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CHAPTER 1 

 

 

 

 

Introduction 



  

1 Introduction 

1.1 Bacterial spore formers 

Spore formers are organisms able to form an endospore (spore), a quiescent cell type with a peculiar 

structure that allows survival at harsh environmental conditions such as starvation, high temperatures, 

ionizing radiations, mechanical abrasion, chemical solvents, detergents, hydrolytic enzymes, desiccation, 

pH extremes and antibiotics (Nicholson, el al., 2000). These species commonly belong to two genera, 

Bacillus (aerobic) and Clostridium (anaerobic). In both cases the process of spore formation (sporulation) 

is induced by a variety of environmental conditions that limit cell growth and/or block DNA replication 

and occurs through a series of generally similar morphological changes. However, substantial differences 

in the regulation of the process and in the structure of the protective layers of the mature spore have been 

observed between various species (Onyenwoke et al., 2004; Paredes et al., 2005; De Hoon et al., 2010; 

Galperin et al., 2012). Genomic analysis have shown that a common set of 56 key sporulation genes are 

present in the genomes of all spore formers while an approximately additional 60 genes are found in all 

Bacilli but are absent in all Clostridia (Galperin et al., 2012). 

 

1.2 Sporulation 

The mechanism of spore formation has been finely characterized in the model species Bacillus subtilis. In 

response to nutritional starvation or a variety of environmental conditions that limit cell growth and/or 

block DNA replication, the intracellular levels of the master regulator Spo0A-P increase and the 

sporulation pathway is activated. The first morphological evidence of the induction of sporulation is the 

formation of an asymmetrically cell division septum that produces a large mother cell and a small 

forespore (figure 1). The mother cell contributes to the spore development and at the end of sporulation 

process will lyse releasing the spore in the environment. Soon after the asymmetric cell division, the 

septum membrane migrates around the forespore, that results surrounded by a double membrane as result 

of the engulfment process (figure 1). A series of protective layers (cortex, coat, crust and in some species, 

exosporium) are then synthesized in the mother cell cytoplasm and assembled around the forming spore. 

The cortex is a peptidoglycan layer chemically different from that of the vegetative cells that is deposited 

between the two membranes and is essential for the attainment and maintenance of the dehydrated state of 

the spore core, for spore mineralization and for dormancy (Henriques and Moran, 2007). Concomitantly 

with cortex formation, the proteinaceus coat is deposited around the outer surface of the outer membrane. 

Two major coat layers can be observed by electron microscope analysis: a darkly stained outer coat and a 

more lightly stained lamellar inner coat. At the end of the development process the mature spore is 

characterized by a dehydrated cytoplasm containing a condensed and inactive chromosome and 

surrounded by various protective layers. The final step is the lysis of the mother cell and the release of the 

formed spore. Because of such a peculiar structure the spore can survive in the absence of water and 

nutrients and in the presence of unfavourable conditions (extremes of heat and pH, UV radiations, 

solvents, hydrogen peroxide and lytic enzymes) for very long periods.  

When environmental conditions are suitable, the spore can germinate and there by convert back into a 

growing cell. When this occurs, first the spore core rehydrates and swells and then cortex and coat crack, 
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releasing the nascent cell that can eventually, re-sporulate (figure 1). The processes of sporulation and 

germination have been recently reviewed (Higgins and Dworkin, 2012; Dworkin and Shah, 2010). 

 

1.3 Genetic control of sporulation 

The sporulation represents an example of cell differentiation in bacteria because two cells with an 

identical chromosome, the forespore and the mother cell, follow different gene expression programmes. 

The main mechanisms responsible for the establishment of cell-specific and time specific gene is due to 

sequential appearance of four transcription factors, called sigma factors, alternate to σ
A
 factor active 

during vegetative life (σ
F
, σ

E
, σ

G
, σ

K
), which bind to core of RNA polymerase and direct it to transcribe 

only from promoters of sporulation genes (spo genes), (Losick and Stragier, 1992). 

Two of these sigma factors (σ
F
 and σ

G
) are specifically expressed in the forespore and two (σ

E
 and σ

K
) are 

Figure 1: schematic representation of sporulation and germination in Bacillus subtilis. 

Figure 2: Criss-cross regulation. The thin arrows indicate the transcriptional control in the two different 

cells, while the thick arrows indicate the three checkpoints that coordinate the gene expression of one 

cell with the  orphological changes of the other. 
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only expressed in the mother cell determining a differentiated gene expression in the two cell 

compartments. Anyway, the gene expression in one cell is coordinated with the gene expression in the 

other one. According to the criss-cross model (figure 2), σ
F
 in the prespore is responsible of the activation 

of the gene coding for σ
G
 in the same compartment but also of σ

E
 in the mother cell. Similarly σ

E
 in the 

mother cell, is responsible of the expression of σk but also activates σ
G
 in the prespore that in turn 

activates the last sigma factor, σ
k
 in the mother cell. This model, confirmed by several experimental data, 

ensures the spatially and temporary controlled activation of the four sigma factors that causes the 

formation of a cascade of gene expression that guides the spore development. 

 

1.4 Germination and outgrowth  

The spore is a metabolically inactive cell but remains able to sense the presence of nutrient thanks to the 

presence of specific sensors recognizing mainly amino acids and sugars, located in the inner membrane 

(Hornstra et al., 2005). 

When the environmental conditions became favorable to the vegetative growth, the spore is able to 

germinate, returning to active growth. The process is called germination and is an irreversible process 

(Parker et al., 1996) that involves a series of morphological and biochemical changes that lead to 

degradation of the spore layers, cytoplasm rehydration and loss of spore dormancy and resistance. The 

germination takes few minutes to complete and is followed by the cell enlargement process termed 

outgrowth. The amino-acids necessary for the protein synthesis during the outgrowth are provided by the 

degradation of the coat components and of the SASP (Small Acid Soluble Proteins, DNA binding 

proteins responsible for UV resistance). In laboratory conditions, the germination is efficiently induced 

by L-alanine or L-asparagine and a mixture of molecules known as GFK (glucose, fructose and KCl). The 

correct assembly of the coat is important to guarantee proper germination efficiency.  

 

1.5 Spore Structure  

The bacterial spore is characterized by a core surrounded by several layer that in sequence are: the inner 

membrane, the cortex, the outer membrane, the spore coat and the spore crust (Figure 3). The core is the 

innermost part of the spore. It contains the spore cytoplasm with all cellular components, such as 

cytoplasmic proteins, ribosomes and DNA associated to a large amount of Small Acid Soluble Proteins 

(SASPs) which protects the DNA against many types of damage. The core cytoplasm has a water content 

of only 30 – 50 % instead of the 70 – 88 % of the vegetative cytoplasm (Setlow, 1994). This dehydratated 

state plays an important role in spore longevity, dormancy and resistance. The core is surrounded by the 

inner membrane, containing the germination receptors, that in turn is surrounded by the cortex, a 

modified peptidoglycan layer. The cortex is important for the maintenance of spore core dehydration, 

resistance and dormancy. The outer membrane, the second membrane layer that derives from the 

engulfment process and that has opposite polarity with respect to the inner membrane. The most external 

structure of the spore is the coat, a complex multilayered structure composed of more than 70 proteins, 

which plays roles in spore resistance, germination, and apparently possesses enzymatic functions that 

may possibly permit interactions with other organisms in the environment. It consists of two main layers 

(Figure 3): the inner layer (IC, thick 20 - 40 nm) is formed by the juxtaposition of three to six lamellae 
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aligned along the periphery of the spore, and the outer layer (OC, thick 40 - 90 nm) that appears more 

electrons dense. Another recently characterized layer is the crust (Cr) mainly composed by glycoproteins 

(McKenney et al., 2010).  

It has been proposed that the crust could represent a rudimentary exosporium, a layer found in other 

Bacillus species such as B. antracis and B. megaterium (see figure 3 of chapter 5, pag 76). This 

glycosylated layer is intimately connected to the rest of the coat and both coat layers are packed closely 

together and appear thicker at the spore poles and thinner along its sides (Driks, 1999). Till date it was 

shown that CgeA, CotZ and CotY are major structural components of the crust (Imamura et al., 2011).  

About the exosporium, some features have been elucidated in the species of the Bacillus cereus group, 

B.cereus, B. anthracis, and B. thuringiensis (Terry et al, 2017; Maes et al, 2016). It is composed of an 

external hair-like nap and a paracrystalline basal layer and it contains approximately 20 different proteins 

(Steichen et al, 2003; Steichen et al 2005; Redmond et al., 2004), which are deposited around the spore 

in a progressive encasement process (Qi Peng et al. 2016) . The exosporium acts as the outer permeability 

barrier of the spore and contributes to spore survival and virulence.  

 

1.6 Regulation of coat assembly  

Analysis of localization of various coat proteins and their timing of appearance, suggest that the assembly 

of the layers does not occur from inner to outer, but that it is under a complex control mechanism acting 

at two levels: the transcriptional level, controlling the temporal synthesis of the various proteins; and at 

the post-translational level, with the involvement of a series of morphogenetic proteins controlling the 

assembly of other coat components. Moreover a series of post-translational modifications, including 

phosphorylation and glycosylation, have been reported to occur (Driks et al., 1994; Ricca et al., 1997). 

 

1.6.1 Transcriptional regulation of cot genes 

Coat assembly is mainly a function of the mother cell and covers a period of about 6 hours, beginning 

with asymmetric division of the sporangial cell. Thus, the expression of genes coding for coat 

components (cot genes) is under the control of the two sigma factors that regulate the mother cell gene 

expression: σE and σK; in addiction, three DNA binding proteins, SpoIIID, GerR and GerE, act as 

transcriptional regulators, activating and/or repressing the gene expression in the mother cell. Due to the 

action of these transcriptional factors it is possible to identify four classes of cot genes (Figure 4). The 

gene expression program in the mother cell compartment involves the activation of 383 genes that 

Figure 3: Bacillus subtilis spore ultrastructure. The figure shows the spore core (Co), the cortex 

peptidoglycan layer (Cx), the inner coat (IC) and the outer coat (OC) and the crust (Cr) (McKenney et 

al, 2010). 
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represent about 9% of Bacillus subtilis genome. The first transcription factor acting in the mother cell is 

σE
 that is responsible of the expression of genes coding for the coat morphogenetic proteins SpoIVA and 

SpoVID, and for the transcriptional factors SpoIIID and GerR. SpoIIID acts together with σE to repress or 

to activate the gene expression while GerR, seems to work only as a repressor of σE
 –activated genes 

(Eichenberger et al., 2004). After engulfment, σK is activated and directs the expression of a large group 

genes coding for the other coat proteins (Figure 4). The σK
 –controlled regulon is composed of cotA, cotD, 

cotF, cotH, cotM, cotP, cotT, cotV, cotW, cotY, and cotZ. The transcription factor gene gerE is also part 

of this regulon. GerE works in conjunction with σK
 to activate a final regulon comprising the genes cotB, 

cotC, cotG, cotV, cotW, cotX, cotY, and cotZ. GerE can act as repressor or activator of the expression 

some σK
 –controlled genes. It down regulates cotA and cotM and activates cotD,cotG, cotV, cotW, cotX, 

cotY, and cotZ. A further level of complexity in the control of mother cell gene expression comes from a 

feedback-like regulation in which late regulatory events modulate ones that were initiated earlier.  

For example, σK down regulates transcription of the gene encoding σE, thereby helping to terminate 

expression of σE–directed genes. GerE is also able to down regulate the activity of σK (Zhang et al. 1999). 

The production of the spore coat proteins in the correct cellular compartment and at the proper time is 

critical to the formation of the coat. Mutants in which the timing of σK
 activation is altered and the coat 

components of classes III and IV, are synthesized one hour earlier than in the wild type cells, produce 

spores impaired in their germination efficiency (Cutting et al., 1991; Ricca et al., 1992). 

 

 

1.6.2 Post-translational regulation of Cot proteins assembly  

The coat assembly is also regulated by the action of proteins with morphogenetic activity, i.e. structural 

coat components that control the assembly of other coat components within the coat layers without 

influencing their structural gene expression. The most important morphogenetic proteins are: SpoIVA, 

SpoVID, CotE and CotH and are all produced in the mother cell compartment (Driks et al., 1994; Ricca 

Figure 4: Program of mother cell gene expression 
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et al., 1997). SpoIVA is produced in the mother cell early in sporulation, under the control of σ
E
 and is 

essential for the assembly of both the spore cortex and the coat layers. SpoIVA localizes at near to the 

mother cell surface of the septum and at later stages, following engulfment of the forespore by the mother 

cell, the protein forms a shell that surrounds the forespore. Studies from Ramamurthi and Losick (2008) 

have demonstrated that SpoIVA is an ATPase and that this activity allows itself assembly. It has been 

proposed that two interaction sites are involved in SpoIVA assembly: one is used for ATP-dependent 

polymerization, and the second for lateral interactions between the polymers. Localization of SpoIVA 

marks the forespore outer membrane for its use both in the synthesis of the cortex (below) and as the site 

of coat attachment (above). Mutants carrying a spoIVA null allele, show a coat correctly formed with 

inner and outer parts but dispersed in the mother cell cytoplasm and not assembled around the forespore 

(Roels et al., 1992; Stevens et al., 1992). So its role is probably to attach the coat to the forespore surface 

from the mother cell side (Driks et al., 1994). SpoIVA is also required for the proper localization of 

another key morphogenetic protein, SpoVID (Beall et al., 1993), to the surface of the developing spore. 

SpoVID governs a morphogenetic transition, called spore encasement, using a N-terminal that seems to 

be essential to form multimeric structures (Wang et al., 2009). spoVID mutants like spoIVA mutants, have 

a spore coat dispersed in the cytoplasm. The proper localization of SpoIVA to the forespore outer 

membrane is a prerequisite also for the localization of another morphogenetic protein, CotE (Zheng et al., 

1990). CotE is a 24 kDa protein found in several Bacillus species and also in a Geobacillus and an 

Oceanobacillus (Henriques and Moran, 2007). Expression of cotE relies on two promoters, designed P1 

and P2. Transcription from P1 initiates soon after the asymmetric division and is turned off by the 

repressive action of SpoIIID. Transcription from P2 appears to be under the joined control of σ
E
 and 

SpoIIID, but remains active also after the activation of σ
K
, to be repressed in the final stages of 

sporulation by GerE (Costa, et al., 2006). CotE localizes about 75 nm from the forespore outer membrane 

and then encircles the engulfed forespore. Electron microscope analysis has shown that cotE mutants 

totally lack the outer coat layer (Zheng et al., 1990). The region delimited by the SpoIVA and the CotE 

rings is referred as matrix or precoat. The precoat is of unknown composition, but it most likely contains 

proteins that are synthesized early and recruited under SpoIVA control. Probably the inner coat proteins 

assemble in the space between CotE and the forespore surface, forming the inner lamellar layer (Driks, et 

al., 1994). Instead, the outer coat proteins assemble simultaneously around the CotE layer to form the 

electron dense outer layer (Figure 5). Assembly of the outer coat involves the cooperation between CotE 

and an additional morphogenetic protein CotH (Naclerio et al., 1996). A mutagenesis study has revealed 

that CotE has a modular structure with a C-terminal domain involved in directing the assembly of various 

coat proteins, an internal domain involved in the targeting of CotE to the forespore, and the N-terminal 

domain that, together with the internal domain, directs the formation of CotE homo-multimers (Little and 

Driks, 2001). Also Krajcikova et al. (2009) confirmed CotE multimerization, moreover it was 

demonstrated that CotE physically interacts with many other spore coat components (Kim et al., 2006, 

Figure 6) and is essential for formation of CotC-CotU hetero-oligomers (Isticato et al., 2010).  
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CotH is a 42.8-kDa protein found in several Bacillus and also in some Clostridium species (Henriques 

and Moran, 2007). CotH plays a morphogenetic role in the assembly of at least 9 other coat components: 

CotB, CotC, CotG, CotS, CotSA, CotQ, CotU, CotZ and YusA (Kim et al., 2006, Zilhao et al., 2004) and 

in the development of the lysozyme resistance and the germination efficiency of the mature spore 

(Naclerio et al., 1996, Zilhao et al., 1999). Moreover, CotH directs deposition of a subset of the CotE-

dependent coat proteins and is, itself, at least partially CotE dependent (Naclerio et al., 1996; Zilhao et 

al., 1999; Little and Driks, 2001). CotH may function in part in the mother cell cytoplasm, perhaps as a 

protease inhibitor or as a chaperone (Baccigalupi et al., 2004; Isticato et al., 2004), as far as it is required 

for the stabilization of CotG and CotC. Its important role in protein assembly during late stages of 

sporulation was observed also in TEM images, which reveal that absence of CotH severely affects spore 

surface (Figure 7). 

 

The structural gene coding for CotH is clustered together with cotG on the Bacillus subtilis chromosome 

that is divergently transcribed (Naclerio et al., 1996, Giglio et al, 2011). CotG is another morphogenetic 

protein important in late stages of sporulation. It is a 24 kDa protein produced in the mother cell 

compartment of the sporangium around hour 8 of sporulation under the control of the mother cell specific 

Figure 5: spore coat assembly model 

Figure 6: Model of the coat protein interaction network. An arc of the spore coat is indicated; E is CotE. 

The interior of the spore is to the right of the diagram. The inner and outer coat layers are indicated, as 

well as the outside of the spore (on the left). Directions of the arrows indicate the assembly 

dependencies. In some cases, the dependencies are partial. A double line indicates that the dependency 

was detected by fluorescence microscopy. A thicker line indicates that the dependency was detected by 

SDS-PAGE, but not by fluorescence microscopy. A dashed line indicates that the dependency was 

detected by SDS-PAGE. (Kim, et al., 2006). 
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factor σ
K
 and of transcriptional regulator GerE. The cotG expression is indirectly controlled by another 

transcriptional regulator GerR, through the activation of SpoVIF, which positively acts on GerE and on 

GerE-dependent genes (Cangiano et al., 2010). CotG is assembled around the forming spore as two main 

forms of about 32 and 36 kDa. The 32-kDa form most likely represents the unmodified product of the 

cotG gene (24 kDa) whose abnormal migration may be attributed to its unusual primary structure 

characterized by the presence of 7 tandem repeats of 7 and 6 amino acids followed by 5 repeats of 7 

amino acids (Giglio et al., 2011). It has been proposed that the modular structure of cotG is the outcome 

of several rounds of gene elongation events of an ancestral module (Giglio et al., 2011). It is interesting to 

note that in all CotG-containing Bacilli CotG has a modular structure although the number and the length 

of the repeats differ in the various microorganisms (Giglio et al., 2011). The other CotG form of 36-kDa 

could be due to extensive cross-linking of the protein as it is assembled into the spore coat. That CotG is 

able to form cross-linked forms has been suggested on the basis of the analysis of the coat structure in 

sodA mutant cells (Henriques et al., 1998). Spores produced by cotG mutants are not affected in their 

resistance to lysozyme or germination properties (Sacco et al., 1995). CotG strictly requires cotH 

expression for its assembly and none of the CotG forms is assembled in the coat of cotH spores (Naclerio 

et al., 1996). CotG has also a morphogenetic role on the assembly of CotB and controls the conversion of 

the CotB-46 form into the mature form of 66 kDa (CotB-66) extracted from wild type spores (Zilhao et 

al., 2004). The interactions between various coat components, inferred only on the base of by genetic 

dependence, form a complex network and are schematically reported in Figure 6 (Kim et al., 2006). 

 

 
 
 

1.7 Bacterial Spores as Biotechnological tool  

The bacterial spore has been proposed as a platform to display heterologous proteins, with potential 

applications ranging from the development of mucosal vaccines to re-usable biocatalysts, diagnostic 

tools, and bioremediation devices (Knecht et al., 2011; Isticato and Ricca, 2014; Ricca et al., 2014). 

The remarkable and well documented resistance of the spore (McKenney et al., 2012), the amenability of 

several spore-forming species to the genetic manipulation (Harwood and Cutting, 1990) and the safety 

record of several species (Cutting, 2011) support the use of the spore as a display and delivery system. 

Two strategies have been developed to display heterologous proteins on the spore surface and Bacillus 

Figure 7: EM analysis of spores purified from wild-type strain (A) and congenic cotH deletion mutant (B) 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B4
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subtilis has been used as model. A recombinant strategy, based on the construction of gene fusions 

between DNA coding for a selected spore surface protein and DNA coding for the protein to be 

displayed, has been used over the years to display a variety of heterologous proteins (Isticato and Ricca, 

2014). The strains carrying the gene fusions are induced to sporulate and the chimeric proteins formed by 

a structural component of the spore coat and a heterologous part are naturally assembled on the surface of 

the forming spore as spore coat components. With this approach a variety of antigens and enzymes have 

been successfully exposed on the spore surface permitting to propose the recombinant spore as mucosal 

vaccine or nano catalyzer.  

However this promising strategy has as huge drawback the release into nature of the genetically modified 

microorganisms. Recently, to overcome this obstacle, a non-recombinant approach has been proposed. It 

is based on the spontaneous adsorption between purified spores and purified proteins and it appears 

particularly well suited for applications involving the delivery of active molecules to human or animal 

mucosal surfaces.  

The first evidence suggesting that heterologous proteins can be spontaneously adsorbed on the spore 

surface comes from a study by Yim et al. (2009). They over-expressed in Bacillus subtilis the gene 

coding for NADPH-cytochrome P450 reductase (CPR) and induced the cells to sporulate. Purified spores 

contained the enzyme attached on the surface and showed CPR activity. This result suggested that the 

spore is able to bind heterologous proteins and that they conserve the proper conformation. Using the beta 

galactosidase as model enzyme (Sirec T. et al. 2012) it has been shown that the binding efficiency is pH-

dependent and that the immobilized enzyme is more stable respect to the soluble form (unbound sample). 

The same non-recombinant approach has been successfully used also to bind antigenic molecules 

obtaining spores able to induce specific and protective immune responses in mice (Huang et al., 2010).  

The molecular mechanism at the base of spores ability to bind external proteins is not well understood. It 

has been proposed that hydrophobic and electrostatic forces are involved in the process. Experiments 

performed with the beta galactosidase enzyme indicated that Bacillus subtilis spores lacking the 

outermost structures, the crust and the outer coat layer, have an adsorption efficiency even higher than 

wild type spores, suggesting that those structures, mainly formed by proteins and glycoproteins, have an 

inhibitory effect on the adhesion. 
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Outline of the Thesis 

This PhD Thesis reports the results of my research work in the laboratory of Prof. Loredana Baccigalupi 

at the Department of Biology of the Federico II University of Naples, Italy. During these three years I 

focused on two bacteria of the same genus, Bacillus subtilis and Bacillus megaterium. These organisms 

are Gram-positive, aerobic, spore formers and, therefore, share the ability to undergo a complex 

developmental cell differentiation process and produce highly resistant spores (Tan IS and Ramamurthi 

KS, 2014). As reported in the Introduction, the process is induced by unfavorable environmental 

conditions and starts with an asymmetric cell division that produces a large mother cell and a small 

forespore. The mother cell contributes to forespore maturation and undergoes autolysis at the end of the 

process, allowing the release of the mature spore into the environment. The peculiar structure of the 

spore, characterized by a dehydrated cytoplasm surrounded by various protective layers, is responsible of 

the resistance of the spore to extremes of heat and pH, to UV radiations, and to the presence of solvents, 

hydrogen peroxide and lytic enzymes. In the presence of water, nutrients and favorable environmental 

conditions the mature spore can germinate generating a cell able to grow and, eventually, to re-sporulate 

(Setlow P., 2003).    

Spore resistance is in part due to the presence of the spore coat, a multilayered structure composed of 

more than 70 proteins that surrounds the spore (McKenney et al. 2013). The biogenesis of the spore coat 

is finely regulated at multiple levels as reported in chapter 1 (paragraph 1.6 of the Introduction) and 

represents an interesting model system to study mechanisms of gene expression and of protein-protein 

interaction in bacteria. 

The spore surface of the two bacterial species I used for my PhD work, substantially differs from each 

other for the presence around the spore of B. megaterium of an exosporium, a poorly characterized 

outermost spore layer not present around the B. subtilis spore. Furthermore, while B. subtilis is the model 

system for spore formers and the surface of its spore is extremely well characterized, not much is known 

about the surface of the B. megaterium spore. 

My PhD project focuses on the molecular characterization of the spore surface of these two bacterial 

species. This Thesis is organized in two parts: the first part, Chapters 2-4, focuses on the role of three 

coat components, CotG, CotH and CotE, in the assembly of the spore coat in Bacillus subtilis. The 

second part, Chapters 5 and 6, focuses on the spore coat of B. megaterium and on the use of its spore as a 

platform to display heterologous proteins. 

In particular, CHAPTER 2, focuses on the coat proteins CotH and CotG. Previous work in prof. 

Baccigalupi's lab showed that the structural genes coding for these two proteins are adjacent but divergent 

on the B. subtilis chromosome and that cotG is entirely contained between the promoter and the coding 

part of cotH (Giglio et al., 2011). A consequence of this peculiar gene organization is that all so far 

characterized knock-out cotG mutants were also impaired in cotH expression and were then double cotG 

cotH mutants. Therefore, I decided to construct a cotG mutant in which cotH expression was not affected. 

The analysis of the single cotG mutant and of the cotG cotH double mutant showed that CotG negatively 

affects the efficiency of spore germination and the assembly of at least three outer coat proteins, CotC, 

CotU and CotS. However, this negative action of CotG is counteracted by CotH suggesting that the two 

proteins have an antagonistic role. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ramamurthi%20KS%5BAuthor%5D&cauthor=true&cauthor_uid=24983526
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ramamurthi%20KS%5BAuthor%5D&cauthor=true&cauthor_uid=24983526
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Data reported in Chapter 2 have been published in 2014:  

Saggese A., Scamardella V., Sirec T., Cangiano G., Isticato R., Pane F., Amoresano A., 

Ricca E., Baccigalupi L. 2014. Antagonistic role of CotG and CotH on spore 

germination and coat formation in Bacillus subtilis. PLoS ONE 9(8):e104900. 

 

In CHAPTER 3, I addressed a different aspect of CotG. This protein has a peculiar primary structure, 

characterized by a central region formed by positively charged and random coiled tandem repeats. CotG 

is not widely conserved in spore formers but it is only present in 3 Bacillus and 2 Geobacillus species 

(Giglio et al., 2011). I performed a more accurate bioinformatic analysis of the genomes of all entirely 

sequenced Bacillus species and observed that they all encode a CotG-like protein. These proteins do not 

have a conserved amino acid sequence with respect to CotG of B. subtilis but they all share the same 

structural properties: a modular organization with the central module composed of random coiled repeats 

of positively charged amino acids. In order to understand the role of these modules, I constructed and 

analyzed a series of deletion mutants lacking only one or two of the modules of CotG. The analysis of 

these mutants allowed me to conclude that the external C- and N-terminal modules are sufficient to 

ensure CotB maturation and that the central module is essential for the CotG negative effect on 

germination and CotC, CotU and CotS assembly (see Chapter 2). Data reported in Chapter 3 have been 

published in 2016:  

Saggese A., Isticato R., Cangiano G., Ricca E. and Baccigalupi L. 2016. CotG of 

Bacillus subtilis is a modular protein of spore forming Bacilli. J Bacteriol.  

