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Highway bridges can be considered as crucial civil structures for economic 

and social progress of urban areas. The damages to highway bridges due to 

earthquake events may have dramatic impact on the interested area, with or 

without life threatening consequences, since bridges are essential for relief 

operations. For these reasons, the assessment of seismic performance of 

existing bridge structures is a paramount issue, especially in those countries, 

such as Italy, where most of existing bridges was constructed before the 

advancement in earthquake engineering principles and seismic design codes. 

Several major earthquakes occurred throughout the world highlighted the 

seismic vulnerability of the bridge piers, due to obsolete design. If, for ordinary 

shaped reinforced concrete (RC) bridge columns the seismic assessment issue 

can be considered as almost solved, due to several analytical assessment 

formulations available in literature, and adopted by codes, the same cannot be 

said for columns with hollow-core cross section, despite their widespread use. 

None of the current codes addresses specialized attention to RC hollow core 

members, and only quite recently, attention has been paid to experimental 

cyclic response of hollow columns. Some critical issues for hollow RC columns 

are related to the assessment of their shear capacity, special focusing on 

degradation mechanisms, and the high shear deformation characterizing the 

seismic response of such elements.  

In the above outlined contest, a contribution in the seismic assessment of 

hollow bridges piers is provided by the present work: the investigation of 

cyclic lateral response of RC existing bridge piers with hollow rectangular and 

hollow circular cross-section is performed. Special attention has been focused 

on failure mode prediction and shear capacity assessment. 
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A critical review of the state-of-the-art and of the theoretical background is 

firstly carried out: the review process has been focused on the past 

experimental and analytical research on seismic performance of hollow 

reinforced concrete bridge piers, both for hollow rectangular and hollow 

circular cross sections.  

The experimental campaign, conducted at Laboratory of the Department of 

Structures for Engineering and Architecture, University of Naples “Federico 

II”, is presented. The experimental program comprised tests on six reduced-

scale RC bridge piers with hollow cross-section (four rectangular shaped and 

two circular shaped). The specimens were ad hoc designed in order to be 

representative of the existing bridge columns typical of the Italian transport 

infrastructures realized before 1980, by using a scaling factor equal to 1:4. The 

construction procedure is detailed, too. All the tests were performed in quasi-

static way by applying increasing horizontal displacement cycles with constant 

axial load (equal to 5% of the axial compressive capacity) until collapse. The 

monitoring system is accurately explained: it was composed of two sub-

systems, one used for global measures (forces and displacement), and the other 

to deeply investigate about local deformation.  

Experimental results for both hollow rectangular and hollow circular 

specimens are reported: for each specimen the results in terms of lateral load 

versus drift are shown and the evolution of observed damage with increasing 

displacement is described and related to the lateral load-drift response. An 

experimental analysis of deformability contributions to the top displacement is 

performed, mainly in order to better understand the relevance of taking into 

account shear deformations for bridge piers assessment. The energy 

dissipation capacity is also analyzed, evaluating the equivalent damping ratio 

and its evolution with ductility. For hollow rectangular specimens, the global 

response is modelled through a three-component numerical model, in which 

flexure, shear and bar slip are considered separately. The main goal of the 

numerical analysis is to reproduce the experimental deformability 

contributions. 

The last part of the work focuses on the definition of proper shear strength 

models for both hollow rectangular and hollow circular cross sections, and the 

definition of a deformability capacity model for hollow rectangular cross 

section. To this aim, two different experimental databases are collected and 

critically analyzed. The effectiveness in shear capacity and failure mode 
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prediction of main existing shear capacity models is investigated, by applying 

these models to the database columns. Based on the obtained results, some 

modifications to existing shear strength models are discussed and proposed in 

order to improve their reliability for hollow columns. Finally, a new drift 

capacity model is developed and proposed to assess drift at shear failure of 

hollow rectangular columns.  

Keywords: Reinforced concrete bridge piers; Hollow rectangular cross-section; 
Hollow circular cross-section; Experimental tests; Failure mode; 
Deformability contribution; Seismic assessment; Shear strength 
assessment; Drift-capacity model. 
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Chapter 1  

INTRODUCTION 

 

 

 

 

 

1.1 Motivation and research objectives 

Among the natural hazards, earthquakes are paramount due to their 

impact on civil structures worldwide. The considerable direct and indirect 

losses due to earthquakes for vulnerable existing structures have prompted a 

great interest in performance assessment to future seismic events. Seismic 

performance evaluations, beyond the traditional goal of life safety, are today 

required to rightly estimate expected losses. Realistic losses evaluations require 

more accurate seismic risk assessment tools, in order to help decision and 

policy-makers both in pre-earthquake planning to mitigate probable losses and 

in post-earthquake planning to develop emergency response and recovery 

strategies. According to a performance-based approach, modern seismic codes 

worldwide define performance levels aimed at avoiding collapse under major 

earthquakes and ensuring control and limitation of damage under more 

frequent but less severe earthquakes, in order to minimize economic and 

functionality losses. In this framework, seismic vulnerability and risk 

assessment of civil structures are essential, starting from the characterization of 

earthquake hazard, and going on with determination of structural response 

(structural demand), identification of performance limits (structural capacity), 

and degrees of structural damage and losses associated with specific damage 

states. 

Among civil structures, highway bridges can be considered as crucial for 

economic and social progress of urban areas. Moreover, after seismic events 
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occurrence, bridges are essential for relief operations. For these reasons, 

damages to highway bridges due to earthquake events, even if not particularly 

intense, may have dramatic impact on the interested area, with or without life 

threatening consequences. The assessment of seismic performance of existing 

bridge structures is a paramount issue, especially in those countries, such as 

Italy, where most of existing bridges was constructed before the advancement 

in earthquake engineering principles and seismic design codes. 

The majority of the current Italian highway infrastructures was 

constructed following the rapid economic growth of the 1950s (the so-called 

‘‘Italian miracle’’). In particular, a great part of the bridges stock on Italian 

highways was built during the two decades from 1955–1975. In the late 1980s, 

construction resumed to fill some important gaps that had emerged in the 

meantime. Except some major bridges of architectural value, representing only 

a minor portion of the bridge stock, the rest of the highway bridges is of rather 

uniform typology, with simply supported spans and piers of single stem or 

frame types (Figure 1.1). The bridge typologies of that period were 

substantially unchanged, although the quality of construction has considerably 

been improved. Throughout that period, the national design code did not 

evolve significantly. The safety format remained firmly anchored to the 

allowable stress design until the early 2000s, and changes, as it regards bridges, 

were mainly in terms of traffic loads, whose intensity increased over time. In 

particular, one aspect completely missed was the design criteria against 

seismic actions. The seismic design consisted in the application of nominal 

‘‘equivalent’’ static horizontal forces with no other considerations regarding 

ductile behavior. The maximum value of these forces, in the area of higher 

seismicity, was 10% of the weight (Pinto and Franchin, 2010).  

 

  

Figure 1.1. Typical Italian simply supported viaducts 
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The perception of the risk associated to the seismic vulnerability of the 

transportation infrastructure, and in particular to that of bridge structures, is a 

quite recent acquisition in Italy, on the part of both the relevant authorities and 

the experts. This is possibly because in the last major earthquakes, the 

transportation infrastructure has not suffered significant distress (Pinto and 

Mancini, 2005). Even if it is to be noted, that these seismic events (Friuli 1976, 

Irpinia1980, L’Aquila 2009) occurred in periods when the presence of highway 

viaduct was not so intense in the interested areas. However, it can be observed 

that the delay in the seismic risk recognize is not exclusive of Italy. For 

example, it took twelve years after the failures of quite modern bridges during 

the San Fernando earthquake (1971), for the Federal Highway Administration 

(FHWA) to publish a first document titled “Retrofitting guidelines for 

Highway Bridges” (FHWA-ATC, 1983). Still, in 1989, despite of the large 

retrofit program set up, the Loma Prieta earthquake exposed substantial 

deficiencies in bridges in California (Pinto et al., 2009). The seismic 

vulnerability of existing highway bridges, and in particular of the bridge piers, 

principally due to obsolete design, has been highlighted by several major 

earthquakes occurred throughout the world. Various failure modes of bridge 

columns have been identified during post-earthquake reconnaissance 

operations on transportation infrastructures. Generally, failure is related to a 

displacement-ductility capacity not adequate to the seismic demand, caused by 

not sufficient reinforcement details. In some cases, generally for columns with 

high aspect ratio (namely, columns height-to-section depth ratio), this led to 

collapse for combined axial load and bending moment of the plastic regions 

located at the basis of the piers, with spalling and crushing of the compressed 

concrete, and longitudinal bars buckling (see Figure 1.2). In other cases, 

especially for medium-low aspect ratio columns, the premature collapse is to 

assign to a not sufficient not-degraded shear capacity (see Figure 1.3), or to 

degradation of shear capacity caused by flexural damages during non-linear 

response, namely, the so called “flexure-shear” failure mode (see Figure 1.4). 

