
The HtComp research project: an overview
(Invited Paper)

Alessandro Cilardo
DIETI - University of Naples Federico II

Naples, Italy, Email: acilardo@unina.it

Abstract—This contribution reviews the main results of the
HtComp project, a two-year research programme aiming at fa-
cilitating the integration of FPGA-based accelerators into general-
purpose computing. The project covered the automated genera-
tion of HDL code from parallel applications written in traditional
high-level software languages, as well as the customization of
the processing, memory, and on-chip interconnect subsystems
tailored on the application requirements. The ultimate outcome of
the research was the introduction of methods and tools allowing
software developers, particularly from the HPC domain, to access
hardware-accelerated platforms incurring significantly reduced
design complexity and overheads.

I. INTRODUCTION

During the very recent years many trends have clearly
indicated that reconfigurable hardware, i.e. FPGA devices,
may potentially provide a profitable acceleration solution
for datacenters, cloud servers, and high-performance comput-
ing [1], [2], particularly for special classes of applications
like multimedia, networking, bioinformatics, security-related
processing [3], [1], [4], [5]. However, programming such
next-generation machines is extremely difficult as it needs
architecture-specific code and specialized skills, typically re-
quiring developers to master low-level hardware description
languages such as VHDL or Verilog. We collectively indicate
these challenges as the programmability wall. By failing to
tackle this wall, we will miss the opportunity to completely ex-
ploit the computational power offered by future heterogeneous
platforms, as we will restrict it to a limited élite of highly-
skilled parallel programmers/hardware designers, excluding a
vast base of potential users.

This paper reviews the main outcomes of a research project
entitled HtComp, which explores methodologies and tools
allowing the automated definition of FPGA-based accelerators
from high-level software applications. The project introduced
new ideas and research results revolving around the generation
of HDL code from parallel programs as well as the automated
customization of FPGA-based Multi-Processor Systems-on-
Chip (MPSoCs) in terms of processing units, memory sub-
systems, and on-chip interconnects on a per-application basis.

The paper is organized as follows: Section II describes the
main issues addressed at the level of programming models.
Section III presents the main results related to the customized
architecture generated through the HtComp flow. Section IV
concludes the paper by outlining the future developments of
the activity.

Invited presentation for the 3rd International Workshop on Cloud and
Distributed System Applications (CADSA-15)

II. PROGRAMMING MODELS

HtComp targeted the well-known OpenMP [6] shared
memory programming model as a design entry solution [7],
[8] supporting high-level software programmers through the
generation of customized hardware-accelerated systems. Tar-
geting C code with OpenMP parallel extensions, the toolchain
enables the reuse of a large body of existing code from the
parallel and high-performance computing domain. The high-
level programming solution was “connected” with a high-level
synthesis (HLS) [9] toolflow used to automatically generate
HDL descriptions from C-like code. In particular, the prototype
HtComp toolchain was validated in conjunction with the
Impulse CoDeveloper HLS tool as well as with the Xilinx
VivadoHLS environment.

The project identified a few key issues involved in trans-
forming high-level OpenMP parallel code to FPGA-based on-
chip heterogeneous systems. We developed some architectural
mechanisms for supporting OpenMP directives in an efficient
and distributed way across the system. We introduced an
additional step in the toolchain applying HLS-related code
optimizations, i.e. code transformations aimed at improving
the quality of results of the underlying HLS tool in terms of
performance and number of hardware resources. An overview
of the compilation flow is presented in Figure 1 [7], [8].

Fig. 1. Compilation flow.

In the reference architectural model of the generated sys-
tem, the parallel OpenMP threads at the software level are
mapped to either instruction processors or hardware cores gen-
erated by means of high-level synthesis, in addition to hand-
coded components used for specific applications [13]. A few
special components are used for particular tasks, including run-
time support and system management, timers, and memory-
mapped atomic registers, providing a hardware facility for
thread synchronization.

The OpenMP main thread is mapped to a software subsys-
tem, while the other threads can be mapped to either hardware
or software subsystems. Currently, the flow only supports
one thread per subsystem, but as a natural extension we
envision a scenario where several OpenMP threads share the
same processor using a multithreaded OS kernel. Notice that



the project also explored alternative methodologies for high-
level design entry and application mapping [14]. Hardware
subsystems generated by HLS are memory mapped. They can
be addressed using the slave port in a globally shared address
space and they are also provided with DMA capabilities.
Each hardware subsystem is provided with a thread ID held
internally throughout the execution of an OpenMP parallel
construct.

