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ABSTRACT 

The rockfall attitude of rock slopes threatening a strategic spot of eastern Sicily 

has been studied herein with the aims of testing an innovative methodology 

for the remote survey of fractured rock outcrops and of assessing the rockfall 

risk along an important transportation corridor through a quantitative 

probabilistic approach.  

The study area, often involved in rockfall events, which cause serious damage 

to private and public infrastructures, is one of the most relevant places of Sicily 

due to the great tourism rate recorded every year between the resorts of 

Taormina and Castelmola, which are also considered an outstanding example 

of cultural heritage.  

The innovative procedure of rock mass survey through InfraRed Thermography 

is tested and proposed herein for the study of the fracturing condition of 

intensely jointed rock masses, to find out what kind of information can be 

assessed in this field of rock mechanics. Although this technique is widely used 

in several scientific fields, its direct application for such purposes is still 

pioneering. In this thesis, thermal imaging campaigns, carried out under 

different climatic conditions, are described, and interesting considerations are 

proposed with reference to a Cooling Rate Index, estimated to study how rock 

masses, conditioned by their fracture nets, behave during the heat transfer 

towards the external environment. Such an index was related to the degree of 

fracturing of the rock masses to find a relationship linking thermal data to one 

of the main quantitative fracturing indexes. Results return interesting matches 

between some geostructural features and thermal outputs, demonstrating the 

reliability of the application of such methodology to bare rock masses. 

Moreover, new experimental considerations are proposed, laying the 
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foundations for future studies aimed to further validate the InfraRed 

Thermography as an effective remote survey technique. 

Risk assessment was carried out through the quantitative approach of the 

Event Tree Analysis, which was properly customized to take into account the 

peculiarity of the area and of the road path. Rock mass surveys, trajectory 

simulations and probabilistic models were taken into account with the aim of 

calculating the probability related to possible scenarios in case of rockfalls.  

Achieved outcomes demonstrate that such procedure is a reliable tool, which 

can be taken as reference to calibrate further risk models in comparable 

contexts of the world, where rockfall threaten communication routes. This 

would represent a helpful instrument to the scientific community and to local 

authorities dealing with one of the most troublesome natural phenomena 

affecting the public safety.  
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INTRODUCTION 

In populated mountainous areas, rockfalls are considered one of the major 

natural threat to the life and represent a relevant risk for people, structures 

and infrastructures. In particular, rockfall risk is the expression of the likelihood 

and impact of an uncertain, sudden and extreme landslide event which, if 

occurring, may cause a certain kind of damage to one or more elements 

(modified after Ball and Watt, 2001; UNESCO, 2010). 

In a period characterized by an increasing interest of local authorities and 

media on natural risks, the International Scientific Community dealing with 

rockfalls is more and more focused on developing new technologies for the 

stability modeling of rock masses, looking for innovative approaches for the 

survey and processing of field data, with the aim of assessing the associated 

risk in qualitative or quantitative ways (e.g. Budetta, 2004; Saroglou et al., 

2012; Schober et al., 2012; Frattini et al., 2013; Mineo et al., 2015a; Roberds, 

2015; Pappalardo et al., 2016a; Budetta et al., 2016). 

It is known that forecasting the exact progression of a rockfall in space and 

time is not a simple practice, due to the unpredictable attitude of such events 

(Guzzetti and Reichenbach, 2010). Therefore, it is self-evident how important 

a comprehensive study of the rock slopes threatening specific areas is, starting 

from the in-situ survey to remote sensing approaches and numerical 

elaborations.  

In this perspective, the research presented herein represents a contribution to 

this scientific activity, proposing a study on the rockfall attitude of a strategic 

spot of eastern Sicily, close to the city of Taormina, where the complex 

geological history has led to a great predisposition of rock slopes to landslide. 

The main purpose of this research is the analysis of the slopes threatening such 

relevant tourist area, already affected by numerous rockfalls in the latest 

decades, aimed at assessing the related risk along an important 
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communication route. The study presented herein has been carried out 

following different steps, experiencing also innovative technological 

approaches for the remote survey of rock masses, to study the rockfall 

problem under both qualitative and quantitative points of view. The synergy 

of different approaches commented herein allowed achieving numerous data 

on geology, geomechanics, thermal attitude, kinematics and stability of 

surveyed rock slopes, which were used to design a quantitative model for risk 

assessment, properly customized for the study area. 

In particular, the innovative approach experienced in this study is the 

application of InfraRed Thermography (IRT) for the study of the degree of 

fracturing of rock masses. This is a pioneering methodology, exploiting the 

thermal radiation to study the cooling behavior of rock masses and then 

relating such attitude to their fracturing condition (Teza et al., 2012; Martino 

and Mazzanti 2014). This is a new aspect of geomechanics, since IRT had never 

been employed for similar purposes before. In this study, the cooling attitude 

of rock masses is expressed by a new index (the Cooling Rate Index), which was 

conceived with the aim of finding a numerical reference for the remote 

evaluation of the rock fracturing. 

Thermal surveys were sided by in-situ rock mass surveys and rockfall trajectory 

simulations were carried out by using bi-dimensional and three-dimensional 

codes and results were applied to a quantitative risk assessment method, 

focused on probabilistic calculations according to Event Trees properly 

designed.  

The approach used herein can be taken as reference to calibrate further risk 

models in several peculiar parts of the world, where rockfall threaten 

communication routes. This would represent a great instrument to the 

scientific community and to local authorities dealing with one of the most 

problematic natural phenomena affecting the public safety. 
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CHAPTER 1 

AIMS AND METHODOLOGY 

1.1. State of the art on the scientific topic 

Dealing with rockfalls means dealing with natural phenomena acknowledged 

among the most serious natural hazards, due to their high degree of 

unpredictability and rapid evolution. Every year international chronicles report 

on victims or on missed injuries after a rockfall event, highlighting how such 

type of phenomena is widespread all over the world. In the latest years, public 

awareness on this topic has grown and rockfall has become one of the most 

intensely studied geomorphic processes worldwide, especially in mountainous 

areas (Chau et al., 2003; Dorren and Seijmonsbergen, 2003; Schneuwly and 

Stoffel, 2008). In fact, the increasing settlement, along with the growth rates 

in tourism, have led to a considerable spatial extension of endangered areas, 

and so to a consequent rising need for safety and protection of the population. 

To achieve a reliable knowledge of the possible scenarios in case of rockfalls, 

detailed studies are required to model the stability conditions of the slopes 

and to attain a reliable hazard assessment. Nevertheless, forecasting the exact 

evolution of a rockfall in space and time is a very tough task, due to the 

numerous factors controlling such events (Guzzetti and Reichenbach, 2010). 

Therefore, the International Scientific Community keeps looking for different 

methodological approaches to deal with such a problematic issue (e.g. Yin et 

al., 2011; Schober et al., 2012; Frattini et al., 2012; Sarro et al., 2014; Mateos 

et al., 2015; Perriello Zampelli et al., 2015). 

Several studies were carried out on various aspects of rockfall, such as dynamic 

behavior (Ritchie, 1963; Erismann, 1986; Azzoni et al., 1995), boulder reaction 

during ground contact and rockfall trajectory (Bozzolo et al., 1986; Hoek, 1987; 

Hungr and Evans, 1988; Pfeiffer and Bowen, 1989; Evans and Hungr, 1993; 

Crosta and Agliardi, 2003; Paronuzzi, 2009), or runout distance of falling rocks 
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(Kirkby and Statham, 1975; Statham and Francis, 1986; Okura et al., 2000). 

Some researchers focused also on the possible triggering factors by taking into 

account freeze-thaw cycles (e.g. Murton et al., 2006; Stock et al., 2013; Gupta 

and Tandon, 2015; Macciotta et al., 2015; Park and Park, 2016), changes in the 

rock-moisture degree, increase of mean annual temperature, occurrence of 

earthquakes (e.g. Gardner, 1983; Harp and Wilson, 1995; Matsuoka and Sakai, 

1999; Davies et al., 2001; Marzorati et al., 2002; Sass, 2005; Matsuoka, 2006; 

Barbano et al., 2014). Furthermore, since the late 1980s, numerical modelling 

has become a common practice in rock engineering (Guzzetti et al., 2002; 

Dorren et al., 2006; Stoffel and Perret , 2006), especially when a hazard or risk 

assessment is pursued. In this perspective, different methods were proposed 

for rockfall risk mapping, both along linear structures and within exposed 

areas, in order to identify slopes at high risk of failure and to allow preventive 

measures to be effectively prioritized (Pierson et al., 1990; Budetta, 2011; 

Crosta and Agliardi, 2003; Peila and Guardini, 2008; Pantelidis and Kokkalis, 

2011; Saroglou et al., 2012; Budetta et al., 2016). Besides their scientific 

relevance, such studies have an important economic impact, as they imply a 

subsequent involvement of local authorities for the design and construction of 

the most suitable mitigation measures. 

Nevertheless, regardless of the final purpose, the analysis of these events has 

to get started from the in-situ geological and geomechanical survey, which is 

the only practice ensuring a reliable assessment of the main structural and 

mechanical features of the rock slopes, on which the occurrence of rockfalls 

depends. To this purpose, several researchers presented integrated analyses 

of rock slopes, by means of different survey methodologies, to highlight the 

multidisciplinary aspect of such a complex topic (e.g. Watanabe and Sassa, 

1996; Arosio et al., 2009; Mineo et al., 2015b; Pappalardo et al., 2016b). 

However, a recurring problem to face during the in situ surveys is the 
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accessibility of the study area. In fact, usually the unstable sectors are located 

at sectors of a cliff or hard to reach, thus requiring a technological support. 

This is why part of the Scientific Community is currently experiencing remote 

sensing techniques able to acquire field data from a remote survey position. 

This is the case of the employment of airborne and terrestrial geodetic LiDAR-

scans (e.g. Gordon et al. 2001; Oppikofer et al. 2009; Gigli and Casagli 2011; 

Niethammer et al., 2012; Fanti et al., 2013; Michoud et al., 2015), for example. 

Reliable results are achieved also by the analysis of terrestrial stereoscopic 

photographs (e.g. Poetsch et al., 2007; Haneberg, 2008; Ferrero et al., 2009; 

De Vita et al., 2012; Perriello Zampelli, 2015), or by the differential InSAR 

(Interferometric Synthetic Aperture Radar), which enables detailed 

displacement analysis in case of a monitoring survey (e.g. Di Martire et al., 

2016; Rouyet et al., 2016). Moreover, a recent practice, although still 

pioneering, exploits the InfraRed thermal radiation to detect peculiar features 

along a slope (e.g. Wu et al., 2005; Baron et al., 2012; Mineo at al., 2015a; 

Pappalardo et al., 2016a). This methodology, which is currently providing 

useful contribution in several field of sciences, is part of the methodological 

approach carried out in this research, thus it will be presented in detail in the 

following paragraphs. 

All the innovative techniques above mentioned are part of the new frontiers 

in the remote survey of rock masses, which draw the attention of the 

International Scientific Community in an attempt to improve the knowledge to 

achieve higher standards of safety and protection. 
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1.2. Methodological approach 

The different approaches commented herein were planned trying to follow a 

strict path in order to achieve, step by step, set goals. 

Due to the geological peculiarity of the study area, which have led to an intense 

degree of fracturing of the rock masses, the first activity was a geological 

survey aimed at mapping the main formations cropping out in this spot and to 

highlight their relationship, with particular reference to the high number of 

tectonic contacts between them. This survey was useful to achieve a good 

knowledge of the area and to select the representative rock masses, which 

underwent a survey according to ISRM recommendations (2007). The main 

geostructural and geomechanical parameters were estimated and 

discontinuities were grouped into systems according to a statistical contouring 

procedure, analyzing mean and maximum pole concentrations, using the 

Fisher distribution method (Fisher, 1953). 

Based on obtained data, a kinematic analysis has been performed in order to 

highlight the potential failure mechanisms affecting the slopes. At the same 

time, a thermal mapping of rock masses was performed during one-day 

surveys, both in the dry and cold seasons, with the aim of studying their 

thermal behavior and proving how IRT may be useful in the remote survey of 

fractured rock slopes. Temperature records were used for the reconstruction 

of the cooling trend of the rock masses, describing the decrease of the 

temperature during the survey time. Interesting considerations are proposed 

with reference to an index, herein named Cooling Rate Index (CRI), estimated 

to study how rock masses, conditioned by the fracture nets, behave during 

their cooling. Such behavior was related to the degree of fracturing of rock 

masses to find a relation linking IRT data to one of the main quantitative 

fracturing indexes (i.e. Rock Quality Designation according to Deere, 1963). 
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Once ascertained the poor conditions of rock slopes, the combination of 

possible rockfall trajectories was modeled and studied through 2D and 3D 

codes, with the purpose of highlighting the potential targets of such events, 

along with the spatial evolution of rockfalls (i.e. trajectory simulations, 

rebound points, end points, kinetic energy). This procedure was calibrated 

according to back-analyses performed after the occurrence of two important 

events, which caused alarmism and discomfort to population and tourists. 

Achieved results were graphically represented on thematic maps, for a better 

reading of the problem, and were finally taken into account for the 

quantitative risk assessment along the main element at risk, represented by a 

transportation corridor connecting the resorts of Taormina and Castelmola. 

Such risk assessment was carried out through the Event Tree Analysis method, 

properly customized for the study area. The probability computation, carried 

out according to similar studies available in literature (e.g. Bunce et al., 1997; 

Peila and Guardini, 2012; Budetta et al., 2016 and references therein), 

provided interesting results related to the possible negative outcomes arising 

from the impact of falling boulders on the road. Achieved numerical data were 

graphically represented on thematic maps aimed at providing an immediate 

and intuitive prevention tool, which can be employed for future land-use 

planning.   
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CHAPTER 2 

LANDSLIDES ALONG ROCK SLOPES 

2.1. Rockfalls  

Landslides involving rock material are usually referred to as rockfalls. Such kind 

of movements are among the most rapid land-instability events, defined as 

one of the most prominent geomorphic processes (e.g., Hales and Roering, 

2007; Beylich and Kneisel, 2009) and natural hazards (e.g., Jaedicke et al., 2009; 

Heckmann et al., 2016), especially in mountainous areas. They generally occur 

at rock slopes or vertical cliffs through the detachment of one or more 

boulders, which move down slope by bouncing and flying along ballistic 

trajectories or by rolling along the slope itself (Varnes, 1978). Such phenomena 

are relevant from the engineering-geological point of view, because of their 

frequent occurrence, especially in mountainous areas, and of the complexity 

of their modeling. In fact, forecasting the exact evolution of a rockfall in space 

and time is a very tough task, due to the numerous factors controlling such 

events (Guzzetti and Reichenbach, 2010). Among these, the physical 

properties of falling boulders, the slope geometry, the elastic properties of the 

lithologies along the slope and the presence of obstacles along the falling rock 

trajectory can be mentioned (e.g. Parise, 2002; Schweigl et al., 2003). 

The causes of rockfalls are numerous and can be assorted into three main 

groups (USGS, 2004): geological, morphological and human. Among the 

geological causes, the degree of jointing of a rock mass and the orientation of 

the discontinuity systems are the most relevant (Markland, 1979; Hoek and 

Bray, 1981). In fact, the presence of fractures affects the geomechanical 

quality of the rock mass, along with its strength and deformability (e.g. Norrish 

and Wyllie, 1996; Hantz et al., 2003; Jaboyedoff et al., 2004; Budetta, 2011). 

Furthermore, the fracture network controls the water circulation within a rock 

mass, which favors weathering processes, concurring to the worsening of the 
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mechanical properties of the rock (e.g. Crosta and Agliardi, 2003; Dorren and 

Seijmonsbergen, 2003; Calcaterra and Parise, 2010; Dochez et al., 2014; Mineo 

et al., 2015b). Even the contrast in competence between different or 

differently fractured rock types can be regarded as a geological cause of 

rockfalls, especially in areas affected by heavy rainfall events (Barbano et al., 

2014). 

Morphological causes include tectonic or volcanic uplift, which usually are 

accompanied by seismic shakings, or fluvial/wave/glacial erosion of the slope 

toe. Moreover, there are some processes, taking place within the 

discontinuities, which can lead to a worsening of their mechanical properties. 

These are freeze-and-thaw mechanisms in cold climates or the increase of pore 

pressure after thawing of snow/ice blankets. Similar effects can be produced 

also either by the erosion of surrounding material during heavy rainstorms, or 

by root growth, or by leverage action played by roots moving in high winds. 

Human causes are all the anthropogenic activities carried out to favor the 

increasing settlement and to implement the communication routes. Among 

these, excavation and mining can be regarded as the most common causes, 

followed by artificial vibrations and water leakage from utilities. 

These are only some of the numerous possible causes, which can either 

predispose a slope to rockfall or trigger the event. 

In general, the area where a rockfall occurs can be divided into three zones 

(Figure 1): the movement originates at the source zone or detachment zone, 

located either at the top of the slope or along the slope face, where a 

hypothetic block is dislodged by one or more triggering causes, initiating a 

down slope motion under the effect of the gravity. After a phase of free-fall, 

the block moves bouncing or rolling in the transition zone, interacting with 

different elements of the slope, where the maximum dynamic activity takes 

place. Such interaction plays a key role in the evolution of the event, with 
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respect to the block energy and its trajectory. Finally, the falling rock is 

progressively slowed down until a complete stop in the deposit zone, where it 

will lie together with other fallen boulders. 

 

Figure 1: a) sketch of the three typical rockfall activity zones. SZ: source zone; TZ: transition 

zone; DZ: deposit zone; b) example of a rockfall zonation in the study area: in this case, TZ 

and DZ overlap because of the steep morphology of the slope and the presence of vegetation. 
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2.2. Main classification systems for landslides along rock slopes 

Although in the common practice the term “rockfall” is generally used to refer 

to landslides affecting rock materials, there are several classifications, which 

take into account the kinematics of the failure, to make a distinction between 

different movements. 

In 1978, Varnes proposed a classification of slope movements based on both 

the type of material involved and the type of movement. This can be 

considered a complete classification for landslides and it is described herein 

with particular reference to the movements affecting rock masses. 

The landslide nomenclature is composed of two terms: the first one refers to 

the material type (e.g. “rock” for rock material, “soil” for aggregate of solid 

particles), while the second term describes the type of movement. In 

particular, rock is defined as “a hard or firm mass that was intact and in its 

natural place before the initiation of movement”. 

There are five kinematically distinct types of movement: 

1) Rock-Fall: abrupt movements of masses of geologic materials, such as 

rocks and boulders, detached from steep slopes or cliffs. Separation can 

occur along both pre-existing discontinuities, such as joints, fault planes 

and bedding planes, and along neo-formation surfaces. The falling 

boulder moves downstream through free-fall, bouncing and rolling until 

a complete stop at the foot of the slope. Such landslides are strongly 

influenced by gravity, mechanical weathering, and presence of 

interstitial water. Moreover, they involve high rate of kinetic energy and 

are characterized by a high level of unpredictability (APAT, 2006). 

2) Rock-Topple: movement driven by the forward rotation of a detached 

block above a pivotal point, located in the lower part of the detached 

material, under the actions of gravity and forces exerted by adjacent 

units or by fluids in cracks. 
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3) Rock-Slide: sliding movement occurring along a surface of rupture, 

which can be either circular or planar. The first (rotational slide) is a rare 

case for rocks, taking place only at weak rock materials such as highly 

weathered or closely fractured rocks. The second one (translational 

slide) occurs when the rock volume moves along a roughly planar 

surface. 

4) Rock-Spread: it usually occurs on very gentle slopes or flat terrain. The 

dominant mode of movement is lateral extension accompanied by 

shear or tensile fractures. When a coherent material, either bedrock or 

soil, rests on materials that liquefy, the upper units may undergo 

fracturing and extension and then it may subside, translate, rotate or 

disintegrate.  

5) Rock-Flow or Deep-Seated Gravitational Creep: it is the imperceptibly 

slow, steady, downward movement of slope formed by soil or rock. 

Movement is caused by shear stress sufficient to produce permanent 

deformation, but too small to produce shear failure. 

The combination of two or more of the above types is known as a complex 

landslide. 

This classification system was widely accepted by workers in several countries, 

although usually with slight modifications (e.g. Hungr and Picarelli, 2014). A 

velocity scale, later updated by International Geotechnical Society’s UNESCO 

Working Party on World Landslide Inventory (WP/WLI) (1995) and Cruden and 

Varnes (1996) completes the classification (Table 1) and allows classifying 

rockfalls as “very rapid” to “extremely rapid” movements. 
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Figure 2: sketch of the main types of landslide movements according to Varnes (1978), 

modified after USGS (2004). 

 

A further classification deserving a comment is the one proposed by Hungr et 

al. (2001), who reviewed the classification of flow-type landslides. Among the 

categories described, the “rock avalanche” movement needs to be a 

mentioned. It regards fragmented rocks, either dry or saturated, which 

originate as intact rock mass at the source of the landslide, but disaggregate in 

the course of failure. It gains an extremely high velocity in a flow-like motion 

of a large volume of rock material (even greater than 10,000 m3) originating 

from a rockfall or a rock slide. 
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Table 1: Landslide velocity scale (after Cruden and Varnes, 1996). 

Velocity class Description Velocity (m/s) Typical velocity 

7 Extremely Rapid 5 5 m/s 

6 Very Rapid 0.05 3 m/min 

5 Rapid 5x10-4 1.8 m/hr 

4 Moderate 5x10-6 13 m/month 

3 Slow 5x10-8 1.6 m/year 

2 Very Slow 5x10-10 16 mm/year 

1 Extremely Slow   

 

In addition to the systems above reported, which allow classifying landslide 

movements with reference to their failure pattern and to the type of involved 

material, there is a classification system based on the “state of activity” of 

landslides. There is a wide literature documentation on this issue, firstly 

proposed by WP/WLI (1995) and Cruden and Varnes (1996). In particular, the 

Italian Agency for Protection of the Environment and Technical Services (APAT, 

2006), who summarizes the guidelines available in the national and 

international literature (e.g. Amanti et al., 2001), refers to the state of activity 

as a “fundamental descriptive element useful, at least in the short term, for 

prediction purposes”.   