198(10):1513-20. 

 

In CHAPTER 4 I focused on CotH and on its interaction with a major morphogenetic regulator of the spore 

coat assembly, CotE (Zheng L. et al. 1988). Previous studies have demonstrated that CotE regulates CotH 

assembly which in turn controls the assembly of at least nine outer coat proteins (Naclerio et al., 1996; 

Zilhao et al., 1999). I have observed that CotH also controls the assembly of CotE and this mutual 

dependency is due to a direct interaction between the two proteins. A collection of cotE deletion mutants 

were first used to show that the C terminus of CotE is involved in the interaction with CotH. Then, the C 

terminus of CotE has been dissected and new mutants constructed to precisely define the amino acids of 

CotE involved in the interaction with CotH. Data reported in Chapter 4 have been published in 2015:  

Isticato R., Sirec T., Vecchione S., Crispino A., Saggese A., Baccigalupi L., Notomista 

E., Driks A. and Ricca E. 2015. The direct interaction between two morphogenetic 

proteins is essential for spore coat formation in Bacillus subtilis. PLoS ONE.  

10(10):e0141040. 

 

In CHAPTER 5 I analyzed the spore coat of B. megaterium SF185, a strain isolated from ileal biopsy of 

human volunteers (Fahkry et al., 2008). A spore surface protein was selected for its relative abundance, 

its N-terminal sequence was determined and the coding gene identified by reverse genetics. To study the 

function of this protein I constructed a knock out mutant and analyzed the mutant spores by thin section 

electron microscopy (TEM). Mutant spores presented a normal spore structure but totally lacked the 

exosporium, therefore suggesting that the abundant protein plays an essential role in exosporium 

formation. To perform some experiments of this part of my Thesis work I visited for three months the 

laboratory of Prof. Graham Christie at the Department of Chemical Engineering and Biotechnology of the 
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University of Cambridge, UK, a leader in the genetic manipulation of B. megaterium.  

A manuscript reporting these results is in preparation. 

 

In CHAPTER 6 I used the spores of B. megaterium to verify if they can be used as a platform to display 

heterologous proteins. The B. subtilis spore has been extensively characterized as display system by both 

a recombinant (Isticato and Ricca, 2014) and a non-recombinant approach (Ricca et al., 2014). Cells and 

spores of B. megaterium are significantly larger than those of other species, including the model species 

B. subtilis (Di Luccia et al.  2016). In addition, spores of B. megaterium are surrounded by an 

exosporium, a poorly characterized structure composed of proteins and carbohydrates (Di Luccia et al.  

2016). Aim of this part of my Thesis was to verify whether spores surrounded by an exosporium were 

able to display heterologous proteins like spores that do not have such additional surface layer (B. subtilis 

spores). To this focus I followed the non-recombinant display approach and used the monomeric form of 

the Red Fluorescent Protein (mRFP) of the coral Discosoma sp. (Campbell et al., 2002) as a model 

heterologous protein. Non-recombinant adsorption of mRFP to spores was monitored by western- and 

dot-blotting and by fluorescence microscopy. My results showed that B. megaterium spores were more 

efficient than B. subtilis spores in tightly adsorbing mRFP with over 100 g of mRFP adsorbed by each 

spore. I found that the exosporium of B. megaterium is permeable to mRFP molecules that infiltrates 

through it and fill up the space between the outercoat and the exosporium. These data propose the B. 

megaterium spore as an ideal vehicle to bind and deliver heterologous proteins.  

Data reported in Chapter 6 have been published in 2016:  

Lanzilli M., Donadio G., Addevico R., Saggese A., Cangiano G., Baccigalupi L., 

Christie G., Ricca E. and Isticato R. 2016. The exosporium of Bacillus megaterium QM 

B1551 is permeable to the red fluorescence protein of the coral Discosoma sp. Front. 

Microbiol. 7:1752. 
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2.1 Abstract 

Spore formers are bacteria able to survive harsh environmental conditions by differentiating a specialized, 

highly resistant spore. In Bacillus subtilis, the model system for spore formers, the recently discovered 

crust and the proteinaceous coat are the external layers that surround the spore and contribute to its 

survival. The coat is formed by about seventy different proteins assembled and organized into three layers 

by the action of a subset of regulatory proteins, referred to as morphogenetic factors. CotH is a 

morphogenetic factor needed for the development of spores able to germinate efficiently and involved in 

the assembly of nine outer coat proteins, including CotG. Here we report that CotG has negative effects 

on spore germination and on the assembly of at least three outer coat proteins. Such negative action is 

exerted only in mutants lacking CotH, thus suggesting an antagonistic effect of the two proteins, with 

CotH counteracting the negative role of CotG.  

 

2.2 Introduction  

Spore formers are Gram-positive bacteria belonging to different genera and including more than 1,000 

species [1]. The common feature of these organisms is the ability to differentiate a spore, a dormant cell 

type that can survive for long periods in the absence of water and nutrients and resisting to a vast range of 

stresses (high temperature, dehydration, absence of nutrients, presence of toxic chemicals) [2]. When the 

environmental conditions ameliorates the spore germinates originating a cell able to grow and eventually 

sporulate [3]. Spore resistance to lytic enzymes and toxic chemicals is in part due to the presence of the 

spore coat, a multilayered structure composed by more than 70 proteins that surrounds the spore [4, 5]. 

Development of the mature spore is finely controlled through different mechanisms acting at various 

levels. The synthesis of coat proteins (Cot proteins) is regulated by a cascade of transcription factors 

controlling the timing of expression of their structural genes (cot genes) while coat assembly is controlled 

by a subset of Cot protein with a morfogenetic role [5]. Among the morphogenetic proteins, CotH plays a 

role in the assembly of at least 9 other coat components, including CotG, CotC/U and CotS, [6-9]. In 

addition, CotH contributes to the formation of spores able to germinate efficiently and to resist to 

lysozyme treatment [9]. CotH action is strictly connected with that of the major outer coat regulator CotE 

and mutant spores lacking both CotH and CotE germinate less efficiently and showed an increased 

sensitivity to lysozyme than single cotE null spores [9]. A recent report has shown that, when over-

expressed, CotH bypasses the requirement for CotE, and suggests that CotE acts by localizing CotH on 
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the spore coat and thus allowing its activity. In the presence of high CotH concentrations, due to the gene 

over-expression, CotH does not require CotE anymore and is able to drive the assembly of CotH-

dependent proteins in a CotE-independent way [10].  

The cotH structural gene is clustered with two other cot genes: cotB, transcribed in the same direction, 

and cotG divergently oriented with respect to cotH. A recent paper [11] has shown that the cotH promoter 

maps more than 800 bp upstream of its coding region, that this region is not translated and entirely 

contains the divergently transcribed cotG gene. A direct consequence of this peculiar chromosomal 

organization is that cotG insertion/deletion mutations so far analyzed [12], should also affect cotH 

expression leading to double cotG cotH mutants. If this is the case, then, the role of CotG has never been 

studied in an otherwise wild type strain and induces us to reconsider some previously reported results. 

Indeed, cotG spores have been previously reported as identical to isogenic wild type spores for both 

germination efficiency and lysozyme-resistance [12], while cotH spores have been shown to be about 

35% less efficient than isogenic wild type spores upon induction of germination [8]. However, if an 

insertion-deletion within cotG impairs also the expression of cotH [11], those data imply that when both 

CotG and CotH are both lacking spores germinate normally but when only CotH is lacking spore 

germination is defective. In order to clarify the role CotG and its interaction with CotH, we first verified 

that CotH is not produced in a strain with an insertion/deletion mutation in cotG and then constructed for 

the first time a single cotG null mutant. The phenotypic analysis of the mutant spores is reported. 

 

2.3 Results and Discussion 

2.3.1 Construction of a cotG mutant  

To verify whether a strain with an insertion/deletion mutation in cotG produced CotH, coat proteins 

extracted from a wild type strain (PY79) and of two isogenic mutants in cotG (ER203) or in cotH 

(ER220) were compared. As previously reported [8], both mutants have on SDS-PAGE a strongly altered 

pattern of coat proteins with several minor differences characteristic of the two strains [8] (Fig.1A). A 

western blot analysis with anti-CotH antibody of the coat proteins of the three strains confirmed that 

CotH is not produced in a strain with an insertion/deletion mutation in cotG (Fig. 1B).  

In order to obtain a cotG null mutation that does not affect cotH transcription, we introduced a single 

nucleotide in the cotG coding region by gene-soeing [13], thus causing the formation of a stop codon 21 

bp downstream of the cotG translation start site (Fig. 2A). The entire cotGstopcotH region was PCR 
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amplified, cloned into an integrative vector and inserted at the amyE locus on the B. subtilis chromosome 

of strain AZ603 carrying a deletion of the entire cotG cotH locus, yielding strain AZ604. An identical 

strategy was followed to PCR amplify, clone, integrate at the amyE locus and transfer into strain AZ603 a 

wild type copy of the cotG cotH region (AZ608).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To verify the production of CotG and CotH in AZ604 (ΔcotG ΔcotH amyE::cotGstopcotH) and AZ608 

(ΔcotG ΔcotH amyE::cotGcotH) western blots with anti-CotG or anti-CotH antibodies were performed. 

As shown in Fig. 2BC, the ectopic expression of a wild type copy of the cotG cotH region (lane 4 in both 

panels) in strain AZ603 complemented the deletion of the cotG cotH locus (lanes 2 in both panels). As 

expected, the ectopic expression of cotGstopcotH in strain AZ603 did not affect CotH production (panel 

B, lane 3) and did not produce CotG (panel C, lane 3). 

 

Figure 1: Production of CotH in a cotG null mutant. 

 (A) SDS-PAGE fractionation of coat proteins from a wild type strain (PY79) and isogenic strains 

carrying null mutations in cotG (ER203) or in cotH (ER220). A molecular weight marker is also present 

and the size of relevant bands indicated. (B) Western blot with anti-CotH antibody of the same three 

strains analyzed in panel A. The arrow points to the CotH specific band. 
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2.3.2 Role of CotG on spore germination and resistance to lysozyme 

We used the single cotG null mutant strain (AZ604) to analyze the efficiency of germination and the 

resistance to lysozyme. Together with AZ604 we considered for our analysis spores of three other 

isogenic strains: a wild type (PY79) containing both CotG and CotH [8, 12], cotH null (ER220) 

containing only CotG [7] and cotH cotG null (AZ603) lacking both proteins. As shown in Fig. 3A, 

AZ604 spores (cotG) showed an efficiency of germination identical to that of wild type spores (white and 

gray circles in the figure). As previously reported [8], spores of the cotH null strain were slightly less 

efficient in germination than wild type spores (white squares in Fig. 3A). With spores of strain AZ603 

(cotG cotH) the germination efficiency was restored to wild type levels (black squares in Fig. 3A). These 

results indicate that the germination defect observed with spore lacking only CotH was rescued in spores 

lacking both CotH and CotG. As a consequence they suggest that the germination impairment is not 

directly due to the absence of CotH as previously believed [8] but instead to the presence of CotG in a 

cotH null background. This finding also suggest a protective role for CotH in counteracting the CotG 

negative effect. The same four strains were also used to analyze the spore resistance to lysozyme and 

were all identical to wild type spores (Fig. 3B).  

Figure 2: Construction of a single cotG mutant. 

(A) Thick gray and black arrows indicate the coding parts of cotG and cotH, respectively. Dashed arrow 

indicates the mRNA produced from the cotG and cotH promoters, as already reported. Site of insertion of 

the additional base in the cotG coding sequence (wild type sequence) that causes the formation of a 

premature stop codon (mutant sequence). Western blot analysis with anti-CotH (B) and anti-CotG (C) 

antibodies of proteins extracted by SDS treatment from wild type and isogenic mutant spores. The 

mutants genotype relative to the cotG cotH and amyE loci is indicated. Arrows point the CotH and CotG 

specific bands. 
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2.3.3 Role of CotG on coat protein assembly  

We then analyzed the assembly of various coat proteins in the presence and in the absence of CotG and/or 

CotH. For our analysis we compared by western blot a wild type strain (PY79) and isogenic strains with 

an insertion/deletion in cotH (ER220, cotH::spc), or deleted of the entire cotH cotG locus (AZ603) and 

expressing either a wild type (AZ608) or a cotG mutant (AZ604) copy of the cotH cotG locus. 

As shown in Fig. 4, our analysis confirmed that levels of CotA (a CotH-independent protein) is not 

affected by CotH and/or CotG and that CotB maturation is dependent on the presence of both CotG and 

CotH [14]. Indeed, in spores of strains lacking CotG or CotH or both, CotB is assembled within the coat 

in its immature 43 kDa form. Only when both CotG and CotH are present the mature protein of 66kDa is 

formed (Fig. 4A).  

CotC and CotU are two CotH-dependent proteins that are homologous and recognized by both anti-CotC 

and anti-CotU antibodies [15]. CotC is present within the spore coat as a monomer (12 kDa), homodimer 

(21 kDa) and as two additional forms of 12.5 and 30 kDa (16]. CotU is found as a 17 kDa monomer [15] 

and as a heterodimer with CotC of 23 kDa [17]. As expected, all the CotC/CotU forms are found when 

both CotG and CotH are present (Fig. 4B, lanes 1 and 3) and none of them is observed when CotH is not 

Figure 3: Germination efficiency and lysozyme-resistance assays. 
Spores derived from wild type (PY79, black circles), cotG null (AZ604, white circles), cotH null 

(ER220, white squares) and cotGcotH null (AZ603, black squares) were tested for germination 

efficiency (A) and for lysozime resistance (B). Germination was induced by Asn-GFK and measured as 

percentage of loss of optical density at 580 nm. Similar results were obtained by using L-Ala to induce 

germination. A cotE null strain (black triangles) known to be sensitive to lysozyme has been used as 

positive control during the lysozime treatment. Error bars are based on the standard deviation of 4 

independent experiments. 
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expressed (Fig. 4B, lane 5). However, when both CotH and CotG are lacking (Fig. 4B, lane 2) as well as 

when only CotG is lacking (Fig. 4B, lane 4) all CotC/CotU proteins are normally assembled on the spore. 

These data indicate that, as for the germination phenotype, CotG has a negative role on CotC/CotU 

assembly and that its role is counteracted by CotH. 

To confirm the negative effect of CotG in a cotH background, we inserted an ectopic copy of cotG allele 

at amyE locus in the double cotGcotH mutant and also in this case all the CotC/CotU forms are no more 

assembled in the coat (Fig 4B, lane 6). CotS is 41 kDa, cotH-dependent spore coat protein [18], clearly 

identified by SDS-PAGE and western blot [19]. As shown in Fig. 5A, a protein absent in the cotS null 

mutant (AZ541, lane 2), is not present in the cotH mutant (ER220, lane 5) but is present in both the single 

cotG mutant (AZ604, lane 4) and in the double cotH cotG mutant (AZ603, lane 3). To confirm this SDS-

PAGE analysis we constructed a cotS::gfp fusion and integrated it on the chromosome of a wild type 

strain (PY79). By chromosomal DNA-mediated transformation we then moved the fusion into strains 

AZ603 (ΔcotG ΔcotH), AZ604 (ΔcotG ΔcotH amyE::cotGstopcotH) and ER220 (cotH::spc) and analyzed 

all resulting strains by fluorescence microscopy. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Western blot analysis. 

Western blot analysis of proteins extracted from mature spores of wild type (PY79, lane 1), 

ΔcotGΔcotH (AZ603, lane 2), ΔcotGΔcotH amyE::cotGcotH (AZ608, lane 3), ΔcotGΔcotH 

amyE::cotGstopcotH (AZ604, lane 4), cotH::spc (ER220, lane 5) and ΔcotGΔcotH amyE::cotG 

(AZ607, lane 6 of panel B) strains. For CotA and CotB detection (panel A) the proteins have been 

extracted by SDS treatment while for CotC and CotU detection (panel B) the NaOH treatment has been 

used. Proteins (25 µg) were reacted with CotA, CotB and CotC specific rabbit antibodies and then with 

peroxidase-conjugated secondary antibodies and visualized by the Pierce method. The estimated size of 

CotB, CotC and CotU is indicated. 
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A fluorescence signal was observed around mature and forming spores in a wild type strain and in 

isogenic strains lacking both CotH and CotG (AZ603) or lacking only CotG (AZ604) (Fig. 5B). 

However, when CotG is present and CotH is lacking (ER220) [7] a fluorescence signal was observed 

around forming spores but never around mature, free spores (Fig. 5B). This result is in agreement with 

the SDS-PAGE of Fig. 5A, performed with proteins extracted from mature spores, and indicates that, also 

for CotS assembly, CotG has a negative role antagonized by CotH. 

 

2.3.4 On the nature of CotG-CotH interaction  

The nature of the antagonistic action of CotH on CotG negative role, suggested by results of Fig. 3, 4 and 

5, is not clear. However some hints come from a recent bioinformatic analysis that has identified CotH as 

a putative kinase [20]. In addition, another previous report has shown that a B. anthracis protein with 

some similarities with CotG of B. subtilis is highly phosphorylated [21]. These literature data induced us 

to hypothesize that CotH is a kinase and CotG one of its substrates. To partially support this hypothesis 

Figure 5: SDS-PAGE and Fluorescence analysis. 
(A) Proteins released after treatment with SDS of spores of the indicated strains were fractionated on a 

12,5% polyacrilamide gel. The arrow indicates the 41 kDa band correspoding to CotS (18). The gel was 

stained with Coomassie brilliant blue. (B) Strains carrying the cotS::gfp fusion were analyzed by phase-

contrast (PC) and fluorescence (F) microscopy. The bottom panel reports a merge of the two images. 

Exposure time was 588 ms in all cases. 
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we performed a mass spectrometry analysis of CotG. Coat proteins extracted from wild type spores were 

fractionated on SDS polyacrylamide gel and a region of the gel containing CotG used to reduce, alkylate 

and digest the proteins in situ with trypsin (see Material and Methods). The peptide mixture was divided 

in two aliquots and submitted to MALDIMS and nanoLCMSMS analyses and then directly analyzed by 

nanoHPLC-chip MS/MS. Due to the low resolution of the SDS-PAGE, more than one protein was 

identified in the same region of the gel but CotG exhibited the highest MASCOT score (not shown). 

Several phosphorylation sites were identified within CotG, some detected in the MALDIMS runs and 

some by a manual interpretation of the MS/MS spectra (Table S2). Fig. 6 reports a summary of the 

phosphorylation sites identified in CotG. The occurrence of phosphorylation sites at level of Ser15, Ser39 

and Thr147 was unambiguous and suggests that a kinases belonging to Serine-threonine kinase family is 

involved in CotG modification. Other phosphorylation sites occurred in amino acid sequences repeated 

several times within the CotG central region (for example, the tripeptides SYK underlined or SYR 

double-underlined in Fig. 6), thus impairing the exact localization of the modifications. Although we 

cannot definitely conclude that all of the underlined and double-underlined tripeptides are 

phosphorylated, the absence of the same tryptic fragments among the unmodified peptides strongly 

suggests that most, if not all of them are phosphorylated and that serine, always present in those 

tripeptides, is the most probable amino acid interested by the post-translational modification.  

While Ser15 is in the N-terminal part of CotG, Ser39, Thr147 and all the other possible sites of 

phosphorylation are located in the repeated central region (Fig. 6 and Table S2). This region is composed 

by random coiled repeats [11], each containing serine residues surrounded by positively charged amino 

acids (Fig. 6). In a bioinformatic analysis of known phosphorylated proteins [22] all these features have 

been indicated as typical of intrinsically disordered structures and have been identified as predictor of 

phosphorylation substrates.  

Figure 6: CotG and phosphorylation sites. 
Results of a mass spectrometry analysis of peptides derived from trypsine digestion of CotG are 

reported. Unambiguosly identified sites of phosphorylation are indicated. Tripeptides containing a 

phosphate moiety are underlined; the random coiled tandem repeats region is in red. 
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In a cotH mutant CotG is not present around both the mature and the forming spore [8] but accumulates 

in the mother cell compartment of the sporulating cell [7]. However, its peculiar structure has so far 

impaired CotG isolation from the mother cell compartment of sporulating B. subtilis cells as well as from 

a heterologous host (E. coli), therefore not allowing further analysis. Although additional experiments, 

beyond the aims of this manuscript, will be needed to confirm that CotH is a kinase and CotG one of its 

substrates, we speculate that in a wild type strain CotG would be mainly present in a phosphorylated form 

and that, in this form, it plays its structural role as a coat component. In a cotH mutant, we predict that 

CotG would not be phosphorylated and have a negative effect on the assembly of some coat proteins and 

on spore germination. 

 

2.4 Conclusions 

Because of the peculiar chromosomal organization of the cotG cotH locus [11], in a cotG null mutant also 

the expression of the cotH gene is impaired and, as a consequence, the presumed cotG mutant is a double 

mutant lacking both CotG and CotH. In this work we constructed for the first time a cotG null mutant in 

which CotH is produced. A phenotypic analysis of this mutant has shown that it does not differ 

significantly from the isogenic wild type strain but has also shown that phenotypes previously attributed 

to the lack of CotH are only observed when in the cotH strain is present CotG. When both CotH and 

CotG are absent the defects observed in the single cotH mutant are completely restored and the double 

mutant is indistinguishable from the isogenic wild type strain. This is the case of the germination defect 

of cotH spores that is rescued in a cotG cotH double mutant; is the case of CotC/U and CotS assembly 

within the coat. CotG has a peculiar primary structure: it has several repeats in its central part and has a 

high positive charge (pI 10.26). In a wild type strain CotG is highly phosphorylated and this post-

translational modification is probably important to neutralize the positive charges and, consequently to 

guarantee protein stability and ability to interact with other coat components. The kinase responsible of 

this modification has not been identified yet. A recent bioinformatic data has indicated that CotH has 

some homology with eukaryotic Ser-Thr kinases [20] and our results functionally linking CotG to CotH, 

point to CotH as the kinase responsible of CotG phosphorylation. Future site-directed mutagenesis 

experiments will be needed to support this hypothesis.  
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2.5 Methods 

2.5.1 Bacterial strains and transformation 

B. subtilis strains are listed in Table 1. Plasmid amplification for nucleotide sequencing, subcloning 

experiments, and transformation of E. coli competent cells were performed with Escherichia coli strain 

DH5α [23]. Bacterial strains were transformed by previously described procedures: CaCl2-mediated 

transformation of E. coli competent cells [23] and two-step transformation of B. subtilis [24]. 

Table 1: Bacillus subtilis strains used in this study. 

Strain Relevant genotype Reference 

PY79 wild type [32] 

ER220 cotH::spec [8] 

AZ541 cotS::cm [33] 

AZ603 ΔcotG ΔcotH::neo This work 

AZ604 ΔcotG ΔcotH::neo amyE::cotGstopcotH This work 

AZ608 ΔcotG ΔcotH::neo amyE::cotGcotH This work 

AZ607 ΔcotG ΔcotH::neo amyE::cotG This work 

AZ644 cotS::gfp This work 

AZ645 ΔcotG ΔcotH::neo cotS::gfp This work 

AZ646 ΔcotG ΔcotH::neo amyE::cotGstopcotH cotS::gfp This work 

AZ647 cotS::gfp cotH::spec This work 

 

 

2.5.2 Genetic and molecular procedures 

Isolation of plasmids, restriction digestion and ligation
 
of DNA, were carried out by standard methods 

[23].
 
Chromosomal DNA from B. subtilis was isolated as described

 
elsewhere [24]. 

 

2.5.3 Deletion of the cotG cotH locus 

The cotG cotH locus was entirely deleted and substituted by a neomycin-resistance (neo) gene cassette. 

Chromosomal DNA of strain PY79 was used as a template and oligonucleotide pairs Del3-H18 and H29-

B-anti (Table S1) were used to prime the PCR amplification of two DNA fragments of 361 bp and  704 

bp, respectively located upstream and downstream of the cotH gene. The two DNA fragments were 

separately cloned in the pBEST501 vector [25] at 5’ or 3’ ends of the neo gene. The resulting plasmid, 

pVS6, was then linearized by restriction digestion with ScaI and used to transform competent cells of the 

PY79 strain of B. subtilis. Replacement of the cotH cotG locus on the chromosome with the neo gene 

occurred by double cross-over between homologous DNA sequences originating strain AZ603 (ΔcotG 
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ΔcotH) and was verified by PCR.  

 

2.5.4 Construction of a single cotG mutant 

The entire cotH cotG locus was PCR amplified using oligonucleotides Del5 and H28 (Table S1) to prime 

the reaction and PY79 chromosomal DNA as a template. The resulting DNA fragment was cloned into 

plasmid pDG364 [24], yielding plasmid pVS8. To insert a single nucleotide within the cotG coding part 

(at position +22, considering as +1 the first nucleotide of the first cotG codon) we used a gene soeing 

approach [13]. Two partially overlapping DNA fragments were PCR amplified priming the reaction with 

oligonucleotide pairs Gstop/Del5 (743 bp) and Gstop-anti/H (317 bp) (Table S1) and using chromosomal 

DNA of PY79 as a template. The obtained PCR products were used as templates to prime a third linear 

PCR of 7 cycles using only the external primers Del5 and H (Table S1). The single-strand products thus 

obtained were mixed and used to perform a standard PCR program of 20 cycles that led to their cohesion. 

The recombinant fragment was cloned in pGemT easy vector (Promega) and controlled by sequencing to 

confirm the presence of the point mutation resulting in the substitution of the 8th cotG codon with a stop 

codon. The mutant cotG allele (here called cotGstop) was digested with BamHI-BglII and cloned into 

pVS8 to replace the wild type cotG allele, yielding plasmid pVS7. Both plasmids pVS7 (carrying the 

cotGstopcotH locus) and pVS8 (carrying the wild type cotG cotH locus) were separately used to transform 

competent cells of AZ603 (ΔcotG ΔcotH). The occurrence of a single reciprocal (Campbell-like) 

recombination event between homologous DNA on the plasmids and on the chromosome (amyE locus) 

was verified by PCR. 

