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Abstract 

 
In the last decades, RC precast structures were extensively used in all Europe as 

industrial buildings. However, both the poor knowledge of their seismic behavior and 

the lack of specific code provisions led to a high seismic vulnerability of the existing 

precast estate. During recent seismic events, indeed, significant and extensive damages 

were exhibited by precast structures. These scenarios demonstrated that the structural 

safety of precast structures is an important issue for both the human safety and the 

social/economic management of whole regions/countries. Three significant losses 

items are imputable to seismic damage mostly for precast structures. The first one is 

related to the casualties, injuries and its amount is proportional to the exposure of the 

structure. The second losses item is strictly related to the structural damage, and it 

consists in repair/replacement costs. The last ones, instead, depends on the down time 

in which the productive activities are interrupted in order to allow the interventions of 

structural rehabilitation. 

This work focuses on typical one-story precast buildings, designed without any 

seismic criteria, characterized by isolated columns fixed in socket foundations and 

connected to the beams by friction connections. Roof elements are arranged so that no 

rigid diaphragm is provided and the seismic force at the roof level is transferred to the 

lateral resisting system by masses proportional criteria which lead to plan irregularities. 

For the above considerations, it is recognized that seismic retrofitting interventions 

are required for the existing precast structures. However, two main issues should be 

faced: first, the code recommendations for seismic retrofit of the precast structures are 

still poor; second, the retrofit strategies typically adopted for the reinforced cast-in situ 

buildings are not suitable to fix the specific vulnerabilities related to the structural 

scheme of the precast buildings. 

The present work aims at presenting different retrofit strategies for the beam-to-

column friction connections of existing precast structures. In particular, it aims at 

comparing two different strategies based on displacement or velocity activation. The 

seismic performance of the retrofitting solutions is demonstrated by means of 

experimental and numerical results. 
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INTRODUCTION 

1.1 Motivation 

In the last decades, RC precast structures were extensively used in all Europe as 

industrial buildings. However, both the poor knowledge of their seismic behavior and 

the lack of specific code provisions led to a high seismic vulnerability of the existing 

precast estate. During recent seismic events, indeed, significant and extensive damages 

were exhibited by precast structures. These scenarios demonstrated that the structural 

safety of precast structures is an important issue for both the human safety and the 

social/economic management of whole regions/countries. Three significant losses 

items are imputable to seismic damage mostly for precast structures. The first one is 

related to the casualties, injuries and its amount is proportional to the exposure of the 

structure. The second losses item is strictly related to the structural damage, and it 

consists in repair/replacement costs. The last ones, instead, depends on the down time 

in which the productive activities are interrupted in order to allow the interventions of 

structural rehabilitation. 

During some recent earthquakes, like L’Aquila (Italy) in 2009 (Faggiano et al. 2009; 

van der Harst et al. 2012), Van (Turkey) in 2011 (Ozden et al. 2014) and Emilia 

earthquakes (Italy) in 2012 (Belleri et al. 2015; Bournas et al. 2013; Magliulo et al. 2014),  

the poor seismic response of these structures was mostly caused by the inadequacy of 

the connection systems between both the structural elements and the structural and 

nonstructural components (Baird et al. 2011). In many structures, indeed, the 

connections were not designed for any seismic action and their premature failure during 

the seismic excitation caused catastrophic collapses and structural damages. For 

instance, during the Emilia earthquakes, most of the failures were caused either by the 

absence of mechanical devices connecting the structural elements (Magliulo et al. 2014) 
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or by the inadequacy of the connections of the nonstructural components (Biondini et 

al. 2013), i.e. the cladding panels. 

During the last years several experimental and numerical researches on precast 

structures were developed in order to achieve: the improvement of modern seismic 

codes for the design of new structures (Fischinger et al. 2008; Toniolo 2012), the 

assessment of existing structures (Belleri et al. 2015; Bournas et al. 2013; Casotto et al. 

2015) and the definition of new retrofitting solutions (Belleri et al. 2015; da Fonseca et 

al. 2011). With regards to existing buildings, Magliulo et al. (2008), performed several 

nonlinear analyses on existing precast structures in order to assess their seismic 

response. The analyses results demonstrated that the strength of the frictional beam-to-

column connections can be lower than the seismic demand in low-medium seismic 

zones in Italy: in these areas the collapse of the structures could occur due to the loss 

of the support in the beam-to-column connections. Moreover, in the following years 

the same authors experimentally defined the frictional strength for the typical existing 

frictional connections (neoprene-concrete) (Magliulo et al. 2011) and they found out 

that the frictional coefficient values were lower than the values adopted in the previous 

study, giving an even lower structural safety. 

Belleri et al. (2015) also performed an assessment study of existing precast buildings. 

By detailed field observations of existing buildings in Emilia Romagna region after the 

earthquakes, it was found that the connection systems were the crucial elements in the 

structural seismic response. In the study, the seismic performance of seven benchmark 

industrial structures with different construction ages were described in details. Some 

numerical considerations were also performed in order to justify the recorded loss of 

support phenomena under the recorded seismic loads in Emilia region. 

Since the knowledge about the seismic retrofitting of RC precast structures is still 

poor if compared to the cast in-situ RC structures (Fardis et al. 2015; Lampropoulos 

and Dritsos 2011; Mazza 2015), both the scientific and the technical community are 

addressing growing efforts for the development of this topic. After the Emilia 

earthquakes, the Italian government regulated the retrofitting actions for the structures 

in the epicentral area by issuing a specific law (Legge 01/08/2012 n. 122 2012). 

Moreover, in order to give more detailed technical indications, the “Guidelines on local 

and global retrofitting systems of precast structures” (Gruppo di Lavoro Agibilità 

Sismica dei Capannoni Industriali 2012) were edited under the supervision of the Italian 

Department of Civil Protection. According to the reference law, the structural safety 

against seismic events can be obtained through a procedure consisting of two phases: 

a) the removal of the main structural deficiencies; b) extensive and systematic actions in 

order to achieve the required seismic performance, according to the current Italian code 

(Circolare 02/02/2009 n. 617 2009; D. M. 14/01/2008 2008). The first phase is crucial 
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and it requires quick emergency actions to obtain the positive usability judgment by 

removing the main deficiencies, as the lack of connections between structural elements 

and the inadequacy of connections between structural and nonstructural components. 

Some authors studied innovative retrofitting solutions for existing precast buildings; 

however, few efficient solutions were defined in the last years, such as mechanical 

devices for connections (Belleri et al. 2014), dissipative systems (Biondini et al. 2013) 

and retrofitting actions for vertical elements (columns) and foundations (Belleri and 

Riva 2012), typically used for RC frame structures. 

1.2 Objectives and outlines 

The present work aims at presenting different retrofit strategies for the beam-to-

column friction connections of existing precast structures. In particular, it aims at 

comparing two different strategies based on displacement or velocity activation. The 

seismic performance of the retrofitting solutions is demonstrated by means of 

experimental and numerical results. 

In the Chapter 2 basic principles of the existing retrofitting strategies are describe 

and the existing Code approaches are presented. Moreover, different retrofitting 

solutions for precast  structures are described. In particular, retrofit solution at the 

structure level, element level and connection level are presented. Particular attention is 

paid to the existing retrofit solutions for the beam-to-column connection. 

In Chapter 3 a case study is presented: it consists of an existing precast building 

situated in Mirandola (Emilia), which presents the main features of the typical one-story 

precast structure of the Italian industrial areas. Through numerical analysis  the poor 

seismic performance of the existing building is demonstrated. 

In Chapter 4 a retrofit solution for the beam-to-column connection is presented. It 

is based on a three hinged arc configuration which should avoid changes in structural 

schemes. It can be activated by relative displacements between beam and column. The 

possible damping source is related to the hysteretical behavior of the steel components. 

In Chapter 5 a viscous damper retrofit solution is described by means of non-linear 

numerical analyses on a single frame of the reference building. Parametric analyses are 

performed to define the optimal configuration and mechanical characterization of the 

device. 

In Chapter 6 the main conclusion of the present work are summarized.  
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RETROFITTING SOLUTIONS FOR PRECAST 

BUILDINGS 

2.1 Seismic retrofit of existing structures 

 Retrofitting strategies 

In the last decades, wide scientific and technical researches dealt with the study of 

mechanical devices for the seismic retrofit of existing buildings in earthquake prone 

areas.  

The main goal of the seismic devices consists in improving the seismic performance 

of the main structure according to two different strategies: damping the input energy 

absorbed by the structure during the earthquake (dampers) or limiting the absorbed 

input energy (isolation systems). 

The isolation systems consist of slider bearings places between the foundations and 

the elevation of the main structure. They are designed so that their lateral stiffness is 

much lower than the lateral stiffness of the main structure so that they highly deform 

whereas the main structure rigidly moves without any source of hysteretic strains. 

The dampers consist of mechanical devices, which activate during the structural 

movements and reduce the dynamic structural global response redirecting the energy 

content, due to the seismic event, towards these “sacrificial” elements, which can be 

easily inspected and replaced after damage. If the presence of the mechanical devices 

does not change the fundamental period of the main structure, it results in a reduction 

of the relative displacements. If the presence of the mechanical devices increases the 

lateral stiffness of the main structure, it results in a reduction of the fundamental period, 

which corresponds to the increase of absolute accelerations and the reduction of the 

displacements.  
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The energy damping can be obtained allowing inelastic mechanisms in the main 

structure or in the supplemental devices until the carrying capacity of the main structure, 

with respect to the gravity loads, is not yet compromised. 

Concerning the request of power sources, the seismic dampers can be collected in 

three main categories: 

- Active devices, which include monitoring systems to assess the structural 

response in run time through an electronic acquisition system, a control system 

which receives the collected data and selects decisions, an actuation system which 

physically realizes these actions. They need external power sources which can be 

interrupted during a seismic event; 

- Semi-active, which have the same structure of the active devices but they need a 

low quantity of external power source since the control process is limited to local 

properties (i.e. the geometrical arrangement of the orifices in the fluid viscous 

damper, in order to prevent buckling);  

- Passive energy dissipation systems are intended to dissipate part of the seismic 

input energy without external power sources, such as actuators, power supplies, 

computers, etc. necessary for active control technology. They are activated by 

the structural movements. 

Concerning the working principles, the seismic passive dampers can be divided in 

three categories: 

- displacement based dampers, which activate due to the relative displacements 

between the structural parts that they connect. The input motion frequency 

content does not influence the device response. The reaction forces in the device, 

transmitted to the main structure, are in phase with the internal forces generated 

by the input motion. For this reason, the maximum device response occurs with 

the maximum structural response and with the maximum transient structural 

deformations. Metallic, friction and self-centering systems belong to this 

category; 

- velocity based dampers, which activate due to the relative velocity between the 

structural parts that they connect. The device response depends on the input 

motion frequency content and the reaction forces in the device, transmitted to 

the main structure, are not in phase with the internal forces generated by the 

input motion. For this reason, the maximum device response does not occur 

with the maximum structural response and this returns in lower design forces for 

the seismic dampers. Viscous and viscoelastic dampers belong to this category; 

- acceleration based dampers, which change the energy flow to the main structure 

thanks to secondary tuning systems. The secondary system, design in terms of 

addition mass and stiffness, is tuned with the fundamental frequency of the main 
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structure. During the dynamic excitation, the input energy is moved towards the 

supplemental device and it is damped thanks to the inertial forces applied to the 

secondary structure. 

Table 2-1 Supplemental Damping Systems 

Conventional 

systems 

Passive 

Dampers 

Semi-

Active/Active 

Dampers 

Isolation 

Systems 

Flexural Plastic Hinges Metallic Braces Elastomeric 

Shear Plastic Hinges Friction Tuned-mass Lead-Rubber 

Yielding Braces Viscoelastic Variable Stiffness 
High-damping 

rubber 

 Viscous Variable Damping Metallic 

 Tuned-mass Piezoelectric Lead-extrusion 

 Self-centering Rheological Friction Pendulum 

 Code approach for the seismic retrofit 

The seismic performance of the industrial precast structures during recent 

earthquakes, pointed out structural vulnerabilities, especially for existing structures built 

in accordance with non-seismic criteria. For this reason, seismic retrofitting 

interventions should be performed but, whilst design building codes for new 

constructions provide methods and procedures to develop modern performance based 

structural responses, methodologies and guidelines are still poor concerning the 

retrofitting techniques. 

The Italian building code (Circolare 02/02/2009 n. 617 2009; D. M. 14/01/2008 

2008), following the Eurocode provisions (CEN 2005), gives general rules to perform 

the structural rehabilitation process of the existing structures. It should start with the 

assessment of the structural safety with respect to the external actions that the reference 

building should face during its life: if the current safety level does not follow the 

minimum requirements prescribed by the building code in force at this time, structural 

interventions should be performed. They should aim at restoring the initial conditions, 

exhibited before the performance degradation for external causes, or at improving the 

structural response to gain satisfactory safety levels. 

In the specific section for the existing structures, the Italian building code limits the 

safety assessment and the design of retrofitting interventions to the ultimate limit states, 

i.e. with respect to the human life safety and with respect to collapse. Moreover, it 

defines the conditions in which the assessment of the existing structures is necessary:  



RETROFITTING SOLUTIONS FOR PRECAST BUILDINGS 

21 
 

- strength and stiffness degradation of the whole structures, or of some portions, 

with respect to environmental actions, material mechanical properties decay or 

with respect to special loads; 

- change of the structural destination, which leads to different variable loads to be 

considered and different importance class of the structure;  

- presence of non-structural interventions which interfere with the structural 

members, reducing their strength or stiffness; 

- design or construction errors with respect to the code provisions and to the good 

practice. 

The assessment procedure leads to the definition of one of the following conditions: 

(a) the structure can be used without any further intervention, (b) the structural 

destination and use should be limited, (c) the structural capacity should be improved. In 

this case, the Italian building code identifies three different categories of structural 

interventions: structural interventions which aim at the full compliance of the code 

safety levels, structural interventions which aim at improving the structural 

performance, local interventions which are applied to single structural elements or to 

limited portions of the whole building, with no modifications of the structural system. 

Before the intervention application, the retrofitting procedure should include the 

assessment, in order to define the structural deficiencies and the level of seismic actions 

which cause the attainment of the ultimate limit state (and of the serviceability limit 

state, if requested). After that, the retrofitting strategy should be selected and motivated, 

with particular attention to the applied materials and techniques. The selection of the 

type, technique, extent and urgency of the intervention shall be based on the structural 

information collected during the assessment of the building. A preliminary 

dimensioning of the retrofitting technique and of supplemental structural elements 

should be performed and the structural response of the retrofitted building should be 

assessed, identifying the new level for external actions which leads to the attainment of 

the ultimate limit states (and of the serviceability limit state, if requested). 

For more detailed indications, it should refer to specific technical publications 

(FEMA 2000; fib 2003) but there are still few recommendations for precast buildings.  

2.2 Seismic retrofit techniques for precast structures 

The seismic retrofit of precast structures requires specific criteria for the selection of 

the best solution: often, it is not possible to apply the strategies and the techniques used 

for reinforced concrete structures because of the peculiar issues related to the structural 

typology. In particular, when designed in accordance with seismic codes, the precast 

elements can exhibit higher performances due to the high mechanical properties of the 



 

22 
 

adopted materials and due to the high quality control during the production phase. 

Hence, typical structural deficiencies of the cast in situ reinforced concrete elements, 

such as the lack of transversal reinforcement area, inadequate overlapping lengths, 

discontinuities for longitudinal bars, etc., can be avoided. However, the precast 

structures can exhibit very poor seismic performance of the mutual connections 

between the structural elements. In particular, they can show: (a) a very poor reliability 

of beam-to-column connections, without any mechanical restrainers, i.e. friction 

connections, or without adequate seismic details which lead to ductile responses); (b) 

the lack or the inefficiency of the mutual connections between the roof elements, which 

reflect in flexible roof plans and in plane irregularities; (c) the presence of mutual 

constraints characterized by high stiffness, which are not compatible with high 

displacement requests and induce dangerous phenomena of dynamic interaction. 

An important issue for the seismic retrofit of the precast structures concerns the high 

costs of interventions. First, it should be considered the wide extension of a typical 

precast building and the high number of elements, which need rehabilitations, especially 

for structures in which non-seismic criteria have been systematically applied (e.g. in 

order to fix the mutual connections between the roof elements of a typical industrial 

building, it could be necessary to realize hundreds of local interventions). Moreover, it 

should be considered that the application of the retrofitting techniques could be not 

easy due to the high span length of structural elements. For example, in order to check 

and operate in correspondence of the beam-to-column connections, skilled labor and 

specific equipment are needed: this results in high costs related to the installation 

procedures and to the facility breakdown. 