Seismic performance of bridges substantially depends on lateral behavior 

of vertical structural sub-systems, in particular of the piers. The modern 

seismic design philosophy for bridge structure is to pursue energy dissipation 

by ductile flexural hinges at the piers base (Priestley et al., 1996), unlike 

columns used in building frames that are typically designed following the 

weak beam-strong column philosophy for seismic resistance (Paulay and 
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Priestley, 1992). Brittle shear failure of bridge piers clearly has to be prevented 

to avoid disastrous collapse, and special attention has to be paid also to shear 

strength degradation with increasing flexural ductility demand. If for ordinary 

shaped reinforced concrete (RC) bridge columns (namely, with solid 

rectangular or circular cross-section) the seismic assessment issue can be 

considered as almost resolved, since many experimental and analytical studies 

are available in literature (Priestley and Park, 1987; Priestley et al., 1994, Xiao 

and Ma, 1997, among many others), the same cannot be said for columns with 

hollow-core cross section.  

RC hollow section piers are a widespread structural solution for bridge 

structures, economically attractive because of several reasons including the 

larger moment-of-inertia than solid sections with a similar area, reduced 

inertia masses, saving of materials and equipment during construction, 

reduced problems related to the hydration of massive concrete. In particular, 

circular shape of the RC hollow section piers is very used for highway bridges, 

because its lateral response under wind and seismic loads is similar in any 

direction.  

 

Figure 1.2. Plastic hinge collapse: Gothic Avenue viaduct (Northridge earthquake, 
California, 1994) 

 

 

Figure 1.3. Piers shear failure: Wu-Shi bridge (Chi-Chi earthquake, Taiwan, 1999) 



Chapter 1 

Introduction 

 

29 

  

Figure 1.4. Flexure-shear failure: Hanshin viaduct (Kobe earthquake, Japan, 1995) 

 
Despite their widespread use, none of the current codes addresses 

specialized attention to RC hollow core members, both for design and 

assessment (Turmo et al. 2009). Only quite recently, attention has been paid to 

experimental cyclic response of hollow columns: relatively few experimental 

studies, especially if compared with columns with solid cross section, are 

available in literature. Recent principal earthquakes around the world have 

highlighted the inadequate seismic performance of existing hollow piers, 

generally characterized by poor structural detailing and small web thickness. 

A critical, and still open, issue is the assessment of shear capacity of hollow RC 

columns (Calvi et al., 2005), special focusing on degradation mechanisms. In 

fact, shear-resisting mechanisms typical of this structural typology are very 

similar to those characterizing tube sections, depending mainly on webs aspect 

ratio and transverse reinforcement details. Small thickness together with not 

sufficient reinforcement details limit the confined concrete core, crucial to 

seismic energy dissipation (Kim et al., 2012). Another important issue related 

to existing hollow RC piers is that their seismic response is characterized by 

high shear deformations, comparable to ones typical of RC walls, which may 

represent also a considerable portion of global top displacement as highlighted 

by Delgado et al., (2008). 

The situation outlined above is sufficient to understand that the state of the 

art on seismic assessment of hollow bridges piers still needs to be advanced in 

several areas. In particular, proper predictions of nonlinear behavior, failure 

modes, and shear capacity, are essential prerequisites for a reliable evaluation 

of structural fragility and, then, of seismic performance and risk assessment of 

RC bridges. 

This work aims at contributing to the investigation of cyclic lateral 
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response of RC existing bridge piers with hollow rectangular and hollow 

circular cross-section, characterized by not sufficient seismic reinforcement 

details, therefore susceptible to high shear deformations and, eventually, shear 

failure. Special attention is focused on failure mode prediction and shear 

capacity assessment. For these purposes, both experimental and analytical 

studies are carried out and presented. To define and develop these studies, a 

critical literature review of the available experimental and analytical works is 

carried out. 

The experimental study is performed on reduced-scale hollow RC 

columns, with rectangular and circular shape, different for aspect ratio, tested 

under cyclic increasing loading and constant axial force. The specimens are 

representative of typical design practices in force in Italy before 1980s, 

therefore characterized by low percentage of longitudinal and transverse 

reinforcement, with inadequate details, and lack of appropriate confinement 

reinforcement. The main goals are: (i) at global level, the evaluation of the 

failure mode, the ultimate drift capacity and the energy dissipation capacity of 

piers with different aspect ratio; (ii) at local level, the analysis of deformability 

contributions (i.e. flexure, shear and fixed-end-rotation) to the top 

displacement. Global experimental results are compared with main shear 

strength models, developed for RC members with solid cross section, in order 

to assess their predictive capacity when applied to hollow bridge piers. For 

hollow rectangular specimens, monotonic numerical modelling is applied in 

order to reproduce the experimental deformability contributions. Starting from 

the experimental results and shear strength comparison, the assessment of 

shear capacity of hollow RC members is further investigated. To this aim, two 

experimental database of tests on hollow rectangular and hollow circular 

columns, respectively, subjected to shear failure (with and without flexural 

yielding) are collected and critically analyzed. The predictive capacity of the 

main shear capacity models available in literature are applied to the database 

columns, in order to identify critical aspects of the application of such models 

to hollow columns. For hollow rectangular columns, based on the identified 

critical aspects, improvements to shear strength assessment are proposed and 

discussed, and an ad-hoc shear drift-capacity model is developed and 

proposed. For hollow circular columns, a critical discussion about existing 

shear strength models is carried out, and a new ad-hoc model is developed 

and assessed.  
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1.2 Dissertation outline 

The presented work, whose motivations and main goals are reported 

above, is divided in eight sections.  

Firstly, experimental studies on RC bridge piers with hollow rectangular 

and hollow circular cross-section are reviewed and discussed. An overview on 

analytical modeling of lateral response of RC columns, considering flexural, 

shear, and bar slip deformations, and more in detail, on shear strength models, 

is provided in Chapter 2. 

Chapter 3 describes the test program including the test specimen details, 

material properties, test specimen construction, test setup, instrumentation, 

and the loading procedure. 

A detailed description of the experimental response of each hollow 

rectangular specimen is provided in Chapter 4, together with a comparison 

with main code-based models for shear strength assessment. Finally, a 

monotonic numerical assessment of the global response, aiming to reproduce 

the experimental deformability contributions is carried out and discussed. 

Chapter 5 presents in details global and local experimental results for 

hollow circular test specimens. Also in this case, a comparison between global 

experimental response and shear strength envelope from main code-based 

models is provided. 

Using an experimental database of hollow rectangular columns with 

relatively large aspect ratios, Chapter 6 evaluates the effectiveness of various 

force-based and displacement-based shear capacity models. Firstly, the 

collected database is described and analyzed. Then, the predictive capacity of 

main shear strength models, developed for members with solid cross section, 

is examined in relation to the database results. Based on the comparison 

results, some improvements for shear strength assessment of hollow 

rectangular columns are proposed and discussed. Finally, the main models for 

the assessment of displacement-based shear capacity, again developed for 

members with solid cross section, are applied to the columns database. Starting 

from a critical analysis of the effects of several response parameters on the 

column shear response, a new model for the evaluation of the drift at shear 

failure, ad-hoc for hollow rectangular columns is discussed and proposed. 

Chapter 7 deals with the shear strength assessment for hollow circular 

columns. An experimental database of RC columns with hollow circular 
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columns and a single external layer of steel reinforcement is described. Then, 

the effectiveness of main existing models in predicting shear strength is 

investigated for columns database. Finally, after a critical discussion about 

shear-resisting mechanisms of hollow circular columns, a new shear strength 

model is developed and discussed. 

In Chapter 8 a summary of the research work is provided, together with 

main conclusions and some recommendations for future research in this field. 
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Chapter 2  

STATE OF THE ART AND BACKGROUND  

 

 

 

 

 

In this chapter, a theoretical and experimental state-of-the-art is carried 

out. The first two sections review past experimental and analytical research on 

seismic performance of hollow reinforced concrete bridge piers, with 

rectangular and circular corss-section, respectively. Test details and a 

discussion of the experimental results are briefly presented, for each of the 

considered studies. Based on the analyzed experimental studies, several issues 

are identified, which can be considered still open. They will be subject of the 

present study.  