 

2.5.5 Ectopic expression of cotG  

The entire cotG gene was PCR amplified priming the reaction with oligonucleotide pairs G22 and H19 

(774 bp), cloned in pGEM-T Easy vector (Promega), controlled by sequencing and transferred into the 

integrative vector pDG364 [24] using EcoRI and BamHI restriction sites.  

The plasmid was used to transform the double mutant AZ603 (ΔcotG ΔcotH). The occurrence of a single 

reciprocal (Campbell-like) recombination event between homologous DNA sequences present on the 

plasmid and on the chromosome (amyE locus) was verified by PCR and yielded strain AZ607 (ΔcotG 

ΔcotH, amyE::cotG). 
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2.5.6 Construction of cotS::gfp fusion  

The gfp mut3a gene, encoding the green fluorescent protein (GFP) [26] was PCR amplified using plasmid 

pAD123 (Bacillus Genetic Stock Center, BGSC, www.bgsc.org) as a template and priming the reaction 

with oligonucleotides GFPfor and GFPrev (Table S1). The gfp mut3a gene was cloned in pGEM-T Easy 

vector (Promega), controlled by sequencing and transferred into the integrative vector pER19 [27] using 

PstI and BamHI restriction sites. The region containing the entire cotS gene except the stop codon, was 

PCR amplified using chromosomal DNA of strain PY79 as a template and priming the reaction with 

oligonucleotides cotS-for and cotS-rev (table S1), and cloned in frame with gfp using the SphI restriction 

site located at 5’ end of gfp. The resulting plasmid pcotS-gfp was used to transform competent cells of 

strain PY79. The occurrence of a single reciprocal (Campbell-like) recombination event between 

homologous DNA sequences present on the plasmid and on the chromosome (cotS locus) yielded strain 

AZ644 (cotS::gfp) was verified by PCR. Chromosomal DNA of strain AZ644 was then used to transfer 

the cotS-gfp fusion into strains AZ603 (ΔcotG ΔcotH), AZ604 (cotGstop) and ER220 (cotH::spec), 

yielding respectively AZ645 (ΔcotG ΔccotH cotS::gfp), AZ646 (cotGstop cotS::gfp), AZ647 (cotH::spec 

cotS::gfp). Fluorescence microscopy analysis was performed with an Olympus BX51 fluorescence 

microscope using a Fluorescein-Isothiocyanate (FITC) filter as previously reported [28]. Typical 

acquisition times were 588 ms and the Images were captured using a Olympus DP70 digital camera and 

processed. 

 

2.5.7 Spore purification, extraction of spore coat proteins and western blot analysis 

Sporulation was induced by exhaustion by growing cells in DSM (Difco Sporulation Medium) as 

described elsewhere [24]. After a 30 hours of incubation at 37°C, spores were collected, washed four 

times, and purified as described by Nicholson and Setlow [29] using overnight incubation in H2O at 4°C 

to lyse residual sporangial cells. Spore coat proteins were extracted from a suspension of spores by SDS-

dithiothreitol (DTT) [24], or NaOH [29] treatment as previously described. The concentration of 

extracted proteins was determined by using Bio-Rad DC protein assay kit (Bio-Rad), and 20 µg of total 

spore coat proteins were fractionated on 12,5% SDS polyacrylamide gels and electrotransferred to 

nitrocellulose filters (Bio-Rad) for Western blot analysis following standard procedures. CotH-, CotA-, 

CotC-, CotB- and CotG-specific antibodies were used at a working dilutions of 1:150 for CotH detection 

and 1:7000 for CotA, CotC, CotB and CotG detection. Then an horseradish peroxidase (HRP)-conjugated 
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anti-rabbit secondary antibody was used (Santa Cruz). Western blot filters were visualized by the 

SuperSignal West Pico chemiluminescence (Pierce) method as specified by the manufacturer. 

 

2.5.8 Germination efficiency and lysozyme resistance 

Purified spores were heat activated as previously described [24] and diluted in 10 mM Tris-HCl (pH 8.0) 

buffer containing 1 mM glucose, 1 mM fructose, and 10 mM KCl. After 15 min at 37°C, germination was 

induced by adding 10 mM L-alanine or 10 mM L-asparagine and the optical density at 580 nm was 

measured at 5-min intervals for 60 minutes [24].  

Sensitivity to lysozyme was measured as described by Zheng et al. [30]. Spores were prepared as 

previously described [24], omitting the lysozyme step and eliminating vegetative cells by heat treatment 

(10 min at 80°C). Purified spores were then suspended in 10 mM Tris-HCl (pH 7.0) buffer containing 

lysozyme (50 mg/ml), and the decrease in optical density was monitored at 595 nm at 1-min intervals for 

10 min. Spore viability was measured after 30 min as CFU on TY agar plates. 

 

2.5.9 In situ digestion and mass spectral analyses 

Protein bands corresponding to CotG were excised from the gel and destained by repetitive washes with 

0.1 M NH4-HCO3 pH 7.5 and acetonitrile. Samples were then submitted to in situ trypsin digestion and 

analyzed by MALDI mass spectrometry and LCMSMS as previously described [31]. The acquired 

MS/MS spectra were transformed in mzData (.XML) format and used for protein identification with a 

licensed version of MASCOT software (www.matrixscience.com) version 2.4.0. Raw data from nanoLC-

MS/MS analysis were used to query the NCBInr database NCBInr 20121120 (21,582,400 sequences; 

7,401,135,489 residues). Mascot search parameters were: trypsin as enzyme; 3, as allowed number of 

missed cleavage; carboamidomethyl as fixed modification; oxidation of methionine; phosphorylation of 

serine/threonine/tyrosine; pyro-Glu N-term Q as variable modifications; 10 ppm MS tolerance and 0.6 Da 

MS/MS tolerance; peptide charge from +2 to +3. Peptide score threshold provided from MASCOT 

software to evaluate quality of matches for MS/MS data was 25.Spectra with MASCOT score of < 25 

having low quality were rejected. 
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2.8 Supporting Information 

Table S1. Oligonucleotides used in this study 

Primer Sequence 5' - 3'
(a)

 Restriction 

site 

Position of 

annealing
(b)

 

Gstop GCTTCTTCGATGTCAAGAATGGGAATAG  -175/-147 (cotH) 

Gstop-anti CTATTCCCATTCTTGACATCGAAGAAGC  -147/-175 (cotH) 

Del5 ggatccGCCTTTATCGTTAGGAT BamHI -884/-867
 
(cotH) 

H ggatccgcgccggaattcAGCGATATCAATATCCAG BamHIEcoRI +126/+144
 
(cotH) 

H28 gcatgcAATTCAATAGCCTAATTGTC SphI +1140/+1120
 
(cotH) 

H29 ctgcagGCCGGATGTGATCTGCGAG PstI +1019/+1038
 
(cotH) 

B-anti aagcttCGTCGGCATTATCTACAAGG HindIII +1814/+1794
 
(cotH) 

Del3 ggatccCAAATTCTCCGTTCTCC BamHI -1145/-1128
 
(cotH) 

H18 ggatccATTTGCCCTGTATTAGATATATG BamHI -805/-828 (cotH) 

G22 TTCCGTACCTCCGCCGGCAGCC  +610/+632 (cotG) 

H19 ggatccCCATAATCCTCCTTACAAATT BamHI -142/-121 (cotG) 

CotS-for gcatgcATGCCGAACGTATCAATG SphI -313/-295 (cotS) 

CotS-rev gcatgcATTCGCCTCCCGATACG SphI +883/+900
 
(cotS) 

GFP for ctgcagATGAGTAAAGGAGAAGAAC PstI +1/+19
 
(gfp) 

GFP rev ggatccTTATTTGTATAGTTCATCCATGCC BamHI +694 /+717
 
(gfp) 
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a
 Capital and lowercase letters indicate bases of  DNA and of an unpaired tail carrying a restriction site 

(underlined).
  

b
 Considering as +1 the first base of the first codon in cotH, cotS, cotG or gfp as indicated in brackets.  

 

 
Table S2. Mass spectral analyses of CotG trypsin digest 

 

Observed 

m/z value 

Post-translational 

Modification 

Aminoacid 

Position Sequence 

Mass spectral 

technique 

473.61 - 158-160 YYK MALDI 

477.43 phosphorilation 100-102 SYK MALDI 

477.43 phosphorilation 107-109 SYK MALDI 

477.43 phosphorilation 113-115 SYK MALDI 

477.43 phosphorilation 120-122 SYK MALDI 

477.43 phosphorilation 126-128 SYK MALDI 

477.43 phosphorilation 140-142 SYK MALDI 

479.1 phosphorilation 39-41 SHR MALDI 

505.26 phosphorilation 91-93 SYR MALDI 

505.26 phosphorilation 104-106 SYR MALDI 

505.26 phosphorilation 151-153 SYR MALDI 

518.3 - 136-139 KKSR MALDI 

720.24 phosphorilation 98-102 SRSYK MALDI 

720.24 phosphorilation 111-115 SRSYK MALDI 

720.24 phosphorilation 124-128 SRSYK MALDI 

720.24 phosphorilation 138-142 SRSYK MALDI 

893.42 - 64-70 KSFCSHK MALDI 

893.42 - 64-71 SFCSHKK MALDI 

893.42 - 38-44 KSHRTHK MALDI 

893.42 - 39-45 SHRTHKK MALDI 

909.16 - 51-57 KSYCSHK MALDI 

909.16 - 77-83 KSYCSHK MALDI 

909.16 - 129-135 KSYCSHK MALDI 

909.16 - 52-58 SYCSHKK MALDI 

909.16 - 78-84 SYCSHKK MALDI 

909.16 - 130-136 SYCSHKK MALDI 

1007.44 - 172-179 HDDYDSKK MALDI 

1676.42 - 19-32 EGLKDYLYQEPHGK MALDI 

976.45 - 184-191  DGNCWVVK LCMSMS 

1104.54 - 184-192 DGNCWVVKK LCMSMS 

1582.72  - 180-191 EYWKDGNCWVVK  LCMSMS 

1675.81 - 19-32 EGLKDYLYQEPHGK LCMSMS 

1675.82 - 19-32 EGLKDYLYQEPHGK LCMSMS 

710.82 - 180-192 EYWKDGNCWVVKK LCMSMS 

1710.82 - 179-191 KEYWKDGNCWVVK LCMSMS 

1803.92 - 18-32 KEGLKDYLYQEPHGK LCMSMS 

1964.88   phosphorilation 2-18 GHYSHSDIEEAVKSAKK LCMSMS 

2170.05   phosphorilation 15-32 SAKKEGLKDYLYQEPHGK LCMSMS 

2571.15   - 172-191 HDDYDSKKEYWKDGNCWVVK LCMSMS 
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3.1 Abstract 

CotG is an abundant protein initially identified as an outer component of the Bacillus subtilis spore coat. 

It has an unusual structure characterized by several repeats of positively charged amino acids that are 

probably the outcome of multiple rounds of gene elongation events of an ancestral minigene. CotG is not 

highly conserved and its orthologues are present only in two Bacillus and two Geobacillus species. In B. 

subtilis CotG is the target of extensive phosphorylation by a still unidentified enzyme and has a role in 

the assembly of some outer coat proteins. We report now that most spore-forming Bacilli contain a 

protein not homologous to CotG of B. subtilis but sharing a central 'modular' region defined by a 

pronounced positive charge and random coiled tandem repeats. Conservation of the structural features in 

most spore-forming Bacilli suggests a relevant role for the CotG-like protein family for the structure and 

function of the bacterial endospore. To expand our knowledge on the role of CotG we dissected the B. 

subtilis protein by constructing deletion mutants that express specific regions of the protein and observed 

that they have different roles on the assembly of other coat proteins and on spore germination.  

 

3.1.1 Importance 

CotG of B. subtilis is not highly conserved in the Bacillus genus however, a CotG-like protein with a 

modular structure and chemical features similar to those of CotG, is common in spore-forming Bacilli, at 

least when CotH is also present. Conservation of CotG-like features when CotH is present suggests that 

the two proteins act together and may have a relevant role in the structure and function of the bacterial 

endospore. Dissection of the modular composition of CotG of B. subtilis by constructing mutants that 

express only some of the modules has allowed a first characterization of CotG modules and will be the 

basis for a more detailed functional analysis. 

 

 
3.2 Introduction 

Bacillus subtilis is the model system for the study of endospore-forming bacteria. The processes of spore 

formation and germination and also endospore (spore) structure have all been studied in detail in B. 

subtilis and then confirmed in other species. Spore formation starts when cell growth is restricted by 

nutrient starvation or other harsh environmental conditions (1, 2). The first morphological step of spore 

formation is asymmetric cell division that produces a large mother cell and a small forespore. The mother 

cell contributes to forespore maturation and undergoes autolysis at the end of the process, allowing the 

release of the mature spore (1, 2). The spore is stable and resistant to conditions that would be lethal for 

most other cells. Spores survive for extended periods of time in the absence of water and nutrients, in 

extremes of heat and pH, and in the presence of UV radiation, as well as after exposure to solvents, 

hydrogen peroxide, and lytic enzymes (3, 4). The spore is, however, able to sense the environment and 

respond to the presence of water and nutrients, generating a vegetative cell that is able to grow and, 

eventually, resporulate (5). 

The resistance properties of the spore are due to its unusual structure. The dehydrated cytoplasm, 

containing a copy of the chromosome, is surrounded by a series of protective layers. A peptidoglycan 
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cortex is the first shell, the encasement layer, and is surrounded by a multilayered protein coat and finally 

a thin crust (6). The coat and crust are together composed of at least 70 different proteins and 

glycoproteins. Several coat and crust proteins have been identified and characterized, but little is known 

about the identities of the sugars present on the spore surface. It is, however, known that their presence on 

the spore surface modulates the relative hydrophobicity of the spore (7,- 9). 

Coat formation is finely controlled by a variety of mechanisms acting at various levels. The synthesis of 

coat proteins is regulated by at least two mother cell-specific sigma subunits of RNA polymerase and at 

least three additional transcriptional regulators. These transcription factors act in a temporal sequence, 

controlling the expression of the coat structural genes (cot genes) in the mother cell (6). At least some 

coat proteins are subject to posttranslational maturation events, including proteolytic cleavage, cross-

linking, phosphorylation, and glycosylation reactions (10). An important subset of coat proteins, referred 

to as morphogenetic proteins, controls the assembly of other coat components and the formation of coat 

and crust layers (11,–15). The subset of morphogenetic coat proteins includes major members such as 

SpoIVA, SafA, SpoVID, and CotE, which are needed to drive coat and crust formation, and minor 

members responsible for the maturation or assembly of some other coat proteins (6, 10). 

CotG belongs to the second group of morphogenetic proteins. It was initially characterized as an 

abundant component of the outer coat layer (16) needed, together with CotH, for the maturation of 

another outer coat protein, CotB (16, 17). CotG is a 195-amino-acid protein characterized by a central 

region of 126 residues formed by positively charged and randomly coiled tandem repeats. It has been 

proposed that the repeats are the outcome of multiple rounds of gene elongation events in an ancestral 

minigene (18). CotG is not widely conserved in spore formers, and its homologues can be found in only 

two Bacillus and two Geobacillus species (10, 18). The structural gene coding for CotG is also unusual in 

that it is entirely contained between the promoter and the coding part of another gene, cotH, also coding 

for a morphogenetic coat protein (18, 19). More recently, CotG was identified as the target of extensive 

phosphorylation by a still unidentified enzyme (20). In that same study, it was also observed that CotG 

has a negative effect on the assembly of at least three coat proteins: CotC, CotU, and CotS (20). This 

negative effect is counteracted by CotH, and strains lacking both CotG and CotH assemble CotC, CotU, 

and CotS like the isogenic wild-type strain. When CotH is absent, CotG plays its negative role, and CotC, 

CotU, and CotS are not assembled (20). A model showing the interactions among these Cot proteins is 

presented in Fig. 1. 

In the present work, we have analyzed the genomes of the entirely sequenced Bacillus species and 

observed that, in most cases, they encode a CotG-like protein. These proteins do not have a conserved 

amino acid sequence with respect to CotG of B. subtilis, but they all share the same structural properties, 

and at least some of them share the unusual chromosomal organization of the cotG-cotH locus. 

To gain insight into the role of such modular structures, we constructed and analyzed a series of deletion 

mutants expressing discrete modules of B. subtilis CotG, providing the first functional analysis of this 

novel class of modular morphogenetic proteins. 
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3.3 MATERIALS AND METHODS 

3.3.1 Bioinformatic analysis 

Orthologues of CotH were identified by a BLAST analysis (http://blast.ncbi.nlm.nih.gov/) using the CotH 

sequence of Bacillus subtilis strain 168 (GenBank accession number NP_391487.1) as a query against 

Bacillales (taxonomic ID 1385). Completely sequenced Bacillus species containing a CotH orthologue 

(sharing a minimum of 40% identity with respect to the query sequence) were considered for analysis of 

the gene upstream of cotH. A list of species with completely sequenced genomes is available in the 

KEGG (Kyoto Encyclopedia of Genes and Genomes) database (http://www.genome.jp/kegg/catalog/ 

org_list.html) and was used for genomic analysis. 

 

3.3.2 Bacterial strains and transformation 

B. subtilis PY79 was used as the recipient strain for transformation procedures. Plasmid amplification for 

nucleotide sequencing, subcloning experiments, and transformation of Escherichia coli competent cells 

was performed with Escherichia coli strain DH5α (21). Transformation was performed by using 

previously described procedures: CaCl2-mediated transformation of E. coli (20) and two-step 

transformation of B. subtilis competent cells (22). 

 

3.3.3 Genetic and molecular procedures 

Isolation of plasmids, restriction digestion, and ligation of DNA were carried out by using standard 

methods (21). Chromosomal DNA from B. subtilis was isolated as described previously (22). 

Construction of a cotG internal deletion mutant.  

DNA coding for the internal repeats of cotG was deleted by using the gene splicing by overlap extension 

(gene SOEing) technique (23). Briefly, two partially overlapping DNA fragments were obtained with 

oligonucleotide couples H19/Gsoe1 (to amplify the promoter and 5′ coding part of cotG) and X2/Gsoe2 

(to amplify the 3′ coding region of cotG and its transcription terminator). The obtained PCR products 

Figure 1: Model of the CotH-dependent protein interaction network. Shown is a working model of the 

interactions among the indicated proteins. CotH has a positive effect on the assembly of CotG, CotC, 

CotU, and CotS (arrows). CotG in turn controls CotB maturation from the immature 46-kDa CotB form to 

the mature 66-kDa CotB form. The gray line indicates the negative effect of CotG on CotC, CotU, and 

CotS assembly (17, 20, 30). 

CotH 

CotB-46 CotB-66 

CotC/CotU/CotS 

CotG 

http://blast.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/protein/NP_391487.1
http://www.genome.jp/kegg/catalog/org_list.html
http://www.genome.jp/kegg/catalog/org_list.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B23
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were separately used as the templates for a linear PCR of 7 cycles using only the respective external 

primers H19 and X2, thus obtaining single-stranded fragments partially overlapping at their 3′ regions. 

The single-stranded products were mixed and used to perform a standard PCR program of 20 cycles, 

which led to their fusion. The recombinant fragment was cloned into the pGEM-T Easy vector (Promega) 

and sequenced to confirm the correct gene fusion. The modified version of cotG (here called cotGΔ) was 

then moved by BamHI-EcoRI digestion into the pDG1731 integrative vector commonly used to integrate 

cloned genes at the thrC locus of the B. subtilis chromosome. The resultant plasmid, pVS11, was 

linearized with ScaI and used to transform AZ603 (ΔcotG ΔcotH) (20) competent cells to generate strain 

AZ612, which carried a double-crossover recombination event at the nonessential thrC gene on the B. 

subtilis chromosome and carried the cotGΔ allele in a cotH background. Chromosomal DNA of B. 

subtilis AZ612 (ΔcotG ΔcotH thrC::cotGΔ) was used to transform competent cells of the AZ604 mutant 

(ΔcotG ΔcotH amyE::cotGstop-cotH), thus generating strain AZ613 expressing the deleted cotGΔ gene in 

the presence of wild-type cotH (ΔcotG ΔcotH amyE::cotGstop cotH thrC::cotGΔ). 

To construct the cotG-Nterm and cotG-Cterm genes expressing only the N-terminal and C-terminal 

regions of CotG, respectively, the same gene SOEing procedure was used. Oligonucleotide couples 

H19/Gsoe3 and X2/Gsoe4 were used to amplify the 5′ region of cotG (promoter plus the N-terminal 

coding sequence) and the transcription terminator, and oligonucleotide couples H19/Gsoe5 and X2/Gsoe6 

were used to amplify the cotG promoter and the 3′ region of cotG (C-terminal coding region plus the 

terminator). By using the same procedure as the one described above, we obtained recombinant genes 

expressing the N-terminal or the C-terminal region of CotG by PCR. The genes were subcloned into the 

pGEM-T Easy vector, confirmed by DNA sequencing, and then cloned into the BamHI/EcoRI sites of 

pDG1731, yielding plasmids pVS13 (containing cotG-Nterm) and pVS12 (containing cotG-Cterm). Both 

plasmids were separately used to transform competent cells of B. subtilis strain AZ603 (ΔcotG ΔcotH). 

The double-crossover recombination event at the thrC locus originated from strains AZ616 (ΔcotG ΔcotH 

thrC::cotG-Nterm) and AZ614 (ΔcotG ΔcotH thrC::cotG-Cterm), expressing the CotG-Nterm and CotG-

Cterm forms, respectively, in a cotH background. Chromosomal DNA of these strains was used to 

transform competent cells of AZ604 to obtain AZ617 (ΔcotG ΔcotH amyE::cotGstop cotH thrC::cotG-

Nterm) and AZ615 (ΔcotG ΔcotH amyE::cotGstop cotH thrC::cotG-Cterm), expressing the CotG-Nterm 

and CotG-Cterm forms, respectively, in the presence of cotH. 

Construction of strains expressing the cotS::gfp fusion.  

Chromosomal DNA of strain AZ644 (cotS::gfp) (19) was used to transfer the cotS-gfp fusion into strains 

AZ612 (ΔcotG ΔcotH thrC::cotGΔ), AZ614 (ΔcotG ΔcotH thrC::cotG-Cterm), and AZ616 (ΔcotG 

ΔcotH thrC::cotG-Nterm), yielding AZ649, AZ660, and AZ661, respectively. 

 

3.3.4 Transcriptional analysis 

Total RNA was extracted from Bacillus licheniformis ATCC 14580 and Bacillus cereus ATCC 10987 5 h 

after the onset of sporulation by using an RNeasy Plus minikit (Qiagen, Milan, Italy) according to the 

manufacturer's instructions. Total RNAs were dissolved in 50 μl of RNase-free water and stored at 

−80°C. The final concentration and quality of the RNA samples were estimated either 

spectrophotometrically or by agarose gel electrophoresis with ethidium bromide staining. Total RNAs 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B19
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were treated with RNase-free DNase (1 U/μg of total RNA) (Turbo DNA-free; Ambion) for 30 min at 

37°C, and the reaction was stopped with DNase inactivation reagent. 

For reverse transcription-PCR (RT-PCR) analysis, samples containing 2 μg of DNase-treated RNAs of B. 

licheniformis and B. cereus were incubated with oligonucleotide H1 (H1-lich and H1-cereus, 

respectively) at 65°C for 5 min and slowly cooled to room temperature (RT) to allow primer annealing. 

RNAs were then retrotranscribed by incubating the mixture at 50°C for 1 h in the presence of 1 μl 

AffinityScript multitemperature reverse transcriptase (Stratagene), 4 mM deoxynucleoside triphosphates 

(dNTPs), 1× reaction buffer (Stratagene), and 10 mM dithiothreitol (DTT). The enzyme was then 

inactivated at 70°C for 15 min. The cDNA was PCR amplified with oligonucleotide H1 (H1-lich or H1-

cereus) coupled with H2 (H2-lich or H2-cereus), annealing in the cotH coding region, and H3 (H3-lich or 

H3-cereus), annealing in the cotH 5′ region, at the end of the divergent gene. As a control, PCRs were 

carried out with RNA not subjected to reverse transcription to exclude the possibility that the 

amplification products were derived from contaminating genomic DNA. 

Spore purification, extraction of spore coat proteins, and Western blot analysis.  

Sporulation was induced by exhaustion by growing cells in DSM (Difco sporulation medium) as 

described previously (22). After 30 h of incubation at 37°C, spores were collected, washed four times, 

and incubated overnight in H2O at 4°C to lyse residual sporangial cells, as described previously by 

Nicholson and Setlow (24). Spore coat proteins were extracted from a suspension of spores by SDS-DTT 

(22) or NaOH (24) treatment as described previously. The concentration of extracted proteins was 

determined by using a Bio-Rad DC protein assay kit (Bio-Rad), and 20 μg of total spore coat proteins was 

fractionated on 12.5% SDS-polyacrylamide gels. The proteins were then electrotransferred onto a 

nitrocellulose filter (Bio-Rad) for Western blot analysis according to standard procedures. CotC- and 

CotB-specific antibodies were used at working dilutions of 1:7,000. The horseradish peroxidase (HRP)-

conjugated anti-rabbit antibody was used (Santa Cruz) as a secondary antibody. Western blot filters were 

visualized by using the SuperSignal West Pico chemiluminescence (Pierce) method as specified by the 

manufacturer. 

 

3.3.5 Fluorescence microscopy 

CotS assembly was monitored by fluorescence microscopy using an Olympus BX51 fluorescence 

microscope with a fluorescein isothiocyanate (FITC) filter. Samples expressing the cotS::gfp fusion and 

containing both sporangia and mature spores were obtained after overnight incubation in DSM in order to 

induce sporulation. Exposure times were 588 ms, and the images were captured by using an Olympus 

DP70 digital camera. 

Germination efficiency.  

