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Abstract 

Orchis italica è un’orchidea selvatica mediterranea appartiene alla famiglia delle 

Orchidaceae, sottofamiglia Orchidoideae. Sebbene di recente siano stati condotti numerosi 

studi sui fattori di trascrizione e trascritti non codificanti che regolano lo sviluppo del fiore, 

il meccanismo molecolare alla base della fioritura nelle orchidee rimane ancora poco 

chiaro. In questo lavoro è stato utilizzato un approccio di Next Generation Sequencing (NGS) 

per studiare i trascritti corti e lunghi espressi nei tessuti fiorali di O. italica. Per 

caratterizzare il miRNoma fiorale di O.italica è stata costruita e sequenziata una libreria di 

small RNA di infiorescenza. Tra le 37.818 reads uniche, il sottogruppo di 24 nt è risultato il 

più abbondante. L’analisi dei micro RNA (miRNA) ha consentito l’identificazione in O. italica 

di 23 famiglie conservate di miRNA e di nuovi possibili miRNA specifici di orchidea. Il profilo 

di espressione dei miRNA nei tessuti fiorali di O. italica e la predizione dei loro possibili 

bersagli ne indicano una funzione conservata rispetto a quella delle specie modello. Per 

analizzare il trascrittoma di O.italica, il cui genoma non è ancora disponibile, è stato 

utilizzato un approccio de novo. Partendo da più di 100 milioni di reads, sono stati 

assemblati 132.565 trascritti, raggruppati in 86.079 unigenes. L’annotazione funzionale ha 

assegnato il 45,3% degli unigenes alle sequenze presenti nella banca dati NCBI, il 37,4% alla 

GO terms, il 18,3% alla KOG e l’8,3% alla KEGG. L’analisi di espressione in silico è stata 

validata con la Real-Time PCR su dieci unigenes selezionati, indicando una correlazione 

positiva statisticamente significativa. Oltre ai trascritti codificanti, sono stati analizzati 

anche quelli non codificanti (lncRNA), la cui analisi del profilo di espressione ne ha lasciato 

ipotizzare un ruolo funzionale nei tessuti fiorali di O. italica. L’analisi del trascrittoma di O. 

italica ha consentito di identificare 12 trascritti appartenenti alla famiglia di fattori di 

trascrizione TCP, probabilmente coinvolti nella determinazione della simmetria fiorale 

(nelle orchidee bilaterale). L’analisi filogenetica ha rivelato che essi appartengono a 

differenti classi (I e II) e gruppi (PCF, CIN and CYC/TB1) e che mostrano numerosi motivi 

conservati comparti con quelli di Arabidopsis e Oryza. Inoltre è stata dimostrata la presenza 

in un trascritto TCP di O.italica di uno specifico sito di taglio per miR319 ed è stata condotta 

l’analisi di espressione di tutti di trascritti TCP identificati in differenti e tessuti fiorali e in 

foglia in due stadi di sviluppo. I risultati suggeriscono che alcuni trascritti TCP svolgono 
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funzioni ridondanti nei vari tessuti e stadi di sviluppo esaminati, mentre altri trascritti 

esercitano una funzione specifica e solo in determinati tessuti. 
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1. Introduction 

1.1 The Orchidaceae family 

“In my examination of orchids, hardly any fact has so much struck me as the endless 

diversity of structure, the prodigality of resources, for gaining the same end, namely, 

fertilisation of one flower by the pollen of another. The fact to a certain extent is 

intelligible on the principle of natural selection”. 

Charles Darwin, On the various contrivances by which British and foreign orchids are fertilised by insects, 

1862 

Since ancient times, researchers have studied the origin and the evolution of the 

Orchidaceae. Even Darwin, after the Origin of Species, published a volume on orchids to 

present their adaptations as the result of innumerable natural forces and to expand the 

theory of adaptation through natural selection. 

The Orchidaceae family is one of the largest among the flowering plants and includes 

species that have invaded every habitat with highly specialized reproductive strategies and 

extremely diversified flowers. Despite their morphological diversity, orchids share 

bilaterally symmetrical (zygomorphic) flowers with three outer tepals (sepals), two lateral 

inner tepals (petals) and a highly modified median inner tepal (lip or labellum) (fig. 1) [1]. 

 

Figure 1 Reprinted from Aceto et al. (2012) [1] by permission of Eureka Science Ltd. Model of an orchid 

flower. 
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The lip exhibits a distinctive shape and color pattern different from that of the other tepals. 

In some orchids, the upper surface of the lip may be adorned with a callus, spurs or glands. 

The male (stamen/anther) and female (pistil/stigma) tissues are fused together and form 

the column, the orchid’s reproductive structure. At the top of the column are the pollinia 

and at the base of the column is the ovary, which develops when triggered by pollination 

[2-4]. An interesting feature of the development of most orchid flowers is the phenomenon 

of resupination during which the lip undergoes a 180° rotation in floral orientation that 

moves the lip to the lowest tepal position and opposite to the fertile anther. Its collocation 

suggests that its highly diversified shape and pigmentation are the result of adaptations to 

specific pollinators [5]. The lip is an important adaptation of the orchid to facilitate cross 

pollination. It can be imagined as a coloured flag to attract potential and specific pollinators 

and can be supposed to act as a landing platform. 

In the past years, the phylogeny of this family was based on some morphological 

characteristics, though many phenotypic characters often have an adaptive nature. This 

approach induced confusion and contradictory phylogenetic reconstructions of the 

Orchidaceae family [6], but the advent of molecular systematics has revolutionized our 

understanding of the phylogeny and evolution of this plant family. The data from molecular 

markers have been progressively added to the morphological ones and the current 

classification system designates five subfamilies within the Orchidaceae: Apostasioideae, 

Cypripedioideae, Epidendroideae, Orchidoideae and Vanilloideae [1]. Each subfamily 

includes numerous tribes and subtribes [7, 8] (fig 2). 
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Figure 2 Reprinted from Aceto et al. (2012) [1] by permission of Eureka Science Ltd.  Phylogeny of the five 

sub-families of Orchidaceae. The numbers indicate the divergence time in millions of years (Mya). The images 

of orchid species on the right of each subfamily indicate the most representative species. 

One of the still open questions about orchids is related to the great diversification of their 

flowers: why are orchid flowers so different and which are the changes in the 

developmental processes that have caused their morphological diversity? 

The selection acts upon the phenotype and the knowledge of the link between the 

evolution of genes and the morphological innovations becomes essential to understand the 

evolution of new forms and functions in orchids. However, in this family this connection 

remains poorly understood, as well as the causes determining the wide species diversity. 

For the latter question, relevant roles have been attributed to epiphytism, highly diversified 

pollination strategies [9], natural selection and genetic drift [10]. 

Evolutionary developmental biology (evo-devo) uses comparative approaches to explain 

how changes in developmental pathways occur during the evolution. Numerous studies 

indicated that gene regulatory networks controlling developmental processes are 
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conserved and changes in the regulation and/or in the expression pattern of these genes 

induce phenotypic changes.  So, if the evolution of novel morphological characters is 

related to changes in the expression pattern of “candidate genes” the study of these genes 

and of their transcriptional regulation is probably the key to understand the evolution of a 

given lineage. 

Changes in temporal and spatial expression patterns may be caused by different events. 

Among them, cis-regulatory changes by accumulation of mutations and sub- or neo-

functionalization following gene or whole-genome duplication events are the most 

frequent. In the first case, the gene acquires a new transcription factor binding site (TFBS) 

that can be recognized by a novel transcription factor (TF) which could extend or reduce 

the expression domain of the gene under certain conditions. The second case is very 

common in plants where multiple gene and/or whole lineage-specific duplication events 

have occurred. It is speculated that these events generate the raw genetic material that 

drives the evolution of new forms and functions. Indeed, in addition to redundant 

functions, duplicate genes can undergo functional diversification (sub- or neo-

functionalization) that provides a substrate for morphological evolution.  

The evolution of the morphological complexity in plants has been linked with the expansion 

of genes encoding transcriptional regulators [11]. 

The main transcriptional regulators in plant are the TFs, which control all the major 

processes of life such as the flower development. They do so by a DNA-binding domain, 

which is almost always the most highly conserved part of the TF and is used to classify the 

TFs in different families. During plant evolution, whole or segmental duplication events 

have lead to the expansion in the number of TFs families. 

In orchids, the difference between the rate of morphological and molecular evolution 

suggests that the cause of such a wide morphological diversification might be due to the 

evolution of a small number of genes. This hypothesis has led many researchers to study 

the genes involved in the regulation of flower development in this plant family. Among the 

TFs involved in the complex molecular network of the flower development, the most 

studied are the MADS-box genes, involved in specifying meristem and organ identity, and 

the TCP genes that control floral zygomorphy. Furthermore, the study of developmental 
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processes in plants highlights the role of the non-coding RNAs (ncRNAs) in the regulation 

of the TFs involved in flower development. 

1.2 The MADS-box genes  

The MADS-box genes family is present in almost all the major eukaryotic groups, larger in 

higher plants than in animals or fungi [12, 13]. The MADS-box genes encode for 

transcription factors showing a typical DNA binding domain called MADS-box domain. 

These TFs represent one of the most studied gene families in plants for their essential roles 

in almost every developmental process. 

The acronym MADS was established after the discovery of the first MADS-box genes 

AGAMOUS (AG) from Arabidopsis thaliana [14] and DEFICIENS (DEF) from Antirrhinum 

majus [15]. Their products are proteins showing a ~60 amino acid DNA-binding domain with 

similarities to the serum response factor (SRF) in Homo sapiens [16] and Minichromosome 

maintenance 1 (Mcm1) in Saccharomyces cerevisiae [17]. This conserved domain is present 

in all the MADS-box transcription factors [18]. 

The origin of this transcription factor family is associated with a series of gene duplications 

followed by gene loss, neo- or sub-functionalization [19]. Indeed, it was discovered that the 

MADS-box family has evolved from a region of the topoisomerase II subunit A [20] and that 

a second gene duplication occurred before the divergence of plants and animals, giving rise 

to two main groups of MADS-box genes: type I and type II [21]. These two classes of MADS-

box genes have distinct functions and evolutionary histories. The type I originated mainly 

by recent duplication of single genes. In addition, they are so heterogeneous that can be 

further classified into three subclasses: M-alpha, M-beta and M-gamma. All of type I MADS-

box genes share a 180 bp DNA sequence encoding the MADS domain [22] and are involved 

predominantly in development of seed, embryo and female gametophyte [23]. The Type II 

MADS-box genes are mainly the product of whole genome duplications and have a modular 

domain structure called MIKC. It contains the highly conserved DNA-binding MADS domain 

(M) at the amino terminus, followed by the a poorly conserved I (intervening) domain and 

a moderately conserved K (keratin-like) domain, both essential for protein–protein 

interactions and the formation of high-order protein complexes. Finally, a variable 
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carboxyl-terminal (C) region has roles in the formation of protein complexes and may 

function as a trans-activation domain [24, 25]. 

Based on differences inside the domain structure, MIKC-type MADS-box genes can be 

further divided into MIKCC and MIKC* genes [26]. The latter are involved in the 

development of the male gametophyte [27], whereas the MIKCC genes, the most studied 

group of MADS-box genes, are involved in many functions related to plant growth and 

development, including the flower formation, and can be divided into several distinct 

subfamilies. 

An interesting aspect of the MADS-box genes evolution is that the number and the 

functional diversity of this family of TFs increased considerably during land plant evolution. 

Moreover, the functions and expression patterns of the MIKCC-type genes suggest their 

involvement in the origin and evolution of seed plant reproductive structures [28,29]. 

The identy of floral organs depends on the expression and interaction of floral homeotic 

genes. The spatial and functional activity of these genes is described by the ABCDE model 

of flower development [30, 31]. This model classifies the homeotic genes into five classes 

(from A to E) based on the mutant analyses of the model species Arabidopsis thaliana. All 

but one (AP2) the floral homeotic genes encode MADS-box TFs. 

The flower of Arabidopsis thaliana is structured into four concentric whorls of floral organs 

and, according to the ABCDE model, the A-class genes APETALA1 (AP1) and AP2 alone 

specify sepal identity in whorl 1. The A-class and B-class genes APETALA3 (AP3) and 

PISTILLATA (PI) together determine petal identity in whorl 2. The B- and C-class (AGAMOUS, 

AG) genes together specify stamen identity in whorl 3. The C-class genes alone in whorl 4 

determine the formation of carpel. Finally, the class D genes SEEDSTICK (STK) and 

SHATTERPROOF 1 and 2 (SHP1, 2) specify ovule identity within the carpel and the class E 

genes SEPALLATA (SEP1-4), expressed in all the whorls, act in a redundant manner for the 

correct formation of all of the floral organs (fig. 3A). 
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Figure 3 Reprinted from Aceto et al. (2012) [1] by permission of Eureka Science Ltd. (A) Schematic 

representation of the ABCDE and the quartet models of floral development. (B) The expanded ABCDE model. 

The MADS-box TFs act forming homo- and heterodimers to recognize the conserved 

nucleotide CC(A/T)6GG DNA sequences (known as the CArG boxes) [32]. According to the 

“floral quartet model”, after the formation of dimers, the MADS-box proteins interact to 

form tetrameric protein complexes consisting of two dimers that bind the target DNA 

sequence containing two CArG boxes and thereby the complexes activate floral organ-

specific expression programs [33, 34]. The interaction with other homeotic proteins takes 

place through the K domain that in some cases contributes to heterodimerization [35]. An 

important role as mediators in the higher-order complex formation is played by the 

members of the SEP subfamily [30,36]. 
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The ABCDE model is generally conserved among plants [37-41]; however, changes in 

homeotic gene expression in non-model species have been observed. In particular, recent 

studies conducted on monocots, including Orchis italica, indicated that there is an 

expansion of the expression profile of the class B MADS-box genes into the first floral whorl, 

while the expression profile of the other MADS-box genes is generally in agreement to the 

canonical model [42-45] (fig 3B). 

