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Introduction

The real world is characterized by deep complexity. Many social, economic

and psychological phenomena are manifold and therefore difficult to mea-

sure and to evaluate. A phenomenon is defined as complex when the rele-

vant aspects of a particular problem cannot be captured by using a single

perspective [43]. It is necessary to consider the concept formed by different

dimensions, each representing different aspects of it, which interact with

each other. For this reason, most of the time, the complexity implies also

multidimensionality [25], and this affects the measuring process of phe-

nomenon that we are analyzing. Nowadays, phenomena such as Develop-

ment, Progress, Poverty, Social Inequality, Well-Being, and Quality of Life,

etc., require, in order to be measured, that the ‘combination’ of different

dimensions are considered together as the proxy of the phenomenon. This

combination can be obtained by applying methodologies known as Com-

posite Indicator [100]; [69].

According to Saisana et al. [138], a Composite Indicator (CI) is defined as

a mathematical combination of single indicators that represent different di-

mensions of a concept whose description is the objective of the analysis.

CIs are very useful in order to deal with those phenomena that can not be

observed directly.

The existing literature offers different alternative approaches in order to

obtain a CI: Theory Based, obtained through the synthesis of selected Ele-

mentary Indicators (EIs), and Data Driven, obtained through an optimal

synthesis of a suitable set of EIs . Theory Based CIs, computed by aggrega-

tion methods, usually require strong knowledge or assumptions about the

1



Introduction 2

phenomena under study and consequently are constructed with a small

number of variables. Data Driven CIs allow for the use of a large num-

ber of variables that usually are needed in representing the real world, but

they have an normative aim. Theory Based and Data Driven approaches

present several limitations: no explicit mention is made about the relation-

ship between EIs and their own CIs (the reflective or formative measure-

ment model); no predictive use of CIs is possible: their scope is essentially

descriptive with, therefore, a restricted use in decision making processes;

no systemic vision is considered in their building; no relationship with

other CIs is taken into account; the CIs assume the same role, not distin-

guishing between input, output and outcome variables; and the EIs are

based just on a numerical scale. To overcome these restrictions, a Model

Based CI can take into account a-priori knowledge on the field of interest

by: specifying the CI measurement model (reflective, formative or both

(MIMIC)); including any kind of CI relationship (logical, hierarchical, tem-

poral or spatial); contextualizing the CI with respect to other CIs according

to a given path model in a systemic vision; defining the roles of the CIs in

the model; and in addition making use of non numerical data (ordinal and

nominal) which is possible by suitable internal quantification according to

optimal scaling methods.

In order to compute a Model Based CI, taking into account all a-prior in-

formation, a relevant role is played by the Structural Equation Modeling

(SEM) methodology. This is a statistical technique for testing and estima-

ting causal relationships using a combination of statistical data and quali-

tative causal assumptions. SEM [84] is an extension of the general linear

model that simultaneously estimates relationships between multiple inde-

pendent, dependent and Latent Variables (LVs). According to this metho-

dology, it is possible to define a CI as a multidimensional LV not mea-

surable directly and related to its single indicators or Manifest Variables

(MVs) by a reflective or formative relationship, or both (this defines the

measurement or outer model). Each CI is related to the other CIs, in a sys-

temic vision, by linear regression equations specifying the so-called Struc-

tural Model (or Inner Model). As a result a Systemic CI or a System of CIs
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is obtained, where the word “systemic” derives from the definition of sys-

tem given by Ludwig von Bertalanffy [96], according to which “a system is

a set of elements in interaction”, not just an aggregation of EIs, but a set of

indicators related to each other by mutual relationships, expressed through

functional links and summarized in a specific model.

Two different approaches exist to estimate model parameters in SEMs: the

covariance-based techniques [76];[77] and the component-based techniques

[186];[187];[95]. The first approach is primarily used to confirm (or re-

ject) theories (i.e. a set of systematic relationships between multiple vari-

ables that can be tested empirically). In contrast, in component-based tech-

niques, LV (i.e CI) estimation plays a main role. As a matter of fact, the aim

of component-based methods is to provide an estimate of the LVs in such

a way that they are the most highly correlated with one another (according

to the path diagram structure) and the most representative of each corre-

sponding block of MVs.

Among the several methods that have been developed to estimate SEMs,

we focus on the component-based techniques, in particular on the PLS Path

Modeling Approach (PLS-PM) [183]; [166], because the estimation of the

CIs plays a key role in this estimation process.

The PLS-PM approach has enjoyed increasing popularity as a key multi-

variate analysis method in various research disciplines in order to build a

system of CIs. It has been evolving as a statistical modeling technique, with

the results that there are several published articles on the method [166];

[16]; [57]; [64]; [35]. In Chapter two of the this the thesis PLS-Path Mod-

eling Approach is reviewed, and a description of the PLS-PM algorithm,

step by step, is proposed. PLS-PM allows you to estimate causal relation-

ships, defined according to a theoretical model linking two or more latent

complex concepts, each measured through a number of observable indica-

tors. The basic idea is that the complexity inside a system can be studied

by taking into account the entirety of the causal relationships among the

LVs, each measured by several MVs. In this system, we are interested in

including EIs on a non numerical scale, including some kind of CI relation-

ship and testing whether there is a mediating and/or moderating effect.
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For instance, when computing a CI, it could be interesting to consider de-

mographic variables, such as religion or gender, and categorical variables

defining states, such as the type of government. It would be interesting to

know what the role of these variables is, if they have a moderator or medi-

ator effect, and how considering these effects change thee estimation of the

LVs considering these effects.

Moreover, applications of SEMs are usually based on the assumption that

the analyzed data stem from a single population, so that a unique global

model well represents all the observations. However, in many real world

applications, this assumption of homogeneity is unrealistic. In modeling

the real world, it is reasonable to expect that different classes showing het-

erogeneous behaviors may exist in the observed set of units. This is true

also in CI frameworks. As a matter of fact, in developing a system of CIs,

it is reasonable to suppose that different models should be applied in order

to take into account differences among the units. Therefore, in recent years

there have been many advances in the context of these models, with many

tools being developed in order to extend the classic algorithm of the PLS-

PM to the treatment of non metric data, for including and testing mediator

and moderator effects, and to deal with heterogeneous data. We have ad-

dressed these developments in the third chapter of the thesis, focusing in

particular on two approaches developed in recent years.

In the fourth chapter of the work we will focus on another aspect of PLS-

PM concerning the construction of the hierarchical component model. As

a matter of fact, in relation to the CI framework, researchers have recently

been focusing their attention on a particular aspect linked to multidimen-

sionality and a high level of abstraction, when a CI is manifold, lacks its

own MVs and is described by various underlying blocks.

Higher-Order Constructs in PLS-PM are considered as explicit represen-

tations of multidimensional constructs that exist at a higher level of ab-

straction and are related to other constructs at a similar level of abstrac-

tion completely mediating their influence from or to their underlying di-

mensions [12]. In Wold’s original design of the PLS-PM [186] it was ex-

pected that each construct would be necessarily connected to a set of ob-
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served variables. On this basis, Lohmöller [95] proposed a procedure to

treat hierarchical constructs, the so-called hierarchical component model.

The hierarchical constructs or sayings are multidimensional constructs that

involve more than one dimension and we can distinguish them from the

one-dimensional constructs that are characterized by a single underlying

dimension.

There are three main approaches existing in the literature: the Repeated

Indicators Approach, the Two Step Approach and the Hybrid Approach.

The Repeated Indicators Approach [95]; [186] is the most popular approach

when estimating Higher-Order Constructs in a PLS-PM [175];[179]. The

procedure consists of taking the indicators of the Lower-Order Constructs

and using them as the MVs of the Higher-Order LV. The Two-Step Ap-

proach is divided in two phases. In the first step the LV scores of the lower-

order constructs are computed without the Second-Order Construct [122].

Then, in the second step, the PLS-PM analysis is performed using the com-

puted scores as indicators of the Higher-Order Constructs. The Hybrid Ap-

proach builds on an idea of Wold [186]. The idea behind this approach is

to randomly split all the MVs of the lower-order constructs so that half are

assigned to their respective construct and the other half are represented in

the Second-Order Construct side [180]. Each approach presents some limi-

tations, particularly two aspects which are taken into account in this work:

the estimation of components for each block and the choice of the number

of the components for each block.

In chapter five we focus on these particular aspects and we propose two

new methods, called the Mixed Two Step Approach and the PLS Compo-

nent Regression Approach, that allow you to estimate the System of CIs

differently and optimally. The Mixed Two Step Approach begins with the

implementation of the PLS-PM in the case of the Repeated Indicators Ap-

proach. In this way, the algorithm gives the scores of the Lower-Order

Constructs. Next the scores of the blocks are used as indicators of the

Higher-Order Construct, and at this point the PLS-PM algorithm is per-

formed again. The PLS Component Regression Approach gives the pos-

sibility of choosing manually the number of components of the block to
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be extracted, or according to a criterion, through the use of PLS Regression.

Once the components have been chosen, these will be MVs of Higher-Order

Construct and the PLS-PM algorithm will be performed. Since the aim of

PLS-PM is to estimate the relationships between the LVs, these approaches

provide components that are at the same time representative of their blocks

and predictive of the Higher-Order Construct.

Finally, we will show the functioning of the proposed algorithms (imple-

mented in an R code) through a simulation study. The performance of the

proposed methods in terms of the explained variability, predictiveness and

interpretation is compared to the classic Two Step Approach, using artifi-

cial data. Compared to this approach, the Mixed Two Step Approach and

the PLS Component Regression Approach seem to be good methods in

term of stability and predictiveness. This is confirmed by the simulation

and by an application to real data, that is presented in order to show the

implementation of these methods and to give some comparative empirical

results.



Chapter 1

Composite Indicators

1.1 Introduction

The real world is characterized by deep complexity. Many socioeconomic

phenomena are manifold and therefore difficult to measure and to evalua-

te. A phenomenon is defined as complex when the relevant aspects of a

particular problem cannot be captured by using a single perspective [43].

It is necessary to consider the concept formed by different dimensions, each

representing different aspects of it, which interact with each other. For this

reason, most of the time, the complexity implies also multidimensionality

[25], and this affects the measuring process of the phenomenon that we

are analyzing. As a matter of fact, outcomes are determined not by sin-

gle causes but by multiple causes, and these causes may, and usually do,

interact in a non-additive way. In other words the combined effect is not

necessarily the sum of the separate effects. The Millennium Development

Goals, adopted by the United Nations General Assembly in 2000, reflect

this advanced vision. The shift from a single dimension to multiple di-

mensions, by enlarging and enriching the scope of the analysis, represents

an important theoretical progression.In last few years, the debate on the

measurement of multidimensional phenomena has witnessed, within the

worldwide scientific Community, a renewed interest thanks to the publica-

tion, in September 2009, of the Stiglitz report and, in March 2013, of the first

report on “Equitable and Sustainable Well-being” (BES) by the Committee

7
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composed of ISTAT (the Italian National Institute of Statistics) and CNEL

(Italian Council for Economics and Labour). It is well know that a number

of socio-economic phenomena cannot be measured by a single descriptive

indicator and that, instead, they should be represented with multiple di-

mensions. Phenomena such as Development, Progress, Poverty, Social In-

equality, Well-Being, Quality of Life, and the Provision of Infrastructures,

etc., require, in order to be measured, that the “combination” of different

dimensions are considered together as the proxy of the phenomenon. This

combination can be obtained by applying methodologies known as Com-

posite Indicator [100]; [69]. Once the multidimensionality is recognized,

measuring this phenomenon has a number of theoretical and methodo-

logical problems that are not present in the conventional unidimensional

approach. The first problem concerns the choice of the dimensions: which

and how many dimensions are relevant and should be considered or pri-

vileged. This is also called by Sen the problem of the appropriate “infor-

mational basis” [154], that is which information is included or excluded

in the evaluation exercise. Moreover, we need to understand if there are

relationships between these dimensions, and if so, to understand their na-

ture. Therefore, in a multidimensional perspective and taking into account

any relationships between the dimensions, we talk about a system of Com-

posite Indicators, that measure and represent distinct dimensions of the

observed phenomenon. Consequently, the system of Composite Indicators

does not represent a pure and simple collection of indicators but provides

researchers with information that is greater than the simple summation of

the elements.

1.2 Definition of Composite Indicators

Saltelli [139] used “Composite Indicator” (CI) sensu lato, i.e. to indicate

a manipulation of individual indicators. Accordingly, a CI is obviously

not “the unique solution” when representing complex systems but only

“a solution”, (i.e. a limited exercise to take into account non-equivalent

observers and observations). This is indeed the major limitation of com-

posites. As indicated in Saisana et al. [137], the core of the non aggrega-
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tors’ argument is in the subjective nature of these measures. Subjectivity

cannot be avoided when representing complex systems. Cherchye et al.

[11] observe that the “lack of consensus” is a defining property of CIs, and

that one may even hypothesize a consensus between the association of key

variables with the subject of the index, the weightings will remain contro-

versial. However, several reviews of CIs have been published in the last

few years. All this interest in CIs may be attributed to a variety of reasons,

which could include the following ([138]; [110]):

- CIs can be used to summarize multidimensional issues, in view of the

supporting decision-makers;

- CIs offer the possibility of making the rankings between, for example,

countries, companies and individuals on complex issues;

- CIs can help to synthesize a list of indicators.

In official statistics, CIs are being increasingly recognized as a useful tool

for policy making and public communications in term of conveying infor-

mation about a country’s performance in fields such as the environment,

economy, society, or technological development, and they have proven to

be useful in ranking countries in benchmarking exercises. They are much

easier to interpret than any attempt to find a common trend in many sepa-

rate indicators. However, they can send misleading or non-robust policy

messages if they are poorly constructed or misinterpreted. According to

Saisana et al. [138], a Composite Indicator is defined as a mathematical

combination of single indicators that represent different dimensions of a

concept the description of which is the objective of the analysis. A CI is

formed when individual indicators are compiled into a single index on the

basis of an underlying model. CIs should ideally measure multidimen-

sional concepts which cannot be captured by a single indicator, e.g. com-

petitiveness, industrialization, sustainability, single market integration, or

the knowledge-based society [138]. Thus, the main feature of a complex

indicator is that it summarizes complex and multidimensional issues. This

multiplicity implies a number of theoretical and statistical problems, espe-

cially when we need to make comparisons over time and/or space. The
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fundamental question is what is the best approach to (re)present complex

phenomena and multidimensional realities. The construction of this kind

of indicator implies a search for a suitable synthesis of a number of MVs

in order to achieve a simple representation of a multidimensional phe-

nomenon. Accordingly, a CI can be considered as a latent concept, not

directly measurable, whose estimation can be obtained through the value

of Elementary Indicators (EIs) or MVs. Its construction and its use involves

a series of advantages and disadvantages, some of which are mentioned

below. In particular, the principal advantages are that a composite indi-

cator can be used to summarize multidimensional issues and can help to

synthesize a list of indicators. On the other hand, the most serious pro-

blems are that CIs may send misleading, non-robust policy messages, if

they are poorly constructed or misinterpreted, and may encourage politi-

cians to draw simplistic policy conclusions. These pros and cons are di-

scussed in detail in Saisana et al. [138]. To overcome these problems, stu-

dies in literature have focused on the construction of a CI through several

stages that represent the basic steps of their construction, namely:

- Deciding on the phenomenon to be measured and on whether it would

benefit from the use of CIs;

- Selecting the EIs. A clear selection needs to be made in terms of which

sub-indicators are relevant to the phenomenon to be measured. There

is no fully objective way of selecting the relevant EIs;

- Assessing the quality of the data. There needs to be high quality data

for all the indicators. Otherwise, the analyst has to decide whether

to drop the data or find ways of constructing the missing data points.

In case of data gaps, alternative methods can be applied, e.g. mean

substitution, correlation results, time series, or an assessment of how

the selection of the method can affect the final result;

- Assessing the relationships between the sub-indicators. Methods such

as Principal Components Analysis can provide an insight into the re-

lationships between the EIs. It can be considered as a prerequisite for

the preliminary analysis of the EIs;
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- Normalising and weighting the indicators. Many methods for nor-

malising and weighting the EIs are reported in the literature;

- Testing for Robustness and Sensitivity. Inevitably, changes in the

weighting system and the choice of EIs will affect the results that the

CI shows.

Each step is extremely important, but coherence in the whole process is

equally vital. Choices made in one step can have important implications in

others.

An OECD study [111] offers “recommended practices” for the construction

of CIs [139]. In this book, Nando et al. [111] discuss in detail several stages

for their construction, together with the “pros” and “cons” associated with

the use of aggregated statistical information.

1.3 A quality framework for Composite Indicators

The development of a quality framework for CIs is not an easy task. In fact,

the overall quality of the CIs depends on several aspects, related both to the

quality of the elementary data used to build the indicator and the sound-

ness of the procedures used in its construction. Quality is usually defined

as “fitness for use” in terms of user needs. As far as statistics are concerned,

this definition is broader than has been used in the past when quality was

equated with accuracy. It is now generally recognized that there are other

important dimensions. Even if the data are accurate, they cannot be said to

be of good quality if, for example, they are produced too late to be useful,

cannot be easily accessed, or appear to conflict with other data. Thus, qua-

lity is a multi-faceted concept. The most important quality characteristics

depend on user perspectives, needs and priorities, which vary across user

groups. Several organizations (e.g., Eurostat, the International Monetary

Fund (IMF), Statistics Canada and Statistics Sweden) have been working on

the identification of various dimensions of quality for statistical products.

According to these organizations, the selection of basic data should max-

imize the overall quality of the final result. In particular, in selecting the
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data the following dimensions (drawing on the IMF, Eurostat and OECD

reports) are to be considered:

Relevance. The relevance of the data is a qualitative assessment of the

value contributed by these data. Value is characterized by the degree to

which the statistics meet the current and potential needs of the users. It

depends upon both the coverage of the required topics and the use of ap-

propriate concepts.

In the context of CIs, relevance has to be evaluated by considering the ove-

rall purpose of the indicator. A careful selection and evaluation of the basic

data has to be carried out to ensure that the right range of domains is co-

vered in a balanced way. Given the actual availability of the data, “proxy”

series are often used, but in this case some evidence of their relationships

with the “target” series should be produced whenever possible.

Accuracy. The accuracy of the basic data is the degree to which they cor-

rectly estimate or describe the quantities or characteristics that they are de-

signed to measure. Accuracy refers to the closeness between the values

provided and the (unknown) true values. Accuracy has many attributes,

and in practical terms it has no single aggregate or overall measure. Of ne-

cessity, these attributes are typically measured or described in terms of the

error, or the potential significance of error, introduced through individual

major sources of error. An aspect of accuracy is the closeness of the initially

released value(s) to the subsequent value(s) of the estimates. In light of the

political and media attention given to first estimates, a key point of interest

is how close a preliminary value is to the subsequent estimates. In this con-

text it is useful to consider the sources of the revision, which include the

replacement of preliminary source data with later data, the replacement

of judgmental projections with source data, the changes in definitions or

estimating procedures and the updating of the base year for constant-price

estimates. The aim is few and only minor revisions; however, the absence

of revisions does not necessarily mean that the data are accurate. In the

context of CIs, the accuracy of the basic data is extremely important. Here

the issue of the credibility of the source becomes crucial. The credibility
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of data products refers to the confidence that users place in those products

based simply on their image of the data producer, i.e., the brand image.

One important aspect is trust in the objectivity of the data. This implies

that the data are perceived to be produced professionally in accordance

with appropriate statistical standards and policies and that practices are

transparent (for example, the data are not manipulated, nor is their release

timed in response to political pressure). All things being equal, data pro-

duced by “official sources” (e.g. national statistical offices or other public

bodies working under national statistical regulations or codes of conduct)

should be preferred to other sources.

Timeliness. The timeliness of data products reflects the length of time

between their availability and the event or phenomenon they describe, but

considered in the context of the time period that permits the information to

be of value and to be acted upon. The concept applies equally to short-term

or structural data; the only difference is the time-frame. Closely related to

the dimension of timeliness, the punctuality of data products is also very

important, both for national and international data providers. Punctuality

implies the existence of a publication schedule and reflects the degree to

which the data are released in accordance with it.

In the context of CIs, timeliness is especially important to minimize the

need for the estimation of missing data or for revisions of previously pu-

blished data. As individual basic data sources establish their optimal trade-

off between accuracy and timeliness, taking into account institutional, or-

ganizational and resource constraints, data covering different domains are

often released at different points of time.

Accessibility. The accessibility of data products reflects how readily the

data can be located and accessed from original sources. The range of dif-

ferent users leads to considerations such as multiple dissemination formats

and the selective presentation of meta-data. Thus, accessibility includes the

suitability of the form in which the data are available, the media of disse-

mination, and the availability of meta-data and user support services. It

also includes the affordability of the data to users in relation to its value to
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them and whether the user has a reasonable opportunity to know that the

data are available and how to access them.

In the context of CIs, the accessibility of basic data can affect the overall cost

of the production and updating of the indicators over time. It can also in-

fluence the credibility of the CI if a poor accessibility of the basic data makes

it difficult for third parties to replicate the results of the CIs. In this respect,

given improvements in the electronic access to databases released by va-

rious sources, the issue of coherence across data sets can become relevant.

Therefore, the selection of the source should not always give preference to

the most accessible source, but should also take other quality dimensions

into account.

Interpretability. The interpretability of data products reflects the ease with

which the user can understand and properly use and analyze the data. The

adequacy of the definitions of concepts, target populations, and variables,

of the terminology underlying the data and of the information describing

the limitations of the data, if any, largely determines the degree of inter-

pretability. The range of different users leads to considerations such as the

presentation of meta-data in layers of increasing detail. Definitional and

procedural meta-data assist in interpretability.

In the context of CIs, the wide range of data used to build them and the dif-

ficulties due to the aggregation procedure require the full interpretability

of the basic data. The availability of definitions and classifications used to

produce basic data is essential to assess the comparability of data over time

and across countries: for example, series breaks need to be assessed when

Composite Indicators are built to compare performances over time. There-

fore the availability of adequate meta-data is an important element in the

assessment of the overall quality of the basic data.

Coherence. The coherence of data products reflects the degree to which

they are logically connected and mutually consistent, i.e. the adequacy of

the data to be reliably combined in different ways and for various uses. Co-

herence implies that the same term should not be used without explanation

for different concepts or data items; that different terms should not be used
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for the same concept or data item without explanation; and that variations

in methodology that might affect data values should not be made without

explanation.

In the context of CIs, two aspects of coherence are especially important:

coherence over time and across countries. Coherence over time implies

that the data are based on common concepts, definitions and methodology

over time, or that any differences are explained and can be allowed for.

Incoherence over time refers to breaks in a series resulting from changes

in concepts, definitions, or methodology. Coherence across countries im-

plies that from country to country the data are based on common concepts,

definitions, classifications and methodology, or that any differences are ex-

plained and can be allowed for.

1.4 Composite Indicators from different points of view

CIs have emerged in the last few years as an alternative to a portfolio of in-

dicators, whose scattered information is sometimes difficult to grasp, an

example being the GNP per capita, which often does not correlate well

with development goals. As CIs have emerged, so they have also been

criticized. Points of debate relate to the selection of dimensions and in-

dicators, their correlation (and the trade-off between redundancy and ro-

bustness), their type (input vs. output), and the normalization procedure,

weighting, and aggregation of the components. Many services of the Euro-

pean Commission, the United Nations and regional and local Institutions

have been focusing on the development and use of Composite Indicators to

convey concise information to the public about several economic, environ-

mental, technological and social domains. CIs are deemed useful because

they provide “the big picture”, they attract public interest and encourage

the formulation of strong policy messages. However, their proliferation has

been raising scepticism in relation to their accuracy and reliability. Given

the seemingly ad hoc nature of their computation, the sensitivity of the

results to different weighting and aggregation techniques, and the continu-

ing problems of missing data, CIs can result in distorted findings on coun-
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try performance and incorrect policy prescriptions [140]. The use of CIs

is very much the subject of controversy, pitting aggregators against non-

aggregators. Sharpe [155] notes that:

The aggregators believe there are two major reasons that there is value in

combining indicators in some manner to produce a bottom line. They be-

lieve that such a summary statistic can indeed capture reality and is mean-

ingful, and that stressing the bottom line is extremely useful in garnering

media interest and hence the attention of policy makers. The second school,

the non-aggregators, believe one should stop once an appropriate set of in-

dicators has been created and not go the further step of producing a com-

posite index. Their key objection to aggregation is what they see as the

arbitrary nature of the weighting process by which the variables are com-

bined.

One may note that the controversy on the use of statistical indices unfolds

along an analytical versus pragmatic axis. There is abundant literature on

the analytical problems associated with even well-established statistical in-

dices such as GDP [125]. This literature hardly seems to dent the GDP’s

rather universal pragmatic practical acceptance. Along similar lines, in

Saisana et al. [137], one reads:

[...] it is hard to imagine that debate on the use of Composite Indicators will

ever be settled [...] official statisticians may tend to resent CIs, whereby a

lot of work in data collection and editing is “wasted” or “hidden” behind a

single number of dubious significance. On the other hand, the temptation

of stakeholders and practitioners to summarize complex and sometime elu-

sive processes (e.g. sustainability, single market policy, etc.) into a single

figure to benchmark country performance for policy consumption seems

likewise irresistible.

Among the list of objections to the use of CIs one reads [138]; [110]; [111]:

- CIs may send misleading, non-robust policy messages if they are poorly

constructed or misinterpreted [...or] may encourage politicians to draw
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simplistic policy conclusions.

- The construction of CIs involves stages where judgment has to be

made: the selection of the EIs, the choice of the model, the weighting

of the indicators and the treatment of any missing values etc.

- There could be more scope for disagreement among Member States

about CIs than about individual indicators.

- CIs increase the quantity of data needed because data are required for

all the EIs and for a statistically significant analysis.

While the first “cons” is simply a reminder that sound practices must be

used [111]; [137], and the last is an unavoidable consequence of complex-

ity, the core of the non-aggregators’ argument rest in the subjective nature

of these measures. Cherchye et al. [11], observe that the “lack of consen-

sus” is a defining property of CIs, and that while one may hypothesize a

consensus between the association of key variables with the subject of the

index, the weightings will remain controversial. According to Nardo et al.

[111]: CIs are much like mathematical or computational models. As such,

their construction owes more to the craftsmanship of the modeler than to

universally accepted scientific rules for encoding. As for models, the justifi-

cation for a CI lies in its fitness for the intended purpose and its acceptance

by peers [132].

The point of these considerations is that subjectiveness and fitness need not

be antithetical. They are in fact both at play when constructing and adopt-

ing a CI, where inter-subjectiveness may be at the core of the exercise, such

as when participative approaches to weighting negotiations are adopted

(see Nardo et al. for a review [111]). Thus, these only apparently conflict-

ing properties underpin the suitability of CIs for advocacy. In discussing

data quality issues for statistical information Funtowicz and Ravetz note

[44]:

Any competent statistician knows that “just collecting numbers” leads to

nonsense [...] so in “Definition and Standards” we put “negotiation” as su-

perior to “science”, since those on the job will know of special features and

problems which an expert with only a general training might miss.
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Concerning the discussion of the attraction exerted by CIs, an example is

in the work of Amartya Sen, Nobel prize winner in 1998 [153]. Sen was

initially opposed to CIs but was eventually seduced by their ability to put

into practice his concept of “Capabilities” (the range of things that a person

could do and be in her life [153]) in the Human Development Index.

Saltelli adds that, however good the scientific basis for a given CI, its ac-

ceptance relies on negotiation and peer acceptance [139]. However, despite

their many deficiencies, they will continue to be developed due to their use-

fulness as a communication tool and, on occasion, for analytical purposes

[138].

The evolution of CI theory has gone over the years more and more reflected

on the production of the official statistics. Besides these, in the last few

years a new vision has developed in all fields, many CIs have been built

and used in order to deal with problems of synthesis of different latent con-

cepts, particularly in economic and social fields. An obvious example is the

construction of the ACSI (American Customer Satisfaction Index), in order

to measure the Customer Satisfaction; a synthetic index that relates diffe-

rent aspects, such as Expectation, Perceived Quality and Perceived Value,

that go to influence the Customer Satisfaction.

1.5 From Data Driven Composite Indicators to Model

Based Composite Indicators

The construction of a CI implies the search for a suitable synthesis of a

number of observed or MVs in order to achieve a simple representation of

a multidimensional phenomenon. Accordingly, a CI can be considered as a

latent concept, not directly measurable, whose estimation can be obtained

through the values of EIs. There is a fundamental division in the indicators

literature about indicators between those who choose to aggregate vari-

ables into CIs and those who do not, and prefer using a suite of indicators.

There is no doubt that composite indicators are appealing, especially as an

answer to the calls for a replacement of the single indicator approach or the

use of a suite of indicators, as for example the Human Development Index



Chapter 1. Composite Indicators 19

(HDI) and GDP to measure progress. As a matter of fact, using a unique

measure obtained by combining indicators can indeed capture reality and

can easily be used to attract the attention of policy makers and the media.

