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Chapter 1 

 

Introduction 

Today, with the better understanding of the molecular events involved in malignancy 

and the mechanisms of pharmacotherapy, larger gene panels are more helpful than single 

biomarker detection.  After the completion of the first human genome sequence in 2004
1
, 

the growing need to sequence a large number of individual genomes in a fast, low-cost 

and accurate way has directed a shift from traditional Sanger sequencing methods 

towards new high-throughput genomic technologies.
2
 In 2005, the development of next 

generation sequencing (NGS) methods has represented one of the more significant 

technical advances in molecular biology.
3   

NGS, also known as massive parallel 

sequencing because of the ability to allow the parallel analysis of a very large number of 

DNA molecules, is beginning to show its full potential for diagnostic and therapeutic 

applications. Until recently, NGS platforms were envisioned for large-scale applications, 

focused on whole genome sequencing, with protocols, consumable costs and a 

turnaround time (TAT) unsuitable for the needs of small diagnostic laboratories. The 

development of miniaturised technology by benchtop NGS sequencers decreased 

sequencing costs, moving NGS from a few large sequencing core centers to a much larger 

number of individual laboratories.
4 

 Currently, most pathology departments acquired an 

NGS benchtop sequencer,
5
 thus NGS is adopted for routine molecular diagnostics, 

including cytological samples. NGS may increase both analytical sensitivity and breadth of 

examined genomic regions, enabling the simultaneous detection of multiple mutations in 

multiple genes by the parallel sequencing of millions of different DNA fragments.
6
   

tremendously increases the throughput, making it feasible to sequence entire human 
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genomes in days.
7
 Each nucleotide is read several times, ensuring a high degree of 

sensitivity.  

To understand the current and future application of NGS in the field of pathology, 

modern pathologists need to understand its basic principles. Regardless of the specific 

features of any single platform type, the NGS workflow follows four sequential phases, as 

follows: (1) the generation of a short fragment DNA library; (2) single fragment clonal 

amplification; (3) massive parallel sequencing and (4) sequencing data analysis. 

 

1.1 Illumina technology 

The Illumina platforms perform clonal amplification and massive parallel 

sequencing on instrument without manual intervention. The DNA fragments clonally 

amplified, as seen before on a flow cell, are bound by complementary primers and 

extended in subsequent cycles of sequencing by synthesis reactions employing reversible 

dye terminators. All four nucleotides are provided in each cycle but not in a specific order 

because each nucleotide carries an identifying fluorescent label; thus, Illumina performs 

well in homopolymeric regions and the error rate, predominantly substitution errors, is 

only 0.5%.17 A fundamental advantage of the Illumina system is that it is very efficient in 

mapping the reads to the corresponding regions in the reference genome; this is thanks 

to the so-called paired-end sequencing, namely producing sequence data from both ends 

of each library fragment.
8
 The Illumina benchtop sequencer Miseq has a run time as short 

as 8 h from the preparation of DNA for variant detection moreover, it can run numerous 

samples from different patients simultaneously by tagging the samples with a barcode so 

that they can be identified.
8 

 

1.2 Ion Torrent technology 

Ion Torrent sequencing exploits emulsion PCR, to establish clonal templated beads 

from isolated single DNA library molecules, also generating a read for each single well.
9 

However, while the image detection system was the bottleneck of the 454 GS JuniorTM 

and the reason of its limited scalability, Ion Torrent is much more scalable, thanks to the 
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digital electronic Ion Chip.
9
 This is a specialised silicon chip similar to those of 

microprocessors, digital cameras and cell phones. The Ion Chip is the heart of the 

PGMTM, a relatively inexpensive, simple, computer-like instrument, which performs all 

the signal processing needed to produce base calls.
9
 Individual nucleotides are provided 

to the open wells by flowing them over the Ion chip. However, in this instrument, the 

nucleotide flow is in a systematic order because there is no label to provide base-specific 

identity. In fact, upon each nucleotide incorporation, the Ion Chip detects the pH changes 

owing to the release of a hydrogen ion (H+) within any individual well. In the case of a 

homopolymeric template sequence, the multiple incorporations of the same base will 

proportionately result in more H+ releases, which may results in errors, especially when 

the sequence features insertions or deletions.
4
 Conversely, substitution errors may occur 

at a very low frequency (i.e. = 0.5–1 in 100 bases). As billions of digital chips per year are 

collectively produced by the fabrication facilities (fabs), the application of digital 

electronics technology to sequencing make this technology relatively inexpensive and 

fast, and hence ideal for smaller laboratories that wish to use next-generation sequencing 

in their work.
10

 The mass production of the Ion Chips also ensures a high level of scale 

according to the classical Moore’s Law that has governed the semiconductor industry, 

which states that the number of transistors per chip will double every 2 years.
10

 As a 

matter of fact, the number of sensors/wells of the Ion Chip, that sets the maximum 

number of reads producible per run, increased dramatically from 1.2 to 11.3 million from 

the earlier 314 to the later 318 chips.
10

 The additional increase in average read length 

from 100 to 200 bp led to marked improvements in net-sequencing throughput. The very 

fast turn-around time of the PGM sequencing platform (3 h/run) perfectly matches with 

the rapid modality of multiplex PCR to generate a library.
11

 To these ends, the Ion Torrent 

AmpliSeq(TM) gene panels, such as the 22 gene target panel called the Ion AmpliSeq 

Colon and Lung Cancer Panel
6
 and the Cancer Mutation Hotspot Panel (46 genes)

12
 

enables in a cost-effective manner the implementation of the NGS in predictive molecular 

diagnostics, limiting the sample requirements to only 10 ng of DNA. 
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1.3 Data analysis 

To generate interpretable results, the millions of produced reads need to be 

aligned to a reference human genome, which requires sufficient time and practice with a 

number of available informatics tools.
13

 First, single reads are processed through filters 

that eliminate low-quality sequences and then mapped to the reference sequence; 

variants are called when differences occur between a base call and its aligned position to 

the reference sequence. The number of reads covering a given base position is described 

as the depth of coverage.
13

 The average depth of coverage is the average number of 

overlapping reads within the total sequenced area. The uniformity of coverage is the 

distribution of coverage within specific targeted regions in which variant calling will occur. 

The combination of informatics tools used for processing, aligning and detecting variants 

in NGS data is usually termed as the bioinformatics pipelines. Different software 

programs, such as commercially available analysis packages or in-house developed 

analytical pipelines, can cause variability in the reported sequence of a given sample.
13

 

Thus, the appropriate software settings should be optimised during validation to ensure 

that a variant called by the bioinformatics pipeline is present in the sequence. After 

validation, quality maintenance is challenging, as informatics is rapidly evolving, and 

software updates are frequent; however, if only the informatics pipeline is altered, it may 

be sufficient to re-analyse the original validations raw data (FASTQ files).
5
 

 

This thesis describes my research on the integration of NGS technologies in 

pathological diagnostics, both concerning histological and cytological specimens. 

Moreover, a research application of NGS on mouse xenograft cytological samples is 

described.  
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Chapter 2 

 

Next-generation sequencing analysis of colon carcinomas 

Antiepidermal growth factor receptor (EGFR) therapy is not effective in patients 

with metastatic colorectal cancer (CRC) harbouring mutations at codons 12 and 13 in 

KRAS exon 2.
1
 More recent evidences showed that the so-called expanded RAS mutations 

(exon 3 and exon 4 of KRAS and exons 2, 3 and 4 of NRAS) also have negative predictive 

value.
2
 The extension of community KRAS testing to all RAS mutations favoured the 

implementation of multitarget testing methodologies.  

NGS, matched with multiplex capture of targeted gene regions and analysed by 

bioinformatics tools, enables the simultaneous detection of multiple mutations in 

multiple targetable genes. NGS may also identify rarer patient-specific somatic mutations. 