A number of techniques were implemented to support
OpenMP constructs and programming styles, for example con-
cerning the memory mapping of private and shared OpenMP
variables exploiting either optimized on-chip or off-chip mem-
ory; the support for the schedule(dynamic) clause in
for loops, the efficient implementation of barriers, used in a
number of OpenMP constructs, the sharing of hardware blocks
corresponding to function calls, loop interchanging, etc [7].

III. ARCHITECTURE-LEVEL TECHNIQUES

A. Heterogeneous acceleration cores

While heterogeneous accelerators like GPUs have so far
relied on memory spaces separated from host devices, recent
trends indicate a shift towards shared memory models [10],
[11], with a potential impact on both programming- and
architecture-level aspects. An essential objective of HtComp
was to define the architecture of software-programmable accel-
erators, in addition to pure-hardware units generated through
a HSL toolchain, and match the above trends by supporting
GPU-like heterogeneous computing. In particular, the project
envisioned a scenario where the architecture offers pre-defined
GPU-like datapaths that can still be configured in hardware,
allowing design-time deep customization of the accelerators
driven by the application computing demand, yet preserving
the possibility of software programming under a standard
architectural model. Although the project did not cover these
aspects, this standard model is likely to be closely related
to the HSA virtual machine [10] or the SPIR intermediate
language [12], [11], which provide some form of decou-
pling between heterogeneous applications and the details of
the underlying platform, and let programmers generate their
intermediate code from a variety of high-level entry points,
including OpenMP, then converted to the native heterogeneous
architecture by a (possibly runtime) finalizer. In a perspective
scenario, thus, the HtComp GPU-like units will be accom-
panied by a dedicated software layer, acting as a dynamic
finalizer specific of the HtComp architecture.

In its current state, the project has introduced the low-level
GPU-like datapaths to be used as the basic building blocks for
heterogeneous “Kernel Agents”. The customizable cores form
a parallel, floating-point intensive compute fabric that can be
tailored on the application needs. The core architecture is in
fact fully configurable, letting the developer set parameters like
the number of floating-point ALUs in an accelerator core, the
number of register banks, the memory capacity of a single
module, etc.

The basic building block of the architecture is inspired
by the architectural paradigm typical of GPU computing. The
HtComp GPU-like core is in fact RISC-like, fully pipelined,
oriented to SIMD floating-point operations and fully config-
urable as required by the target application. The core architec-

Fig. 2. Real GFLOPS vs ideal GFLOPS

ture, not described here in detail, is divided in four familiar
stages, i.e. the Instruction Fetch/Decode, the Execution, the
Memory, and the Write Back. Here, the EX stage contains P
floating-point ALUs, configurable by the designer in terms of
number of instances and supported operators, and compliant
with the IEEE 754-2008 standard. The Fetch/Decode stage is
in charge of handling N (user defined) Work-Group instruction
words from different User Agent Queues, ensuring proper
structural hazard checks, while data hazards are demanded
to the software layer for preserving hardware scalability. The
stage is also in charge of allocating dynamically one or more
register banks to a Work-Group on request, translating the
“virtual” registers used by a Work-Group to the real registers
they are assigned to, as well as handling the different operation
latencies in the floating-point ALUs. More details about the
implemented unit are provided in [16].

To evaluate the hardware cost of our solution, we described
the customizable GPU-like core in VHDL and implemented
it on an Altera Cyclone V SoC 5CSEMA5F31C6 device
mounted on a DE1-SoC evaluation board. Although we do
not provide the full details here, we highlight a few results
showing the potential of the approach. Table I summarizes
the area results as the number of FP cores is increased.
While adding a new core involves an overhead due to the
registers needed by the core itself, the control part has a
limited impact and increasing the number of FPU cores does
not significantly affects its complexity. As a consequence, by
increasing the FPU core number the design resources increase
almost linearly. We also evaluated the proposed architecture

Cores Alms DSP Mem
2 2244 2 8Kb
4 4170 4 16Kb
8 7927 8 32Kb
16 15597 16 64Kb
32 31040 32 128Kb

TABLE I. DESIGN RESOURCES USED

on other Altera FPGAs, namely a Stratix V and an Arria
10 device, in addition to the Cyclone V device used for the
above experiments. Figure 2 shows a comparison between the
performance achieved and an upper-bound to the floating-point
performance [15] for the different technologies. As highlighted



Fig. 3. Proposed interconnect synthesis flow

by the figure, the proposed solution gets reasonably close to
the performance upper-bound.