Moreover, the advantages of a composite indicator over a set of indicators

include the creation of a bottom line. However, composite indicators have

some disadvantages, including a danger that a composite index will over-

simplify a complex system and give potentially misleading signals [58].

Accordingly, the selection of the weightings and the way the indicators are

combined do not seem to be methodological but, rather, empirical issues in

many approaches to the aggregation of indices. For the construction of CIs

three different approaches [170] are proposed in the literature:

- Theory Based, obtained through the combination of some variables

by means of a specified function, suggested by a theory or by well

established knowledge on the phenomenon to analyze;

- Data Driven, obtained through a suitable/optimal synthesis of the

selected variables, that represent the different facets of an analyzed

phenomenon;

- Model Based, obtained by the estimation of a multi-equations model,

describing, in an optimal way, not only the relationships among the

observed variables but also between the observed variables and one

or more of the latent constructs to be measured.

1.5.1 Theory Based and Data Driven Composite Indicators

Theory Based CIs are computed by simple formulas that usually combine

a few observed variables. This approach requires strong knowledge or as-

sumptions about the phenomena under study, and usually considers a well

defined set of variables. In contrast, a Data Driven approach overcomes the

lack of knowledge by inserting into the building process of a CI many ob-

served variables, that are only proxies of the concept to be measured. The

absence of a prior knowledge and of a consolidated theory often necessi-

tates the use of a data driven approach. This is an exploratory approach

that falls into one of the five major principles of Benzecrì on which Data
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analysis has to be based [8], according to which the models have to follow

the data and not viceversa. Therefore, the statement of Benzecrì is reversed

in the sense that the data have to follow the model in order to build not only

descriptive CIs, but in addition to enrich new interpretations and their use

in supporting decisions. A first step in the construction of a CI, according to

the Data Driven Approach, consists in checking the coherence between the

EIs and the concept to measure, in the sense that is all EIs must have a recip-

rocal concordance (discordance) with respect to their relative CI. Suppose,

for example, we want to build the “Quality of life” (QoL) CI that assigns a

higher values to a country which enjoys a better quality of life: an indica-

tor like “the income expected” has a positive correlation with the quality

of life, whereas “infant mortality” usually presents an inverse correlation

with the QoL. In order to have a set of coherent indicators we should trans-

form it into the correspondence index “survival at birth”. The coherence

can be simply achieved by calculating the reciprocal of an Elementary Indi-

cator (EI) or by using its complement to the observed maximum value. In

order to homogenize the different EIs, before their aggregation for the CI

building, it is necessary to adopt a transformation in the same scale often

of pure numbers. In this case, transformations for homogenization can be

the following:

- a ranking transformation;

- a transformation by the sign of the difference with respect to the ref-

erence mean;

- a transformation by the value of the ratio with respect to the reference

value;

- a transformation by the percentage variation with respect to a previ-

ous value; or

- a transformation by the standardization.

A transformation with respect to a reference value (i.e. the arithmetic mean,

maximum or minimum value) must be carried out carefully when outliers

are present in the EI distribution. In this case, a trimmed mean or defined
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quartiles are to be preferred. Ones the EIs have been transformed into ho-

mogeneity, the aggregation and the determination of a CI is achieved by

the sum or an average of the values of the EIs for each statistical unit (e.g. a

country). Some of the previous techniques have been used to build CIs at a

European level, such as the Information and Communication Technologies

index, the Scoreboard of DG Enterprise, the Internal Market Index and the

Environmental Sustainability Index).

Alternative methods have been proposed in the literature [138] for building

CIs according to the Data-Driven Approach, including Aggregation Tech-

niques, Multiple Linear Regression Analysis, Principal Components Ana-

lysis, Factor Analysis, Cronbach’s Alpha and Neutralization of Correlation

Effect.

Aggregation Techiques. Before computing a composite indicator, a trans-

formation to homogenize the various elementary indicators is needed; next,

an appropriate system of weightings on which the computation of a CI is

based is defined, with methods that start from the simplest to the most com-

plex. As an example, the Information and Communication Technologies

Index is based on the simplest aggregation method: it involves ranking the

countries for each EI and then adding together the country rankings. The

Environmental Sustainability Index is based on the standardized scores for

each indicator which equal the difference in the indicator for each country

and the EU mean, divided by the standard error.

Multiple Linear Regression Analysis. This has been used to combine a

number of EIs to compute correlation coefficients between all of the EIs.

Linear regression models can tell us something about the linkages between

a large number of indicators X1, X2, ..., Xn and a single output indicator

Ŷ . A multiple regression model is constructed to calculate regression coef-

ficients that are the relative weightings of the EIs. This approach is used to

build the National Innovation Capacity Index.

Principal Components Analysis. Applications of Principal Component

Analysis (PCA) related to the development of composite indicators are
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aimed at (i) identifying the dimensionality of the phenomenon (e.g. the

Environmental Sustainability Index); (ii) clustering the indicators (the Gen-

eral Indicator of Science & Technology); and (iii) defining the weightings

(e.g. the Internal Market Index).

The PCA method has been widely used in the construction of CIs from

large sets of indicators, on the basis of the correlation among EIs (e.g. the

Internal Market Index, and the Science and Technology Indicator). In such

cases, principal components have been used with the objective of combi-

ning indicators into composite indicators to reflect the maximum possible

proportion of the total variation in the set. The first principal component

should usually capture sufficient variation to be an adequate representa-

tion of the original set (e.g. the Business Climate Indicator). However,

in other cases the first principal component alone does not explain more

than 80% of the total variance of the EIs and several principal components

are combined together to create the composite indicator (e.g the Success of

Software Process Implementation, and the Internal Market Index).

Cronbach’s Alpha. Another way to investigate the degree of the correla-

tions among a set of EIs is to use a coefficient of reliability (or consistency)

called Cronbach’s Alpha α. This coefficient measures how well a set of

variables (or indicators) measures the same underlying construct. A coef-

ficient of α = 0.80 or higher is considered in most applications as evidence

that the indicators are measuring the same underlying construct. Cron-

bach’s Alpha has been considered for example for the index of Success of

software process improvement.

Neutralization of Correlation Effect. This method has been applied for

the aggregation of three EIs into a composite indicator measuring the rel-

ative intensity of regional problems of the Community by the European

Community in 1984. The indicators measure a) GDP per employed in ECU,

b) GDP per head in PPS, and c) unemployment rate. It is based on the

strong correlation between the EIs, estimating a CI as an average of the EIs

compared to their correlation.



Chapter 1. Composite Indicators 23

The Data Driven Approach used in literature has some limitations with

respect to the number of EIs used, to the choice of the system of weightings

used to aggregate the EIs and to the absence of any relationship between

the EIs and the CIs. As matter of fact, the current CI practice implies that

the EIs:

- are based just on a numerical scale, no use being made of ordinal and

nominal data with a consequent loss of precious information;

- assume the same role, with not distinction between input, output and

outcome variables. The same applies to the moderating and mediat-

ing variables whose use can improve the information carried by a CI;

- no explicit mention is made of the relationship between the EIs and

their CI (the reflective or formative measurement model);

- no predictive use is allowed: their scope is essentially descriptive

with, therefore, a restricted use in the decision making process.

Besides, no systemic vision is considered in their building and no relation-

ship with other CIs is taken into account. In order to overcome the previous

restrictions a Model Based Approach has been proposed.

1.5.2 Model Based Composite Indicators

The previous section shows that the approaches proposed and used in lite-

rature have some limitations with respect to the number of EIs used, to the

choice of the system of weightings used to aggregate the EIs and to the ab-

sence of any relationship between the EIs and the CIs. Midway between

Theory Based and Data Driven CI approaches, the Model Based Approach

allows you to take into account some a priori information about the context

of the phenomena by considering the relationship of the target or output

CI with other CIs representing the input and outcome of the system under

study in terms of a path diagram. In a Model Based Approach, a CI can

take into account a priori knowledge of the field of interest by: i) specify-

ing the CI measurement model (reflective, formative or both (MIMIC)); ii)

defining the roles of the EIs in the model; iii) contextualizing the CI with
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respect to other CIs according to a given path model in a systemic vision;

and iv) including any kind of CI relationship (logical, hierarchical, tempo-

ral or spatial).

In order to compute a Model Based CI, taking into account all a prior in-

formation, a relevant role is played by the Structural Equation Modeling

(SEM) methodology, where the computation of the weightings as well the

aggregation process are not subjective. Both steps are based on the statisti-

cal relationships between indicators. This is a statistical technique for test-

ing and estimating causal relationships using a combination of statistical

data and qualitative causal assumptions. SEM [84] is an extension of the

general linear model that simultaneously estimates the relationships bet-

ween multiple independent, dependent and LVs. According to this metho-

dology, it is possible to define a CI as a multidimensional LV not measu-

rable directly and related to its single indicators or MVs by either a reflec-

tive or formative relationship or by both (this defines the measurement or

outer model). Each CI is related to other CIs, in a systemic vision, by linear

regression equations specifying the so called Structural Model (or Inner

Model). As a result a Systemic CI or a System of CIs is obtained, where the

word “systemic” derives from the definition of system given by Ludwig

von Bertalanffy [96], according to which “a system is a set of elements in

interaction”, not just an aggregation of EIs but a set of indicators related

to each other by mutual relationships, expressed through functional links

and, summarized in a specific model.

The choice of using the SEM as the methodological framework is particu-

larly useful for several reasons. Specifically:

- the possibility of obtaining, simultaneously and coherently with the

estimation method, a ranking of individuals for specific indicator;

- the possibility of comparing systemic indicators in space and in time;

- the possibility of estimating the hypothesized relationships without

making assumptions about data distribution;

- the possibility of defining an optimal system of weightings;
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- the possibility of working with a large number of variables and a few

observations;

- the possibility of estimating complex models without any problems

of identification of the model;

- the possibility of working with missing data and in the presence of

multicollinearity.

Two different approaches exist to estimate model parameters in SEMs: the

covariance-based [76];[77] techniques and the Component-Based techniques

[186];[187];[95].

The first approach is primarily used to confirm (or reject) theories (i.e. a set

of systematic relationships between multiple variables that can be tested

empirically). It does this by determining how well a proposed theoretical

model can estimate the covariance matrix for a sample data set. In con-

trast, in component-based techniques, the LV (i.e CI) estimation plays a

main role. As a matter of fact, the aim of component-based methods is to

provide an estimate of the LVs in such a way that they are the most strongly

correlated with one another (according to the path diagram structure) and

the most representative of each corresponding block of MVs. Among the

several methods that have been developed to estimate SEMs we focus on

the Component-Based techniques, in particular on the PLS Path Modeling

Approach (PLS-PM) [183];[166], because the estimation of the CI plays a

key role in this estimation process. In the next Chapter, the PLS-PM is de-

scribed and its properties and the advantages of using this approach for the

estimation of a CI are highlighted.



Chapter 2

Partial Least Squares Path

Modeling

2.1 Introduction

The Partial Least Squares (PLS) approach to Structural Equation Models

(SEM), also known as PLS Path Modeling (PLS-PM) has been proposed as a

component-based estimation procedure different from the classic covarian-

ce-based LISREL approach. Herman Wold [181] first formalized the idea of

partial least squares in his paper about principal component analysis. The

first presentation of the finalized PLS approach to path models with LVs

was published by Wold in 1975 [183] and other presentations of PLS-PM

given by Wold appeared in the same year [182]; [184]. Wold [185] provides

a discussion on the theory and the application of PLS for path models in

econometrics. The main references for the PLS algorithm are Wold (1982)

[186] and Wold (1985) [187]. Extensive reviews on the PLS approach to SEM

with further developments are given in Chin [13] and in Tenenhaus et al.

[166].

Wold opposed SEM-ML ([74]) ’hard modeling’ to PLS ’soft modeling’. The

two approaches to SEM have been compared in Jöreskog and Wold [79].

PLS-PM is considered as a soft modeling approach, where no strong as-

sumptions, with respect to the distributions, the sample size and the mea-

surement scale are required. PLS-PM follows the SEM notations and sym-

26
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bols, including the use of a path diagram to picture the relationships among

the LVs and between each MV and the corresponding LV. In the diagram,

the p MVs are pictured by rectangles or squares, while circles represent the

q LVs. Arrows define the relationships among LVs and/or MVs.

As in SEM, in the PLS-PM, the overall relationships between the MVs and

LVs are modeled through a system of equations. The goal of PLS-PM is

not the reproduction of the sample covariance matrix, unlike the classic

covariance-based approach. For this reason, PLS-PM is considered more

an exploratory approach than a confirmative one: it does not aim to repro-

duce the sample covariance matrix. [38]. Furthermore, PLS-PM provides a

direct estimate of the LV scores.

2.2 The PLS path model

A PLS path model is made up of two elements, the measurement model

(also called the outer model ), which describes the relationships between

the MVs and their respective LVs, and the structural model (also called

the inner model ), which describes the relationships between the LVs. Both

models are described in the next subsections.

2.2.1 The Measurement Model

An LV ξ is an unobservable variable (or construct) indirectly described by a

block of observable variables xk which are called MVs or indicators. There

are three ways to relate the MVs to their LVs:

- The reflective way (or outwards directed way);

- The formative way (or inwards directed way);

- The MIMIC way (a mixture of the reflective and formative ways).

- The reflective way

In the reflective way, each MV reflects the corresponding LV (Figure 2.1).

A block is defined as reflective if the LV is assumed to be a common factor

that reflect itself in its respective MVs. This implies that the relationship
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Figure 2.1: Reflective model in a path diagram

between each MV xij (with i from 1 to q) and the corresponding LV is

modeled as:

xpq = λpqξpq + εq (2.1)

where ξpq is the exogenous LV, and λpq is the simple regression coefficient

between the MV and the LV, the so called loading.

In the reflective case, the MVs should be highly correlated, due to fact that

they are correlated with the LV of which they are expression. In other

words, the block has to be homogeneous. There are several tools for che-

cking the homogeneity and unidimensionality of a reflective block:

- Cronbach’s Alpha;

- Dillon- Goldstein’s Rho; and

- Principal Component Analysis of a block.

Cronbach’s Alpha. A block is considered homogeneous if this index is

larger than 0.7.

αq =

∑
p 6=p′ cor(xpq, xp′q)

Pq +
∑
p 6=p′ cor(xpq, xp′q)

× Pq
Pq − 1

(2.2)

where Pq is the number of MVs in the q-th block, and xpq and xp′q are two

MVs of the q − th block.
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Cronbach’s Alpha is sensitive to the number of items in the scale and gene-

rally tends to underestimate the internal consistency reliability.

Dillon- Goldstein’s Rho. This measures the composite reliability of the

block. A block is considered homogeneous if its composite reliability is

larger than 0.7.

ρq =
(
∑Pq
p=1 λpq)

2

(
∑Pq
p=1 λpq)

2 +
∑Pq
p=1(1− λ2pq)

(2.3)

According to Chin [13] Dillon-Goldstein’s Rho is considered to be a better

indicator of the homogeneity of a block than Cronbach’s Alpha.

Principal Component Analysis rule. A block is considered homogeneous

if, according to Kaiser’s rule, the first eigenvalue of the correlation matrix

is higher than 1, while the others are smaller [166].

The first statistic assumes that each MV is equally important in defining the

LV.

In Dillon-Goldstein’s ρ, in contrast, this assumption does not hold because

it is based on the loadings of the model rather than the correlations ob-

served between the MVs in the dataset. This type of reliability takes into ac-

count the different outer loadings of the indicator variables. λpq symbolizes

the standardized outer loading of the indicator variable i. The composite

reliability varies between 0 and 1, with higher values indicating higher le-

vels of reliability. It is generally interpreted in the same way as Cronbach’s

Alpha. All of these rules assume, without any loss of generality, that LVs

are standardized and all correlations between the MVs of the block show

the same sign. In the case that the hypothesis of unidimensionality is re-

jected, it is possible to identify some groups of unidimensional sub-blocks

by considering the variable-factor correlations displayed on the loading

plots. PLS-PM is a mixture of a priori knowledge and data analysis. In

the reflective way, the a priori knowledge concerns the unidimensional-

ity of the block and the signs of the loadings and the data have to fit this

model. If they do not, they can be modified by removing some MVs that
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Figure 2.2: Formative model in a path diagram

are far from the model. Another solution is to change the model and use

the formative way.

- The formative way

In the formative case, the LV is supposed to be generated by its own MVs

(Figure 2.2).

ξq =

Pq∑
p=1

ωpqxpq + δq (2.4)

where ωpq is the coefficient linking each MV to the corresponding LV and

δq is the error that represents the part of the LV not explained by the block

of MVs.

The assumption behind this model is the following predictor specification:

E(ξq | xpq) =

Pq∑
p=1

ωpqxpq (2.5)

which implies that the residual vector E(δq) = 0 and is uncorrelated with

the MVs. Each MV or every set of MVs represents a different level of the

underlying latent concept. This model does not assume any homogene-

ity or unidimensionality of the block, and for this reason the block of MVs

can be multidimensional and the indicators do not need to covary. Unlike

reflective indicators, which are essentially interchangeable, high correla-

tions are not expected between items in formative measurement models.
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In fact, a high correlation between two formative indicators, also referred

to as collinearity, can prove problematic from a methodological and inter-

pretational standpoint. When more than two indicators are involved, this

situation is called multicollinearity. Collinearity may occur because the

same indicator is entered twice or because one indicator is a linear combi-

nation of another indicator. High levels of collinearity between formative

indicators are a crucial issue because they have an impact on the estimation

of weighs and their statistical significance, in particular boosting the stan-

dard errors and thus reducing the ability to demonstrate that the estimated

weights are significantly different from zero. High collinearity can result

in the weighs being incorrectly estimated, as well as in their signs being

reversed. To assess the level of collinearity, researchers should compute the

tolerance. The tolerance represents the amount of variance of one forma-

tive indicator not explained by the other indicators in the same block. It

can be obtained in two steps:

1. first, we take the first formative indicator x1 and regress it on all the

remaining indicators in the same block and calculate its proportion of

variance associated with the other indicators (R2
x1);

2. then, compute the tolerance for this indicator (TOLx1):

TOLx1 = 1−R2
x1 (2.6)

A related measure of collinearity is the Variance Inflation Factor (VIF), de-

fined as the reciprocal of the tolerance:

V IF =
1

TOLx1
(2.7)

A tolerance value of 0.20 or lower and a VIF value of 5 and higher respec-

tively indicate a potential collinearity problem [57]. If the level of collinea-

rity is very high, one should consider removing one of the corresponding

indicators [55].
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- The MIMIC way

The MIMIC way is a combination of the reflective and formative ways. The

scores of the standardized LV ξ̂q associated with the q − th LV ξq are com-

puted as a linear combination of its own block of MVs by means of the

weight relation defined as:

ξ̂q =

Pq∑
p=1

ωpqxpq (2.8)

where the variables xpq are centred and ωpq are the outer weighs.

2.2.2 The Structural Model

In the PLS-PM framework, the structural model specifies the relationships

between the LVs; an LV, if it is supposed to depend on other LVs, is called

exogenous, and, otherwise, endogenous. In the structural model each en-

dogenous LV is linked to the other LVs by the following multiple regression

model:

ξj =
∑

(q:ξq→ξj)
βqjξq + ζj (2.9)

where ξj is an endogeneous LV, βqj is the path coefficient linking the exoge-

nous q − th LV to the j − th endogenous one (Figure 2.3), expressing the

impact on the endogenous LV ξj of the connected exogenous LVs, and ζj is

the error in the inner relationship.

Figure 2.3: Structural model in a path diagram
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The only hypothesis of this model is what Wold named the prediction spe-

cification hypothesis [186]: the residual vector ζj has a zero mean and is

not correlated with the predictor.

2.3 The Partial Least Squares Algorithm

The PLS-PM [186]; [187]; [166] approach to SEM consists of an iterative

algorithm that computes the estimation of the LVs, measured by a set of

MVs, and the relationships between them, by means of an interdependent

system of equations based on multiple and simple regression. The idea is

to determine the scores of the LVs through a process, that, iteratively, com-

putes, first, an outer and, secondly, an inner estimation.

The algorithm alternates the outer estimation with the inner estimation. It

performs the estimation of the LVs separately for each block, and then up-

dates the estimation with an inner estimation. So, in the outer estimation

phase the algorithm computes the weighswpq, according to the relationship

between the LVs and MVs, where q represents the q-th latent blocks asso-

ciated with each MV for the estimation of the LV. The algorithm performs

the estimation of the LVs separately for each block, and then it updates the

estimation of the LVs, by the inner estimation.

In particular, the PLS algorithms includes three stages:

- an Iterative Approximation of LVs;

- an Estimation of the LVs scores;

- an Estimation of the path coefficients.

2.3.1 The first stage: the Iterative Approximation of LVs

The first stage of the algorithm consists of fours steps [166]:

- Initial arbitrary assignment of outer weights;

- Computing the external approximation of the LVs and obtaining the

inner weights;
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- Computing the internal approximation of the LVs;

- Calculating the new outer weights;

- Repeating step 2 to step 4 until convergence of the outer weights.

Step 1: Initial arbitrary assignment of outer weights

The procedure starts by choosing arbitrary weights ωpq (for example all 1).

The iterative process by assigning any arbitrary non-trivial linear combina-

tion of indicators can serve as an outer proxy of a LV [61].

Step 2: Computing the external approximation of the LVs and obtaining

the inner weights

In this step, the outer proxies of the LVs are calculated as a linear combina-

tion of their own centred MVs (the outer estimation):

νq =

Pq∑
p=1

wpqxpq (2.10)

where νq is the standardized outer estimate of the q − th LV ξq; and the xpq
are centred MVs. In the inner or structural model estimation, the algorithm

updates the estimation of the LVs, called zq, by the computation of the inner

weights eqq′ (q′ is a generic LV associated with the q-th LV). These weights

are calculated for each LV in order to reflect how strongly the other LVs are

connected to it, considering the existing links with other Q′ adjacent LVs:

zq =
Q∑

q′=1

dqq′eqq′νq′ (2.11)

dqq′ is the generic element of the square matrix D of order Q, where dqq′=1

if the LV ξq is connected to ξ
′
q in the path diagram and dqq′=0 otherwise.

The inner weights eqq′ are computed according to three different alterna-

tives:

- the centroid scheme, (Wold’s original scheme), where the weights are

computed as:

eqq′ = sign[cor(vq, vq′)] (2.12)
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This choice shows a drawback in a case where the correlation is ap-

proximately zero as its sign may change for very small fluctuations.

However, this does not seem to be a problem in practical applications.

- the factorial scheme, (Lohmöller scheme) where the weights are com-

puted as:

eqq′ = cor(vq, vq′) (2.13)

Compared to the previous method, the factorial scheme is suggested

in all cases in which the correlations between the LVs are weaker.

- the path weighting scheme, or structural scheme, where the LVs con-

nected to ξq are divided into two groups:

eqq′ = cor(vq, vq′) if vq′ predicts vq or (2.14)

eqq′ = regression coefficient if vq′ is predicted by vq (2.15)

Step 3: Computing the internal approximation of LVs

Inner proxies of the LVs are calculated as linear combinations of the outer

proxies of their respective adjacent LVs, using the inner weights previously

determined.

Step 4: Calculating the new outer weights Once a first inner estimation of

the LVs is obtained, the algorithm proceeds by updating the outer weights

ωpq. The estimation of the outer weights depends on the chosen model.

There are two ways to estimate these weights: Mode A and Mode B.

- Mode A : each outer weights ωpq is the the regression coefficient in the

simple regression of the p-th MV of the q-th block (xpq) on the inner

estimate zq of the q-th LV. As a matter of fact, since zpq is standardized,

the generic outer weight ωpq is obtained as:

ωpq = cov(xpq, zq) (2.16)

In this case, the LV is reflected in its respective MVs. In the path

diagram the arrows start from the LV and proceed to the MVs.
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- Mode B : the vector ωq of the weights ωpq associated with the MVs

of the q-th block is the regression coefficient vector in the multiple

regression of the inner estimate zq of the q-th LV on MVs Xq

ωq = (X ′qXq)
−1
X ′qzq (2.17)

In this case, the latent concept is formed by its MVs. In the path dia-

gram the arrows start from the MVs and proceed to the LV.

PLS-PM with Mode A tends to optimize a covariance criterion [163], and

PLS-PM with Mode B optimizes a correlation criterion [59]. A small modi-

fication of the PLS algorithm is needed to actually maximize a covariance

criterion, but simulation shows that both approaches are in very close cor-

respondence [163]. The choice of a certain mode is subject to statistical

and theoretical reasoning and typically results from a decision to define an

outer model as reflective or formative [40]. In particular, it is closely related

to the nature of the model. For a reflective model Mode A is more appro-

priate, while Mode B is better for the formative model. Furthermore, Mode

A is suggested for endogenous LVs, while Mode B is preferable for exoge-

nous LVs. Mode A and Mode B can be used simultaneously when the mea-

surement model is the MIMIC one. Mode A is used for the reflective part

of the model and Mode B for the formative part. A general PLS-PM seems

not to optimize any criterion, as Kramer showed that Mode A of Wold’s

algorithm is not based on stationary equations related to the optimization

of a twice differentiable function. However, in 2011, Tenenhaus and Tenen-

haus [163] slightly adjusted Mode A in that a normalization constraint was

put on the outer weights rather than on the LV scores. In particular, they

showed that Wold’s procedure, applied to a PLS-PM where the new Mode

A is used in all the blocks, monotonically converges to the criterion:

argmax‖ωq=1‖
∑
q 6=q′

cqq′cov
2(Xqωq,Xq′ωq′) (2.18)

when the factorial scheme is used for the inner estimation of the LVs. In a

completely Data Driven approach, a further alternative for the updating of
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the outer weights is Mode PLS [38]; [37]. In this mode ωq is the regression

coefficient vector in a PLS regression of zq on Xq . If the PLS-PM algorithm

converges on a single component PLS-R, then the Mode PLS weights will

equal the Mode A weights: the data are definitively the expression of a re-

flective model. If the PLS-PM algorithm converges on a PLS-R with several

components, the data are interpreted in a formative model: each sub-block

of MVs represents a different dimension of the concept underlying the LV.

These three steps are repeated until the change in the outer weights be-

tween the two iterations drops past a predefined limit.

Step 5: The convergence algorithm

The convergence of the iterative PLS-PM algorithm is verified according to

a stopping rule, most often defined as:

max|ω(s)
pq − ω(s−1)

pq | < 105 (2.19)

where s refers to the s− th iteration.

2.3.2 The second stage: the estimation of the LV scores

Once the final weights ωpq are obtained, the LVs scores are finally calculated

as normalized weighted aggregates of the MVs:

ξ̂q ∝ Xqωq (2.20)

2.3.3 The third stage: the estimation of the path coefficients

In the last stage of the PLS-PM algorithm, the path coefficients are esti-

mated through OLS multiple regressions among the estimated LV scores,

according to the path diagram structure. Denoting with ξj the generic en-

dogenous LV score vector and with Ξ̂→j the matrix of the corresponding

latent predictors, the path coefficient vector for each ξj is:

β̂j = (Ξ̂′→jΞ̂→j)
−1Ξ̂′→j ξ̂q (2.21)
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In the case of multicollinearity among the estimated LV scores, in order to

reduce the estimation variability, PLS regression can be used instead of OLS

regression [38].

So, in summary, the PLS-PM estimation proceeds according to the follo-

wing iterative scheme:

The PLS-PM algorithm

Initializing the algorithm with the matrix X of raw MVs

Step1: Compute a first random vector of weights wpq
repeat

Step2: Compute the first estimate of the LVs

for (q in 1:Q)

vq =
∑Pq
p=1wpqxpq

end for

Step3: Update the previous estimation of LVs

for (q in 1:Q)

zq =
∑Q
q=1 eqq′vq

end for

Step4: Update the estimation of the weights wpq
for (q in 1:Q)

for (p in 1:Pq)

wpq = cov(xpq, zq)

wq = (X ′qXq)
−1X ′qzq

end for

end for

Check the convergence

Until
∑
|woldpq − wnewpq | < ε

The convergence1 of the algorithm is achieved if the sum of the absolute dif-

ferences of the weights of the two outer successive estimations is less than ε

(a small positive real value). Finally the inner estimation of the path coeffi-

1The convergence of the PLS-PM algorithm is demonstrated for two blocks. In the case

of a greater number of blocks the convergence is demonstrated only empirically.
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cients and the loadings among the LVs, according to the supposed relation-

ship between them, are computed by the classic OLS for multiple/single

regressions.

