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Abstract—A hot topic in current cloud security research,
homomorphic encryption is a recently introduced technique
allowing computation to take place on encrypted data. This work
presents the architecture and implementation of a dedicated
FPGA-based accelerator addressing the prohibitive computing
demand of homomorphic encryption. In particular, the accel-
erator targets the most time consuming operation used by the
encryption primitive, large integer multiplication. Based on an
Altera’s Stratix V FPGA platform, the prototype implementation
achieves significant improvements in terms of execution time –
under a comparable hardware cost– against alternative solutions
previously presented in the technical literature.

I. INTRODUCTION

Homomorphic encryption (HE) [1] is a promising answer
to the security concerns raised by cloud computing since it
allows data to be stored and manipulated remotely in an en-
crypted form, effectively preventing the server from accessing
the information being processed. Ideally, HE can serve as an
enabling tool for a number of different applications, including
multiparty computation, medical applications, financial com-
puting, electronic voting, etc. Unfortunately, in spite of the
large variety of alternative HE schemes available today [1],
[2], [3], HE suffers from extremely high computational costs,
which currently prevents its practical use. In that respect, the
availability of dedicated FPGA-based acceleration in server
settings might play a key role. In fact, recent trends clearly
suggest that reconfigurable hardware, i.e. FPGA devices, may
potentially play a key role in datacenters and cloud servers
for certain classes of applications [4], [5]. In addition to
user application acceleration, FPGAs have a large potential
for security-related processing as well. FPGAs have proved
to be an effective platform for cryptographic processing [6]
as cryptoalgorithms have peculiar characteristics, like integer
computation, bit-level manipulation, etc., that make standard
platforms like CPUs and GPUs less competitive. On the
other hand, hardware reconfigurability allows the designer to
customize the system possibly based on specific parameters,
e.g. a cryptographic key, making FPGAs an ideal platform for
cryptographic acceleration [7], [8], [9] as well as for crypt-
analytic purposes [10], [11], [12]. FPGA platforms have also
been explored as a secure compute/storage environment [13],
[14], [15] as well as for implementing special security-related
features like Physically Unclonable Functions [16].

This paper presents a dedicated FPGA-based accelerator
implementing ultralong integer multiplication, the main perfor-
mance bottleneck in most homomorphic encryption schemes.
The work describes an implementation based on an Altera’s
Stratix V FPGA platform. The experimental results collected

from the hardware synthesis show significant improvements
in terms of execution time –under a comparable hardware
cost– against alternative solutions previously presented in the
technical literature.

The paper is structured as follows. Section II recapitulates
the current state of the art in the implementation of the HE
primitives. Section III introduces the algorithm implemented
by the proposed solution. Section IV describes the architecture
and optimizations adopted for the implemented FPGA-based
system. Section V presents the main experimental results
collected from hardware synthesis. Section VI concludes the
paper with some final remarks.

II. PREVIOUS WORKS

Cloud computing has emerged as an important paradigm
shift for a large class of applications [17], [18], [19]. Security
is a major concern in cloud settings, pointing out the impor-
tance of advanced cryptographic techniques like homomorphic
encryption, allowing computation to take place on encrypted
data on the server side. In particular, this work addresses the
so-called Fully Homomorphic Encryption (FHE), introduced
by Gentry’s seminal work [1] just a few years ago. Beside
Gentry’s scheme, based on the properties of ideal lattices,
various alternative solutions have been proposed, the most rel-
evant being the van Dijk, Gentry, Halevi, and Vaikuntanathan’s
(DGHV) scheme over the integers, and the Brakerski and
Vaikuntanathan’s scheme [2] based on the Learning with Errors
(LWE) and Ring Learning with Errors (RLWE) problems [3].

