this spurious i-TSS was linked to 

the expression of an aberrant short isoform including the last three exons of 

NEURL gene (Fig6B). 

Furthermore, the large second intron of CD45 gene including a putative i-TSS 

was silenced in both ICF1 samples (Fig6C). Consistently, this event associated 

with CpG hypermethylation and decrease of H3K4me3 mark as indicated by 

WGBS, RRBS and H3K4me3 ChIP-Seq and confirmed by qPCR (Fig6C; 

FigS5C,D). Interestingly, DNMT1 binding was observed only in ICF1 

samples, indicating that the hypermethylation might be mediated by the 

catalytic activity of this enzyme (FigS5E). We then looked at the local 

enrichment of additional histone marks, such as H3K9me3, H3K27me3 and 

H3K4me2, finding a decrease of permissive chromatin structure and an 

increase of repressive histone marks (FigS5D).  Of note, we found the 

H3K36me3 increase together with the H3K4me3 decrease, in line with the 

reported mechanisms of cryptic transcription repression (Hayakawa et al., 

2007; Carvalho et al., 2013). 

Intriguingly, when we looked at H3K4me3 profile at global level, we observed 

that it was clearly affected in ICF1 samples, with increased and decreased 

peaks mostly distributed along the genic features, as 5’-UTR, CpG island, 

exons, introns and 3’-UTR (Fig6D,E).  These changes might influence not 

only spurious transcription but also several other aspects of the transcriptional 

process. Indeed, recent findings indicate that trimethylated H3K4 serves to 

facilitate the competency of pre-mRNA maturation through the bridging of 

spliceosomal components to H3K4me3 via Chromodomain protein 1 (CHD1). 
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Through recognizing H3K4me3, CHD1 recruits the complex FACT/PAF1C 

enhancing the efficiency of pre-mRNA splicing and transcript elongation of 

Pol II (Sims et al., 2007; Lenasi and Barboric, 2010). Intriguingly, DNMT3B 

interacted with components of PAF1C complex during hESC differentiation 

(Rigbolt et al., 2011). Therefore, we evaluated this interaction in B-LCLs 

finding that only the mutant-DNMT3B co-immunoprecipitated with PAF1 

protein (Fig6F). This finding, together with the evidence that mutant-

DNMT3B binds pre-mRNAs, would imply a functional cross-talk between 

DNA methylation machinery and transcriptional regulators, which is 

dependent on ICF1-specific mutations (Fig6G). 

All together, our studies provide the first evidence in human cells that ICF1-

specific mutations of DNMT3B may affect mRNA splicing and the 

transcriptional activity from alternative i-TSS.  
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Fig6. Intragenic DNA methylation changes affect the activity of putative alternative 
transcription initiation sites (i-TSS).  A, Histograms showing the methylation status of 
differentially expressed putative i-TSS (p-value<0.05 from DE-Seq); B, UCSC genome 
browser screenshot representing putative alternative i-TSS at NEURL gene associated to 
CpG hypomethylation, H3K4me3 increase and transcriptional upregulation as shown by 
WGBS, RRBS, RNA-Seq and H3K4me3 ChIP-Seq; C, UCSC genome browser screenshot 
representing the large second intron of CD45, including an alternative i-TSS which displays 
CpG hypermethylation, H3K4me3 decrease and transcriptional downregulation; D, Volcano 
plot showing H3K4me3 mark redistribution in ICF1p1 sample, with up and down regions; E, 
Distribution of H3K4me3 increased and decreased regions along the genomic features 
calculated using the Homer tool); F, Mutant-DNMT3B and PAF1 physically interact in ICF1 
samples as shown in co-immunoprecipitation experiments; G, Summarizing model showing 
the engagement of mutant-DNMT3B in the altered regulation of transcript processing. 
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Chapter 4 

DISCUSSION 
 

 

The diffusion of next-generation technology opened up several possibilities to 

study molecular biology phenomena at whole-genome level. The continuous 

decrease of sequencing costs is making of the NGS a standard tool to 

investigate biological questions. However, even though the increasing number 

of sequencing data and of developed tools for each specific analysis, the 

informative power of whole genome data is still not completely used.  

In particular is recommended to include in the analysis pipelines integration 

steps that are slowly loosing their merely descriptive function acquiring an 

inferential role. Indeed, the integration of heterogeneous data can cover 

uncountable gap still present in gene-specific studies. 

