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“Success consists of going from failure 

to failure without loss of enthusiasm.” 

 

Winston Churchill 
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Abstract 

In modern economies, where markets and technology are changing rapidly, 

innovation partnerships are among the major strategic choices for companies to create 

competitive long term advantages. Especially in high-tech sectors, companies are 

encouraged to leverage on external sources of knowledge in their R&D activities. 

Although the number of studies investigating the topic of R&D collaboration from 

different perspectives has increased over time, the problem of partner selection still 

lacks comprehensive analyses and operational frameworks to drive innovation 

alliances to success. In order to address such a gap and to overcome the 

aforementioned limits this thesis provides a systematic literature review on the R&D 

partner selection problem and proposes a quantitative and DEA-based decision-

making framework to support organizations in identifying, qualifying and selecting 

the most suitable partners for technological innovation. The framework has been 

developed together with the innovation department of a large enterprise in the 

transportation industry, and it has been validated on relevant case-studies of industrial 

relevance addressing both emerging and mature technologies. Advantages and 

limitations of the proposed approach in innovation management research and practice 

are highlighted and discussed. 

 

Keywords: Collaborative R&D, Partner Qualification, Decision Support, Data 

Envelopment Analysis, Rating, Innovation Performance Evaluation, Open Innovation.  
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1 Introduction 

R&D collaboration among organizations is increasingly perceived as a vehicle to 

enhance innovation through knowledge exchange. The existing link between open 

innovation and knowledge management is emphasized by the organizations’ need for 

R&D partners to collaborate with in order to share, transfer and exchange novel 

ideas and knowledge and to be competitive in the market. After a brief description of 

the R&D collaboration context and the open innovation paradigm, this chapter 

outlines the objectives of the research and its contribution. 

1.1 The R&D Collaboration Context 

In modern economies, where markets and technology are changing rapidly, 

innovation is perceived as a central achievement. Innovation practices involve both 

large and small organizations refining their products, services and operations in order 

to create a competitive long term advantage in a fast-paced business environment.  

Especially in the hi-tech sectors, where the research and development (R&D) of 

products and processes is characterized by a high level of complexity and 

interdisciplinarity, innovative companies can no longer continue to to depend solely 

on their own skills and resources (Caloghirou, et al., 2004). 

Since they cannot always rely on internal R&D resources to achieve their innovation 

objectives and stay competitive (Miotti & Sachwald, 2003), a very feasible option to 

speed up the innovation process is for firms to open-up their R&D departments to 

external sources of novel ideas, methods, tools and products (Chesbrough, 2003a). 
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In such a context, R&D collaboration plays a key role in enhancing innovation 

through knowledge exchange. 

The possibility to collaborate with external R&D partners (i.e. universities, research 

institutes or other firms) does not have to be considered as an alternative to in-house 

R&D. On the contrary, external and internal R&D are complementary to each other 

because of three main reasons. First of all, there are some cognitive restrictions 

relating to organizations’ access to resources. Secondly, it is too costly for firms to  

acquire expertise in all the necessary knowledge areas in multi-technology products. 

Furthermore, it is impossible to be the leader in every area of technology, even if 

access to resources does not pose a problem. Finally, whilst companies concentrate on 

their main skills and all the relevant related capabilities, solutions usually call for 

more (European Commission, 2012). 

There are many studies in the literature which highlight the main reasons for R&D 

collaboration (Miotti & Sachwald, 2003; Nielsen, 2003; Dong & Glaister, 2006; 

Edwards-Schachter, et al., 2011).  

Especially in knowledge-based activities, such as those related to research and 

development, the likelihood of collaboration success is higher when organizations 

possess their own R&D departments (Veugelers, 1997). More specifically, in order to 

acquire knowledge from external sources and to benefit as much as possible from the 

knowledge exchange, the organizations involved need to possess a certain “absorptive 

capacity” (Cohen & Levinthal, 1990). 

The increasing importance for innovative organizations to establish external linkages 

is confirmed by a rise in alliances formation and, in turn, in the number of theoretical 
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and empirical studies on knowledge transfer over the last few decades (Hagedoorn, 

2002). 

Today, the phenomenon of integrating external sources into innovation processes is 

indicated by the broad term “Open Innovation” (OI) introduced  by Chesbrough 

(2003a,b).  

1.1.1 The Open Innovation Paradigm 

“Open Innovation is a paradigm that assumes that firms can and should use external 

ideas as well as internal ideas, and internal and external paths to market, as the firms 

look to advance their technology” (Chesbrough, 2003a). 

Although the open innovation paradigm was not the first to give a detailed description 

of this idea, over the last ten years, Chesbrough has attracted the attention of 

researchers and practitioners alike (Nedon, 2015).  

Since it was first defined, open innovation has become important in many different 

sectors of industry - with the aim to obtain external knowledge and integrate it in the 

internal innovation process (“inbound OI” or “outside-in” approach), or to exploit 

internal ideas and technologies outside the company (“outbound OI” or “inside-out” 

approach). According to Gassmann & Enkel (2004),  using both outside-in and inside-

out OI approaches together, known as the coupled OI approach, allows organizations 

to optimally exchange knowledge. 

Chesbrough (2003b, 2006) uses the term “open innovation” in contrast with “closed 

innovation”, where companies only rely on their own innovation ideas and 

capabilities in order to implement the innovation process.  
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The two funnel-shaped diagrams in Figure 1.1 and Figure 1.2 are typically used to 

represent the open and closed innovation models, respectively, highlighting their 

differences.  

 

Figure 1.1 - Open innovation model (Source: Chesbrough 2003b) 

 

Figure 1.2 - Closed innovation model (Source: Chesbrough 2003b) 
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The open innovation scenario presents permeable boundaries, indicating the 

integration of internal and external impulses. More specifically, at the research phase, 

arrows only enter into the funnel, indicating that the company can rely on both 

internal and external capabilities to generate new and innovative ideas. At the 

development phase, arrows can both enter (inflow) and leave (outflow) the funnel. 

Inflows are possible when the company decides to invest in externally developed 

innovation in the form of intellectual property (IP) licenses for certain technologies. 

Alternatively, outflows exist when the company sees the opportunity to create spin-off 

companies to take on some of its main projects or decides to sell IP licenses that have 

emerged from the company’s own research. Finally, the openness of this process also 

involves the commercialization phase (Mortara, et al., 2009). 

Conversely, concerning closed innovation, the boundaries of the funnel are not 

“permeable”, indicating that innovation processes take place within the firms’ 

departments until the products are introduced into the market,  relying only on internal 

resources. 

According to Chesbrough and Brunswick (2013), the shift from closed to open 

innovation was due to both advances in ICT and the increased mobility of qualified 

employees, allowing “the use of purposive inflows and outflows of knowledge to 

accelerate internal innovation, and expand the markets for external use of innovation, 

respectively” (Chesbrough, et al., 2006).  
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Table 1.1 summarizes the differences between the closed and open innovation 

models. 

Closed Innovation Principles Open Innovation Principles 

 Mostly internal ideas  Many internal ideas 

 Low workforce mobility  High workforce mobility 

 Few new businesses, weak ones  Many new businesses 

 Internal development and usage of 
technologies 

 External options for unused technologies 
internally 

 The experts are working within the 
company 

 Not all the best people are working 
within and outside the company 

 R&D creates profit only when organizations 
invent, develop and market everything 
themselves 

 External R&D can create remarkable 
value and has to be integrated with the 
internal R&D 

 Develop the product internally and be the 
first to market 

 R&D can create profit even if not done 
internally by forming forces with outside 
parties 

 Winner is who gets the innovation to the 
market first 

 Winner is who best uses internal and 
external ideas 

 Have intellectual property under control 
internally 

 Profit from licensing the intellectual 
property and it supports the business 
model 

Table 1.1 - Closed vs Open innovation (Source: Chesbrough 2003b) 

1.2 Research Motivation and Objective 

In the current business environment, characterized by continuous and rapid 

technological changes, innovation partnerships have become part of the major 

strategic choices by which companies can create a competitive long term advantage.  

Both small and large enterprises are encouraged to interact with each other in order to 

have access to complementary resources and technologies to use for their R&D 

activities.  

Theoretical and practical research on strategic alliances in previous literature has 

shown that incompatibility of partners is one of the most common reasons for failure 



 

8 

 

(Sadowskia & Duysters, 2008), resulting in organizations in alliances not always 

achieving their planned goals. Therefore, in order identify the most appropriate 

partners to collaborate with, the partner selection process assumes a critical role and 

must be carefully implemented. 

Although the number of studies investigating the topic of R&D collaboration from 

different perspectives has increased over time (Hagedoorn, 2002), the problem of 

partner selection needs to be further investigated (Park, et al., 2015) so as to provide 

efficient comprehensive views and practical frameworks that can influence the 

success of alliances (Figure 1.3). 

 

Figure 1.3 - The perspectives of R&D collaboration (Source: own elaboration) 

In order to support the open innovation and R&D collaboration practices of 

technology-intense industries, commonly based on former experience and expert 

judgement, the aim of this thesis is to define a well-structured R&D partner selection 

framework to support organizations in identifying and selecting the most suitable 

partners for technological innovation. Moreover, the decision-making framework 



 

9 

 

allows for the minimization of expert subjectivity, fully satisfying the requirements of 

replicability, reliability, rationality and transparency. 

1.3 Research Approach and Contribution 

This thesis is structured into five chapters, with the introduction being the first (Figure 

1.4). 

 

Figure 1.4 - Thesis structure 

After discussing the general aspects of the research in this introduction, Chapter 2 

goes further into detail about the R&D partner selection problem, through a 

systematic literature review. The systematic review highlights four main patterns 

related to the partner selection process (i.e. motivations, partner typologies, selection 

criteria and methodologies), as well as three major gaps in the literature: 1) the lack of 

studies considering the limits of using patent data, 2) the lack of studies applying 
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mathematical programming techniques, 3) the lack of studies highlighting the existing 

relationship between objectives for partnership and technology evolution. 

By taking into account the patterns and gaps emerged from the literature review,  

Chapter 3 proposes a DEA-based framework of four phases (1. Definition of 

objectives for partnership, 2. Identification of candidate partners (long list), 3. 

Qualification of candidate partners (short list), 4. Selection of the most appropriate 

partners) to rationally and objectively support the identification, qualification and 

selection of collaborative R&D partners.  

Chapter 4 aims to test the effectiveness of the proposed framework on real firm 

practices. The partner selection approach is implemented step-by-step in the case of 

both emerging and mature technologies of railway interest, in line with the European 

Research & Innovation roadmap (e.g. Horizon 2020 program - SHIFT²RAIL Joint 

Undertaking), allowing for a deeper understanding of the existing relationship 

between technology evolution and R&D collaboration. However, in order to protect  

information regarding the strategic interests of the company, the list of the candidate 

partners cannot be disclosed. 

Finally, in Chapter 5 the findings of the study are summarized with regard to both 

academic and managerial implications. The limitations of the study are also 

highlighted and recommendations for further research are formulated. 
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2 R&D Partner Selection Problem: 
State of the Art 

As already described in the previous chapter, the need for partnership is increasingly 

perceived as a key component of organizations’ innovation strategies to enhance - 

through knowledge exchange - their competitive performance in a business 

environment characterized by fast and continuous technological changes. Although 

the number of studies investigating the topic of R&D collaboration from different 

perspectives has increased over time, the problem of partner selection is still 

described as fragmented and lacks an efficient comprehensive view. To address this 

gap, the present chapter proposes a systematic review of the literature on R&D 

partner selection, focusing on four main issues: motivations of R&D collaboration, 

partners topologies, selection criteria and decision making methodologies. 

2.1 A Systematic Literature Review 

Due to the dynamic characteristics of the present business environment, where 

markets and technology are changing rapidly, “collaborative linkages between 

companies are an important means of improving innovation potential” (Rothwell & 

Dodgson, 1991). However, managing innovation is not without costs and risks, as it 

requires a wide range of resources (e.g. financial, technical, organizational and 

human) that firms do not always possess (Robertson & Gatignon, 1998). 

The different kinds of contributions organizations can give within the innovation 

process is a key aspect behind the need for R&D collaboration in various industries. 

Especially in high-tech sectors, companies are not always able or flexible enough to 
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develop internally all the complex and multi-disciplinary knowledge, skills and 

specific capabilities they need to implement all the phases of the innovation process 

and follow the technological changes (Duysters & de Man, 2003). If firms want to be 

competitive, they should not rely solely on their internal abilities, but be open to 

external sources as well (Chesbrough & Brunswicker, 2013). By introducing the open 

innovation paradigm, Chesbrough (2003a,b) was the first who clearly pointed out that 

organizations should open their internal R&D activities to external partners for 

integrating complementary knowledge and technologies. But alliances are not always 

successful. The percentage of strategic alliances that fail ranges from 50% to 60% 

(Duysters, et al., 1999; Duysters & de Man, 2003; Sadowskia & Duysters, 2008). This 

high rate of alliance failure reflects the complexity of the process associated with 

selecting an alliance partner, and points out the need of a comprehensive study which 

analyzes all the key aspects that should be taken into account in order to identify the 

most appropriate collaborative R&D partners. 

This section provides a systematic review of the literature accumulated on R&D 

partner selection and assesses the current knowledge available, outlining potential 

literature gaps and suggesting directions for future academic and managerial research. 

Several scholars have suggested useful guidelines to conduct a systematic literature 

review (Cronin, et al., 2008; Papaioannou, et al., 2010). Contrarily to a narrative 

literature review, a systematic literature review adopts a more rigorous approach to 

collecting and analyzing literature sources in a specific subject area and identifying 

patterns. 
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A systematic literature review thus has a number of advantages in comparison to a 

traditional literature review: 

 it is less likely that results from the literature review will be biased by future 

or different studies; 

 some phenomenon can be systematically explored across a wide array of 

settings and empirical research approaches, either providing robust evidence 

of consistency or inconsistency of results of the studies available in the 

existing literature. 

According to these guidelines, once the motivation and the objective of the research 

have been clarified (research question framing), a number of steps that correspond to 

the following main phases have to be implemented: 

1) Search for research materials 

2) Review and analysis of content 

3) Classification of patterns  

4) Identification of findings. 

2.1.1 Search for Research Materials 

This phases aims at identifying all the relevant scientific outputs referring to R&D 

partner selection. Initially, the search for research materials was carried out over the 

period 2003-2014. Then, in order to update and refine the review, the date range was 

extended to 2015. 

All the relevant scientific output referring to R&D partner selection over the period of 

interest has been identified by using academic search engines such as Scopus, Science 
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Direct and Web of Science. These data sources have been chosen as they ensure a 

broad coverage of high-ranking scientific production on management and 

engineering. Moreover, they were freely available as a research facility in the 

department. 

The bibliographic search on Scopus, Science Direct and Web of Science has been 

carried out by using keywords such as “R&D”, “research and development”, 

“innovation”, “technology”, “partnership”, “alliance”, “collaboration”, “cooperation”, 

“co-operation”, “process”, “framework”, “selection”, “choice”, “evaluation”, 

“identification” and “partner selection”. These keywords have been properly 

combined with the logical operators AND and OR. 

Although the first sign of an increasing interest in knowledge transfer issues dates 

back to the 80s (Hagedoorn, 2002), the decision to start the search from 2003 is 

related to the first publications on the open innovation paradigm by Chesbrough 

(2003a,b). Since this date, the interest of both researchers and practitioners in open 

practices has been growing continuously.  

The document search over the entire period 2003-2015 has identified 241 articles. 

This numbers drops to 128 when considering publications only referring to the subject 

areas of the social sciences and humanities (i.e. business management and accounting, 

social sciences, decision sciences, computer science, engineering and economics, 

econometrics and finance).  

As shown in Figure 2.1, the R&D collaboration topic appears as a cross-sectional 

topic within these areas. 
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Figure 2.1 - Distribution of articles by subject area 

Another important setting concerns the document type (i.e. article, conference paper, 

review, book chapter, conference review). When limiting the search to articles and 

conference papers, the number of documents drops from to 128 to 113. Among them, 

only 109 documents are written in the English language. 

The implementation and the results of the material search steps are summarized in 

Figure 2.2. 

 

Figure 2.2 - Material search process 
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2.1.2 Review and Analysis of Content 

Due to the large number of issues related to R&D collaboration and open innovation, 

this phase allows for inclusion and exclusion criteria to be applied in order to focus 

exclusively on relevant papers with a focus on the R&D partner selection problem 

(Figure 2.3).  

 

Figure 2.3 - Inclusion/exclusion process 

First of all, only the papers whose abstract focuses on the pre-alliance formation phase 

were selected (51 papers). On the contrary, all the papers focusing on alliance 

formation and post-alliance formation (e.g. organizational form, knowledge exchange 

and alliance performance) were excluded (58 papers). 

After that, the remaining 51 papers were taken into account for further analysis. More 

specifically, after reading their full texts, another 19 articles were barred as they were 

not in line with the purpose of the research. Finally, 5 more papers published from 

2003 to 2015 were included in the final sample after analyzing the references of the 

32 remaining papers. 
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The distribution of these 37 papers by journals (Table 2.1) confirms that the R&D 

partner selection topic covers the subject areas of business, management and 

accounting, engineering, decision sciences, economics, econometrics and finance, 

computer science and social sciences. 

Scientific Journals Number of Publications 

Research Policy 3 

International Business Review  3 

Long Range Planning 3 

International Journal of Industrial Organization 2 

Journal of Technology Transfer 1 

Procedia - Social and Behavioral Sciences 1 

Technology Analysis and Strategic Management 1 

Computers & Industrial Engineering  1 

European Management Review 1 

European Management Journal  1 

Expert system with application 1 

Journal of Intellectual Property Rights  1 

Journal of Software 1 

Journal of Technology Management and Innovation 1 

Management Decision 1 

Organization Science 1 

Physics Procedia 1 

Journal of Technology 
Management and Innovation 

1 

Technological Forecasting and Social Change 1 

Academy of Management Journal 1 

Other (Conference papers and proceedings) 6 

 37 

Table 2.1 - Distribution of papers by journal 

At the end of the review and after an analysis of content, the selected papers have 

been studied in detail. 
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2.1.3 Classification of Patterns 

This fourth step consists of identifying the main issues studied and discussed in the 

selected papers on R&D collaboration. Through an in depth analysis of the totality of 

the 37 papers on R&D partner selection, four main issues have emerged:  

1. Motivations, including both theoretical and empirical studies analyzing the 

needs and the objectives for partnerships (9 papers); 

2. Partner typologies, including studies which aim at identifying the types of 

partners that best match with the alliance motivations (11 papers); 

3. Selection criteria, including studies focused on the identification of both 

qualitative and quantitative criteria based on which partners can be selected 

(21 papers); 

4. Methodologies, including studies which provide approaches, methods and 

techniques for the identification and selection of candidate partners (14 

papers).  