B. Customized memory subsystem

As a different branch followed by HtComp, the project
investigated the opportunity of deriving automatically a cus-
tomized memory subsystem from the application memory
access patterns. In fact, reconfigurable hardware typically
provide many fine-grained memory blocks which can be com-
bined together to form an ad-hoc memory architecture, highly
configurable in terms of number of banks and independent
ports, width, depth, and so forth. Based on this observation,
the project aimed to introduce suitable memory partitioning
strategies to take full advantage of the memory subsystem.
The basic assumption is that a customized hardware unit,
possibly generated through HLS, has multiple input/output
ports accessing different data concurrently. The structure of
the memory subsystem and the way data are distributed across
the different banks affects the access patterns issued by the
application-specific unit and, consequently, it directly impacts
the number of conflicts arising whenever concurrent accesses
from different ports collide on the same physical bank, causing
serialized operations and hence degraded time and energy
efficiency.

The essential idea pursued by HtComp is to pre-process
the high-level source code (specifically C/C++ code), reor-
ganizing the memory layout of the data structure it handles
in such a way that the HLS tool will generate a custom
hardware unit with optimized access patterns which minimize
the conflict counts. The works target static code under the
contraints of polyhedral analysis [17], i.e. loop nests where
loop bounds and memory references are affine functions of
the loop iterators, which is common in a wide range of HPC
and scientific program kernels. In particular, we proposed
a technique based on the Z-polyhedral model for program
analysis, relying on lattice-based data partitioning. In essence,
we regard the data structure, e.g. an array in the C/C++ code,
as a portion of the n-dimensional Zn space (where n is the
dimensionality of the array). Then, we identify an integer
lattice in Zn, which can informally be regarded as a set of
equally spaced points in Zn. It can be shown that a lattice,
along with a finite number of translated affine lattices, cover
the whole set Zn, i.e., the whole memory space which includes

the array to be partitioned. Each translated lattice identifies the
points of Zn, i.e. the memory locations of the original array,
that will be mapped to a distinct physical bank. We developed
a procedure to enumerate all possible distinct lattice-based
partitioning solutions for a given number of physical banks,
evaluate them, and pick one of those solutions that incur the
minimum number of conflicts [18].

Lattice-based partitioning proved to offer the largest search
space for partitioning choices minimizing access conflicts
and the related performance/energy penalty incurred by data
movement. In fact, it includes other solutions recently proposed
in the literature, like hyperplane-based partitioning, as special
cases [18], [19].

C. Customized interconnect architecture

As implied by the previous sections, the interconnection
infrastructure is a critical part of the generated system. In fact,
highly parallel systems, like those targeted by the HtComp
methodology, must rely on a single optimized crossbar [20],
[21] or cascaded crossbars [22], which ensures improved
scalability for larger systems. Constraining the interconnect
architecture to using only crossbars, as opposed to shared
buses, might however results in higher area costs, particu-
larly for FPGA-based implementations [23], so the HtComp
toolflow relied on heterogeneous interconnects encompassing
both shared buses and –possibly cascaded– crossbars. In partic-
ular, similar to the customization of the memory architecture,
the HtComp methodology yields a communication topology
tailored on the application communication patterns. Interest-
ingly, unlike several previous works on automated interconnect
synthesis, HtComp takes into account dependency constraints
between the communication tasks of the application. Since
such dependencies limit the inherent degree of parallelism
across the communication tasks, taking them into consideration
allows us to instantiate only the interconnect resources that are
actually needed, avoiding underutilized hardware and hence
wasted area on the chip. Driven by this observation, the
proposed methodology addresses jointly the communication
scheduling and the interconnect synthesis optimization.