Our integrative large-scale study demonstrated that ICF1-specific mutations in 

DNMT3B catalytic domain slightly affect its ability to bind DNA at genomic 

target regions, while the methyltransferase activity is rather impaired. The fact 

that mutant-DNMT3B is able to bind DNA is expected, considering that ICF1-

specific mutations mainly affect the catalytic domain, while the DNA binding 

capability depends on the PWWP domain within the N-terminal region (Qiu et 

al., 2002). 

Most DNMT3B binding occur at intragenic positions of transcribed genes, 

exactly where DNA methylation defects largely take place. This is a novel 

finding in the context of ICF syndrome studies and explains why previous 

attempts to identify profound differences in DNA methylation profile at CpG 

island-associated promoters of deregulated genes failed (Ehrlich et al., 2001; 

Jin et al., 2007; Gatto et al., 2010). These results paved the way to the 

identification of unprecedented aspects related to DNMT3B deficient activity, 

such as the alteration of isoform transcription by modulating the epigenetic 
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signature at exons and introns or by directly interacting with the pre-mRNA, 

as observed in the specific case of CD45 gene. Notably, we found 

deregulation of alternative isoforms at genes important for the ICF1-specific 

phenotype only after using dedicated tool for RNA-Seq analysis. For instance, 

we identified transcriptional defects in glycoproteins, members of Rho 

GTPase family and interleukins involved in the regulation of immunoglobulin 

production and immunoglobulin mediated immune response, which is the 

main defect in B lymphocytes, leading to the failure to cope with infections. 

The affected genes were in large part direct targets of DNMT3B and 

differentially methylated, suggesting that proper binding and methylating 

activity of this protein is required for the appropriate relative abundance of 

transcript isoform. Importantly, we demonstrate a significant correlation 

between intragenic DNA methylation dependent on DNMT3B and alternative 

splicing events, especially the selection of 5' and/or 3' alternative 

donor/acceptor, changing the boundaries of upstream or downstream exons. 

These results sustain the current view that CpG methylation may modulate the 

alternative splicing process (Lev Maor et al., 2015). 

DNMT3B variants here examined mainly determine intragenic 

hypomethylation with events of hypermethylation, the extension of which 

depends on specific mutations. The hypermethylation might reflect the 

compensatory activity of DNMT3A and/or DNMT1, which are not affected in 

ICF1 cells. We confirmed this hypothesis at the CD45 intron2 

hypermethylation site, while we cannot rule out that other mechanisms are 

responsible for CpG hypermethylation events or that these are hyper-

hydroxymethylation sites, thus implying the TET enzymes involvement. 

Strikingly, DNMT3B knockout caused CpGs ‘‘hypermodification’’ events in 

gene bodies, which overlapped with CpGs hypomethylated under DNMT1 

depletion, thus revealing an antithetical regulatory interaction between 

DNMT1, DNMT3B, and the TETs (Tiedemann et al., 2014). Conversely, 

some DNMT3B target genes were not associated to DMRs, indicating that 
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DNMT3B deficient activity may result in a more complex epigenetic and 

transcriptional deregulated network than that dependent on the 

methyltransferase activity.  Consistently, the repressive role of DNMT3B was 

previously highlighted even in absence of DNA methylation changes 

(Bachman et al., 2001). 

ICF patients' peripheral blood contains only naive B cells presenting an 

immature phenotype, with an accumulation of bone marrow B-cell emigrants 

and a lack of memory B and plasma cells. These data indicate a terminal B-

cell differentiation blockage in ICF patients at the transitional B-cell stage 

(Blanco-Betancourt et al., 2004). Consistently, we found that ICF samples 

exhibited transcriptional defects at genes involved in the B cell receptor 

signalling pathway, which when altered typically cause the absence of 

circulating mature B cells and of all immunoglobulin isotypes, accompanied 

by the accumulation of pre‐B cells in the bone marrow (Durandy et al., 2013). 

Of note, among the newly identified differentially expressed genes we found 

either receptor-type PTPs, (e.g. PTPRC, PTPRJ and PTPRB) and nonreceptor-

type PTPs (e.g. PTPN13). These are known to positively or negatively 

regulate lymphocyte activation and development, thus providing novel 

candidate genes contributing to the immune response defects in ICF1 patients. 