An implementation of a variant of the original scheme [1]
is proposed by Gentry and Halevi [20]. Their solution, despite
various optimizations and small-size security parameters, takes
more than one second for encrypting a single bit on an Intel
Xeon server. Recent software implementations include [21],
[22]. An open-source library, hcrypt, is available on-line [23],
while [24] contains an optimized implementation reaching
a significant speed-up over the previous solutions. Several
research works concerning FHE computing platforms have
looked for alternative architectures, particularly GPUs and
FPGAs. GPUs offer high throughput and efficiency for data in-
tensive computing, such as vector and linear algebra problems.
FHE schemes can benefit from this architecture, since they are
highly parallelizable with respect to data. FPGA technology
offers, on the other hand, the flexibility of implementing a
custom and targeted architecture at a low cost, as opposed to
Application Specific Integrated Circuits (ASICs). Moreover,
several FPGAs include built-in optimized blocks for multiply-
and-accumulate operations, which can be effectively exploited



when implementing large multiplication. Recent GPU imple-
mentations include [25], [26], [27]. An FPGA implementation
is presented in [28], which compares FPGAs and GPUs,
namely Altera Stratix V and NVIDIA Tesla C2050 devices.
The solution is fundamentally focused on the FFT multiplier
building block. The authors conclude that the FPGA version
is at least twice as fast as the GPU one, with lower power
consumption. [29] and [30] propose a full custom ASIC imple-
mentation of large-operand multiplication. For example, in [29]
a single multiplication is performed in 7.7 ms at 666 MHz. The
authors of [31] build a custom hardware implementation of the
cryptographic primitives of Gentry-Halevi’s FHE scheme. The
design includes optimizations previously introduced in [25] to
reduce the number of FFT computations. Last, [32] proposes
an FFT-based large integer multiplier, along with a Barrett
reduction module. The design is implemented on a Xilinx
Virtex-7 FPGA and includes the encryption primitive of Coron
et al. FHE scheme [33], [34]. The results show a remarkable
speed-up compared to existing software implementations.

III. ALGORITHM

The accelerator presented in this work targets the most time
consuming operation used by the encryption primitive, integer
multiplication on very large operands, in the order of millions
of bits. Other mathematical operations involved in the primitive
can either be reduced to a combination of multiplications, or
are not the main bottleneck. Ultralong multiplication, in fact,
plays a central role in different fully homomorphic schemes,
such as the integer-based approach and solutions based on
Lattice problems and Learning with Errors, which may thus
be implemented on top of the accelerator, e.g. as software
routines. We addressed the efficient implementation of asymp-
totically faster (but inherently more complex) multiplication
algorithms in place of usual schemes used for moderately
large operands (thousands of bits). An asymptotically efficient
multiplication algorithm is the Schönhage-Strassen algorithm
(SSA), which exploits the properties of the Number-Theoretic
Discrete Fourier Transform and is advantageous for operands
of at least 100, 000 bits. In essence, the algorithm computes
c = a · b as follows:

• decompose operands a and b into groups of m bits
and consider such groups as polynomial coefficients;

• perform the integer FFT of a and b, hence getting A
and B;

• compute C = A · B component-wise, which can be
easily parallelized;

• compute the Inverse FFT of C, namely c′;

• compute the final result c performing the shifted sum
of the components of c′.

The computational complexity of SSA is O(n · log n ·
log log n). The most time consuming operation in SSA is the
computation of the FFT (and Inverse FFT). Instead of the more
common binary recursive splitting approach relying on a radix-
2 transform, we adopted the original Cooley-Tukey general
FFT decomposition, with higher radices.

Decomposing N as N = N1 · N2, the input and output
vectors can be split into N1 sub-sequences of length N2.

Let n = N2n1 + n2 and k = N1k2 + k1 with n1, k1 ∈
{0, 1, . . . , N1 − 1} and n2, k2 ∈ {0, 1, . . . , N2 − 1}. Then the
DFT can be written as:
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We choose to perform the computation in the finite field
Z/pZ, with prime p. By selecting a proper prime p, the
modular multiplication in the finite field can be computed
rapidly as a sequence of shifts. In our implementation, we
choose the Solinas prime number p = 264−232+1. We assume
to deal with operands of 786, 432 bits, which correspond to
the small security parameter setting for DGHV adopted in
various research papers. Operands are decomposed into 32K
coefficients of 24 bits.

We need to apply FFT on 64K points, in order to accommo-
date the multiplication result. By using Equation 1 recursively
on the 64K-point DFT, it can be computed with three stages
using radix-64 and radix-16 sub-transforms:
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where n = N1N2n3 +N1n2 + n1, k′2 = k3 +N3k2.