The second part of the chapter deal with the review of several analytical 

models. First, the “classification issue” for reinforced concrete (RC) members, 

namely the prediction of the failure mode characterizing a RC member known 

its plastic and shear strength values, is recalled and discussed. Later, several 

existing models for the assessment of the lateral response in term of 

deformation of RC column are reviewed and analyzed. Finally, main models 

for shear strength evaluation from literature and codes are described and 

discussed, focusing on their experimental nature and, in particular, 

highlighting differencies between them. For all this models, the corresponding 

formulations are summarized, in order to provide the required definitions and 

uniform symbology. They will be applied in next chapters in different 

approaches depending on the objective that it is intended to pursue, and with 

the addition of new proposals. 
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2.1 Experimental studies: hollow rectangular RC columns 

The use of hollow cross-section for reinforced concrete (RC) columns is 

widespread for bridge structures. This solution is economically attractive and 

technically adequate, because of several reasons, such as among others the 

larger moment-of-inertia than solid sections with a similar area, reduced 

inertia masses, saving of materials and equipment during construction, 

reduced problems related to the hydration of massive concrete (Priestley et al. 

(1996)). 

However, the most important recent earthquakes evidenced the 

vulnerability of this type of section, particularly when no adequate seismic 

provisions are applied. In fact, shear strength and ductility of hollow section 

columns deeply depends on seismic details, in particular shear and 

confinement steel reinforcement (Priestley and Park (1987)). Only quite 

recently attention has been paid to experimental cyclic response of hollow 

columns: relatively few experimental studies, especially if compared with 

columns with solid cross section, are available in literature. Some of these 

studies are related to large-scale tests, others to reduced-scale tests. Among the 

firsts, the experimental studies by Yeh et al., (2002) and Pinto et al. (2003), 

among the seconds, the studies carried out by Mo and Nien (2002), Mo et al. 

(2004), Calvi et al. (2005) and Delgado (2009). Each of these works will be 

briefly described, discussed and analyzed hereafter. For each of them, the 

attention will be focused on the specimens’ properties, test setup and 

experimental results. This literature review will be the basis for the collection 

of the database reported in the section 6.1. 

2.1.1. Yeh, Mo and Yang (2002) 

Within the context of the design and construction of a new high-speed rail 

project in Taiwan, in this paper, experimental results for two prototype and 

four scaled model hollow bridge columns are reported. Primary experimental 

variables of this study were axial load, amount of lateral reinforcement, and 

height-to-depth ratio.  

Tests were performed under constant axial load ratios, varying from 0.082 

to 0.176, and cyclically reversed horizontal load. 

The scale ratio of prototype to model was equal to three. Therefore, all 

specimen properties and test data for models reported in this paper were 
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converted to prototype using the theory of small scaled models (ACI 1970). 

The configuration of lateral reinforcement was typical of bridge design in 

Taiwan. The cross section of each of the prototypes and models were 1.5x1.5m 

and 0.5x0.5 m, respectively. The wall thickness of the prototypes and models 

were 300 and 120 mm, respectively. The moment arms (distance between the 

horizontal loading point and the top of the reinforced concrete foundation) for 

the two prototypes were 6.5 and 4.5 m. For all four model specimens the 

moment arm was 1.8 m. Each specimen was identified by a three characters’ 

code: the first character P or M in the specimen designation stood for 

prototypes or models, respectively. Comparing with the requirement of the 

ACI code (ACI 318-95), the second character S or I represented sufficient or 

insufficient shear reinforcement, respectively. The last character 1 or 2 

indicated the axial load ratio close to 0.1 or 0.2, respectively. The spacing of the 

transverse reinforcement in all the specimens satisfied both the design 

requirements of the ACI code (ACI 318-95), and the requirement suggested by 

Priestley et al. (1996), in which the spacing needs to be less than six times the 

diameter of longitudinal rebars. For specimens PS1, MS1, and MS2, the 

provided shear reinforcement is more than that required by the ACI code (ACI 

318-95) to avoid shear failure. For specimens PI1, MI1, and MI2, the provided 

shear reinforcement is only approximately 50% of that required by the ACI 

code (ACI 318-95). Each specimen was instrumented with load cells, 

displacement transducers, and strain gauges to monitor displacement and 

corresponding load as well as strains and relative deformations. The specimens 

were tested under displacement control according to a predetermined drift 

percentage. The time histories of displacement for the specimens consisted of 

cycles increasing with column drifts up to 6.5%. In each case, the displacement 

cycle was repeated to measure the strength degradation. All specimens 

developed stable responses up to certain displacement ductility levels. Flexural 

cracks perpendicular to the column axis developed first in regions close to the 

bottom of the columns. The flexural cracks became inclined and extended into 

the neutral axis of the columns due to the influence of shear, typically at a 

stage exceeding the first yielding of longitudinal rebars. At later stages of 

loading, typically at displacement ductility levels of 2 and 3, independent 

shear cracks started to occur. Plastic hinges were fully formed at the bottom 

end of the columns, which contributed to the development of ductility. 

Although each specimen developed the estimated flexural strength, the 
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ultimate performance and ductility level was different for each column. 

Two of the tests experimented shear failure after flexural yielding. 

Specimen MI1, subjected to a lower axial load ratio of 0.086 and characterized 

by shear reinforcement equal to only 40% of that required by the ACI code 

(ACI 318-95), failed in shear developing a displacement ductility factor of 4.33. 

Ultimate performance for this specimen was dominated by shear capacity due 

to concrete crushing at the bottom of the specimen. The rupture of a few tensile 

longitudinal rebars occurred immediately before shear failure of the specimen, 

due to the low-cycle fatigue phenomenon. Specimen MI2 with insufficient 

shear reinforcement was subjected to a higher axial load ratio of 0.185. It was 

subjected to shear failure after flexural yielding. Some longitudinal rebars 

buckled in the loading stage close to the failure, but no rupture of tensile 

longitudinal rebars happened in this case. Figure 2.1  shows test specimens 

details and lateral load response for test models. In Figure 2.2, final state 

damages for specimens failing in shear are reported.  

 

   

Figure 2.1 Details of test specimens and load-displacement response, Yeh et al. (2002) 

 

  

Figure 2.2. Final damage states for FS tests, Yeh et al. (2002) 

 

Based on this study, Authors concluded that specimens with sufficient 

transverse reinforcement experimented flexure failure mode due to rupture of 
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longitudinal rebars, while specimens with insufficient transverse 

reinforcement failed in shear with lower displacement ductility capacity. 

Moreover, specimens with grater axial force had less ductility. 

2.1.2. Mo and Nien (2002) 

Within the same context of the previous study, Mo and Nien (2002) 

reported the experimental results of six hollow high-strength concrete 

columns. The concrete compressive strength fell in the range from 50 to 70 

MPa. Primary experimental variables of this study included axial load, amount 

of lateral steel, and height-to-depth ratio. In particular, columns with height-to-

depth ratio of 3.6 to 3.0 were designed to study their lateral response. 

Tests were performed under constant axial load ratio, varying from 0.054 

to 0.132, and cyclically reversed horizontal load.  

The cross section of all specimens was 0.5x0.5 m and the wall 120 mm. The 

moment arms were 1.5 m or 1.8 m. As usual, each specimen was identified by a 

code in which the first character, ‘‘H’’, indicated high-strength concrete. The 

second character, ‘‘S’’ or ‘‘I’’, designated specimens with sufficient shear 

reinforcement or insufficient shear reinforcement, respectively, when 

compared with the ACI code (ACI 318-95). The third character, ‘‘0’’, ‘‘1’’, or 

‘‘2’’, identified the varied axial load. If the last character in the specimen 

designation was ‘‘b’’, the moment arm of this specimen was 1.5 m. The 

moment arm of all the remaining specimens is 1.8 m. The spacing of the 

confining reinforcement in all specimens satisfies both the design requirements 

of the ACI code (ACI 318-95) and the requirements suggested by Priestley et al. 

(1996). For specimens HS-1 and HS-2, the provided shear reinforcement is 

more than that required by the ACI code (ACI 318-95) in order to avoid shear 

failure. For the remaining specimens the provided shear reinforcement ranges 

between 50 and 66% of that required. 

The specimens were tested under displacement control following a 

predetermined displacement history defined in terms of column drift 

percentage. The displacement routines for the specimens consist of cycles with 

column drifts of up to 6.0%. The displacement cycles were repeated to measure 

the strength degradation. 

All specimens developed stable responses up to certain displacement 

ductility levels. Flexural cracks perpendicular to each column’s axis developed 

first in regions close to the bottom end of the columns. The flexural cracks 
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became inclined and extended into the web zone of the columns because of the 

influence of shear typically at a stage exceeding the first yield of longitudinal 

rebars. At later stages of loading, typically at displacement ductility levels of 2 

and 3, independent shear cracks started to occur. Plastic hinges were fully 

formed at the bottom ends of the columns, which contributed to the 

development of ductility. Although all specimens exhibited the estimated 

flexural strength, their ultimate performance and the ductility levels achieved 

were different. 