Purified spores were heat activated (20 min at 70°C) and diluted in 10 mM Tris-HCl (pH 8.0) buffer 

containing 1 mM glucose, 1 mM fructose, and 10 mM KCl (GFK). After 15 min at 37°C, germination 

was induced by adding 10 mM asparagine to the mixture, and the optical density at 600 nm was measured 

at 5-min intervals for 60 min (22). 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B22
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3.4 RESULTS AND DISCUSSION 

3.4.1 The CotG-like protein family 

In B. subtilis, the cotG and cotH genes are adjacent on the chromosome and divergently transcribed and 

encode two spore coat proteins: CotH, conserved in several Bacillus and Clostridium species, and CotG, 

found in only three Bacillus and two Geobacillus species (10, 18). In all three CotG-containing bacilli, B. 

subtilis, B. amyloliquefaciens, and B. atrophaeus, the chromosomal organization of the cotG-cotH locus 

is conserved, with the two genes being adjacent and divergent and with cotG being entirely contained 

between the promoter and the coding region of cotH (18). We have now expanded and updated the 

analysis of the cotH-cotG locus in the chromosomes of all completely sequenced Bacillus genomes listed 

in the KEGG database (http://www.genome.jp/kegg/catalog/org_list.html), selecting one representative 

strain for each species. We observed that 24 out of 35 entirely sequenced Bacillus species contain a CotH 

orthologue. Only 7 of the CotH-containing species also contain a CotG orthologue, and in all cases, cotG 

is adjacent and divergently transcribed with respect to cotH (see strains 1 to 7 in Table S1 in the 

supplemental material). The analysis of the 17 other CotH-containing species indicated that 15 of them 

have an open reading frame (ORF) adjacent and divergent with respect to cotH (see strains 8 to 22 in 

Table S1 in the supplemental material). The product of the divergent ORF is known to code for 

exosporium protein B (ExsB) in B. anthracis (25), while in all other species, it codes for a protein of 

unknown function. Although not homologous to CotG, these proteins share some peculiar structural 

features with CotG. The most striking of these features is the presence of a central region consisting of 

several repeats (Fig. 2). In various species, the numbers and amino acid sequences of such repeats are 

highly variable (Fig. 2). However, all these putative proteins share a list of common traits, as summarized 

in Table 1: (i) a high isoelectric point (pI), ranging from 9.28 for B. anthracis to 12.95 for B. megaterium; 

(ii) an elevated percentage of positively charged amino acids, ranging from 22.5% for Bacillus sp. JS to 

44.6% for B. pumilus; and (iii) an elevated percentage of serine and threonine residues, ranging from 

9.1% for B. licheniformis to 39% for B. megaterium. The only exception is the sequence found in Bacillus 

sp. 1NLA3E, which has a low percentage of positively charged amino acids and, as a consequence, a low 

pI. Our bioinformatic analysis also predicted that these putative proteins contain many potential 

phosphorylation sites (Table 1) and that most of them have an unfoldability index of <0 and an instability 

index of >40 (Table 1). These two parameters are indicative of intrinsically disordered proteins (IDPs), 

characterized by a nonordered, three-dimensional structure that can adopt a fixed structure after binding 

to a ligand or to another protein (26). 

Although these proteins have different amino acid sequences and therefore do not share significant 

homologies with CotG of B. subtilis or among themselves, based on their chromosomal location and their 

structural features, we refer to them here as CotG-like proteins. 

In B. subtilis and in two CotG-containing Bacillus species analyzed previously (18), cotG is entirely 

contained between the promoter and the coding region of cotH. An RT-PCR approach was used to verify 

whether the same situation also occurred in two of the other strains considered in this study and available 

at the BGSC (Bacillus Genetic Stock Center), B. cereus ATCC 10987 and B. licheniformis ATCC 14580. 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B10
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B18
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B18
http://www.genome.jp/kegg/catalog/org_list.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/figure/F2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/figure/F2/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/table/T1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/table/T1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/table/T1/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B18
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Table 1: Features of CotG-like proteins in Bacillus spp
 

a
Phosphorylation prediction was done by using the NetPhosBac 1.0 server 

(http://www.cbs.dtu.dk/services/NetPhosBac-1.0/). For each Ser and Thr residue, a score between 0 

and 1 was calculated. When the score is ≥0.5, the residue is predicted to be a phosphorylation site. 
b
Disorder prediction was done by using Foldindex (http://bip.weizmann.ac.il/fldbin/findex). Positive 

values indicate a structured polypeptide, whereas negative values indicate a disordered protein. 
c
The instability index was determined by using ProtParam (http://web.expasy.org/protparam/). Values of 

≥40 predict that the protein is unstable. 
d
Protein identification is the protein code in the KEGG database. ND, not determined (the strain name is 

not available in the KEGG list or the protein is not available [the divergent ORF upstream of cotH is not 

annotated in the NCBI database]). 

 

Figure 2: Repeats of CotG and CotG-like proteins. The tandem repeats of CotG of B. subtilis (18) and of 

CotG-like proteins found in the indicated species are shown. B. subtilis CotG modules are boxed. Positively 

charged amino acids are in red. 

http://www.cbs.dtu.dk/services/NetPhosBac-1.0/
http://bip.weizmann.ac.il/fldbin/findex
http://web.expasy.org/protparam/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B18
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Total RNA was extracted from sporulating cells of both species 5 h after the beginning of sporulation and 

used as a template to produce a specific cDNA with synthetic oligonucleotide H1 (see Table S2 in the 

supplemental material), mapping in the cotH coding region (Fig. 3A). 

The cDNA was then PCR amplified with oligonucleotide H1 coupled with H2 (see Table S2 in the 

supplemental material), annealing in the cotH coding region, and H3 (see Table S2), annealing in the 

cotH upstream region, at the end of the divergent gene (Fig. 3A). In both organisms, we observed an 

amplification product of the expected size (Fig. 3B and andC)C) with both oligonucleotides pairs (H1/H2 

and H1/H3), indicating that, as in B. subtilis, cotH is transcribed from a distal promoter and that the cotG-

like gene is located between the cotH promoter and its coding region. The conservation of the unusual 

transcriptional organization also found in these two species supports the idea that these proteins of 

unknown function may have a role similar to that of B. subtilis CotG and may be considered a protein 

family typical of Bacillus species. 

 

 

 

 

 

 
Figure 3: cotH transcription in B. cereus and B. licheniformis. (A) Schematic representation of the cotH-

cotG locus. Arrows indicate the positions of the synthetic oligonucleotides used for RT-PCR. Dashed 

arrows indicate the direction of transcription. (B and C) Reverse transcription reactions were performed 

by using total RNA from sporulating cells of B. cereus (B) or B. licheniformis (C) as a template and were 

primed with oligonucleotide H1. Amplification reactions were performed by using cDNA as the template 

and oligonucleotide pair H1/H2 or H1/H3, as indicated. Negative controls (C−) and positive controls (C+) 

were RNA samples treated and not treated with DNase, respectively. Arrows indicate the amplification 

products of the expected size, and M indicates the molecular weight marker. 

 
3.4.2 Construction of cotG mutant alleles 

The presence of positively charged repeats in the central region of all CotG-like proteins and of C- and N-

terminal regions prompted us to investigate the function of such modules. To address this question, we 

used B. subtilis to construct three cotG deletion mutants (Fig. 4) either lacking all central repeats (cotGΔ) 

or expressing only the N-terminal part (cotG-Nterm) or only the C-terminal region (cotG-Cterm) of CotG. 

Figure 3: cotH transcription in B. cereus and B. licheniformis. (A) Schematic representation of the 

cotH-cotG locus. Arrows indicate the positions of the synthetic oligonucleotides used for RT-PCR. 

Dashed arrows indicate the direction of transcription. (B and C) Reverse transcription reactions were 

performed by using total RNA from sporulating cells of B. cereus (B) or B. licheniformis (C) as a 

template and were primed with oligonucleotide H1. Amplification reactions were performed by using 

cDNA as the template and oligonucleotide pair H1/H2 or H1/H3, as indicated. Negative controls (C−) 

and positive controls (C+) were RNA samples treated and not treated with DNase, respectively. Arrows 

indicate the amplification products of the expected size, and M indicates the molecular weight marker. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/figure/F3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/figure/F3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/figure/F3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/figure/F3/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/figure/F4/
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Each mutant allele of cotG was independently integrated at the thrC locus on the B. subtilis chromosome 

of parental strain PY79 and then moved by chromosomal DNA-mediated transformation into strain 

AZ604 (ΔcotG-ΔcotH amyE::cotGstop cotH) not expressing the wild-type copy of cotG (20). It is known 

that CotG action is mediated by CotH when it exerts either its positive role on CotB maturation or its 

negative role on CotC, CotU, and CotS assembly and on spore germination (20). Therefore, by using 

chromosomal DNA-mediated transformation, we moved all mutant cotG alleles in strain AZ603 (ΔcotG-

ΔcotH) also lacking the cotH gene (20). Strains in both mutant backgrounds are indicated in Fig. 4 and 

are described in Table S3 in the supplemental material. Spores of all strains indicated in Fig. 4 were then 

analyzed to assess the role of the various CotG modules in the assembly of some CotG-controlled 

proteins and in spore germination. 

 

 

3.4.3 The C- and N-terminal modules of CotG are essential for CotB maturation 

CotB is extracted from wild-type spores in its 66-kDa mature form (17). CotB maturation from the 46-

kDa form requires the presence of both CotH and CotG (17, 20). The Western blot shown in Fig. 5A 

confirms that without CotG (lane 2) or CotH (lane 3), only the immature CotB form is assembled onto the 

spore, showing that all three mutant versions of CotG allowed CotB maturation in a CotH-dependent 

way. Therefore, all three versions of CotG were able to cooperate with CotH and convert the 46-kDa 

CotB form (CotB-46) into CotB-66. However, CotGΔ was clearly more efficient than CotG-Cterm or 

CotG-Nterm and was able to convert all CotB-46 molecules into CotB-66 to the same extent as that found 

for the wild type (Fig. 5A). CotG-Cterm or CotG-Nterm was able to produce some CotB-66, but the 

major part of the CotB molecules were in the 46-kDa form (Fig. 5A). Based on this, we speculate that 

both the C- and N-terminal regions of CotG cooperate with CotH and act somehow synergistically when 

both are present. The results shown in Fig. 5A also suggest that the central repeats of CotG are not 

required for CotB maturation. 

Figure 4: CotG versions. The wild-type protein (CotG) is represented as being composed of three 

domains: the N- and C-terminal regions of 34 and 35 amino acids, respectively, and a central domain 

of 126 amino acids organized into tandem repeats (18). CotGΔ lacks the central domain, and CotG-

Cterm and CotG-Nterm contain only the C- and N-terminal domains, respectively. All constructs were 

integrated into the chromosomes of strains carrying either a null mutation in cotG or a double-null 

mutation in cotG and cotH (indicated in parentheses). The names of strains carrying the different cotG 

alleles in the two genetic backgrounds are shown. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/figure/F4/
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Figure 5: Effects of CotG on CotB, CotC, and CotU assembly. Western blot analysis of coat proteins 

extracted from purified spores of the indicated strains was performed. Proteins were fractionated on 15% 

SDS-PAGE gels, electrotransferred onto a membrane, and incubated with anti-CotB (A) and anti-CotC 

(B) antibodies. The type of CotG allele expressed in each strain (CotG form) in the presence (+) or in the 

absence (−) of CotH is also indicated. wt, wild type. 

 

 

 

 

 

 
3.4.4 The internal repeats are responsible for the negative effect of CotG on the assembly of 

CotC/CotU and CotS.  

CotC and CotU share significant homologies and are both recognized by anti-CotC and anti-CotU 

antibodies (27, 28). They are assembled in several forms, including a CotC homodimer of 21 kDa and a 

CotC-CotU heterodimer of 23 kDa (29). It was recently reported (20) that CotH counteracts a not-

understood negative role played by CotG on CotC and CotU assembly on the spore. In mutant strains 

lacking only CotG or both CotG and CotH, all CotC/CotU forms are normally present and assembled, but 

when CotG is present and CotH is not present, all forms of CotC and CotU are not found around the 

forming spore or in the mother cell cytoplasm (Fig. 5B, lanes 1 and 2) (20). As shown in Fig. 5B, none of 

the three mutant forms of CotG, CotGΔ, CotG-Cterm, and CotG-Nterm, had a negative effect on CotC or 

CotU, which were normally assembled around the forming spore, independently from the presence of 

CotH. This suggests that the internal repeats of CotG are directly involved in the negative role of CotG in 

CotC/CotU assembly. CotS is a 41-kDa protein whose assembly is negatively controlled by CotG when 

CotH is not present (20). A cotS::gfp fusion (19) was used to monitor the effects of CotG modules on 

CotS assembly. As shown in Fig. 6, only the wild-type version of CotG had a negative effect on CotS that 

was not assembled on mature spores. Instead, a normal CotS-dependent fluorescence signal was observed 

in mature spores as well as in sporulating cells of strains expressing each of the mutant CotG forms 

(CotGΔ, CotG-Cterm, and CotG-Nterm). As in the case of CotC/CotU, this suggests that the internal 

repeats of CotG are responsible for the negative role of CotG in CotS assembly. Taken together, the 

results shown in Fig. 5 and  6 indicate that (i) the N-terminal and C-terminal modules of CotG are 
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Figure 7: Effects of CotG on 

germination efficiency. Spores derived 

from strains expressing wild-type CotG 

(AZ607) (squares), CotGΔ (AZ612) 

(crosses), CotG-Cterm (AZ614) (circles), 

and CotG-Nterm (AZ616) (diamonds) in a 

cotH background were tested for 

germination efficiency and compared with 

those of a wild-type strain (PY79) (dashed 

line). Germination was induced by Asn-

GFK and measured as the percent loss of 

the optical density at 600 nm. Error bars 

are based on the standard deviations of 

data from four independent experiments. 

OD600, optical density at 600 nm. 

responsible for the positive effect of CotG on CotB maturation, acting synergistically, and (ii) the internal 

repeats of CotG are responsible for the negative effects of CotG on the assembly of CotC, CotU, and 

CotS. 

 

3.4.5 The internal repeats are responsible for the negative effect of CotG on the efficiency of 

germination.  

It was previously reported that a cotH-null mutation causes a small defect in the efficiency of spore 

germination in response to asparagine (19). More recently, we showed that such a defect is actually due 

not to the lack of CotH but rather to the presence of CotG that, in the absence of CotH, exerts its negative 

effect (20). Indeed, mutant spores lacking only CotG or both CotG and CotH have a germination 

efficiency similar to that of an isogenic wild-type strain (20). To verify whether the internal repeats are 

also involved in this negative effect of CotG, we analyzed the germination efficiency of strains 

expressing the wild-type and mutant cotG alleles in a cotH background. As shown in Fig. 7, the only 

strain showing a defect in the efficiency of spore germination was the strain expressing the wild-type 

allele of cotG. The efficiency of germination of spores of all other strains was identical to that of wild-

type spores (Fig. 7, dashed line). The results shown in Fig. 7 then indicate that the internal repeats of 

Figure 6: Effects of CotG on CotS assembly. A cotS::gfp fusion was introduced into a wild-type strain 

(PY79) and into cotH strains expressing wild-type CotG (AZ607), CotGΔ (AZ612), CotG-Cterm 

(AZ614), and CotG-Nterm (AZ616). Representative fields using phase-contrast microscopy (PC) and 

fluorescence microscopy (green fluorescent protein [GFP]) are shown. The exposure time was 588 ms in 

all cases. 
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CotG are involved in the negative effect of this protein on spore germination. 

 

3.5 Conclusions 

CotG of B. subtilis is not highly conserved in the Bacillus genus; however, a CotG-like protein with a 

modular structure and chemical features similar to those of CotG is common in spore-forming bacilli, at 

least when cotH is also present. The conservation of CotG-like proteins in almost all species containing a 

CotH orthologue suggests that the two proteins act together and may have a relevant role in the structure 

and function of the Bacillus spore. To address the function of the various modules of CotG of B. subtilis, 

we have constructed mutants expressing CotG-deleted forms lacking the central modular region (CotGΔ) 

or expressing only the N- or the C-terminal part of CotG. Analysis of the various mutants allowed us to 

propose that the N- and C-terminal modules are able to both interact with CotH and mediate CotB 

maturation and that this interaction is synergistic. The central part of CotG, containing the repeats of 

positively charged amino acids, is not involved in CotB maturation but is instead responsible for the 

negative effect of CotG on the assembly of at least three coat components, CotC, CotU, and CotS, and on 

the efficiency of spore germination. CotH counteracts this negative effect, ensuring the correct assembly 

of the spore coat. Our findings indicate that CotG and CotH are functionally linked to each other and 

support the idea that the entire cotH-cotG locus and not only cotH has been conserved during the 

evolution of spore-forming bacilli. 
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a
 List of Bacillus species whose genomes have been completely 

sequenced (source KEGG, Kyoto Encyclopedia of Genes and Genomes 

database http://www.genome.jp/kegg/catalog/org_list.html);  
b
 presence (+) or absence (-) of a protein sharing a minimum of 40% 

sequence identity respect to CotH and CotG of B. subtilis 168  
c
 presence (+) or absence (-) of an adjacent and divergent orf respect to 

cotH; 
d
 Taxonomy ID from NCBI 

(http://www.ncbi.nlm.nih.gov/taxonomy) e accession numbers of the 

respective genomic sequences  

ND, not determined 

Table S1: Analysis of cotH locus in Bacillus species with completely sequenced genomes 
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Table S2: Oligonucleotides used in this study 

a
 Capital and lowercase letters indicate bases of DNA and of an unpaired tail 

carrying a restriction site, respectively.  
b
 lowercase letters in Gsoe2, Gsoe4, Gsoe6 indicate the sequences complementary 

to the 5’ region (underlined) of oligonucleotides Gsoe1, Gsoe3, Gsoe5, respectively  
c
 Considering as +1 the first base of the first codon in cotH or cotG as indicated in 

brackets. 

Table S3: Bacillus subtilis strains used in this study 
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4.1 Abstract 

In Bacillus subtilis the protective layers that surround the mature spore are formed by over seventy 

different proteins. Some of those proteins have a regulatory role on the assembly of other coat proteins 

and are referred to as morphogenetic factors. CotE is a major morphogenetic factor, known to form a ring 

around the forming spore and organize the deposition of the outer surface layers. CotH is a CotE-

dependent protein known to control the assembly of at least nine other coat proteins. We report that CotH 

also controls the assembly of CotE and that this mutual dependency is due to a direct interaction between 

the two proteins. The C-terminal end of CotE is essential for this direct interaction and CotH cannot bind 

to mutant CotE deleted of six or nine C-terminal amino acids. However, addition of a negatively charged 

amino acid to those deleted versions of CotE rescues the interaction. 

 

4.2 Introduction 

Many biological systems depend on molecular self-assembly to create complex supramolecular structures 

that carry out diverse functions. Those complex structures are generally based on noncovalent 

interactions between the forming molecules and require strict regulatory mechanisms. The spore coat of 

the gram-positive bacterium Bacillus subtilis is an example of such supramolecular structure and, because 

of the amenability of this microorganism to genetic and molecular analysis, is a model to study and 

improve our knowledge on the formation of self-assembled structures. 

Spore formation starts when cell growth is no longer allowed by nutrient starvation or other 

environmental conditions affecting DNA replication [1, 2]. First morphological step of spore formation is 

an asymmetric cell division that produces a large mother cell and a small forespore. The mother cell 

contributes to forespore maturation and undergoes autolysis at the end of the process allowing the release 

of the mature spore into the environment [1, 2]. The mature spore is extremely stable and resistant to 

harsh conditions. It can survive for extended periods of time in the absence of water and nutrients and to 

extremes of heat and pH, to UV radiation, and to the presence of solvents, hydrogen peroxide and lytic 

enzymes [3, 4]. The spore is, however, able to sense the environment and respond to the presence of 

water and nutrients generating a cell able to grow and, eventually, to re-sporulate [5]. 

The resistance properties of the spore are due to its unusual structure and physiology. The dehydrated 

cytoplasm, containing a copy of the chromosome, is surrounded by a series of protective layers. A 

peptidoglycan-like cortex is the first shield, surrounded by a multilayered coat and a crust [6]. Coat and 

crust together are composed of at least 70 different proteins and glycoproteins. While several proteins of 

both coat and crust have been identified and characterized, little is known about which of them is 

glycosylated and the identities of the sugars on the spore surface. It is, however, known that the presence 

of glycoproteins on the spore surface modulates the relative hydrophobicity of the spore [7, 8]. Coat 

formation is finely controlled by a variety of mechanisms acting at various levels. The synthesis of coat 

proteins is regulated by at least two mother cell-specific sigma subunits of RNA polymerase and at least 

three additional transcriptional regulators. These transcription factors act in a temporal sequence, and 

differentially in the forespore and mother cell, thereby controlling the time and cell type of expression of 

the coat structural genes (cot genes) [6]. At least some coat proteins are subject to post-translation 

maturation events, including proteolytic cleavage, cross-linking, phosphorylation and glycosylation 
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reactions [9]. An important subset of coat proteins, referred to as morphogenetic coat proteins, have 

especially important roles in coat formation, in that these proteins direct the assembly of others in the 

coat, forming a complex network of interactions [10–14]. Within this subset of regulatory coat proteins, 

CotE plays a crucial role in the assembly of outer coat and crust: without it, these layers are not 

assembled [15]. Consistent with this role, CotE is present between the inner and outer coat layers in the 

mature spore [16]. Interestingly, CotE is also found in the mother cell cytoplasm, up to at least eight 

hours after the start of sporulation [17]. A mutagenesis study showed that CotE has a modular structure: a 

C terminal domain that directs the assembly of various coat proteins including some known to be in the 

outer coat layer, an internal domain involved in targeting CotE to the forespore and a N terminal domain 

that, together with the internal domain, directs the formation of CotE multimers [18, 19]. More recently, 

formation of CotE multimers was confirmed by yeast-two-hybrid analysis [20]. A global study of the coat 

protein interaction network in B. subtilis suggested that CotE interacts, directly or indirectly, with most 

outer coat proteins [10, 12]. A direct interaction with CotE has been demonstrated for SpoVID [14], CotC 

and CotU [21]. In the case of CotC and CotU, the interaction with CotE is essential for CotC-CotU 

heterodimerization [21]. 

CotH is a CotE-dependent (i.e., CotH assembly depends on CotE) [22, 23] morphogenetic protein 

responsible of the assembly of at least 9 other coat proteins, including CotG, CotC, CotU and CotS [12]. 

In the absence of CotH, the coat is severely altered and spore resistance and germination is severely 

impaired [22, 23] At least in part, these phenotypes are likely the result of the lack of an important subset 

of outer coat proteins [10, 22]. CotH assembly can be engineered to be CotE independent, by over-

expression of the cotH gene [24]. This suggests that CotE facilitates CotH assembly but is not necessarily 

essential for this event. There is also evidence that at least some degree of CotE assembly is CotH-

dependent [12], suggesting a role for CotH in stabilizing CotE at the spore surface after the initial 

deposition of CotE. Mutant spores lacking both CotH and CotE germinate less efficiently and showed an 

increased sensitivity to lysozyme than single cotE mutant spores [22]. This suggests additional roles for 

CotH that are CotE-independent. Taken as a whole, these prior studies establish that CotH plays a major 

role in coat assembly and, as a result, in key spore properties. However, they leave unclear the 

mechanism(s) by which CotE directs CotH assembly into the coat. In particular, it remains unknown 

whether additional coat proteins mediate this pivotal interaction. 

In the present work, we focus on the CotE-CotH interaction and on its role in coat formation. We further 

characterize the dependency of CotE assembly on CotH, and provide evidence arguing that the CotE-

CotH interaction is independent of any other morphogenetic coat proteins. Based on our results, we 

propose a revised model for the assembly of the CotH-dependent portion of the outer coat. 

 

4.3 Materials and Methods 

4.3.1 General methods, analysis of spore proteins and immunoassays 

Strains and primers used for polymerase chain reaction (PCR) are listed in S1 and S2 Tables, 

respectively. Manipulations of B. subtilis were performed as described previously [25]. Sporulation was 

induced by the by exhaustion method in Difco Sporulation Medium (DSM). Ten milliliters of sporulating 

cells were harvested at various times during sporulation and mother cells and forespore fractions isolated 
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as described before [26]. Whole-cell lysates of sporulating cells were prepared by sonication [26] 

followed by detergent treatment (62.5 mM Tris-HCl (pH 6.8), 4% SDS, 5% glycerol, 2% beta-

mercaptoethanol, 0.003% bromophenol blue) at 100°C for 7 min. 50 μg (mother cell extract or whole-cell 

lysates) or 20 μg (forespore extract) of total proteins was used for western blot analysis. Extraction of 

proteins from mature spores (from fifteen milliliters culture) was performed with treatment at 65°C in 

SDS-DTT extraction buffer or at 4°C in 0.1 M NaOH [24]. Western blot analysis were performed by 

standard procedures. For electrotransfer was used nitrocellulose membrane and the proteins were then 

hybridized with either anti-CotH, anti- CotE anti-CotB, anti-CotG or anti-CotC antibodies as described 

previously [26]. 

 

4.3.2 Strain construction and recombinant DNA procedure 

Recombinant DNA procedures were carried out as described previously [27] unless otherwise indicated. 

CotE mutants were obtained by amplifying the cotE gene by PCR using the B. subtilis chromosomal 

DNA as a template and the CotE-P synthetic oligonucleotide (S2 Table) as forward primer. Four different 

oligonucleotides, CotE 525-9EE-R, CotE 525-6D-R, CotE 525-6E-R, CotE 525-6K-R (S2 Table) were 

independently used as reverse primers. All amplification fragments (all of about 920 bp) were firstly 

cloned in pGem-T (Promega) and then excised by enzymatic digestion using BamHI and EcoRI 

restriction enzymes and finally cloned into pDG364 vector, previously digested with the same enzymes. 

By this strategy plasmids pTS25 (9EE), pTS22 (6D), pTS23 (6E) and pTS24 (6K) were obtained. All four 

plasmids were sequenced and then used to transform a B. subtilis cotE null mutant strain (RH211), 

obtaining RH401 (-9EE), RH402 (-6D), RH403 (-6E) and RH404 (-6K) mutant strains. 

 

4.3.3 Overproduction of proteins in E. coli and pull-down experiments 

cotH coding region was PCR amplified using the B. subtilis chromosomal DNA as a template and 

oligonucleotides H34 and H35 (S2 Table) to prime the reaction. The obtained fragment of 1,100 bp was 

digested SacI and KpnI restriction enzymes and cloned in frame with poly-His tag into the pBAD-B 

expression vector (Life Technologies) previously digested with the same enzymes. To over-produce CotE 

-9EE, -6D or -6E, the cotE coding regions were amplified by PCR using the oligonucleotides E-NdeI-F 

and pDG364 720R-HindIII (S2 Table) to prime the reactions and chromosomal DNA of strains RH401, 

RH402 or RH403 as templates. All fragments were digested with NdeI and HindIII restriction enzymes 

and then cloned the pRSET-B expression vector (Invitrogen) previously digested with the same enzymes. 

All the resulting plasmids were checked by nucleotide sequence analysis and used to transform E. coli 

strain BL21(DE3) (Novagen) to create the strains RH406 (-9EE), RH405 (-6D) and RH407 (-6E) (S1 

Table). 