From the inferential point of view the PLS-PM does not make any reference

to the distribution hypothesis on data, making use of computational infe-

rence based tools such as resampling techniques. In particular the Boot-

strap technique based on the extraction, with the replacement of m sam-

ples of size n (n is the original sample size) is considered. The model is

estimated on each m-th Bootstrap sample, in order to obtain an empirical

distribution for the parameters (weights, path coefficients and loadings)

and to compute a suitable confidence interval. This procedure is performed

for the parameters of both the outer model (the weights and loadings), and

the inner model (the path coefficients). The intervals including the zero

suggest eliminating the MVs or LVs from the model. To compare the pa-

rameters estimated and the mean of the bootstrap replications, a ratio be-

tween their deviation and the standard deviation of the resembling distri-

bution is computed as a classic test statistics.

2.4 Model Validation

Model estimation delivers empirical measures of the measurement models

(the relationships between the indicators and the constructs), as well as of

the structural models (the relationships between the constructs). The em-

pirical measures enable us to compare the theoretically established mea-

surement and structural models with reality, as represented by the sample

data. In other words, we can determine how well the theory fits the data.

More precisely, the evaluation of the measurement and structural model

results in PLS-PM builds on a set of non-parametric evaluation criteria and

uses procedures such as bootstrapping and blindfolding. This process in-

volves a separate assessment of the measurement model and the structural

model.

Initially, the model assessment focuses on the measurement models. An

examination of PLS-PM estimates enables the researcher to evaluate the
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reliability and validity of the construct measures. When evaluating the

measurement models, we must distinguish between reflectively and for-

matively measured constructs. The two approaches are based on different

concepts and therefore require a consideration of different evaluative mea-

sures. Reflective measurement models are assessed on their internal consis-

tency reliability and validity. The specific measures include the composite

reliability (as a means to assess the internal consistency reliability), con-

vergent validity, and discriminant validity. The criteria for reflective mea-

surement models cannot be universally applied to formative measurement

models. With formative measures, the first step is to ensure content validity

before collecting the data and estimating the PLS-PM. After the model esti-

mation, the formative measures are assessed for their convergent validity,

significance and relevance and the presence of collinearity among the indi-

cators. The structural model estimates are not examined until the reliability

and validity of the constructs have been established. If the assessment of re-

flective and formative measurement models provides evidence of the mea-

sures’ quality, the structural model estimates are evaluated. The PLS-PM

assessment of the structural model involves the model’s ability to predict.

Hence, after the reliability and validity have been established, the primary

evaluation criteria for the PLS-PM results are the coefficients of determi-

nation (R2 values) as well as the level and significance of the path coeffi-

cients. The assessment of the PLS-PM outcomes can be extended to more

advanced analyses (e.g., examining the mediating and/or moderating ef-

fects, considering any unobserved heterogeneity, multi-group testing, and

common method variance).

2.4.1 Assessing the results of reflective measurement models

The assessment of reflective measurement models includes composite relia-

bility to evaluate the internal consistency, individual indicator reliability,

and Average Variance Extracted (AVE) to evaluate the convergent validity.

In addition, the Fornell-Larcker criterion and cross loadings are used to

assess the discriminant validity.

Regarding the first two assessment, the internal consistency and individual
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indicator reliability, these have already been described in detail above.

Convergent Validity. This is the extent to which a measure correlates po-

sitively with alternative measures of the same construct. Using the domain

sampling model, the indicators of a reflective construct are treated as dif-

ferent approaches to measure the same construct. Therefore, the items that

are indicators (measures) of a specific construct should converge or share a

high proportion of variance.

To establish convergent validity, researchers consider the outer loadings of

the indicators, as well as the AVE. High outer loadings on a construct in-

dicate that the associated indicators have much in common, which is cap-

tured by the construct. This characteristic is also commonly called indicator

reliability. At a minimum, all indicators outer loadings should be statisti-

cally significant.

A common measure to establish convergent validity on the construct level

is the AVE [41] that expresses the degree of variance of the block explained

by ξ̂q:

AV Eq =

∑Pq
p=1 λ̂

2
pq∑Pq

p=1 var(xpq)
(2.22)

This criterion is defined as the grand mean value of the squared loadings

of the indicators associated with the construct (i.e., the sum of the squared

loadings divided by the number of indicators). An AVE value of 0.5 or

higher indicates that, on average, the construct explains more than half of

the variance of its indicators. Conversely, an AVE of less than 0.5 indi-

cates that, on average, more error remains in the items than the variance

explained by the construct. Therefore, the AVE is equivalent to the com-

munality of a construct. In a good measurement model, each MV is well

summarized by its own LV. So, for each block, a Communality Index is

computed as:

Comq =
1

Pq

Pq∑
p=1

cor2(xpq, ξ̂q) =
1

Pq

Pq∑
p=1

λ̂2pq (2.23)



Chapter 2. Partial Least Squares Path Modeling 42

that is the average of the communalities between each MV of the q − th

block and x̂iq. The communality index measures the capacity of the LV to

explain the variance of its MVs. If we work on standardized MVs, AVE and

Communality coincide for less than the constant 1/Pq

Discriminant validity. This is the extent to which a construct is truly dis-

tinct from other constructs by empirical standards. Thus, establishing dis-

criminant validity implies that a construct is unique and captures phenom-

ena not represented by other constructs in the model. Alternative measures

of discriminant validity have been proposed. One method for assessing

discriminant validity is by examining the cross loadings of the indicators.

Specifically, an indicator’s outer loading on the associated construct should

be greater than all of its loadings on other constructs (i.e., the cross loa-

dings).

H0 : cor(ξq, ξq′) = 1 against the H1 : cor(ξq, ξq′) < 1 (2.24)

The presence of cross loadings that exceed the indicators’ outer loadings

represents a discriminant validity problem. This criterion is generally con-

sidered rather liberal in terms of establishing discriminant validity [57].

This means it is very likely to indicate that two or more constructs exhibit

discriminant validity.

The Fornell-Larcker criterion is another approach for assessing discrimi-

nant validity. It compares the square root of the AVE values with the LV

correlations. Specifically, the square root of each construct’s AVE should be

greater than its highest correlation with any other construct. The logic of

this method is based on the idea that a construct shares more variance with

its associated indicators than with any other construct.

(AV Eq and AV Eq′) > cor(ξ̂q, ξ̂q′) (2.25)

This means that the LVs better explain the MVs than other LVs.
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2.4.2 Assessing the results of formative measurement models

Many researchers incorrectly use reflective measurement model evaluation

criteria to assess the quality of formative measures in PLS-PM, as revealed

by the review of PLS-PM studies in the strategic management and marke-

ting disciplines by Hair et al. [56].

The statistical evaluation criteria for reflective measurement scales cannot

be directly transferred to formative measurement models where the indi-

cators are likely to represent the construct independent causes and thus do

not necessarily correlate highly. Researchers should focus on establishing

content validity before empirically evaluating formatively measured con-

structs. This makes it necessary to ensure that the formative indicators cap-

ture all (or at least major) facets of the construct. In creating formative con-

structs, content validity issues are addressed by the content specification in

which the researcher clearly specifies the domain of content the indicators

are intended to measure. Researchers must include a comprehensive set

of indicators that fully exhausts the formative construct domain. Failure

to consider all facets of the construct (i.e., the relevant formative indica-

tors) entails an exclusion of important parts of the construct itself. The

evaluation of formative measurement models makes it necessary to estab-

lish the measures’ convergent validity, assess the indicators’ collinearity,

and analyze the indicators’ relative and absolute contributions, including

their significance.

Convergent Validity. This is the extent to which a measure correlates po-

sitively with other measures (indicators) of the same construct. When eva-

luating formative measurement models, we have to test whether the for-

matively measured construct is highly correlated with a reflective measure

of the same construct. This type of analysis is also known as redundancy

analysis [12]. The term redundancy analysis stems from the information in

the model being redundant in the sense that it is included in the formative

construct ξ1 and again in the reflective one ξ2 (see Figure 2.4).

The strength of the path coefficient linking the two constructs is indicative

of the validity of the designated set of formative indicators in tapping the
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Figure 2.4: Redundancy Analysis for Convergent Validity Assessment

construct of interest. If the analysis exhibits a lack of convergent validity

(i.e. the R2 value of ξ2 < 0.64), then the formative indicators of the con-

struct ξ1 do not contribute at a sufficient level to its intended content. The

formative constructs need to be theoretically/conceptually refined by ex-

changing and/or adding indicators. Regarding the former, the collinearity

among indicators, this has been described in detail above.

Significance and Relevance of the Formative Indicators. This is another

important criterion to evaluate the contribution of a formative indicator.

The values of the outer weights can be compared with each other and can

therefore be used to determine each indicator’s relative contribution to the

construct, or its relative importance. We must test if the outer weights

in formative measurement models are significantly different from zero by

means of the bootstrapping procedure. It is important to note that the

values of the formative indicator weights are influenced by other relation-

ships in the model (the PLS-PM algorithm above). Non-significant indica-

tor weights should not automatically be interpreted as indicative of poor

measurement model quality. Rather, researchers should also consider a

formative indicator’s absolute contribution to its construct-that is, the in-

formation an indicator provides without considering any other indicators.

The absolute contribution is given by the formative indicator’s outer loa-

ding, which is always provided along with the indicator weights. Diffe-

rently from the outer weights, the outer loadings stem from single regres-

sions of each indicator on its corresponding construct. When an indicator’s

outer weight is non-significant but its outer loading is high (i.e., above

0.5), the indicator should be interpreted as absolutely important but not
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as relatively important. In this situation, the indicator would generally

be retained. But when an indicator has a non-significant weight and the

outer loading is below 0.5, the researcher should decide whether to retain

or delete the indicator by examining its theoretical relevance and potential

content overlap with other indicators of the same construct.

2.4.3 Assessing the results of structural models

Once we have confirmed that the construct measures are reliable and valid,

the next step addresses the assessment of the structural model results. This

involves examining the model’s predictive capabilities and the relation-

ships between the constructs The key criteria for assessing the structural

model in PLS-PM are the significance of the path coefficients, the level of

the R2 values, the f2 effect size, the predictive relevance Q2, and the q2

effect size.

Structural model path coefficients. The paths represent the hypothesized

relationships among the constructs. Whether a coefficient is significant ul-

timately depends on its standard error that is obtained by means of boot-

strapping. The bootstrap standard error allows a computation of the em-

pirical t value :

t =
pqj
se∗pqj

(2.26)

when the empirical t value is larger than the critical value, the coefficient is

significant at a certain error probability (i.e., significance level); commonly

used critical values for two-tailed tests are 1 .65 (significance level= 10%),

1.96 (significance level = 5%), and 2.57 (significance level = 1%). Instead of t

values, researchers routinely report p values that correspond to the proba-

bility of erroneously rejecting the null hypothesis, given the data at hand.

In addition to calculating the t and p values, the bootstrapping confidence

interval for a pre-specified probability of error can be determined.
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Coefficient of Determination R2. R2 is a measure of the model’s predic-

tive accuracy and is calculated as the squared correlation between a spe-

cific endogenous construct’s actual and predicted values. It represents the

amount of variance in the endogenous constructs explained by all of the

exogenous constructs linked to it. The R2 value ranges from 0 to 1 with

higher levels indicating higher levels of predictive accuracy; the acceptable

R2 value depends on the model complexity and the research discipline.

[56].

Effect Size f2. This is an additional measure in evaluating the R2 value

of all endogenous constructs. The change in R2 is explored to see whether

a specific exogenous LV has a substantive impact on the R2:

f2 =
R2
included −R2

excluded

1−R2
included

(2.27)

where R2
included and R2

excluded are the R2 value of the endogenous LV when

a selected exogenous LV is included in or excluded from the model. Guide-

lines for assessing f2 are proposed by Cohen [22]:

- if f2 ≈ 0.02→ small impact

- if f2 ≈ 0.15→medium impact

- if f2 ≈ 0.35→ large impact

Predictive Relevance Q2. This last indicator concerns the model’s pre-

dictive relevance developed by Stone [159] and Geisser [47]. The PLS-PM

adaptation of this approach follows a blindfolding procedure. Given a

block of n cases and P MVs, the procedure extracts a portion of the con-

sidered block during parameter estimations and then attempts to estimate

the omitted part using the estimated parameters. To estimate the model,

the omitted value is typically replaced with the variable mean, (though

other imputation techniques may be used [13]). Based on the estimated

model, the estimates for the omitted value are compared to the observed

values, using the squared difference (E). At the same time, the difference
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between the variable mean (or otherwise imputed value) and the observed

values are also compared using the squared difference (O). This procedure

is repeated until every data point has been omitted and estimated. The

predictive measure for these MVs is then calculated as:

Q2 = 1−
∑
mEm∑
mOm

(2.28)

where m is the number of times the procedure is repeated to ensure that

every data point is omitted.

Q2 represents a measure of how well-observed values are reconstructed by

the model and its parameter estimates [15]. When PLS-PM exhibits pre-

dictive relevance, it accurately predicts the data points of indicators in re-

flective measurement models of endogenous constructs and endogenous

single-item constructs (the procedure does not apply for formative endoge-

nous constructs). Q2 > 0 implies that the model has predictive relevance

whereas Q2 < 0 represents a lack of predictive relevance. In the structural

model, Q2 values greater than zero for a certain reflective endogenous LV

indicate the path model’s predictive relevance for this particular construct.

In contrast, values of 0 and below indicate a lack of predictive relevance.

Similar to the f2 effect size approach for assessing R2 values, the relative

impact of predictive relevance can be compared by means of the measure

to the q2 effect size, formally defined as follows:

q2 =
Q2
included −Q2

excluded

1−Q2
included

(2.29)

whereQ2
included andQ2

excluded are theQ2 values of the endogenous LV when

a selected exogenous LV is included in or excluded from the model. As a

relative measure of predictive relevance, values of 0.02, 0.15 and 0.35 indi-

cate that an exogenous construct has a small, medium or large predictive

relevance for a certain endogenous construct [56]. Different forms ofQ2 can

be obtained with different procedures for predicting observations from the

model. In the cross-validated communality Q2 the prediction of observa-

tions is made by the computed composite and the estimated loadings. The
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cross-validated redundancy Q2 is still based on the estimated loadings but

the composites are predicted from the structural model using the estimated

path coefficients. The redundancy-based Q2 is applicable only to observa-

tions of MVs of the endogenous blocks, while the communality-based Q2

can be applied to all MVs [15].

Tenenhaus et al. [165]; [166] proposed a PLS Goodness-of-Fit (GoF) as an

operational solution to this problem as it may be used as an index for vali-

dating the PLS model globally. The GoF can be proposed as the geometric

mean of the average communality and the average of R2:

GoF =

√
Com×R2 (2.30)

where R2 = 1
J

∑J
j=1R

2
j .

The GoF is a compromise between the quality of the outer model and the

quality of the inner model, so the normalized index is obtained by bring-

ing each part to its maximum value. In particular, for the outer estimation

(the first part of the formula is the average communality) for each block

the maximum is the first eigenvalue, because the first principal component

explains the maximum variability, while for the inner estimation the maxi-

mum is given by the first canonical correlation squared. To verify the GoF

significance it is possible to build an interval confidence with the Bootstrap

technique, as also for the R2.

Henseler and Sarstedt [65] criticize the usefulness of the GoF both concep-

tually and empirically. Their research shows that the GoF does not repre-

sent a goodness-of-fit criterion for PLS-SEM. Using simulated data, they

have illustrated that the GoF is not suitable for model validation. For some

specific types of model validation, though, the application of the GoF does

make sense. This is the case when it comes to validating models that dif-

fer not in their structure but in their (reflective) indicators; in such models,

the GoF is the statistic of choice. If the structural model remains constant,

the GoF can indirectly assess relative changes in convergence validity as

expressed by the average variance extracted [41]. The GoF is also very use-
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ful for data comparisons (i.e., varying the data while keeping the model

constant). As a consequence, the GoF is best applied in group comparisons

[148] and assessments of unobserved heterogeneity, as is the case with the

REBUS-PLS procedure. In these cases, the GoF can answer questions on

how well different subsets of the data can be explained by a particular

model. However, since the GoF is also not applicable to formative mea-

surement models and does not penalize over-parametrization efforts, re-

searchers are advised not to use this measure. For a formative block, one

might replace in the GoF formula the block communality by the R2 be-

tween the inner proxy of the formative block and the block’s MVs. Another

point of departure could be assessing a formative block’s weights. Future

research should make more concrete suggestions of how to improve the

GoF, and demonstrate the viability of the improvements by means of both

conceptual reasoning and Monte Carlo simulations [65].

2.5 A CI Decision Matrix

A key characteristic of the PLS-PM method is the extraction of CI scores.

One of the greatest advantages of PLS-PM is these CI scores. In the System

of CIs built with PLS-PM, you can obtain the scores for each CI, exoge-

nous or endogenous, and for each CI you can make a ranking among units.

Moreover, PLS-PM provides information on the relative importance of con-

structs in explaining other constructs in the structural model. Information

on the importance of constructs is relevant for drawing conclusions. For

this reason, a CI Decision Matrix is a valuable decision making tool. It is

useful in extending the findings of the basic PLS-PM outcomes using the

LV scores [66]. The results of PLS-PM take into account the performance of

each construct. In addition, CI average values are considered. For a specific

endogenous CI, this Matrix contrasts the structural model’s total effects (the

importance) and the average values of the CI (the performance). As a re-

sult, conclusions can be drawn on two dimensions (i.e., both importance

and performance), which is particularly important in order to prioritize ac-

tions. The analysis is based on a scatter plot where each CI is positioned

according to its mean and its path coefficient with respect to the target CI.



Chapter 2. Partial Least Squares Path Modeling 50

The x-axis represents the total effects of the CIs on the target CI (i.e. their

importance). The y-axis depicts the average construct scores of these LVs.

(i.e. their performance). In this way the scatter plot is divided into four

areas (Table 2.1):

- the first area is the most critical area, because the CIs have a high

impact but a low mean value;

- the second is the area of the monitoring, in which the CIs have a low

value for the mean and the path coefficient;

- the third is the area to improve because the CIs have a high mean

value and a low path coefficient;

- the fourth is the area to be maintained, in which the CIs have a high

value for the mean and the path coefficient.

Table 2.1: A CI Decision Matrix

Mean Scores

Low High

Low
Area of Area to

Total Impact
monitoring improve

High
Area of immediate Area to

intervention maintain

A similar scatter plot can be considered also for the MVs. In this kind of

matrix, we have the possibility to analyze the strengths, weaknesses, op-

portunities, and threats of constructs, that are considered in the model in

order to estimate a latent concept.

2.6 The Predictive Power of PLS-PM

Composite-Based approaches, such as PLS-PM, are preferred to Covariance-

Based approaches, since the objective of the research is to develop a predic-

tive model. PLS-PM is a powerful method for predictive purposes, and it is
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certainly an important technique which deserves a prominent place in re-

search applications when the aim of the analysis is prediction [7]. The PLS-

PM evaluation criteria should include the predictive ability and, therefore,

further criteria and evaluation techniques for PLS-PM are needed [150].

Thus, an interesting topic for further research in PLS-PM is the extension

and development of further measures and evaluation criteria for the assess-

ment of PLS-PM in terms of predictive capability. Based on the proposed

criteria, further extensions and modifications should be made to the ba-

sic PLS-PM algorithm in order to improve the predictive capabilities of the

model estimation. The Non-Symmetrical Approach for Component-Based

Path Modeling proposed by Dolce et al. [31] and Dolce [30] is an example

of work in this direction. In their opinion, prediction in Composite-Based

Methods could refer to different concepts. The predictive ability could be

interpreted as either the ability to explain variance in the endogenous LVs

or the ability to predict individual observations. Moreover, individual ob-

servations may refer to either individual LV score observations or indivi-

dual observations for MVs of the endogenous blocks. The predictive ca-

pability of the model depends on several aspects, including the sample

size and the way the outer weights are calculated. Furthermore, the pre-

dictive capability of a Component-Based Method can also be improved by

extracting more than one component for each block. PLS-PM generally

considers one component for each block of variables. In some cases we can

lose information in predictor blocks that may be of extreme importance

for the predicting of endogenous composites or the MVs related to them.

The latter consideration is examined in chapter five, where we will deal

with new methods for the estimation of Higher-Order Constructs in PLS-

PM, particularly when we will propose PLS Component Regression as a

method to extract more than one component for each block, in accordance

with the Predictive Relevance Q2 Index.

2.7 Available software for PLS Path Modeling

For a long time LVPLS 1.8 [95] was the only available software for PLS

Path Modeling. The DOS-based program includes two different modules
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for estimating path models. The LVPLSC method analyzes the covariance

matrix of the observed variables, whereas the LVPLSX module is able to

process raw data. In order to specify the input file an external editor is

necessary. The input specification requires that the program parameters

are defined at specific positions in the file. The results are reported in a

plain text file. The program offers blindfolding and jackknifing as resam-

pling methods in cases where raw data has been analyzed. When analyzing

covariance/correlation matrices, resampling techniques cannot be applied

[102]. Over the years other PLS path modeling software have been devel-

oped.

The list includes SmartPLS [130], XLSTAT-PLSPM [35] in co-operation with

Addinsoft France, (http://www.xlstat.com/en/products/xlstat-plspm/) -

and the plspm package [146]. SmartPLS and XLSTAT-PLSPM are closed

source and plspm is licensed under the General Public License (GPL≥2).

All differences in model parameters due to the used software were in line

with the predefined tolerance for the outer weights.

SmartPLS. SmartPLS is a stand alone software specialized for PLS path

models. It is built on a Java Eclipse platform making it operating system

independent. The model is specified via drag and drop by drawing the

structural model for the LVs and by assigning the indicators to the LVs.

Data files of various formats can be uploaded. After fitting a model, coeffi-

cients are added to the plot. More detailed output is provided in plain text,

in the LATEX and HTML formats. The graph representing the model can

be exported to PNG. Besides bootstrapping and blindfolding methods it

supports the specification of interaction effects. A special feature of Smart-

PLS is the finite mixture routine (FIMIX), a method to deal with unobserved

heterogeneity [131];[149];[148].

XLSTAT-PLSPM. XLSTAT [1] is a modular statistical software relying on

Microsoft Excel for the input of data and the display of results, but the com-

putations are performed using autonomous software components.

XLSTAT-PLSPM is integrated in XLSTAT as a module for the estimation

of PLS path models. It has been developed by a research team from the
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Department of Mathematics and Statistics of the University of Naples in

Italy and Addinsoft in France and implements all the methodological fea-

tures and most recent findings of the PLEASURE (Partial LEAst Squares

strUctural Relationship Estimation) technology by Esposito Vinzi et al. [35].

Special features of XLSTAT-PLSPM are multi-group comparisons [18] and

the REBUS segmentation approach [38] for the treatment of unobserved

heterogeneity.

plspm in R. The plspm package implements the PLS method with em-

phasis on structural equation models in R. The fitting method ’plspm.fit’ re-

turns a list including all the estimated parameters and almost all the statis-

tics associated with PLS path models. The print method gives an overview

of the following list elements: the outer model, inner model, scaled LVs,

LVs for scaled = FALSE, outer weights, loadings, path coefficients matrix,

R2, outer correlations, inner model summary, total effects, unidimension-

ality, goodness-of-fit, bootstrap results (only if activated) and data matrix.

For the treatment of observed heterogeneity, pathmox and rebus.pls [145]

are provided as a companion package [102].



Chapter 3

Some developments in PLS -

PM for the building of

Composite Indicators

3.1 Introduction

The PLS-PM approach has enjoyed increasing popularity as a key multi-

variate analysis method in various research disciplines in order to build a

system of Composite Indicators. The model allows you to estimate causal

relationships, defined according to a theoretical model linking two or more

latent complex concepts, each measured through a number of observable

indicators. The basic idea is that the complexity inside a system can be

studied by taking into account the entirety of the causal relationships among

LVs, each measured by several MVs. Nowadays, complex phenomena such

as Development, Progress, Poverty, Social Inequality, Welfare and Quality

of Life require, to be measured, the combination of different dimensions, to

be considered together as the proxy of the phenomenon.This combination

can be obtained by applying methodologies based on CIs [100]. As is well

known, the main feature of a CI is that it summarizes this type of complex

and multidimensional issue.

In building a CI, we are interested in (i) including elementary indicators on

a non numerical scale, (ordinal and nominal data); (ii) including some kind

54
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of CI relationship (logical, hierarchical, temporal or spatial); (iii) defining

the roles of the EIs (MVs) as mediator and moderator variables; and (iv)

defining the roles of the CIs (LVs) in the inner model (mediator and mo-

derator LVs). For instance, when computing a CI, it could be interesting

to consider demographic variables, such as religion or gender, categorical

variables defining states, such as type of government. It would be inte-

resting to know what is the role of these variables, is if they have a mo-

derator or mediator effect, and if a consideration of these effects change the

estimation of the LVs. Moreover, applications of SEMs are usually based

on the assumption that the analyzed data stem from a single population,

so that a unique global model represents all the observations effectively.

However, in many real world applications, this assumption of homogene-

ity is unrealistic. In modeling the real world, it is reasonable to expect

that different classes showing heterogeneous behaviors may exist in the

observed set of units. This is true also in CI frameworks. As a matter of

fact, in developing a system of CIs, it is reasonable to suppose that diffe-

rent models, i.e. different systems of weightings, should be applied in or-

der to take into account differences among the units. Furthermore, in these

frameworks also, it is of great importance to obtain clusters of units that

are homogenous with regard to the weights to be applied in computing the

CIs. For this reason, many improvements, in order to extend the classic al-

gorithm of PLS-PM to the treatment of particular data, have been made, in

particular to non-metric data, mediator and moderator data and hierarchi-

cal data. Furthermore, several clustering techniques have been developed

in PLS-PM to look for latent classes.

In the following sections these developments are presented.

Next, a chapter will be included developed on dealing with a hierarchical

model.
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3.2 Non Numerical Models for data measured on

different measurement scales

PLS-PM is a technique devised to handle quantitative variables. However,

in practice categorical indicators could be used to measure complex con-

cepts as well. When we study complex phenomena in various research dis-

ciplines, some elementary indicators are not on a numerical scale (nominal

and ordinal variables). This kind of MV can play several different roles in

PLS-PM, in particular it can have an active role in the analysis. An active

categorical variable directly participates in the construction of the system

of CIs. In other words, it is a categorical indicator impacting on a CI jointly

with other indicators. In order to deal with this type of variable, the exi-

sting literature provides new algorithms to quantify and use the MVs for

the estimation of an SEM, according to the PLS-PM algorithm.

3.2.1 Partial Alternating Least Squares Optimal Scaling
Path Modeling

One of these is Partial Alternating Least Squares Optimal Scaling-Path Mod-

eling (PALSOS-PM) [109]. This algorithm allows us to quantify optimally

while, at the same time, proceeding with the estimation of the model pa-

rameters. Until now the quantification has been achieved internally ac-

cording to a suitable Optimal Scaling technique. In particular, in the quan-

tification step, with the aim of taking into account nominal, ordinal and

numerical MVs in the model, PALSOS uses the MORALS (Multiple Op-

timal Regression by Alternating Least Squares) algorithm by Young et al.

[189] belonging to the Alternating Least Squares Optimal Scaling family

(ALSOS). The MORALS algorithm estimates the parameters of a regres-

sion between LVs and MVs, by introducing a quantification step into the

process of estimation. A relevant feature of MORALS is that the step of

quantification is performed individually for each MV, taking into account

the type of relationship with the LV. MORALS bases the quantification of

the nominal variables on the orthogonal projection of the LV in the space

spanned by the columns of the indicator matrix Gi generated by the j cat-
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egories of the MV xi (no constraints are imposed on the admissible values

for the new variable quantified). The quantification of an ordinal variable

is based on the use of a monotone regression [87], that consists in a non-

linear regression problem (the categories, of the new variable quantified,

must have the same order as the categories of the original variable). After

the quantification step, the algorithm estimates the regression coefficients

by the minimization of a quadratic loss function. It is worth noticing that,

in MORALS, the loss function introduced into the third step of the classic

PLS-PM algorithm depends on the reflective or formative relationships be-

tween the LVs and MVs. In the reflective mode, MORALS estimates the

vector of optimal scaling and the parameters of a simple regression, while

in the formative mode it estimates the parameters of a multiple regression.