The latter are of unclear significance, as their incidence rates have not been established 

with certainty. In fact, while there is a wealth of data regarding RAS/RAF/PI3KA and TP53 

gene mutations, the information on less frequently mutated genes is mostly derived by 

the genomic scale analysis of a limited number of CRC samples.
3
  

Among the most popular NGS benchtop platforms is the Ion Torrent Personal Genome 

Machine (PGM; Life Technologies, Carlsbad, California, USA) which requires only a small 

amount of gDNA (10 ng).
4 

This NGS platform has employed very broad panels containing 

around 50 cancer driver gene targets
5–8

 and a 22 gene target panel called the Ion 

AmpliSeq Colon and Lung Cancer Panel. The performance of this panel has previously 

been evaluated for clinical cancer testing by other groups retrospectively on archival 
9 

and 

clinical trial specimens.
10

  

A first study was conducted to verify the AmpliSeq Colon and Lung Cancer assay in the 

different setting of routine diagnostics; a subsequent study focuses on less frequently 

mutated genes potentially relevant for prognostic assessments or for actionable 

treatments.    
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2.1  Torrent next-generation sequencing for routine identification of  

clinically  relevant mutations in colorectal cancer patients 

 

Prospectively, a large number of consecutive and unselected samples were 

simultaneously processed by Sanger sequencing and by the AmpliSeq Colon and Lung 

Cancer assay. Diagnostic accuracy, cost, time around testing (TAT) and the overall 

practicality of the two methodologies were evaluated. The aim was to assess whether the 

AmpliSeq Colon and Lung Cancer Panel on the Ion Torrent PGM could be an alternative to 

Sanger sequencing for genotyping KRAS, NRAS and BRAF genes in our laboratory. 

 

2.1.1 MATERIALS AND METHODS 

Routine clinical samples 

Following approval from the institutional review board, the relative performance 

of the Ion Torrent assay and of Sanger sequencing on prospectively collected and 

processed routine diagnostic samples was assessed. Routine samples were 

simultaneously processed by our current technology, based on Sanger sequencing, and by 

Ion Torrent PGM sequencing. To this end, 114 unselected consecutive (including 99 

surgical samples and 15 endoscopic biopsies) FFPE samples, referred from 18 different 

institutions, were prospectively processed by both methods. Only one single tumour 

sample from a given location (primary tumour n=105; metastases n=9) was tested for 

each patient. After obtaining the patient’s consent, oncologists and the primary 

pathologists from outside institutions record the clinical and pathological data (including 

the original pathology report) on a dedicated website. Then, the corresponding tissue 

sample is express-mailed to our central laboratory. Upon receipt of each sample, a 

representative H&E stained slide is reviewed by a pathologist and the area with the 

highest density of neoplastic cells is marked, annotating the percentage of neoplastic 

cells. Depending on the complexity of histology and on the density of the tumour, DNA 

was extracted using the QIAamp DNA Mini Kit (Qiagen, Crawley, West Sussex, UK) from 

two (resection specimens) or three (biopsy specimens) 10 μm-thick serial sections. An 

additional section (biopsy specimens only) was stained by H&E to confirm tumour cell 

percentage. 
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Sanger sequencing 

DNA targets for exons 2, 3 and 4 of KRAS and NRAS, and exon 15 of BRAF were 

amplified using laboratory developed primer pair.
18,19

  The concentration of reagents was 

optimised using 80 ng of DNA, 0.4 mM of each primer and 0.5 U of 5 PRIME Taq DNA 

Polymerase (Eppendorf, Milan, Italy) in a total volume of 25 μL. PCR conditions were as 

follows: initial denaturation for 5 min at 95°C, cyclic denaturation at 94°C for 30 s, 

annealing at 57°C for 30 s, elongation at 65°C for 30 s for 35 cycles, and final extension at 

72°C for 2 min. Following PCR, the fragments were purified using the QIAQuick DNA 

purification kit (Qiagen) according to the manufacturer’s instructions. Sequencing 

reactions were performed for both DNA strands by the Big Dye Terminator V.1.1 (Applied 

Biosystems, Monza, Italy) on a total of 10 ng of purified PCR products. Dye purification 

was carried out by alcohol/sodium acetate precipitation. Sequence analysis was 

performed on an Applied Biosystems 310 genetic analyser. The files obtained were 

aligned to the reference sequence and examined for mutations by the CodonCode 

software. 

 

Ion Torrent sequencing  

DNA was extracted from clinical tissue samples using the QIAamp DNA Mini Kit 

(Qiagen) according to the manufacturer’s instructions. DNA was suspended in 30 μL of 

molecular biology water. DNA quantity and quality were assessed using the Qubit 

photometer (Life Technologies) and the Qubit dsDNA HS (High Sensitivity) Assay Kit 

according to the manufacturer’s instructions. According to the manufacturer’s protocols, 

10 ng of DNA for each sample was used for library preparation with the Ion AmpliSeq 

Library 96LV Kit 2.0 (Life Technologies) and the Colon and Lung Cancer Panel (Life 

Technologies). This panel gives 90 amplicons covering 504 mutational hotspot regions in 

22 genes (AKT1, ALK, BRAF, CTNNB1, DDR2, EGFR, ERBB2, ERBB4, FBXW7, FGFR1, FGFR2, 

FGFR3, KRAS, MAP2K1, MET, NOTCH1, NRAS, PIK3CA, PTEN, SMAD4, STK11, TP53), with 

performance of at least 500× sequence coverage for eight samples on one Ion 316 chip. 

For samples yielding less than 10 ng DNA input, additional cycling conditions were used 

for library preparation as recommended by the manufacturer. Each library was barcoded 

with the Ion Xpress Barcode Adapters 1–16 Kit (Life Technologies). Barcoded libraries 

were combined to a final concentration of 100 pM. Template preparation by emulsion 
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PCR (emPCR) was performed on the Ion OneTouch 2 system (Life Technologies). Library 

quality control was performed using the Ion Sphere Quality Control Kit according to the 

manufacturer’s instructions, ensuring that 10–30% of template positive Ion Sphere 

particles (ISP) were targeted in the emPCR reaction. Sequencing primer and polymerase 

were added to the final enriched ISPs prior to loading onto 316 (100 Mb output) chips. 

Sequencing was carried out on the PGM (Life Technologies). Data analysis was carried out 

with Torrent Suite Software V.3.2 (Life Technologies), considering only KRAS, NRAS and 

BRAF, while all other genes were masked. After alignment to the hg19 human reference 

genome, the Variant Caller plug-in was applied using the Colon and Lung hotspot file as a 

reference (downloaded from Ion Community, 

http://www.ioncommunity.lifetechnologies.com, last accessed 15 September 2014). The 

Ion Reporter suite (Life Technologies) was used to filter polymorphic variants. In addition, 

all nucleotide variations with less than a 5% variant frequency were masked. All detected 

variants were manually reviewed with the Integrative Genomics Viewer (IGV V.2.1, Broad 

Institute, Cambridge, Massachusetts, USA).  

 

Evaluation of TAT and consumable costs in order to evaluate the overall practicality of 

performing Ion Torrent sequencing in our referral centre, TAT and consumable costs were 

taken into account. The TAT (the period from sample receipt to interpretation of the 

results) was recorded for every sample for both Sanger and Ion Torrent sequencing. The 

first step of our routine testing algorithm is evaluation of KRAS exon 2, where most 

resistance mutations are clustered. Only KRAS exon 2 wild-type cases undergo direct 

sequencing of PCR products of the remaining RAS and BRAF exons. For Sanger 

sequencing, consumable cost was evaluated for a single exon analysis and multiplied for 

the number of reactions needed for any given gene. For Ion Torrent sequencing, each 

patient analysis cost was estimated considering the fact that eight barcoded samples 

were loaded for each 316 chip. 

 

2.1.2 RESULTS 

Ion Torrent sequencing in routine settings  

Most of the routine samples (109/114; 95.6%) processed on the PGM yielded an 

adequate library for subsequent sequencing, although library preparation failed in five 
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cases. Three of the failed cases did not yield adequate results by Sanger sequencing 

either. In most of the adequate cases (85/109), amplification for library generation was 

carried out without major technical problems; in a minority of cases (24/109), the low 

level of library concentration (<100 pM) required DNA reamplification. 