According to this classification, a landslide can be defined as: 

i) Active: when the landslide is currently moving. For example, when the 

erosion at the foot of a cliff triggers the toppling of a rock volume. 

ii) Suspended: when the landslide has moved within the last 12 months, 

but it is currently not active. For example, when the cracking 

phenomena occur at the source area of the previous rockfall, 

weakening the rock and predisposing a new rock volume to failure. 
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iii) Reactivated: when the landslide is active after a period of inactivity. For 

example, the prone-to-fail rock volume mentioned at point ii fails, 

possibly mobilizing the material lying in the deposit zone. 

iv) Inactive: when the landslide has not moved within the last 12 months. 

In this case the landslide can be defined as: 

a) dormant if it could be reactivated by its original causes or other 

causes; 

b) abandoned if it is no longer affected by its original causes; 

c) stabilized if it has been protected by its original causes by nature or 

by artificial remedial measures; 

d) relict if it developed under climatic or geomorphological conditions 

considerably different from those at present. 
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Figure 3: sketch of the main configurations of state of activity of landslide movements, 

modified after APAT (2006).  
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CHAPTER 3 

THE STUDY AREA 

3.1. General background  

The study area is located in one of the most-visited tourist spot of southern 

Italy, along the Ionian coastline of northeastern Sicily (Figure 4a). Here, the 

charming city of Taormina and its surroundings are popular travel destinations, 

attracting visitors from all over the world. In the mountainous sector of this 

area, Castelmola represents one of the most recommended tourist attractions, 

renowned for its singular landscape enclosing the Etna volcano and the Ionian 

Sea. This village, which probably used to be the acropolis of Taormina in the 

Hellenic age, is a 1100-inhabitant village of pre-Hellenic origin, acknowledged 

among the Most Beautiful Italian Villages (Bacilieri, 2012). It lays on a rock cliff 

(average elevation 460 m a.s.l.) and it is approachable only through the 

Provincial Road 10 (Strada Provinciale 10, SP10), which is a two-lane hill road 

crossing the steep reliefs and deep valleys between Taormina and Castelmola 

(Figure 4b). 

The geomorphological conditions, along with the geological and tectonic 

settings of this region, make the steep and heavily fractured slopes highly 

prone to instability phenomena. In fact, over the last decades, numerous and 

repeated landslides occurred in this territory, threatening the strategic 

structures and infrastructures located at two main sub-areas (Figure 4c): the 

Cliff Area (CA) and the Main Road Area (MRA). In particular, CA is located at 

the foot of the 25 m-high carbonate cliff on which Castelmola lies. Here, a 

group of private houses and a pedestrian tourist track are likely to be regarded 

as possible elements of concern in case of rockfall. On the other hand, MRA 

holds the final segment of SP10 (1.7 km of length; between km 6+100 m and 

km7+800 m), which meanders along the slopes with sharp curves and steep 

grades. In this area, SP10 can be divided into two parallel segments at a 
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different altitude: the upstream and downstream segments (Figure 4c). This is 

a critical condition because, in case of landslide movements, this road is doubly 

subject to possible disruptions, which would mean major setbacks not only 

from a touristic and economic point of view but also for rescue purposes during 

a potential state of emergency. In fact, SP10 is the only access way to 

Castelmola and the only escape route in case of evacuation. 

 

Figure 4: a) geographical location of the study area; b) location of Taormina and Castelmola; 

c) aerial view of the sub-areas (CA: Cliff Area; MRA: Main Road Area). 
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3.2. Regional geological and tectonic setting 

From a regional geological point of view, the study area lies in the southern 

sector of the Peloritani Mountains, close to the geological contact with the 

volcanic products of Mount Etna. In particular, the Peloritani Mountain Belt 

represents the southernmost portion of the Calabrian-Peloritani Orogen 

(CPO), a segment of the southern Alpine orogenic belt linking the Apennine 

chain, to the north, with the E–W-trending Maghrebian belt, to the south 

(Cirrincione et al., 2012). From the structural point of view, CPO is a nappe-pile 

edifice composed of distinct tectonic slices of metamorphic basement 

(remnants of Hercynian and Alpine orogeny) and Mesozoic-Cenozoic 

sedimentary covers. Its most recent evolution is strictly linked to the 

coexistence of extensional and compressional phenomena, as a consequence 

of the Tyrrhenian basin opening. This caused the activation of a regional strike-

slip tectonics, mainly oriented NW-SE, known as South Tyrrhenian System 

(Finetti et al., 1996), active from upper Tortonian and locally still active, 

especially in the central and eastern portion of CPO. 

The orogen segment cropping out in northeastern Sicily (i.e. Peloritani 

Mountains) shows several S-SE verging tectonic slices characterized by a 

northward increasing metamorphic grade (Atzori et al., 2003). Cirrincione et 

al. (1999) subdivide the nappe-pile edifice into Lower and Upper complexes. 

Starting from the bottom of the nappe pile, the Lower complex is characterized 

by very low-grade basement rocks belonging to three tectonic units (Longi-

Taormina Unit, San Marco d’Alunzio Unit, and Capo S. Andrea Unit). This 

complex is confined on top by a cataclastic shear zone putting it in contact with 

phyllites of the Mandanici Unit (Atzori et al. 1984), whereas its southernmost 

and geometrically lower part marks the present front of the Peloritani 

Mountains overthrusted onto the Apennine–Maghrebian chain. This is 
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represented by the Taormina tectonic Line, a transpressive dextral structure, 

striking NW-SE, aged Miocene (Scandone et al., 1974; Lentini, 2000). 

On the other hand, the Upper complex shows low- to high-grade metamorphic 

lithotypes of the Aspromonte Peloritani and Mandanici tectonic units (e.g. 

Lentini and Vezzani, 1975; Cirrincione et al., 2012). In both complexes, the 

crystalline formations are usually overlapped by sedimentary series spanning 

from Early Lias to Olocene. In particular, they contain basal red conglomerates 

(Verrucano facies, Triassic–Early Jurassic), overlain by evaporite and carbonate 

rocks (Lias) surmounted by radiolarites (Middle Jurassic–Cretaceous), which 

are overlain by marls and limestones (Scaglia facies, Eocene). 

From tectonic point of view, eastern Sicily and southern Calabria are part of 

the peri-Tyrrhenian orogenic zone of the Central Mediterranean, which 

developed during the Neogene-Quaternary Africa–Europe collision (Dewey et 

al., 1989; Boccaletti et al., 1990). In particular, the Sicilian collision zone is 

characterized by an active WNW–ESE oriented extension process, which has 

given rise to the roughly N–S oriented Siculo-Calabrian Rift Zone (Monaco and 

Tortorici, 2000; De Guidi et al., 2003), an active fault belt extending from the 

Tyrrhenian side of southern Calabria to the Ionian region of eastern Sicily. In 

particular, the Sicilian sector is characterized by a system of normal faults 

striking NNW–SSE between the eastern flank of Mt. Etna and the Ionian Sea 

offshore of the Hyblean Plateau (Monaco et al., 1997). 

During the Late Quaternary, tectonic uplifting affected eastern Sicily at 

regional scale (Dumas et al., 1978; Ghisetti, 1979; Tortorici et al., 2003). This 

process gave rise to a flight of marine terraces, distributed along the coastal 

areas of the region. In particular, the Taormina region is part of a 40-km long 

segment of the Ionian coast of northeastern Sicily, which experienced a strong 

tectonic uplift. This process affected the footwall of the Taormina Fault, one of 

the main seismogenic regional sources, and resulted in the development of 
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eight orders of marine abrasion platforms carved on Mesozoic carbonate rocks 

in the onshore from Taormina to Messina (Monaco et al., 2002). In this area, 

an averaged long-term uplift-rate of about 1.0–1.1 mm/year during the last 

400  

ky was estimated (Catalano et al., 1995; Catalano and Di Stefano, 1997).  

The above-mentioned Siculo-Calabrian Rift Zone is the main responsible for 

the high seismic activity of the Peloritani region, characterized by the 

recurrence of several destructive historical earthquakes (Postpischl, 1985; 

Boschi et al., 1995a). Along the southern Calabria branch of the rift zone, major 

shocks occurred in 1659, 1783 (Jacques et al., 2001; Galli and Bosi, 2002), 1905 

(Monaco and Tortorici, 2000) and 1908 (Baratta, 1910; Shick, 1977). The latter, 

defined as the most destructive earthquake in recorded European history, 

razed Messina and Reggio Calabria, which are the two main cities on both sides 

of the Messina Straits, and caused a devastating tsunami (Barbano et al., 

2005). On the other hand, slips along the fault segments of eastern Sicily 

caused the strong earthquakes of 1169, 1542, 1693 (Boschi et al., 1995b; 

Bianca et al., 1999), and 1865 (Monaco et al., 1997). 
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3.3. Local geological setting  

Castelmola lies on a carbonate cliff in the southernmost sector of the Peloritani 

Mountains, where several fault segments strongly affect the local geology, 

leading to numerous stratigraphic repetitions of the Longi Taormina Unit (LTU). 

It crops out in a NW-SE oriented belt, about 10 km wide, from the Tyrrhenian 

to the Ionian coasts of Sicily (De Capoa et al., 1997). 

The stratigraphic succession is herein described, from the bottom to the top, 

as the result of a detailed geological survey, which allowed mapping the main 

formations and their mutual geometrical relationship (Figure 5). 

The bottom of the unit is represented by a Variscan epimetamorphic basement 

of sub-greenschist facies mainly composed of metapelites and quartz schists 

with minor metabasites and porphyroids (Atzori et al., 2001). In particular, the 

metapelites group crops out in the northern sector of Castelmola village and is 

characterized by a schistose texture (Figure 6), with abundance of chlorite, 

sometimes showing relicts of fold hinges. On the other hand, metabasites and 

porphyroids, representing the oldest eruptive products of the Paleozoic 

sequence of Peloritani Range (Acquafredda et al., 1991; Trombetta et al., 

2004), crop out along the access road to the village and are characterized by a 

structure from massive to slightly foliated and sometimes are affected by 

intense degree of fracturing (Figure 7). They keep some features of the original 

porphyritic texture, such as phenocrysts of plagioclase, quartz and k-feldspar. 

A late Triassic redbeds succession, known as “Verrucano” (Dueè, 1969), lies 

unconformably on the metamorphic basement. It is exclusively made up of 

clastic rocks, such as red quartzarenites and minor quartzose conglomerates 

and red-purple mudrocks. Within LTU the thickness of this level, occurring in 

lenses, is up to 20 m (Figure 8). From a depositional point of view, Verrucano 

conglomerates represent fluvial deposits in a transitional environment with no 

evidence of stratification. In the study area, it widely crops out along the access 
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road to the village, where the transition with the overlaying carbonate 

succession is marked by an evident change in color, while it is hidden by debris 

and vegetation in the northeastern sector. 

Lower Liassic greyish-white limestones and dolostones in carbonate platform 

facies (Lentini et al., 2006) represent the most relevant portion of the 

sedimentary covers of LTU in the study area, where the maximum thickness 

crops out. At the bottom of this formation, detrital and oolitic limestones and 

yellowish marls (from now on referred to as “limestones”) are recognizable in 

10 to 60 cm thick strata (Figure 9). This succession is affected by a heteropic 

transition to a saccaroid dolostone level, clearly identifiable thanks to its 

coarse and crystalline structure and local pink-yellowish tinges. Dolostone 

outcrops do not show any bedding surface, unlike limestones, and appear 

intensely jointed and with calcite veins filling some fractures (Figure 10). In the 

upper portion of this formation, sometimes, a few silt-sand levels made of 

quartz and cut by an erosion surface occur. 

The top of the local stratigraphic succession is represented by alternated marly 

limestones and marls belonging to the “Medolo” Formation (Figure 11). This 

shows signs of deformation, i.e. folds with associated convergent cleavage fans 

with centimetre-spaced microlithons, and a fossiliferous record of deformed 

Ammonites (Somma et al., 2005). 
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Figure 5: geological map of the Castelmola area, with main urban elements highlighted. 

Numbers in the yellow circles are for the rock mass survey stations: 1) Dol-1; 2) Dol-2; 3) Dol-

3; 4) Dol-4; 5) Med-2; 6) Med-1; 7) Med-4; 8) Med-3; 9) Lim-1; 10) Lim-2; 11) Por-1; 12) Por-

2; 13) Por-3; 14) Por-4. 
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Figure 6: a) semischist outcrop in the northern sector of the study area; b) detail of the 
evident schistosity of this rock. 

 

 

Figure 7: a) porphyroid outcrop along SP10; b) detail of a green-grayish sample. 
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Figure 8: a) red conglomerate in Verrucano facies slong SP10. The geological limit with the 
upper limestone formation is marked by the dashed line; b) detail of a conglomerate sample. 

 

 

Figure 9: outcrop of limestone with horizontal bedding surfaces. 
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Figure 10: intensely jointed dolostone rock mass. 

 

 

Figure 11: marly limestones and marls belonging to the “Medolo” Formation. 
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3.4. Documented landslides  

Several rockfalls have affected the study area over time, causing severe 

damage to structures and infrastructures along with discomfort to the 

population. Information on some of these landslides is available in the national 

databases of AVI (Italian Areas of Vulnerability; AVI Project, 1998) and P.A.I. 

(Hydro-Geomorphologic Setting Plan, 2006). The latter, whose function is also 

to identify high hazard and risk areas, classifies the studied site as a high hazard 

and risk zone. Its documents report 66 instability areas (2.83 km2), 19 of which 

(1.85 km2) are labelled with the highest hazard level.  

In 1952, the local daily newspaper La Gazzetta del Sud published an article on 

landslide movements occurring after heavy rain along the “only way of access 

to Castelmola”. More recently, the main documented events, which 

interrupted SP10, occurred in 1996, 1997 and 1999, when rockfalls from the 

northern carbonate cliff, involving significant volumes of rock, occurred 

(Ferrara and Pappalardo, 2005; Pappalardo et al., 2014). With respect to the 

1999 event, the AVI database reports that a falling boulder crashed into a car, 

fortunately causing no victims. After such episodes, the northern cliff was 

consolidated by means of deep anchors, concrete retaining structures and 

drainage gullies at the base of the slope. 

In 2006, a boulder of about 6 m3 fell close to a group of houses in the 

southeastern sector of the village, in the area herein defined as CA, prompting 

the municipal administration to perform urgent provisional works in order to 

install rockfall protection barriers behind the threatened houses (Pappalardo 

and Mineo, 2015) (Figure 12a). 

In February 2012, two landslides occurred at MRA: the first overcame a 

retaining wall and invaded SP10 near a narrow curve; the second took place 

only 100 m away, destroying the wire mesh protecting the cliff (La Sicilia, 

2012). During the night between 29 February and 1 March 2012, another 
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landslide affected SP10 and threatened the water pipeline serving Taormina 

(available at: http://www.tempostretto.it, 2012). 

On 29 August 2014, three blocks detached from the highest portion of the cliff 

behind the group of houses already threatened in 2006 (Figure 12b). All the 

three blocks rebounding and rolling along the slope bypassed the existing 

rockfall barrier; in particular, one block hit the downstream houses (Figure 

12c), one was slowed down by slope vegetation and one rebounded as far as 

the SP10, causing a temporary disruption of the road. 

On 23 February 2015, two falling blocks at MRA reached the road and stopped 

at a bend, leading to an emergency meeting of the authorities and to a further 

disruption of the infrastructure (Figure 12d-e). 

These are only some of the numerous events occurred in the area; in fact, 

several landslides are not mentioned in the chronicles and most of the 

information regarding past events have been reported orally by local residents. 

Nevertheless, although the traces of such mass movements are easily erased 

by vegetation, several boulders lie on the margin of SP10 and along the slopes 

(average size 0.5×0.4×0.5 m3), evidencing how often rockfalls occur in this area 

constituting a threat to public safety. 
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Figure 12: a) view of CA; b) group of houses at CA after the 2014 rockfall; c) detail of the block 
crushed into a house; d) view of MRA after the 2015 rockfall; e) 2015 blocks on the SP10. 
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CHAPTER 4 

ROCK MASS SURVEY 

4.1. Theoretical background 

Since the rock mass is defined as a complex consisting of the rock matrix and 

of the discontinuities, it mainly behaves as a discontinuous medium, with the 

discontinuities controlling its mechanical attitude. It is therefore essential that 

both the structure of a rock mass and the nature of its discontinuities are 

carefully described in addition to the lithological description of the rock type. 

To this purpose, the International Society for Rock Mechanics (ISRM, 2007) 

provided a collection of recommendations aimed at achieving a degree of 

uniformity in the description of discontinuity in rock masses, as an aid to 

communication between the geologist and the engineer. 

In this paragraph, a description of the field parameters to take into account 

during a rock mass survey, according to ISRM (2007), is provided. 

4.1.1. Quantitative description of discontinuities 

There are two basic levels at which a rock mass survey may be carried out, 

depending upon the amount of detail that is required. The subjective (biased) 

survey is aimed at describing only those discontinuities that are likely to be 

relevant, while the objective (random) survey takes into account all the 

discontinuities intersecting a fixed line (scanline) or falling within a fixed area 

(window) of the slope face. 

Regardless of the chosen approach, it is clear how the main subjects of a rock 

mass survey are the discontinuities. ISRM defines as discontinuity “any 

mechanical discontinuity in a rock mass having zero or low tensile strength”. It 

is the collective term for most types of joints, weak bedding planes, weak 

schistosity planes, weakness zones and faults.  

For each discontinuity selected for the rock mass description, the following 

parameters must be carefully surveyed in field: 
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- Orientation 

It is the dip of the line of the steepest declination measured from 

horizontal, along with the dip direction measured clockwise from the 

true north. This is one of the main parameters controlling the instability 

features of a rock mass, and the shape of the individual blocks. It can be 

measured in field by a compass and a clinometer and the result is 

expressed by three and two digit numbers, for dip direction and dip 

respectively, separated by a line (e.g. dip direction/dip: 220/55). The 

pair of numbers represents the dip vector (Figure 13). 

 

Figure 13: sketch of the orientation of a discontinuity plane 

 

- Spacing 

It is a basic measurement of the distance between one discontinuity and 

another, playing a key role in the size of individual blocks of intact rock 

and, in some cases, even affecting the mode of failure of a rock mass.  

Discontinuity spacing measurements can be separated into the 

following three forms (Wines and Lilly, 2002): 

1) Total spacing:  the distance between two adjacent discontinuities, 

measured along a line of general, but specified, location and 

orientation. 
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2) Set spacing:  the spacing between two adjacent discontinuities from 

a particular discontinuity set, measured along a line of general, but 

specified, location and orientation. 

3) Normal set spacing: the set spacing measured along a line that is 

normal to the mean orientation of a particular set. 

Based on the spacing values, discontinuities can be classified according 

to Table 2. 

 

Table 2: terminology for the description of discontinuities with respect to their spacing 
(ISRM, 2007). 

Description Spacing (mm) 

Extremely close spacing <20 

Very close spacing 20-60 

Close spacing 60-200 

Moderate spacing 200-600 

Wide spacing 600-2000 

Very wide spacing 2000-6000 

Extremely wide spacing >6000 

 

- Persistence 

It is the areal extent or penetration length of a discontinuity within the 

rock mass (Figure 14). It represents one of the most important 

parameters and, at the same time, the most difficult to quantify. It can 

be assessed by observing the discontinuity trace lengths on the slope 

face. In fact, often the discontinuities of one particular set will be more 

continuous than those of the other sets. Therefore, the minor sets will 

tend to terminate either against the primary features or in the solid 

rock, for example. It has been demonstrated that discontinuities 

showing both terminations on the slope face are generally smaller than 
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discontinuities showing one or no termination (Piteau, 1973). 

Nevertheless, the estimation of persistence has to be purposely 

weighted in the direction of conservatism, because it strongly affects 

the shear strength along the discontinuity (Table 3). 

 

Figure 14: persistent joints versus non-persistent joints (after Kim et al., 2007). 

 
 
 

Table 3: terminology for the description of persistence (ISRM, 2007). 

Description Persistence (m) 

Very low persistence <1 

Low persistence 1-3 

Medium persistence 3-10 

High persistence 10-20 

Very high persistence >20 

 
 

-  Roughness 

It is defined as “the surface roughness and waviness relative to the 

mean plane of a discontinuity”. It is an important component of its 

shear strength, especially in the case of unfilled joints. The roughness of 

a discontinuity includes two features: the waviness, which is a large 

scale undulation causing dilation phenomena during shear 

displacement along interlocked and in-contact discontinuities, and the 
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unevenness, representing the small scale roughness, which tends to be 

damaged during shear displacement. In other words, waviness affects 

the initial direction of shear displacement, while unevenness affects the 

shear strength along the plane. 

Roughness can be assessed by linear profiles acquired parallel to the dip 

vector of a discontinuity plane and its description will be limited to 

descriptive terms, from rough to slickensided (Figure 15).  

 

Figure 15: typical roughness profiles and corresponding range of JRC (after Barton and 
Choubey, 1977). 

 

The main purpose in describing such parameter is to facilitate the 

estimation of shear strength, with particular reference to unfilled 
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discontinuities. In fact, shear strength consists of a maximum (peak) or 

minimum (residual) friction angle plus a contribution (i) due to large-

scale waviness, if present. Thus, the shear strength τ (peak or residual) 

depends on such coefficients, according to the following equation (1) 

(Patton, 1996): 

 

� = �′�	tan	(� + )  (eq.1) 

 

where σ’n is the effective normal stress. 

Roughness profiles can be also used to assess another geomechanical 

parameter, known as Joint Roughness Coefficient (JRC), by matching the 

obtained profile to those proposed by Barton and Choubey (1977) 

(Figure 15). This coefficient can be also taken into account for the 

empirical estimation of the peak friction angle (ϕpeak) of a discontinuity, 

through the following equation (2) 

 

����� = ���	����� 	����
� !