The final objective of this technique is to obtain the optimal quantification

of the nominal/ordinal variables, optimizing the regression parameters. In

fact, once the vector xosi (o.s. is the acronym of Optimal Scaling) for the

i − th MV has been computed, the parameters of simple/multiple regres-

sion are just updated using as MVs the new ones obtained in the previous

step, by reiterating the regression until convergence. The PALSOS-PM al-

gorithm is initialized with a particular quantification obtained by the PRIN-

CALS [174]; [23] algorithm that develops a Principal Component Analysis

for Non Linear MVs where the term non-linear relates to the non-linear

transformation of the observed variables. This initialization of the LVs that

remain in the ALSOS frame is also in line with a typical choice in the classic

algorithm of PLS-PM. The algorithm proceeds with the inner estimation of

the LVs, and when it returns to the external estimation, uses MORALS to

update the outer estimation. The above algorithm also estimates a model

with all the quantitative variables, in this case being equivalent to the clas-

sic PLS-PM algorithm. As in the PLS-PM algorithm, the PALSOS-PM algo-

rithm stops when the estimation of the weights is stabilized. The algorithm

proceeds with the estimation of the path coefficients by simple/multiple

OLS regression and, if necessary, by PLS regression. For the validation

of the outer and inner model, the Bootstrap technique is used to create a

suitable interval confidence. Therefore, information about the variability

of the parameter estimates and hence their significance has to be gener-
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ated by means of resembling procedures like Bootstrap. PALSOS-PM, as in

the PLS-PM algorithm, solves the problems on the signs of the weights by

comparing the signs of the eigenvectors [139]. In contrast to the other inter-

nal quantification approaches, in PALSOS-PM the weights, associated with

the MVs, are computed in the same way for all kinds of variable. With

respect to the other proposals, PALSOS-PM quantifies the MVs both for

reflective and formative relationships between MVs and LVs. For further

details, see [109].

3.2.2 Non-Metric PLS Path Modeling

There is another new algorithm called the Non-Metric PLS Path Model-

ing algorithm [135]. This algorithm extends the applicability of PLS meth-

ods to data measured on different measurement scales, as well as to vari-

ables linked by non-linear relationships. The Non-Metric PLS (NM-PLS)

approach extends the covariance-based PLS criteria to the treatment of non-

metric variables and non-linearity. This approach is based on the concept of

Optimal Scaling [48]; [24] The OS principle sees observations as categorical,

and represents each observation category by a scaling parameter. This pa-

rameter is subject to constraints deriving from the measurement characteri-

stics of the variables. This is a valid tool to obtain coherent models when

we observe variables measured on a variety of measurement scales, as well

as when we want to discard the linearity hypothesis with regards to re-

lationships between the MVs and the corresponding LV. In fact, a milder

hypothesis of monotonicity can be adopted in a non-metric approach. In

general, Non-Metric PLS Path Models provide better models, since MV are

transformed in such a way as to make relationships between the MVs and

LVs linear. In this process each variable x is transformed as x̂ ∝ X̃φ, where

φ
′

= (φ1, ..., φK) is a vector of the numeric values (the scaling parameters)

associated with the K different values or categories of the variable x, and

the matrix X̃ defines a space in which the constraints imposed by the scaling

level are respected. The symbol ∝ means that the left side of the equation

corresponds to the right side normalized to unitary variance.

Non-Metric PLS-PM loops differ from the standard PLS-PM loops in the



Chapter 3. Some developments in PLS - PM for the building of Composite
Indicators 59

sense that they start by initializing the inner estimate of each LV, used to

obtain a first scaling of the MVs. Each raw MV xpq is quantified so as to

be maximally correlated to the corresponding LV. The Non-Metric PLS-PM

algorithm supports three levels of scaling analysis: (i) variables quantified

at a nominal level preserve the grouping property; (ii) variables quantified

at an ordinal level follow the secondary Kruskal’s monotonic quantifica-

tion; (iii) variables transformed at a functional level are related to the cor-

responding LV inner estimate by a polynomial relation (for further details,

see Russolillo [134]).

3.3 The importance of modeling heterogeneity

in PLS-PM: Mediator and Moderator Variables

Another important topic in PLS-PM is the mediation and moderation effect.

A significant mediator variable or moderator variable may to some extent

absorb a cause-effect relationship. Examining these variables enables re-

searchers to better understand the relationships between dependent and

predictor constructs. Mediation and moderation are two important topics

in the context of PLS-SEM. The mediation function of a third variable repre-

sents the generative mechanism through which the focal independent vari-

able is able to influence the dependent variable of interest. The moderator

function of the third variable splits up a focal independent variable into

sub-groups that establish its domains of maximal effectiveness with regard

to a given dependent variable. Mediation focuses on a theoretically estab-

lished direct path relationship between ξq and ξj , as well as on an additional

theoretically relevant component µ, which indirectly provides information

on the direct effect via the indirect effect from ξq to ξj via µ. Thereby, the

indirect relationship via the µ mediator affects the direct relationship from

ξq to ξj in the mediator model.

Moderator variables are variables influencing the relationship, in terms of

strength and/or direction, between an exogenous and an endogenous va-

riable.
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3.3.1 Mediator Variables

Mediator variables address issues of how or why such effects occur (Figure

3.1).

Figure 3.1: Simple Cause - Effect Relationship and General Mediator Model

The relationship of the exogenous variable ξq to the endogenous variable

ξj is influenced by another LV called the Mediator Variable µ. Therefore, in

addition to the direct effect β1 we must also consider the indirect effects β2
and β3.

Technically, a variable function is a mediator when it satisfies the following

conditions [5]:

- Variations in the levels of the independent variable account signifi-

cantly for the variations in the presumed mediator;

- Variations in the mediator account significantly for the variations in

the dependent variable;

- When paths β2 and β3 are controlled, a previously significant rela-

tionships between the independent and dependent variables changes

its value significantly.

Consequently, empirical tests must answer the following questions: Is the

direct effect β1 significant when the mediator variable is excluded from the

PLS path model? Is the indirect β2 and β3 effect via the mediator variable
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significant after this variable has been included in the PLS path model? A

necessary (but not sufficient) condition for the significance of the product

of paths β2 and β3 is that the two paths themselves are both significant.

How much of the direct effect β1 does the indirect effect absorb? Do we

have a situation of full or partial mediation?

A commonly used approach for testing mediating effects is the Sobel test

[156], which examines the relationship between the independent variable

and the dependent variable compared with the relationship between the in-

dependent variable and dependent variable, including the mediation con-

struct [60]. However, this test relies on distributional assumptions, which

usually do not hold for the indirect effect β2 and β3.

Furthermore, the Sobel test requires unstandardized path coefficients as the

input for the test statistics and lacks statistical power, especially when ap-

plied to small sample sizes. Preacher and Hayes [119]; [120] proposed ano-

ther approach for testing mediating effects. They bootstrap the sampling

distribution of the indirect effect, which works for simple and multiple me-

diator models. Bootstrapping makes no assumptions about the shape of

the variables distribution or the sampling distribution of the statistics and

can be applied to small sample sizes with more confidence. The approach

is therefore perfectly suited for the PLS-PM method, and, in addition, it ex-

hibits higher levels of statistical power compared with the Sobel test.

It starts to consider the direct effect, that should be significant if the media-

tor is not included in the model. When including the mediator, the indirect

effect must be significant. If the indirect effect is significant, the mediator

absorbs some of the direct effect. For example, in a PLS path model without

the mediator variable, a positive direct effect would become smaller after

the inclusion of the mediator variable. The question is how much the me-

diator variable absorbs. To answer this question the authors introduce the

Variance Accounted For (VAF), that determines the size of the indirect ef-

fect in relation to the total effect. Making reference to the diagram in Figure

3.1, VAF is calculated as follows:

V AF =
β2 ∗ β3

(β2 ∗ β3) + β1
(3.1)
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If the indirect effect is significant but does not absorb any of the exogenous

LV effect on the endogenous variable, the VAF is rather low. This occurs

when the direct effect is high and declines only very slightly after a me-

diator variable with a significant but very small indirect effect is included.

In this situation, the VAF would be less than 20%, and we can conclude

that (almost) no mediation takes place. In contrast, when the VAF has very

large outcomes of above 80%, we can assume a full mediation. A situation

in which the VAF is larger than 20% and less than 80% can be characterized

as partial mediation.

3.3.2 Moderator Variables

Besides the examination of direct effects, researchers are also interested in

moderating effects. Moderating effects are evoked by variables whose va-

riation influences the strength or the direction of a relationship between an

exogenous and an endogenous variable (Figure 3.2) [63].

Figure 3.2: A simple model with a moderating effect

Such moderator variables can be metric (e.g. age or income) or categorical

(e.g. race, gender or social class) in nature. It could be a single MV or LV,

and, moreover, may be observed or unobserved.

The identification and quantification of moderating effects in complex causal

structures is possible by means of PLS-PM. The moderating effect in the

context of PLS-PM means a moderated relationship within the structural

model. This means that we are interested in the moderating effects of the

LVs on the direct relationships between the LVs.
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Basically, there are two main methods to study moderating effects depen-

ding on the nature of the moderator variable:

- Group Comparisons. This approach applies when the moderator is

an observed MV, and it is a qualitative variable or can be categorized.

In this case, the sample is split into two or more groups relating to

the codes of the qualitative variable and the path coefficient of the

moderated relationship is estimated for each of the sub-samples;

- Moderator Constructs. This approach applies when the moderator

variable is an LV; MVs of a latent moderator variable are observed

and quantitative. Under this approach, moderator variables are con-

sidered in the inner model.

Group Comparisons. Researchers are often interested in comparing PLS

path models across two or more groups of data to see whether different pa-

rameter estimates occur for each group. For example, a researcher may aim

at finding out whether the path coefficients in a PLS path model differ sig-

nificantly across observations. Different groups of observations represent

a special case in term of moderating effects in that they hae the grouping

variable as a categorical moderator variable. In this case, there is a cate-

gorical moderator variable that splits the data set into two or more groups

and thus requires the estimation of two separate models. Usually, such a

(categorical) moderator variable captures some observable trait of the re-

spondents such as their gender (male vs. female) and is known a priori.

Path coefficients based on different samples are almost always different (in

a mathematical sense), but the question is whether these differences are

statistically significant. An example to show how a categorical variable can

split the data into groups is given by Russet [133], with the aim of measur-

ing a Political Instability CI.The basic hypothesis in Russet’ s paper is that

economic inequality leads to political instability. In particular, in the Rus-

set model political instability is a function of inequality of land distribution

and of industrial development. This dataset has already been analyzed in

Gifi [48] and in Tenenhaus [164]. In particular, Tenenhaus had modeled the

Russet dataset in a PLS-PM framework, creating three reflective blocks of
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LVs. The first LV is “Agricultural Inequality” , the second is “Industrial

Development” and the third is “Political Instability”. All MVs are numeric.

The model supposes a positive relationship between “Agricultural Inequal-

ity” and “Political Instability”, while it considers as negative the impact

of “Industrial Development” on the “Political instability”. In the original

dataset another qualitative variable is measured: it is the EI Democracy that

classifies countries in three groups: stable democracy, unstable democracy

and dictatorship. This MV is introduced in the block of Political Instabil-

ity, in order to evaluate the impact of its modality in the determination of

the LV. In this way it is possible to use qualitative information to estimate

the CI Political Instability. The introduction of the qualitative MV not only

causes an improvement in the quality of the model, and so of the estima-

tion of the CI, but also gives more information for the interpretation of the

results obtained. It has highlighted the political instability of the countries:

for example some countries have two different scores in the model with

and without democracy.

To find out whether there is a significant difference between coefficients,

researchers need to run a PLS-SEM multi-group PLS-MGA analysis with

a parametric approach [82]. Hence, more comprehensive approaches for

PLS-MGA have been introduced by Chin and Dibbern [18], Henseler et al.

[64] and Sarstedt et al. citeart:rif.93, who propose non-parametric proce-

dures to execute PLS-MGA. Parallel with the concept of an F test in regres-

sion, Sarstedt et al.[149] outlined a technique to compare more than two

groups. In R software resampling methods have been developed to test the

difference between groups [145]: the bootstrap t-test and permutation pro-

cedure. The bootstrap t − test consists of separating the data into groups

and then running bootstrap samples with replacement for each group. Path

coefficients are calculated in each resampling and the standard error esti-

mates are treated in a parametric sense via a t − test. This method is a re-

sampling parametric approach. The bootstrap t-test supposes two groups

G1 andG2 with sample sizes of n1 and n2, respectively. It is possible to com-

pare path coefficients or other parameters (outer weights, loadings, R2, the

GoF index). If we want to compare path coefficients between both groups:

βG1
j against βG2

j , the steps are the following:
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- Calculate a PLS path model for each group to obtain path coefficients:

βG1
j and βG2

j ;

- Separate the data into groups and run bootstrap samples for each

group;

- For each sample, calculate a PLS path model to obtain resampling

path coefficients;

- After running all the resamples (say 200 times), calculate the standard

error estimates;

- Use the standard error estimates in a parametric sense via a t− test.

The bootstrap procedure still depends on the assumptions of a t−test
which relies on two major conditions: a normal distribution of data

and a similar sample size of the groups.

It is true that t procedures are useful in practice because they are robust.

However, when the data have less symmetric distributions and the size of

the groups is very different, the application of the bootstrap t-test will be

limited. Another type of resampling approach is based on randomization

or permutation procedures. Compared to bootstrap samples (which are

drawn with replacement), permutation resamples are drawn without re-

placement. The permutation test assumes that it is possible that all of the

groups are equivalent, and that every member of the group is the same as

before the sampling began. Suppose we have two groups G1 and G2 with

path coefficients βG1
j and βG2

j and sample sizes of n1 and n2, respectively.

The permutation test is designed to determine whether the observed dif-

ference between the path coefficients is large enough to reject the null hy-

pothesis H0 that the two groups can be considered identical. The steps are

the following:

- First, we calculate the test statistic for the data. In our case the test

statistic is the difference between the path coefficients of the two -

groups.

- Then we combine the observations of groups G1 and G2 into a single

large group.
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- Next, the data are permuted (divided or rearranged) repeatedly in

a manner consistent with the random assignment procedure. Each

permutation implies dividing the data into two groups of size n1 and

n2; estimating the PLS models for each group; and calculating and

recording the test statistic. The set of calculated differences is the

distribution of possible differences under the null hypothesis that the

group label does not matter.

- Next, we sort the recorded differences and we check if the original test

statistic is contained within say the middle 95% of the sorted values.

If it is not, we reject the null hypothesis of identical groups at the 5%

significance level.

The main attraction of the permutation procedure is that it is a distribu-

tion free test that requires no parametric assumptions: it does not require

specific population shapes such as Normality; it applies to a variety of sta-

tistics; and it can give very accurate p-values, regardless of the shape and

size of the population.

Moderator Constructs. When the moderator variables are considered in

the inner model, the moderating effects are treated as LVs. In the case of

quantitative moderator variables, the product of two variables is used to

represent the interaction effect [62]. For a structural model, the regression

equation would have the following form:

ξj = β0 + β1ξq + β2µ+ β3ξqµ+ ε (3.2)

Here, ξj is the endogenous variable that will be explained by the exogenous

variable ξq, the moderator variable µ, and the interaction of the two. The βs
represent the regression parameters, where β0 stands for the constant. The

unexplained variance is captured by the error term ε. Note that ξj , ξq and

µ are LVs, and thus are supposed to be measured with error. The previous

equation can be rearranged into a different form, representing a regression

of ξj on ξq having the constant as well as the slope of the exogenous varia-

ble ξq depending on the level of the latent moderator variable µ:
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ξj = (β0 + β2µ) + (β1 + β3µ)ξq + ε (3.3)

This form provides an intuitive appeal for the interpretation of interaction

effects: An increase in the moderator variable µ of 1 implies a change of the

effect of ξq on ξj by β3. For instance, if µ is standardized and increased from

0 to 1, the slope of ξq changes from β1 to β1 + β3. In the literature related to

PLS path modeling, many approaches for the analysis of interaction effects

between variables have so far been presented. The most important are:

- the Product Indicator Approach [170];

- the Two-Stage Path Modeling Approach [63];

- the Orthogonalizing Approach [92].

They are graphically represented in the Figure 3.3.

(a) Product Indicator (b) Orthogonalizing

(c) Two Stage

Figure 3.3: Approaches for Modeling Interaction

Chin et al. [170] were the first to transfer the Product Indicator Approach to

PLS path modeling. First, they introduced a new LV, the latent interaction

term. Further, they suggested creating the so-called product indicators pij ;
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that is, all possible pairwise products of the centred indicators of the ex-

ogenous variable (xi ) and of the moderator variable (mj). The product

indicators pij become the indicators of the latent interaction term. If the

exogenous LV ξq has I indicators and the latent moderator variable µ has

J indicators, then the latent interaction variable will have I ∗ J product

indicators (Figure 3.3 (a)). Note that Chin et al. recommended using the

centred original indicators to produce the product indicators. Although

such a practice does not necessarily diminish the multi-collinearity result-

ing from building the product, it does facilitate the interpretation of the

interaction model results. In this approach both the LVs (ξq, µj) have a

reflective measurement model.

When the exogenous LV or the moderator variable has a formative mea-

surement model, the product indicator approach cannot be applied. In-

stead, researchers should use the two-stage approach [116] that extends

the product indicator approach to formative measures by making explicit

use of PLS-SEM’s advantage in estimating the LV.

The Two Stages are as follows:

- Stage 1: The main effects model is estimated without the interaction

term to obtain the scores of the LVs. These are saved for further anal-

ysis in the second stage.

- Stage 2: The LV scores of the exogenous LV and moderator variable

from Stage 1 are multiplied to create a single-item measure used to

measure the interaction term. All other LVs are represented by means

of single items of their LV scores from Stage 1.

The Two-Stage Approach (Figure 3.3 (c)) is not restricted to models that

include formative measurement approaches but can also be used when all

constructs are measured by reflective indicators. Henseler and Chin’s sim-

ulation study on the use of these alternative approaches in PLS-PM [62]

shows that the product indicator approach performs favorably when the

parameter accuracy is a major issue of concern. Thus, it is the best choice for

hypothesis testing. When prediction represents the major or only purpose

of an analysis, however, researchers should use the two-stage approach.
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Little et al. [93] suggested an Orthogonalizing Approach for modeling in-

teractions among LVs (Figure 3.3 (b)). The underlying idea of residual cen-

tring is that,(ideally), an interaction term is uncorrelated with (orthogonal

to) its First-Order effect terms. They introduced a modification to the prod-

uct indicator approach. As in the latter case, product indicators are first

created as element-wise products of the indicators of the independent and

the moderator variables. Each of the preliminary product indicators is then

regressed on all indicators of the exogenous and the moderator variable.

The residuals of these regressions (eij) are then used as indicators of the in-

teraction term, in analogy with the product indicator approach. This way,

it is ensured that the indicators of the interaction term do not share any

variance with any of the indicators of the exogenous or the moderator vari-

able. From the fact that PLS calculates the LV scores as linear combinations

of the respective indicators, it can be derived that the interaction term is

orthogonal to its constituting LVs.

Researchers have proposed many other PLS-based approaches for model-

ing interaction and non-linear terms, but Henseler and Chin [62] compar-

ing approaches for modeling interactions in terms of point estimate accu-

racy, statistical power, and prediction accuracy, concluded that the orthogo-

nalizing approach is to be recommended in almost all circumstances.

3.4 An Example: Building an Italian Social Cohesion

Composite Indicator (SC-CI)

To illustrate the importance of mediation and quantification in PLS-PM, we

will examine a Social Indicator (the Social Cohesion CI), based on Higher-

Order Construct 1, in which we will analyze the dimensions, the mediating

relationships between the dimensions and the nature of the EI and CIs.

1The Higher-Order Construct in PLS-PM is described in detail in the fourth Chapter
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3.4.1 A brief history of Social Cohesion

Social cohesion is a term used in sociology and political science to describe

the links, or "glue", that bring people together in society. Social Cohe-

sion is a multi-faceted notion covering many different kinds of social phe-

nomenon.

The social cohesion concept has been the subject of discussion both in poli-

tics and in the academic context. In contrast to the political field, in which

there is the tendency to identify social cohesion with the social problems

that the various governments are facing, in the academic field, there is no

homogenous discussion about this topic. To measure social cohesion five

different dimensions are usually considered in literature [97]:

1. Material conditions are fundamental to social cohesion, particularly

employment, income, health, education and housing;

2. Social order, safety, freedom and tolerance for other people;

3. Social relationships, networks and interactions between individuals

and communities;

4. The extent of social inclusion or the integration of people into the

mainstream institutions of civil society. This dimension also includes

people’s sense of belonging to a country or community;

5. Social equality referring to the level of fairness or disparity in the ac-

cess to opportunities or material circumstances, such as to income,

health, quality of life, or future life chances.

Bernard [89] completes the proposal of Jenson by introducing the essential

dimension of equality/inequality with regard to social justice and equity in

the economic domain. He considers Social Cohesion as a dialectic balance

between three values: freedom, equality and solidarity. These three ele-

ments are related and at the same time stand in contradiction. According to

this theory a model is derived to compute the Social Cohesion CI ([29]), that

is applied to the fourth wave of the European Values Study (EVS) 2of 2008
2The first wave of the survey was launched in 1981 in ten European countries. To ex-

plore the dynamics of value changes, a second wave of surveys was launched in 1990 in all
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conducted in 47 countries, The authors have estimated the Social Cohe-

sion CI only for the citizens of Luxembourg. The model is a Second-Order

hierarchical Structural Equation Modeling, estimated according to the co-

variance approach: LISREL [78]. The CI is determined by the concepts of

trust, political interest, political participation and involvement in organiza-

tions and social relationships. In this model only the impact of each LV on

Social Cohesion is measured, omitting the relationships between the other

LVs.

3.4.2 The Social Cohesion Path Modeling Estimation

Starting from Bernard’s theory and from the existing model for the estima-

tion of this CI, we propose a new model to compute Social Cohesion (SC),

in which not only the impact on SC is considered but also the relationships

between the other LVs. We have used the same database as the EVS survey,

but the model is estimated only for Italy in order to evaluate the social co-

hesion of our country.

The sample is constituted by 1,519 Italian adults (aged 18 years and over).

This database contains a great number of subjective and objective items that

measure attitudes towards and behavior regarding social relations, partici-

pation, and trust at many levels of social reality as well as in many domains

of everyday life, which more or less correspond to the dimensions of social

cohesion in the literature.

With regard to the proposal of Dickes et al., two new LVs are introduced

representing the economic-social condition, the impact of which on all LVs

of the model is estimated, and Italian Sentiment.

European countries, including Switzerland, Austria and countries in Central and Eastern

Europe, as well as the US and Canada. About ten years later (1999/2000), the third EVS

survey was launched, the fieldwork being conducted in almost all European countries. The

fourth wave was launched in 2008 (www.europeanvaluesstudy.eu).
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3.4.3 The model

The LVs considered in the model are:

- with the role of mediator LV: Economic Status (the MVs are nominal

and ordinal);

- with the role of input (exogenous LVs): Participation (the MVs are all

ordinals with 5 levels); Solidarity (all MVs are ordinal with 5 levels);

and the Institutional trust (all MVs are ordinal with 5 levels);

- with the role of output (or target or endogenous LV ): the multi-block

Social Cohesion (the MVs are all the other LVs);

- with the role of outcome : Italian Sentiment (its MVs are ordinal and

expressed on 5 levels).

The LVs Participation, Solidarity and Institutional Trust are multi-blocks,

i.e. they are determined by other LVs. In particular, Participation is esti-

mated by two LVs (Participation in Legal and in Illegal Associations), So-

lidarity by two LVs (Proximal and Distal Solidarity) and Institutional Trust

by two LVs (Trust in National and Organizational Institutions). The MVs

are expressed on an ordinal scale with different levels. The major contribu-

tions of this example are the following:

- the use of a Higher-Order Construct Model;

- the use of nominal and ordinal elementary indicators for the construc-

tion of a CI with a suitable quantification;

- the use of some Mediating LVs.

In Table 3.1 the MVs are reported, highlighting their nature (nominal, ordi-

nal or numerical) for each LV.
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LVs (CIs) MVs (basic indicators) Nature of MVs

Economic status (ECS)
Annual householder income Ordinal, 12 levels

Educational level Ordinal, 7 levels

Participation in legal

activities (LEG)

Signing a petition Ordinal, 3 levels

Joining in boycotts Ordinal, 3 levels

Attending lawful
Ordinal, 3 levels

demonstrations

Participation in illegal

activities (ILLEG)

Joining in boycotts Ordinal, 3 levels

Attending lawful
Ordinal, 3 levels

demonstrations

Participation

(PART)

All the MVs of the Participation

Trust in National

Institutions (NAT)

Education system Ordinal, 4 levels

Social security system Ordinal, 4 levels

Health care system Ordinal, 4 levels

Justice system Ordinal, 4 levels

Trust in Organizational

Institutions (ORG)

Trade unions Ordinal, 4 levels

Press Ordinal, 4 levels

Parliament Ordinal, 4 levels

Civil service Ordinal, 4 levels

Institutional Trust

(ISTT)

All the MVs of the Trust in Institutions

Proximal solidarity

(PROX)

Immediate family Ordinal, 5 levels

People - neighborhood Ordinal, 5 levels

People - own region Ordinal, 5 levels

Fellow countrymen Ordinal, 5 levels

Solidarity Distal

(DISTAL)

Elderly people Ordinal, 5 levels

Unemployed people Ordinal, 5 levels

Immigrants Ordinal, 5 levels

Sick and disabled Ordinal, 5 levels

Poor children Ordinal, 5 levels

Solidarity (SOL)
All the MVs of the Solidarity

Social Cohesion (SC)
All the MVs of Interpersonal and Institutional trust

Italian Sentiment (ITA)

Important to be born in Italy Ordinal, 4 levels

Important to respect
Ordinal, 4 levels

political institutions and laws

Important to have ancestry Ordinal, 4 levels

Important to be able to speak Italian Ordinal, 4 levels

Important to have lived in Italy for a long time Ordinal, 4 levels

Table 3.1: LVs and MVs of the Social Cohesion model
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So, SC is here conceived as a third order latent construct affecting Second-

Order dimensions, which in turn shape First-Order LVs underlying specific

aspects of the Second-Order dimensions.

The study focuses on a reflective-formative measurement model, a model

resulting from the combination of reflective Lower-Order and formative

Higher-Order Constructs.

Sanchez’s ’plspm’ package in the R programming language [142], with Rus-

solillo’s quantification [135] was used in order to estimate the model.

The model is presented in Figure 3.4.

Figure 3.4: The model for the Social Cohesion Composite Indicator

In the following section, we present three estimated models:

- the estimated model without the use of mediating LVs and quantifi-

cation;

- the estimated model with the use of mediating LVs but no quantifica-

tion;

- the last completed estimated model with the use of mediating LVs

and quantification.

3.4.4 Statistical Analysis and Main Results

The first important result is the confirmation of the unidimensionality pro-

perty for each latent block.

In this case all the blocks are unidimensional, as it is possible to verify from

Table 3.2 in which the values of Cronbach’s Alpha and Dillon-Goldstein’s
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Table 3.2: The outer estimation of the model

LV Cronbach Dillon-Goldstein First eigenvalue Second eigenvalue

ECS 0.778 0.793 1.31 0.686

LEG 0.741 0.848 1.47 0.529

ILLEG 0.703 0.871 2.16 0.702

PART 0.713 0.823 1.54 0.457

PROX 0.810 0.888 2.18 0.573

DISTAL 0.859 0.905 2.82 0.519

SOL 0.847 0.884 3.67 1.347

NAT 0.759 0.787 1.30 0.702

ORG 0.762 0.816 1.79 0.670

ISTT 0.762 0.816 1.79 0.670

SC 0.732 0.761 4.02 1.724

ITA 0.583 0.842 1.71 0.928

Rho are reported (the values of Dillon-Goldstein’ Rho are greater than 0.7,

and the first eigenvalues are greater than 1 for all LVs).

This result shows that the outer model is well specified and that the LVs

are well measured by the MVs, their synthesis being good.

Table 3.3 reports communality, an index that measures the goodness of the

models of measurement, for each considered model.

Table 3.3: Communality index for latent blocks for each estimated model

LV
Non-Mediating Mediating Mediating

Non-Quantification Non-Quantification Quantification

ECS 0.755 0.754 0.757

PART 0.639 0.638 0.644

SOL 0.623 0.624 0.625

ISTT 0.510 0.578 0.575

SC 0.370 0.372 0.473

ITA 0.461 0.348 0.357

The values for communality are appreciably higher for all blocks except for

the construct SC that is much lower than the commonly accepted thresh-

old of 0.7. However, if we consider the completed model with the use of
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the mediating LVs and quantification, the communality of the SC block in-

creases. Table 3.4 reports the path coefficients linking the constructs to the

SC-CI.

Table 3.4: Path coefficients for each model

No mediating Mediating Mediating

No quantification No quantification Quantification

ECS → PART 0.243 [0.185;0.298] 0.261 [0.213;0.321]

ECS → ISTT 0.121 [-0.121;0.177] 0.148 [0.098;0.217]

ECS → SOL -0.052 [-0.113;0.065] 0.178 [0.150;0.305]

ECS → SC 0.287 [0.254;0.315] 0.254 [0.217;0.281] 0.259 [0.219;0.305]

PART →SC 0.382 [0.348;0.522] 0.430 [0.371;0.496] 0.440 [0.380;0.494]

SOL → SC 0.416 [0.376;0.548] 0.528 [0.472;0.686] 0.610 [0.593;0.669]

ISTT → SC 0.353 [0.320;0.395] 0.306 [0.262;0.441] 0.404 [0.367;0.453]

SC → ITA -0.148 [-0.210;-0.110] -0.195 [-0.257;-0.220] 0.420 [0.364;0.480]

Without considering the quantification, the mediating effect improves the

estimation of the model.