Mutations detected by Ion Torrent with at least a 5% variant frequency were annotated 

(figure 1). Ten BRAF mutant cases (V600E, n=7; G596R, n=1; K601E, n=1; D594G, n=1) 

were detected by both Sanger and Ion Torrent sequencing. In addition, two BRAF 

mutations (G466E, n=1; G469A, n=1) not covered by our Sanger sequencing-based assay 

were only detected by Ion Torrent. A total of 38 KRAS mutations (exon 2, n=32; exon 3, 

n=2; exon 4, n=4) were detected by both techniques (figure 1). One KRAS Q22K mutation 

detected by Ion Torrent at a 5.5% mutant allele level was missed by Sanger sequencing 

(figure 1). Eight cases harbouring NRAS mutations (exon 2, n=2; exon 3, n=6) were 

detected by both sequencing methods. One G13R mutation with a 5.2% mutant allele 

frequency was only detected by Ion Torrent. 

 

 

Figure 1 Loading density (A) and performance parameters (B) of an Ion Torrent sequencing run, carried out 

using a 316 chip are shown. A low frequency of a KRAS Q22K mutant allele (C) was observed with an 

integrated genetics viewer in a case of colorectal cancer (D) with 30% neoplastic cells. 
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Evaluation of TAT and consumable costs 

The Ion Torrent mean TAT was 13.0 working days (range 7–14). The mean TAT for 

Sanger sequencing evaluation of KRAS exon 2, was 4.2 working days (range 3–6); in the 

cases also evaluated for the remaining KRAS, NRAS and BRAF exons, the entire process 

had a mean TATof 10.4 working days. The cost of consumables for any single exon 

analysis by Sanger sequencing was €28. Consequently, the consumable cost of testing 

KRAS, NRAS and BRAF, including seven exons, was €196. For Ion Torrent sequencing, as 

eight barcoded samples were loaded for each 316 chip, the cost for each patient analysis 

was €187.23. This amount was slightly higher (€262.20) in a minority of cases (24/109) 

where the low level of library concentration required DNA re-amplification. Similarly, 

initialization failures, occurring twice for a total of 16 samples, led to an increase of €7.80 

per sample. 

 

2.1.3 DISCUSSION 

Ion Torrent NGS assays have been retrospectively evaluated on previously 

characterised positive and negative archival control samples.
10,13,14,20

 However, in this 

study, routine clinical samples have been prospectively received by our central laboratory 

from several local pathology laboratories. Sanger sequencing and Ion Torrent NGS were 

performed simultaneously, unlike in previous reports where these techniques were 

performed at different times in different laboratories and on different histological 

sections.
17,21

 In the diagnostic setting, challenges include the less than optimal DNA 

quality of some samples due to formalin over-fixation, the low tumour cell content in 

tumour tissues with abundant inflammatory cells, and insufficient starting material, for 

example, minimal biopsy fragments. The Ion AmpliSeq Colon and Lung Cancer Panel failed 

in a small minority of cases (4.4%), in contrast to the 100% success rate of a recent clinical 

trial whose design included preliminary sample selection.
17

 All of the 56 point mutations 

detected by Sanger sequencing were also correctly identified by Ion Torrent NGS, 

confirming the high level of specificity of the Ion Ampliseq Colon and Lung Cancer Panel.
16

 

In addition, the NGS assay detected two BRAF mutations in gene regions not covered by 

Sanger sequencing. The differential sensitivity of methods can differ; the NGS technique is 

able to detect mutations with low variant frequencies.
17

 To avoid false positive results, 
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the 5% variant frequency threshold is generally recommended for AmpliSeq.
13,14

 In our 

series, two mutations (KRAS Q22K and NRAS G13R) with variant frequency just above the 

5% threshold were missed by Sanger sequencing. These discordant results have a number 

of technical and clinical implications. From a technical point of view, a laboratory that 

adopts NGS in clinical practice should consider having an in-house validated single gene 

assay with at least 5% sensitivity to confirm mutations occurring at a low level, in 

particular for the most clinically relevant hotspots. In this study, however, one of the 

discordant mutations occurred in codon 22, which would also be missed by high-sensitive 

assays targeted at codons 12 and 13.
22

 The occurrence of less common mutations is 

expected to increase, as referral laboratories adopt NGS as a screening tool.  

Our data may show that NGS assays are not overly time consuming and expensive. We 

found that the Ion Torrent mean TAT for all clinically relevant analysis was only slightly 

longer than for Sanger sequencing (13.0 vs 10.4 working days), reflecting the long 

learning curve and more hands-on technical time required for library preparation, chip 

loading and data analysis. In addition, the NGS assay TAT will continue to improve with 

the implementation of a fully integrated robotic station. Consequently, more efficient 

sample batching will improve the cost effectiveness of the whole procedure. To date, our 

data have shown that the consumable cost for testing KRAS, NRAS and BRAF using Ion 

Torrent sequencing (€187.23) is comparable to that for Sanger sequencing (€196) and 

much cheaper than the total for individual FDA/CE IVD-approved single-gene tests. 

However, while the most expensive tests are the easiest to interpret, NGS data analysis 

requires more expertise than usually available in academic institutions or in large clinical 

hospitals.
24 
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2.2  Less frequently mutated genes in colorectal cancer: evidences from 

next-generation sequencing of 653 routine cases 

 

The incidence of RAS/RAF/PI3KA and TP53 gene mutations in colorectal cancer 

(CRC) is well established.
1-3

 Less information, however, is available on other components 

of the CRC genomic landscape, which are potential CRC prognostic/predictive markers. 

Following the previous validation study
4
, NGS was employed in our laboratory to process 

653 routine CRC samples by Ion AmpliSeq Colon and Lung Cancer Panel, generating a 

large database whose interrogation can be useful to better define the incidence rate of 

rare mutations. Thus, besides KRAS, NRAS, BRAF, PIK3CA and TP53 alterations, this study 

focuses on mutations occurring in other receptor tyrosine kinase (RTK) genes (ALK, EGFR, 

ERBB2, ERBB4, FGFR1, FGFR2, FGFR3, MET, DDR2), in RTK signaling genes (AKT1, PTEN, 

MAP2K1, STK11) and in other well-known cancer-related genes (NOTCH1, CTNNB1, 

SMAD4, FBXW7). 

 

2.2.1 MATERIALS AND METHODS 

This study includes a series of 653 CRC tissue samples (398 men and 255 women) 

referred from 18 institutions located all over South Italy between January 2014 and 

March 2015. Mean patient age was 66.8 years (range, 29–96 years). Following current 

international guidelines, one single tumour sample was tested for each patient. 

 

2.2.2 RESULTS 

One or more gene mutations were detected in 499/653 (76.4%) tumours in 17 of 

the 22 genes included in the panel (table 1), for a total of 796 mutations.  A 

representative case is reported in figure 1. Only three genes (DDR2, FGFR1 and FGFR2) 

did not harbour any alteration, while two genes (FGFR3 and MET) only harboured 

germline. Single mutations were found in 274 patients (41.9%), double mutations in 177 

patients (27.1%) and 3 or more mutations were found in 48 patients (7.4%). Mutations 

occurred in TP53 (n=240; 38.8%), KRAS (n=247; 37.8%), NRAS (n=30; 4.6%) and BRAF 

(n=63; 9.6%). KRAS and NRAS mutations were mutually exclusive. 



