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Preface 

 

The development of this phD Thesis has its roots a three - year study across two Countries. The first half 

of the project has been realized in Italy, in Naples, at the private Centre “Diagnostica ecografica prenatale Aniello 

Di Meglio s.r.l.”, with the collaboration of the Department of Radiologic, Oncologic and Pathologic Sciences at La 

Sapienza University, in Rome, while the second half of the research has been conducted in Switzerland, in Bern, at 

the “Prenatal Ultrasound Unit” of the Department of Obstetrics and Gynaecology, with the collaboration of the 

Department of Diagnostic and Interventional Neuroradiology, as well as at the “Prenatal Medicine Research 

Laboratory” of the Department of Obstetrics and Gynaecology and the Department of Clinical Research of the 

University of Bern.  

The opportunity to combine clinical activity with in-vitro research has raised the challenge of the integration 

between two different, but at the same time, complementary and synergic points of view: from one side, the 

pragmatism of the clinician, dedicated to prenatal diagnosis in an OB/GYN facility in the routine practice and, from 

the other side, the vision of the pre-clinical researcher, that looks far, beyond the everyday feasibilities, to the 

exiting possibilities of widening prenatal therapy.  

In relation to the pathophysiology of the developing human brain, these two approaches embrace two big 

chapters of this interesting field of medicine, including the study of brain malformations from one side (the clinical 

side), and the study of acquired brain injuries from the other side (the pre-clinical side).  

The development of the brain is a fascinating but at the same time an exceptionally complicated process, 

which still today remains a challenge to the neurologists, neuroscientists and neuropathologists. Pathological noxae 

that may impair this physiological development are related to a number of events involving internal and/or external 

causative agents, that lead to brain malformations or to acquired brain injuries.  

A malformation is defined as an aberration of normal organ development occurring as a consequence of a 

genetic disposition, infection, exposition to a teratogenic agent, or sporadically. Fetal brain malformations have an 

incidence of 0.36% of life-births and can be, depending on the involved pathophysiological mechanism, subsequent 

to the failure of (a) ventral induction, (b) dorsal induction, (c) neuronal proliferation, differentiation, histogenesis, 

(d) neuronal migration.  

Acquired fetal brain injuries are a consequence of damage to a previously normally formed structure, so 

they must be differentiated from malformations (where a structure is not normally formed). In a neuropathological 

series of intrauterine or neonatal deaths, 20.4% showed evidence of prenatal brain injury. Acquired brain injury 

may be subsequent to (a) maternal disease, acute maternal impairment, (b) exposition to toxic/iatrogenic agents (c) 

disorders of the placenta and\or of the umbilical cord (d) fetal metabolic or hematologic disease/malformations.   
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Guided by a genuine combination of interest in the subject, curiosity, challenge, but also adaptability to the 

circumstances as well as a pinch of “serendipity”, this phD research line has been developed into 3 branches as 

follows: 

- the main part (A) focused on a specific aspect of the ventral induction and its failure: the developing 

cerebellum, with a special insight in the midline structures of the posterior fossa. This main part explores the 

diagnostic potentialities of prenatal imaging such as ultrasound and magnetic resonance imaging (MRI), which, 

thanks to the ongoing technical and scientific progress, have evolved from almost exclusively experimental 

examinations to clinically important tools, which impact decision making in the field of pre- and perinatal medicine; 

- the second part (B) has been dedicated to the prenatal ultrasonographic imaging of neuronal migration, 

with special attention to the growing fetal cortex, whose fissures and sulci mark progressively its development 

throughout gestation;       

- an ancillary part (C) has dealt with experimental translational stem cell research in acquired fetal brain 

injuries. This is a currently ongoing project, including in-vitro experiments as well as in- vivo-transplantation of 

stem cells and stem cell derivates for peripartum neuro-regeneration in an experimental model. Only the little 

contribution of this thesis to this ongoing project has here briefly reported.  

It is important to underline that all the here reported data represent a starting point rather than a conclusion 

of a research trajectory. Indeed, the final, most important aim of this project, across its 3 branches, is to open new 

ways for further, new investigations as well as to raise the interest of the scientific community to these still 

understudied and challenging fields of Prenatal Medicine.  
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A) Main project: The developing cerebellum: insight in the midline structures of the posterior fossa  

 

 

A 1. Introduction  

 

A 1.a The cerebellum: historical overview  

Throughout the history of Medicine, the cerebellum has always been recognized as a distinct subdivision 

of the brain. Its special feature is that it is not visible when looking down at the surface of the human brain, since 

it is overlaid by the occipital lobe of the cerebral cortex. In many animals, the cortex does not extend over the 

cerebellum, so it can be seen from the top. This species difference lay at the root of Vesalius’ (1514–1564) 

questioning an earlier description by Galen. Vesalius (1543) wrote: “Anatomists describe the site of the cerebellum 

as if it filled the whole region of that prominence of the occiput, that swelling which the mass of the people consider 

a measure of the power of memory and talent. The very highest part of the cerebellum extends only to the middle 

[the middle here refers to the occiput; ed.] although some, deluded by oxen and asses or by dreams, have written 

that the cerebellum ascends from the posterior site of the foramen, to the lambdoid suture”. 

Vesalius was one of the first in a long tradition in cerebellar research of questioning the worth of his 

predecessor’s contribution. Vesalius suggested that Galen’s descriptions were false, probably because he based his 

descriptions, not on the human cerebellum, but on that of an ox. 

The earliest anatomical descriptions were limited by the usual procedure of dissecting brain structures from 

above. Costanzo Varolio (1543–1575) introduced the practice of dissecting from below (Varolio, 1573). He 

described and illustrated the pons, a massive structure in humans which is intimately related to the cerebellum, and 

often referred to as “the Pons of Varolius.” 

After this discovery, followed an increasingly accurate portrayal of the gross anatomical structure of the 

cerebellar cortex and recognition of the cerebellar nuclei which are encased within its white matter. 

Marcello Malpighi (1628–1694) wrote (1665): “All the fibres dispersed through the brain and cerebellum 

seem to have origin from the trunk of the spinal marrow contained within the cranium like a noteworthy collection 

of fibres: for they ramify hither and thither from four reflected crura of the marrow until they end in the cortex in 

branching extremities. This course is more apparent in the cerebellum because the fibres are extended in the form 

of a tree and on the extreme branches, almost like leaves, the cortex is delicately placed. It is not attached to 

anything so it resembles a free leaf.” 

Shortly thereafter, the cerebellar nuclei were recognized by Raymond de Vieussens (1641–1716) as an ash 

grey area of glandular substance, buried within the white matter of the cerebellum. Félix Vicq dÁzyr (1746–1794) 

provided a more realistic drawing of the corpus rhomboideum, and renamed it as the corps dentelé (Moreau de la 

Sarthe, 1805) (Fig.1). The other cerebellar nuclei were first labelled as the emboliform, globose and fastigial nuclei 
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by Stilling (1864). Vicq dÁzyr drew attention to the distinctness of the indentation on the superior surface of the 

dentate and their relative absence on its inferior surface, corresponding to the two divisions of the human dentate 

now known as the dorsal microgyric division or palaeodentatum and its ventral, macrogyric division, also known 

as the neodentatum, the latter receiving its name from the large undulations of the cell band in this part of the 

nucleus. A division of the monkey dentate into a dorsal (motor) and ventral (nonmotor) portions, with projections 

to (pre-)motor and pre-frontal cortical areas and eye fields recently was proposed by Dum and Strick (2002).  

In the 18th Century took place a succession of increasingly accurate anatomical descriptions in which 

subdivisions of the cerebellum began to be named. Vincenzo Malacarne (1744–1816) published the first work 

entirely devoted to the cerebellum in 1776 (Fig.2). He dissected the brain from all approaches, and gave a far more 

accurate description of the cerebellar cortex and nuclei than any of his predecessors. 

Furthermore, interestingly, he first described accurately the midline structures of the cerebellum and the 

posterior fossa, i.e. the currently so called “vermis”. Curiously, he named the cerebellar parts and the vermis itself 

- as well as its further subdivisions - for their resemblance to some other known structures, e.g. lingula (Italian: 

linguetta, a cat’s tongue) uvula (Italian: ugola). He wrote: “. . . is seen a thick pyramidal eminence . . .  I have called 

the laminate pyramid . . .  to these lateral tangles . . . I give the name of tonsils of the cerebellum and to the conical 

eminence uvula, because they greatly resemble the parts of the same names located in the human body.” 

In Malacarne’s time congenital hypotyroidism was widespread in the Po valley due to a lack of iodine in 

this region of Italy. He described two cases of cretinism that came to autopsy in which the cerebellum was smaller 

than normal, and with fewer folia. Malacarne also suggested that the cerebellum might be involved in plastic 

changes. In his book on the anatomy of the cerebellum, he described the presence of variability in the number of 

folia from 500 to 780. In a case of an intellectually disabled they were 340. In a series of letters that he exchanged 

with the Swiss anatomist Carlo Bonnet, Malacarne (1791) discussed whether such variability is innate or was 

acquired by experience. He proposed raising animal twins in poor and enriched environments and determining the 

number of folia. If the experiment was ever done, it has not been reported. 

By the end of the 18th Century there was an accurate picture of the gross anatomy of the cerebellum, and 

there were speculations about its functions. Although the anatomical descriptions were accurate, early claims for 

cerebellar functions remained speculative; typically based on very little evidence. Johann Christian Reil (1759–

1813) and Karl Friedrich Burdach (1776–1847) used alcohol fixation to verify and extend Malacarne’s earlier 

description, resulting in the classical nomenclature for the lobules of the human cerebellum, still in use today (Reil, 

1807-1808; Burdach, 1819–1826). Reil’s paper contains a meticulous description of the cerebellar lobules. 

Beautiful engravings illustrate this paper.  

At the time that these anatomical studies were being reported, Volta’s discovery of a bimetallic source of 

electricity was the newest thing in physics. Reil suggested that the alternating layers of grey and white matter 
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constitute a sort of voltaic pile, generating animal electricity. Other interpretations were based on even less-well-

founded evidence. 

Curiously, the phrenologists Gall (1757–1828) and his followers (Combe and Combe, 1838) started to 

consider the cerebellum as the organ of sexuality: “philoprogenitiveness” (love of making babies). The claim was 

taken seriously, some authors supporting the proposed role of the cerebellum in sexual functions, others rejecting 

it. In this lectures on diseases of the brain, reported in The Lancet, Andral cited M. Voisin who had studied the 

heads of 372 convicts sentenced to the galleries at Toulon. On the basis of the shape of their skulls he identified 20 

of these as potential sex offenders. Voisin wrote that “thirteen of these twenty had actually been confined for rape 

or attempts upon female chastity.” Voisin also cited Dr. Ferroresi of Torino who had obtained the cure of a young 

girl afflicted with nymphomania and two young men who suffered from a habit of masturbation by the simple 

application of ice to the back of the head, below the occipital protuberance. Gall’s speculations about cerebellar 

function attracted supporters, even though experimental evidence began to be available. 

At the beginning of the 19th Century, animal experiments began to give a more accurate functional 

understanding. Luigi Rolando (1773–1831) identified the specifically motor symptoms which follow cerebellar 

lesion (1809). The lesions impaired motor and not sensory or intellectual functions. 

Rolando concluded that the cerebellum was the brain region responsible for initiating movement, but his 

experiments were rather crude. With the development of increased surgical skill and later of aseptic technique, 

more accurate evaluation of the effects of cerebellar lesions became possible. Two of the great experimenters of 

the 19th Century were Pierre Flourens and Luigi Luciani. 

Flourens (1794–1867) made the fundamental observation that animals are not paralyzed. Movements are 

not completely lost after cerebellar ablation. He argued that it is the coordination of movement, a property which 

had not previously been considered by physiologists. Flourens also noted there may be considerable recovery from 

the initial symptoms caused by a cerebellar lesion. 

Flourens (1824) wrote: “. . . All movements persist following ablation of the cerebellum: all that is missing 

is that they are not regular and coordinated. From this I have been induced to conclude that the production and 

the coordination of movements form two classes of essentially distinct phenomena and that they reside in two 

classes of organs also essentially distinct: with coordination in the cerebellum and production in the spinal cord 

and medulla oblongata.” 

Flourens dismissed definitively as unfounded the claims for the sexual functions of the cerebellum. He 

removed the cerebellum of a mature rooster. The animal was still deeply interested in the hens, but motor 

dysfunction made it difficult for him to express his feelings towards them. The animal’s deficit seemed to be entirely 

motor in character. Flourens’ descriptions of the effects of cerebellar lesions remained as the definitive work for 

much of the remainder of the 19th century, and many of his conclusions remain valid today. 
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Towards the end of the Century Luigi Luciani (1840– 1919) used improved operative technique and sterile 

procedures to re-address the question of cerebellar symptoms. 

Luciani (1891) (Fig. 3) distinguished between the immediate transient effects of lesions (un-stabilized 

deficiency), and their more permanent effects (stabilized deficiency). He emphasized that the permanent effects of 

cerebellar lesions could be understood in terms of elementary deficits in muscle control. The three cardinal 

symptoms according to Luciani were asthenia, or weakness, atonia, lack of normal muscle tone, and “astasia”. 

Luciani characterized “astasia” as an inability to maintain normal fusion and continuity of movement, reflected in 

the intention tremor that is seen in cerebellar patients. He wrote: “To this group of phenomena which include tremor, 

titubation and rhythmical oscillating movements, we gave the name astasia for the sake of brevity and owing to 

their probable common origin.” 

During the last Century the technical and technological advancements have allowed a thorough and a deep 

study of the cerebellum, its functions, its interactions with all the other parts of the brain. Today, we can affirm that 

the cerebellum is one of the best studied parts of the brain.  

One of the most interesting and fashioned progresses of this last Century has been the possibility to study 

the cerebellum also during prenatal life, and investigate the cerebellar embryogenesis and morphogenesis 

throughout gestation, thanks to the recent enormous development of prenatal imaging.   

 

A 1.b Embryogenesis and morphogenesis of the cerebellum 

The cerebellum develops over a long period, extending from the early embryonic period until the first 

postnatal years, arising bilaterally from the alar layers of the so called “first rhombomere” (Fig. 4). Early in the 

fetal period, the two cerebellar primordia were said to unite dorsally to form the vermis. However, Sidman and 

Rakic (1982) advocated Hochstetter’s (1929) view that such a fusion does not take place, and hypothesized the 

presence of only one cerebellar primordium (the tuberculum cerebelli). Today this last theory is the most accredited. 

The tuberculum cerebelli consists of a band of tissue in the dorsolateral part of the alar plate that straddles the 

midline in the shape of an inverted V. The arms of the V are directed caudally as well as laterally, and thicken 

enormously, accounting for most of the early growth of the cerebellum. The rostral, midline part of the V, however, 

remains small and relatively inconspicuous.  

The further morphogenesis of the cerebellum can be summarized as follows (Fig. 5): (1) the caudally and 

laterally directed limbs of the tuberculum cerebelli thicken rapidly early during the 6th  postovulatory week and 

bulge downwards into the fourth ventricle (on each side the internal cerebellar bulge or “innerer Kleinhirnwulst” 

of Hochstetter, which together form the  corpus cerebelli) ; (2) during the following weeks, the rapidly growing 

cerebellum bulges outwards as the external cerebellar bulges (“äusserer Kleinhirnwulst” of Hochstetter) which 

represent the flocculi, delineated by the posterolateral fissures; (3) during the third month of development the 

growth of the midline component accelerates and begins to fill the gap between the limbs of the V, thereby forming 
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the  vermis. It is important to underline this latter point: currently, has been ascertained that the cerebellar vermis 

per se is not formed through the fusion of the adjacent developing cerebellar hemispheres but it develops as a direct 

proliferation of the mesial primordium (Fig. 6). Experimental evidence shows us that granule cells, arising from 

the lateral upper rhombic lip migrate medially into the posterior cerebellum, whereas granule cells arising in the 

medial upper rhombic lip are confined to an anterior cerebellar distribution. Therefore, as the primordia are separate, 

the development of the posterior vermis is not dependent on that of the anterior vermis; by the 12th to 13th weeks 

of development, outward, lateral and rostral growth processes have reshaped the cerebellum to a transversely 

oriented bar of tissue overriding the fourth ventricle. Robinson in 2014, in an interesting editorial published on 

Ultrasound in Obstetrics and Gynaecology has pointed out that all these experimental evidences may have an 

important clinical relevance, since they may help in better understanding and diagnosing the so called “inferior 

vermis hypoplasia” (see subsequent paragraphs).  

As the vermis grows caudally it invaginates into the rhombencephalic vesicle, and the posterior 

membranous area protrudes beneath the vermis into the overlying meninx primitiva. This evagination, first 

described in 1900, is known as Blake’s pouch, and where Blake’s pouch constricts to pass through the cerebellar 

vallecula (the normal space inferior to the vermis, superior to the nucleus gracilis and medial to the cerebellar 

hemispheres) it is known as Blake’s metapore (Fig. 6). Even though Blake’s pouch itself lies within the 

subarachnoid space of the developing cisterna magna, it is a direct extension of the fourth ventricle and, therefore, 

the fluid contained in Blake’s pouch is intraventricular. Straight echoes (the cisterna magna septa), typically seen 

in the fetal cisterna magna at prenatal ultrasound scan, and most often described as bridging arachnoid septations, 

have recently been shown to represent the walls of Blake’s pouch, which may now be considered a potential marker 

for normal development. 

The future cisterna magna therefore forms in two compartments: a mesial compartment between the cisterna 

magna septa, which is derived from the rhombencephalic vesicle (Blake’s pouch), and compartments lateral to the 

cisterna magna septa which develop through cavitation of the meninx primitiva overlying the surface of the brain, 

forming the subarachnoid space proper (Fig. 6). Blake’s pouch usually, but not always, fenestrates to a variable 

degree down to the obex (the inferior recess of the fourth ventricle), which leads to communication between the 

mesial ventricular-derived compartment and the true subarachnoid space of the cisterna magna. Fenestration and 

disappearance of Blake’s pouch, thus, leaves an opening at Blake’s metapore which is known as the foramen of 

Magendie, allowing communication between the fourth ventricle and the cisterna magna. Thus, the foramen of 

Magendie does not demarcate the true junction between the ventricular system and subarachnoid space of the 

cisterna magna. A small communication beneath the vermis, between the fourth ventricle and the ‘cisterna magna’, 

often described in the literature on ultrasound and sometimes seen on mid-sagittal images, therefore represents the 

normal Blake’s metapore. Ultrasonographic imaging the posterior fossa in the semicoronal plane may show this 

normal opening, but can give a false appearance of a vermian defect and, unfortunately, is often described wrongly 
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as “inferior vermis hypoplasia” (see subsequent paragraphs) (Fig.7). This error can be avoided by making sure that 

the cavum septi pellucidi is included in the image, thus ensuring that the scan plane is truly axial or modified-axial. 

 

A 1.c Phylogeny of the cerebellum 

 ‘Ontogeny recapitulates phylogeny’, or embryology repeats evolution. This important principle states that 

the development observed during embryology is like a ‘time-lapse photography’ rendition of the various steps 

taken during evolution; thus, structures that evolved first also develop first in the embryo, although the separate 

steps become somewhat merged.  

The oldest part of the cerebellum, the archicerebellum, comprises the bilateral flocculi and the mesial 

nodulus, and is known as the flocculonodular lobe (Fig. 8). Functionally, this lobe, plus some of the adjacent uvula, 

comprise the vestibulocerebellum, which has connections with the vestibular nuclei (which, although situated 

within the brainstem, are considered surrogate deep cerebellar nuclei) and semicircular canals, receives visual 

information from the superior colliculi, and is involved in balance, position and tone. These functions appear early 

in evolution, are shared among all vertebrates and phylogenetically are first seen in fish and amphibians; 

consequently, they are the earliest to appear embryologically.  

The next part of the cerebellum to appear is the paleocerebellum, which comprises the lobules of the anterior 

lobe of the vermis (lingula, centralis, culmen) (Fig.9) and, importantly, the more caudal lobules of the posterior 

lobe of the vermis (pyramis) and some of the adjacent uvula. The paleocerebellum, plus adjacent paravermian tissue 

in the cerebellar hemispheres, is known functionally as the spinocerebellum and, due to its connections with the 

spinocerebellar tracts and efferent connections via the deep cerebellar nuclei to the cerebral cortex, it is involved 

in proprioception and synergy of movement and locomotion. Phylogenetically, this is first seen in higher 

amphibians and, in relative terms, is largest in reptiles and birds.  

The final part of the cerebellum to appear is the neocerebellum (also known as the cerebrocerebellum or 

pontocerebellum), which comprises the most rostral lobules of the posterior vermis (between the primary and pre-

pyramidal fissures) (i.e. declive, folium, tuber) (Fig.9), plus the majority of the contiguous cerebellar hemispheres. 

Functionally, it is involved with motion intent, planning, precision, force and extent, and increasingly it is 

recognized to regulate cognitive and language functions. Phylogenetically, this is seen in mammals only and it is 

largest in humans; it is, therefore, the latest to appear both in evolution and embryologically. It contributes the most 

to the trans-cerebellar diameter, and thus is one of the most widely used markers for normal cerebellar development 

in the fetus.  

A similar pattern of development is seen in the deep cerebellar nuclei, among which the phylogenetically 

older nuclei, the fastigial nuclei, are the most medial within the white matter and connect primarily with the 

archicerebellum, followed by the globose and emboliform nuclei, which are more lateral and connect primarily 
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with the paleocerebellum, and finally the dentate, the most lateral nuclei, which are connected primarily with the 

neocerebellum. It therefore appears that, from an evolutionary and embryological perspective, the cerebellum 

actually develops with the most rostral and most caudal parts appearing together, initially adjacent to each other, 

with the more phylogenetically recent structures subsequently developing between these older structures, akin to 

the opening of a flower in which the outer petals are the first to appear and the inner ones appear later. Thus, the 

more anterior and posterior lobules and the associated medial deep cerebellar nuclei appear first, and the more 

central lobules, hemispheres and associated most lateral deep cerebellar nuclei appear last. 

 

A 1.d Some notes on the anatomy of the cerebellum and the posterior fossa 

The cerebellar cortex is composed of 4 main types of neurons: granule cells, Purkinje cells and two types 

of inhibitory interneurons, the Golgi cells and the stellate/basket cells. The cortex receives three kinds of input: the 

mossy fibres (most afferent systems), the climbing fibres from the inferior olive, and diffusely organized 

monoaminergic and cholinergic fibres.  

The cerebellum is organized as longitudinal zones of Purkinje cells (A-, B-, C– and D-zones), each 

projecting to its own cerebellar nucleus and receiving input from different parts of the inferior olive. A less well-

studied zone is the X-zone between the A- and B-zones in the anterior vermis. The cerebellar nuclei also known as 

central or deep cerebellar nuclei are the medial nucleus fastigii, the intermediate nucleus globosus  and the  nucleus 

emboliformis  (together also known as the nucleus interpositus), and the laterally situated, large  nucleus dentatus 

. The vermis contains a medial zone (A-  zone) , projecting to the nucleus fastigii, and a small  B- zone  that 

innervates the lateral vestibular nucleus of Deiters. The cerebellar hemispheres can be divided into intermediate 

and lateral zones. The intermediate zone consists of three C- zones, projecting to the nucleus emboliformis (C1 and 

C3) and the nucleus globosus (C2). The large lateral zone (D- zone) innervates the nucleus dentatus. The lobus 

flocculonodularis innervates the vestibular nuclei in mammals and birds. Purkinje cells of a zone project to a 

particular cerebellar or vestibular target nucleus. Zones can extend across one or more lobules; some span the entire 

rostrocaudal length of the cerebellum. The olivocerebellar projection is arranged in a similar way. Subnuclei of the 

inferior olive project to a single Purkinje-cell zone or to a pair of zones sharing the same target nucleus. These 

longitudinal zones are not evident on the outside of the cerebellum. However, a system of compartments in the 

white matter, which contains the axons of the Purkinje cells and the climbing fibres, can be visualized.  