Three of the tests experimented shear failure after flexural yielding. 

Specimen HI-0-b with smaller moment arm, lower axial force, and shear 

reinforcements of only 50% of the amounts required by the ACI code (ACI 318-

95), developed a displacement ductility of 4.7. The ultimate performance for 

the specimen was first dominated by load-carrying capacity due to the rupture 

of tensile longitudinal rebars at the bottom end of the columns. Afterward, 

shear failure occurred. The same failure mode interested specimen HI-2-a. 

Specimen HI-1-b was characterized by the same reinforcements and 

moment arm of the previous specimens, but it was subjected to a higher axial 

force. Also in this case, flexure-shear failure occurred. Although some 

longitudinal rebars buckled in the loading stage close to the failure, no rupture 

of tensile longitudinal rebars occurred. 

Figure 2.3 shows test specimens details and lateral load response for test 

models.  

 

 

 

Figure 2.3. Final damage states for FS tests, Mo and Nien (2002) 
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Based on this study, Authors concluded that specimens with sufficient 

transverse reinforcement experimented flexure failure mode due to rupture of 

longitudinal rebars, while specimens with insufficient transverse 

reinforcement failed in shear with lower displacement ductility capacity. 

Moreover, specimens with grater axial force had less ductility. 

Authors carried out also comparisons between experimental results and 

main shear strength models from literature and American codes. They noted 

that the experimental curves were lower than the shear capacity predictions. 

The reason of this was that all models were developed for normal-strength 

concrete. 

2.1.3. Yeh et al., (2002) 

Yeh et al., (2002) carried out an experimental investigation on three full-

scale prototypes of hollow bridge piers for the design and construction of a 

new high-speed rail in Taiwan. Primary experimental variables of this study 

were amount of lateral reinforcement and height-to-depth ratio. 

The prototypes were tested under a constant axial load ratio of 

approximately 0.08, and a cyclically reversed horizontal load. Piers had height-

to-depth ratios of 4.3, 3.0 and 2.3. The cross section of each prototype was 1.5 m 

x 1.5 m. The wall thickness of the specimens was 300 mm. The moment arms 

were 3.5 m, 4.5 m and 6.5 m. In the specimen identification code, the first 

character, P, stands for prototypes, while the second character, such as S or I, 

represents sufficient or insufficient shear reinforcement, respectively, when 

compared to the requirements of the ACI code (ACI 318-95). The third 

character of 1 or 2 means the smaller or larger spacing of lateral reinforcement, 

respectively. The spacing of the confining reinforcement in specimens PS1 and 

PI1 satisfies both the design requirements of the ACI code (ACI 318-95), and 

the requirements suggested by Priestley et al. (1996), in which the spacing 

needs to be less than six times the diameter of longitudinal rebars. For 

specimen PSI, the provided shear reinforcement is more than that required by 

the ACI code (ACI 318-95) to avoid shear failure. For specimens PI1 and PI2, 

the provided shear reinforcement is only approximately 50 percent and 20 

percent of that required by the ACI code (ACI 318-95), respectively (see Figure 

2.4) 

The specimens were tested under displacement control, following a 

predetermined displacement history defined in terms of pier drift percentage.  
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Figure 2.4. Details of the cross section, Yeh et al. (2002) 

 

The displacement routines for all the three specimens consist of cycles with 

pier drifts up to 6.5 percent. The displacement cycles were repeated to measure 

the strength degradation. All specimens developed stable responses up to 

certain displacement ductility levels. Flexural cracks perpendicular to the pier 

axis developed first in regions close to the bottom of the piers. The flexural 

cracks became inclined and extended into the web zone of the piers due to the 

influence of shear, typically at a stage exceeding the first yield of longitudinal 

rebars. At later stages of loading, typically at displacement ductility levels of 2 

and 3, independent shear cracks started to occur. Although all three specimens 

developed the estimated flexural strength, their ultimate performances and 

ductility levels achieved were different. In particular, specimen PI2 (with 

extremely insufficient shear reinforcement) was subjected to shear failure at 

displacement ductility of 4.1. Although some longitudinal rebars buckled in 

the loading stage close to the failure, no rupture of tensile longitudinal rebars 

happened (see Figure 2.5). 

 

 
 

Figure 2.5. Hysteretic loops  and damage state for Test PI2, Yeh et al. (2002) 
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Authors performed a comparison of the experimental results with some 

shear strength models [(ACI 318-95), Priestley et al., (1994), Ascheeim et al., 

(1992)]. The model by Priestley et al. (1994) gave a prediction close to 

experimental strength, while the others were conservative. Moreover, Authors 

concluded that prediction accuracy in terms of displacement for the specimen 

with shear failure needed to be further improved. 

2.1.4. Pinto et al., (2003) 

Pinto et al. (2003) presented cyclic tests on two large-scale (1:2.5) models of 

existing bridge piers with rectangular hollow cross-section performed in the 

ELSA laboratory. Test specimens were prototype of the piers of an existing 

reinforced concrete highway bridge constructed in Austria in 1975. Therefore, 

they presented several seismic deficiencies, such as lap splices within the 

potential plastic hinge region, bar cut-off at a not easily accessible height 

without adequate development length for the terminated rebars, low 

percentage of longitudinal and transverse reinforcement, short overlapping 

length, inadequate detailing of horizontal reinforcement and lack of 

appropriate confinement reinforcement. The two test specimens were different 

for height-to-length ratios (low and high).  

The objectives of the test campaign were to investigate the performance of 

as-built rectangular hollow bridge piers without seismic detailing, to identify 

and confirm the deficiencies, and to assist in the design of the retrofitting 

solutions to be applied in a second stage of the research programme. 

The scaled specimens had a rectangular hollow cross-section with external 

dimensions 2.74×1.02 m. The widths of the flange and the web were 0.21 m 

and 0.17 m, respectively. The height of the short pier was 6:5 m (height-to-

length ratio L/D = 2.4) and the height of the tall pier was 14.0 m (L/D = 5.1). 

The concrete cover was chosen to be 0.015 m for ease of construction. For the 

short pier, the volumetric ratios were 0.4% and 0.09% for longitudinal and 

transverse reinforcement, respectively. The starter bars were terminated above 

the base block and the vertical rebars were spliced just above the base cross-

section and within the potential plastic hinge region. No stirrups or closed 

hoops were placed, according to the original design of the piers. For the tall 

pier, the volumetric ratios were 0.7% and 0.09%. Longitudinal steel bars were 

characterized by inadequate overlapping length and reduction of almost 50% 

of the total amount at the height of 3.5 m. Figure 2.6 presents the reinforcement 
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details of the piers. As regards material properties, concrete C35/45 

(characteristic cylinder strength fck = 35 MPa) and steel S500 (characteristic 

yield strength f0:2k = 500 MPa), as defined in Eurocode 2 (EC2), were used in 

accordance with the materials specified for the prototype pier. 

Tests were performed under a constant axial load ratio of about 0.10, and 

cyclically reversed horizontal displacements with increasing amplitudes. 

The experimental results from the tests on the short pier, with lap splices 

just above the block foundation, indicated that most of the non-linear 

deformation concentrated in a narrow slice at the base, leading to an 

equivalent plastic hinge much lower than the empirical values (38% of the 

empirical value). This resulted in a small drift capacity of 1.5% (see Figure 2.7). 

 

 

Figure 2.6. Geometry and reinforcement details, Pinto et al., (2003) 

 

For a tall pier with bar cut-off, limited ductility was also observed (drift 

capacity of 1.6%). Failure occurred above the bar cut-off at 1/4 of the height 

(see Figure 2.8).  

Numerical results from a fiber model were in good agreement with the 

experimental results, for the short pier with flexure-dominated behavior. For 

the tall pier, the fiber model was unable to simulate the tension shift due to the 

shear cracking in the lower part of the pier.  

The test campaign confirmed that existing RC bridge piers with 

rectangular hollow cross section, designed without seismic requirements, are 
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expected to have poor hysteretic behaviour and low deformation capacity 

during a significant earthquake event. 

 

 
 

Figure 2.7. Final damage state and hysteretic loops for short test, Pinto et al. (2003) 

 

  

Figure 2.8. Final damage state and hysteretic loops for tall test, Pinto et al. (2003) 

 

2.1.5. Mo et al., (2004) 

The primary objective of the experimental study by Mo et al. (2004) was to 

present the results of an investigation on hollow rectangular columns 

retrofitted with carbon FRP (CFRP) composite straps. 

Eight reinforced concrete hollow columns were tested under a constant 

axial load ratio varying from 0.080 to 0.136, and a cyclically reversed horizontal 
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load. Primary test parameters include transverse reinforcement, shear span, 

axial force level, and FRP retrofit. 