Among orchids, Orchis italica is one of the most widespread Mediterranean species, 

belonging to the Orchidoideae subfamily. Commonly known as the “naked man” for the 

shape of the lip that seems to imitate the body of a man, the inflorescence of O. italica is 

dense with light pink flowers. The sepals are rosy with evident purple streaks, the slightly 

darker petals. The lip is three-lobed, white-pinkish, speckled with purple (fig. 4). 

 

 

Figure 4 Reprinted from De Paolo et al. [46]. (A) An inflorescence of Orchis italica before anthesis (early 

stage) and (B) after anthesis (late stage). (C) Single tissues (outer tepals, inner tepals, lip and column) 

collected from a floret of O.italica at the two developmental stages: early (left) and late (right). 

The orchid flower does not show difference in the morphology of the sepals and petals, 

rather it exhibits similar organs in the outer whorls 1 and 2 called tepals. This phenotypic 

character seems to be related to the expression of the class B genes into the whorl 1 as 

well as in the whorl 2 and 3 [47, 48]. However, although the expansion of the ABCDE model 

provides a good explanation of the development of the tepals, it does not explain the the 

wide morphological diversification of the lip. 

Recent research focused on of the class B MADS-box gene family have improved the 

understanding of the mechanisms involved in the perianth differentiation in orchids. The 

evolutionary analysis of the class B MADS-box genes indicated the presence of two major 



13 
 

lineages, the AP3/DEF-like and the PI/GLO-like genes, arising from a duplication event that 

took place before the origin of angiosperms [49, 50]. Subsequently, a second duplication 

event occurred in the paleo-AP3/DEF lineage producing two other distinct clades: TM6 and 

euAP3 [49]. More recently, the studies conducted on the AP3/DEF-like genes in orchids 

indicated the presence of four clades: AP3/DEF-like clade 1 (PeMADS2-like), clade 2 

(OMADS3-like), clade 3 (PeMADS3-like) and clade 4 (PeMADS4-like) [49, 50]. 

The orchid code is a developmental-genetic code according to which, in the orchids, the 

key to understand the evolution and morphological diversification of the perianth has to 

be found in the duplication events followed by sub- and neo- functionalization in the 

regulatory region of the class B AP3/DEF-like genes [47, 51-53]. This theory speculates that 

the interaction of one PI/GLO-like protein with the different four AP3/DEF-like gene 

products determined the identity of the tepals and lip [51, 52]. According to the orchid 

code theory, the identity of the organs of the perianth depends on the different expression 

levels of the members of the distinct clades of B-class proteins. The interaction between 

the clade 1 and 2 products is involved in the development of the three outer tepals, while 

the formation of the two lateral inner tepals is regulated by the interaction of high 

expression levels of the clade 1 and 2 and low levels of the clade 3 and 4 gene products. 

High expression levels of the clade 3 and 4 gene products and low expression levels of the 

clade 1 and 2 mediate the development of the lip [5, 51]. 

1.3 Genes involved in the flower symmetry 

Variation in floral symmetry is one of the most fascinating aspect in the study of the 

evolution and diversification of flowering plants. Flower development in higher plants gives 

rise to an enormous variation of flower morphologies and symmetries. Phylogenetic 

analyses have shown that during the diversification of flowering plants, numerous 

evolutionary transitions have occurred between radial flower symmetry (polysymmetry, 

actinomorphy; fig. 5a), with multiple planes of mirror image symmetry, and bilateral flower 

symmetry (monosymmetry, zygomorphy; fig. 5d), with just a single plane of mirror image 

symmetry. In addition, flowers may show disymmetry, with two planes of mirror image 

symmetry, or asymmetry with zero planes of mirror image symmetry (fig. 5b, c). Transitions 
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from radial to bilateral symmetry are probably associated to the evolution of specialized 

flower-pollinator interactions [54-57]. 

 

 

Figure 5 Reprinted from Hileman (2014) [58] by permission of the Royal Society. The different kinds of flower 

symmetry: radial symmetry (a, Potentilla sp.), disymmetry (b, Cardaminopsis arenosa), asymmetry (c, 

Pedicularis racemosa) and bilateral symmetry (d, Antirrhinum majus). One or more genetic signals that 

differentiate the dorsal (adaxial) from the ventral (abaxial) domains of the developing flower are shown in 

dorsal shading of the early developing flower (e). In the model species A. majus, the genetic program that 

establishes dorso-ventral flower identity from early stages of development (f). 

The flower-pollinator interaction is particularly interesting in orchids, where some species 

have flowers that are pollinated by a single pollinator insect. A classic example of 

coevolution between flower and pollinator is the Darwin’s orchids (Angraecum 

sesquipedale). This orchid is particularly fascinating because the length of the flowers’ 

nectar spurs is up to 35 centimetres long. Charles Darwin in his book “On the various 

contrivances by which British and foreign orchids are fertilised by insects”, speculated that 

this orchid must be pollinated by a gigantic moth, with an enormous proboscis capable of 

accessing the nectar collected in the bottom of the long spur. However, only many years 

later it was discovered a moth (Xanthopan morganii praedicta) with a proboscis so long to 

http://www.arkive.org/darwins-orchid/angraecum-sesquipedale/#GlossaryTerm1
http://www.arkive.org/darwins-orchid/angraecum-sesquipedale/#GlossaryTerm5
http://www.arkive.org/darwins-orchid/angraecum-sesquipedale/#GlossaryTerm6
http://www.arkive.org/darwins-orchid/angraecum-sesquipedale/#GlossaryTerm6
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get to the nectar. Given this relationship (symmetry-pollination specificity), it was 

hypothesized that the transition to flowers with bilateral symmetry represents the key 

innovation contributing to the diversification of flowering plants in species-rich flower 

lineages as Orchidaceae [58]. 

The genetic machinery for the occurrence of zygomorphic flowers (monosimmetry) was 

first identified in Antirrhinum majus, where it was found that the cycloidea (cyc) and 

dichotoma (dich) mutants returned to radially symmetrical flowers, eliminating individual 

organ asymmetry [59]. The DICH and CYC genes, belonging to the TCP family, are the key 

regulators that establish dorso-ventral (DV) symmetry and are expressed in the dorsal 

region of the floral meristem [60]. These two regulators are also responsible for the 

elaboration of organ symmetry and interact with two distinct MYB proteins DIVARICATA 

(DIV) and RADIALIS (RAD), respectively, to determine lateral and ventral identities [61, 62]. 

The TCP genes are found only in plants and encode transcription factors that share a 60-

residue homologous region called TCP domain [60], common to all the members. This 

domain was initially identified in four proteins, from which the name ‘TCP’ was derived: 

teosinte branched1 (tb1) from maize (Zea mays) [63], CYCLOIDEA (CYC) from snapdragon 

(A. majus) [64], and the PROLIFERATING CELL FACTORS 1 and 2 (PCF1 and PCF2) from rice 

(Oryza sativa) [65]. The TCP domain is predicted to adopt a basic helix–loop–helix (bHLH) 

motif that allows DNA binding and protein–protein interactions [60]. 

Phylogenetic analyses based on the TCP domain have identified two subfamilies: class I, 

also known as PCF class or TCP-P class, and class II, also known as TCP-C class [66-68]. Class 

II is subdivided into two clades: the CYC/tb1 clade, or angiosperm-specific ECE clade, and 

the more ancient CINCINNATA (CIN) clade [69]. The members of the ECE clade have a 18-

20 residues arginine-rich motif (the R domain) that might be involved in protein–protein 

interactions [60], and a relatively conserved glutamic acid–cysteine–glutamic acid (ECE) 

motif between the TCP and R domain; some members of the CIN clade independently 

acquired the R domain [67]. 

Class I and class II factors have different consensus binding sites. The consensus for class I 

is GGNCCCAC, while the consensus for class II binding site is distinct but overlapping with 

that of class I sites: G(T/C)GGNCCC [66, 70, 71]. 

http://www.sciencedirect.com/science/article/pii/S1360138509002878#bib3
http://www.sciencedirect.com/science/article/pii/S1360138509002878#bib4
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The TCP genes encode for transcription factors that directly modulate the transcriptional 

status of genes involved in many processes of the plant growth and development [72]. 

Specific TCP proteins forming homo- and heterodimers can act as transcriptional activators 

or repressors and some may have both functions. The molecular mechanisms by which the 

TCP proteins regulate the transcription are still poorly understood, but it seems that some 

TCP proteins require interaction with other proteins to bind target site on DNA. Probably 

these proteins act as part of a multimeric complex of TFs to control the transcription of 

target genes [69]. These evidences indicate that there are regulatory mechanisms that act 

at different levels. 

In general, class I TCPs have been associated with the promotion of the cell cycle machinery 

whereas class II TCPs have been suggested to promote the arrest of the cell cycle [66, 73]. 

By contrast, the class II CIN-type genes limit cell proliferation at the margins of the 

developing leaf primordia in Antirrhinum [74], Arabidopsis thaliana [75] and Solanum 

lycopersicum [76], while their function in monocots is unknown. 

Phylogenetic analyses on ECE genes in core eudicot species revealed that this group 

evolved through a series of duplication events that gave rise to the three subgroups CYC1, 

CYC2 and CYC3 [77]. The CYC1 clade probably resulted from the first ECE split and is thus 

sister to CYC2 and CYC3, while CYC3 genes exhibit a duplication pattern similar to CYC2 

[78]. 

During the evolution of monosymmetry (zygomorphic flowers), the duplications and 

subsequent accumulation of mutations of the CYC2 genes, were an important source of 

new gene functions (sub-functionalization) that have facilitated the evolution of variable 

angiosperm symmetry forms [79].  

The TCP genes CYC and DICH, members of CYC/TB1-like clade, are involved in the 

estabilishment of flower and petal symmetry through the interaction with DIVARICATA and 

RADIALIS TFs belonging to the MYB family [80]. 

The MYB family is very important in the transcriptional regulation of a large number of 

genes involved in many plant-specific processes. MYB proteins are characterized by the 

presence of a specific DNA-binding domain composed of one, two or three repeats of about 
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52 residues, folded to form a "helix-turn-helix" [81]. The DIV protein is formed by two MYB 

domains and contains both an N-terminal protein interaction and a C-terminal DNA binding 

domain, while RAD presents one MYB domain which constitutes two thirds of the protein. 

Interestingly, the RAD protein is closely related to the N-terminal MYB domain of DIV, 

suggesting that the RAD could derive from an ancestral DIV-like protein after the deletion 

of its C-terminal domain [62]. 

In A. majus, the CYC and DICH genes are expressed and act redundantly in the dorsal region 

of the floral meristem during the early stages of differentiation of the petals and stamens. 

Instead, the ventral identity of the floral meristem is specified by the MYB gene DIV, 

expressed in the ventral region of the flower [62, 82]. During early wild type flower 

development, DIV is expressed in both the dorsal and ventral domains; in the later stages, 

its expression is restricted to the ventral petals [61]. In the div mutants the ventral petal 

acquires lateral identity. 

The effects of CYC and DICH on the dorsal domains and of DIV on the ventral domains of 

the flower are in part mediated by RAD. The RAD protein, whose expression is positively 

regulated by CYC and DICH and restricted to the dorsal domain, antagonizes the DIV protein 

with a post-translational mechanism [62] (fig. 5 e, f). However, probably there are some 

CYC or DICH functions that are independent from RAD activation because rad mutants in 

snapdragon do not show a completely radial flower [71]. 

The DIV and RAD proteins form heterodimers with another MYB protein, DRIF (DIV-and-

RAD-interacting factor): the heterodimers DIV/DRIF bind DNA on sites with DIV consensus 

sequence, regulating presumably the activity of target genes necessary for the 

development of the ventral region of the flower. However, in the dorsal region the RAD 

protein rivals with DIV for the interaction with the DRIF proteins, limiting the action of DIV 

only in the ventral region of the floral organs where RAD is not expressed [83]. 

The involvement of the CYC/tb1-like genes in the evolution and maintenance of bilateral 

symmetry has been extensively analyzed in dicotyledonous species [64, 84, 87-98], while 

there are only few studies on monocot species [85, 86]. In core eudicots, the involvement 

of CYC-like genes in the control of floral symmetry has been shown in both asterids [64, 87-

92], and rosids [93-98]. A shared hypothesis is that outside the order Lamiales, to which 
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the snapdragon belongs, the developmental genetic program of bilateral symmetry (and 

back to radial symmetry) has evolved several times by a parallel or independent 

recruitment of the CYC/RAD/DIV system. Across the rosids and asterids (eudicot flowering 

plants), the CYC orthologs expression in the dorsal petal tissue is a key factor in the dorsal 

identity [92-99]. 

In Oryza sativa, a monocot species, floral zygomorphy along the lemma-palea axis is 

partially or indirectly determined by the CYC-like homolog RETARDED PALEA1 (REP1), 

which regulates palea identity and development [100]. Researches on the possible 

involvement of the CYC genes on floral symmetry in other monocot plants as Z. mays [61], 

Zingiberales (Costaceae and Heliconiaceae) [101], Commelina and Tradescantia 

(Commelinaceae) [86] and Alstroemeria (Alstroemeriaceae) [102] have also been 

conducted. In the flowers of the monocots Costus and Heliconia (Zingerberales), as well as 

in Commelina (Commelinales), all bilaterally symmetrical, the expression of the CYC-like 

genes is not uniform along the dorso-ventral flower axis, but in contrast to the general 

pattern of a CYC-dependent program, the asymmetric CYC-like expression is limited to the 

ventral side of the flower [86-101]. However, it is still not clear whether this emerging 

pattern of dorsal flower expression in eudicots and ventral flower expression in monocots 

of the CYC homologs is general or not. Further comparative studies might give an answer 

to this question, to better understand how the CYC homologue expression is regulated 

during flower development in both monocot and euicot plants. 