Figure 2.4 displays the trends of these four issues related to the R&D partner selection 

problem over the period 2003-2015. 
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Figure 2.4 - Distribution of issues over time 

The papers analyzing motivational issues have been distributed between 2003 and 

2012. From 2013, the number drops to zero. With regard to partner typologies, the 

number of studies is limited across the entire period. Furthermore, the graph indicates 

a continuous interest in selection criteria, which peaked in 2014. Finally, the interest 

in methodologies has increased over time, highlighting the emerging managers’ need 

of new frameworks to support the identification and selection of the most appropriate 

partners to collaborate with. 

Table 2.2 summarizes all the references analyzing the main issues concerning the 

R&D partner selection problem.  
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References Motivations 

Partner 
Typologies 

Criteria Methodologies 

1 Miotti & Sachwald (2003) • •     

2 Nielsen (2003) •   •   

3 Belderbos et al. (2004a)   •    

4 Belderbos et al. (2004b)   •    

5 Narula (2004) • •     

6 Veugelers & Cassiman (2005)   •     

7 Dong & Glaister (2006) •   •   

8 Bierli III & Gallagher (2007)   •  

9 Nieto & Santamaria (2007)   •     

10 Nielsen (2007)     •   

11 Li et al. (2008)  •   

12 Arranz & de Arroyabe (2008)   • •   

13 Chen et al. (2008) •   • • 

14 Holmberg & Cummings 
(2009) 

   • 

15 Wu et al.(2009)     • • 

16 Chen et al. (2010) •   • • 

17 Lee et al. (2010)     • • 

18 Zhang & Geng (2010)       • 

19 Edwards-Schachter et al.  
(2011) 

•    

20 Huang & Yu (2011)   •  •   

21 Jeon et al. (2011)    • 

22 Perkmann et al. (2011)   •     

23 Cumming & Holmberg (2012) •   •   

24 Tai et al. (2012)     • • 

25 Wang (2012)       • 

26 Nielsen & Gudergan (2012)     •   

27 Zhang & Yin (2012) •    

28 Garcez & Sbragia (2013)    • •   

29 Geum et al. (2013)     • • 

30 Lee & Yoon (2013)       • 

31 Li (2013)    • 

32 Capaldo & Petruzzelli (2014)   •  

33 Reuer & Lahiri (2014)   •  

34 Yang et al. (2014)     • • 

35 Hu et al. (2015)   •  

36 Park et al. (2015)     • • 

37 Ramli & Senin (2015)     •   

  9 11 21 14 

Table 2.2 - Distribution of papers by issue 

Although the majority of the selected studies do not analyze all the issues that have 

been identified, motivations, partner typologies, selection criteria and methodologies 
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can be considered together as running phases of the partner selection process (Figure 

2.5). 

 

Figure 2.5 - The four phases of the partner selection process 

Therefore, after having clearly defined the motivations that drive the need for 

partnership (issue 1), as well as the most suitable partner typologies to meet the 

objectives for partnership (issue 2), all potential partners can be explored based on the 

set of selection criteria that best reflect the need for collaboration (issue 3). Once all 

the information regarding potential partners has been collected, the identification and 

evaluation of the most appropriate partners can be performed by using several 

methodologies (issue 4). 

The four issues are presented in more detail in the following section.  

2.1.3.1 Motivations 

The logic for the pursuit of technological alliances is multi-faceted, as there is no 

single reason why firms choose to open up their innovation practices. With regard to 

cooperation involving R&D and innovation, the literature on motivational issues 

distinguishes three main theoretical perspectives driving the search for partners. 

1. Clarifying Motivations 

2. Choosing Partner Typologies 

3. Establishing Selection Criteria 

4. Applying Methodologies 
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The most common approach used in R&D collaboration is the transaction cost view. 

This theory highlights the importance of transaction cost minimization and economic 

exchange as the motivations driving strategic collaboration (Williamson, 1981). 

Another approach is the resource-based view, according to which competitive 

advantages in the market can be obtained by exchanging complementary technologies 

and resources among different firms (Tsang, 1998), as well as sharing costs and risks 

(Lavie, 2006). 

Finally, the knowledge-based view focuses on acquiring knowledge skills and 

knowledge capabilities from external partners (Hamel, 1991). This view highlights 

knowledge as the most important strategic resource for innovation (Grant, 1996)  in 

order to create new products and processes or improve existing ones in a more 

efficient and effective way (Nonaka & Takeuchi, 1995). 

Minor perspectives include the strategic management theory (Dogson, 1992), the 

industrial organization theory (Hagedoorn, et al., 2000),  the market-power theory 

(Porter, 1980), the game theory (Sanna Randaccio & Veugelers, 2001) and the social 

exchange theory (Das & Teng, 2001). 

In summary, one of the main motivations for creating alliances is the wish to gain 

some advantages of adopting a global strategy. Another is that forming alliances can 

make up for any weakness that an organization may have concerning an important 

asset or capability which is required for innovation. Examples of benefits that firms 

gain from alliances involve faster access to technological expertise, access to new 

technologies, access to new markets, gaining comparative advantage, sharing costs 

and risks, and increasing internal innovativeness. These potential benefits cannot be 
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acquired easily. However, having clear motivations and objectives allow firms to 

better evaluate the capabilities of potential partners (Nielsen, 2003) and, in turn, to 

successfully select the most appropriate to collaborate with.  

Studies analyzing motivational issues in the literature are both theoretical and 

empirical. 

One of the first empirical studies published between 2003-2015 which analyzes the 

motivation for partnership is the one proposed by Miotti & Sachwald (2003). The two 

authors developed an integrated resource-based framework to investigate the factors 

influencing the selection of partners in a sample of 4215 French manufacturing firms 

over the period 1994-1996. According to the results of their study, the wish to acquire 

new technology is not the main motivation of R&D collaboration. Vice versa, 

regarding the resource-based theory, the results strongly confirm the necessity of 

firms to be able to access complementary R&D resources, especially in the R&D 

intensive sector (high-tech and mid-high-tech). Other significant motivations of R&D 

collaboration are access to public funding and market share. Furthermore, costs 

reduction and risks sharing are not very significant. The results also showed that the 

need for complementary capabilities decreases as firms become smaller in size.  

Focusing on international strategic alliances, Nielsen (2003) identified market-based 

factors, sharing R&D costs, development and application of new technology and 

exchanging existing technology as the main motivations for R&D collaboration. The 

author also highlighted the positive effect of having a clear motivation and choosing 

appropriate criteria on alliance outcome.  
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Narula (2004) highlighted the main interests of large and small firms in undertaking 

R&D collaboration. The results of a survey conducted in the ICT sector showed that 

both SMEs and large firms are more interested in complementary technologies and 

tacit knowledge acquisition than in risks or costs reduction. Based on managers’ 

perceptions, firms mainly undertake partnerships when focusing on applied research 

and product development, with the aim to reduce the time needed for innovation. 

Dong and Glaister (2006) conducted an empirical research to examine the strategic 

motivation and partner selection criteria by administering a questionnaire to 203 

Chinese international strategic alliances. The results show that the strategic motives of 

Chinese firms are mainly market-based, i.e. maintaining their place in the market, 

growing internationally and exchanging technology. 

According to Chen et al. (2008, 2010), in order to identify the proper alliance partners 

for a successful collaboration, a firm must clearly define its aims and priorities. After 

presenting a brief review on the studies analyzing the need for partnership, the authors 

identified four main motivation classes that can be used for selecting partners: (1) the 

“strategy-oriented” approach which aims at obtaining a competitive advantage by 

maximizing profits and economies of scale and reducing the time necessary to 

introduce new products in the market; (2) the “cost-oriented” approach which aims at 

reducing the risks of investments and costs of research; (3) the “resource-oriented” 

approach which aims at both increasing the availability of critical resources (human 

resources and/or equipment) and at accessing new markets and channels for 

distribution; (4) finally, the “learning-oriented” approach which aims at acquiring new 

knowledge through technological information exchange and direct contact during the 
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development of new technologies. These motivations are taken into account by the 

authors for the implementation of partner selection frameworks based on the Analytic 

Network Process (Chen, et al., 2008) and Analytic Hierarchy Process (Chen, et al., 

2010), respectively. 

Based on previous research, the most important strategic benefits from resource-

sharing alliances were identified by Cumming and Holmberg (2012). Firstly, by 

mixing partnering firms’ complementary resources and abilities, synergistic benefits 

can be acquired. Secondly, partner firms are able to specialize even more so than 

previously. Furthermore, firms, through collaboration, can avoid irreversible sunk-

cost investments yet, still access new capabilities and not have to face as many inertial 

constraints against change.  Finally, partners can increase the speed at which they 

achieve their various aims if they have successful collaboration. 

Through an empirical analysis, Zhang & Yin (2012) studied the relationship between 

R&D motivations (complementary resources, risk sharing, economies of scale, market 

access, government relationships) and  functions (research-oriented and development-

oriented) in Chinese alliances. The results of the Chi-square test indicate that, 

regarding the development-oriented function, Chinese firms look for complementary 

resources, economies of scale and government relationships. On the contrary, firms 

seek to share risks and access new market when focusing on basic or applied research. 

Finally, through an empirical study, Edwards-Schachter et al. (2011) examined the 

motives as to why Spanish and Argentine firms generally collaborate. According to 

the results of the analysis, the main motivations are market oriented (i.e. access to 

new markets, commercialization and distribution of new products to the market). 
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Firms also look for new technologies which allow improvements to be made to the 

productive process (through a new quality system, stock reduction, etc.). Finally, 

access to resources and organizational improvements do not seem very significant. 

Although all the 9 papers highlight motivations classes that make sense theoretically 

and intuitively, there are overlapping perspectives. By merging all the motivations 

suggested in the literature which are consistent with the innovation process flow, a 

classification in three main perspectives is proposed, allowing for a better distinction 

among motivation classes (Table 2.3). 

Motivations Description References 

Research-based 

 

 Access to complementary 
resources and capabilities 

 Technology exchange 

 Tacit knowledge acquisition 

 Increasing the availability of 
critical resources (human 
resources or equipment) 
 

Miotti & Sachwald (2003), Nielsen 
(2003), Narula (2004), Cumming & 
Holmberg (2012), Zhang & Yin (2012), 
Chen et al. (2008), Chen et al. (2010) 

Saving-based 

 

 Access to public funding 

 Cost reduction and risk sharing 

 Reduction of time of innovation 

 Reduction of time to market 

 Maximizing profits and 
economies of scale 
 

Miotti & Sachwald (2003), Nielsen 
(2003), Narula (2004), Chen et al. 
(2008), Chen et al. (2010), Cumming & 
Holmberg (2012), Zhang & Yin (2012), 
Dong & Glaister (2006)  

Market-based 

 

 Access to new markets and 
channels for distribution 

 Maintaining a market position 

 Obtaining a competitive 
advantage 
 

Miotti & Sachwald (2003), Nielsen 
(2003), Chen et al. (2008), Chen et al. 
(2010), Zhang & Yin (2012), Dong & 
Glaister (2006) 

Table 2.3 - Motivations for R&D collaboration 
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According to the above classification, the identified motives for opening up 

collaborative R&D practices can be research-based, including the need for 

complimentary knowledge and technology sources, saving-based, focusing on cost 

and risk reduction, and market-based linked to the need for market growth and 

competitive advantage. 

2.1.3.2 Partner Typologies 

As R&D collaboration always involves specific aims, selecting a particular partner 

depends on the kind of complementary R&D resources the firm is seeking to have 

access to (Arranz & de Arroyabe, 2008). The literature on partner selection is full of 

studies identifying the main R&D partner typologies (customers, suppliers, 

competitors, firms, universities and research institutes) and analyzes how they can 

contribute to meeting alliance objectives (Miotti & Sachwald, 2003; Belderbos, et al., 

2004a; Belderbos, et al., 2004b; Nieto & Santamaria, 2007). 

By following a research-based view, Miotti & Sachwald (2003) studied the 

relationship between the needs for complementary or similar resources and the 

motives for selecting certain R&D partners. Through an empirical analysis, they 

analyzed how collaboration with different partners gives different innovative results. 

Specifically, the most common R&D partnership involves vertical collaboration. In 

terms of new products, collaborating with suppliers of components and equipment is 

quite efficient, but is unhelpful for carrying out research regarding front-end 

technologies or for granting patents. Vice versa, being able to access science research 

capabilities and increasing the ability of a firm to generate patents are benefits of 

collaborating with public institutions. Furthermore, clients are an attractive source of 
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market information. Finally, there is no significant impact on innovation when 

collaborating with rivals rather than with other partner profiles. 

According to Narula (2004), in the case of R&D collaboration, the preferred partner 

typologies are research institutes and universities, as they decrease the likelihood of 

giving away their own technology to a competitor, or potential competitor. 

Belderbos et al. (2004a,b) analyzed the existing relationship between four typical 

partner typologies involved in R&D collaboration (competitors, suppliers, customers, 

and universities and research institutes) and the performance of the collaboration, in 

terms of labor productivity and productivity in innovative sales. Through an empirical 

study on innovative Dutch firms over the period 1996-1998, the authors confirmed 

that alliances with competitors and suppliers are generally preferred when the focus of 

the collaboration is on improving process performance and firm productivity 

(incremental innovation). If the objective of the collaboration is related to sales and 

the introduction of new products in the market, the authors indicated competitors and 

universities as suggested partners. Finally, informal R&D collaborations, such as 

those with customers and universities, represent important sources of market 

knowledge.  

With regard to Spanish manufacturing firms, Nieto & Santamaria (2007) analyzed 

both theoretically and empirically the relationship between the different partner 

typologies and how novel their innovation products were. The analysis reveals that 

the innovation process is negatively affected by collaboration with competitors. Vice 

versa, the process is positively affected when collaboration involves with suppliers, 
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clients and research institutions. Finally, collaboration involving different kinds of 

partners (collaborative networks) has the most positive effect on innovation. 

Veugelers & Cassiman (2005) focused on R&D collaboration between Belgian 

manufacturing firms and universities. Through an econometric analysis, the authors 

found universities to be complementary to other partner typologies. In addition, the 

strongest industry-science links mainly involve sectors, such as the chemical and 

pharmaceutical ones, characterized by high costs of innovation. On the contrary, 

industry-science links are not very common when firms look for partners with whom 

to share the risks. Finally, collaboration with universities are more likely to involve 

large firms, as they usually possess the internal R&D capabilities to efficiently 

communicate with scientific institutes and implement successful collaboration. 

According to Arranz & de Arroyabe (2008) and Perkmann et al. (2011), collaboration 

with research institutes also seem to be the best match for companies looking for basic 

knowledge and research capabilities in order to acquire a better understanding of 

scientific changes.  

With regard to R&D collaboration with suppliers, customers, rivals, universities and 

research institutes, researchers have distinguished three types of alliance: “vertical”, 

“horizontal” and “institutional” (Miotti & Sachwald, 2003; Arranz & de Arroyabe, 

2008; Garcez & Sbragia, 2013). Vertical alliances mainly involve suppliers and 

customers. More specifically, vertical collaboration with suppliers promote new 

product development, allowing firms to be able to access various resources such as 

those related to technology, the market and its demands/requirements. Vertical 
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collaboration with customers reduce the uncertainties of the market, positively 

influencing the likelihood of success of new products to be launched.  

On the other hand, horizontal alliances are generally those with competitors. Such 

alliances seek to both reduce financial, technical and business risks and increase 

market concentration and economies of scale. However, the main limits of this kind of 

collaboration is related to the risk of knowledge appropriability. Lastly, as previously 

mentioned, when firms wish to obtain funding for their research and development, 

collaboration with institutions are rather attractive as governments give financial aid 

to public-private alliances. 

Another existing classification is the one proposed by Li et al. (2008). Based on an 

analysis of 1159 R&D alliances, the authors categorized potential partners into three 

groups (i.e. friends, acquaintances and strangers) based on prior alliance experience 

and level of trust. Two partners are friends when they have developed a high level of 

trust through multiple previous interactions. If the number of prior interactions is low 

and, therefore, there is limited trust, partners are acquaintances. Finally, the authors 

defined partners as strangers when they do not know each other and, therefore, the 

level of trust between them is low. 

Furthermore, by considering both the main partner typologies and the motivations 

behind the need for R&D collaboration, Huang & Yu (2011), for example, 

distinguished alliances as “non-competitive”, referring to the ones with universities 

and research institutes, and those involving inter-firm collaboration as “competitive”. 

According to the authors, innovation performance is higher concerning competitive 

collaboration and, more specifically, when the firms involved have their own R&D 
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departments. However, the classification of vertical, horizontal and institutional 

collaboration remains the most common one. 

Table 2.4 indicates the references concerning the partner typology issues for each of 

these three categories. 

Partnership Typologies Related Motivations References 

Vertical 
Collaborations 

Customers 

 

 Sources of market 
knowledge 
 

Miotti & Sachwald (2003), 
Balderbos et al. (2004a,b), 
Nieto & Santamaria (2007) 

Suppliers 

 

 Access to knowledge and 
technology capabilities 

 Process performance and 
firms’ productivity,  

 Technology development 
 

Miotti & Sachwald (2003), 
Balderbos et al. (2004a,b), 
Nieto & Santamaria (2007), 
Cassiman et al. (2005) 

Horizontal 
Collaborations 

Competitors 

 

 Process performance and 
firms’ productivity 

 Introduction of new product 
in the market 
 

Balderbos et al. (2004a,b), 
Miotti & Sachwald (2003), 
Balderbos et al. (2004a,b), 
Arranz & de Arroyabe (2008) 

Institutional 
Collaborations 

Universities 

 

 Access to basic knowledge 
and technology 
complementarity 

 No risk of technology 
appropriability 

 Introduction of new product 
in the market 

 Access to market information 

 Sharing costs 
 

Miotti & Sachwald (2003), 
Narula (2004), Balderbos et 
al. (2004a,b), Veugelers & 
Cassiman (2005) 

Research 
Institutes 

 

 No risk of technology 
appropriability 

 Access to basic knowledge 
and technology 
complementarity 
 

Narula (2004), Nieto & 
Santamaria (2007), Cassiman 
et al. (2005), Arranz & de 
Arroyabe (2008) & Perkmann 
et al. (2011) 

Table 2.4 - R&D partnership typologies 
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2.1.3.3 Selection Criteria 

The third issue concerning the partner selection process refers to the selection criteria 

to be taken into account in order to compare and select the most suitable partners to 

collaborate with. Partner selection criteria are closely linked to both the objectives 

that underlie the need for collaboration and the partner typology (Garcez & Sbragia, 

2013). As selecting the right partner is an important determinant for the likely 

outcome of the relationship between parties, it is important to identify the criteria that 

better mitigate the companies’ difficulties and compensate for their lack of skills and 

resources (Dong & Glaister, 2006; Wu, et al., 2009). 

As previously mentioned, incompatibility of partners is one of the main factors 

contributing to R&D collaboration failure, resulting in the alliance partners not always 

achieving their planned goals. Therefore, in order to identify the most appropriate 

partners to collaborate with, the partner selection process assumes a critical role and 

must be carefully implemented. 