The retrofitting techniques for precast structures can be divided in three main 

categories: they can be addressed at improving the global structural response (structure 

level), at increasing the seismic capacity of the structural members (element level) or at 

allowing the mutual transmission of the external loads (connection level). 

 Structure level retrofit 

The retrofitting techniques, which can influence the global structural response, 

include interventions on the superstructure or on the substructure. The main issues that 

this kind of global techniques should face are the absence of lateral resisting frames in 

both the directions and the presence of flexible diaphragms. 

Typical examples of superstructure interventions to improve the lateral shear 

strength are the bracing systems or the shear walls. However, the application of shear 

walls appears to be not very convenient for the precast structures, which are usually 

characterized by wide dimensions, in plan as well as in elevation. 
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In some cases, if urgent intervention is required, a global retrofit technique applied 

at the superstructure can consider to connect the top ends of the vertical columns with 

metallic strands or with ropes, which work only for tensile forces and not for 

compression. Hence, this kind of retrofitting technique should be carefully selected and 

accurately verified and integrated after the emergency phase.  

In Belleri et al. (2015), the authors focus on the typical configuration for the 

horizontal diaphragms in the industrial precast buildings: the roof elements are 

connected directly to the supporting beams through mechanical connections or by 

friction and no cast in place topping is poured mainly due to the presence of large 

openings. In these conditions, the diaphragm action is not provided and the behavior 

of adjacent precast frames is basically decoupled during the seismic event. The lateral 

frames are more rigid than the internal ones because of the presence of cladding panels 

and therefore adjacent frames could move out-of-phase so that roof-to-beam and beam-

to-column connections experience displacements and rotations that could cause 

premature fall. Moreover, the beams are subjected to out-of-plane bending and 

additional torque due to the seismic roof loads and to the column top rotations. The 

authors present a possible retrofitting global solution aiming at reducing the lateral load 

demand: it consists in providing a diaphragm at roof level, which will act as a deep beam 

in carrying the horizontal loads. This could be realized adding interconnecting adjacent 

elements (Figure 2-1(a)), introducing a planar steel truss or introducing diagonal tendons 

(Figure 2-1(b)).  
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Figure 2-1 Possible retrofitting solutions for flexible diaphragms (Belleri et al. 2015) 

Another possible intervention on the superstructure could consider the presence of 

an external steel frame, fixed at the base and connected to the existing building at the 

horizontal diaphragm level. The external frame provides, at the same time, a 

supplemental structure for absorption of the seismic actions and an effective restrain to 

the horizontal diaphragm in order to perform a rigid horizontal level. 

Concerning the retrofitting techniques applied to the substructure, the isolation 

systems could be considered. In this case, the retrofitting system could lead to high costs 

for installation and maintenance after damage. 

 Element level retrofit 

Considering the typical structural scheme of precast structures, consisting in isolated 

columns fixed at the bottom end by socket foundations and connected at the top end 

to the beams through isostatic restrains, the only ductility source is related to the plastic 

behavior of the columns. For this reason, the retrofitting techniques addressed to the 

element level mainly consist in structural interventions for the increase of the column 

bearing capacity, for the increase of the column flexural and/or shear strength, for the 

increase of the column deformation capacity and of the overall structural ductility. 

Typical techniques applied to the precast structures in order to join these goals can be 

derived from reinforced concrete structures, e.g. concrete or steel jacketing and FRP 

plating or wrapping (Figure 2-2). However, also in this case, the effects of the retrofitting 

techniques should be considered for the specific structural typology and the related 

issues. For example, due to the presence of industrial equipment or racks, it could be 
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difficult to install the retrofitting systems at the column base and it could be impossible 

to increase the cross sectional area. Moreover, jacketing or wrapping techniques 

improve confinement and increase deformation but high column base rotation can 

result in high value of the lateral drift or of the relative displacements between beam 

and column with consequent damage to the non-structural components as well as to 

the roof elements. 

 
Figure 2-2 Column strengthening solutions (Belleri et al. 2015) 

 Connection level retrofit 

The retrofitting techniques addressed to the connection level should: limit relative 

displacements where unseating phenomena can occur, create new effective restrains, 

limit relative rotations, which can lead to out-of-plane mechanisms, avoid overturning 

of the cladding panels, etc. However, the application of these techniques should avoid 

the increase of lateral stiffness and the structural scheme modification. In fact, this may 

result in the increase of the external actions (in the range of periods of interest, a higher 

lateral stiffness corresponds to a lower fundamental period and results in higher seismic 

actions) and of internal forces (in presence of statically indeterminate restrains the 

structural elements can be subjected to external actions for which they are not designed). 

As mentioned before, the mutual connections between precast elements represent a 

high seismic vulnerability source. For this reason, after the recent seismic events which 

hit precast facilities, different solutions are carried out. In the following, some 

remarkable examples are described in order to define the recent state of art and 

knowledge about seismic retrofitting of different types of structural connections in 

precast structures. Finally, particular emphasis is dedicated to the beam-to-column 

connections. 
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In Belleri et al. (2014), the authors investigate the use of ductile connections between 

precast beams and roof elements. These connections are able to transfer the horizontal 

inertial loads and to accommodate deformations arising from seismic displacement 

compatibility. In fact, the typical precast beam-to-column connection adopted for 

precast building consists of L-shaped steel plates, bolted to the roof elements and 

connected to the beam by means of anchor headed bolts placed in steel channel profiles 

embedded in the concrete element. This connection is intended to perform a hinge 

connection. However, during the seismic event relative rotations reduce the gap 

between the two structural elements and when the elements keep in contacts, the 

connection gains rotational stiffness. This results in additional forces in the connection 

which induce brittle failures associated with the concrete crushing or with the prying 

action of the anchor headed bolts. 

On the contrary, the investigated connection, thanks to an arch shaped configuration 

(Figure 2-3), accommodates relative displacements and rotations. If designed with a 

dissipative approach, the proposed connection could be used to dissipate energy during 

the seismic event.  

 
Figure 2-3 Arch shaped roof-to-beam connection and possible installation configurations (Belleri 
et al. 2014) 

In Belleri and Riva (2012), the authors show a possible retrofitting solution for 

column-to-foundation connections in mat foundations. It consists in the realization of 

grouted corrugated steel sleeves: the cyclic behavior of the grouted corrugated steel 

sleeve connections in investigated in the mentioned paper, through cyclic shear tests 
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considering different connection details. In Figure 2-4 two of the test specimens are 

represented, both with four grouted sleeves: the specimen GS4 had a 90° hooks at the 

reinforcing bar end, whereas the specimen GS4B presents straight reinforcing bars. 

The test results pointed out that the routed sleeve connections provide confinement, 

inhibit buckling of the longitudinal reinforcement and increase the strength of the grout. 

This results in localized damage at the column base avoiding inelastic mechanisms in 

the footing.  

 
Figure 2-4 Details for column-to-foundation connections retrofitted with grouted corrugated 
steel sleeve connections (Belleri and Riva 2012) 

Concerning the external cladding panel-to-structure connections, the European 

SAFECLADDING project has been developed in order both to assess the safety of the 

existing connections and to define innovative systems for new and retrofitted structures. 

In the frame of this project some researches were developed in order to define new 

retrofitting systems (Biondini et al. 2013). 

In Dal Lago (2015) three innovative dissipative cladding connections have been 

presented, designed and experimentally characterized in order to define the optimal 

technological features for the single device. They are friction based (Figure 2-5(a)), 

multiple slit (Figure 2-5(b)) and folded plate (Figure 2-5(c)) devices.  

The friction based devices provide a quasi rigid-plastic behavior to which a very large 

energy dissipation is associated, with a typical friction type hysteresis. The connection 

provided with brass sheets exhibited a very large cyclic reliability, to which corresponds 

the possibility of re-use after many large amplitude cycles. Some uncertainties are 

associated with the definition of the slip load threshold due to the friction mechanism. 

The multiple slit devices provide large elastic stiffness and a hardening behavior due 

to the diffusion of plasticity along the rectangular section of each elementary beam and 

to the material hardening. Despite the large relative displacement capacity of the device, 
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the maximum displacement attained is relatively low, due to the small dimensions that 

are needed in order to apply the device between cladding panels. 

The folded plate devices provide an in-plane flexible behavior with large 

displacement capacity, which corresponds to good energy dissipation. The mechanical 

behavior of the single device is largely influenced by the out-of-plane mechanism but 

the structural global response could be optimized using a proper installation scheme. 

Numerical and parametrical analyses demonstrate also the influence of the dissipative 

connections on the global behavior of the whole structure. 

 
Figure 2-5 Innovative dissipative connections for cladding panels in precast structures (Dal Lago 
2015) 

In Latour and Rizzano (2015) a retrofitting solution for external vertical cladding 

panels is proposed. It consists of a dual system, composed by the external walls and the 

internal columns, working in parallel (Figure 2-6(a)). The connection between the 

cladding panels and the internal structure is performed by means of hysteretic dampers, 

namely XL-Stub, obtained from steel flange plates which follow the basic principle of 

the ADAS devices (Added Stiffness And Damping): the X-shape of the steel plate, 

which reproduce the diagram of the bending moment arising under tension loads, leads 

to the plasticization of all the plate sections with a high dissipative capacity due to the 

deformation demand distributed along the whole plate (Figure 2-6(b)).  
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(a) 

 

 

(b) 

Figure 2-6 XL-Stub connection for precast cladding panels (Latour and Rizzano 2015) 

2.2.3.1 Beam-to-column connection seismic retrofitting solutions 

In this work, retrofitting solutions for the beam-to-column connections are mainly 

discussed: in the following, a brief literature review is presented in order to describe the 

recent applications for this kind of structural connection. 

The applied solutions include mechanical devices, which offer different type of 

energy dissipation in order to improve the local and global structural seismic response.  

In Yildirim et al. (2015) the seismic retrofit of a typical one-story industrial precast 

concrete building located in Turkey is performed. The existing building is not well-

engineered and is expected to have very poor performances if exposed to seismic events. 

The selected retrofitting technique should guarantee that the building would not be 

vacated during the application. It consists in applying rotational friction dampers with 

an effective configuration defined after iterative trial-and-error linear studies. Non-

linear time-history analyses are performed to verify the exhibited cyclic response. 

In particular the dampers are placed at the beam-to-column dowel connections in 

the direction of the main frame (Figure 2-7(a)). In the orthogonal direction, steel 

compression members are designed in order to provide load transfer between frames 

(Figure 2-7(b)). 

The performance of the applied retrofitting solution is studied in terms of global 

response, i.e. the interstory drift exhibited by the structure, the base shear force and the 

obtained damping ratios. It is pointed out that friction dampers, applied together with 
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some steel members, reduce the seismic demand of the main structure so that 

performance goals of ASCE 41-06 and of Turkish Earthquake Code 2007 can be 

satisfied. Further noticeable advantages are the easy and rapid installation procedure. 

(a) 

(b) 

Figure 2-7 Application of friction dampers and steel members to precast structures (Yildirim et 
al. 2015) 

Also in Martinelli and Mulas (2010), the use of friction dampers for the seismic 

retrofit of a one-story prototype precast building is considered, because of the advantage 

to have reduced dimensions and low costs for the devices application, together with a 

good energy dissipation providing ductility to the hinged connections. 

The selection of the damper device is based on two requirements: adopting a device 

of small dimensions and enhancing a significant structural damping. The proposed 

device consists of two UPN200 channel sections assembled to form a wide flange 

section. It is connected to the column and the beam through a bolted connection to 

avoid the introduction of additional moments both in the beam and in the column. The 

dissipating mechanism consists of annular brass plates inserted between a steel plate and 

the channel profile, bolted together by a high strength bolt. The rotational strength is 

controlled by the bolt tension and it is provided by the friction developed between brass 

and steel. Different material can be adopted instead of brass (Figure 2-8). 



RETROFITTING SOLUTIONS FOR PRECAST BUILDINGS 

31 
 

The device efficiency is analyzed by comparing the seismic response of the bare and 

the retrofitted frame, by means of non-linear dynamic analyses. The numerical results 

pointed out an increase of the shear force in the zones where the device is inserted. On 

the other hand, the reduction of the maximum top displacement and of the column 

base bending moment, as well as the increase of hysteretic energy dissipation are 

demonstrated. 

 
Figure 2-8 Beam-to-column connection friction dampers (Martinelli and Mulas 2010) 

In some applications (da Fonseca et al. 2011) beam-to-column connection of precast 

concrete frame are strengthened by near surface mounted carbon fiber reinforced 

polymers strips (NSM CFRP strips). The performance of the considered system is 

investigated through quasi-static tests which pointed out an increase in the connection 

stiffness and in the flexural strength, reducing the midspan beam deflection. Brittle 

failures are recorded with the splitting of the beam edge, due to the low distance 

between the concrete edge and the strips. Finally, the authors indicate that particular 

critical an be the limited length available for the embedding of the strips on the column 

surface. 
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Figure 2-9 Precast beam-to-column connections retrofitted by NSM CFRP strips (da Fonseca et 
al. 2011) 
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THE CASE STUDY: AN EXISTING INDUSTRIAL 

PRECAST ONE-STORY BUILDING 

3.1 Introduction 

On May 2012 two earthquakes hit Emilia-Romagna region (Northern Italy) and a 

huge number of existing precast RC one-story buildings was severely damaged. In some 

previous seismic events, the seismic vulnerability of precast RC buildings was already 

demonstrated, such as during Kocaeli earthquake (Turkey, 1999) (Saatcioglu et al. 2001) 

and L’Aquila earthquake (Italy, 2009) (Faggiano et al. 2009; Toniolo and Colombo 

2012). However, in Emilia-Romagna the large number of damaged structures 

underlined the relevance of the seismic safety of this structural typology. In this part of 

the country, most of the precast structures hosted industrial and commercial activities 

and their collapse/damage was one of the main causes of the huge economic losses 

(Magliulo et al. 2014). In order to reduce the economic impact, hence, the retrofitting 

of these structures was one of the most important activities during the emergency phase, 

aimed at restoring the activities/production within short time period. 

From a scientific point of view, the widespread damage caused the availability of a 

huge number of data and field observations about the seismic response of precast RC 

structures, built in Northern Italy in the second half of the twentieth century and in the 

first years of the twenty-first century. The first evidence of the field surveys pointed out 

the presence of common deficiencies, mainly related to the connection systems. Several 

collapses occurred because of the failure of the connections between the structural 

elements: several horizontal elements (e.g. roof elements and beams) experienced 

significant relative displacements with respect to the supporting ones (e.g. beams and 

columns), collapsing due to the loss of the support. Some studies have been already 

performed in order to assess the vulnerability of these structures (Psycharis et al. 2006; 

Toniolo 2013) and some papers investigated the seismic response through both 
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extensive photographic reports of the recorded damage in the hit region and 

descriptions of the main features of the analyzed structural typology. In these works, 

the authors drawn some main conclusions on the seismic safety of precast structures 

through simplified consideration about the seismic demand. For instance, in (Magliulo 

et al. 2014) the common failure of the friction beam-to-column connections (without 

mechanical devices, i.e. relying only upon the friction resistance between the connected 

elements) was justified by comparing the shear resistance of the connection with the 

elastic spectral accelerations of the first seismic event (May 20th).  

In (Magliulo et al. 2008) the authors assessed the seismic safety of some existing 

precast RC buildings, typically employed in Europe. The vulnerability of the existing 

friction beam-to-column connections was demonstrated through nonlinear static and 

dynamic analyses. The adopted models of the precast RC structures did not take into 

account the friction resistance of the connections: the safety was verified by comparing 

a posteriori the shear seismic demand on the connections, modelled as pinned, and their 

friction resistance. In (Casotto et al. 2015) a seismic fragility model for Italian RC precast 

buildings was obtained through several nonlinear analyses on different typologies of 

buildings. The nonlinear models consisted of columns and beams and the beam-to-

column connections were assumed as hinges. The collapse limit state due to the loss of 

support of the beam was verified a-posteriori by adopting two approaches: 1) the shear 

demand in at least one column exceeding the connection capacity; 2) the sliding 

displacement (Newmark sliding block analysis) of the beam exceeding its support 

length. 

It is worth noting that several experimental studies were developed in the last decades 

in order to define the best models for precast RC structures. For instance, some tests 

investigated the inelastic behavior of structural elements (Fischinger et al. 2008) and 

some other studies developed models of the connection systems (i.e. designed according 

to modern building codes), such as between structural elements (Kremmyda et al. 2014; 

Magliulo et al. 2014) and between structural and nonstructural components (Biondini et 

al. 2013). However, these investigations are mainly referred to new buildings, designed 

for seismic actions according to modern codes. Some investigations were also 

performed concerning the seismic safety of high-rack structures (Petrovcic and Kilar 

2012), typically employed in industrial buildings; these elements can influence the 

seismic response of the whole building and their failure can significantly increase the 

economic impact of the earthquake due to the contents losses. Concerning existing 

structures, several work were developed in order to define reliable and efficient 

retrofitting solutions for elements and connection systems (Belleri et al. 2014; Belleri et 

al. 2015). 
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In the following, the structural behavior of a precast RC building with friction 

connections, hit by the Emilia-Romagna earthquakes in 2012, is evaluated.  