 

 

KRAS and NRAS coexisted with BRAF mutations in four and in

In most of these cases (4/5), BRAF

mutations occurred in 98 (15%) cases. More frequently, PIK3CA

together with other gene mutations;

samples. Number and percentage of mutated cases of each gene are

Besides RAS/RAF/PI3KA and TP53 gene mutations, the Ion

Cancer Panel provided information

signalling genes and other well

 

Figure 1 Loading density (A) and performance parameters (B) of an Ion Torrent sequencing run, carried out 

using a 316 chip, are shown. DNA extracted from the colorectal cancer (CRC) shown in (C) harboured an 

epidermal growth factor receptor p.E746_A750delELREA mutation. (D) was observed with a Genome 

Brower web app. 
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RTK gene mutations 

ALK: in one case (0.2%) the p.L1196M mutation was detected in association with 

two mutations of the TP53 gene. EGFR: mutations occurred in eight (1.2%) cases, with 

exon 19 deletion evident in four instances (n=3 p.E746_E749delELRE; n=1 

p.E746_A750delELREA, as shown in figure 1). Most cases (7/8) were associated with other 

gene alterations; in particular, five cases harboured a KRAS mutation. ERBB2: mutations 

occurred in four (0.6%) cases, with the V842I being detected in three instances. ERBB4: 

mutations occurred in four cases (0.6%). 

 

RTK signalling genes mutations 

AKT1: the E17K mutation occurred in six cases (0.9%). PTEN: mutations occurred in 

18 (2.8%) cases. MAP2K1: in one case (0.2%) the K57N mutation was associated with 

PIK3CA mutation. STK11: mutations occurred in five cases (0.8%). 

 

Other cancer-related genes 

NOTCH1: mutation occurred in one case (0.2%) and remarkably this case had five 

additional gene mutations occurring in TP53, KRAS, PTEN, ERBB4 and PIK3CA. CTNNB1: 

mutations were detected in seven cases (1.1%), being always associated with at least one 
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other concurrent mutation. In particular, CTNNB1 mutations were consistently associated 

with the constitutive activation of the RAF/MEK/ERK pathway by either KRAS (n=4) or 

BRAF (n=3) concurrent mutations. SMAD4: mutations were found in 14/653 (2.1%) 

samples, and in combination with other mutations (9/14). FBXW7: mutations were 

identified in 39/653 patients (6%), singly (n=7) and associated with KRAS (n=20). 

 

2.2.3 DISCUSSION 

This study evaluated in CRC routine samples a broad set of genes for mutational 

events. Previous evidences regarding the RAS/RAF/PI3KA gene were confirmed. KRAS and 

NRAS mutations were always mutually exclusive,
5
 whereas occasionally BRAF (mostly no 

V600E) mutations coexisted with an RAS gene alteration.
7
 The frequent association of 

PIK3CA mutations with the RAS/RAF alterations was also confirmed.
5
 Our data straighten 

the view that the simple distinction of tumours in RAS, BRAF or PIK3CA does not apply to 

CRC with combined RAS/RAF genetic changes.
7
 We also confirmed that one of the most 

frequently mutated genes in CRC is TP53, whose mutation rate in our study was 38.8%. 

Additional information was generated on other potentially actionable components of the 

CRC genomic landscape, such as RTK genes. Remarkably, the ALK p.L1196M gatekeeper 

mutation, which confers high-level resistance to crizotinib in lung cancer, was for the first 

time detected in CRC. EGFR mutations were also detected, as shown in figure 1, and their 

mutation rate (1.2%) was lower than that (4.5%) reported in the Tumor Cancer Genome 

Atlas (TCGA).
5
 While KRAS and EGFR mutations are normally exclusive, concomitant KRAS 

and EGFR mutations were also detected, confirming previous NGS findings.
8
 Other 

mutations include those involving ERBB2; in particular, the V842I ERBB2 mutation 

associated with breast cancer
9
 was detected in three instances. Remarkably, in CRC 

preclinical models HER2 mutations were resistant to cetuximab and panitumumab and 

responsive to second-generation HER2/EGFR irreversible tyrosine, afatinib and 

neratinib.
10

 Clinical trials targeting HER2 activating mutations in metastatic CRC are 

ongoing.
11

 ERBB4 mutations occurring in 0.6% of the cases have an uncertain prognostic 

significance. In fact, the TCGA data set indicated a survival disadvantage in colorectal 

carcinoma with ERBB4,
5,12

 whereas another study showed that the ERBB4 mutant clones 

are not selected in metastatic spread.
13

 A number of rare mutations occurring in the 

PI3K/AKT/ mTOR pathway are potentially actionable. As an example, AKT1 mutations 
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were associated with primary resistance to anti-EGFR therapy.
14

 In our study, AKT1 was 

mutated in 0.9% of cases, being mutually exclusive with PIK3CA alterations, as previously 

shown.
14

 The recent association between E17K AKT1 and tumours with mucinous 

morphology was observed only in one of our six cases.
14

 Previous studies showed a wide 

range of PTEN mutation rates (0.7%15 to 6%16). In our study, the mutation rate of PTEN 

was 2.8%. Interestingly, a total of 11 different mutations were found, according to the 

notion that mutations in tumour suppressor genes do not strongly cluster in single 

mutational hot spot.
17

 Another RTK signalling gene included in our panel is the STK11 

gene. We confirm that somatic STK11 mutations rarely occur in somatic CRC (0.8%).
18 

Earlier studies reported that STK11 mutant neoplasms had alterations in nucleotide 

metabolism that confer hypersensitivity to deoxythymidylate kinase inhibition, proposing 

that deoxythymidylate kinase is a possible therapeutic target.
19

 Interestingly, CTNNB1 

mutations detected in 1.1% of the cases were always associated with at least one other 

concurrent mutation. In particular, CTNNB1 mutations were consistently associated with 

the constitutive activation of the RAF/MEK/ERK pathway by either KRAS (n=4) or BRAF 

(n=3) concurrent mutations, in keeping with the notion that CTNNB1 mutations are early 

events in CRC carcinogenesis.
20

 Conversely, our data confirm that the occurrence of 

SMAD4 mutations (2.1%) is a late event.
21

 In fact, in our study 64.3% of SMAD4 mutations 

occurred in combination with other alterations. SMAD4 loss of function was associated 

with a worse prognosis and decreased disease-free survival and with resistance to 5-

fluorouracil chemotherapy.
22,23

  In this present study, FBXW7, a major tumour suppressor 

gene crucial in promoting exit from the cell cycle, was mutated in 6% of cases, which is in 

line with the estimated 9% of CRCs containing FBXW7 mutations.
24,25

  Preclinical data 

have suggested that inactivating mutations of FBXW7 could predict sensitivity either to 

the mTOR inhibitor rapamycin,
26

 or to the histone deacetylase inhibitor MS-275.27 

Noteworthy, as it was shown in previous reports FBXW7 were often (51.2%) associated 

with KRAS mutations.
28,29

 Interestingly, concurrent molecular aberrations can contribute 

to limited therapeutic efficacy of mTOR inhibitors in the presence of FBXW7 mutations. 

Certain genes included in our panel, such as MAP2K1, may have a future role in 

sensitivity, resistance or both, to a variety of preclinical drugs. Targeting of NOTCH 

signalling may be of therapeutic value in colon cancers, as activating mutations in NOTCH-

1 have been previously reported in colon cancer.
30

 In our study NOTCH mutation occurred 
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in one case (0.2%) and remarkably this case had five additional gene mutations occurring 

in TP53, KRAS, PTEN, ERBB4 and PIK3CA. 