Afferent and efferent fibre connections of the cerebellum pass through the cerebellar peduncles. The 

pedunculus cerebellaris inferior or corpus restiforme contains cerebellar afferents: the tractus spinocerebellaris 

posterior and the fibrae cuneocerebellares from the spinal cord, trigeminocerebellar fibres from sensory trigeminal 

nuclei, olivocerebellar fibres and  vestibulocerebellar fibres. The pedunculus cerebellaris medius or brachium pontis 

is formed by the massive pontocerebellar system. The pontine nuclei are innervated by the cerebral cortex via two 
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tracts: the frontopontine tract from the frontal lobe, the motor and premotor areas in particular, and the 

parietotemporo - occipitopontine tract, particularly arising in the somatosensory areas and the adjacent area. The 

pedunculus cerebellaris superior contains the tractus spinocerebellaris anterior and the main efferent system of the 

cerebellum, i.e. the brachium conjunctivum. The cerebellar nuclei are the output centres of the cerebellum. The 

targets of these nuclei differ considerably. The dentate and interposed nuclei mainly innervate the thalamus and the 

red nucleus, and control corticospinal and rubrospinal projections. The fastigial nucleus and the nucleus of Deiters 

control the reticulospinal and vestibulospinal projections. The subdivision of descending supraspinal pathways into 

lateral and medial systems is therefore also found in the cerebellar control system. The dentate nucleus also has 

important feedback loops to the cerebellum through the nucleus reticularis tegmentalis pontis and the dentato-rubro-

olivary loop. Projections from the small-celled part of the red nucleus to the inferior olive pass via the central 

tegmental tract.  

The cerebellum lies into one of the three distinct depressions of the floor of the cranial cavity: the posterior 

cranial fossa, which is the most posterior and deep of the three cranial fossae (Fig. 10 a). The posterior cranial fossa 

is comprised of three bones: the occipital bone and the two temporal bones. It is bounded as follows: anteriorly and 

medially it is bounded by the dorsum sellae of the sphenoid bone. This is a large superior projection of bone that 

arises from the body of the sphenoid. Anteriorly and laterally it is bounded by the superior border of the petrous 

part of the temporal bone, while posteriorly it is bounded by the internal surface of the squamous part of the occipital 

bone. The floor consists of the mastoid part of the temporal bone and the squamous, condylar and basilar parts of 

the occipital bone. There are several bony landmarks and foramina present in the posterior cranial fossa. The 

internal acoustic meatus is an oval opening in the posterior aspect of the petrous part of the temporal bone. It 

transmits the facial nerve, vestibulocochlear nerve and labrynthine artery. A large opening, the foramen magnum, 

lies centrally in the floor of the posterior cranial fossa. It transmits the medulla of the brain, meninges, vertebral 

arteries, spinal accessory nerve (ascending), dural veins and anterior and posterior spinal arteries. Anteriorly an 

incline, known as the clivus, connects the foramen magnum with the dorsum sellae. The jugular foramina are 

situated either side of the foramen magnum. Each transmits the glossopharyngeal nerve, vagus nerve, spinal 

accessory nerve (descending), internal jugular vein, inferior petrosal sinus, sigmoid sinus and meningeal branches 

of the ascending pharyngeal and occipital arteries. Immediately superior to the anterolateral margin of the foramen 

magnum is the hypoglossal canal. It transmits the hypoglossal nerve through the occipital bone. Behind the foramen 

magnum the squamous part of the occipital bone is marked in or near the median plane by a ridge of bone, called 

the internal occipital crest, which ends above and behind in an irregular elevation, named the internal occipital 

protuberance (Fig. 10 b). On each side of the protuberance a wide shallow groove curves laterally with a slight 

upward convexity to the postern-inferior angle of the parietal bone. It is produced by the transverse sinus, is usually 

deeper on the right side and at its lateral extremity is continuous with the groove for the sigmoid sinus. Below the 

groove for the transverse sinus the internal occipital crest divides the bone into two gently hollowed fossae, which 
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lodge the cerebellar hemispheres. The internal occipital crest corresponds to the lower, prominent division of the 

cruciate eminence of the occipital bone and it bifurcates near the foramen magnum, giving the attachment to the 

falx cerebelli (see later); in the attached margin of this falx is the occipital sinus, which is sometimes duplicated 

(Fig. 11). The internal occipital protuberance is related to the confluence of sinuses and is grooved on each side by 

the commencement of, the transverse sinus. The margins of the groove for the transverse sinus give attachment to 

the two layers of the tentorium cerebelli. Traced laterally the groove reaches the lowest part of the posterior inferior 

angle of the parietal bone, where it becomes continuous with the sigmoid groove. On each side of the internal 

occipital crest the bone is thin, and translucent, in marked contrast to the regions of the crest and of the internal 

occipital protuberance On the upper part of the internal occipital crest, a small depression is sometimes 

distinguishable; it is termed the vermian fossa since it is occupied by part of the vermis of the cerebellum.  

The falx cerebelli (Fig. 11) is a small sickle shaped fold of dura mater, projecting forwards into the posterior 

cerebellar notch as well as projecting into the vallecula of the cerebellum between the two cerebellar hemispheres. 

The name comes from the Latin word falx meaning "curved blade or scythe" and cerebellum meaning "brain". Its 

base is attached, above, to the under and back part of the tentorium cerebelli; its posterior margin, to the lower 

division of the vertical crest on the inner surface of the occipital bone. The falx cerebelli generally lies somewhere 

between 2.8 and 4.5 cm in length and is approximately 1–2 mm thick. In its lower portion the falx cerebelli 

diminishes very rapidly in height and as it descends, it can divide into two smaller folds or diverging limbs, which 

are lost on the sides of the foramen magnum. Other variations such as duplication, triplication, absence, and 

fenestration are much less common. As dural venous sinuses are concurrent with the development of dural folds, 

duplication of the falx cerebelli is usually associated with duplicated occipital sinus. 

  

A 1.e Developmental cerebellar Disorders with focus on midline malformations 

Anatomically, cerebellar malformations may be classified into unilateral and bilateral abnormalities. 

Unilateral cerebellar malformations are most likely due to acquired insults, such as intracerebellar bleeding 

associated with prematurity. Depending on the part of the cerebellum involved, bilateral cerebellar malformations 

may be further classified into midline or vermis malformations, and malformations affecting both the vermis and 

the cerebellar hemispheres.  

Agenesis or hypoplasia of the vermis may be found in a large number of malformations of the brain 

including the Dandy-Walker malformation (DWM) (see below) and syndromes with agenesis of the vermis as a 

constant feature, such as the Joubert syndrome and Walker-Warburg syndrome; a large group of syndromes in 

which absence of the vermis may occur, such as the Meckel-Gruber and Smith-Lemli-Opitz syndromes, and 

dysgenesis of the vermis in rare disorders, such as rhombencephalosynapsis, tectocerebellar dysraphia and 

Lhermitte-Duclos disease. Major malformations of the cerebellar midline structures are also found in the Chiari 
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malformations. The most common type, i.e. type II Chiari malformation, is almost always associated with a 

myelomeningocele, and is part of the neural tube defect spectrum. A high percentage of diagnosed dyslexic children 

show behavioural evidence of abnormal cerebellar function. Quantitative MRI studies showed an impaired growth 

of the vermis is detectable in idiopathic autism, as well as in autism associated with fragile X syndrome.  

A developmental and genetic classification for all brain stem malformations, including those of the 

cerebellum, was published by Barkovich et al.  in 2007 and 2009. Based on a large data base of experimental studies 

in mice and their own extensive clinical studies, they suggested four categories: (1) malformations secondary to 

anteroposterior and dorsoventral patterning; (2) malformations associated with later generalized developmental 

disorders affecting the brain stem and the cerebellum; (3) localized brain malformations affecting the brain stem 

and the cerebellum; and (4) combined hypoplasia and atrophy in putative prenatal-onset degenerative disorders. 

Relatively to posterior fossa anomalies, from an exquisitely ultrasonographic point of view, it is possible 

to differentiate malformations into two broad categories: (1) cystic malformations, characterized by the presence 

of an apparent cerebrospinal fluid collection in the posterior fossa due to fourth ventricle/cisterna magna dilatation, 

or to true  arachnoid loculations; and (2) non-cystic malformations, in which there is no apparent cerebrospinal 

fluid collection. To the cystic malformations belong the DWM, the Blake’s pouch cyst, the mega cisterna magna 

and the vermian hypoplasia (“Dandy Walker variant”). 

The DWM (Fig. 12), named by Benda (1954) after the first descriptions of Dandy and Blackfan (1914) and 

Taggart and Walker (1942), is characterized by the following triad: (1) cystic dilatation of the fourth ventricle and 

an enlarged posterior fossa with upward displacement of the lateral sinuses, confluens sinuum and tentorium 

cerebelli, (2) varying degrees of vermian aplasia or hypoplasia, through which the 4th ventricle communicates with 

the cisterna magna; and (3) hydrocephalus. DWM has an estimated prevalence of approximately 1 per 30,000 births 

and is found in 4% to 12% of all cases of infantile hydrocephalus. Indeed, this latter sign, associated with a bulging 

occiput, is unusual at birth but is present by 3 months of age in about 75 % of patients. Early shunting of the cyst 

and hydrocephalus is advocated, because early management may give intellectual development a better chance and 

improve prognosis. Intellectual disability and seizures have been reported in up to 50 % of cases with a DWM. 

Most cases are sporadic. Associated brain malformations are present in up to 68 % of the cases, the most common 

of which is agenesis or hypogenesis of the corpus callosum. Other neural malformations include neuronal 

heterotopias, polymicrogyria, schizencephaly, occipital encephaloceles and lumbosacral meningoceles. Extra-

neural malformations are found in about one third of the cases, particularly in familial ones, and include cleft lip 

and palate, cardiac malformations, urinary tract anomalies, polydactyly and syndactyly and minor facial 

dysmorphisms. The aetiology of DWM remains unknown. Probably, the malformation arises late in the embryonic 

period. Hypotheses include developmental arrest in the formation of the hindbrain, atresia of the fourth ventricular 

outlet foramina and delayed opening of the aperture of Magendie. The choroid plexus of the fourth ventricle arises 
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in the middle of the thin roof of the hindbrain. The area rostral to the plexus, i.e. the area membranacea superior of 

Weed, disappears during the formation of the vermis. Late in the embryonic period, the median aperture or foramen 

of Magendie arises in the area membranacea inferior, caudal to the plexus, and forms a connection between the 

fourth ventricle and the subarachnoid space. The lateral apertures or foramina of Luschka are formed in the fetal 

period. In one fifth of a large series of normal brains examined, the apertures of Luschka were not open, mostly 

bilaterally; therefore, atresia of the apertures of Luschka does not play a role in the aetiology of DWM. If the 

superior membranaceous area is not incorporated into the developing choroid plexus or if there is delayed opening 

of the aperture of Magendie, the roof of the fourth ventricle can balloon posteriorly to form a fourth ventricular 

cyst, identical to what is seen in DWM. Evidence that such a phenomenon may occur comes from a strain of mice 

with congenital hydrocephalus in which the superior membranaceous area remains, leading to a large cyst between 

the vermis and the choroid plexus. The formation of a large cyst in the posterior fossa impairs normal outgrowth 

of the vermis and corpus callosum.  

Barkovich and others advocated the so called “Dandy- Walker complex” as a continuum of posterior fossa 

anomalies comprising DWM, the Dandy-Walker variant (that authors currently name “vermis hypoplasia”) and 

mega cisterna magna.  

In the Dandy-Walker variant (“vermis hypoplasia”), the posterior fossa is variable enlarged; there is 

variable hypoplasia of the vermis, communication between the fourth ventricle and arachnoid space, and no 

hydrocephalus is present. The mega cisterna magna consists of an enlarged posterior fossa, secondary to an enlarged 

cisterna magna, but a normal vermis and fourth ventricle are found. For malformations of the posterior fossa with 

prominent cyst-like cerebrospinal fluid-containing spaces, that fail to fulfil all the criteria for the diagnosis DWM, 

such as the absence of hydrocephalus, Kollias and Ball in 1997 suggested the broad term vermian-cerebellar 

hypoplasia. Although true DWM and vermian-cerebellar hypoplasia are often associated with supratentorial and 

extraneural malformations, most of these cases cannot be classified according to well-defined syndromes (Kollias 

and Ball  1997) . Parisi and Dobyns (2003) introduced the term cerebellar vermis hypoplasia – dysplasia as an 

alternative for many cases of the Dandy-Walker variant and mega cisterna magna. However, here it is important to 

underline that, although the valuable efforts of the authors, there is still a considerable confusion in the literature 

regarding the terminology used when describing abnormalities of the cerebellum and of the vermis in particular. 

Several families with cerebellar vermis hypoplasia-dysplasia follow X-linked inheritance. Mutations of the 

oligophrenin- 1 gene (OPHN1)  at Xq12, previously associated with X-linked intellectual disability, have been 

identified in affected males for several clinically rather heterogeneous families with intellectual disability and 

vermis hypoplasia with a 50 % overall recurrence risk. The prognosis for individuals with this and related conditions 

is often worse than for classic DWM.   
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DWM has been frequently diagnosed prenatally, and has been reported as early as in the first trimester. The 

classic DWM is less commonly encountered than the Dandy-Walker variant. However, currently, prenatal imaging 

cannot reliably differentiate between true DWM and the wide spectrum of the “complex”, including cerebellar 

vermis hypoplasia-dysplasia. Although the cisterna magna can be visualized in approximately 95 % of fetuses 

between 15 and 25 weeks of gestation, determination of pathology can be difficult in cases with mild dilatation. 

Caution is encouraged during the early second trimester prenatal ultrasound scan in making the diagnosis of partial 

vermian agenesis because the incompletely formed inferior cerebellar vermis may give the false impression of a 

vermian defect. This is especially common at prenatal ultrasound with a steep angle of section through the posterior 

fossa (Fig.7). A follow up scan is recommended if a defect of the vermis, especially the inferior vermis, is suspected. 

Criteria for an enlarged cisterna magna have not been firmly established thus far. An enlarged cisterna magna 

typically measures greater than 10 mm in anteroposterior dimension. However, this appearance is most commonly 

seen in normal foetuses, especially during the third trimester because the size of the cisterna magna varies slightly 

with the gestational age. When an enlarged cisterna magna is the only finding, especially during the third trimester, 

the overwhelming outcome is normal. However, an enlarged cisterna magna may be a primary clue to trisomy 18, 

although in this situation other subtle anomalies are often seen and the fetus is small for gestational age. Therefore, 

demonstration of an enlarged cisterna magna should stimulate a careful search for other anomalies, and this finding 

should be correlated with other risk factors. It is worth noting that in the large antenatal series reported in the 

literature, DWM is frequently over- and underdiagnosed compared to pathology. Whereas false-positive diagnoses 

are common, vermian defects can also be missed, especially in case of borderline cisterna magna. As with other 

cerebral malformation, intrauterine MRI can be useful in the assessment of DWM, particularly to evaluate the 

vermian defect as well as to identify associated anomalies, such as heterotopia.  

Distinguishing inheritable syndromes from isolated cases of vermian-cerebellar hypoplasia is important for 

genetic counselling. Bordarier and Aicardi (1990) classified the genetically heritable syndromes with complex 

vermian- cerebellar hypoplasia into two groups: (1) those in which vermis aplasia is a constant feature, the most 

common entities being Joubert syndrome, Walker-Warburg syndrome and related cerebro-oculomuscular 

syndromes; and (2) those in which vermis aplasia is an occasional component, such as Meckel-Gruber syndrome, 

oro-facio-digital syndromes, Coffin-Siris syndrome, Smith-Lemli-Opitz syndrome and Ellis-van Creveld 

syndrome, all autosomal recessive traits. Vermian aplasia may also occur in X-linked disorders such as Aicardi 

syndrome. Most of these syndromes include severe intellectual disability and have a worse prognosis than isolated 

vermian-cerebellar hypoplasia or the DWM. Moreover, the risk of recurrence in siblings is high. 

In Blake’s pouch cyst (or ‘persistent Blake’s pouch’) (Fig. 13) there is thought to be inadequate fenestration 

of both Blake’s pouch and the foramina of Luschka, leading to imbalance of cerebrospinal fluid egress into the 

subarachnoid space of the cisterna magna, with consequent dilatation of the fourth ventricle. Although the pouch 

communicates freely with the fourth ventricle, there is a failure of communication between the pouch and the 
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perimedullary subarachnoid spaces. In most of the lower species, including dogs, Blake’s pouch is a normal 

persistent structure, yet in these species the vermis grows even more caudally than it does in humans, thereby 

obliterating the mesial portion of Blake’s metapore and dividing it into two lateral metapores. However, other than 

in humans, the foramina of Luschka are also larger and therefore the normal non-fenestration of Blake’s pouch 

does not impede cerebrospinal fluid egress. In contrast, in humans, with smaller foramina of Luschka, non-

fenestration of Blake’s pouch causes it to enlarge and elevate/rotate the vermis away from the brainstem, but, 

because this causes a gap between the inferior vermis and the brainstem, this can lead to the false-positive diagnosis 

of ‘inferior vermian hypoplasia’. This theory of Blake’s pouch cyst explains why historically there has been poor 

correlation of ultrasound and autopsy findings in apparent cystic malformations of the posterior fossa, because post-

mortem the cyst deflates and the vermis de-rotates back into a normal position. This same scenario is seen in 

children and adults with Blake’s pouch cyst, in whom there is no intrinsic vermian hypoplasia. Cerebrospinal fluid 

shunting or third ventriculostomy to decompress the ventricular system results in a return to normal appearance 

and clinical normality of these patients once the hydrocephalus has resolved. Isolated elevation/rotation of the 

vermis due to a persistent Blake’s pouch does not necessarily indicate an adverse outcome. In one study, one third 

of cases of Blake’s pouch cyst or mega cisterna magna underwent spontaneous resolution in utero and 90% of 

survivors with no associated anomalies had normal developmental outcome at 1–5 years, once the initial referral 

misdiagnosis of vermian hypoplasia had been excluded. In another large retrospective study of 19 cases of Blake’s 

pouch cyst, associated anomalies were seen in eight. There were two neonatal deaths and eight terminations. Of 

nine survivors, one had trisomy 21, and the other eight were neurodevelopmentally normal, although obstructive 

hydrocephalus was seen in one. It has also been suggested in several cases in the literature that persistent Blake’s 

pouch phenotype can be ‘acquired’ if the balance of cerebrospinal fluid egress is upset by the presence of fetal 

intraventricular haemorrhage or fetal infection, which result in tetra-ventricular dilatation and enlargement of the 

‘cisterna magna’ (i.e. enlargement of Blake’s pouch contained within the cisterna magna), presumably through 

resultant debris within the ventricular system causing obstruction of the fenestrations in both the foramina of 

Luschka and Blake’s pouch, in much the same way as can be demonstrated postnatally. However, it is important to 

recognize that, depending on the nature and timing of the insult, injury to the developing brain itself can also result 

from endotoxins, free radicals and inflammatory cytokines. Mega cisterna magna may, in fact, represent a mega 

Blake’s pouch but with better cerebrospinal fluid egress such that the vermis is not elevated. 

In the light of all these consideration, it appear evident that the prenatal assessment of a pathological 

posterior fossa is full of deceits: the pathophysiology of the abnormalities of the posterior fossa is complex, and it 

is still under debate; there is still a considerable confusion in the literature regarding the terminology used when 

describing abnormalities of the cerebellum and of the vermis in particular; the sonographic appearance of normal 

cerebellar development can resemble partial vermian agenesis during the early second trimester. This may give the 

false impression of a vermian defect.  
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A 2. Aim of the researches 

 

More than 100 years ago, in 1898, Joseph A. Blake read a paper in occasion of a meeting of the Association 

of American Anatomists on the development of the fourth ventricle. His opening words were: “My investigations 

on this subject were prompted by the contradictory opinions and lack of absolute knowledge concerning the nature 

of the communications between the cavity of the fourth ventricle and the subarachnoid space (Blake, 1900)”. 

As pointed out in the introduction section, despite the numerous studies and advances in imaging, including 

the introduction of ultrasound and magnetic resonance, our knowledge on cerebellar development beyond the 

embryologic period remains limited, precluding in many cases clear differentiation between normal and 

pathological conditions. Although the imaging of the fetal posterior fossa represents an integral part of sonographic 

screening for fetal anomalies, Carroll et al. in 2000 found a lack of correlation in 57% (8 out of 14 fetuses) when 

comparing the results of the fetal ultrasound examinations, in which a cerebellar anomaly was diagnosed, to the 

results of autopsies on the aborted fetuses. Similar results were recently obtained in a larger study of 44 fetuses 

with an ultrasound diagnosis of DWM; the ultrasound examination failed to correctly diagnose DWM in 26 patients, 

as reported by Phillips et al. in 2006.  

The introduction of MRI as a complementary method of diagnosis has shown that a correct diagnosis of 

some conditions included in the “Dandy-Walker complex”, i.e. inferior vermian hypoplasia is difficult even with 

this technique with a false positive rate of 32%, as pointed out by Limperopoulos et al. in 2006. Recent knowledge 

in neurophysiology has shown that the cerebellar vermis is a fundamental midline structure which is involved not 

only in proprioception and synergy of movements, but also in language, behaviour and cognitive development; 

inferior vermian hypoplasia has been associated with many mental retardation syndromes and with autism; 

therefore, fetal medicine experts should be aware and extremely careful when making diagnosis of vermian 

pathologies in utero. Potential pitfalls also exist in the diagnosis of “benign” conditions such as persistence of 

Blake’s pouch cyst or an isolated enlarged cisterna magna, with a number of mis-, over- and underdiagnoses. In 

other words, differential diagnosis is very challenging, since it can range from benign asymptomatic conditions to 

severe malformations associated with neurologic impairment. 

In most of posterior fossa abnormalities, a wide communication between the fourth ventricle and the 

posterior fossa with a reduced size of the vermis are the common ground. However, in accordance with a recent 

classification reported by Robinson in 2009, the upward rotation of the vermis has been suggested as clue finding 

in the differential diagnosis. 

Unfortunately, both sonographic and radiologic evaluation of this critical finding are usually subjective and 

no reference charts for normal and abnormal cases have been provided to date. Although the recent attention to 

vermian biometry by two- and three- dimensional approach, as well as some attempts to measure the angles between 
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vermis and the other posterior fossa structures, i.e. brainstem and tentorium proposed by Ghi et al. (2012), an 

accurate categorization of the fetal upward rotation/hypoplasia of the vermis remains a challenge. 

Many pitfalls in the prenatal diagnosis of these conditions may be due to the fact that the standard antenatal 

ultrasonographic evaluation of these structures is limited to the axial plane and does not provide the assessment of 

cerebellar vermis size and integrity, which are thought to address the differential diagnosis of a wide range of 

pathologic conditions, including both minor and major anomalies.  Furthermore, in the second and in the third 

trimester, a scanning angle too steep may create the impression of a vermian defect.  

A window for assessing cerebellar vermis true size, integrity and relationship with other nearby brain 

structures can be provided by the mid-sagittal view of the fetal brain, as recently shown by authors. Indeed, the 

midsagittal plane offers a special view of the vermis as well as of the other midline structures of the brain and of 

the posterior fossa. This scan gives the advantage of the best evaluation of the relations of the vermis, considering 

also the morphogenesis of these structures, thanks to the antero-posterior view.   

The purposes of this research line were:  

Study a: to provide measurements of the cerebellar vermis circumference in normal fetuses during routine 

prenatal two-dimensional ultrasound examination, through the mid-sagittal plane, throughout pregnancy, in order 

to: (a) provide 2-dimensional (2D-US) nomograms of the cerebellar VC based on a large number of normal fetuses; 

(b) evaluate the reproducibility of these measurements between different operators (senior vs. junior); (c) evaluate 

the correlation among 2D and 3D-US measurements. 

Study b: (a) to test a new method to assess the normal rotation of the cerebellar vermis over the brainstem 

using a novel measurements, the Vermian-Cresta angle (VCA) by transabdominal three-dimensional multiplanar  

ultrasonography in normal foetuses throughout pregnancy; (b) to provide three-dimensional ultrasonographic 

nomograms of the 3 cerebellar vermis diameters and volume based on a large number of normal fetuses; (c) to 

evaluate the reproducibility of these measurements between different operators (senior vs junior); and 4) provide a 

reference model in order to address differential diagnosis of PF abnormalities. 

Study c: to test the feasibility of the VCA at intrauterine MRI in foetuses with normal brain throughout 

pregnancy (b) to evaluate the reproducibility of these measurements between different operators (senior vs. junior); 

(c) to evaluate the correlation among three-dimensional prenatal ultrasound scan and MRI measurements. 