For the His tag pull down assays, CotH-His and all the untagged modified versions of CotE were 

produced using the Overnight Express Autoinduction Media as previoulsy described [21]. Briefly, after an 

over-night incubation at 37°C in 15 mL of autoinduction medium (Novagen), the cells of all strains were 

collected by centrifugation and resuspended in 1.5 ml of lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 

10 mM imidazole, 2 mg/ml lysozyme, and 0.01 mg/ml RNase). After 30 min at 4°C, the lysates were 

sonicated and the suspension was clarified by centrifugation at 13,000 g at 4°C for 20 min. 300μg of 
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extract from strain expressing CotH-His was applied to Ni-NTA magnetic agarose beads (Qiagen). After 

1 h of incubation at room temperature with shaking, the beads were washed with 2.5 ml of wash buffer 

(50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole), and 300 μg of extract from strain RH134 (or 

RH404, or RH405 or RH406) was added to the beads and incubated for 1 h at room temperature with 

shaking to facilitate binding. Unbound proteins were removed by washing with wash buffer at three 

different concentrations of imidazole (40 mM, 100 mM, and 250 mM. Bound proteins were eluted using 

the wash buffer at increasing concentrations of imidazole (500 mM and 1 M) Eluted proteins were 

resolved on 12.5% SDS-PAGE gels and subjected to immunoblot analysis [26]. 

 

4.4 Results and Discussion 

4.4.1 CotE assembly depends on CotH 

A western blot approach with anti-CotE-antibody was used to investigate the degree to which CotE coat 

assembly within the coat is dependent on CotH. Fig 1A shows that the amount of extracted CotE is higher 

in mature spores of a wild type B. subtilis strain than in spores of a congenic cotH mutant strain (strain 

ER220). Consistent with the possibility that CotE assembly is due, at least in part, to direct interactions 

with CotH, we found that the amount of extracted CotE is higher in spores engineered to over express 

cotH (strain RG24) than in wild type spores (Fig 1A). We conclude from these experiments that the 

assembly of CotE in mature spores depends on the level of CotH. 

To more fully characterize the consequences of CotH on CotE assembly, we measured the levels of CotE 

in each of the two compartments of sporulating cells. To do this, we applied western blot analysis with 

anti-CotE-antibody on proteins extracted from either the mother cell or the forespore compartment at 

various times after the onset of sporulation. As previously reported [17], in a wild type strain, three hours 

after the onset of sporulation (T3), CotE was mostly found in the mother cell compartment (Fig 1B). After 

that it was found in both compartments (T7) and, somewhat later (T9), CotE was mostly in the forespore. 

In a congenic strain lacking CotH, at all time points tested the majority of CotE was found in the mother 

cell cytoplasm (Fig 1B). These results suggest that CotH acts at the level of CotE incorporation into the 

coat, and not at the level of CotE synthesis or stability. These data provide strong confirmation of 

previous results suggesting that CotE is a CotH-controlled protein [12]. 

Recent work suggests that CotH counteracts a negative role played by CotG [28]. In that study, it was 

shown that the assembly of at least three coat proteins, CotC, CotU and CotS, requires CotH only when 

CotG is present. Indeed, although all three proteins fail to assemble in spores of a strain lacking CotH, the 

defect is eliminated when CotG is also lacking. Therefore, we addressed the hypothesis that CotG 

contributes to CotH-dependent CotE assembly, by measuring CotE assembly in a strain lacking both 

CotH and CotG (strain AZ603). As shown in Fig 1C, the amount of CotE assembled around mature 

spores of a strain lacking only CotH or both CotH and CotG is similar, demonstrating that CotE assembly 

is not negatively affected by CotG. 
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Figure 1: CotE in vivo assembly in mature spores and during sporulation. Proteins for western blot 

analysis were extracted from: (A) mature spores of a wild type strain (wt), or isogenic strains lacking 

CotH (cotH; ER220) or CotE (cotE; RH211) or over-producing CotH (PAcotH; RG24) (24); (B) 

mother cell or forespore compartments of sporulating cells of a wild type strain (wt), or an isogenic 

strain lacking CotH (cotH; ER220), 3 (T3), 7 (T7), and 9 (T9) hours after the initiation of sporulation; 

(C) mature spores of a wild type strain (wt), or isogenic strains lacking CotH (cotH; ER220), or CotG 

and CotH (cotG cotH; AZ603). Proteins were fractionated on 15% SDS-PAGE, electrotransfered on a 

membrane and reacted with anti-CotE antibody. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4.2 CotE and CotH interactions in vitro 

To address the key question of whether any B. subtilis coat proteins mediate the interaction between CotE 

and CotH, we overproduced in E. coli a His-tagged version of CotH (CotH-His) and an untagged version 

of CotE, and performed an in vitro His tag pull-down assay. To do this, we lysed E. coli cells producing 

CotH-His, incubated them with Ni-NTA magnetic beads and then incubated the beads with an extract of 

cells producing untagged CotE. We then eluted proteins from the beads, fractionated them by SDS-PAGE 

and performed blot analysis, with anti-CotH (Fig 2A), anti-CotE (Fig 2B and 2C) or anti-His (not shown) 

antibodies. A small fraction of untagged CotE was able to bind Ni-NTA beads when CotH-His was 

present (Fig 2B). In the absence of CotH-His, untagged CotE was not able to bind to the Ni-NTA beads 

(Fig 2C). These data argue against the view that a B. subtilis coat protein is required for the CotE-CotH 

interaction. The simplest interpretation of these data is that the interaction between these two proteins is 

direct. 
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Figure 2: Immunoprecipitation analysis of the in vitro CotH-CotE interactions. 
CotH-His was bound to a Ni-NTA column and the flowthrough (FTCotH) and washes (W1-W3, here 

only W3 is shown) were collected. Untagged CotE was then added, and flow through (FTCotE), washed 

(W1—W8, here only W8 is shown), and eluted (E1—E4) proteins collected as described in Materials 

and Methods. Proteins were fractionated on 12.5% polyacrylamide gels, electrotransferred to 

membranes, and reacted with anti-CotH (A), anti-CotE (B) antibodies. The same experiment was also 

performed without CotH-His (C). 

 

 

 

 

 

 

 

 

 

 

 

 
4.4.3 The C terminus of CotE protein is involved in the interaction with CotH 

Previous studies demonstrated that the CotE sequence is organized into functional modules, where the N- 

and C-termini have roles in the assembly of the outer coat proteins, and an internal block of residues 

directs the assembly of CotE to the developing forespore [18, 19]. To identify regions of CotE that 

mediate interactions with CotH, we analyzed a collection of congenic cotE mutants (Fig 3A; [17]), each 

harboring a different 20 amino acid deletion in the resulting protein. Western blot analysis showed that 

CotE was present in spores from all the mutant strains (Fig 3B). As expected [18], the levels of CotE 

present in the various strains is lower than in wild type strain. Also as expected, CotE was only barely 

detectable in spores of strain TB95, due to the functions of the missing amino acids (58 to 75) (Fig 3B) 

[18]. Western blot analysis with anti-CotH antibodies demonstrated the presence of similar levels of CotH 

in spores of all the mutant strains except TB95 (presumably because of the low level of CotE) and in 

strain SL484 (missing amino acids 162–181) (Fig 3C). We conclude, therefore, that amino acids within 

162–181 participate in CotH assembly. This finding is consistent with previous work, showing that that 

the absence of these residues results in low levels of assembly of the CotH-dependent protein CotG [19]. 

Our finding is also consistent with the view that the interaction between CotE and CotH in the coat is 

direct. 
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Figure 3: Effects of deletions in CotE on in vivo CotH assembly. 
(A) CotE and various deletion mutant versions of the protein are indicated. To the left of each construct 

is the strain name and the deleted amino acids. Coat proteins were extracted from mature spores of wild 

type and mutants, and analyzed by western blot with anti-CotE (B) or anti-CotH (C) antibodies. White 

triangles indicate likely CotE degradation products. Molecular masses are indicated in kilodaltons. 

 

 

 

 

 

 

 

 

 

 

4.4.4 Role of a negatively charged amino acid at the C terminus of CotE 

To identify more precisely the amino acids in CotE that direct CotH assembly, we analyzed CotH 

assembly in spores of strains TB126, SL483, TB124 and SL507 lacking the last 3, 6, 9 or 12 residues at 

the C terminus of CotE, respectively [19] (Fig 4A). Western blot with anti-CotE antibody and SDS-

PAGE analyses showed that in spores of all mutant strains, CotE was present, and at levels consistent 

with those reported previously (Fig 4B and 4C) [19]. Western blot analysis with anti-CotH antibody 

revealed that CotH was present when the 3 C terminal-most amino acids were missing (in strain TB126) 

but was absent when the 6 or 9 C terminal-most amino acids were missing (in strains SL483 and TB124) 

(Fig 4D). Interestingly, CotH was detected when twelve (strain SL507 in Fig 4D) or twenty (strain SL484 

in Fig 3) amino acids were deleted. These data are striking in light of previous data indicating that the 

deletion of 6 or 9 amino acids did not prevent assembly of the CotH-dependent proteins, including CotG 

[19]. 

While seeking an explanation of the data just described, we noted that in all the versions of CotE that 

successfully assembled CotH (wild type, and those missing 3, 12 or 20 C terminal amino acids), but not 

the versions that failed to assemble CotH, the final residue was negatively charged (Fig 4A). To test the 

hypothesis that to direct CotH assembly CotE must have a negatively charged C terminus, we generated a 

strain bearing a version of CotE lacking the C-terminal 9 amino acids and with the addition of two 

glutamic acid (EE) residues (strain RH401). Western blot analysis showed that spores from this strain do 

assemble CotH (Fig 5A).  
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Figure 5: Rescue of in vivo CotH assembly by addition of negatively charged residues. 
Strains bearing versions of CotE lacking nine (A) or six (B) C-terminal amino acids were modified by 

adding the indicated C terminal residue and analyzed by western blot. Proteins were fractionated on 

12.5% polyacrylamide gels, electrotransferred to membranes, and reacted with anti-CotH antibody. 

 

 

 

 

 

 

 

 

 

 

To further address our hypothesis, we generated strains bearing versions of CotE lacking the 6 C-terminal 

residues and with the addition of either an aspartic acid, a glutamic acid or a lysine (strains RH402, 

RH403 and RH404, respectively) (Fig 5B). Western blot analysis demonstrated that CotH assembly was 

restored by the addition of the negatively, but not the positively charged amino acids (Fig 5B). 

 

Previous experiments showed that CotH assembly to the spore becomes strictly dependent on CotE only 

at late times during sporulation (after T11) (24). Therefore, we asked whether the presence of a positive 

amino acid to the CotE C terminus (strain TB124 lacking 9 C-terminal residues) would affect this early 

phase of apparently CotE-independent CotH assembly. We found that the pattern of CotH assembly was 

similar to that previously seen in a cotE null mutant strain (strain RG25 in [24]); CotH was found around 

the spore at early times during sporulation (T6 and T10) but not at a late time (T18) (Fig 6A) or in mature 

spores (Fig 5). When a negatively charged amino acid was added a wild type pattern of CotH assembly 

was rescued (Fig 6A). Therefore, the presence of a positive residue to the CotE C-terminus does not 

prevent early CotH assembly.  

 

 

 

 

 

 

 

 

 

 

Figure 4: Effects of C-terminal deletions of CotE on in vivo CotH assembly. 
(A) The amino acid sequences of the C termini of CotE and various mutant versions. To the left of each 

sequence are the strain name and the number of deleted amino acids. Negatively charged amino acids 

when present at the C terminus are indicated in bold. Western blot with anti-CotE antibody (B), SDS-

PAGE (C) and western blot with anti-CotH- antibody (D) of coat proteins extracted from spores of the 

strain indicated in panel A. Triangles in panel C indicate the predicted CotE bands. Proteins were 

fractionated on 12.5% polyacrylamide gels, electrotransferred to membranes, and reacted with anti-CotH 

and anti-CotE antibodies. 
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Figure 6: Time course of in vivo CotE-CotH interaction and in vitro pull down experiments. 
(A) Western blot of proteins extracted from the forespore compartment of sporulating cells of a wild 

type strain (wt), or isogenic strains lacking CotH (cotH; ER220), carrying a deleted version of CotE (-9; 

TB124) or carrying a deleted version with a negatively charged C terminus (-9EE). Proteins were 

extracted 6 (T6), 10 (T10), and 18 (T18) hours after the initiation of sporulation. (B) Untagged CotE -9 

and -9EE versions were independently added to a Ni-NTA column bound to CotH-His as in Fig 2A. 

Flow through (FTCotE), washed (W1—W8, here only W8 is shown), and eluted (E1—E4) proteins 

collected as described in Materials and Methods. Proteins were fractionated on 12.5% polyacrylamide 

gels, electrotransferred to membranes, and reacted with anti-CotH and anti-CotE antibodies. 

We then conclude that during sporulation CotH initially assembles around the spore in a CotE-

independent way and that the interaction with CotE is essential to stabilize CotH presence around the 

forming spore. Such interaction strictly requires the presence of a negatively charged amino acid as C 

terminus of CotE. 

 

 

 

 

 
4.4.5 CotH interactions in vitro with CotE missing 9 amino acids but with an additional negatively 

charged residue 

Our studies so far suggested the possibility that a negatively charged amino acid on the C terminus of 

CotE interacts directly with CotH. If so, then we would expect an appropriately engineered version of 

CotE to interact with CotH in the in vitro assay already described. To address this, we analyzed 

interactions between CotH and overproduced versions of CotE with deletions of 6 or 9 amino acids, and 

with or without the addition of an acidic residue. As shown in Fig 6B, CotE lacking 9 amino acids was 

unable to pull down CotH-His, but was able to when a negatively charged residue was added to the C 

terminus. The same result was obtained using the version of CotE lacking the 6 C-terminal residues: this 

version of CotE did not pull down CotH-His, but the pull down was successful when a glutamic acid (E) 

residue was added (not shown). 
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Figure 7: Effects of CotE mutations on CotB and CotG assembly during sporulation. 
Western blot with anti-CotG (A) and anti-CotB (B) antibodies of proteins extracted from mature spores 

of a wild type strain (wt) or of isogenic strains lacking CotH (cotH; ER220) or carrying modified 

version of CotE (-9; TB124, -9EE; RH401). Proteins were fractionated on 12.5% polyacrylamide gels, 

electrotransferred to membranes, and reacted with the anti-CotG (A) and anti-CotB (B) antibodies. 

4.4.6 The interaction of CotH with a truncated version of CotE is functional 

In the experiment just described, we showed that addition of a negatively charged amino acid to a version 

of CotE missing either the C-terminal -6 and -9 amino acids rescued CotH assembly. To further 

characterize the degree of rescue of CotH function by these versions of CotE, we next tested whether they 

directed assembly of the CotH-controlled proteins CotB, CotC, CotG, and CotU. CotG is an abundant 

protein extracted from wild type spores in a 32 and a 36 kDa form both strictly dependent on CotH for 

coat assembly [12, 28, 29] (Fig 7A). The removal of the C-terminal 6 and 9 amino acids from CotE 

results in the loss of the 36 kD but not the 32 kD CotG species (Fig 7A and data not shown). The addition 

of a negatively charged residue to the C terminus of the truncation restored the presence of the 36 kDa 

species (Fig 7A and data not shown). The simplest interpretation of these results is that assembly of the 

36 kDa species depends on an interaction between CotE and CotH. Our data also argue that assembly of 

the 32 kDa species requires CotH but it does not depend on a CotE-CotH interaction, implying that CotH 

can participate in assembly of CotG-32 even if it is in the mother cell cytoplasm and not bound into the 

coat (Fig 6A). 

 

 

 

 

 

 

 

 

CotB is extracted from wild type spores in its 66 kDa mature form [30]. However, CotB is produced as a 

46 kDa species whose maturation requires CotH and CotG [30]. Prior to the point in coat assembly when 

CotH deposition is independent of CotE (T10) (Fig 6A), the mature, 66 kDA form of CotB is present in 

the spore of a strain containing either the 6 or 9 amino acid truncation version of CotE, (Fig 7B and data 

not shown). In the same strain but at a later time (T18), CotH is no longer assembled within the coat (Fig 

6A and data not shown) and also the mature form of CotB is no longer present in the coat (Fig 7B and 

data not shown). The presence of a negatively charged amino acids to either CotE truncation construct 

rescues CotH assembly and also assembly of the mature form of CotB (Fig 7B and data not shown). 

CotC and CotU share significant sequence identity and are both recognized by anti-CotC and anti-CotU 

antibodies [31, 32]. They are assembled in several forms including a CotC-CotU heterodimer of 23 kDa 

whose formation requires a direct interaction with CotE [21]. CotH plays a role in this event, by 

counteracting a still poorly understood negative role played by CotG on CotC and CotU assembly [28]. 

Assembly of CotU and CotC monomer forms, and CotC dimers, was not significantly affected by 

deletion of the CotE C terminus (Fig 8A). However, we did detect significant changes in the levels of the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/#pone.0141040.ref030
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/#pone.0141040.ref030
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/figure/pone.0141040.g006/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/figure/pone.0141040.g007/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/figure/pone.0141040.g006/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/figure/pone.0141040.g006/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/figure/pone.0141040.g007/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/figure/pone.0141040.g007/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/#pone.0141040.ref031
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/#pone.0141040.ref032
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/#pone.0141040.ref021
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/#pone.0141040.ref028
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/figure/pone.0141040.g008/
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23 kDa CotC-CotU heterodimer and the 30 kDa form of CotC [31, 32], that appear both to be strongly 

reduced in spores bearing either CotE truncation construct (Fig 8A). Assembly of these species were not 

rescued by the addition of a negatively charged amino acid (data not shown). 

 

 

 

 

 

 

4.5 Conclusions 

The assembly of CotH and CotE is mutually dependent. CotH dependence on CotE has been established 

in several previous studies [23, 24, 30].The dependence of CotE on CotH is much less well characterized 

[12]. Here we further characterize this interaction and use the results to generate a refined model for coat 

assembly. Our principal finding is that both the CotE-dependent assembly of CotH, and the CotH-

dependent assembly of CotE, require amino acids at the CotE C-terminus, and the effects of removal of 

these residues is overridden by the addition of a negatively charged amino acid to the end of the 

construct. We suggest that the simplest interpretation of these data is that the mutually dependent 

assembly of CotE and CotH is due to a direct interaction between these proteins. CotH has at least two 

roles. First, it directs the assembly of a large subset of coat proteins [12]. Second, CotH stabilizes the 

already deposited CotE. 

Our results also provide insights into the mechanism by which CotG negatively effects assembly of CotC 

and CotU [28]. Our data suggest a model in which the 32 kDa form of CotG (whose assembly is CotH-

independent) does not have the ability to exert the negative affect on CotC or CotU assembly (that CotG 

usually produces in cotH mutant spores [28]), but the 36 kDa form does. This result is striking because it 

is, to our knowledge, the first evidence for a difference in function in assembly between isoforms of a 

coat protein. We suggest, therefore, that in addition to the functions already described for CotH, a key 

role is, directly or indirectly, to suppress a deleterious effect of the 36 kDa form of CotG on coat 

assembly. This possible role underscores what is likely to be an important general feature of coat protein 

assembly; the need to suppress certain possible interactions which, left unchecked, lead to misassembled 

coats. We speculate that there are other interactions between coat proteins whose major or even primary 

Figure 8: Effects of CotE mutations on assembly of CotC and CotU during sporulation. 
Western blot with anti-CotC antibody of proteins extracted from mature spores of a wild type strain 

(wt), or isogenic strains carrying either deleted version of CotE (-6; SL483, -9; TB124). The various 

forms of CotC and CotU are indicated. CotC** indicates a post-translationally modified form of 

CotC [31]. Proteins were fractionated on 12.5% polyacrylamide gels, electrotransferred to 

membranes, and reacted with the indicated antibodies. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/#pone.0141040.ref031
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/#pone.0141040.ref032
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/figure/pone.0141040.g008/
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/#pone.0141040.ref030
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/#pone.0141040.ref012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/#pone.0141040.ref012
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618286/#pone.0141040.ref028
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function is to prevent maladaptive assembly. Possibly, the potential for deleterious interactions among a 

relatively large number of coat proteins has led to a correspondingly large number of such "prophylactic" 

interactions and, therefore, a surprisingly high degree of biochemical complexity to the coat as a whole. 
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4.8 Supporting Information 

S1 Table: List of strains used in this study. 

Strain Genotype Source
a
 

Bacillus subtilis   

PY79 wild type reference below 

RH211 cotE::spc [21] 

ER220 cotH::spc [22] 

RG24 

AZ603 

pAH::cat 

ΔcotG ΔcotH::neo 

[24] 

[25] 

TB70 cotE::cat::spc amyE::cotEΔ159-181 [18] 

TB51 cotE::cat::spc amyE::cotEΔ147-160 [18] 

TB71 cotE::cat::spc amyE::cotEΔ80-102 [18] 

TB95 cotE::cat::spc amyE::cotEΔ58-75 [18] 

TB83 cotE::cat::spc amyE::cotEΔ30-55  [18] 

TB126 (-3) cotE::cat::spc amyE::cotEΔ179–181  [19] 

SL483 (-6) 

TB124 (-9) 

cotE::cat::spc amyE::cotEΔ176–181 

cotE::cat::spc amyE::cotEΔ173–181 

[19] 

[19] 

http://dx.doi.org/10.1128/JB.01807-08
http://dx.doi.org/10.1128/JB.01408-09
http://dx.doi.org/10.1371/journal.pone.0074949
http://dx.doi.org/10.1186/1475-2859-12-98
http://dx.doi.org/10.1371/journal.pone.0104900
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SL507 (-12) cotE::cat::spc amyE::cotEΔ170–181 [19] 

SL484 (-20) cotE::cat::spc amyE::cotEΔ162–181 [19] 

RH401 (-9EE) cotE::spc::cat amyE::cotEΔ173–181EE  This study 

RH402 (-6D) cotE::spc::cat amyE:: cotEΔ176–181D  This study 

RH403 (-6E) cotE::spc::cat amyE::cotEΔ176–181E This study 

RH404 (-6K) cotE::spc::cat amyE::cotEΔ176–181K This study 

 

Escherichia coli 
b
 

  

CotH-His cotH::6his This study 

RH134 cotE [21] 

RH405 cotEΔ173–181EE This study 

RH406 cotEΔ176–181D This study 

RH407 cotEΔ176–181E This study 
a
 Numbers refer to references in the text. 

b 
All E. coli strains are derivatives of strain 

BL21(DE3) transformed with various plasmids. The relevant genotypes shown for E. coli 

strains are those of the contained plasmid. 

 

Reference: 

Youngman P, Perkins JB, Losick R. A novel method for the rapid cloning in Escherichia coli of Bacillus 

subtilis chromosomal DNA adjacent to Tn917 insertion. Mol. Gen. Genet. 1984; 195:424-433. 

 

 

 

 

S2 Table. List of primers 

Oligonucleotide Sequence
a, b Restriction 

site 

Position of 

annealing
c 

CotE-P CGggatccCGAGCTCGTTGCACACACC BamHI -370/-388 (cotE) 

CotE 525-9EE-R aagcttATTCCTCCGGGTTGATGC HindIII +505/+519(cotE) 

CotE 525-6D-R aagcttAGTCTAAAAACTCCGGGTTG HindIII +510/+526(cotE) 

CotE 525-6E-R aagcttATTCTAAAAACTCCGGGTTG HindIII +510/+526(cotE) 

CotE 525-6K-R aagcttACTTTAAAAACTCCGGGTTG HindIII +510/+526(cotE) 

E-NdeI-F TAGGcatatgTCTGAATACAGGGAAATT NdeI +1/+21(cotE) 

PDG364 720R-H3 aagcttGGTAATGGTAGCGACCGG HindIII 
+702/+720 

(pDG364) 

H34    gagctcGATGAAGAATCAATCCAATTTACCG  SacI -1/+24 (cotH) 

H35  
ggtaccTCATAAAATACTTAAATGATCTTTGAGG KpnI 

+1062/+1086 

(cotH) 
a
 Capital and lowercase letters indicate nucleotides complementary to corresponding gene DNA and unpaired 

flanking sequences carrying a restriction site, respectively. 
b
 Underlined letters indicate codons which have 

been inserted.  
c
 Referred to cotE sequences, taking the first nucleotide of the initiation codon as +1. 
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5.1 Abstract 

Bacillus megaterium is a Gram-positive, spore forming bacterium characterized by the large dimensions 

of cells and spores, significantly larger than those of other species, including the model species B. 

subtilis. In addition to the dimensions, spores of B. megaterium differ from those of B. subtilis also for the 

presence of an exosporium, a still poorly characterized outermost spore layer mainly composed of 

proteins and carbohydrates. We report here the identification and characterization of SF185_1531, an 

abundant spore surface protein of B. megaterium and, by reverse genetics, of its structural gene. An 

electron microscopy analysis of a mutant strain lacking SF185_1531 showed that its spore was not 

surrounded by an exosporium, indicating SF185_1531 as an essential component of this outermost layer. 

A physiological analysis of the mutant lacking SF185_1531 indicated that spores were defective in 

germination and impaired in their resistance to lysozyme.  

 

 

5.2 Introduction 

Bacterial endospores (spores) are one of the most resilient cell structures observed in nature. They are 

formed in response to nutrient starvation by gram-positive bacteria of the Bacillus and Clostridium 

genera, which are both members of the Phylum Firmicutes (Setlow, 2014). Spore formation is a strategy 

used by some bacteria to withstand environmental challenges and ensure cell survival over extended 

periods of time (Driks, 1999; Henriques & Moran, 2007; McKenney et al., 2013). Sporulation is initiated 

when the vegetative cell encounters unfavourable conditions, such as nutrient limitation, and follows a 

strictly regulated sequence of morphological, biochemical and genetical steps which are highly conserved 

among spore formers (Henriques & Moran, 2007).  

In response to starvation the vegetative cell undergoes an asymmetric cell division and originates two cell 

compartments separated by a septum. In a process superficially resembling phagocytosis, the larger 

compartment, the mother cell, then engulfs the pre-spore, isolating it from the surrounding environment 

with a double membrane. The primordial germ cell wall is assembled at the exterior of the innermost 

membrane, which serves as precursor for the new cell wall after the spore germinates to resume the 

vegetative state. In addition, a thick layer of structurally unique peptidoglycan, referred to as the cortex, 

which is crucial in maintaining spore dormancy, is deposited between the primordial germ cell wall and 

the outer membrane. At the same time, the multi-layered, proteinaceous spore coat is synthesized in the 

mother cell and deposited onto the developing spore surface. While the core and cortex structure is 

widely conserved among spores of differing species, the composition and morphology of the outer layers 

can vary considerably, it is strain and species specific, and may be adapted for the diverse niches in which 

spores are found (Henriques & Moran, 2007). In addition, in some species including B. cereus, B. 

anthracis and B. megaterium (Todd et al. 2003; Redmond et al. 2004; Beaman et al. 1972), the spore coat 

is surrounded by an additional layer, the exosporium, still poorly characterized but formed mainly by 

proteins and carbohydrates.  