The most striking example was CD45, which main role in B and T 

lymphocytes promotes cells activation. Specifically, CD45 has a synergistic 

action with PTPRJ (also known as CD148) in B cells. In line with that, mice 

lacking both CD45 and CD148 have a greater block in B cell development and 

BCR signaling than mice lacking CD45 or CD148 alone (Rhee and Veillette, 

2012). Unlike PTPRJ, which is downregulated in ICF1 samples, PTPRC is 

affected by an aberrant skipping of alternative exons 4-6 generating higher 

amount of the smallest isoform CD45RO in disease samples. Remarkably, 

CD45 activity is negatively modulated by dimerization (Xu and Weiss, 2002). 

Larger CD45RABC isoforms exist predominantly as monomeric active 

phosphatase, while the smaller size of the CD45RO extracellular domain 
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facilitates dimerization, rendering it less active and increasing the signal 

transduction threshold. In T or B cells this would contribute to cessation of the 

primary immune response (Hermiston et al., 2003). In this light, the aberrant 

exon skipping detected in ICF cells might perturb the CD45 protein activity by 

increasing the abundance of the CD45RO form. Our findings suggest that 

DNMT3B deficiency may also affect T-lymphocyte function potentially 

contributing to ICF1-specific immunodeficiency. For instance, the 

transcription factor FOXP1 is an hypomethylated DNMT3B target gene and it 

is overexpressed in both ICF1 samples. It has been recently shown that Foxp1 

is a critical negative regulator of CD4+ follicular helper T cells (TFH cell) 

differentiation (Wang et al., 2014). Help provided by TFH cells to B cells is 

essential for the formation of germinal centers (GCs) and to differentiate into 

memory B cells and plasma cells for the generation of long-lived high-affinity 

antibodies.  

A growing body of evidence correlate chromatin signature to co-

transcriptional regulation of alternative splicing (Luco and Misteli, 2011). 

Epigenetic modifications can affect chromatin structure, which in turn 

influences the Pol II elongation rate. Alternatively, histone modifications can 

directly recruit splicing factors to pre-mRNAs via a chromatin-binding protein 

reading the histone marks.  For instance, direct modulation of either H3K4me3 

or the CHD1 influences the association of splicing factors with chromatin and 

the efficiency of pre-mRNA splicing in vivo (Sims et al., 2007). Defects in 

these processes might explain the alternative exons splicing defects observed 

in this study not only at CD45 but also at the other genes, considering the 

broad intragenic alterations of H3K4me3 detected in disease samples. The 

direct implication of the mutant-DNMT3B in protein complexes acting in the 

transcriptional elongation process is suggested by the evidence that it interacts 

with the known regulator PAF1. Further investigations will be required to 

dissect the contribution of mutant-DNMT3B to these mechanisms.  
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This finding together with the evidence that alternative putative i-TSS are 

illegitimately expressed in ICF1 samples would suggest that a proper 

DNMT3B-mediated methylation profile is necessary to regulate the spurious 

initiation of transcription. Indeed, gene body methylation has been associated 

to repression of cryptic transcription from alternative promoters, 

retrotransposon elements and/ or antisense transcript in an increasing number 

of evidence. This would be critical to achieve an efficient elongation of 

mRNAs during Pol II-mediated transcription (Maunakea et al., 2010; Kulis et 

al., 2012; Varley et al., 2013). All together, our findings support the concept 

that perturbation of intragenic CpG methylation significantly associates with 

alteration of other epigenetic signals, e.g. H3K4me3 and H3K27me3, in ICF1 

cells suggesting the presence of a tight cross-talk between these epigenetic 

marks in modulating the mRNA processing. 

From a mechanistic point of view, we were surprised to find no DNA 

methylation defects at skipped exons of CD45 gene, given that 5-AzaC 

treatment increased the exon skipping. However, we clarified the molecular 

mechanism underlying the illegitimate exon exclusion finding that hnRNP-LL 

was overexpressed as consequence of CpG hypomethylation in ICF1 samples. 

HnRNP-LL cooperates with hnRNP-L on the CD45 pre-mRNA, bridging 

exons 4 and 6 and looping out exon 5, thereby blocking the inclusion of the 

three exons (Preussner et al., 2012). Depletion or overexpression of hnRNP-

LL in B and T cell lines result in reciprocal alteration of CD45RABC and 

CD45RO isoform expression (Oberdoerffer et al., 2008). In line with this 

finding, we demonstrated that the derepressed hnRNP-LL interacted to exon 4 

and exon 6 of pre-mRNA, thus causing their exclusion from the mature 

mRNA. Strikingly, mutant-DNMT3B was recruited on the same exons of 

CD45 pre-mRNA and physically interacted with hnRNP-LL, suggesting that it 

is involved in the increased expression of CD45RO isoform.  