" +	�# (eq. 2) 

 

 where JCS is the Joint Compressive Strength following described and ϕr 

is the residual friction angle, which can be estimated by the ratio 

between the Schmidt hammer rebound (r) obtained on the weathered 

joint wall and the rebound (R) obtained on the unweathered rock 

(Barton and Choubey, 1977). 

 

- Wall Strength 

It is the compressive strength of the rock comprising the walls of a 

discontinuity and represents a very important component of shear 

strength and deformability of the rock mass. In fact, rock masses are 
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frequently weathered along the discontinuity surfaces, thus they can 

offer a lower wall strength than the unweathered rock. For this reason, 

a description of the state of weathering, which can range between 

grade I (fresh rock) and VI (residual soil), is an essential part of the 

description of the wall strength.  One of the main application for the 

numerical estimation of the wall strength is the Schmidt Hammer Test. 

It is a speed test, performed by a L-type rebound hammer (Schmidt 

Hammer), which measures the rebound of a spring-loaded mass 

impacting against the surface of the rock. Such rebound depends on the 

hardness of the rock and its numerical value can range from about 10 

to 60. The lowest number applies to weak rocks (uniaxial compressive 

strength UCS < 20 MPa), while the highest number applies to very strong 

and extremely strong rocks (UCS > 150 MPa). The rebound number is 

then employed for the empirical estimation of the compressive strength 

of the rock surface or Joint wall Compressive Strength (JCS), which can 

be easily carried out by relating the rebound number and the dry 

density of tested rock, according to Deere and Miller (1966) (Figure 16). 



Analysis of rock masses belonging to the Apennine-Maghrebide Orogen by means of in situ and 
remote methodologies applied to rockfall risk assessment 

__________________________________________________________________________________ 

 40 

 

Figure 16: correlation chart for Schmidt (L) hammer, relating rock dry density, compressive 
strength, rebound number and hammer orientation (after Deere and Miller, 1966). 

 

- Aperture 

Aperture is the perpendicular distance separating the adjacent rock 

walls of an open discontinuity, in which the intervening space is filled 

with air or water (Figure 17). Discontinuities that have been filled also 

come under this category if filling material has been washed out locally.  
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It is important to remind that the aperture visible in a rock exposure is 

a disturbed aperture, due either to localized surface weathering or to 

the excavation mode. Therefore, measured apertures are likely to be 

larger than those existing within the rock mass. Based on the measured 

values, discontinuities can be grouped into closed, gapped and open 

categories (Table 4).  

 

Table 4: terminology for the description of aperture (ISRM, 2007). 

Aperture Description  

<0.1 mm Very tight 

“Closed” features 0.1-0.25 mm Tight 

0.25-0.5 mm Partly open 

0.5-2.5 mm Open 

“Gapped” features 2.5-10 mm Moderately wide 

>10 mm Wide 

1-10 cm Very wide 

“Open” features 10-100 cm Extremely wide 

>1 m Cavernous 

 

- Filling 

It is the material separating the adjacent rock walls of a discontinuity 

and that is usually weaker than the parent rock. Typical filling materials 

are sand, silt, clay, breccia, gouge, quartz and calcite veins. The 

perpendicular distance between the adjacent rock walls is defined as 

width of the filled discontinuity (Figure 17). Due to the enormous 

variety of occurrences, filled discontinuities display a wide range of 

physical-mechanical behavior, with particular reference to their shear 

strength, deformability and permeability.  
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For each filled discontinuity, width, weathering grade, mineralogy, 

water content and particle size have to be evaluated. The detail of 

presentation of results depends on the importance of the individual 

discontinuity (or set) to the project as a whole. 

 

Figure 17: Sketch of discontinuities with different aperture and filling (after ISRM, 2007) 

 

- Seepage 

This term indicates water flow and free moisture visible in individual 

discontinuities or in the rock mass as whole. Water seepage results 

mainly from flow through water conducting discontinuities and its rate 

is proportional to the local hydraulic gradient. Based on the seepage 

rate and on the presence of filling material, discontinuities can be 

described according to 6 classes (Table 5). 

Table 5: terminology for the description of seepage (ISRM, 2007). 

Seepage rating Description 

I Very tight and dry discontinuity. No possible water flow. 

II Dry discontinuity with no evidence of water flow. 

III Dry discontinuity with evidence of water flow. 

IV Damp discontinuity, but no free water present. 

V Seepage present, occasional drops of water. 

VI Continuous flow of water. 
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- Number of sets 

This can be considered one of the dominant features of rock slope 

stability and it is defined by grouping discontinuities with respect to 

their mean orientation. Such procedure will be discussed in detail in 

paragraph 4.1.2. 

- Block size 

Block size is an extremely important indicator of rock mass behavior. It 

is up to the spacing, the number of sets and the orientation and 

persistence of discontinuities. Rock masses composed of large blocks 

tend to be less deformable and more suitable for engineering stabilizing 

works. On the other hand, a small block size could cause the potential 

failure mode resembling a soil. 
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4.1.2. Graphical representation of geostructural data through 

stereographic projection 

Once all the field data are retrieved, the analysis of the orientation and 

distribution of discontinuities is required, in order to achieve a model of the 

geostructural setting of the rock mass. This is carried out by representing the 

three-dimensional orientation data in two dimensions through the 

stereographic projection. Such procedure allows removing one dimension 

from consideration, so that lines or points can represent planes, and points can 

represent lines. Nevertheless, stereographic projections do not allow 

representing the position or size of the discontinuity, as they take into account 

only angular relationships between lines and planes. 

Such projections consist of a reference sphere showing a horizontal equatorial 

plane and an orientation fixed towards North. All the geostructural features 

(planes and lines) with specific plunge and trend are positioned, in an 

imaginary sense, so that the axis of the feature passes through the center of 

the reference sphere. The intersection of the feature with the lower half of the 

reference sphere defines a unique line on the surface of the reference 

hemisphere. For a plane, such intersection is a circular arc called “great circle” 

(Figure 18a), while for a line it is a point (Figure 18b). Otherwise, an alternative 

way of representing the orientation of a plane is the pole to the plane, which 

is defined as the point on the surface of the reference sphere that is pierced 

by a radial line in a direction normal to the plane (Wyllie and Mah, 2004). This 

is a valuable way to represent a plane, because a single point can represent its 

complete orientation in the space (Figure 18c-d).  

The two types of stereographic projections are the polar and equatorial 

schemes. In rock mechanics, only the equatorial net is employed, because the 

polar projection allows plotting only poles (Figure 19). 
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Figure 18: stereographic representation of planes and lines on lower hemisphere of a 
reference sphere (modified after Wyllie and Mah, 2004): a) plane projected as great circle; 
b) isometric view of a line (plunge and trend); c) plane projected as a great circle and 
corresponding pole; D) line projected as a pole. 
 

 

 
Figure 19: polar and equatorial projection of a sphere. 
 

 

All natural discontinuities, whose orientation data are plotted on stereograms, 

are characterized by variable orientations that result in scatter of the pole 
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plots. Therefore, it can be difficult to distinguish poles belonging to different 

sets, especially when a certain number of discontinuity systems affect the rock 

mass. For this reason, the statistical processing of plotted data is a common 

practice, in order to group all the surveyed discontinuities into sets for the 

proper analysis. Such statistical procedure is named “contouring” and it is 

aimed at analyzing mean and maximum pole concentrations, to visualize the 

clustering of orientation data not immediately evident from the pole plot. The 

contour can be calculated, for example, by the Fisher distribution method 

(Fisher, 1953), and represents an interval of probability (in percent) of pole 

occurrence within a specified angular distance of a given orientation. In this 

way, the main discontinuity systems are defined and the most representative 

plane for each set can be plotted for further specific analyses (Figure 20).  

 

 
Figure 20: example of a contoured plot of geostructural data with great circles corresponding 
to mean orientation of bedding and two orthogonal joint sets, and lines of intersection 
between planes. 
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4.1.3. Graphical representation of geostructural data through joint 

rosettes (ISRM, 2007) 

Another method of plotting and presenting a large number of orientation 

measurements in a qualitative manner is by means of joint rosettes. In this 

case, data are plotted on a simplified compass rose, marked from 0° to 360°, 

with radial lines generally at 10° intervals. The number of observations are 

represented along the radial axes, using numbered concentric circles. The 

resulting strike “petals” have mirror images about the center of the rosette 

(Figure 21). 

Such a representation is very useful to evaluate the main direction of 

discontinuities, which are usually related to regional tectonic systems. On the 

other hand, the rosette diagrams tend to misrepresent some data. In fact, large 

concentrations are exaggerated, while small concentration are suppressed, 

due to the fact that areas in each angle sector vary with the square of the radial 

coordinate, whereas in a true histogram the areas of each bar or sector should 

vary with the frequency and not with its square. 

 

 

Figure 21: example of a rosette plot, showing a high frequency of NE-SW systems. 
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4.2. Surveyed rock masses 

According to ISRM recommendations (ISRM, 2007), geostructural and 

geomechanical surveys were carried out at 14 measurement stations (Figure 

5), with particular reference to the intensely fractured rock masses threatening 

structures and infrastructures at CA and MRA. In particular, 4 stations were 

placed at dolostone rock masses (from now on referred to as Dol), 2 at 

limestone outcrops (Lim), 4 at porphyroid rock masses (Por) and 4 at Medolo 

outcrops (Med).  

Discontinuity systems were distinguished with respect to their orientation, 

according to the contour method based on the Fisher distribution (Fisher, 

1953), and named according to their persistence value using the letter K for 

persistence up to 10 m and R for persistence >10 m.  

4.2.1. Dol-1 Station 

The measurement station was placed at a sub-vertical slope in the northern 

sector of the study area. The slightly weathered rock mass is crossed by 4 

discontinuity systems, mainly striking NE-SW and NW-SE according to the 

regional tectonic setting (Figure 22). These are both open (K1 and K2) and 

closed (K3 and K4), sometimes filled with soft weathered material, and show 

spacing values ranging between 20 and 600 cm. JRC values are between 4 

and 12, while JCS (calculated considering a density of 27 kN/m3 for 

dolostones)  from 33 to 56 MPa (Table 6).  
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Table 6: main features of discontinuities surveyed at Dol-1 station (slope face 160/87). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS 
(MPa) 

K1        
(085/79) 

200-600 3-10 2.5->5 8-10 Soft Damp 56 

K2       
(307/79) 

20-60 3-10 2.5->5 8-10 Soft Damp 53 

K3       
(219/88) 

20-60 3-10 <0.1 10-12 None Damp 41 

K4      
(210/49) 

20-60 1-3 <0.1 4-6 None Damp 33 

 
 
 
 

 
Figure 22: Dol-1 rock mass and contour plot of the surveyed discontinuities. 
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4.2.2. Dol-2 Station 

The rock mass taken into account herein shows a complex setting from the 

geostructural point of view. In fact, it is fractured by five discontinuity sets with 

a generally close spacing, which cause a great fragmentation of the rock mass 

into small blocks with average size of some cubic centimeters. The slope, 

located in the close proximity of a fault belonging to the South-Tyrrhenian 

system, was particularly hard to survey because of the great amount of joints 

and the presence of some crushed portions. Discontinuity surfaces were 

slightly weathered and sometimes showed striations caused by possible 

tectonic movements. Although there is a prevalence of systems striking N-S 

(Figure 23), according to the direction of a fault segment surveyed eastward, 

the average orientation of discontinuities is comparable to those surveyed at 

Dol-1.  

 
 

Table 7: main features of discontinuities surveyed at Dol-2 station (slope face 040/87). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS 
(MPa) 

K1     
(108/59) 

2-20 <1-10 1-5 4-6 None Damp 41 

K2     
(352/39) 

2-20 <1 <0.1 4-6 None Damp 31 

K3      
(193/68) 

2-20 <1 1-5 4-6 None Damp 35 

K4      
(274/61) 

2-20 <1 1-5 6-8 None Damp 33 

K5     
(039/50) 

2-20 <1-10 <0.1 2-4 None Damp 76 
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Figure 23: a) Dol-2 rock mass and contour plot of the surveyed discontinuities; b) particular 
of an intensely fractured sector; c) striations occurring at some planes. 

 
 

4.2.3. Dol-3 Station 

This survey station is placed at a 10 m-high rock slope (dip direction/dip 

056/65), which is characterized by an intense degree of fracturing (Figure 24a). 

Five main discontinuity sets cross the rock mass with a generally close spacing, 

leading to a great fragmentation of the rock (Figure 24b). Discontinuities are 

mostly filled with soft material, even though some fractures belonging to K1 
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system hold hard material, probably calcite originated by chemical dissolution 

(Figure 24c). Spots of vegetation occur along the slope, index of potential 

water circulation in the rainy season.  

Table 8: main features of discontinuities surveyed at Dol-3 station (slope face 056/65). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling 
Hydraulic 
condition 

JCS 
(MPa) 

K1     
(122/57) 

2-20 <1 1-5 10-12 Hard  Damp 39 

K2     
(196/72) 

2-20 <1 0.1-1 8-10 None Damp 33 

K3      
(282/57) 

2-20 <1 1-5 8-10 Soft Damp 35 

K4      
(046/50) 

2-20 <1-10 1-5 10-12 Soft Damp 33 

K5     
(247/46) 

2-20 <1 1-5 6-8 Soft Damp 35 

 

 

 

 
Figure 24: a) Dol-3 rock mass and contour plot of the surveyed discontinuities; b) particular 
of an intensely fractured sector; hard material filling K1 set. 
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4.2.4. Dol-4 Station 

This survey station is located in the southern sector of the study area, in a 

tectonically less disturbed spot. In fact, the rock mass considered herein is at 

the top of the monocline on which Castelmola lies and looks different from the 

rock masses previously described. Five main discontinuity systems were 

surveyed, including a bedding set (Figure 25). They show, on average, a close 

spacing and a low persistence, except for the bedding system whose 

persistence was assumed >20 m (Table 9). 

There is a prevalence of structures striking NE-SW, which is the direction of a 

normal fault segment surveyed in the close proximity of the station. 

 

 

Table 9: main features of discontinuities surveyed at Dol-4 station (slope face 224/67). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS 
(MPa) 

K1      
(139/79) 

6-20 <1 1-5 4-6 Soft  Damp 37 

K2      
(308/83) 

6-20 <1 1-5 8-10 Soft Damp 24 

K3      
(348/79) 

2-6 <1 1-5 14-16 Soft Damp 35 

K4      
(179/85) 

6-20 <1 >5 12-14 Soft Damp 65 

R1        
(026/16) 

20-60 >20 <0.1 12-14 None Damp 62 
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Figure 25: Dol-4 rock mass and contour plot of the surveyed discontinuities. 

 

 

 

4.2.5. Lim-1 Station 

Surveyed limestones crop out in the northern sector of the study area. Rock 

masses are heavily fractured and, sometimes, slightly folded (Figure 26). In 

this measurement station discontinuities can be grouped into 7 systems 

(Table 10). Seven sets are characterized by a low persistence and variable 

spacing, while the remaining three systems, including the bedding family, are 

more pervasive. The great number of systems surveyed at this rock mass may 

be due to the influence of a close E-W trending normal fault segment. 
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Table 10: main features of discontinuities surveyed at Lim-1 station (slope face 070/80). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS (MPa) 

K1     
(323/77) 

20-60 <1 1-5 6-8 Hard Damp 45 

K2     
(232/50) 

20-60 <1 <0.1 8-10 None Damp 47 

K3      
(035/54) 

6-20 <1 1->5 
10-
12 

Soft Damp 50 

K4                     
(125/80) 

6-20 <1 1-5 8-10 Soft Damp 52 

K5     
(103/59) 

2-6 <1 <0.1 8-10 None Damp 43 

R1       
(300/22) 

2-60 >20 >5 8-10 Soft Damp 48 

K6     
(140/37) 

6-20 1-3 >5 8-10 Hard Damp 45 

 

 

 
Figure 26: Lim-1 rock mass and contour plot of the surveyed discontinuities. 
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4.2.6. Lim-2 Station 

This station is located along a secondary road, running almost parallel to the 

upstream segment of MR (Figure 27). Although it is only few dozen meters 

away from Lim-1, a lower number of discontinuity sets was surveyed. In 

particular, 6 systems, including a bedding set, represent the main geostructural 

features of this rock mass. Spacing ranges, on average, between 6 and 20 cm 

and fractures are often open and filled with soft material. Also in this case, 

discontinuity surfaces are slightly weathered (Table 11). 

 

Table 11: main features of discontinuities surveyed at Lim-2 station (slope face 087/72). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS 
(MPa) 

K1      
(126/53) 

6-20 <1 >5 8-10 Soft Damp 33 

K2      
(306/80) 

6-20 <1 1-5 8-10 Soft Damp 45 

 K3      
(024/79) 

6-20 <1 1-5 6-8 None Damp 35 

 K4      
(213/72) 

6-20 <1 <0.1 10-12 None Damp 35 

 K5     
(352/84) 

6-20 <1 >5 8-10 Soft  Damp 33 

 R1       
(264/19) 

6-20 >20 >5 8-10 Soft Damp 59 
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Figure 27: Lim-2 rock mass and contour plot of the surveyed discontinuities. 

 
 

4.2.7. Por-1 Station 

Por-1 rock mass is located along the SP10 road, close to the Castelmola 

entrance. The rock mass is about 8 m high and shows an intense degree of 

fracturing and a slight-to-moderate weathering. From the geostructural point 

of view, 6 discontinuity systems were surveyed with variable spacing and 

opening. Persistence is generally low, except for a sub-horizontal set (R1), 

crossing the rock mass with centimetric to metric spacing (Table 12). The 

rosette diagram shows a preferential striking NNW-SSE and N-S, which can be 

due to a nearby N-S trending normal fault putting in lateral contact the 

crystalline basement with the sedimentary units (Figure 28).  
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Table 12: main features of discontinuities surveyed at Por-1 station (slope face 340/85). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS 
(MPa) 

K1     
(253/60) 

20-60 <1 >5 4-6 Soft Damp 69 

K2      
(180/17) 

6-20 <1 1-5 8-10 None Damp 59 

K3      
(331/40) 

6-20 <1 >5 
10-
12 

None Damp 69 

K4     
(056/54) 

60-200 <1 1-5 4-6 None Damp 50 

K5     
(099/68) 

6-20 1-3 >5 4-6 Hard Damp 39 

R1       
(282/15) 

60-200 >20 >5 0-2 Soft Damp 50 

 

 

 

Figure 28: Por-1 rock mass and contour plot of the surveyed discontinuities. 
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4.2.8. Por-2 Station 

This station is placed at the same rock mass previously described, moving 

towards the village (Figure 29). The geostructural setting is very similar to Por-

1, with 6 systems characterized by variable spacing and opening (Table 13).   

Table 13: main features of discontinuities surveyed at Por-2 station (slope face 025/85). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS 
(MPa) 

K1     
(135/20) 

20-60 <1 <0.1 8-10 None Damp 35 

K2     
(117/59) 

6-20 <1 1-5 4-6 Soft Damp 48 

K3     
(173/71) 

6-20 3-10 >5 8-10 Soft Damp 33 

K6     
(270/40) 

6-20 3-10 1-5 8-10 Soft Damp 35 

K4      
(070/80) 

6-20 1-3 1-5 8-10 Soft Damp 59 

K5      
(022/46) 

6-20 1-3 <0.1 8-10 None Damp 43 

 

 

Figure 29: Por-2 rock mass and contour plot of the surveyed discontinuities. 
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4.2.9. Por-3 Station 

Por-3 intensely jointed rock mass is placed along a secondary street linking MR 

to the pedestrian track at CA. Six fracture systems cross the rock slope(Figure 

30), which appear intensely jointed and slightly weathered. Fractures are often 

open and filled with soft material (Table 14). 

 

Table 14: main features of discontinuities surveyed at Por-3 station (slope face 022/78). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS 
(MPa) 

K1                  
(081/51) 

6-20 <1-3 1-5 6-8 Soft Damp 56 

K2      
(327/71) 

6-20 <1 1-5 6-8 None Damp 48 

K3     
(240/48) 

6-20 <1 1-5 
10-
12 

Soft Damp 33 

K4     
(359/64) 

20-60 <1 <0.1 6-8 None Damp 45 

K5     
(158/67) 

2-6 <1 1-5 4-6 Soft Damp 25 

K6      
(271/76) 

2-6 <1 1-5 4-6 Soft Damp 33 

 

 

Figure 30: Por-3 rock mass and contour plot of the surveyed discontinuities. 
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4.2.10. Por-4 Station 

This station is located along the SP10 road at CA, close to the end point of 

several boulders fallen from the cliff. Seven main discontinuity systems, with 

smooth and slightly weathered surfaces, were surveyed (Figure 31). When 

fractures are open, they hold soft and weathered filling material (Table 15).  

 

Table 15: main features of discontinuities surveyed at Por-4 station (slope face 098/62). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS 
(MPa) 

K1     
(056/68) 

2-6 <1 <0.1 4-6 None Damp 80 

K2     
(254/63) 

6-20 <1 <0.1 10-12 None Damp 37 

K3      
(214/50) 

6-20 <1 1-5 6-8 Soft Damp 37 

K4                    
(086/34) 

6-20 <1 <0.1 6-8 None Damp 72 

K5     
(304/48) 

2-6 1-3 <0.1 6-8 None Damp 41 

K6     
(336/69) 

6-20 1-3 1-5 2-4 Soft Damp 59 

K7       
(151/39) 

6-20 3-10 1-5 2-4 Soft Damp 59 
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Figure 31: Por-4 rock mass and contour plot of the surveyed discontinuities. 
 