If we look at the completed model with the mediating effect and quan-

tification, the estimation greatly improves, making some path coefficients

significant that previously were not. In order to measure SC, Solidarity is

the most important dimension, with a good impact of 0.61, followed by

Participation (0.44) and Institutional Trust (0.40); this shows that to have

a cohesive society Solidarity is important as indeed is Trust in Institution.

Economic Status proves to be less influential among all facets with an im-

pact of 0.26. This is not very important and not instrumental to the creation

of SC. The outcome of the model is Italian Sentiment: this variable is con-

sidered a result of SC, and, as a matter of fact, SC has a good impact on

it (0.42); this path in previous models proves to be negative. In the last

estimated model, with mediating effects and quantification, all the path co-

efficients are significant, having positive Bootstrap confidential intervals.

The results of the inner estimation and of the impact of the CIs on SC are

reported in Figure 3.5:

In Figure 3.5, the average values for each LV are also reported; the scale is



Chapter 3. Some developments in PLS - PM for the building of Composite
Indicators 77

Figure 3.5: The estimated model for the Social Cohesion Composite Indica-

tor

transformed in order to obtain a range between 0 and 100, so Solidarity has

a high average (greater than 50) showing a good SC for the Italian people.

At the same time Italian individuals prove to have a good Italian Sentiment,

as a result of a strong SC.

In order to test the significance of the indirect effect, we calculate the VAF

index, according to the Formula (3.1), that determines the size of the indi-

rect effect in relation to the total effect.

- VAF(Participation)=0.30719

- VAF(Institutional Trust)=0.187558

- VAF (Solidarity)=0.295391

In this situation, the VAFs of Institutional Trust and Solidarity are less than

20%, so we can conclude that no mediation takes place; instead Participa-

tion, in which the VAF is larger than 20% and less than 80% is characterized

as a partial mediation.

3.4.5 Conclusions for Italian Social Cohesion Composite Indica-
tor Example

The example presents three estimated models (the estimated model with-

out the use of mediating LVs and quantification, the estimated model with
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the use of mediating LVs but no quantification and the last completed es-

timated model with the use of mediating LVs and quantification) in order

to understand how researchers can, by using a suitable quantification and

entering the effect of mediation into the model, significantly improve the

estimate of the Composite Indicator.

3.5 Unobserved Heterogeneity in PLS-PM

Heterogeneity among units is an important issue in statistical analysis.

Treating the sample as homogeneous, when it is not, may seriously affect

the quality of the results and lead to a biased interpretation. Since human

behaviors are complex, looking for groups or classes of units having similar

behaviors will be particularly hard [38].

Because heterogeneity is often present in empirical research, researchers

should always consider potential sources of heterogeneity, for example, by

forming groups of data based on observable characteristics such as demo-

graphics (e.g. age or gender). When heterogeneous data structures can be

traced back to observable characteristics, we refer to this situation as ob-

served heterogeneity. Unfortunately, the sources of heterogeneity in data

can never be fully known a priori. Consequently, situations arise in which

differences related to unobserved heterogeneity prevent the PLS path model

from being accurately estimated. Since researchers never know if unob-

served heterogeneity is causing estimation problems, they need to apply

complementary techniques for response-based segmentation (so-called la-

tent class techniques) that allow for the identification and treatment of un-

observed heterogeneity.

Heterogeneity can hardly be detected using external information, (i.e. us-

ing an a priori clustering approach, especially in social, economic and mar-

keting areas). Moreover, in several application fields more attention is be-

ing given to clustering methods able to detect groups that are homoge-

neous in terms of their responses [176]. Two types of heterogeneity could

be affecting the data: observed and unobserved heterogeneity ([167]; [63];

[17]). Traditionally, heterogeneity in an SEM is taken into account by as-

suming that observations can be assigned to segments a priori, on the basis
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of observable characteristics such as geographical or demographic traits

[177]. Alternatively, sequential procedures have been proposed in which a

researcher can partition the sample into segments by applying a clustering

algorithm such as k-means on manifest or LV scores. However, different

clustering algorithms yield different results, and, to date, there has been

little guidance on choosing the best procedure [72].

Usually heterogeneity in SEMs is handled by first forming classes on the

basis of external variables or on the basis of standard clustering techniques

applied to MVs and/or LVs, and then by using the multi-group analysis in-

troduced by Jöreskog [75] and Sörbom [157]. However, heterogeneity in the

models may not be necessarily captured by well-known observed variables

playing the role of moderating variables [54]. Moreover, post-hoc cluste-

ring techniques on MVs, or on LV scores, does not take into any account

the model itself. Hence, while the local models obtained by cluster analysis

on the LV scores will lead to differences in the group averages of the LVs

but not necessarily to different models, the same method performed on the

MVs is unlikely to lead to different and well-separated models. This is true

for both the model parameters and the means of the LV scores. In addi-

tion, a priori unit clustering in SEM is not conceptually acceptable since

no structural relationship among the variables is postulated: when infor-

mation concerning the relationships among variables is available, classes

should be looked for while taking into account this important piece of in-

formation.

Empirical studies and numerical experiments show that these “sequential”

procedures – exploratory clustering followed by multiple group analysis

– are not robust and perform poorly in terms of parameter recovery [149].

Therefore, if researchers do not have an a priori rationale for distinguishing

subgroups within a population, then latent class approaches, which allow

for the identification and treatment of unobserved heterogeneity, seem to

be a better choice. However, researchers may certainly be interested in dif-

ferences between sub-groups defined a priori, so there is certainly a place

for a priori multiple group analysis in PLS-PM [126].

The availability of tools for dealing with heterogeneous data within PLS-

PM has grown rapidly, with many new developments appearing only in
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specialized literature devoted to PLS methods [126]. Several latent class

techniques, designed to capture and treat unobserved heterogeneity in PLS

path models, have been proposed lately and reviewed by Sarstedt [147]:

Finite Mixture PLS, proposed by Hahn et al. [54] and modified by Ringle et

al. [131]; PLS Typological Path Model presented by Squillacciotti [158] and

modified by Trinchera and Esposito Vinzi [169] and Trinchera et al. [171];

PATHMOX by Sanchez and Aluja [143]; PLS-PM based Clustering (PLS-

PMC) by Ringle and Schlittgen [127]; and Response Based Unit Segmen-

tation in PLS-PM (REBUS-PLS) proposed by Trinchera [168] and Esposito

Vinzi et al. [39].

The Figure 3.6 shows the available latent class approaches for capturing

heterogeneity in PLS-PM.

Figure 3.6: Methodological taxonomy of latent class approaches to capture

unobserved heterogeneity in PLS path models

In the following sections the PATHMOX and REBUS-PLS approaches are

discussed in detail.

3.5.1 The PATHMOX Approach

In the context of PLS-PM, Sanchez and Aluja [143] introduced a decision

tree–like structure approach in which segments are represented by the outer
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nodes of a segmentation tree. It represented a new point of view in observ-

ing heterogeneity in PLS-PM models.

Their Path Modeling Segmentation Tree (PATHMOX) algorithm had been

specifically designed to take into account external information, such as de-

mographic variables, whose values are used to identify and differentiate

segments, thus enhancing segment profiling. The idea is to build a path

models tree having a decision tree-like structure with models for different

segments in each of its nodes. The segment identification not only takes

into account the available a prior information, in the form of external vari-

ables (such as socio-demographic variables), but also considers the struc-

tural relationships between the variables. The iterative process starts with

the estimation of a global PLS path model, taking the entire sample into ac-

count. Using the external variables, PATHMOX makes two-way splits and

estimates the PLS model for each sub-group thus defined. Just as a deci-

sion tree seeks to maximally discriminate, PATHMOX looks for the largest

differences between sub-groups in terms of the model parameter estimates

[168]. Among all possible splits, the best model is selected by means of a

modified F-test for comparing regression models. The partition resulting

with the most significant p-value is considered as a candidate for the best

split. This process is applied for each external explicative variable selecting

the partition with the minimum p-value among all the candidates as the

optimal split. Subsequently, a Ryan-Joiner [136] correlation test is initiated

to compare each identified segment and its parent model. The Ryan-Joiner

test is an objective way of judging normal probability plots used for testing

normality on a set of data. In other words, this test is used to measure the

straightness of a probability plot. By using a Ryan-Joiner test we do not

pretend that we are performing any normality test; instead, we use it as a

tool for assessing how close to unity the correlations between the LVs in

the parent node and the LVs in the child node are. It may be argued that

this test is being misused the way it is applied in the PATHMOX algorithm,

but, in fact, we are using it as a first (although primitive) tool for outer mod-

els comparison. After an optimal first split has been chosen, the algorithm

then looks for further splits of those initial sub-groups that again maximize

differences in the parameter estimates within the sub-groups.
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Finally, the stop rule evaluates two conditions: (i) a fixed number of in-

dividuals in a node, and/or (ii) the p-value significance level. The first

condition is used to avoid the presence of small size segments which are

not useful in practice. The second criterion avoids the identification of seg-

ments with low significance levels.

Once a PATHMOX tree has been constructed and the final nodes have been

obtained, it is necessary to identify the differences among segments. Since

the PATHMOX approach is based on the inner structural model, we focus

only on the path coefficients. This implies comparing the path coefficients

of the different segments. Sanchez proposes the use of bootstrapping to

validate the results of the final segments. The bootstrap samples are built

by resampling with replacement from the original sample. The samples

consist of the same number of units as in the original sample, and the num-

ber of resamples is fixed to 100. Moreover, bootstrap confidence intervals

of the path coefficients can be obtained from the resampling procedure.

Hence, confidence intervals allow an identification of those coefficients in

a segment that may be different to the rest of the segments. With this infor-

mation, we can identify those structural relationships in which some path

models differ from the other segments [141].

The aim of the PATHMOX algorithm is to select, among a set of segmenta-

tion variables (i.e. observed sources of heterogeneity), those having supe-

rior discriminant capacity in the sense that they separate the path models as

much as possible. The split criterion in this case is used to decide whether

two confronted structural models can be considered to be different. For

this purpose, the F-global test comparison method is introduced. Sanchez

[141] proposed the F-global test as a criterion for comparing two different

PLS path models by extending the test for comparing two linear regres-

sions introduced by Lebart et al. [91]. This test focuses on the relationships

between the path coefficients of the structural model, and it is based on the

consideration that comparing two structural models can be framed in terms

of comparing two regression models. Structural models are in fact nothing

more than a set of regressions among LVs, one regression for each endoge-

nous variable. The F-global test comparison is based on the global model

comparison at the structural level. Each binary split defines a pair of nodes,
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each of which will have its associated structural model, (i.e. its associated

set of path coefficients). Then, we perform a global comparison test on the

identity of the two models, meaning that the sets of path coefficients in the

two child nodes are equal to those of the parent node. The model of the

parent node corresponds to a homogeneous situation, and the model of the

child nodes corresponds to a heterogeneous situation. To achieve that ob-

jective, Sanchez [141] adapted the identity test of two regression models by

Lebart et al. [91] and Chow [21], and used it to detect the most significant

split.

PATHMOX thus requires additional external data [168], and depends on

the heterogeneity within the sample conforming to straightforward diffe-

rences in the values of those external variables [126].

Several problems arise when applying the PATHMOX algorithm. In order

to produce distinct segments based on the modalities of explanatory vari-

ables, the algorithm tests for the equality of segment-specific coefficients of

the structural and measurement models. These tests rest on the assump-

tion of normally distributed error terms which may not apply in practice

[143]. Furthermore, even though PATHMOX does not rely on predefined

segments, the decision tree structure depends on external explanatory vari-

ables which need to be specified by the researcher beforehand and which

are, as mentioned earlier, often insufficient to capture heterogeneity ade-

quately. A more serious problem is the dependence of the segmentation on

the ordering of the explanatory variables. As a consequence, PATHMOX

should rather be viewed as a data mining approach which enables the dis-

covery of “unexpected” models in population segments [144].

3.5.2 The REBUS-PLS Approach

A new method for unobserved heterogeneity detection in a PLS-PM frame-

work was presented by Trinchera [168] and Esposito Vinzi et al. [39], as

an improvement of PLS-TPM: Rebus-Based Unit Segmentation in PLS-PM

(REBUS-PLS), which has been designed to overcome some methodologi-

cal problems of the PLS-TPM approach [126]. It is a distribution-free ap-

proach which allows a classification taking into account heterogeneity in
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the structural and the measurement models of endogenous and exogenous

LVs. REBUS-PLS is an iterative algorithm that permits to estimation at the

same time both of the unit membership to latent classes and of the class

specific parameters of the local models. The approach follows a similar

procedure to PLS-TPM but applies a different distance measurement. In

fact, it is based on the distance measurement, labeled the "Closeness Mea-

sure" (CM) between units and models based on residuals. The idea behind

the definition of this measurement is that, if latent classes exist, units be-

longing to the same latent class will have similar local models. Moreover,

if a unit is assigned to the correct latent class, its performance in the local

model computed for that specific class will be better than the performance

of the same unit considered as supplementary in the other local models.

Coherent with the PLS-PM features, REBUS-PLS does not require distribu-

tional hypotheses. Moreover, REBUS-PLS may lead to local models that are

different both in terms of structural and measurement models.

The CM distance is a function of the average communality and average

structural R2 across the whole model. The CM used in the REBUS-PLS

algorithm represents an extension of the distance used in PLS-TPM by Trin-

chera et al. [171], aiming at taking into account both the measurement and

the structural models in the clustering procedure. In order to obtain local

models that fit better than the global model, the chosen closeness measure

is defined according to the structure of the Goodness of Fit (GoF) index, the

only available measure of global fit for a PLS Path Model. In accordance

with the DmodY distance used in PLS Regression [164] and the distance

used by Esposito Vinzi and Lauro [36] in PLS Typological Regression all

the computed residuals are weighted by quality indexes: the importance of

the residuals increases while the quality index decreases. That is why the

communality index and the R2 values are included in the CM computation

[38].

The choice of the CM distance as a criterion for assigning units to classes

has two major advantages. First, the unobserved heterogeneity can now

be detected in both the measurement and the structural models. If the two

models show identical structural coefficients, but differ with respect to one

or more outer weights in the exogenous blocks, REBUS-PLS is able to iden-
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tify this source of heterogeneity, which might be of major importance in

practical applications. Moreover, since the closeness measure is defined ac-

cording to the structure of the GoF index, the identified local models will

show a better prediction performance [38]. The number of classes (K) to be

taken into account during the successive iterations and the initial composi-

tion of the classes are obtained by performing a hierarchical cluster analysis

on the computed residuals (both from the measurement and the structural

models). Once the number of classes to consider and the initial composi-

tion of the classes have been obtained, a PLS-PM analysis is performed on

each formed class and K provisional local models are estimated.

Once stability on the class composition has been reached, the final local

models are computed. The class-specific parameters are then compared in

order to explain differences among the detected latent classes. Moreover,

the quality of the obtained partition can be evaluated through a new index

(i.e. the Group Quality Index (GQI)) expressly developed. A permutation

test procedure applied on the GQI, can be used to validate the detected

latent classes. The GQI is a reformulation of the GoF index in a multi-

group optics, and, like the CM used in REBUS-PLS algorithm, it is based

on residuals. If local models performing better than the global model are

detected, the GQI index will be higher than the GoF value computed for

the global model. As a matter of fact, local models performing better than

the global model mean working with residuals that are smaller than the

one computed for the global model. This directly entails obtaining a higher

GQI index than the one obtained for the global model.

REBUS-PLS is limited to reflective measurement models because the mea-

surement residuals come from the simple regressions between each MV in

a block and the corresponding LV.

This alternative is included in the plspm package [146] for the R open

source statistical programming language [126].
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3.6 An example: Treating the Heterogeneity of the Le-

gitimacy of Violence Higher-Order CI

The example of an analysis of the concept Legitimacy of Violence among

teenagers is now presented in order to illustrate the implementation and

results of two latent class techniques implemented in PLS-PM described

above. The latent concept of Legitimacy of Violence among teenagers is

not present in literature; it was constructed ad hoc at a high level of abstrac-

tion, built on Higher-Order construct PLS-PM, formed by two dimensions

that until now have always been considered and analyzed separately: an

aptitude for violence and ambivalent sexism.

This higher construct derives from the data analysis of a study conducted

by a research group of the Department of Social Science, investigating the

behavior of teenagers in Naples in March and April 2014. Initially, it was

believed that the phenomenon of gender violence concerns only adults.

Today there are numerous empirical studies that have shown that it is

also perpetrated within relationships described as relating to protagonist

teenagers. For this reason, a questionnaire was administered to a group

of 300 teenagers, aged between 16 and 20 years, attending the last two

years of several high schools in Naples, in order to investigate the experi-

ences of young people and the asymmetries between men and women. The

questionnaire was also designed to detect if their way of thinking about

and experiencing emotional relationships includes a space where there is

a possibility of violence ([50];[101]). Several studies have found a direct

relationship between violence and sexism ([45];[173];[46];[88]) converging

in considering the latter a major cause of gender inequality [103]. Of the

participants, 56 percent were women; and 76 percent were aged 17 or 18.

Glick and Fiske [49] define "hostile sexism" as a conflicting vision of gen-

der relations, according to which women are perceived as those who seek

control over men, both through sexuality, and a feminist ideology. Hos-

tile sexism is composed of beliefs and negative attitudes directed against

women, who are seen as undermining the power of men. "Benevolent sex-

ism", conversely, sees women as "pure creatures" who should be protected,

supported and idolized by men, in their "natural" roles of mother and wife;
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their love is needed to make a man complete. Benevolent sexism consists of

sexist attitudes that are offering a stereotypical view of women, although

subjectively manifesting themselves as positive.

3.6.1 Measurement Instruments (questionnaires)

A semi-structured questionnaire was used, composed of scalar items, check-

lists and open-ended questions, useful to investigate the dimensions listed

above. Socio-demographic information was requested: gender, age, school,

class, father and mother’s occupation, and religious and political orienta-

tion. In order to measure the attitudes of the participants towards diver-

sity and violence, a CADV scale was administered, in accordance with the

version of De Lemus et al. [27]. The CADV questionnaire consisted of

35 items, measuring attitudes towards diversity and violence, operational-

ized in three dimensions: i) justification of peer violence; ii) sexist beliefs

and justification of domestic violence; iii) justification of intolerance and

violence against minorities. All CADV items were measured in relation

to a Likert Scale with scores ranging from 1 (strongly disagree) to 7 (totally

agree). In order to measure the Hostile, Benevolent and Ambivalent Sexism

dimensions, the Ambivalent Sexism Inventory for teenagers, in the version

of De Lemus et al. [27] was used. The ISA- Adolescents is an adaptation

of ASI and consists of 20 items: the first 10 items measure Hostile Sexism

and the last 10 Benevolent Sexism. All ISA items were measured in relation

to a Likert scale with scores ranging from 1 (strongly disagree) to 6 (totally

agree).

3.6.2 The model

We have considered the dimensions of the questionnaire as five logical

blocks: three of which refer to the higher concept of Aptitude for Violence

(A-Violence) (Justification of Peer Violence (J-Peer Violence) ; Sexist Beliefs

and Justification of Domestic Violence (J-Domestic Violence) ; Justification

of Intolerance and Violence against Minorities (J- Intolerance), while the

other two blocks refer to the higher concept of Ambivalent Sexism (A-

Sexism) (Hostile Sexism (H-Sexism) and Benevolent Sexism (B-Sexism) ).
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Since the three blocks of Aptitude for Violence are in a single CADV scale

and the two blocks of Ambivalent Sexism are in a single ISA scale, our

model is reflective at a first Higher-Order, precisely because the two con-

cepts represent a synthesis of the two scales. Next, these two first Higher-

Order scales merge to form a single scale of the latent concept of Legitimacy

of Violence (L-Violence). Consequently, we have constructed the latent

concept Legitimacy of Violence with a hierarchical model of a formative

third-order. The graphical representation of the third-order Legitimacy of

Violence construct is reported in Figure 3.7.

Figure 3.7: The third-order Legitimacy of Violence construct

3.6.3 Pre-treatment of data

Before making the PLS-PM analysis, a pre-treatment of the data was per-

formed. First of all, the two scales were normalized with scores from 0 to

100 to make them homogeneous. Since the questionnaire was composed of

CADV items in a Likert Scale with a range from 1 to 7, and ISA items in

a Likert Scale with a range from 1 to 6, the normalization made compara-
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ble the data belonging to the different variables. Next, the variables that

had a low average and low correlation with the other variables in the block

were eliminated from the analysis. The final database was composed of 50

variables on 300 individuals.

3.6.4 Statistical Analysis and Main Results

The new proposed Mixed Two Step Approach (presented in detail in the

fifth chapter of this dissertation) to the estimation of Third-Order LV mo-

dels has been implemented in order to measure the Legitimacy of Violence.

The analysis was performed with a path weighting scheme for the inner

structural model, while the measurement model is reflective in each block.

Table 3.5 reports the main quality measures of each lower-order construct.

All Cronbach’s Alpha and Dillon-Goldstein’s Rho indices are acceptable in

each block, close to the conventional acceptability threshold of 0.7 for all

blocks. This table shows that the outer model is well specified and that

the LVs are well measured by their MVs, their synthesis being effectively

performed.

Table 3.5: Reliability measures for Lower-Order Constructs

MVs
Cronbach Dillon

Communality
Alpha Rho

J-Peer Violence 10 0.783 0.838 0.333

J- Domestic Violence 10 0.739 0.811 0.300

J-Intolerance 10 0.726 0.805 0.319

H-Sexism 10 0.789 0.840 0.324

B-Sexism 10 0.709 0.792 0.282

Concerning the Higher-Order Constructs, Table 3.6 shows the Cronbach’s

Alpha and Dillon-Goldstein’s Rho for the latent concepts Aptitude for Vio-

lence, Ambivalent Sexism and Legitimacy of Violence. Both Second-Order

latent constructs and third order latent constructs are unidimensional with

a high value on the Cronbach’s Alpha and Dillon-Goldstein’s Rho scales.
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Table 3.6: Reliability measures for Higher-Order Constructs

Cronbach Alpha Dillon Rho Communality

A-Violence 0.764 0.865 0.721

A-Sesixm 0.608 0.848 0.770

L-Violence 0.806 0.872 0.811

Another important index is Communality, that measures the goodness of

the model of Measurement (the third column of Table 3.6). The amount

of variability of the MVs captured by the higher concepts is sufficiently

good, in particular that captured by Ambivalent Sexism, that presents a

Communality Index higher than the other two higher concepts. In Table 3.7

the structural coefficients, linking the Lower-Order Constructs to the first

Higher-Order Constructs Aptitude for Violence and Ambivalent Sexism,

and the structural coefficients, linking the first to the second Higher-Order

Construct Legitimacy of Violence, are reported.

Table 3.7: Path coefficients

Path Coefficients

A-Violence → J-Peer Violence 0.826 [0.705;0.951]

A-Violence → J-Domestic Violence 0.922 [0.870;1.010]

A-Violence → J-Intolerance 0.869 [0.788;0.989]

A-Sexism → H-Sexism 1.141 [1.013;1.227]

A-Sexism → B-Sexism 0.662 [0.534;0.925]

A-Violence → L-Violence 0.693 [0.651;0.747]

A-Sexism → L-Violence 0.315 [0.315;0.356]

Looking at Table 3.7, the Second-Order Aptitude for Violence Construct is

reflected more in the block of Sexist Beliefs and Justification of Domestic

Violence (0.922), while the Second-Order Ambivalent Sexism Construct is

reflected more in the Hostile Sexism block (1.141), showing even a low cor-

relation path with the Benevolent Sexism block (0.662) As regards the third
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order construct, Aptitude for Violence, this has a higher impact (0.693) on

Legitimacy of Violence than Ambivalent Sexism (0.315). The estimated

Third-Order Legitimacy of Violence construct is graphically presented in

Figure 3.8, where the path coefficients and means of each block are re-

ported.

Figure 3.8: The estimated third-order Legitimacy of Violence construct

Regarding the Third-Order Construct, Aptitude for Violence has a higher

impact on Legitimacy of Violence than Ambivalent Sexism, but this latter

block presents a higher mean than the former. This means that, although

Aptitude for Violence has a high impact on the endogenous construct, ha-

ving a low average, it represents a critical block, that needs an immediate

intervention. Instead, Ambivalent Sexism, which has a high mean but a

low impact on the latent construct, needs to be addressed, especially by

reducing Hostile Sexism levels.
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3.6.5 Heterogeneity through PATHMOX Approach

In this kind of context we cannot assume that all the students have the same

aptitude of Legitimacy to Violence, but we can say that there are groups, or

clusters, of students that follow the same model.

The PATHMOX algorithm has been specifically designed to take into ac-

count external information, such as demographic variables, whose values

are used to identify and differentiate segments, thus enhancing segment

profiling. As has been said above, the iterative process starts with the esti-

mation of a global PLS path model, taking the entire sample into account.

Using the external variables, PATHMOX makes two-way splits and esti-

mates the PLS model for each sub-group thus defined.

In order to calculate the PATHMOX segmentation tree, it is necessary to

specify the scale (i.e., binary, ordinal, or nominal) of the segmentation vari-

ables (Table 3.8).

Table 3.8: Codification of segmentation variables according to their type of

scale and level

Scale
Number Levels

Levels Description

Gender Binary 2 Male / Female

Age Ordinal 2 <18 / >=18

School Nominal 4

I.P.S.S.C.T Fortunato

Liceo S.L.S. Mazzini

Liceo Classico Pansini

I.T.I.S Giordani

In addition, we had to determine the parameters and stop conditions of

the algorithm. We decided to establish a value of 0.05 for the threshold

of the p-value in looking for those partitions that are highly significant.

Given that we have a total sample of 300 students, it seemed to us that 30

students (10% of the total sample) is a reasonable minimum number to stop

the growth of a node.

The depth level (depth = 2) was selected with the aim of obtaining a simple

segmentation tree with a possible maximum number of four final segments.
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Figure 3.9 illustrates the segmentation tree obtained. The main characteris-

tic of the obtained tree is that each node corresponds to a different segment

with its own particular path model. The number of students forming each

segment is shown inside each node, and the segments in the final nodes

are numbered from 4 to 7. In fact, we can observe that there are four dis-

tinct models. Additionally, every split is characterized by its corresponding

explanatory partition.

Figure 3.9: PATHMOX Regression Tree

At the first split, PATHMOX defines two different models for students ac-

cording to gender: male students and female students. As we can see in

the Table 3.9, the first split produced is highly significant, giving an F-

statistic of 23.08 with a p-value of 0.00. The tree continues by splitting node

two and node three. The most significant split for node two is obtained

by the segmentation variable School, giving an F-statistic of 4.29 with a

p-value of 0.00. This variables splits node three also, with an F-statistic

of 8.71 and p-value of 0.00. So, we now divide the male and female stu-

dents according to the type of school. This ends the splitting process, as

the maximum depth of two levels has been reached. Hence, at the end, we

have four final segments, each one corresponding to a distinct model: node

four, the model of male students who attend I.P.S.S.C.T "Fortunato" and
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Liceo Classico "Pansini"; node five, the model of male students who attend

Liceo S.L.S. "Mazzini" and I.T.I.S "Giordani"; node six, the model of female

students who attend I.P.S.S.C.T "Fortunato" and I.T.I.S "Giordani"; and fi-

nally, node seven, the model of female students who attend Liceo Classico

"Pansini" and Liceo S.L.S. "Mazzini".

The F-global statistics, the p-values and the obtained partitions for each

node are summarized in Table 3.9.

Table 3.9: F-global values and partitions - Least Squares Method

F-statistic p-value

Root

Gender 23.08402 0.000000

Age 5.951494 0.000001

School 4.437927 0.000066

Node 2 School 4.29068 0.000114

Node 3 School 8.715006 0.000000

However, unbalanced segments and differences in the variance of the en-

dogenous constructs may affect the sensitivity of the F-statistic.

The final part of the analysis consists of the comparison between the termi-

nal nodes of the tree. The coefficients calculated with the p-values associ-

ated with each coefficient for each node are shown in Table 3.10.

From Table 3.10 we can see some differences between the global model and

the identified segments according to the three endogenous constructs. Male

students have high values for the three blocks of Aptitude for Violence,

giving much importance to Sexist Beliefs and Justification of Domestic Vio-

lence; female students are influenced mainly by the endogenous construct

of Ambivalent Sexism, in particular, Hostile Sexism influences female stu-

dents attending the professional institutes, while Ambivalent Sexism influ-

ences female students attending the lyceum.