1.4 Plant non-coding RNAs (ncRNAs)  

Nowadays, thanks to the development and application of high-throughput deep 

sequencing, we know that although ~90% of the eukaryotic genome is transcribed, only the 

1%–2% of total RNAs is mRNAs. This suggests that a large number of RNA molecules are 

non-coding RNAs (ncRNAs). NcRNAs can be classified as “housekeeping” ncRNAs, as 

ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA), and small 

nucleolar RNA (snoRNA), and “regulatory” ncRNAs which include small ncRNA (sncRNA) 

and long non-coding RNA (lncRNA). 
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1.4.1 Small non coding RNAs 

Small ncRNAs are approximately 21-24 nucleotides RNAs that act as a critical component 

of plant gene regulation at the transcriptional and post-transcriptional level. SncRNAs 

include a wide family of molecules that are different in the biogenesis, length and function 

[103]. 

Following the classification proposed by Axtell (2013) [103], small RNAs include two main 

categories, which are distinguished by their biogenesis (fig. 6). The first difference is the 

precursor of the small RNA. There are two different types of precursor molecules: those 

formed by a single-stranded RNA (ssRNA) that has the ability to fold and form an 

imperfectly double-stranded RNA called “hairpin” structure (hpRNA); those formed by a 

double-stranded RNA (dsRNA) with intermolecular perfect hybridization of two 

complementary RNA strands (siRNA) that derive from indipendent transcription of inverted 

repeat sequences, convergent transcription of sense-antisense gene pairs or synthesis by 

RNA-dependent RNA polymerases (RDRs) [104]. 

The hpRNAs can be divided into two subclasses: miRNAs (which include lineage-specific 

miRNAs and long miRNAs), and other hpRNAs. The siRNA, can be divided into three 

subclasses: heterochromatic siRNA, secondary siRNA (which include phased siRNAs and 

trans-acting-siRNAs), NAT-siRNAs (which include cis-NAT-siRNA and trans-NAT-siRNA).  
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Figure 6 Reprinted from Axtell (2013) [103]. Classification of the endogenous plant small RNAs.  

MiRNAs are non-coding RNAs of 21-24 nucleotides that regulate gene expression at the 

post-transcriptional level. They were discovered in Caenorhabditis elegans [105] and later 

were found widely distributed throughout the animal [106] and plant [107] kingdom. Plant 
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miRNAs are involved in the regulation of many aspects of plant biology, such as 

metabolism, hormonal response [108], biotic [109] and abiotic [110] stress and plant 

development [111-115]. 

MiRNAs are transcribed by RNA Pol II to generate long hpRNA precursors (pri-miRNAs) that 

are subsequently processed by the RNAse III-like enzyme DICER-like 1 (DCL1) together with 

two other enzymes (the dsRNA binding protein HYPONASTIC LEAVES1 (HYL1) [116] and the 

C2H2 zinc finger protein SERRATE (SE) [117, 118]) to generate a hairpin structure containing 

the miRNAs of 21-24 nucleotides called pre-miRNA. The pre-miRNA is processed a second 

time by DCL1 and the S-adenosylmethionine-dependent HUA ENHANCER 1 (HEN1), and the 

duplex miRNA/miRNA* is carried into the cytoplasm from the HASTY protein, that is 

homologous to exportin 5 protein [119]. In the cytoplasm, the mature miRNA is 

incorporated in the 'Induced Silencing Complex’ (RISC RNA), in which a key component is 

the protein AGO that contains domains similar to those of the endonuclease RNase H. Once 

incorporated into the RISC complex, the miRNA recognizes sequences complementary or 

partially complementary called miRNA-binding sites that are located on the mRNA target; 

generally, a miRNA recognizes multiple targets, up to several dozens [120, 121]. The binding 

of the miRNA to its binding site involves the degradation or the translational repression of 

the target. Between these two mechanisms, the best characterized in plant is the first that 

is realized thanks to the action of the endonucleolytic AGO1 protein that catalyzes the cut 

of the target mRNA inside the duplex miRNA-mRNA. Moreover, plant miRNAs are almost 

perfectly complementary to their mRNA targets, unlike the animal miRNAs and their 

targets. The degree of complementarity between miRNAs and their targets is responsable, 

at least in part, of the regulatory mechanism (cleavage in plant versus translation 

repression in animals). 

Until a few years ago, it was believed that the most widely used mechanism of post-

transcriptional regulation of the plant miRNAs was the degradation of the target mRNA and 

the translational repression was uncommon. However, this idea is changing as it seems that 

many of the plant miRNAs act in both ways [122, 123]. In a developmental context, these 

two mechanisms may offer different potential benefits to the organism. The cut of the 

target mRNA directed by miRNAs may represent an irreversible way to remove a transcript 

accumulated, while the translational repression is reversible and could be used to adjust 
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the levels of transcripts expressed in the cell. When the miRNA and its target have an 

expression profile that does not overlap, the miRNA acts to define the spatial limits of the 

target mRNA; instead, when the miRNA and its target have a coincident expression profile, 

the function of miRNA could be to regulate the expression levels of the transcript or the 

protein accumulation. 

MiRNAs that have a defined set of target mRNAs are grouped into families that are often 

conserved among plants [124]. The conserved miRNAs have homolog targets in many 

species, probably because they are involved in fundamental processes of development and 

therefore the miRNA/target relationship also have been conserved during the evolution of 

plants. Nevertheless, the conserved miRNAs can have new functional interactions with 

different targets, in addition to the canonical ones [125]. Not all plant miRNAs are 

conserved. There are some miRNAs found only in a few species of plants and therefore 

called lineage-specific miRNAs that are distinguished in many features from the conserved 

miRNAs [108, 126-128]. The long miRNAs are 24 nucleotides long and have a function 

similar to heterochromatic siRNAs that direct repressive chromatin modifications [129-

132]. 

Interesting, miRNAs are involved both in the regulation of TFs described by the ABCDE 

model and in modulating the expression of the TCP genes. Several studies conducted on 

orchid family [133-146], including O. italica [147], have demostred the conserved role of 

miR172 in the regulation of the AP2 gene, the only non MADS box belonging to the A class 

in the ABCDE model. In addition, five class II TCP genes (TCP2, TCP3, TCP4, TCP10, and 

TCP24) and their homologs in different species are regulated by the conserved microRNA 

miR319 [148]. High levels of miR319 and/or inactivation of miR319-regulated TCPs cause 

important changes in Arabidopsis leaf morphogenesis and the generation of crinkled leaves 

[149]. In addition, miR319-regulated TCPs have been described to control also the size and 

shape of the floral organs [150]. 

The secondary siRNAs include the phased siRNAs and the trans-acting-siRNAs, although 

many of the trans-acting siRNAs are also phased-siRNAs. Phased siRNAs result from 

precursors on which occur coordinated subsequent cutting events, operated by a DICER-

LIKE (DCL) enzyme. The end and the specific site from which DCL starts generating 
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secondary siRNA are defined by a cut on the precursor transcribed from a small RNA. Some 

of these secondary siRNAs are able to act in trans to regulate the repression of a target 

mRNA and for this reason they are called trans-acting siRNAs (ta-siRNAs).  

The ta-siRNAs were discovered by the analysis of the mutants in A. thaliana. It has been 

demonstrated that the mutant phenotypes that showed abnormalities in the transition to 

adulthood phase derived by an excess of the expression of genes encoding transcription 

factors of response to auxin, regulated by ta-siRNAs derived from the TAS3 locus [151-155]. 

The production of the ta-siRNAs is triggered by the cut on the TAS primary transcript (pri-

TAS) by a specific miRNA. The pri-TASs are transcribed by a DNA-dependent RNA 

polymerase II (RNA pol II) from TAS loci and they have a cap at the 5 ' and a poly A tail to 

the 3'. In Arabidopis, 8 TAS loci have been identified (TAS 1 a-c, TAS2, TAS3 a-c, Tas4) and 

each pri-TAS is around 1 Kb [151, 156-158]. 

Based on their biogenesis, there are two different types of pri-TAS: "one-hit", that contains 

a single binding site of miRNAs, and "two-hits", that contains two binding sites to the 

miRNA [159]. The pri-TAS1 a-c and pri-TAS2 have a binding site for miR173, while pri-TAS4 

has a binding site for miR828; all of them are one-hit. Otherwise, the pri-TAS3 a-c is two-

hits, containing two binding sites for miR390 and both the complementary sites of miR390 

are highly conserved in higher plants and are essential for the production of the ta-siRNA 

[159]. Furthermore, Montgomery et al. (2008) [160] have shown that only the binding of 

miR390 at the 3' end of the pri-TAS3 induces the cut. A further difference regards the 

ARGONAUTE (AGO) protein associated with miRNAs: miR390 was only found associated 

with AGO7 [160], while both miRNA173 and miRNA828 are incorporated into a RISC 

complex with the AGO1 protein [161-163]. 

Unlike other siRNAs, which are dependent on RDR for the synthesis of the precursor, the 

dsRNA precursor of a NAT-siRNA is formed by hybridization between two complementary 

RNAs transcribed from opposite strands of the same locus (cis-NAT-siRNAs) or from non 

overlapping genes (trans-NAT-siRNA). Cis-NAT-siRNAs were identified only in plants such 

as in Arabidopsis [164, 165]. 
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1.4.2 Long non-coding RNAs 

Initially considered “transcriptional noise”, lncRNAs are RNA molecules longer than 200 

nucleotides, belonging to a group of ncRNAs that are always capped and polyadenylated 

[166]. Despite lncRNA investigations have begun only recently, many studies have 

demonstrated that lncRNAs can interact with DNA, RNA and transcription factors to 

regulate target gene expression through DNA methylation, histone modification and 

chromatin remodelling [167]. All lncRNAs place their functions through four main ways: as 

signals, decoys, guides, or scaffolds (fig. 7) [168]. 

Although a few lncRNAs have been characterized in plants [169], compared with lncRNA 

discovered in animals, they are involved in many development processes, as plant 

reproductive development [170-172]. Recent studies showed that two lncRNAs, COOLAIR 

(Cold Induced Long Antisense Intergenic noncoding RNA) and COLDAIR (Cold Assisted 

Intronic noncoding RNA), could regulate A. thaliana flowering time through Flowering locus 

C (FLC) repression [173]. FLC is known as a regulator of flowering transition in plants, that 

is a central event for plant reproductive development. COOLAIR seems to promote FLC 

transcriptional repression without epigenetic silencing [174], otherwise the studies of 

knockdown of COLDAIR by RNA interference (RNAi) indicated an alteration of the 

vernalization response and its role in FLC epigenetic silencing [175]. 
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Figure 7 Reprinted from Wang et al. 2011 [168] (Copyright 2016) by the permission of Elsevier. Four ways to 

act of lncRNAs. Example I: lncRNA can regulate gene expression acting as signal and reflecting the 

combinatorial actions of transcription factors (colored ovals). Example II: lncRNAs can act as decoy for 

transcription factors and other proteins bringing them on the chromatin. Example III: lncRNAs can act as guide 

recruiting chromatin-modifying enzymes to target genes. Example IV: lncRNAs can act as scaffolds to form 

ribonucleoprotein complexes (lncRNA-RNP) that may regulate the accessibility of the chromatin affecting 

histone modifications. 
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2. The PhD research project 

My PhD project concerns the study of the evolution and diversification of the orchid flower. 

During my PhD activity I focused on the study of the coding and non coding genes involved 

in the flower development of the orchid species Orchis italica. In particular, the aim of my 

PhD project was: 

 

 To characterize the population of small RNAs expressed in the inflorescence of O. 

italica through a next generation sequencing (NGS) approach; 

 To sequence, assemble and annotate the inflorescence transcriptome of O.italica; 

 To analyze both the coding and long non-coding transcripts expressed in the 

inflorescence of O. italica that are potentially involved in flower development; 

 To analyze the TCP genes and other gene families of interest involved in the 

development of the flower of O. italica. 
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3. Results and Discussion 

3.1 Analysis of the inflorescence miRNome of O. italica 

3.1.1 Conserved and novel miRNAs 

The Illumina sequencing of the small RNA library of inflorescence tissue of O. italica 

produced 4,718,127 total and 2,100,557 distinct reads. After adaptor trimming, length 

filtering (18–35 nucleotides), removal of sequences representing less than 5 reads and 

tRNA and rRNA contaminant sequences, we obtained 1,064,237 total and 37,818 distinct 

reads (Table 1). 

 

 Total Distinct 

Raw reads 4,718,127 2,100,557 

Remaining after adaptor removal 4,412,197 1,953,969 

Remaining after length range filtering (18-35) 3,019,126 1,672,887 

Remaining after low-complexity filtering 3,018,960 1,672,730 

Remaining after minimum abundance filtering (5) 1,161,336 40,054 

Remaining after invalid sequence filtering 1,160,925 40,027 

Remaining after tRNA/rRNA filtering 1,064,237 37,818 

 

Table 1 Summary statistics of small RNA sequencing in inflorescence of O. italica. 

 

The analysis of the length distribution of the total and distinct short reads in the 

inflorescence of O. italica indicated that the number of reads was highest between 21–24 

nucleotides, with a peak at 24 nt (fig. 8), in accordance with the studies of the distribution 

pattern of small RNAs in other plant species [176-181, 144]. 
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Figure 8 Reprinted from Aceto et al. (2014) [176] Length distribution of the short reads in the inflorescence 

of O. italica. In violet the total and in red the distinct short reads. 

The analysis of the conserved miRNAs revealed a total of 175 putative miRNAs that 

correspond to 23 known plant miRNAs (fig. 9A). Counting the number of members from 

each family, the most abundant families (miR6300, miR166, miR319, miR396, miR393 and 

miR168) are also the most heterogeneous (fig. 9B). 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022656/figure/pone-0097839-g002/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022656/figure/pone-0097839-g002/
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Figure 9 Reprinted from Aceto et al. (2014) [176]. In silico analysis of the expression level of conserved 

miRNAs in the inflorescence of O. italica. A) Sum of reads; B) number of members. 