The choice of the most appropriate partners for a successful R&D collaboration has 

been examined by both researchers and practitioners. Through surveys and interviews 

with industry experts, the most significant factors that drive the choice have been 

highlighted, identifying the criteria and sub-criteria to take into account for selecting 

the most appropriate partners to collaborate with. Due to the large number of selection 

criteria, several authors have grouped them into categories. One of the most cited 

classifications is the one introduced by Geringer (2001) concerning “task-related” and 

“partner-related” factors. According to the author, task-related factors refer to specific 

operational skills and resources such as the ability to provide technical expertise, 
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financial resources, highly qualified staff, access to new market and distribution 

channels, which are necessary in order to be successful. Conversely, partner-related 

factors concern the general efficiency and effectiveness of collaboration. This 

category includes the existence of prior collaboration and, in turn, trust between 

parties, similarity and/or complementarity of partners’ culture, organizational size and 

structure.  

Through an empirical analysis of the criteria adopted by Danish firms for choosing 

partners for international strategic  alliances, Nielsen (2003) found that the best way 

to effectively drive managers to find the proper partners for future alliances consists 

of using both task-related and partner-related criteria at the same time. In addition, 

because potential partners often meet only some of these criteria, and the need for 

certain partners’ capabilities may change depending on the availability of internal 

resources, the author suggested ranking the preferred task-related and partner-related 

criteria case by case, according to the weight they have in achieving the alliance’s 

strategic objectives. Special attention was given to previous alliance collaborations, 

experience with foreign partners, and administrative governance structure.  

Dong & Glaister (2006) confirmed Geringer’s assumption that the partner-related 

selection criteria are less specific than the task-related ones. Furthemore, by 

examining 203 Chinese international strategic alliances, task-related criteria appear to 

be more significant than partner-related. 

In their comprehensive partner selection framework, Cumming & Holmberg (2012) 

proposed “learning-related” and “risk-related” criteria, in addition to the task and 

partner-related ones. The learning-related tasks focus on the extent to which potential 
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partners are favorably disposed to share their knowledge (both tacit and explicit), to 

leverage their knowledge network, and to indicate directions for future developments 

in R&D, technologies, customers, foreign markets and  distribution areas. On the 

other hand, the risk-related tasks focus on the extent to which potential partners can 

address both the risks that come from taking part in an alliance (“alliance risks”) and 

the ones that come from possible  alliance activities sought after by others (“non-

partnering risks”). 

Through an empirical study using the techniques of multinomial logistic regression 

and binomial logistic regression, Garcez & Sbragia (2013) outlined the existing 

relationship among task-related and partner-related criteria and both partner 

typologies (universities and research institutes, customers, competitors, suppliers, and 

consulting companies) and type of innovation project (incremental, platform, radical, 

basic science). 

The purpose of the article by Bierly III & Gallagher (2007) is to provide a clear 

understanding of the degree to which strategic fit, trust and expediency impact a 

firm's alliance partner selection in the presence of uncertain and external time 

constraints. According to the authors, although strategic fit is undoubtedly required, it 

is  not always a sufficient motive for partner selection. In addition, trust is more 

significant when the level of uncertainty is high. 

Nielsen (2007) proposed an empirical study on international strategic alliances. Based 

on a web-survey, the author investigated Danish partner firms involved in both equity 

and non-equity joint ventures with international partners. The author distinguished the 

selection criteria with respect to the two phases of the collaboration development: pre-
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alliance formation factors and post-alliance formation factors. Among the pre-alliance 

formation criteria, reputation and prior experience are particularly significant for 

partner selection. When the alliance is formed, collaborative know-how, trust, 

complementarity become more important in order to improve alliance performance. 

Arranz & de Arroyabe (2008) studied the R&D collaboration among Spanish firms. 

They used a logit regression in order to identify the main variables affecting the 

choice for partners. More specifically, the results of their analysis indicates that the 

technology level of the sector, the integration of the firm into a group, the size of the 

firm, and the availability of public funding positively affect the innovation process 

and the likelihood of partnership success.  

Chen et al. (2008, 2010) classified partner selection criteria in four main categories: 

corporation capability, technology capability, resources for R&D and financial 

condition. According to the authors, these criteria are strongly related to the 

motivations that drive the need for partnership. In order to better express this 

relationship, the authors proposed the use of a weighting process in which the two 

factors mutually affect each other. Specifically, motivations affect the weighting 

process for criteria and the priority of motivations is shown through the weighting 

process.  

Referring to R&D in the high-tech sector, Wu et al. (2009) proposed to classify 

criteria in five criteria, each including few related sub-criteria: (1) characteristics of 

the partners, including competencies, management style, strategic objectives and 

technical capabilities; (2) market knowledge capability, including organizational 

culture, expertise, control and flexibility; (3) intangible assets, including proprietary 



 

37 

 

knowledge, reputation, alliance experience, technical skills; (4) complementary 

capabilities, including market share, export opportunities, local knowledge of business 

practices; (5) degree of fitness, including managerial capabilities, market coverage, 

diversity of customers, quality of distribution system. 

Based on a massive literature review, Lee et al. (2010) proposed a set of four-fold 

decision criteria for selecting strategic partners for collaborative R&D: technology 

strength, R&D openness, R&D linkage, and collaboration effects. For each class, the 

authors defined fourteen patent and publication indexes which were also used for 

further study by Geum et al. (2013). 

In order to select the right R&D partners for SMEs, Tai et al. (2012) summarized a set 

of nineteen criteria, clustered in three main factors: (1) complementarity 

(manufacturing complementarity, technology complementarity, marketing 

complementarity, share brand name, finance complementarity, patent sharing and  

government policy), (2) mutual trust (experience in external collaboration, 

predominance to collaboration, reputation for keeping promises, placing high 

importance on the collaboration, taking a key position in the market and willingness 

to take risks), and (3) communication between partners (similarity in products or 

customers, consensus with vision collaboration, existing communication channel 

between members, the intention to involve new partners, similarity in firm size and 

geographic closeness). According to the authors, mutual trust is the most important 

factor affecting small firms’ alliance performance, followed by reputation. 

According to the detailed literature survey by Yang et al. (2014), cooperative 

willingness, financial ability, complementary resources and technological ability - and 
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their relative sub-criteria - are the main factors to be considered when looking for 

favorable partners to collaborate with. In order to evaluate technological capabilities 

the authors used patent data. The use of patents as criteria for partner identification is 

one of the most common factors for objectively evaluating technology partners (Park, 

et al., 2015). Together with publications they are sources of quantitative information. 

According to Nielsen & Gudergan (2012), the variables with a higher impact on 

knowledge exchange and alliance performance are prior experience, competence 

similarity, cultural distance and partner trust effect. Focusing on competence 

similarity, the authors found that this variable is more significant when researching 

new products and technologies (scope) than when exploiting existing knowledge in 

new markets (scale). 

Finally, there are also studies indicating internal capabilities as the main factor for 

improving innovation performance that should be consistent in the selection process. 

An example is the empirical study by Huang & Yu (2011) which highlighted a 

positive correlation between internal R&D (expressed by the ratio of the number of 

full-time engineers and scientists to the total number of employees) and firms’ 

innovation performance. Previous literature also points out the key role of internal 

R&D in enhancing an organization’s capability of acquiring, assimilating, 

transforming and exploiting knowledge (Cohen & Levinthal, 1990; Zahra & George, 

2002). 

Reuer & Lahiri (2014) focused their attention on the role of geographical proximity in 

R&D alliance formation. Through an empirical study, they found geographic distance 

to negatively affect the likelihood of alliance formation. This effect decreases when 



 

39 

 

the organizations involved in the partnership have the same objective and priorities. 

However, despite the negative effect of spatial proximity, a noticeable increase in 

maximum distance between partners since 1980 has been observed (Waltman, et al., 

2011).  

Another study analyzing the effect of geographical proximity on alliance formation is 

the one by Capaldo & Petruzzelli (2014). The authors highlighted the negative effect 

of geographical distance on innovative performance. In addition, through a statistical 

analysis, they found that this negative effect can be reduced in the presence of 

organizational proximity, i.e. the capacity of organizations to interact with each other 

(Crespin-Mazet, et al., 2013). 

Hu et al. (2015) proposed both a conceptual and a structural equation model in order 

to describe the impact of selection criteria on alliance performance. According to their 

model, the criteria affecting technological alliance performance can be classified as 

either “congenital” or “posterior” factors.  Criteria such as compatibility, reputation, 

technical capability and market capability are included in first class. Vice versa, 

criteria such as trust, information exchanging and shared problem solving are included 

in the second class.  

Table 2.5 summarizes the main selection criteria identified in the literature on R&D 

partner selection, by distinguishing them in qualitative criteria (i.e. partners’ 

characteristics and innovative capabilities) and qualitative criteria (i.e. degree of 

fitness and strategic capabilities). 

  



 

40 

 

Selection Criteria 
Classes 

Criteria References 

Quantitative 

PARTNERS’ CHARACTERISTICS 

 Organizational size 

 R&D efforts (R&D resources and 
expenses) 

 Geographical distance 

 Market coverage 

 Previous collaborations 

 

Nielsen (2003), Dong & Glaister 
(2006), Cumming & Holmberg 
(2012), Garcez & Sbragia (2013),  
Arranz & de Arroyabe (2008), Chen 
et al. (2008), Chen et al. (2010), Wu 
el al. (2009), Huang & Yu (2011), 
Reuer & Lahiri (2014), Capaldo et al. 
(2014), Huang & Yu (2011) 

INNOVATIVE CAPABILITIES 

 Publications 

 Patents 

 Quality of research 
 

Garcez & Sbragia (2013), Chen et al. 
(2008), Chen et al. (2010), 
Lee et al. (2010), Huang & Yu (2011), 
Tai et al. (2012), Geum et al. (2013), 
Yang et al. (2014), Park et al. (2015) 
 

Qualitative 

 

DEGREE OF FITNESS 

 Organizational proximity 

 Flexibility 

 Reputation 

 Trust 

 Complementarity 

 Similarity 

 Symmetry of scale and scope 

Nielsen (2003), Dong & Glaister 
(2006), Cumming & Holmberg 
(2012), Garcez & Sbragia (2013), 
Nielsen (2007), Bierly III & Gallagher 
(2007), Chen et al. (2008), Chen et al. 
(2010), Wu et al. (2009), Lee et al. 
(2010),Cumming & Holmberg (2012), 
Tai et al. (2012), Nielsen & Gudergan 
(2012), Geum et al. (2013), Huang & 
Yu (2011) 
 

STRATEGIC CAPABILITIES 

 Market knowledge 

 Distribution system 

 Access to funding 

 Financial ability 
 

Nielsen (2003), Dong & Glaister 
(2006), Chen et al. (2008), Chen et al. 
(2010), Cumming & Holmberg 
(2012), Garcez & Sbragia (2013), 
Arranz & de Arroyabe, Yang et al. 
(2014) 
 

Table 2.5 - R&D selection criteria 

2.1.3.4 Methodologies 

Methodologies are the last key issue of the partner selection problem emerging from 

the literature review, which refer to the usage of approaches, methods and techniques 

for the identification and selection of the most suitable R&D partners. 
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As many studies on the topic highlight that a careful and systematic implementation 

of the partner selection processes may result in a decrease in the rate of R&D alliance 

failure, the interest of scholars in methodologies has increased over time.  

In particular, recent research is full of studies suggesting guidelines for creating 

successful alliances, as well as developing new quantitative partner selection 

frameworks to overcome the limitations of R&D collaboration practices, which are 

mainly based on expert judgment and  lack of objective perspective.  

Holmberg & Cummings (2009), in order to support the creation of successful R&D 

collaboration, provided a conceptual framework for partner selection consisting of 

four steps. According to the authors, after aligning corporate and strategic alliance 

objectives (step 1), selection criteria have to be drawn up (step 2). Once the first two 

steps have been implemented, candidate partners can be mapped (step 3), and finally 

the potential of each candidate has to be evaluated (step 4).  

However, when potential R&D partners are unknown, they first have to be identified. 

In that sense, the recourse to sources of technological information is needed for 

searching and identifying potential candidates with complementary capabilities.  

In order to identify potential technology partners, Jeon et al. (2011) developed a 

patent based approach. The process for searching potential technology includes three 

phases. First of all, patent data are collected from the USPTO database. As the patent 

data are unstructured, they need to be pre-processed in order to eliminate unnecessary 

information. The second step consists of creating co-occurrence vectors by using text 

mining and domain experts. Finally, potential technology partners are identified by 

using similarity indicators. 
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The framework proposed by Wang (2012) is also based on the use of patents as an 

information source of technological complementarity when firms have insufficient 

information on who may possess them.  

Another example is the recent paper by Park et al. (2015). In order to examine 

suitable future partners for R&D collaboration, the authors provided a new systematic 

methodology which seeks technological and semantic similarity of patents. 

In addition to the identification on partners, Chen et al. (2008) proposed the use of an 

analytic network process (ANP) approach for partner selection whereby relative 

weights of criteria and motivations for forming strategic alliances are determined 

simultaneously. Two years later, having the same motivations and criteria in mind, 

Chen et al. (2010) implemented the analytic hierarchy process (AHP). 

For selecting strategic alliance partners, the use of ANP was also advised by Wu et al. 

(2009). The methodology is implemented in eight steps: (1) break down the problem, 

(2) outline partner selection criteria, (3) structure the hierarchy, (4) perform pairwise 

comparison and prioritization, (5) calculate the weights of the criteria, (6) rate the 

alternative partners, (7) calculate the potential partners’ overall score of each 

prospective partners, (8) make final decision. 

Lee et al. (2010) developed a framework for strategic partner selection for 

collaborative R&D based on literature, enabling a wide range search for potential 

partners and an understanding of their characteristics. After a massive literature 

review aimed at identifying the main decision criteria for selecting the strategic 

partners for collaborative R&D, the importance of each criterion is determined by the 
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AHP technique based on expert opinion. The proposed framework was also 

implemented by Geum et al. (2013). 

A fuzzy-AHP model was instead proposed by Yang et al. (2014). The authors used it 

for identifying and selecting candidate partners to work with on Chinese mega 

projects. The AHP model considers three hierarchical levels: organizational 

characteristics, evaluation criteria and sub-criteria. Relative weights are assigned to 

each criteria. 

Tai et al. (2012) suggested the use of a hybrid approach to select small firms’ 

collaborative R&D partners, in the presence of multiple criteria. More specifically, 

they proposed applying a two-phase framework, combining fuzzy, Delphi method and 

AHP. 

To find the perfect balance between partners and companies’ needs, Lee & Yoon 

(2013), after identifying the technology field of interest by using patent roadmapping 

and listing the candidate SME partners for collaboration, suggested the use of a 

Bayesian model for obtaining rankings. According to the authors, the Bayesian model 

is the most appropriate one when considering many criteria and their relationship to 

each other. 

Zhang & Geng (2010) proposed the use of a multi-agent simulation method in order 

to select R&D partners in virtual enterprises. According to the authors, the limitations 

of the simplex quantitative analysis can be overcome by using this method. 

In order to support organizations in choosing the most appropriate partners and 

making cooperative innovation more efficient, Li (2013) proposed a decision-making 

methodology of few steps, integrating fuzzy logic and the TOPSIS method. First of 
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all, the main factors influencing the cooperation strategy are identified and the criteria 

system of partner selection is set up. Then, the fuzzy weight and fuzzy assessed value 

can be acquired by considering the linguistic variable and triangular fuzzy number. 

Finally, in order to obtain a ranking of partners, the TOPSIS method is used. 

Table 2.6 summaries the results of the literature review with regard to the methods 

used for selecting R&D partners. 

Methods for R&D Partner 
Selection 

References 

Analytic Network Process (ANP) Chen et al. (2008), Wu et al. (2009) 

Analytic Hierarchy Process (AHP) 
Chen et al. (2010), Lee et al. (2010), Geum et al. (2013), Yang et 
al. (2014), Tai et al. (2012) 

Bayesian Lee & Yoon (2013) 

Multi-Agent Zhang & Geng (2010) 

Fuzzy Hybrid Tai et al. (2012), Yang et al. (2014), Li (2013) 

Table 2.6 - Methods for R&D partner selection 

As shown in the table, most of the papers propose the use of multi-criteria decision 

making (MCDM) techniques, i.e. ANP and AHP developed by Saaty (1980, 2001). 

The use of both AHP and ANP is also integrated with the use of the fuzzy logic (Tai, 

et al., 2012; Yang, et al., 2014), which allows for making decision in the presence of 

vagueness and uncertainty.  

In order to select the most appropriate collaborative R&D partners, there is also one 

study proposing the use of artificial intelligence (i.e. Bayesian model) as a decision 

making technique, and another one applying the multi-agent simulation.  

However, in contrast with the overall literature on partner selection, no studies 

applying mathematical programming emerge when focusing on R&D.  
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2.1.4 Identification of Findings 

This final phase consists of a critical analysis of the research materials in order to 

highlight findings and gaps in the literature. 

The in depth analysis of the selected papers has highlighted the existence of a strong 

relationship between motivations, partner typologies and selection criteria (Figure 

2.6).  

 

Figure 2.6 - Links among motivations, partners typologies and selection criteria 

A clear understanding of the motivations for partnership, the identification of the 

proper partner typology based on motivations, as well as the selection of the right 

criteria to be taken into account to assess potential partners, are extremely important 

in order to guide the development and implementation of partner selection 

methodologies.  

As already emphasized, the interest in methodologies has increased over time due to 

the emerging managers’ need of new frameworks to support the identification and 

selection of the most appropriate partners to collaborate with, as they positively affect 
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the success of R&D collaboration. Therefore, in order to better manage the variety of 

R&D objectives and the many characteristics that drive the choice for a partner, the 

studies identified through the systematic literature review have proposed the 

combined use of different decision making methodologies, mainly including multi-

criteria decision making techniques, such as AHP and ANP. On the contrary, the use 

of data envelopment analysis (DEA) is not mentioned. This finding contradicts the 

overall literature on decision-making methodologies for partner selection, according 

to which DEA is one of the most popular linear programming techniques (Ho, et al., 

2010; Wu & Barnes, 2011; Chai, et al., 2013; Govindan, et al., 2015). This, therefore, 

represents the first gap of the literature related to the R&D partner selection problem. 

Another emerging gap refers to selection criteria. More specifically, the systematic 

literature review has highlighted patents to be a common source of technological 

information about candidate partners for R&D collaboration. In particular, the number 

of patents is often used as criteria for evaluating technology complementarity and/or 

similarity of partners. By using patents as a criteria, researchers do not consider their 

limitations. First of all, not all of the know-how is eligible for patent protection (i.e. 

technologies at the early stages of their life cycle). In addition, some organizations 

may decide to protect their technological know-how in other ways, such as trade 

secrets or trademarks (Ernst, 2003). Therefore, even though patents represent an 

objective measure of R&D activities, only using patent data may automatically 

exclude or at least under-estimate some relevant R&D potential partners. 