Chapter 3. Some developments in PLS - PM for the building of Composite
Indicators 95

Table 3.10: Coefficients estimate computed for each terminal node

Root Node 4 Node 5 Node 6 Node 7

A-Violence → J-Peer Violence 0.841 0.884 0.829 0.829 0.786

St.Error 0.015 0.024 0.034 0.050 0.034

A-Violence → J-Domestic Violence 0.908 0.947 0.905 0.822 0.866

St.Error 0.009 0.009 0.024 0.040 0.021

A-Violence → J-Intolerance 0.798 0.844 0.871 0.712 0.780

St.Error 0.022 0.036 0.023 0.061 0.040

A-Sexism → H-Sexism 0.889 0.889 0.892 0.896 0.889

St.Error 0.009 0.023 0.023 0.015 0.017

A-Sexism → B-Sexism 0.865 0.854 0.854 0.880 0.867

St.Error 0.013 0.040 0.045 0.030 0.029

A-Violence → L-Violence 0.569 0.572 0.568 0.568 0.589

St.Error 0.005 0.014 0.016 0.0130 0.011

A-Sexism → L-Violence 0.546 0.538 0.555 0.534 0.576

St.Error 0.006 0.020 0.015 0.020 0.013

3.6.6 Conclusions for PATHMOX Approach

In conclusion, this work deals with the problem of modeling heterogene-

ity through the PATHMOX approach. We can see that PATHMOX follows a

data mining approach for discovering heterogeneity in the PLS-PM context.

It remains as a working issue the validity of the emerged segments in order

to avoid false positives; this can be solved as a first attempt by bootstrap

[142]. Also, the validity of the measurement model across the segments

needs to be assessed in order to make meaningful comparisons across seg-

ments. Finally, the F of Fisher splitting criterion, even if it relies on the nor-

mality assumption of intangibles and the homoschedastic assumption over

the segments, showed in all applications performed a clear interpretability

of the results.
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3.6.7 Heterogeneity through REBUS-PLS Approach

The aim of REBUS-PLS is to detect sources of heterogeneity in both the

structural and the measurement model. It is obtained through the defini-

tion of an ad hoc distance based on the sum of squared residuals. For each

cluster the LVs are estimated. The model has been estimated using the

software R and the package ‘plspm’ implementing the REBUS-PLS method

[146].

Performing REBUS-PLS on that dataset allows us to detect three different

classes of units showing homogeneous behavior. As a matter of fact, the

cluster analysis performed on the residuals from the global model (Figure

3.10) suggests that we to look for three latent classes.

Figure 3.10: Dendrogram of students
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Thanks to the REBUS-PLS algorithm the 300 units have been clustered in

three classes (Table 3.11) that are more homogeneous as regards the model

parameters.

Table 3.11: REBUS segments

Cluster 1 Cluster 2 Cluster 3

Number of units 75 118 107

Proportions % 25 40 36

For each cluster the quality of the global model is very high. The results are

shown in Table 3.12.

The reliability of each LV is measured by the communality. The communal-

ity measures the percentage of variance, in a given variable, explained by

all the factors jointly.

Taking into account the LVs on the Higher-Order Construct, the commu-

nality is never under 40%. The quality of the model is high.

Table 3.12: Quality measures

Global Cluster 1 Cluster 2 Cluster 3

J-Peer Violence 0.333 0.274 0.202 0.279

J-Domestic Violence 0.300 0.302 0.213 0.291

J-Intolerance 0.319 0.240 0.309 0.229

H-Sexism 0.324 0.278 0.275 0.310

B-Sexism 0.282 0.279 0.245 0.320

A-Violence 0.721 0.784 0.734 0.774

A-Sexism 0.770 0.882 0.792 0.797

L-Violence 0.811 0.818 0.781 0.800

The contribution of each LV to the Legitimacy of Violence for each cluster

can be seen in Figure 3.11.
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Figure 3.11: Contribution of each LV to Legitimacy of Violence for each

cluster

Generally, the contributions of the LVs to Higher-Order CI keep the same

structure in all three clusters.

Cluster 1 gives slightly more importance to the Aptitude to Violence while

Cluster 3 give highest importance to Ambivalent Sexism. But if we analyze

the individual blocks, we see how the LVs are reflected differently in their

sub-dimensions (Figure 3.12).

(a) Aptitude to Violence (b) Ambivalent Sexism

Figure 3.12: Contribution of each LV to its own sub-dimensions for each

cluster

The Aptitude to Violence is very strongly reflected in all Cluster for each

dimension, especially in Sexist Beliefs and Justification of Domestic Vio-

lence; the same situation occurs for Ambivalent Sexism, which is reflected

slightly more in Cluster 2.

The test on the differences among coefficients reveals a significant differ-
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ence between clusters 1-2 and 1-3.

Regarding the discriminatory power for LV in the clusters, Table 3.13 presents

for each cluster the mean, standard deviation and t-test of the LVs.

Table 3.13: Characterization of the LVs for each cluster

Global Cluster 1 Cluster 2 Cluster 3

J-Peer

Violence

Mean 32.96 27.47 46.03 51.02

St. Dev 23.62 0.82 3.34 3.70

T-Test -6.72 3.91 4.88

J-Domestic

Violence

Mean 37.88 33.57 52.89 46.44

St. Dev 22.75 0.79 3.22 3.56

T-test -5.48 4.66 2.40

J-Intolerance

Mean 51.83 50.17 59.79 52.55

St. Dev 23.86 0.82 3.37 3.74

T-test -2.02 2.36 0.19

H-Sexism

Mean 51.78 49.24 58.85 58.99

St. Dev 21.71 0.75 3.07 3.40

T-test -3.40 2.30 2.12

B-Sexism

Mean 69.49 70.85 66.89 64.25

St. Dev 17.60 0.61 2.49 2.76

T-test 2.23 -1.04 -1.90

A-Violence

Mean 43.72 41.58 54.76 43.67

St. Dev 21.66 0.75 3.06 3.39

T-test -2.85 3.60 -0.01

A-Sexism

Mean 61.49 60.55 67.65 59.87

St. Dev 19.18 0.66 2.71 3.00

T-test -1.41 2.27 -0.54

The Cluster 1 is characterized by the Benevolent Sexism, with a T-test value

of 2.23, while all LVs, except Benevolent Sexism, characterize the Cluster 2.

Justification of Peer Violence is the LV that strongly characterizes the Clus-

ter 3 (T-test value of 4.88), followed by the Sexist Beliefs and Justification

of Domestic Violence and Hostile Sexism, which respectively have a T-test

value of 2.40 and 2.12.

Finally, the three class solution shows a Group Quality Index (GQI) equal
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to 0.531, as we can see in Table 3.14.

Table 3.14: Group Quality Index

Number of iterations 100

Rate of unit change 0.118840

Group Quality Index 0.524749

The GQI value obtained for the REBUS-PLS based partition is the highest

obtained value. This allows us to assess that the REBUS-PLS based clus-

tering of the units is better than a random assignment of the units, and is

definitely better than the global model solution. This means that a partition

of units in latent classes surpassed the performance of the global model in

every case. In other words, the global model definitely has to be definitely

considered as affected by heterogeneity.

3.6.8 Conclusions for REBUS-PLS Approach

In summary, the same application deals with the problem of modeling het-

erogeneity through the REBUS approach. It was demonstrated that there

are differences in the groups of students that follow the same model, so the

model initially assumed is not uniquely adaptable to clusters. To conclude,

a permutation test performed on the Group Quality Index has proved that

the REBUS-PLS based partition is the best one according to the prediction

capability of the model.

3.7 Conclusions

In this Chapter, we have considered a CI system formed by EIs on a non nu-

merical scale, including some kind of CI relationship, and testing whether

there is a mediating and/or moderating effect. We have shown how the es-

timation of LVs changes, and so the entire descriptive and predictive power

of the model, if we consider the indicators according to their real nature and

if we include mediating relationships among the constructs. Moreover, we

have treated the problem of the heterogeneity of data. We have seen how



Chapter 3. Some developments in PLS - PM for the building of Composite
Indicators 101

a unique model for the construction of CIs is not always well suited to the

entire population that we are studying, but that are local models for each

population according to its own characteristics; we have experienced this

phenomenon through two approaches known in the literature, the PATH-

MOX and REBUS-PLS Approaches, that, as they are constructed from two

different perspectives, lead to different results. It is important to point out

the main difference between REBUS-PLS and PATHMOX: REBUS-PLS Ap-

proach does not require the identification of a target variable and it allows

us to obtain units classification taking into account units performance for

both the structural and the measurement model, while in PATHMOX Ap-

proach the available external information is used to identify different seg-

ments and to cluster units.



Chapter 4

Higher-Order Constructs in

PLS-PM

4.1 Introduction

As has been said in the first Chapter, many phenomena are complex and

based on different levels of abstraction. Just think of the concept of poverty,

that for many years was measured by referring only to the country’s in-

come. Sen [152] was the first person to recognize that the concept of poverty

requires a multidimensional approach that focuses its attention not only

on the strictly monetary characteristics of the phenomenon, but also on

other aspects of people’s daily lives, such as labor, environment, social re-

lations, knowledge and health, which represent its sub-dimensions. There-

fore, PLS-PM is a suitable tool for the investigation of this kind of model

with a high level of abstraction, in cases where the building of a system of

CIs depends on different levels of construction.

Almost 25 years ago Noonan and Wold [115] observed: "Path analysis with

hierarchically structured LVs within the framework of PLS is at an early

stage of development, and research is still under way". Fortunately, in

the last few years, research into the use of Higher-Order Construct Models

using PLS-PM has been undertaken and several applications developed.

The use of Higher-Order Construct Models has allowed researchers to ex-

tend the application of PLS-PM to more advanced and complex models.

102
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In the content of PLS-PM models, Higher-Order Construct have shown an

increasing popularity in the last few years. Several authors have discussed

both the theoretical and empirical contributions hierarchical models can

make [33];[71];[73];[97];[178]. Both Covariance-Based structural equation

modeling (CB-SEM) and PLS-PM can be used to estimate the parameters in

Higher-Order Construct models [178]. For Covariance-Based SEM, guide-

lines and empirical illustrations are generally available [33]. For PLS-PM,

guidelines are mainly available for Higher-Order Construct models with

reflective relationships ([94];[178];[186]). However, Ringle et al. [73] show

that Higher-Order Construct models with reflective relationships in the

First-Order and Second-Order of the hierarchy represent only a minority

(20%) of the models applied in MIS Quarterly. Thus, there is a great need

for guidelines on using hierarchical construct models with formative rela-

tionships in PLS-PM, as the Second-Order model for social capital by Koka

and Prescott [85] clearly exemplifies.

Higher-Order Constructs Models, also known as Hierarchical Models, or

Multidimensional Constructs are explicit representations of multidimen-

sional constructs that exist at a higher level of abstraction and are related

to other constructs at a similar level of abstraction completely mediating

the influence from or to their underlying dimensions [13]; [12]. Law et

al. [90] define “[...] a construct as multidimensional when it consists of a

number of interrelated attributes or dimensions and exists in multidimen-

sional domains. These dimensions can be conceptualized under an over-

all abstraction, and it is theoretically meaningful and parsimonious to use

this overall abstraction as a representation of the dimensions.” Establishing

such a higher model component, usually required in the context of PLS-PM

[94], most often involves testing Second-Order Constructs that contain two

layers of constructs. This kind of model is often limited to a Second-Order

hierarchical structure, and can be defined as a construct involving more

than one dimension [33]; [71]; [89]; [97]; [113]; [118]. As such, it can be dis-

tinguished from unidimensional constructs, which are characterized by a

single underlying dimension [113].

There are three main reasons for the inclusion of a Higher-Order Constructs

Model in PLS-PM.
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- First, by establishing Higher-Order Constructs Models, researchers

can reduce the number of relationships in the structural model, mak-

ing the PLS-PM more parsimonious and easier to grasp.

- Secondly, Higher-Order Constructs Models prove valuable if the con-

structs are highly correlated; the estimations of the structural model

relationships may be biased as a result of collinearity issues, and dis-

criminant validity may not be established. In situations characterized

by collinearity among the constructs, a Second-Order Construct can

reduce such collinearity issues and may solve discriminant validity

problems.

- Thirdly, establishing Higher-Order Constructs Models can also prove

valuable if formative indicators exhibit high levels of collinearity. Pro-

vided that theory supports this step, researchers can split up the set of

indicators and establish separate constructs in a Higher-Order struc-

ture.

The utility of these models is based on a number of theoretical and em-

pirical grounds [33]. Proponents of the use of Higher-Order Constructs

have argued that they allow for more theoretical parsimony and reduce

model complexity [33]; [90]; [97]. Edwards [33] summarizes this argument

as theoretical utility; theory requires general constructs consisting of spe-

cific dimensions. This is closely related to the trade-off between accuracy

and generalization as suggested by Gorsuch [51], who argues that "factors

are concerned with narrow areas of generalization where the accuracy is

great [whereas] higher-order factors reduce accuracy for an increase in the

breadth of generalization. Law et al. [90] even state that "treating dimen-

sions as a set of individual variables precludes any general conclusion be-

tween a multidimensional construct and other constructs".

4.2 Estimation of Higher-Order Construct Models

Edwards [33] proposed an integrative analytical framework on the basis

of structural equation modeling, which allows for the simutaneous inclu-
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sion of higher-order constructs and their dimensions as LVs. In a structural

model, the Higher-Order Constructs may serve as either cause or effect by

being embedded in a nomological network. This approach also allows us

to derive the (indirect) effects of Lower-Order constructs, or dimensions,

on outcomes of the Higher-Order Construct as the pairwise product of the

loadings (or weights for formative constructs) and coefficients of the out-

comes. Moreover, SEM allows for the explicit specification of the direction

of the relationships between MVs and LVs [34].

4.2.1 Molecular and Molar Higher-Order Construct Models

Due to the determinate nature of the PLS algorithm that explicitly weights

measurement indicators to create construct scores, two types of Higher-

Order Construct can be modeled: what Chin and Gopal termed as Molecu-

lar and Molar Higher-Order Constructs [19]. Essentially, these two models

can be distinguished on the basis of the directions of the relationships be-

tween the MVs and LVs [89].

For the Molecular Higher-Order Constructs, or reflective construct mod-

els, the MVs are affected by the LVs (LVj → MVi), whereas for the Molar

Higher-Order Constructs, or the formative construct models, the relation-

ship is reversed (LVj ←MVi).

4.2.2 Types of Higher-Order Construct Models

Each of the Higher-Order Construct Model (HCM) types is characterized

by different relationships between the Higher-Order Constructs and the

LVs: the reflective relationship and the formative relationship. As we can

see in Figure 4.1, there are four main types of Higher-Order Construct

Model discussed in the extant literature ([71]; [178]) and used in appli-

cations [73]. These types of model have two elements: the Higher-Order

Construct (HOC), which captures the more abstract entity, and the Lower-

Order Construct (LOC) which captures sub-dimensions of the abstract en-

tity.
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Figure 4.1: Types of Higher-Order Construct

- One of the models most frequently applied in SEM among researchers

nowadays is the Reflective-Reflective Measurement Model known as

the Second-Order Construct Type I.

- Secondly, the Reflective-Formative Measurement Model Type II is sli-

ghtly different compared to the previous HCM, in which the HOC is

automatically formative constructs playing a double role. This model

comprises reflective and formative measurement models and is a struc-

tural model. According to Chin’s clarification the LOCs are selec-

tively measured constructs that do not share a common cause but

rather form a general concept that fully mediates the impact on sub-

sequent endogenous variables [13].

- Thirdly, the Formative-Reflective Measurement Model Type III is sli-

ghtly different compared to the Reflective-Formative Type II in the

explanation above. In this instance, a higher construct model will

be imposed by each MV (indicator) and at the same time the causal

effect from the HOC will be exerted on the LOCs that comprise the

indicator.

- Finally, the Formative-Formative Measurement Model Type III is the
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least frequently implemented in the structural model. This applica-

tion is appropriate when both the HOC and LOCs are in the form of

formative constructs.

4.3 PLS-based Approaches to Estimating Path Models

with Higher-Order Constructs

In the frame of the PLS-PM, three main approaches are presented in lite-

rature for dealing with Higher-Order LV models. These approaches are

described in detail in the next sub-sections.

4.3.1 The Repeated Indicators Approach

Wold’s original design of PLS path modeling does not consider Higher-

Order LVs; each construct has to be necessarily related to a set of observed

variables in order to be estimated. On this basis, Lohmöller [94] proposed a

procedure for the case of hierarchical constructs, the so-called Hierarchical

Component Model [186] or Repeated Indicators Approach [186];[94], or

Super-block Approach [166], which is the most popular approach when

estimating Higher-Order Constructs through PLS [175];[179];[190].

The procedure is very simple: “a Second-Order factor is directly measured

by observed variables for all the First-Order factors. While this approach

repeats the number of MVs used, the model can be estimated by the stan-

dard PLS algorithm” [124]. The manifests indicators, measuring each First-

Order LV, are simply repeated in order to represent the Higher-Order Con-

struct. For example, if a Second-Order LV consists of two underlying First-

Order LVs, each with two MVs, the Second-Order LV can be specified using

all the MVs of the underlying First-Order LVs, and thus the Second-Order

LV will be formed by four MVs.

Consequently, the MVs are used twice: for the First-Order LV (primary

loadings) and for the Second-Order LV (secondary loadings). Having thus

specified the outer model (the measurement model), the inner model (the

structural model) accounts for the hierarchical component of the model, as

it represents the loadings of the Second-Order LV on the First-Order LVs.
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Figure 4.2: Model building: the Repeated Indicators Approach

Obviously, this approach can easily be extended to Higher-Order models

[115]. As LV scores are determinate in PLS path analysis, LV scores for

Lower-Order LVs can be obtained [13], which can subsequently be used as

MVs for the Higher-Order LVs [178].

The Repeated Indicators Approach can be specified by considering the fol-

lowing three equations:

ξIq,1 = Bq,q ∗ ξIIq,1 + ζq,1 (4.1)

xp,1 = ΛIp,q ∗ ξIq,1 + δp,1 (4.2)

xp,1 = ΛIIp,q ∗ ξIIq,1 + εp,1 (4.3)

where the subscripts m and p are the number of, respectively, First-Order

LVs and MVs in the model, and the subscript q is the number of Second-

Order LV. The vectors ξI , ξII , x, ζ, δ and ε indicate respectively the first and

the Second-Order LVs, the MVs, and the structural and measurement errors

terms. The matrices B, ΛI and ΛII define the path coefficients linking the

LVs and the factor loadings linking, respectively, the MVs to the First-Order

and Second-Order LVs.The structural or inner model (4.1) specifies the re-

lationships among the First-Order and the Second-Order LVs. Equations

4.2 and 4.3 denote the measurement models, where the MVs, measuring
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each First-Order LV, are repeated in order to represent the Higher-Order

Construct.

This approach is the one most favored by researchers when using PLS for

modeling Higher-Order Constructs, due to its simplicity and also to the fact

that it has been presented most clearly by prominent PLS methodologists

(e.g. Wold and Lohmöller).

The advantage of the Repeated Indicators Approach is its ability to esti-

mate all constructs simultaneously instead of estimating Lower-Order and

Higher-Order dimensions separately. Thus, it takes the whole nomologi-

cal network, not only the lower level or the higher level model, into ac-

count, thereby avoiding interpretational confounding. When using the Re-

peated Indicators Approach, researchers have to make decisions regarding

the mode of measurement for the Higher-Order Construct and the inner

weighting scheme. Some authors list guidelines for using different model

types [6]. First, as for any construct in a PLS-PM model, the mode of

measurement for the Higher-Order Repeated Indicators needs to be spe-

cified (i.e. Mode A or Mode B). Usually, Mode A measurement is asso-

ciated with reflective constructs and Mode B is associated with formative

constructs [64]; [166]. The standard approach for repeated indicators on

a Higher-Order Construct Model is to use Mode A [186] which generally

suits reflective-reflective type models best. Therefore, formative type mo-

dels are often also estimated using Mode A for the repeated indicators,

especially when the First-Order Constructs are reflective (i.e., the reflective-

formative type) [16];[73], although the formative nature of the Higher-Order

Construct might suggest Mode B measurement. Therefore, most researchers

think it is more appropriate to use Mode B for the repeated indicators of

a formative type hierarchical LV model (i.e., the reflective-formative and

the formative-formative types). However, the importance of the mode of

measurement is usually not discussed in research papers presenting the

Repeated Indicators Approach, but only indirectly inferred from the di-

rection of the arrows in the path diagram [16];[73]. Secondly, besides the

mode of measurement, Lohmöller [94] analytically discusses how setting

the inner weighting scheme (factor or path weighting) together with the

mode (Mode A or Mode B) leads to different (or equal) results for the dif-
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ferent types of hierarchical LVs. Thus, researchers have to be aware that the

type of inner weighting scheme they choose can make an important differ-

ence to the results of a Repeated Indicator Model. However, Lohmöller

[94] does not provide any guidelines on which setting is more suitable for

each type. In addition, it is frequently mentioned that the Repeated Indi-

cators Approach is only advisable if the Lower-Order Constructs have an

equal number of indicators, because, otherwise, it will lead to biased load-

ings/weights for the Lower-Order Construct on the Higher-Order Con-

structs ([20];[94];[73]). However, to the best of our knowledge, an assess-

ment of this general assumption is missing in the literature.

A disadvantage of this approach is that there is a perceived effect of pos-

sibly biasing the estimates by relating variables of the same type together

by means of the PLS estimation. According to Rajala and Westerlund [122],

the Repeated Indicators Approach may be applied provided that all the

measurement relationships are of the reflective type. Formative structural

relationships from the First-Order to the Second-Order LVs can also be hy-

pothesized, as has been shown in different studies [53]; [99]. Moreover, the

repeated use of the same indicators can cause artificially correlated residu-

als [6].

4.3.2 The Two Step Approach

Another way to build a Higher-Order model is to use the Two Step Ap-

proach: the LV scores are initially estimated in a model without the Second-

Order construct [2]. Once the First-Order LV scores are computed, they are

subsequently used as indicators in a separate higher-order structural model

analysis. The First-Order LVs are then a linear combination of the Higher-

Order Construct, while the observed variables are directly related only to

the specific dimensions. Hence, it is termed a Two Step Approach. This

is typical of how analysts previously used factor scores prior to running

further regression analyses.

Such an approach may offer advantages when estimating Higher-Order

models with formative indicators [28]; [124]. The implementation is not

performed through a single PLS run; this implies that any Second-Order
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Figure 4.3: Model building: the Two Step Approach

Construct, investigated in stage two, is not taken into account when es-

timating LV scores in stage one. The first step of estimation is made by

considering only the measurement model which provides the estimation

of the First-Order Constructs, as reported in the following equation:

xp,1 = ΛIp,q ∗ ξIq,1 + δp,1 (4.4)

In the second step, the estimated scores ξ̂I , obtained in the first step, are

used as indicators of the Second-Order Construct:

ξ̂Iq,1 = Bq,1 ∗ ξII1,1 + ζq,1 (4.5)

Sanchez [142] suggests this way of computing scores for the LVs of Lower-

Order: we can obtain a score for a First-Order Construct by taking the first

principal component of its indicators. Next, the PCA scores of the Lower-

Order Constructs are subsequently used as indicators for the Higher-Order

Construct in a separate PLS path model.

When using the Two Step Approach, you usually use the mode of measure-

ment for the Higher-order Construct in the second stage that matches the

construct’s operationalization, (i.e., Mode B for a formative and Mode A

for a reflective construct). The Two-Stag Approach has the advantage of es-

timating a more parsimonious model on the higher level analysis without

needing the Lower-Order Constructs. On the downside, a clear disadvan-

tage of any Two Step Approach is that any construct that is investigated in
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stage two is not taken into account when estimating the LV scores at stage

one. This could encourage “interpretation confounding” [9]; [180]. Simi-

lar arguments have followed the use of the Two Step modeling approach

advocated by Anderson and Gerbing [3] in the CB-SEM literature. The im-

plementation is not one simultaneous PLS run.

Another important difference between the approaches emerges when hi-

erarchical LVs are used in a nomological network of LVs as an endoge-

nous construct (i.e., a consequence or criterion). When the Repeated Indi-

cator Approach is used, regardless of the type of measurement, Mode A

or Mode B, and the Higher-Order Construct is formative (i.e., reflective-

formative or formative-formative), the Lower-Order constructs already ex-

plain all the variance of the Higher-Order Construct (i.e., R2 equals 1.0).

Therefore, other antecedent constructs cannot explain any variance of the

Higher-Order Construct and consequently, their paths to the Higher-Order

Construct will be zero (non-significant) [73]; [178]. This problem does not

occur when the Two Step Approach is used for formative Higher-Order

Constructs [73]; [6].

A few studies have focused on a comparison of the two approaches and

they are limited to the case of reflective measurements [98]; [180]. From

a theoretical perspective, the two approaches lead to different definitions

of the Second-Order Construct. The difference lies in the level of the dis-

tinction between the measurement and structural models. While in the

Repeated Indicators Approach the Higher-Order LV is directly measured

by the whole set of MVs (which, in turn, measure the First-Order-specific

factors), in the Two-Step Approach the Second-Order Construct is directly

measured by means of the First-Order LVs. In the former case, the general

construct can be seen as a context variable and its meaning is independent

of the relationships with the First-Order Factors. This formalization could

apply when, for instance, you want to evaluate the effects of a perception

change that had happened in the Second-Order LV on the First-Order LVs

or, in the case of formative relationships, the effects of a perception change

in the First-Order LVs on the Second-Order LV. Therefore, the Repeated In-

dicators Model measures the intensity of the causal relationships between

sub-dimensions (the First-Order LVs) and the context. On the contrary,
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with the Two Step Approach, the meaning of the Second-Order Construct is

defined by the relationships with the sub-dimensions; that is, it is measured

and cannot exist before the estimation of the First-Order LVs. The relation-

ships reflect, or form, the composition of the Higher-Order LV; indeed, they

do not represent how much the First-Order LVs affect the Second-Order

LV, but the extent to which the First-Order Constructs reflect, or form, the

higher level of abstraction. So, the difference is in the directness of the im-

pact of the Second-Order LV on the observed variables. While the Repeated

Indicators Approach links directly the Second-Order LV both to the First-

Order LVs and the MVs, in the Two Step estimation the general construct

has direct effects on the sub-dimensions and only indirect effects on the

MVs. In a recent study, Wilson et al. [179] showed that the Second-Order

Constructs reliability does not depend on the approach adopted; anyway,

the Repeated Indicators Approach produces biased and less consistent es-

timates (in the case of small samples) compared to the Two Step Approach.

4.3.3 The Hybrid Approach

The third option for modeling Higher-Order Constructs is the Hybrid Ap-

proach. The Hybrid Approach works in a similar way to the Repeated Indi-

cators Approach, but uses each indicator only once in a model to avoid ar-

tificially correlated residuals. The idea behind this approach is to randomly

split all the MVs of the First-Order Constructs, so that half of their indica-

tors are represented on their respective First-Order Construct side and the

other half on the Second-Order Construct side. Thus, it uses half to estimate

the First-Order Construct and the other half to estimate the Second-Order

Construct, therefore avoiding the repeated use of indicators in the model

[180]. A clear disadvantage of this approach is the reduced reliability of the

measures having only half the number of indicators. This could be a par-

ticular problem as PLS-PM is known to be “consistent at large”, meaning

that the estimates are consistent if the sample size and number of indicators

increase [94]. Using the Hybrid Approach, there are no clear guidelines on

whether Mode A or Mode B should be used for the formative Second-Order

Construct. Wilson and Henseler [180] believe this approach has not been
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trialed in PLS and could overcome the criticism that is directed towards the

Higher-Order Constructs in that the indicators are repeated and therefore

via PLS iteration and estimation the analyst could be in some way relat-

ing the same items together. Naturally, the Hybrid Approach circumvents

this criticism. During the runtime of the algorithm, the Second-Order Con-

struct is generated by a proxy which is then assigned to the Second-Order

Construct (to derive the LV scores and path coefficients).

4.4 A Multidimensional Poverty Composite Indicator

based on Higher-Order Constructs

World poverty has always been considered to be one of the most serious

global problems and one that requires an immediate solution. Over the

years, national commissions and European and International organizations

have drawn up many proposals and implemented many attempts to com-

bat the incidence and persistence of this phenomenon, initiatives that often

involve inquiring into the most suitable measurement methods to be taken.

4.4.1 A brief history of Poverty Indices

For many years poverty was measured by using a purely economic ap-

proach, which involves the use of a single variable (income or consump-

tion). It is now universally recognized that the concept of poverty requires a

multidimensional approach that focuses its attention not only on the strictly

monetary characteristics of the phenomenon, but also on other aspects of

people’s daily lives, such as labor, environment, social relations, affective,

knowledge and health.