Study d: (a) to measure the VCA in foetuses with an abnormal posterior fossa; (b) to evaluate the role of 

the VCA in the differential diagnosis of upward rotation of the fetal cerebellar vermis; (c) to propose a novel 

classification system for the midline anomalies of the posterior fossa, based on the combination among the VCA 

and the other parameters of the posterior fossa. 
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Study e: to present a case series of a very rare condition associated with the agenesis or with the severe 

hypoplasia of the vermis, the romboencephalosynapsis, in which were not possible the measurement of the vermian 

biometries nor of the VCA. 
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A 3. Clinical studies 

 

A 3.a Fetal cerebellar vermis circumference measured by two-dimensional ultrasound scan: reference 

range, feasibility and reproducibility. 

Materials and methods  

We performed a prospective cross-sectional study of sonographic imaging of the fetal cerebellar vermis 

between April 2014 and April 2015 at the private Centre “Diagnostica ecografica prenatale Aniello Di Meglio srl”, 

Naples, Italy. Included were low-risk pregnant women with well-established dates [determined by a well-defined 

last menstrual period and confirmed by measurement of the crown-rump length on first-trimester ultrasound], and 

singleton, non-anomalous fetuses. All participants had a negative history for systemic diseases, as well as intact 

fetal membranes, normal amniotic fluid volume, and were not in labour at the time of inclusion in the study. 

Indications for ultrasound examination were assessment of either fetal anatomy or fetal growth. 

Gestational age ranged between 14 and 36 weeks. Fractions of weeks were computed to the nearest week, 

with fractions of ≤4 days and >5 days assigned to the lower and higher weeks, respectively. 

All deliveries occurred after 37 completed weeks. The neonates were healthy, and no infants had evidence 

of growth disturbances (fetal growth restriction or macrosomia). All women in the study delivered in 4 referral 

hospitals and underwent examination by an attending pediatrician. 

As in cross-sectional studies, each fetus was considered only once. The study was approved by our 

Institutional Review Board and all women gave written informed consent to participate in the study. 

The ultrasound machine used for two-dimensional ultrasound scan were standard Aloka (Aloka Co., Ltd, 

Tokyo, Japan) and Voluson E10 (GE Healthcare Ultrasound, Milwaukee, WI, USA) equipped with a curved linear 

array transabdominal transducer (2–5 MHz) as well as with a transvaginal 4–8 MHz probe. 

The fetal vermis was examined in the mid-sagittal plane, with demonstration of the corpus callosum, the 

cervical spine and the cisterna magna. Freeze-frame ultrasound capabilities and electronic on-screen calipers were 

used for the measurements of the vermis circumference (VC). Colour Doppler imaging was not utilized. 

The transvaginal approach was reserved for when the mid-sagittal view of the fetal brain could not be 

obtained by the transabdominal route due to fetal position. 

Every measurement was taken online during the 20–40 min allocated for the routine scan and detected twice 

with the mean calculated. 

In 33 fetuses each measurement was repeated twice by 2 blinded examiners (C.S. and M.S.) in order to 

assess the reproducibility of the measurements. The 2 operators were identified as n.1 (senior, i. e. more than 5 

years of experience and expertise with prenatal ultrasound) and n.2 (junior, i.e. less than 5 years of experience with 
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prenatal ultrasound), and all measurements were numbered as 1 when performed by the senior or 2 for the junior 

operator. 

In 24 fetuses a mid-sagittal view of the fetal head was also obtained by three-dimensional reconstructed 

planes in order to allow comparisons with measurements obtained by two-dimensional ultrasound scan. 

Transabdominal three-dimensional volume acquisitions were performed on the same ultrasound machine 

used for two-dimensional ultrasound scans, equipped with a 4–8 MHz transabdominal probe, using the technique 

previously reported by other authors. 

Brain volumes were acquired starting with the obtainment of a trans-cerebellar axial view of the fetal brain 

during fetal rest and maternal rest using a transabdominal acquisition angle of 45–60° depending on the GA. 

Statistical analysis was performed with Graph-Pad Prism version 5.00 for Windows, (Graph-Pad Software, 

San Diego CA) and SPSS statistical software (version 19.0; SPSS Inc., Chicago, IL, USA). 

To generate the VC reference intervals, only cases between 18 and 33 weeks of gestation were included in 

the analysis. The reference ranges for the VC were constructed using the method previously described by Royston 

and Wright. Polynomial regression analysis was performed to identify the regression curves that best fitted the 

mean and standard deviation (SD) of the VC as a function of gestational age. The standard deviation scores (Z 

scores) were calculated using the formula: observed VC measurement – mean VC/SD. To assess the model fit, the 

Gaussian distribution of the Z scores was checked using the Kolmogorov-Smirnov test. 10th and 90th percentiles 

for the cross-sectional VC throughout gestation were obtained as previously described using the formulas: mean ± 

1.645 SD, and mean ± 1.28 SD, respectively. 

The agreement between 2D and 3D measurements, transabdominal and transvaginal scans, as well as the 

inter-observer variability were assessed by interclass correlation coefficients (ICC). Bland-Altman plots were used 

too. Agreement was considered slight with ICC ≤ 0.2, fair with 0.2 ≤ ICC ≤ 0.4, moderate with 0.4 ≤ ICC ≤ 0.6, 

substantial with 0.6 ≤ ICC ≤ 0.8, and almost perfect with ICC ≥ 0.8. 

Statistical significance was considered achieved when P was less than 0.05.                                                                                                                     

Results      

Consecutive pregnant women meeting the eligibility criteria (n=397) were initially enrolled in the study. 

An adequate vermis measurement was obtained in 89.9% of these cases (n=357), using either the transabdominal 

(n=325) or the transvaginal (n=32) route. 

In the excluded 40 cases, a mid-sagittal view of the fetal brain on two-dimensional ultrasound scan could 

not be obtained mainly due to unfavourable fetal position or excessive fetal movement. 

Ten of the included pregnant women were lost at follow-up. Thus, 347 cases were ultimately considered 

for our analysis. 
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Fig. 14 a and b demonstrate a mid-sagittal view of the fetal head obtained by transabdominal two-

dimensional ultrasound scan and three-dimensional reconstructed planes, respectively, showing the VC and 

adjacent anatomical landmarks at 20 and 24 weeks of GA, respectively, with electronic calipers denoting 

measurements. 

 Table 1 shows the clinical characteristics of the study population including perinatal outcome data.   

 To generate the VC reference intervals, 328 fetuses, ranging from 18 to 33 weeks, were utilized. The 

regression equation for the mean VC (y) according to gestational age (x) was: y=−12.21+2.447x and for the 

standard deviation (y’), it was y’=1.348+0.1302x. Fig. 15 and Table 2 show the VC observed measurements and 

the fitted 10th, 50th, and 90th percentiles for gestational age. 

A high degree of consistency was observed between two-dimensional ultrasound scan and three-

dimensional ultrasound measurements of the cerebellar vermis in the series of 24 fetuses studied with both 

techniques (interclass correlation coefficient (ICC)=0.846 95% confidence interval (CI)  0.679–0.930), as well as 

between transvaginal and transabdominal scans in the series of 32 cases approached trans-vaginally (interclass 

correlation coefficient (ICC)=0.874 95% confidence interval (CI) 0.746–0.976). 

When the inter-observer variability was assessed for measurements obtained on 2D-US in the series of 33 

fetuses, the ICC was 0.890 and its 95% confidence interval was 0.989–0.945. 

Bland-Altman plots show the mean differences and 95% limits of agreement between 2D and 3D (mean 

difference=−0.604 95% CI −1.499–0.292) (Fig. 16 a) as well as the mean difference of inter-observer agreement 

(mean difference=0.948 95% CI −0.046–1.943) (Fig. 16 b).    

                                                                                                                              

A 3.b The vermian-cresta angle: a new method to assess fetal vermis position within the posterior fossa 

using three - dimensional ultrasound 

Materials and Methods 

We performed a prospective cross-sectional study of sonographic imaging of the fetal posterior fossa 

between May 2015 and October 2016 at the Department of Obstetrics and Gynaecology of the University of Bern, 

Switzerland. Included were low-risk pregnant women with well-established dates [determined by a well-defined 

last menstrual period and confirmed by measurement of crown-rump length at first trimester ultrasound], and 

singleton, non-anomalous fetuses. All participants were healthy women, with intact fetal membranes, normal 

amniotic fluid volume, and were not in labour at the time of inclusion in the study. Indications for ultrasound 

examination were assessment of either fetal anatomy screening or fetal growth.  
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All deliveries occurred after 37 completed weeks, neonates were healthy, and no infants had evidence of 

growth disturbances (fetal growth restriction or macrosomia). All study women delivered in referral hospitals and 

underwent routine examination by an attending paediatrician before demission.  

As in cross-sectional studies, each fetus was considered only once. The study was approved by the 

Institutional Review Board of the participating centres.  

The ultrasound machine used for measurements were Voluson E10 or E8 (GE Healthcare Ultrasound, 

Milwaukee, WI, USA) equipped with a curved electronic matrix 4D (eM6C) trans-abdominal transducer (2–6 

MHz).  

After routine examination of the fetal brain by two-dimensional sonography, three-dimensional volumes 

were acquired in a trans-cerebellar axial view during fetal and maternal rest using a trans-abdominal acquisition 

angle of 55° to 65° depending on the gestational age. The two-dimensional image was previously optimized as 

much as possible. The planes A, B and C of the acquired multiplanar images always corresponded to the axial, 

coronal and sagittal planes of the posterior fossa, respectively. The planes B (falx cerebri vertical) and C (falx 

cerebri horizontal) were adjusted to achieve an optimal midsagittal view of the brain in the A-plane, with the 

reference dot positioned in the middle of the vermis and vertical position of the cervical spine. On the magnified A 

plane, the calculation of the vermian-cresta angle (VCA) was carried out. Two landmarks were used for the 

measurements:  

• the nodulus vermis, at the level of the fastigial peak of the 4th ventricle, and 

• the internal occipital crest, visible posterior to the cerebellar vermis as a hyperechoic line at the level of 

the attachment on the falx cerebella. 

Based on these landmarks, the following posterior fossa measurements were taken:  

1. Vermian biometries:  

• the supero-inferior vermian diameter [SDD], the distance between the superior and inferior borders of the 

vermis, which is anatomically related to the distance between the vermian culmen and uvula, 

• the anteroposterior vermian diameter [APD], the distance between the fastigial peak of the fourth 

ventricle and the most posterior vermian edge, which corresponds to the tuber,  

• the horizontal vermian diameter [HD], the distance between the two lateral borders of the vermis between 

the cerebellar hemispheres, measured in the coronal plane, 

• vermian volume, calculated on the basis of the three orthogonal diameters. 

2. VCA, defined by the convergence of two lines: the first, tangent to the internal occipital crest; the second, 

tangent to the nodulus vermis.  
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All measurements were obtained, using the ‘Dist. 2 Point’ and angle measurement tool of the ultrasound 

machine, by placement of the callipers on the outer echogenic borders of the structures studied. Visualization of PF 

contours was enhanced by activation of the thin-slice (1–2 mm) volume contrast imaging (VCI) mode.  

Fig. 17 demonstrate a mid-sagittal and a mid-coronal view of the fetal head obtained by trans-abdominal 

three-dimensional reconstructed planes, respectively, showing the VCA and adjacent anatomical landmarks at 20 

weeks of gestational age.  

All study measurements were performed by a single expert observer (L.R.). Each of the five parameters 

were measured three times in each examination, for assessing intra-observer variation, and the mean of the three 

values were used for the study analysis.  Inter-observer variation was tested in a subgroup of 26 arbitrarily selected 

fetuses which were assessed by a second blinded observer (M.S.) using 4D view (eM6C). In these cases, the two 

operators were identified as n.1 (senior, i.e. more than 5 years of skill and expertise with prenatal ultrasound) and 

n.2 (junior, i.e. less than 5 years of skill with prenatal ultrasound), and all measurements were numbered as 1 or 2, 

when performed by the senior and the junior operator, respectively.   

In no case a transvaginal approach was used. Every measurement was taken online during the 20-40 min 

allocated for the routine scan. 

Statistical analysis was performed with Graph-Pad Prism version 5.00 for Windows, (Graph-Pad Software, 

San Diego CA) and SPSS statistical software (version 19.0; SPSS Inc., Chicago, IL, USA). Correlations of the 

vermian diameters, and volume as well as VCA with gestational age were searched with Spearman rank test. 

To generate reference intervals of the VCA only cases between 18 and 33 weeks of gestation were included 

in the analysis, as previously reported study A 3.a. The reference ranges for the VCA were constructed using the 

method previously described by Royston and Wright. Briefly, polynomial regression analysis was performed to 

identify the regression curves that best fitted the mean and standard deviation (SD) of the VCA as a function of 

gestational age. The standard deviation scores (Z scores) were calculated using the formula: observed VCA – mean 

VCA/SD. To assess the model fit, the Gaussian distribution of the Z scores was checked using the Kolmogorov-

Smirnov test. 10th, and 90th centiles for the cross-sectional measurements throughout gestation were obtained as 

previously described using the formulas: mean±1.28SD, respectively. Inter-observer variability for the VCA, was 

assessed by interclass correlation coefficients (ICC), as reported in study A 3.a. Bland-Altman plots were used too.  

Statistical significance was considered achieved when P was less than .05. 

Results 

Consecutive pregnant women meeting eligibility criteria (n=140) were initially enrolled for the study. An 

adequate vermis measurement was obtained in all of these using the trans-abdominal route. Eleven of the included 

pregnant women were lost at follow-up. Thus, 129 cases were finally considered for our analysis.  

Table 3 shows clinical characteristic of the study population, including perinatal outcome data.   
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The various Vermian biometries such as SDD, APD, HD and volume showed a significant correlation with 

gestational age (APD: r= .82, p < .0001; SDD: r= .83, p < .0001; HD: r= .71, p < .0001; volume: r= .85, p < .0001; 

respectively) (Fig. 18).  

No correlation was found between VCA and gestational age (r=.15; p=.13). Mean ± SD VCA was 

64.49°±11.45. Mean (y) and SD (y′) for VCA per gestational age (x) were: y= 63.35 + .04468 x, and y′=10.08 - 

.03976, respectively. Figure 19 and Table 4 shows the observed measurements and the fitted 10th, 50th, and 90th 

centiles for gestational age for VCA, respectively. 

When inter-observer variability for VCA was assessed in the series of 26 fetuses, ICC was 0.95 and its 95% 

confidence interval was 0.874-0.981 (p < .001). 

Bland-Altman plot shows the mean difference of inter-observer agreement (mean difference=3.06 95% CI 

(-1.07-7.19) (Fig. 20). 

 

A 3.c The vermian-cresta angle: a new method to assess fetal vermis position within the posterior fossa 

using MRI 

Materials and methods                                                                                                                        

A retrospective study of all the intrauterine MRIs performed between January 2008 and January 2016 at 

the Department of Diagnostic and Interventional Neuroradiology, University of Bern, Switzerland, was conducted 

by searching the fetal imaging databases. MR imaging examinations were performed due to increased risk of 

suspected cerebral pathology, including suspected infectious fetopathy, suspected sonographic cerebral 

abnormality, positive family history, a previous pregnancy with abnormalities, decreased fetal movements, 

polyhydramnios, and extracranial anomalies such as club foot, cleft lip, and/or palate. Only those cases in which 

the suspicious of cerebral anomalies was not confirmed at MRI and there was no evidence of intracranial 

abnormalities at birth were included. The other inclusion criteria were the following: singleton pregnancy, good 

dating, normal obstetric course (no evidence of intrauterine growth restriction or macrosomia or pregnancy-related 

hypertensive disorders or gestational diabetes mellitus), absence of maternal disease (healthy women without any 

background illness such as hypercoagulability state, hypertension, diabetes, or other systemic disease), birth weight 

within the 10th  to the 90th  percentiles, clinically normal fetus at birth (normal Apgar scores at birth, normal neonate 

physical examination findings). 

MRI exams were performed with a Siemens Magnetom Sonata or Avanto 1.5 T system (Siemens Medical 

Systems, Erlangen, Germany) using a four-channel body phased array coil combined with channels from the spine 

array coil adjacent to the fetus. Depending on patient comfort, patients were positioned supine or on the left lateral 

side. Intravenous contrast or sedative premedication were not used.   
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The standard protocol included T1-weighted fast-low angle shot (FLASH; TR = 85 ms, TE = 4.76 ms, flip 

angle = 70 degrees), T2-weighted half-Fourier acquired single-shot turbo-spin echo (HASTE; TR = 1,260 ms, 

TE = 84 ms), T1-weighted inversion recovery (TR = 9,470 ms, TE = 17 ms) and T2 weighted true fast imaging with 

steady procession (FISP, TR = 4.3 ms, TE = 1.86 ms; all three gradients refocused) sequences with a slice thickness 

of 3 mm and one acquisition. For all sequences, the field of view (320–400 mm) and acquisition matrix (256–448 

mm) were adapted to the size of the mother to gain an in-plane resolution of 1.25×1.25 mm or less. In all patients, 

axial and coronal images were acquired by HASTE sequences, which were evaluated for the purposes of this study. 

The number of slices varied according to slice orientation and size of the fetus. Mean scanning duration was about 

40 minutes. For the detection of posterior fossa anomalies, contiguous orthogonal slices in the axial, coronal and 

sagittal plane with a slice thickness of 3 mm were included. 

The VCA was measured as described in study A 3.b, by tracing two lines: the first, tangent to the internal 

occipital crest; the second, tangent to the nodulus vermis. All the measurements were performed by a single 

operator. See Fig. 21. To evaluate the reproducibility of measurements, an arbitrary sample of 18 fetuses was 

evaluated twice by the first operator and then by a second operator. Each operator was unaware of the results 

obtained by the other. In these cases, the two operators were identified as n.1 (senior, i.e. more than 5 years of skill 

and expertise with prenatal ultrasound) and n.2 (junior, i.e. less than 5 years of skill with prenatal ultrasound), and 

all measurements were numbered as 1 or 2, when performed by the senior and the junior operator, respectively, as 

reported in study A 3.a and A 3.b.   

All the MRI measurement were compared with the nomograms obtained at prenatal three-dimensional 

ultrasound scan in study A 3.b, in order to assess the agreement between the 2 imaging modalities.  

Statistical analysis was performed with Graph-Pad Prism version 5.00 for Windows, (Graph-Pad Software, 

San Diego CA) and SPSS statistical software (version 19.0; SPSS Inc., Chicago, IL, USA). Correlations of the 

VCA with gestational age were searched with Spearman rank test as reported in study 3.b.  

Comparison with the measurement of the VCA obtained in study 3.B were performed using the paired 

Student’s t-test by gestational ages, after checking the normality of the distribution (one sample Kolmogoron– 

Smirnov test).  

Inter-observer variability for the VCA, was assessed by interclass correlation coefficients (ICC) as reported 

in study 3.A. Bland-Altman plots were used too.  Statistical significance was considered achieved when P was less 

than .05. 

Results        

Eighty-one cases were selected from the prenatal imaging database, which were suitable for our analysis. 

An adequate measurement of the VCA was obtained in all of these cases.   

Table 5 shows clinical characteristic of the study population, including perinatal outcome data.   
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In accordance with study A 3.b, no correlation was found between VCA and gestational age (r=.19; p=.12). 

Mean ± SD of VCA was 68.46±10.29. 

When we compared MRI measurements with those performed at three-dimensional ultrasound scan, paired 

Student T-test by gestational age showed that MRI and ultrasonographic measurements were similar, without any 

significant difference in this respect (p=.11) 

When inter-observer variability for VCA was assessed in the series of 18 fetuses, ICC was 0.85 and its 95% 

confidence interval was 0.656-0.933 (p < .001). 

Bland-Altman plot shows the mean difference of inter-observer agreement (mean difference=-0.49 95% CI 

(-2.72-1.73) (Fig. 22).    

                                                                                                                                        

A 3.d The VCA may allow accurate categorization of fetal upward rotation of cerebellar vermis 

Materials and methods                                                                                                                       

A retrospective study of all the intrauterine MRIs in fetuses with an abnormal posterior fossa, performed 

between January 2008 and January 2016 at the Department of Diagnostic and Interventional Neuroradiology, 

University of Bern, Switzerland, was conducted by searching the fetal imaging databases. The cases included 

patients from a screening population referring to the Department of Obstetrics and Gynaecology of the University 

of Bern, comprising about 4,500 pregnant women examined per year. Unfortunately, three-dimensional ultrasound 

volumes and two-dimensional digital images demonstrating a mid-sagittal view of the brain were not available for 

an “a posteriori” analysis. 

Measurements were obtained from the midsagittal views of the fetal brain as described in study A 3.b. 

Inclusion criteria were availability of MRI digital images of good quality as well as detailed postnatal data. All 

measurements were performed by the same operator (M.S.). The following clinical data were recorded: gestational 

age, fetal sex, associated anomalies, maternal age, singleton or multiple gestation, fetal karyotype (if available), 

gestational age at birth and mode of birth; postnatally neonatal examination including neurosonography; and, in 

case of intrauterine or neonatal death or pregnancy termination, pathology reports. 

All MRI exams were performed as reported in study A 3.c. 

Statistical analysis was performed by calculating means and SDs. Groups were compared with the control 

group reported in study A 3.b using the one-way analysis of variance (ANOVA) with the Bonferroni adjustment. 

Box-and-whisker plots were used too.  

Results     
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During the study period, complete records from 30 fetuses with inclusion criteria were available with 

posterior fossa abnormalities (5 with Blake’s pouch cyst, 12 with DWM, 3 with vermian hypoplasia, 10 with mega 

cisterna magna). Table 6 shows clinical characteristic of the study population, including perinatal outcome data.   

The VCA was significantly changed in the DWM (p=<.001) and Blake’s pouch cyst (p=<.001) subgroups 

of anomalies, the angle increasing with the severity of the condition (Fig. 23), while it did not change in cases of 

vermian hypoplasia (p=.84) as well as in cases of mega cisterna magna (p=.95). Box-and-whisker plots of 

distribution of VCA in controls and pathological cases is shown in Fig. 24.  

By combining these data with the other available parameters of the posterior fossa, a possible categorization 

of the major abnormalities of the posterior fossa is proposed (Table 7). 

 

A 3.e When the midline structures of the posterior fossa are missing: the special cases of 

rhomboencephalosynapsis 

Materials and methods     

The material consisted of 3 fetus examined at the gestational age of 24, 25 and 27 weeks by prenatal 

ultrasound scan at the private Centre “Diagnostica ecografica prenatale Aniello Di Meglio s.r.l”, in Naples, Italy. 

All of them underwent brain MRI at the Department of Radiologic, Oncologic and Pathologic Sciences at La 

Sapienza University, in Rome, Italy. 

Results                     

Case 1  

A 33-year-old woman, gravida 2, para 0 (previous miscarriage during the second trimester), was referred 

to our Centre because a 23-week gestational age ultrasound scan had revealed a tri-ventricular ventriculomegaly. 

The karyotype from amniocentesis was normal (46XX). Our 24-week transabdominal ultrasound scan confirmed 

these findings and revealed an abnormal posterior fossa, with absent visualization of the vermis, fusion of the 

cerebellar hemispheres with a reduction of the trans-cerebellar diameter below the fifth centile, without 

demonstration of any communication between the fourth ventricle and the cisterna magna. A 25-week prenatal MR 

imaging scan was performed at 1.5 T using the following technique: multiplanar 3- to 4-mm thick, single-shot fast 

spin echo, T2 weighted sections (repetition time/echo time = 3000/90 milliseconds, field of view = 340 mm, matrix 

= 256 3 192). MRI showed agenesis of the cerebellar vermis, dorsal fusion of the cerebellar hemispheres, and clear 

reduction of the cerebellar transverse diameter (below the fifth percentile). These features, together with the 

‘‘keyhole’’ shape appearance of the fourth ventricle, were consistent with those already well known from postnatal 

MRI studies of rhomboencephalosynapsis. A tri-ventricular ventriculomegaly (19-mm atrial width) was also 

evident (Fig. 25). The septum pellucidum and corpus callosum were visible. The brain parenchyma appeared 

normal. The patient decided for termination without fetal autopsies and then was lost to follow-up. 
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Case 2  

A 31-year-old woman, gravida 3, para 2 (her previous pregnancies was uneventful, with normal-term 

deliveries), presented at our Centre at 25-weeks of gestational age, because a previous scan at 24 weeks had revealed 

a renal disease. At our ultrasound scan the fetal kidneys were symmetrically enlarged（right, 5.3×4.0 cm; left, 

4.3×3.7 cm）and highly echogenic, leading to the absence of the corticomedullary differentiation.  When we 

scanned the brain, an abnormal posterior fossa was evident, with absent visualization of the vermis, and fusion of 

the cerebellar hemispheres. No other brain anomalies were detected. Investigating family history of congenital 

malformations, the woman revealed that the first daughter of 3 years old had been diagnosed postnatally with 

ventriculomegaly and has cognitive impairment as well as a coloboma of the optic nerve. The karyotype of this 

daughter is normal. In the current pregnancy, the karyotype was normal too (46XY). At 26 weeks of gestational 

age, a prenatal MRI examination was performed with the same scanning technique as in the first case. MRI showed 

agenesis of the cerebellar vermis, dorsal fusion of the cerebellar hemispheres, which appeared without the normal 

cerebellar sulci, and a reduction of the fourth ventricle (Fig. 26). These signs were compatible with 

rhomboencephalosynapsis. The parents decided to terminate the pregnancy at another institution. 