The last gap emerging from the literature on the R&D partner selection problem refers 

to motivations and preferred partner typologies issues. In contrast with the overall 
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literature on innovation and technology management, when focusing on the R&D 

partner selection problem, researchers do not consider the existing link between the 

two issues and the technology life cycle (Kapoor & McGrath, 2014). More 

specifically, although the importance of R&D collaboration to achieve competitive 

success in a market characterized by rapid and continuous technological changes has 

been highlighted, there are no studies explaining the different motivations and the 

roles served by the different kinds of partner typologies during the evolution of 

technology from an initial emerging stage characterized by a high degree of 

uncertainty, to subsequent stages of growth and maturity in which the degree of 

uncertainty is much lower. 

In the light of these findings, the next chapter proposes a framework for identifying 

and selecting R&D partners by taking into account a preliminary analysis of the 

technology of interest and its life cycle. Furthermore, in order to overcome the 

limitations of patents, the framework considers selection criteria and variables of 

interest based on both patent and publication data. Finally, the use of data 

envelopment analysis is used as a decision making technique in order to fill the last 

gap in the literature, providing a further significant contribution to the research on the 

topic. 
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3 Step by Step Framework for R&D 
Partner Qualification 

Although the number of studies investigating the topic of R&D collaboration and, 

more specifically, the R&D partner selection process, has increased over time, 

findings from the literature review (chapter 2) highlight some relevant gaps to be 

filled. First of all, the need for a preliminary analysis of the technology of interest has 

emerged in order to better define the motivations, partner typologies and selection 

criteria. In addition, with regard to the identification of partners and their selection, a 

lack of studies applying mathematical programming techniques, such as data 

envelopment analysis, has been highlighted. In this chapter, in order to overcome 

these limits, a new quantitative decision-making framework, which takes into account 

technological issues, is provided to support organizations in evaluating and selecting 

the most suitable R&D partners for technological innovation. Advantages of adopting 

this approach in innovation management research and practice are also highlighted. 

3.1 The Strategic Role of Technology Analysis 

The investments and efforts made in recent decades by companies, research centers, 

and local governments in the race for the technological innovation of products and 

processes have been enormous. Despite the improvement of technological 

performance, it is increasingly difficult to meet the needs of customers increasingly 

oriented towards products with a high quality to price ratio. The reduction of the 

technology life cycle also makes the choice of the right time to enter into the market 

increasingly difficult.  
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In this panorama of ongoing technological transformation, the analysis of technology 

has a key role in managing innovation. The literature on technology management is 

full of studies highlighting the strategic use of technology analysis and its significant 

implications for firm strategies and industry evolution.  

When referring to technology analysis, one of the most common approaches is the 

“technology future analysis” (TFA) or “future-oriented technology analysis” (FTA). 

The main aims of TFA are allowing for a clearer understanding of the directions that 

existing trajectories will take and creating an improved future through making better 

decisions related to the future.  A variety of activities are involved in TFA and are 

known as  technology foresight, forecasting, intelligence, roadmapping and 

assessment (Technology Futures Analysis Methods Working Group, 2004) .  

Another common technique to be used together with TFA is patent analysis. The use 

of patent data is becoming increasingly popular within Innovation Management, 

especially in high-tech sectors (Jeon, et al., 2011; Jeong & Yoon, 2015). Ernst (1997)  

proposed the use of patents for drawing the curve of the evolution of technology, 

known as the technology life cycle. 

3.1.1 Technology Life Cycle 

In order to measure technological changes, Arthur D. Little (1981) introduced the 

notion of the technology life cycle (TLC), distinguishing four different stages (i.e. 

emerging, growth, maturity and saturation) based on two dimensions (i.e. the 

competitive influence/effect and integration in products or processes). According to 

Arthur’s definition: 
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 at the emerging stage the technology is novel with both low competitive and 

impact and integration in processes or products; 

 at the growth stage there are pacing technologies with high competitive impact 

that still have to be integrated in new products or processes;  

 at the maturity stage they become key technologies, and are integrated into 

products or processes, and maintain their high level of competitive impact; 

 at the saturation stage the technology loses its competitive impact and 

becomes a base technology, and a new technology may take its place. 

TLC assumes the general form of an S-curve, indicating that the technology 

progression “advances slowly at first, then accelerates, and then inevitably declines” 

(Foster, 1986). 

As highlighted by Taylor & Taylor (2012) regarding the concept of technological life 

cycle, a common interpretation of the S-curve plots the cumulative adoption of a 

technology over a certain amount of time, which leads to what often termed the 

diffusion model (Nieto, et al., 1998). 

Ernst (1997) used the S-curve to display technological performance, in terms of patent 

data, both over time and in terms of cumulative R&D efforts (Figure 3.1).  
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Figure 3.1 - The Technology Life Cycle (Source: Ernst, 1997) 

Further studies suggested drawing the S-curve by using patent data together with 

some other bibliometric indicators, such as the number of articles and citations 

(Haupt, et al., 2007; Gao, et al., 2013).  

However, during the emerging stage of the technology life cycle, when the basic 

technology principles have been partially understood, the growth of the curve is slow. 

This initial stage is characterized by a high degree of risk, related to the uncertainty of 

identifying interesting technology solutions that allow firms to respond to the 

emerging needs of the market. Vice versa, during the subsequent stages of growth and 

maturity, the degree of uncertainty is much lower. Once a deeper knowledge of 

technology has been acquired, its improvement becomes faster. This period of quick 

growth precedes an inflection point and slower growth as a period of maturity begins. 

At a certain point, when the advances in research and development approach their 

natural limit or the technology becomes obsolete, the innovative performance 

declines, resulting in the emergence of new technologies.  
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Moreover, due to rapid and continuous technological changes, the life cycle of 

advanced technology becomes shorter. In order to reduce the high level of uncertainty 

coming from these changes, companies have to do their best in order to reduce 

research and development costs, to identify market needs, to find the right distribution 

channel and, finally, to make the most of the competitive advantage through providing 

new and effective technologies.  

In such a context, R&D collaboration represents a great opportunity to innovate. In 

order to make the collaboration successful, the innovation process needs to be 

managed properly at all stages of the technology life cycle.  

Therefore, the evolution of technology will be taken into account for the development 

of the partner selection framework described in the next sections. By doing so, it is 

possible to respond to and fill one of the gaps that emerged from the literature review. 

3.2 The Four Steps 

The partner selection problem is one of the most critical aspects in the establishment 

of R&D collaboration (Geringer, 2001). When the selection process is implemented 

well, the partner choice can lead to important competitive advantages. On the other 

hand, when the partners have not been selected properly, failures can occur from the 

beginning of the alliance.  

Many studies highlight the existing relationship between partner selection and alliance 

performance. According to Nielsen (2003), alliances would be more successful if the 

selection process were more structured and started by looking at the motivations and 

intentions of an alliance. Holmberg & Cummings (2009) suggested the application of 
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analytic and systematic methods for partner selection as a precondition to increase the 

success rate of alliances.  

In order to support organizations in selecting the proper partners for successful 

collaboration, a new quantitative framework, structured in only a few phases, is 

proposed in this section. More specifically, this decisional framework allows experts 

(e.g. firms’ managers) to rationalize the selection of technological partners by 

identifying and classifying them based on proper criteria and methods. However, once 

the final list of candidate partners has been elaborated, the effective choice is made by 

managers autonomously. 

The proposed framework has been developed based on the results of the literature 

review on R&D collaboration (i.e. the existence of four main issues) and on the 

emerged findings (the need for technology considerations). Therefore, the partner 

selection is defined here as a process of four phases in which, after clearly defining 

the alliance purpose, in terms of technology of interest, motivations and preferred 

partner typologies, candidate partners can be identified utilizing a set of criteria 

objectively describing their characteristics. Finally, based on the relative importance 

of these factors, appropriate partners to collaborate with can be evaluated and selected 

(Figure 3.2). 



 

55 

 

 

Figure 3.2 - The four steps framework 

Each of the four phases has been rationally structured, in order to make the 

framework simple to implement and reliable at the same time. In addition, the use of 

information and data available online allows the identification of candidate partners to 

be objective and replicable. 

Finally, the decision making methodologies suggested for both the qualification and 

final selection phases have been chosen with the aim to minimize expert subjectivity, 

and to speed-up the analysis, whilst taking into account a large set of candidate 

partners. 

3.2.1 The Partner Selection Team 

According to Baker et al. (2002), before starting any decision process, a decision 

making team should be identified in order to reduce possible disagreements about 

problem definition, requirements, goals and criteria.  
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In order to identify and select the most appropriate partners to collaborate with, the 

creation of a partner selection team responsible for the full implementation of the 

four-step framework is important. More specifically, the members of the team must 

have a certain amount of experience in the field of R&D, as well as being up to date 

with the latest advances in innovation. In addition, some familiarity with the main 

scientific search engines is essential.  

3.3 Objectives of the Innovation Strategy (Step 1) 

When defining the objectives of the innovation strategy, having a clear idea of the real 

interests of the company is crucial in order to identify the main sources of knowledge 

and expertise about a certain technology (i.e. universities, research centers and/or 

other firms).  

Firstly, all the objectives related to the technology of interest, such as the sector of 

interest and the life cycle phases, must be clarified. Once the technology of interest is 

known, the motivations underlying the need for R&D collaboration and the most 

favorable partner typologies can be identified. Finally, previous collaboration (if any) 

on the topic should be indicated.  
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For practical purposes, the creation of an objectives chart is suggested (Table 3.1). 

OBJECTIVES FOR PARTNERSHIP                                                                                          # 1 

Technology of Interest Technology 1 

Preferred Sector Sector 1, Sector 2, … 

Description Keyword 1, Keyword 2, … 

Life cycle Phase Emerging/ Growth/ Maturity/ Saturation 

Main Motivations Research-based/ Development-based/ Market-based 

Preferred  Partners Typologies Universities and Research Institutes/ Firms 

Table 3.1 - Example of a chart of the company's objectives for partnership 

3.3.1 Technology of Interest, Motivations and Partner Typologies 

A very significant contribution to the literature highlighting the significant role of the 

technology of interest and its evolution is given by Kapoor & McGrath (2014). 

Through a study analyzing more than 2,000 articles presented in industry technical 

conferences on semiconductor technologies, the two authors “unmasked” the 

existence of the relationship between technology evolution, and R&D collaboration. 

More specifically, they highlighted that the preferred partner typology for R&D 

collaboration (i.e. research organizations, users, suppliers and rivals) changes when 

shifting from the initial emergence stage of the technological life cycle to the growth 

and maturity stages. 

Therefore, according to Kapoor and McGrath’s findings, in order to develop a new 

R&D partner selection framework which takes into account the technology issue, the 

following assumptions are applied: 

 During the emerging stage of the technology life cycle, organizations are  

strongly orientated toward basic research. R&D efforts mainly involve internal 
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R&D departments and collaboration with research organizations, such as 

universities and research institutes.  

 Throughout the growth and maturity stages of the technology life cycle, with 

the increasing need for collaborative development and integration of 

complementary technology, R&D collaboration with suppliers is on the rise. 

Institutional collaboration continues to exist. 

 Finally, collaboration with competitors are stable, ranging from research-based 

motivations (i.e., using collaboration to learn and accumulate knowledge), to 

saving-based (i.e. sharing R&D resources to generate economic efficiencies), 

and to market-based (i.e. introduction of new products into the market). 

3.4 Identification of Candidate Partners (Step 2) 

The second step of the R&D framework consists of identifying a long list of potential 

partners to be selected for R&D collaboration.  

The partner search involves different kinds of organizations from all over the world, 

that can be found by using both publications and patent data. The search for R&D 

potential partners starts from publications or patents, depending on the objectives for 

partnership (technology of interest, motivations and preferred partner typology) and, 

therefore, on the relative importance of partner selection criteria. 

3.4.1 Selection Criteria and Variables of Interest 

Defining criteria poses one of the greatest difficulties regarding partner selection 

problems (Ávila, et al., 2012). Partner selection criteria are closely linked to 
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innovation strategy goals. The literature on open innovation and R&D collaboration is 

full of studies identifying the most significant criteria for partner selection (Nielsen, 

2003; Dong & Glaister, 2006; Bierly III & Gallagher, 2007; Arranz & de Arroyabe, 

2008).  

However, the systematic literature review has highlighted the emerging need for 

selection approaches based on more objective data. Consequently, the second step of 

the framework proposes the use of quantitative selection criteria and variables of 

interest (i.e. partners’ characteristics and innovative capabilities) that can be measured 

without relying on expert opinion. Rather, these quantitative variables are based on 

data to be collected by making use of the more common online data sources. 

Based on the concept of “innovative performance” (Hagedoorn & Cloodt, 2003), 

R&D inputs (as cost factors) and R&D outputs (as benefit factors) can be considered. 

The benefit factors refer to innovative capabilities, such as research output and quality 

of research of potential partners. On the other hand, the cost factors take into account 

collaboration experience and co-authorship. 
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Table 3.2 provides a brief overview of the variables of interest. 

 Variables of Interests 

B
EN

EF
IT

S 
(R

&
D

 O
u

tp
u

ts
) 

Research Output 

Pub 
Total number of publications with a focus on the technology of interest, published 

over a certain period of time 

Spat 
Total number of patent data with a focus on the technology of interest, published 

over a certain period of time 

Epat 
Total number of patent data published over a certain period of time with a focus on 

the subject areas in accordance with the technology of interest 

Kdecay Publications (or patents) decay over a certain period of time 

Quality of Research 

Cit 
Total number of citations received by publications about the technology of interest 

over a certain period of time 

HTind 
H-technology index of potential partners calculated focusing on publications about 

the specific technology of interest over a certain period of time 

C
O

ST
S 

(R
&

D
 In

p
u

ts
) 

Collaboration Experience 

Coll Total number of collaborations established over a certain period of time 

Eucoll 
Total number of collaborations established with European organizations over a 

certain period of time 

Iucoll 
Total number of collaborations established among universities/research centers and 

industries over a certain period of time 

Co-authorship 

Auth 
Number of authors involved in the publications about the technology of interest over 

a certain period of time 

Table 3.2 - Variables of interest for R&D partner selection 

Each of these variables is described in further detail below. 

3.4.1.1 Benefit Criteria: Research Output and Quality of Research 

According to the literature on R&D partner selection, collaboration among 

organizations and/or between individuals represents an important source of 

knowledge that allows firms to stay competitive in the current dynamic business 
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environment. More specifically, R&D collaboration allows firms to take advantage of 

the expertise of many researchers and, in turn, to increase their innovative and 

technological capabilities.  

In order to evaluate and select the most favorable potential partners to collaborate 

with, the benefit criteria have been distinguished in two classes: (1) research output 

and (2) quality of research.  

3.4.1.1.1 Research Output 

In order to evaluate the technological capabilities of potential partners, one of the 

main aspects to take into account is their research output. It can be evaluated in terms 

of the number of publications and patents they have published (Li, et al., 2008; Lee, et 

al., 2010; Wu, et al., 2009; Jeon, et al., 2011). 

Usually, publications are more significant when collaborations are established with 

universities or research centers, whereas patents are preferred in the case of 

collaboration among industries (Geum, et al., 2013).  

In addition to the number of publications and patents, the use of a new variable 

termed “knowledge decay” is proposed. The details of these variables are given 

below. 

Total number of publications (Pub). The total number of published papers is the first 

variable to consider as a research output. In order to select the most suitable R&D 

partners, it is advisable to collect publication data on the specific technology of 

interest.  
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Specifically, this variable is able to quantify the innovation and technological 

capabilities of candidate partners.  

The number of publications can be collected by using bibliographic data sources, such 

as Scopus and Web of Science, and by setting a period of time ranging from five to 

ten years (Geum, et al., 2013; Wu, et al., 2009).  

Total number of patents (Spat). The total number of published patents is the last 

variable to consider as a research output. As in the case of publications, it refers to a 

period of time ranging from five to ten years (Hagedoorn & Cloodt, 2003; Ernst, 

2003; Jeon, et al., 2011).  

In order to select the most suitable R&D partners, it is advisable to collect patent data 

on the specific technology of interest (Spat). When the number of specific patents is 

not significant enough to differentiate the candidates, the patents collection can be 

extended to the subject areas (i.e. engineering and computer science) to which the 

technology of interests refers (Epat). In any case, the patents count is a measure of the 

technological capabilities of candidate partners.  

As indicate by the World Intellectual Property Organization (WIPO), patent data can 

be collected by using several online database services, such EPO Espacenet, Google 

Patents and Thomson Innovation (WIPO, 2010).  

As already discussed, not all technological innovations are eligible for patent 

protection (Ernst, 2003) and registered in all countries. These limitations may 

automatically exclude or at least under-estimate some relevant organizations. For 

these reasons, it is important to carefully evaluate the use of this variable.  
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Knowledge decay (Kdecay). When the number of publications or patents do not 

significantly differentiate the potential partners, the use of a new variable, called 

“knowledge decay”, is proposed. It reminds the patent indexes proposed in the 

literature by Flaming (2001). 

The knowledge decay variable is based on the idea that the innovative relevance of 

the publications (or patents) changes over the period of interest and, more specifically, 

it decreases in the case of less recent publications (or patents).  

According to this assumption, in the case of publication data, the Kdecay values can 

be measured by using the following exponential decay formula: 

∑𝑃𝑢𝑏(𝑡) ∗ 𝑒−𝑘𝑡
𝑡=𝑛

𝑡=0

 

where Pub(t) is the number of publication at time t, and n indicates the years from the 

latest to the earliest one (for example, n = 2015 for t = 0 and n = 5 for t = 2010). 

Furthermore, k is the rate of decay of knowledge.  

According to Mansfield (1968), the  rate of decay of the knowledge produced by 

firms ranges between 0.04 and 0.07. About ten years later, referring to traditional 

capital and research, Griliches (1980) suggested the use of a rate of decay k = 10.The 

knowledge decay can also be measured by using a formula equivalent to the one used 

in economics, finance, and accounting for the calculation of the Net Present Value 

(NPV), as follows: 

∑𝑃𝑢𝑏(𝑡) ∗ (1 1 + 𝑘)⁄ 𝑡

𝑡=𝑛

𝑡=0
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However, in the case of patent data, the number of publications Pub(t) in the two 

formulations above must be replaced by the number of patents SPat(t). 

3.4.1.1.2 Quality of Research 

The most common indicators used in the literature to measure the quality of research 

are h-index and both publications and patents citations (Hagedoorn & Cloodt, 2003). 

Even though the use of patents citations is suggested by many researchers, the present 

framework does not take them into account. This choice is related to the research 

objectives, which mainly focus on the research and development phase of the 

innovation process. More specifically, because during these phases organizations are 

still working on a better understanding of the basic technology principles, the number 

of patents is too limited to make the usage of patent citations worthwhile.  