In conclusion, our data confirm that CRCs consist of a group of heterogeneous disorders 

with a large number of diverse sets of genetic changes in oncogenes and tumour 

suppressor genes. In a routine diagnostic setting, the Ion PGM and AmpliSeq colon and 

Lung Cancer Panel had the potential to exploit even a low-input DNA to uncover multiple 

common mutations simultaneously and to generate robust and comprehensive genetic 

information. Several updates of the Ion Torrent system may soon enable to detect also 

gene copy number alterations and translocations to more comprehensively cover the 

whole spectrum of genomic alterations refining the identification of reliable and 

reproducible biomarkers of response/resistance to the targeted treatment of CRC. 
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Chapter 3 

 

Challenges and opportunities of next-generation sequencing: a 

cytopathologist’s perspective 

Fine needle aspiration (FNA) samples are being increasingly exploited for the 

prediction of treatment response, in particular in advanced-stage cancer patients before 

the initiation of systemic treatment.
1-6,8

 In 2009, Clark reviewing the current utilization of 

FNA-based molecular tests to inform targeted cancer therapy decisions, emphasized that 

FNAs were underutilized for such testing.
7
 Today, with the development of more sensitive 

molecular techniques together with the increased awareness of cytopathologists to meet 

oncologists’ requests has led to a widespread utilization of cytological samples to test a 

number of different oncogenes, including KIT, PDGFR, BRAF, EGFR, KRAS, NRAS, PIK3CA 

and others for somatic mutations, and to the recognition of this practice in standardized 

international biomarker testing guidelines.
1
  

As the talent to do more with less is a special gift in cytopathology, in which diagnostic 

material is so often limited, NGS may offer cytopathologists the significant opportunity to 

fully exploit the material that can be provided by cytological tumour sampling. 
9-24,33,34

 

Thus, genomics, having conventional and NGS as its central technologies, effectively 

interacts with modern cytopathology.
8
  

 

However, NGS is a new tool that should be implemented cautiously, especially on 

cytology.
24   

The potential of NGS to detect a very large number of possible alterations, i.e. 

the Cancer Mutation Hotspot Panel covers more than 2000 COSMIC mutations, makes it 

impossible to validate any single variant;
15

 thus, a careful validation strategy should focus 

on the main genetic alterations of diagnostic interest, evaluating indicators of test 

performance such as sensitivity specificity and, precision in an end-to-end setting on 

routine samples.
23 

As pointed out by Salto-Tellez et al.,
15

 the validation strategy for single 
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mutation assays, aiming for a 99% statistical sensitivity (with a 95% confidence interval) 

would require testing at least 100 specimens (or greater than 300 variants) for a NGS 

panel analysing a 20-kb region. It is difficult, however, to provide a sizable collection of 

cytological specimens, homogeneous for the source, type, fixation, staining and tumour 

cell enrichment modalities, with a known mutational status for clinically relevant genes.
5
   

Commercial formalin-fixed, paraffin-embedded (FFPE) multiplex reference standards can 

represent a solution, at least when validating NGS assays on cell blocks.
26

 

Establishing the minimum number of cells needed to allow a multigene massively parallel 

testing approach from cytology smears is also a crucial point.
23

 The studies that applied 

NGS to cytological material (Table 3) had usually a retrospective design and only samples 

that featured at least 20% of neoplastic cells are usually selected, which may not fully 

reflect current practice. In any case, sample requirement depends on target capture and 

platform types. Illumina NGS required 15,000 cells
25

 when following hybridation capture 

or 5000 cells
27

 when preceded by PCR-based capture whereas, Ion Torrent NGS needed 

between 100 and 1000 cells.
24,28
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As far as DNA input is concerned, Illumina NGS required from 50
25

 to 170
29

 ng, after 

hybridisation capture or 30 ng
27

 downstream of multiplex PCR. Conversely, Ion Torrent 

sequencing of PCR products only needs 10 ng of DNA and precisely 12 µl of diluted DNA 

at a concentration of 0.8 ng/µl.
18,24,30

  

Depth of coverage, average and uniformity of coverage should also be determined during 

the validation process. A high depth of coverage is especially important when the DNA 

input and the percentage of malignant cells are scant.
31

 For a variant call, a minimum 

coverage of 500X with at least a 10% mutant allele frequency is generally used as cutoff 

for a variant to be considered true.
30

 To examine the relationship between the 

percentage of amplicons adequately covered (500 reads) and cytological sample 

cellularity, we analysed using the Ion AmpliSeq Colon and Lung Cancer Panel 24 archival 

cytological samples (a single smear for patient), that had previously been sent to our 

referral laboratory for EGFR mutational testing. As reported in Figure 1, we observed that 

samples with less than 25% of neoplastic cells, mostly contributed (57%) to the group of 

cases with poorly covered amplicons and were less often associated (25%) with 

successfully amplicon-covered cases (Figure 2).  

 

Figure 1. Relationship between the percentage of amplicons adequately covered (500 reads) and cytological 

sample (n = 24) cellularity (5–25%; 25–50%; greater than 50%) is shown. Overall, 14 (58%) cases showed 

less than 50% of adequate covered amplicons; two (8%) samples showed between 50% and 70% adequately 

covered amplicons and eight (33%) samples showed greater than 70% of covered amplicons. Samples with 

less than 25% of neoplastic cells, mostly contributed (57%) to the group of cases with poorly covered 

amplicons and were less often associated (25%) with successfully amplicon-covered cases. 

 

 

Thus, as neoplastic cell-rich FNA procurement is the first and crucial step,
3
 on-site 

adequacy at the time of the procedure should be made for both morphological analysis 
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and molecular studies.
27,30

 Interestingly, several studies showed that Diff-Quik_ smears 

are as good as cell blocks and Papanicolaou for NGS testing without significant differences 

in the total number of reads, the percentage of reads mapping to the target region, or the 

coverage of target regions in the gene set.
29,30   

 

 

Figure 2. Representative examples of next-generation sequencing (NGS) performance (a–c) by the Ampliseq 

Colon Lung Cancer Panel on highly (d–e) and poorly (f–g) cellular lung cancer fine needle aspirations (FNAs). 

Efficient run parameters are shown by the Ion Torrent 316 chip high loading density (a) run metrics (b) and 

reads length of total cytological smears DNA barcoded libraries (c). The analysis of highly cellular smears (d) 

generated adequate (500 reads) coverage (e) for any of the 90 amplicons of the Colon Lung Cancer Panel. 

Conversely, a poorly cellular smear (f) is associated with insufficient amplicons coverage (g). 

 

NGS to increase assay sensitivity 

As it was also shown on small histological biopsies,
38

 NGS increased sensitivity to 

detect EGFR
36,37 

and KRAS
4
 mutations on paucicellular cytological samples, eluding direct 

sequencing false negative results and avoiding cumbersome microdissection.
4,36,39

 On 

bronchoalveolar lavages (BAL) and pleural fluids, Buttitta et al.
37

 correctly classified as a 
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mutant, 81% of specimens using NGS compared with only 16% of cases detected by 

Sanger sequencing. Similarly, in the multicentre study by de Biase et al.,
36

 the 454 NGS 

assays detected EGFR mutations on paucicellular lung cancer smears, that had been 

missed by Sanger sequencing.
4
 In the same way, on endoscopic ultrasound (EUS) guided 

pancreatic FNAs, 454 NGS had a higher sensitivity (73.6%) than Sanger sequencing 

(42.1%) to detect exons 2 and 3 KRAS mutations.
4
 It is noteworthy that in 20% of 

pancreatic cyst samples, despite the absence of diagnostic cells on the matched 

cytological specimens, a KRAS mutation was found by NGS.
4
 Similarly, Buttitta et al.

37 

using their highly sensitive assay were able to detect the presence of EGFR mutations 

even in five cytological samples, which had previously been deemed negative for 

neoplastic cells by morphological examination. In these cases, the presence of mutant 

alleles was limited only to 0.3–3.2% of the DNA molecules. The relevance of the 

preliminary validation of the threshold to reliably call a mutation cannot be 

overemphasised,
23

 while the clinical relevance of a true positive lowlevel mutation in 

terms of its real significance needs further investigation.
40 

 

NGS multigene testing to refine uncertain diagnoses 

The use of DNA mutational testing on thyroid cytological samples is a rapidly 

expanding practice currently useful to stratify further into high- and low-risk categories 

the indeterminate cytology classes identified by the Bethesda System.
56

  

Although molecular profiling of cells sampled by FNA is the principal field of application of 

NGS to diagnostic cytology, new directions are also envisioned for exfoliative cytology. In 

particular, NGS can be applied to a standard liquid-based Pap smear to test for oncogenic 

somatic mutations (APC, AKT1, BRAF, CTNNB1, EGFR, FBXW7, KRAS, NRAS, PIK3CA, 

PPP2R1A, PTEN and TP53) as a tool to detect early gynaecological malignancies, such as 

endometrial and ovarian cancer.
47 

 

 

NGS multigene testing to inform targeted therapy 

Driven by regulatory agencies’ requirements and professional society’s 

international guidelines, patient selection for targeted treatments is evolving to include a 

larger number of biomarkers aimed to personalize regimens even further. As an example, 

recently, the European Medicine Agency required, prior to anti-EGFR administration, to 
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test colon cancer patient for codons 12 and 13 in exon 2, codons 59 and 61 in exon 3, and 

codons 117 and 146 in exon 4 for both KRAS and NRAS.12 Similarly, lung cancer 

international guidelines extended EGFR testing also to exons 18 and 20.
48

  

Whereas FNA samples may be the only pathologic material obtained from advanced-

stage cancer patients available for targeted analysis before the initiation of systemic 

treatment, the evaluation of multiple biomarkers by NGS becomes mandatory.  