The cross section of all specimens was 500x500 mm; the wall thickness of 

the hollow column was 120 mm. In this paper the spacing of the confining 

reinforcement satisfies both the design requirements of ACI code (ACI 318-95), 

and the requirements to prevent buckling suggested by Priestley et al. (1996), 

in which the spacing needs to be less than six times the diameter of the 

longitudinal rebars. However, the provided shear reinforcement of the 

specimens with an expected shear failure is much less than that required by 

the ACI code (ACI 318-95). In the group without FRP retrofit, there are two 

specimens, namely, NS1 and NI1-b. In specimen NS1, sufficient shear 

reinforcement was provided when compared to the ACI requirements. In 

specimen NI1-b, insufficient shear reinforcement was provided that was only 

about 35% of the ACI requirements. These two specimens served mainly as 

control specimens (see Figure 2.9). 

The horizontal load was applied at a quasi-static rate in displacement-

controlled cycles to displacements 5 mm, 10 mm, etc., for specimens NI1-b, and 

10 mm, 20 mm, etc., for specimens NS1, until failure of the specimen occurred. 

All hollow columns developed stable responses up to certain displacement 

ductility levels. Flexural cracks perpendicular to column’s axis developed first 

in regions close to the bottom end of the columns. For the specimens without 

FRP sheets the flexural cracks became inclined and extended into the web zone 

of the columns due to the influence of shear, typically at a stage exceeding the 

first yield of longitudinal rebars. At later stages of loading, typically at 

displacement ductility levels of 2 and 3, independent shear cracks started to 

occur. In particular, for the as-built specimen NI1-b (with shear reinforcement 

of only 35% of the ACI requirement) shear failure occurred. Right before shear 

failure, this specimen had similar performance to retrofitted specimen. At the 

ultimate state, this specimen failed due to a very clear shear crack through the 

plastic hinge region. 

Authors performed a comparison of the experimental results with some 

shear strength models [(ACI 318-95), Priestley et al., (1994), Ascheeim et al., 

(1992), Caltrans (1995)]. They concluded that for the specimen without FRP 

retrofit, the approach proposed by Priestley et al., (1994) to estimate the shear 

capacity gave the best prediction (see Figure 2.10) 
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Figure 2.9. Comparison between experimental envelope and shear strength curves, Mo 
et al. (2002) 

 

 

Figure 2.10. Comparison between experimental envelope and shear strength curves, 
Mo et al. (2002) 

 

2.1.6. Calvi et al., (2005) 

Calvi et al (2005) performed an experimental program on reduced-scale RC 

bridge piers with square hollow cross-section. The main objectives of the study 

were, among others, the evaluation of seismic response for different aspect 

ratios, and the assessment of the capacity of main shear strength models from 

codes and literature in prediction of collapse modes, strength and 

displacement capacity. Primary experimental variables of this study were 

aspect ratio, axial load and transverse reinforcement, for seven of the ten test 

specimens (hereinafter identified as “ordinary”). The remaining three 
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specimens were designed to investigate the effect of shift in critical section 

(interrupted longitudinal bars) and insufficient lap splice length. 

All test specimens were designed in order to be representative of typical 

existing Italian hollow bridge piers. Among the ordinary specimens, two 

groups were defined, T-series and S-series, characterized by different aspect 

ratio (2 and 3, respectively). A hollow square cross section with side of 450 mm 

and thickness of 75 mm characterized all specimens. Short test units were 

characterized by lower reinforcement ratio, while tall specimens presented 

higher reinforcement ratios. For each series, three value of the axial load were 

defined and applied, in order to study the influence of this parameter on the 

lateral response. The properties of test specimens are reported in Figure 2.11. 

Tests were performed under constant axial load ratios, varying from 0.06 to 

0.21, and cyclically reversed horizontal displacements, increasing with a 

sequence of drift ratios of 0.4%, 1.2%, 2.4%, 3.6%, and so on until failure 

occurred. A post-tensioned high strength Ø32 steel bar was used to give the 

initial axial load. The adopted test setup is reported in Figure 2.12. 

 

 

 

Figure 2.11. Properties of test specimens, Calvi et al. (2005) 
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As concerns materials, concrete compressive strength was of 30 MPa on 

average, while relatively high strength steel was used, with yield strength at 

approximately 550MPa and ultimate strength at approximately 670MPa. 

 

 

Figure 2.12. Test setup, Calvi et al. (2005) 

 

The experimental results confirm that the collapse of the three S-specimens 

was essentially controlled by insufficient shear strength, with wide inclined 

cracks even from the beginning of the test and failure of the stirrups in the 

ultimate phase. 

The taller pier tests were characterized by a mixed flexural–shear failure. 

They showed an increased capability of deformation with respect to the S-

series but still insufficient. The yielding in longitudinal bars was reached, but 

the overall dissipation was reduced, deep inclined openings appeared on 

sidewalls, bars buckling in the critical section at the base of the column and 

finally failure of the transversal reinforcement. Shear cracks inclination varied 

between 25° and 29° for FS specimens (for which Flexure-Shear failure 

occurred), and between 29° and 35° for S specimens. Experimental results in 

terms of lateral force and drift are illustrated in Figure 2.13. Typical final 

damage states for S-specimens and T-specimens are depicted in Figure 2.14. 

Authors compared prediction of few recent shear strength models with the 

experimental results. They concluded that the models proposed by Kowalsky 

and Priestley (2000) and Ashheim and Moehle (1992) were able to predict shear 

strength with sufficient accuracy. Less accurate was the maximum 

displacement estimation (ductility), obtained by intersecting the shear domains 

and the corresponding flexural response curves. 

Authors observed that this was essentially due to the fact that the 

intersecting curves were almost flat in the intersection zone and a vertical 
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shifting due to the inherent uncertainty of the model resulted in a very large 

shifting in the horizontal direction of the intersection and finally in the 

displacement collapse estimation. Moreover, the issue of the lateral response 

assessment was considered not fully solved for hollow piers characterized by 

flexure-shear interaction, since fiber models, quite good in capturing flexural 

response, needed corrections in order to include some stiffness reduction due 

to shear cracking. 

 

 
(a) 

 
(b) 

Figure 2.13. Experimental response for T-specimens (a) and S-specimens, Calvi et al. 
(2002) 

 

 
(a) 

 
(b) 

Figure 2.14. Typical final crack patterns  for S-specimens (a) and T-specimens, Calvi et 
al. (2002) 

 

2.1.7. Delgado, (2009) 

The study presented by Delgado (2009) is an extension of the previous 
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work (Calvi et al., 2005). The main objectives of the study were: the evaluation 

of seismic response of existing hollow section piers (typically those built until 

the seventies, thus not seismically detailed); the assessment of recent Eurocode 

8 (EC8) provisions concerning stirrup ratio and detailing; the definition and 

testing of shear/confinement retrofit strategies for hollow section piers. 

Primary experimental variable of this study was transverse reinforcement 

ratio. Other secondary variables were the strength of concrete and 

reinforcement steel. Experimental tests were performed on twelve as-built 

reduced-scale RC bridge piers, six with hollow square cross section (identified 

as “PO1”, identical to that considered in Calvi et al., 2005) and six with hollow 

rectangular cross section (identified as “PO2”). After the as-built tests were 

carried-out, all specimens were strengthened and re-tested. These last tests are 

not considered herein. The hollow square cross section had side of 450 mm, 

while the hollow rectangular cross section was 450 mm x 900 mm. Thickness 

was equal to 75 mm in both cases. The hollow rectangular specimens were 

tested along the shorter side, so no difference in the aspect ratio was 

considered. Longitudinal reinforcement consisted of 40 bars for PO1-

specimens and 64 bars for PO2-specimens. All deformed steel bars with 

diameter of 8 mm were used. The test specimens were divided into three 

groups, different in material strength and transverse reinforcement details. 

First group (composed of Test PO1-N1 and PO2-N1) and second group 

(composed of Tests PO1-N2, PO1-N3, PO2-N2 and PO2-N3) were different in 

materials strength and transverse steel diameter, but both of them were 

characterized by the same reinforcement details. In particular, a single stirrup 

was present in each pier wall, typical of old bridge design and construction. 

Within the third group, different from the previous ones in terms of materials 

strength, three transverse reinforcement arrangements were considered: no 

seismic details for PO1-N4 and PO2-N4 (identical to first and second group); 

confinement reinforcement according to EC8 for PO1-N5 and PO2-N5; double 

amount of shear reinforcement for PO1-N6 and PO2-N6.  Main specimens’ 

properties are illustrated in Figure 2.15, Figure 2.16 and Figure 2.17. 

Tests were performed under constant axial load of 250 kN, and cyclically 

reversed horizontal load. The horizontal load pattern is reported in Figure 2.18. 