Case 3  

A 42-year-old woman, gravida 1, para 0, was referred to our Centre at 26 weeks of gestational age because 

of a vaginal bleeding. When we scanned the fetal brain, an abnormal posterior fossa was evident, with absent 

visualization of the vermis, fusion of the cerebellar hemispheres with a reduction of the trans-cerebellar diameter 

below the fifth centiles, without demonstration of any communication between the fourth ventricle and the cisterna 

magna (Fig. 27). No other cerebral and extra-cerebral fetal anomalies were detected A 27-week gestational-age 

prenatal MRI scan was performed with the same scanning technique as in the other cases. It revealed cerebellar 

transverse diameter reduction (22 mm, below the fifth percentile), agenesis of the vermis, and dorsal fusion of the 

cerebellar hemispheres, consistent with rhomboencephalosynapsis. At 32 weeks GA, a preterm vaginal delivery 

occurred, which resulted in a stillborn female baby. The woman did not authorize autopsies.  
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A 4. Discussion 

 

The classification of cerebellar malformations is controversial; no widely-accepted agreement has been 

reached, despite many attempts by neuroradiologists, geneticists, and neuropathologists. In particular, as far as the 

conditions associated with a defective vermis are concerned, there is no general consensus as to their categorization. 

In addition, cerebellar hemispheric and vermian malformations have been described but are poorly understood. 

Thus, the prognosis of patients with most cerebellar malformations is uncertain. Finally, it is often difficult to 

distinguish clearly, in an infant with signs and symptoms relating to the posterior fossa, between cerebellar or 

vermian atrophy, hypoplasia, or malformation. In the fetus, the situation is understandably even more confused, 

due to difficulties in the prenatal assessment of posterior fossa, both by ultrasound scan and by MRI.  

However, based on a morphologic ultrasonographic approach, it is at least possible to differentiate posterior 

fossa anomalies into two broad categories: (1) cystic malformations, characterized by the presence of an apparent 

cerebrospinal fluid collection in the posterior fossa due to fourth ventricle/cisterna magna dilatation, or to true  

arachnoid loculations; and (2) non-cystic malformations, in which there is no apparent cerebrospinal fluid 

collection. To the cystic malformations belong the DWM, the Blake’s pouch cyst, the mega cisterna magna and the 

vermian hypoplasia (“Dandy Walker variant”). 

It has been suggested that the DWM be considered in the group of mesenchymal-neuroepithelial signalling 

defects, since several cerebellar growth factors are derived from the overlying leptomeninges. In this light, 

abnormalities of the cerebellar leptomeninges may result in abnormalities of the cerebellum itself, as well as 

abnormalities of the surrounding cerebrospinal fluid spaces. This is the basis of development of the DWM: it 

requires abnormal development of the cerebellum itself and of the overlying leptomeninges. At prenatal ultrasound 

scan, on the axial trans-cerebellar view, a triangular or square-shaped open fourth ventricle apparently 

communicating with cistern magna can be seen, with an expansion of the posterior cranial fossa. To assess the 

presence, integrity, and position of the vermis, as well as the position of the torcular/tentorium, a mid-sagittal view 

is required. On this view, a small, upwardly rotated vermis, causing a superior displacement of the 

torcular/tentorium, with a normal or abnormal configuration (absence of fastigium and/or fissures) may be present. 

While an abnormal configuration usually indicates partial agenesis, a small vermis with a normal configuration 

indicates hypoplasia. However, the distinction between these two entities remain difficult. The DWM should be 

differentiated from other anomalies of the posterior fossa. As already pointed out, a median view of the fetal head 

is mandatory for an accurate assessment of the position and features of the vermis and of the characteristics of the 

cerebrospinal fluid collection of the posterior fossa (fourth ventricle and cisterna magna). The presence of an 

apparent communication between the fourth ventricle and cisterna magna (open fourth ventricle) associated with a 

normal vermis is indicative of a Blake’s pouch cyst. In this case, the rotation of the vermis is usually less 
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pronounced. The presence of an apparent communication between the fourth ventricle and cisterna magna (open 

fourth ventricle) associated with the hypoplastic vermis, normally inserted tentorium/torcular, and no expanded 

posterior fossa is indicative of vermian hypoplasia. In this case, the rotation of the vermis, when present, is usually 

mild. In case of mega cisterna magna, the cisterna magna is large, but the cerebellum is intact and the fourth 

ventricle is closed.  Several malformations have been reported to be associated with DWM. The most commonly 

associated anomalies are other anomalies of the central nervous system (in 50%–60% of cases), including midline 

anomalies (corpus callosum agenesis, holoprosencephaly, etc.). An association with facial clefts and other extra-

brain anomalies (especially congenital heart disease and urinary anomalies) has been described, often in the context 

of genetic syndromes. The risk of chromosomal anomalies is high, with up to 35% of cases being associated with 

aneuploidy, mainly trisomies 18 and 13, as well as the risk of non- chromosomal syndromes, including the Walker–

Warburg syndrome (eye anomalies + lissencephaly, midline anomalies, microcephaly, and cephalocele); Meckel–

Gruber syndrome (encephalocele + polydactyly + polycystic kidneys); Aicardi syndrome (corpus callosum agenesis 

+ vertebral defects); Neu–Laxova syndrome (lissencephaly + microcephaly + proptosis + diffuse joint contractures 

+ subcutaneous tissue edema + intrauterine growth retardation). Due to the high risk of chromosomal anomalies, 

fetal karyotyping is mandatory when a DWM is suspecte. In addition, a thorough anatomic scan should be 

performed by an expert because of the high risk of association with other brain and extra-brain malformations. 

Serial ultrasonographic monitoring is also warranted, to verify the possible onset of severe hydrocephalus. Delivery 

should take place in a tertiary referral centre, in order to allow a definitive diagnosis and an adequate neonatal 

management. Postnatally, although there is obviously no treatment for the primary vermian lesion, the virtually 

ubiquitous secondary obstructive hydrocephalus may be treated with a cysto-peritoneal shunt. Indeed, the DWM is 

associated with late-onset hydrocephalus in more than 50% of cases. If hydrocephalus develops, whether in utero 

or in the neonatal period, there is an overall mortality rate of over 60%, with most survivors having a low 

intelligence quotient. When hydrocephaly is not associated, it has been suggested that the neurologic outcome is 

mainly related to the appearance of the cerebellar vermis: when the small vermis has a normal configuration, a 

normal development has been reported in more than 50% of cases. Conversely, when the vermis is abnormally 

lobulated and/or there are associated cerebral anomalies, the prognosis is poor. 

 The Blake’s pouch is a normal, transient embryological structure, representing an evagination of the 

posterior membranous area, one of the two components of the rhombencephalic roof (the other being the anterior 

membranous area), that initially does not communicate with the surrounding subarachnoid spaces. Subsequent 

spontaneous perforation of the pouch, by the 10th gestational week, forms the foramen of Magendie. The term 

Blake’s pouch cyst was originally introduced in the contest of an infantile pediatric neuroradiology to indicate a 

type of obstructive hydrocephalus secondary to failure of formation of the foramen of Magendie and Luschka, 

resulting in a compressive cyst of the posterior fossa displacing superiorly the cerebellar vermis. More recently, the 

term has been used in fetal imaging studies to indicate cases with a posterior fossa cyst displacing superiorly an 



 

31 

 

intact cerebellar vermis, typically in association with a normal ventricular system and a normal size of the posterior 

fossa. This finding has been interpreted as failed or delayed regression of the Blake’s pouch. The entity described 

in the original neonatal studies likely differs from the one later described in fetal studies, because the latter typically 

has a normal outcome and appears to be rarely associated with ventriculomegaly. Sonographically, on the axial 

trans-cerebellar view, Blake’s pouch cyst is characterized by an hourglass opening (buttock sign) apparently 

communicating with the cisterna magna. On a mid-sagittal view of the fetal head, a normal but usually moderately 

upward-rotated vermis is evident, with the tentorium and torcular that are in normal position. There may also be 

visualization of the Blake’s pouch cyst roof within the cisterna magna and a more translucent echogenicity of the 

cyst content in comparison with the cisterna magna fluid. As mentioned above, in the case of apparent 

communication between the fourth ventricle and the cisterna magna (open fourth ventricle), on an axial trans-

cerebellar view, such as in the case of Blake’s pouch cyst, a median plane of the fetal head is mandatory for an 

accurate assessment of the position and features of the vermis. The presence of a normal vermis rules out the 

possibility of a DWM and vermian hypoplasia. In addition, instead of DWM, in case of Blake’s pouch cyst the 

rotation of vermis is less pronounced. As reported above, in case of mega cisterna magna, the cisterna magna is 

large but the fourth ventricle is closed. About one third of Blake’s pouch cysts detected antenatally are associated 

with other anomalies, including chromosomal aberrations (in most cases trisomy 21). The risk of chromosomal 

anomalies or non-chromosomal syndromes is significant, especially when associated with other anomalies. Thus, 

fetal karyotyping is mandatory, especially in cases associated with other anomalies. In addition, a thorough 

anatomic scan should be performed by an expert because of the high risk of association with other brain and extra-

brain malformations. Postnatally, in the rare cases associated with ventriculomegaly, the secondary obstructive 

hydrocephalus may be treated with a cysto-peritoneal shunt. However, when the BPC is an isolated finding and the 

karyotype is normal, the outcome is usually good. Furthermore, intrauterine remission occurs in a significant 

number of cases, and a normal developmental outcome is reported in nearly 100% of cases. 

 Mega cisterna magna is defined as a cisterna magna larger than 10 mm. It is characterized by an intact 

vermis, an enlarged cisterna magna, and a normal-sized fourth ventricle. It has been suggested that the enlargement 

of the cisterna magna may be secondary to a distension of the BP, which, however, does not displace the cerebellar 

vermis superiorly. On the axial trans-cerebellar view, a cerebrospinal fluid collection is seen in the posterior fossa. 

The vermis is normal, the fourth ventricle is closed, and the torcular and the tentorium are in normal position. This 

benign condition should be differentiated from other anomalies of the posterior fossa, especially arachnoid cysts. 

In fact, posterior fossa can mimic mega cisterna magna, but mass effect with asymmetric distortion of the 

cerebellum is usually associated. Al already reported, the presence of a normal vermis rules out the possibility of a 

DWM and isolated vermian hypoplasia, while the presence of a closed fourth ventricle and of a non-rotated vermis, 

rules out the possibility of a BPC. A significant number of associated anomalies have been reported, especially 

supra-tentorial anomalies (i.e., periventricular heterotopia). 
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The risk of chromosomal anomalies and non- chromosomal syndrome, when associated with other 

anomalies, it is significant. Therefore, fetal karyotyping is mandatory, especially in cases associated with other 

anomalies. In addition, a thorough anatomic scan should be performed by an expert because of the high risk of 

association with other malformations. Postnatally, no treatment is required. In the absence of associated anomalies, 

the prognosis is good. The vast majority of cases had normal development. Cases associated with abnormal cerebral 

findings (i.e., periventricular heterotopias) were found to have neurologic sequelae, often mild, in about one-third 

of cases. 

Vermian hypoplasia, previously\sometimes referred to as Dandy–Walker variant, is characterized by an 

isolated small vermis, usually upwardly rotated. It has been suggested that the term hypoplasia should be limited 

to cases in which the vermis is small but has a normal morphology (all the lobules are present); conversely, the 

term partial agenesis should be used in those cases in which a part is absent. However, it can be difficult to 

differentiate, by ultrasound, between vermian agenesis and hypoplasia. In addition, hypoplasia or agenesis may 

affect any part of the vermis. The part of the vermis affected depends on the nature and timing of the insult. Some 

authors retain that the partial vermian agenesis involves the lower part of this structure, so they named this anomaly 

as “inferior vermis hypoplasia”. Nevertheless, as recently pointed out by Robinson in 2014, recent researches 

showed that that the development of the vermis is more in a ventro-dorsal direction rather than in a cranio- caudal 

direction. Thus, the referral to any “inferior” part should be avoided or used with caution.  On axial trans-cerebellar 

view, in presence of vermian hypoplasia, an open fourth ventricle apparently communicating with the cisterna 

magna is seen, while the posterior cranial fossa is not expanded. On the mid-sagittal view of the head, the small 

and sometimes upwardly rotated vermis can be seen. Tentorium and torcular are positioned normally. The 

hypoplastic vermis should be differentiated from other posterior fossa anomalies characterized by an open fourth 

ventricle. The presence of a communication between the fourth ventricle (open fourth ventricle) and cisterna magna 

associated with a normal vermis is indicative of Blake’s pouch cyst. In this case, the rotation of the vermis is mild. 

The presence of a communication between the fourth ventricle (open fourth ventricle) and cisterna magna 

associated with a hypoplastic vermis, superiorly displaced tentorium/torcular, and expanded posterior fossa is 

indicative of DWM. In this cases the rotation of the vermis is usually broad.  

Also in cases of vermian hypoplasia, numerous malformations have been reported to be associated, with a 

high risk of chromosomal and non- chromosomal syndromes, especially if associated with other anomalies. In 

particular, Joubert syndrome is a very severe albeit rare condition featuring vermian hypoplasia in association with 

dysgenesis of the isthmic portion of the brainstem at the pontomesencefalic junction, a deep posterior 

interpeduncolar fossa with thick elongated superior cerebellar peduncles. The diagnosis can be made on MRI only, 

and the typical aspect of the abnormal superior cerebellar peduncles is referred to as “molar tooth sign”, evident on 

axial MRI slices of the brain. Symptoms range from general hypotonia with a froglike posturing, hyperpnea/apnea, 

ataxia. Colobomas, nystagmus and strabismus are associated. In case of vermian hypoplasia fetal karyotyping is 
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mandatory, because of the high risk of genetic syndromes. In addition, a thorough anatomic scan should be 

performed by an expert because of the high risk of association with other malformations. There is obviously no 

treatment of the primary vermian lesion. Vermian hypoplasia is frequently a part of multiple anomalies and genetic 

syndromes. When isolated, it may be asymptomatic but precise risk figures are not available.  

In the light of all these considerations, it is possible to affirm that the differential diagnosis of the main 

cystic posterior fossa anomalies is based on the assessment of 2 main parameters, as well as on the combination of 

these parameters with the other detectable findings of the posterior fossa. These 2 main parameters are (a) the 

vermian size and morphology and (b) the position of the vermis, while the other detectable findings of the posterior 

fossa are: the size and appearance of cisterna magna, the position of tentorium and torcular, the relation between 

the fourth ventricle and cisterna magna, the presence of cisterna magna septa, the choroid plexus position, etc. All 

these additional parameters gain an increasing clinical significance when they are integrated with the 2 main 

parameters. This is the rationale of this research line, that investigated throughout the different gestational ages, in 

physiological and pathological cases, by different prenatal diagnostic imaging techniques i.e. two-dimensional 

ultrasound, three-dimensional ultrasound, MRI, the vermian size and morphology and the position of the vermis.  

At current, the standard ultrasonographic antenatal evaluation of the cerebellum is limited to the axial plane, 

which does not provide a window to provide cerebellar vermis biometry as well as the relationship with the other 

structures of the posterior fossa. This can be obtained only performing a midsagittal view of the fetal brain. 

However, although interest in the ultrasonographic study of the posterior fossa is increasing, only few authors assess 

vermis biometry in clinical practice, and data regarding the normal biometry and position of the cerebellar vermis 

are still minimal. Therefore, a wrong/missed diagnosis of vermis abnormality, in particular when it is segmental, is 

still probable in ultrasonographic evaluation. 

The study A 3.a is based on the need for a major increase in the use of two-dimensional ultrasound 

measurements of the cerebellar vermis in order to evaluate the feasibility and reproducibility of vermian biometry 

in clinical practice. The choice to start our measurements from the 18th week of pregnancy, in this first study but 

also in the subsequent ones, is due to the fact that the cerebellar vermis can appear not fully developed prior to this 

week, as explained in the introduction section. Our data, in accordance with previous papers, confirm that the 

cerebellar vermis grows in a linear fashion throughout gestation and the growth pattern correlates well with 

gestational age. To our knowledge, only a few papers have measured VC for assessing vermian growth throughout 

gestation. Our nomograms constructed by two-dimensional ultrasound correlated well with those previously 

reported by Malinger in 2001 and by Lei in 2015. We could not correlate our nomograms with those provided in 

other papers, since they focused on vermian diameter and area but not on VC. In this first study, we focused 

exclusively on VC because this parameter is rarely reported in the literature compared with vermis diameter. 

Furthermore, we believe that the assessment of the circumference can provide precise information about the 
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morpho-biometry of the vermis, is easy to perform and may provide more guarantee of agreement between different 

operators. To our knowledge, study A 3.a includes the largest series (n=328) ever published for the assessment of 

cerebellar vermis growth throughout gestation in a two-dimensional ultrasonographic transabdominal manner. The 

series of Zalel of 2002 included a small number of patients, while the series of Malinger of 2001 focused exclusively 

on the two-dimensional ultrasonographic transvaginal approach. Despite the large number of fetuses included in 

this our first analysis, we observed an inhomogeneous distribution of cases among the different gestational weeks, 

with most of the measurements performed before 24 weeks. This may be due to the fact that the major number of 

controls in normal pregnancies is scheduled in the second trimester and should be considered as a limit of this 

study. We did not observe any gender difference in the measurement of the VC. To our knowledge, this data is in 

accordance with previous papers which do not mention gender differences in their measurements. In this first study, 

we performed most of the ultrasonographic scans using the transabdominal approach. Indeed, we preferred the 

routine transabdominal rather than the transvaginal route, since the latter may be less immediate and more time-

consuming, as well as less tolerated by pregnant women. However, in 32 cases a transvaginal probe was necessary 

for obtaining an adequate vermis view due to fetal position. We observed high agreement between values when 

transvaginal measurements were compared with transabdominal ones at the respective gestational age. These latter 

data encourage us to continue to prefer the transabdominal route when possible. In this first study, we focused on 

obtaining the mid-sagittal plane via two-dimensional rather than three-dimensional ultrasound scan. Indeed, our a-

priori intention was to enhance and promote the assessment of vermis biometry among the most possible number 

of different centres, even when three-dimensional technology is not accessible. Furthermore, we reported good 

reproducibility between two-dimensional and three-dimensional measurements. These data are in agreement with 

other reports and suggest that two-dimensional measurements can be as adequate and accurate as three-dimensional 

measurements for the intrauterine study of some structures of the fetal brain. 

The study 3 A. b wides the investigations of the previous study, providing 4 different vermian biometric 

data from a large cohort of foetuses from 18 to 33 weeks of gestation, this time assessed by three-dimensional 

imaging modality. So far, although various nomograms have been developed by sonography and MR imaging, 

including Vinals et al. 2005, Rizzo et al. 2012, and Lei 2015 with the aid of 3D technology, only few studies have 

provided data regarding 4 vermian parameters (SDD, APD, HD and volume) together. Another special feature of 

our second study is that we used not only the mid-sagittal plane as in study 3 A. a, but also the midcoronal plane. 

Indeed, we believe that the choice to take the measurements not only at the level of the midsagittal plane, but also 

integrating this view with the further information obtained by the coronal section of the posterior fossa, may be of 

a special help in detecting the size and the shape of the whole vermis, including the lower part, that often remain 

un-visualized at prenatal ultrasound examinations. Indeed, the coronal view that we need in order to correctly 

identify our crest reveals the inferior part of the posterior fossa and automatically directs the attention of the operator 

to the lower part of the vermis, which can thus be properly studied.  
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Our biometric data, in accordance with the study 3 A. a, as well as with the literature, confirm that the 

cerebellar vermis grows in a linear fashion throughout gestation and the growth pattern correlates well with 

gestational age. 

In study 3 A. b for the first time we measured the VCA throughout prenatal life. The VCA is a simple 

measurement, which can be easily taken with three-dimensional reconstructed planes. Thanks to the three-

dimensional technology, it is possible a thorough view of the posterior fossa, particularly at the level of the mid-

sagittal and the coronal plane, which allows a proper identification and visualizations of the landmarks of posterior 

fossa, the vermis as well as of both the sides of the VCA.  

In the occipital bone, the lower division of the cruciate eminence is prominent, and is named the internal 

occipital crest; it bifurcates near the foramen magnum and gives attachment to the falx cerebelli. In the upper part 

of the adult internal occipital crest, a small depression is sometimes distinguishable; it is termed the vermian fossa 

since it is occupied by part of the vermis of the cerebellum. During foetal life at prenatal ultrasound scan, the upper 

part of the internal occipital crest is easily visible in the midsagittal view of the posterior fossa as a hyperechogenic 

straight line, just behind the vermis. In the coronal view of the posterior fossa, the upper part of the internal occipital 

crest appears as a straight hyperechogenic median line between the bilateral insertion of the falx cerebelli.  

With the visualization at the same time of the midsagittal and the coronal view of the PF, it is easy to 

identify the crest and thus trace the first side of the VCA, while the other side is drowned tangentially to the ventral 

contour of the cerebellar vermis and correspond to the fastigium of the vermis, a reference point already used by 

other authors, as Volpe in 2012. Thus, the evaluation of the VCA may be of help in assessing the foetal PF and 

gives an objective measurement of the normal position and rotation of the cerebellar vermis in relation to the medial 

occipital crest.  

In our opinion, the choice of considering the medial occipital crest as a reference point of our angle is a 

strength of our study.  Indeed, while other landmarks proposed by authors are often difficult to be visualized due 

to the low or variable echogenicity, or to shadowing phenomena, the osseous nature of our reference lets it to be 

always clearly visualized.    Paladini in 2006 proposed a combination of three angles, the tentoro-vermian, the 

tentoro-clivus and clivo-vermian angles, for assessing the position of the vermis. However, tracing these angles 

may be tricky due to the characteristic echogenicity of these structures which often appear with soft edges, not 

properly defined and requires a trained eye in order to avoid mistakes. Ghi in 2012 proposed the assessment of the 

position of the vermis in relation to the brainstem, measuring the brainstem–vermis and brainstem–tentorium 

angles. However, the shadowing of the medulla oblongata often encountered when trying to proper visualize the 

landmarks makes the evaluation of these angles often tricky and time -consuming. In our study, the choice of a 

landmark that is posterior to the posterior fossa in the midsagittal view of the foetal hindbrain avoids any shadowing 

phenomena, with a good visualization. Another advantage of the choice of the internal occipital crest is that this 
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landmark is always displayable, independently of the gestational age. Indeed, this structure, although close to the 

posterior fossa, is an osseous structure external to the brain’s soft tissues. On the contrary, any landmark inside the 

brain is more prone to become progressively more difficult to be visualized with the advancement of the pregnancy.  

On the basis of our results, measuring this angle on static volume ultrasound appears feasible and 

reproducible. Indeed, the inter-observer agreement for both seems good, with high intra-class correlation coefficient 

(ICC) and small 95%CI. This is of interest, since we tested the inter-observer variability between a senior and a 

junior operator as also in studies A 3.a and A 3.c. To the best of our knowledge, this is the first time that the inter-

observer variability has been tested between differently-skilled operators relatively to the posterior fossa 

assessment. The good reliability of measurements taken between the 2 examiners in all these studies may have 

useful implications in clinical practice. Our measurements may be looked at as a reliable reference when assessing 

the anatomy of the posterior fossa, in particular at mid-trimester scan.  