Each stage can be efficiently parallelized, according to the
available computing resources.

IV. ARCHITECTURE OF THE FPGA-BASED ACCELERATOR

An essential design objective we set for the proposed
accelerator was the inherent support for scalability to ultralong
operands which, unlike many cryptographic primitives in dif-
ferent contexts, may require a flexible and composable design
solution applicable either to on- or off-chip scenarios, possibly
in multi-FPGA settings available on the server side. Conse-
quently, for the implementation of the 64K-point FFT building
block, we devised a flexible distributed approach, relying
on several nodes connected in a hypercube topology, which
matches exactly the logical topology of the distributed FFT

Fig. 1. Architecture of a 64K FFT processing element.



Fig. 2. Data distribution.

algorithm. The solution was initially prototyped on a multi-
board platform based on low-end devices (Altera Cyclone V)
then extended to a hybrid on-/off-chip solution relying on a
larger device, i.e. an Altera Stratix V FPGA. The distributed
approach, distinguishing our proposal from previous related
works like [28], matches very well the FFT computation
and ensures several advantages compared to shared memory
approaches, such as better scalability and reduced use of global
routing resources, which may be a major performance bottle-
neck especially on FPGAs. Using a hypercube topology, the
number of communication stages for FFT computation is the
hypercube dimension d. In each stage, a node communicates
only with one of its d neighbors, one for each stage. The
number of computation stages l instead depends on the FFT
decomposition, as previously shown. We must have l > d in
order to correctly interleave computation and communication.
If l > d + 1, communication takes places only after the
first d computation stages while the subsequent stages are
computation only. The overall architecture of a single node,
called here Processing Element, is shown in Figure 1.

The core computing element is the Radix-64/16 FFT
unit, which computes the basic sub-transforms. Since in our
distributed scheme communication will indeed overlap with
computing, double buffering is used: while a buffer is feeding
current input values, the other one is filled with new values
coming partly from the same node and partly from one of its
neighbors. At the end of a computation stage, the roles of the
buffers are swapped. Buffers are based on a banked architec-
ture which uses the SRAM primitive blocks of the underlying
FPGA architecture. Additionally, we also need a group of
modular multipliers for twiddle factor multiplications, required
between two consecutive FFT computation stages. The data
route component is responsible for the proper ordering of FFT
output points before writing to the memory buffers.

a) Data distribution and exchange pattern: Below we
consider the computation of a 64K-point FFT with four
processing elements. In the initial data distribution phase, the
64K-element vector is partitioned among the four processing
elements, also considering the proper decomposition reorder-
ing. Then, computing and data exchange stages take place in an

interleaved, but partially overlapped way. During a computing
stage, each node can execute autonomously.

We recall also that, according to the previous formula, we
can decompose the 64K FFT as per Equation 2. Figure 2
summarizes the sequence of computing and communication
stages: bold style is used to highlight the index (one of n1,
n2, and n3) involved in the current sub-FFT computing and
subsequent data exchange.

Fig. 3. Architecture of the baseline Radix-64 unit [28].

b) FFT-64 unit: The Radix-64 unit (or FFT-64) is
the basic building block which is capable of computing the
sub-transforms making up the overall FFT. It can be easily
extended for computing Radix-16 FFT as well, though this
will not be shown here. In the chosen finite field, the 64th root
of unity is 8, so multiplications in the FFT formula become
simple shifts, as follows:

A[k] =
63∑
i=0

a[i]ωi·k
64 =

63∑
i=0

a[i]8i·k (mod p) (3)

Since 864 (mod p) = 2192 (mod p) = 1, no intermediate
value can exceed 192 bits.

The unit proposed here builds on a baseline scheme [28]
shown in Figure 3. Input samples are read 8-by-8 and are
fed to 64 separated computing chains, one for each frequency
component. Each chain comprises a shifter bank, where the
eight samples are multiplied by their respective twiddle factor.
Shifted values are summed by an adder tree to produce a
partial sum. To avoid the latency of long carry chains, a
carry save solution is adopted. The output is then made up
of two vectors, which are not merged until the very last block
(AddMod). The accumulator will sum up the partial sums in



Fig. 4. Architecture of the FFT64 unit.

eight consecutive clock cycles. After the eighth clock cycle,
the transform is complete and the value in the accumulator
is modular reduced. The Normalize block computes a first
coarse reduction by using Equation 4, which applies to 128-bit
numbers and exploits the properties of the chosen modulus:

a · 296 + b · 264 + c · 232 + d = 232(b+ c)− a− b+ d (4)

The result will require at most one extra addition or subtraction
with the modulus p. This last operation is performed in the
AddMod component.