The methodology takes as input a communication Task
List (TL) containing, for each task, the master and the slave
involved and the amount of bytes to be transferred, along



with a Dependency Graph (DG) describing possible inter-task
precedence relationships, i.e. dependency constraints. Under a
given area constraint, the methodology finds a synthesizable
topology specification based on a heterogeneous bus/crossbar
architecture minimizing the target cost function, together with
a compatible minimum-latency communication task schedule.
The proposed topology synthesis flow, shown in Figure 3,
consists of three phases, described below. The first step (Phase
1) is the clustering of communicating elements in local do-
mains. We attempt to place the nodes that communicate more
frequently closer to each other, minimizing the traffic between
communicating elements and matching the localized traffic
patterns induced by a given application. In Phase 2 the clusters
are connected in order to make all inter-cluster communica-
tions feasible by means of bridges. By properly setting the
mapping of the address spaces in each bridge, furthermore,
multiple physical paths between different domains can be
realized. Finally, we need to decide how single clusters will
be implemented (Phase 3). This step is performed jointly with
the communication scheduling: an iterative procedure finds an
optimal communication tasks schedule (in terms of latency)
and a global topology containing enough resources to execute
the identified schedule.

The methodology was demonstrated on an FPGA platform.
This branch of the activity relied on an FPGA board equipped
with a device of the Xilinx Zynq

TM
-7000 family, embedding

reconfigurable hardware and a hard-core ARM processor.
The custom interconnect and the communicating elements are
mapped onto the reconfigurable fabric. The communication
architecture synthesis flow uses the Xilinx AXI components
compliant with the AMBA R⃝ AXI version 4 specification from
ARM. We tested our method for six synthetic benchmarks as
well as a Canny edge detection algorithm. The results showed
that the highly application-driven interconnect synthesis pro-
cess ensures increased levels of resource utilization and energy
efficieny [24].

IV. DEVELOPMENTS AND CONCLUSIONS

HtComp explored new methodologies and tools that con-
tributed to raising the level of abstraction for today’s accel-
eration platforms, exposing them in forms that are familiar
to general programmers. The main contributions brought by
the project included the automated generation of customized
hardware from high-level parallel applications, particularly
OpenMP code, as well as the application-driven optimization
of the memory architecture and the on-chip interconnects.
Raising the level of abstraction as seen by the programmers,
the above innovations can create an easily accessible entry-
point to the development of parallel applications based on
FPGA hardware accelerators paired with standard platforms
like multi-core CPUs and GPUs.

The funding programme supporting HtComp (STAR call)
required beneficiaries to scale up the size of the project by
competing for large-scale funding at the European level. This
objective was ultimately achieved, as various ideas and pre-
liminary results developed by HtComp contributed to shaping
a Horizon 2020 Future Emerging Technologies (FET) HPC
project proposal, successfully selected for funding by the Eu-
ropean Community. The project is called MANGO: exploring
Manycore Architectures for Next-GeneratiOn HPC systems and

started October 2015. It is a large-scale European project
exploring heterogeneous manycore architectures for HPC with
a total budget of 5.8 Million euro, based on the cooperation
of the Polytechnical University of Valencia, University of
Naples Federico II/CeRICT, Politecnico di Milano, University
of Zagreb, Philips Medical, Thales, EPFL, PRO-DESIGN,
and Eaton. Its essential aim is to achieve extreme resource
efficiency in future QoS-sensitive HPC settings through the
definition of high-performance, power-efficient, heterogeneous
architectures with native mechanisms for isolation and quality-
of-service, along with an innovative two-phase passive cooling
system. The MANGO investigation will involve many inter-
related mechanisms at various architectural levels, also in-
cluding heterogeneous computing cores, memory architectures,
interconnects, programming models, and run-time resource
management. While the HtComp project has almost come to
its end as of writing this paper, its future developments have
been embodied by the ambitious research objectives set by
MANGO at the architecure level.

ACKNOWLEDGMENTS

HtComp is a start-up project co-funded by the private
Compagnia San Paolo foundation and the University of Naples
Federico II in the context of the Sostegno Territoriale alle
Attività di Ricerca (STAR) call.

The presentation of this work is also supported by the Eu-
ropean Commission in the framework of the H2020-FETHPC-
2014 project n. 671668 - MANGO: exploring Manycore Archi-
tectures for Next-GeneratiOn HPC systems.

REFERENCES

[1] K. Paranjape, S. Hebert, and B. Masson, “Heterogeneous computing in
the cloud: Crunching big data and democratizing HPC access for the
life sciences,” Intel Corporation, Tech. Rep., 2010.

[2] A. Putnam and other, “A reconfigurable fabric for accelerating large-
scale datacenter services,” in 41st Annual International Symposium
on Computer Architecture (ISCA), June 2014. [Online]. Available:
http://research.microsoft.com/apps/pubs/default.aspx?id=212001

[3] S. Sarkar, T. Majumder, A. Kalyanaraman, and P. Pande, “Hardware
accelerators for biocomputing: A survey,” in Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium on, May
2010, pp. 3789–3792.