This novel finding would imply that endogenous DNMT3B is able to interact 

with mRNA molecules and that ICF1-specific mutations increase this ability. 
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The RNA binding property of DNMTs was predicted based on several 

evidences, particularly involving non-coding RNAs (Schmitz et al., 2010; Di 

Ruscio et al., 2013). We describe for the first time a functional interaction 

between DNMT3B and pre-mRNA molecules in a disease context, 

hypothesizing that this aberrant binding prevent a proper sequence of events 

during alternative exon inclusion. Notably, in one study DNMT3B has been 

shown able to interact with proteins involved in various aspects of Pol II-

mediated transcription (Rigbolt et al., 2011). Whether this mechanism occurs 

in physiological condition representing a general DNMT3B-mediated 

mechanism of mRNA processing and alternative exon splicing needs to be 

further investigated. However, from a disease perspective these findings are 

important considering the latest evidences functionally implying hnRNP-LL in 

B-cell to plasma cell differentiation (Chang et al., 2015).  

One of the hallmark of ICF mitogen-stimulated lymphocytes and B-LCLs is 

the chromosome decondensation linked to interphase chromosomal 

abnormalities and mitotic missegregation of hypomethylated sequences 

(Gisselsson et al., 2005). Although a direct link between the machinery 

regulating DNA methylation and mitotic chromosome condensation was 

previously proposed, no insights were provided to explain ICF1-specific 

defects (Geiman et al., 2004).  For the first time, we identified several 

candidate genes for these altered processes, which are targeted by DNMT3B 

and transcriptionally deregulated at isoform level. The mechanism by which 

these defects were more pronounced at chromosomes with largest 

pericentromeric domains (e.g. chr1, 16 and 9) in ICF1-specific conditions 

needs further studies.  

The integrative analysis here described provided us with novel insights into 

DNMT3B-dependent functional cross-talk between DNA methylation and 

other epigenetic determinants. Remarkably, the genome-wide H3K27 

trimethylation profiles demonstrated that the hypo-DMR associated genes 

were significantly increased in this repressive mark, which might balance the 
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DNA methylation loss. Consistently, most H3K27me3 increase at 

hypomethylated regions did not lead to gene expression changes. 

Nevertheless, H3K27me3 gain associated with events of aberrant gene 

silencing, as it occurred at HOXC4 gene. Here, mutant-DNMT3B binding 

persists in disease cells recruiting components of PRC2 complex, such as 

Suz12, which in turn might repress the gene through depositing the 

H3K27me3 mark. Although we do not know whether this silencing is directly 

caused by H3K27me3 gain, it is interesting to note that H3K27me3 increase 

upon DNA hypomethylation was also observed in mouse somatic cells 

associated to events of de novo repression of transcription (Reddington et al., 

2013).  In line with the mouse models, where DNA hypomethylation is 

genetically or pharmacologically induced (Brinkman et al., 2012; Reddington 

et al., 2013), we observed a concomitant decrease of H3K27me3 mark in other 

regions of the genome, implying a potential dilution of PRC2 away from its 

normal targets and its retention at hypomethylated regions. Importantly, these 

finding contribute to clarify the functional cross-talk between DNA 

methylation and H3K27 methylation in modulating gene silencing in human 

cells.  

In summary, we have performed a large-scale analysis of the epigenomic and 

transcriptional profile in ICF1-derived B-LCL. Compared to previous classical 

transcriptional studies, we identified a new level of DNMT3B-mediated 

transcriptional regulation, which highlighted defects in gene pathways and 

functions predicted and long sought, thus representing a step forward towards 

a more careful characterization of the ICF1 immune phenotype.  Furthermore, 

our study highlights the power of integrative analyses to clarify the intricate 

regulatory epigenetic network modulating the proper tissue-specific 

transcriptome.  
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Supplementary figures  

 

 