When present, the exosporium is the first point of contact with the environment, while at the same time 

isolates the spore internal teguments from their immediate surroundings (Kailas et al., 2011). By altering 

the surface hydrophobicity, the exosporium also plays an important role in spore adherence to various 

surfaces (Koshikawa et al., 1989; Driks, 2009; Faille et al., 2010).  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674009/#bib21
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674009/#bib12


 

 72 

B. megaterium SF185 was isolated by ileal biopsies of healthy human volunteers (Fakhry et al., 2008) 

and was shown to produce and secrete bioactive molecules exerting a cytoprotective functions on colonic 

epithelial cells (Di Luccia et al. 2016). SF185 secreted factors induce Hsp27, promote PKB/Akt and 

enhance the phosphorylation of p38 MAPK, required in the prevention of oxidant-induced intestinal 

epithelial cell injury and loss of barrier function (Di Luccia et al. 2016). Based on this SF185 has been 

proposed as a new probiotic bacterium with potential beneficial properties. We report here the 

characterization of an abundant spore surface protein of SF185 as a starting point of the characterization 

of the spore of this potentially interesting strain. 

 

5.3 Materials and Methods  

5.3.1 Bacterial strains  

Bacterial strains used in this study are listed in Table 1. Bacillus megaterium was cultured on LB agar or 

broth at 30 °C, supplemented with antibiotics (5 μg mL
−1

 kanamycin,  1.25 μg mL
−1

 tetracycline), where 

appropriate. Polyethylene glycol mediated transformation of B. megaterium protoplasts, and subsequent 

isolation of transformant colonies that had undergone single crossover recombination event was achieved 

as described previously (Gupta et al., 2013). Plasmid constructs were prepared using standard molecular 

biology techniques and propagated in Escherichia coli DH5α in LB medium. 

 

5.3.2 Molecular biology procedures  

In order to obtain a B. megaterium SF_1531 null mutant strain we cloned in pUCTV2 plasmid 5′ 

(promoter and first codon were not included) and 3′ fragments of the SF185_1531 ORF flanking a 

kanamycin resistance cassette. The resultant plasmid (pSOCam1) was prepared by PCR and Gibson 

Assembly (NEB) and it was used to transform B. megaterium SF185. As a result of the single 

homologous recombination at the SF185_1531 locus, it was obtained an insertion of the entire plasmid, 

involving a first copy of gene interrupted by kanamycin cassette, and a second not functional copy 

because lacking of a functional promoter. A Tc
r
 Km

r
 transformant was isolated following procedures 

described previously (Gupta et al., 2013) and it was controlled by PCR using specific oligonucleotides to 

prime the reactions.  

To obtain a revertant strain, null mutant cells were incubated on LB plate without antibiotics at 42°C for a 

night; then colonies (several hundreds) were replicated on plates with either tetracycline, kanamycin or no 

a

 Km
r

, kanamycin resistance (5 μg mL
−1

); Tet
r

, tetracycline resistance (1.25 μg mL
−1

) 

Table 1 Bacillus megaterium strains used in this study.  

http://femsle.oxfordjournals.org/content/358/2/162.long#ref-5
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antibiotics. Colonies growing only in the absence of both antibiotics were considered potential revertants 

and used for further analysis by PCR.  

Oligonucleotide sequences are reported in supplementary material (Table S1). 

 

5.3.3 Spore purification, and analysis of spore coat proteins 

Bacillus megaterium spores were prepared in supplemented nutrient broth (SNB) in a shaking incubator 

(typically 72 h at 30 °C, 225 r.p.m.) and purified and stored as described previously (Gupta et al., 2013). 

Spore coat proteins were extracted from a suspension of spores by SDS-DTT (dithiothreitol) treatment 

(Cutting S, Vander Horn PB, 1990). The concentration of extracted proteins was determined by using 

Bio-Rad DC protein assay kit (Bio-Rad), and 20 µg of total extracted proteins were fractionated on SDS-

PAGE (12% Bis-Tris gel) and visualized by Coomassie blue staining. The band was excised and 

submitted to Edman degradation reaction to detect the N-terminal sequence of the protein of interest.  

 

5.3.4 Microscopy 

Fluorescence and thin-section transmission electron microscopy (TEM) analyses were conducted as 

described previously (Manetsberger et al 2014). Negatively stained intact spores were imaged using a 

Philips CM100 transmission electron microscope operated at an accelerating voltage of 100 kV. 

Micrographs were collected at a size of 1024 × 1024 pixels using a Gatan Multiscan 794 1k × 1k CCD 

camera and analyzed with Gatan Digital Micrograph software (DM, Gatan Inc.).  

 

5.3.5 Spore germination and lysozyme resistance  

The progress of spore germination of various B. megaterium strains used in this work was monitored by 

determining the absorbance (at 580 nm) of heat-shocked (70°C, 10 min) spores suspended (OD600 ≈ 0.4) 

in 5 mM Tris-HCl, pH 7.8, plus 10 mM glucose, 10 mM proline, 10 mM leucine, and 50 mM potassium 

bromide (KBr). Germination assays were conducted in 96-well plates incubated at 30°C in a Multiskan 

spectrum plate reader (Thermo).  

Sensitivity to lysozyme was measured as described by Zheng et al.1988. Spores were prepared as 

previously described and eliminating vegetative cells by heat treatment (10 min at 80°C). Purified spores 

were then suspended in 10 mM Tris-HCl (pH 7.0) buffer containing lysozyme (50 mg/ml) and the 

decrease in optical density was monitored at 580 nm at 1-min intervals for 10 min. Spore viability was 

measured after 30 min as CFU on TY agar plates.  

All experiments were conducted in triplicate with at least two independently prepared batches of spores.  

 

5.3.6 Bioinformatic analysis 

Bioinformatic analysis was conducted through BLAST program using SF_1531 protein sequence of 

SF185 as query against B. megaterium genome (taxid: 1404). We considered only completely sequenced 

genomes sharing a minimum of 40% identity with respect to the query sequence. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4674009/#bib7
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5.4 Results and Discussion 

5.4.1 SF185_1531 is a spore surface protein of B. megaterium  

B. megaterium SF185 spores were purified as reported in Materials&Methods and used to extract surface 

proteins by a previously reported alkaline extraction procedure (Cutting, Vander Horn, 1990). Extracted 

proteins were then fractionated by SDS-PAGE and several proteins detected (Fig. 1A). We focused our 

attention on the protein arrowed in Fig. 1A, that was smaller than 20 kDa, abundant and apparently well 

separated from other proteins. The protein was used to detect the N-terminal sequence by the Edman 

degradation reaction and the sequence of 10 N-terminal amino acids determined. A BlastP analysis 

indicated that the N-terminal part of the protein corresponded to the product of SF185_1531 gene of the 

B. megaterium SF185 chromosome (Supplementary Material). This gene codes for a 128-residue protein 

with a predicted mass of 16 kDa, therefore corresponding well to the apparent mass deduced by the SDS-

PAGE of Fig. 1A. The primary sequence of SF185_1531 contains several repeats in its central part, has a 

high isoelectric point and a high unfoldability index. All these features resembled those of the CotG-like 

family of Bacilli (Saggese et al. 2016). However, differently from members of the CotG-like family of 

Bacilli, SF185_1531 is not indicated as a potentially phosphorylated protein and its coding gene is not 

adjacent and divergently oriented with respect to a cotH homolog (Saggese et al. 2016). All together 

SF185_1531 has only some of the properties of the CotG-family and cannot be considered a member of 

such protein group (table S2, supplementary material). 

To study the role of SF185_1531 we constructed a null mutant by cloning a kanamycin-resistance gene 

cassette between the 5′ and 3′ regions of SF185_1531 in plasmid pUCTV2. The recombinant plasmid was 

then used to transform cells of B. megaterium SF185 as described in the Materials&Methods section (Fig. 

1B). Kanamycin and tetracycline resistant cells were analyzed by PCR to confirm the interruption of the 

SF185_1531 gene and the clone indicated as OSmeg2 selected for further studies.  

Cells of the mutant strain were then used to obtain a revertant by excision of the inserted plasmid DNA 

from the chromosome (Fig. 1B). To this aim cells were grown without any antibiotic selection and then 

analyzed for antibiotics resistance. Clones able to grow only in the absence of both kanamycin and 

tetracycline were considered as potential revertant and analyzed by PCR. Strain OSmeg2Rev carried a 

wild type version of the SF185_1531 locus and was considered for further analysis. 

Spores of OSmeg2 and OSmeg2Rev were purified, surface proteins extracted and analyzed by SDS-

PAGE as described above. The analysis of the extracted proteins indicated that the SF185_1531 was not 

present in OSmeg2 spores while it was present in OSmeg2Rev spores (Fig. 1A), confirming that 

SF185_1531 is the structural gene for a spore surface protein, that OSmeg2 carries a null mutation in 

SF185_1531 and that OSmeg2Rev is an excision revertant of the mutant. 

The analysis of the SDS-PAGE of Fig. 1A also indicated that other proteins in addition to SF181_1531 

were lacking in the mutant strain. These proteins, indicated with a red star in Fig. 1A, were all rescued in 

the revertant strain. An effect of the SF185_1531 gene on several proteins could be explained 

hypothesizing either a regulatory role of the SF_1531 protein on the assembly of other surface 

components or that the other proteins lacking in the mutant strain are modified version of SF185_1531 or 

protein complexes containing SF185_1531. 
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5.4.2 SF185_1531 is needed for spore germination and resistance to lysozyme 

In order to understand the physiological role of SF185_1531 we analyzed two typical spore-associated 

phenotypes: the efficiency of germination and the resistance to lysozyme digestion. As shown in Fig. 2, 

both phenotypes were altered in the mutant spores and rescued in the revertant. Fig. 2A shows that mutant 

spores, OSmeg2, were about 10-15 minutes delayed in the start of the germination process and that after 

60 minutes the efficiency of germination was less than 30%, compared to the 60% of the wild type and of 

the revertant. Fig. 2B shows that OSmeg2 spores are less resistant than wild type and revertant spores to 

lysozyme digestion. 

Taken together, results of Fig. 1 and 2 suggest that SF185_1531 has an important structural and 

functional role for spores of strain SF185. 

 

5.4.3 SF185_1531 is essential for exosporium formation 

To analyze the spore surface of SF185, of the mutant lacking SF185_1531 and of its revertant, we 

followed a transmission electron microscopy (TEM) approach. As shown in the Fig. 3, spores of SF185 

are surrounded by an exosporium that gives to the spore a "walnut" shape, typical of the B. megaterium 

species (Manetsberger et al., 2015). Surprisingly the exosporium was totally lacking from around the 

OSmeg2 spores and rescued in its revertant. Total lack of the exosporium as a consequence of 

inactivation of the SF185_1531 gene clearly indicates the SF185_1531 protein as essential for 

exosporium formation. Results of Fig. 3 suggest that the various proteins lacking in OSmeg2 spores (Fig. 

1A) are probably other protein components of the exosporium of SF185 and that the exosporium has a 

role in spore germination and resistance to lysozyme (Fig. 2). 

 

 

Figure 1: (A) pattern of spore  surface proteins extracted from Bacillus megaterium strain SF185 (lane 1), 

ΔSF185_1531  (lane 2) and SF185_1531R (lane 3). Molecular markers are shown in lane 4. The arrow indicates the 

band corresponding to the 1531 protein. The red stars indicate bands absent in the mutant spores. (B) Schematic 

representation of the cloning strategy used to obtain the SF185_1531 null mutant strain and its revertant. 
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5.5 Conclusions 

This study reports the characterization of a spore surface protein of a B. megaterium strain isolated from 

the human intestine and shown to induce stress response pathways in vitro in human epithelial model 

cells. A first important result of this report is that the identified protein is essential for exosporium 

formation, since a strain lacking the SF185_1531 protein does not form the exosporium. This drastic 

effect could be due to either a regulatory role of SF185_1531 that would be needed to allow the assembly 

of other exosporium components or to an essential structural role of the protein. A bioinformatic analysis 

indicated that SF185_1531 is not conserved across the B. megaterium group. A SF185_1531 homolog 

was found only in strain QM B1551, the best studied strain of B. megaterium (Table S3). However, this 

homolog is annotated as a putative spore surface protein of unknown function.  

Another relevant result of this report is the observation that the exosporium of SF185 is involved in spore 

germination and resistance to lysozyme digestion. This result confirms previous data obtained with 

another B. megaterium strain. Indeed, a mutant of B. megaterium QM B1551 lacking some plasmids and 

producing spores without the exosporium is slightly defective in spore germination (Christie and Lowe, 

2007) and only partially resistant to lysozyme (Gerhardt et al. 1984).  

Figure 3: Thin-section TEM analysis of Bacillus megaterium spores of the SF185 (A), OSmeg2 (B) and 

OSmeg2Rev (C) strains.  

Figure 2: Effects of SF185_1531 on germination efficiency (A) and lysozyme resistance (B). Spores of strains 

SF185 spores (white circles), OSmeg2 (black squares) and OSmeg2Rev (white squares) were either (A) induced by 5 

mM Tris-HCl, pH 7.8, plus GPLK (10 mM glucose, proline, leucine, 50 mM K bromide), the decrease of optical 

density followed over time and reported as percentage of germination efficiency; or (B) exposed to lysozyme and the 

decrease of optical density followed over time. The data are averages of three independent experiments.   
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Our results leave open interesting questions on the chromosomal or plasmid location of the SF185_1531 

genes in SF185 and on the role of the SF185_1531 homolog identified in the genome of the model strain 

QM B1551. Addressing these questions will be a challenging task of future research. 
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5.7 Supplementary material  

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Table S1: list of oligonucleotides used in this study 

Table S2. Evaluation of SF_1531 protein as CotG-like protein. 

a

Phosphorylation prediction was done by using the NetPhosBac 1.0 server (http://www.cbs.dtu.dk/services/NetPhosBac-

1.0/). For each Ser and Thr residue, a score between 0 and 1 was calculated. When the score is ≥0.5, the residue is predicted 

to be a phosphorylation site. 
b

Disorder prediction was done by using Foldindex (http://bip.weizmann.ac.il/fldbin/findex). Positive values indicate a 

structured polypeptide, whereas negative values indicate a disordered protein. 
c

The instability index was determined by using ProtParam (http://web.expasy.org/protparam/). Values of ≥40 predict that the 

protein is unstable. 

Table S3: a bioinformatic analysis to investigate of the presence of  SF185_1531 homolog across the B. 

megaterium group.  

a

List of Bacillus megaterium strains whose genomes have been completely sequenced (source NCBI genome, 

https://www.ncbi.nlm.nih.gov/genome/genomes/945). 
b

 presence (+) or absence (-) of a protein sharing a minimum of 40% sequence identity with SF_1531 protein of B. 

megaterium SF185. 

http://www.cbs.dtu.dk/services/NetPhosBac-1.0/
http://www.cbs.dtu.dk/services/NetPhosBac-1.0/
http://bip.weizmann.ac.il/fldbin/findex
http://web.expasy.org/protparam/
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6.1 Abstract 

Bacterial spores spontaneously interact and tightly bind heterologous proteins. A variety of antigens and 

enzymes have been efficiently displayed on spores of Bacillus subtilis, the model system for spore 

formers. Adsorption on B. subtilis spores has then been proposed as a non-recombinant approach for the 

development of mucosal vaccine/drug delivery vehicles, biocatalysts, bioremediation, and diagnostic 

tools. We used spores of B. megaterium QM B1551 to evaluate their efficiency as an adsorption platform. 

Spores of B. megaterium are significantly larger than those of B. subtilis and of other Bacillus species and 

are surrounded by the exosporium, an outermost surface layer present only in some Bacillus species and 

lacking in B. subtilis. Strain QM B1551 of B. megaterium and a derivative strain totally lacking the 

exosporium were used to localize the adsorbed monomeric Red Fluorescent Protein (mRFP) of the coral 

Discosoma sp., used as a model heterologous protein. Our results indicate that spores of B. megaterium 

adsorb mRFP more efficiently than B. subtilis spores, that the exosporium is essential for mRFP 

adsorption, and that most of the adsorbed mRFP molecules are not exposed on the spore surface but 

rather localized in the space between the outer coat and the exosporium. 

Keywords: surface display, protein delivery, spores, Bacillus megaterium, exosporium 

 

6.2 Introduction 

Gram-positive bacteria of the Bacillus and Clostridium genera can differentiate to form an endospore 

(spore), a metabolically quiescent cell produced in response to conditions that do not allow cell growth 

(McKenney et al., 2012). Once released in the environment, the spore survives in its dormant state for 

extremely long periods, resisting to a vast range of stresses such as high temperatures, dehydration, 

absence of nutrients and the presence of toxic chemicals (McKenney et al., 2012). However, the 

quiescent spore is able to continuously monitor the environment and respond to the presence of water and 

nutrients by germinating and originating a vegetative cell that is able to grow and sporulate (McKenney et 

al., 2012). Resistance to non-physiological conditions is, in part, due to the spore surface structures. In 

Bacillus subtilis, the model system for spore formers, the spore surface is organized in a multilayered coat 

and in a crust, a recently discovered layer that surrounds the spore coat (McKenney et al., 2012). B. 

subtilis spores are negatively charged (Huang et al., 2010; Pesce et al., 2014) and have a relative 

hydrophobicity that is in part due to the glycosylation of some spore surface proteins (Cangiano et al., 

2014; Rusciano et al., 2014). In several Bacillus and Clostridium species, including B. cereus, B. 

anthracis, B. megaterium, and C. difficile, the outermost spore structure is the exosporium, a 

morphologically distinct layer composed of proteins and glycoproteins that surrounds the coat (Díaz-

González et al., 2015; Manetsberger et al., 2015b; Stewart, 2015). 

The bacterial spore has been proposed as a platform to display heterologous proteins, with potential 

applications ranging from the development of mucosal vaccines to re-usable biocatalysts, diagnostic 

tools, and bioremediation devices (Knecht et al., 2011; Isticato and Ricca, 2014; Ricca et al., 2014). The 

remarkable and well documented resistance of the spore (McKenney et al., 2012), the amenability of 

several spore-forming species to the genetic manipulation (Harwood and Cutting, 1990) and the safety 

record of several species (Cutting, 2011; Baccigalupi et al., 2015) support the use of the spore as a 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B28
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B20
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B30
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B17
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B15
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B26
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B22
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B11
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095127/#B1
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display and delivery system. Two strategies have been developed to display heterologous proteins on the 

spore surface. A recombinant strategy, based on the construction of gene fusions between DNA coding 

for a selected spore surface protein and DNA coding for the protein to be displayed, has been used over 

the years to display a variety of heterologous proteins (Isticato and Ricca, 2014). A non-recombinant 

approach, based on the spontaneous adsorption between purified spores and purified proteins, has been 

also used to display various enzymes and antigens (Ricca et al., 2014). The molecular details controlling 

spore adsorption have not been fully elucidated. It is known that the adsorption is more efficient when the 

pH of the binding buffer is acidic (pH 4) (Huang et al., 2010; Sirec et al., 2012) and that a combination of 

electrostatic and hydrophobic interactions are likely involved in the interaction (Huang et al., 2010; Sirec 

et al., 2012). It is also known that mutant spores with severely altered spore surfaces interact more 

efficiently than isogenic wild type spores with model proteins (Sirec et al., 2012; Donadio et al., 2016). 

Here, we used a fluorescent protein, the monomeric form of the Red Fluorescent Protein (mRFP) of the 

coral Discosoma sp. (Campbell et al., 2002), to evaluate whether spores of B. megaterium are able to 

interact with and adsorb a model heterologous protein. B. megaterium comprises a number of 

morphologically distinct strains sharing the unusual large dimensions of both cells (length up to 4 μm and 

a diameter of 1.5 μm) and spores (length up to 3 μm and diameter of 1 μm) (Di Luccia et al., 2016). 

Spores of some strains of B. megaterium are surrounded by an exosporium, and since so far only spores 

of species that lack an exosporium have been considered as adsorption platforms, no data are available on 

the impact of the exosporium in the interaction with heterologous proteins. 

The QM B1551 strain is the best-characterized strain of B. megaterium. This strain carries about 11% of 

its genome on seven indigenous plasmids (Rosso and Vary, 2005; Vary et al., 2007; Eppinger et al., 

2011), two of which – pBM500 and pBM600 – have been identified as carrying genes that are essential to 

the formation of this strain’s distinctive “walnut-shaped” exosporium (Manetsberger et al., 2015a). The 

protein composition of the QM B1551 exosporium is as yet poorly characterized, with only a few genes 

encoding orthologs of recognized exosporium protein in spores of other species being identified by 

genomic analyses. These include genes encoding BclA nap proteins, which form a localized nap in B. 

megaterium QM B1551 spores, plus an ortholog of the BxpB protein that forms the basal layer of the 

exosporium in B. cereus family spores. The latter appears to fulfill a different role in B. megaterium QM 

B1551 spores, since a null mutant strain retained an apparently normal exosporium (Manetsberger et al., 

2015a). 

In this paper, we present data that demonstrates that spores of B. megaterium QM B1551 can efficiently 

adsorb mRFP, and provide evidence that protein molecules are able to cross the permeability barrier 

presented by the exosporium to localize in the inter-coat space. 

 

6.3 Materials and Methods 

6.3.1 Bacterial Strains, Spore, and RFP Production 

The B. megaterium strains employed in this study are QM B1551 and its plasmid-less derivative PV361 

(Rosso and Vary, 2005). The B. subtilis strain used in this study was PY79 (Youngman et al., 1984). 

Sporulation of all Bacillus strains was induced by the exhaustion method (Cutting and Vander Horn, 
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1990). After 30 h of growth in Difco Sporulation (DS) medium at 37°C with vigorous shaking spores 

were collected and purified as described by Nicholson and Setlow (1990) using overnight incubation in 

H2O at 4°C to lyse residual sporangial cells. The number of purified spores obtained was measured by 

direct counting with a Bürker chamber under an optical microscope (Olympus BH-2 with 40× lens). 

For mRFP production, cells of Escherichia coli strain RH161 (Donadio et al., 2016), bearing the 

expression vector pRSET-A carrying an in-frame fusion of the 5′ end of the rfp coding region to six 

histidine codons under the transcriptional control of a T7 promoter, were grown for 18 h at 37°C in 100 

ml of autoinduction medium to express the heterologous protein (Isticato et al., 2010). The His6-tagged 

RFP protein was purified under native conditions using a His-Trap column as recommended by the 

manufacturer (GE Healthcare Life Science). Purified protein was desalted using a PD10 column (GE 

Healthcare Life Science) to remove high NaCl and imidazole concentrations. 

 

6.3.2 Adsorption Reaction 

Unless otherwise specified 5 μg of purified recombinant mRFP was added to a suspension of spores (5 × 

10
8
) in 50 mM Sodium Citrate pH 4.0 at 25°C in a final volume of 200 μl. After 1 h of incubation, the 

binding mixture was centrifuged (10 min at 13,000 g) to fractionate mRFP bound-spores in the pellet 

from free mRFP in the supernatant. 

 

6.3.3 Western and Dot-Blot Analysis 

Spore pellets from adsorption reactions were resuspended in 40 μl of spore coat extraction buffer 

(Nicholson and Setlow, 1990; Giglio et al., 2011), incubated at 68°C for 1 h to solubilize spore coat 

proteins and loaded onto a 12% SDS-PAGE gel. The proteins were then electro-transferred to 

nitrocellulose filters (Amersham Pharmacia Biotech) and used for Western blot analysis as previously 

reported (Isticato et al., 2008) using monoclonal mRFP-recognizing anti-His antibody (Sigma). A 

quantitative determination of the amount of mRFP was obtained by dot blot experiments comparing serial 

dilutions of purified mRFP and binding assay supernatant. Filters were then visualized by the ECL-prime 

method (Amersham Pharmacia Biotech) and subjected to densitometric analysis by Quantity One 1-D 

Analysis Software (Bio-Rad). Dot blot and relative densitometric analyses were performed three times to 

verify the significance of the results. 

 

6.3.4 Fluorescence and Immunofluorescence Microscopy 

Post-adsorption spores were resuspended in 50 μl of 1x PBS pH 4.0 and 5 μl of the suspension placed on 

microscope slides and covered with a coverslip previously treated for 30 s with poly-L-lysine (Sigma). 

Immunofluorescence was performed as described by Isticato et al. (2013), with the following 

modifications: 2.0 × 10
6
 RFP-adsorbed spores of QM B1551 and PV361 B. megaterium strains were 

pretreated with 1% bovine serum albumin (BSA) – 1x PBS pH 4.0 for 30 min prior to 2 h-incubation at 

4°C with the anti-polyHistidine antibodies (mouse; Sigma) diluted 1:20 in 1x PBS pH 4.0–1% BSA. As a 

control of the specificity of this technique, non-adsorbed spores were directly treated with anti-His 

antibodies. After three washes, the samples were incubated with a 64-fold diluted anti-mouse secondary 

antibody conjugated with fluorescein isothiocyanate, FITC (Santa Cruz Biotechnology, Inc.) and washed 
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four times with 1x PBS pH 4.0. Washed samples were resuspended in 20 μl of 1x PBS pH 4.0 and 10 μl 

were analyzed. All samples were observed with an Olympus BX51 fluorescence microscope fitted with a 

100× UPlan F1 oil objective; U-MNG or U-MWIBBP cube-filters were used to detect the red 

fluorescence emission of mRFP or the green emission of FITC-conjugated antibodies, respectively. 

Exposure times were in the range between 200 and 3000 ms. Images were captured using an Olympus 

DP70 digital camera and processed with Image Analysis Software (Olympus) for minor adjustments of 

brightness, contrast and color balance (McCloy et al., 2014). ImageJ (v1.48, NIH) was used to draw an 

outline around 80 spores for each strain and minimum, maximum and mean fluorescence values per pixel 

were recorded for each spore. Values of fluorescence intensity were displayed subsequently as box-plots 

with 5–95% confidence intervals (McCloy et al., 2014). 

6.3.5 Statistical Analysis 

Results from dot blot and fluorescence microscopy analysis are the averages from three independent 

experiments. Statistical significance was determined by the Student t-test, and the significance level was 

set at P < 0.05. 