With regard to the h-index, it was introduced by Hirsch (2005) to evaluate the 

scientific productivity and the apparent scientific impact of a scientist’s research. 

More specifically, the h-index is based on the set of a researcher's most cited papers 

and the number of times they have been cited in other people's publications. 

The present framework does not use the h-index in its original formulation, but 

proposes an alternative use of it. The new indicator is called “h-technology index”.  

Thus, the quality of research will be measured in terms of the number of citations and 

by using the h-technology index. 

H-Technology index (HTindex). In order to select R&D partners, an alternative use of 

the h-index is proposed. The new indicator is called “h-technology index” in order to 

underline the fact that it does not refer to the overall publications of individual 
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researchers, but only to the papers published by each candidate partner about the 

technology of interest. The h-technology values can be measured candidate partner by 

candidate partner by using bibliographic data sources. More specifically, the h-

technology index value is obtained by sorting the candidates’ publications about the 

technology of interest by number of citations and taking the number of publications N 

having the number of citations ≥ N. 

Total number of article citations (Cit). When the h-technology index is not likely to 

differentiate the various candidate partners, it is possible to resort to counting the 

number of article citations. The use of the citations of articles as an indicator of the 

quality of the research is very common in the literature (Lee, et al., 2010; Geum, et 

al., 2013). In particular, this value can be measured by using bibliographic data 

sources, in order to assess the relevance of research concerning specific technologies 

of interest. 

3.4.1.2 Cost Criteria: Collaborations and Co-Authorship 

The choice of R&D partners does not have to be based solely on innovative 

performance of research. On the contrary, when looking for collaborative R&D 

partners, in addition to the advantages of R&D cooperation, firms must also take into 

account the “hidden” costs associated with R&D collaboration (Amoroso, 2014).  

Concerning the transaction cost perspective, these costs are associated to personnel 

management and monitoring (Williamson, 1981). In this section, collaboration 

experience and co-authorship have been chosen as cost criteria to use for the 

identification and selection of proper potential partners.  
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The collaboration experience can be measured in terms of the total number of 

collaborations created between each candidate partner of the long list and other 

organizations. On the other hand, the co-authorship criteria is evaluated in terms of 

the number of researchers involved in the papers published by each organization of 

the long list.  

Some additional information about the indicators used to measure the cost criteria are 

given below. 

Total number of prior collaborations (Coll). According to the literature on R&D 

partner selection, the collaboration among organizations represents an important 

source of capabilities that allows firms to stay competitive in the current dynamic 

business environment (Chen, et al., 2008; Garcez & Sbragia, 2013).  

Despite the evident advantages to gain from R&D collaboration, when organizations 

work together in order to achieve common goals, they must create a structure to 

efficiently support knowledge transfer and allow the involved parties to communicate 

with each other. Of course, managing communication and knowledge exchange in the 

presence of organizational, cultural and proximity distance (Capaldo & Petruzzelli, 

2014; Reuer &  Lahiri, 2014) requires an additional workload or R&D effort 

(Caloghirou, et al., 2004), that can be assumed as a collaboration related investment.  

Based on this assumption, the collaboration experience can be regarded as a cost. As 

already mentioned, it is measured in terms of total number of collaborations in which 

potential partners have been involved in publishing papers. 
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As already done for some of the variables of benefit, all the information related to this 

variable of cost can be collected by using bibliographic data sources, such Scopus and 

Web of Science.  

However, based on the objectives for partnership, the data collection can also be 

limited to the collaboration only between European organizations (Eucoll), or to the 

partnerships between industries and universities or research institutions (Iucoll).  

Total number of authors (Auth). The second cost criteria to be taken into account is 

co-authorship. It is evaluated through the measurement of the number of researchers 

involved by each candidate partner in the publication of papers. In accordance with 

this definition, it is also considered as an indicator of the research capabilities based 

on which the candidate partners can be evaluated and selected (Chen, et al., 2008; 

Chen, et al., 2010).  

The use of this variable is related to the concept of workload, according to which the 

R&D efforts can be measured in terms of working hours. As it is not possible to 

obtain information about the exact amount of working hours dedicated to the 

implementation of each article, it has been assumed that the higher the number of 

researchers involved in the publication of papers is, the higher the costs of the 

collaborative research are. 

3.4.2 Data Collection 

Many studies on partner selection show that firms often base the search for potential 

partners on previous partners, relying on expert knowledge to identify and select the 

most suitable candidates. In order to create greater synergies, firms should also look 
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for unexpected and unknown potential partners, by exploiting knowledge from 

outside databases and incorporating quantitative data.  

In order to obtain all the information needed for partner selection, the use of online 

data sources for patents and publications is advised.  

The “Guide to technology databases” by WIPO (2010) provides an exhaustive list of 

the existing patent and publication data sources, classifying them in various groups.  

With regard to patents, the data sources can be distinguished in three categories:  

 Free databases provided by WIPO, national and regional offices, such as  

Espacenet by the European Patent Office (EPO); 

 Free-of-charge commercial databases, such as Google Patents; 

 Fee-based commercial databases, such as Thomson Innovation.  

Likewise, with regard to the publication data sources, the WIPO guide distinguishes 

them in: 

 Free-of-charge search services, such as Google Scholar; 

 Fee-based search services, such as Scopus and Thomson Innovation; 

 Free-of-charge journal databases, such as Science Direct. 
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Table 3.3 summarizes the main technology databases. 

DATA SOURCES PUBLICATIONS PATENTS FREE SOURCE 

Google Scholar (http://scholar.google.com) •  • 

ScienceDirect (http://www.sciencedirect.com) •   

Scopus (http://www.scopus.com) • •  

Thomson Innovation (www.thomsoninnovation.com) • •  

Google Patents (http://www.google.com/patents)  • • 

EPO Espacenet (http://www.espacenet.com/access)  • • 

Table 3.3 - Main data sources for patents and publications 

These databases can be used to create the long list of potential partners and, 

subsequently, to collect all the data needed to evaluate and identify the most 

appropriate partners to collaborate with.  

In order to create the database of the long list of candidate partners, the choice of the 

first document typology (patents or publications) to be considered for the data 

collection depends on the objectives of the collaboration and, therefore, on the partner 

typology of interest.  

Generally, in the case of universities or research centers, the use of publications is 

preferred, whereas patent data is preferred regarding firms (Geum, et al., 2013). 

Moreover, when publications are preferred, the data collection starts from a 

bibliographic data source and then patent information are integrated into the existing 

database of potential partners (long list). Vice versa, if patents are preferred. 

Figure 3.3 represents a flow chart showing the data collection phase activity by 

activity, when starting the search from bibliographic data.  

http://scholar.google.com/
http://www.sciencedirect.com/
http://www.scopus.com/
file:///C:/Users/capanob/Desktop/www.thomsoninnovation.com
http://www.google.com/patents
http://www.espacenet.com/access
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Figure 3.3 - Flow chart of the data collection phase 

The partner selection team is responsible for implementing each stage of the data 

collection. In particular, a focus group is advisable for the identification of the most 

appropriate keywords to use for the document search. 

In the following section, the use of Scopus and Espacenet for data collection is 

described. However, according to Table 3.3, any other online data source can be used 

to obtain the needed bibliometric and patent information. 

3.4.2.1 Use of Scopus 

Together with Web Of Science (WOS) from Thomson Innovation, Scopus is one of 

the largest databases on various scientific fields, commonly used for searching the 

literature (Guz & Rushchitsky, 2009). In addition, its user friendly interfaces and the 
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possibility to manage and refine the search results make this database one of the most 

appropriate for data collection. 

Scopus also performs a citation analysis and, therefore, can be used in order to collect 

data such as h-index and number of citations for each potential partner. Lastly, Scopus 

provides a link to the Espacenet database for patent research. 

The data collection by Scopus can be implemented in three main phases: 

1. Document search 

2. Potential partner search 

3. Affiliations data collection 

Scopus uses the term “affiliation” to indicate every organization producing a 

scholarship output. Therefore, from now on, the words “affiliation” and 

“organization” will be used interchangeably. 

At the end of the three phases indicated above, a long list of potential partners is 

available for further evaluation. 

3.4.2.1.1 Document search 

The document search allows for the identification of all the publications focusing on 

the technology of interest, through the use of a set of keywords properly combined 

with the logical operators AND and OR. 
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In order to identify the best combination of keywords to find the greatest number of 

items that are in line with the specific technology of interest, it is advisable to 

implement the following steps: 

 Going on Scopus and clicking on the “document search” tab (Figure 3.4); 

 

Figure 3.4 - Scopus document search 

 Writing a combination of keywords in the “search for…” field that describe 

the technology of interest well (it is possible to add new search fields, if 

necessary) and limiting the search to article title, abstract and keywords; 

 Identifying synonyms and combining, by trial and error, old and new 

keywords in order to obtain only the documents which are consistent with the 

objectives of the search; 

 Eliminating redundant keywords (search results should not change). 

Once the best keywords have been identified, all the documents matching the search 

settings are displayed (Figure 3.5). From them, it is possible to select only those 

included in the preferred publication date range, document type, subject areas and 

language.  
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Figure 3.5 - Document search results 

Finally, when the documents of interest have been found, the next step consists of 

identifying a long list of potential partners. 

3.4.2.1.2 Potential partners search (long list) 

In order to identify a preliminary group of potential partners to collaborate with, the 

document search results have to be analyzed and classified partner by partner. This 

can be carried out  by selecting “analyze result search” (Figure 3.5). 

This function displays the analysis of the search results by Scopus. It shows the 

number of documents categorized (on different tabs) by year, source title, author 

name, affiliation name, country, document type and  subject area.  

In order to identify the main affiliations working on the specific technology of 

interest, the first tab to explore is the affiliation one (Figure 3.6). These affiliations 
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represent the long list of potential partners to be considered for data collection and, 

later, for performance benchmarking and ranking. 

 

Figure 3.6 - Analysis of search results 

3.4.2.1.3 Data collection affiliation by affiliation  

By clicking on every single affiliation's name and the related number of documents, it 

is possible to obtain and collect more general information about the potential partners 

(Figure 3.7), as well as a list of documents matching the specific search in a new 

window affiliation by affiliation (Figure 3.8). 
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Figure 3.7 - Affiliations’ information 

 

Figure 3.8 - Documents by affiliation 

Specifically, looking at the window with all the documents matching the specific 

search, it is possible to collect data about the h-technology index and documents 

citations. As already stated, the h-technology index value is obtained by sorting the 

candidates’ publications about the technology of interest by number of citations and 

taking the number of publications N having the number of citations ≥ N.  
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Then, by clicking “analyze search results” and looking at the country/territory and 

affiliation tabs, it is possible to collect more information, such as the number of 

collaborations. Furthermore, all the information needed is categorized year by year or 

over the entire period of interest.  

For practical purposes, it is advisable to summarize the keywords and the settings in a 

table (Table 3.4).  

SCOPUS DATA COLLECTION 

Keywords  Keyword 1, Keyword 2, … 

Additional settings 

 Years: 2010-2015 

 Subject areas: Humanities and Social Science 

 Document type 

 Language: English 

Table 3.4 - Scopus search settings 

3.4.2.2 Use of Espacenet  

Espacenet is an online service developed by the European Patent Office (EPO) for 

searching patents and patent applications. It is free and which records more than 90 

million patent publications. Using EPO is the best option when firms have to market 

their technology not in the US, but in Europe, or when the size of the markets using 

the technologies is greater than in the US, even though it is the US which is the largest 

technology market (Kim & Lee, 2015).  

As is the case with Scopus, the document search on Espacenet starts with the 

identification of a set of keywords that better describe the technology of interest 

(Figure 3.9). 
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Figure 3.9 - Espacenet patent advanced search 

In addition, in order to find the right documents, the patent advanced search allows 

the setting of one or more classification classes symbols from the International Patent 

Classification (IPC) and the Cooperative Patent Classification (CPC) systems.  
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The IPC is a hierarchical patent classification system which is applied in more than 

100 countries to classify the content of patents in a uniform manner. The IPC 

classification symbols are made up of a letter denoting the IPC section (e.g. B), 

followed by a number (two digits) denoting the IPC class (e.g. B60) and a letter 

denoting the IPC subclass (e.g. B03W). A number (variable, 1-3 digits) denotes the 

IPC main group (e.g. B60W1), a forward slash `/`, and a number (variable, 1-3 digits) 

denotes the IPC subgroup (e.g. B60W1/32). 

Conversely, CPC system has been jointly developed by the European Patent Office 

(EPO) and the United States Patent and Trademark Office (USPTO). It is mainly 

based on the previous European classification system (ECLA), which itself was a 

more specific and comprehensive version of the International Patent Classification 

(IPC) system. As with the IPC, the CPC system also has a hierarchical structure which 

consists of sections, classes, subclasses, groups and subgroups. 

Once keywords and patent classes have been defined, date ranges can be assigned too. 

Moreover, when looking for patents after publications, the patent search has to be 

implemented candidate partners by candidate partners (from the long list by Scopus). 

In this case, the candidate partners’ name can be set in the field “Applicant(s)”. On 

the contrary, when data collection starts from the patent search, the assignee field 

does not need to be set. 
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For practical purposes, it is advisable to summarize keywords, patent classes and 

other parameters in a table (Table 3.5). 

ESPACENET DATA COLLECTION 

Keywords  Keyword1, keyword2, … 

IPC symbols IPC1,  IPC2, …  

CPC symbols CPC1, CPC2, … 

Additional settings 
 Years: 2010-2015 

 Subject areas: Engineering and Computer Science 

Table 3.5 - Patent search settings 

3.5 Qualification of Candidate Partners (Step 3) 

The qualification phase is the third step of the partner selection framework proposed 

in this thesis. It consists of obtaining a smaller set of potential partners by first 

reducing the larger one (de Boer, et al., 2001). 

According to Sarkara & Mohapatra (2006), the qualification of candidate partners is a 

prerequisite for creating successful relationships among parties. 

In the general literature on the partner selection problem, the techniques identified for 

the partners’ qualification are several. According to the review by de Boer et al. 

(2001), the techniques that are particularly suitable for pre-qualification of suppliers 

are cluster analysis, case-based reasoning, and data envelopment analysis. Wu & 

Barnes (2011) also indicated the use of categorical methods. 

Among the above techniques, data envelopment analysis (DEA) is one of the most 

flexible, as it is able to manage a large set of decision alternatives (i.e. candidate 

partners) and minimize expert subjectivity, fully satisfying the requirements of 
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replicability, reliability, rationality. Moreover, the data envelopment analysis model 

fits perfectly with the idea of evaluating the candidate partners based on both benefit 

and cost factors.  

Finally, the use of the DEA technique for the qualification of R&D potential partners 

contributes to responding to the lack of studies in the literature applying mathematical 

programming techniques. 

The models and the usage of DEA are described in detail below. 

3.5.1 Data Envelopment Analysis (DEA) 

The Data Envelopment Analysis is a non-parametric technique initially introduced by 

Charnes et al. (1978) and built around the concept of “technical efficiency” of a set of 

decisional entities, known as decision making units (DMUs).  

The technical efficiency of DMUs (i.e. potential partners) can be calculated as the 

ratio of the weighted sums of benefit criteria (to be considered as outputs) to the 

weighted sums of cost criteria (to be considered as inputs).   

Figure 3.10 provides a graphical representation of a typical decision making problem 

analyzed by using DEA. 

 

Figure 3.10 - Representation of a typical DEA process 
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When DEA is used, the decision-making problem can be analyzed from two different 

points of views: “output-oriented” and “input-oriented”. The output-oriented model 

maximizes the amount of outputs produced by a certain DMU whilst controlling the 

set of consumed inputs. Vice versa, in the case of an input-oriented model, DEA 

measures the ability of DMUs to produce a given set of outputs with the minimum 

amount of inputs.  

Either way, DEA helps the decision-makers to classify the DMUs in efficient and 

inefficient, based on the technical efficiency score (TE). All the efficient DMUs 

receive a TE of 1, whereas the inefficient ones have a TE score positive and lower 

than 1. 

The efficient DMUs define the so-called “efficient frontier”. An example of the 

efficiency frontier in the case of maximization of outputs is shown in Figure 3.11. 

 

Figure 3.11 - DEA efficiency frontier 

The radial distance of an inefficient DMU (A or E) from the nearest efficient DMU on 

the frontier (B, C or D) indicates the direction and amount of possible improvements 

to be made in each output and input in order for it to become efficient. 
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(1) 

Consider a set of n of DMU using m inputs (costs) to produce s outputs (benefits). Let 

yrq and xiq denote the amount of the rth output (r = 1,2,...,s) and of the ith input (i = 

1,2,...,m) produced and consumed by the DMU q, respectively. Also, vr and ui are the 

weights given to output r and input i, respectively. 

The original Charnes-Cooper-Rhodes (CCR) model of DEA, used to obtain the 

technical efficiency of the DMU q, is formulated in terms of the following fractional 

programming: 
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So that the relative efficiency scores of all the DMUs can be identified, the problem 

has to run n times.  

According to the formulation (1), the technical efficiency scores (TE) range from 0 to 

1. If the TE = 1, the DMU is efficient, whereas if TE < 1, the DMU is inefficient. 

Furthermore, with regard to weights, this method does not require an a priori 

assignment. On the contrary, the set of weights for the DMU q are determined as the 

those which maximize its TE score on the condition that the efficiency of other DMUs 

(calculated using the same set of weights) are limited to values zero to one. 
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(2) 

It is also important to highlight that there is no unique set of weights for all the 

DMUs, but rather the weights assigned should be flexible and reflect the requirement 

of individual DMUs. For example, a potential partner that has a good reputation in 

terms of number of publications will likely attach higher weights to this kind of 

output. On the other hand, a candidate that has a higher number of published patents 

would probably assign a greater weight to this output category. In other words, the 

weights, which are one of the most important issues of the DEA assessment, are 

assigned by DEA as a unique set of weights for each DMU. 

The original CCR fractional programming can be converted into a linear 

programming model, known as the primal CCR model. In turn, the primal model can 

be converted in its dual, which has a lower number of constraints.  

Because, in general, the more constraints a linear problem has, the more difficult it is 

to solve,  it is usual to solve the dual DEA model.  

The dual CCR output-oriented model, is formulated below: 
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where φq represents the technical efficiency score of the specific DMU q, and λj is the 

weight assigned to the DMU j. 

3.5.1.1 DEA Methods for Qualification 

In the previous section, the basic DEA model has been described, showing how its 

implementation groups the DMUs in two sets, i.e. those that are efficient and those 

that are inefficient.  

Starting from the original data envelopment analysis model, many researchers have 

tried to better the differential capabilities of DEA, developing both rating and ranking 

methods. 