 

NGS in the cytological follow-up of targeted treatment 

In patients with a progressive neoplastic disease, targeted treatment is often 

based on the genotyping analysis of the archived primary tumour. This, however, does 

not necessarily reflect the patient’s current disease, that may feature the emergence of 

treatment-resistant subclones that might already be present at a minor frequency in the 

primary neoplasm. NGS can define the tumour ‘molecular phenotype’, discriminating 

whether mutations are present in the same population of cells or whether there is the 

existence of a dominant mutated neoplastic cell clone and a smaller neoplastic cell 

subsets carrying additional mutations.
53

 Considering only EGFR, de Biase et al.
36

 and 

Marchetti et al.
54

 showed the presence of a different subpopulation of cells harbouring 

different EGFR alterations. Scarpa et al.
24

 showed on a lung FNA that a major driver 

mutation (EGFR deletion in 73% of cells) coexisted with other variants displaying lower 

allele frequencies (TP53 in the 16% and MAP2K1 in 4% of cells). On indeterminate thyroid 

FNAs, Nikiforov et al. identified low level of KRAS, NRAS and TSHR gene mutations 

suggesting intra-tumour heterogeneity.
44

 A close follow-up with repeat thyroid FNA and 

molecular testing to monitor for the expansion of the mutated clone within the nodule 

may be relevant.
44

 Similarly, serial characterization of metastatic lesions through fine 

needle biopsy could be used to identify clonal evolution and to eradicate treatment-

emergent clones. Compared with unidirectional core needle biopsy, FNA samples may be 

more representative of the tumour owing to sampling of multiple areas.  

 

 Two studies were conducted to investigate the usefulness of  Ion AmpliSeq Cancer 

Hotspot Panel v2 for NGS of thyroid FNA samples in clinical application and of mouse 

xenograft FNA samples in research application.  
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3.1  Can the Ion AmpliSeq Cancer Hotspot Panel v2 be used for Next-

generation sequencing of thyroid FNA samples? 

 

Fine-needle aspiration (FNA) is the most accurate and cost-effective tool with 

which to evaluate thyroid nodules. The Bethesda 6-tiered reporting system has greatly 

improved the standardization of this diagnosis.
1
 However, the malignancy risk rates 

associated with the diagnostic classes that fall within the “indeterminate” categories 

(namely atypia of undetermined significance/follicular lesion of undetermined 

significance, follicular neoplasm/suspicious for follicular neoplasm, and suspicious for 

malignancy) significantly differ among institutions,
2–4

 thereby leading to ambiguity 

regarding the correct management of these patients. Molecular techniques may help to 

improve the diagnostic accuracy of indeterminate samples and thereby avoid the 

overtreatment of patients with benign nodules and increase the presurgical detection of 

malignancies.
5
 

The integrated genomic characterization of papillary thyroid cancer has reduced the 

percentage of thyroid cancers with unknown oncogenic mutations to 3.5%.
6
  In particular, 

it is now clear that the vast majority of thyroid cancers are either BRAF V600E-driven or 

RAS (NRAS, HRAS, or KRAS)-driven tumors. BRAF V600E-driven cancers are frequently 

papillary carcinomas of the classic type. Conversely, RAS-driven thyroid tumors are 

follicular patterned lesions (eg, follicular variants of papillary carcinoma, follicular 

carcinomas, and a subset of follicular adenomas). The RET gene usually is mutated in 

sporadic and familial medullary thyroid carcinoma.
6
 Thus, a test that is able to assess the 

mutational status of the BRAF, RAS, and RET genes on FNA could improve the 

preoperative risk assessment of thyroid nodules.
7
 In this context, the Ion Torrent PGM 

was reported to be suitable for the analysis of cytology specimens.
8
 

To our knowledge to date, the only NGS panel customized on PGM for the molecular 

diagnosis of thyroid cytology is ThyroSeq (CBLPath, Rye Brook, NY).
9–11 

However, this test 

is proprietary; it is centralized in the Division of Molecular and Genomic Pathology at the 

University of Pittsburgh Medical Center.
12

 Thus, the widespread implementation of 

ThyroSeq is not practical. As an alternative, several groups have used the Ion AmpliSeq 

Cancer Hotspot Panel v2 (CHPv2; Thermo Fisher Scientific Inc), a commercially available 

primer pool for sequencing generic cancer genes, including the BRAF, NRAS, HRAS, KRAS, 
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and RET genes.
13–16

 However, this approach is reported to have had a limited success rate. 

In fact, the requirement for at least 10 ng of DNA precluded the analysis of up to 49% of 

routine samples.
13–15

 Moreover, not all samples with adequate DNA produce a sufficient 

number of high-quality sequences and reportable results.
13–15

 In fact, as well as a low 

amount of DNA, the poor quality of the DNA also may preclude the success of NGS.
17 

 

In an attempt to increase the number of cases evaluable by CHPv2, we 

investigated whether it can be used for the NGS of “suboptimal” specimens, namely those 

containing a low amount of DNA and/or poor-quality DNA, and assessed the reliability of 

the results obtained with sequencing metrics that were less than optimal. To this end, we 

processed a retrospective series of thyroid FNA samples regardless of any pre-established 

criteria, and verified the NGS assessment of relevant thyroid cancer genes by 

pyrosequencing, which is an orthogonal sequencing platform widely used in the 

molecular diagnosis of thyroid cytology specimens.
18–20

 

 

3.1.1 MATERIALS AND METHODS 

To assess the performance of NGS and CHPv2 on routine thyroid FNA specimens, 

we selected 37 Diff-Quik stained smears from the cytopathology files of the University of 

Naples Federico II; the histological follow-up also was retrieved when available. The data 

set was enriched with malignant FNA specimens to increase the number of mutations. 

However, to avoid selection bias, we were blind to the cellularity of the slides examined. 

The smears were independently reviewed by 2 cytopathologists to verify the original 

diagnosis and the correct classification according to The Bethesda System for Reporting 

Thyroid Cytopathology.
21

 Any discrepancy was resolved by consensus review with a 

multiheaded microscope. A total of 22 samples were classified as malignant, 8 as 

suspicious for malignancy, 4 as follicular neoplasm/suspicious for follicular neoplasm, 2 as 

atypia of undetermined significance/follicular lesion of undetermined significance, and 1 

sample as benign. As far as the cellularity, by screening the whole slide at a magnification 

of 310, we categorized the study samples into 3 classes depending on the percentage of 

fields containing at least 25 to 50 cells: 1) poorly cellular (5%-25% of the total fields); 2) 

moderately cellular (25%-50% of the total fields); and 3) highly cellular (>50% of the total 

fields). Pyrosequencing was performed on 26 samples with residual DNA aliquot 
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availability at the Molecular Laboratory in the Division of Endocrinology and Nephrology 

at the University of Leipzig (Leipzig, Germany) to verify the variant call or wild-type status 

of the BRAF, NRAS, KRAS, HRAS, and RET genes. 