3.2 Description of the structure as-built 

The reference building is an existing industrial precast structure built in Mirandola 

(Emilia Romagna, Italy, Figure 3-1), in1990, which shows the typical features and issues 

of most of the Italian precast buildings. The design of the load-bearing structure was 

performed according to the Italian building Code in force at that time (LS 1060, DM 

30/05/1972, DM 3/12/1987) without any specific details for seismic design (according 

to LS 64), since the current seismic zonation did not include the Emilia region in the 

classified seismic-prone areas (Figure 3-2). 

 
Figure 3-1 Geographical position of the 
reference building 

 
Figure 3-2 Seismic zonation in force in 1984 

The one story building presents a very regular structural plan with respect to the 

main axes (Figure 3-3), consisting of six bays in the x direction (span length equal to 

20m) and five bays in the y direction (span length equal to 10m). 

The main structure consists of single precast RC columns 7.85m high, fixed at the 

base with isolated socket foundations. In the following, the internal columns are labelled 

as “type A”, the columns of the external frames along the global x axis are labelled as 

“type B”, the columns of the external frames along the global y label are labelled “type 

C” and the corner columns are labelled as “type D”. Type A and C columns present a 

rectangular cross section of 50x40cm, with the higher dimension along the x axis; Type 

B and D columns present a square cross section of 50x50cm (Figure 3-4 ). All the 

columns present the same longitudinal steel reinforcement, consisting of 4 16 and 4 
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18, and the same transversal steel reinforcement, consisting of horizontal stirrups 6, 

20mm spaced. 

The principal beams have I-shaped cross sections with a bottom and top base of 

36cm. They have variable thickness and height: in order to obtain the best performance 

for shear and flexural behavior, they show at the ends the maximum thickness (24cm) 

and the minimum height (75cm), whereas in the middle span they show the minimum 

thickness (8cm) and the maximum height (175cm), so that the top surface shows an 

inclination of 10% (Figure 3-4).  

 
Figure 3-3 Plan view of the reference industrial precast building 

 

(a) 
 

(b) 

Figure 3-4 Columns and beam cross section 

The principal beams connect the columns in the x direction through friction 

connections, using neoprene pads, without any mechanical device against shear loads. 

Neoprene pads arranged on the top of each column have dimensions of 23x26x1cm 

(Figure 3-5(a)). Girders with U-shaped cross sections (40x60cm) connect the columns 
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in the y direction, through bolted steel angles with a very low rotational strength around 

the girder transversal axis. Figure 3-5(a) shows the geometrical configuration of a typical 

beam-to-column friction connection of the building (column type B). 

The roof elements consist of -shaped and T-shaped precast elements, arranged in 

the y direction and simply supported by the principal beams for a length of 13cm (Figure 

3-5(b)). For each bay, there are three groups of roof elements placed side by side (2 -

shaped -4 T-shaped-2 -shaped), spaced with transparent elements which allow 

enlightenment. 

The cladding elements consist of vertical panels, 8.90m high, connected to the 

external principal beams, in the x direction, or to the external girders, in the y direction. 

On both the external bays along the x direction, there are four portals consisting of 

vertical pillars and horizontal lintels. 

Table 3-1 shows in the first column the number of elements for each member 

typology, the mean value of the mass for each element (m), the total mass for each 

member typology (mTOT), the total mass at the roof level (considering the halved mass 

for columns and vertical panels) (Mroof), the total roof weight (wroof). 

 

(a) 

 

(b) 

Figure 3-5 Friction beam-to-column (a) and roof-to-beam (b) connection 

Table 3-1 - Mass values for members 

 

n. of 

elements m mTOT Mroof wroof 

  [-] [t] [t] [t] kN/m2 

Columns 42 4.60 193.20 

1925.44 3.15 

Beams 36 9.63 346.68 

Girders 35 2.56 89.60 

Roof 

elements 288 3.22 927.36 
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Cladding 

panels 136 6.10 829.60 

Portals 8 6.30 50.40 

 

For all the structural elements, the adopted concrete has a characteristic cubic 

compressive strength of 50MPa. Longitudinal and transversal reinforcement steel has a 

characteristic yielding strength of 440MPa.  

3.3 Structural model 

 Structural elements and gravity loads 

The non-linear model of the existing structure is performed through the OpenSees 

code (Center 2007). Columns, principal beams, girders and roof elements are modeled 

as elasticBeamColumn elements, represented through their longitudinal axis, with nodal 

masses applied at the ends. Cladding panels are neglected in terms of lateral stiffness 

and they are considered in the model only in terms of additional masses and gravity 

loads, applied to the structural elements along the perimeter (i.e. to the girders, in the y 

direction, and to the principal beams, in the x direction).  

Geometrical eccentricities in the connections between the longitudinal axis of the 

structural elements (principal beams and columns, roof elements and principal beams, 

girders and columns) are modeled through horizontal and vertical rigid links, with a very 

high flexural shear and torsional stiffness. 

Gravity loads are applied as nodal forces in each connection (roof-to-beam, beam-

to-column and girder-to-column): cladding panels weigh is applied as gravity nodal force 

in the perimetral connections. In Table 3-2, Nroof represents the gravity nodal force 

accounting for roof elements weight; Nbeam represents the gravity nodal force accounting 

for main beam and horizontal lintels weight; Ncol represents the gravity nodal force 

accounting for columns and pillars weight; Ngird represents the gravity nodal force 

accounting for girders weight; Npan represents the gravity nodal force accounting for 

cladding panels weight; Ntot is the total gravity nodal force applied in each connection. 

Table 3-2 Gravity nodal forces applied in the structural connections 

  Nroof Nbeam Ncol Ngir Npan Ntot 

    [kN] [kN] [kN] [kN] [kN] [kN] 

roof-to-beam - 18.6 - - - - 18.6 

beam-to.column  

Type A - 62.4 - - - 62.4 

Type B - 31.2 - - 119.7 150.9 

Type C - 62.4 - - - 62.4 



THE CASE STUDY: AN EXISTING INDUSTRIAL PRECAST ONE-STORY 
BUILDING 

39 
 

Type D - 31.2 - - - 31.2 

girder-to-column 

Type A - - 29.8 27.8 - 57.6 

Type B - - 14.9 13.9 - 28.8 

Type C - - 14.9 13.9 119.7 148.5 

Type D - - 7.4 6.9 59.9 74.2 

column base 

Type A      480.00 

Type B      479.4 

Type C      359.7 

Type D           179.8 

 Structural connections 

The girder-to-column connections are modeled as perfect cylindrical hinge 

connections, which allow only flexural rotations of the girders (around the global x axis). 

The friction roof-to-beam and beam-to-column connections are modeled through a 

zero length flatSliderBearing element (McKenna and Fenves 2013) which connects the 

slider element (i.e. the beam, for roof-to-beam connections, and the column, for beam-

to-column connections) to the sliding element (i.e. the roof elements, for roof-to-beam 

connections, and the beam, for beam-to-column connections). The bearing elements 

accounts for three possible degrees of freedom, i.e. vertical displacements, horizontal 

displacements along the direction of the sliding elements longitudinal, flexural rotations 

of the sliding elements (around the global x axis, for roof-to-beam connections, and 

around the global y axis for the roof-to-beam connections). All the other degrees of 

freedom of the bearing elements are restrained, assuming high values of lateral and 

rotational stiffness. In particular, for both the roof elements and beams, torsional 

rotations are neglected and a single sliding direction is considered for numerical 

simplicity. This assumption does not compromise the analysis results because also in 

the actual seismic response, the neglected relative displacements are limited by the 

presence of the adjacent roof elements or by the forks at the column top end. 

The mechanical properties of the bearing elements reflect the geometrical and 

mechanical properties of the neoprene pads used to perform the friction connections. 

In particular, according to Magliulo et al. (2011), the neoprene shear modulus, the 

Poisson’s ratio and the Young’s modulus are assumed equal to 1.1MPa, 0.5 and 3.3MPa, 

respectively, so that axial and lateral stiffness in the sliding direction (i.e. the x axis for 

the main beams and the y axis for the roof elements) can be evaluated (Table 3-3). 

In the vertical direction, for both roof-to-beam and beam to-column connections, 

the bearing elements allow free uplifts (due to tensile axial loads) and compressive 
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displacements (due to compressive axial loads) depending on the neoprene axial 

stiffness. 

In the horizontal directions, according to the Coulomb model, the bearing elements 

allow elastic displacements along the global x direction (for the beam-to-column 

connections) or along the global y direction (for the roof-to-beam connections), 

depending on the assigned lateral stiffness. When the elastic shear reaction reaches the 

friction strength value 𝑅𝑓𝑟𝑖𝑐𝑡 = 𝜇 ∙ 𝑁 ( is the friction coefficient (Magliulo et al. 2011) 

and N is the vertical load acting in the connection), plastic deformations and sliding 

displacements occur. 

Table 3-3 Geometrical and mechanical properties for neoprene pads in friction connections 

 geometry Ka K*
l 

  [cm] [kN/m] [kN/m] 

beam-to-

column  
23x20x1 19734 6578 

roof-to-beam 13x5x1 4290 1430 
*the lateral stiffness refers to the sliding direction 

Table 3-4 Friction strengths 

  Aneopr N v  Rattr 

    [m2] [kN] N/mm2 [-] [kN] 

C
o

lu
m

n
 

Type A 0.0598 211.15 3.53 0.12 24.40 

Type B 0.0598 225.28 3.77 0.11 25.82 

Type C 0.0598 211.15 3.53 0.12 24.40 

Type D 0.0598 105.58 1.77 0.13 13.85 

roof-to-beam 0.0065 18 2.77 0.12 2.16 

 

 Non-linear model 

A lumped plasticity approach is assumed for the structural non-linear model: 

zerolength elements (McKenna and Fenves 2013) are introduced at the column bases, for 

which only rotations around global x and y axes are allowed. The backbone curve of the 

hysteresis loops for moment-rotation deteriorating relationships is defined according to 

Ibarra et al. (2005), considering the mean values of the material properties, and 

introduced in the model through a ModIMKPeakOriented Material (McKenna and Fenves 
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2013) assigned to the corresponding degree of freedom (rotation around the global x 

and y axis) of the zerolength elements. 

In the following, the main parameters for the plastic hinges definition are described, 

in terms of moment-rotation relationship. The four characteristic points of the 

backbone curve are: 

- the cracking point (cr, Mcr), which correspond to the attainment of the concrete 

tensile strength (fctm). Moment and rotation values are obtained on the basis of 

the gross section properties; 

- the yielding point (y, My), for which the yielding moment is obtained from a 

fiber analysis of the cross-section, corresponding to the first attainment of the 

concrete deformation (c1) equal to 2‰ or the steel yielding deformation 

(sy=fym/Es); the yielding rotation is evaluated in Eq. 3.1 according to Ibarra et al. 

(2005): 

0.2
0.00275

3 ( ')

y b ys
y y sl

c

d fL
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d d f
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 

 
    


 

3.1 

In Eq. 3.1, y represents the yielding curvature, Ls represents the shear span 

(equal to the column high for cantilever schemes), asl represent the longitudinal 

reinforcement ratio, y represents the steel yielding deformation, d and d’ 

represent the effective high of the cross section and the reinforcement distance 

respectively, db represents the longitudinal bar diameter, fy represents the mean 

value of the steel yielding strength and fc represents the mean value of the 

concrete compressive strength; 

- the ultimate point (u, Mu), which corresponds to the attainment of the maximum 

moment value, considering an hardening ratio equal to 1%; the ultimate rotation 

is evaluated in according to Ibarra et al. (2005): 
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In Eq. 3.2,  represents the normalized axial force, ' and  represent the 

tensile and compressive mechanical ratio, h represents the cross section high. 

Due to the very low transversal reinforcement, the transversal reinforcement 

ratio (w) is assumed to be equal to zero and the last term of the equation Eq. 

3.2 is neglected. 
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- the last point (last, Mlast), which corresponds to the final state after the moment 

degradation up to the zero value; the last rotation value is assumed to be equal 

to 1.01∙u. 

On the basis of the geometrical features of the cross sections and on the basis of the 

axial force acting at the column bases (Table 3-2) different envelops for the plastic 

hinges can be obtained for different column types and around both directions (x and y). 

0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300


x
 [-]

M
x
 [

k
N

m
]

 

 
type A

type B

type C

type D

0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300


x
 [-]

M
x
 [

k
N

m
]

 

 

 
Figure 3-6 Moment-rotation envelops for 
plastic hinges around global x axis 
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Figure 3-7 Moment-rotation envelops for 
plastic hinges around global y axis 

 Modal properties 

In the analysis, a classical Rayleigh damping is assumed to model the inherent 

damping of the structural elements, considering the damping matrix proportional to the 

mass and stiffness ones. The damping ratio is considered equal to 5%. 

The first and third periods of vibration correspond to translational modes along the 

y axis and x axis, respectively, and are equal to 1.58sec and 1.30sec, respectively. The 

second period of vibration is equal to 1.46sec and corresponds to a torsional mode. 

3.4 Dynamic analyses 

The seismic assessment of the precast structure is performed through non-linear 

dynamic analyses.  

The considered input motion is the acceleration time-history recorded in the 

Mirandola station (Modena, Emilia region) during the second main shock of the Emilia 

earthquake (May, 29th 2012). Station details (Table 3-5), event details (Table 3-6) and the 

input motion records refer to the Italian Accelerometric Archive (Luzi et al. 2008). 
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Table 3-5 Station details 

Station name Mirandola (MRN) 

Network 
IT - Italian Strong Motion 

Network (DPC) 

Address 
Via Napoli, 16 - Mirandola 

(MO), Italy 

Lat. 44.87823 

Long. 11.06174 

Vs30 [m/sec] 208 

Site Class [EC8] C 

Topografy T1  
 

Table 3-6 Event details 

Event id IT-2012-0011 

Name EMILIA_2ND_SHOCK 

Date 29/05/2012 07:00 

Lat. 44.84° 

Long. 11.07° 

Depth [km] 8.07 

M0 [dyn/cm] 1.07E+25 

MW  6.0 
 

 

In the following, Figure 3-8 shows the acceleration time history for the horizontal 

components, along East direction (MRN-E) and North direction (MRN-N), of the 

input motion; Figure 3-9 shows the acceleration time history of the vertical component 

(MRN-V). In Figure 3-10, the acceleration response spectra are represented for the three 

input components: the horizontal components along the East and North direction show 

a peak ground acceleration equal to 0.22g and 0.29g, respectively; the vertical 

component shows a peak ground acceleration equal to 0.86g. In order to show the 

frequency content of the input motion, the Fourier spectra are represented in Figure 

3-11: the graphs show the maximum Fourier amplitude for the East, North and vertical 

component at 2.18Hz, 1.52Hz and 15.47Hz, respectively. 

 
Figure 3-8 Acceleration time histories for the 
horizontal components of the input motion 
(MRN - IT-2012-0011) 
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Figure 3-9 Acceleration time history for the 
vertical component of the input motion 
(MRN - IT-2012-0011) 
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Figure 3-10 Acceleration response 
spectra for the three components of 
the input motion (MRN - IT-2012-
0011) 

 
Figure 3-11 Fourier spectra for the three components 
of the input motion (MRN - IT-2012-0011) 

For further investigations, dynamic analyses are also performed using a set of ground 

motion records, selected according to the Eurocode spectral compatibility using 

REXEL (Iervolino et al. 2010). In particular: 

- the number of the considered accelerograms is higher than 3. In fact, seven 

events are selected (Table 3-7). For each event, the three available acceleration 

components can be considered (Figure 3-12, Figure 3-13 and Figure 3-14) and 

the spectral compatibility is verified for the horizontal component with the 

maximum peak ground acceleration, i.e. the x component (Figure 3-15); 

- the mean of the zero period spectral response acceleration values (calculated 

from the individual time histories considered for the spectral compatibility, i.e. 

the x components of the input motion) is higher than the value of ag∙S, i.e. the 

peak ground acceleration, for the site in question; 

- in the range of periods between 0.2∙T1 and 2∙T1 (where T1 is the fundamental 

period of the structure in the direction where the accelerogram will be applied) 

no value of the mean 5% damping elastic spectrum (blue line in Figure 3-15), 

calculated from all time histories, is less than 90% of the corresponding value of 

the 5% damping elastic response spectrum (black solid line in Figure 3-15). 