 
 

4.2.11. Med-1 Station 

The rock mass taken into account herein is located behind the cemetery of 

Castelmola and it is the most representative outcrop of Medolo formation in 

this sector (Figure 32). Five main systems were surveyed, with spacing 

ranging between 2 and 60 cm (Table 16). In particular, the lowest value is 

shown by the bedding surface, which is closely spaced and gives the rock 

mass the aspect of a pile of paper sheets.  
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Table 16: main features of discontinuities surveyed at Med-1 station (slope face 180/80). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS 
(MPa) 

K1                                          
(135/73) 

6-20 <1 1-5 6-8 Soft Damp 23 

K3      
(214/87) 

2-6 <1 <0.1 6-8 None Damp 25 

K4      
(083/62) 

6-20 <1 1-5 8-10 Soft Damp 29 

K5     
(347/85) 

20-60 <1 0.1-1 12-14 Hard Damp 29 

R1             
(266/25) 

2-20 >20 1->5 12-14 Soft Damp 33 

 

 

 

Figure 32: Med-1 rock mass and contour plot of the surveyed discontinuities. 
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4.2.12. Med-2 Station 

This measurement station is the northernmost outcrop surveyed for this study. 

It is located along the secondary street running parallel to the SP10 road, 

immediately after the fault segment putting in lateral contact Medolo and 

Limestones. Five main discontinuity sets were surveyed (Table 17). The rock 

mass looks similar to Med-1, especially due to the presence of a closely spaced 

bedding system (Figure 33). There is a prevalence of E-W trending fractures, 

according to the direction of the fault segment above mentioned. 

 

Table 17: main features of discontinuities surveyed at Med-2 station (slope face 140/70). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS (MPa) 

K1     
(064/56) 

6-20 <1 1-5 8-10 Hard Damp 41 

K2     
(167/82) 

6-20 <1 0.1-1 8-10 Hard Damp 29 

K3      
(001/72) 

6-20 <1 0.1-1 8-10 Hard Damp 21 

K4      
(130/58) 

6-20 <1 <0.1 6-8 None Damp 28 

R1       
(261/41) 

2-20 >20 >5 6-8 Soft Damp 25 
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Figure 33: Med-2 rock mass and contour plot of the surveyed discontinuities.  

 

 

4.2.13. Med-3 Station 

As for Dol-4, this rock mass is located in the southern sector of the study 

area, at the top of the monocline on which Castelmola lies. Surveyed 

discontinuities can be grouped into five main sets including four joint clusters 

and a bedding system (Table 18). Moreover, the rock mass is crossed by an 

intraformational fault (herein referred to as R2) showing a ∼30-50 cm throw 

(Figure 34). It looks like a compressive structure, probably relatable to the 

thrust cropping out northwards and putting in tectonic contact limestones on 

Medolo. 
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Table 18: main features of discontinuities surveyed at Med-3 station (slope face 133/75). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS 
(MPa) 

K1     
(072/75) 

20-60 <1 >5 14-16 Soft Damp 28 

K2     
(190/70) 

6-20 <1 1-5 14-16 Soft Damp 32 

K3      
(279/80) 

20-60 <1 1-5 8-10 Hard Damp 20 

R1       
(333/13) 

6-20 >20 >5 16-18 Soft Damp 32 

R2        
(049/35) 

60-200 >20 >5 4-6 Hard Damp 21 

 

 

 

Figure 34: Med-3 rock mass and contour plot of the surveyed discontinuities. 
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4.2.14. Med-4 Station 

This station is placed at a higher elevation with respect to Med-3, between 

the thrust above mentioned and a E-W trending normal fault. Although the 

accessibility was not easy and widespread vegetation occurs along the slope, 

six main systems were surveyed (Figure 35). Exposed surfaces are slightly 

weathered and dry. The less persistent sets show very low apertures and no 

filling, while the most pervasive discontinuities are often filled with hard 

material (Table 19).  

 

Table 19: main features of discontinuities surveyed at Med-4 station (slope face 245/60). 

Discontinuity 
system 

Spacing 
(cm) 

Persistence 
(m) 

Aperture     
(mm) 

JRC Filling  
Hydraulic 
condition 

JCS 
(MPa) 

K1     
(175/80) 

6-20 <1 <0.1 
10-
12 

None Damp 36 

K2      
(018/54) 

6-20 <1 <0.1 6-8 None Damp 26 

K3     
(236/71) 

6-20 <1 <0.1 8-10 None Damp 32 

R1       
(301/31) 

2-60 >20  1-5 8-10 Soft Damp 22 

K4     
(132/82) 

6-20 1-3 >5 8-10 Hard Damp 25 

K5      
(084/69) 

6-20 1-3 1-5 6-8 Hard Damp 28 
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Figure 35: Med-4 rock mass and contour plot of the surveyed discontinuities. 

 

4.3. Statistical presentation of results 

After having analyzed field data for each surveyed rock mass, a statistical 

grouping of the most relevant geomechanical parameters has been 

performed, in order to highlight differences and similarities between the 

lithologies taken into account. Data are presented below through doughnut 

charts, which allow displaying statistics in rings representing data series. Each 

ring is 100% of the considered parameter and it is divided into labels related 

to a fixed range of values. 

Figure 36 shows that, in general, a very close to close spacing affects most of 

the surveyed rock masses. In particular, dolostones are characterized by the 

closest spacing values, probably due to the brittle behavior offered by such 

rock type (Pappalardo, 2015). At Limestones, Porphyroids and Medolo 

formation a close-to-moderate spacing prevails. Furthermore, dolostone 
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outcrops are affected also by 20% of very wide spacing, while for the other rock 

types the percentage is lower, although they show also very wide features.  

With reference to the persistence parameter, all the lithologies are affected by 

a prevalence of low persistent discontinuities, because of the high degree of 

fracturing subdividing the rock masses into small rock volumes. On the other 

hand, Limestones and Medolo formation have the highest percentage of very 

high persistence, because of the bedding surfaces, widely affecting such rock 

types. 

Most of the discontinuities are open and filled with soft material, which is likely 

to come from the weathering processes affecting the rocks (Figure 37). Only a 

low percentage of fractures is closed or very tight, regardless of the lithology. 

Moreover, half of the discontinuities surveyed at dolostone and porphyroid 

rock masses do not show any filling, while a relevant percentage of fractures 

in all the sedimentary rock masses is filled with hard material, usually calcite, 

due to chemical dissolution processes. This is a relevant consideration, 

because empty fractures are preferential way of drainage for water, which, at 

the same time, enhances chemical processes of interaction between rock and 

water itself, thus leading to dissolution and weathering phenomena.  
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Figure 36: doughnut charts showing the statistical percentages of spacing and persistence 

values for each surveyed lithology. 
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Figure 37: doughnut charts showing the statistical percentages of aperture and filling values 

for each surveyed lithology. 
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CHAPTER 5 

FAILURE PATTERNS AND KINEMATIC ANALYSIS 

5.1. Failure patterns of rock slopes 

Hard rock is usually so strong that failure under gravity alone is possible only if 

discontinuities permit easy movement of discrete blocks (Goodman, 1989). In 

jointed rock slopes the orientation of discontinuities gives rise to the exhibition 

of a large variety of failure modes along weakness features. The identification 

of such patterns is not always an easy practice in the field, especially in 

complex contests where several types of geological structures may be present. 

Nevertheless, failure modes can be outlined by examining pole plots after a 

rock mass survey, based on the orientation of discontinuities and the slope 

face.  There are four basic patterns that can be identified by the stereonet 

analysis (Figure 38), even if in actual jointed rock slopes, a series of 

combination between such patterns can also take place (Goodman and Bray, 

1976):  

- Planar failure (Figure 38a), occurring at slopes containing persistent 

joints dipping out of the slope face and, at the same time, striking 

parallel to the face. In this case, a rock block can rest on an inclined 

weakness plane that “daylights” into free space. The movement of such 

block can occur along both the surface of sliding and the lateral margins 

of the slide as well.  

- Wedge failure (Figure 38b), affecting a block enclosed between two 

intersecting discontinuities. Slip can occur without any topographic or 

structural release feature, if the line of intersection of the two 

discontinuities “daylights” into free space. A wedge can slide either 

along the line of intersection of the two discontinuities or along one of 

the two planes characterized by a more favorable direction for sliding 

than the line of intersection.  
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- Toppling failure (Figure 38c), occurring at strong rock containing 

discontinuities dipping steeply into the face, thus giving rise to inclined 

rock layers. In this case, each layer tends to bend downhill under its own 

weight. If the toe of the slope is allowed to slide or overturn, flexural 

cracks will form in the layers above, liberating a large mass of rock.  

- Circular failure (Figure 38d), affecting very weak or closely fractured 

rock masses with randomly oriented discontinuities. Such rocks behave 

as a “pseudocontinuous” matter, because they show so many 

combination of failure modes that there is always a locus along 

preexisting cracks corresponding to the most critical failure locus of a 

continuous material. Slopes in such rocks can be analyzed using soil 

mechanics approaches (Hoek and Bray, 1977). 
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Figure 38: main failure patterns (after Wyllie and Mah, 2004): a) plane failure, b) wedge 
failure, c) toppling failure, d) circular failure. 
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5.2.  Kinematic analysis 

The term “kinematics” refers to the motion of a body with no reference to the 

forces driving it (Goodman, 1989). In real cases, several rock cuts are stable on 

steep slopes even though they are affected by steeply inclined planes of 

weakness with low strength; this happens when there is no freedom for a block 

to move along the weak surface because other ledges of intact rock are in the 

way, working as mechanical blockage. Should such blockage be removed by 

any natural or artificial cause, the slope would fail immediately.  

Therefore, to carry out a kinematic analysis it is essential to consider also the 

shear strength along the sliding surface and it must be assumed that the shear 

strength comprises only friction and that the cohesion is zero.  

For this reason, kinematic analysis is a preliminary procedure aimed at giving 

an indication of the stability of a rock mass through the analysis of stereonets 

(e.g. Markland, 1972; Hocking, 1976; Matheson, 1983). Nevertheless, while 

such analysis provides a good indication of stability conditions, it does not 

consider external forces such as water pressures or reinforcement features, 

which can have a significant effect on stability. Therefore, the usual design 

procedure is to use kinematic analysis to identify potentially unstable 

mechanisms, followed by detailed stability analysis of peculiar blocks. 

5.2.1. Planar failure 

This type of failure is possible according to three conditions: 

1)  the potential failure plane “daylights” on the slope face, i.e. it dips at a 

flatter angle than the face (ψa < ψf );  

2) the dip direction of the discontinuity does not differ from the dip 

direction of the face by more than about 20° (|αa-αf| < 20°); 

3) the angle of the discontinuity plane is greater than the friction angle of 

the sliding surface (ψa > ϕ). 
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According to this, it is essential to plot on a stereonet the great circle of the 

slope face and the poles of the surveyed discontinuities, along with the 

daylight envelope, lateral limits and friction cone. In particular, the daylight 

envelope is the area within which all poles of the planes that daylight fall; the 

lateral limits are fixed to delimit the ±20° margin of difference between the 

direction of the face and the potentially unstable discontinuities; the friction 

cone encloses the area within which all poles belonging to planes dipping at 

angles lower than ϕ fall (Figure 39). All the poles enclosed within these three 

features are unstable from the kinematics point of view. 

 

Figure 39: representative stereonet showing the relevant elements for the kinematic analysis 
of planar failure (Rocscience Dips 6.0 manual).  

 

5.2.2. Toppling failure 

For a toppling failure to occur, the conditions are listed as follows: 

1) the potentially unstable discontinuity has to show an opposite dip with 

respect to the slope face; 

2) the dip direction of the discontinuity dipping into the face must be 

within about 30° of the dip direction of the face (|αa-αf| < 30°); 
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3) the direction of the applied compression has to make an angle greater 

than ϕ with the normal to the discontinuity. 

In this case, the envelope defining the orientation of the potentially unstable 

planes lies at the opposite side of the stereonet from the sliding envelopes and 

there will be a further feature to plot called “slip limit”, which is a plane 

defining the critical zone for toppling (Figure 40). All poles falling within the 

critical zone are unstable from the kinematics point of view.  

 

Figure 40: representative stereonet showing the relevant elements for the kinematic analysis 
of toppling failure (Rocscience Dips 6.0 manual).  
 

5.2.3. Wedge failure 

The kinematic analysis for wedge failure can be carried out in a similar manner 

to that of plane failures. In this case, the pole of the line of intersection of the 

two discontinuities is plotted on the stereonet and sliding is possible if the pole 

daylights on the face (ψi < ψf ). The direction of sliding of kinematically 

permissible wedges is less restrictive if compared to that of planar failures, 

because there are two planes acting as release surfaces. Therefore, the 

daylight envelope for the line of intersection is wider than the envelope for 
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plane failures and encloses all poles representing lines of intersection whose 

dip directions lie in the plane of the slope face (Figure 41). 

On the other hand, instead of plotting poles of the lines of intersection, a more 

expeditious way to carry out a wedge kinematic analysis is to plot the great 

circles of the intersecting planes along with the friction cone representing the 

friction angle along planes. In this case, two critical zones are defined: the 

primary critical zone is the crescent shaped area inside the plane friction cone 

and outside the slope plane (red area in Figure 42). Intersections falling in this 

zone represent wedges, which satisfy frictional and kinematic conditions for 

sliding along the intersection line. The secondary critical zone (yellow area in 

Figure 42) is the area between the slope plane and a plane (great circle) 

inclined at the friction angle. Critical intersections falling in this zone always 

represent wedges, which slide on one joint plane. In this region, the 

intersections are actually characterized by a lower angle than the friction 

angle, but sliding can take place on a single joint plane, which has a dip vector 

greater than the friction angle itself. 

 

 

Figure 41: combined kinematics and simple stability analysis using friction cone concept: (a) 
friction cone in relation to block at rest on an inclined plane (i.e. φ > ψf); and (b) stereographic 
projection of friction cone superimposed on “daylighting” envelopes (modified after Wyllie 
and Mah, 2001).  
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Figure 42: representative stereonet showing the relevant elements for the kinematic analysis 
of wedge failure (Rocscience Dips 6.0 manual).  
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5.3. Analysis of surveyed data 

The analysis of stereograms was carried out with the aim of achieving a 

preliminary knowledge on the stability condition of each surveyed rock mass, 

with particular reference to every discontinuity set. For a simple and neat 

representation of data, discontinuities have been plotted as poles for the 

analysis of plane and topple patterns, and as great circles for the kinematic 

analysis of wedges. Friction angles were assumed according to Barton and 

Chaubey (1977). 

5.3.1. Dolostones 

All the surveyed rock masses show a strong predisposition to fail through 

wedge sliding, followed by planar sliding and rare topples (Figure 43). In 

particular, Dol-1 shows instability conditions for planar failures with respect to 

a few random discontinuities and some belonging to K3 set. Toppling is likely 

to involve only some planes of K2 system, while wedge sliding may affect K1, 

K3 and K4. In this case, wedges are usually formed by the intersection of two 

discontinuity planes. It has to be underlined that such setting is related to one 

of the less fractured rock slopes.  

On the other hand, Dol-2 station is characterized by critical stability conditions 

with respect to K2 and K5 sets (planar failure), K3 and K4 (toppling failure). The 

intense degree of fracturing affecting such slope gives rise to a wide and 

complex configuration of wedge patterns. In fact, unstable wedges can be 

formed by the intersection of two or three discontinuity planes. Although such 

failure patterns will be discussed in detailed in the following sections, it is clear 

how precarious the stability of this rock mass is. 

A similar setting characterizes Dol-3, which is located close to the previous 

station. Planar sliding would involve K6 and K4 systems, while toppling would 

slightly affect K2, K3 and K5. Even in this case, the high degree of fracturing 

leads to the formation of unstable wedges by K1, K4 and K6 sets.  
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Dol-4, located in a different spot of the study area, seems not to be affected 

by relevant criticalities from the plane and topple failures points of view, 

although an isolated pole falls within the instability area for planar sliding. 

Wedge is the most probable failure pattern, with particular reference to the 

symmetric intersection between K1 and K2. 
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Figure 43: kinematic analysis for Dolostone outcrops.  
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5.3.2. Limestones 

Limestone outcrops are characterized by a complex geostructural setting, 

which is likely to be the main responsible for the evident instability affecting 

such slopes. In particular, Lim-1 rock mass is affected by a great number of 

scattered poles, which were grouped into 7 discontinuity systems. The large 

number of sets along with the presence of random poles is index of a poor 

quality slope from the mechanical point of view. Planar sliding is mainly 

possible along K3 system, while toppling could involve K2 and some random 

pole. In this perspective, random discontinuities may give rise to local failures, 

which has to be always taken into account. Wedge sliding is possible between 

two or three planes belonging to most of the systems (Figure 44). 

Lim-2 is unstable for planar sliding due to the geometrical attitude of K1 and 

K6; although such sets falls only partly within the critical area, they must be 

considered unstable, because of the slightly variable orientation of the slope 

face. This consideration is valid also for toppling failures with reference to K2 

system. Wedge sliding may occur at the intersection of K1, K3, and K6 (Figure 

44). 
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Figure 44: kinematic analysis for Limestone outcrops.  
 

5.3.3. Porphyroids 

The geostructural setting of porphyroids leads to a high predisposition of slope 

failure through wedge sliding, followed by plane and topple patterns (Figure 

45). As for the above reported intensely fractured lithologies, when the rock 

mass is characterized by numerous discontinuity systems, there is a high 

probability of intersection between them, resulting in potentially unstable 

wedge configurations.  

In particular, the K3 set at Por-1 strikes almost parallel to the slope face, 

leading to a critical plane sliding predisposition. Moreover, the intersection 

between such plane and K1-K3 sets gives rise to the most critical unstable 

feature of the rock mass, represented by asymmetric wedges. On the other 

hand, some poles belonging to K2 set fall within the critical area for topples.  
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A similar setting characterizes Por-2 rock mass, where K3 and K5 can be 

regarded as potentially unstable sets for toppling and planar sliding 

respectively, while K2, K4 and K5 form unstable wedge patterns.   

Por-3 represents the most complex station of the investigated lithology, 

characterized by numerous unstable intersections between discontinuity 

systems, giving rise to wedges formed by two or three intersecting planes. K5 

and K1-K4 are regarded as unstable sets for toppling and planar failures 

respectively, although they do not fall entirely within a critical area.   

Por-4 is affected by possible planar sliding along K4 and K7 sets and toppling 

at K2 and, probably, K5. The intersection between K1, K4, K6 and K7 forms 

unstable wedges enclosed between two planes.  
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Figure 45: kinematic analysis for Porphyroid outcrops.  



Analysis of rock masses belonging to the Apennine-Maghrebide Orogen by means of in situ and 
remote methodologies applied to rockfall risk assessment 

__________________________________________________________________________________ 

 87 

5.3.4. Medolo 

According to the geostructural setting, also Medolo outcrops are characterized 

by widespread unstable features, due to the unfavorable orientation of some 

discontinuity systems. In particular, Med-1 is affected by a system with the 

same orientation of the slope face, although with a lower dip, representing the 

most critical condition for planar sliding. This system (R2) intersects K1, K2, K3 

and K4 to form unstable wedges whose failure would be probably driven by 

the dip-slope R2 set, thanks to its orientation. Toppling is possible along K5 set 

and some random planes. 

A similar setting affects Med-2, where the dip-slope system is K4, which is 

unstable both for planar and wedge sliding. Toppling would affect K3 system, 

although some poles fall outside the critical area for toppling pattern. 

Unlike the other surveyed rock masses, Med-3 lacks of the dip-slope plane and 

only a few scattered poles fall within or near the critical area for plane sliding. 

K1 and K2 are the only systems giving rise to a symmetric unstable wedge 

pattern, while K3 resulted unstable for toppling. 

Finally, Med-4 shows instability conditions along K3, R1 (planar sliding) and K5 

(toppling) and deserves a specific comment for wedge sliding. In fact, although 

no intersection lines fall within the critical area, wedge failure patterns should 

be evaluated case by case, because some great circles intersect at the edge of 

the instability area (Figure 46). This means that slight variations of the friction 

angle will play a key role for the stability of such feature. 
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Figure 46: kinematic analysis for Medolo outcrops.   
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CHAPTER 6 

GEOMECHANICAL CLASSIFICATION OF ROCK MASSES 

Although sometimes instability problems are confined within specific portions 

of a slope, the study of a rock mass cannot lack of specific consideration on its 

geomechanical attitude. International literature provides several approaches, 

known as classification systems, which allow assigning a quality class to the 

rock mass according to the main parameters measured during the field survey. 

This section provides a general overview on two scientifically relevant 

approaches (i.e. the Rock Quality Designation method and the Rock Mass 

Rating system), which were taken into account herein for the geomechanical 

classification of the surveyed rock masses. 

6.1. The main classification systems 

6.1.1. The Rock Quality Designation 

The Rock Quality Designation index (RQD) was developed by Deere et al. (1963) 

to provide a quantitative estimation of rock mass quality from drill core logs. It 

is defined as the percentage of intact core pieces longer than 100mm in the 

total length of the core.  

Such index is an easy and quick measurement as only core pieces with a certain 

length are included. It is, therefore, frequently applied in core logging and is 

often the only method used for measuring the degree of jointing along a core 

drill hole (Figure 47).  

It is self-evident that RQD is a directionally dependent parameter and its value 

may change significantly, depending upon orientation of the borehole or 

scanline with respect to the discontinuity systems. However, such index has 

been widely used in the rock mechanics for the past years and it is now one of 

the required parameters by the most known geomechanical classifications 

methods for rock masses. 
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According to the RQD value measured in field, the rock mass quality is defined 

as reported in Table 20. In this light, a high RQD value is index of a low fractured 

rock succession, characterized by a good mechanical quality, while an intensely 

fractured rock succession would be affected by very low RQD values. 

 

Figure 47: procedure for measurement and calculation of RQD (after Deere, 1989). 

 
 

Table 20: relation between RQD and the rock mass quality. 

RQD (%) Rock mass quality 

<25 Very Poor 

25-50 Poor 

50-75 Fair 

75-90 Good 

90-100 Very Good 
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6.1.2. The Rock Mas Rating classification system (Bieniawski, 1989)  

In 1976, Bieniawski published the details of a rock mass classification system 

called Rock Mass Rating (RMR). Over the years, this system has been refined 

and the final version (1989) is one of the most reliable classification methods 

in the rock mechanics. This system allows classifying a rock mass, from the 

geomechanical quality point of view, according to 6 parameters: 

A1) Uniaxial Compressive Strength (UCS) of the rock material. 