As reviewed by Adler et al. (2012), and later by Khodabakhshia & Aryavash (2012), 

in the context of data envelopment analysis, the most common methods for ranking 

are: 

 Cross-efficiency, first proposed by Sexton et al. (1986) and which ranks 

DMUs based on both self and peer evaluations; 

 Super efficiency, introduced by Andersen and Petersen (1993), consisting of 

ranking DMUs by excluding the unit being scored from the DEA dual model; 

 Benchmarking, providing a full ranking of efficient DMUs by counting the 

number of times each DMU acts as a peer benchmark for inefficient DMUs 

(Torgersen, et al., 1996). 

On the other hand, as a rating method, Barr et al. (1994) introduced the DEA Peeling 

method. DEA Peeling provides a classification of inefficient DMUs by grouping them 

based on demonstrated levels of achievement (“rating tiers”). 
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One of the main differences between the above methods is related to their capabilities 

to differentiate the DMUs’ efficiency scores. Thus, the choice to use one method 

rather than another depends on the level of differentiation required by the problem.  

The qualification problem, which aims at reducing the long list of potential partners to 

consider for further analysis by “sorting” rather than ranking the candidates (de Boer, 

et al., 2001), does not require a high degree of differentiation. Therefore, the rating 

provided by DEA Peeling is more appropriate for the implementation of the 

qualification phase of the framework. 

3.5.1.1.1 DEA Peeling 

DEA Peeling was introduced by Barr et al. (1994) based on the idea of “peeling the 

DEA onion”. The method was then validated as a tool for DMU classification by 

(Bougnol & Dula, 2006).  

According to Gedranovich & Salnykov (2012), the peeling procedure, as proposed by 

Bougnol and Dula (2006), is a “very intuitive process” that aims to exclude efficient 

units from the original dataset stage-by-stage. In other words, at each iteration all the 

efficient DMUs (TE=1) are “peeled” away from the respective efficient frontier.  

More specifically, the first stage consists of applying DEA by considering the entire 

data set, so that all the efficient DMUs at this stage form the first rating tier. Then, 

efficient DMUs are taken away from the data set and another DEA analysis is 

launched.  
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The next group of efficient DMUs make up the second rating tier which is then taken 

away from the data set. DMUs in rating tier two are deemed inefficient in comparison 

with those in rating tier one, but  efficient in comparison with all the others.  

The process is repeated until all the DMUs in the data set have been assigned to a 

rating tier. However, the number of stages depends on the number of DMUs and the 

dimensionality of output space. 

Figure 3.12 shows an example of the three stages peeling procedure, regarding the 

DEA output-oriented formulation, allowing for a clearer understanding of the 

procedure. 

 

Figure 3.12 - DEA peeling procedure (Source: Gedranovich & Salnykov, 2012) 

As shown, the top left hand box displays the initial set of 11 DMUs (A-K) on the 

output space. 
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According to the output-oriented approach, the top right hand box shows the efficient 

frontier obtained connecting all the efficient units (B, E, F and G) of the first DEA 

peeling stage. These efficient units form the first DEA peeling rating tier to be 

excluded from the initial set of DMUs before implementing the second DEA peeling 

stage. 

The bottom left hand box shows A, C and D to be efficient, and they form the second 

rating tier of DMUs to be peeled away before implementing the third DEA peeling 

stage. Finally, in the bottom right hand box the efficient DMUs are H, I, and J.  

After a certain amount of stages, a short list of the highest performing partners can be 

created. In comparison with the original list of potential partners, the short list is 

simpler to manage in order to support the final partner choice. 

3.6 Selection of The Most Appropriate Partners (Step 4) 

Once the short list of partners has been obtained, the final selection phase can begin. 

According to the general literature analyzing the partner selection problem, three main 

categories of techniques for the final partner selection can be distinguished (Ho, et al., 

2010; Wu & Barnes, 2011; Chai, et al., 2013; Govindan, et al., 2015):  

 Multi-criteria Decision Making (MCDM) techniques, including analytic 

hierarchy process and analytic hierarchy Network; 

 Mathematical Programming (MP) techniques, such as data envelopment 

analysis; 

 Artificial Intelligence (AI) techniques, such as neural network and Bayesian 

network. 
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The above techniques are often integrated with the use of the fuzzy set theory. In 

addition, Wu & Barnes (2011) also identified some studies applying the linear 

weighting which do not require the user to learn any optimization techniques. Within 

the literature in R&D partner selection, the Analytic Hierarchy Process (AHP) and 

Analytic Network Process (ANP) developed by Saaty (1980, 2001) are commonly 

used for criteria weighting (Chen, et al., 2008; Chen, et al., 2010; Lee, et al., 2010; 

Geum, et al., 2013). In particular, they compare two criteria according to a numerical 

scale from one to nine, indicating how much one element dominates another. This 

scaling process is then translated into priority weights.  

With regard to AI techniques, Lee & Yoon (2013) proposed the use of Bayesian 

networks to support the partner selection process when there are many interrelated 

criteria. 

However, when focusing on MP techniques, such as data envelopment analysis, a lack 

of studies on the R&D partner selection problem emerges in the literature. In order to 

fill this emerging gap, the use of DEA is proposed.  

So far, data envelopment analysis has been proposed as a technique to be used when 

minimizing subjectivity is required. However, DEA can also allow decision makers to 

make more focused evaluations by assigning a priori relative weights, prices or 

priorities of inputs and/or outputs (Bogetoft & Otto, 2011).  

In the light of this consideration, the DEA method selected for the final partner choice 

is Revenue Efficiency. 

In comparison with the other DEA models introduced in the section referring to the 

qualification phase, the particularity of Revenue Efficiency is that a preliminary 
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assignment of criteria weights is required. This characteristic allows for a higher level 

of flexibility, i.e. the possibility to better respond to the dynamism of high-technology 

markets and, in turn, to the fast-changing needs of organizations.  

3.6.1 DEA Revenue Efficiency 

Revenue Efficiency is a particular output-oriented DEA model that can be used in 

order to support the final choice of R&D partners, by taking into account experts 

opinion regarding the relative importance of the outputs (benefits) of the selection 

problem. 

This method has been commonly applied to evaluate the efficiency of banks and other 

financial institutions (Kočišová, 2014; Sahoo, et al., 2014), providing revenue 

efficiency scores (RE) indicating to what extent  a DMU is predicted to perform well 

in terms of revenue in comparison with others in the same period, producing the same 

set of outputs. However, it is possible to extend its usage to other kinds of DMUs, i.e. 

candidate R&D partners. 

The overall revenue efficiency (RE) is defined as the ratio of observed revenue to 

optimal revenue for the DMU. More specifically,  y*rq and yrq indicate the maximum 

and observed revenue vectors of output quantities for DMU q, respectively,  and prq 

refers to the vector of output priorities of DMU q, as expressed by experts.  
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(3) 

(4) 

The RE of DMU q is expressed by the following ratio:  
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It reflects the ability of a DMU to produce the optimal proportion of output, given the 

experts’ priorities. 

As the maximum revenue vectors of output quantities for DMU q are unknown, in 

order to calculate the above RE ratio, it is necessary to solve the following DEA 

model for revenue maximization (Coelli, et al., 2005): 
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where xiq represents the input levels, and λj is the weight assigned to the DMU j 

The use of such a method in an innovation context, characterized by continuous and 

rapid technological changes, is very useful in order to consider the partner selection 

process as a dynamic one because the relative importance of the variables can change 

depending on objectives and innovation strategies. 
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4 Illustrative Case Studies within 
the Railway Sector 

In this chapter, the DEA-based framework proposed in chapter 3 is implemented step 

by step. In order to test the effectiveness of the proposed approach on real firm 

practices, two technological case-studies of railway interest, in line with the 

European Research & Innovation roadmap (e.g. Horizon 2020 program - 

SHIFT²RAIL Joint Undertaking) have been used. The choice to analyze an emerging 

technology (eco-driving) and a mature one (satellite) allows for a deeper 

understanding of the existing relationship between technology evolution and R&D 

collaboration practices.  

4.1 SHIFT²RAIL Research Program 

SHIFT²RAIL is an industrial driven multiannual research program which focuses on 

all the areas of the European railway market (i.e. High Speed/Mainline, Regional, 

Urban/Metro & Suburban, and Freight). 

It is the first large-scale European program and is in line with the objectives of the EU 

2011 White Paper on Transport and the Framework Program for Research and 

Innovation Horizon2020 which aims to attract passengers and businesses to rail 

transport and make the EU rail industry more competitive, by speeding up the 

integration of new and advanced technologies into innovative rail product solutions, 

whilst supporting energy efficiency and reliability of next generation products.  
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The program is co-financed by both the private sector and the European Commission, 

with an overall budget of about 1 billion euros which will be used to reduce the life 

cycle cost of railway transport by as much as half, and to increase railway capacity, 

reliability and punctuality by 50%. 

Five Innovation Programs (IPs) make up the SHIFT²RAIL program:  

 IP1 - Energy & Mass Efficient Technologies for High Capacity Trains 

 IP2 - Advance Traffic Management & Control Systems  

 IP3 - Cost efficient - High Capacity Infrastructure  

 IP4 - IT Solutions for a Seamless Attractive Railway  

 IP5 - Technologies for Sustainable & Attractive European Freight (UNIFE - 

The European Rail Industry, 2014). 

Among the several technologies related to each of the above IPs, eco-driving (IP1) 

and satellite (IP2) have been chosen in order to test the partner qualification 

framework proposed in chapter 3, as they are at two different stages (i.e. emerging 

and mature, respectively) of the technology life cycle.  

The illustrative case studies referring to both eco-driving and satellite technologies are 

presented in the following sections, with research-based motivations driving the 

search for R&D partners. 

Both the applications have been implemented by a partner selection team, composed 

of engineers from the innovation department of a railway company, and of university 

researchers from a department of industrial engineering. More specifically, the former 

provided in depth knowledge about the latest advances in innovation technologies and 

managerial practices, whereas the latter contributed their background in decision 
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making methodologies and a great deal of experience using scientific data sources for 

research. 

4.2 Case study #1: Eco-driving Technology 

The first case study refers to IP1, which focuses on developing the future generation 

of trains that will be lighter and more energy efficient while reducing current travel 

times, track damage and negative effect on the environment, resulting in a reduced  

life cycle cost.  

With regard to energy efficiency, one of the main goals of the railway industry is to 

encourage a shift away from less efficient and carbon-intensive modes  (TSLG, 2012). 

In this context, eco-driving plays an important role.  

As shown in Figure 4.1, the eco-driving technology is at the emerging phase of its life 

cycle. 

 

Figure 4.1 - Eco-driving TLC (Source: own elaboration using data retrieved from Scopus) 
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Also, Figure 4.2 indicates the maturity of energy efficiency technologies. 

 

Figure 4.2 - Energy efficiency TLC (Source: own elaboration using data retrieved from Scopus) 

These considerations regarding the TLC phases are taken into account during the step-

by-step implementation of the framework. 

4.2.1 Step 1: Objectives of the Innovation Strategy 

According to the assumptions made in chapter 3, during the emerging stage of the 

technology lifecycle, organizations are strongly oriented toward basic research, with 

university and research centers being the preferred partners typologies (TSLG, 2012). 

Table 4.1 summarizes the partner selection team’s objectives for collaborations on 

eco-driving.  
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OBJECTIVES FOR PARTNERSHIP                                                                                   #1 

Technology of Interest Eco-driving 

Preferred Sector Transportation 

Description Energy efficiency, eco driving, display, interface 

Lifecycle Phase Emerging 

Main Motivations Research-based 

Preferred  Partners Typologies Universities, Research Centers 

Table 4.1 - Objectives chart (eco-driving) 

Even though it has been highlighted that, in the case of research-based motivations, 

collaborating with universities and research centers has the highest impact on the 

innovation process, in order to test the framework industries will also be taken into 

account. 

4.2.2 Step 2: Identification of Candidate Partners 

In order to create the database with all the information related to a first list (long list) 

of candidate partners, Scopus and Espacenet have been chosen as data sources for 

publications and patents, respectively. 

Table 4.2 and Table 4.3 indicate Scopus and Espacenet settings. 

SCOPUS SETTINGS 

Keywords “energy efficien*”, “energy consumption”, “energy management”, “energy 

saving”, “ecodriv*”, “eco-driv*”, “green wave”, “human interface”, “advis* 

system”, “driv* assistan*” (in title, abstract or keywords) 

Limitations  Years: 2010-2015 

 Subject areas: Engineering and Computer Science 

 Source Type: Conference Proceedings and Journals 

 Language: English 

Table 4.2 - Scopus settings (eco-driving) 
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ESPACENET SETTINGS 

Keywords “energy”, “advisor”, “assistan*”, “driv*” (in the title or abstract) 

Patent Classes B61L, B60W, B60K (as IPC classification) 

Limitations  Years: 2010-2015 

 Subject areas: Engineering and Computer Science 

Table 4.3 - Espacenet settings (eco-driving) 

With regard to the patent classes settings, B60 refers to vehicles in general, and B61 

to railway. Additional details are summarized in Table 4.4. 

PATENT CLASSES DEFINITIONS 

B60W Conjoint control of vehicle sub-units of different type or different function; 

control systems specially adapted for hybrid vehicles; road vehicle drive control 

systems for purposes not related to the control of a particular sub-unit 

B60K Arrangement or mounting of propulsion units or of transmissions in vehicles; 

arrangement or mounting of plural diverse prime-movers in vehicles; auxiliary 

drives for vehicles; instrumentation or dashboards for vehicles; arrangements in 

connection with cooling, air intake, gas exhaust or fuel supply of propulsion 

units, in vehicles 

B61L Guiding railway traffic; ensuring the safety of railway traffic  

Table 4.4 - Patent classes definitions (eco-driving) (Source: Espacenet website) 

By using the above Scopus settings, a long list of 131 candidate partners (40 firms and 

91 universities/research centers) distributed across Europe (60%), Asia (28%) and 

America (12%) has been identified (Figure 4.3).  
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Figure 4.3 - Distribution of the 131 candidate partners (eco-driving) 

In order to protect  information regarding the strategic interests of the railway 

company, the list of the candidate partners is not disclosed. However, as shown in 

Table 4.5, most of the candidate partners are located in Europe across 14 countries, 

followed by Asian affiliations (over 7 countries) and American ones in Canada and in 

the US. 

EUROPE ASIA  AMERICA 

Austria 3 China 7 Canada 2 

Belgium 1 India 1 US 14 

Finland 1 Iran 2   

France 10 Japan 22   

Germany 33 Singapore 2   

Greece 2 South Korea 2   

Hungary 2 Taiwan 2   

Italy 5     

Netherlands 3     

Spain 3     

Sweden 4     

Switzerland 1     

Turkey 1     

UH 8     

Total 77  38  16 

Table 4.5 - Candidates’ distribution across geographical areas (eco-driving) 
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For each affiliation of the long list, the database also includes the values of the related 

benefits (i.e. research output and quality of research) and costs (i.e. collaboration 

experience and co-authorship) to be considered for the qualification and selection of 

the most suitable partners to collaborate with (Table 4.6). 

 Variables of Interests 

B
EN

EF
IT

S 
(R

&
D

 O
u

tp
u

ts
) 

Research Output 

Pub 
Total number of publications with a focus on eco-driving, published between 2010 

and 2015 

Kdecay Decay of eco-driving publication over the period 2010-2015 

Spat 
Total number of patent data with a focus on eco-driving, published between 2010 

and 2015 

Epat 
Total number of patent data with a focus on engineering and computer science, 

published between 2010 and 2015 

Quality of Research 

Cit 
Total number of citations received on eco-driving publications between 2010 and 

2015  

HTind 
H-technology index of potential partners calculated focusing on eco-driving 

publications between 2010 and 2015 

C
O

ST
S 

(R
&

D
 In

p
u

ts
) 

Collaboration Experience 

Coll 
Total number of collaborations with other organizations in publications on eco-

driving from 2010 to 2015 

Eucoll 
Total number of collaborations established with European organizations in 

publications on eco-driving from 2010 to 2015 

Iucoll 
Total number of collaborations established among universities/research centers and 

industries in publications on eco-driving from 2010 to 2015 

Co-authorship 

Auth Number of authors involved in publications on eco-driving from 2010 to 2015 

Table 4.6 - Benefit and cost factors (eco-driving) 

The above information has been collected and/or measured by making use of the more 

common bibliographic databases and other online data sources. More specifically, as 

the main motivations underlying the need for collaborative R&D partners are 
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research-based, Scopus has been used for both identifying the long list of candidate 

partners and collecting publication data (i.e. number of publications and knowledge 

decay, number of authors and collaborations) related to them. Conversely, Espacenet 

has only been used for patent data collection. 

Table 4.7 summarizes the collected data, indicating some statistics of all the cost and 

benefit variables, by geographical area.  

 

 
Auth Coll Eucoll Iucoll Pub Kdecay Cit HTind Epat Spat 

EU
R

O
P

E 

mean 4,92 1,27 0,82 0,61 1,51 1,19 2,00 0,51 80,45 0,35 

st dev 3,87 1,39 1,27 1,05 1,18 0,91 4,18 0,68 302,83 1,99 

max 29,00 7,00 6,00 5,00 7,00 5,42 27,00 3,00 2385,00 17,00 

min 1,00 0,00 0,00 0,00 1,00 0,61 0,00 0,00 0,00 0,00  

           

A
SI

A
 

mean 5,03 1,34 0,89 0,53 1,63 1,30 4,16 0,71 101,39 0,08 

st dev 3,62 1,28 1,16 0,89 1,34 1,04 6,77 0,77 448,39 0,49 

max 23,00 5,00 5,00 4,00 6,00 4,47 34,00 3,00 2753,00 3,00 

min 2,00 0,00 0,00 0,00 1,00 0,61 0,00 0,00 0,00 0,00  

           

A
M

ER
IC

A
 mean 3,38 0,44 0,31 0,31 1,13 0,87 1,06 0,38 236,94 0,00 

st dev 1,54 0,63 0,60 0,48 0,34 0,28 1,65 0,50 634,04 0,00 

max 6,00 2,00 2,00 1,00 2,00 1,64 5,00 1,00 2259,00 0,00 

min 1,00 0,00 0,00 0,00 1,00 0,61 0,00 0,00 0,00 0,00 

Table 4.7 - Statistics relative to the long list of candidates, by geographical area (eco-driving) 

The highest standard deviation is related to the variable Epat. For instance, the 

number of patents varies from 0 to 2385 in Europe, from 0 to 2753 in Asia, and from 

0 to 2259 in America. On the contrary, all the other variables present a low standard 

deviation of the variables, indicating that candidate partners do not differ to a large 

extent. However, there are differences among geographical areas. 
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Data also show that not all the variables are significant, such as Spat. Therefore not all 

the collected data are going to be used for the qualification and the selection of the 

most suitable partners to collaborate with on eco-driving.  

However, as there are certain characteristics of data that may not be acceptable for the 

implementation of data envelopment analysis, before the qualification and selection 

phases, all the available data related to the benefit and cost variables of interest have 

to be preliminarily treated and selected. 