Also for the selected records, the frequency content of each input motion can be 

represented through Fourier spectra: shows the Fourier spectra for the horizontal 

component (along the x direction) of the input motions; the black solid vertical line 

represents the fundamental frequency of the reference building. 
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Table 3-7 Records information for the spectral compatibility 

ID 
Earthquake 

Name 
Date Mw 

Epic. 
Dist. 

PGA_
X  

PGA_
Y 

PGV_
X 

PGV_
Y 

[km] [m/s2] [m/s2] [m/s] [m/s] 

333 Alkion 24/02/81 6.6 20 2.2566 3.0363 0.2234 0.2262 

592 
Umbria 
Marche 

26/09/97 6 5 1.951 2.1834 0.1735 0.1399 

5488 Chenoua 29/10/89 5.9 29 2.8302 2.2604 0.1311 0.1312 

5653 
NE of Banja 

Luka 
13/08/81 5.7 7 4.3397 3.9657 0.2633 0.1648 

581 Komilion 25/02/94 5.4 16 1.7162 1.9593 0.1283 0.1441 
42 Ionian 04/11/73 5.8 15 5.1459 2.4983 0.57 0.255 
879 Dinar 01/10/95 6.4 8 2.6739 3.1306 0.2937 0.4059 

mean:     6.0 14.3 2.9876 2.7191 0.2548 0.2096 
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Figure 3-12 Horizontal acceleration time 
history for the selected input records (x 
component) 

 
Figure 3-13 Horizontal acceleration time 
history for the selected input records (y 
component) 

 
Figure 3-14 Vertical acceleration time 
history for the selected input records (z 
component) 

 
Figure 3-15 Spectral compatibility for the 
horizontal component (x direction) of the input 
records 

 

0 10 20 30 40 50
-6

-4

-2

0

2

4

6

t [sec]

a
 [

m
/

s
2
]

 

 

000042x

000333x

000581x

000592x

000879x

005488x

005653x

0 10 20 30 40 50
-6

-4

-2

0

2

4

6

t [sec]

a
 [

m
/

s
2
]

 

 

0 10 20 30 40 50
-6

-4

-2

0

2

4

6

t [sec]

a
 [

m
/

s
2
]

 

 

000042y

000333y

000581y

000592y

000879y

005488y

005653y

0 10 20 30 40 50
-6

-4

-2

0

2

4

6

t [sec]

a
 [

m
/

s
2
]

 

 

0 10 20 30 40 50
-6

-4

-2

0

2

4

6

t [sec]

a
 [

m
/

s
2
]

 

 

000042z

000333z

000581z

000592z

000879z

005488z

005653z

0 10 20 30 40 50
-6

-4

-2

0

2

4

6

t [sec]

a
 [

m
/

s
2
]

 

 

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

T [sec]

S
a
 [

g
]

 

 

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

T [sec]

S
a
 [

g
]

000042x

000333x

000581x

000592x

000879x

005488x

005653x

mean

design

lower tolerance

upper tolerance



THE CASE STUDY: AN EXISTING INDUSTRIAL PRECAST ONE-STORY 
BUILDING 

47 
 

 
Figure 3-16 Fourier spectra for the horizontal component (along the x direction) of the selected 
records 

3.5 Assessment procedure for the existing structure 

In order to assess the seismic performance of the existing reference building, non-

linear dynamic analyses are performed before the implementation of the retrofitting 

options, using the input ground motion recorded in Mirandola on May 29th 2012 

described in the previous section. In the first phase of the structural assessment, only 

horizontal components are considered simultaneously for the analyses (Figure 3-8). In 

particular, the North component is applied in the direction of the main beams (i.e. the 

global x direction, see Figure 3-3) and the East component is applied in the orthogonal 

direction (i.e. the global y direction, see Figure 3-3). 

The local and global expected response is described through different parameters 

related to the structural and non-structural damage. Moreover, the condition of the 

structure “as-built” leads to the estimation of the possible target performances to obtain 

after the seismic retrofit.  

 Local response of the friction connections 

A high source of seismic vulnerability for the reference building consists in the 

occurrence of sliding displacements in the friction connections, i.e. roof-to-beam and 

beam-to-column connections, which can lead to unseating phenomena due to limited 

supporting lengths. 

In the following, Figure 3-17 represents the shear force (F) versus the sliding 

displacement of a roof element with respect to the supporting main beam (, in the 

global y direction (no sliding displacements are allowed in the x direction, according to 

the structural model described in Section 3.3). It can be seen that the shear force reaches 

the maximum value, which represents the friction strength obtained considering the 
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axial force on the roof-to beam connection and the corresponding friction coefficient. 

However, it can be recognized that the sliding displacements are very small and far from 

the unseating values (13cm).  

Figure 3-18 represent the shear force (F) versus the sliding displacement (of the 

main beams with respect to the supporting columns (type A, type B, type C and type D, 

respectively) in the global x direction (no sliding displacements are allowed in the y 

direction, according to the structural model described in Section 3.3). It can be seen that 

the shear force reaches the maximum value, which represents the friction strength 

obtained considering the axial force on the beam-to-column connections and the 

corresponding friction coefficient. However, it can be recognized that the sliding 

displacements are lower than the unseating values (23cm): in the figure, the dashed red 

line corresponds to the available support length.  

 
Figure 3-17 Friction force-sliding 
displacements for roof-to-beam connections 

 
Figure 3-18 Friction force-sliding 
displacements for beam-to-column 
connections (type D) 

In Figure 3-19 a schematic plan view of the roof is represented. The beam to column 

and the roof-to-beam connections are represented with colored circles: the green circles 

correspond to “safe” connections, for which the maximum relative displacements are 

lower or equal to 1.5unseat; the yellow circles correspond to “critical” connections, for 

which the maximum relative displacements are higher than 1.5unseat and lower than 

unseat; the red circles correspond “failed” connections for which the maximum relative 

displacements are equal or higher than unseat.  
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Figure 3-19 Friction connections assessment 

 Non-structural damage 

According to the modern performance-based methodology, it is known that the 

seismic performance of buildings is highly influenced by the seismic response of 

nonstructural components. In fact, the improper seismic design of nonstructural 

components and of mutual connections with the main structure can lead to early 

failures, without any source of structural ductility. 

The extensive damage and serviceability interruption may induce high costs in terms 

of casualties and injuries, due to nonstructural collapses, but also in terms of repair costs. 

Especially for industrial facilities, the study of nonstructural components seismic 

response is of high interest considering their large presence and the possible 

consequences and impact on the structural performance. 

Nonstructural components include interior components (e.g. partitions and ceilings), 

exterior components (e.g. building facades) and building services components (e.g. 

mechanical-electrical components, storage racks, heavy furniture), which can be 

attached to single or multiple points of the main structure. The seismic assessment of 

these components could be related to different floor and ground motion parameters. 

For example, considering a suspending ceiling (Figure 3-20), the initial damage is due to 

the separation of the ceiling from the wall supports resulting from the inertial forces 

and from the peak response floor acceleration. After the separation, the damage of the 

suspending ceiling is related to the pounding against next objects: this phenomenon 

depends on the peak response floor velocity. Finally, as the ceiling is subjected to 

significant drift, the deformation of the fire-sprinklers and air ducts (or any other 

component connected to the ceiling) is related to the peak response floor displacement. 

For these reason, in the following, the seismic performance of the existing reference 

building, is described in terms of lateral drift, floor acceleration and relative velocity. 
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Figure 3-20 Non-structural damage during seismic input motion (courtesy of (Lam and Gad 
2002) ) 

3.5.2.1 Lateral drift  

According to the Italian building code (D. M. 14/01/2008 2008) and to the 

Eurocodes (CEN 2005) nonstructural components damage and the temporary 

serviceability interruption should be avoided limiting the interstory drifts, i.e. the 

interstory displacement divided by the interstory height. The maximum tolerable value 

depends on the importance class of the building. For the reference building, i.e. 

industrial building with normal crowding and without any dangerous activity or material, 

with cladding panels designed so that their deformations (or of the mutual connections 

with the main structure) do not lead to any damage, the interstory drift should be lower 

than 1%. 

In the following, show the time histories for interstory drifts of the columns type A 

(internal columns), type B (external columns on the longer side of the structural plan), 

type C (external columns on the shorter side of the structural plan) and type D (corner 

columns), respectively. Red dashed lines in the figures represent the code limitation for 

the reference building. 

It can be observed that, for all the columns, the interstory drifts largely overpass the 

code limit value and that high residual drifts can be recognized at the end of the seismic 

event.  
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Figure 3-21 Interstory drifts for columns type 
A 

0 10 20 30 40 50 60
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

t [s]

D
ri

ft
 [

%
]

 

 
Code limit

0 10 20 30 40 50 60
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

t [s]

D
ri

ft
 [

%
]

 

 

 
Figure 3-22 Interstory drifts for columns type 
B 
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Figure 3-23 Interstory drifts for columns type 
C 
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Figure 3-24 Interstory drifts for columns type 
D 

 Plastic hinges 

Considering the adopted lumped plasticity approach (Figure 3-6 and Figure 3-7), the 

non-linear behavior of the reference building can be investigated observing the 

moment-rotation diagrams at the column base, which represent the cyclic response of 

the plastic hinges. 

In the following, the moment-rotation diagrams around x and y axes are represented. 

It can be observed that, for all the columns, plastic hinges around the global x axis do 

not reach the yielding rotation. On the contrary, for all the columns, plastic hinges 
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around the global y axis overpass the yielding rotation but are still far from the ultimate 

value.  

 
Figure 3-25 Moment-rotation diagrams for 
type A column around y axis 

 
Figure 3-26 Moment-rotation diagrams for 
type A column around x axis 

 Energy balance  

As a part of the evaluation, an energy balance analysis is performed (Eq. 3.3) aiming 

at estimate how the structure is storing or dissipating the input energy from the ground 

motion though time. In this way, it is possible to determine the amount of energy that 

the earthquake is soliciting from the structure, and how it is able (or unable) to manage 

it. 

The different energy quantities can be defined by integrating the equation of motion 

of an inelastic system (Chopra 1995) so that the input energy due to the earthquake 

excitation (ground acceleration dependent) is balanced by the output energy terms 

related to inertial forces (system acceleration dependent), viscous forces (system velocity 

dependent) and deforming forces (system displacement dependent). 

I K D SE E E E  
 

3.3 

Each energy term can be calculated, using the numerical results of the dynamic 

analyses, through the following relationships: 

o input energy (EI): it is related to the total energy perceived from the ground 

motion and it is obtained as: 

0
( ) ( )

u

gIE t m u t du    

3.4 

The term above is calculated as the sum of the input energy for all the 

structural elements, considering the nodal displacements (du) and the 

corresponding masses (Table 3-1). 
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o kinetic energy (EK): it is related to the motion of the mass of the structure 

and its components. It is a conservative component, completely returned to 

the system at the end of the earthquake motion: 

0
( ) ( )

u

KE t m u t du    

3.5 

The term above is calculated as the sum of the kinetic energy for all the 

structural elements, considering the nodal acceleration (ü), the nodal 

displacements (du) and the corresponding masses (Table 3-1); 

o viscous damping energy (ED): it represents the energy dissipated by the 

inherent damping of the structural and non-structural elements and it is 

obtained as: 

0
( ) ( )

u

D DE t f t du   

3.6 

The term above is calculated as the sum of the inherent viscous energy for 

all the structural elements, considering the nodal Rayleigh forces (fD) and the 

nodal displacements (du); 

o deforming energy (ES): it represents the sum of the recoverable strain energy 

(Eel), the hysteretic damping energy dissipated by inelastic deformations in 

the plastic hinges (Eh) and the energy dissipated by the frictional mechanisms 

occurred in the structural connections (Ef).  

The recoverable strain energy, which is elastically stored in the structural 

elements through their mechanical deformations and returned to the system, 

can be calculated as: 
2[ ( )]

( )
2

el
el

f t
E t

k


 
3.7 

in which fel represent the elastic forces and k represents the initial lateral stiffness. 

For the reference structural system, the lateral stiffness depends only on the columns 

stiffness. For this reason, the term of Eq. 3.7 represents the sum of the ratio between 

the shear force at the column base and the flexural initial stiffness, for all the columns. 

The hysteretic damping energy is dissipated by the structural elements 

through the yielding of the component’s materials, due to permanent 

deformations and damage of the structure. For the reference structural model, 

the non-linear behavior of the whole structure is represented by the plastic 

hinges at the columns base (lumped plasticity). For this reason, the hysteretic 

damping energy corresponds to the area under the moment-rotation diagrams, 

which represent the response of the plastic hinges: 

0
( )hE M t d



   

3.8 
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Finally, the frictional energy is the dissipated energy due to relative 

displacements between structural elements (i.e. between main beams and 

columns). It is obtained as the sum of the area under the shear force (fs) -sliding 

displacements (s) diagrams in all the friction connections: 

0

s

f sE f ds   

3.9 

In Figure 3-27 and Figure 3-28 the energy terms versus time are represented, along 

the x and y direction respectively. It can be worthy observed that the energy contents 

are different for the two considered directions. In particular, even if the structure 

exhibits a lower initial lateral stiffness along the y direction (only due to the flexural 

initial stiffness of columns, considering the static structural scheme) with respect to the 

x direction, during the earthquake, plastic hinges form in the x direction so that the 

lateral deformability and the related energy content increase. This consideration is 

confirmed by the evidence that for the energy balance in the global x direction, the 

energy content related to the hysteretic structural response (Eh) represents more than 

50% of the input energy. 
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Figure 3-27 Energy balance representation 
along the global y direction 
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Figure 3-28 Energy balance representation 
along the global x direction 
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SEISMIC RETROFIT SOLUTION USING 

HYSTERETIC DEVICES 

4.1 The SicurLinkTM system 

In this section, a retrofitting system for precast connections is described, consisting 

of a three-hinged steel device obtained by two steel profiles connected to the concrete 

elements through horizontal steel dowels. The working principles are described in 

details in the following. Concerning the possible geometrical configurations, it can be 

performed in a lateral configuration if the dowels are applied at the external surface of 

the concrete elements; a bottom configuration if the dowel are connected to the 

concrete elements by means of steel flanges at the internal surfaces of the concrete 

elements; the mixed configuration considers connection both on the internal surface 

and on the external ones (Figure 4-1, Figure 4-2 and Figure 4-3). 

 

 
Figure 4-1 SicurLinkTM: lateral configuration 

 

 
Figure 4-2 SicurLinkTM: bottom 
configuration 
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Figure 4-3 SicurLinkTM: mixed configuration 

The system was applied to a damaged dowel beam-to-column connection and two 

shear cyclic tests were performed on two different configurations in order to define the 

seismic performance. The experimental results demonstrated the capacity of the new 

connection system; moreover, the comparison with the cyclic behavior of the standard 

dowel connection shows the more efficient seismic performance of the three-hinged 

steel device in terms of both shear strength and energy dissipation. 

4.2 Experimental investigations 

 The damaged beam-to-column connection 

The reference connection is a dowel beam-to-column connection, typically used in 

precast structures (Kremmyda et al. 2014; Zoubek et al. 2015).This connection was 

tested under cyclic shear loads up to collapse before the installation of the retrofitting 

system. A more accurate description of both testing protocol and results of the cyclic 

test on the dowel connection is reported in Magliulo et al. (2015); in the following a 

brief summary is presented. 

The specimen is showed in Figure 4-4: it consists of a horizontal beam, connected 

to the North (left side in Figure 4-4(a) and Figure 4-4(b)) column by a dowel connection 

and simply supported on the South column (right side in Figure 4-4(a) and Figure 

4-4(b)). Figure 4-5 shows the cross section dimensions and the reinforcement details 

for both columns and beam, designed according to European provisions (CEN 2004; 

CEN 2005). In order to have an uniform distribution of normal stresses on the column, 

a neoprene pad (15cmx60cmx1cm) was placed on the dowels side (left side in Figure 

4-4(a) and Figure 4-4(b)), designed according to the CNR provisions (CNR 10018 1999). 

On the South side of the specimen (right side in Figure 4-4(a) and Figure 4-4(b)) two 

teflon sheets avoided undesirable frictional strength between beam and column. 
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The concrete of the structural elements (beam and columns) had a characteristic 

cubic compressive stress equal to 55MPa (i.e. design class equal to C45/55) and the 

adopted threaded steel bars (B450C) have a mean strength at yielding, fy, equal to 

473MPa.  