A2) RQD 

A3) Spacing of discontinuities. 

A4) Condition of discontinuities. 

A5) Groundwater condition. 

A6) Orientation of discontinuities (to take into account only for 

mining purposes). 

Since generally a rock mass can be affected by a certain degree of 

heterogeneity, it should be divided into structural regions to be classified 

separately. The boundaries of such regions are usually defined by a major 

structural feature, such as a fault, or by a change in rock type. Sometimes, 

relevant changes in geostructural features or rock properties, within the same 

rock type, may necessitate the further division of the rock mass into smaller 

structural regions. 

Based on the results of the rock mass survey, a score is assigned to each 

parameter above mentioned by solving proper equations. For expeditious 

computations, the ranges of values reported in Table 21 can be taken into 

account for the assignment of a score to each parameter. Finally, the sum of 

all the resulting scores represents the RMR value.  

Since this research does not involve any mining works, A6 parameter will not 

be considered and the final score can be defined as the basic RMR (RMRb). 
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Based on the final value, the rock mass can be classified according to five 

quality classes are defined, as reported in Table 22.  

 

�$�% = &1 + &2 + &3 + &4 + &5 (eq. 3) 

 

 
Table 21: rating of RMR classification parameters. 

A1 
UCS (MPa) >250 100-250 50-100 25-50 5-25 

score 15 12 7 5 2 

A2 
RQD (%) 90-100 75-90 50-75 25-50 <25 

score 20 17 13 8 3 

A3 
Spacing (cm) >200 60-200 20-60 6-20 <6 

score 20 15 10 8 5 

A4 
Condition 

Rough, 

closed, not 

weathered 

Slight roughness, 

aperture<1mm, 

slight weathering 

Slight roughness, 

aperture<1mm, 

weathered  

Slickensided, 

aperture1-

5mm,filling<5mm 

Smooth, 

aperture>5mm

, filling>5mm 

score 30 25 20 10 0 

A5 
Groundwater Dry  Damp Wet Dripping Flowing 

score 15 10 7 4 0 

 

 

 
Table 22: RMR classes and related geomechanical quality. 

RMR Class Rock mass quality 

100-81 I Very Good 

80-61 II Good 

60-41 III Fair 

40-21 IV Poor  

≤20 V Very Poor 
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The utility of RMRb value resides also on the possibility of employing such value 

for the indirect estimation of the main mechanical parameters of a rock mass. 

In particular, cohesion (kPa), internal friction angle (°) and elastic modulus 

(GPa) can be obtained by the following equations, although several versions 

are available in literature (e.g. Serafim and Pereira (1983); Nicholson and 

Bieniawski (1990); Asef et al. (2000)). 

 

, = 5�$�% (eq. 4) 

� = 0.5�$�% + 5 (eq. 5) 

/ = 2�$�% − 100 (for RMR>50) (eq.6) 

/ = 10(1213��)/5� (for RMR<50) (eq.7) 
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6.2. Geomechanical classification of surveyed slopes 

The Rock Quality Designation was empirically calculated for each rock mass, 

according to Palmström (1982), along two perpendicular scanlines in order to 

intercept all the surveyed discontinuity sets. In particular, Dol-1 is the outcrop 

affected by the best geomechanical quality, showing a RQD value of 85%, thus 

falling within the I class (very good quality). This datum reflects the field 

condition, as this measurement station is characterized by a low number of 

discontinuity systems, if compared to other outcrops of the same rock type, as 

already pointed out in the rock mass survey section. 

Dol-2 and Dol-3 are characterized by a very poor quality, with RQD ranging 

from 5% and 15%. In fact, such rock masses show an intense degree of 

fracturing, and sometimes hold also crushed portions. Dol-4, located in the 

southernmost sector of the study area, lies between classes III and IV, with 

RQD of 42%, therefore it can be classified as a fair/poor quality rock mass. 

Limestones and phorphyroids show a similar fair quality condition, 

represented by RQD ranging between 53% and 55% at limestones and 

between 32% and 57% at porphyroids. Even in this case, Por-3 and Por-2 are 

close to the lower border with the “poor” class. 

Med-1 and Med-2 are affected by a condition similar to Dol-3, while Med-3 

and Med-4, located in the southern sector of the area are affected by a better 

quality, given by RQD values from 46% to 49% (Figure 48). 

RQD values were employed, along with all the other main geomechanical 

parameters retrieved during the field surveys, for the estimation of the RMR 

index.  
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Figure 48: histogram on the RQD values for each surveyed rock mass. 

 

Results (Table 23) show that all the slopes fall in the III class (fair quality), 

according to Bieniawski (1989). One of the most conditioning parameters in 

this classification system is the groundwater condition, whose variation may 

imply a strong reduction of the final score. In this research, the rock mass 

condition was assumed as Damp because of the presence of widespread 

vegetation on the slope face, as well as of slight weathering affecting some 

planes, index of water circulation within the rock mass.  

Moreover, considering that the transition RMR value between classes III and 

IV is 40-41, it is worth noting that Dol-2, Dol-3, Med-1 and Med-2 are very close 

to the Poor class. This is a confirmation of the poor geomechanical quality of 

these slopes, already supposed during the in situ survey, as can be deduced by 

Figure 49. 

According to the equation reported in the previous section, the main 

geomechanical parameters of the rock mass were empirically calculated. 

Besides slight values of cohesion, an interesting consideration concerns to the 

internal friction angle values. In fact, for all the rock mass except Dol-1, they 

do not exceed 30°, which is a low value for rock masses. This is symptomatic 
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of the bad mechanical condition of the rock masses taken into account herein 

and represents an “alarm bell” for a series of potential instability. 

 

 

Figure 49: histogram on the RMR values for each surveyed rock mass. 
 

Table 23: RMR classification scores for surveyed rock masses and related geomechanical 
parameters. 

Station A1 A2 A3 A4 A5 RMRb Class c (kPa) ϕ(°) E (GPa) 

Dol-1 4 19 12 13 10 58 III 290 34 16 
Dol-2 5 3 6 20 10 44 III 220 27 7 
Dol-3 5 3 6 19 10 43 III 215 26 7 
Dol-4 5 9 7 17 10 48 III 240 27 9 
Lim-1 5 11 8 17 10 51 III 255 30 10 
Lim-2 5 11 7 17 10 50 III 250 30 10 
Por-1 5 11 11 15 10 52 III 260 31 10 
Por-2 5 9 9 15 10 48 III 240 29 9 
Por-3 5 7 7 17 10 46 III 230 28 8 
Por-4 5 11 6 17 10 50 III 250 30 10 

Med-1 4 5 7 16 10 42 III 210 26 7 
Med-2 5 5 7 18 10 45 III 225 27 7 
Med-3 5 9 9 13 10 46 III 230 28 8 
Med-4 5 10 7 17 10 49 III 245 30 9 
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CHAPTER 7 

INFRARED THERMOGRAPHY SURVEY 

In the previous sections, the key role played by both the jointing and the 

condition of discontinuities in the stability of rock slopes was discussed, 

highlighting the importance of the in situ survey for the slope modeling. 

Nevertheless, according to the growth of technology, satisfactory outcomes 

are nowadays achieved also through remote surveys, which are often 

considered important support methodologies to the field campaign. In this 

light, looking for an innovative and scientifically interesting approach in the 

rock mass survey, the InfraRed Thermography (IRT) was tested herein as a 

pioneering remote survey methodology to find out what kind of information 

can be retrieved by its application in the study of fractured rock masses. 

The experience and procedures reported in this section are probably the first 

complete international attempt, focused and properly developed for the study 

of the rock mass fracturing (Mineo et al., 2015a; Pappalardo et al., 2016a). 

7.1. The InfraRed Thermography technique 

Electromagnetic radiation travels in waves and spans a wide spectrum from 

very long radio waves to very short gamma rays. This spectrum is divided into 

a number of regions, called “bands”, distinguished only by their wavelength 

(Figure 50). Among these, the Infrared band, lying between the visible and the 

microwave bands, comprises the wavelengths ranging between 0.7 and 1,000 

μm (e.g. DeWitt, 1988; Wolfe and Zissis, 1993). All forms of matter, with 

temperature above the absolute zero, emit thermal radiation as a result of 

thermally excited electron oscillations or transitions within the matter itself; 

its intensity is function of the temperature of the material. Thermal radiation 

occurs in the portion of the spectrum between 0.78 and 1000 μm, including 

parts of the ultraviolet, along with all visible and infrared regions (Figure 50). 
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However, most of the thermal radiation falls in the infrared part of the 

spectrum, so it is not detectable by human eyes. According to the known 

optical principles, the radiation can be deflected, focused with a lens, or 

reflected from surfaces (Hillel, 1998). Based on the amount of energy reflected 

or absorbed by a body, emissivity ranges from 0 (when all the energy is 

reflected) to 1 (when all the energy is absorbed). The last condition is related 

the “black bodies”, which are capable to re-emit 100% of the absorbed energy. 

However, these cases are purely theoretical, since bodies capable to reflect or 

absorb all the radiation do not exist in nature. All the materials have 

intermediate emissivity values and are known as “grey bodies”. 

Mathematically, emissivity is the ratio between the infrared radiation emitted 

by a body and the radiation emitted by a black body at the same temperature.  

According to the Stefan-Boltzman law (eq. 8), the total energy emitted by a 

body (J), across all wavelengths, is proportional to the Stefan-Boltzman 

constant (σ), to the surface temperature of the body (T) to the fourth power 

and to its emissivity (ε) (Hillel, 1998). 

� = 6�75  (eq. 8) 

Based on these concepts, the InfraRed Thermography (IRT) technique allows 

determining the temperature of an object by capturing its emitted infrared 

radiation (Shannon et al., 2005) and subsequently by converting it to 

temperature. The device able to perform such operation is the thermographic 

camera, which generally operates in the range of wavelengths as long as 13-14 

μm and building images using the infrared radiation. The output is a color-

scaled image representing a map of the temperature variation. Each image 

consists of a matrix of pixels whose values are analyzed by softwares allowing, 

among other things, the isolation of specific temperature ranges, the detection 

of thermal anomalies, the measure of a temperature difference between two 
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or more points/pixels, the choice of the most suitable color palette. However, 

the radiation measured by the camera depends not only on the temperature 

of the object, but it also originates from the surrounding environment; this is 

the case of the “parasite radiation”, which is reflected by the object and 

partially absorbed or dispersed by the atmosphere (Prendes-Gero et al., 2013; 

FLIR, 2015).  

 

 

Figure 50: schematic representation of the electromagnetic spectrum (after Pappalardo et 

al., 2016a). 

 

7.2. State of the art on the application of IRT in the geosciences 

The main advantages of IRT reside in its non-destructive application, rapidity 

of execution and absence of contamination risk (Kastberger and Stachl, 2003; 

Liu et al., 2011). Moreover, since it is a remote sensing methodology, it can be 

used for a great variety of purposes and for the investigation of several 

phenomena spanning many fields, such as military, industry, medicine, and 

science (Hudson, 1969). 

Currently, infrared imaging system is being applied in the medical field (Meola 

and Carlomagno, 2004), botany (Wisniewski et al., 1997), environmental 

pollution (Cehlin et al., 2000), to monitor mechanical equipment at electric 
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power plants and to investigate convective heat fluxes over complicated body 

shapes (Shannon et al., 2005). In civil engineering and architecture, it proved a 

useful technique for the detection of building defects, such as thermal bridges, 

air leakage or moist spots, particularly in the context of energy conservation 

(e.g. Grinzato et al., 1998; Titman, 2001; Tavukcuoglu et al., 2005; Cluni et al., 

2015). In earth sciences, IRT is applied also to monitor high-temperature 

volcanic gases arising from the magmas (Furukawa, 2010), while in engineering 

geology it allows the detection of crevasses and cave openings along a slope 

by exploiting the difference of temperature between the inner part of the void 

and the external environment (Rinker, 1975). It was also used for mapping 

open fractures along unstable rock slopes of Czech Republic and Austria (Baron 

et al., 2012), while Teza et al. (2012) proposed a method based on the analysis 

of thermal images taken during the night cooling of a rock cliff. Wu et al. (2005) 

applied this technique to assess the integrity of rock mass behind a shotcreted 

slope and Mineo et al. (2015b) used IRT as a complementary technique to 

identify potential source areas for rockfalls along an unstable slope in northern 

Sicily. More recently, Mineo and Pappalardo (2016a-b) tested a pioneering 

methodology for the indirect estimation of porosity in intact rock through the 

analysis of thermograms and the monitoring of the cooling behavior of 

artificially heated specimens. Furthermore, Pappalardo and Mineo (2017) 

proved that IRT can be useful also in the identification of the persistence and 

interconnection of voids in intact rock specimens. 
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7.3. IRT shooting campaigns 

7.3.1. Brief introduction 

According to the theoretical principles of IRT, thermograms show the surface 

temperature values at the surveyed rock masses, highlighting the differences 

in a color-scale image. One of the purposes of the experimental application of 

IRT in this research is to find out if the thermal output is related either to the 

degree of fracturing or to some peculiar features of the rock mass, so to 

establish the utility of this methodology in this field of sciences. To this 

purpose, the acquisition of thermograms was carried out at some of the 

outcrops surveyed and commented herein, so to ensure a reliable comparison 

with the IRT output. Furthermore, shooting sessions took place at different 

times of the same day, so to look for differences between thermograms at 

different daily conditions. Nevertheless, the study area is affected by strong 

seasonal climate changes; therefore, the same campaign was performed both 

in the warm and in the cold seasons. In this way, a complete comparison 

between daily and seasonal thermograms would allow understanding not only 

what kind of features are highlighted by IRT, but also if a specific time of the 

day can be suggested as the ideal time-condition for the shots. 

Moreover, the acquisition of several images at different phases of the day, 

allowed monitoring the daily temperature variation at each outcrop. Daily 

variations are likely to depend on the sun exposure and on the heat exchange 

between the rock mass and the external environment, while seasonal 

variations are related to the different climate conditions affecting the heating 

and the cooling phases of the rock itself.  

Temperature records were used for the reconstruction of the cooling trend of 

the rock masses, describing the decrease of the temperature during the survey 

time. Interesting considerations are proposed herein with reference to a new 

index, properly named Cooling Rate Index (CRI), estimated to study how rock 
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masses, conditioned by the fracture nets, behave while transferring heat to 

the external environment. Such behavior was related to the degree of 

fracturing of the rock masses, in order to find a relation linking the IRT data to 

the main quantitative fracturing indexes (i.e. Volumetric Joint Count and Rock 

Quality Designation according to Deere, 1963 and Palmström, 1974, 

respectively). 

7.3.2. Field methodology  

For the IRT campaigns, six rock masses facing NE were chosen, so to ensure a 

direct sun radiation in the morning and shadow condition during the 

afternoon. In particular, dolostone, limestone and phorphyroid outcrops were 

thermally mapped during one-day surveys both in the dry and cold seasons, 

with the aim of evaluating what kind of differences occur within daily and 

seasonal thermograms. Campaigns were carried out in June (Figure 51a) 

during a sunny day, and in January during a cloudy, partly rainy day (Figure 

51b). From now on, the June and January surveys will be referred to as 

“summer campaign” and “winter campaign” respectively.  

The image acquisition was conducted by using a FLIR B-335 infrared camera, 

with accuracy calibrated within +/– 2°C or +/– 2% of reading, a range of 

measurable temperature between -20° and +120° C, a spectral range of 7.5–

13 μm and an integrated laser pointer. A tripod ensured immobility of the 

camera during the shots, while a marking pen was used to mark the laser point 

on the rock mass. The camera had a constant horizontal trim and the shooting 

point was located about 3 m away from the slopes, so to have a significant 

detail in the picture, while the position of the tripod was marked on the ground 

to maintain always the same shooting point during the surveys. A handheld 

sensor was employed to measure ambient temperature and relative humidity, 

while the emissivity coefficient was assumed according to Hudson (1969) and 

FLIR (2015).  
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In both campaigns, thermograms were acquired at four different times of the 

same day, based on the seasonal daylight condition, as follows (Pappalardo et 

al., 2016a): 

1) t1: images taken in the morning, when the sun radiation directly hit the 

slope face, especially in June, transferring heat to the rock mass.  

2) t2: images taken at noon, when the slope had just been shadowed. In this 

phase, the heat transfer may occur both from the external environment 

towards the rock mass and vice versa. 

3) t3: images taken in the afternoon, when the slope had slowly been cooling 

down for some hours, releasing heat from the inside towards the external 

environment. 

4) t4: images taken at nighttime, with absence of parasite radiation. In fact, 

neither natural nor artificial source was lighting the slope face. 

After the acquisition stage, images were processed by the software FLIR Tools, 

a suite specifically designed to edit radiometric images to thermal tune level 

and span, change the palette, or adjust parameters such as emissivity and 

reflective temperature. In particular, it also allows measuring temperatures 

using spots, areas, lines and isotherms, highlighting difference of temperature 

within the same photo, isolating specific temperature ranges and defining the 

best representative output.   
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Figure 51: field operation during the summer (a) and winter (b) campaigns (after Pappalardo 

et al., 2016a). 

7.3.3. Comparison of daily thermograms 

In the summer campaign, during the first shots (t1), due to the strike of the 

surveyed rock faces (facing northeast), the sun had been irradiating the rock 

masses since the sunrise. As long as the sun radiation hits the rock face, the 

heat transfer to the rock mass mainly occurs through radiation and conduction 

(Adamovsky et al., 2012). However, the irregularity of the slope, resulting in an 

indented rock face, leads to a non-uniform warming of the rock, which is 

known to be a bad heat conductor (De La Beche and Broderip, 1972). 

Therefore, jutting portions are radiated by the sunrays, gaining heat and 

projecting their shadow on the hollow parts. In this way, the only information 

retrievable by heating thermograms (t1) is related to the three-dimensionality 

of the slope, since the hottest sectors are those directly affected by the sun 

radiation (juts) while the coldest are the shadowed parts (hollows) (Figure 52, 

Figure 53, Figure 54). 

When the direct radiation is over, all the gained heat is slowly released through 

the discontinuity systems, from the inner rock mass outwards. This is the 

beginning of the rock mass cooling, characterized by various thermal 

anomalies, whose definition increases as the external temperature decreases. 
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In particular, positive anomalies are typical of fractures, caves and hollow 

parts, which remain warmer, while negative anomalies are related to low 

fractured planes, as well as weathered portions and jutting sectors, which are 

more exposed to the ventilating air. Nevertheless, since natural light is still 

present at t2 and t3, the influence of parasite radiations cannot be excluded. 

In nighttime (t4), when neither artificial nor natural sources light the slope, i.e. 

thermal radiation is no longer influenced by parasite disturbs, the best IRT 

output is achieved (Figure 52, Figure 53, Figure 54). In this phase, the highest 

temperatures are related only to the main discontinuity systems, along with 

the most fractured/hollow sectors where sometimes it is hard to detect 

defined structures. 
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Figure 52: dolostone thermograms overlapped to a digital photo of the rock mass. 

Thermograms refer to the different summer daily stages, while the rock mass photo on 

Background was taken in daylight (after Pappalardo et al., 2016a). 
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Figure 53: limestone thermograms overlapped to a digital photo of the rock mass. 

Thermograms refer to the different summer daily stages, while the rock mass photo on 

Background was taken in daylight (after Pappalardo et al., 2016a). 
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Figure 54: porphyroid thermograms overlapped to a digital photo of the rock mass. 

Thermograms refer to the different summer daily stages, while the rock mass photo on 

Background was taken in daylight (after Pappalardo et al., 2016a). 
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7.3.4. Comparison of seasonal thermograms 

By repeating the daily surveys at the same rock masses in the cold season, the 

acquired thermograms were compared to find out what differences occur 

between summer and winter images.  

The first dissimilarity is in the definition of the winter thermograms, which 

generally look poorly defined and, sometimes, blurred (Figure 55). This is likely 

due to the weather conditions since, unlike the summer campaign, the winter 

shots were performed in a cloudy and partly rainy day (although shots were 

taken in absence of rain to avoid whatever effect on the image). Clouds behave 

as a natural filter on sunrays, therefore there is no direct radiation at the rock 

face and the warming of the rock is rather weak. This condition results in less-

heated rock masses, characterized by a narrow range of temperatures. Indeed, 

assuming the algebraic difference between the maximum and minimum 

temperatures recorded in each survey phase as ΔTrm, it can be noticed how all 

the rock masses show a summer ΔTrm noticeably wider than the winter ΔTrm 

(Figure 56). Such a difference is emphasized at t1, since the heating conditions 

are different in summer and winter. This means that in winter, if the direct 

radiation of the rock face is not present, the temperature of the rock mass is 

almost constant, with small fluctuations, resulting in a less defined IRT output. 

Moreover, the wet rock face in winter may be the cause of the blurred effect 

occurring in some images, although no water flow has been observed along 

the discontinuity systems. However, for both summer and winter campaigns 

the best IRT output is achieved with nighttime shots (t4), although summer 

images are more detailed (Figure 55). 

Another difference was found in the t1 thermograms: summer t1 images allow 

the recognition of jutting and hollow portions of the rock face, but when the 

direct radiation does not take place (because of clouds) the rock mass does not 

show hot radiated sectors that may be related to jutting portions of the rock 
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mass itself. Therefore, heating proceeds in a uniform way and the information 

retrievable from t1 winter images are comparable with those belonging to 

cooling phase images, although with a low definition (Fig. 57). 

 

Figure 55: comparison between t4 thermograms of summer and winter campaigns (after 

Pappalardo et al., 2016a). 

 

Figure 56: histograms reporting the temperature variation of rock masses (ΔTrm) for each 

survey stage (after Pappalardo et al., 2016a). 
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Fig. 57: t1 winter representative thermograms, showing the blurred effect due to the low 

warming of the rock mass (after Pappalardo et al., 2016a). 