Even more interesting, is that the VCA measurements performed at three-dimensional prenatal ultrasound 

are consistent with those performed at MRI, as reported in our study A 3.c. The complementary role of fetal MRI 

in evaluating the ultrasonographic suspected abnormalities with higher spatial resolution and tissue contrast is now 

well documented, and concerns about a cerebellar malformation is one of the main referral reasons for clinical MR 

examination. However, despite the recurrent use of the so called “diametral” MRI measurements (i.e. trans-

cerebellar diameter and vermis dimensions), the complex structure of the posterior fossa requires a deeper analysis 

to improve the developmental descriptions. Modern advances in imaging sequences and post-acquisition processing 

techniques now allow for fetal MR data to be utilized for measurements “a posteriori”, that enable to re-analyse 

cases performing new measurements and elaborating new observations. To our knowledge, only a few MRI studies 

have reported their findings for normal cerebellar growth over varying gestational age ranges, and even less studies 

have reported methods to objectively quantify the position of the cerebellar vermis during pregnancy in fetuses 

with normal posterior fossa. The choice to assess the VCA also at MRI has multiple reasons. First, we wanted to 

test this measurement, with an imaging modality that is widely spreading in the field of prenatal medicine. By the 

way, a recent paper of Griffith published on Lancet in 2016, reported that intrauterine MRI improved diagnostic 

accuracy and confidence for the fetal brain abnormalities and lead to management changes in a high proportion of 

cases. This finding, along with the high patient acceptability, led the authors to propose that any fetus with a 

suspected brain abnormality on ultrasound should have MRI to better inform counselling and management decision. 

Second, we wanted to assess the feasibility of this measurement, as well as its easiness to perform, since the other 

available MRI studies, reporting on the measurement of the position of the vermis, proposed angles difficult to 

enhance and trace. As an example, Vatansever in 2013 proposed the measurement of a number of angles, i.e. the 

ponto-cerebellar gap width, the fourth ventricle angle, the primary fissure angle, the tegmento-vermian angle, which 

may be tricky to identify, due to the need of a big magnification of the image, to the special MRI appearance of 

these structures with soft edges, not properly defined and to the requirement of a trained eye in order to avoid 
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mistakes. For tracing our angle, we used in most of cases high-quality T2-weighted MRI images. Indeed, 

description of pathoanatomy relies in most cases on high-quality T2-weighted contrast, allowing an equal 

assessment of the brain surface and parenchyma.  

Curiously, our study shows that the VCA remains stable during the observed gestational age period. Indeed, 

the measurements obtained at any gestational week appear fairly constant with a narrow interval of values. We 

believe this is interesting and unexpected, for more than one reason. First, a special feature of our angle is that it 

consists of a “static” side – the “crest” side – and a “dynamic” side – the “vermian” side. While the “crest” side 

remains stable, due to its bony structure, we expected the “vermian” side to slowly change with the advancement 

of the pregnancy, due to the progressive adaptation of the vermis in the vermian fossa. This is even more true, 

considering the dynamic and changing fashion of the posterior fossa, and in particular of its midline structures 

during prenatal life (see introduction section). Indeed, the embryologic development of the PF, and thus of the 

cerebellum and the vermis includes several phases in which each structure continuously modifies shape, size and 

relations with the other developing organs. While within the 7th weeks after conception the corpus cerebelli rapidly 

bulges as a “V” shaped structure, so outlining downwards the fourth ventricle and the plexus choroideus, the medial 

portion starts to develop later in prenatal life. During the third month of development, growth of the midline 

component accelerates and begins to fill the gap between the limbs of the V, thereby forming the vermis, as a 

zipper-like closure of the primordial limbs. This structure is not fully developed before 18 weeks of pregnancy, 

when Blake's pouch completes is fenestration. Indeed, Blake's pouch, also known as the rudimental fourth 

ventricular tela choroidea, is a normal transient structure during embryological development which regresses, 

usually by 12 weeks of gestation, when it starts fenestrating to form the foramen of Magendie. Second, in 

accordance with Lei (2015), we believe that the fact that we found a parameter that is constant, is helpful in the 

elimination of the effect of gestational age in evaluating the posterior fossa. For example, the parameter identified 

in this study can be expected to be most helpful in identifying the risk of posterior fossa anomalies in patients whose 

dates of conception are not known. This could allow assessment of fetal vermis position, and thus classification of 

patients as high or low risk at any point during the second trimester, thereby facilitating clinical decisions. 

The fact that our angle remained stable during the physiological development of the posterior fossa 

represented the basis for our study A 3.d, in which we used of the VCA in pathological cases. Indeed, we 

hypothesized that, in case of failure of the normal embryological development of the vermis, which in turn leads to 

an abnormal size and rotation of the vermis, our angle would have been affected and thus useful to quantify 

objectively the degree and severity of an abnormal rotation. Furthermore, we hypothesized that combining the VCA 

with the vermis biometry (diameters and volume) may be helpful in detecting or in ruling out both the major and 

pathological conditions involved in the differential diagnosis of the abnormal posterior fossa, including the DWM, 

vermian hypoplasia, as well as the persistence of the Blake’s pouch.  Our results confirmed our a-priori hypothesis, 

suggesting that measurement of the VCA discriminates accurately posterior fossa fluid collections associated with 
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upward rotation of the cerebellum, including DWM, Blake pouch cyst, vermian hypoplasia and mega cisterna 

magna. As already discussed, distinguishing these entities is important, because of their different prognoses: a 

Blake’s pouch cyst is a risk factor for anatomic and chromosomal anomalies but when isolated is probably a normal 

variant, while DWM and vermian hypoplasia are true malformations frequently associated with abnormal 

neurodevelopment. The differential diagnosis depends upon visualization of vermis size and position, as well the 

size and appearance of cisterna magna, the position of tentorium and torcular, the relation between the fourth 

ventricle and cisterna magna, the presence of cisterna magna septa, the choroid plexus position. All these findings 

can be demonstrated in utero with sonography and/or MRI, but, as already discussed, they are subjective and even 

in expert hands may be difficult to interpret, particularly early in gestation. In our series, the VCA discriminated 

accurately this group of anomalies. The VCA was increased in the study group compared with controls, in particular 

was significantly increased in cases of DWM and Blake pouch cyst, increasing with the severity of the condition. 

Interestingly, it remained stable in cases of mega cisterna magna and vermian hypoplasia, independently of the 

severity of the condition in these cases.  

We acknowledge the limitations of our study. The number of abnormal cases was relatively small and they 

were investigated retrospectively. Further experience is certainly needed. Nevertheless, the spread of measurements 

between normal and abnormal cases and among the different categories of abnormalities suggest that the VCA may 

prove important in the differential diagnosis of fetal posterior fossa cystic anomalies, at least when used in 

combination with all the other existing criteria, as we proposed in table 7.  

Our last study 3 A. e is quite different from the others, reporting a case series of a very special and rare 

condition that does not belong to the cystic malformation of the posterior fossa (it belongs to the non-cystic 

malformations), and thus is not detectable with the criteria proposed in the other studies. The decision to add this 

study is based on two reasons: first, because we believe the rhomboencephalosynapsis is a so rare condition, that 

every case causally encountered in the clinical practice should be mentioned in the research update activity and 

should be object of special study; second, to encourage further research in the assessment of the pathological 

posterior fossa since, despite the new studies and ideas, some conditions remain under-studied and poorly 

understood.  Rhomboencephalosynapsis was first described by Obersteiner from the post-mortem examination of 

a 28-year-old man who committed suicide. Since the first description, more than 40 cases have been reported, most 

of which were diagnosed by MR imaging. This condition is characterized by vermian agenesis associated with 

fusion of the cerebellar hemispheres, peduncles, and dentate nuclei. Kinking of the brainstem is often present. On 

the axial trans-cerebellar view, the vermis is absent and the hypoplastic cerebellar hemispheres are fused on the 

midline. The cerebellum has a rhomboid shape due to the absence of the vermis. The posterior fossa is small and 

associated supra-tentorial abnormalities—absent septum pellucidum, abnormal gyration, and hydrocephalus—may 

be present. Supra-tentorial anomalies including hydrocephaly are often present. From the embryologic view, 

rhomboencephalosynapsis results from failure in vermian differentiation of the more rostral part of the midline 
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primordium; the fused cerebellar hemispheres may be explained by the fact that the cerebellar primordium is 

unpaired, according to the theory that the cerebellar primordium arises from the tuberculum cerebelli. The risk of 

chromosomal anomalies is low, while the risk of non-chromosomal anomalies is relatively high. A thorough 

anatomic scan should be performed by an expert because of the high risk of association with other CNS anomalies. 

The prognosis is commonly poor, with most affected patients dying in childhood.  

Our report shows that prenatal ultrasound scan and MRI are able to depict rhomboencephalosynapsis and 

associated brain anomalies in the fetus accurately. This is important because this condition may be also an isolated 

malformation that can be difficult to be detected. In our study, 2 out of 3 cases showed no other brain anomalies 

but the rhomboencephalosynapsis (in case 2 a renal anomaly was present). The other few cases of an isolated 

rhomboencephalosynapsis reported in the literature showed significant neurologic symptoms such as irritability, 

poor balance, head rolling, abnormal eye movement, spasticity, dysarthria, strabismus, mild truncal ataxia, self-

mutilation, and obsessive-compulsive disorder4 are also reported in these cases. Isolated cases have also been 

associated with developmental delay and severe mental retardation. Unfortunately, all our cases ended with either 

an abortion (case 1 and 2) or a preterm delivery of a stillborn fetus (case 3). We based our diagnosis on prenatal 

ultrasound scan, and confirmation of diagnosis was performed by MRI; however, it was not possible to have post-

natal data.  Alterations in aqueductal patency, together with midbrain tegmentum dysplasia, have been reported in 

postnatal studies. Early aqueductal obstruction during fetal life could explain some of the supra-tentorial anomalies 

such as the hydrocephalus and the extreme corpus callosum thinning or interruption. In our cases, prenatal MRI 

could not establish whether the aqueduct of Silvius was patent or not with certainty. The cause of this condition is 

unknown. The results of chromosomal analyses performed in previous cases were normal except for an interstitial 

deletion of chromosome 2q.1 In our report, cases 1 and 2 had a normal karyotype. No information are available 

about case 3.  No teratogenic factors have been recorded in our case series.  Rhombencephalosynapsis seems to be 

sporadic, without any instance of familial recurrence. The possibility of autosomal recessive inheritance was 

reported in only 1 case. In case 2 of our series, it has not been confirmed any relation between the condition of the 

fetus and that of the first daughter of the woman. From our limited series, we cannot provide any quantitative data 

about possible differences in the detection rate of these malformations between prenatal ultrasound and prenatal 

MR imaging; however, it is likely that the latter will be more accurate, especially with respect to standard 

ultrasonographic examinations not guided by a priori information. 
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B) Secondary project: The developing cortex: the fetal fissures                                       

                                                                                                          

 

B 1. Introduction  

 

The adult human brain has a highly complex external morphology, and this is particularly true of the 

cerebral hemispheres. Someone looking at the surface of the adult brain for the first time likely would be convinced 

by the apparent randomness of the convoluted surface. However, it becomes apparent that the gyri/sulci form 

patterns that are common among individuals and, although variations exist, a large number of recurring themes can 

be found. Before 16 weeks’ gestational age the fetal human cerebral hemispheres are effectively smooth and 

featureless. In contrast, the overall degree of sulcation at birth is effectively the same as the adult pattern. The huge 

changes in the external morphology of the brain that occur between those two-time points are due to the 

development of the cerebral cortex and the massive numbers of neurons and glia that migrate there from the 

germinal matrices. The gyral convolutions produce a greater surface area per unit volume compared with the 

smooth, agyric cortex present in many other mammals. Indeed, the gyric human cerebral cortex is estimated to have 

three times the surface area as an agyric brain of the same volume. The major sulci of the brain tend to appear in 

an ordered and predictable sequence; however, the patterns are only approximations, and one should not expect to 

be able to define with any degree of accuracy the gestational age of a fetus based on the sulcal patterns. Biologic 

variation is one issue, and the mechanisms for estimating the dates of a pregnancy have wide margins of error. In 

addition, the possible significant differences in the degree of sulcation between the two hemispheres within the 

same individual are well documented.  

 The cerebral hemispheres are separated from each other in the midline by the median (great) longitudinal 

fissure and its contents: the pia and arachnoid mater with the intervening subarachnoid space that overlie both 

cerebral hemispheres, and two layers of dura mater that are fused for the most part as the falx cerebri. The inferior 

sagittal sinus is contained within the free inferior border of the falx, whereas superiorly the two leaves of dura 

separate to contain the superior sagittal sinus. The falx is attached to the crista galli anteriorly, where it is quite 

narrow, but it widens as it sweeps posteriorly and eventually attaches along the midline of the tentorium cerebelli. 

The drainage of venous blood in the sagittal sinuses normally is from anterior to posterior; therefore, the structure 

increases in size passing posteriorly to accommodate for increasing drainage from the cortical veins. The surfaces 

of the cerebral hemispheres show many convolutions consisting of cortical gyri separated by  sulci of varying sizes. 

The cerebral cortex and associated white matter form four lobes in each hemisphere (frontal, temporal, parietal, 

occipital), and those lobes are (incompletely) defined by prominent, relatively constant sulci.  
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The major sulci responsible for lobar anatomy consist of the lateral (Sylvian) sulcus, central sulcus, and 

parieto-occipital sulcus. For the most part the lobar anatomy is best defined on the lateral surface of the brain by 

the lateral and central sulci. 

The lateral (Sylvian) sulcus or Sylvian fissure is a deep fissure that is first identified on the inferior surface 

of the brain close to the anterior perforated substance but becomes most visible on the lateral surface where it 

separates the frontal and parietal lobes from the temporal lobe. The frontal lobe is separated completely from the 

temporal lobe, whereas the posterior aspects of the parietal and temporal lobes remain in continuity without a well-

defined external border. The parts of the frontal, temporal, and parietal lobes that protrude into and surround the 

lateral fissure are called the opercula. The anatomy of the lateral sulcus on the lateral surface of the brain is 

complicated as it divides into three rami: anterior horizontal, anterior ascending, and posterior. These can be seen 

well on MRI that allows nonorthogonal plane reformation of volume data. The anterior horizontal ramus protrudes 

into the inferior frontal gyrus running horizontally and anteriorly. The anterior ascending ramus runs vertically into 

the same gyrus and defines the pars triangularis portion of the inferior frontal gyrus anterior to the ascending ramus 

and the pars opercularis posteriorly. The posterior ramus extends posteriorly and slightly superiorly for 

approximately 8 cm before dividing into the posterior ascending and posterior descending rami.  

The insula is defined as the cortical surface in the depth of the lateral fissure and is considered to be the 

“fifth cortical lobe” by some researchers. The mature insula has a complicated surface structure, which is best 

appreciated on whole brain preparations when the opercula have been removed. The insula is pyramidal in shape, 

with its apex directed inferiorly and anteriorly. The apex is the only portion of the insula that is not bounded by the 

circular gyrus. The large central insular sulcus runs from the apex, superiorly and posteriorly to form larger anterior 

and smaller posterior surfaces. The posterior region usually is divided by a single sulcus to form two “gyri longi,” 

whereas the anterior area is inconsistently divided into three or four “gyri brevi.” 

The central sulcus on the lateral aspect of the cerebral hemisphere barely extends onto the medial surface. 

It separates the frontal and parietal lobes, and the frontal lobe can be completely delineated by the lateral and central 

sulci on the lateral surface of the brain. It takes a curved course posteriorly at approximately 70° towards the lateral 

sulcus but does not contact it. The postcentral sulcus lies approximately 1.5 cm posterior to the central sulcus and 

runs parallel to it. The correct localization of the central sulcus is hugely important on cross-sectional imaging as 

it defines the primary motor cortex anteriorly and the primary sensorimotor cortex posteriorly. This can be difficult 

and is best achieved on axial imaging as described in the section on the cingulate sulcus. 

The parieto-occipital sulcus is predominantly a feature of the posterior portion of the medial hemispheric 

surface, although it can extend onto the lateral surface for a short way in some cases. It runs inferiorly and slightly 

anteriorly, separating the precuneus of the parietal lobe and the cuneus of the occipital lobe before joining the 
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calcarine fissure. Note that a temporo-occipital sulcus exists on the inferior surface of the brain but has highly 

variable appearances. 

Other sulci of importance for fetal imaging include: the superior and Inferior frontal sulci, the superior 

frontal gyrus cingulate, the sulcus superior and inferior, the temporal sulci, the calcarine sulcus and the collateral 

sulcus.  

Differences are seen between the conspicuity of cortical sulci on post-mortem tissue sections and in utero 

MRI. Specifically, the current data indicates delineation of sulci at earlier gestational ages on tissue sections. As an 

example, the Sylvian fissure is well seen on histologic studies as early as 16 weeks’ gestational age but usually is 

not clearly demarcated in all fetuses at 19 to 20 weeks’ gestation. Garel’s textbook presents cases at 22 to 23 weeks, 

and at that stage the lateral sulcus was seen in 100% of normal fetuses. It is not sufficient to know merely when the 

Sylvian fissure can first be located. The Sylvian fissure is an exceptionally complicated structure that continues to 

develop after birth, and an understanding of its normal sequence of development is important. When the Sylvian 

fissure first appears, it is merely an oblique indentation in the lateral aspect of the second-trimester hemisphere. 

Over time it deepens and develops secondary sulci on the insular cortex, and the opercula portions of the 

surrounding frontal, parietal, and temporal lobes completely cover the insula, as described previously. The insular 

sulci form late. Garel did not see any evidence of the insular sulci before 31 weeks, and those structures were 

present in only 10% of 31-week fetuses. Insular sulci were present in all 36-week gestational age fetuses. 

Imaging of the fetal brain in the axial plane allows good assessment of developing opercularization. The 

anterior and posterior lips of the opercula are everted up to 20 weeks’ gestational age, but rapid cortical/subcortical 

growth causes the lips to grow toward each other, a process that is quite advanced by 26 weeks’ gestational age. 

Garel assessed this development by measuring the distance between the anterior and posterior opercula and found 

few cases where the inter-opercular distance was less than 10 mm before 29 weeks. The distance then gradually 

reduced so that at 36 weeks’ gestation, for example, 80% of values were between 4 and 8 mm. However, the 

opercula did not close completely before birth in any of the cases, so this event appears to occur postnatally. Cortical 

malformations may disrupt this process, but under-opercularization without obvious structural abnormality is one 

of the “soft” neuroradiologic features seen with high frequency in children with developmental delay. The central 

and precentral sulci are early features on the lateral surface of the developing hemispheres, with the central sulcus 

appearing first. Both structures are best assessed on axial imaging of the fetal brain. Garel found that the central 

sulcus was seen in 20% of her cases at 22 to 23 weeks, in 75% of cases at 26 weeks, and in all cases thereafter. In 

contrast, the precentral sulcus was not shown by Garel before 26 weeks but was seen in 90% of 28-week fetuses 

and consistently after that time. The parieto-occipital sulcus is best appreciated on sagittal images of the fetus. It is 

visible after 22 weeks’ gestational age in the vast majority of, if not all, fetuses.                                                                                                    

 



 

53 

 

B 2. Aim of the researches 

 

As pointed out in the introduction section, the cerebral cortex develops significantly faster and it increases 

in size more rapidly than the adjacent white substance during fetal life. From a completely smooth surface during 

the first and the early second trimesters of pregnancy, the brain changes into a complex arrangement of fissures, 

sulci and gyri, which become increasingly evident during the course of the third trimester. These structures have a 

relatively constant location and morphology, and may serve as anatomical landmarks when studying cortical 

development. Furthermore, each fissure, sulcus and gyrus become visible at examinations at specific gestational 

ages, as confirmed by several prenatal and postnatal as well as post-mortem MRI studies. 

Currently, the assessment of the developing fetal brain at prenatal ultrasound scan is still challenging also 

for experienced sonographers. Indeed, most of the fetal fissures, sulci and gyri become visible only during late 

pregnancy. Furthermore, migrational disorders may be subtle and may have a variety of ultrasonographic 

appearances that are generally not detectable until the third trimester or even some month after birth. 

Therefore, recent efforts of neurosonographers have been focused at studying the first visible morphological 

changes of the developing fetal cortex in order to facilitate an earlier diagnosis of abnormal neuronal migration also 

with the aid of three-dimensional technology. 

The Sylvian fissure and the insula lobe are among the most well-studied anatomical structure of the fetal 

brain and demonstrate a typical pattern of development throughout gestation. In early second trimester, the Sylvian 

fossa appears at prenatal two-dimensional ultrasound scan as a smooth-margined, shallow notch on the lateral side 

of the cerebral hemisphere. During the course of the subsequent weeks of pregnancy, the profile of this structure 

begins to change, showing further indentation with distinct angularity at the margins of the insula. 

The prenatal study of the development of the Sylvian fissure and insula lobe may be helpful in improving 

the prenatal detection of migrational disorders, since they appear early in the second trimester and can be studied 

through a routine trans-thalamic axial scan of the fetal brain. However, despite the increasing number of studies on 

fetal cerebral development, only few papers, with a small number of patients, have provided objective 

standardization for the assessment of Sylvian fissure and insula lobe by routine two-dimensional ultrasound scan. 

The aim of this study was to measure the Sylvian fissure and insula lobe in normal fetuses at two-

dimensional-ultrasound, through the standard trans-thalamic plane, throughout pregnancy, in order to (a) construct 

normal reference ranges for the Sylvian fissure and insula lobe, based on a large number of normal fetuses; (b) 

develop a novel parameter for the assessment of the brain cortex development, obtained by the ratio defined as 

Sylvian fissure /(Sylvian fissure + insula lobe), that we named the insula ratio (IR); (c) to evaluate the 

reproducibility of these measurements between differently skilled operators. 
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B 3. Clinical study 

 

B 3.a The fetal sylvian fissure and insula lobe throughout gestation: a cross sectional study. 

Materials and methods 

We conducted a multicentre prospective cross-sectional study focused on the sonographic evaluation of the 

fetal Sylvian fissure and insula lobe at the prenatal Centre “Diagnostica ecografica prenatale Aniello Di Meglio 

s.r.l”, Naples, Italy, and at the Department of Obstetrics and Gynaecology of the University of Bern, Switzerland. 

Consecutive low-risk pregnant women with well-established gestational age determined by a reliable last menstrual 

period and confirmed by the measurement of crown-rump length at first trimester ultrasound scan between 11 and 

14 weeks of gestation were asked to participate. Only singleton foetus without structural abnormalities, were 

included in our trial. Each woman was considered only once. All participants had a negative anamnesis for systemic 

diseases, intact fetal membranes, normal amniotic fluid volume, and were not in labour at the time of inclusion in 

the study. Indications for ultrasound examination were assessment either for screening sonography or fetal growth 

ascertainment.  

Gestational age at inclusion ranged between 18 and 33 weeks. Fractions of weeks were computed to the 

nearest week, with fractions of ≤4 days and >5 days assigned to the lower and higher weeks, respectively.  

All deliveries occurred after 37 completed weeks and no infants had evidence of growth disturbances 

(birthweight between 2500 and 4000 grams). All neonates underwent routine neonatological examination within 

the first 48 hours.  

At enrolment, all women gave a written informed consent to participate to the study, which was approved 

by the Institutional Review Board of all participating centres. 

The ultrasound machine used for two – dimensional ultrasound scan were Aloka (Aloka Co., Ltd, Tokyo, 

Japan) and GE Voluson E10 (GE Healthcare Ultrasound, Milwaukee, WI, USA) equipped with a curved linear 

array trans-abdominal transducer (2–5 MHz).  

Besides standard fetal biometric parameters such as biparietal diameter (BPD), head circumference (HC), 

abdominal circumference (AC), and femur length (FL), we obtained the measurement of Sylvian fissure and insula 

lobe. For standardization purposes, all brain measurements were performed in the hemisphere that was distal to the 

transducer, regardless of fetal side, to prevent shadowing from the fetal skull bones. We assessed the biometry of 

Sylvian fissure and insula lobe as follows: first, we obtained a standard trans-thalamic axial plane of the fetal head, 

as used for measurement of the BPD and HC, in which the cerebral falx and the cavum septi pellucid can be 

visualized and the thalami are visible symmetrically. Care was taken to ensure that the midline of the brain was 

equidistant from both sides of the calvarium to ensure that the plane was not oblique. The biometries of Sylvian 

fissure and insula lobe were taken as reported: insula lobe was measured from the cerebral falx, drawing a 
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perpendicular line to the point of maximum prominence of the insular cortex. The depth of Sylvian fissure was 

measured drawing a line in continuation with the insular line (perpendicular to the midline), from the insular cortex 

towards the inner table of the parietal bone. The ratio between the Sylvian fissure and the sum of the Sylvian fissure 

and insula lobe was calculated and called “insula ratio” (IR) (Fig. 28) 

The first 38 fetuses each measurement was repeated twice by two examiners (S.M. and D.M.A.) in order to 

assess the reproducibility of the measurements. The two operators were identified as n.1 (senior, i.e. more than 5 

years of experience of prenatal ultrasound) and n.2 (junior, i.e. less than 5 years of skill with prenatal ultrasound), 

and all measurements were numbered as 1 or 2, when performed by the senior and the junior operator, respectively.   