The comparison between the evolutionary conserved miRNAs described in Cuperus et al. 

(2011) [124] and the known miRNAs identified indicated that in the inflorescence of O. 

italica are present 16 of the 37 conserved miRNA families (fig. 10). 
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Figure 10 Reprinted from Aceto et al. (2014) [176]. Evolutionary conserved miRNAs identified in the 
inflorescence of O. italica. The evolutionarily conserved miRNAs family from Cuperus et al. (2011) [124] are 
indicate with different colors along the circle. Dotted lines group indicates the evolutionary conserved 
miRNAs involved in flower development [182]. Continuous lines group indicates the evolutionary conserved 
miRNAs detected in the inflorescence of O. italica. ^ indicates miRNA specific of dicots; § indicates miRNA 
specific of Bryophyta and Lycopodiophyta. 

 
In addition, in the inflorescence of O.italica we have identified all of the 8 conserved miRNA 

families involved in flower development described in Luo et al. 2013 [182]. The presence 

of a such high degree of conservation suggests that these miRNAs play a key role in the 

flower development processes. 

The analysis of the putative novel miRNAs was performed using the miRDeep-P software. 

The results revealed 478 distinct sequences that reflect the criteria of plant miRNA 

structures. To exclude the conserved miRNAs, these 487 distinct sequences were used as 

queries in a BLAST search against the miRBase database. The results showed that 109 

sequences correspond to known plant miRNA families and 100 to miRNAs with limited 

similarity (11–15 nucleotides) with known miRNAs present in miRBase. The remaining 296 

sequences were clusterized using the CD-HIT suite (see methods), resulting in 161 clusters 
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with a sequence identity cut-off of 80%. These distinct reads should be considered putative 

novel orchid-specific miRNAs.  

3.1.2 In silico analysis of putative targets and cleavage validation 

Using the psRNATarget online tool, we conducted an in silico analysis to predict the 

putative targets of all the miRNAs identified in the inflorescence of O.italica. When we used 

the reads against the transcriptome of the orchid Phalaenopsis aphrodite (maximum 

expectation 3.0), a total of 5349 putative targets corresponding to 1456 distinct Gene 

Ontology (GO) terms were detected. This result suggests that the role of miRNAs is 

conserved among orchids. When the putative target analysis was conducted against the 

coding transcripts of O. italica (maximum expectation 0.0), we used transcripts involved in 

flower development of O. italica that have been previously isolated (OrcLFY GenBank 

accession number AB088851, OitaAP2 KF152921, OrcPI AB094985, OrcPI2 AB537504, 

OitaAG JX205496, OitaSTK JX205497). 

To increase the number of class B MADS-box genes of O. italica belonging to the DEF-like 

lineage and to verify if they are targets of miRNAs, we isolated four different DEF-like cDNA 

sequences using a MADS-box and a poly-T primer (see Methods, Table 6). The ORFs of these 

cDNAs (called OitaDEF1, OitaDEF2, OitaDEF3, OitaDEF4) is 681 bp, 603 bp, 672 bp and 675 

bp, respectively. All of them have the typical highly conserved MADS-box domain, the 

moderately conserved intervening I-domain, the keratin-like K-domain and the variable C-

terminal domain [25] and are deposited in GenBank with the accessions AB857726, 

AB857727, AB857728, AB857729. 

The results of the psRNATarget analysis against the coding transcripts of O. italica revealed 

that two O. italica miRNAs, INF_28502 and INF_26041, that are both homologs of miR5179 

of Oryza sativa and Brachypodium distachyon, target all the four DEF-like transcripts with 

better expectation value for OitaDEF2 and OitaDEF4 transcripts. Although in the orchids 

Ericina pusilla and P. aphrodite it was identified a miRNA that putatively cleaves the 

transcripts of class B MADS-box genes, more detailed studies are lacking. In order to 

validate the in silico analysis, we performed a modified 5’RACE experiment for all the four 

DEF-like transcripts. We obtained positive results only for one transcript, with a fragment 

of the expected size (129 bp) derived from the cleavage product of miR5179 on the 
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OitaDEF2 transcript of O. italica (fig. 11). We did not detect any cleavage product of the 

homolog of miR5179 in O. italica for the other OitaDEF-like genes, including OitaDEF4, 

although the in silico analysis predicted the same expectation value of OitaDEF2. This result 

could be related to different transcriptional regulation mechanisms that do not involve 

cutting as well as to the difference in the nucleotide sequence in the regions surrounding 

the predicted target site on the four DEF-like transcripts, resulting in decreased accessibility 

of the RISC complex to the OitaDEF4, OitaDEF1 and OitaDEF3 transcripts. 

 

Figure 11 Reprinted from Aceto et al. (2014) [176] Cleavage of the homolog of miR5179 on OitaDEF2 in O. 

italica. A). In black box the nucleotide alignment of the putative target site of miR5179 on OitaDEF-like 

transcripts and outsite the box its surrounding region. B) Agarose gel electrophoresis of the amplified product 

from the modified 5’ RACE experiment on OitaDEF2 and 100 bp ladder (Fermentas). It is also reported the 

alignment of the miR5179 and its target site on OitaDEF4 and the arrows indicate the position of the cleavage 

site and the number of clones corresponding to each site as deduced by the cloning and sequencing of the 

obtained fragment. 
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3.1.3 Expression analysis 

The expression analysis was performed in different inflorescence tissues of O. italica on 10 

selected miRNAs chosen based on their in silico expression level or their putative targets 

(see Methods, Table 6). Among the selected miRNAs, eight correspond to known plant 

miRNAs and two correspond to putative novel miRNAs. In order to amplify the miRNAs we 

used the Poly(T) Adaptor RT-PCR method (see methods) and the 5.8S RNA transcript as 

endogenous control gene. 

 The fig. 12A shows the expression pattern of the homolog of miR390 in O. italica that 

reveals a variable expression profile in the different tissues examined. Interestingly, this 

miRNA is implicated in the biogenesis of the ta-siRNAs cutting the TAS3 mRNA [183]. The 

ta-siRNAs inhibit the auxine response factors mRNAs (ARFs) that control the responses to 

the auxin, a phytohormone with a conserved function in plant development [183]. 
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Figure 12 Reprinted from Aceto et al. (2014) [176]. Relative expression pattern of selected conserved and 

putative novel miRNAs in different tissues of O. italica. On the left of each figures is reported the predicted 

structure of the pre-miRNA and the miRNA and miRNA* sequences are shown in red and pink, respectively. 

MFE, minimum free energy; Rn, relative expression ratio; Te_out, outer tepal; Te_inn, inner tepal; Co, column; 

Ov_np, not pollinated ovary; Ov_3dap, Ov_7dap, Ov_10dap, ovary 3, 7 and 10 days after pollination, 

respectively; Le, leaf. Bars indicate the standard deviation. 



35 
 

In addition, the miR160 homolog is expressed in all the examinated tessues of O.italica but 

with a higher level in the lip and ovary (fig. 12B). This results support the role of miR160 in 

the shaping of the inflorescence and of the floral organs and in fertility [184, 185]. The 

targets of miR169 are NF-YA transcription factors. These TFs act to positively regulate the 

expression of the class C MADS-box gene AGAMOUS. miR169 regulates negatively the 

expression of NF-YAs and act an indirect manner to limit the expression domain of the AG 

gene mainly in outer tepals and lip, where it is expressed at levels higher than in the 

column, ovary or leaf. In addition, the comparison between the expression pattern of 

miR169 (fig. 12C) and OitaAG reported in Salemme et al. [147] in the same floral tissues 

shows a complementary profile, supporting a conserved role of this miRNA in the flower 

development.  

The O. italica miR162 is expressed in all the examined tissues, with a relatively low level 

(fig. 12D), and targets Dicer1-like transcripts. Because Dicer1 protein is involved in the 

biogenesis of the miRNAs [186]. the low expression level of miR162 is probably related to 

the high processing of the microRNAs in these tissues. Also the homolog of miR168 of O. 

italica is involved in the miRNAs pathway because regulates the transcript AGO1 that is a 

core component of the RISC complex [187]. However, the expression pattern among the 

floral organs of O. italica is higher than that of miR162 in all the tissues except in the ovary 

after pollination (fig. 12E). These results could be related to the additional role of miR168 

in the stress responses and signal transduction [188].  

The homolog of miR166 of O. italica reveals a not uniform expression profile in the 

examined tissues, with the lowest level detected in the column and the in ovary 7 days 

after pollination (fig. 12F). miR166 cleaves the transcripts of the HD-ZIP III gene that 

encodes transcription factors involved in shoot apical and lateral meristem formation, 

organ polarity and vascular development [189, 190]. Finally, the miRNA homolog of miR396 

in O. italica regulates the expression of growth factors involved in flower and leaf 

development [125]. miR396 shows a variable expression level in the tissues examined in 

O.italica with a lower level in the ovary before pollination and higher in outer tepals and 

leaf (fig. 12G).  
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The expression profile of the two putative novel orchid-specific miRNAs IN_27201 and 

IN_20892 is low in the floral and leaf tissues examined and lower than that of the selected 

conserved miRNAs (fig. 12H and I). However, this result is not surprising because different 

studies showed similar expression differences between novel miRNAs compared with the 

known ones [178, 180]. Figure 13 A shows the expression analysis of the DEF-like genes of 

O. italica conducted using actin OitaAct gene as endogenous control and the comparison 

between the expression level of O. italica miR5179 and its putative target OitaDEF2.  

 

Figure 13 Reprinted From Aceto et al. (2014) [176]. Relative expression pattern of the OitaDEF-like genes and 

the homolog of miR5179 of O. italica. A) Expression profile of the OitaDEF1-4 genes and of miR5179 in 

different tissues of O. italica. On the rigth of the expression graph of the miR5179 is reported the predicted 

structure of the pre-miRNA of O. italica, where the miRNA and miRNA* sequences are shown in red and pink, 

respectively. MFE, minimum free energy; Rn, relative expression ratio; Te_out, outer tepal; Te_inn, inner 

tepal; Co, column; Ov_np, not pollinated ovary; Ov_3dap, Ov_7dap, Ov_10dap, ovary 3, 7 and 10 days after 

pollination, respectively; Le, leaf. Bars indicate the standard deviation. 
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The expression profile of miR5179 gradually increases from the column to the ovary 10 

days after pollination, while in the tepals, labellum and leaf the expression is almost absent. 

The expression level of OitaDEF2 is higher in the outer floral organs that form the perianth 

than in the other tissues. This complementary expression profile further supports the 

repressive role of miR5179 on OitaDEF2. 

OitaDEF1 is expressed almost exclusively in outer tepals, while OitaDEF3 and OitaDEF4 are 

expressed mainly in inner tepals and lip than in the other tissues (fig. 13). The “orchid code” 

theory speculates that the identity of the perianth organs (outer and inner tepals and lip) 

depends on the fine regulation of the relative expression levels of the four DEF-like gene 

products. According to the this theory, high expression levels of the clade 1 and the clade 

2 gene products are mainly involved in the development of the tepals, while high 

expression levels of the clade 3 and 4 gene products mediate the development of the lip 

[5, 51,52]. The expression pattern of the DEF-like genes detected in O. italica not only is in 

agreement with the ‘‘orchid code’’ theory but it allows us to hypothesize that also a miRNA 

is involved in the regulation of the orchid perianth development by targeting the clade 2 

DEF-like gene.  

The results obtained have been published in Aceto et al. 2014 [176]. 
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3.2 De novo transcriptome assembly from inflorescence of Orchis italica 

3.2.1 Illumina sequencing and de novo assembly 

The cDNA library of the inflorescence of O. italica, obtained from high quality total RNA 

(RIN= 9.0), was sequenced with the Illumina technology. After filtering reads of good quality 

(Phred quality score ≥33) and without contaminants, we obtained ≈ 94 million of paired-

end (PE) 100-bp reads (86.2% of the original reads). The cleaned reads were processed 

using the de novo assembler Trinity (see methods), that generated 132,565 assembled 

transcripts. These were clustered into 86,079 not redundant transcripts (unigenes) based 

on their sequence identity (set to 85%). Table 2 shows that the N50 value is 956 and that 

the mean size of the unigenes is 606 bp, indicating a good quality of the assembled 

transcriptome. 

 

 Number N50 Mean Min Max >1000 >2000 >3000 >5000 >10000 

Starting reads 108,911,910          

After contaminant cleaning 108,738,395          

After quality checking/adaptor 

trimming 

93,926,808          

Assembled transcripts 132,565 786 564 201 12,047 18,004 4,357 1,210 143 3 

Unigenes 86,079 956 606 201 12,047 13,996 3,928 1,185 140 3 

 

Table 2 Summary statistics of sequence assembly from inflorescence of O. italica. Mean, Min and Max 

indicates the average, minimum and maximum length expressed in base pairs. 

The analysis of the size distribution of the assembled transcripts and unigenes (fig. 14 A, B) 

indicated that the size ranging between 200 and 300 bp is the most abundant. 13.6% of the 

transcripts were more than 1,000 bp in length and 32.3% were more than 500 bp. Among 

the unigenes, 16.3% were more than 1,000 bp , and 33.2% were more than 500 bp. 
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Figure 14 Reprinted from De Paolo et al. (2014) [191]. Sequence size distribution of the assembled transcripts 

(A) and unigenes (B) of the inflorescence of O. italica. The lengths are indicated in base pairs. 