The baseline scheme is somehow redundant since much
work can be shared among the different components. Our
architecture avoids redundancy through several structural so-
lutions which, as shown in the implementation section, result
in improved parallelism and area efficiency. In order to ex-
ploit common work between the FFT components, we apply
Equation 1 to the 64-point FFT:
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The expression between parentheses is computed by the first
stage in Figure 4, where eight samples from the memory are
shifted and summed. This is done only for eight frequency
components (denoted by k1). Then, such partial sums are
multiplied by the twiddle factor ωj·k2

8 while the external sum
is performed by each accumulator. The multiplication by ωj·k2

8
leads to eight possible shifts, but they can be reduced to four
if we consider that one half of the twiddle factors are the
opposite of the other half (the partial sum will be subtracted
in the accumulator instead of being summed). The four factors
needed are then 20, 224, 248, and 272 (respectively, no shift,
shift by 24, 48, and 72 bits). Accumulators can be thought of as
being partitioned into eight blocks of eight accumulators (block
number corresponds to k2 in Equation 5). Each block contains
a multiplexer selecting which of the four shifts is needed,
according to the block number and the current computing

step (respectively, index k2 and j). Each block receives also a
subtract signal (not shown in figure).

The first stage itself is optimized by computing only four
of the eight components by relying on the following property:
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We can see that components 4 to 7 can be computed similarly
to the first four, except for the multiplication by a factor ωj

16
and the fact the in the summation odd terms are taken with
negative sign. This is done by modifying the adder tree so
that it outputs also the difference between the sums of even
and odd terms (such modification adds little complexity to the
adder tree).

After eight computing steps, the accumulators contain the
FFT output which needs to be modular reduced. While the
baseline scheme uses 64 modular reduction components, one
for each accumulator, we observe that the maximum average
throughput, even in a fully pipelined solution, is eight compo-
nents per clock cycle. Consequently, we use only eight modular
reductors, one for each accumulator block, preceded by a
multiplexer which switches to a different component at each
clock cycle. So we use exactly eight frequency components for
each clock cycle. Our solution has a twofold advantage: First, it
reduces the area occupancy of the FFT64 unit and the memory
parallelism required (eight words vs. 64). Second, it realizes
part of the work of the Data Route component, since at every
clock cycle we produce eight values which are appropriately
spaced out for memory writing.

We also identified a couple of minor optimizations. We
merged carry-save vectors immediately after the adder tree,
reducing area usage. The carry propagation latency penalty can
be mitigated by adding a pipeline stage. Furthermore, before
Stage 1, we reduce the bit-width of each value by applying
Equation 4. This further decreases the area, particularly routing



resource usage. Last, we recall that the FFT-64 unit can be
adapted, with minor modifications, to compute also Radix-8,
Radix-16, and Radix-32 FFTs. This gives us greater flexibility
in choosing an FFT order other than 64K.

c) Internal banked memory: Our internal memory
needs to support the specific FFT memory access pattern
yet guarantee an appropriate degree of parallelism. A simple
linear banked memory ensures parallel read accesses (with
consecutive words in a row mapped to different banks) but
it would cause write accesses to collide on the same bank.
To effectively tackle this issue, we adopted a two-dimensional
scheme, shown in Figure 5. Each square is a memory bank,
i.e. a dual port SRAM, with a depth of 256 words and word-
width of 64 bits, implemented as a native FPGA memory block
(namely, two Altera M20K hard core blocks). A 4x4 array of
basic memory blocks yields a size of 256Kb which can hold
a vector of 4096 points. For visual clarity, the scheme in the
figure displays only one of the dual ports in the basic block.
Read access is column-wise, while write access is row-wise.
Access parallelism is eight words per clock cycle, either during
reading or writing.