7.4. The Cooling Rate Index 

7.4.1. Temperature curves and CRI 

Based on the recorded temperatures, the cooling behavior of the rock masses 

was studied and a specific index, which numerically describes it, was 

calculated. The digital processing of IRT images allows the estimation of the 

maximum, minimum and average temperatures captured by the infrared 

camera. While maximum and minimum temperatures are related to one or 

more pixels of the image, the average temperature is a weighted value of the 

whole thermogram. In order to describe the thermal behavior of the rock 

masses, the average temperatures of each rock mass was plotted against time 

on a two-variable diagram. The thermal behavior is outlined by a curve (Figure 

58), where heating and cooling phases are described by increasing and 

decreasing trends respectively (Pappalardo et al., 2016a). According to 

Newton’s Law of Cooling, the loss of heat of an object in a colder environment 

is described by a cooling curve, where the slope of the tangent to the curve at 

any point gives the rate of fall of temperature. From now on, I will refer to this 

rate as the rock mass Cooling Rate Index (CRI), which can be calculated by 

equation 9, representing a temperature variation per unit of time (Pappalardo 

et al., 2016a): 

CRI = ∆<
∆=  (eq. 9) 



Analysis of rock masses belonging to the Apennine-Maghrebide Orogen by means of in situ and 
remote methodologies applied to rockfall risk assessment 

__________________________________________________________________________________ 

 112 

where ΔT is the variation of temperature and Δt is the considered time interval. 

The higher CRI, the faster the rock mass cooling. In this view, dolostone rock 

masses are characterized by summer curves showing decreasing trends, where 

the heating condition is related to t1, and the cooling phase occurs in the time 

interval t2-t4.  Cooling phases of Dol-2 and Dol-3 are characterized, on average, 

by CRI of 0.65° and 0.84° per hour respectively.  

Also limestones show decreasing temperatures during the IRT summer survey, 

with average CRI ranging between 1.02° (Lim-1) and 0.41° per hour (Lim-2). 

However, Lim-1 is a particular case, since it is characterized by a hollow 

portion, which behaves like a cavity preserving warm air and, sometimes, 

enhancing its cooling when external temperature lowers. This condition 

explains why so different CRI values have been obtained at two similar rock 

masses.  

On the other hand, a different behavior is held by porphyroids; indeed, a slight 

heating phase between t1 and t2 is outlined. This is due to the local setting, 

since Por-3a and Por-3b are partly shadowed by a protruding upper portion of 

the rock face at t1. In this case, direct radiation is partly inhibited, so the 

warming of the rock mass is slower and lasts until t2, when the cooling phase 

begins, with average CRI of 0.58° per hour in both cases. 

An interesting aspect is related to the late cooling phases of the rock masses, 

occurring between t3 and t4. In fact, while limestones and phorphyroids show 

a sub-horizontal curve in the last stretch, dolostone curves are affected by an 

increasing slope (i.e. higher CRI). It is known, by Newton's Law of Cooling, that 

the rate of change of the temperature is proportional to the difference 

between the temperature of the rock mass and the ambient temperature. This 

means that the cooling of a body is faster when the difference with the 

ambient temperature is higher. Therefore, both limestones and porphyroids 

reach a thermal equilibrium with the external environment during the t3-t4 
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phase. On the other hand, the increase of CRI, with a maximum value of 1.28° 

per hour at D2, means that the cooling phase of dolostones had not finished 

yet at t4 and that it had been accelerating since the external temperature was 

lowering after the sunset. The winter curves (Figure 58) show that in the cold 

season the rock masses are characterized by narrow ranges of temperature. 

Dol-2 is characterized by a sub-horizontal curve, while Dol-3 has a weak 

heating phase between t1 and t2. The other rock masses gain heat until t3; 

then the cooling phase begins with CRI ranging from 0.28 (Por-3b) to 0.56° per 

hour (Lim-2). L1, with a 2.2° per hour, is an exception because of the 

morphology of its rock face, as highlighted above. As a result, when the direct 

radiation of the rock face is absent, the heating proceeds in a slower and more 

uniform way. Otherwise, it is necessary to wait for the shadowing of the rock 

face before being allowed to study the cooling behavior of the rock mass. 
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Figure 58: temperature curves for each surveyed rock mass (modified after Pappalardo et al., 

2016a). 
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7.4.2. Correlation with RQD 

Literature data demonstrate that the thermal characteristics of rock masses 

are strongly conditioned by its macroscopic and microscopic fracturing 

(Squarzoni et al., 2008). After having introduced CRI, which can be considered 

an index describing the cooling velocity of the rock mass, a further challenge 

of this research is to find out a relationship between CRI and the fracturing 

condition of the rock.  

The main quantitative rock mass engineering classification systems take into 

account, either explicitly or implicitly, this aspect by involving the 

geomechanical parameter of Rock Quality Designation (RQD). 

RQD was developed by Deere et al. (1989) to provide a quantitative estimate 

of rock mass quality from drill core logs giving an average measurement of the 

degree of jointing along a section (Palmström, 2005).  

By plotting RQD against CRI, a negative linear relation is found. This means that 

as the RQD increases (i.e. improvement of the rock quality) CRI decreases 

(Figure 59); this is easily guessed since the intact rock (with no visible fractures) 

is a bad conductor of heat. The best fitting of such relationship was obtained 

by taking into account the CRI calculated only within the summer nighttime 

cooling phase (t3-t4), when the difference with the ambient temperature is 

maximum. Indeed, the cooling of rock masses will accelerate proportionally to 

their degree of fracturing, resulting in higher CRI (Figure 59). 

Such relationships show the reliability of CRI as a potential index for the 

remote estimation of the quality/degree of fracturing of a rock mass, although 

further measurements at outcrops with different properties should be 

performed. 
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Figure 59: relationship between CRI t3-t4 and RQD. 
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CHAPTER 8 

ROCKFALL TRAJECTORIES ANALYSIS 

The rockfall phenomenon takes place in two distinct stages: the initial–failure 

stage, describing the instability condition of the slope and the circumstances 

triggering the detachment of a number of blocks, and the post failure stage, 

describing the motion of those blocks along the slope. 

While the first stage has already been addressed in the previous sections, 

ascertaining the widespread instability affecting the study area, the post 

failure stage is analyzed herein. 

In this perspective, this section provides the results of the statistical analysis 

performed by simulating the rockfall trajectories, with the aim of studying the 

behavior of falling boulders and identifying the potential elements at risk. 

Rockfall simulations were carried out by using both bi-dimensional and three-

dimensional codes and by taking into account numerous representative 

sections (2D) and the morphology of the area (3D). 

8.1. Theoretical background 

Once the movement of a rock boulder along a slope has been initiated, the 

falling block will rebound or roll along the slope, following a specific trajectory, 

until the morphological condition (or other external factors) will allow it to 

stop. The major difficulty in modeling the behavior of a rockfall event is 

characterizing all the dependent variables thoroughly (De Almeida and 

Kullberg, 2011). Indeed, the relative movement of a falling boulder down a 

slope depends on a series of factors: the rock lithology, the topography and 

gradient of the slope (Parise, 2002), the size and shape of the boulder (Schweigl 

et al., 2003). Consequently, it is certainly not a simple problem to forecast a 

rockfall trajectory accurately. In particular, among the most important features 

controlling the fall trajectory, the geometry of the slope and its constituting 
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the material play a key role. In the first case, the inclination of the face affects 

the horizontal and vertical components of the block movement after a 

rebound, while the material laying above the slope controls the energy of the 

block itself. For example, a bare rock surface does not retard the movement of 

the falling or rolling block to any significant degree. On the other hand, 

surfaces covered in talus material or gravel absorb a considerable amount of 

energy, slowing the falling rock down until a complete stop. This example 

introduces the essential concept of the energy exchange between the block 

and the slope surface. In this kind of analysis, such interaction is simulated 

through the coefficients of restitution (CR), which are defined as the decimal 

fractional value representing the ratio of velocities (or impulses or energies) 

before and after an impact of two colliding entities (or a body and a rigid 

surface) (Asteriou et al., 2012). Theoretically, a perfect elastic collision is 

represented by a CR=1, while an inelastic collision is given by CR<1. On the 

other hand, a CR that equals zero is obtained when the object instantaneously 

stops at the surface without bouncing, describing a plastic behavior 

(Goldsmith, 1960). In real rockfall cases, each interaction between the block 

and the slope is accompanied by a certain energy dissipation and, when in 

contact with the slope, the magnitude of the block velocity changes according 

to the CR value. It is self-evident that CR is assumed to be an overall value 

taking into account all the characteristics of the impact and its calibration is 

therefore essential for a correct and reliable simulation procedure. 

From the kinematic point of view, CR is defined based on the lumped-mass 

impact theory, according to Newton’s theory of particle collision. For an object 

impacting a steadfast surface the definition, known as kinematic coefficient of 

restitution (vCR), is simplified as 

 

>�1 = >#/>?  (eq. 10) 
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where vr and vi are the magnitudes of the rebound and impact velocities, 

respectively (Figure 60). 

Based on equation 10, CR can be differentiated into normal (Rn) and tangential 

(Rt) components of impact and rebound velocities, according to equations 11 

and 12 

 

�@ = >�#/>�?  (eq. 11) 

�A = >=#/>=?   (eq. 12) 

 

where vnr and vri are the magnitudes the magnitudes of the normal (tangential 

if denoted by the subscript “t” in equation 12), to the steadfast surface, 

components of the rebound and impact velocities respectively.  

Typical values of such coefficients are retrievable in the international literature 

(e.g., Pfeiffer and Bowen, 1989; Giani, 1992; Robotham et al., 1995; Chau et 

al., 1998; Dorren and Seijmonsbergen, 2003; Massey et al., 2006; Budetta, 

2010; Pantelidis and Kokkalis, 2011; Asteriou et al., 2012; Saroglou et al., 2012), 

but these values, depending basically on the material type and in some cases 

on the vegetation cover, can be also estimated by field tests and back analyses 

taking into account field evidences of previous events. The latter case, with 

particular reference to the study area, is discussed in the following section.  
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Figure 60: schematic representation of the components controlling the interaction between 

a block and its impact surface (after, Asteriou et al., 2012). 

8.2. Back analyses 

The analysis of past rockfalls occurred in the study area is a hard matter, 

because events were poorly documented over time. The only proof of a 

widespread instability is the presence of numerous boulders laying along the 

slopes and the roadsides, supported by tales of local people representing a 

reliable source. Even the most relevant events, reported in the local chronicles, 

were poorly studied and never mapped. Therefore, now it is hard to identify 

their source areas and trace their falling route with the aim of back-assessing 

reliable coefficients of restitution for the investigated slopes.  

A recent scientific study, focused on rockfalls threatening the SP-10 road at 

MRA, reported on a set of simulations based on coefficients of restitutions 

retrieved from the international literature (Pappalardo et al., 2014). 

Furthermore, Pappalardo and Mineo (2015) provided a rockfall model for CA 

by considering a back analysis performed on some representative trajectories. 
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Nevertheless, during the field campaigns of this research, two main rockfalls 

occurred in the Castelmola area. Such events, already described at section 3.4, 

were taken into account for back analyses to assess the most suitable 

coefficients of restitution for the studied slopes (Table 24). 

In particular, the 2014 rockfall affected a steep slope at CA, characterized by a 

sub-vertical summit portion, mainly showing bare and loosened limestone 

rock, and by a vegetated sector in its final part (Figure 61a). Along the slope, a 

secondary road is a tourist connection route between Taormina and 

Castelmola, which is usually traveled on foot by visitors. The initial rock block 

detached from the steep summit of the cliff (Figure 61b), rebounding and 

rolling as far as the secondary road (Figure 61c), where it broke into 3 pieces. 

The movement of two of them was enhanced by the impact with the road and 

their fall continued toward the downstream vegetated portion. Here, the 

blocks were slowed down until the complete stop in one case. The other 

boulder reached the main road (SP-10) at a rest area on the roadside, leaving 

evident traces on the asphalt (Figure 61d-e-f). 

Several rockfall simulations were performed to achieve a reliable model by 

considering different coefficients of restitution, starting from those already 

available in literature. In the final model (Figure 61a), where 1000 trajectories 

were simulated, most of the blocks are slowed down and stopped by 

vegetation in the downstream portion of the slope. Only a small percentage of 

rocks reaches the rest area and the next roadway.  

Similarly, a second back analysis was performed for the 2015 event at MRA 

(Figure 62a). In this case, blocks detached from an unstable limestone outcrop, 

right downstream a secondary road connecting Castelmola to local villages 

(Figure 62b-c). In this case, the movement started with a rolling path, which 

evolved into some rebound as the velocity increased along the slope (Figure 
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62d). Blocks reached the main road at an almost 90° bend, stopping in the 

middle of the road and leaving grooves on the asphalt (Figure 62e-f).  

Such events, occurred at slopes representative of the whole area, allowed 

assessing the coefficients of restitution, which were employed for the rockfall 

simulations discussed in the next sections. In particular, 5 classes of materials 

were considered: 

1) Bare rock, mainly affecting the summit of the cliff at CA and the 

upstream outcrops at MRA. 

2) Rock and vegetation, affecting the lower sector of CA, where falling 

blocks are usually slowed down. 

3) Rock with little soil or vegetation in the middle portions of slopes at 

MRA. 

4) Rock debris at CA, especially at the foot of the rock cliff. 

5) Asphalt, at the SP-10 and secondary roads. 

Assessed coefficients are similar to literature data and can be considered 

representative for all the investigated slopes. 

 

 
Table 24: Estimated Coefficients of restitution for rockfall simulations. 

Material Type Rt Rn 

Bare rock  0.80 0.50 
Rock and vegetation  0.74 0.24 

Rock with little soil or 
vegetation 

0.86 0.34 

Rock debris 0.65 0.15 
Asphalt 0.90 0.40 
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Figure 61: field evidences of the 2014 rockfall at CA: a) bi-dimensional simulation of the 

trajectory; b) particular of the source area; c) secondary road affected by the transit of falling 

blocks; d) end point of the boulders on the main road; e) boulders rebound traces; f) one of 

the fallen blocks on the roadside. 
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Figure 62: field evidences of the 2015 rockfall at MRA: a) bidimensional simulation of the 

trajectory; b) particular of the source area impending over the SP-10; c) panoramic view of 

the unstable boulders; d) traces of the rockfall seen from above; e) boulders stopped on the 

SP-10; f) Traces of the impacts on the asphalt after the removal of the blocks.  
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8.3. 2D simulations 

For two-dimensional analysis of rockfall trajectories, a computer program 

operating a “lumped mass” analysis was employed. In particular, the lumped 

mass engine uses a particle analysis (Hoek, 1987), which is composed of three 

distinct sections: the particle algorithm, the projectile algorithm, and the 

sliding algorithm. The particle algorithm makes sure all of the simulation 

parameters are valid, sets up all of the initial conditions in preparation for the 

projectile and sliding algorithms and then starts the projectile algorithm.  

The projectile algorithm is used to calculate the movement of the rock while it 

is travelling through the air, bouncing from one point on the slope to another. 

The sliding algorithm is finally used to calculate the movement of the rock 

while it is in contact with the slope.  

Each rock is assumed as a particle, which may be thought of as an infinitesimal 

circle, therefore there is no interaction between particles, but only with the 

slope segments and eventual structures (e.g. rockfall barriers). For this reason, 

each rock boulder behaves as if it is the only rock acting in the simulation. 

Nevertheless, although the size of rock is neglected, this method takes into 

account the mass of the falling block, which is used to calculate the kinetic 

energy of the rock. Such value is constant during the whole simulation and, 

with respect to this study, it was considered according to the fallen boulder 

surveyed in the study area.  

Finally, the slope is modeled as one continuous group of straight line segments, 

connected end to 

end, and no frictional interaction between blocks and air is considered. 

Therefore, the path of the rock through the air is, because of the force of 

gravity, a parabola. 

For 2D simulations, representative sections were located along the most 

critical slopes both at CA and MRA, trying to trace the most likely path that a 
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falling boulder would follow, according to the morphology of the area. In 

particular, provided sections cross both the upper and the lower segments of 

SP-10, involving also the secondary roads and the group of houses hit by the 

2006 and 2015 rockfalls. 5000 trajectories were simulated for each section and 

achieved results, with particular reference to “end point” and “kinetic energy” 

data, were used to create thematic contour maps of the studied areas aimed 

at graphically showing the spatial variation of such parameters. 
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8.3.1. 2D simulations at Cliff Area 

In this area, detachment points are mostly located at the top of the cliff on 

which Castelmola village lies. Figure 63 shows the most representative cross 

sections taken into account for bidimensional simulations of rockfall 

trajectories. All sections cross the area from the top of the cliff to the SP-10 

road, which is likely to be considered the main element at risk, followed by the 

group of houses and the secondary road. 

The first path of the falling boulders is characterized, in the northern sector, by 

free-fall along the sub-vertical face of the cliff (e.g. sections A-A’,B-B’, C-C’); 

then blocks rebound on rock debris to roll down towards the secondary road, 

which is reached by almost the totality of the boulders, although some of them 

are stopped by widespread weeds on the rock debris.  

The secondary road acts both as end spot for slower boulders and as rebound 

point for the others; in particular, these last ones head downstream with a 

total kinetic energy of about 130 kJ at the rebound points on the secondary 

road. Along the slope, most of the blocks are then stopped by shrubs, while 

the others reach the SP-10 road with kinetic energies ranging, on average, 

between <10 and 50 kJ. Section D-D’ is an example of boulders stopping along 

the slope after having rebounded on the secondary road, while section E-E’ 

shows the worst scenario analyzed herein, i.e. boulders hitting the houses. In 

this case, the existing rockfall barrier, built in 2006 to protect the houses, was 

not considered because of its potential inefficiency due to the presence of a 

thick debris behind it, maybe accumulated due to poor maintenance (the latest 

blocks bypassed it in 2014). In this case, 100% of simulated blocks would hit 

the houses with a total kinetic energy up to about 150 kJ. Finally, sections F-F’ 

and G-G’ simulate trajectories in the southern sector, where blocks would 

rebound along the slope and on the secondary road, reaching, in some cases, 

the SP-10 road. 
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Figure 63: bidimensional simulations of rockfall trajectories along representative cross-

sections of CA.  
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8.3.2. 2D simulations at Main Road Area 

At MRA, the closest sector to Castelmola entrance, blocks mainly detach from 

the high limestone and dolostone outcrops and head downstream through 

steep slopes, crossing the SP-10 road. 

In this sector, the road runs following a winding path, giving rise to two parallel 

segments at different altitudes. Therefore, from now on, such road portions 

will be referred to as upper and lower segments, located at about 440 and 410 

m of altitude, respectively. 

Rockfall trajectories were simulated along sections originating from the 

highest altitudes, where the unstable outcrops were surveyed, and crossing 

both segments of SP-10, along with one or more secondary roads at the top of 

the slopes. 

Figure 64 shows the location of cross sections, distinguished by different colors 

only for an easier reading of the figure. In particular, the northernmost sections 

are the closest in space to the 2015 rockfall trajectory, whose blocks stopped 

on the upper segment of SP-10 at the bend (Figure 62). Simulations show that 

10 to 30% of blocks stops along the upstream slope, before reaching the road. 

About 10-20% of blocks would stop at the upper segment of SP-10, while the 

remaining percentage would rebound towards the lower segment, where they 

can either stop or keep heading downstream. Sections from K-K’ to L-L’ cross 

the straightest portions of the main road, usually reached by falling boulders, 

with average kinetic energies ranging from 80-100 kJ at the upper segment to 

130-150 kJ at the lower one. Even the secondary road is affected by the transit 

of blocks, which stop therein in about 30% of cases. 

Sections O-O’, P-P’ and Q-Q’ were located at a bend sector, where unstable 

porphyroid rock masses impend over the main road. In this case, detached 

blocks would involve the upper segment of SP-10 in almost 100% of cases; 

then, according to their energy, they can either stop at the bend (very low 
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visibility) or proceed downstream, crossing a vegetated slope, which will slow 

them down until the lower segment of the road is reached. In some cases, 

blocks would firstly reach the lower segment, with a total kinetic energy of 

about 30 kJ, to finally proceed downstream. In some other cases, blocks will 

never reach the downstream segment, stopping along the vegetated slope. 
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Figure 64: bidimensional simulations of rockfall trajectories along representative cross-

sections of MRA. 
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8.4. Thematic maps 

With the aim of representing in a graphical way the spatial distribution of 

achieved results, thematic maps were drawn by interpolating punctual data 

retrieved from each 2D section. in particular, the percentage of blocks stopping 

at peculiar points and the total kinetic energy of falling boulders were taken 

into account to highlight the most hazardous areas, as well as the extent of the 

studied issues. 

With respect to the first case, maps in Figure 65 show the concentration of end 

points related to simulated rockfalls. In particular, interpolated data are 

referred to the percentage of blocks that stop in a particular point along their 

route. Therefore, sectors labeled with the highest values are those spots where 

the maximum percentage of falling blocks would stop. On the other hand, 

sectors labeled with lower values mainly represent transit areas, where blocks 

pass (but do not stop) to head downstream.  

In this perspective, Figure 65a shows the contour maps of end points at CA, 

where one of the most critical sector is represented by the group of houses, 

already hit by falling blocks in 2006 and 2014. Here and along the secondary 

road, most of the blocks would stop, representing a threat for tourists and 

residents. A further interesting element is the concentration of end point along 

the incision in the northern sector, which is also a preferential way for blocks 

to reach the main road. In this case, blocks would stop along this incision in 40 

to 90% of cases, due to the presence of shrubs. Nevertheless, there is a rate of 

blocks reaching the SP-10 road, such as the one triggered in 2014, stopping as 

far as it. 

Finally, another element deserving a comment is the high end-points 

concentration area in the eastern part of the contour map: here, the presence 

of rock masses impending over the road, as well as of some unstable blocks 



Analysis of rock masses belonging to the Apennine-Maghrebide Orogen by means of in situ and 
remote methodologies applied to rockfall risk assessment 

__________________________________________________________________________________ 

 133 

along the slope, leads to relevant possible concentrations of blocks stopping at 

the main road, possibly affecting also some private houses downstream. 