In particular, according to the guidelines by Sarkis (2002), the data set can be 

prepared for DEA by eliminating zero values and normalizing it in order to balance 

their magnitude. It is also required to eliminate both redundant and non-significant 

input and output factors, and evaluate their cause-effect relationship by using 

correlation analysis. Finally, the right number of inputs and outputs for a certain 

amount of DMUs must be considered. 

Figure 4.4 summarizes this preliminary processes.  
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Figure 4.4 - Flow chart for preliminary data analysis process 

With regard to the eco-driving data treatment and selection, the zero values have been 

eliminated by adding one unit to the entire data set.  

Table 4.8 displays the results of the correlation analysis performed on the entire set of 

data. 
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 Auth Coll Eucoll Iucoll Pub Kdecay Cit HTind Epat Spat 

Auth 1,000 0,678* 0,696* 0,672* 0,746* 0,721* 0,430* 0,307* 0,062 0,114* 

Coll 0,678* 1,000 0,818* 0,720* 0,525* 0,500* 0,278* 0,340* -0,094 -0,041* 

Eucoll 0,696* 0,818* 1,000 0,748* 0,615* 0,577* 0,381* 0,458* -0,085 0,007* 

Iucoll 0,672* 0,720* 0,748* 1,000 0,513* 0,465* 0,242* 0,238* -0,014 0,029* 

Pub 0,746* 0,525* 0,615* 0,513* 1,000 0,989* 0,400* 0,460* 0,028 0,133* 

Kdecay 0,721* 0,500* 0,577* 0,465* 0,989* 1,000 0,362* 0,428* 0,022 0,119* 

Cit 0,430* 0,278* 0,381* 0,242* 0,400* 0,362* 1,000 0,632* -0,083 -0,011* 

HTind 0,307* 0,340* 0,458* 0,238* 0,460* 0,428* 0,632* 1,000 -0,131 -0,039 

Epat 0,062 -0,094 -0,085 -0,014 0,028 0,022 -0,083 -0,131 1,000 0,499* 

Spat 0,114* -0,041* 0,007* 0,029* 0,133* 0,119* -0,011* -0,039 0,499* 1,000 

* indicates significant correlation at five percent (P < 0.05) 

Table 4.8 - Pearson’s coefficients (eco-driving) 

The correlation between two variables is considered “very high” for Pearson’s 

coefficients ranging from 0.90 to 1, “high” from 0.70 to 0.90, “moderate” from 0.50 

to 0.70, “low” from 0.30 to 0.50 and “negligible” from 0 to 0.30 (Mukaka, 2012).  

Based on the results of the correlation analysis, the collaboration experience factors 

Coll, Eucoll and Iucoll are highly correlated with each other. Also, Pub is very highly 

correlated to Kdecay. With regard to the quality of research, Cit and HTind are 

moderately correlated. These correlations are statistically significant as they present 

values of probability lower than 0.05 (Nuti, et al., 2011). 

Among the correlated variables, Coll, Kdecay and Cit are taken into account as they 

are able to better differentiate the candidate partners from each other.  

With regard to patent variables, even though Epat and Spat are not correlated, only the 

latter is taken into account given that most of the Spat values are equal to each other. 

According to the preliminary data process, Table 4.9 indicates the benefit and cost 

factors that are going to be used for the qualification phase. 
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BENEFIT FACTORS COST FACTORS 

Pub  Coll ● 

Kdecay ● Eucoll  

Spat ● Iucoll  

Epat  Auth ● 

Cit ●   

Table 4.9 - Selected benefit and cost factors 

Finally, as benefits mainly increase when costs increase, they can be assumed as 

outputs and inputs of the DEA analyses, respectively. 

In summary, the variables to be considered as benefits (outputs) are knowledge decay, 

number of citations and patents focusing on engineering and computer science subject 

areas. On the other hand, the total number of collaborations and authors involved in 

publishing papers on eco-driving represent the variables of cost (inputs) to be used to 

assess potential partners such as universities, research centers and industries. 

4.2.3 Step 3: Qualification of Candidate Partners 

As suggested in chapter 3, a short list of partners can be created from the long one by 

implementing the DEA Peeling procedure. In comparison with the original list of 

potential partners, the short list is simpler to manage in order to support the final 

partner selection.  

Figure 4.5 summarizes the variables and the DMUs to be considered for the DEA 

Peeling process. 
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Figure 4.5 - DEA inputs, outputs and decision making units 

The DEA Peeling procedure has been implemented by using the Benchmarking 

package for R software.  

The efficient DMUs of each DEA Peeling stage form different rating tiers, which are 

generally characterized by a decreasing level of mean technical efficiency (TE) when 

moving from the first to the last tier. The mean TE has to be calculated during the first 

peeling stage.  

Table 4.10 displays the DMUs rating tier by rating tier, as well as the related mean 

technical efficiency and % change.  

 DMUs 
Mean 

Technical Efficiency (TE) 
% Change 

Rating Tier 1 
7, 9, 10, 78, 90, 94, 99, 110, 123, 127, 

128 (11 DMUs) 
1,00 - 

Rating Tier 2 
11, 16, 18, 21, 23, 24, 53, 82, 92, 93 

(10 DMUs) 
0,71 -0,29 

Rating Tier 3 
27, 28, 29, 31, 41, 97, 98, 100, 117, 121 

(10 DMUs) 
0,60 -0,16 

Rating Tier 4 
1, 3, 19, 43, 48, 50, 63, 65, 77, 124, 125, 

130 (12 DMUs) 
0,49 -0,18 

Rating Tier 5 
4, 6, 13, 25, 33, 45, 60, 73, 74, 84, 88, 

91, 107, 120 (14 DMUs) 
0,52 0,05 

Rating Tier 6 

5, 20, 26, 36, 38, 40, 46, 49, 55, 72, 76, 

79, 85, 86, 101, 108, 109, 112, 114 

(19 DMUs) 

0,47 -0,10 

Rating Tier 7 
12, 14, 22, 62, 69, 87, 105, 106, 111, 

113, 116, 122 (12 DMUs) 
0,41 -0,12 
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Rating Tier 8 
30, 67, 68, 71, 80, 95, 96, 119,  

129, 131 (10 DMUs) 
0,41 -0,01 

Rating Tier 9 
15, 32, 34, 42, 44, 47, 56, 61, 66, 81, 83, 

102, 104, 118 (14 DMUs) 
0,39 -0,04 

Rating Tier 

10 

2, 8, 35, 51, 52, 54, 57, 64, 103, 115, 126 

(11 DMUs) 
0,32 -0,19 

Rating Tier 

11 

17, 37, 39, 58, 59, 70, 75, 89 

(8 DMUs) 
0,30 -0,05 

Table 4.10 - Peeling procedure (eco-driving) 

The full peeling procedure consists of 11 stages. However, after the fifth rating tier, 

the mean technical efficiency scores stabilize, with the innovative performance of the 

candidate partners included in tiers 6, 7, 8, 9, 10 and 11 ranging from around 40% to 

30%. Therefore, in order to create the short list of potential partners, only the rating 

tiers from 1 to 5 have been taken into account, for a total of 57 candidate partners. 

Among them, a total amount of 42 candidate partners are universities and research 

centers, whereas only 15 candidates are industries. Most of them are located in 

Europe (65%), followed by Asia (28%) and America (7%).  

4.2.4 Step 4: Selection of the Most Appropriate Partners 

As suggested in chapter 3, in order to support the final selection of R&D partners, the 

DEA Revenue Efficiency has to be applied. In comparison with the other DEA 

models, it allows the partner selection team to make more focused evaluations by 

taking into account a priori relative priorities of outputs. Furthermore, the possibility 

of assigning priorities makes the selection process a dynamic one, as the relative 

importance of benefit criteria can change depending on the objectives of the 

innovation strategies. Finally, by taking into account different sets of priorities, a 

sensitivity analysis can be used to evaluate the robustness of the classification. 



 

107 

 

Table 4.11 shows two different sets of priorities - related to the output variables - to 

be used for the Revenue Efficiency analysis on eco-driving, firstly giving more 

relevance to publication data (priorities set 1) and, then, to patent data (priorities set 

2).  

OUTPUTS 
PRIORITIES 

SET 1 
PRIORITIES 

SET 2 

Knowledge Decay 0,7 0,3 

Number of Citations 0,2 0,2 

Number of Patents 0,1 0,5 

Table 4.11 - Criteria priorities 

The above priorities have been set based on the individual judgments of the partner 

selection team members. More specifically, the Super Decision software 

(http://www.superdecisions.com) developed by Saaty (1980, 2001) has been used for 

comparing the selected benefit criteria (i.e. knowledge decay, number of citations, and 

number of patents) with respect to the overall objectives for partnership. 

Figure 4.6 and Figure 4.7 show the criteria pairwise comparison and the overall 

inconsistency index related to the assignment of each priorities set. The inconsistency 

values lower than 10% confirm the coherence of the judgments. 

 

Figure 4.6 - Criteria pairwise comparison (priorities set 1) 

http://www.superdecisions.com/
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Figure 4.7 - Criteria pairwise comparison (priorities set 2) 

Once the relative output priorities are expressed, the Revenue Efficiency score (RE) 

of the short list of candidate partners can be calculated reflecting on the ability of each 

DMU to produce the optimal proportion of outputs.  

Figure 4.8 displays both the TE and RE trends for the two set of priorities. In 

particular, RE 1 indicates the revenue efficiency of the long list of candidate partners 

when considering the first set of priorities, whereas RE 2 refers to the second 

priorities set. 

 

Figure 4.8 - Efficiency scores of the short list of candidates (eco-driving) 
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Table 4.12 also summarizes the candidate partners’ efficiency statistics. 

 

TE RE 1 RE 2 

mean 0,655 0,670 0,464 

st dev 0,230 0,195 0,224 

max 1,000 1,000 1,000 

min 0,272 0,405 0,216 

no. 100% efficient 
 candidates 

11 5 4 

Table 4.12 - Efficiency statistics (eco-driving) 

By comparing the three trends it is possible to highlight that the number of efficient 

candidate partners decreases when priorities are assigned to the benefit variables. 

More specifically, there are eleven TE efficient potential partners (DMUs 7, 9, 10, 78, 

90, 94, 99, 110, 123, 127, 128). This number drops to five (DMUs 7, 3,1, 9, 99) and 

four (DMUs 127, 94, 10, 128) when the first and second sets of priorities are 

assigned, respectively.  

Even though there are some differences related to the assignment of relative priorities, 

the TE and RE 1 measurements have similar trends for the aggregate sample. 

Conversely, RE 2 shows a lower efficiency performance trend. More specifically, the 

mean TE, RE 1 and RE 2 efficiency scores are 65.5%, 67.0% and 46.4%, while the 

lower TE, RE 1 and RE 2 efficiency scores are 27.2%, 40.5% and 21.6%, 

respectively.  

The drop in the mean efficiency performance, when taking into account the second set 

of priorities, confirms the assumption that, in the case of emerging technologies, the 

organizations are more focused on basic research. 
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TE, RE 1 and RE 2 are also displayed in relation to geographical areas (Figure 4.9 to 

Figure 4.11) and partner typologies, i.e. universities/research centers and  

industries/firms (from Figure 4.12 to Figure 4.14).  

With regard to the distribution by geographical area, the TE trend (Figure 4.9)  shows 

that the eleven 100% efficient candidates are distributed across Asia (DMUs 10, 94, 

128, 78, 99, 123) and Europe (DMUs 127, 9, 7, 110, 90).  

The results change when priorities are assigned to the benefit variables. In particular, 

when publication data are preferred (Figure 4.10), the majority of efficient candidates 

are located in Europe (DMUs 7, 3, 1, 9) and only one efficient candidate is located in 

Asia (DMU 99). Conversely, when considering RE 2 (Figure 4.11), the efficient 

candidates are mainly located in Asia (DMUs 94, 10, 128) and only one in Europe 

(DMU 127).  

The improvement of Asian performance, when shifting from the first to the second 

priorities set, can be related to some differences in policies and mechanisms that are 

used to protect intellectual property. 

Finally, the TE and RE 1 scores of American candidates range from 65% and 75%, 

whereas the RE 2 scores range from 25% to 50%. 
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Figure 4.9 - TE by geographical area (eco-driving) 

 

Figure 4.10 - RE 1 by geographical area (eco-driving) 
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Figure 4.11 - RE 2 by geographical area (eco-driving) 

With regard to the trends by partner typologies, when referring to TE (Figure 4.12), 

the 100% efficient candidates are about equally distributed between U/R and F: six 

efficient candidates are universities and research institutes (DMUs 78, 99, 9, 7, 110, 

90), whereas five are firms (DMUs 10, 94, 128, 123, 127). 

The revenue efficiency distributions highlight that the number of efficient firms 

decreases when changing the priority set from the first to the second one. More 

specifically, when more importance is given to publication data (Figure 4.13), the five 

100% efficient candidates are all universities and research institutes (DMUs 7, 3, 1, 9, 

99). Vice versa, when assigning the second set of priorities (Figure 4.14), according to 

which patent data are more relevant than publications, there are no efficient 

universities and research centers, and only four efficient firms (DMUs 127, 94, 10, 

128). Also, when switching from TE and RE 1 to RE 2, the mean efficiency score of 

U/R decreases from about 65% to 40%, whilst from about 65% to 57% in the case of 

firms.  



 

113 

 

 

Figure 4.12 - TE by partner typology (eco-driving) 

 

Figure 4.13 - RE 1 by partner typology (eco-driving) 
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Figure 4.14 - RE 2 by partner typology (eco-driving) 

These results confirm the initial assumption that the use of publication data is more 

significant when assessing universities and research centers, whilst patent data are 

more relevant in the case of industries and firms. 

4.3 Case study #2: Satellite Technology 

The case study on satellite technologies refers to IP2, which focuses on developing a 

new generation of signaling and control systems, building on current ERTMS to 

enable intelligent traffic management with automatically driven trains and to optimize 

capacity, reliability and minimize life cycle cost (TSLG, 2012). 

In the context of advance traffic management and control systems, satellite and 

positioning play a key role, and therefore the interest in these technologies has 

increased over time (Figure 4.15). 
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Figure 4.15 - Satellite TLC (Source: own elaboration using data retrieved from Scopus) 

By looking at the above S-curve, the satellite technology is clearly at the mature phase 

of the technology life cycle. 

4.3.1 Step 1: Objectives of the Innovation Strategy 

According to the assumption made in chapter 3, throughout the growth and maturity 

stages of the technology lifecycle, with the increasing need for collaborative 

development and integration of complementary technology, R&D collaboration with 

suppliers is on the rise.  
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Table 4.13 summarizes the partner selection team’s objectives for collaborations on 

satellite. 

OBJECTIVES FOR PARTNERSHIP                                                                              # 2 

Technology of Interest Satellite 

Preferred Sector Transportation 

Description Satellite, positioning, safety, reliability 

Lifecycle Phase Mature 

Main Motivations Research-based 

Preferred  Partners Typologies Firms 

Table 4.13 - Objectives chart (satellite) 

However, as the case study considers the research-based perspective, even though the 

preferred partnership typology at the mature TLC stage is that with firms, in order to 

validate the framework, universities and research centers are also taken into account. 

4.3.2 Step 2: Identification of Candidate Partners 

As with the first case study, in order to identify candidate partners and to collect all 

the information and data needed for partner selection, Scopus and Espacenet have 

been chosen as data sources for publications and patents, respectively.  

Table 4.14 and Table 4.15 indicate Scopus and Espacenet settings. 

SCOPUS SETTINGS 

Keywords “satellite”, “positioning”, “safety”, “reliability”, “dependability”, 

“trustworthiness”,  “integrity”, “protection level”, “GNSS”, “GPS”, “LAAS”, 

“SBAS”,  “RAIM” (in title, abstract or keywords) 

Limitations  Years: 2010-2015 

 Subject areas: Engineering and Computer Science 

 Source Type: Conference Proceedings and Journals 

 Language: English 

Table 4.14 - Scopus settings (satellite) 
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ESPACENET SETTINGS 

Keywords “satellite”, “positioning” (in the title or abstract) 

Patent Classes G01S19/00 (as IPC classification) 

Limitations  Years: 2010-2015 

 Subject areas: Engineering and Computer Science 

Table 4.15 - Espacenet settings (satellite) 

With regard to the patent classes settings, G01S19/00 refers to satellite radio beacon 

positioning systems, which determine position, velocity or attitude using signals 

transmitted by such systems. 

By using the above Scopus settings, a long list of 130 candidate partners (26 firms and 

104 universities/research centers) have been identified. Also in this case, they have 

not been revealed for data protection reasons. However, 55% of the candidates are 

located in Europe, 24% in Asia, 17% in America, and the remaining 4% in Africa and 

Oceania (Figure 4.16). 

 

Figure 4.16 - Distribution of the 130 candidate partners (satellite) 

More specifically, as shown in Table 4.16, the candidate partners are distributed in 

Europe over 16 countries, in Asia over 6 countries, and in America over 3 countries. 
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In Oceania and Africa the candidates are located only in Australia and South Africa, 

respectively. 

EUROPE ASIA  AMERICA OCEANIA AFRICA 

Austria 2 China 17 Brazil 1 Australia 3 South Africa 2 

Czech Republic 3 India 2 Canada 3     

Denmark  1 Japan 7 US 18     

Finland 1 South Korea 3       

France 12 Taiwan 1       

Germany 15 Thailand 1       

Hungary 1         

Italy 11         

Netherlands 3         

Norway  1         

Poland 2         

Portugal 3         

Spain 6         

Switzerland 3         

Turkey 1         

UK 7         

Total 72  31  22  3  2 

Table 4.16 - Candidates’ distribution across geographical areas (satellite) 

Table 4.17 shows statistics relative to the data collected on Scopus and Espacenet 

about the long list of candidate partners working on satellite technologies, by 

geographical area.  
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Auth Coll Eucoll Iucoll Pub Kdecay Cit HTind Epat Spat 

EU
R

O
P

E 

mean 5,57 4,69 1,65 1,25 3,71 3,04 15,18 1,29 7,99 1,64 

st dev 4,32 4,60 2,21 1,69 3,03 2,49 29,98 1,11 19,61 3,51 

max 23,00 20,00 14,00 9,00 17,00 14,20 188,00 5,00 151,00 23,00 

min 2,00 0,00 0,00 0,00 1,00 0,68 0,00 0,00 0,00 0,00  

           

A
SI

A
 

mean 4,42 2,77 0,19 0,68 2,77 2,22 3,68 0,61 217,61 9,13 

st dev 3,93 2,04 0,54 1,17 2,62 2,19 8,42 0,76 577,33 27,88 

max 18,00 7,00 2,00 6,00 16,00 13,36 41,00 2,00 3039,00 153,00 

min 2,00 0,00 0,00 0,00 1,00 0,75 0,00 0,00 0,00 0,00  

           

A
M

ER
IC

A
 mean 3,77 4,68 0,91 0,68 2,77 2,12 26,77 1,27 30,95 3,18 

st dev 2,54 5,89 1,93 0,84 1,74 1,23 49,61 1,24 66,42 5,40 

max 10,00 22,00 7,00 2,00 8,00 5,73 189,00 5,00 307,00 23,00 

min 2,00 0,00 0,00 0,00 1,00 0,91 0,00 0,00 0,00 0,00  

           

O
C

EA
N

IA
 mean 6,33 3,00 0,67 0,67 5,33 4,53 28,00 2,33 6,00 1,33 

st dev 5,13 1,00 1,15 0,58 4,04 3,52 26,00 1,53 5,57 1,53 

max 12,00 4,00 2,00 1,00 10,00 8,60 54,00 4,00 11,00 3,00 

min 2,00 2,00 0,00 0,00 3,00 2,34 2,00 1,00 0,00 0,00  

           

A
FR

IC
A

 mean 4,50 0,00 0,00 0,00 2,00 1,44 0,00 0,00 0,00 0,00 

st dev 0,71 0,00 0,00 0,00 0,00 0,10 0,00 0,00 0,00 0,00 

max 5,00 0,00 0,00 0,00 2,00 1,51 0,00 0,00 0,00 0,00 

min 4,00 0,00 0,00 0,00 2,00 1,37 0,00 0,00 0,00 0,00 

Table 4.17 - Statistics relative to the long list of candidates, by geographical area (satellite) 

The meaning of the variables in the table has already been indicated in the previous 

case study on eco-driving technologies (see Table 4.6).  