 

6.4 Results 

6.4.1 mRFP of Discosoma sp. is Adsorbed by B. megaterium Spores 

To verify whether spores of B. megaterium QM B1551 were able to adsorb mRFP, 5 μg of the purified 

protein (Materials and Methods) were incubated with 5.0 × 10
8
 purified spores. The adsorption reaction 

was performed in 50 mM sodium citrate at pH 4.0, as previously described (Sirec et al., 2012). After the 

reaction, spores were extensively washed with 1x PBS pH 4.0, spore surface proteins were extracted as 

described in Materials and Methods and analyzed by western blotting with anti-polyHistidine-Peroxidase 

antibody (Sigma), which recognizes the histidine-tagged N terminus of mRFP. As shown in Figure 

Figure1A1A, mRFP was extracted from spores, indicating that it was absorbed during the reaction and 

then released by the extraction treatment. To evaluate the efficiency of adsorption, we analyzed the 

amount of mRFP left unbound, i.e., post-adsorbed spores were collected by centrifugation and the 

supernatant serially diluted and analyzed by dot blotting (Figure 1B). A densitometric analysis of the dot 

blot (Supplementary Table 1) showed that when 5 μg of mRFP was used in the adsorption reaction less 

than 1% was left unbound, indicating that about 99% of the heterologous protein was adsorbed to B. 

megaterium spores. To analyze whether adsorbed mRFP molecules were tightly bound to the spore 

surface, post-adsorption reaction spores were washed twice with PBS buffer at pH 3.0 or pH 7.0, or with 

a 1M NaCl, 0.1% Triton X-100 solution as previously described (Donadio et al., 2016). As shown in 

Figure 1C, and supported by densitometric analysis of the dot blot (Supplementary Table 2), the washes 

at pH 3.0 did not cause any release of the adsorbed mRFP, while the washes at pH 7.0 or with 1M NaCl, 

0.1% Triton X-100 caused a minimal, less than 1%, release of mRFP molecules. Therefore, results 

presented in Figure 1 suggest that mRFP was efficiently adsorbed and tightly bound to B. megaterium 

spores. To assess whether spore-adsorbed mRFP molecules retained their fluorescence properties, we 

performed a fluorescence microscopy analysis. As shown in Figure 2, post-adsorption reaction spores 

were associated with a strong fluorescence signal visible around the entire spore surface. 
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6.4.3 The Exosporium has an Essential Role in mRFP Adsorption 

Strain QM B1551 of B. megaterium contains seven indigenous plasmids (Rosso and Vary, 2005; 

Eppinger et al., 2011) and plasmid-encoded genes are essential for exosporium formation (Manetsberger 

et al., 2015a). PV361 is a QM B1551-cured strain lacking all seven plasmids and, as a consequence, 

totally lacking the exosporium (Manetsberger et al., 2015a). We used spores of strain PV361 to analyze 

the role of the exosporium in mRFP adsorption. In parallel, we also used spores of B. subtilis PY79 that 

in a previous study have been shown to adsorb mRFP (Donadio et al., 2016). To compare the adsorption 

efficiency of spores of the B. subtilis PY79 and B. megaterium QM B1551 and PV361 strains, we 

adsorbed 5 μg of purified mRFP with 5.0 × 10
8
 spores of each of the three strains. After the adsorption 

reactions spores were collected by centrifugation, proteins extracted by SDS-DTT treatment and analyzed 

by western blotting with mRFP-recognizing anti-His antibody. As shown in Figure 3A, mRFP was 

apparently extracted in larger amounts from spores of QM B1551 than from spores of the other two 

strains. In an attempt to quantify these apparent differences, unbound mRFP from the adsorption 

reactions was serially diluted and analyzed by dot blotting (Figure 3B). A densitometric analysis of the 

dot blot of Figure 3B (Supplementary Table 3) indicated that PY79 and PV361 spores adsorbed about 

90% of the total mRFP while QM B1551 spores adsorbed almost all (over 99%) purified mRFP. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Bacillus megaterium QM B1551 spores adsorb mRFP. 5 × 10
8
 spores were incubated with 5 

μg of purified mRFP and then the samples subject to centrifugation. (A) Spore surface proteins were 

extracted from the pellet fraction by SDS-DTT treatment, fractionated on SDS-PAGE and analyzed by 

Western blot. Purified mRFP (20 μg) was used as a marker. (B) The supernatant, containing the unbound 

mRFP, was serially diluted and analyzed by dot blot (QM B1551). Serial dilutions of purified mRFP 

(mRFP) were used as a standard. (C) Spores adsorbed with mRFP were washed twice (W1 and W2) with 

PBS buffer at pH 3.0 or pH 7.0, or with a 1M NaCl, 0.1% Triton X-100 solution. Serial dilutions of 

purified mRFP and unbound mRFP (UN-mRFP) were used as standards. Immuno-reactions in all panels 

were performed with mRFP-recognizing anti-His antibody conjugated with horseradish peroxidase. 
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Figure 3: Monomeric Red Fluorescent Protein adsorption to spores of B. megaterium QM B1551 

and PV361 and B. subtilis PY79. 5 × 10
8
 spores of each strain were incubated with 5 μg of purified 

mRFP and then the samples subject to centrifugation. Spores in the pellet fractions were used to  

  

 

Based on the results of Figures 3 and 4, we conclude that the exosporium, present in QM B1551 and 

lacking in PV361 has a relevant role in the adsorption of mRFP. 

In addition, results of Figure 4 indicated that B. subtilis PY79 spores are more efficient than B. 

megaterium PV361 spores in adsorbing mRFP, whereas dot blotting reported in Figure 3B indicated 

similar adsorption efficiencies for the two strains. We believe that this discrepancy is due to a strong 

reduction of fluorescence when mRFP is bound to PV361 but not to PY79 or QM B1551 spores (see 

below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Fluorescence microscopy analysis of B. megaterium QM B1551-mRFP spores. QM 

B1551 spores incubated with mRFP (5 μg), and subsequently washed, were analyzed by fluorescence 

microscopy. The same microscopy field was observed by phase contrast and fluorescence microscopy. 

Scale bar 1 μm. The merge panel is reported. The exposure time was 200 ms. 

Figure 3: Monomeric Red Fluorescent Protein adsorption to spores of B. megaterium QM B1551 

and PV361 and B. subtilis PY79. 5 × 108 spores of each strain were incubated with 5 μg of 

purified mRFP and then the samples subject to centrifugation. Spores in the pellet fractions were 

used to extract surface proteins that were subsequently analyzed by western blot (A), while the 

supernatants were serially diluted and analyzed by dot blot (B). Serial dilutions of purified mRFP were 

used as standards. Immuno-reactions in both panels were performed with anti-His antibody conjugated 

with horseradish peroxidase. 
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6.4.4 Quantitative Assessment of mRFP Adsorption to QM B1551 Spores 

Dot blot experiments (Figure 3B) indicated that when 5 μg of purified mRFP was used in adsorption 

reactions with 5.0 × 10
8
 spores of the QM B1551 strain almost all heterologous protein was bound to the 

spore. In order to define the maximal amount of mRFP that can be adsorbed to QM B1551 spores, we 

repeated the reactions with increasing concentrations of purified mRFP, i.e., 5.0 × 10
8
 QM B1551 spores 

were reacted with 5, 10, 20, 40, 80, and 160 μg of purified mRFP. After the reactions spores were 

collected by centrifugation and the supernatants containing unbound mRFP were serially diluted and 

analyzed by dot blotting (Figure 5A). Figure 5B displays the results of a densitometric analyses of the dot 

blot, which indicates that when 5–80 μg of mRFP was reacted with 5 × 10
8
 spores, the percentage of 

protein bound to spores was over 90%. A decrease of bound mRFP was observed when 160 μg of 

purified protein were used in the reaction. However, even when 160 μg of purified mRFP was used over 

60% of the protein was absorbed, indicating that 5.0 × 10
8
 spores of QM B1551 can adsorb about 100 μg 

of mRFP. 

Figure 4: Efficiency of adsorption of mRFP to spores of B. megaterium QM B1551 and PV361 and 

B. subtilis PY79. (A) Fluorescence microscopy images of PY79, QM B1551, and PV361 spores 

following mRFP adsorption and washing. Exposure times are indicated. Phase contrast and red 

fluorescence overlays are shown (merge panel). Scale bars 1 μm. (B) Box plots displaying the 

fluorescence intensity of eighty different spores of each strain. Limits of each box represent the first and 

the third quartile (25 and 75%) and the values outside the boxes represent the maximum and the 

minimum values. The line dividing the box indicates the median value for each strain. P value is less 

than 0.0001. 
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6.4.5 mRFP Localizes to the Inter-Coat Space in B. megaterium QM B1551 Spores 

An immuno-fluorescence microscopy approach was employed to assess whether adsorbed mRFP 

molecules were exposed on the surface of B. megaterium QM B1551 spores. QM B1551 spores adsorbed 

with various amounts of mRFP were reacted with monoclonal anti-His antibody recognizing the 

recombinant mRFP, then with fluorescent anti-mouse secondary antibody (Santa Cruz Biotechnology, 

Inc.) and observed under the fluorescence microscope (Figure 6). With the lowest amount of mRFP used 

in this experiment (2 μg) the mRFP fluorescence signal (red) was observed all around the spore while the 

immunofluorescence signal (green) was weak and mainly concentrated at the spore poles, suggesting that 

only in those points mRFP was exposed on the spore surface. Increasing the amount of mRFP used in the 

reaction the number of green spots increased (5 and 10 μg) and with highest amount of mRFP used in the 

reaction (20 μg) an almost complete green ring was observed around the spores. Based on the results 

presented in Figure 6, we hypothesized that mRFP molecules infiltrate through the exosporium and 

localizes in the inter-coat space between the outer coat and the exosporium, i.e., when a low amount of 

mRFP is used almost all protein molecules are internal to the exosporium and are available to the 

antibody at only a few locations. Increasing amounts of mRFP in adsorption reactions results in the inter-

coat space “filling up,” until ultimately more mRFP molecules are available to the antibody on the spore 

surface. This hypothesis implies that if the exosporium is lacking then all mRFP should be available to 

the antibody. To test this, we compared by immunofluorescence microscopy equal numbers of spores of 

QM B1551 (with exosporium) and of PV361 (without exosporium) incubated with the same amount of 

mRFP (5 μg). When the exosporium was present (QM B1551) mRFP was only partially available to the 

antibody and green spots were observed (Figure 7 and Supplementary Figure S2). When the exosporium 

was not present (PV361) adsorbed mRFP was available to the antibody all around the spore and a 

complete green ring was formed, supporting the hypothesis that mRFP is internal to the exosporium in 

QM B1551 spores. 

Figure 5: Quantitative assessment of mRFP adsorption to B. megaterium QM B1551 spores. 5 × 10
8
 

spores were incubated with 5, 10, 20, 40, 80, and 160 μg of purified mRFP. The reaction mixtures were 

subsequently subject to centrifugation and the supernatants serially diluted and analyzed by dot blot (A). Serial 

dilutions of purified mRFP were used as standards. Immuno-reactions in both panels were performed with anti-

His antibody conjugated with horseradish peroxidase. (B) Percentage of mRFP adsorbed to spores after reaction 

with defined amounts of endogenous mRFP. Error bars show the standard errors of the mean from three 

experiments and the P value never above 0.0025. 
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Figure 6: Immunofluorescence analysis of mRFP-adsorbed B. megaterium QM B1551 spores. 
Aliquots of 5 × 10

8
 QM B1551 spores were incubated with variable concentrations of mRFP and were 

subsequently analyzed by phase contrast, fluorescence and immunofluorescence microscopy, as 

described in the Materials and Methods. The same microscopy field for each reaction is reported 

together with the merge panel. The exposure time was 200 ms for all images. Scale bar, 1 μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While QM B1551 spores used in the experiments of Figure 7 showed a complete red fluorescent ring as 

in Figure 2, PV361 spores showed a very weak red fluorescent signal. With PV361 spores a red signal 

was only observed using long exposure times at the fluorescence microscope (Figure 4). Since mRFP is 

present around PV361 spores (Figures 3 and 7), we conclude that mRFP fluorescence is weakened when 

the protein is adsorbed to PV361 spores. Further experiments will be needed to fully address this point. 

 

Figure 7: Immunofluorescence of mRFP adsorbed to B. megaterium QM B1551 and PV361 spores. 
5 × 10

8
 QM B1551 and PV361 spores were incubated with 5 μg mRFP and then analyzed by 

immunofluorescence microscopy, as described in the Materials and Methods. For each field phase 

contrast and immunofluorescence microscopy are shown. The exposure time was 200 ms for all images. 

Scale bar, 1 μm. 
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6.5 Discussion  

The main findings of this report are that spores of B. megaterium are extremely efficient in adsorbing the 

heterologous model protein mRFP, that the exosporium has an important role in this process, and that 

mRFP molecules infiltrate through the exosporium localizing between the outer coat and the exosporium. 

These results expand previous work performed on spores of B. subtilis and demonstrate that spores of a 

different species may also be used to deliver heterologous proteins via the adsorption method. The high 

efficiency of adsorption observed with B. megaterium spores is in part due to the large size of its spore 

compared with that of B. subtilis. Indeed, the B. megaterium spore surface area is about 2.5-fold larger 

than the B. subtilis spore, with a surface of 5.33 μm
2
 (h: 1.60 ± 0.16 w: 0.84 ± 0.07) vs. 1.98 μm

2
 (h: 1.07 

± 0.09 w: 0.48 ± 0.03). The large dimensions allow the adsorption of up to 100 μg of mRFP when 160 μg 

of protein are reacted with spores. 

The observation that mRFP crosses the exosporium indicates that it is permeable to mRFP, a 27 kDa 

protein. Permeability of the exosporium is not totally surprising since germinants present in the 

environment have to cross the external layers of the spore to reach their receptors, albeit germinants are 

typically small molecules with molecular masses typically <200 Da. Additionally, the mRFP data are 

broadly in agreement with the results of previous studies conducted with labeled dextrans and related 

molecules (Koshikawa et al., 1984; Nishihara et al., 1989). In those studies, the B. megaterium QM 

B1551 exosporium was suggested to represent a permeability barrier to molecules with molecular weights 

greater than 100 KDa, while influencing the passage of molecules with masses somewhere between 2 and 

40 kDa (Koshikawa et al., 1984;  Nishihara et al., 1989). 

An interesting challenge for future work will be to establish the mechanism or route of infiltration that 

mRFP, and by inference other heterologous proteins of interest, takes to enter the inter-coat space. 

Examination by transmission electron microscopy of sectioned B. megaterium QM B1551 spores 

indicates that the exosporium comprises two identical “shells” (Manetsberger et al., 2015a), and it may be 

that the interface between each of these structures (described as “apical openings” in early papers) 

permits ingress of relatively large molecules. Discerning the basis for the apparent loss of mRFP 

fluorescence upon adsorption to PV361 spores, and whether mRFP molecules are able to infiltrate the 

outer coat layers, as observed for B. subtilis spores (Donadio et al., 2016), will also be of interest. 

In the current study, we hypothesize that mRFP molecules preferentially cross the exosporium and 

accumulate in the inter-coat space between the outer coat and the exosporium. In this model, mRFP 

molecules are only adsorbed and displayed on the spore surface once adsorption sites (or volumetric 

capacity?) in the inter-coat space are sufficiently occupied. This implies that the adsorption approach to 

surface display can be used with B. megaterium QM B1551 spores, although the system is dependent on 

the spore to protein ratio used in adsorption reactions. Since various strains of B. megaterium have long 

been used industrially for the production of enzymes such as amylases and dehydrogenases, vitamins and 

antimicrobial molecules (Vary et al., 2007), our data suggest a new biotechnological application for the 

B. megaterium spore as a vehicle to bind and deliver heterologous proteins. 
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TABLE S1: Densitometric analysis of dot blot experiments with the supernatants of the adsorption reaction 

with QM B1551 spores (Figure 1B). 

a
 Density measured by optical density (OD) per square millimeter and 

obtained by ChemiDocXRS apparatus with Quantity-One software (Bio-

Rad).   
b
Calculated from signals (density OD/mm2) obtained with purified mRFP.  

NA, not applicable. 

TABLE S2: Densitometric analysis of dot blot experiments with the supernatants of various washes after the 

adsorption reaction (Figure 1C). 

a
 Density measured by optical density (OD) per square millimeter and obtained 

by ChemiDocXRS apparatus with Quantity-One software (Bio-Rad).   
b
Calculated from signals (density OD/mm2) obtained with purified mRFP.   

NA, not applicable. 
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TABLE S3: Densitometric analysis of dot blot experiments with the supernatants of the adsorption 

reaction performed with spores of strains PY79, QM B1551, and PV361 (Figure 3B). 

a
 Density measured by optical density (OD) per square millimeter and obtained 

by ChemiDocXRS apparatus with Quantity-One software (Bio-Rad).  

 
b
Calculated from signals (density OD/mm2) obtained with purified mRFP.  

NA, not applicable. 

TABLE S4: Densitometric analysis of dot blot experiments with the supernatants of the adsorption reaction 

performed with different amounts of mRFP. 

a
 Density measured by optical density (OD) per square millimeter and obtained 

by ChemiDocXRS apparatus with Quantity-One software (Bio-Rad).   
b
Calculated from signals (density OD/mm2) obtained with purified mRFP.  

NA, not applicable. 
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FIGURE S1:  Whole field images of fluorescence microscopy analysis reported in Figure 4. The 

same microscopy field was observed by phase contrast and fluorescence microscopy. Scale bar 5 μm. 

The merge panel is reported. The exposure tie is indicated. 

FIGURE S2: Whole field images of Immunofluorescence analysis reported in Figure 7. The same 

microscopy field was observed by phase contrast and fluorescence microscopy. Scale bar 5 μm. The 

exposure time was 200 ms for all images. 
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7. Conclusions 

My PhD work, summarized in this Thesis, allows me to draw several conclusions. The first part of the 

Thesis (Chapters 2-4) clarified some aspects of the structure and function of the spore surface of B. 

subtilis. In particular I worked on the antagonistic role of the proteins CotG and CotH for the efficiency 

of germination and for the assembly of other coat components (Chapter 2), on the structure of CotG 

and the identification of a CotG-like family of proteins, conserved in all spore-forming Bacilli (Chapter 

3) and on the interaction between CotH and a major morphogenetic regulator of the spore coat, CotE 

(Chapter 4). This part of the Thesis clearly indicates that the structure of the spore coat of B. subtilis 

and the mechanisms controlling its assembly, although studied for several years, are still far from being 

totally solved. This, in turn, indicates that B. subtilis and the surface of its spore are still valid model 

systems to study gene expression, protein-protein interactions and assembly of sub-cellular structures 

in bacteria. In more details, Chapter 2 shows that two B. subtilis genes, adjacent but divergent on the 

chromosome, code for two products with a strictly related function, with one, CotG, having a negative 

effect on the spore structure and function and the other, CotH, counteracting this effect. My work 

showed that CotG is a highly phosphorylated protein and suggested that CotH could be the kinase 

responsible of CotG phosphorylation. This hypothesis has been then confirmed by in vitro and in vivo 

studies published after the publication of the results reported in Chapter 2 (Nguyen et al. 2016). It is 

now possible to hypothesize that the unphosphorylated form of CotG, present when CotH is lacking, 

has a negative effect on germination and assembly of some spore coat components. Chapter 3 shows 

that a CotG-like protein is present in all spore-forming Bacilli. Although the primary structure is not 

conserved, all the typical structural properties found in CotG are conserved. This suggests that 

members of this protein family have an essential function for the spore structure. We hypothesize that 

such function could be related to the ability of spores to respond to humidity levels (Sahin et al. 2012). 

Experiments are currently in progress to verify this hypothesis in the lab where I performed my Thesis 

work. Chapter 4 reports a detailed analysis of the interaction between two proteins with a regulatory 

role for spore formation, CotH and CotE. Pull-down experiments firstly showed that the two proteins 

directly interact, and then the analysis of deletion and point mutations allowed me to dissect CotE and 

identify the amino acid residues responsible of the interaction with CotH. 

The second part of the Thesis (Chapters 5 and 6) focused on B. megaterium a spore-forming species far 

less studied than B. subtilis. Spores of this species are characterized by the presence of an exosporium, 

an additional protective layer lacking in B. subtilis spores. My work allowed the characterization of a 

protein present on the surface of B. megaterium spores that has an essential role for exosporium 

formation and the definition of the role of the exosporium in ensuring an efficient spore germination 

and resistance to toxic chemicals (Chapter 5). This part of my work opens to a better understanding of 

the structure and function of the exosporium, a structure still poorly characterized. The final chapter of 

this Thesis explored the possibility of using spores of B. megaterium to display heterologous proteins. 

These spores were proved to be much more efficient than spores of B. subtilis, opening extremely 

interesting perspectives for the biotechnological use of this bacterial species. 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Nguyen%20KB%5BAuthor%5D&cauthor=true&cauthor_uid=27185916


 

 97 

 Summary 

This PhD Thesis reports the results of my research work in the laboratory of Prof. Loredana 

Baccigalupi at the Department of Biology of the Federico II University of Naples, Italy. During these 

three years I focused on two bacteria of the same genus, Bacillus subtilis and Bacillus megaterium. 

These organisms are Gram-positive, aerobic, spore formers and, therefore, share the ability to undergo 

a complex developmental cell differentiation process that led to the  production of highly resistant 

spores (Tan and Ramamurthi, 2014). When cells of this genus can not grow vegetatively because of 

nutrient starvation or other unfavorable environmental conditions, enter the irreversible program of 

spore formation (sporulation). The start of this differentiation process is an asymmetric cell division 

that produces a large mother cell and a small forespore. The mother cell contributes to forespore 

maturation and undergoes autolysis at the end of the process, allowing the release of the mature spore 

into the environment. The peculiar structure of the spore, characterized by a dehydrated cytoplasm 

surrounded by various protective layers, is responsible of the resistance of the spore to extremes of heat 

and pH, to UV radiations, and to the presence of solvents, hydrogen peroxide and lytic enzymes. In the 

presence of water, nutrients and favorable environmental conditions the mature spore can germinate 

generating a cell able to grow and, eventually, to re-sporulate (Setlow P., 2003). 

Spore resistance is in part due to the presence of the spore coat, a multilayered structure composed of 

more than 70 proteins, that surrounds the spore (McKenney et al. 2013). Transcription of genes coding 

for coat components is controlled by a cascade of transcription factors including two sigma factors of 

the RNA polymerase, SigE and SigK, and at least three regulators, SpoIIID, GerR and GerE, all active 

in the mother cell (Henriques and Moran, 2007; Cangiano et al., 2010). In addition, a subset of coat 

protein with both a structural and a regulatory (morphogenetic) role controls the assembly of the 

various coat components (Henriques and Moran, 2007; McKenney et al., 2013). The spore coat is then 

a complex subcellular structure and is an interesting model system to study mechanisms of gene 

expression and of protein-protein interaction in bacteria.  

The spore surface of the two bacterial species I used for my PhD work substantially differ from each 

other. B. subtilis is the model system for spore formers and the surface of its spore is extremely well 

characterized, while not much is known about the surface of the B. megaterium spore. One main 

difference between the spores of the two species is the presence in B. megaterium of an exosporium, a 

poorly characterized outermost spore layer not present around the B. subtilis spore. 

My PhD project focused on the molecular characterization of the spore surface of B. subtilis and of B. 

megaterium and this Thesis is organized in two parts: the first part, Chapters 2-4, focused on the role 

of three coat components, CotG, CotH and CotE, in the assembly of the spore coat in Bacillus subtilis. 

The second part of the Thesis, Chapters 5 and 6, focused on the spore coat of B. megaterium and on 

the use of its spore as a platform to display heterologous proteins. 

PART 1: Spore Coat Assembly in Bacillus subtilis 

CHAPTER 2 and 3 reported the study of the role of two coat components, CotH and CotG. CotH has 

been previously identified and partially characterized in prof. Baccigalupi's lab. It has a structural and 

also a regulative role being responsible of the assembly of at least nine other coat components and 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ramamurthi%20KS%5BAuthor%5D&cauthor=true&cauthor_uid=24983526
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important to ensure the development of spores able to germinate efficiently (Naclerio et al. 1996; 

Zilhao et al. 1999). CotG is one of the CotH-dependent proteins that, in turn, regulates the assembly of 

the mature form of CotB. The working model reporting the genetic dependency between these Cot 

proteins is reported in figure 1.  

 

The genes cotG and cotH are adjacent and divergently transcribed. Moreover, it has been previously 

shown by this research group that the two genes have an unusual transcriptional organization with cotH 

promoter located more than 800 bp upstream from its coding region and cotG entirely comprised in this 

untranslated cotH region (figure 2 , Giglio et al. 2011).  

A consequence of this peculiar gene organization is that all so far characterized knock-out cotG 

mutants were also impaired in cotH expression and were then double cotG cotH mutants. Therefore, I 

decided to construct a cotG mutant in which cotH expression was not affected. The analysis of the 

single cotG mutant showed that in absence of CotG the spore had a normal germination efficiency and 

that CotB is assembled in its immature CotB46 form (see figure 1),  

indicating that CotG was necessary for CotB maturation, as already reported. The unexpected result 

was that while the cotH single mutant showed a series of defects in spore germination and coat proteins 

assembly, the cotG cotH double mutant did not show any of the defects associated with the absence of 

CotH and the spore was similar to the wild type. This results indicated that all the phenotypes so far 

attributed to the absence of CotH (and visible in the single cotH mutant) were actually due to the 

presence of CotG that only in absence of CotH exerted its negative effect. Therefore we suggested that 

CotH Assembly of other Cot 

proteins  

(CotC, CotU, CotS) 

Spore germination 

CotG 

Figure 1: Working model showing the interaction among the indicated proteins. CotH has a positive 

effect on the germination efficiency and on the assembly of CotG, CotC, CotU and CotS. CotG in turn 

controls CotB maturation from the immature CotB 46 kDa to the mature CotB-66 form. (Isticato R. et 

al., 2004;  Zilhao R. et al, 2004;  Baccigalupi L. et al., 2004) 

CotB-46 CotB-66 

P
H
 

cotH cotG 
P

G
 

Figure 2: Schematic representation of the cotH-cotG locus in Bacillus subtilis 
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CotH had a protective role counteracting the negative effect of CotG and proposed the new working 

model reported in the figure 3. These data are reported in Chapter 2 and have been published in 2014:  

Saggese A., Scamardella V., Sirec T., Cangiano G., Isticato R., Pane F., Amoresano 

A., Ricca E., Baccigalupi L. 2014. Antagonistic role of CotG and CotH on spore 

germination and coat formation in Bacillus subtilis. PLoS ONE 9(8):e104900. 