d) Modular multiplier: The output points of inner FFTs
need to be multiplied by appropriate twiddle factors before
they can be used by the external FFT. We chose to use DSP
blocks for greater efficiency in terms of area and speed. To
compute 64x64 multiplications we can split our operands in
32-bit components and use a basic 32x32-bit DSP multiplier,
which requires only two DSP blocks. Using school-book
multiplication, four 32x32-bit multipliers are needed; partial
products are then summed and modular reduced by Equation 4.

e) Data route: The purpose of this component is to
properly order the output points coming from the modular
multipliers, ensuring their correct writing in memory as well
as computing the correct addresses according to the current
computation step. As mentioned earlier, the complexity of
this component is greatly reduced since part of its job is
performed by the FFT-64 unit. In fact, it is just a memory
address generator.

Fig. 5. Architecture of the banked memory buffer.

V. IMPLEMENTATION AND PERFORMANCE

To implement the proposed accelerator, we targeted a
Stratix V 5SGSMD8N3F45I4 FPGA, as in [28], using VHDL
as the design entry language. Most of the implementation effort
was put on the Radix-64 unit, the banked memory, and modular
multipliers. All of these components were optimized and
extensively tested. By carefully pipelining some subsystems,
the design could be synthesized at an operating frequency of
200 MHz. Based on this result, we could derive a performance
estimate addressing a single FFT and the complete SSA
multiplication. The FFT-64 unit is able to output an FFT every
eight clock cycles, while an FFT-16 will take two clock cycles.
A single 64K-point FFT takes:

TFFT = 2 · (TC · 8 · 1024)/P + (TC · 2) · 4096/P
where TC is the clock period, i.e. 5 ns, while P is the number
of Processing Elements (here, four). The first term refers to
the first two stages, with 1024 FFTs on 64 points. The second
term refers to the last stage where 4096 FFTs on 16 points
are computed. By replacing the clock period and using four
Processing Elements, we get:

TFFT = 20480ns+ 10240ns ≈ 30.7µs.

A full SSA multiplication requires three FFTs (two direct
FFTs for the inputs and one inverse FFT for the output).
Furthermore, we need a component-wise multiplication on two
vectors of 64K components and the final carry recovery addi-
tion on the inverse FFT components. The remaining resources
can accommodate at least 32 additional modular multipliers
for component-wise multiplication, yielding:

TDOTPROD = TC · 65536/32 ≈ 10.2µs.

The final carry recovery can be efficiently computed with
an ad-hoc adder structure, not described here due to the lack of
space. Its maximum delay is approximately 20µs. Hence, the
overall time for a complete SSA multiplication is ≈ 122µs.

Table I compares the proposed solution with [28] both in
terms of absolute resource count and as a fraction of the total
resources on the target FPGA. Notice that [28], based on the
same device as our work, only presents quantitative results
for the FFT operation. For our comparison, we conservatively
assumed a zero difference for the remaining dot-product and
carry recovery operations. Overall, the combination of the
optimizations presented above results in around 60% saving in
hardware costs. The unused resources might be used to achieve
further performance improvements, although this was not
exploited in this comparison. Table II presents the performance
of our solution vs. [28], [30], a 90nm ASIC solution, and [26],
[27], which are based on NVIDIA C2050 GPUs. The execution
time of [28] is 3.32X larger than the time taken by our solution,
while the other results are 1.69X larger, or more.

TABLE I. COMPARISON OF RESOURCE USAGE.

Proposed here [28]
ALMs 104000 (40%) 231000 (88%)

Registers 116000 (11%) 336377 (31%)
DSP blocks 256 (13%) 720 (37%)

M20K SRAM 8 Mbit (20%) −

TABLE II. COMPARISON OF EXCUTION TIME.

Proposed here [28] [30] [26] [27]
FFT (µs) 30.7 125 − 250 −

Multiplication (µs) 122 405 206 765 583



VI. CONCLUSION

This work presented an FPGA implementation of a ded-
icated hardware accelerator for ultralong-operand multiplica-
tion as a basic building block of a homomorphic encryption
processor. The paper described the high-level architectural
concept and implementation as well as the experimental data
collected from hardware synthesis. The results point out the
great potential posed by FPGA technologies in the acceleration
of compute-intensive cryptographic algorithms.
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