The comparison of the assembled transcriptomes of other orchids obtained with the same 

sequencing approach and that of O. italica revealed that the number of transcripts and 

unigenes assembled for the inflorescence of O. italica is higher than that of Cymbidium 

ensifolium [192] and similar or slightly lower than those assembled for mixed vegetative 

and reproductive tissues of Cymbidium sinense [193] and Erycina pusilla [194]. Among the 

orchid transcriptomes currently available [195-197], that of Ophrys (Orchidoideae) is the 

closest to O.italica and for this reason it was used for more specific comparative analyses. 

However, the trascriptome of Ophrys was obtained applying combined approaches of 

various NGS techniques and from a mixture of O. exaltata, O. garganica and O. sphegodes. 

The trascriptome of Ophrys includes 51,795 contigs (Illumina data) and 70,122 singletons 

(454 and Sanger data) [197]. The difference in the number of assembled transcripts could 

be related to the different sequencing approaches and to their great diversity in genome 

size. Indeed, Orchidaceae are the angiosperm family with the most variable genome size. 
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In particular, the genome size estimated for the genus Orchis and Ophrys (subfamily 

Orchidoideae) is 8.6 Gb and 10 Gb respectively, while for Cymbidium and Erycina (subfamily 

Epidendroideae) 4 Gb and 1.7 Gb respectively [198].  

3.2.2 Functional annotation 

The transcriptome of O. italica was annotated using the web platform FastAnnotator (see 

methods). The 45,3% (38,984) of all the unigenes matched at least one significant hit 

against the NCBI nr protein database (Table 3). 

 

 

 

 

Table 3 Statistics of the annotation results for the O. italica unigenes. 

Figure 15 shows that the percentage of annotated unigenes of O. italica was positively 

correlated with the sequence length (Pearson correlation coefficient r = 0.57, p=0.001). 

 

 All NCBI-nr GO Enzyme Pfam KOG KEGG 

Number of unigenes 86,079 38,984 32,161 3,085 32,011 15,775 7,143 

% of unigenes 100 45.3 37.4 3.6 37.2 18.3 8.3 
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Figure 15 From De Paolo et al. (2014) [191]. Size distribution of the annotated transcripts. (A) The relationship 

between the sequence length of the assembled unigenes and the percentage of annotations in the NCBI nr 

protein database. (B) Sequences size distribution of the annotated unigenes. The lengths are indicated in base 

pairs. 

BLASTN analysis between the unannotated unigenes of O. italica and Ophrys revealed that 

only the 1,3% of the unannotated unigenes of O. italica is best reciprocal hit of Ophrys. So, 

probably most of the unannotated unigenes of O. italica are novel transcripts. The size 

distribution analysis of the annotated transcripts revealed that the most abundant class 

had a sequence length between 1,000 and 2,000 bp (fig. 15 B). 

The annotated unigenes are divided in functional categories belonging to three main 

classes of GO terms. Among them, the most abundant class was biological process (28,558 

unigenes), followed by molecular function (27,378) and cellular component (24,304) (fig. 

16 A). 
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Figure 16 Reprinted from De Paolo et al. (2014) [191]. Functional annotations of the unigenes of O. italica. 

(A) Level 2 GO term distribution. (B) KOG annotation. 

The comparison of the GO terms between O. italica and Ophrys revealed difference in the 

total number of the uniges as well as in the relative level in each class. In Ophrys the most 

abundant class is molecular function, followed by biological process and cellular 

component and the total numbers are lower than those reported for O. italica. In the 

biological process terms, the most abundant classes were cellular and metabolic process 

(25.8% and 24.2%, respectively). Among the molecular function terms, most of the 

unigenes were assigned to binding (39.1%) and catalytic activity (39.7%), while in the 

cellular function category the classes with the highest number of assigned unigenes were 

cell part (44.8%) and organelle (24.8%). The level 2 GO classification of the transcriptome 

of O. italica is in agreement with that reported for Ophrys [197].  

To identify the putative orthologs and paralogs in the unigenes of O. italica, we conducted 

a search within the KOG database (see methods). Among the total unigenes of O. italica, 
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15,775 (18.3%) were assigned to 26 eukaryotic orthologous groups (Table 3, fig. 16 B). The 

figure 16B shows that the most represented were the general functions (R, 12.3%), 

unknown functions (S, 11.9%) and post-translational modifications, protein turnover and 

chaperones (O, 9.8%). With limited differences only in some groups, the KOG classification 

is in general agreement with those reported for Ophrys [197]. 

An additional functional annaotation was conducted to identify transcription factors within 

the assembled transcripts of O. italica. A search against the Plant Transcription Factor 

Database was performed using A. thaliana and O. sativa as reference dicot and monocot 

species, respectively. The results of this analysis revelaled that a total of 4,095 unigenes 

(4.8%) matched with 57 plant transcription factor families (fig. 17). 

 

 

Figure 17 Reprinted from De Paolo et al. (2014) [191]. Annotations of the unigenes of O. italica obtained from 

the plant transcription factor database (TFDB). 

Among them, the most abundant TF families were NAC (18.1%), Nin-like (14.7%) and WRKY 

(14.3%); however, also other families were well represented, such as those involved in 

flower development (MYB, AP2, LFY, MIKC, TCP). These results are partially in agreement 

with those reported for Ophrys, where the number and percentage of total unigenes is 

lower than those reported for O. italica (2,7% versus 4,8%). The most abundant TF families 

in Ophrys were comparable to those reported for O. italica: WRKY (21.4%), NAC (7.8%) and 

NF-YA (12.5%) while the Nin-like family was at 5.8% [197]. The search conducted in the in 

the Pfam database (with coverage greater than 50% ) indicated that 32,011 (37.2%) of the 

assembled transcripts of O. italica matched with 7,208 protein domains (Table 3). Among 
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them, the most highly represented was the PPR domain followed by RVT_2 and Pkinase 

(Table 4). 

Short name Accession Description Occurrence 

PPR_2 PF13041 Pentatricopeptide  repeat family 825 

RVT_2 PF07727 Reverse transcriptase (RNA-dependent DNA polymerase) 670 

Pkinase PF00069 Protein kinase domain 527 

rve PF00665 Integrase core domain 372 

ABC_tran PF00005 ATP-binding domain of ABC transporters 252 

MFS_1 PF07690 Major facilitator superfamily 249 

LysR_substrate PF03466 LysR substrate binding domain 197 

Pkinase_Tyr PF07714 Tyrosine kinase 191 

RVT_1 PF00078 Reverse transcriptase 183 

UBN2_3 PF14244 gag-polypeptide of LTR copia-type 173 

AMP-binding PF00501 AMP-binding enzyme 167 

RRM_1 PF00076 RNA recognition motif 167 

gag_pre-integrs PF13976 gag-pre-integrase domain 156 

WD40 PF00400 WD40 repeat 144 

Tymo_45kd_70kd PF03251 Tymovirus 45/70Kd protein 140 

Retrotrans_gag PF03732 Retrotransposon gag protein 138 

BPD_transp_1 PF00528 Binding-protein-dependent transport system inner membrane 131 

LRR_8 PF13855 Leucine-rich repeat 127 

ACR_tran PF00873 AcrB/AcrD/AcrF family integral membrane proteins 124 

adh_short PF00106 Short-chain dehydrogenase 124 

Response_reg PF00072 Response regulator receiver domain 122 

Aldedh PF00171 Aldehyde dehydrogenase family 121 

DYW_deaminase PF14432 DYW family of nucleic acid deaminases 120 

Myb_DNA-binding PF00249 Myb-like DNA-binding domain 118 

zf-RING_2 PF13639 RING finger domain 118 

p450 PF00067 Cytochrome P450 116 

Abhydrolase_6 PF12697 Alpha/beta hydrolase fold 114 

TonB_dep_Rec PF00593 TonB-dependent receptors 102 

Other domains   26,022 

 

Table 4 Summary of the Pfam domain annotations with occurrence > 100. 
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The PPR domain proteins are involved in various aspects of plant physiology and 

development by RNA editing and/or regulation of the mRNA turnover and translation [199]. 

The RVT proteins are reverse transcriptases and the presence of a high number of members 

in the transcriptome of O. italica, together with other abundant protein classes such as rve, 

gag_pre-integrs, Retrotrans_gag, is in agreement with the high number of mobile elements 

reported in the orchid genomes [147, 200]. The protein kinases (Pkinase), involved in cell 

proliferation, differentiation and death [201], are also highly represented in the 

transcriptome of Ophrys, and are also related to the presence of mobile elements [197]. 

An additional search was conducted in the Enzyme database (Table 3) which revealed that 

3,085 transcripts (3.5%) had at least one enzyme hit (Table 3). 

To analyze the involvement of the assembled transcripts in biochemical pathways, the 

unigenes of O. italica were used for a functional annotation in the KEGG database. The 

results reveals that among all the transctipts, 7,143 (8.3%) matched with 2,651 enzymes 

involved in essential biochemical pathways (Table 3 and 5). Table 6 shows that the enzymes 

involved in metabolism are the most represented, followed by genetic information 

processing, cellular processes, environmental information processing and organismal 

systems.  
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KEGG pathway N unigenes N enzymes 

Metabolism   

Global and overview maps 3032 1116 

Carbohydrate metabolism 977 271 

Amino acid metabolism 654 458 

Lipid metabolism 433 165 

Energy metabolism 278 61 

Biosynthesis of other secondary metabolites 241 53 

Metabolism of other amino acids 227 56 

Metabolism of cofactors and vitamins 206 120 

Nucleotide metabolism 192 73 

Metabolism of terpenoids and polyketides 139 78 

Glycan biosynthesis and metabolism 79 43 

Genetic Information Processing   

Folding, sorting and degradation 178 24 

Translation 109 37 

Replication and repair 81 25 

Transcription 48 8 

Cellular Processes   

Transport and catabolism 112 28 

Environmental Information Processing   

Signal transduction 87 25 

Organismal Systems   

Environmental adaptation 58 10 

 

Table 5 Summary of the KEGG pathways analysis indicating the number (N) of unigenes and the number of 

corresponding enzyme matches. 

3.2.3 Expression analysis 

The RSEM software was used to evaluate the expression level of the unigenes of O. italica 

(see methods). The results revealed that the 36.4% of the unigenes presented a FPKM value 

lower than 1 and were considered as unexpressed; the 50.1% of the unigenes presented a 

FPKM value between 1 and 10 and were considered as moderately expressed, while the 
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12.2% were considered moderately expressed with a FPKM values between 10 and 100. 

The unigenes with  FPKM values higher than 100 (1.3%) were considered highly expressed.  

To validate the in silico analysis, the expression level of ten selected unigenes was 

measured by real-time RT-PCR. Among them, one is a housekeeping gene and the other 

nine unigenes encode transcriptional factors involved in the ABCDE model of flower 

development (Table 7). Both measures were normalized relative to the actin levels.  

The R0 values of each gene was divided by the R0 value of the actin to obtain the mean Rn 

value, while the FPKM value was normalized (FPKMn) by dividing the FPKM value of each 

unigene by the FPKM value of the actin. The resulting values were compared and the 

Pearson correlation coefficient showed a strong positive correlation between the two 

datasets (r= 0.87, p= 0.002) (fig. 18, Table 7). These results demonstrated that the in silico 

analysis indicates with a good approximation the real expression level of the transcripts in 

the inflorescence tissue.  

 

 

Figure 18 Reprinted from De Paolo et al. (2014) [191]. Relative expression levels of selected unigenes of O. 

italica detected by real-time PCR in inflorescence tissue (A) and by normalized FPKM counts (B). The bars 

indicate the standard deviation. 
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3.2.4 Non-coding transcripts 

Despite the increasing interest in the study of the plant lncRNAs for their involvement in a 

wide range of regulatory processes, to date lncRNAs in orchids are completely unknown. 

The development of ad hoc in silico analysis tools has facilitated the ability to predict 

potential lncRNAs. To understand if a unannotated assembled transcript is a lncRNA or a 

misassembled sequence, it would preferable to have the assembled genome but 

unfortunately it is absent for O. italica (and at that time also for other orchid species). To 

identify the putative lncRNAs assembled in the inflorescence transcriptome of O. italica, a 

preliminary analysis was conducted using separately two different software packages: 

Coding Potential Calculator (CPC) and Portrait (see methods). The 47,097 unannotated 

unigenes were analyzed and the results reveled 45,266 (CPC) and 7,888 (Portrait) potential 

non-coding transcripts, with 7,779 transcripts matching both thresholds. Within the group 

of the unannotated unigenes, 10 were selected to verify their existence in O. italica and 

exclude they were assembly artifacts (Table 8). 

Among them, 7 matched both the CPC and Portrait threshold values, two were chosen for 

their length (1,000 bp) but matched only the CPC threshold and one did not match any 

threshold but was chosen for its high FPKM value (20,357). 

A first analysis was conducted by RT-PCR amplification on total RNA extracted from 

inflorescence of O. italica. The figure 19A shows that single amplification product of the 

expected size was obtained for 7 of the 10 analyzed transcripts. Among the remaining three 

transcripts resulting in multiple fragments (fig. 19 A, lane 7–9), two matched only the CPC 

threshold. Six out of seven amplification products of the expected size were confirmed by 

cloning and sequencing, while one resulted a contaminant sequence (fig. 19 A, lane 4). 

The selected six non-coding transcripts were used to performed a Real-time PCR 

experiment to analyze their expression pattern in different floral tissues and leaf of O. 

italica (fig. 19 B–G). 

All the transcripts showed a variable expression profile in the examined tissues. They were 

absent in the ovary and absent or weakly expressed in the leaf. 
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The expression analysis of the comp0_c0_seq1 and comp3328_c0_seq1 transcripts showed 

that they are mainly expressed in the column (fig. 19 B and C, respectively), suggesting a 

possible role in regulation the development of the reproductive tissues. The 

comp1231_c0_seq1, comp48038_c0_seq1 and comp6669_c0_seq1 transcripts (fig. 19 D–

F, respectively) are expressed almost exclusively in the perianth organs. The 

comp134696_c0_seq1 transcript (fig. 19 G) is expressed almost exclusively in inner tepals 

and absent or weakly expressed in the other tissues. The results of this analysis revealed 

the presence of specific putative lncRNAs in the perianth of O. italica suggesting their 

possible role in flower development processes. 