These target displacements referred to measurements taken from the internal 

transducer of the hydraulic actuator that was affected by spurious 

deformations due to the reaction system and to the rotation of the foundation. 
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Since the actual specimen displacements do not match exactly those values, the 

correct values were obtained from an external transducer positioned at the 

level of the horizontal actuator axis, discounting the deflection due to 

foundation rotation that was also measured. For this reason, from the obtained 

force-displacement diagrams five deformation control stages were selected for 

the analysis of results. These stages were labelled from D1 to D5 and differed 

between piers.  

 

 

Figure 2.15. Summary of specimens’ properties, Delgado (2009) 

 

Since important shear deformations were expected in these tests, an 

appropriate instrumentation configuration was adopted along the pier height 

using the LVDT layout shown in Figure 2.19, able to measure independently 

both the shear and flexural components of the specimen deformation. Actually, 

the two deformation components were not directly measured. In fact, resorting 

to instrumentation readings concerning horizontal displacements at several 

elevation levels as well as the top and base section rotations, it was possible to 

estimate the flexural component of the deformation. All specimens were 

characterized by shear failure. Damage state evolution was very similar for test 

specimens without seismic details, with both square and rectangular cross 

section. The early test stages D1 were largely characterized by cracking near 

the pier base (approximately in the lower third of the height of the specimen), 

inclined in the webs and horizontal in the flanges. At stage D2, cracking 
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developed along pier height, inclined at approximately 45◦ in the webs. At 

following stages, diagonal cracks along webs increased their width, while 

flexural cracks on the flanges were characterized by lower width. Therefore, 

lateral response was dominated by shear. In fact, after peak load was reached, 

a softening regime without any visible plastic plateau started. No plastic 

hinges developed at the bottom end of the specimens. It was noted that, for 

hollow rectangular test units, on the flanges in the upper part of the specimens, 

flexural cracks were no more exclusively horizontal, as usual for T- or I-shaped 

sections, due to the so-called “shear lag effect” that occurs for the ratio flange-

width/section-height of about 2:1 or above. 

 

 

Figure 2.16. Specimens with no seismic details, Delgado (2009) 

 

As regards test specimens with seismic details, damage state evolution was 

almost similar at initial stages, but diagonal cracks width was limited and 

delayed by the presence of additional transverse reinforcement. (see Figure 

2.20). Comparing experimental response of specimens without seismic details 

with that of specimens with confinement reinforcement according to EC8, 
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Author noted no substantial differences, since they were interested by shear 

failure (see Figure 2.21). By observing the comparison between responses of 

specimens without seismic details and that of detailed specimens with double 

amount of shear reinforcement, Author noted an improvement in strength (of 

about 25%) and ductility (of about 45%), even if also in this case shear failure 

wasn’t prevented (see Figure 2.22). 

 

 

Figure 2.17. Specimens with seismic details, Delgado (2009) 

 

 

Figure 2.18. Lateral loading protocol, Delgado (2009) 
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Figure 2.19. Lateral LVDT layout, Delgado (2009) 

 

  

Figure 2.20. Crack patterns for Test PO2-N4 (2.14% drift – a) and PO2-N6 
(3.14% drift – b), Delgado (2009) 

 

 

Figure 2.21. Experimental response comparison between Test PO1-N4 and Test PO1-
N5, Delgado (2009) 
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Figure 2.22. Experimental response comparison between Test PO1-N4 and Test PO1-
N6, Delgado (2009) 

 
Finally, as concerns deformation components, seismic details caused a 

significant reduction of shear deformation, which reached about 60% of total 

lateral displacement at shear failure stage, while it was of about 80% for 

specimens without seismic details (see Figure 2.23). 

 

 

Figure 2.23. Shear and bending deformation components Test PO1-N4 and Test PO1-
N6, Delgado (2009) 

 

2.2 Experimental studies: hollow circular RC columns 

Hollow section piers are a very popular structural solution for reinforced 

concrete (RC) bridge structures, due to, on one side, the economical 

convenience (saving of materials afforded by reduced section area), and on the 

other side, the higher efficiency with respect to solid sections from a structural 

point of view (larger moment-of-inertia than solid sections with a similar area, 

reduced inertia masses, limited cracking due to non-uniform development of 
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heat of hydration). In particular, circular shape of the RC hollow section piers 

is very used for highway bridges, because its lateral response under wind and 

seismic loads is similar in any direction. Despite their widespread use, 

relatively few experimental studies have been performed on RC hollow 

circular section members.  Some experimental campaigns on RC piers with 

hollow-core circular cross section and double reinforcement layer are present 

in literature, since 80’s. A first experimental study was focused on seismic 

response of RC hollow circular concrete scaled members of offshore concrete 

platform, characterized by two layers of longitudinal and well-detailed 

transversal reinforcement (presence of cross ties through the wall thickness). 

Such study proved that this kind of members were able to display a similar 

ductile load-deformation behavior to that available from well-detailed solid 

members (Whittaker et al., 1987). Similar results were obtained by the study 

conducted by Tokyu Construction Company on the behavior of slender and 

squat hollow circular members with rather thick wall (20% of the external 

diameter). Then, cyclic tests on three different bridge piers with hollow circular 

cross section and different layout of transversal reinforcement were performed 

in Yeh et al. (2001), in order to study the flexure-shear interaction. Results 

showed that the lack of the internal confinement reinforcement between the 

two longitudinal steel layers might involve failure in tension of some 

longitudinal steel bars at the bottom of the column after concrete crushing and 

buckling during previous compression cycles, and flexure-shear failure if 

external transverse reinforcement was not sufficient.  Then, since their 

diffusion for bridge piers, the experimental attention was shifted on hollow 

circular sections with a single layer of longitudinal and transverse 

reinforcement, but very few experimental studies are available in literature 

focusing on this topic. Initially, the aim of the experimental studies was to 

study the change in flexural response due to the absence of the internal 

reinforcement layer (Zahn et al. (1990), Hoshikuma and Priestley (2000)). Once 

the flexural response was almost clear, the target of the experimental study 

was to improve the prediction capacity of shear strength for hollow circular 

columns (Ranzo and Priestley (2001)). Each of these works will be briefly 

described, discussed and analyzed hereafter. In particular, the attention will be 

focused on the specimens’ properties, test setup and experimental results. This 

literature review will be the basis for the collection of the database reported in 

the section 7.1. 
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2.2.1. Zahn et al. (1990) 

For column members of smaller cross-sectional size, it may be convenient 

to place the longitudinal and transverse reinforcement in one layer, only near 

the outside face of the cross section and not to tie the concrete through the wall 

thickness. This leads to a simpler arrangement of reinforcement, but then the 

concrete near the inside face of the hollow section is unconfined and the 

flexural failure may be brittle. Based on this observation, Zahn et al. (1990) 

carried out an experimental study on six columns with hollow circular 

reinforced concrete columns and a single layer of steel reinforcement near the 

outside face. The objectives of the study were to establish the parameters that 

control the available flexural strength and ductility for these elements. The 

experimental variables were the ratio of the inside to outside diameter of the 

column section (D/Di), and the axial load ratio. In particular, three pairs of 

columns were designed with D/Di ratios of 0.53, 0.63 and 0.73, corresponding 

to thickness of 90, 75 and 55 mm. All columns had an outside diameter of 

400 mm. Figure 2.24 shows the principal dimensions and loading 

arrangements of the columns. It can be noted that each test unit is composed of 

two test units and a central stub to which horizontal load is applied. 

 

 
 

 

Figure 2.24. Geometry and reinforcement details, Zahn et al. (1990) 
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All tests were performed under constant axial load ratio, varying from 0.10 

to 0.40, and increasing displacement cycles until failure occurred. Test units 

failed by the more or less rapid collapse of the concrete wall in the 

compression zone. No signs of shear failure were observed in any of the tests. 

Authors observed that the position of the neutral axis at the flexural strength 

had a significant influence on the available curvature ductility of the columns. 

If the neutral axis is close to the unconfined inside face of the tube, resulting in 

small longitudinal strain in the unconfined region of the concrete compression 

zone, ductile behavior can be expected. If, on the other hand, the neutral axis is 

some distance away from the inside face (toward the centroid of the section), 

the resulting high longitudinal compressive strain on the inside face causes 

early vertical splitting and crushing of the concrete and consequent low 

ductility, as a result of rapid deterioration of the flexural strength.  

The main factors that control the neutral axis position at the flexural 

strength, are the axial load ratio, the inside to outside diameter ratio, the 

longitudinal steel ratio, and the material strengths. Appreciable ductility can 

only be achieved with low axial load, small longitudinal steel ratio, and a wall 

thickness of not less than 15% of the overall section diameter. 