The multidimensional approach to poverty owes much to Amartya Sen

[152] according to whom poverty must be identified not only as an indi-

vidual material deprivation but also as a loss of real opportunities, a failure

to realize the fundamental goals and functions of human life such as: living

as long a life as possible, having sufficient food and shelter, enjoying good

health and the access to a system of education, and actively participating

in community life.
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In this regard, an important role is played by the United Nations Develop-

ment Programme (UNDP), which with the publication in 1990 of its first

Human Development Report (Human Development Report - HDR), intro-

duced the Human Development Index (HDI), a simple composite indica-

tor that measures, for each country, human development based on three

dimensions: (i) a long and healthy life, as measured by life expectancy

at birth; (ii) education level, measured by adult literacy rate (with a 2/3

weighting), and the gross enrolment in primary, secondary and tertiary ed-

ucation (with a 1/3 weighting); and (iii) a decent standard of living as mea-

sured by Gross Domestic Product per capita in Purchasing Power Parity.

The HDI corresponds to the simple arithmetic average of the indices of the

three dimensions.

In 1997 the HDI was combined with another indicator, which had been

for years the most comprehensive tool for measuring poverty, the Human

Poverty Index (HPI). While the HDI measures average achievements in ba-

sic dimensions of human development, the HPI measures deprivations in

the same dimensions. Poverty is then evaluated by referring to the exclu-

sion parameters. The HPI focuses on deprivation in the three essential di-

mensions already taken into account by the HDI: longevity, education and

a decent standard of living. The formula used to calculate the HDI index is

the following:

HPI =
[1

3
∗ (Pα1 + Pα2 + Pα3 )

] 1
α (4.6)

where P1 is the probability at birth of not reaching 40 years of age, P2 is

the adult illiteracy rate, and P3 is the unweighted average of people with-

out access to drinking water and the percentage of malnourished children

under 5 years. The α value has an important influence on the IPU index

construction, as it serves to encourage a consideration of the value of the

three individual indices. In fact, if α = 1, the index would correspond only

to the average of the dimensions that constitute it, and the impact of the

size of this, since the increase is of one unit for each EIs, would be the same

regardless of the level of deprivation for each dimension. Considering a

value of α> 1, it will assign a higher weight to the dimension in which the
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level of deprivation is greater The value of α = 3 is chosen because this

value allows you to attribute a greater impact to the dimension that has the

greatest deprivation, but without that impact being too great. The HPI is

derived separately for developing countries (HPI1) and a group of select

high-income OECD countries (HPI2) to better reflect socio-economic dif-

ferences and also the widely different measures of deprivation in the two

groups. For OECD countries the HPI2 index takes account also of social

exclusion:

HPI2 =
[1

3
∗ (Pα1 + Pα2 + Pα3 + Pα4 )

] 1
α (4.7)

where P4 is the rate of long-term unemployment (lasting 12 months or

more).

In 2010 The Multidimensional Poverty Index (MPI) was developed by the

Oxford Poverty & Human Development Initiative and the United Nations

Development Programme. It uses different factors to determine poverty

beyond income-based lists.

4.4.2 The Higher-Order Multidimensional Poverty Composite In-
dicator (MP-CI)

Grassia et al. [52] propose the PLS-Path Modeling Approach to derive a

measure of poverty taking into account its multidimensional nature. The

model, shown in the Figure 4.4, uses the four dimensions considered by the

index HPI2: (i) Health; (ii) Education; (iii) Employement and (iv) Living

Standards.

They have chosen a super-block model where the CI of Multidimensional

Poverty is the endogenous variable, while Health, Education, Employe-

ment and Living Standards are exogenous variables. The basic indicators

(MVs) have been transformed into a scale from 0 to 100, where 100 repre-

sents the worst evaluation.

Each of these four dimensions was measured by EIs and the relationship

between them and the respective LV is assumed to be reflective: every LV

is the reflection of the MVs to which it is connected.
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Figure 4.4: Human Poverty Composite Indicator Model Based

The MVs, in relation to the respective latent construct, are shown in Table

4.1.

The data are related to the year 2007; note that for some variables, because

of the lack of data for that year, the previous or the following year was

taken as the reference.

The model was developed with reference to the European Community coun-

tries. Malta and Luxembourg were excluded from the analysis, while Nor-

way, which is not part of the European community, was considered instead.

Therefore, the number of countries considered is 28.

The descriptive statistics analysis for each variable allowed to identify out-

liers. These values were been replaced with the maximum value of the dis-

tribution. Next, the variables were been normalized in order to "standard-

ize" their units of measurement; the following transformation was applied

on each variable:

Z =
X −min(X)

max(X)−min(X)
(4.8)

Finally, in the case of missing data, among the possible methods of imputa-

tion, that of the "nearest neighbors" was used, which consists in introducing

a concept of similarity between the units, based on a distance function.
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Table 4.1: LVs and MVs of the Multidimensional Poverty CI

LVs (CIs) MVs Source

Health

Health expenditure per capita Worldbank 2007

Infant Mortality Rate Worldbank 2007

Life expectancy at birth Worldbank 2007

Hospital beds Eurostat yearbook 2011

Rate of Maternal Mortality Worldbank 2007

Number of doctors Eurostat yearbook 2011

Education

Internet Worldbank 2007

Graduates Unesco 2007

Education expenditure per capita Eurostat yearbook 2011

Illiteracy rate UNDP 2007

Average School Attendance in years UNDP 2007

Book reading Eurobarometro 2007

Employment

Participation rate Worldbank 2007

Unemployment rate Worldbank 2007

Youth Unemployment Rate OECD 2007

Rate of Part-Time Employment Eurostat 2007

Female Employment rate Worldbank 2007

Living Standards

Housing overcrowding rate Eurostat 2007

Available income Eurostat 2007

Owned apartments Worldbank 2007

Electricity consumption Worldbank 2007

Owned cars Eurofound 2007

4.4.3 The three Higher-Order Constructs Approaches compared

The latent concept of Multidimensional Poverty is considered as a synthesis

of its sub-dimensions, devoid of its own MVs, and therefore it is regarded

as hierarchical.

We have considered the following models:

- The Repeated Indicators Approach, for the estimation of the MP-CI

as a Second-Order Construct which is formatively related to its First-

Order dimensions and reflectively measured by its MVs (which are
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the entire set of indicators of the First-Order dimensions);

- The Two Step Approach, for the estimation of the MP-CI as a Second-

Order Construct which is formatively related to its First-Order di-

mensions and reflectively measured by its MVs (which are the PCA

Components of each First-Order dimension estimated in stage one);

- The Hybrid Approach for the estimation of the MP-CI as a Second-

Order Construct. The same links exist between the First-Order di-

mensions and the Second-Order Construct and between the Second-

Order Construct and its indicators. The indicators are randomly split

in two orders.

The assessment of a structural model estimated with the PLS-PM approach

involves the inner as well as the outer model measures of quality. Since

the First-Order Constructs are reflectively related to their indicators, tradi-

tional measures of reliability can be used to assess the quality of the mea-

surement model. As has been mentioned above, the internal consistency of

each construct, assessed through the Composite Reliability and Cronbach’s

α indexes, is the most commonly used quality criterion for the measure-

ment model. Furthermore, another widely used index in PLS literature is

the communality index, which measures the amount of MV variability ex-

plained by the corresponding LV. Table 4.2 reports the Reliability Measures

of the First-Order Constructs, while Table 4.3 the Reliability Measures of

the Higher-Order MP-CI for each approach.

Table 4.2: Reliability Measures of the First-Order Constructs

Health Education Employment Living Standards

Cronbach’s Alpha 0.880 0.789 0.900 0.905

Composite Reliability 0.914 0.865 0.927 0.931

Communality 0.680 0.619 0.717 0.730

All Cronbach’s α indexes are close to the conventional acceptability thresh-

olds of 0.7 for all First-Order Constructs. As concerns the Second-Order

Construct, the Repeated Indicators Approach appears to generate a more
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Table 4.3: Reliability Measures of the Higher-Order MP-CI for each ap-

proach

Repeated Indicators Two Step Hybrid

Approach Approach Approach

Cronbach’s Alpha 0.945 0.875 0.857

Composite Reliability 0.953 0.915 0.892

Communality 0.525 0.730 0.520

reliable construct than the other two approaches (α of Repeated Indicators

Approach = 0.945 against α of Two Step Approach = 0.875 and α of Hybrid

Approach = 0.857). However, it is worth emphasizing two aspects of the

α coefficient. First, the index at issue is a function of the number of items

in the scale: in the first approach, the MP-CI has 19 MVs (that are MVs of

the First-Order Construct repeated in the Second-Order Construct), while

in the second, the MP-CI has only 4 items (that represent a PCA Compo-

nent for each block), and in the third, it has 8 MVs (that are randomly split

MVs). Secondly, a high level of α does not imply the unidimensionality

of the construct, being a measure of the average intercorrelation among

the items. Despite the high level of α, the MP-CI is clearly measured by

the MVs belonging to several dimensions, which are indeed highly inter-

correlated. The composite reliability is higher than 0.7 for all constructs,

both First-Order and Second-Order Constructs. The communality of the

Two Step Approach is higher than that of the other two approaches (the

communality of the Two Step Approach, which is equal to 0.730, against

the communality of the Repeated Indicators Approach, which is equal to

0.525 and communality of Hybrid Approach, equal to 0.520). Therefore, the

amount of variability of the MVs captured by the MP-CI construct is very

small when the Repeated Indicators and Hybrid Approaches are adopted;

conversely, the communality is slightly higher in Two Step Approach. It is

important to note that the low value for communality obtained with the Re-

peated Indicators and Hybrid Approaches is due to the fact that the Higher-

Order Construct is measured by all heterogeneous items of the lower-order

construct, and this affects negatively the construct’s internal consistency.
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The significance of the structural parameters linking the First-Order and

Second-Order Constructs in the model is considered for the evaluation of

the hypothesized relationships. PLS performs the estimation of the regres-

sion coefficients in the structural equation model; the bootstrap procedure

approximates the sampling distribution of the estimator by re-sampling

from the original sample, in order to test the parameters’ significance. The

analysis used 200 replications, with a bootstrap sample equal to 1000. In

order to assess the significance of the path coefficients, Table 4.4 reports the

value and significance of the structural coefficients linking the First-Order

dimensions to the MP-CI.

Table 4.4: Path Coefficients and t-statistics for each approach (non-

significant parameters are marked in bold)

Repeated Indicators Two Step Hybrid

Approach Approach Approach

Health
path 0.288 0.328 0.332

t-value 3.28 2.32 2.50

Education
path 0.203 0.274 0.503

t-value 4.02 3.34 3.19

Employment
path 0.304 0.297 0.226

t-value 4.13 3.09 0.97

Living Standards
path 0.341 0.252 0.062

t-value 3.24 2.20 1.29

In the Second-Order Hybrid Approach the last two parameters, linking

Employment and Living Standards to the MP-CI are not significant. In the

Repeated Indicators Approach Employment and Living Standards are the

most important dimensions, while in the Two Step Approach Health and

Employment dimensions prove to be the most influential among all the fac-

tors. Not considering the third approach, since it produces no significant

estimates, the main difference between the Repeated Indicators and Two

Step approaches concerns the path coefficients linking the Second-Order

LV, the MP-CI, with the First-Order Constructs Health and Living Stan-
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dards : in the case of the Repeated Indicators Approach, the strength of

the association of Living Standards (β=0.341) is higher than that of Health

(β=0.288). In the case of Two Step Approach this association changes: the

Health block is stronger than the Living Standards one. It should be noted

that in the Living Standards block an important role is played by the MV

of available income, that, in the Repeated Indicators Approach, has a rel-

evance in defining the path coefficients. If we consider the Two Step Ap-

proach, this block is resized, and therefore also the relevance of income,

considering the Health PCA Component, is the best among the four PCA

components representing the blocks.

The explained variance with the three approaches is shown in Table 4.5.

Table 4.5: Explained variance of the three approaches

Repeated Indicators Two Step Hybrid

Approach Approach Approach

0.525 0.729 0.504

As we can see, the highest amount of explained variance is reached with

the Two Step Approach (0.729).

4.4.4 The Two Step Approach and its results

The PLS algorithm allows, in addition to determining the value of the weights

of each variable and showing the value of the path coefficients, allowed us

also to determine a score for all the LVs in the model. In this way we could

build a list of all European Community countries, so as to identify those

countries with a higher incidence of poverty. The ranking, in addition to

revealing the MP-CI score calculated, and also the LV score associated with

it, is in such a form as to highlight the aspect that has the greatest impact in

determining poverty for each country. The scores are normalized and then

carry values ranging from 0 (lowest level of poverty) to 100 (maximum

level of poverty) (Table 4.6).
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Countries Health Education Employment Living Standards MP-CI

1 Turkey 100 84.7 86.44 77.55 94.27

2 Romania 95.86 70.15 57.89 88.04 83.66

3 Macedonia 74.84 78.1 77.84 80.21 82.84

4 Bulgaria 72.78 75.51 64.98 79.99 76.79

5 Croatia 59.91 73.6 73.53 72.46 73.97

6 Poland 60.45 52.34 70.91 68.03 65.75

7 Hungary 61.1 37.33 73.58 70.62 62.49

8 Lithuania 64.34 50.37 49.94 67.78 59.46

9 Slovakia 58.28 31.25 67.33 68.98 57.88

10 Latvia 77.89 40.97 40.19 64.9 57.59

11 Greece 25.89 73.67 74.89 47.45 55.37

12 Estonia 68.49 33.41 35.93 61.54 50.48

13 Italy 26.09 62.95 72.61 37.64 49.13

14 Slovenia 48.7 57.6 37.79 52.23 49.12

15 Cyprus 45.12 81.76 33.9 38.56 48.76

16 Portugal 37.89 74 43.84 40.67 48.65

17 Spain 32.02 57.58 56.55 34.49 44.37

18 Czech Republic 44.57 32.86 46.19 50.09 41.09

19 Belgium 31.05 42.21 53.85 26.39 38.16

20 France 27.48 43.18 52.19 29.61 37.23

21 United Kingdom 41.69 32.69 26.53 27.72 30.81

22 Ireland 28.74 35.68 25.47 31.24 27.2

23 Germany 29.3 26.57 35.36 23.65 26.46

24 Finland 35.81 18.06 37.58 19.11 25.08

25 Austria 20.09 43.15 24.93 24.74 24.88

26 Denmark 27.48 16.58 8.4 30.79 17.77

27 Sweden 21.43 13.76 24.61 14.14 14.79

28 Netherlands 27.63 12.91 5.73 20.38 12.54

29 Norway 14.04 6.04 0 9.97 2.37

Table 4.6: Ranking of countries according to the MP-CI scores based on the

Two Step Approach

In order to interpret the previous results we proceeded with a CI Decision

Matrix, in which the critical aspects that have a negative impact on Poverty

are highlighted.

In Figure 4.5 the scatter plot for the MP-CI based on Two-Step Approach

is reported. According to this analysis, Health proves to be especially crit-

ical for the MP-CI. In the area to maintain there is Employment. Living

Standards is in the area to increase: the impact of this LV on MP-CI is low

compared to its mean value. The CI Education is in the area to be improved.
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Figure 4.5: The scatter plot of the MP-CI based on the Two Step Approach

4.4.5 Conclusions for Higher-Order MP-CI

The empirical case of a Multidimensional Poverty Composite Indicator was

analyzed in order to show and compare three main approaches for the

PLS-PM parameter estimation in the presence of Higher-Order Constructs.

In particular, this paragraph has focused on the Second-Order Constructs

similar to the Type II category reported by Jarvis et al. [71], where the

model defines reflective First-Order constructs and a formative Second-

Order Construct.

The case study has revealed that the Hybrid Approach has bad perfor-

mances in terms of measurement indexes and global indexes, and, in addi-

tion it produces non-significant parameters. Moreover, in the Repeated In-

dicators Approach, the path coefficients reported in Table 4.4 (0.288; 0.203;

0.304; 0.341) define the intensity of the causal relationships between the

MP-CI and its four dimensions, represented by First-Order LVs. This means,

for instance, keeping the other parameters constant, if we increase Health

by a quantity equal to 1, the perception of poverty will increase by 0.288.

In the Two Step Approach, the relationships between Health, Education,
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Employment and Living Standards are structural coefficients of a mea-

surement model. The path coefficients (0.328; 0.274; 0.297; 0.252) reflect

the composition of the Second-Order MP-CI ; they do not represent how

much the First-Order Dimensions affect the Higher-Order Construct, but,

rather, the extent to which the higher level of abstraction is formed by its

Lower-Order Constructs.

4.5 Conclusions

Generally, the choice of the best approach clearly depends on the type of

design.

In the case where a Second-Order Construct is formatively related to the

First-Order Dimensions and each construct is reflectively measured by its

MVs, the Two Step Approach works better than the other two approaches.

As regards the amount of explained variance, the Two Step Approach pro-

duces better explained relationships between the two orders of the model.

Additionally, with regard to the parameter estimation, in general, the Two

Step Approach is the best.

Next, we can conclude that for the Repeated Indicators Approach, the Second-

Order LV, being hierarchically superior, could be seen as a context variable

and the focus is on the impact of the First-Order LVs on the Higher-Order

LV. In the Two Step Approach, the Second-Order LV is measured by the

First-Order LV and the aim is to understand to what extent each First-Order

LV reflects (in terms of covariance) the composition of the Second-Order

level. Moreover, the Two Step Approach proves suitable for the estima-

tion of formative Second-Order Constructs since it produces estimates that

are better than those obtained through the Repeated Indicators Approach.

In addition, the Two Step Approach is more theoretically consistent than

the Repeated Indicators Approach in the definition of the Second-Order LV

measurement model. As a matter of fact, reflectively measured constructs

require homogeneous indicators and the Two Step Approach, using an LV

component instead of the entire set of MVs, reduces the heterogeneity in

the indicators.



Chapter 5

New methods in PLS Path

Modeling for the building a

System of Composite

Indicators

5.1 Introduction

The importance of modeling and estimating Higher-Order Construct, from

both a theoretical and an empirical point of view, has been recognized

by many researchers since the dawn of factor analysis [67]; [151] and has

been emphasized in many studies recently [34];[81];[97]. Unfortunately, the

research is almost exclusively conducted in the area of covariance-based

SEM. Neverthless, the aim of estimating Higher-Order Constructs can be

achieved by means of PLS-PM [95];[186]. Three different approaches that

allow you to model and estimate Second (and Higher)-Order Constructs

and their relationship with other constructs in a nomological network have

been adopted in the literature. In the Chapter 4 these approaches to Higher-

Order Constructs have been described in detail and some of their limita-

tions discussed.

Now we will only focus on certain of these limitations, that are typical of

Two Step Approach: namely, the meaning of component for each Lower-

126
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Order Construct and the possibility of choosing the number of these com-

ponents in the analysis of the Higher-Order Construct.

In the classic Two Step Approach, the only first component of the Lower-

Order Constructs is estimated without the Higher-Order Construct. This

first component is the one that best represents its block of MVs. Next, these

first components are included in the analysis as indicators of the Higher-

Order Construct.

Therefore, this approach presents two important limitations related to com-

ponents of each block: only one component is chosen for each block, and

this has a strong representative power but a weak predictive power in the

analysis of the Higher-Order Construct. For these reasons, in order to over-

come these two drawbacks, in this work two alternative methods to esti-

mate the Higher-Order Constructs are proposed. In particular, in order to

resolve the issue related to the predictive power of the component for each

Lower-Order Construct, the Mixed Two Step Approach is proposed and,

regarding the choice of the number of components for each block, the Par-

tial Least Squares Component Regression Approach is proposed. These

approaches will be described in detail in the next section, and for each ap-

proach a simulation and an application on real data will be presented.

5.2 The First Alternative Approach: "The Mixed Two

Step Approach"

Sanchez [142] suggests an way in order to compute scores for the Lower-

Order LVs: you can obtain a score for a First-Order Construct by taking the

first principal component of its indicators. Next, the PCA scores of Lower-

Order Constructs are subsequently used as indicators for the Higher-Order

Construct in a separate PLS path model. This component captures accu-

rately the structure of variability of block so as to maximize the represen-

tativeness of the block. Its limitation is that, in a path model where all

relationships among the LVs are considered, it is not able to predict the

endogenous LV. For this reason, in this work we propose an alternative

approach that computes in a different way the scores for the LVs of the
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Lower-Order.

5.2.1 The Mixed Two Step Approach implemented in PLS-PM

The Mixed Two Step Approach begins with the implementation of the PLS-

PM in the case of the Repeated Indicators Approach. In this way, the algo-

rithm gives the scores of the Lower-Order blocks. Then, the scores of the

blocks are used as indicators of the Higher-Order Construct, and at this

point the PLS-PM algorithm is performed again.

Schematizing, the Mixed Two Step Approach consists of two steps:

- First, a Higher-Order Construct is formed by all the MVs of the Lower-

Order Constructs and the PLS-PM algorithm is performed;

- The scores for each block obtained after the implementation of the

algorithm are used as MVs of the Higher-Order Construct and the

PLS-PM algorithm is performed again.

In the following sections these steps are described in detail, considering

only the Second-Order Construct.

So, initially, because the Second-Order Construct has no MVs of its own,

we consider it as formed of all the MVs of the First-Order Constructs, as in

Figure 5.1.

Firstly, the outer model of the First-Order Constructs is expressed by the

classic equation of PLS-PM:

ξIq =

Pq∑
p=1

ωpqxpq + δq (5.1)

while the structural model, that specifies the relationships between the LVs

on the First-Order Construct and the Second-Order Construct, is repre-

sented by the following equation:

ξIIj =
∑

(q:ξIq→ξIIj )

βqjξ
I
q + ζj (5.2)

where ξIIj is formed by all the MVs of the First-Order Construct:
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Figure 5.1: Second-Order Construct with all the MVs of the First-Order

Construct

ξIIj =

Pq∑
p=1

ωpqxpq + δq (5.3)

Starting from this structure, a PLS-PM algorithm is performed in such a

way as to obtain the scores of each block (Figure 5.2):

Once the scores for the blocks have been obtained, these will be the MVs of

the Second-Order Construct (Figure 5.3).

The outer model equation of the First-Order Construct and the structural

model equation are the same as before:

ξIq =

Pq∑
p=1

ωpqxpq + δq (5.4)

ξIIj =
∑

(q:ξIq→ξIIj )

βqjξ
I
q + ζj (5.5)

while the outer model equation of the Second-Order Construct becomes a

function of the components obtained:

ξIIj =
Q∑
q=1

ωhξ̂Iq + δj (5.6)
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Figure 5.2: The scores of each Lower-Order Construct

At this moment, once that scores of the PLS-PM are assigned as indicators

of the Second-Order Construct, the PLS-PM algorithm can be implemented.

Therefore, we propose this method in order to use the component that is the

best representative of its block and, at the same time, has the best predictive

power on the Higher-Order LV.

5.3 The Second Alternative Approach: "Partial Least

Squares Component Regression Approach"

In the Two Step Approach only the first component of the block is esti-

mated. As has already been said, according to Sanchez [142], the first prin-

cipal component is taken into account. The Principal Component Analysis

(PCA) is a multivariate statistical method which consists in synthesizing a

block of MVs and extracting the most relevant information that describes

the systematic variability of the block. Choosing only the first component,

it can happen that the remaining portion of the variability of the block is

not taken into account. For this reason, the PLS Component Regression Ap-

proach is proposed in order to overcome the problem related to the num-

ber of components of the Lower-Order Constructs, giving the possibility of

choosing the number of components to be extracted manually or according
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Figure 5.3: Second-Order Construct with the PLS scores of the First-Order

Construct

to a criterion. In addition, since the aim of PLS-PM is to estimate the rela-

tionships between the LVs, this approach provides components that are at

the same time representative of their blocks and predictive of the Higher-

Order Construct.

5.3.1 The PLS Regression method

PLS Regression is the method that most people think of when hearing the

acronym PLS. Briefly, PLS Regression is just an algorithm for regression

analysis in which we want to analyze one block of response variables Y in

terms of another block of predictor variables X. When we have more than

one response variable, we talk about PLS-R2, the PLS version of multivari-

ate regression.

This technique allows you to relate a set of predictor variables to one or

several response variables. At the same time, PLS-R decomposes the pre-

dictor matrix by sequentially extracting orthogonal components which at

the same time summarize the explanatory variables and allow a modeling

and predicting of the response variables. PLS-R can be included among

regularized regression methods, as PLS estimators have be proved to be

shrinkage estimators [26]. From the algorithmic point of view, PLS Regres-

sion can be seen as an extension of the Non Linear Iterative Partial Least



Chapter 5. New methods in PLS Path Modeling for the building a System
of Composite Indicators 132

Squares (NIPALS) algorithm to the analysis of a cross-covariance matrix.

Moreover, it can be considered as a slightly modified version of the two

blocks of the PLS-PM algorithm.

Let x1, x2....xP be a set of P predictor variables and y1, y2, ...yR be a set of

R response variables measured on N observations. We suppose that all

variables are centred. The PLS-R model assumes that there is a common

structure underlying the two blocks of variables, and that this structure can

be summarized by a few latent components th(h = 1....H), calculated as a

linear combination of the predictor variables. The predictor and response

matrices X and Y are decomposed as:

X = THP
′
H + EH (5.7)

Y = THC
′
H + FH (5.8)

where PH and CH are the loading matrices, and EH and FH the residual

matrices representing the part of the variability in the data due to noise.

The parameters of the model are calculated by means of the PLS Regression

algorithm, also called PLSR2 in the multiple response case and PLSR1 in the

single response case [164].

A detailed review of the mathematical properties and the algorithm of PLS-

R is given in Tenenhaus [164].

From the computational point of view, the PLS-R algorithm can extract a

number of components equal to the rank of X. However, the PLS Regres-

sion model supposes that the common information carried by the X and Y

matrices can be summarized in a few latent components. So, a crucial is-

sue in the PLS-R model is the definition of the number H of components to

retain. In PLS Regression the explicative ability of the model (measured in

terms of the R2 index) increases as long as the number of the components

increases. On the contrary, the predictive ability of the model, intended as

the explicative ability of the model referred to units that have not been con-

sidered in building the model (the validation set), begins to decrease after

a certain number of components. This means that the model overfits the

data, and the extraction of the components has to stop.
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A cross validation procedure is usually performed in order to evaluate if

the h − th component increases the predictive ability of the model. The

original sample is partitioned into S sub-samples. For S times, a different

subsample is retained as validation data and the remaining (S-1) subsam-

ples are used as training data. Each time, for each unit of the validation set,

the squared prediction errors e2(−i)r referred to yr are calculated. For each

h-component model, the PRediction Error Sum of Squares (PRESS) index is

obtained as:

PRESSrh =
∑

e2(−i)r (5.9)

Model over-fitting is investigated by plotting the PRESS index against the

number of components. Typically, PRESS decreases for a certain of com-

ponents; then, it begins to increase. Obviously, the number of components

giving the minimum PRESS is chosen. In order to measure the marginal

contribution of the h-th component to the predictive power of the model

the Q2 index [4] is used:

Q2
h = 1−

∑R
r=1 PRESSrh∑R
r=1RESSr(h−1)

(5.10)

where RESShr is the sum of the squared residuals of yr in a h − 1 com-

ponent model on the whole dataset. There are no ad hoc tests to assess

the significance of this index; in practice, the h-th component is retained if

Q2
h ≥ 0.0975.

The regression equation

PLS Regression provides a classic regression equation, in which the re-

sponse is estimated as a linear combination of the predictor variables. The

following equation can be derived from the last step of the PLS-R algo-

rithm:

Y = t1c’+1 t2c’2 + tHc’H + FH = THC’H (5.11)

This is the regression equation of a H-component PLS-R model, where the

response variables are expressed as a function of the PLS components. In a
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PLS-R algorithm each th is calculated as a function of Eh−1:

th = Eh−1ωh (5.12)

In a model withH components, the matrix TH of the X-scores factors can be

obtained as a function of the original X variables. After some replacements,

we obtain the responses as a linear function of the predictor variables:

Y = THC’H + FH = XBPLSH + FH (5.13)

where BPLSH is the matrix of the coefficients of anH-component PLS regres-

sion model.

5.3.2 The PLS-Regression implemented in Higher-Order PLS-PM

The PLS-R model assumes that there is a common structure underlying the

two blocks of variables, and that this structure can be summarized by a few

latent components th(h = 1...H), calculated as a linear combination of the

predictor variables.

In the case of a Higher-Order Construct, Lower-Order Constructs are con-

sidered as blocks of predictor variables and the Higher-Order Construct as

a block of response variables. In this way, PLS-Regression for each block

is performed, so as to obtain h components for each block. Next, these h

components will represent MVs of the Higher-Order Construct.

Schematizing, the PLS Component Regression Approach consists of three

steps:

- First, a Higher-Order Construct is formed of all the MVs of the Lower-

Order Constructs;

- PLS-Regression is applied in order to obtain h components for each

block;

- Once h components have been obtained, these will be MVs of the

Higher-Order Construct and the PLS-PM algorithm is performed.