The specimen was tested under cyclic loads along the beam axis direction (Figure 

4-6). During the shear test, several cracks occurred in the concrete covers of the column 

up to the complete spalling of the frontal cover at the end of the test. Figure 4-7 shows 

the final configuration of the damage pattern on the lateral surfaces of beam and 

column. The recorded failure mechanism was caused by two main reasons: 1) the small 

concrete cover of the steel dowels with respect to the dowel diameter (Vintzeleou and 

Tassios 1986; Zoubek et al. 2013) and; 2) the reduced confinement of the concrete 

because of the large depth of the transversal reinforcement in the column (Magliulo et 

al. 2014). 
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(a) (b) 

Figure 4-4 Setup of the cyclic shear test on the dowel connection: (a) specimen dimensions (in 
mm), (b) specimen arrangement 

  

(a) (b) 

Figure 4-5 Reinforcement details: (a) column; (b) beam (dimensions are expressed in mm) 
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Figure 4-6 Frontal cover (CF) and 
lateral cover (CL) in the column 

  

(a) (b) 

Figure 4-7 Final damage pattern of the tested dowel 
connection: (a) West and (b) East view 

The connection response is described in Figure 4-8 in terms of force-displacement 

curve of the whole cyclic test (solid gray line). In this figure, the negative values of both 

forces and displacements correspond to pulling loads (i.e. horizontal loads against the 

column frontal cover, CF in Figure 4-6), while the positive values of both forces and 

displacements correspond to pushing loads (i.e. the horizontal loads are applied against 

the column core). 

For pushing loads, the connection exhibits higher shear strength and more limited 

stiffness degradation than in the case of pulling loads. In particular, for pulling loads a 

significant strength degradation occurs after the attainment of the maximum shear 

strength (176.57kN), corresponding to the occurrence of the first crack in the column 

concrete cover (red point in Figure 4-8). The black curve in Figure 4-8 represents the 

force-displacement curve up to the 6th step of the loading history, which corresponds 

to the 20% of shear strength reduction. Such a strength reduction can be assumed as 

the connection collapse; indeed, after this step the negative values of the force-

displacement curve are mainly related to the steel dowel behavior. 

CF

CL
Steel dowels

Load

direction
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Figure 4-8 Force-displacement curve of the whole cyclic test (gray curve) and up the 6th step 
(black curve) 

 The retrofitting system  

After the cyclic shear test, the described beam-to-column connection was retrofitted 

through a three-hinged steel system, which is a connection system patented by Capozzi 

and Magliulo (2012) and Magliulo et al. (2014). This system can be used in different 

structural applications, as for the retrofitting of connections between structural 

elements, either damaged after seismic events or deficient in terms of seismic response. 

It has been already applied in some industrial buildings in Italy as retrofitting device for 

beam-to-column connections. This three-hinged steel device can be also adopted in new 

precast buildings for both structural and nonstructural elements. In the case of 

nonstructural elements, for instance, it can be used for the connection of the cladding 

panels to the structure, since it can allow the high seismic drift of the structure, 

reducing/removing its interaction with the cladding panels (Magliulo et al. 2015). 

In this work the three-hinged steel connection was tested as a retrofitting system of 

the damaged beam-to-column connection described in the previous section. In this kind 

of application, it consists of two inclined steel profiles anchored to the concrete 

elements through horizontal steel dowels. The seismic response is investigated through 

cyclic shear tests; in particular, two cyclic shear tests were performed without (test 1) 

and with (test 2) a rubber sheath around the horizontal dowel in the beam. 
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Figure 4-9 Three-hinged steel system for beam-to-column connections 

The proposed retrofitting solution is based on two main mechanical principles: the 

three hinged arch and the dowel effect. According to the former mechanism, the total 

seismic force applied to the beam is transferred to a couple of hinges on the column 

through two steel profiles. If the steel profiles have a planar configuration, they carry 

neither flexural nor shear stresses and can be designed only for axial loads. According 

to the dowel effect, these axial loads are transferred to the steel dowels. 

The presented system has several advantages with respect to other mechanical 

devices, commonly applied for the seismic retrofitting of precast structures. It is 

characterized by a fast installation and it can be easily removed/reinstalled after damage. 

It can be adopted in several different geometrical configurations, also in order to not 

interfere with the steel reinforcement in existing structural elements. Moreover, this 

system does not modify the inertial forces during seismic events. 

 Design of the three-hinged steel connection system 

The design of the retrofitting system was performed according to the Italian seismic 

code [21] (very similar to Eurocode 8 (CEN 2005)) and Eurocode 3 provisions (CEN 

2005). The design shear force (Fed=142kN) was evaluated by assuming an Italian high 

seismicity zone (ag=0.35g) and a soil type B. Since two connection systems were applied 

at the two sides of the beam (Figure 4-9), each of them was designed for a halved shear 

force. 

The main geometrical characteristics of the installed retrofitting system are 

summarized in Figure 4-10. For the sake of clarity, some definitions are necessary: i) the 

node at the beam side is defined as “node 2”; ii) “node 1” and “node 3” are the lower 

and the upper node at the column side, respectively; iii) the steel profile from node 1 to 
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node 2 is referred to as “profile 1” and iv) the steel profile from node 2 to node 3 is the 

“profile 2”. 

The three dowels for the steel profiles anchorage are threaded bars with a diameter 

of 30mm and with a characteristic yielding strength of 640N/mm2 (Class 8.8). Table 1 

shows their main features obtained from two tensile tests: effective cross section area 

(Ares), equivalent diameter eq), mean yielding strength (fym), mean Young Modulus 

(Em), mean yielding strain (ym). The dowels were designed according to the provisions 

for pin connections  and their maximum shear strength was also evaluated according to 

the provisions by CNR 10025. 

The design of the two steel profiles (fyk,profile=275N/mm2, 

Ey,profile=210000N/mm2) was performed according to the geometrical requirements 

of Eurocode 3 for pin ended members and their buckling failure was also prevented 

according to Eurocode 3. Figure 4-10 shows the geometrical features of the two steel 

profiles, as the hole diameter () and the radius of the profile ends (R). The profile 1 

has a greater thickness at the node 1 in order to allow a planar configuration.  

The damaged neoprene pad between beam and column was replaced; it was designed 

according to the CNR provisions, resulting of the same dimensions of the replaced pad 

(15cmx60cmx1cm). 
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Figure 4-10 Connection system 
configuration (dimensions are expressed 
in mm) 

 
Figure 4-11 Geometrical configuration of the steel 
profiles (dimensions are expressed in mm) 

Table 4-1 Geometrical and mechanical properties of the 30mm diameter steel dowels 

Ares eq fym Em ym 

mm2 mm N/mm2 N/mm2 [-] 

560 26.7 685 176660 0.003878 

 

 Installation of the three-hinged steel connection system 

The retrofitting system installation steps are described in the following (Fig. 9). 

a. The first step aims at repairing the concrete elements to be connected, 

significantly damaged after the cyclic test. At this aim, the existing steel dowels were cut 

and the beam was removed from the setup. The cracked concrete was completely 

removed and the concrete and steel surfaces were accurately cleaned. The concrete 

elements were repaired through shrinkage compensated grout with high mechanical 

performances (Figure 4-12a), i.e. characteristic compressive strength equal to 

60N/mm2 and to 75N/mm2 after 7 and 28 days, respectively. The grout was easily cast 

in situ because of its fluidity and good adhesion to both concrete and steel surfaces. 

b. The preliminary identification of the steel reinforcement in the concrete 

elements was performed on both the beam and the column in order to choose the 

location of the holes without interfering with the existing steel elements (Figure 4-12b). 
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c. The anchorage holes for the steel dowels were created in the concrete elements 

(Figure 4-12c). 

d. The system components, i.e. the dowels and the two profiles, were installed 

(Figure 4-12d). In the test 2 the rubber sheath was also inserted in the holes. 

e. The connection between the dowels and the concrete elements was provided by 

filling the holes with high strength grout. In order to guarantee the grout filling, the 

drilled hole diameter is 2cm greater than the dowel diameter (Figure 4-12e). 

f. The connection was completed by tightening the nuts and the washers between 

the dowels and the profiles. In this phase, a preliminary pre-stressing of the bars could 

be applied in order to guarantee a higher energy dissipation due to the friction. For the 

tested specimen, prestressing forces were not provided. 

 

     

(a) (b) (c) (d) (e) 

Figure 4-12 Installation phases: (a) restoration of the damaged concrete; (b) reported location of 
the reinforcement bars; (c) anchorage holes; (d) installation of steel profiles and dowels; (e) cast 
in situ of high strength grout 

 Cyclic shear test on the retrofitted connection: test 1 

Two cyclic shear tests were performed on the beam-to-column connection, 

retrofitted with the three-hinged steel system (Figure 4-13). The difference between the 

two performed tests is the presence of a rubber sheath in the concrete holes around the 

steel dowels. In this section the results of the first test (test 1) are described, i.e. the test 

without the rubber sheath. 

During the test both vertical and horizontal loads were applied to the specimen. The 

vertical load is provided by a vertical jack with a rate of 3kN/s up to the maximum value 

of 450kN, which remains constant during the application of the cyclic horizontal load. 

The vertical jack is restrained to a prestressed metallic bar, that crosses the RC beam 

through a special hole; a sleigh anchorage system is placed at the other side of the 

metallic prestressed bar, in order to avoid undesirable restraining effects (Figure 4-13). 

Since in the real applications the gravity loads are applied to the structure before the 
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installation of the retrofitting system, in the performed test the vertical load was applied 

before tightening the connection device through nuts and washers. 

The horizontal load simulated the seismic forces and it was provided along the beam 

longitudinal axis through a hydraulic actuator controlling the displacements. Figure 4-14 

shows the protocol displacements recorded by the actuator load cell; in this figure the 

horizontal displacements from North to South, pulling the dowels against the column 

frontal cover (from left to right in Figure 4-13), are assumed negative and the horizontal 

displacements in the opposite direction assume positive values (from right to left in 

Figure 4-13)). The adopted loading protocol was the same of the cyclic test on the dowel 

connection (Magliulo et al. 2015): it consisted of 17 displacement steps and, for each 

step, three complete cycles (negative and positive semi-cycles) were performed. From 

the first step to the 12th step, the load was applied with a rate of 0.02mm/s and from 

the 13th step to the test end the load rate was equal to 0.04mm/s. The maximum 

horizontal load, recorded by the actuator cell at the end of the test, was equal to 

312.98kN. 

  

Figure 4-13 Setup of the cyclic test on the retrofitted connection 
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Figure 4-14 Loading protocol of the cyclic shear test on the retrofitted beam-to-column 
connection 

The seismic response of the connection during the test was recorded through several 

instruments. 

- The applied vertical and horizontal loads were recorded by two load cells. 

- Two LVDTs were installed between the column top horizontal section and the 

beam end vertical surface in order to record both the beam-to-column relative 

displacements and the possible beam rotations (L1 and L2 in Figure 4-15). 

- The strains in the steel profiles were recorded by two strain gauges 

(length=6mm) installed on the profile thickness (P1 and P2 in Figure 4-16). 

- The concrete strains around the horizontal steel dowels were recorded on one 

side of the specimen through uniaxial strain gauges (length=60mm), installed on the 

beam and column surfaces (Fig. 14). At each node of the retrofitting system, the uniaxial 

strain gauges were placed orthogonally with respect to the steel profile axis: C1-I and 

C1-II (Fig. 14a) represent the first and the second strain gauge of the column (C), 

orthogonal to the direction of the profile 1 (1), around the node 1; B1-I and B1-II (Fig. 

14b) represent the first and the second strain gauge of the beam (B), in the direction of 

the profile 1 (1), around the node 2; B2-I and B2-II (Figure 4-17b) represent the first 

and the second strain gauge of the beam (B), orthogonal to the direction of the steel 

profile 2 (2), around the node 2; C2-I and C2-II (Figure 4-17c) represent the two strain 

gauges of the column (C), orthogonal to the direction of the profile 2 (2), around the 

node 3. 

- Uniaxial strain gauges were placed on the horizontal steel dowels and they were 

embedded in the concrete grout in order to record the axial strains (D1 at the node 1, 

D2 at the node 2 and D3 at the node 3). 

0 1000 2000 3000 4000 5000 6000 7000 8000
-30

-20

-10

0

10

20

30

Time [sec]

D
is

p
la

c
e
m

e
n

t 
[m

m
]

0 1000 2000 3000 4000 5000 6000 7000 8000
-30

-20

-10

0

10

20

30

Time [sec]

D
is

p
la

c
e
m

e
n

t 
[m

m
]



SEISMIC RETROFIT SOLUTION USING HYSTERETIC DEVICES 

67 
 

 
Figure 4-15. Geometrical layout of the LVDTs 
at the beam end (dimensions are expressed in 
mm) 

 
Figure 4-16. Geometrical layout of the strain 
gauges on the steel profiles (dimensions are 
expressed in mm) 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4-17 Geometrical layout of the strain gauges on concrete surfaces: (a) Node 1, (b) Node 
2, (c) Node 3 of the retrofitting system (dimensions are expressed in mm) 

Fig. 15 shows the cracking pattern on both the sides of the beam (node 2) at the end 

of the test. Most of the cracks were recorded in the direction of the profile 2 as well as 

in the orthogonal one because of the high compressive and tensile axial forces in this 

profile during the cyclic test. The concrete cracks propagated up to the bottom of the 

beam (Figure 4-19). 

Figure 4-18 shows the final state of the column: few cracks, with limited length and 

width, were recorded. 
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(a) (b) 

Figure 4-18 Cracking pattern around the node 1 after the test 1: (a) West and (b) East side 

 
Figure 4-19 Cracking pattern on the bottom 
surface of the beam (test 1) 

 
Figure 4-20 Cracking pattern around the node 
3 (test 1) 

The records of the strain gauges can describe the development of the damage during 

the test. Fig. 18 and Fig. 19 show the ratio between the recorded strain values () of the 

concrete and the limit concrete tensile strain (t=0.01%), i.e. the strain which 

corresponds to the attainment of the concrete tensile strength (fctm). The strain gauge 

records at the node 1 (C1-I and C1-II in Figure 4-25) and at the node 3 (C2-I and C2-

II in Fig. 19) justify the low damage recorded in the column. On the contrary, the strains 

in the beam reached the limit value t: the strain gauges B1-II (blue line in Figure 4-25) 

and B1-I (red line in Figure 4-25) recorded the limit value at 2211sec (first cycle of the 

9th step) and at 3984sec (third cycle of the 11th step), respectively. These records are 

confirmed by the specimen inspection during the test: at these times the first crack 

occurred along the profile 1 (Figure 4-23) at the two sides of the node 2. At the node 2, 

the strain gauges B2-II (blue line in Fig. 19) and B2-I (red line in Figure 4-22) achieved 

the concrete limit tensile strain at 2846sec (first cycle of the 10th step) and 3353sec 
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(third cycle of the 10th step), respectively: these times corresponded to the occurrence 

of the first crack along the profile 2 at the two sides of the node 2 (Figure 4-24). 

 
Figure 4-21 Records of the strain gauges 
orthogonal to the profile 1 (test 1) 

 
Figure 4-22 Records of the strain gauges 
orthogonal to profile 2 (test 1) 

 
Figure 4-23 First crack at the node 2 along the 
profile 1 (test 1) 

 
Figure 4-24 First crack at the node 2 along the 
profile 2 (test 1) 

Figure 4-25 shows the ratio between the axial strains  of the strain gauges on the 

steel profiles (P1 and P2) of the West side and the yielding value y,profile of the 

adopted steel. Due to the geometrical configuration, the strain values of the profile 2 

(red line in Figure 4-25) were higher than those of the profile 1 (blue line in Figure 4-

25). However, both the profiles did not reach the yielding limit up to the end of the test: 

the strain values were quite smaller than the yielding strain. The same considerations 

can be stated for the East side of the retrofitted specimen (Figure 4-26). The strain 

gauges records on the steel profiles (Figure 4-25 and Figure 4-26) also show a fairly 

symmetric behavior of the connection: the differences between the two sides of the 

system are caused by constructive imperfections. 
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Figure 4-25 Records of the strain gauges on 
the steel profiles on the West side (test 1) 

 
Figure 4-26 Records of the strain gauges on 
the steel profiles on the East side (test 1) 

Fig. 24 shows the ratio between the axial strains  of the dowels in the column (D1 

and D3) and their limit yielding value, y,dowel. The values recorded by the strain gauge 

D3 (red line in Figure 4-27), which reached the yielding value at 4755sec, were higher 

than the strains recorded by D1 (blue line in Figure 4-27). This result confirms the high 

force level in the profile 2 during the cyclic test. The records of the strain gauge on the 

dowel in the beam are not showed, because it failed at the beginning of the test due to 

the significant concrete damage in the node 2. 