 

The mechanism by which CotH counteracts CotG negative effect is not known. Other results of my 

work, reported in chapter 2, showed that CotG is a peculiar protein containing positively charged 

aminoacid repeats in its central part that are highly phosphorylated. We hypothesized that CotH could 

be the kinase responsible of such CotG phoshorilation, on the base of CotH homology with Ser-Thr 

Kinases family. A recent paper by Nguyen et al (2016) effectively demonstrated with in vitro and in 

vivo data, that CotH is a kinase and that CotG is one of its targets. We proposed that the 

unphosphorilated form of CotG, as it is in the cotH mutant, exerts the negative effect on coat proteins 

assembly and on germination. Therefore, in a wt strain, CotH is able to modify CotG by 

phosphorilation, counteracting its negative action.  

Then we asked if also in Bacillus species other than B. subtilis could be hypothesized a similar 

mechanism of interaction between the two coat proteins. A bioinformatic analysis performed aligning 

the amino acid sequences of CotH and CotG with the available databank showed that CotH is highly 

conserved among all Bacillus species while CotG is conserved only in 5 species (Giglio et al. 2011). I 

decided to analyze the transcriptional organization of the cotH locus in the available genomes of Bacilli 

that do not contained a cotG homologue. The analysis evidenced that in all cases, they contained a 

divergent gene upstream to cotH (Saggese et al. 2014). The genes coded for a protein with a primary 

sequence not homologous to CotG but conserving a series of typical features of CotG and in particular: 

i) the presence of a central region composed by several random-coiled repeats similar to each other; ii) 

a high isoelectric point due to the presence of positively charged aminoacids; iii) a disordered structure 

and an aminoacid sequence that resulted a good substrate of phosphorylation, as suggested by 

bioinformatic analysis.  

Beside the absence of a homologous primary amino acid sequence, because of the structural 

similarities and of the common chromosomal organization, we referred to these proteins as belonging 

to a new family of CotG-like proteins highly conserved in the Bacillus genera (figure 4).  

Figure 3: New model representing  the Cot proteins interaction network. The red lines indicate the 

negative effect of CotG on CotC, CotU, and CotS assembly and on the spore germination efficiency. 
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The presence of a common structure of the CotG-like proteins, prompted me to investigate about the 

function of such modules and I addressed the point in our model species Bacillus subtilis. I constructed 

and analyzed a series of deletion mutants: 

1) expressing the N-terminal and the C-terminal regions of CotG, lacking the central repeats;   

2) expressing only the N-terminal region of CotG; 

3) expressing only the C-terminal region of CotG. 

The analysis of these mutants allowed me to conclude that: 

1. the N- and the C- terminal regions were sufficient to guarantee the maturation of CotB-46 

(immature form) into CotB-66 (mature form); 

2. the central region composed by the aminoacid repeats was responsible of the CotG negative 

effect on germination and on CotC, CotU and CotS assembly (see Chapter 2).  

These data are reported in Chapter 3 and published in 2016:  

Saggese A., Isticato R., Cangiano G., Ricca E. and Baccigalupi L. 2016. CotG of 

Bacillus subtilis is a modular protein of spore forming Bacilli. J Bacteriol.  

198(10):1513-20. 

 

The CotH protein also interacts with CotE, another morphogenetic protein involved in the assembly of 

the outer surface  

layer around the spore. CotE plays a crucial role in the assembly of outer coat and crust: without it, 

these layers are not assembled (Zheng et al. 1988). Several previous studies demonstrated that CotE 

regulates CotH assembly which in turn controls the assembly of other coat proteins (Nacleiro et al. 

1996; Zilhao et al. 1999).  

I reported here that CotH also controls the assembly of CotE and this mutual dependency is due to a 

direct interaction between the two proteins. A collection of deletion mutants of cotE were used to show 

Figure 4: Repeats of CotG and CotG-like proteins. The tandem repeats of CotG of B. subtilis (18) 

and of CotG-like proteins found in the indicated species are shown. B. subtilis CotG modules are 

boxed. Positively charged amino acids are in red. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859607/#B18
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that the C-terminus of CotE is responsible of the interaction with CotH and new mutants have been 

constructed in order to define the aminoacids involved. 

These results are reported in chapter 4 and published in the paper:  

Isticato R., Sirec T., Vecchione S., Crispino A., Saggese A., Baccigalupi L., 

Notomista E., Driks A. and Ricca E. 2015. The direct interaction between two 

morphogenetic proteins is essential for spore coat formation in Bacillus subtilis. 

PLoS ONE. 10(10):e0141040. 

 

PART 2: Spore Coat Structure in Bacillus megaterium 

Part of my work focused on the spore coat of B. megaterium and on the use of its spore as a platform to 

display heterologous proteins. As already mentioned in the introduction the spores produced by B. 

megaterium present an additional layer outside the spore coat, called exosporium  (Di Luccia et al.  

2016), that is absent in B. subtilis. The strain QM B1551 represents the best studied strain of B. 

megaterium and is considered as a model for this species. Several studies aimed at the characterization 

of the QM B1551 spore coat and exosporium have been published but a full elucidation of the 

mechanisms and the proteins controlling the process is still needed. In my studies on the composition, 

architecture and assembly of the B. megaterium spore coat and exosporium I considered the B. 

megaterium strain SF185, isolated by this research group from ileal biopsy of human volunteers 

(Fahkry et al. 2008). 

As first I conducted a proteomic analysis to identify major B.megaterium SF185 coat and exosporium 

proteins. To this aim the spores have been treated with SDS-dithiothreitol (DTT) to extract external 

proteins  that have been fractionated on SDS-PAGE and visualized by Coomassie blue staining (figure 

5A).The most intense band, of about 16 kDa, has been purified, was used to detect the N-terminal 

sequence by the Edman degradation reaction and found to correspond to a hypothetical protein encoded 

by SF185_1531 gene. In order to investigate on its role in the spore surface assembly I constructed a 

knock out mutant introducing the plasmid pSOCam1 in its structural gene by a single crossing over 

event  causing the interruption of the SF185_1531 gene (Figure 5B). Then the purified mutant spores 

Figure 5A: pattern of spore  surface proteins extracted from Bacillus megaterium strain SF185 (lane 1); 

molecular marker are shown in lane 2. The red arrow indicates the band corresponding to the SF_1531 

protein. Figure 5B: Schematic representation of the cloning strategy used to obtain the SF185_1531 null 

mutant strain. 
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were analyzed by thin section microscopy (Figure 6A and 6B).  

In comparison to the wt, the mutant spores presented an intact spore coat but they totally lacked the 

exosporium. This result suggested that the protein had a central role in controlling directly or indirectly 

the exosporium assembly. To verify that the observed phenotype was due to the inactivation of the 

single SF_1531 gene and to exclude the presence of secondary unexpected mutation, I decided to 

obtain a revertant strain inducing the excision of the plasmid from the SF_1531 mutant chromosome. 

As reported in figure 6C the revertant strain produced spores similar to the wt and normally able to 

produce the exosporium indicating that the protein SF_1531 plays a crucial role in the exosporium 

formation in B. megaterium strain SF185. A manuscript reporting these results is in preparation (see 

chapter 5). 

In the chapter 6 of the Thesis I investigated on the possibility to use B. megaterium spores as support 

for the binding of external molecules with diverse biological activities. Until now Bacillus subtilis 

spores have been proposed as a platform to display heterologous proteins, with potential applications 

ranging from the development of mucosal vaccines to re-usable biocatalysts, diagnostic tools and 

bioremediation devices (Knecht et al., 2011; Isticato and Ricca, 2014; Ricca et al., 2014). To test the 

binding ability of B. megaterium spores, I used the Red Fluorescent Protein (mRFP) of the coral 

Discosoma sp. (Campbell et al., 2002), and B. megaterium QM B1551 as models. The data indicated 

that mRFP was efficiently adsorbed and tightly bound to B. megaterium spores. 

The spores of B. megaterium are structurally different respect to the spores produced by B. subtilis: 

they are significantly bigger and, as mentioned before, are surrounded by an additional layer, the 

exosporium. To analyze the binding efficiency and characterize the process of B. megaterium I 

compared the results obtained with B. subtilis and with a B. megaterium mutant producing spores 

without the exosporium (Manetsberger et al. 2015). The results suggested that the binding efficiency of 

B. megaterium spores was higher respect to B. subtilis spores and that the presence of the exosporium 

is essential for mRFP adsorption in B. megaterium. These data also suggest a new biotechnological 

application for the B. megaterium spores as a vehicle to bind and deliver heterologous proteins. These 

results are reported in Chapter 6 and  have been published in paper:  

Lanzilli M., Donadio G., Addevico R., Saggese A., Cangiano G., Baccigalupi L., 

Christie G., Ricca E., Isticato R. 2016. The exosporium of Bacillus megaterium QM 

B1551 is permeable to the red fluorescence protein of the coral Discosoma sp.  Front. 

Microbiol., 7:1752. 

 

             SF185                              SF185_1531                            SF_1531
R

              

A B C 

Figure 6: Thin-section TEMs of Bacillus megaterium spores obtained from the SF185 wild type 

strain (A), the SF_1531 mutant (B) and the SF_1531
R

 revertant strain (C).  
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Riassunto 

Durante la mia tesi di dottorato ho lavorato nel laboratorio di microbiologia della prof. Baccigalupi, 

presso il dipartimento di Biologia dell’Università Federico II di Napoli, dove mi sono occupata dello 

studio di batteri sporigeni appartenenti al genere Bacillus, in particolare delle 2 specie B. subtilis e B. 

megaterium.  

Il processo di sporulazione rappresenta un esempio di differenziamento cellulare in quanto due cellule 

con identico cromosoma seguono programmi di espressione genica differenziati. Se le condizioni 

ambientali sono favorevoli alla moltiplicazione cellulare, la cellula va incontro ad un classico ciclo 

vegetativo durante il quale essa si accresce, replica il suo cromosoma e si divide in modo simmetrico 

originando due cellule identiche tra loro ed alla cellula madre che le ha originate. Quando le condizioni 

ambientali non sono ottimali per la crescita microbica, i batteri sporigeni seguono invece un ciclo vitale 

alternativo, detto "sporulazione", che comporta la formazione di due cellule differenti tra loro, la 

cellula madre e la prespora. Il processo di sporulazione necessita di circa 10 ore per completarsi e dare 

origine ad una spora matura che viene rilasciata nell’ambiente per lisi della cellula madre (Tan and 

Ramamurthi. 2014). La spora può rimanere in questo stato metabolicamente inerte per un periodo di 

tempo indefinito, resistendo a condizioni ambientali anche estreme (quali temperatura, pH o 

esposizione a sostanze chimiche tossiche), ma qualora le condizioni ritornassero favorevoli, la spora è 

in grado di germinare, dando origine ad una nuova fase di crescita vegetativa (Setlow, 2003).  

Le spore batteriche devono la loro estrema resistenza alla presenza di un abbondante strato proteico 

costituito da più di 70 proteine (proteine Cot) detto tunica sporale (McKenney et al. 2013). La 

formazione della tunica è un processo altamente controllato sia a livello trascrizionale che post-

traduzionale. A livello trascrizionale intervengono 2 fattori sigma dell’RNA polimerasi SigE e SigK e 

3 regolatori trascrizionali SpoIIID, GerR e GerE (Henriques A. Moran, 2007; Cangiano et al., 2010).  Il 

controllo post-traduzionale è svolto da alcune proteine che hanno sia ruolo strutturale che 

morfogenetico in quanto regolano l’assemblaggio dei vari componenti strutturali della tunica. Alla luce 

di ciò, la formazione della tunica sporale rappresenta un ottimo sistema modello per lo studio sia dei 

meccanismi di controllo dell’espressione genica che delle interazioni proteiche nei batteri.  

Relativamente alla superficie esterna della spora, le due specie batteriche oggetto di studio differiscono 

per più aspetti. La tunica del sistema modello B. subtilis è stata ampiamente studiata e caratterizzata 

mentre molto meno conosciuta è la struttura delle spore di Bacillus megaterium. Inoltre è noto che le 

spore di B. megaterium presentano uno strato esterno aggiuntivo chiamato esosporio, assente invece in 

B. subtilis.  

Il mio progetto di dottorato è consistito nella caratterizzazione molecolare della superficie delle spore 

di B. subtilis e  B. megaterium e la Tesi è stata organizzata in 2 parti: la prima parte, (Capitoli 2, 3 e 

4), è focalizzata sul ruolo che le 3 proteine CotG, CotH e CotE, svolgono nell’assemblaggio della 

tunica sporale in B. subtilis. La seconda parte, suddivisa nei capitoli 5 e 6, è focalizzata sullo studio 

della superficie sporale di B. megaterium e sull’utilizzo delle sue spore come piattaforma per 

l’esposizione di proteine eterologhe.  
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PARTE 1: Assemblaggio della tunica sporale di Bacillus subtilis 

I capitoli 2 e 3 riportano il ruolo che le proteine CotH e CotG svolgono durante l’assemblaggio della 

tunica sporale. La proteina CotH è stata già  precedentemente studiata e in parte caratterizzata presso il 

laboratorio dove ho svolto la Tesi di Dottorato. La proteina è un componente della tunica che influenza 

la germinazione e che regola l’assemblaggio di almeno altri 9 componenti della tunica tra cui la 

proteina CotG (Naclerio et al. 1996; Zilhao et al. 1999). CotG a sua volta è necessaria per la 

maturazione di CotB, un’altra proteina della tunica che, solo in presenza di CotG, viene convertita da 

una forma di 46 kDa in una forma matura di 66kDa che si trova assemblata sulla spora (figura 1, pag. 

98). I 2 geni strutturali che codificano per cotG e cotH mappano nella stessa regione cromosomica e 

sono adiacenti e trascritti divergentemente. Esperimenti effettuati nel mio laboratorio avevano 

dimostrato che il promotore di cotH è posizionato circa 800 bp a monte della regione codificante e di 

conseguenza il gene cotG è interamente compreso tra il promotore e il coding di cotH (figura 2, pag. 

98; Giglio et al. 2011). Come conseguenza di tale peculiare organizzazione trascrizionale, qualsiasi 

inserzione o delezione nel gene cotG comporta anche una inattivazione del gene cotH. Allo scopo di 

chiarire il fenotipo del singolo mutante cotG ho introdotto una mutazione puntiforme che comportasse 

la formazione di un codone di stop nella regione codificante per cotG, senza alterare in alcun modo 

l’espressione del gene divergente. Dall’analisi del singolo mutante è emerso che in assenza della 

proteina CotG, come atteso da dati già riportati, non si verifica la maturazione CotB che si assembla 

nella sua forma immatura da 46kDa. Le spore mutanti non presentano altri difetti e sono perfettamente 

in grado di germinare. Il mutante cotH, come già noto in letteratura, mostrava una serie di difetti sia per 

quanto riguarda l’assemblaggio di diverse proteine Cot (CotG, CotU, CotS, CotC), sia per quanto 

riguarda l’efficienza di germinazione. Un risultato inaspettato è emerso in seguito all’analisi del doppio 

mutante cotGcotH: nonostante l’assenza di CotH esso non ha mostrato alcun difetto né di 

germinazione, né di assemblaggio delle proteine della tunica sporale. Questo risultato ci ha permesso di 

concludere che i fenotipi sinora attribuiti all’assenza di CotH, sono in realtà dovuti alla presenza di 

CotG, la quale, in assenza dell’CotH che ha funzione antagonista, esercita una serie di effetti negativi 

sulla formazione della tunica e sulla germinazione. Sulla base di questi dati ho proposto il nuovo 

modello riportato schematicamente in figura 3 (pag. 99). Questi dati sono riportati nel capitolo 2 e sono 

stati pubblicati nel seguente paper: 

Saggese A., Scamardella V., Sirec T., Cangiano G., Isticato R., Pane F., Amoresano 

A., Ricca E., Baccigalupi L. 2014. Antagonistic role of CotG and CotH on spore 

germination and coat formation in Bacillus subtilis. PLoS ONE 9(8):e104900. 

 

Il meccanismo con cui CotH antagonizza l’effetto negativo di CotG non è ancora noto. Un altro 

risultato del mio lavoro, riportato nel capitolo 2, mostra che CotG ha una peculiare struttura proteica 

costituita da una serie di moduli aminoacidici ripetuti in tandem, carichi positivamente e ampiamente 

fosforilati. Sulla base del fatto che CotH ha una certo grado di omologia con la famiglia delle Serin-

treonin chinasi eucariotiche, ho ipotizzato che CotH potesse essere la chinasi responsabile della 

fosforilazione di CotG. Un recente lavoro pubblicato da Nguyen e collaboratori (2016) ha dimostrato 

mediante esperimenti in vitro e in vivo che effettivamente CotH è una chinasi e che CotG è uno dei 

suoi target. Sulla base di questi dati ho quindi ipotizzato che in assenza di CotH, CotG non viene 
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fosforilata ed in questa forma esercita l’effetto negativo da me evidenziato.  L’attività chinasica di 

CotH è dunque in grado di mascherare le cariche positive di CotG, stabilizzando la proteina e 

rendendola incapace di svolgere la sua azione negativa.  

Successivamente mi sono chiesta se anche nelle altre specie del genere Bacillus è presente un simile 

meccanismo di interazione tra queste 2 proteine. Per chiarire ciò è stata condotta un’analisi 

bioinformatica allineando le sequenze proteiche di CotG e CotH  con tutti i genomi dei Bacilli 

completamente sequenziati disponibili in banca dati. Da tale analisi è emerso che mentre CotH è una 

proteina molto conservata in tutte le specie del genere Bacillus, CotG è conservata solo in 5 specie 

(Giglio et al. 2011). Mi sono quindi chiesta quale fosse l’organizzazione trascrizionale del locus cotH 

nelle specie che risultavano non contenere CotG. Dall’analisi dei genomi è emerso che in realtà in tutte 

le specie è sempre presente un gene divergente a cotH che codifica per una proteina che pur non 

avendo una sequenza aminoacidica primaria omologa a CotG, conserva tutte le sue caratteristiche 

peculiari (Saggese et al. 2014):  

1) presenza di una regione centrale costituita dalla ripetizione di moduli ripetuti in tandem 

pressocché identici tra loro (figura 4, pag. 100) ;  

2)  alta % di aminoacidi carichi positivamente con conseguente elevato punto isoelettrico; 

3) una sequenza aminoacidica che, da un’analisi bioinformatica, risulta sempre intrinsicamente 

disordinata e un buon substrato di fosforilazione  

Sulla base di queste osservazioni, possiamo dire di aver identificato una nuova famiglia di proteine 

altamente conservate, chiamate CotG-like, che nonostante l’assenza di una omologia di sequenza con la 

proteina CotG, conservano le stesse caratteristiche strutturali e sono codificate da un gene con la stessa 

localizzazione cromosomica.  

La conservazione evolutiva della struttura modulare di CotG e delle proteine CotG-like, mi ha spinto 

ad investigare sul ruolo che tali moduli svolgono e, a tale scopo, ho costruito una serie di mutanti per 

delezione di CotG di B. subtilis: 

1) il primo che esprime le due regioni N-terminale e C-terminale di CotG, ma deleto dell’intera 

porzione modulare centrale; 

2) il secondo che esprime solo la regione N-terminale;  

3) il terzo che esprime solo la regione C-terminale. 

L’analisi di tali mutanti ha mostrato che:  

 le regioni N-terminale e C-terminale  sono sufficienti per garantire la maturazione di CotB 

nella forma da 66kDa; 

 la regione centrale costituita dai moduli ripetuti in tandem è responsabile dell’effetto negativo 

di CotG sull’assemblaggio di CotC, CotU e CotS e sulla germinazione (vedi capitolo 2). 

Questi risultati confermano l’ipotesi  secondo cui il ruolo di CotH è quello di fosforilare i moduli 

ripetuti mascherando le cariche positive degli aminoacidi basici e consentendo alla proteina di 

assumere una corretta conformazione. 

Questi dati sono riportati nel capitolo 3 e pubblicati nel seguente paper: 

Saggese A., Isticato R., Cangiano G., Ricca E. and Baccigalupi L. 2016. CotG of 

Bacillus subtilis is a modular protein of spore forming Bacilli. J Bacteriol.  

198(10):1513-20. 
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La proteina CotH interagisce anche con CotE, un’altra proteina morfogenetica che svolge un ruolo 

cruciale per consentire il corretto assemblaggio della tunica sporale e in particolare di tutto lo strato più 

esterno della spora (Zheng L. et al. 1988). Tra le varie proteine CotE-dipendenti c’è la proteina CotH 

che, a sua volta regola l’assemblaggio di altri componenti della tunica (Nacleiro et al. 1996; Zilhao et 

al. 1999). I nostri studi hanno evidenziato che, in maniera reciproca, anche CotH controlla 

l’assemblaggio di CotE, in seguito a una diretta interazione tra le 2 proteine. Mediante l’analisi di una 

serie di mutanti di cotE,  abbiamo dimostrato che la regione C-terminale di CotE è responsabile 

dell’interazione con CotH e, mediante la costruzione di mutanti puntiformi, abbiamo identificato gli 

specifici aminoacidi coinvolti in tale interazione.  

I risultati ottenuti sono riportati nel capitolo 4 e pubblicati nel seguente paper: 

 

Isticato R., Sirec T., Vecchione S., Crispino A., Saggese A., Baccigalupi L., 

Notomista E., Driks A. and Ricca E. 2015. The direct interaction between two 

morphogenetic proteins is essential for spore coat formation in Bacillus subtilis. 

PLoS ONE. 10(10):e0141040. 

 

 

PARTE 2: Studio della struttura della spora di Bacillus megaterium 

Una parte del mio progetto di Tesi ha riguardato lo studio della spora di B. megaterium e del suo 

utilizzo come piattaforma per l’esposizione di proteine eterologhe. Come già menzionato 

nell’introduzione, le spore prodotte da B. megaterium presentano una strato esterno detto esosporio (Di 

Luccia et al.  2016), assente in B. subtilis. Il sistema modello per la specie di B.megaterium è il ceppo 

QM B1551, sul quale sono stati già compiuti diversi studi relativi alla composizione della tunica 

sporale e dell’esosporio, ma non è ancora disponibile una  completa caratterizzazione. Al fine di 

contribuire ad ampliare le conoscenze in merito, ho deciso di investigare sulla composizione, la 

struttura e l’assemblaggio dell’esosporio, considerando un ceppo SF185 isolato dall’ileo di volontari 

sani (Fahkry et al. 2008). Per prima cosa ho condotto un’analisi proteomica per identificare le più 

abbondanti proteine che costituiscono gli strati più esterni della spora. A tale scopo le proteine estratte 

sono state trattate con SDS-DTT, frazionate su un gel di poliacrilammide e successivamente colorate 

mediante Blu di Comassie. Tra le diverse proteine presenti (figura 5A, pag. 101), una di quelle più 

abbondanti corrispondeva alla banda di circa 16kDa. La proteina è stata estratta e l’analisi della 

sequenza della regione N-terminale ha evidenziato che si trattava di una proteina a funzione 

sconosciuta codificata dal gene SF185_1531. Al fine di identificare il ruolo che la proteina svolge, ho 

costruito un mutante knock out trasformando il ceppo con il plasmide pSOCam1 (figura 5B, pag. 101) 

che, in seguito a un evento di singolo crossing over a livello del gene strutturale in questione SF_1531, 

ne causava l’interruzione; le spore mutanti sono state quindi osservate mediante microscopia 

elettronica a trasmissione. Le immagini riportate in figura 6 (pag. 102) mostrano che rispetto alle spore 

wt (figura 6A), quelle mutanti mancano totalmente dell’esosporio (figura 6B). Questo risultato 

suggerisce che la proteina SF_1531 svolge, in maniera diretta o indiretta, un ruolo cruciale 

nell’assemblaggio dell’esosporio. Per verificare che effettivamente tale fenotipo fosse dovuto 

realmente all’inattivazione del singolo gene SF_1531 e non alla presenza di eventuali mutazioni 

secondarie, è stata indotta l’escissione del plasmide dal ceppo mutante al fine di ottenere la 
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ricostruzione del gene selvatico con un fenotipo “revertante”. Anche in questo caso le spore sono state 

analizzate al TEM. Come si può osservare in figura 6C il ceppo revertante presenta una spora identica a 

quella del ceppo wt, con un esosporio perfettamente intatto. 

I dati ottenuti mi hanno permesso di  confermare che la  proteina SF_1531 effettivamente è 

indispensabile per il corretto assemblaggio dello strato più esterno che avvolge le spore di B. 

megaterium. I risultati ottenuti sono riportati nel capitolo 5 e sono raccolti in un lavoro in fase di 

stesura.  Infine, nel capitolo 6, è riportato l’utilizzo delle spore di B. megaterium  come vettore per 

l’esposizione di molecole eterologhe con attività antigenica o enzimatica. Sino ad oggi solo le spore 

dell’organismo modello B. subtilis sono state utilizzate con questo scopo per diverse applicazioni 

biotecnologiche, ottenendo vaccini mucosali, bio-catalizzatori o sistemi per la diagnostica e la 

bioremediation. Durante il mio progetto di tesi abbiamo deciso di verificare se anche le spore di B. 

megaterium fossero in grado di legare molecole eterologhe. Queste, rispetto alle spore di B. subtilis 

sono più grandi ed inoltre, come già detto precedentemente, possiedono l’esosporio come strato esterno 

aggiuntivo. A tale scopo ho utilizzato la proteina fluorescente mRFP di Discosoma coral (Campbell et 

al., 2002) per valutare se le spore del ceppo QM B1551 di B. megaterium fossero in grado di adsorbirla 

sulla propria superficie. I risultati ottenuti hanno dimostrato che effettivamente mRFP viene legata 

sulla spora di B. megaterium in modo più efficiente rispetto alle spore di B. subtilis. Abbiamo inoltre 

effettuato una parziale caratterizzazione del meccanismo di adesione valutando se e in che modo 

l’esosporio influenza il processo. A questo scopo abbiamo utilizzato un ceppo di B. megaterium 

mutante che produce spore mancanti di esosporio (Manetsberger et al. 2015) ed abbiamo confrontato 

l’efficienza di legame della mRFP rispetto a quella ottenuta con le spore wt.  Dall’analisi è emerso che 

la presenza dell’esosporio è essenziale per consentire l’adsorbimento di mRFP in B. megaterium. In 

conclusione i dati ottenuti suggeriscono che le spore di B. megaterium possono essere utilizzate come 

veicolo per legare proteine eterologhe in quanto in grado di legarle stabilmente e con elevata efficienza.  

I risultati ottenuti sono riportati nel capitolo 6 e sono stati pubblicati nel seguente paper: 

 

Lanzilli M., Donadio G., Addevico R., Saggese A., Cangiano G., Baccigalupi L., 

Christie G., Ricca E., Isticato R. 2016. The exosporium of Bacillus megaterium QM 

B1551 is permeable to the red fluorescence protein of the coral Discosoma sp.  Front. 

Microbiol., 7:1752. 
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