 

3.1.2 RESULTS 

Sequencing Performance 

NGS was feasible in the majority of cases (34 of 37 cases; 91.8%); only samples 17, 

25, and 29 failed. Samples 17 and 29 demonstrated a few on-target reads (21.24% and 

3.01%, respectively) and a low library concentration (1.29 ng/µL and 1.36 ng/µL, 

respectively) most likely due to DNA degradation (Figure 1). In particular, the BRAF, HRAS, 

NRAS, KRAS, and RET genes demonstrated a low number of reads (<10) in the majority of 

amplicons targeted by CHPv2 . Conversely, sample 25 yielded a sufficient library (>600 

ng/µL), and thus the NGS failure was most likely due to improper handling during 

barcoding or sample processing. The mean and median DNA yields of the successfully 

processed samples were 7.1 ng/µL and 5.5 ng/µL, respectively (range, 1.07-35.5 ng/µL). It 

is interesting to note that 20 of 34 successfully processed samples (58.8%) featured 

suboptimal DNA. In fact, in 1 sample (sample 12) the DNA concentration was below the 

requested concentration of 1.6 ng/µL, whereas 20 of 34 samples (including sample 12) 

had a 260/230 ratio<1, which indicates poor DNA quality due to organic contamination.  

 

 

 

Figure 1. Histograms representing the read distribution (count) per amplicon size (read length). Samples (A) 

17 and (B) 29 had a low number of reads distributed within a wide range of amplicon sizes; this may reflect 

DNA degradation. (C) Histogram of an “ideal” case. Note the distribution of a high number of reads in the 

expected amplicon size range (75-150 base pairs). 
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The cellularity in the successfully processed group was high in the majority of cases (23 of 

34 cases; 67.6%), moderate in 6 of 34 cases (17.6%), and scarce in 5 of 34 cases (14.7%). 

In the failed NGS group, 2 samples were moderately cellular and 1 sample had a high 

cellularity.  The postsequencing metrics (ie, the number of mapped reads, average base 

coverage,percentage of reads on target, and uniformmity of reads) are summarized in 

Table 1. 

 

 

 

Molecular Analysis 

BRAF, RAS, and RET somatic variants were identified in 22 of 34 samples. In 18 of 

these 22 samples (81.8%), DNA was available for pyrosequencing to verify the mutational 

calls (Table 2). Seventeen of 18 mutation calls (94.4%) were confirmed by 

pyrosequencing, whereas an uncommon BRAF mutation (P453T) was not confirmed in 

sample 3. No variants were called for the BRAF, RAS, and RET genes in the remaining 12 

cases. Among the latter, 6 of 8 cases (75%) with residual DNA were found to be wild-type, 

whereas the orthogonal sequencing of BRAF exon 15 in samples 11 and 36 demonstrated 

a V600E mutation (Table 2). Thus, with standard orthogonal sequencing, NGS and CHPv2 

were found to have a high sensitivity (89.4%), a moderate specificity (85.7%), and an 

accuracy of 88.4% for the BRAF, RAS, and RET genes. We also analyzed other genes that 

may be associated with aggressive behavior (eg, TP53 and PIK3CA) and we did not find 

any variants. 
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Discordant NGS/Pyrosequencing Test Results 

The results of NGS and pyrosequencing were discordant in samples 3, 11, and 36. 

In sample 3, the BRAF P453T mutation was detected only by NGS and not by 

pyrosequencing. An in-depth evaluation demonstrated that the amplicon was covered by 

only 9 reads, all bearing the P453T mutation (Fig. 2). Because the amount of DNA was low 

(4.88 ng/µL) and the number of PCR cycles had been increased, it is conceivable that a 

nucleotide misincorporation occurred during the first PCR cycle, and was homogeneously 

carried by all PCR molecules generated during subsequent cycles. Conversely, a BRAF 

V600E mutation was detected only by pyrosequencing in samples 11 and 36. A detailed 

analysis of these samples revealed a low BRAF exon 15 amplicon coverage; in fact, only 34 

and 56 reads, respectively, were available for samples 36 and 11. Notably, visual 

inspection of the corresponding BAM files demonstrated very a low abundance of the 

V600E mutation, which was not detected by the software. In fact, only 1 read in sample 
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11 and 2 reads in sample 36 carried the mutation. Last, V600E was identified in only 1 

strand in sample 36 (Figs. 3A and 3B). 

 

Figure 2. Visual inspection of the BAM file from case 3. The P453T substitution was detected on all 9 reads. 

However, this variant call most likely was an artifact because its coverage was low and it was detected 

mainly on the forward strand (blue reads). 

 

 

 
 

Figure 3. Visual inspection of BAM files from cases (A) 11 and (B) 36. In both cases, the amplicon coverage 

was low and the T1799A substitution was detected in only (A) 1 read and (B) 2 reads on the same strand 



32 

 

(green indicates reverse; blue, forward). Thus, these alterations were below the software requirements for 

variant calling. 

 

3.1.3 DISCUSSION 

To our knowledge to date, the use of NGS with CHPv2 to analyze cytology samples 

has been limited by the perception that only “ideal” samples, namely samples with 

abundant, high-quality DNA and satisfactory postsequencing metrics, could be 

processed.
13–15

 In the current study, we demonstrated that NGS also can be informative 

on routine smears that have suboptimal DNA quality and postsequencing metrics. There 

are different methods with which to determine DNA requirements for NGS, including 

qualitative and quantitative (functional) measurements such as quantitative PCR assays.
26

 

Despite a poor DNA quality revealed by NanoDrop in the majority of cases (58.8%), we 

were able to satisfactorily process approximately 91.8% of the specimens using NGS. This 

result expands previous experiences that have demonstrated the feasibility of suboptimal 

DNA cases on NGS.
14

 Thus, the Ion Torrent platform can be applied successfully to those 

samples yielding <10 ng of or low-quality DNA. Similarly, the stringent postsequencing 

metrics criteria (ie, mapped reads, average base coverage, amplicon reads, and mutant 

allele frequency) to report somatic variants ensure high accuracy but rule out many 

cases.
13–15

 As shown in Table 3, had we adopted rigid postsequencing metrics thresholds, 

the majority of the NGS results would not have been reported. Notwithstanding the 

suboptimal postsequencing metrics, approximately 94.4% of the variant calls in the 

relevant thyroid genes included in the current study were confirmed by pyrosequencing. 

CHPv2 is a generic cancer gene panel that, in addition to BRAF, RAS, and RET hotspot 

mutations, covers many other genes involved in thyroid carcinogenesis and malignant 

progression (ie, AKT1, APC, ATM, CTNNB1, PI3CKA, PTEN, RB1, and TP53).
6
 Thus, CHPv2 

could be a better rule-in test than targeted PCR-based commercial panels such as the 7-

gene panel test, which covers a limited, albeit informative, number of gene alterations 

(BRAF and NRAS/HRAS/KRAS point mutations and RET/PTC and PAX8/PPARg 

translocations). This test may be performed either by outsourcing the sample or in house 

using a commercially available kit distributed by EntroGen Inc (Los Angeles, Calif).
5
 

However, an important drawback of using a large NGS panel on cytology specimens is 

that coverage may not be evenly distributed across all clinically informative genes. 

Therefore, when applying CHPv2 to thyroid FNA samples, an adaptive validation approach 
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must be used to detect and report variants when either the entire sample library or a 

single amplicon do not reach the validated postsequencing metric thresholds.
27

 This 

strategy requires long-term monitoring of NGS results and frequent confirmation of 

variant calls using an orthogonal single-gene test, such as pyrosequencing, to implement 

NGS technology into the routine molecular diagnostics of thyroid FNA samples.
27

 It is 

interesting to note that the unsupervised variant calling of BRAF, RAS, and RET hotspots 

resulted in a high sensitivity and specificity, and an accuracy of 88.4%. However, this 

adaptive approach must include an expert “dry bench” operator to examine the 

sequencing data and the corresponding metrics on a case by-case basis, and integrate the 

results generated by informatics pipeline analysis with visual inspection of sequences. 