The amount of spiral steel placed near the outside face of the tube wall 

plays a relatively minor role in the available ductility of circular hollow 

column sections when the longitudinal strains on the inside face of the tube 

wall are relatively high. The radial confining stress exerted by spiral 

reinforcement puts the compressed portion of the curved wall into 

circumferential compression and thus helps to delay vertical cracking. 

However, because of the absence of any confinement in the radial direction on 

the inside face of the wall, annular cracks extending in the direction of the 

column axis start to form once a critical value of the longitudinal compressive 

concrete strain is exceeded there.  

The tests conducted indicated that a value of 0.008 for the longitudinal 

compression concrete strain at the inside face of the tube wall at crushing there 

may be safely used as a limit state to determine the ultimate curvature for 

design purposes. 
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Figure 2.25. Horizontal load-displacement hysteresis loops, Zahn et al. (1990) 
 

 

2.2.2. Hoshikuma and Priestley (2000) 

Hoshikuma and Priestley (2000) presented an experimental report in 

which two reduced-scale hollow circular columns with different longitudinal 

reinforcement ratio were tested under constant axial load and cyclic lateral 

load. Scale factor of 1:4 was adopted, for which the scale effects would be 

minimal.  

The outer diameter of the hollow section was 1524 mm and the inner 

diameter 1244mm, resulting in 140mm wall thickness or the wall thickness 

ratio of 0.092. The test unit below mid-height section was constructed by 

reinforced concrete with hollow section and a loading steel tube was connected 

to the column top for the extension of the height, to make on-site construction 

be speedy and efficient. The height of the hollow reinforced concrete section 

was 3480 mm, sufficient to observe the flexural performance at the plastic 

hinge region. A total column height from the base to loading point is 6528 mm, 

tested in single bending to give the aspect ratio of 4.28. Specimens were 

identified as HF1 and HF2, characterized by 1.45% and 3.18% longitudinal 
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reinforcement ratios respectively. Transverse reinforcement ratio was high in 

order to prevent shear failure. Figure 2.25 shows geometry and reinforcement 

details of test specimens. As regards material properties, concrete cylindrical 

compressive strength was of about 38 MPa, yield strength was equal to 430-

440MPa and 625 MPa for longitudinal and transverse steel reinforcement, 

respectively. The applied axial load ratio was of about 0.13 for both test units. 

Figure 2.27 shows the force-displacement response for both specimens. 

Damage state evolution for Test HF1 (with lower longitudinal reinforcement 

ratio) was characterized by first horizontal cracks for lateral force value of 

about 3/4 of the yielding force. After yielding, new horizontal cracks formed 

up to the whole height of the specimen, and existing cracks increased their 

width. After peak load was reached, some shear crack appeared, while no 

longitudinal reinforcement buckling was observed. Failure was reached, in 

fact, when the inside face concrete (monitored by video camera located in the 

void section) was crushed. This resulted into a sudden and severe drop of the 

lateral strength on the force-displacement response, which limited the ultimate 

ductility capacity. 

 

  

Figure 2.26. Geometry and reinforcement details of the test units, Hoshikuma and 
Priestley (2000) 
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(a) 

 
(b) 

Figure 2.27. Lateral force-displacement hysteretic response for Test HF1 and Test  HF2, 
Hoshikuma and Priestley (2000) 

 

For Test HF1 (with higher longitudinal reinforcement ratio), first 

horizontal cracks formed for lateral force value of about 1/2 of the yielding 

force. After yielding, new horizontal cracks formed up to the whole height of 

the specimen, existing cracks increased their width and some shear cracks 

appeared. After peak load was reached, the onset of crushing of cover concrete 

was noted at the column base. No buckling of longitudinal bars was observed. 

Failure was reached, when the inside face concrete was crushed. This resulted 

into a sudden and severe drop of the lateral strength on the force-displacement 

response, which limited the ultimate ductility capacity. 

By analyzing the experimental results, Authors concluded that the inside 

face concrete compression strain is one of the most important parameters to 

control the ductility capacity of the hollow columns. High axial load, a thin 

wall or a high longitudinal steel ratio causes the neutral axis pass through the 

void section with a deep clearance from the inside face, resulting in high 

longitudinal compression strain at the inside face. These observations were in 

accordance with the results by Zahn et al. (1990), presented in the previous 

section. Nevertheless, Authors suggested a different limit for concrete 

compression strain at the inside face corresponding to flexure brittle failure. 

The suggested limit was equal to 0.005, even though a sufficient amount of 

transverse steel was placed near outside face. In fact, the concrete wall in the 

circular hollow section is effectively subjected to biaxial compression, which 

causes the significant reduction in confinement effectiveness and then the 
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premature crushing of inside face concrete. A confinement strain of 0.001 was 

proposed for the maximum useful transverse steel confinement induced strain 

in the critical hollow section based on the test results. Under these 

assumptions, the flexural strength and the ductility capacity of the hollow 

columns may be evaluated with the use of the conventional moment-curvature 

analysis for the equivalent solid circular section with the same confinement 

effectiveness. 

2.2.3. Ranzo and Priestley (2001) 

The purpose of the experimental study by Ranzo and Priestley (2001) is to 

investigate the shear strength of thin-wall circular hollow columns, with a 

single layer of steel reinforcement. To this aim, cyclic tests with constant axial 

load were carried out on three specimens characterized by the same amount of 

transverse reinforcement, while the longitudinal reinforcement and the axial 

load were taken as experimental variables. For all test units, the ratio of the 

shear span to the section diameter was selected to be 2.5, and the same amount 

of the transverse reinforcement corresponding to 0.35% volumetric ratio was 

also provided. Figure 2.28 shows the main properties of test specimens.  

 

 

 

Figure 2.28. Properties of test specimens, Ranzo and Priestley (2001) 

 

The longitudinal reinforcement ratios, referred to the section net area were 

1.4% for unit HS1 and 2.3% for units HS2 and HS3. The section geometry with 

the arrangement of longitudinal and transverse reinforcement is shown in 

Figure 2.28. The first unit (HS1), characterized by low levels of longitudinal 
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reinforcement and axial load of 0.05, was designed to fail in flexure. The 

second (HS2), characterized by a higher level of longitudinal reinforcement 

and the same axial load, was instead designed to fail in shear. The third (HS3), 

with the same longitudinal reinforcement as HS2 and a higher axial load ratio 

of 0.15 was designed to induce a brittle flexural-shear failure. The transverse 

reinforcement consisted of a continuous spiral. Test specimens were deeply 

instrumented with strain gauges, curvature cells, and deformation panels, in 

order to monitor the main local deformability during the tests. In Figure 2.29 

the adopted monitoring system is depicted. 

 

  

Figure 2.29. Monitoring system, Ranzo and Priestley (2000) 

 

The experimental response of test specimens are reported in Figure 2.30.  

Specimen HS1 exhibited a ductile response. Flexure failure of the test unit 

was observed at ductility 6.0 due to implosion of concrete in the inside face of 

the column wall. Buckling of longitudinal rebars occurred in the compression 

region at column base, involving 4 layers of spiral reinforcement. Before 

failure, limited strength degradation occurred during repeated cycles.  

The response of unit HS2 was characterized by little strength degradation 

occurred before ductility 3.0, when concrete spalling in the inside face 

occurred. This caused a sudden loss in strength of approximately 25%. The 

unit subsequently failed in a brittle flexure-shear mode at displacement 

ductility of 3.5. The transverse steel fractured along the crack in several layers 

(see Figure 2.31). The behavior of unit HS3 was greatly influenced by the 

higher level of axial load. The force-displacement cycles, showed a more 

evident pinched shape near the origin, due to the effect of the axial load. 
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Concrete spalling in the inside face occurred at ductility 2.0 in the push 

direction, and subsequently the unit failed in shear in the first cycle in the pull 

direction. The deformation capacity was 43% less than that observed in the 

unit HS2. The top displacement contributed by the shear deformation was 

measured to be 20%, 30%, and 40% for the unit HS1, HS2, and HS3, 

respectively. 

 

 

 

 

Figure 2.30. Force-displacement response of units HS1, HS2 and HS3,  
Ranzo and Priestley (2000) 
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Figure 2.31. Unit HS2 at failure, Ranzo and Priestley (2001) 

 

Based on the experimental results, Authors proposed some modifications 

to shear strength model by Kowalsky and Priestley (2000), accounting for the 

shape of the cross section (different effective shear area) and the effect of the 

axial load. The same model can be used successfully to predict the load-

deformation behavior with simple sectional analysis. This model gave good 

prediction of the experimental shear strength, slightly overestimating, while 

also more recent and sophisticated models such as MCFT model (Collins and 

Vecchio, (1988)), deeply underestimated both strength and ductility for shear-

dominated specimens. 