 

 

Figure 19 Reprinted from De Paolo et al. (2014) [191]. Selected putative long non-coding RNAs expressed in 

the inflorescence of O. italica. (A) Agarose gel electrophoresis of the RT-PCR of the selected transcripts (Lane 

1, comp0_c0_seq1; lane 2, comp3328_c0_seq1; lane 3, comp1231_c0_seq1; lane 4, comp3311_c0_seq1; 

lane 5, comp48038_c0_seq1; lane 6, comp6669_c0_seq1; lane 7, comp4129_c0_seq1; lane 8, 

comp1308_c0_seq1; lane 9, comp15481_c0_seq1; lane 10, comp134696_c0_seq1; lane 11, empty; lane 12, 

100 bp ladder). (B–G) Relative expression profile of the transcripts comp0_c0_seq1 (B), comp3328_c0_seq1 

(C), comp1231_c0_seq1(D), comp48038_c0_seq1 (E), comp6669_c0_seq1, (F), and comp134696_c0_seq1 

(G) in the outer tepals (Te_out), inner tepals (Te_inn), labellum (Lip), column (Co), ovary (Ov) and leaf (Le). 

Rn, relative expression ratio. The bars indicate the standard deviation. 
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The BLASTN search performed on the comp134696_c0_seq1 revealed that it is a homolog 

of the TAS3 long non-coding transcript (Fig. 20) from which it is known that derive tasiRNAs 

involved in the regulation of the the auxin response factor genes [108, 125]. 

 

Figure 20 Reprinted from De Paolo et al. (2014) [191]. Alignment of nucleotide sequence of the 

comp134696_c0_seq1 identified in O. italica and the TAS3 sequences of Hordeum vulgare (accession number 

BF264964), Zea mays (BE519095), Saccharum hybrid cultivar (CA145655), Sorghum bicolor (CD464142), Oryza 

sativa (AU100890) and Triticum aestivum (CN010916). 

The biogenesis of tasiRNAs is regulateted by miR-390 whose homolog in O. italica is 

differentially expressed in the various tissues of the inflorescence of O. italica [176].  

In addition, the discovery of other transcripts involved in the biogenesis of tasiRNAs, RDR6 

(comp44794_c0_seq1), DCL4 (comp3192_c0_seq1) and 11 transcripts matching different 

AGO proteins in the annotated transcriptome of O. italica, suggests the presence of a 
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conserved pathway for the TAS3 ta-siRNA biogenesis in plant and their possible role in the 

floral organs. Interestingly, the hypothesis of a possible functional role of tasiRNAs in flower 

development is a novelty because previous studies conducted on the processes regulated 

by tasiRNAs only concern response to pathogens, lateral roots development and leaf 

morphology or transitions to juvenile/adult stage. 

The results obtained have been published in De Paolo et al. [191]. 
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3.3 Analysis of the TCP genes of Orchis italica 

3.3.1 The TCP genes in the inflorescence transcriptome of O. italica 

To identify transcripts encoding TCP proteins in the inflorescence transcriptome of O. 

italica a TBLASTN search was performed using as query the sequences of the TCP DNA-

binding domain of A. thaliana and O. sativa. The search reveled 11 different transcripts 

containing a region encoding the TCP domain (Table 9). This result increased the number 

of known TCP genes of orchids, where only five TCP genes have been reported [85]. 

After the virtual translation of the 11 TCP sequences of O. italica, 24 of Arabidopsis thaliana 

and 22 of Oryza sativa, the amino acid alignment was used to construct a Neighbor-Joining 

(NJ) tree. However, this first phylogenetic analysis revealed that none of the TCP transcripts 

expressed in the inflorescence of O. italica belong to the class II CYC/TB1-like group, whose 

members are involved in the establishment of bilateral symmetry in numerous plant 

species [82, 92, 98, 99, 202, 203]. 

To verify the presence of CYC/TB1-like genes within orchids, standalone BLASTN and 

BLASTX searches were performed using the TCP transcripts of O. italica as queries on the 

recently released genome of P. equestris. The results revealed that in the genome of P. 

equestris there are 17 genes encoding TCP proteins and among them three belong to the 

CYC/TB1-like group. Based on the CYC/TB1-like sequences of P. equestris, degenerate 

primers were designed spanning from the TCP to the R domain, in order to amplify the 

genomic DNA of O. italica and to check for the presence of CYC/TB1-like sequences also in 

O. italica. The resulting amplicon (OitaTB1, 378 bp) has homology with CYC/TB1-like genes 

and was deposited in GenBank with the accession number KR858306. To verify if the 

absence of the OitaTB1 transcript in the transcriptome of O. italica was due to a 

transcriptome mis-assembly, RT-PCR amplification was conducted on RNA extracted from 

various tissues of the inflorescence and from leaf tissue of O. italica. However, every 

attempts failed. This result suggests that OitaTB1 is not expressed in the inflorescence of 

O. italica at the stage of development examined. 

 

3.3.2 Phylogeny and analysis of conserved motifs  

A phylogenetic analysis was performed on the multiple amino acid alignment of all the TCP 

domains encoded by the selected transcripts of O. italica, A. thaliana and O. sativa (fig. 21). 



53 
 

 
 

Fig. 21 Reprinded from De Paolo et al. (2015) [46]. The NJ tree of the TCP proteins examined and graphic 

representation of the conserved domains identified. On the left, the NJ tree was obtained from the amino 

acid alignment of the TCP domain of Orchis italica, Arabidopsis thaliana and Oryza sativa. The bootstrap 

percentages >50% are shown and the red asterisks indicate the sequences of O. italica. On the right, the 

graphical representation of the conserved domains and the relative legend obtained from the MEME search 

using the full length of the TCP proteins. The amino acid position is indicated from the scale below the 

conserved domains. 
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The NJ tree obtained is divided into two main branches, both statistically well supported 

(bootstrap value 95% and 98%, respectively). Among them, the first includes the class I PCF-

like group, with eight TCP transcripts of O. italica; the second is divided into the CIN-like 

group (bootstrap value 98%) that includes three TCP transcripts of O. italica and the 

CYC/TB1-like group (bootstrap value 97%) that includes OitaTB1. The topology of the tree 

suggests that the expansion of the TCP family occurred before the divergence of the 

examined lineages and is in agreement with previous studies conducted in some dicot 

species [204–206]. 

To search for conserved shared domains, the amino acid sequences of the TCP proteins of 

O. italica, A. thaliana and O. sativa were scanned using the motif-based sequence analysis 

tool MEME (fig. 21). The pattern distribution of the conserved motifs is in general 

agreement with the NJ tree. The Motif 1 and 2 include the TCP domain and are present in 

all the sequences. The Motif 5 corresponds to the R domain and is shared by 9 sequences 

belonging to the class II TCP family among which two are sequences of O. italica, one CIN-

like (comp5062) and one CYC/TB1-like (OitaTB1). The Motif 13 corresponds to the amino 

acid stretch encoded by the target site of the microRNA miR319 [76,165,207,208] and is 

shared by 12 sequences of the CIN-like group, among which three are sequences of O. 

italica (comp5062, comp1326 and comp16313). Other motifs are restricted to specific sub-

groups of the tree and could play specific roles. 

To understand the function of the identified conserved motifs, a scanning was performed 

against the database of protein domains PROSITE (see methods). Excluding the TCP 

domain, the other motifs have unknown function.  

 

3.3.3 microRNA target sites and expression analysis 

To verify whether the selected transcripts of O. italica encoding TCP-like proteins are target 

of specific miRNAs, they were scanned with the psRNATarget online tool using the 

inflorescence miRNAs of O. italica as queries (see methods). As expected from the 

conserved motifs analysis, the results predicted on three different transcripts of O. italica 

(comp5062, comp1326 and comp16313) a putative cleavage site for miR319 (fig. 22 A). 

Phylogenetic analysis shows that these three transcripts belong to the class II CIN-like group 

and that comp5062 and comp16313 are related to AtTCP2 and AtTCP24 of A. thaliana and 

comp1326 is related to AtTCP3 and AtTCP4 of A. thaliana and OsPCF5 of O. sativa. These 
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transcripts of Arabidopsis and Oryza have a target site for miR319 and are involved in 

different developmental processes [76, 150, 207-209]. In order to validate the in silico 

miRNA target analysis, a modified 5’RACE experiment was performed. The results 

confirmed the cleavage only for the transcript comp5062 (Fig. 22 B, C). Despite the in silico 

analysis predicted a putative target site also for the transcripts comp1326 and comp16316, 

no cleavage fragment of the expected size was detected.This results could be related to 

differences in the sequence of the upstream and downstream regions surrounding the 

predicted cleavage site. 

 

 

Figure 22 Reprinted from De Paolo et al. (2015) [46]. The cleavage site of miR319 on the TCP transcript of O. 

italica (A). In the box the nucleotide alignment of the miR319 target site on three TCP transcripts of O. italica 

predicted in silico. Numbers at the sides of the sequences indicate the nucleotide positions on the transcript. 

(B) Agarose gel electrophoresis of the modified 5′RACE experiment; in the lane 1 the TCP transcript comp5062 

and in the lane 2 the 100 bp Ladder (Fermentas). (C) The alignment of the miR319 and its target site on the 

comp5062. The arrow indicates the position of the cleavage site and the numbers of sequenced clones that 

revealed the cleavage in that position. 

Real-Time PCR experiments were performed to analyze the expression pattern of miR319 

and of its putative target transcripts in different tissues of the inflorescence of O. italica at 

two developmental stages (fig. 23). 
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Figure 23 Reprinted from De Paolo et al. (2015) [46]. The expression profile of selected TCP putative target 

of miR319 (comp5062, comp1326 and comp16313) and of miR319 in different floral tissues and in leaves 

of O. italica. The bars indicate standard deviation. Statistically significant differences between the relative 

expression of the early and the late stages is indicated by asterisks (*p < 0.05, **p < 0.01). Te_out, outer 

tepals; Te_inn, inner tepals; Lip, labellum; Co, column; Ov, ovary; Le, leaf. Rn, relative normalized 

expression. 

The three examined transcripts (comp5062, comp1326 and comp16313) show a similar 

expression pattern in the tissues of O. italica at the two different stages, with difference in 

the expression levels. In the inflorescence, the transcripts are mainly expressed in the 

tepals and lip, even if some differences between the early and late stage were detectable. 

In the column and ovary the three transcripts were expressed at levels lower than in the 

other tissues, including leaves. The microRNA miR319 shows a complementary expression 

profile, with the highest expression levels observed in the column and ovary. Although the 

expression of miR319 shows an opposite trend when compared to that of the three 

transcripts, the only statistically significant Pearson correlation coefficient (r = –0.61, p < 

0.05) is relative to the transcript comp5062. This result is in agreement with that of the 

modified 5’RACE experiment, demonstrating for the first time the activity of miR319 on a 

TCP target in the floral tissues of a monocot species. In Arabidopsis miR319 is involved in 

the development of petal and stamens through the cleavage of a CIN-like TCP target [148]. 

This data suggests a possible conserved function of miR319 in flower development of dicots 
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and monocots. In addition, the expression profile of the transcripts comp1326 and 

comp16316, together with the failure to detect specific fragments cleaved by miR319, 

suggests the existence of an alternative transcriptional regulatory mechanism that does 

not involve cutting. The expression pattern of the other identified TCP transcripts was 

examined in different tissues of O. italica (fig. 24). 

 

 

Figure 24 Reprinted from De Paolo et al. (2015) [46]. The expression profile of nine TCP transcripts in 

different floral tissues and in leaves of O. italica. The bars indicate standard deviation. Statistically 

significant differences between the relative expression of the early and the late stages is indicated by 

asterisks (*p < 0.05, **p < 0.01). Te_out, outer tepals; Te_inn, inner tepals; Lip, labellum; Co, column; Ov, 

ovary; Le, leaf. Rn, relative normalized expression. 

The results revealed similar patterns for some transcripts and different for others that 

probably have distinct function in the tissues and stages examined. For example, the 

transcript comp21881 is expressed mainly in the ovary tissue and is related to the gene 

AtTCP15 of Arabidopsis (fig. 21) involved in the developmental pathways of the gynoecium 

[210, 211]. So, the expression pattern observed in O. italica revealed a possible functional 

conservation in the development of the female reproductive structures. The transcript 
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comp21123 is expressed almost exclusively in the column at the late stage, suggesting that 

it might have a specific function in this tissue.  

Among the transcripts belonging to the same branch of the NJ tree, some showed a similar 

expression pattern while others revealed a distinct profile. In particular, the couples 

comp12442-comp13386, comp8378-comp8964 and comp16641 and comp24776  are 

phylogenetically close.  

The comp12442 and comp13386 display generally overlapping profiles, with some 

differences at the two developmental stages in the ovary tissue. These results suggest a 

possible pleiotropic and redundant function of these two transcripts in the tissues 

examined of O. italica. The transcripts comp8378 and comp8964 show an overlapping 

pattern at the early stage while at the late stage the comp8964 shows an overall level of 

expression higher than that of the comp8378. These two transcripts are related to the gene 

AtTCP21, involved in leaf development [212] and AtTCP7 that is a component of the 

circadian clock [213] (fig. 17). The expression profile of these two related transcripts 

revealed a possible functional diversification also in O. italica. The transcripts comp16641 

and comp24776 show expression profiles very different. The comp16641 is highly 

expressed in all the floral tissues at the late stage and in leaves, the comp 24776 shows a 

very low level of expression in all the tissues, indicating that probably it acts in different 

organs and/or developmental stages. The transcript comp16641 shows the strongest 

variation of the expression profile between the two stages examined. This result suggests 

a possible sub- or neo-functionalization of these transcripts in O.italica that could have a 

role in the development and maintenance of floral structures in orchids.  