MRA (Figure 65b) is characterized by a high percentage of boulders stopping 

in the northern sector, at the bend already involved in the 2015 event. Here, 

due to the morphological setting of the road, blocks reaching this point tend 

to stop rather than heading downstream. Nevertheless, there is a fair 

percentage of blocks, which reaches the lower segment of the road, 

sometimes overstepping it.  

The middle sector is mainly characterized by transit of blocks heading 

downstream, due to the steep gradient of the slope. To the south, the 

metamorphic rock masses impending over the SP-10 road lead to a direct 

threat to this infrastructure, since the majority of detached blocks would 

directly reach the road stopping on it. 

Based both on the knowledge of the study area, achieved during the field 

surveys, and on the latest rockfall events, it is possible to affirm that maps 

provided in  Figure 65 show a reliable datum, since they well match with 

boulders accumulation spots surveyed  in the area. 

Similar considerations can be carried on with reference to the kinetic energy 

of falling blocks. This feature is very important when remedial works are 

planned and, although this research is not directly focused on the design of 

protection structures, the distribution of total kinetic energy can be useful to 

understand the entity of potential rockfalls. 

In this perspective, Figure 66a shows the distribution of total kinetic energy at 

CA, where three main high energy areas can be found. In particular, the 

northernmost area affects a steep sector driving falling boulders along the 

morphological incision as far as the SP-10 road. Here a progressive decrease of 

the kinetic energy is caused by the vegetation, slowing down the boulders in 

the downstream sector before they reach the main road. The second high 
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concentration area coincides with the group of houses, where blocks would be 

stopped by the impact with these structures at a relevant kinetic energy. The 

third area is located in the southern sector of CA, at the initial portion of the 

simulated rockfalls, where the morphology of the slope allows a progressive 

acceleration of the block motion. SP-10 road in this sector is labeled with lower 

energy values because of the presence of vegetation along the final portions 

of the slopes. 

Figure 66b shows that at MRA the highest values of total kinetic energy affect 

the lower segment of SP-10 road in the northern sector of the area, where the 

morphology of the slopes allows a progressive acceleration of falling blocks, 

which gain energy as they proceed downstream. On the other hand, lower 

energies are found in the southern sector of SP-10 and along the secondary 

roads, which are suddenly reached by blocks falling from the impending rock 

masses. Intermediate values label the upper segment of the road, which is the 

first target of boulders coming from upstream and which acts both as end point 

and as rebound point enhancing, in the latter case, the rockfall movement.  
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Figure 65: contour maps showing the concentration of end points, according to performed 

rockfall simulations, for MRA (a) and CA (b). 
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Figure 66: contour maps showing the distribution of total kinetic energy of falling boulders, 

according to performed rockfall simulations, for MRA (a) and CA (b).  
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8.5. 3D simulations 

Rockfall simulations were carried out also on 3D models of the study area to 

analyze the behavior of falling boulders according to the real morphology of 

the slopes. In this case, three-dimensional models of CA and MRA were 

generated from xyz meshes achieved by processing a Digital Terrain Model 

(DTM) with a 2m regular grid, providing a good morphological detail. 

The models, discretized in homogeneous zones, allowed the analysis of the 

trajectories by taking into account realistic morphological features of the 

considered slopes. For this kind of approach, the block is assumed as a sphere 

rotating around its center of gravity, while its mechanical characteristics are 

hardness and mass, calibrated according to the boulders fallen in the latest 

years. 

Block is “launched” from a pre-established site and its motion is described by 

impacts on an elevation attributed plane. This plane is formed by a grid of 

tridimensional nodes forming a triangular mesh, which represents the entire 

area between the launch and the stopping points of the blocks.  

The value added in such tridimensional approach, if compared to the 

corresponding 2D models, is the possibility of considering the spatial 

distribution of the rockfall trajectories, which usually is influenced by the 

plano-altimetric trend and cannot be modeled on bi-dimensional cross 

sections. 
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Figure 67: Digital Elevation Model of the study area (property of Regione Siciliana, 

authorization number 215-B-1160 granted to Simone Mineo on 19 March 2015). 
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8.5.1. 3D simulations at Cliff Area 

CA model comprises one of the most critical sectors of the study area, where 

the main potential elements at risk are represented by the group of houses 

involved in the 2015 event along with the SP-10 road and the secondary road 

connecting Castelmola to Taormina (Figure 68a).  

Launch sites were set both at the top of the cliff and downstream, where 

several loosened outcrops are located. 

The outcome is a quite realistic model of the possible distribution of rockfall 

trajectories; in particular, in the northern sector most of the boulders converge 

in a shallow incision driving them as far as the SP-10 road. Blocks following this 

route would either stop along the incision, where vegetation is present, or 

reach the main road at a rest area, invading also the carriageway (Figure 68b). 

This is the case of one of the blocks involved in the 2014 rockfall, whose 

movement ended on the SP-10 road (Figure 61e). 

In the middle sector, detached blocks would reach the residential area (point 

2 in Figure 68b), threatening the public safety.  

In the southern sector, blocks can be slowed down by vegetation or stopped 

by existing rockfall barriers, built in the 2000’s; nevertheless, some possible 

trajectories would affect the downstream complex of houses (point 4 in Figure 

68b).  

Attention was also paid to the eastern sector of the area, by considering some 

launch sites along the lower slopes, hosting some loosened outcrops. In this 

case, all the boulders would reach the SP-10 road, threatening some private 

structures and the main communication route (point 7 in Figure 68b). 

Achieved results show that the rockfall trajectories are, on the whole, spatially 

distributed and that SP-10road can be considered the main target of falling 

boulders, followed by the secondary road and the private houses. The main 

concentration of block routes is the morphological incision in the northern 
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sector, which drives falling blocks as far as the main road. Vegetation would 

play a slowing role in the block movement, as some trajectories end on 

vegetated areas, although this cannot be considered a reassuring element due 

to the frequent occurrence of fires baring the slopes, especially in the summer 

periods (Figure 69).   
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Figure 68: output of 3D simulations at CA. a) 3D model with main elements at risk; b) map of 

the rockfall trajectory overlapped to an aerial photo of the area. Red trajectories in insets a 

and b are referred to the 2014 event. 
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8.5.2. 3D simulations at Main Road Area 

MRA trajectories were modeled considering numerous launch points, due to 

the morphological setting of the area. In fact, from a morphological point of 

view, it is an important incision representing a receptor for falling boulders, 

which are likely to cross the road segments regardless of the real source area 

(Figure 70a). In particular, Figure 70b shows all the trajectories of rockfalls 

originating from a zone of loosened limestone and dolostone outcrops (Figure 

62c-b). Most of the blocks would reach the SP-10 road at its upper segment, 

where they could either stop (as already occurred in 2015) or rebound to head 

downstream towards the lower segment. The secondary road would be 

involved by rock material detached from the highest altitude, while some 

blocks could end their fall along the slopes. This latter eventuality deserves a 

critical consideration. In fact, blocks stopped along a slope are kept in a 

precarious equilibrium between forces by various elements (e.g. the presence 

of vegetation, another boulder, peculiar morphological conditions). If one of 

these elements lacked (because of a fire burning the vegetation, or after an 

earthquake for example), the movement would be susceptible of reactivation. 

Therefore, most of the blocks laying along the slopes after a fall cannot be 

considered in safety condition (Figure 69a). 

For this reason, some of the calculated trajectories are referred to real critical 

cases of blocks prone to fail and projecting on the road, such as points 6, 12 

and 14 reported in Figure 70 and shown in Figure 69.   

In particular, three unstable blocks impending over the SP-10 road are 

highlighted in Figure 69a. Such blocks, whose dimension can be easily guessed 

by comparing them with the passing car immortalized in Figure 69a, are one 

of the most worrying feature of this sector. Moreover, some month after the 

shooting of the photo in Figure 69a, the leftmost block fell down reaching the 

SP-10 road, fortunately causing no victims (Figure 69d)  
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As for CA, achieved outcomes confirm that in this sector SP-10 and the 

secondary roads are targets for potential rockfall events, which would involve 

different segments of the roads threatening the daily traffic. Moreover, 3D 

models show that while the upper segment is characterized by diffuse points 

of impact, the lower one is reached at more localized spots. However, such 

simulations cannot take into account any sudden and unpredictable change in 

the block trajectory caused by peculiar circumstances, as those which led some 

blocks bypassing the barriers at CA in 2006. 
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Figure 69: a) panoramic view of MRA after a fire. Three unstable blocks are prone to fail 

towards the downstream sector of SP-10 road (simulation at point 6 of Figure 70b); b) the 

leftmost block in Figure 69a after having been mobilized some month later the shooting of 

the photo. 
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Figure 70: output of 3D simulations at MRA. a) 3D model with main elements at risk; b) map 

of the rockfall trajectories overlapped to an aerial photo of the area. Red trajectory in insets 

a and b is referred to the 2015 event. 
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CHAPTER 9 

RISK ASSESSMENT 

9.1. Available literature data 

Data achieved throughout this research are preparatory to a risk analysis 

aimed at assessing the probability of injuries, caused by rockfalls, involving the 

main elements at risk. In this case, the main elements at risk are the group of 

houses at CA and the SP-10 road running through CA and MRA and connecting 

Castelmola to Taormina, followed by the secondary roads running within the 

area.  

With respect to MRA, Pappalardo et al. (2014) proposed a preliminary hazard 

assessment along the SP-10 road, according to the modified Rockfall Hazard 

Rating System (RHRS) proposed by Budetta et al. (2004) after Pierson et al. 

(1990). This is a semi-quantitative classification system, developed by the 

Oregon Department of Transportation (USA), to assess the risk associated with 

rockfalls (Pierson et al., 1990; National Highway Institute, 1993; Scesi et al., 

2001), in order to identify dangerous slopes which require urgent remedial 

works or further studies. The method was subsequently modified in order to 

make it more suitable to the geometrical features and to the traffic standards 

of the Italian roads (Budetta, 2004). 

It consists in the assignment of a score to 9 categories concerning the rockfall 

hazard (i.e. slope height, geologic character, volume of rockfall/block size, 

climate and presence of water on slope and rockfall history) and the vehicle 

vulnerability (i.e. ditch effectiveness, average vehicle risk, percent of decision 

sight distance, roadway width) (Table 25). The summation of all the assigned 

scores assesses the degree of the exposition to the risk along roads. If the RHRS 

final value is lower than 300, the remedial works on the slope will be 

considered “with low urgency”; whereas the final score is higher than 500, the 

slope will need “immediate stabilization works” (Pierson et al., 1990). Slopes 
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with intermediate scores are considered with “high priority of remedial 

works”, although it would be appropriate a case-by-case evaluation (Budetta, 

2004). 

According to such procedure, Pappalardo et al. (2014) assessed that SP-10 is a 

high rockfall hazard road requiring immediate stabilization measures (Figure 

71). 

Table 25: Summary sheet of the modified Rockfall Hazard Rating System (Budetta, 2004). 

 

Pappalardo and Mineo (2015) carried out a rockfall risk assessment at CA, 

taking into account the risk related to the presence of the houses according to 

the modified Rockfall Hazard Rating System (RHRS) by Saroglou et al. (2012). 

This method, similar to the previous one, is based on the calculation of rockfall 

risk of natural and man-made slopes and encompasses all those parameters, 

which are considered important for this purpose. It defines twenty rating 

parameters, grouped in four major categories according to the hazard and 

consequences, with a different weight in the assessment of the total risk are 

considered (Table 26). 

Pappalardo and Mineo (2015) assessed for CA a risk ranging from Medium (risk 

class III) to High (risk class IV) (Figure 72). The highest risk was detected in 
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correspondence of the group of houses, already threatened by the 2006 and 

2014 main events, while intermediate values (between classes III and IV) are 

found in areas with “low human activity” and absence of houses.  

Nevertheless, Pappalardo and Mineo (2015) did not consider the SP-10 road, 

which now can be acknowledged among the most crucial elements at risk of 

CA sector, because they applied a method focused on natural slopes and not 

on infrastructures. 

Therefore, with the aim of providing an alternative numerical risk assessment 

focused on the main transportation corridor, updated and supported by the 

new data achieved in this study, this section reports on the risk computation 

through the “Event Tree Analysis” (ETA) method (e.g. Peila and Guardini, 2008; 

Budetta et al., 2016). The great breakthrough of this approach is the possibility 

of customizing the Event Tree, by calibrating it according to the peculiar 

features of the study area (i.e. route of the road, trajectory simulations, 

probability of accident).  
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Figure 71: modified RHRS applied to a segment of the SP-10 road (Pappalardo et al., 2014). 
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Table 26: Parameters of all categories and rating of proposed rockfall rating system for 
natural rock slopes to define risk. (Saroglou et al., 2012). 
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Table 26: continued (Saroglou et al., 2012). 
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Figure 72: modified RHRS applied to some natural slopes at Castelmola Cliff (modified after 

Pappalardo and Mineo, 2015). 
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9.2. Risk definition 

Risk is the expression of the likelihood and impact of an uncertain, sudden and 

extreme event which, if it occurs, may impact positively (opportunity) or 

negatively (threat) on the achievement of a project or program objective 

(UNESCO, 2010). The word risk is used frequently and in several different 

contests, from the financial to the medical ones, from the environment to the 

engineering ones, and so on.  

With particular reference to the topic of this research, risk is defined as the 

probability that a rockfall will cause a certain kind of damage to one or more 

elements at risk (modified after Ball and Watt, 2001). 

According to UNESCO (1972) disaster Risk is function of Hazard, Vulnerability 

and Exposure (Figure 73), where Hazard is defined as a dangerous 

phenomenon, substance, human activity or condition that may cause loss of 

life, injury or other health impacts, property damage, loss of livelihoods and 

services, social and economic disruption, or environmental damage; 

Vulnerability involves the characteristics and circumstances of a community, 

system or asset that make it susceptible to the damaging effects of a hazard; 

Exposure refers to people, property, systems, or other elements present in 

hazard zones that are thereby subject to potential losses. 

In other words, rockfall risk results from the occurrence of a rockfall event 

(Hazard) where people or assets in harm’s way are present (Exposure) with a 

lack of preparedness (Vulnerability). 

In recent years, the term Hazard was eclipsed with the term Risk, due to the 

flexibility of the English language (Lee and Jones, 2014), leading to a conceptual 

similarity between the two words. In reality, Hazard and Risk are 

complementary but distinct, with hazard focusing on the causes of harm or 

loss and risk focusing on the consequences. For hazard to exist, situations have 

to arise where humans and goods can be adversely affected. For example, a 
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landslide on an uninhabited island is not hazard. Similarly, a landslide involving 

a busy road is acknowledged among the hazards and produces also a risk. 

 

Figure 73: sketch on the three components of disaster risk. 

9.3. The Event Tree Analysis 

Event Tree Analysis (ETA) was developed in the 1960’s as a form of decision 

analysis in the nuclear industry. The value of decision trees is that they provide 

a graphical insight to the way particular consequences might arise and can be 

used as a template for probability assessment (Lee and Jones, 2014). There is 

a long tradition of use of trees in the assessment of dam safety (e.g. Hartford 

and Baecher, 2004), and they have proved valuable in analyzing landslide risk, 

both on natural and engineered slopes (e.g. Bunce et al., 1997; Ho and Ko, 

2009; Hoek, 2000; Hsi and Fell, 2005; Lacasse and Nadim, 2008; Lee and 

Moore, 2007, Peila and Guardini, 2008). The advantage of ETA quantitative risk 

assessment methodology is the possibility of personalizing the trees, adapting 

them to the faced problems by creating specific patterns for each analysis and 

considered elements at risk. 

Event trees are typically organized left-right, and comprises the following 

elements: 
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1) The occurrence of an initiating event, such as a rockfall or a triggering 

event. 

2) Branches mapping out all the alternative pathways that could develop 

following the initiating event. 

3) Nodes acting as transitions from one position along a pathway to one 

or more alternative pathways. Typically, the nodes define binary 

(Yes/No) alternative pathways. 

4) Terminal points (leaves), at the end of the braces, defining a unique 

end-state that is conditional on the preceding event. 

The pathway options at each node should be collectively exhaustive; 

therefore, the sum of the probabilities of moving along any of the pathway 

options at a node will equal 1, according to equation 13: 

 

B(&) + B(&C) = 1 (eq. 13) 

 

where P(A) is, for example, the probability that a rockfall occurs, while P(A’) is 

the probability that a rockfall does not occur. 

Each terminal point represents an outcome (T), whose probability of 

occurrence will be the conditional probability of all the nodes along the 

pathway, starting with the initiating event, as shown by equation 14: 

 

B(7) = B(&)	B(D)	B(�) (eq. 14) 

 

i.e. the product of the probabilities at each node. 

Each outcome, with particular reference to this research, represents a possible 

scenario in case of rockfall with a positive epilogue (e.g. no damage) or a 

negative perspective (e.g. accident or damage). The total probability of a 

particular group of outcomes (e.g. accident in this case) will be the sum of the 



Analysis of rock masses belonging to the Apennine-Maghrebide Orogen by means of in situ and 
remote methodologies applied to rockfall risk assessment 

__________________________________________________________________________________ 

 156 

probabilities related to each terminal point, since these events are mutually 

exclusive (equation 15). 

 

B(E,,FG@A) = B(71) + B(76) (eq. 15) 

 

Where P(T1) and P(T6) are the probabilities corresponding at the outcomes 

labeled as accident. 

9.4. Customizing ETA for the Castelmola case study 

Defining a unique tree model for the study area is not possible due to the 

different paths followed by the SP-10 road, which is almost straightaway at CA, 

while it is winding and divided into upper and lower segment at MRA. With 

reference to this latter sector, performed simulations highlighted that both 

segments, running almost parallel, are targets for blocks falling from upstream. 

Therefore, for the application of ETA method, different statistical conditions 

(e.g. percentage of impacting blocks and number of rocks) must be taken into 

account to differentiate the two segments. 

In this perspective, ETA was applied to 23 sub-segments of the studied road 

chosen according to peculiar features of the road (e.g. change in direction at 

bends) or of the slopes (e.g. surveyed unstable blocks), as reported in Figure 

75.  

At MRA, where the main source areas are located at the upstream rock masses, 

the evolution of rockfalls at LW is function of the behavior of rocks impacting 

on UP, which can stop (thus representing no threat for LW) or rebound 

(representing a rockfall event for LW).  

The Event Tree starts with the occurrence of a rockfall, which leads to two 

possible scenarios, according to the the rockfall trajectory simulations 

reported at section 8: 
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- P1: the falling boulder stops along the slope, before reaching the road, 

thus causing no damage (outcome n#1). In this case, the probability 

associated to this outcome equals P1. Such case includes also the 

amount of blocks possibly stopping at the secondary roads. 

- P1’: complementary to P1, is the probability that the falling boulder 

reaches the SP-10 road.  

This latter scenario leads to further branches: 

- P2: the falling block reaching the road hits a vehicle passing through that 

point in that moment. 

- P2’: the falling block reaching the road does not hit any passing vehicle.  

For P2 to occur, a spatial and temporal correspondence between falling rock 

and passing vehicle must be verified. The probability associated to this step is 

therefore assessed according to eq. 16: 

 

B2 = B(&)I ∙ KI/� (eq. 16) 

 

where P(A)v is the probability that a generic vehicle is hit by a rock and Nv/a is 

the number of vehicles travelling on the road per year. 

In this perspective, P(A)v is calculated following the equation 17 

 

B(&)I = B(L)B(7|L) (eq. 17) 

 

where P(S) is the probability of spatial correspondence between the rock and 

the vehicle and P(T|S) is the probability of temporal correspondence between 

the rock and the vehicle.  

P(S) is calculated according to eq. 18 

 

B(L) = 1 − (1 − B(L|N))O#  (eq. 18) 
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where Nr is the number of rockfall events per year that hit the road (herein 

assumed between 3 and 1) and P(S|H) is constant probability of rock 

detachment along the considered portion of road, simplified as the ratio 

between the vehicle length (Lv) and the slope length (Lp), according to 

equation 19. 

 

B(L|N) =
PI

P�
  (eq. 19) 

 

P(T|S), above defined as the probability of temporal correspondence between 

the falling block and a passing vehicle, can be assumed equal to the part of the 

year occupied by a single passing of the vehicle through the section (eq. 20), 

where Vv is the vehicle speed. 

 

B(7|L) =
P�

QI
/8760 (eq. 20) 

 

In this way, P2 eventuality leads to a negative outcome herein referred to as 

“accident”. This is outcome #2 and its probability of occurrence results from 

the product of P1’and P2.  

It has to be underlined that such probability refers to a generic probability of 

accident, without considering the possibility that the accident can be fatal 

(circumstance that would reduce the final probability value). For this 

computation a traffic volume of 2500 vehicles per day has been considered, 

according to Pappalardo et al. (2014). 

On the other hand, if P2’ is verified, two more branches can be added to the 

tree: 

- P3, if the falling block reaching the road rebounds on the carriageway 

and heads downstream towards the lower segment of SP-10. This 
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probability is strictly related to the outcomes of the rockfall simulations 

above commented. In this case, a probability of damage on the road 

(outcome #3) can be assessed according to eq. 14 and the probability 

computation restarts from the beginning of the tree. In this case, the 

number of rockfall will be reduced, with respect to the one considered 

at the upper segment, according to P3 probability value. 

- P3’, if the fallen block stops along the road. In this perspective, a passing 

vehicle could either hit the boulder laying on the road (P4), due to 

peculiar condition of visibility of the road itself, or not hit the block (P4’).  

P4 will therefore be labeled as “accident” (outcome#4), while P4’ would lead 

to a possible damage on the road (outcome #5).  