Indeed, in 3 samples in the current study, the discordance between NGS and 

pyrosequencing was resolved by visual inspection of the BAM files (Figs. 2 and 3), thereby 

highlighting a limited (<60 reads) BRAF amplicon coverage, largely below the thresholds 

reported in the literature.
13–15

 Thus, we can argue that a limited number of reads yielded 

in the amplicons of interest may led to a “reflex” confirmatory assay. However, in the 

setting of suboptimal specimens and when orthogonal validation could be not achieved, a 

statement specifying these limitations should be added to the final clinical report, in 

particular when dealing with wild-type findings. 

The current study, which was conducted to validate CHPv2 on NGS for the detection of 

gene mutations in thyroid FNA specimens, was enriched for malignant FNA samples. To 

our knowledge, the clinical role of this panel in indeterminate cases remains to be 

established, as well as in light of the recent proposal to reclassify encapsulated, 

noninvasive follicular variants of papillary carcinoma as a “noncancerous or premalignant 

neoplasm” (ie, “noninvasive follicular thyroid tumor with papillary-like nuclear features” 

or NIFTP).
28

 In fact, this reclassification appears to impact significantly on the risk of 

malignancy of the 3 indeterminate categories.
29

 The molecular alterations of NIFTP cases 

are typical of follicular patterned lesions (eg, NRAS, HRAS, and KRAS) and, when detected 

in patients with an indeterminate FNA diagnosis and low-risk ultrasonographic features, 

could lead to a limited surgical resection with no further treatment if the 

histopathological diagnosis is NIFTP.
30

 In conclusion, given the lack of a commercially 

available, thyroid-specific NGS gene panel, the CHPv2 cancer generic gene panel is a valid 

option for the molecular evaluation of thyroid FNA specimens. This approach is accurate 
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and effective, even when applied to routine cytology samples that do not meet stringent 

preanalytical (DNA input quality and quantity) and postsequencing requirements. 
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3.2  Next-generation sequencing and cytopathology in basic science 

 

FNA cytology is now a first-line diagnostic procedure in many nonneoplastic and 

neoplastic settings worldwide. Because it is easy to use and cost-effective, FNA also has 

become an essential tool in experimental pathology as an alternative to open biopsies 

and mouse necropsies, and as a means to sample human tumor mouse xenografts as well 

as mouse models of various types of human tumors. Cytopathologists were instrumental 

in translating FNA from the clinical setting to the laboratory. They encouraged 

investigators to handle experimental specimens using the sampling and processing 

procedures used in the cytology clinic. Today, this integrated approach is being developed 

even further, particularly in the field of cancer drug development. Indeed, with the 

widespread use of routine cytological samples to study molecular targeted therapies, 

cytopathologists are becoming increasingly familiar with the modern tools of genomics, 

and consequently interactions between cytopathologists and basic scientists have 

become more effective. Thus, from the simple detection of therapy-mediated protein 

changes in target signaling pathways,
1,2

 the application of NGS to mouse FNA extends the 

contribution of modern cytopathology to genomic biomarkers. 

 

3.2.1 CYTOLOGICAL SAMPLES OF PATIENT-DERIVED XENOGRAFTS 

The preclinical evaluation of novel cancer drugs is conducted in conditions that 

simulate clinical conditions with the highest possible fidelity. Patient-derived xenografts 

(“xenopatients”) are used to reproduce the spectrum of tumor heterogeneity and the 

complexity of signal transduction networks inherent to human neoplasms. To obtain 

these models, surgically resected tumor samples are engrafted directly into immune-

compromised mice and propagated through several generations to obtain numbers 

suitable for the evaluation of multiple treatments. The outcome of a given treatment can 

be predicted and monitored by serial FNA sampling of the tumor of the same animal 

before, during, and at the end of the experimental treatment. FNA biopsy is usually 

performed on mice after inhaled general anesthesia. However, this step is not necessary 

when using a fine needle (23-gauge to 25-gauge needle) to sample, for example, a 

subcutaneous flank mass. Before analysis, the first FNA pass is smeared onto glass slides 

that are stained with Diff-Quik and/or the Papanicolaou method for morphologic 
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assessment to ensure that a sufficient number of cells have been sampled and that 

necrotic areas have been avoided. Various techniques have been used to phenotype 

these cytological samples: flow cytometry, immunohistochemistry, immunofluorescence, 

and nanoimmunoassay. In particular, Diff-Quik-stained smears yielded highquality 

proteins that are required for studies of the phosphorylation status of enzymes involved 

in cell growth by Western blot analysis and enzyme-linked immunoadsorbent assays.
1,2

 

Thanks to these methodologies, ex vivo and in vivo sensitivity assays can be performed to 

predict and assess the efficacy of therapy in xenograft models of human cancer. 

 

3.2.2 NGS 

The recent emergence of several potentially therapeutic genomic targets raised 

the issue of accurate genomic annotation not only of patients, but also of preclinical 

models. Close interaction between investigators and molecular cytopathologists is crucial 

for profiling human tumor mouse xenografts on FNA samples. Cytopathologists can apply 

their expertise during FNA sampling, by fixing the mass with fingers of one hand, and 

radiating needle passes with the other to obtain a representative cellular sample. After 

sampling, Diff-Quik-stained smears are completely scraped because mouse DNA derived 

from contaminating benign cells does not affect the subsequent analysis. 

We recently implemented NGS on cytological samples for routine molecular diagnostics 

and research applications.
3,4

 A preliminary validation of the platform and of the test and 

informatics pipeline indicated that a magnification of 500 was the appropriate threshold 

of coverage (ie, the number of reads covering a given base position necessary to ensure 

reliable variant calling). On this basis, mouse FNAs can be sufficient for NGS mutational 

analysis. Figure 1 illustrates the molecular profiling of the HCC827 cell line (CRL2868; 

American Type Culture Collection, Manassas, Va) on mouse xenograft FNAs by the Hot 

Spot Cancer Panel (Life Technologies) performed on a Personal Genomic Machine 

platform (Life Technologies). The NGS of scraped Diff-Quik smears enabled the detection, 

with a coverage of greater than 3500, of the exon 19 epidermal growth factor receptor 

(EGFR) deletion (c.2236_2250del15, p.E746_A750delELREA) and of the exon 10 KIT point 

mutation (c.1621A>C, p.M541L) detected in the cell line before inoculation. Thus, NGS of 

mouse FNA samples was found to be as efficient as the procedure used to evaluate 

HCC827 cell culture-derived DNA. Because it is now possible to reliably define the   
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mutation status of cancer-related genes by performing NGS on mouse FNA samples, 

necropsy can be avoided.  

 
 

Figure 1. Next-generation sequencing profiling of Diff-Quik-stained mouse xenograft fine-needle aspiration 

samples. On the left is a hematoxylin and eosin-stained cell block section of the HCC827 cell line, which was 

grown in vitro. The extracted DNA, profiled using the Hot Spot Cancer Panel on a Personal Genome 

Machine platform, revealed an epidermal growth factor receptor (EGFR) deletion (c.2236_2250del15, 

p.E746_A750delELREA) in exon 19, and a KIT point mutation (c.1621A>C, p.M541L) in exon 10. The HCC827 

cell line was inoculated in 6 mice and the corresponding xenograft was sampled by fine-needle aspiration. 

The aspirated material was smeared and stained using Diff-Quik before whole-slide scraping for DNA 

extraction. The EGFR deletion and KIT mutation were detected in all instances as in the cell line before 

inoculation. In only one instance (top row, last 3 columns) was coverage less than 3500. 

 

In this setting, FNA also can be used to serially assess the genomic profile of the same 

animal in a dynamic fashion to determine whether a given experimental drug causes 

specific genomic alterations. This approach also can be implemented in co-clinical trials to 

monitor clonal dynamics during treatment and to eradicate treatment-emergent clones.  

In conclusion, the modern cytopathologist will become increasingly involved in research 

protocols, both to provide clinical expertise and to acquire knowledge that can be 

translated into the burgeoning world of molecular predictive medicine. 
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