This method, at the moment, is applied only for the Higher-Order Con-

struct at the second level. In the following section the steps are described
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in detail, considering only the Second-Order Construct. So, initially, be-

cause the Second-Order Construct has no MVs of its own, we consider it

formed of all the MVs of the First-Order Constructs, as in Figure 5.4.

Figure 5.4: Second-Order Construct with all the MVs of the First-Order

Construct

First, the outer model of the First-Order Constructs is expressed by the clas-

sic PLS-PM equation:

ξIq =

Pq∑
p=1

ωpqxpq + δq (5.14)

while the structural model, which specifies the relationships between the

LVs on the First-Order Construct and Second-Order Construct, is repre-

sented by the following equation:

ξIIj =
∑

(q:ξIq→ξIIj )

βqjξ
I
q + ζj (5.15)

where ξIIj is formed by all the MVs of the First-Order Construct:

ξIIj =

Pq∑
p=1

ωpqxpq + δq (5.16)

Starting from this structure, PLS-Regression is applied for each block of the

First-Order Construct, where each block of the First-Order represents a set

of Predictor Variables and the Second-Order Construct is a set of Response

Variables.
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Once h components for blocks have been obtained, these will be the MVs

of the Second-Order Construct (Figure 5.5):

Figure 5.5: Second-Order Construct with the PLS-R Component of the First-

Order Construct

The outer model equation of the First-Order Construct and the structural

model equation are the same as before:

ξIq =

Pq∑
p=1

ωpqxpq + δq (5.17)

ξIIj =
∑

(q:ξIq→ξIIj )

βqjξ
I
q + ζj (5.18)

while the outer model equation of the Second-Order Construct becomes a

function of the components obtained:

ξIIj =
H∑
h=1

ωhT
I
h + δj (5.19)

At this moment, once the PLS-R Components are assigned as indicators of

the Second-Order Construct, the PLS-PM algorithm can be implemented.

This approach is proposed in order to overcome the drawback of the Two

Step Approach related to the number of components chosen in the First-

Order Constructs, and so captures as much of the variability of the block as

possible.
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5.4 Simulation Study

The aim of this study is to investigate, within the same simulation design,

the performance of classic Two Step Approach and the Mixed Two Step and

PLS Component Regression Approaches when a block is modeled as reflec-

tive and the path structure is modeled as formative. The object of the sim-

ulation is to compare these performances using different sample sizes, in

order to understand the effect of the sample dimension. The performances

are evaluated by means of the prediction accuracy, the estimate bias and the

efficiency of the considered approaches. The following paragraphs report

the simulation plan and some comments on the results obtained.

5.4.1 Data Generation

The Monte Carlo simulation was conducted by the R language package.

The data generation process is consistent with the procedure described by

Paxton et al. [117] for a Monte Carlo SEM study. As a first step, we define

the structure of the model and the parameters of the population. In the

second step, we generate randomly the Second-Order LV and given the pa-

rameters and the error terms, we estimate the First-Order LVs. According

to the outer parameters and error terms, in the last step, we generate the

First and Second-Order MVs. The underlying population model used for

the simulation consisted of one Second-Order LV (denoted by ξII ) and four

First-Order LVs (denoted by ξI1 , ξI2 , ξI3 , and ξI4), each of them formed by five

MVs. Figure 5.6, for simplicity, reports only the LVs.

The relationship between the First and Second-Order LVs is also modeled

as formative, so that the construct of the higher level can be seen to be

generated by the LVs of the Lower-Order.

The three approach performances have been compared on the basis of the

sample size (n = 50, 100, 300, 1000). The study design considers 500 repli-

cations for each condition.

Obviously, the Second-Order LV, in terms of the number of items, differs

according to the estimation approach used: for the Two Step and Mixed

Two Step Approaches, it will correspond to the number of First-Order LVs

(which is 4) while for the PLS Component Regression Approach, the nu-
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Figure 5.6: Path diagram for the Higher-Order Construct

merosity of block depends on the number of components of the First-Order

dimension extracted by the PLS Regression.

The starting point is the generation of the First-Order LVs ξIi as random

variables ξIq ∼ N(0, 1). The data generated are re-scaled in the interval [1,

100]. The Second-Order Construct ξIIj has been computed as the product of

ξIq by the path coefficient vector βqj with the addition of an error component

ζj according to the following equation:

ξIIj =
∑

(q:ξIq→ξIIj )

βqjξ
I
q + ζj (5.20)

where the path coefficient vector (β) of the structural model is assumed to

have elements equal to 0.8.

Each vector of the error component ζj is drawn from a univariate nor-

mal distribution [68] with a mean equal to zero and a standard deviation,

var(ζj), chosen to satisfy the jth Second-Order Construct, the equation be-

ing:

R2
j =

var(modelj)

var(totalj)
=

var(modelj)

var(modelj) + var(errorj)
(5.21)

where var(totalj) is the variance of ξIIj , given that:

ξIIj = ξIqβqj + ζj = modelj + errorj (5.22)

and var(ζj) is:
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var(ζj) =
var(ξIq ) ∗ (1−R2

q)

R2
q

(5.23)

The R2 value for the Second-Order Construct is set at 0.8. MVs are gen-

erated starting form the LVs, given the lambda coefficients, following the

formula:

Xnq) = ξIq ∗ (λI)−1k + δnq (5.24)

where the error term is distributed as a continuous uniform: δ ∼ U(−1, 1).

Two commonly reported measures are used to assess how well the methods

estimate the parameters: Relative Bias (RB ) and Standard Deviation (StD )

The RB is computed as:

RB =
1

n

n∑
i=1

(θ̂i − θ)
θ

i = 1, 2, ......, 500 (5.25)

where n represents the number of replications in the simulation, θ̂i is the

parameter estimate for each replication and θ is the corresponding popula-

tion parameter. The formula is equivalent to the mean RB [123]. A positive

RB indicates an overestimation of the true parameter, a negative RB an un-

derestimation.

The StD is computed as:

StD =

√√√√ 1

n

n∑
i=1

(θ̂i − E(θ̂))2i = 1, 2, ......, 500 (5.26)

where E(θ̂) is the mean of the estimates across the 500 simulated datasets.

This index provides information on the efficiency of the estimates.

5.4.2 Simulation Results: The path coefficients

Table 5.1 reports the simulation results relating to the coefficients β (com-

puted as the average of the 500 replications), the bias and the standard

errors. The results are grouped according to the estimation approach used

and sample size. For each combination, the path coefficients, bias and stan-

dard error of the four parameters (β1, β2, β3, β4) are reported.
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Table 5.1: Path coefficients, bias and standard error for the inner model

Approach Sample Size Value β1 β2 β3 β4

Two Step

Path 0.7510 0.7631 0.7249 0.7042

50 Bias 0.1150 0.0021 0.0132 0.0572

SE 0.2798 0.1853 0.1583 0.1937

Path 0.7769 0.7857 0.7727 0.7711

100 Bias 0.0096 0.0044 0.0084 0.0047

SE 0.1744 0.1022 0.0872 0.0726

Path 0.7211 0.7754 0.6922 0.7635

300 Bias 0.0009 0.0002 0.0003 0.0011

SE 0.0725 0.1214 0.1173 0.0612

Path 0.7171 0.6543 0.7731 0.7673

1000 Bias 0.0005 0.0000 0.0004 0.0003

SE 0.0245 0.0231 0.0232 0.0226

Mixed Two Step

Path 0.7969 0.7957 0.8027 0.8111

50 Bias 0.0968 0.0554 0.0125 0.1191

SE 0.2768 0.1557 0.0414 0.1939

Path 0.8043 0.8128 0.8176 0.8204

100 Bias 0.0807 0.00179 0.0176 0.1693

SE 0.1079 0.0987 0.0940 0.0336

Path 0.8175 0.8226 0.8243 0.8044

300 Bias 0.0073 0.0004 0.0012 0.0082

SE 0.0500 0.0934 0.0071 0.0563

Path 0.8174 0.8219 0.8159 0.8212

1000 Bias 0.0042 0.0003 0.0010 0.0051

SE 0.0171 0.0162 0.0165 0.0160

PLS-R

Path 0.8276 0.8121 0.7928 0.8142

50 Bias 0.0943 0.0611 0.0213 0.1065

SE 0.2532 0.1229 0.0328 0.1532

Path 0.8075 0.8164 0.7879 0.7923

100 Bias 0.0091 0.0168 0.0198 0.1526

SE 0.0976 0.0867 0.1010 0.0276

Path 0.7987 0.7876 0.8179 0.8074

300 Bias 0.0051 0.0008 0.0018 0.0075

SE 0.0042 0.0761 0.0068 0.0042

Path 0.8165 0.7981 0.8134 0.8197

1000 Bias 0.0047 0.0002 0.0010 0.0043

SE 0.0162 0.0152 0.0158 0.0090
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The estimated path coefficients are all significant, as we expected according

to the hypotheses made when defining the simulation plan. Some consid-

erations can be made concerning the standard error. The standard error of

each estimation β is shown in Figure 5.7. In all cases of the sample size,

variability in the estimations is lower when using the Mixed Two Step and

PLS-R Approaches.

Figure 5.7: Standard errors of the path coefficients

5.4.3 Simulation Results: Bias and efficiency of the parameters

In order to evaluate the estimation accuracy, the relative bias (RB) is calcu-

lated according to the formula (5.25). The RB values of the path coefficients

are reported in detail in Table 5.2.

Two Step Approach heavily underestimates all the path coefficients linking

the First-Order Construct with the Second-Order LV in all sample sizes.

Looking at the new methods proposed, we can see that for small samples

(n=50; n=100) the Mixed Approach works best, producing estimates near

to zero, while the methods have the same performance for large samples

(n=300; n=1000), giving an equivalent accuracy.
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Table 5.2: RB of the path coefficients for each approach

Approach Sample Size

50 100 300 1000

Two Step -0.061 -0.029 -0.099 -0.104

β1 Mixed Two Step -0.004 -0.004 -0.004 -0.004

PLS-R 0.034 0.009 -0.002 0.021

Two Step -0.046 -0.018 -0.031 -0.182

β2 Mixed Two Step -0.005 0.016 0.028 0.027

PLS-R 0.015 0.021 -0.016 -0.002

Two Step -0.094 -0.034 -0.135 -0.034

β3 Mixed Two Step 0.003 0.022 0.030 0.020

PLS-R -0.009 -0.015 0.022 0.017

Two Step -0.120 -0.036 -0.046 -0.041

β4 Mixed Two Step 0.014 0.026 0.005 0.027

PLS-R 0.018 -0.010 0.009 0.025

5.4.4 Simulation Results: The LV Prediction Accuracy

The prediction accuracy of both new methods is computed according to the

Redundancy Index (Table 5.3).

Table 5.3: Redundancy for the Second-Order LV

Approach Sample Size

50 100 300 1000

Two Step 0.2404 0.2994 0.3469 0.4725

ξII Mixed 0.6502 0.6049 0.6484 0.7731

PLS-R 0.6873 0.7091 0.7218 0.7371

The Mixed Two Step and PLS-R Approaches demonstrate a greater accu-

racy in predicting the higher level construct, since the Redundancy Index

is higher than that for the Two Step Approach. The difference is remark-

able for all sample size. So, these approaches are also the best option for

predicting the Second-Order LV.
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Figure 5.8: Redundancy for the Second-Order LV

5.4.5 Simulation Results: Choosing the Best Method

The performances of the new approaches proposed have been analyzed

through a simulation study. The new methods proposed produce less bi-

ased and more stable parameter estimates than the Two Step Approach. In

terms of the Relative Bias, the Two Step Approach significantly underes-

timates all the path coefficients linking the First-Order Construct with the

Second-Order LV in all sample sizes. Instead, the new methods proposed

produce less biased and more stable parameter estimates than the Two Step

Approach.They are almost equivalent in terms of bias and MSE, giving an

equivalent accuracy for large samples (n=300; n=1000), while in a small

sample (n=50; n=100) the Mixed Two Step Approach works better than the

PLS-R, producing estimates near to zero. As regards the variability of the

estimates, we have found that the Standard Error of all the compared meth-

ods decreases when the sample size increases, even if the performances of

the new path coefficients proposed are better than in the Two Step Ap-

proach. These two methods are always the best choice, in terms of the bias

and MSE of the estimates, when the researcher aims at studying the rela-

tionships of the model with the formative relationships of the First-Order

Constructs and the Second-Order LV.
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The advantage of choosing the Mixed Two Step Approach to estimate these

models is significant only with the smallest number of items for each con-

struct; with a greater number of items the two approaches are equivalent.

5.5 Application to Real Data: Comparison of Methods

In this section, a case study concerning the Multidimensional Poverty Com-

posite Indicator, already discussed in detail in Chapter 4, Higher-Order

Construct in PLS-PM, is proposed in order to show the implementation

of the new methods, and to give some comparative empirical results with

respect o the Two Step Approach.

The estimation of the MP-CI as a Second-Order Construct is formatively

related to the First-Order dimensions and reflectively measured by its MVs.

We have considered the following models:

- The Two Step Approach: the PCA Component of each First-Order

dimension is estimated at stage one;

- The Mixed Two Step Approach: the indicators of the Second-Order

Construct are the PLS scores for each block obtained by the imple-

mentation of the PLS-PM algorithm;

- The PLS Component Regression Approach: the indicators of the Se-

cond-Order Construct are the Components of each block obtained

from the PLS Regression; the number of components for each blocks

is different according to their marginal contribution to the predictive

power of the model.

5.5.1 Application Results: the Mixed Two Step and the PLS-Com-
ponent Regression Approaches Performances

Table 5.4 reports the main quality measurements of the three models.

The assessment of a structural model estimated with the PLS-PM approach

involves the inner as well as the outer model measurements of quality.

The results of the Two Step Approach are the same as in the previous chap-

ter.
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Table 5.4: Reliability Measures of the Higher-Order MP-CI for each ap-

proach

Two Step Mixed Two Step PLS-R

Approach Approach Approach

Cronbach’s Alpha 0.875 0.895 0.852

Composite Reliability 0.915 0.927 0.904

Communality 0.730 0.762 0.727

Let’s focus on the performances of the Mixed Two Step and PLS-Component

Regression Approaches. The Cronbach’s α and Composite Reliability in-

dexes for both models are close to the conventional acceptability thresholds

of 0.7 for the MP-CI. The Communality of the Mixed Two Step Approach is

higher than that of the Two Step Approach (the communality of the Mixed

Two Step Approach = 0.762 against the Communality of the Two Step Ap-

proach = 0.730). So, the amount of variability of the MVs captured by the

MP-CI construct using this method is higher than when the classic Two

Step Approach is adopted. It is important to note that there is a difference

in the use of the scores of the First-Order dimensions.

In order to assess the significance of the path coefficients, Table 5.5 reports

the value and significance of the structural coefficients linking the First-

Order dimensions to the MP-CI.

In the Two Step Approach the Health dimension proves to be most influ-

ential among all the factors; in the Mixed Two Step and PLS Component

Regression Approaches, the component that is most representative and at

the same time most predictive on MP-CI is the Employment, with a path

respectively of 0.308 and 0.521.

This means that if we consider the first approach, the component which is

derived from the PCA is able to synthesize the more of its block than the

most representative block in our case, namely Health.

Employment in PCA analysis is not very representative. With the Mixed

Two Step Approach, which also considers the extent to which the block is

able to predict the endogenous block, this dimension is revalued being the
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Table 5.5: Path Coefficients and t-statistics for each approach (the most sig-

nificant blocks for each method are marked in bold)

Two Step Mixed Two Step PLS-R

Approach Approach Approach

Health
path 0.328 0.284 0.233

T-value 2.32 4.06 8.81

Education
path 0.274 0.268 0.284

T-value 3.34 3.67 5.56

Employment
path 0.297 0.308 0.521

T-value 3.09 4.54 2.44

Living

Standards

path 0.252 0.284 0.258

T-value 2.20 3.68 3.64

one with the highest coefficient.

If we consider, in the PLS Component Regression Approach, not just a sin-

gle component but several components for each block, this dimension be-

comes even more important in terms of prediction. Table 5.6 reports the

global measurement of goodness of fit.

Table 5.6: Global Measure of Goodness of Fit

Two Step Mixed Two Step PLS-R

Approach Approach Approach

0.669 0.762 0.725

The goodness of fit of model is measured by the Redundancy. The Redun-

dancy measures the percentage of variance explained by the LVs.

Taking into account all the LVs the Communality is never under 60%. The

quality of the model is high in all three models, but slightly higher if we es-

timate the components with the Mixed Two Step Approach and PLS Com-

ponent Regression Approach.

As was performed for the Two Step approach in the Chapter 4, also for

these two methods we have compiled rankings of all European Community

countries (Table 5.7; Table 5.8).

Also here, the scores have been normalized so that the values range from 0
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(the lowest level of poverty) to 100 (the maximum level of poverty).

Countries Health Education Employment
Living

MP-CI
Standards

1 Turkey 100 84.63 86.64 77.66 92.87

2 Romania 95.95 70.59 58.13 88.26 83.11

3 Macedonia 75.11 78.23 78.02 80.35 82.46

4 Bulgaria 73.22 75.9 65.35 80.26 77.67

5 Croatia 60.13 73.81 73.73 72.72 73.44

6 Poland 60.69 52.55 71.07 68.3 65.76

7 Hungary 61.46 37.61 73.91 70.85 63.58

8 Lithuania 64.86 50.68 50.24 68.13 60.46

9 Slovakia 58.63 31.47 67.56 69.18 58.8

10 Latvia 78.2 41.1 40.54 65.12 58.01

11 Greece 26.3 74.08 75.15 47.67 56.62

12 Estonia 68.82 33.66 36.27 61.79 51.08

13 Italy 26.33 63.16 72.79 37.91 49.98

14 Cyprus 45.26 82.11 34.26 38.77 49.76

15 Slovenia 48.77 57.66 38.11 52.54 49.51

16 Portugal 38.19 74.11 44.02 40.86 49.05

17 Spain 32.2 57.84 56.7 34.67 44.62

18 Czech Republic 44.96 33.26 46.58 50.29 43.68

19 Belgium 30.98 42.4 53.82 26.5 36.8

20 France 27.47 43.29 52.22 29.77 36.6

21 United Kingdom 41.62 32.56 26.51 27.82 29.81

22 Ireland 28.78 35.95 25.63 31.35 28

23 Germany 29.39 26.79 35.26 23.75 26.06

24 Austria 20.31 43.16 25.02 24.86 25.31

25 Finland 35.74 17.99 37.71 19.2 24.84

26 Denmark 27.47 16.47 8.44 30.81 17.31

27 Sweden 21.5 13.81 24.52 14.16 14.4

28 Netherlands 27.68 12.88 5.73 20.4 12.4

29 Norway 13.91 6.17 0 9.97 1.95

Table 5.7: Ranking of countries according to the MP-CI scores based on the

Mixed Approach
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Countries Health Education Employment
Living

MP-CI
Standards

1 Turkey 100 84.21 87.09 77.93 86.08

2 Romania 96.19 71.88 58.82 88.86 82.78

3 Macedonia 75.75 78.49 78.48 80.7 80.93

4 Bulgaria 74.44 77.02 66.42 81.01 80.59

5 Croatia 60.69 74.33 74.27 73.46 73.72

6 Poland 61.19 53.19 71.49 69.06 66.56

7 Hungary 62.47 38.41 74.82 71.47 66.37

8 Lithuania 66.39 51.61 51.09 69.11 65.1

9 Slovakia 59.53 32.08 68.27 69.72 61.52

10 Latvia 79.16 41.45 41.55 65.85 60.25

11 Greece 27.43 75.26 75.82 48.23 58.78

12 Estonia 69.84 34.37 37.28 62.5 54.78

13 Slovenia 48.88 57.75 39.05 53.37 51.15

14 Cyprus 45.54 83.06 35.35 39.27 50.46

15 Italy 26.96 63.79 73.2 38.64 50.27

16 Portugal 38.98 74.48 44.61 41.39 49.71

17 Czech Republic 45.98 34.43 47.7 50.85 48.12

18 Spain 32.61 58.64 57.08 35.11 44.53

19 France 27.46 43.57 52.29 30.17 35.09

20 Belgium 30.79 42.96 53.66 26.8 33.91

21 Ireland 28.89 36.79 26.05 31.61 29.2

22 United Kingdom 41.41 32.14 26.42 28.06 27.13

23 Austria 21.03 43.08 25.21 25.19 26.29

24 Germany 29.65 27.37 34.92 24.03 25.07

25 Finland 35.48 17.82 38.12 19.5 22.77

26 Denmark 27.56 16.15 8.59 30.89 18.09

27 Sweden 21.68 13.94 24.3 14.3 13.32

28 Netherlands 27.86 12.78 5.69 20.49 12.7

29 Norway 13.78 6.58 0 10.06 2.34

Table 5.8: Ranking of countries according to the MP-CI scores based on the

PLS Component Regression Approach

In the Figure 5.9 the scatter for the MP-CI based on two methods are re-

ported.

According to this analysis, all the LVs are in the same location in the Two

Step Approach. Only Health changes position considerably; if we estimate

the model with the two new methods, the block of Health, which, in the



Chapter 5. New methods in PLS Path Modeling for the building a System
of Composite Indicators 149

Figure 5.9: The scatter plot of the MP-CI based on the two methods

above analysis, was in the critical area, is now in the area to be monitored,

with no LV being critical for the estimation of the MP-CI.

5.5.2 Application Results: Conclusions

The empirical case concerning a Multidimensional Poverty Composite In-

dicator has been analyzed in order to show the implementation of the new

methods for the Higher-Order PLS-PM parameter estimation and to give

some comparative results with respect to the classic Two Step Approach.

In all the methods used, unidimensionality is required: the Second-Order

MP-CI is measured by the First-Order LVs. Next, the path coefficients

measure the composition of the Second-Order MP-CI. These considerations

have to be taken into account in the interpretation of the Multidimensional

Poverty model. It is remarkable to note that the First-Order Employment,

which influences weakly Poverty when the estimation approach used is

that of the Two Step Indicators (β= 0.297), it proves to have a great impor-

tance in shaping Poverty when the approaches used are the Mixed Two

Step Approach (β=0.308) and the PLS Component Regression Approach

(β=0.521). Instead, Health, which in the previous analysis is the most im-

portant block in explaining the MP-CI, now has a revised impact. The

countries’ scores change very little, and generally the ranking remains un-

altered; but it is important to note that the block of Health, which, in the

Two Step Approach (Chapter 4) was in the critical area because it had a

high impact on the MP-CI but a low mean value, now, calculated using
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these two methods, lies in the area to be monitored, with a low value for

the mean and the path coefficient.

5.6 Conclusions

The objective of this Chapter has been to introduce a new approaches for

the PLS-PM parameter estimation in the presence of Higher-Order Con-

structs. In particular, we have focused on Second-Order Models similar to

the Type II category reported by Jarvis et al. [71], where the model defines

the reflective First-Order Constructs and a formative Second-Order Con-

struct.

The classic Two Step Approach suggests the first principal component of

the Lower-Order Constructs as an indicator of the Higher-Order Construct.

This approach presents two important limitations related to the compo-

nents of each block: only one component is chosen for each block, and

this has a strong representative power but a weak predictive power in the

analysis of the Higher-Order Construct. For these reasons, we have pro-

posed two alternative methods to estimate the Higher-Order Constructs.

In particular, in order to to solve the issue related to the predictive power

of the component for each Lower-Order Construct, the Mixed Two Step

Approach has been proposed, and, regarding the choice of the number of

components for each block, the Partial Least Squares Component Regres-

sion Approach has been suggested.

The former approach consists of taking as the indicators of the Second-

Order Construct the PLS scores for each block obtained by the implementa-

tion of the PLS-PM algorithm. The PLS Component Regression Approach,

instead, allows us to choose more than one component for each block, ob-

tained from the PLS Regression; the number of components for blocks is

different according to their marginal contribution to the predictive power

of the model. The performances of these two approaches have been ana-

lyzed through a simulation study and applied to a real case study to clarify

the implementation The Mixed Two Step and PLS Component Regression

Approaches are always the best choice, in terms of the bias and MSE of the

estimates, when the researcher aims at studying the formative relationships
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of the structural model with constructs measured reflectively by their indi-

cators. Moreover, they slightly outperform, in terms of prediction accuracy,

the Two Step Approach. The empirical case on a Multidimensional Poverty

Composite Indicators, working on a small sample, the Mixed Two Step Ap-

proach is the most powerful method, in terms of quality of the model. If

we work on large samples the two method have the same performance or,

to be more accurate, the PLS Component Regression Approach would be

the best, because, as shown in the simulation, it would work better than the

Mixed Two Step Approach.



Conclusions and Future

Research

In this dissertation we have addressed the issue of estimating of a com-

plex concept formed of different dimensions, each representing different

aspects of the concept, aspect which interact with each other. Many phe-

nomena require, in order to be measured, the ‘combination’ of different

dimensions, which must be considered together as the proxy of the phe-

nomenon. This combination can be obtained by applying methodologies

known as Composite Indicator. The existing literature offers different al-

ternative approaches in order to obtain a Composite Indicator. We have

focused on the Structural Equation Modeling Methodology, in particular

on Partial Least Squares-Path Modeling Approach.

The Partial Least Squares-Path Modeling Approach allows you to estimate

causal relationships, defined according to a theoretical model linking two

or more latent complex concepts, each measured through a number of ob-

servable indicators. The basic idea is that the complexity inside a system

can be studied by taking into account the entirety of the causal relationships

among the Latent Variables, each measured by several Manifest Variables.

In the third Chapter we have discussed some improvements in the Partial

Least Squares-Path Modeling Approach for the estimation of a system of

Composite Indicators, especially using tools that have been developed in

order to extend the classic algorithm of Partial Least Squares-Path Model-

ing to the treatment of non-metric data. Such tools allow you to include

and test mediator and moderator effects, and to deal with heterogeneous

data. By means of an application on these tools to the Italian Social Cohe-

152
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sion Composite Indicator, we have presented three estimated models (an

estimated model without the use of mediating Latent Variables and quan-

tification, an estimated model with the use of mediating Latent Variables

but no quantification and, finally, an estimated model with the use of me-

diating Latent Variables and quantification). We have demonstrated how,

by using a suitable quantification and entering the effect of the mediation

into the model, the estimation of the system of Composite Indicators sig-

nificantly improves. Moreover, we have seen how a unique model for the

construction of Composite Indicators is not always well suited to the en-

tire population that we are studying, but we have noted that there are local

models for each population according to its own characteristics; as a matter

of fact, in modeling the real world, it is reasonable to expect that different

classes showing heterogeneous behaviors may exist in the observed set of

units. In the fourth chapter of this work we have focused on another as-

pect of Partial Least Squares-Path Modeling concerning the construction of

a hierarchical component model. As a matter of fact, in a Composite In-

dicator framework, researchers have recently been focusing their attention

on a particular aspect linked to multidimensionality and a high level of

abstraction, when a Composite Indicator is manifold, lacks its own Man-

ifest Variables and is described by various underlying blocks, and many

approaches have been proposed for treating these particular Composite In-

dicator aspects.

In this perspective, in Chapter five of this dissertation, we have proposed

new methods to estimate a system of Higher-Order Composite Indicators,

to improve, at a conceptual level, the significance of the model: the Mixed

Two Step Approach and the Partial Least Squares Component Regression

Approach.

We have compared these two methods and the classical Two Step Approach,

in the framework of the same simulation design, investigating the effects

of the measurement model and their predictiveness. The model consid-

ered for this simulation is a simple pattern, consisting of four First-Order

Constructs that impact on a Second-Order Latent Variable. The decision to

consider this model has resulted from the need to begin to understand how

these methods work. We have encountered several difficulties in studying
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their performances, difficulties related to the lack of appropriate compre-

hensive global evaluation indexes, a problem that is still open. Until now,

we have no way to compare globally models built with different methods.

For this reason, further studies on the global assessment indexes of Par-

tial Least Squares-Path Modeling are needed. We are already working on

finding a way to evaluate a Partial Least Squares-Path Modeling in order

to construct a system of Composite Indicators.

Moreover, we think that it would also be interesting to look further into

the issue of considering different methods of estimation in place of the Or-

dinary Least Squares, inside the Partial Least Squares-Path Modeling al-

gorithm. Further research will be undertaken to find out if we can use a

Weighted Least Squares method, namely a variant of the Ordinary Least

Squares method, optimizing the weighted fitting criterion to find the pa-

rameter estimates that allow the weights to determine the contribution of

each indicator to the final Composite Indicator estimates. We aim to find

an internal optimization in the Partial Least Squares-Path Modeling algo-

rithm, which allows us to have indicators weighted according to their im-

portance and their predictive power within the model.

In short, this work represents only a first step in this direction of compre-

hension. Different levels of complexity of the structural model, with differ-

ent levels of abstraction and with mediator and moderator effects, will be

considered in further studies.
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