P4 can be assessed according to Bunce et al. (1997), as it is linked to the 

possibility that the driver can see the block on the road and has the time to 

avoid the impact by changing trajectory or stopping the car. To evaluate this 

probability, it is necessary to introduce the Decision Sight Distance (DSD) 

parameter, which represents the length of road a driver needs in order to make 

a complex or instantaneous decision (Budetta et al., 2014). This parameter, 

linked to the type of road and to the speed of the car, can be calculated 

according to Ferrari and Giannini (1975) and CNR (1980) as the distance within 

which a 15 cm high stationary object is continuously visible from 1.10m above 

the road (i.e. the height of a driver’s eye on the road). DSD is critical when 

obstacles on the road are difficult to perceive, or when unexpected or unusual 

maneuvers are required (Budetta et al., 2014). It is assumed that an accident 

will occur if the rockfall is within half of the DSD of the vehicle (Bunce et al., 

1997). 

P4 value, i.e. the annual probability of a vehicle crashing onto a rock on the 

road, can be therefore calculated according to equation 21 (after Lambert and 

Nicot, 2011).   
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B4 = 	1 − (1 − B(L|N�C�O#	 (eq. 21) 

 

where, P(S|H)’ is the probability of a vehicle crushing onto a rock on the road, 

according to Lambert and Nicot (2011). 

Once calculated P4, P4’ value can be computed for percentage difference. Even 

in this case, this probability is not specifically referred to a fatal accident, but 

to a generic accident event. 

Finally, the total probability of each outcome is calculated backwards by 

multiplying the probability values at each node; then, the sum of outcomes 2 

and 4 will be the total probability of accident in case of rockfall, the sum of 

outcomes 3 and 5 will be the overall probability of damage in case of rockfall, 

and outcome 1 is the probability of no damage. 
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Figure 74: an example of Event Tree properly designed for the S16 sub-segment.
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9.5. Results of risk analysis 

According to the schemes proposed in the previous sections, the application 

of ETA led to the computation of the following three main values: 

1) probability of accident in case of rockfall: probability that a falling block 

may cause an accident to a passing vehicle, due either to a direct impact 

during the fall or to a crash of a vehicle into a boulder laying on the 

carriageway; 

2) probability of damage in case of rockfall: probability that a falling 

boulders reaching the road may cause damages to the infrastructure 

(e.g. asphalt, retaining walls, guard rail) during their transit or stop. In 

this case the word “damage” refers also to possible economic damages 

due to potential road disruption periods. 

3) probability of no damage in case of rockfall: probability that a falling 

boulder may cause no damages to the road or passing vehicle because 

it stops along the upstream slope, before reaching its targets. 

In this perspective, the probability of accident represents the worst scenario, 

because it involves the presence of people, regardless of the epilogue of the 

event (unharmed, injured or dead), while the probability of damage is related 

only to economic loss due to the disruption of the road and to remedial works. 

Results reported in Table 27 show that the road is affected by a different 

probability zonation according to its path and to the analysis herein carried 

out. 

The probability of accident, considering the sum of outcomes 2 and 4, ranges 

between 7.1·10-3 and 8.4·10-2, with an average value of 3.2·10-2 (Figure 75). 

Such values are in accordance with literature data concerning, for example, the 

risk of fatal car accident in Campania (although in this research the assessed 

probability is not related only to fatal accident), which was assessed equal to 

3.41·10-2 (Budetta et al., 2016 and references therein). Highest values are 
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found at the upper segment of the road at MRA, which can be considered the 

first target of falling boulders. The highest probability of accident was detected 

at bend sectors and where rock masses impend over the road. The lower 

segment is characterized by a lower probability of accident, since the number 

of rocks reaching the road is reduced by the “protecting” effect of the upper 

segment. CA has the lowest values, due to the aerial distance of the road from 

the source areas located at the top of the cliff, and to the stop of several 

boulders along the slopes. Therefore, only a small percentage of blocks is likely 

to reach the road, although it is a reliable datum as confirmed by the latest 

rockfall events occurred in 2006 and 2013. 

On the other hand, the probability that a falling boulder could reach the road 

in case of rockfall is definitely higher, as shown by Figure 76. This takes into 

account the sum of outcomes 3 and 5, which are related to the probability that 

a rock stops along the road or rebounds on it. In this case it would cause 

damages, meant as either road disruption, or material damage at road 

portions, or economic loss due to remedial measures. The average probability 

of damage is 6.4·10-1, with maximum values mainly affecting UP and some 

portions of LW, where loosened rock slopes impend over the road and where 

the road acts as a receptor for falling blocks. In both cases, blocks would stop 

along this transportation corridor, leading to potential accidents and/or to 

road disruption.  CA is characterized by lower values because of the aforesaid 

reasons; nevertheless in this sector the road is not the only target for falling 

boulders at CA. In fact, as already shown in the maps reported in Figure 65 and 

Figure 66, also the secondary road and the group of houses are threatened by 

rockfalls and most of the blocks stops before reaching the road. ETA, as 

provided herein, is specifically designed for the risk assessment along 

important infrastructures, therefore it cannot take into account the risk for 

houses and secondary roads, but Pappalardo and Mineo (2015) already 
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highlighted the high risk affecting these natural slopes, with particular 

reference to the inhabited houses. Results clearly show the critical condition 

of the area, as documented during the numerous surveys carried out during 

this research. 
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Table 27: probability according to the performed ETA. 

Sub-

segment 

Outcome n# 

1 2 3 4 5 
P  

accident 

P 

damage 

P  

no dam. 

S1 8.0·10-1 4.3·10-3 1.5·10-1 2.8·10-3 4.6·10-2 7.1·10-3 1.9·10-1 8.0·10-1 

S2 3.0·10-1 7.0·10-3 5.2·10-1 4.4·10-3 1.7·10-1 1.1·10-2 6.9·10-1 3.0·10-1 

S3 6.0·10-1 6.7·10-3 3.4·10-2 1.5·10-2 3.4·10-1 2.2·10-2 3.8·10-1 6.0·10-1 

S4 6.0·10-1 6.6·10-3 1.6·10-1 1.0·10-2 2.3·10-1 1.7·10-2 3.8·10-1 6.0·10-1 

S5 2.0·10-1 9.1·10-3 3.2·10-1 1.4·10-2 4.6·10-1 2.3·10-2 7.8·10-1 2.0·10-1 

S6 4.0·10-1 9.1·10-3 2.4·10-1 1.4·10-2 3.0·10-1 2.3·10-2 5.8·10-1 4.0·10-1 

S7 4.0·10-1 8.9·10-3 2.4·10-1 14·10-2 3.4·10-1 2.3·10-2 5.8·10-1 4.0·10-1 

S8 4.0·10-1 8.6·10-3 2.4·10-1 1.3·10-2 3.4·10-1 2.2·10-2 5.8·10-1 4.0·10-1 

S9 4.0·10-1 8.6·10-3 2.9·10-1 1.1·10-2 2.8·10-1 1.9·10-2 5.8·10-1 4.0·10-1 

S10 4.0·10-1 9.4·10-3 4.2·10-1 6.9·10-3 1.6·10-1 1.6·10-2 5.9·10-1 4.0·10-1 

S11 4.0·10-1 9.3·10-3 4.2·10-1 6.9·10-3 1.6·10-1 1.6·10-2 5.8·10-1 4.0·10-1 

S12 2.4·10-1 2.4·10-2 6.9·10-1 3.6·10-3 3.5·10-2 2.7·10-2 7.3·10-1 2.4·10-1 

S13 2.4·10-1 1.9·10-2 7.0·10-1 2.7·10-3 3.6·10-2 2.2·10-2 7.4·10-1 2.4·10-1 

S14 4.0·10-1 9.3·10-3 4.1·10-1 7.2·10-3 1.7·10-1 1.7·10-2 5.8·10-1 4.0·10-1 

S15 4.0·10-1 1.0·10-2 7.4·10-2 2.2·10-2 4.9·10-1 3.3·10-2 5.7·10-1 4.0·10-1 

S16 1.0·10-1 2.1·10-2 2.6·10-1 3.9·10-2 5.7·10-1 6.1·10-2 8.4·10-1 1.0·10-1 

S17 2.0·10-2 2.3·10-2 9.6·10-2 6.0·10-2 8.0·10-1 8.4·10-2 8.9·10-1 2.0·10-2 

S18 2.8·10-1 2.0·10-2 5.9·10-1 8.6·10-3 1.0·10-1 2.9·10-2 6.9·10-1 2.8·10-1 

S19 2.0·10-1 2.5·10-2 5.4·10-1 1.9·10-2 2.1·10-1 4.5·10-2 7.5·10-1 2.0·10-1 

S20 2.0·10-1 1.7·10-2 7.8·10-2 4.0·10-2 6.6·10-1 5.8·10-2 7.4·10-1 2.0·10-1 

S21 2.0·10-1 1.7·10-2 7.8·10-2 4.0·10-2 6.7·10-1 5.8·10-2 7.4·10-1 2.0·10-1 

S22 2.0·10-1 1.7·10-2 1.6·10-2 4.4·10-2 7.2·10-1 6.2·10-2 7.4·10-1 2.0·10-1 

S23 2.0·10-1 9.0·10-3 3.9·10-2 2.2·10-2 7.3·10-1 3.1·10-2 7.7·10-1 2.0·10-1 
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Figure 75: Map showing the distribution of the probability of accident in case of rockfall 

(Outcomes #2+#4 of the event tree). The acronym “n.a.” is for road segments where risk 

could not be assessed because of man-made structures or peculiar local setting. 
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Figure 76: Map showing the distribution of the probability of damage in case of rockfall 

(Outcomes #3+#5 of the event tree). The acronym “n.a.” is for road segments where risk 

could not be assessed because of man-made structures or peculiar local setting. 
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9.6. Comparison between ETA and RHRS methods 

Results achieved herein through ETA, with particular reference to the risk 

assessed at MRA, can be now compared to recent literature data, concerning 

the application of the modified RHRS (after Budetta et al., 2004) to a segment 

of MRA. 

Although such two methods cannot be directly compared, because they are 

based on different principles (the definition of a score for RHRS and the 

estimation of probability for ETA), a short comment on the relative outcomes 

is appropriate. 

As aforesaid, Pappalardo et al. (2014) assessed that SP-10 is a high rockfall 

hazard road requiring immediate stabilization measures, highlighting that the 

highest risk can be found at bend portions, characterized by considerable 

changes in the Decision Sight Distance parameter.  

On the other hand, the maps provided herein and achieved through a 

quantitative risk assessment approach allows highlighting a different zonation 

of the same road segment, with respect to the probability of accident, and a 

more uniform risk distribution in case of considering the whole probability of 

damage. 

Both products agree in labeling the upper SP-10 with intermediate-high risk, 

with particular reference to the bend sectors, where RHRS considers a 

reduction of the DSD parameter due to lowered visibility condition. ETA 

approach, which is based also on trajectory simulation data, highlights that 

along the upper segment of the road there is a segment affected by a higher 

probability of accident or damage, due to the higher percentage of boulder 

potentially stopping on the road.  

The main difference between the two outcomes is in the lower segment, which 

on one hand is labeled as high risk sector by the modified RHRS and, on the 

other hand, shows a lower probability of accident than UP according to the 
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quantitative ETA applied herein. This is because, RHRS, which is a semi-

quantitative method, does not take into account the peculiar route of the road 

and the probability that falling boulders may stop before reaching the lower 

segment, but only the slope height. This is a key consideration because, 

although such methodologies are not really comparable, ETA proved a more 

versatile method for this kind of analysis because it can be customized for the 

studied road path. On the contrary, a strong limitation of ETA is that it is 

conditioned by the subjectivity of the operator. In fact, results can greatly 

change based on the number of rockfall considered and on the interpretation 

of the rockfall trajectory simulations.  
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CHAPTER 10 

LATEST EVOLUTION OF THE EVENTS 

After a scientific study, it is a good practice verifying all the achieved data with 

the aim of validating the proposed models. 

With particular reference to the scientific issue discussed herein, dealing with 

rockfalls and associated risk means studying the predisposition of a territory 

to landslide, mainly based on the local geological and geomechanical settings 

and on field evidences. Sometimes, if such studies are carried out after the 

occurrence of a phenomenon, this can be back-studied to be used as reference 

for the calibration of the models. 

Nevertheless, verifying the reliability of such studies is a hard practice, because 

rockfall is a noticeable event, which usually causes a relevant risk for the 

population; therefore it is desirable not to happen, especially in populated 

areas. 

Contrariwise to this statement, on 16 November 2016, when this study was 

almost completed and all data had already been elaborated, a further event 

was triggered by heavy rainfalls at CA. Two blocks of about 0.3 m3 detached 

from the top of the cliff, reaching the secondary road, few meters away from 

the houses (Figure 77a-b). Both blocks stopped on the secondary road, 

although the largest one wobbled at the edge of the road, prompting the 

rescue team to remove it in order to avoid a further fall downstream. 

The end points of such blocks is located in a high-concentration area, according 

to the model designed herein (Figure 77c), underlying the reliability of 

proposed data and the actual risk associated also to secondary elements of this 

area.  
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Figure 77: rockfall occurred on 16 November 2016. a) view of the cliff, b) particular of fallen 

boulders, c) end-points concentration map already reported in Figure 65, with location of the 

end point of this event. 
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CHAPTER 11 

DISCUSSION 

11.1. Risk assessment along the SP-10 Road 

The research presented herein, focused on an approach for the quantitative 

rockfall risk assessment along strategic transportation corridors, highlighted 

how complex and diversified this kind of study is. The followed procedure, 

customized for the specific setting of the application area, was applied as 

example to a strategic road of northeastern Sicily (SP-10), which is the only 

communication route between the cities of Taormina and Castelmola. This 

road has already been the target of falling blocks during the latest years, 

although numerous events have never been documented. 

Rock masses, surveyed herein both by in situ measurements and by InfraRed 

Thermography shooting campaigns, are heavily fractured and show a poor 

geomechanical quality, due to the complex geological history of the area, and 

are affected by several unstable kinematic patterns, which can be regarded as 

potential future events.  

In particular, occurred rockfalls were usually characterized by the detachment 

of rock volumes up to metric size (Figure 61, Figure 62), which can be made of 

either a single boulder or a set of small blocks, cemented by calcite filling the 

less persistent discontinuities (especially for the carbonate lithologies), 

forming a unique boulder. Once detached, such blocks cross the slopes as far 

as the road, which can be hit at different segments. Therefore, numerous 

trajectory simulations were carried out, on 2D and 3D models, based on 

coefficients of restitution derived from back analyses performed on occurred 

events. Such simulations highlighted that the road can be regarded as an 

element at risk, because a relevant percentage of simulated falling boulders 

(up to 100%) would reach it. Results have been graphically reported on contour 

maps, which are a useful tool for the immediate recognition of the most critical 
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sectors (Figure 65, Figure 66). They show that a great percentage of falling 

rocks would cross the road heading downstream with variable kinetic energies 

(up to about 150 kJ), leading to potential worrying fatalities seen the great rate 

of tourism of the area. In fact, maps in Figure 66 clearly shows that the highest 

kinetic energies are found at the most critical sectors of the study area. These 

values resulted from trajectory simulations based on single blocks of constant 

mass, according to the ones surveyed in the study area and actually fallen. 

Moreover, with particular reference to MRA, although a variable percentage 

of end points is located along the upper segment, the articulated road path 

and the steepness of the slopes make the lower segment vulnerable by blocks 

rebounding on the upper segment. These, after having rebounded, gain kinetic 

energy towards the lower road.    

Such complex and comprehensive analysis is the starting point for the 

quantitative risk assessment along this road, which was carried out through 

the Event Tree Analysis. This approach allows the estimation of probability 

values related to possible scenarios in case of rockfall, with a positive epilogue 

(e.g. no damage) or a negative perspective (e.g. accident or damage). The 

choice of the different branches composing the Event Tree has been 

conditioned by the peculiar geomechanical setting of the area and by the 

geometry of the road path, which at its northern sector can be divided into 

two parallel segments running at different altitudes (upper and lower). In this 

perspective, the probability calculation has been carried out at 23 sub-

segments, chosen according to peculiar features of the road (e.g. change in 

direction at bends) or of the slopes (e.g. surveyed unstable blocks), by taking 

into account the trajectory of falling boulders, which represent the main 

conditioning element in this analysis.  

The probabilities related to possible negative outcomes in case of rockfall were 

estimated by taking into account the possibility that boulders could either 
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damage the road, thus leading to economic loss and disruptions, or cause 

accidents to passing vehicles. Results prove that this sector of road is subjected 

to a relevant probability of accident, especially along its upper segment, which 

would be the first target of falling boulders. The highest values characterize 

those portions directly bordered by impending rock masses, while lowest 

values are mainly related to the downstream segments, where a lower amount 

of blocks is likely to go as far as. 

Results were represented on final thematic maps (Figure 75, Figure 76), with 

the aim of providing a useful and intuitive tool for the representation of the 

risk variation along linear infrastructures.  

The probability zonation is in accordance to the rockfall history of the area, 

because the most critical sectors actually represent portions of the road 

threatened by falling blocks in the past.  

This study represents an example of scientific and analytic procedure, which 

can be applied in several critical areas worldwide, especially where the 

complexity of the geological conditions or of the road path may lead to 

important risks for people. The Event Tree can be customized according to 

specific patterns of the area and final maps can be drawn with all the 

probability values estimated during the analysis (e.g. probability of accident, 

probability of no damage), based on the aimed purposes. Furthermore, if 

necessary, the probability computation can also be further articulated, in case 

the estimation of injuries and deaths is needed (e.g. Bunce at al., 1997).  
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11.2. Application of InfraRed Thermography for the survey of rock slopes 

Infrared Thermography has been employed herein as a new technique for the 

survey of jointed rock slopes, achieving interesting results based on the 

thermal behavior of rock masses. In this research, IRT outputs were analyzed 

and compared, with respect to the different time of the day and seasons, to 

find out what kind of information they offer. The methodological approach was 

very strict to ensure the reproducibility of the measurements and the critical 

evaluation of the results. 

The comparison between the summer daily phases highlighted that the rock 

mass, regardless of the lithology, gains heat as long as it is exposed to the 

sunrays (Figure 52). Then, it begins to release heat through the fracture systems 

and the best IRT output is recorded in nighttime, when parasite radiation is 

lower and the difference between rock mass and ambient temperatures is at 

its maximum.  

The discontinuity traces, along with fractured/crushed sectors, are marked by 

positive thermal anomalies, while regular planes (with no visible fractures) 

keep a lower temperature. This contrast makes easy to trace the main 

discontinuity systems and to map intensely jointed sectors. Such practice 

would be useful for a survey of unreachable rock masses, where a 

geostructural characterization is hard to perform (e.g. higher sectors, coastal 

cliffs). 

Winter thermograms show a worse definition, due to the low heating of the 

rock face if direct radiation is not present (for example on a cloudy day). This 

means that the rock, on average, keeps a constant temperature during the day, 

resulting in less defined thermal outputs. 

Among all the analyzed thermograms, the best outputs are related to the late 

cooling phase of rock masses (i.e. the nighttime shots), both in summer and 

winter. Such a result is in accordance with Teza et al. (2012), who suggested 
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measurements during the cooling phase because a direct sun heating induces 

high disturbance, with significant effects due to the relative position between 

the source and the facets of the surface.  

An experimental index for the description of the rock mass cooling was 

introduced. This is the Cooling Rate Index (CRI), related to the cooling velocity 

of the rock. The cooling rate depends not only on the difference between the 

object and ambient temperatures, but it is strongly conditioned by the 

fracturing of the rock. For this reason, a preliminary relationship between CRI 

and RQD was established. The regression analysis resulted in a negative linear 

trend, showing that the higher the degree of fracturing of the rock, the faster 

its cooling. In this view, IRT could be employed also as a brand new, 

independent technology for the remote estimation of the degree of fracturing 

in rock masses, although further measurements in different contexts are 

needed to refine these relationship.  
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CONCLUSIONS 

More than one conclusive consideration can be draw by archived results, with 

respect to both the specific study area and the followed procedure.  

Starting from the first aspect, the highlights of this study are summarized as 

follows: 

1) the analysis carried out at a strategic sector of eastern Sicily demonstrated 

that rock masses of Castelmola-Taormina area are affected by a great 

predisposition to landslide, thus they represent a worrying threat for the only 

communication route, traveled by a great tourism rate each year. 

2) SP-10 road is a high risk infrastructure, threatened by a high probability of 

damage and by a relevant probability of accident in case of rockfalls. 

3) The geometrical path of a road, especially in mountainous sectors, strongly 

condition its rockfall risk, because the road segments may act either as end 

point for blocks or as rebound points, enhancing the movement of blocks 

towards downstream with higher kinetic energies.  

On the other hand, with reference to the scientific procedure followed herein: 

4) the application of InfraRed Thermography for the study of the degree of 

fracturing of rock masses proved a useful tool for the estimation of the most 

fractured sectors and for the detection of the main discontinuity systems. The 

best quality of thermograms is achieved in nighttime, when no parasite 

radiation affects the acquisition of the thermal image. 

5) The cooling behavior of rock masses can be studied by estimating their 

Cooling Rate Index (CRI), which proved an innovative index correlated to the 

degree of fracturing of the rock mass. 

6) This study represents the example of a comprehensive procedure aimed at 

assessing the rockfall risk along roads through the specific approach of the 

Event Tree Analysis, which proved a suitable and versatile technique to deal 

with this kind of issues, although it is strongly conditioned by the subjectivity 
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of the operator computing the probabilities and by the results of rockfall 

trajectories simulations. 

7) The starting point for such approach is the detailed knowledge of the study 

area and of its rockfall history, which has to be modeled according to the rock 

mass analysis and rockfall simulations.  

8) Different probability scenarios can be considered, according to the specific 

purpose aimed. 

9) The procedure can be applied at several mountainous transportation 

corridors worldwide, especially where the complexity of the geological 

conditions or of the road path may lead to important risks for the vehicle 

traffic. 

10) Achieved results and their representation on thematic maps can be 

employed in the perspective of performing proper mitigation works along 

specific road segments, in order to prevent the occurrence of rockfalls and 

related consequences.  
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