 
Figure 4-27 Records of the strain gauges on the horizontal steel dowels in the column (test 1) 

In Fig. 25 the behavior of the retrofitted connection is shown in terms of force-

displacement curve, i.e. the shear forces and the relative displacements between beam 

and column (gray line). The horizontal displacements are evaluated as the mean value 

of the LVDT records at the beam end (L1 and L2 in Figure 4-25) and the shear forces 

are assumed as the records of the load cell of the actuator. The negative values of forces 

and displacements correspond to pulling loads, i.e. horizontal loads against the column 

frontal cover. The connection behavior is not symmetric in the two loading directions 

because of an irregular distribution of the local stresses in the concrete. This evidence 
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can be justified by installation defects of the horizontal dowels and it is also 

demonstrated by the different crack patterns in the two loading directions. In particular, 

in the case of pushing loads (positive values), a lower damage of the concrete 

corresponds to a higher initial stiffness and to smaller relative displacements than in the 

case of pulling loads. Concerning the pulling loads (negative values), the force-

displacement curve shows a clear pinching effect up to a relative horizontal 

displacement equal to 7mm, due to the concrete damage around the horizontal dowels. 

 
Figure 4-28 Force-displacement curve for the cyclic shear test 1on the retrofitted specimen 

The gray curve in Fig. 25 includes different forces: the shear force absorbed by the 

three-hinged connection system, the frictional forces between concrete and neoprene 

and the undesired frictional forces due to the setup components (e.g. teflon sheet). Since 

the goal of the experimental test is the study of the behavior of the retrofitted beam-to-

column connection, the frictional forces of the setup should be depurated. At this 

purpose, the three-hinged connection system and the neoprene associated forces were 

separately evaluated. Concerning the three-hinged connection system, the 

corresponding forces were evaluated with the records of the strain gauges installed on 

the steel profiles, shown in Figure 4-25 and Figure 4-26. Since the steel profiles exhibited 

an elastic behavior during the entire test, the axial forces in the profile can be easily 

evaluated by using their mechanical properties (Ey,profile) and their geometrical 

features (thickness and width). The horizontal components of these axial forces 

correspond to the shear forces in the three-hinged steel system on each side of the 

beam-to-column connection. Figure 4-28 shows the overall shear force (blue line) 

absorbed by the West and East connection profiles, during the test. 
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The maximum recorded shear force (see gray curve) for positive loading semi-cycles 

was equal to 293.58kN (first cycle of the 14th step) and the corresponding shear force 

in the retrofitting system (blue curve) was equal to 258.19kN. The difference between 

these values can be assumed as the neoprene associated forces, which are elastic, plastic 

and neoprene-concrete friction forces; consequently the other setup frictional forces 

can be neglected. The maximum recorded shear force (see gray curve) in the negative 

loading semi-cycles was equal to 312.98kN (first cycle of the 17th step) and the 

corresponding retrofitting system shear internal force (blue curve) was equal to 

264.59kN: also in this direction the other setup frictional forces can be neglected. As a 

consequence, the total shear force (gray curve in Figure 4-28) can be considered as the 

effective connection response. 

 Cyclic shear test on the retrofitted connection: test 2 

Another cyclic shear test (test 2) was performed on a retrofitted connection, which 

originally was a dowel connection tested under monotonic horizontal loads as described 

in Magliulo et al. [32] The retrofitting system had the same geometrical and mechanical 

features and its installation steps were the same described for test 1; however, in this 

case a rubber sheath was inserted around the horizontal steel dowel in the beam. This 

element was added to the system in order to improve the connection performance by 

avoiding/reducing the high local stresses in the concrete around the steel dowels, 

recorded in the test 1. Moreover, the rubber sheath can also allow connection 

deformations, as the ones due to the thermal actions. In particular, the thickness of the 

rubber was designed in order to avoid earlier loading actions on the retrofitting system: 

the rubber sheath should allow the displacements due to the applied vertical loads, 

which induce both beam rotations and neoprene pad deformation. With reference to a 

simply supported precast beam, the vertical displacement at the node 2 location was 

evaluated by assuming typical values of beam length, inertia moment and applied 

permanent and live loads. According to these evaluations, a 2mm rubber sheath was 

adopted by also taking into account the axial deformability of the neoprene pad. 

The same loading protocol of the test 1 was adopted in the test 2, for both vertical 

and horizontal loads. 

During the cyclic test, the connection response was recorded by several instruments. 

The layout of some instruments was changed with respect to the test 1 in order to 

improve the records quality. Figure 4-29 shows the location of the two LVDTs at the 

beam end, which recorded the horizontal beam-to-column relative displacements and 

the possible horizontal rotations of the beam. Figure 4-30 shows the strain gauges 

placed along the two steel profiles and Figure 4-31 shows the location of the strain 

gauges on the beam and column surfaces, which recorded the concrete strains around 
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the horizontal steel dowels. Other strain gauges (length=60mm) were also introduced 

in order to record the concrete cover strains at each node: CC1 at the node 1 column 

concrete cover, CC3 at the node 3 column concrete cover and BC2 at the node 2 beam 

concrete cover (Fig. 28). 

 
Figure 4-29 Geometrical layout of the LVDTs 
at the beam end in the test 2 (dimensions are 
expressed in mm) 

 
Figure 4-30 Geometrical layout of the strain 
gauges on the steel profiles in the test 2 
(dimensions are expressed in mm) 

 

  
 

(a) (b) (c) 

Figure 4-31 Geometrical layout of the strain gauges on the concrete surface (test 2): (a) node 1, 
(b) node 2, (c) node 3 (dimensions are expressed in mm) 

At the end of the test, the rubber sheath around the steel dowel in the beam (node 

2) was significantly damaged (Figure 4-32) and the surrounding grout crushed. 

Moreover, the neoprene pad showed large deformations due to the high compressive 

loads (Figure 4-33). Several inclined cracks appeared in the concrete around the node 2 

at both the sides of the specimen (Figure 4-34). However, in this test the thickness and 

the length of the crack were smaller than in the test 1 because the rubber reduced the 

damage in the surrounding concrete. 
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Figure 4-32 Rubber sheath deformation (test 
2) 

 
Figure 4-33 Neoprene pad deformation (test 
2) 

 

  

(a) (b) 

Figure 4-34 Cracks pattern at the node 2 at the end of the test 2: (a) West and (b) East view 

The records of the strain gauges on the concrete elements are showed in the 

following in terms of ratio between the recorded strain values () and the limit concrete 

tensile strain (t=0.01%). Figure 4-35 shows the records in the strain gauges orthogonal 

to the profile 1 (C1-II in the column for the node 1 and B1-II in the beam for the node 

2): only the records referring to the beam node (blue line in Figure 4-35) reached the 

limit concrete tensile strain at 2844sec (first cycle of the 10th step), i.e. later than in the 

case of the test 1. Both the strain gauges orthogonal to the profile 2 (C2-I in the column 

for the node 3 and B2-I in the beam for the node 2) reached the limit concrete tensile 

strain (Figure 4-36) almost simultaneously (during the first cycle of 13th step): in node 

3 at 4753sec and in node 2 at 4824sec. These results justify the observed concrete 

damage of the beam around the node 2 and they are also confirmed by the records of 

the strain gauges at the concrete cover of the beam (BC2 in Figure 4-37) and of the 

column (CC1 and CC3 in Figure 4-37). 
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Figure 4-35 Records of the strain gauges 
orthogonal to the profile 1 (test 2) 

 
Figure 4-36 Records of the strain gauges 
orthogonal to the profile 2 (test 2) 

 
Figure 4-37 Records of the strain gauges at the concrete cover (test 2) 

The axial strains of the horizontal dowels in the column (D1 at node 1 and D3 at 

node 3) did not reach the yielding value of the threaded bars (Figure 4-38). 

The records of the strain gauges on the steel profiles again show the high axial forces 

in the profile 2 (Figure 4-39); however, neither of the two profiles reached the yielding 

strength. The axial deformations trend of the two steel profiles, as in the case of the test 

1, confirms the effectiveness of three hinged arch mechanism, since the two profiles 

work in tension and in compression, alternatively. 
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Figure 4-38 Records of the strain gauges on the 
horizontal steel dowels (test 2) 

 
Figure 4-39 Records of the strain gauges on 
the steel profiles (East side, test 2) 

In Fig. 37, the behavior of the connection during the test 2 is shown in terms of 

horizontal forces and relative displacements. The horizontal displacements are the mean 

values of the LVDT records at the beam end and the shear force values are the load cell 

records of the horizontal actuator. The specimen showed a quite symmetrical behavior 

up to the end of the test. The recorded total shear strength accounts for the retrofitting 

system strength, the neoprene elastic and plastic internal forces, the neoprene-concrete 

frictional strength, and the other setup resistances; however, as in the case of the test 1, 

the setup resistances can be neglected and the total shear strength (red curve in Figure 

4-40) can be assumed as the effective retrofitted connection response. The maximum 

value of the retrofitting system shear force occurred under pulling loads (negative 

values) and it is equal to 284.54kN. 
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Figure 4-40 Force-displacement curve of the cyclic shear test on the retrofitted connection (test 
2)  

 Comparison between dowel and retrofitted connection 

This section aims at comparing the cyclic behavior of the dowel beam-to-column 

connection with the two tested retrofitted connections in terms of both global behavior 

and dissipated energy. 

Figure 4-41 shows the envelopes of the force-displacement curves of the three 

investigated cyclic tests. As already written, for all the investigated tests the load protocol 

consisted of increasing displacement steps and, for each step, three complete cycles 

(negative and positive semi-cycles) were performed. Since, at each step, the maximum 

value of the shear force was reached at the first cycle, the envelope takes into account 

only the first cycle of each step. Moreover, in Fig. 38 the envelope of the shear test on 

the dowel connection (black curve) is showed up to the 20% strength degradation, 

assumed as the attainment of the connection failure. 

The comparison demonstrates that the dowel connection (black curve in Figure 4-

41) shows higher initial stiffness with respect to the retrofitted connections; however, it 

has lower shear strength in both the considered load directions. Moreover, the seismic 

behavior of the dowel connection is strongly not symmetric in the two loading 

directions: for pulling loads a sudden decrease of strength and stiffness was recorded. 

This evidence is justified by the failure mechanism that occurred for pulling loads (force 

negative values) with the spalling of the lateral concrete cover in the column. 

The first tested retrofitted connection (blue curve in Figure 4-41) shows higher shear 

strength with respect to the dowel connection in both the directions. Moreover, the 

more symmetric behavior demonstrates the efficiency of the retrofitting system. 

However, it is worth to underline that also this connection shows larger relative 

displacements for pulling loads (force negative values) with respect to pushing loads; 
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this is related to the larger damage observed around the horizontal steel dowels when 

the load is applied in the former direction. 

The second retrofitted connection (red curve in Figure 4-41) shows the best seismic 

performance, with high shear strength values and a very symmetric response. The 

rubber sheath around the horizontal dowel in the beam led to a lower stiffness in test 2 

than in test 1 for pushing loads (force positive values) because of its deformability; on 

the contrary, for pulling loads the behaviors are more similar, because of the significant 

concrete damage around the beam dowel in test 1. 

 
Figure 4-41 Force-displacement envelopes of the tests on the dowel beam-to column connection 
(black curve) and on the two retrofitted connections, i.e. without (blue curve) and with (red 
curve) the rubber sheath around the horizontal dowel 

Fig. 39 shows the dissipated energy at each negative semi-cycle, corresponding to 

pulling loads, for the three investigated tests: the dowel connection (black bars), the 

retrofitted connection without the rubber sheath (blue bars) and the retrofitted 

connection with the rubber sheath (red bars). The dissipated energy of the dowel 

connection is plotted only for the first six steps, i.e. until the assumed failure of the 

connection. Up to the fourth step of the test on the dowel connection (i.e. the step 

which corresponds to the first crack formation), its dissipated energy was strongly lower 

than the dissipated energy in the retrofitted solutions because of the high initial stiffness. 

After the first concrete cracking, the dissipated energies in the dowel connection and in 

the retrofitted solutions were quite similar, because of the increased deformability of 

the dowel connection due to the concrete damage. The dissipated energy in the two 

retrofitted connections increased up to the end of the shear tests; moreover, the rubber 

sheath around the horizontal dowel in the beam provided higher values of dissipated 

energy in test 2 with respect to test 1. 
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Figure 4-42 Dissipated energy during the negative semi-cycles of the shear tests on the dowel 
beam-to column connection (black bars) and on the two retrofitted connections, without (blue 
bars) and with (red bars) the rubber sheath  

Figure 4-43 shows the dissipated energy at each positive semi-cycle (corresponding 

to pushing loads) for the three investigated shear tests. The comments concerning the 

dissipated energy of the negative semi-cycles are confirmed. 

As in the pulling direction, at each step, the dissipated energy during the first semi 

cycle is generally lightly greater than the dissipated energy during the second and the 

third ones. 

The dissipated energy of the dowel connection is always much lower than the one 

recorded in the retrofitted solutions, because of its large stiffness. 

Furthermore, the dissipated energy values of the test 2 retrofitted solution are 

significantly higher than the values of the test 1 retrofitted solution and this difference 

is also higher than in the case of pulling loads. This is due to the lower damage recorded 

in test 1 related to the pushing loads. 
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Figure 4-43 Dissipated energy during the positive semi-cycles of the shear tests on the dowel 
beam-to column connection (black bars) and on the two retrofitted connections, without (blue 
bars) and with (red bars) the rubber sheath 

 Final remarks 

In this paper, a retrofitting solution for RC precast beam-to-column connections is 

presented. An experimental campaign was performed in order to evaluated the seismic 

performance of this system through cyclic shear tests. 

The reference specimen is a dowel beam-to-column connection, typically adopted in 

one-story RC precast structures. This connection was tested in a previous experimental 

campaign under cyclic shear loads up to the failure of the lateral concrete cover in the 

column, which caused the failure of the connection. The damaged specimen was 

retrofitted by a three-hinged steel connection system. Two different configurations of 

this system were tested, i.e. without and with a rubber sheath around the dowel in the 

beam. For both the systems, the global behavior in terms of force-displacement curve 

was investigated and the damage patterns after the tests were described through both 

visual inspections and instrumentation records. 

The experimental results allowed to draw the following conclusions. 

• Both the configurations of the retrofitting system showed a good behavior 

under cyclic horizontal forces. In the retrofitted connection system, the horizontal shear 

force was mostly sustained by the three hinged arch mechanism, ensured by the two 

steel profiles pinned to the horizontal dowels. 

• The retrofitted connections showed larger shear strength as well as larger 

dissipated energy values than the standard dowel connection. For loads against the 

column core (positive direction), the maximum shear force was recorded in the 

configuration with the rubber sheath (test 2). It increased of 50% with respect to the 
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dowel connection and of 3% with respect to the configuration without the rubber (test 

1). For loads against the column cover (negative direction), the maximum shear force 

recorded in the test 2 increased of 60% with respect to the dowel connection. 

• The initial stiffness of the retrofitted connections was significantly lower than 

the stiffness of the dowel connection. For the negative direction, the stiffness recorded 

in the two described tests was almost constant and it was about 10 times lower than the 

stiffness of the dowel connection. For the positive direction, the stiffness recorded in 

test 2 was about two times lower than the stiffness recorded in test 1 and about 30 times 

lower than the stiffness of the dowel connection. 

• In both the tests on the retrofitting system, no significant damage was recorded 

in the concrete. The large concrete covers of the horizontal dowels prevented brittle 

failures in the connected elements: the concrete damage was not severe up to the end 

of the test. However, the retrofitted connection without the rubber sheath showed a 

larger damage around the beam dowel than the system with the rubber. 

4.3 Numerical investigations 

In this section, the seismic performance of the SicurLinkTM system, as well as the 

seismic performance of the whole retrofitted building, are described in detail, 

considering the structural model described in section 3.3, in which the retrofitting 

system is applied only at the beam-to-column connections. 

The seismic performance of the retrofitting system is investigated through numerical 

analyses on a single frame of the reference building. In particular, FIGURE shows the 

considered frame, i.e. an external frame along the x global direction. FIGURE show a 

schematic representation of the structural elements, the structural eccentricities, the 

concentrated masses, and the applied gravity loads. The gravity load on the columns 

(Ncol) takes into account the gravity load coming from the adjacent spans. The symbols 

refer to Table 3-1 and Table 3-2. 

For the definition of the non-linear model (column plastic hinges and frictional 

connections), the properties of column type B should be taken into account (Figure 3-7 

and Table 3-4) 

According to the above defined frame model, the fundamental period of the existing 

frame, associated to the translational mode along the x axis, is equal to 1sec. 
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 The retrofitted frame model 

 
The beam-to-column connections of the existing frame are retrofitted applying the 

SicurLinkTM system, in a bottom configuration (Figure 4-44), type “short” (Section 4.1). 

Hence, the retrofitting system of each connection consists of two steel profiles, both 

connected to the beam in the same point and connected to the column at two different 

heights. The steel profiles are connected to the concrete elements through horizontal 

steel dowels, passing through steel plates and fixed by nuts and washers. The steel plates 

are bolted to the internal side of column and the lower side of the beam. 