Data indicate that the highest standard deviation is related to the number of patents 

(Epat) of Asian candidate partners, ranging from 0 to 3039. The Epat values differ to 

a large extent in the case of American affiliations (from 0 to 307), as well as for 

European affiliations (from 0 to 151). The other variables present a low standard 

deviation.  

As in the previous illustrative case study, according to the preliminary data process, 

only knowledge decay, number of citations and patents focusing on engineering and 
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computer science subject areas are significant benefits. On other hand, the significant 

cost variables are the total number of collaborations and authors involved in 

publishing papers on satellite.  

Table 4.18 shows the results of the correlation analysis. 

 Auth Coll Eucoll Iucoll Pub Kdecay Cit HTind Epat Spat 

Auth 1,000 0,206* 0,330* 0,383* 0,637* 0,622* 0,114 0,232* 0,169 0,150 

Coll 0,206* 1,000 0,779* 0,627* 0,528* 0,489* 0,777* 0,669* -0,019 0,028 

Eucoll 0,330* 0,779* 1,000 0,593* 0,574* 0,538* 0,614* 0,581* -0,060 -0,043 

Iucoll 0,383* 0,627* 0,593* 1,000 0,509* 0,484* 0,452* 0,362* -0,016 0,041 

Pub 0,637* 0,528* 0,574* 0,509* 1,000 0,988* 0,484* 0,682* -0,013 0,009 

Kdecay 0,622* 0,489* 0,538* 0,484* 0,988* 1,000 0,441* 0,651* -0,017 0,000 

Cit 0,114 0,777* 0,614* 0,452* 0,484* 0,441* 1,000 0,729* -0,011 0,021 

HTind 0,232* 0,669* 0,581* 0,362* 0,682* 0,651* 0,729* 1,000 -0,070 -0,023 

Epat 0,169 -0,019 -0,060 -0,016 -0,013 -0,017 -0,011 -0,070 1,000 0,910* 

Spat 0,150 0,028 -0,043 0,041 0,009 0,000 0,021 -0,023 0,910* 1,000 

* indicates significant correlation at five percent (P < 0.05) 

Table 4.18 - Pearson’s coefficients (satellite) 

4.3.3 Step 3: Qualification of Candidate Partners 

The DEA Peeling procedure has been used to create the short list of potential partners 

to collaborate with on satellite technologies.  

By taking into account costs and benefits as input and output variables, respectively, 

the full peeling procedure consists of 10 stages (Table 4.19).  

 DMUs 

Mean 

Technical Efficiency 

(TE) 

% Change 

Rating Tier 1 
6, 7, 11, 13, 23, 34, 39, 51, 54, 55, 77, 81, 103, 

113 (14 DMUs) 
1,00 - 

Rating Tier 2 
2, 8, 12, 14. 22, 28, 43, 52, 80, 82, 86, 91, 105, 

109 (14 DMUs) 
0,85 -0,15 

Rating Tier 3 
4, 15, 32, 33, 40, 53, 119 

(7 DMUs) 
0,67 -0,21 
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Rating Tier 4 
1, 9, 24, 29, 30, 31, 41, 42, 57, 59, 76, 99, 102 

(13 DMUs) 
0,61 -0,09 

Rating Tier 5 
17, 19, 26, 37, 44, 45, 47, 49, 68, 70, 74, 84, 88, 

93, 110, 111, 112, 117, 121, 124, 128 (21 DMUs) 
0,54 -0,12 

Rating Tier 6 
3, 60, 69, 72, 73, 85, 90, 97, 98, 101, 107, 118, 

125, 129 (14 DMUs) 
0,44 -0,18 

Rating Tier 7 
5, 10, 16, 18, 20, 21, 27, 48, 61, 75, 78, 

79, 87, 92, 100 (15 DMUs) 
0,43 -0,03 

Rating Tier 8 
35, 56, 66, 89, 95, 96, 106, 116 

(8 DMUs) 
0,39 -0,11 

Rating Tier 9 
25, 36, 38, 46, 58, 63, 65, 67, 71, 83, 114, 126, 

127, 130 (14 DMUs) 
0,32 -0,17 

Rating Tier 

10 

62, 64, 94, 104, 108, 115, 120, 122, 123  

(9 DMUs) 
0,25 -0,21 

Table 4.19 - Peeling procedure (satellite) 

From rating tier 6 onwards, the mean technical efficiency scores become more stable, 

resulting in a short list of 49 candidate partners included in the tiers 1, 2, 3 and 4 to be 

taken into account for collaborating on satellite. Among them, a total of 47 candidate 

partners are universities and research institutes, whereas only two candidates are 

firms. They are located in Europe (49%), in Asia (33%), in America (10%), in Africa 

(4%) and in Oceania (4%). 

4.3.4 Step 4: Selection of the Most Appropriate Partners 

As already done for first case study on eco-driving technologies, the DEA Revenue 

Efficiency has been applied in order to support the final selection of R&D partners. 

The same two sets of criteria assigned during the case study on eco-driving 

technologies have been taken into account (see Table 4.11).  

The results of the RE analysis of the candidates are displayed below. In particular, 

Figure 4.17 compares the technical efficiency scores (TE) of the candidate partners of 
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the short list with the revenue efficiency scores RE 1 and RE 2, calculated for the first 

and second sets of priorities, respectively.  

 

Figure 4.17 - Efficiency scores of the short list of candidates (satellite) 

Table 4.20 also summarizes the candidate partners’ efficiency statistics. 

 

TE RE 1 RE 2 

mean 0,803 0,726 0,659 

st dev 0,185 0,202 0,201 

max 1,000 1,000 1,000 

min 0,363 0,366 0,235 

no. 100% efficient 
 candidates 

14 8 5 

Table 4.20 - Efficiency statistics (satellite) 

By comparing the trends and the statistics, it is possible to highlight that the candidate 

partners present the highest mean efficiency scores in the case of TE measurements. 

In particular, the mean TE, RE 1 and RE 2 efficiency scores are 80.3%, 72.6% and 

65.9%, while the lower TE, RE 1 and RE 2 scores are 36.3%, 36.6% and 23.5%, 

respectively.  
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It is interesting to highlight that, in contrast with the previous case study on emerging 

technologies, in the case of satellite there is not a relevant drop in the mean efficiency 

performance when taking into account the second set of priorities. This is because the 

technology is mature and the organizations focus on applied research and 

development. 

Also, the number of 100% efficient candidates is maximum when measuring the 

technical efficiency. In this case there are fourteen efficient candidates (DMUs 6, 7, 

11, 13, 23, 34, 39, 51, 54, 55, 77, 81, 103, 113). The number decreases when priorities 

are assigned to the benefit variables. More specifically, for the first set of priorities, 

there are eight efficient candidate partners (DMUs 7, 11, 1, 77, 2, 55, 13, 34), whereas 

for the second set this number drops to five (DMUs 11, 23, 103, 55, 54). However, 

RE 1 and RE 2 present similar trends for the aggregate sample.  

The trends of TE, RE 1 and RE 2 are also displayed in relation to geographical areas 

(from Figure 4.18 to Figure 4.20) and partner typologies, such as universities/research 

centers and  firms (from Figure 4.21 to Figure 4.23). 

With regard to the distribution by geographical area, the TE 100% efficient 

organizations for both the priorities sets (Figure 4.18) are located in Europe, followed 

by Asia,  America and Oceania. More specifically, there are eight 100% efficient 

candidates in Europe (DMUs 7, 11, 13, 34, 55, 77, 81, 113), four in Asia (DMUs 54, 

23, 51, 103), one in America (DMU 39), and one in Oceania (DMU 6).  

When considering the revenue efficiency scores the results change. By taking into 

account the first priorities set (Figure 4.19), the number of European 100% efficient 

candidates decreases to seven (DMUs 7, 11, 1, 77, 55, 13, 34) and the number of 
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efficient Asian candidates drops to one (DMU 2). Furthermore, there are no efficient 

candidates in America, Oceania and Africa.  

Conversely, if the second priorities set is assigned (Figure 4.20), the number of 

efficient European candidates decreases to two (DMUs 11 and 55), whereas the 

number of efficient Asian candidates become three (DMUs 23, 103, 54).  

Finally, with regard to African affiliations, TE, RE 1 and RE 2 scores range from 80% 

to 70%, from 75% to 65%, and from 60% to 55%, respectively.  

 

Figure 4.18 - TE by geographical area (satellite) 
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Figure 4.19 - RE 1 by geographical area (satellite) 

 

Figure 4.20 - RE 2 by geographical area (satellite) 

With regard to the distributions by partner typology, most of the 100% efficient 

candidate partners are universities or research centers. In the case of technical 

efficiency (Figure 4.21), there are thirteen efficient U/R candidates (DMUs 39, 54, 23, 

51, 103, 7, 11, 13, 34, 55, 77, 81, 113, 6) and one efficient firm (DMU 54).  



 

126 

 

For the first priority set (Figure 4.22), all eight efficient candidates are universities 

and research institutes (DMUs 7, 11, 1, 77, 2, 55, 13, 34).  

This number drops to four  (DMUs 11, 23, 103, 55) when giving more importance to 

patent data (Figure 4.23). In the case of RE 2, there is also an efficient firm in the 

sample (DMU 54). 

Furthermore, when switching from the first to the second priorities sets, the mean RE 

efficiency score of U/R decreases from 73% to 65%, whereas the mean RE efficiency 

score of industries and firms increases from 6% to 9%.  

Also in this case, the result confirms that the use of patent data is more significant 

when assessing organizations such as industries and firms. 

 

Figure 4.21 - TE by partner typology (satellite) 
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Figure 4.22 - RE 1 by partner typology (satellite) 

 

Figure 4.23 - RE 2 by partner typology (satellite) 
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CHAPTER 5 
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5 Conclusions 

This final chapter discusses the findings emerged from the research, highlighting 

their contribution  to both academic research and managerial practices. The research 

is inevitably subject to some limitations, despite its valuable contribution, and can 

consequently be taken into consideration for further research. 

5.1 Main Outcomes of The Research 

In modern economies, where markets and technology are changing rapidly, 

exchanging knowledge and acquiring technologies through R&D collaboration among 

organizations is increasingly perceived as a vehicle to enhance innovation and be 

competitive. 

Despite the benefits of R&D collaboration, the identification and the selection of the 

most suitable partners still remains an open question that catches the interest of both 

academics and practitioners.  

One of the main points of discussion is related to the use of effective information (i.e. 

qualitative or quantitative) and methods based on which candidate partners have to be 

identified, qualified and selected. 

In order to significantly contribute to the open innovation research and R&D 

collaboration practices of technology-intense industries - commonly based on former 

experience and expert judgement - this thesis provides a well-structured partner 

qualification framework to both academics and practitioners, which is able to fully 
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satisfy the requirements of replicability, reliability, rationality and transparency, as 

well as minimize the need for expert opinion. Furthermore, the framework 

development allows the gaps that emerged in the literature on R&D collaboration to 

be filled. 

5.1.1 Academic and Managerial Contributions 

This thesis work contributes to both academic research and managerial practices in 

several ways. First of all, from an academic point of view, in order to develop the 

partner qualification framework, a systematic literature review on the R&D partner 

selection problem was carried out, highlighting four main issues to be taken into 

account during the definition of the framework: motivations (i.e. research-based, 

saving-based and market-based), partner typologies (i.e. vertical, horizontal and 

institutional collaborations), selection criteria (i.e. qualitative and quantitative), and 

methodologies.  

It is interesting to note that although these four issues are strongly linked to each other 

and can be considered as running phases of the partner selection process, the majority 

of the analyzed papers focus on just one or two of the them. 

As a result of the systematic review, three major gaps emerged in the literature. The 

first gap refers to the lack of studies considering the limits of using patent data when 

the candidate partners have to be identified. First of all, not all of the know-how is 

eligible for patent protection (i.e. technologies at the early stages of their life cycle) 

and secondly, some organizations may decide to protect their technological know-
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how with other means. These limitations may automatically exclude or at least under-

estimate some relevant organizations. 

The second gap concerns the decision making methodologies used for the 

qualification and selection of partners. When studying the partner selection problem 

in the case of R&D collaboration, no authors suggest using data envelopment analysis 

(DEA). This finding contradicts the overall literature on decision-making models for 

partner selection (e.g. suppliers, vendors), in which DEA appears as one of the most 

popular approaches.  

Finally, the third gap emerging from the literature on the R&D partner selection 

problem refers to the lack of studies highlighting the existing relationship between 

objectives for partnership and technology evolution. 

The results of the literature review are the starting point for the development of the 

partner qualification framework. The framework consists of the following four 

phases:  

1. Definition of the objectives of the innovation strategy; 

2. Identification of candidate partners (long list); 

3. Qualification of candidate partners (short list); 

4. Selection of the most appropriate partners. 

More specifically, the first phase of the framework allows the third gap in the 

literature to be filled by suggesting a preliminary analysis of the technology of interest 

and its life cycle. For instance, the choice of partner typologies (e.g. universities and 

research centers or industries) changes when shifting from the emerging to the 

maturity stages of the TLC. In that sense, it is assumed that during the emerging stage 
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of the technology life cycle, R&D collaboration mainly involves universities and 

research institutes, whereas in the case of mature technologies R&D collaboration 

with suppliers is preferred. 

The second phase of the framework allows for the filling of the first gap emerged in 

the literature, suggesting the use of both patent and publication data in order to 

identify the long list of partners, as well collecting the information needed to measure 

some of the variables of interest. In particular, it is assumed that publication data are 

more significant when looking for partners such as universities and research centers, 

whereas patent data are more relevant when searching and selecting firms.  

Finally, the use of DEA as a data analysis technique during phase 3 and phase 4 fills 

the second literature gap. More specifically, the rating procedure DEA Peeling is 

implemented in order to create a short list of partners (qualification phase). In order to 

reduce the number of initial candidate partners, the choice of this procedure is 

appropriate as it does not assign a specific rank position to the candidates, rather it 

classifies them in different levels of efficiency, allowing for a simpler and faster 

reduction of the long list. Furthermore, from a more practical point of view, as DEA 

Peeling does not require any definition of a priori weights, the partner qualification 

allows for the minimization of expert subjectivity, fully satisfying the requirements of 

replicability, reliability, rationality and transparency. 

The DEA Revenue Efficiency implemented during the fourth phase of the framework 

is used to obtain a more focused evaluation of the candidate partners, by assigning a 

priori relative weights, prices or priorities of inputs and/or outputs. The use of 

priorities in this final phase allows for more flexibility, i.e. the possibility to better 
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respond to the dynamism of high-technology markets and, in turn, to the fast-

changing needs of industries. 

Moreover, by using DEA and open data sources, the proposed framework fulfills the 

requirements of being low-cost and user-friendly.  

Finally, in order to test the effectiveness of the proposed partner qualification 

framework on real firm practices, two case studies of railway interest, in line with the 

European Research & Innovation roadmap (e.g. Horizon 2020 program - 

SHIFT²RAIL Joint Undertaking), were carried out. The choice to analyze an 

emerging technology (eco-driving) and a mature one (satellite) allows for a deeper 

understanding of the existing relationship between technology evolution and R&D 

collaboration. These two case studies were tested only for research-based motivations. 

With regard to the two case studies, the results of both the applications on eco-driving 

and satellite technologies confirm the assumption that the use of publication data is 

more significant when assessing universities and research centers, whilst patent data 

are more relevant in the case of industries and firms.  

Furthermore, the differences in the mean efficiency performance when switching 

from the first to the second priorities sets confirm the assumption that, in the case of 

eco-driving technologies, the organizations are mainly focused on basic research. 

Conversely,  in the case of mature technology the interest is on both basic and applied 

research. 

Finally, the results also highlight the existence of a relationship between the two sets 

of priorities and the location of the efficient candidate partners. In particular, Asian 

partners seems to be more appropriate when the preferential selection criteria are 
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patents. Vice versa, European candidates are preferred when more relevance is given 

to publications.  

5.2 Limitations and Suggestions for Further Research 

Whilst the results of this research provide significant insights into the open innovation 

and R&D collaboration fields, this study is subject to some limitations.  

First of all, although the qualification framework has been developed to respond to the 

general search for R&D partnerships, it has only been tested on high-technologies of 

railway interest and, therefore, in order to investigate whether the findings related to 

emerging and mature technologies can be generalized, it is advisable to test the 

proposed framework across different sectors, using other technologies.  

Also, the two applications on eco-driving and satellite technologies have only 

analyzed the case of research-based motivations, which gives more relevance to 

publication data. In that sense, it could be interesting to implement the step-by-step 

framework when starting the data collection process from patent data sources, 

analyzing the changes in the long list of candidate partners, in terms of distribution by 

geographical area and partner typology. Moreover, other variables - both qualitative 

and quantitative - could be taken into account in order to test the framework in the 

case of saving-based and market based-motivations. 

With regard to the data analysis, in order to get a deeper understanding of the 

candidate partners’ characteristics that most affect their efficiency performance, it is 

possible to integrate the use of the implemented DEA models with different ones. For 
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instance, a regression analysis can be performed by setting as dependent variable the 

efficiency scores obtained by implementing the bootstrapped DEA model. 

Finally, even though the proposed framework has been developed and implemented in 

the context of a tool for decision making in a real industrial setting based on 

quantitative data, it is important to highlight that it does not provide an optimal 

solution but, rather, it serves to support the search for collaborative R&D partners.  
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