Finally, OitaTB1 is weakly expressed in all the examined tissues, with a slightly higher level 

in leaves than in the other tissues. OitaTB1 is related to OsTB1 of Oryza sativa that is 

involved in the development of lateral branching [214]. However, the understanding of the 

role played by this transcript in the development of O. italica and in orchids in general still 

remains an open question. 

The results of this study were published in De Paolo et al. [46]. 
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4. Conclusions 

The development of this PhD project was based on the application of the NGS approach to 

study small and long transcripts expressed in the floral tissues of the orchid O. italica, 

increasing the RNA-seq data currently available for orchids. 

The analysis of the miRNome revealed the presence of evolutionary and taxonomically 

conserved miRNA families involved in flower development and the presence of novel 

miRNAs that might be considered orchid-specific. For the first time, putative lncRNAs were 

also identified in the floral organs of an orchid species using a new in silico approach that 

could be used to extend similar investigations in the analysis of other non-model species. 

The in silico analyses conducted to identify transcripts containing putative target sites for 

miRNAs showed for the first time that a miRNA (miR5179) acts specifically on a class B 

MADS-box mRNA (OitaDEF2). This result highlights the involvement of a miRNA in the 

diversification of the organs of the perianth in orchids. 

The presence of flower-specific long non-coding transcripts, differentially expressed in the 

various tissues of the perianth of O. italica, suggests they might have a relevant role in 

flower development, expanding the ‘‘orchid code’’ theory. This innovative hypothesis 

requires further investigations to be confirmed also in other species, in order to clarify the 

possible role of the lncRNAs during the flower development. 

The transcriptome-wide analysis of one of the gene families involved in the establishment 

of floral symmetry, the TCP transcription factors, showed the presence of 12 TCP 

transcripts in the inflorescence of O. italica. This number is lower than that reported in the 

model species A. thaliana (24) and O. sativa (22). Even though it is possible that other TCP 

genes are present in the genome of O. italica, probably expressed in other tissues and/or 

developmental stages, the number of identified TCP transcripts of O. italica is similar to 

that we found in the genome of the orchid P. equestris (17), suggesting that in orchids there 

are fewer TCP genes than in Arabidopsis and Oryza. The analysis of the expression profiles 

of the TCP transcripts of O. italica indicated that some of them could have pleiotropic 

and/or redundant effects, being expressed in all the tissues and developmental stages 

examined, while others seem to have specific functions, showing an expression profile 

restricted to specific tissues/stages. As for the class B MASD-box genes, in O. italica also 
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the expression of some members of the TCP family is regulated by a specific miRNA 

(miR319), supporting the existence of an evolutionary conserved mechanism that regulates 

the TCP gene expression through small RNAs. 
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5. Material and Methods 

5.1 Material 

5.1.1 Orchis italica 

The tissues used in this work were dissected from the inflorescence of O. italica before 

anthesis (defined as the early stage) and after anthesis (defined as late stage). The early 

stage corresponds to floral buds with a diameter of approximately 9 mm and the late stage 

to completely open flowers after anthesis (fig. 4). Although in the early stage cell division 

has been completed and flower organs formed, cell elongation is still occurring. Outer 

tepals (Te_out), inner tepals (Te_inn), labellum (Lip) and column (Co)  were collected from 

both develpmental stages of the inflorescence of O. italica. Ovary was collected before (Ov) 

and 3 (Ov_3dap), 7 (Ov_7dap) and 10 (Ov_10dap) days after pollination. Before the 

pollination the ovules of O.italica contain megaspore mother cells that are in the first 

meiotic division. Their maturation occurs at 3 days after pollination and 7 days after 

pollination the seeds are in the early developmental stage. At 10 days after pollination the 

seeds are mature (Barone Lumaga, personal communication). Single florets were collected 

from the bottom of a single inflorescence of O. italica before anthesis. Although not 

synchronous, the selected florets displayed approximately the same size and could be 

considered in the same developmental stage. Leaf tissue was also collected. 

5.2 Methods 

5.2.1 RNA extraction 

Using the Trizol Reagent (Ambion), total RNA was extracted from ten pooled florets and 

from all the different tissues at both the developmental stages. After DNase treatment, 

RNA was quantified using the Nanodrop 2000c spectrophotometer (ThermoScientific). The 

integrity of the extracted RNA was assessed by measuring the RNA integrity number (RIN) 

using the Agilent 2100 BioAnalyzer (Agilent). 
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5.2.2 RNA library construction and sequencing 

5.2.2.1 Small RNA library 

Using the total RNA extracted from 10 pooled florets, small RNA library preparation and 

sequencing were carried out according to the manufacturer instruction (Illumina). The 

library obtained was sequenced using the MiSeq instrument (Illumina). 

5.2.2.2 Long RNA library  

The Long RNA library preparation was performed using the total RNA extracted from 10 

pooled florets. The Illumina sequencing was performed at Genomix4Life S.r.l. (Salerno, 

Italy) following the Illumina TruSeq Stranded sample preparation protocol. Paired-end (PE) 

strand-specific sequencing was performed on an Illumina HiSeq 1500 instrument following 

the supplier-provided protocols and generating 100 nt long reads. 

5.2.3 In silico analysis of the small RNA reads 

The plant version of the UEA sRNA workbench was used to process the raw reads of 

inflorescence tissue of O. italica [215,216] in order to remove the adaptor sequences, the 

low quality reads and the reads with abundance lower than 5. Filtering options were set to 

include in the analysis only the sequences with a length ranging from 18 to 35 nucleotides. 

After the removal of tRNA and rRNA sequences that was carried out using the Bowtie 

aligner v 1.0 [217], the reads were collapsed to estimate the number of different sequences 

and for each the read count was summed. In order to identify the conserved miRNAs in the 

inflorescence of O. italica, the pre-filtered reads were used as query in a standalone BLAST 

search against the known plant mature and hairpin miRNA sequences downloaded from 

mirBase 20 [218]. Reads matching at least 18 nt and with less than 3 mismatches were 

considered positive. In order to identify the new small RNAs of the inflorescence of O. 

italica we used the miRDeep-P software [219]. This software is specific to identify plant 

miRNAs. To perform this analysis we needed a reference transcriptome to conduct a bowtie 

alignment with the collapsed short reads. Hovewer, at that time the O. italica 

transcriptome was not available and we used that of the orchid Phalaenopsis aphrodite 

[144]. Using the deep sequencing data deposited in the Sequence Read Archive under the 

accession code SRA030409, we assembled the vegetative, seed and inflorescence 
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transcriptome of P. aphrodite with the Trinity software [220]. From these three tissue-

specific transcriptomes we obtained a not-redundant collection of unigenes to use as 

reference transcriptome. The annotation of the assembled transcriptomes were performed 

using the FastAnnotator online tool [221]. The bowtie alignment was performed setting the 

parameters with a maximum of three mismatches and reads mapping to multiple positions 

(maximum 15) were retained. The potential miRNA precursors were then selected by 

setting the maximum length to 250 nt and their secondary structure was predicted using 

RNAfold. 

5.2.4 In silico analysis of the long RNA reads 

5.2.4.1 Pre-processing, assembly and clustering  

Using Trimmomatic, we conducted the quality control by sliding window analysis and 

adapter trimming of the raw reads [222]. In order to remove the contaminating sequences 

matching with rRNAs, tRNAs, Cymbidium mosaic virus (accession number NC_001812), 

Odontoglossum ringspot virus (NC_001728) and E. coli, we used the Bowtie aligner v 1.0 [3] 

allowing for 2 mismatches (-v 2). Using Trinity 2013.11.10 [220, 223], we assembled the 

filtred reads obteined with the fixed default k-mer size of 25, minimum contig length of 

200, maximum length expected between fragment pairs of 500 and a butterfly HeapSpace 

of 20 Gb. The similarity clustering of the assembled transcripts was performed using CDHIT 

EST [224] with an identity cut-off of 85%. 

5.2.4.2 Functional annotation 

Using FastAnnotator [221] with the default search parameters, we annotated the 

assembled transcripts. FastAnnotator assigns the Gene Ontology terms (GO) using the 

Blast2Go software [225]. In this way we identified the Pfam protein domains and the 

Enzyme Commission (EC) numbers. Executing a RPSTBLASTN search [226] against the NCBI 

KOG database (cut-off Evalue of e-5), we obtained the KOG (Eukaryotic Orthologous Groups) 

[227] annotations. Using Arabidopsis thaliana and Oryza sativa as reference (cut-off E-value 

e-5) of dicot and monocot model species, respectively, we obtained the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathways [228, 229]. In addition, the Transcription Factor 
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(TF) databases of A. thaliana and O. sativa (downloaded from PlantTFDB v3.0 [230]), were 

used to conduct a BLASTX search (cut-off E-value e-5).  

5.2.4.3 Analysis of the coding and non coding transcripts 

To evaluate the in silico expression level of the assembled transcripts we used RSEM [231]. 

This software calculates the Fragments Per Kilobase of transcript per Million mapped reads 

(FPKM) values for each assembled transcript normalizing the counts of the PE reads and 

the total number of mapped reads in the sample [232]. Among the assembled protein 

coding transcripts, 10 were selected to compare their abundance estimated in silico (FPKM) 

with that measured by quantitative RT-PCR as described below, using the actin OitaAct 

gene [GenBank: AB630020] as the endogenous control. 

Coding Potential Calculator (CPC) [233] and Portrait [234] software packages were used to 

perform the analysis of the potential non-coding transcripts. The CPC software extimates 

the coding potential of a transcript evaluating the extent and quality of the ORF and then 

performing a BLASTX search against the UniProt Reference Clusters. So, a CPC positive 

value indicates that the transcript probably encodes for a protein; vice versa, negative 

values predicts a potential non-coding transcript. The Portrait software predicts putative 

proteins by a support vector machine and no homology information is required. To extract 

potential non-coding transcripts from the assembled transcriptome we applied the 

arbitrary threshold values ≥0.8 for the CPC coding potential score and ≤95% for the Portrait 

non-coding probability. We selected ten unannotated transcripts for the experimental 

validation. Specific primer pairs (Table 8) were designed and used to amplify the cDNA 

obtained from the total RNA of inflorescence of O. italica. The specific primer pairs were 

used to amplify 30 ng of first strand cDNA using the LongAmp Taq PCR Kit (New England 

Biolabs). After the cloning of the amplification product into the pGEM-T Easy vector 

(Promega), they were sequenced using the plasmid primers T7 and SP6 and were run on a 

310 Genetic Analyzer (Applied Biosystems). To exclude artifacts, we aligned the obtained 

nucleotide sequences with those resulting from the in silico analysis of the transcriptome 

of O. italica. Quantitative RT-PCR experiments were performed in order to verify the 

expression pattern of the selected putative long non-coding transcripts as described below. 
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5.2.5 In silico search for miRNA target sites and cleavage analysis 

The putative miRNA target analysis was conducted using the psRNATarget online tool [235]. 

When we decided to carry out this search using the cleaned small RNA reads of the 

inflorescence of O.italica against the newly assembled transcriptome of P. aphrodite, the 

parameters of the search were set with the default values (maximum expectation 

3.0).When the search was conducted using the small RNA library of O. italica against the 

transcripts expressed in the inflorescence of the same species, the search was conducted 

using more stringent parameters (maximum expectation 0.0).  

We verified the presence of the cleavage product induced by the cut of the miRNA on the 

transcript using a modified 5’-RACE experiment. This method was applied using the RLM-

RACE GeneRace kit (Invitrogen) and consists in the binding of a the 5’ adaptor to the 5’-

terminus of the RNA extracted from inflorescence tissue of O. italica (500 ng) without any 

enzymatic treatment to remove the 5’ cap [236]. The RNA was reverse transcribed and the 

cDNA was amplified using a transcript-specific reverse primer designed downstream of the 

predicted putative miRNA cleavage site and a GeneRace 5’ Primer. A second PCR reaction 

was conducted on 1 µl of the first reaction using the nested adaptor forward primer and 

the nested specific reverse primers. The amplification products were cloned and sequenced 

as described above. 

5.2.6 Real-Time PCR  

Total RNA was reverse transcribed using the Advantage RT-PCR kit (Clontech) and an oligo 

dT primer. The Real Time experiments were conducted on 30 ng of the first strand cDNA 

from each tissue in technical and biological triplicates and using the SYBR Green PCR Master 

Mix (Life Technologies). To calculate the PCR efficiency (E) and the threshold cycle (CT) we 

used the Real Time PCR Miner online tool [237]. The mean relative expression ratio (Rn) 

and standard deviation of the target transcripts in the examinated tissues was calculated 

following formula Rn = (1+E target)-CT target/(1+E reference)-CT reference and using 5,8 S or Actin 

as reference. ANOVA and Tukey HSD post hoc test were used to detect differences in the 

expression levels of the analized RNAs in the various tissues. Real Time PCR product of 

several samples was cloned and sequenced to exclude the presence of amplification 

artifacts. 
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5.2.6.1 Poly(T) Adaptor Real-Time PCR  

We used the Poly(T) Adaptor RT-PCR method [238] in order to amplify the miRNAs. An 

amount of 350 ng of RNA from each tissue was used to conduct a reaction of poly-T adaptor 

ligation to the 3’-terminus of total RNA that was subsequently reverse transcribed with 

oligo dT primers. The Real Time PCR amplification was performed using a forward primer 

specific for each selected miRNA and a poly-T adaptor reverse primer. The procedures to 

calculate the mean relative expression ratio (Rn), as well as the differences in relative 

expression levels of the microRNAs between the different tissues are described above. 