Statistical analysis was performed with the SPSS package (SPSS inc., Chicago, IL, USA) and with Graph 

Pad Prism version 5.00 for Windows (Graph Pad Software, San Diego CA, USA). Normal ranges for Sylvian 

fissure and insula lobe were constructed according to the method previously described by Royston and Wright in 

1998. Gestational age dependency of the brain parameters was analysed using Spearman rank correlation. 

Polynomial regression analysis was performed to identify the regression curves that best fitted the mean and 

standard deviation (SD) as a function of gestational age. The standard deviation scores (Z-scores) were calculated 

using the formula: observed measurement – mean measurement/SD. To assess the model fit, the Gaussian 

distribution of the Z-scores was checked using the Kolmogorov–Smirnov test. The 5th and 95th  centiles for Sylvian 

fissure, insula lobe, and IR throughout gestation were obtained as previously described using the formula: mean ± 

1.645 SD (21-22). The inter-observer variability was assessed by interclass correlation coefficients (ICC) and 

Bland-Altman plots. Statistical significance was considered achieved when P < 0.05.  

Results 

During the study period, 343 patients met the inclusion criteria. Patient characteristics are displayed in Tab. 

8. An adequate measurement of the Sylvian fissure and the insula lobe was obtained in all cases using the trans-

abdominal route. Fourteen of the included women were lost for follow-up. Thus, 329 cases were finally considered 

for our analysis. A significant correlation was found between gestational age and Sylvian fissure (r=0.79; p<0.0001) 

as well as with insula lobe (r=0.77; p<0.0001). Similarly, the IR showed also a significant correlation with 

gestational age (r=0.39; p<0.0001). 

The regression equation for the mean of the different measurements according to gestational age (x) were: SF (y) 

y = −19.69 + 1.813x − 0.02422x2, and for the SD (y′) was: y′ = −0.1557 + 0.04511x. IL (z) z = −3,060 + 0.8495x 

and for the SD (z′) was: z′ = −1.102. IR (q) q = −0.1593 + 0.03795x − 0.0006778x2 and for the SD (q′) was: q′ = 

0.2674. Fig. 29 shows the fitted 5th , 50th , and 95th  centiles for gestational age calculated as explained before, while 

tab. 9 summarizes mean and SD per week in the interval between 18 and 33 weeks for Sylvian fissure, insula lobe 

and IR. 
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When inter-observer variability was assessed for measurements obtained on two-dimensional ultrasound in the 

series of the first 38 fetuses, ICC was 0.97 (95% CI: 0.94-0.98). In the Bland-Altman plots the mean difference of 

inter-observer agreement was 0.03 and 95% CI limits were -0.31 to -0.37 (Fig. 30). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

57 

 

B 4. Discussion 

 

Any event that is able to alter neuronal proliferation, migration, or cortical organization can cause a cerebral 

cortex malformation. Neuroblast proliferation starts in the seventh week of gestation in the subependymal region 

around the walls of the lateral ventricle. This proliferation is particularly active between 13 and 26 weeks’ gestation. 

After 26 weeks, the volume of the germinal zone rapidly decreases. Neuronal migration to the cerebral cortex starts 

around the eighth week and is completed by 20–24 weeks’ gestation; glial cell migration continues until after birth. 

During this period, the neurons migrate from the germinal matrix within the periventricular zone, on radial glial 

guides, toward the pial surface. Waves of migrating neuroblasts lead to the formation of a superficial cortical plate 

separated from the deep germinal layer by an intermediate zone containing concentric migrating cells. The 

migration waves form an “inside-out” six-layered cortex, in which the first wave of migrating neuroblasts forms 

the deepest cortical layer, while the later waves constitute the most superficial layer. At the same time, the 

intermediate zone increases in width and forms the white matter. 

Recently, it has been shown that not all cerebral cortical neurons are generated in the germinal zones of the 

dorsal telencephalon and migrate radially to the developing cortex; in fact, a not insignificant number of cortical 

interneurons are generated in the lateral, medial, and caudal ganglionic eminences and migrate tangentially into the 

cerebral cortex. In addition, recent reports have made it clear that radial glia are much more active participants in 

cortical development. Indeed, radial glia are neuronal and glial precursors as well as guides and may, as well, have 

a role in orchestrating the entire migration process. Myelination, in contrast, starts only after birth.  

Gyration and sulcation occur during neuronal migration and continue until after birth. The main 

malformations of cortical development are classified into three basic groups, based on the stage at which the 

developmental process is likely disturbed. Group I (abnormal neuronal and glial proliferation/apoptosis) comprises 

microcephaly, megalencephaly, and cortical dysgenesis with abnormal cell proliferation. Group II (abnormal 

neuronal migration) includes various types of heterotopia and lissencephaly. Group III (abnormal postmigration 

development) includes polymicrogyria and schizencephaly, focal cortical dysplasia, and post migration 

microcephaly.  

The development of the Sylvian fissure is one of the major brain maturational processes occurring in fetal 

life and an altered development of this fissure leads to the main malformations of cortical development. Using MRI, 

abnormalities in this process, leading to aberrant operculization, have been diagnosed increasingly in infants and 

children with developmental delay. 

Although the maturational phases of the operculum have been defined by neuropathological evaluation of 

fetuses, relatively few papers have described the ultrasonographic imaging of normal operculization. Since the 

introduction of ultrasound for evaluation of the fetal brain, emphasis has been on the ventricular system and 
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surrounding structures, while the study of the cortex has been overlooked. This fact can be explained mainly by 

technical issues that have precluded visualization of the proximal hemispheric surface and by the rapid 

developmental changes in cortical milestones through pregnancy that are difficult to standardize and remember 

during real-time scanning. 

The seminal study by Chen et al. in 1995 describing the normal topography of the cerebral operculum on 

MRI led to papers describing its abnormal formation and paved the way to the in-utero identification of related 

conditions. In 2008, Quarello et al. suggested a standardized approach to following fetal Sylvian fissure 

development and Guibaud et al. presented their experience with the prenatal diagnosis of abnormal development 

of this structure and correlate their imaging findings with neuropathological and postnatal data. 

Quarello et al. defined six gross landmarks in the normal operculization process based first on the angle 

between the insula and the temporal lobe and then on the extent of overriding of the posterior half of the insula by 

the temporal lobe; these landmarks and the stages in between them were scored between 0 and 10. According to 

Malinger, this method, although described as being reproducible and reliable, is cumbersome, time-consuming and 

relatively difficult to apply in daily practice and is unnecessary during the performance of a routine examination. 

This opinion is strengthened by the fact that all cases with abnormal operculization described by Guibaud et al. 

were referred for associated findings, including ventriculomegaly, abnormal head circumference and other central 

nervous system and other anomalies. Dedicated neurosonography and MRI later defined the abnormal 

operculization and added information regarding the presence of malformations of cortical development, such as 

lissencephaly and polymicrogyria. 

Chen et al. divided abnormal operculization into five types. Isolated abnormal operculization was found 

only among patients with Type 5 (normal-appearing insula with under developed operculum consistent with the 

developing operculum found after 32 weeks of gestation). This group included children with abnormal head 

circumference, metabolic diseases and trisomy 21 and children with non-specific developmental delay. The authors 

suggested that the abnormal operculization in some of these children could signify delayed maturation, similar to 

delayed myelination, that would improve with time with concomitant improvement of the developmental delay. 

Therefore, the initial evaluation, even in the hands of a sonographer without proficiency in neurosonography, would 

usually be sufficient to identify most at-risk fetuses, enabling referral for consultation at a fetal neurology clinic, 

where the scoring method previously described would be very useful for accurate definition of the brain anomaly. 

Since Kuzniecky et al. first described congenital bilateral perisylvian syndrome in 1989, abnormal 

operculum formation has been considered almost synonymous with polymicrogyria. However, the paper by 

Guibaud et al. highlights the fact that most children with abnormal operculization will not have an associated 

malformation of cortical development (10 out of 15 cases). These results are consistent with the findings of Chen 
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et al.13, that only 14 out of 86 patients had a malformation of cortical development. In these 14 patients, the 

operculum was either unformed or abnormally formed. 

In the light of these considerations, it appears evident that more papers assessing the cortical development 

in physiological and pathological cases, in particular by dedicated neurosonography, are still necessary to 

investigate this interesting issue. This was the rational of the choice of our study, that aimed at assessing the 

operculization process throughout gestation by the measurements of the Sylvian fissure and the insula lobe at two-

dimensional prenatal ultrasound scan in physiological cases.  

The sonographic measurement of the Sylvian fissure and the insula lobe was reproducible and easy to 

perform. Our findings showed that Sylvian fissure and insula lobe increase in depth in a linear fashion throughout 

gestation, and the growth pattern correlates well with gestational age. These data are in line with previously reported 

reference limits constructed by using two-dimensional and three-dimensional ultrasound scan. All these values can 

serve as a reference to all sonographers which evaluate the development of the fetal cortex. 

To our knowledge, this is the first study that assess the ratio between the Sylvian fissure and the sum of the 

Sylvian fissure and the insula lobe throughout pregnancy. Interestingly, this ratio behaves as a polynomial 

regression in relation to gestational age, increasing till 26 week and then showing a plateau before starting to 

decrease.  

This ratio may be a mirror of the embryological and anatomical development of the Sylvian fissure and the 

insula lobe, which changes not only in size but also in shape, with smooth curved margins at 20 weeks and a more 

indentated, trapezoidal and rectangular shape at 30 weeks; this change is in accordance with the opercularization 

process, that is asymmetrical. Indeed, unlike the posterior, the anterior opercula develops later in pregnancy (see 

introduction section), at the beginning of the third trimester and this can explain the plateau at 26 weeks followed 

by the slow drop of the insula ratio. Thus, our ratio may be an easy marker of the ongoing process of the 

development of the fetal cortex.  

This study includes also the largest series ever published for the construction of Sylvian fissure and insula 

lobe nomograms throughout gestation in two-dimensional trans-abdominal manner.  The only other series of 

Alonso et al. included only 15 pregnant women; other authors constructed fetal brain fissure reference curves using 

three-dimensional technology and without assessing the depth of the insula lobe.  

Pistorius et al. in 2010 evaluated the development of selected fissures and elaborated a simple score in order 

to assess the grade of maturation of fetal cortex; however, they did not provide ultrasonographic nomograms for 

Sylvian fissure and insula lobe. Garel et al., as reported in the introduction section, investigated the timing of normal 

sulcation landmarks according to gestational age by using in utero MRI imaging, without providing any nomograms 

of for Sylvian fissure and insula lobe growth. Monteagudo et al. determined the feasibility of imaging specific sulci, 
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gyri and fissures and focused exclusively on the two-dimensional transvaginal approach, again without providing 

any reference range for Sylvian fissure and insula lobe. 

The early recognition of the absence or abnormal appearance of a particular sulcus or fissure at the 

appropriate fetal age should be raise suspicion about the possibility of abnormal or delayed cortical development 

and is crucial for identifying an impaired neuronal migration manifesting with lissencephaly (smooth brain). 

Prenatal diagnosis of an affected fetus allows proper counselling and optimization of obstetric management as well 

as proper targeted further examinations.   

Nevertheless, the current international guidelines on fetal anomaly screening ultrasound, although 

recommend the investigation of the trans-thalamic plane of the fetal brain, do not include the Sylvian fissure and 

insula lobe among the structures to be visualized or measured. In other words, as stated by Malinger “the study of 

the cortex has lagged behind”. Our choice to assess the sylvian fissure and insula lobe was based on this 

consideration and we aim to promote an easy and practical measurement to be performed during the routine scan. 

Indeed, these structures can be easily identified on the standard trans-thalamic section which is universally used for 

measuring the BPD and the HC throughout pregnancy, since early sulcal development is best depicted on images 

obtained perpendicular to the expected course of the sulci. 

The choice of starting our measurements from the 18th weeks of pregnancy is due to the fact that Sylvian 

fissure and insula lobe becomes for the first time visible as a smooth, shallow depression on the lateral surface of 

the brain starting as early as 18 weeks gestation.  

In our study, we did not observe any gender difference in the measurement of the Sylvian fissure and insula 

lobe.  However, other authors observed a small (and maybe not clinically relevant) gender difference in the 

measurements of the Sylvian fissure, with females having smaller measurements than males.  

To date, this is the first time that inter-observer reproducibility of Sylvian fissure and insula lobe 

measurements between a senior and a junior operator have been tested. Of interest is that the reliability of 

measurements taken between the two examiners, although differently skilled, was good as expressed by an 

interclass correlation coefficients (ICC) of 0.97. This last finding might support the hypothesis that these 

measurements are feasible and reproducible enough to be usable also by sonographers who do not have special 

training in neurosonography as well as applied in every clinical context in which diagnosis of migration disorders 

is required.  

Our data support the use of routine trans-abdominal two-dimensional route to assess such anatomical 

structures and encourage even less experienced operators to perform these measurements. We believe that the 

assessment of fetal cortex development should be incorporated into practice and part of routine prenatal ultrasound 

screening. The reference ranges provided by our study may help facilitate the identification of cases with suspected 
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abnormal cortical development as well as help in providing the basis for proper management and counselling of 

this condition. Further studies, including also pathological cases, are needed to strengthen our findings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

62 

 

B 5. References 

 

Adachi Y, Poduri A, Kawaguch A, et al. Congenital microcephaly with a simplifiedgyral pattern: associated 

findingsand their significance AJNR 2011; 32: 1123–9. 45.  

Afif A, Bouvier R, Buenerd A, Trouillas J. Development of the human fetal insular cortex: study of the gyration 

from 13 to28 weeks. Brain StructFunct 2007; 212: 335–346. 

Alonso I., Borenstein M., Grant G., Narbona I., Azumendi G. Depth of Brain fissures in normal fetuses by prenatal 

ultrasound between 19 and 30 weeks of gestation. Ultrasound ObstetGynecol 2010; 36: 693-699. 

Altman DG, Chitty LS. Chart of fetal size: 1. Methodology. Br J ObstetGynaecol 1994; 101: 29–34 

Altman J, Bayer SA: Regional differences in the stratified transitional field and the honeycomb matrix of the 

developing human cerebral cortex. J Neurocytol 31:613–632, 2002. 9.  

Alves C.M.S., Araujo E Junior, et al. Reference ranges for fetal Brain Fissures Development on 3-Dimensional 

Sonography in the Multiplanar Mode. J Ultrasound Med. 2013; 32: 269-77 

Barkovich AJ, Guerrini R, Kuzniecky RI, et al. A developmental and genetic classification for malformations of 

cortical development: update 2012. Brain 2012; 135: 1348–69. 44.  

Barkovich AJ, Kuzniecky RI, Dobyns WB, et al: A classification scheme for malformations of cortical 

development. Neuropediatrics 1996; 27:59–63,  

Bayer SA, Altman J: Atlas of Human CNS Development: Volume 3—The Human Brain During the Second 

Trimester. Boca Raton, FL, CRC Press, 2005.  

Bendersky M, Musolino P, Rugilo C, Shuster G, Sica R. Normal anatomy of the developing fetal brain. Ex vivo 

anatomical–magnetic resonance imaging correlation. J NeurolSci 2006; 250: 20–26. 

Bendersky M, Tamer I, Van Der Velde J, et al.. Prenatal cerebral magnetic resonance imaging. J NeurolSci 2008; 

275: 37–41. 

Bernard C, Droulle P, Didier F, et al.. Aspects ´echografiques des silons c´er´ebraux `a la period ante et p´erinatale. 

J Radiol1988; 69: 521–532.Copyright 2010 ISUOG. Published by John Wiley & Sons, Ltd. Ultrasound 

ObstetGynecol 2010; 36: 693–699. 

Bingham PM, Zimmerman RA, McDonald-McGinn D, et al. Enlarged Sylvian fissures in infants with interstitial 

deletion of chromosome 22q11. Am J Med Genet 1997; 74: 538–543.  

Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound ObstetGynecol 

2003; 22:85–93. 

Chen C, Zimmerman R, Faro S, et al.. MR of cerebral operculum: abnormal opercularization in infants and children. 

AJNR Am J Neuroradiol 1996; 17: 1300–1311.  



 

63 

 

Chen C-Y, Zimmerman RA, Faro S, et al.. MR of the cerebral operculum: topographic identification and 

measurement of interopercular distances in healthy infants and children. AJNR Am J Neuroradiol 1995; 16: 1677–

1687.  

Chi JG, Dooling EC, Gilles FH. Gyral development of the human brain. Ann Neurol 1977; 1: 86–93.  

Cohen-Sacher B, Lerman-Sagie T, Lev D, Malinger G. Sonographic developmental milestones of the fetal cerebral 

cortex: a longitudinal study. Ultrasound Obstet Gynecol. 2006; 27: 494–502. 

Correa F, Lara C, Bellver J, Remohi J, Pellicer A, Serra V. Examination of the fetal brain by transabdominal three 

dimensional ultrasound: potential for routine neurosonographic studies. Ultrasound Obstet Gynecol. 2006; 27: 503–

508. 

Dobyns WB, Truwit CL: Lissencephaly and other malformations of cortical development: 1995 update. 

Neuropediatrics 1995; 26:132–147,  

Dorovini-Zis K, Dolman CL. Gestational development of brain. Arch Pathol Lab Med 1977; 101: 192–195. 

Droulle P, Gaillet J, Schweitzer M. Maturation of the fetal brain. Echoanatomy: normal development, limits and 

value of pathology. J Gynecol Obstet Biol Reprod 1984; 13: 228–236.  

Feess-Higgins A, Larroche J-C (eds): Development of the Human Foetal Brain: An Anatomical Atlas. Paris, 

INSERM CNRS, 1987. 

Fong KW, Ghai S, Toi A, et al. Prenatal ultrasound findings of lissencephaly associated with Miller-Dieker 

syndrome and comparison with pre- and postnatal magnetic resonance imaging. Ultrasound Obstet Gynecol 2004; 

24: 716–23. 

Garel C. MRI of the Fetal Brain. Berlin, Springer-Verlag, 2004. 7. Chi JG, Dooling EC, Gilles FH: Gyral 

development of the human brain. Ann Neurol 1977; 1:86–93,  

Garel C, Chantrel E, Brisse H, Elmaleh M, Luton D, Oury JF, Sebag G, Hassan M.Fetal cerebral cortex: normal 

gestational landmarks identified using prenatal MR imaging. AJNR Am J Neuroradiol. 2001; 22:184-9. 

Garel C. Development of the fetal brain – results. In: Garel C., ed. MRI of the fetal brain: normal development and 

cerebral pathologies. Berlin, Germany: Springer-Verlag, 2004; 35-86. 

Ghai S, Fong K, Toi A, Chitayat D, Pantazi S, Blaser S. Prenatal US and MR imaging findings of lissencephaly: 

review of fetal cerebral sulcal development. Radiographics 2006; 26:389–406. 

Ghai S., Fong KW, Toi A., Chitayat D., Pantazi S., Blaser S. Prenatal US and MR imaging findings of 

lissencephaly: review of fetal sulcal development. Radiographics 2006; 26:389-405 

Griffith PD, Bradburn M, Campbell MJ et al. Use of MRI in the diagnosis of fetal brain abnormalities in utero 

(MERIDIAN): a multicentre, prospective cohort study. Lancet 2016; (16)31723-8. 



 

64 

 

Griffiths PD, Bolton P, Verity C: White matter abnormalities in tuberous sclerosis complex. Acta Radiol 1998; 

39:482–486,  

Guibaud L, Selleret L, Larroche JC, et al. Abnormal Sylvian fissure on prenatal cerebral imaging: significance and 

correlation with neuropathological and postnatal data. Ultrasound Obstet Gynecol 2008; 32: 50–60.  

International Society of Ultrasound in Obstetrics and Gynaecology (ISUOG) guidelines. Sonographic examination 

of the fetal central nervous system: guidelines for performing the ‘basic examination’ and the ‘fetal 

neurosonogram’. Ultrasound ObstetGynecol 2007; 29: 109–116. 

Jissendi-Tchofo P, Kara S, Barkovich AJ. Midbrain–hindbrain involvement in lissencephalies. Neurology 2009; 

72: 410–18. 46.  

Kivilevitch Z, Achiron R, Zalel Y. Fetal brain asymmetry: in utero sonographic study of normal fetuses. Am J 

ObstetGynecol 2010; 202: 359.e1–e8. 

Kostovic I, Judas M, Rados M, Hrabac P: Laminar organization of the human fetal cerebrum revealed by 

histochemical markers and MR imaging. Cereb Cortex 2002; 12:536–544,  

Kostovic I, Rakic P: Developmental history of the transient subplate zone in the visual and somatosensory cortex 

of the macaque monkey and human brain. J Comp Neurol 1990; 297: 441–470,  

Kuzniecky R, Andermann F, Guerrini R. Congenital bilateral perisylvian syndrome: study of 31 patients. The CBPS 

Multicenter Collaborative Study. Lancet 1993; 341: 608–612. 

Kuzniecky R, Andermann F, Tampieri D, Melanson D, Olivier A, Leppik I. Bilateral central macrogyria: epilepsy, 

pseudobulbar palsy, and mental retardation–a recognizable neuronal migration disorder. Ann Neurol 1989; 25: 

547–554. 15.  

Larroche J. The development of the central nervous system during intrauterine life. In: Falkner F, ed. Human 

development. Philadelphia, Pa: Saunders, 1966; 257-260 

Lerman-Sagie T, Malinger G. Opinion. Focus on the fetal Sylvian fissure. Ultrasound Obstet Gynecol 2008; 32:3–

4 

Levine D, Barnes P. Cortical maturation in normal and abnormal fetuses as assessed with prenatal MR imaging. 

Radiology 1999; 210: 751–758. 

Malinger G, Kidron D, Schreiber L, et al. Prenatal diagnosis of malformations of cortical development by dedicated 

neurosonography. Ultrasound Obstet Gynecol 2007; 29 (2): 178-91 

Malinger G. Focus on the Fetal Sylvian Fissure. Ultrasound Obstet Gynecol 2008;32:3-4. 

Mittal P, Goncalves L, Kusanovic J, et al. Objective evaluation of Sylvian fissure development by multiplanar 3-

dimensional ultrasonography.J Ultrasound Med 2007; 26: 347–353. 



 

65 

 

Monteagudo A, Timor-Tritsch I, Mayberry P. Three-dimensional transvaginal neurosonography of the fetal brain: 

‘navigating’ in the volume scan. Ultrasound ObstetGynecol 2000; 16: 307–313. 

Monteagudo A, Timor-Tritsch IE. Development of fetal gyri, sulci and fissures: a transvaginal sonographic study. 

Ultrasound Obstet Gynecol 1997; 9: 222–228.  

Naidich TP, Brightbill TC: The pars marginalis I. A “bracket” sign for the central sulcus in axial plane CT and 

MRI. Int J Neuroradiol 1996; 2:3–19. 

Naidich TP, Kang E, Fatterpekar G, et al: The insula: Anatomic study and MR imaging at 1.5 T. Am J Neuroradiol 

2004; 25:222–232,  

Naidich TP, Valavanis AG, Kubik S: Anatomic relationships along the low-middle convexity: Part 1—Normal 

specimens and MR imaging. Neurosurgery 1995; 36:517–531,  

Pavone L, Corsello G, Pavone P, Iannetti P. Lissencephalic syndromes: brain and beyond. Front Biosci 2010; 2:85–

95  

Perkins L, Hughes E, Srinivasan L, et al. Exploring cortical subplate evolution using magnetic resonance imaging 

of the fetal brain. Dev Neurosci 2008; 30:211–220 

Pistorius L.R., Stoutenbeek P., Groenendaal F., et al. Grade and symmetry of normal fetal cortical development: a 

longitudinal two- and three- dimensional ultrasound study. Ultrasound Obstet Gynecol 2010; 36: 700-708 

Quarello E, Stirnemann J, Ville Y, Guibaud L. Assessment of fetal Sylvian fissure operculization between 22 and 

32 weeks: a subjective approach. Ultrasound Obstet Gynecol 2008; 32: 44–49.  