[4] A. Cilardo and N. Mazzocca, “Exploiting vulnerabilities in crypto-
graphic hash functions based on reconfigurable hardware,” Information
Forensics and Security, IEEE Transactions on, vol. 8, no. 5, pp. 810–
820, May 2013.

[5] A. Cilardo, “New techniques and tools for application-dependent testing
of FPGA-based components,” Industrial Informatics, IEEE Transactions
on, vol. 11, no. 1, pp. 94–103, Feb 2015.

[6] OpenMP Architecture Review Board. (2011) OpenMP application
program interface, v3.1. [Online]. Available: www.openmp.org

[7] A. Cilardo, L. Gallo, and N. Mazzocca, “Design space exploration for
high-level synthesis of multi-threaded applications,” Journal of Systems
Architecture, vol. 59, no. 10, pp. 1171–1183, 2013.

[8] A. Cilardo, L. Gallo, A. Mazzeo, and N. Mazzocca, “Efficient and
scalable OpenMP-based system-level design,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2013, March 2013, pp.
988–991.

[9] P. Coussy and A. Morawiec, High-Level Synthesis from Algorithm to
Digital Circuit. Springer, 2008.

[10] H. Foundation. (2015) HSA programmer’s reference manual: HSAIL
virtual ISA and programming model compiler writer, and object
format. [Online]. Available: http://www.hsafoundation.com/



[11] L. Howes and A. Munshi, “The OpenCL specification version: 2.0
revision 26,” Khronos Group, Tech. Rep., 2014.

[12] “Standard portable intermediate representation (SPIR) v2.0,” Khronos
Group, Tech. Rep., 2015.

[13] A. Cilardo, “Efficient bit-parallel GF(2m) multiplier for a large class of
irreducible pentanomials,” Computers, IEEE Transactions on, vol. 58,
no. 7, pp. 1001–1008, July 2009.

[14] A. Cilardo, D. Socci, and N. Mazzocca, “ASP-based optimized mapping
in a Simulink-to-MPSoC design flow,” Journal of Systems Architecture,
vol. 60, no. 1, pp. 108 – 118, 2014.

[15] “Designing and using FPGAs for double-precision floating-point math
- white paper,” Altera, Tech. Rep., 2007.

[16] A. Cilardo, J. Flich, M. Gagliardi, and R. Gavila, “Customizable hetero-
geneous acceleration for tomorrow’s high-performance computing,” in
Proceedings of the 12th IEEE International Conference on Embedded
Software and Systems (ICESS), August 2015.

[17] C. Bastoul, “Code generation in the polyhedral model is easier than you
think,” in Proceedings of the 13th International Conference on Parallel
Architectures and Compilation Techniques. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 7–16.

[18] A. Cilardo and L. Gallo, “Improving multibank memory access paral-
lelism with lattice-based partitioning,” ACM Transactions on Architec-
ture and Code Optimization, vol. 11, no. 4, pp. 45:1–45:25, Jan. 2015.

[19] ——, “Interplay of loop unrolling and multidimensional memory par-
titioning in HLS,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2015, March 2015, pp. 163–168.

[20] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Constraint-driven bus
matrix synthesis for MPSoC,” in Proceedings of the 2006 Asia and
South Pacific Design Automation Conference. IEEE Press, 2006, pp.
30–35.

[21] S. Murali, L. Benini, and G. De Micheli, “An application-specific design
methodology for on-chip crossbar generation,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 26, no. 7,
pp. 1283–1296, 2007.

[22] M. Jun, D. Woo, and E.-Y. Chung, “Partial connection-aware topology
synthesis for on-chip cascaded crossbar network,” Computers, IEEE
Transactions on, vol. 61, no. 1, pp. 73–86, 2012.

[23] A. Cilardo, E. Fusella, L. Gallo, and A. Mazzeo, “Automated syn-
thesis of FPGA-based heterogeneous interconnect topologies,” in Field
Programmable Logic and Applications (FPL), 2013 23rd International
Conference on. IEEE, 2013, pp. 1–8.

[24] ——, “Exploiting concurrency for the automated synthesis of MPSoC
interconnects,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 14, no. 3, p. 57, 2015.