5.2.6.2 Stem and Loop Real-Time PCR 

Stem-loop real time PCR experiments were conducted to evaluate the expression pattern 

of the microRNA miR319 in the examinated tissues [239]. In bref, we used a microRNA and 

a reference stem-loop primers separately (Table 9) to reverse transcribe 150 ng of RNA 

from each tissue. Then the real-time PCR was performed in technical triplicates and 

biological duplicates using 5 ng of first strand cDNA and the specific microRNA or reference 

primers and the stem-loop universal primer (Table 9). The procedures to calculate the 

mean relative expression ratio (Rn), as well as the differences in relative expression levels 

of the microRNA between the different tissues are described above. 

5.2.7 Isolation of the class B DEF-like transcripts  

First strand cDNA of inflorescence was amplified with the MADS-box degenerate primer 

MADS_F (see methods, Table 6) and a poly-T primer using the LongAmp Taq PCR Kit (New 

England Biolabs). The amplification products were cloned into the pGEM-T Easy vector 

(Promega) and about 50 clones were sequenced using the plasmid primers T7 and SP6. To 

verify the sequences obtained we conducted a BLAST search that revealed they correspond 

to four different DEF-like cDNAs. 

5.2.8 Isolation of the TCP genes expressed in the inflorescence of O. italica 

To isolate the transcripts of the TCP genes present in the inflorescence of O.italica, we used 

the sequences of the TCP DNA-binding domain of Arabidopsis and Oryza (Pfam PF0363) as 

query to perform a standalone TBLASTN (e-value 1 e-003) against the inflorescence 
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transcriptome of O. italica [191]. The transcripts of O. italica with significant hits from the 

TBLASTN search and those previously annotated as TCP genes were selected to perform 

the analyses. 

5.2.9 Isolation of the class II CYC/TB1-like genomic sequences  

Based on three CYC/TB1-like nucleotide sequences of P. equestris, we designed 

degenerated primers to amplify the region spanning from the TCP domain to the R domain 

on the genomic DNA of O. italica extracted from leaf tissue [240]. The amplification product 

was cloned into the pGEM-T Easy vector (Promega) and the positive clones were sequenced 

as described above. 

5.2.10 Phylogeny and analysis of conserved motifs  

To conduct the phylogenetic analisys and the identification of the conserved motifs, the 

virtual translation of the selected transcripts was performed and the alignment was 

constructed using MUSCLE [241]. The Neighbor-Joining (NJ) trees was constructed using 

MEGA 6.06 [242] with 1000 bootstrap replicates. To identify shared conserved motifs in 

the TCP proteins of O. italica, A. thaliana and O. sativa we used the online tool MEME [243]. 

The parameters were set to any number of repetitions, the optimum width from 4 to 70 

and the maximum number of motifs to 20. 
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Name Sequence (5’-3’) Locus Putative miRNA target 

MADS_F AAGATAGAGAATCCDACDAACD MADS-box  

OitaDEF1F CCTTCGCAGGGAGATAAGGCAAAGGA OitaDEF1  

OitaDEF2F CCTTCGGAAGGAGATAAGGCAGAGGA OitaDEF2  

OitaDEF3F CCTGAGGAGGGAGATAAGGCAGAGAA OitaDEF3  

OitaDEF4F TCTGAGGAGGGATGTAAGACAGAGGA OitaDEF4  

OitaDEF1R1 TCATGCATAAGGGCCCTGTATACTTC OitaDEF1  

OitaDEF2R1 TCATGCACTAGGGCCATGCACATTTC OitaDEF2  

OitaDEF3R1 TCACGGAGTAAGCTCTTGTGGGTTTC OitaDEF3  

OitaDEF4R1 TCACGCAGCAAATTATGGTGTGTCTC OitaDEF4  

OitaDEF1R2 GTAAGTGTCTGTTTGCGTGGCGATCA OitaDEF1  

OitaDEF2R2 GTAAGTGTCAGTTTGGGTAGCGATCA OitaDEF2  

OitaDEF3R2 GTATGTATCAGTCTGGGTGCTAATGC OitaDEF3  

OitaDEF4R2 ATAGGTGTCTGTCTGCGTACTGATTA OitaDEF4  

OitaActF TCGCGACCTCACCAATGTAC OitaAct  

OitaActR CCGCTGTAGTTGTGAATGAATAGC OitaAct  

IN_3340 TCTCGGACCAGGCTTCATTCC miR166 Leucine-zipper transcription factor 

IN_36629 TCGCTTGGTGCAGGTCGGGA miR168 AGO1 

IN_33620 TTCCACAGCTTTCTTGAACTG miR396 Growth regulating factor 4 

IN_16410 TCGATAAACCTCTGCATCCGG miR162 Dicer1-like 

IN_32138 AAGCTCAGGAGGGATAGCGCC miR390 TAS3 

IN_30974 CAGCCAAGGATGACTTGCCGA miR169 NF-YA 

IN_33680 TGCCTGGCTCCCTGTATGCCA miR160 Auxine response factor 

IN_26041 TTTTGCTCAAGACCGCGCAAC miR5179 DEF-like genes 

IN_20892 ATATGAGCTCAAATCTAAGCTTG Unknown miRNA Leucine-rich repeat protein kinase 

IN_27201 AAACTCTCTGAAATCACCCGAGAGG Unknown miRNA Transmembrane kinase 

5.8S ACGTCCGCCTGGGCGTCAAGC Ribosomal 5.8S  

 

Table 6 Sequence of the primers used to isolate the DEF-like cDNAs and to analyze their tissue expression. 

Also, the sequence of the primers used to analyse the expression of the selected conserved and novel miRNAs 

of O. italica and their putative targets (best score).  
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Table 7 Protein coding unigenes selected for the expression analysis validation. The table show the sequences 

of the primer pairs used in the Real Time PCR experiments, the FPKM counts for each assembled unigene and 

their respective normalized value (FPKMn) relative to the actin counts. Rn indicates the relative expression 

value obtained in the Real Time PCR experiments.  

 

 

 

 

 

Encoded gene GenBank id Unigene name Primer (5’-3’) FPKM FPKMn Rn 

OitaDEF4 AB857729 comp900_c0_seq1 TCTGAGGAGGGATGTAAGACAGAGGA 181.29 64.29 243.76 

   ATAGGTGTCTGTCTGCGTACTGATTA    

OrcPI2 AB537504 comp1173_c0_seq1 GAGAGTACGCACCGCCACCG 134.3 47.62 239.04 

   GCTGGATGGGCTGCACACGA    

OitaDEF3 AB857728 comp7668_c0_seq1 CCTGAGGAGGGAGATAAGGCAGAGAA 112.74 39.98 58.50 

   GTATGTATCAGTCTGGGTGCTAATGC    

OrcPI AB094985 comp1989_c0_seq1 CCCAGAATATGCGGACCAGATGCC 108.63 38.52 126.00 

   TGGGCTGGAAAGGCTGCACG    

OitaDEF1 AB857726 comp3831_c0_seq1 CCTTCGCAGGGAGATAAGGCAAAGGA 56.84 20.16 82.81 

   GTAAGTGTCTGTTTGCGTGGCGATCA    

OitaAG JX205496 comp7958_c0_seq1 TCTGCAACAAATGCGCAGTAT 40.55 14.38 23.23 

   AAGCTTGTGATTTGCTGTCGAA    

OitaSTK JX205497 comp3859_c0_seq1 CGGAGCTACACGATGAAAGTATGT 37.75 13.39 36.35 

   CCGCGCCCTCTCGTTTT    

OitaAP2 KF152921 comp8045_c0_seq1 TGTGTACCCCGGATTATTTCCT 26.78 9.50 9.60 

   TTTCTGGGGCCAAGTGGTCATGGT    

OitaDEF2 AB857727 comp22604_c0_seq1 CCTTCGGAAGGAGATAAGGCAGAGGA 5.2 1.84 44.06 

   GTAAGTGTCAGTTTGGGTAGCGATCA    

OitaAct AB630020 comp44267_c0_seq1 TCGCGACCTCACCAATGTAC 2.82 1.00 1.00 

   CCGCTGTAGTTGTGAATGAATAGC    
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Table 8 Putative long non-coding unigenes selected for the expression analysis.  Nucleotide sequence of the 

primer pairs used in the amplification experiments and amplificon length are shown. The CPC and Portrait 

columns indicate the coding potential score and the percentage of the non-coding probability, respectively. 

 

 

 

 

 

 

Unigene name Length Primer (5’-3’) Amplicon 

length 

FPKM CPC Portrait 

comp48038_c0_seq1 300 ACACCTTAATACAACCCTAAACCCT 224 2.67 -1.62 96.26 

  TAACACCGGGGCAATGTCTT     

comp1308_c0_seq1 1246 ATCTGCAACGGGGGCATAAA 917 435.18 -1.03 32.33 

  TGTTTCGCGGTCAGATCCAA     

comp0_c0_seq1 597 AAGCCTGCTGCCTTCGTTAT 386 20357.49 -0,31 4.87 

  CAACACAGACTGGCTGGCTA     

comp3328_c0_seq1 214 CGTTCTGGTGGAGTTTGTCC 173 87.04 -1.13 95.64 

  AATTGGCATGCATCAAGAAA     

comp1231_c0_seq1 772 AACGAATCCTGACCGCAGTT 308 61.91 -1.03 96.08 

  ACTCATTTGCGGTCCTCCTG     

comp3311_c0_seq1 894 CCTCGGCCTAAAGAGGTAGC 360 52.42 -1.10 96.22 

  ACAGTTGACCATCGCTCTCC     

comp6669_c0_seq1 217 ACACAGCAGCAAGTTGGTCTT 126 51.02 -1.32 95.00 

  TGACCCCCAACACACAACAG     

comp4129_c0_seq1 611 CAGACATGGCAGAACGAAGA 202 46.77 -1.19 96.38 

  AGCCGGAAGATAAGCTGACA     

comp15481_c0_seq1 2888 GAAGAAGCAATGAGCCCCCT 924 9.90 -1.33 84.89 

  CAACCTACCAGTTCCGGTCC     

comp134696_c0_seq1 203 GGCGTTATCCTGATTGAGCTTTTC 203 0.64 -0.92 96.89 

  CAGCTCAGGAGGGATAGAAGGGGG     
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Name  Target Forward Reverse AP 

TB1_orchid_TCP CYC/TB1-like 

genes 

AGRAARGAYMKRCAYARHAAGAT YTTCTTCTCCAARGTYCTYTCYCT  slRT-PCR 

comp8378_c0_seq1 c comp_8378 CCAGCTATCTCAGGACGGTT  ATAGCGGCTAGCAGGTTGAG RT-PCR 

comp8964_c0_seq1 comp_8964 CAGTCTCCGGGAGGTACG  ACAAAGAGGCGAGGAGGTT RT-PCR 

comp21881_c0_seq1  comp_21881 GGATTCTTGCAGCCCTTAAC  GAGTCACTCGTGCTCATCGT RT-PCR 

comp16641_c0_seq1  comp_16641 CATATGGGACAGGGAAGAGG GAGTCGACCCATCAGAATCA RT-PCR 

comp24776_c0_seq1  comp_24776 GGCTCGAGCTAGGACTTTCA GTGCTGTTGATGGTGATGCT RT-PCR 

comp13386_c0_seq1  comp_13386 CCCTTGCAGTTTATGTCGAG AAGGTTCGAATCAGCAATCC RT-PCR 

comp12442_c0_seq1  comp_12442 CCGGAACTATACCTGCCATC GAAGTGGATGATCGGAACCT RT-PCR 

comp16313_c0_seq1  comp_16313 TTTCCATCATGCAAGACCAT AGGTGAATTGGACTGAAGGG RT-PCR 

comp5062_c0_seq1  comp_5062 GTCAGCTCCAGGGATTGACT AGCAGTGCCAAAGAAGAAGG RT-PCR 

comp1326_c0_seq1  comp_1326 TGGTCCAGAACCAGTTTGTC GCTGTTAGGTGCATCTGGTG RT-PCR 

comp21123_c0_seq1  comp_21123 CCCACAAGCTTCTTCCAGTT AACAGCATGGCCGTGTAATA RT-PCR 

TB1_Oita_TCP  OitaTB1 CAAGTTCTTCGATCTCCAGGAT GACGAGCTCTTTAATGGCTGATT RT-PCR 

REAL_5.8S_ITA  5.8S GGATATCTTGGCTCTCGCAT GATGGTTCACGGGATTCTG RT-PCR 

Stem-Loop_miR319  miR319  GTCGTATCCAGTGCAGGGTCCG

AGGTATTCGCACTGGATACGAC

AGGGAG 

slRT-PCR 

miR319F  miR319 GCGGCGGTTGGACTGAAGGGAG  slRT-PCR 

Stem-Loop_5.8S  5.8S  GTCGTATCCAGTGCAGGGTCCG

AGGTATTCGCACTGGATACGAC

GATTCA 

slRT-PCR 

REAL_5.8S_ITA_F  5.8S GGATATCTTGGCTCTCGCAT  slRT-PCR 

Stem-Loop_Univ_Rev  Universal  GTGCAGGGTCCGAGGT slRT-PCR 

1326_Rout  comp_1326  GAAGCCAACCACATCGCCGGCG

GCG 

m5’RACE 

1326_Rinn  comp_1326  GCTGTTAGGTGCATCTGGTG m5’RACE 

5062_Rout  comp_5062  CCTGCAGACGGCCATTGAAACC

GCC 

m5’RACE 

5062_Rinn  comp_5062  AGCAGTGCCAAAGAAGAAGG m5’RACE 

16313_Rout  comp_16313  CCGGCTGCATGTATGCCTCATTA

CAG 

m5’RACE 

16313_Rinn  comp_16313  CTGGTTCTCCAGCGAGCTTCCCG

CTG 

m5’RACE 

 

Table 9 The nucleotide sequence of the primers used. In the last column, the application (AP) in which they 

are used: PCR (PCR); Real Time PCR (RT-PCR); Stem-Loop Real Time PCR (slRT-PCR); modified 5' RACE 

(m5’RACE). 
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