FigS1 A, Distributions of covered CpGs (>10X read coverage) by RRBS in promoters, 
exons, introns, downstream and intergenic regions are shown in the pie chart. B, CpG 
methylation clustering diagram between samples. Distance method: ''correlation'', linkage 
method: ''Ward''. Samples analyzed, ICF1p1, ICF1p2, Ctrl1 and Ctrl3. C, Principle 
component analysis (PCA) of mean methylation levels from ICF1 samples and controls. The 
PCA revealed a clear separation between ICF1 samples and controls by the first two 
components. As expected the controls are homogeneous in terms of methylome, while ICF1 
samples are heterogeneous because of the diverse DNMT3B mutations. Conversely, 
technical replicates among the samples (a,b) are highly concordant. D, Comparison of CpG‐

specific DNA methylation data measured by whole‐genome bisulfite sequencing [WGBS; 
(Heyn et al., 2012)] and RRBS (the present study). E, DNA methylation level measured by 
RRBS in ICF1 and control B-LCLs at CpGs hypomethylated in patients' PBMCs (Infinium 
450K Illumina microarray), occurring at promoters, TSS, gene bodies and 3’UTR (p-value 
was calculated with Kolmogorov-Smirnov method and adjusted with Bonferroni method). 
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FigS2 A, Distributions of hypo- and hyper-DMRs at all chromosomes in ICF1p1 and ICF1p2 
compared to controls; B, CpG mehylation level at pericentromeric heterochromatin regions 
(PCH) in ICF1 and control samples (p-value was calculated with Kolmogorov-Smirnov 
method and adjusted with Bonferroni method); C, Distribution of hypo- and hyper-DMRs at 
repetitive sequence families by using the Homer tool (Heinz et al., 2010); D, mRNA 
expression level (by qPCR), CpG methylation status (by methylated DNA enrichment assay) 
and DNMT3B binding (by ChIP assay) at homeobox genes and transcription factors 
identified as differentially expressed by RNA-Seq using DESeq. 
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FigS3 A, UCSC genome browser screenshots showing DNMT3B binding (ChIP-Seq), CpG 
methylation (WGBS) and expression profile (RNA-Seq) at "germline genes", previously 
reported as illegitimately transcribed in ICF1 somatic cells; B, Genomic distribution of 
H3K27me3 differentially enriched regions in ICF1p1 sample compared to control; C, 
Density plot of H3K27me3 (read count per million mapped reads) at hypo- and hyper-DMRs 
(-2kb upstream, +2kb downstream) located at TSS, exons and introns; D, Co-
immunoprecipitation performed with anti-DNMT3B and detected with anti-Suz12 in ICF1p2 
and control; E, Measurement of the methylation level (percentage) in DNMT3B bound CpGs 
showing significant reduction in ICF1p1 and ICF1p2 samples (left panel; p-value was 
calculated with Kolmogorov-Smirnov method and adjusted with Bonferroni method); Venn 
diagram showing the overlap between DMRs from WGBS and DNMT3B peaks in ICF1 
samples (right panel). 
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FigS4 A, DNMT3B binding at pericentromeric heterochromatin regions (PCH) in ICF1 and 
control samples reported as average of fold change (IP/INPUT) calculated in 200 bins; B, 
UCSC genome browser screenshot showing DNMT3B, WGBS and RRBS profiles at 
pericentromeric and centromeric regions of Chromosome 16; C, Distribution of DNMT3B 
peaks at repetitive sequence families using the Homer tool (Heinz et al., 2010); D, Gene 
Ontology (DAVID) of DNMT3B target genes (from TSS-2kb to TTS+2kb; p-values 
corrected by BH method were considered); E, B-cell receptor signaling pathway detected 
using IPA Ingenuity Pathway analysis. Red highlights indicate DE-isoform associated genes. 
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FigS5 A, Histogram showing that CpG hypomethylation at isoform specific i-TSS 
mostly associates with their up-regulation (p-values <<10-10 were calculated using 
50% binomial test one-tail); B, UCSC genome browser screenshot showing 
hypomethylation, and upregulation of hnRNP-LL gene in both ICF1 samples 
compared to controls. Results from RNA-Seq, WGBS and RRBS are reported; C, 
CpG methylation level at CD45 intron2 measured in ICF1 samples and control; D, 
H3K4me2, H3K4me3, H3K27me3, H3K36me3, H3K9me3 mark enrichment 
obtained by ChIP assay; E, DNMT1 binding at hypermethylated CD45 intron2 
examined by ChIP assay in ICF1p2 and control samples. P-values in D and E were 
calculated using T-student test (two-tails) adjusted with Benjamini-Hochberg (BH) 
method. 
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