The two steel profiles present a width equal to 10cm and a thickness of 2cm, so that 

the transversal area is equal to 20cm2. For the assumed configuration, the lower and 

upper profiles are 100cm and 60cm long, respectively.  
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Figure 4-44 SicurLinkTM system: bottom configuration 

Since the retrofitting system performs a three-hinges arc configuration and the steel 

profiles work in turn as struts and ties, absorbing only axial loads, the retrofitted 

connection is modeled in OpenSees adding (to the existing friction connection model, 

Section 3.3.2) rigid blocks and truss elements in order to represent the geometrical 

eccentricities and the steel profiles, respectively. The mechanical and geometrical 

properties of the truss elements reproduce the properties of the steel components, i.e. 

the transversal area, the profile length and the constitutional law of the profile material.  

The constitutional low, which reproduces the mechanical properties of the profiles, 

is obtained combining in series an elastic perfect plastic material (which represents the 

steel behavior) and a gap material (which models the presence of the rubber sheath 

covering the horizontal dowels), assigned in the axial direction of the steel profiles. For 

this reason, in the OpenSees model, a uniaxialMaterial ElasticPPGap is assigned to the 

truss elements, in which the initial deformation gap, the initial stiffness and the yielding 

force should be defined (Figure 4-45). 

The deformation gap considers the rubber sheath properties, with a very low 

stiffness and a thickness of 4mm. The rubber sheath is assumed to be placed around 

both the dowels at the steel profiles ends, so that up to 8mm in compression and 8mm 

in traction, no reaction forces should be accounted in the steel profiles. 

The elastic part of the constitutional law exhibits an initial stiffness /EA L , where E 

is the steel Young modulus, A is the steel profile transversal area and L is the steel profile 

length. The elastic behavior is limited in compression by maximum compressive axial 

force (Cmax in Figure 4-45), which is the lowest value between the dowel shear strength 

and the critical axial load, which induces buckling for the steel profiles (Table 4-2). In 

tension, the elastic behavior is limited by the maximum tensile force (Tmax in Figure 

4-45), which is the lowest value between the horizontal dowel shear strength and the 

yielding force for the steel profiles (Table 4-2). 
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In compression, the plastic behavior is not performed since both the shear failure of 

the dowel and the buckling of the steel profiles do not offer any significant ductile 

deformation. For this reason, if failure occurs in compression, the corresponding steel 

profile is removed from the model during the analysis using the remove element command 

in OpenSees. 

In tension, the plastic behavior is performed only if the yielding force for the steel 

profile is reached first with respect to the shear failure of the dowel. Otherwise, the 

corresponding profile is removed from the model during the analysis using the remove 

element command in OpenSees. 

 
Figure 4-45 UniaxialMaterial ElasticPP 
Gap 

Table 4-2 Maximum value of the axial force in 
the steel profiles 

 
Upper profile 

(L2) 

Lower profile 

(L1) 

 Tmax Cmax Tmax Cmax 

 [kN] [kN] [kN] [kN] 

Profile 

failure 
900.00 

122.1

7 

900.0

0 
43.98 

Dowel 

failure 
215.42 

215.4

2 

215.4

2 
215.42 

 

The dynamic non-linear analyses on the single frame are performed considering the 

only horizontal component of the earthquake, in the x direction. 

In the following, the seismic behavior of the retrofitting system is described through 

the numerical results of the dynamic analysis performed on the reference frame, using 

the North component of the Emilia earthquake (29/05/2012), recorded in Mirandola 

(Section 3.4). 

 Connection system 

During the analysis, the lower profiles of both the retrofitted connections and the 

upper profile on the right retrofitted connection reached the maximum value of the 

axial force so that they are progressively removed from the model. This results in the 

fact that all the steel profiles fail in the early stage of the analysis and they do not reach 

the plastic deformations range, exhibiting an elastic behavior up to the failure (Figure 

4-46 and Figure 4-47). 
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Figure 4-46 Axial force versus axial 
deformation for the retrofitting system on the 
left connection 
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Figure 4-47 Axial force versus axial 
deformation for the retrofitting system on 
the left connection 

 Friction connections 

The retrofitting device offers shear strength against the horizontal seismic loads and 

provides mechanical restrains for relative horizontal displacements in the friction beam-

to-column connections.  

Figure 4-48 and Figure 4-49 show the shear force F versus the relative displacements 

 between the main beam and the column, on both the sides of the frame (the red solid 

line corresponds to the right connection, the blue solid line corresponds to the left 

connection), for the existing frame and the retrofitted one, respectively. It is worth 

noticing that in the first case, the friction connections exhibits large sliding 

displacements so that unseating fenomena can occur with respect to the available 

support length (dashed line in Figure 4-48 and Figure 4-49). In the latter case, thanks to 

the presence of the steel devices, which offer high shear stiffness, very small relative 

displacements can be observed, mainly due to the initial gap and to the elastic behavior 

of the steel profiles. However, the shear force increases due to the fact that, if one of 

the steel profile which composes each retrofitting systems reaches the maximum axial 

force and fails, the three-hinge arc mechanism does not work and localized forces occur 

in the beam and the column. These forces produce beam rotations, which lead to higher 

axial forces on the friction connection and to corresponding higher frictional strength. 
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Figure 4-48 Shear force versus relative 
displacement for the beam-to-column friction 
connection of the existing frame 
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Figure 4-49 Shear force versus relative 
displacement for the beam-to-column friction 
connection of the retrofitted frame 

 Plastic hinges 

The non-linear behavior of the reference frame can be investigated observing the 

moment-rotation diagrams at the column base. Figure 4-50 and Figure 4-51 show the 

cyclic response of the plastic hinges for the existing frame and the retrofitted one, 

respectively. It can be observed that the rotation at the column bases overpasses the 

yielding value both in the existing and the retrofitted frame, with a high plastic 

deformations in the latter case. Moreover, the plastic hinges at the right and left column, 

in the retrofitted frame, show different cyclic responses due to the fact that the 

progressively failure of the steel profiles leads to non-symmetric structural scheme.  
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Figure 4-50 Moment-rotation diagram for 
column plastic hinges of the existing frame 
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Figure 4-51 Moment-rotation diagram for 
column plastic hinges of the retroffitted frame 
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 Lateral drifts 

In order to assess the non-structural damage, the later drift is controlled. Figure 4-52 

shows the later drifts for the column on the left side (blue solid line) and on the right 

side (red solid line) of the existing frame. Figure 4-53 refers to the retrofitted one. It can 

be observed that in both the cases the lateral drift overpasses the Code limit value (1%) 

and that in the retrofitted frame, the structural asymmetries due to the progressive 

failure of the steel profiles leads to different values of lateral drift. The plastic 

deformations at the column bases result in residual drifts at the end of the input motion. 

 
Figure 4-52 Lateral drifts for the existing 
frame 

 
Figure 4-53 Lateral drifts for the retrofitted 
frame 

 Energy balance 

The global behavior of the reference frame can be described by the energy balance, 

verified during the analysis. First, it should be observed that, even if the retrofitted frame 

exhibits the same initial period of the existing frame (T=1sec), during the analysis the 

increased stiffness, related to the presence of the retrofitting system, leads to lower 

periods which reflect into higher accelerations and inertial forces. For this reason, the 

input energy for the retrofitted frame is higher that the input energy for the existing 

frame.  

Moreover, due to the high plastic deformations, the hysteretic energy for the 

retrofitted frame increases and for the retrofitted frame overpasses the 50% of the input 

energy.  

The energy content related to the frictional behavior, which is about the 50%of the 

input energy for the existing frame, strongly decreases for the retrofitted one and it is 

about the 20% of the input energy. 
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The viscous energy related to the inherent damping is not influenced by the presence 

of the retrofitting system. 
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Figure 4-54 Energy balance for the existing 
frame 
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Figure 4-55 Energy balance for the retrofitted 
frame 

 Hysteretic damper 

In order to improve the seismic behavior of the retrofitting system, it should be avoid 

that the steel profiles or the horizontal dowels reach a brittle failure before the plastic 

behavior is developed (Figure 4-45). The best performance could be obtained if the 

plastic deformations in the retrofitting system avoid structural damage, i.e. yielding 

rotation at the column base. 

For this reason, it could be assumed that the maximum shear force in the connection 

should be lower than the shear force corresponding to the yielding rotation of the 

column base (Eq. 4.1), so that the activation of the connection system occurs before the 

column damage. A reduction factor equal to 0.8 is also adopted. 

After that, based on the geometrical configuration, the maximum axial force in the 

steel profiles can be obtained (Figure 4-56, Eqs. 4.2 and 4.3). For each profile, the axial 

force can assume tensile or compressive values: in the following table, figure and 

equations the label N represent the axial force modulus, the labels T and C represent 

the tensile ad the compressive value, respectively.  
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 [°] 25 

 [°] 57 

 [°] 32 

My [kNm] 253 

F [kN] 25.60 

N2 [kN] 40.14 

N1 [kN] 19.96 
 

Figure 4-56 Design parameters for beam-to-column connection (type B) 
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4.3 

In the following, the results of the dynamic analysis for the retrofitted frame with 

the dissipative connection are presented. It can be observed that the steel profiles exhibit 

plastic deformations in tension as well as in compression (Figure 4-57 and Figure 4-58). 

Also in this case, the relative beam-to-column displacements are restrained, but the 

shear force is now limited (Figure 4-59). However, due to the limited relative 

displacements, the steel profiles exhibit only low plastic deformations, with few 

hysteretic cycles. For this reason, the retrofitting system damage is not enough to avoid 

the formation of the column plastic hinges, which still show rotation higher than the 

yielding value (Figure 4-60). However, in this case, the presence of an effective beam-

to-column connection leads to a symmetric structural response, which results in equal 

moment-rotation diagrams for both the plastic hinges and equal lateral drifts for both 

the columns (Figure 4-61). 

Concerning the global behavior, Figure 4-62 shows the energy balance during the 

analysis: it is worth noticing that the presence of dissipative connection systems avoids 

increase of lateral stiffness without reduction of stiffness so that the input energy is the 

same with respect to the input energy in the existing frame, without beam-to-column 

connection systems. However, the low frictional displacements lead to very low friction 

energy and the energy damping is only related to the plastic deformations in the plastic 

hinges with higher structural damage with respect to the existing frame. 

It should be observed that even if a lower maximum axial force in the steel profiles 

are assigned, it is not possible to avoid structural damage. This is due to the fact that in 

order to activate the connection system before the activation of the column plastic 

hinges, the maximum shear force in the connection should be lower that the shear force 
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which corresponds to the column yielding moment. However, if the connection shear 

force is lower than the frictional strength, the beam-to-column connection do not 

exhibits relative displacements which activate the dissipative device.  
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Figure 4-57 Axial force versus axial 
deformation for the dissipative retrofitting 
system on the left connection 
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Figure 4-58 Axial force versus axial 
deformation for the dissipative retrofitting 
system on the right connection 
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Figure 4-59 Shear force versus relative 
displacement for the beam-to-column friction 
connection of the dissipative retrofitted frame 

 
Figure 4-60 Moment-rotation diagram for 
column plastic hinges of the dissipative 
retroffitted frame 
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Figure 4-61 Lateral drifts for the dissipative 
retrofitted frame 
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Figure 4-62 Energy balance for the 
dissipative retrofitted frame 
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SEISMIC RETROFIT SOLUTION USING VISCOUS 

DEVICES 

In this section, the seismic retrofit of the reference building using viscous dampers 

is presented. The considered devices aim at reducing the dynamic response of the 

structural system during an earthquake. It is assumed to apply the viscous devices to the 

precast beam-to-column connections. 

5.1 Viscous dampers description 

The viscous dampers consist in mechanical devices that take advantage of the 

material aptitude in absorbing and damping external forces. They were largely applied 

from nineties in civil and mechanical engineering structures in order to reduce 

vibrations, e.g. vibrations due to wind. Only in the last decades, they were also used for 

seismic applications, in order to reduce the dynamic response of structures during 

earthquakes. 

The most common adopted technology consists of fluid dampers: a steel cylinder 

incorporates a stainless steel piston with a bronze orifice head. The internal section of 

the cylinder could be divided in two different chambers filled with compressible silicone 

oil. During the piston movement, flow characteristics can be altered, depending on the 

fluid relative velocity, because of specially shaped orifices on the piston head. The force 

produced by the damper is generated by the pressure differential across the piston head.  

They present both many advantages and critical issues to be faced in structural 

applications. 

They do not change the dynamic properties of the main structure; however, they 

reduce both displacements and accelerations during earthquakes so that the base shear 

and the interstory shear decrease as well as the inertia forces. The high damping levels, 

which can be reached due to their application, can lead to low stresses and deflection in 

the main structure. 

They can be designed with different geometries and installed with different layouts 

so that they can produce different level of maximum force and relative displacement in 
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the device. They are usually installed in a structure as diagonal braces or as part of a base 

isolation system. 

They exhibit stable and predictable performance at any temperature, low 

maintenance costs and long life. However, the production and installation costs could 

be higher with respect to alternative retrofitting systems.  

In the design process, it is difficult to predict the force level that the device could 

exhibit during the earthquake and then the forces transmitted to the structure. 

5.2 Viscous damper model 

The dynamic characteristics of a viscous damper depend on the properties of the 

viscous fluid and on the geometry and materials of the device. For these reasons, the 

viscous dampers exhibit viscoelastic behavior that incorporates both elastic and viscous 

frequency dependent characteristics and the hysteretic response can be modeled using 

a Maxwell model (Makris and Constantinou 1991) which considers springs and dashpots 

connected in series (Figure 5-1). 

 
Figure 5-1 The Maxwell model 

It consists of Hookean springs, which take into account the instantaneous device 

deformations, related to the mechanical energy reversibly stored as strain energy. The 

constitutive low of the Hookean springs is described by: 

F k    5.1 

in which the elastic axial stresses and forces are proportional to the axial 

deformations and displacements by the Young modulus E (of the considered material 

for the device) and to the axial stiffness, respectively. 

The entropic uncoiling process of the fluid can be modeled by a Newtonian dashpot, 

in which axial stresses and forces are proportional to the stress rate and velocity, 

respectively: 

F C v    5.2 

in which C (in N∙s/m) represent the viscous parameters and  is the viscous damper 

exponent (Figure 5-2). When =1, the device acts as a linear viscous damper; when  

>1 the device acts as a shock transmitting or a lock-up unit which develops high forces 

for high velocities due to the hardening relationship between F and v; when  <1 the 

F

k C

F
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device acts as a non-linear viscous damper which produces a force reduction at high 

velocities due to a softening relationship between F and v.  

 
Figure 5-2 Force-velocity relationship for different viscous exponents 

In a series connection such as the Maxwell model considers (Figure 5-1), the force 

on each element is the same and equal to the imposed force (Eq. 5.3), while the total 

deformation is the sum of the deformation in each element (Eq. 5.4). 

s dF F F 
  

5.3 

s d   
  

5.4 

In order to introduce the viscous dampers in the OpenSees model of the reference 

building, to perform a seismic retrofitting system of the beam-to-column connections, 

the truss elements used to model the steel profiles of the three-hinge arc system (Section 

3.3.2) are replaced with a twoNodeLink element (McKenna and Fenves 2013). This object 

is defined by two nodes i and j: if the element has a non-zero length (distance between 

the two nodes), the local x axis corresponds to the i-j direction. An orientation vector 

should be assigned in order to define the local y axis components in the global 

coordinates. For the reference model the local x-y plane corresponds to the global z-x 

plane (Figure 3-3).  
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Figure 5-3 TwoNodeLink element 

In particular, for the considered geometry (Figure 5-4), in which the lower profile 

has an inclination angle =57° and the upper one has an inclination angle =25°, the 

orientation vectors for the local x and y axes of the lower profile (xp1 and yp1) and of the 

upper one (xp2 and yp2) can be defined as follows, providing for each vector the three 

components with respect to the global axes (Table 5-1): 

 
Figure 5-4 Geometrical arrangement of the 
retrofitting system 

Table 5-1 Orientation vectors for the two 
node elements 

 xp yp 

Profile 1 0.5 0.0 0.8 -0.8 0.0 0.5 

Profile 2 0.9 0.0 0.4 -0.4 0.0 0.9 
 

The two node element can have six degrees of freedom and, for this reason, six 

UniaxialMaterials (McKenna and Fenves 2013) should be associated in each direction, in 

order to define the constitutive law for translations along the local x, y and z axes and 

rotations about local x, y and z axes. 