Rados M, Judas M, Kostovic I: In vitro MRI of brain development. Eur J Radiol 2006; 57:187–198.  

Rizzo G., Pietrolucci M.E., Mammarella S., et al. Assessment of cerebellar vermis biometry at 18-32 weeks of 

gestation by three-dimensional ultrasound examination. The Journal of Maternal-Fetal and Neonatal Medicine, 

2012; 25 (5): 519-522 

Rolland Y, Adamsbaum C, Sellier N, Robain O, Ponsot G, Kalifa G. Opercular malformations: clinical and MRI 

features in 11 children. Pediatr Radiol 1995; 25: S2–S8.  

Royston P, Wright EM. How to construct ‘normal ranges’ for fetal variables. UltrasoundObstetGynecol 1998; 11: 

30–8 

Royston P. Constructing time-specific reference ranges. Stat Med 1991; 10: 675-690 

Siedler D, Filly R. Relative growth of the higher fetal brain structures. J Ultrasound Med 1987; 6: 573–576. 

Stranding S (ed): Gray’s Anatomy, 39th ed. Edinburgh, Elsevier, 2005. 

Tatum WO, Coker SB, Ghobrial M, Abd-Allah S. The open opercular sign: diagnosis and significance. Ann Neurol 

1989; 25: 196–199.  



 

66 

 

Toi A, Lister WS, Fong KW. How early are fetal cerebral sulci visible at prenatal ultrasound and what is the normal 

pattern of early fetal sulcal development? Ultrasound Obstet Gynecol 2004; 24: 706–715.  

Van Der Knaap M.S., Valk J. Classification of congenital abnormalities of the CNS. AJNR Am J Neuroradiol. 

1988; 9: 315-326 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

67 

 

C) Ancillary project: A role for mesenchymal stem cell-derived exosomes in peripartum neuroregenerative 

therapy for encephalopathy of prematurity    

  

C 1. Current research in this field 

 

Perinatal brain injury is common in both developed and unprivileged Countries, affecting both term and 

preterm infants. Depending on the timing of injury and/or delivery, infants need to face with different challenges. 

In the preterm infant, the spectrum of injury suggests that the underlying pathophysiology is not due to a single 

lesion but consists of white and grey matter disturbances. Thus, a comprehensive multidimensional assessment of 

potential contributing factors such as maternal medical history, obstetric antecedents, intrapartum factors (including 

fetal heart rate monitoring results and issues related to the delivery itself), and placental pathology is recommended. 

In the term born infants, perinatal insults such as birth asphyxia or perinatal stroke affect 1 to 3 newborns out of 

1000. In contrast, in preterm-born infants morbidity and mortality strongly relate to the gestational age. In about 1 

% of singletons and 9 % of twin pregnancies, preterm birth before 32 weeks of gestation occurs, with a mortality 

rate ranging between 7.3 and 21.4 % at 30 days and 9.0 and 22.7 % at 1 year. Additionally, a large number of 

survivors suffer significant long-term disabilities including cerebral palsy, epilepsy, increased hyperactivity, and 

developmental disorders. For example, the risk to develop cerebral palsy is 30 times higher in infants born before 

33 weeks of gestation compared to term-born infants. Moreover, injury in these infants is frequently exacerbated 

by fetal inflammation, that preferentially affects cerebral white matter resulting in periventricular leukomalacia and 

germinal matrix haemorrhage.  

Currently, the only intervention known to reduce the burden of perinatal brain injury in the term population 

is hypothermia. Several large clinical trials confirmed that hypothermia in infants with neonatal hypoxic-ischemic 

encephalopathy is associated with a significant reduction in death and disability. However, 40–50 % of infants 

treated with hypothermia still die or develop significant neurological disability. In the preterm population, 

therapeutic options are lacking as hypothermia is contra-productive. Antenatal magnesium sulfate prior to birth at 

less than 30 weeks of gestation reduces cerebral palsy and combined cerebral palsy and mortality rate at 2 years of 

age. However, randomized control trials do not demonstrate long-term neurological benefits. 

The principal pathogenic mechanism underlying neurological damage resulting from hypoxic-ischemic 

brain injury is the deprivation of the glucose and oxygen supply, which causes a primary energy failure and initiates 

a cascade of biochemical events leading to cell dysfunction and ultimately to cell death. Perinatal brain damage is 

an evolving process, which is comprised of two phases. A first phase consists of an early energetic failure, where 

the oxidative energy metabolism of cells decreases and it promotes necrotic death. This is followed by a second 

phase of cell death, a late energetic failure, which occurs during reperfusion and reoxygenation several hours after 
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the initial event and lasts for days. The pathophysiology of this late energetic failure initiates a cascade of 

biochemical events (Fig. 31), which involve nitric oxide synthases activation, the production of cytotoxic free 

radicals, inflammation, membrane dysfunction and apoptosis, among others.  

Interestingly, inflammation is increasingly recognized as being a critical contributor to both normal 

development and injury outcome especially in the immature brain. Maternal infection/inflammation is not only a 

major risk for preterm birth but is linked to systemic fetal inflammatory response which, in turn, may elicit injury 

in the fetus. Perinatal inflammation modulates vulnerability to and development of brain injury and influences 

critical phases of myelination and cortical plasticity. Several studies suggest that inflammation may play a critical 

role in autism and schizophrenia. Together, brain development, myelination, vascularization, and apoptosis are 

strongly influenced by inflammatory responses in both physiologic and pathophysiologic conditions. Pivotal 

regulators of inflammatory responses in the brain are glial cells which orchestrate the release of pro- and anti-

inflammatory cytokines. The regulation of the inflammatory responses in the newborn appears to be a link that may 

explain some of the common features of organ injury in preterm infants. The fetal inflammatory response to certain 

cues such as lipopolysaccharides (LPS) can be detected not only in the brain but also in remote tissues not directly 

exposed to LPS such as the spleen, liver, and mediastinal lymph nodes. Protective strategies to counteract the 

cascades leading to injury should therefore not focus on one organ or system but rather treat perinatally acquired 

injury globally, in which the immune system plays a key role.  

Mesenchymal stem cells possess a regenerative potential. They were shown to modulate innate and adaptive 

immune responses, to have antiapoptotic effects, to decrease inflammation, and to enhance tissue repair, mostly 

through the release of paracrine factors. Stem cells are broadly defined as cells with self-renewing and 

differentiation capacity. Although stem cells derived from embryonic tissue were identified first, the clinical use is 

limited due to ethical concerns and tumorigenic potential. Clinical and animal stem cell-based studies to prevent or 

repair perinatally acquired injury have emerged during the recent years with mesenchymal stem cells being 

particularly promising. These cells are considered somatic stem cells as they originate from stem cell niches such 

as bone marrow, skin, adipose umbilical cord, and placental tissues. mesenchymal stem cells can be isolated from 

placental membranes and tissues, amniotic fluid, umbilical cord blood, and the umbilical cord connective tissues 

(Wharton’s jelly). Although all of these cells are mesenchymal stem cells, all these subtypes are different relatively 

to clinical use, time of application, application route, availability, and ethical aspects. Mesenchymal stem cells-

based therapies are an attractive strategy since the pathophysiology of perinatally acquired injury is heterogeneous 

and mesenchymal stem cells have the capacity to adapt to the microenvironment of injured organs. The strategy 

may be either or both replacement/restoration of lost tissue and/or protection/salvage of injured cells. In term infants 

at risk for hypoxic-ischemic injury or neonatal ischemic stroke, mesenchymal stem cells could exert a 

neuroprotective effect starting at the acute phase of injury. In these cases, the timing and presentation of the acute 

injury are usually well defined. Mesenchymal stem cells could provide trophic support and/or amelioration of the 
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inflammatory responses, leading to repair or reduced cell death. However, the different cell types, transplantation 

routes, and the timing need to be accounted for. Given the gold standard therapy of hypothermia for this kind of 

injury, mesenchymal stem cells have to proof additive/synergistic effects in order to be considered. In contrast, in 

the preterm population, the timing of the injury is often unclear and the pathophysiology is more complex. The 

clinical diagnosis of infants at risk is challenging as symptoms such as cerebral palsy are diagnosed in early 

childhood years. Thus, the injury may be considered chronic as extensive atrophy and gliosis of the white matter 

tract or dysfunction of lung architecture are present. Mesenchymal stem cells could modulate not only the 

inflammatory response after delivery but also the degree and magnitude of the injured white matter and epithelial 

cells as well. However, many questions such as altered pattern of growth factors and intercellular matrix proteins 

that could affect proliferation or differentiation of the desired cell types need to be addressed first. 

The approach of mesenchymal stem cells as a therapy for perinatal injury is based on several crucial 

properties of mesenchymal stem cells, including delivery of the cells “homing” to the site of injury. Migration and 

homing to the tissue of injury is influenced by multiple factors including age, passage, and number of cells; culture 

conditions; and delivery method. The apparent migration and homing abilities of mesenchymal stem cells without 

tumorigenic potential were described by several groups and in different disease models. Experimental studies 

identified chemokines as major molecules responsible for cell homing with chemokine receptors CXCR3, CXCR4, 

and CXCR6 being particularly important. Further secretion of factors such as SDF-1α, which is a CXCR4 ligand, 

promotes migration of mesenchymal stem cells to the injury site. Interestingly, the phenotype of mesenchymal stem 

cells is an important criterion as well. Currently, mesenchymal stem cells characterization is based on a set of 

minimal criteria and they display a cell surface repertoire and gene expression pattern which differ among 

mesenchymal stem cells from various tissues of origin and culture conditions used. For example, Wharton’s jelly-

mesenchymal stem cells express a special assortment of cell surface markers, that make them able to differentiate 

more efficiently into neural progenitors compared to other subtypes of mesenchymal stem cells. In addition, the 

underlying clinical condition may also affect the phenotype of mesenchymal stem cells. Wharton’s jelly – 

mesenchymal stem cell derived from umbilical cords collected after preeclamptic pregnancies seem to be more 

committed to neuroglial differentiation compared to cords from uncomplicated pregnancies.  

While mesenchymal stem cells have a proven restorative capacity in response to injury cues, the question 

of potential protective mechanisms remains unclear. Most of the available data comes from adult neurodegenerative 

and lung diseases or in vitro studies. Studies identified the induction of cytokines, interleukins, and trophic factors 

predominately involved in neurogenesis, angiogenesis, hematopoiesis, and cardiovascular regeneration being 

crucial for the mostly paracrine effects. For example, Wharton’s jelly- mesenchymal stem cells secretome triggers 

neuronal survival and differentiation in vitro and in vivo. Secreted factors such as VEGF-A, angiopoietin-1, FGF-

I, HGF, FGF-II, BDNF, GDNF, and PDGF-AB were identified. Importantly, mesenchymal stem cells’ secretome 

alters both adaptive and innate immune responses: inhibit autoreactive T cell responses in animal models of multiple 
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sclerosis and hypoxic-ischemic brain injury as well as inhibit B cell proliferation, neutrophil and monocyte 

function, and NK toxicity. Although these modulatory effects are partially understood, direct cell-to-cell contact 

and soluble factors are relevant. Additionally, mesenchymal stem cells effects expand beyond constitutive immune 

modulatory properties with the release of cytokines and growth factors such as VEGF, TGF-β1, TNF-α, IL-1, IL-

6, and IFN-γ.  

Mesenchymal stem cells’ multipotency and self-renewal properties make them valid candidates for 

providing cell regeneration/replacement. Although, this strategy for repair carries risks such as tumorigenic 

potential, mesenchymal stem cells were successfully differentiated into various types of cells including 

cardiomyocytes, myocytes, and epidermal and endothelial cells.  Although this line of investigation is particularly 

intriguing, mesenchymal stem cells’ potential to replace injured cells is not proven and is a matter of constant 

debate. For example, intravenously injected mesenchymal stem cells improve myocardial infarction without 

permanent replacement of injured cells. In the lung, mesenchymal stem cells embolize causing endothelial damage 

and are cleared in a matter of hours. Taken together, the mesenchymal stem cells’ low rate of in vivo engraftment 

and differentiation suggests that transplanted cells affect tissue injury and repair through paracrine factors. Whether 

the factors released by the mesenchymal stem cells or the cells themselves are more promising for the therapy of 

lung and brain injury in the newborn still remains an open question. 

The translation “from bench to bedside” requires the most efficacious and safest approach. Thus, the 

question of cell based versus cell-free therapy needs to be addressed.  

Given that the mesenchymal stem cells’ therapeutic potential has been shown to be largely triggered via 

paracrine effects and not differentiation, recent studies focus on extracellular vehicles (EV). These are all types of 

vehicles present in the extracellular space, including shedding vesicles, apoptotic bodies, and exosomes. Exosomes 

(40–100 nm in diameter) are secreted by cells in a regulated fashion, possess the ability to transfer proteins and 

functional genetic materials such as messenger RNA (mRNA) and microRNAs, and are involved in cell-to-cell 

signalling and regulation. MicroRNAs are 17-24 nucleotides of small RNAs that do not code for proteins, but have 

effects on transcriptional regulation, chromatin structure, translation and posttranslational processing. They act by 

the repression or activation of mRNA transcripts of protein-coding genes via base-pairing with complementary 

sequences. miRNAs are essential for neuronal development, including neuronal stem/progenitor cell renewal, 

proliferation and differentiation, neuritogenesis and outgrowth, synapse formation and plasticity. Several miRNAs 

abundant in the brain have been identified to regulate neural progenitor cells development. Some promote neural 

progenitor cells self-renewal and block neuronal differentiation and maturation (miR-134, miR-137, miR-184), 

while others block self-renewal and promote the development into neurons (let-7, miR-9, miR-124). The neural 

stem cells’ multistage differentiation into myelinating oligodendrocytes is controlled by various miRNAs. 

MicroRNAs have also been recognized as modulators of disease states like neuroinflammation or hypoxia-
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ischemia. The conditional knockdown of the miR-processing enzyme Dicer in oligodendrocyte progenitor cells 

(OPC) in a perinatal hypoxia-ischemia brain lesion mouse model abolished the hypoxia-ischemia related increase 

of miR-138 and miR-338 and rescued the animals from white matter loss. Perinatal hypoxia-ischemia 

encephalopathy resulted in a decrease of miR-374a in the cord blood of affected neonates. A number of other 

miRNAs were differentially expressed after neonatal hypoxia-ischemia brain injury in rat models. miR-139-5p is 

downregulated after neonatal hypoxia-ischemia, leading to the promotion of neuronal apoptosis. 

Not surprisingly, mesenchymal stem cells -derived EV are contributing to tissue repair in brain injury 

including stroke and Alzheimer’s disease. The cell-free approach is very promising; however, it is still in its infancy. 

In fact, stem cells do not just secrete growth factors and/or cytokines but encourage the growth and even supplement 

(host) cells. Importantly, the stem cells’ potential of immunomodulation and protection after injury seems to depend 

on the bidirectional communication between the injured host cells and the graft via the exchange of specific 

information.  

As a result of their remarkable regenerative potential, mesenchymal stem cells are ideal candidates for 

clinical cell therapy. Mesenchymal stem cells are easily available, have a good safety profile and homing capacity, 

and importantly are relatively immune-privileged, allowing allogeneic transplantation. Not surprisingly, 

mesenchymal stem cells have been tested in clinical trials in several neurodegenerative diseases such as stroke, 

amyotrophic lateral sclerosis, multiple sclerosis, and spinal cord injury. Several clinical trials indicated no serious 

side effects or dose-limiting toxicity in acute respiratory distress syndrome and chronic obstructive pulmonary 

disease. Also safety and feasibility trials for cerebral palsy were successful. A recent double-blind randomized 

control study used allogeneic umbilical cord blood, in combination with erythropoietin, in children diagnosed with 

cerebral palsy showing motor and cognitive benefits. In contrast to previous studies, a large safety study used 

autologous umbilical cord blood directly after birth for infants at risk for hypoxic-ischemic encephalopathy. This 

approach differs significantly from previous studies as it aims mainly to prevent and not to replace affected cells. 

Cells were transplanted directly after birth and in combination with hypothermia. Authors concluded that the 

collection, preparation, and infusion of fresh autologous umbilical cord blood cells for use in infants with hypoxic-

ischemic encephalopathy are feasible. Several other clinical trials for neonatal brain injury are currently listed as in 

progress or completed, and more results should become available in the near future (ClinicalTrials.gov Identifiers: 

NCT01832454, NCT01962233, NCT01988584, NCT01207869). 
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C 2. Previous results of our group 

 

At the Laboratory of Prenatal Medicine of the University of Bern, Switzerland, mesenchymal stem cells 

were isolated from human placental tissues and characterized. Only in-vitro experiments are here reported. These 

cells showed the typical mesenchymal stem cells phenotype and differentiated into chondroblasts, osteoblasts, 

adipocytes, myocytes and neural lineages, including neurons and oligodendrocytes. These cells were also grown 

and differentiated on a chorion scaffold to use as a potential composite osteogenic graft for novel treatments for 

peripartal bone regeneration. Methods have been established methods for the isolation and expansion of 

mesenchymal stem cells from umbilical cord connective tissue (Wharton’s jelly). Isolated cells were analysed for 

the cell surface expression of mesenchymal stem cells markers and absence of hematopoietic and major 

histocompatibility complex markers. Wharton’s jelly- mesenchymal stem cells were differentiated from term and 

preterm births into rat hippocampal neuronal progenitor cells (rNPC) and into OPC.  

To assess the neuroregenerative potential of Wharton’s jelly- mesenchymal stem cells in vitro, co-cultures 

of these cells and rNPC were established. After 96h of co-colture, total mRNA and proteins of markers of astrocytes 

and oligodentrocytes (Gfap and Mbp, respectively) were significant increased. To confirm the paracrine effects of 

Wharton’s jelly- mesenchymal stem cells on rNPC, conditioned medium from these cells was collected after 48h 

and cellular debris were removed; rNPC were cultured in serum-free medium for 24 h. Culture of rNSC with 

Wharton’s jelly- mesenchymal stem cells - conditioned medium for 96h resulted in a marked increase of Gfap at 

the mRNA and the protein (flow cytometry, fluorescence-activated cell sorting, immunocytochemistry) level. Then, 

the expression of neurotrophic factors was analysed using a Human Neurotrophins and Receptors protein chain 

reaction (PCR) array in neurospheres induced from Wharton’s jelly- mesenchymal stem cells. Neural 

differentiation resulted in the upregulation of neurotrophic factors including GDNF, PSPN, FRS3, UCN, MEF2C 

and TGFB1 and the downregulation of NTF3, BDNF and FOS. Wharton’s jelly- mesenchymal stem cells released 

IL-6 and BDNF. The secretome of cultured Wharton’s jelly- mesenchymal stem cells from term and pre-term birth 

was analysed using mass spectrometry.  

Subsequently, exosomes from Wharton’s jelly- mesenchymal stem cells were isolated using a serial (ultra) 

centrifugation protocol. The final pellet was re-suspended in phosphate-buffered saline (PBS) and either directly 

used for protein and RNA extraction or frozen at -80°C. The protein yield was determined by a bichinchoninic acid 

(BCA) assay. Exo-Check™ exosome antibody array was used to prove exosome identity. The miRNA cargo of the 

exosomes was quantified using the Human Neurological Development & Disease miScript miRNA PCR Array 

(MIHS-107Z). The miRNAs most abundantly expressed in the exosomes all have their role in neuroprotection (in 

the order of expression levels): miR-328-3p shows reduced expression upon glioma progression, miR-22-3p has a 

neuroprotective in cerebral ischemia-reperfusion injury, miR-489-3p targets myeloid differentiation primary 
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response gene 88 (Myd88) and Akt79 and maintains stem cell quiescence, miR-125b-5p was downregulated after 

hypoxic-hyschemic brain damage in neonatal rats and miR-409-3p in the Rett syndrome, miR-29a-3p has a role in 

neuronal survival (miR-29), is enriched in mature neurons and reduces neuronal vulnerability to ischemia and miR-

29c-3p is involved in neuroprotection via the PKA/CREP pathway and is correlated with BDNF expression. Other 

highly expressed miRNAs included miR-24-3p, miR-148b-3p, miR-27a-3p, miR-26b-5b, miR-191-5p, miR-320a, 

miR-15b-5p, let-7i-5p, miR-7-5p, miR-19b-3p, miTR134-5p and miR-433-3p.  

Taken together, these first results showed that the Wharton’s jelly- mesenchymal stem cells - derived 

exosomes have the potential to serve as a neuroprotective therapeutic agent.  
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C 3. Current ongoing results  

 

To verify if the Wharton’s jelly- mesenchymal stem cells - derived exosomes might be used to deliver their 

cargo to neural cells in the brain, we used an in vitro co-culture model. The murine neuroblast cell line N2a (CCL-

131; ATCC) as well as rNPC was seeded at 37’500 cells/cm2 and grown overnight (DMEM, 10% FBS, 1 mM L-

glutamine, 1% penicillin-streptomycin; Thermo Fisher Scientific). Exosomes were diluted in PBS (3 μg/μl), 

labelled with Dil (2 μg/ml, 37°C 5min, 4°C 15min, Thermo Fisher Scientific), washed with PBS and 

ultracentrifuged (100’000xg, 4°C) to remove excess Dil. The stained exosomes were resuspended in fresh PBS and 

added to N2a cultures. For immunocytochemistry (ICC) analysis, cell of Wharton’s jelly- mesenchymal stem cells 

- derived exosomes after co-culture with an N2a/rNPC cell line were fixed in methanol and cell nuclei 

counterstained with 4',6-diamidino-2-phenylindole (DAPI). Analysis was done by conventional fluorescence and 

confocal microscopy (3D visualization by Imaris software). Furthermore, exosomal RNA fluorescently labelled 

with Exo-Red was detected in the cytoplasma of N2a cells and GFP-expressing hippocampal rNPC after 2 hours 

of co-culture (Fig. 32). We confirmed the uptake of Wharton’s jelly- mesenchymal stem cells - derived exosomes 

in N2a cells as a model for neural progenitors.  

To assess the Wharton’s jelly- mesenchymal stem cells - derived exosomes’s effect on specific 

neuroprotective outcomes, we tested their influence on the proliferation, differentiation and activation in in vitro 

conditions mimicking neonatal brain injury. At first, brain cell lines cultured in normoxia or with an oxygen glucose 

deprivation-reperfusion (OGD-R) model were compared. Secondly, Wharton’s jelly- mesenchymal stem cells - 

derived exosomes were added to the cell lines on the onset of OGD (immediately before or later, see below) and 

compared with untreated OGD-stressed cells. The OGD-R model has been set up in our laboratory according to 

published protocols as follows: cells are expanded in their respective media. After reaching ~80% confluency 

(usually after 24h), the medium is replaced by glucose-free medium and the cells are incubated in hypoxia (1% O2 

in a 95%N2/5% CO2 gas mixture) for 2, 4, 6, 8 and 24h, respectively. Thereafter, the medium is replaced with 

standard expansion medium and cell cultures returned to normoxia. According to this protocol, both the first and 

the second phase of the hypoxic-ischemic brain injury can be mimicked. Exosomes are given at different time 

points, allowing a prevention – and – treatment model: 24h before OGD, 1h before OGD, as well as immediately 

after the OGD. Furthermore, exosomes are given at different concentrations: 0.1μg/ml and 1 μg/ml. Cell collection 

is set at two different time points: 24h after OGD and 48h after OGD (Fig. 33). 

We used well established cell lines as models for neural cell lineages in the neonatal brain: for neuronal 

cells, we used neuroblastoma cell line N2a (CCL-131; ATCC) and rNPC. N2a cells were cultured as we described 

before. Differentiation of N2a cells was induced in serum-free medium containing 1 μM retinoic acid for 24h. Cell 

differentiation stages was monitored by immunocytochemical detection (ICC) of doublecortin (Dcx, immature 
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neurons) and NeuN or Map2 (mature neurons) and expressed as the amount of positive vs total number of cells. 