In particular, it is assumed that the viscous damper is activated only in the connection 

device axial direction (local x axis) so that: 

- the uniaxial material assigned to model the translations along the local x axis 

performs the Maxwell model; 
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- the uniaxial material assigned to model the rotations about the local z axis allows 

free rotations (relative hinge restrain in the global z-x plane). This condition can 

be obtained using an Elastic UniaxialMaterial, with a very low initial stiffness; 

- the uniaxial materials assigned in all the remaining directions block the 

corresponding degrees of freedom. This condition can be obtained using an 

Elastic UniaxialMaterial with a very high initial stiffness.  

The uniaxial material which performs the Maxwell model and simulates the hysteretic 

response of a nonlinear viscous damper is the ViscousDamper material (McKenna and 

Fenves 2013). The required input parameters are: the elastic stiffness (K) of the linear 

spring (to model the axial flexibility of the viscous damper related to the brace and 

damper elastic deformations), the viscous parameter (C) of the damper and the viscous 

damper exponent (). In the following, the viscous exponent is assumed to be equal to 

1 (linear viscous damper).  

5.3 Numerical investigations 

 Viscous damper parameters 

In order to define the optimal values for the elastic stiffness and the viscous 

parameter, parametric studies are conducted varying both the damper stiffness K and 

the viscous parameter C. 

Dynamic analyses are performed on the single frame model, defined in 4.3.1, for 

which each beam-to-column connection is retrofitted with two viscous dampers (placed 

in the same position of the steel profiles used in the hysteretic connection), so that the 

three hinge arc configuration is still present. 

The dynamic non-linear analyses on the single frame are performed considering the 

only horizontal component of the earthquake in the x direction. 

In the following, the seismic behavior of the retrofitting system is described through 

the numerical results of the dynamic analysis performed on the reference frame, using 

the North component of the Emilia earthquake (29/05/2012), recorded in Mirandola 

(Section 3.4). 

Different values for K and C are assumed: in the following, the numerical results 

refer to the nine couples of values presented in Table 5-2. 

Table 5-2 Assumed values for the viscous stiffness K and the viscous parameter 

  
C1 

[kNs/mm] 
C2 

[kNs/mm] 
C3 

[kNs/mm] 

K1 [kN/mm] 10 1 10 2 10 5 

K2 [kN/mm] 50 1 50 2 50 5 
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K3 [kN/mm] 500 1 500 2 500 5 

 

Figure 5-5 shows the axial force-axial displacement in a single device, i.e. the lower 

profile of the left side of the frame, recorded for each value of C, varying the value of 

K. Table 5-3 and Table 5-4 show the maximum force and the maximum displacement 

recorded for each value of C, varying the value of K. It is worthy notice that: 

- for each value of the viscous parameter C, increasing the elastic stiffness, the 

hysteresis cycles increase their slope. This evidence is clearer for higher values of 

C; 

- different values of C and K do not significantly affect the maximum axial 

displacement recorded in the device. The maximum axial displacement is only 

affected by the damper configuration since for the upper damper (Table 5-5) 

lower displacements are recorded. This evidence is of high interest because it 

implies that the viscous damper can be designed for different values of K and C, 

in order to have different dynamic responses in terms of damped energy 

(dependent on the area enclosed by the hysteresis cycles) and arranged so that 

the relative displacements between the beam and the column are kept under 

control in order to guarantee that they always are lower than the values which 

correspond to unseating phenomena; 

- on the contrary both the increase of K and the increase of C result in an increase 

of maximum axial force in the device. In particular, the axial force in the device 

appears to be strongly dependent on the value of K and this dependence is more 

noticeable for higher values of C. 
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Figure 5-5 Hysteretic response for the viscous damper, varying the elastic stiffness (K) and the 
viscous parameter (C ) 

Table 5-3 Maximum axial displacement in the viscous damper (lower profile, left side), 
varying K and C 

Max Displ. [cm] 
C1 

[kNs/mm] 
C2 

[kNs/mm] 
C3 

[kNs/mm] 

K1 [kN/mm] 0.0512 0.0512 0.0512 

K2 [kN/mm] 0.0507 0.0499 0.0490 

K3 [kN/mm] 0.0508 0.0498 0.0474 

Table 5-4 Maximum axial force in the viscous damper (lower profile, left side), varying K and C 

Max Force [kN] 
C1 

[kNs/mm] 
C2 

[kNs/mm] 
C3 

[kNs/mm] 

K1 [kN/mm] 5.11 5.71 5.91 

K2 [kN/mm] 9.38 16.06 24.47 
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K3 [kN/mm] 9.97 19.42 44.79 

Table 5-5 Maximum axial displacement in the viscous damper (upper profile, left side), varying 
K and C 

Max Displ. [cm] 
C1 

[kNs/mm] 
C2 

[kNs/mm] 
C3 

[kNs/mm] 

K1 [kN/mm] 0.029 0.029 0.029 

K2 [kN/mm] 0.028 0.028 0.027 

K3 [kN/mm] 0.028 0.028 0.026 

Table 5-6 Maximum axial force in the viscous damper (upper profile, left side), varying K and C 

Max Force [kN] 
C1 

[kNs/mm] 
C2 

[kNs/mm] 
C3 

[kNs/mm] 

K1 [kN/mm] 2.88 3.21 3.32 

K2 [kN/mm] 5.28 9.03 13.76 

K3 [kN/mm] 5.61 10.93 25.20 

 

The seismic performance of the viscous dampers is strictly connected to their 

damping capacity which could be measured through the damped energy during the 

hysteresis loops. In Figure 5-6 each bar represents the cumulated energy dissipated 

by the lower and the upper device, on both connection of the reference frame, at the 

end of the input seismic motion. It is confirmed once again that for lower values of 

C, the seismic performance is slightly improved for different values of the elastic 

stiffness; whereas, for high values of the viscous parameter C, the seismic 

performance is more influenced by the elastic stiffness and for higher values of K 

the viscous damper increase significantly the dissipated energy during the input 

motion.  
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Figure 5-6 Dissipated energy by the viscous dampers on both the connections of the reference 
frame 

An important issue to check during the application of a retrofitting solution is the 

variation of the dynamic properties of the retrofitted structures due to the presence of 

external dampers which may results in a variation of the fundamental period. The 

presence of external devices, could lead to higher lateral stiffness and lower fundamental 

periods. This could result in higher inertial force, due to the seismic input motion, with 

higher input energy for the structure. Then, if this input energy is not efficiently 

dissipated by the external dampers, it could result in higher structural damage. 

For the selected retrofitting solution, it is pointed out that the structural vibration 

period is affected by the presence of the viscous dampers but it is not influenced by the 

viscous damper properties (Table 5-2). In fact, for all the dampers properties, the 

fundamental period of the retrofitted frame is equal to 0.89sec, lower than the 

fundamental period of the bare frame, equal to 1sec. However, this does not affect 

significantly the cumulated input energy at the end of the input motion (Figure 5-7). 
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Figure 5-7 Input energy for the considered viscous damper properties  
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In Figure 5-8 to Figure 5-10 the seismic performance of the retrofitted frame is 

described in terms of the energy content absorbed by the plastic hinges at the column 

base (Ehyst), the energy content absorbed by the external dampers (Edamper) and the energy 

content absorbed by the inherent structural damping (Ein.damp). In the figures the values 

of each energy content is a percentage of the input energy (Einput). It could be pointed 

out that, even if the dissipated energy by the external dampers is quite low, the dissipated 

energy by the column plastic hinges is decreased with respect to the bare frame due to 

an overall global response of the structure. The presence of viscous dampers, moreover, 

decreases the inherent viscous damping of the structure: more the external dampers 

dissipate (Figure 5-9), more the inherent damping reduces (Figure 5-10). 

The overall good behavior is confirmed by a good local response in terms of 

moment-rotation diagrams and in terms of lateral drifts: Figure 5-11 and Figure 5-12 

show the moment-rotation envelopes and the drifts versus time for the column on the 

left side of the frame, considering the viscous damper parameter C=5kNs/mm. It is 

worthy noticeable that the column rotations, after overpassing the cracking value, do 

not reach yielding. As well, the drift values are much lower than the code limit equal to 

1%. 

 

 
Figure 5-8 Dissipated energy by the column 
plastic hinge with respect to the input 
energy 

 
Figure 5-9 Dissipated energy by the external 
dampers with respect to the input energy 
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Figure 5-10 Dissipated energy by the inherent damping with respect to the input energy 
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Figure 5-11 Moment-rotation envelopes for 
the left column of the retrofitted frame 
(C=5kNs/mm) 

 
Figure 5-12 Drifts time-series for the left 
column of the retrofitted frame 
(C=5kNs/mm) 

 Frequency content dependence  

According to the previous analysis results, in order to investigate further issues 

related to the application of the viscous dampers, the values of elastic stiffness K and 

of the viscous parameter C are chosen equal to 500kN/mm and 2kNs/mm, 

respectively. 

In the following, in order to verify the dependence on the frequency content of the 

input motion, the seismic performance of the viscous devices and of the main structure 

are investigated applying the set of accelerograms defined in Section 3.4. In fact, for the 

selected accelerograms, different Fourier amplitudes correspond to the fundamental 

period of the bare frame (Figure 5-13). Given the damper properties, as specified before, 
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the natural frequency of the external damper is fixed and its response could be 

influenced by resonance phenomena. In Figure 5-14 also the Fourier spectrum of the 

Mirandola input motion is represented in order to compare the frequency contents. 

 
Figure 5-13 Fourier amplitudes 
corresponding to the fundamental period of 
the bare and retrofitted frame, for the selected 
accelerograms 

 
Figure 5-14 Fourier amplitudes 
corresponding to the fundamental period of 
the bare and retrofitted frame, for the MRN 
accelerogram 

In Figure 5-15 it can be pointed out that if higher Fourier amplitude are recorded in 

correspondence of the fundamental period of the retrofitted frame, the viscous dampers 

show a better performance in terms of damping capacity. It should be notice, however, 

that for the same device properties used considering the Mirandola input (Figure 5-5), 

for the selected accelerograms with higher Fourier amplitude higher axial displacements 

and higher axial forces are recorded. 

This consideration should be taken into account during the design process in order 

to control the maximum force transmitted to the main structure during the earthquake. 

 
Figure 5-15 Hysteretic response for the lower viscous damper of the left beam-to-column 
connection, varying the input motion 
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 Friction coefficient dependence 

As observed in Section 4.3.7, for external dampers displacements dependent the 

seismic performance of the dampers as well as of the retrofitted structure could be 

influenced by the possibility that relative displacements between beam and column can 

occur.  

In the seismic retrofitting of friction connections in existing structures it is very 

difficult to design an hysteretic device (which can properly activate and dissipate) 

because the evaluation of the friction coefficient is non-reliable due to material 

deterioration or to the presence of vertical seismic excitations. 

For this reason, the application of external devices based on relative velocities can 

avoid this problem. In order to verify the effectiveness of viscous dampers applied to 

friction beam-to-column connections, dynamic analyses are performed using the 

Mirandola input presented in the previous sections, varying the value of the friction 

coefficient which characterizes the sliding surfaces. 

Five different values of the friction coefficient  are applied, varying from =0 

(which corresponds to a perfectly smooth surface) to =0.8 (which corresponds to a 

very rough surface). 

However, observing the hysteresis loops in Figure 5-16, which refer to the cyclic 

response of the lower device applied on the beam-to-column connection on the left side 

of the reference frame, it can be pointed out that, for the selected device properties 

(C=2kNs/mm and K=500kN/mm), the viscous dampers show the same response, in 

terms of both maximum force and maximum displacement.  

This is an important consideration to take into account during the design process 

and the selection of the device properties. 

 
Figure 5-16 Hysteretic response for the lower viscous damper of the left beam-to-column 
connection, varying the friction coefficient at the beam-to-column surface 
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FINAL REMARKS 

Precast structures are largely applied in the modern building practice because of the 

good mechanical properties of the adopted materials and because of the quick 

installation procedures. However, the component members produced in the 

manufacturing plants are then assembled on the construction site and high sources of 

structural vulnerabilities can be associated to the realization of mutual connections.  

In some cases, when poor construction details are provided in accordance with non-

seismic or out-of-date seismic codes, structural deficiencies can also affect the main 

elements and especially the elements devoted to offer ductility sources, i.e. the vertical 

columns. 

Recent seismic events, which interested industrial areas, produced large damage to 

the precast structures. This work focuses on typical one-story precast buildings, 

designed without any seismic criteria, characterized by isolated columns fixed in socket 

foundations and connected to the beams by friction connections. Roof elements are 

arranged so that no rigid diaphragm is provided and the seismic force at the roof level 

is transferred to the lateral resisting system by masses proportional criteria which lead 

to plan irregularities. 

For the above considerations, it is recognized that seismic retrofitting interventions 

are required for the existing precast structures. However, two main issues should be 

faced: first, the code recommendations for seismic retrofit of the precast structures are 

still poor; second, the retrofit strategies typically adopted for the reinforced cast-in situ 

buildings are not suitable to fix the specific vulnerabilities related to the structural 

scheme of the precast buildings. For this reason in the Chapter 2 of this work, the 

principles of seismic retrofitting strategies are described and the Italian and European 

codes approach have been presented. 

In this work, the retrofit solutions for the friction beam-to-column connections have 

been considered monitoring the seismic response of a real case study precast structure, 

located in Mirandola (Emilia Romagna region). The structural performance both of the 

as-built structure and of the retrofitted one is presented in terms of several parameters, 

which describe the local and the global seismic response. The local response has been 
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described through the relative displacements occurred in the friction connections and 

the moment-rotation envelopes of the plastic hinges at the column bases. The global 

response has been described through the structural dynamic properties, i.e. the vibration 

periods, the energy contents associated to the input motion and the lateral drifts 

exhibited by vertical resisting elements.  

The monitoring of the above cited parameters for the existing structure, subjected 

to the Emilia earthquake (May, 29th 2012), demonstrated a poor seismic performance. 

In fact, the columns exhibited high plastic rotations, which overpassed the yielding 

threshold resulting in a wide structural damage. Moreover, the lateral drifts exceeded 

the code limit, which should prevent the non-structural damage for displacement 

sensitive equipment.  

In this work, two different retrofit strategies are applied. The first one consists in the 

application of a steel device, which can provide additional shear strength to the beam-

to-column connection and prevent unseating phenomena, limiting the relative beam-to-

column displacement. This device can work as a rigid restrain without any damping 

capacity. Otherwise, it can provide energy dissipation through hysteretic mechanisms 

based on the attainment of a yielding threshold in the constitutive behavior of the steel 

members. The second one consists in the application of a viscous device, which can be 

activated by relative velocities and takes advantage of the material aptitude in absorbing 

and damping external forces. A detailed description of both the strategies has been 

presented in the Chapter 4 and Chapter 5, respectively. In these chapters, experimental 

and numerical parametric analyses and several considerations based on the results 

judgements are performed in order to define the optimal configuration and the 

mechanical properties of the retrofitting devices, which lead to good seismic 

performances.  

The main results of this work can be summarized as follow: 

- a three-hinged steel retrofit device which connects precast beams and columns 

and applied to the external surface of the concrete elements, is tested under 

quasi-static cyclic loads along the beam axis direction. The shear tests, 

performed on two different configurations (with and without rubber sheath 

around the horizontal dowels), demonstrated high strength and deformation 

capacity. However, the connection failure regards the concrete elements 

(column and beam concrete covers) since the steel elements (horizontal dowels 

and steel profiles) perform an elastic behavior; 

- in order to investigate the seismic performance of the three-hinged steel retrofit 

device, non-linear dynamic analyses are performed on a single frame of the 

reference building in which the device is applied at the internal surfaces of the 

concrete elements. The analyses results demonstrate that the steel profiles reach 

failure for buckling or for the shear failure of the horizontal dowels. This results 
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in a brittle mechanism without any ductile source. The numerical model is able 

to perform the failure in run time of the single steel profile: the profile is 

removed from the structural model but this results in an asymmetric seismic 

response of the frame. The retrofit system does not perform any ductile 

deformation and the whole non-linear response is related to the structural 

damage recorded in the column plastic hinges; 

- in order to improve the seismic performance of the retrofit system, the 

maximum axial force in compression and in tension is limited so that the 

maximum shear force in the connection should be lower that the shear force 

which causes the attainment of the yielding moment in the column plastic hinge. 

However, it is recognize that this condition is not sufficient to optimize the 

ductile behavior of the retrofitting system because if the connection shear force 

is lower than the friction strength of the beam-to-column connection, no 

relative displacements are performed and the hysteretic damper van not be 

activated; 

- in order to overpass the limitation of the displacement dependent devices, a 

viscous damper is applied to the beam-to-column connection. This solution 

appears to be very convenient since it does not significantly modify the dynamic 

properties of the main structure and performs a high energy dissipation which 

results in a reduction of the lateral drifts and of the structural damage at the 

column base. The behavior of the viscous damper appears to be not dependent 

from the friction coefficient between beam and column. On the contrary it 

appears to depend on the frequency content of the input motion. 
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