Cell viability, necrosis and apoptosis, as well the expression of markers of inflammation/apoptosis at RNA and 

protein level were the outcome measures for cellular damage. Cell viability was measured using the PrestoBlue® 

Cell Viability Reagent (Thermo Fisher Scientific), necrosis by measuring the LDH release (Colorimetric LDH 

Assay Kit; Abcam) and apoptosis with a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 

assay (Fluorescein In Situ Cell Death Detection Kit; Roche Diagnostics). Expression of markers of 

inflammation/apoptosis at RNA level was measured by real-time PCR, while expression of markers of 

inflammation/apoptosis at protein level was measured by Western Blot analysis.  

We observed that Wharton’s jelly- mesenchymal stem cells - derived exosomes protected N2a cells 

subjected to OGD-R injury by reducing apoptosis and increasing cell viability (Fig. 34). These protective effects 

were associated with the reduction of the expression of death-related markers at the level of RNA expression, such 

as cleaved caspase-3, as well as of inflammatory markers such as TLR-4 in treated compared with not-treated cells 

(Fig. 35). Wharton’s jelly- mesenchymal stem cells - derived exosomes also enhanced the expression of some 

miRNAs involved in neuronal differentiation and in the modulation of the inflammatory response, such as Let 7a 

in treated - cells compared with not-treated cells (Fig. 36). All these effects seem to be dose- and time- dependent, 

being the highest concentration of exosomes, given 24h hours before OGD, the condition associated with the mostly 

significant changes of our markers (Fig. 35-36). 

Taken together, our findings suggest that Wharton’s jelly- mesenchymal stem cells - derived exosomes are 

able to boost neuroprotection and neuroregeneration in hypoxic-ischemic perinatal brain injury. 
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C 4. Next steps  

 

Our next aim we will be to identify all the microRNAs responsible for the effect and identify the pathways 

involved in the mechanisms of exosome therapy. Candidates will be the 10 most abundantly expressed microRNA. 

Antisense oligonucleotides (antimiR) will be designed to inhibit the activity of the miRNAs in a loss-of-function 

study using the OGD-R model. Cell lines responsive to OGD-R will be plated in 24-well plates, grown to 60% 

confluency and transfected with miRNA inhibitors (miRIDIAN microRNA Hairpin Inhibitors, 2/10/50 nM; 

Dharmacon, GE Healthcare Life Sciences) using Lipofectamine 2000 (Thermo Fisher Sciences). The assays will 

be validated using positive (miR-16) and non-targeting negative (cel-miR-67; both Dharmacon) controls. OGD-R 

will be initiated 48h after transfection and outcomes determined as outlined previously. To confirm results of the 

loss-of-function study, a gain-of-function assay will be carried out for selected miRNA. The cell lines will be 

transfected with double-stranded RNA oligonucleotides designed to mimic the function of endogenous, mature 

microRNAs (miRIDIAN microRNA Mimics, Dharmacon). Positive (targeting endogenous Aldolase A) and 

negative (cel-miR-67 mimic, both Dharmacon) control mimics will be used to test for specificity.  

Results on differential miRNA expression will be collected. miRNAs that have an impact on 

neuroprotective outcomes after OGD-R will be used to identify overlapping miRNA targets. Common putative 

miRNA targets will be identified in silico by screening miRNA target databases using the miRror 2.0 suite 

(http://www.mirrorsuite.cs.huji.ac.il.). Protein and reactome/pathway databases (Human Protein Reference 

Database: http://www.hprd.org/; REACTOME: http://www.reactome.org/; Kyoto Encyclopedia of Genes and 

Genomes, KEGG: http://www.genome.jp/kegg/; Pathway Interaction Database: http://pid.nci.nih.gov/) will then be 

screened for these putative targets to identify the mechanisms of exosome therapy. As an example, using the most 

abundantly expressed miRNA cargo of our WJ-MSC as an input, miRror 2.0 renders the BCL2-antagonist/killer 1 

(BAK1) gene as a predicted target. BAK1 belongs to the BCL2 protein family and induces the release of 

cytochrome c and apoptosis (NCBI Gene ID 578). Therefore, WJ-MSC exosomes might be neuroprotective through 

the inactivation of BAK1-induced apoptosis via their miRNA cargo.  
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Outlook 

 

The two clinical branches of this project have dealt with the modern, available diagnostic modalities to 

investigate the physiologic and the pathological developing brain. Indeed, the ability to visualize the fetal brain has 

undergone almost incredible development in the last few decades: the resolution of the ultrasonographic equipment 

has improved to the point that it is possible, among others, to visualize the early embryonic development of the 

central nervous system in vivo and to demonstrate details of structures such as the posterior fossa and the fetal 

developing fissures. Prenatal MRI has also developed at a rapid pace, from the “tissue characterization information 

that complements the superior anatomic detail of US” of the 1980s (McCarthy, 19851) to arguably “the optimal 

method for depicting the specific abnormalities that characterize each type of malformation of the brain in the 

fetus” (Raybaud, 20032). This raises the question: is MRI the optimal method and inherently superior to ultrasound 

for the assessment of the fetal brain, or is “dedicated neurosonography equal to MRI in the diagnosis of fetal brain 

anomalies”? Malinger et al. (20043). The answer remains under debate.  

When reviewing the available literature on the diagnostic value of ultrasound and MRI in fetal 

neuroimaging, it is difficult to determine when either modality would be appropriate, or when the two could best 

be combined to optimize the ability to diagnose a fetal central nervous system lesion. Many publications are 

hampered by an obvious bias by comparing a diagnosis made in primary care by ultrasound with a tertiary diagnosis 

by MRI, often after a long interval, with only few reports on a comparison between high quality ultrasound and 

high quality MRI.  

Future development of these two clinical branches of this project looks at this issue. The availability of a 

tertiary care centre, with the possibility to combine ultrasound and MRI at the same level as well as with relative 

easiness and a short interval, will be the motivation and a support to go further. In particular, our outlook includes: 

- to test the VCA, as well as the combination of this angle with all the available parameters of the posterior 

fossa, in a prospective-designed study with a big number of pathological cases; 

- to analyse these cases first with three-dimensional ultrasound scan, then with MRI, and compare the 

findings among these two techniques in the same fetus; 

- combining the synergic data provided by ultrasound and MRI, to analyse the relation between the internal 

occipital crest and the cerebellar falx and its eventual changes, both in physiological and pathological cases, at 

different gestational ages, also with the aid of the mid-coronal plane;   

                                                 
1 McCarthy SM, Filly RA, Stark DD, Hricak H, Brant-Zawadzki MN, Callen PW, Higgins CB. Obstetrical magnetic resonance imaging: fetal 

anatomy. Radiology 1985; 154:427–432 
2 Raybaud C, Levrier O, Brunel H, Girard N, Farnarier P. MR imaging of fetal brain malformations. Childs Nerv Syst 2003; 19:455–470 

3 Malinger G, Ben Sira L, Lev D, Ben Aroya Z, Kidron D, Lerman-Sagie T. Fetal brain imaging: a comparison between magnetic resonance 

imaging and dedicated neurosonography. Ultrasound Obstet Gynecol 2004; 23:333–340 
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- to test the measurement of the Sylvian fissure and insula lobe with the MRI in physiological cases 

throughout gestation, as well as in pathological cases, in a prospective-designed manner, with a proper combination 

between ultrasound and MRI; 

- based on the current literature, which reported association between ventral induction defects and a failure 

of neuronal migration, to investigate deeper the association between cortical development defects and posterior 

fossa anomalies;  

- to investigate, by combining ultrasound and MRI, acquired brain lesions in the fetus, in particular hypoxic-

ischemic brain injury, since we believe that in these cases the synergy between ultrasound and MRI may reach the 

best expression.  

It is important to underline that imaging does not equate diagnosis. Many studies affirm the value of a 

multidisciplinary discussion and it would appear that this is where the real strength lies: not in the choice between 

ultrasound or MRI, but in using each modality to its maximum capability and arriving at a final diagnosis during a 

multidisciplinary discussion. 

Regarding the third, pre-clinical, branch of this project, the next steps will include the treatment of perinatal 

brain injury in the rat model, after assessing the possible intracellular pathways involved in the mechanism of action 

of the Wharton’s jelly – mesenchymal stem cells - exosomes in in-vitro experiments. Outcome evaluation will 

include histological changes, inflammatory response, systemic immune response, peripheral inflammatory 

response as well as neurofunctional outcomes. Interestingly, prenatal imaging would be useful also in this context. 

It would be of value to include, among the outcome measures of Wharton’s jelly – mesenchymal stem cells – 

exosomes treatment after perinatal brain injury in the rat model, the in-vivo imaging of the brain with comparative 

anatomy investigations. Indeed, the currently available imaging tools in Neuroscience and Prenatal Medicine may 

represent a connecting bridge between pre-clinical and clinical studies in the pathophysiology of the developing 

brain, thus enhancing the translation “from bench to bedside”.   

The lack of effective interventions for many morbidities related to prematurity unlocks the potential of cell-

based personalized treatments. Safe and effective clinical interventions are future perspectives bearing hope to 

improve the lifelong outcomes of the infants in our care.  
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Tables 

 

Table 1. Clinical Characteristics of the Study Population Including Perinatal Outcome Data (study A 3.a). 

 

 

Table 2. Predicted cerebellar vermis circumference (VC) (mm) values by gestational age (weeks) (GA). 

 

 

 

Table 3. Clinical Characteristics of the Study Population Including Perinatal Outcome Data (study A 3.b). 
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GA 
(weeks) 

No. of 
cases 

10th 
percentile 

50th 
percentile  

90th 
percentile  

18-19 17 51.97 64.15 76.34 

20-21 15 52.18 64.27 76.35 

22-23 25 52.35 64.36 76.36 

24-25 19 52.52 64.44 76.37 

26-27 13 52.69 64.53 76.38 

28-29 15 52.85 64.62 76.39 

30-31 13 53.02 64.71 76.40 

32-33 12 53.19 64.80 76.41 
 

Table 4. Predicted vermian-cresta angle (VCA) (°) values by gestational age (weeks) (GA). 

 

 

Table 5. Clinical Characteristics of the Study Population Including Perinatal Outcome Data (study A 3.c). 

 

Table 6. Clinical Characteristics of the Study Population Including Perinatal Outcome Data (study A 3.d). DWM, 

Dandy-Walker Malformation; VH, Vermian Hypoplasia; MCM, mega cisterna magna. 
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Table 7. A proposal of categorization of the major posterior fossa malformations including the Vermian-Cresta 

angle (VCA) [modified from Robinson (2014)].  

 

Table 8. Clinical characteristics of the study population, including perinatal outcome data.  
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Table 9. Mean and standard deviation (SD) for Sylvian fissure, insula lobe and insula ratio per gestational week. 
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Figures 

 

 

 

Fig. 1. Figure of a split brain and cerebellum from Vieussens (1684). The floor of the fourth ventricle is visible, the 

initial portion of the spinal cord is indicated by a T. The cerebellar halves are further dissected to show the corpus 

rhomboideum, indicated as an area with double hatching, located in the white matter between N and P. (modified 

from M. Glickstein et al. Neuroscience 162 (2009) 549–559). 

 

 

 

  

Fig. 2. Title page of Malacarne’s “Il cervelletto,” the first book devoted entirely to the cerebellum (modified from 

M. Glickstein et al. Neuroscience 162 (2009) 549–559). 

 

 

 

 Fig. 3. Luigi Luciani; portrait. 
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Fig. 4. Early development of the human cerebellum: (a)  at approximately 4 weeks of development; (b) at the end 

of the embryonic period; (c) at 13 weeks of development. The V-shaped tuberculum cerebelli is shown in light red 

, and the upper and lower rhombic lips by  vertical  and  horizontal hatching,  respectively. In (c) arrows show the 

migration paths from the  rhombic lips; cbi: internal cerebellar bulge,  ci: colliculus inferior,  Cpb: corpus 

pontobulbare,  cs: colliculus superior,  is: isthmus,  mes; mesencephalon, nV: trigeminal nerve,  tbac: tuberculum 

acusticum, tbcb: tuberculum cerebelli,  tbpo: tuberculum ponto-olivare,  2,   4,   6  rhombomeres (modified from 

Hans J. ten Donkelaar, Martin Lammens, Akira Hori. Clinical Neuroembryology. Development and Developmental 

Disorders of the Human Central Nervous System. Springer 2014). 

 

 

 

 

Fig. 5. Fetal development of the human cerebellum shown in lateral (on the  left) and dorsal (on the  right) views: 

(a ,  b) 13 weeks of development; (c, d)  4 months of development; (e, f)  5 months of development; fpl: fissura 

posterolateralis,  fpr: fissura prima,  l: ant  lobus anterior,  l fl nod: lobus fl occulonodularis,  l post: lobus posterior,  

mes: mesencephalon,  Oli: oliva inferior,  rlvq: lateral recess of fourth ventricle,  vq: ventriculus quartus (modified 

from Hans J. ten Donkelaar, Martin Lammens, Akira Hori. Clinical Neuroembryology. Development and 

Developmental Disorders of the Human Central Nervous System. Springer 2014). 
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Fig. 6. (a) During formation of the dorsal pontine flexure (small arrow) a transverse crease (large arrow) forms in 

the roof of the rhombencephalic vesicle (*), dividing it into anterior (cranial) and posterior (caudal) membranous 

areas. (b) The vermis (arrowhead) develops from the rhombic lip at the superior margin of the anterior membranous 

area. Choroid plexus develops in the crease (arrow). Cavitation starts in the overlying meninx primitiva (double 

arrow) to form the subarachnoid space. (c) As the cerebellum grows inferiorly the posterior membranous area 

bulges out between the vermis (large arrow) and the nucleus gracilis (small arrow), forming Blake’s pouch. The 

subarachnoid space remains trabeculated by pia-arachnoid septations (double arrow). (d) Blake’s pouch fenestrates 

(dotted line) and the neck of Blake’s pouch becomes the foramen of Magendie (dashed line). The choroid plexus 

(arrow) now appears to be in the cisterna magna (modified from Robinson AJ. Inferior vermian hypoplasia – 

preconception, misconception. Ultrasound Obstet Gynecol 2014; 43: 123–136). 

 

 

 

Fig. 7. (a) Modified axial sonogram at 19 gestational weeks demonstrates a small gap inferior to the vermis and 

between the cerebellar hemispheres (arrow) which represents the foramen of Magendie. (b) Sagittal magnetic 

resonance image in same fetus at 21 weeks, after referral for ‘inferior vermian hypoplasia’, demonstrating small 

gap inferior to the vermis (arrow) in keeping with the foramen of Magendie. Follow-up imaging and outcome were 

normal. (modified from Robinson AJ. Inferior vermian hypoplasia – preconception, misconception. Ultrasound 

Obstet Gynecol 2014; 43: 123–136). 
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Fig. 8. (a) Phylogenetic origins of the cerebellum. Phylogenetically, the archicerebellum is oldest and is only seen 

in fish and lower amphibians. The paleocerebellum is newer, is seen in higher amphibians and is larger in reptiles 

and birds. The neocerebellum is the most recent phylogenetically, is only found in mammals and is largest in 

humans. Note that the central lobules of the vermis are of neocerebellar origin. Superior (left) and inferior (right) 

views are shown. (b) Phylogenetically older functions which are common to more species map further away from 

the ‘equator’ than do newer functions which are seen in fewer species. A general correlation with evolutionary 

steps is seen, i.e. bipedality before manual dexterity before oromotor skills and associated cognitive and language 

skills, which developed last. (modified from Robinson AJ. Inferior vermian hypoplasia – preconception, 

misconception. Ultrasound Obstet Gynecol 2014; 43: 123–136). 

 

 

  

Fig. 9. Gross adult specimen with all fissures and lobules of the cerebellar vermis labelled (modified from Robinson 

AJ. Inferior vermian hypoplasia – preconception, misconception. Ultrasound Obstet Gynecol 2014; 43: 123–136). 
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Fig. 10. (a) Axial view of the adult cranial fossae, with the posterior fossa coloured in grey (b) The internal occipital 

crest, labelled in red (modified from F.H. Netter. Atlas of Human Anatomy. Elsevier, 2014). 

 

 

 

Fig. 11. (a) Graphic and (b) MRI midsagittal view of the adult cranium, with its membranous structures. In 

particular, the falx cerebelli is a small sickle shaped fold of dura mater, projecting forwards into the posterior 

cerebellar notch (modified from  

http://www.radioanatomie.com/29_citernes/citernes_ventricules.php?vue=1&langue=it). 

 

 

  

Fig. 12. (a) In Dandy–Walker continuum, the vermis is elevated and abnormally lobulated (small arrow), with 

enlargement of the fourth ventricle (*) and Blake’s pouch. The elongated nodulus and displaced germinal matrix 

can be seen in the superior margin of Blake’s pouch (double arrow). (b) Diagrammatic representation showing the 

http://www.radioanatomie.com/29_citernes/citernes_ventricules.php?vue=1&langue=it
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small vermis (small arrow), enlarged Blake’s pouch (double arrow) and fourth ventricle (*). (c) Histological 

specimen showing abnormal vermis (small arrow) and choroid plexus (double arrow) displaced into the inferior 

wall of Blake’s pouch, which remains intact. The fastigial recess is abnormally formed (*) and the germinal matrix 

(large arrow) is displaced from its normal position just below the fastigial recess into the superior margin of Blake’s 

pouch (modified from Robinson AJ. Inferior vermian hypoplasia – preconception, misconception. Ultrasound 

Obstet Gynecol 2014; 43: 123–136). 

 

 

Fig. 13. (a) In persistent Blake’s pouch, the vermis is elevated away from the brainstem but the major landmarks 

of the primary fissure (small arrow) and fastigial recess (large arrow) appear normal and the lobulation appears 

normal. (b) Diagrammatic representation showing Blake’s pouch (double arrow) elevating a normal vermis (small 

arrow). (c) Pathological specimen of the same fetus with Blake’s pouch collapsed (double arrow) and vermian 

lobulation apparently normal (arrow) (modified from Robinson AJ. Inferior vermian hypoplasia – preconception, 

misconception. Ultrasound Obstet Gynecol 2014; 43: 123–136). 

 

Fig. 14. Ultrasound images showing the cerebellar vermis (yellow arrow) obtained by two-dimensional ultrasound 

at 22 weeks of gestation (a) and three-dimensional ultrasound at 24 weeks of gestation (b) Vermis circumference 

(VC) is outlined in red (a). 

 

Fig. 15. Plot showing the cerebellar circumference observed measurements and the fitted 10th , 50th , and 90th  

percentiles for gestational age. 
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Fig. 16. Bland-Altman plots of the paired measurement obtained by 2D and 3D ultrasound (a) and by two different 

examiners (b). 

 

 

 

 

Fig. 17. Midsagittal (a) and midcoronal (b) view of the posterior fossa at ultrasonographic three-dimensional 

reconstructed planes in a 20 weeks fetus. The vermian-cresta angle (VCA) is labelled in yellow. Landmarks have 

been highlighted. 
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Fig. 18. Plots showing the vermian biometries (a) and volume (b) observed measurements for gestational age. 

 

 

Fig. 19. Plot showing the vermian-cresta angle (VCA) observed measurements and the fitted 10th , 50th , and 90th  

percentiles for gestational age. 

 

 

 

Fig. 20. Bland-Altman plots of the paired measurement obtained by two different examiners (study A 3.b) 
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Fig. 21. MRI midsagittal view of the posterior fossa in a 25 weeks fetus. The vermian-cresta angle (VCA) is labelled 

in red. The red arrow with the two  star-shaped markers delimitate the fastigium cerebelli.  

 

 

  

Fig. 22. Bland-Altman plots of the paired measurement obtained by two different examiners (study A 3.c) 
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Fig. 23.  Measurement of Vermian Crest angle (VCA) in fetuses with: (a) Blake’s pouch cyst; (b) Dandy–Walker 

malformation. The BV angles are 101° and 157 °, respectively.  

 

  

Fig. 24. Box-and-whisker plot of distribution of Vermian-Crest angle (A) in controls and in fetuses with mega 

cisterna magna (MCM), vermian hypoplasia (VH), Blake’s pouch cyst (BPC) and Dandy-Walker Malformation 

(DWM). Medians are indicated by a line inside each box, 25th and 75th percentiles by box limits and 5th and 95th 

percentiles by lower and upper bars, respectively. VCA increased significantly (*) in both BPC and DWM 

compared with controls.  
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Fig. 25. Case 1. Cerebellar hypoplasia, with rhomboencephalosynapsis. Hydrocephalus. FSE/T2-weighted images. 

(a) Midsagittal plane; (b) Axial plane. 

 

 

 

 

Fig. 26. Case 2. Agenesis of the cerebellar vermis, dorsal fusion of the cerebellar hemispheres, which appears 

without the normal cerebellar sulci, and a reduction of the fourth ventricle. No other brain anomalies. FSE/T2-

weighted images. (a, b, c) Axial plane; (d) Mid-sagittal plane. 
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Fig. 27. Case 3. Absent visualization of the vermis, fusion of the cerebellar hemispheres with a reduction of the 

trans-cerebellar diameter below the fifth centiles, without demonstration of any communication between the fourth 

ventricle and the cisterna magna. No other brain anomalies. Two-dimensional ultrasound scan. (a) Axial plane, 

with magnification of the posterior fossa; (d) Axial plane. 

 

 

 

 

Fig. 28. demonstrates a standard trans-thalamic view of the fetal head obtained by trans-abdominal 2D-US showing 

the SF (Sylvian fissure) and IL (insula lobe) measurements, and adjacent anatomical landmarks at 23 weeks of 

gestational age. 
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Fig. 29. Scatterplot showing the correlation of  depth of sylvian fissure (a), the insula lobe (b) and the insula ratio 

(c) with gestational age. 

 

 

 

  

Fig. 30. Bland-Altman plots of the paired measurement obtained by two different examiners. 

 

 

Fig. 31. Cascade of biochemical mechanism after hypoxic-ischemic brain injury. A schematic diagram that 

summarizes the cellular and molecular events triggered after hypoxic-ischemic injury in the developing brain. The 

first phase (I) include glucose depletion with mitochondrial damage, while later (II) the cytotoxic levels of 

intracellular calcium and the release of inflammatory mediators cause metabolic failure, oxidative stress and 

ultimately the cell death (modified from Cerio F.G. et al. 2013). 
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Fig. 32. Wharton’s jelly mesenchymal stem cell-derived exosomes interact with N2a cells and hippocampal rNPC. 

Exosomes labelled with the membrane dye Dil (red) co-localize with N2a cells (DAPI, blue) after 24 hours of co-

culture (A,B). Analysis was done by conventional fluorescence (A) and confocal microscopy (3D visualization by 

Imaris software) (B). Furthermore, exosomal RNA fluorescently labelled with Exo-Red was detected in the 

cytoplasma of N2a cells (C) and GFP-expressing hippocampal rNPC (D) after 2 hours of co-culture. 

 

 

Fig. 33. Our OGD-R protocol. OGD duration is set at different time points, varying from 2 to 24h. Exosomes are 

given either before (prevention) or after (treatment) the OGD ad different concentrations. The prevention period 

(P.P.) is either 1h or 24h before OGD. Treatment period (T.P.) includes two time points: 24h and 48h after OGD.  
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Fig. 34. Wharton’s jelly mesenchymal stem cell-derived exosomes reduce OGD-R triggered apoptosis in N2a cells. 

N2a cells (DAPI, blue) were subjected to TUNEL test after 24 hours of control culture (A), 6 hours of OGD 

followed by 24 hours of reoxygenation without (B) and with the addition of 1 µg/ml exosomes (C). TUNEL-

positive N2a cells are indicated by white arrows (A, B, C). The percentage of TUNEL-positive N2a cells were 

calculated relative to DAPI (D). 

 

  

Fig. 35. Wharton’s jelly mesenchymal stem cell-derived exosomes reduce OGD-R triggered increased expression 

of markers of apoptosis (Caspase 3) (a) and inflammation (Tlr4) (b) at the level of RNA in N2a cells in a dose- and 

timing- dependent manner. N2a cells were collected and RNA extracted after 6 hours of OGD followed by 48 hours 

of reoxygenation without and with the addition of 0.1 and 1 µg/ml exosomes at 3 different time points: 24h before 

OGD, 1h before OGD and immediately after OGD.  
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Fig. 36. Wharton’s jelly mesenchymal stem cell-derived exosomes increase the expression of microRNAs 

associated with neuronal differentiation and modulation of inflammation Let 7a (a) and Let7e (b) in N2a cells in a 

dose-dependent manner. N2a cells were collected and RNA extracted after 6 hours of OGD followed by 24 hours 

of reoxygenation without and with the addition of 0.1 and 1 µg/ml exosomes immediately after OGD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