2.3 Modeling of existing RC columns 

2.3.1. Classification issue 

Nonlinear behavior of RC elements strictly depends on their failure 

typology. Flexural response of a RC element can be “limited” because of the 

onset of a premature shear failure and, in reverse, shear capacity can decrease 

because of the cyclic degradation of shear resistance contributions due to the 

increase in ductility demand after yielding. Three different failure modes can 

be identified for a RC column, as a result of the adoption of a degrading shear 

capacity model (Figure 2.32). 

When the initial non degraded shear strength is lower than plastic shear 

capacity (Figure 2.32a), shear failure occurs limiting flexural response, namely 

deformation capacity or energy dissipation capacity, and causing a significant 

sudden strength reduction. 
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(a) 

 
(b) 

 
(c) 

Figure 2.32. Classification: shear (a), flexure-shear (b), and flexural behaviour,  
De Luca and Verderame (2015) 

 

When the degraded shear strength is higher than the plastic shear (Figure 

2.32c), the flexural response can completely develop, without interaction with 

shear, exhibiting high ductility capacity up to the onset of degrading 
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phenomena as bar buckling or concrete crushing and cover spalling. 

In all the other cases, the element can reach yielding, but the inelastic 

flexural response is modified by the onset of a post-yielding shear failure 

(Figure 2.32b). Anyway, after shear failure, the behavior of the element 

becomes strongly degrading up to the loss of axial load carrying capacity. 

Thus, the behavior of a RC element can be classified on the basis of the 

ratio between plastic shear capacity and degrading shear strength. Several 

models have been developed to represent the degradation of shear strength 

with increasing inelastic ductility demand (Priestley et al. 1994, Biskinis et al., 

2004; Sezen and Moehle, 2004, among other). Nevertheless, further literature 

researches (Zhu et al., 2007, Elwood et al., 2007, among other) proved that the 

failure mode classification cannot be adequately carried out on the basis only 

on the shear strength capacity and introduced a classification based also on 

other key parameters, e.g. transverse reinforcement ratio or stirrups-spacing-

to-section-depth ratio. 

2.3.2. Models for lateral response 

The prediction of the deformation for a RC column subjected lateral load is 

a crucial issue of the displacement-based assessment of existing RC structure. 

Referring to a cantilever column, its lateral response is completely defined 

depending on total top displacement. The top displacement can be interpreted 

as the results of three coexisting response mechanisms: flexure deformation, 

shear deformation, and fixed-end-rotation due to longitudinal bar slip at 

column base. In the following, different modelling strategies aimed at 

reproducing each of the above-mentioned mechanisms, are briefly described 

and discussed. 

2.3.2.1 Flexural behavior  

Inelastic structural component models can be differentiated depending on 

how plasticity is distributed along the member length and through the 

member cross section. The most complex models discretize the element along 

its length and through the cross sections into micro- finite elements (Figure 

2.33a) with nonlinear hysteretic constitutive properties that can have many 

input parameters, thus offering a great versatility, but also requiring a great 

effort in terms of model parameter calibration and computational resources. 

Reducing the complexity level, the fiber formulation models distribute 



Chapter 2 

State of the art and background 
 

69 

plasticity by numerical integrations through the member cross sections and 

along the member length (Figure 2.33b). Uniaxial material models are adopted 

to define the nonlinear hysteretic axial stress-strain behavior in the cross 

sections. The Bernoulli hypothesis on plane section is assumed, and uniaxial 

material “fibers” are numerically integrated over the cross section to obtain 

stress resultants (axial force and moments) and incremental moment-curvature 

and axial force-strain relations. The cross section parameters are then 

integrated numerically at discrete sections along the member length, using 

displacement or force interpolation functions (Kunnath et al. 1990, Spacone et 

al. 1996). Distributed fiber formulations provide strains in the steel and 

concrete cross section fibers, instead than plastic hinge rotations, and the 

calculated strain demands can be quite sensitive to element length, integration 

method, and strain hardening parameters. A further step to reduce complexity 

and computational efforts is represented by the “finite length hinge model” 

(Figure 2.33c). This modeling approach is an efficient distributed plasticity 

formulation where hinge zones at the member ends are pre-defined. Cross 

sections in the inelastic hinge zones are characterized through either nonlinear 

moment-curvature relationships or explicit fiber-section integrations assuming 

Bernoulli hypothesis on plane section. If hinge length is well designed, 

integration of deformations along the hinge length captures the spread of 

yielding more realistically than the concentrated hinges, and the finite hinge 

length facilitates calculation of hinge rotations. 

The simplest models concentrate the inelastic deformations at the ends of 

the element, such as through a rigid-plastic hinge or an inelastic spring with 

hysteretic properties (Figure 2.33d and Figure 2.33e). These elements have 

numerically efficient formulations thanks to the concentration of the plasticity 

in zero-length hinges with moment-rotation model parameters. 

Fiber and finite element models capture the axial force-moment (P-M) 

interaction directly, while concentrated and finite length hinge models may 

consider the P-M response through yield surfaces. On the other hand, the 

detailed fiber and finite element models are not necessarily capable of 

modeling effects such as degradation due to reinforcing bar buckling and 

fracture that can be captured by simpler phenomenological models. In fact, 

distributed plasticity formulations are able to model stress and strain 

variations through the section and along the member accurately, but important 

local phenomena, such as strength degradation due to local buckling of 
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reinforcing bars, or the nonlinear interaction of flexural and shear, are difficult 

to capture without sophisticated and numerically intensive models. 

Vice-versa, models based on empirically-defined concentrated hinge may 

be more suitable to capture the nonlinear degrading response of members 

through the calibration of phenomenological moment-rotation relationships 

and hysteresis rules, using member test data, with the same or lower 

approximation of more sophisticated formulations. 

 

 

Figure 2.33. Flexural modelling - adapted from Dierlein (2010) 

 

Concentrated hinge models obviously require a pre-determination of 

backbone relationships between characteristic forces and deformations of 

structural components, together with the associated hysteresis rules, to define 

component behavior, demand parameters, and acceptance criteria. 

In the adoption of such pre-defined backbones, when a nonlinear analysis 

has to be performed, it is important to distinguish between “monotonic” and 

“cyclic envelope” curves. The former represents the response that would be 

observed for a component tested under monotonic loading, the latter 

represents the forces-displacements behavior under cyclic loading, depending 

on the applied cyclic loading history. 

When the cyclic effects of earthquake loading are not modeled directly in 

the analysis, e.g. in nonlinear static analyses, the nonlinear component models 

should be defined based on the degraded cyclic envelope. For nonlinear 

dynamic analysis, the choice of components curves depends on how cyclic 

degradation is modeled. Direct modeling of cyclic degradation begins with a 

monotonic backbone curve and degrades this relationship as the analysis 

proceeds (Ibarra et al. 2005, Haselton et al. 2007). In indirect modeling 

(a) (b) (c) (d) (e)
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approach, the component backbone curve does not degrade and it is defined as 

the cyclic envelope, already including cyclic strength degradation. 

Additional springs can be added to the flexural model in order to take into 

account also shear behavior, as explained in next section, or bond-slip of 

longitudinal reinforcing bars. 

2.3.2.2 Shear behavior  

The assessment of the shear behavior for RC members is a crucial issue, as 

recently highlighted by many studies, both at service and ultimate conditions. 

Models for response of columns with details satisfying current code 

requirements may reasonably ignore shear deformations, or model them using 

simplified procedures, because shear deformations are relatively small, and a 

ductile response dominated by flexure can be considered assured. Vice versa, 

the amount of shear deformations in existing (generally, shear-critical) 

columns, especially after the development of shear cracks, can be significant 

and needs to be modeled in order to represent total deformations in these 

members (Sezen, 2002). Moreover, for RC members characterized by lower 

aspect ratio (short and deep columns) the deformations caused by shear may 

become significant, while for relatively slender members (aspect ratio greater 

than 3) shear deformations can be ignored (Priestley et al., 2007). Regarding 

ultimate state condition, as explained in Section 2.3.1, to develop flexural 

behavior, the member shear strength must be larger than the flexural strength, 

which is the condition typically required in capacity design provisions for 

seismic design. Where the shear strength is not sufficient to preclude shear 

failure (such as in most of the existing structures), shear effects must be 

considered in the analysis model in addition to flexural and axial load effects. 

Once this shear failure is triggered before or after flexural yielding, shear and 

deformation capacities are progressively lost.  

Only approximate methods for predicting shear deformations of concrete 

members during service condition are available, though the modified 

compression field theory (MCFT) (Vecchio and Collins, 1986) provides a means 

for predicting total deformation, including shear components, for monotonic 

response. It must be said that the latter approach appears very 

computationally demanding. 

Priestley et al. (2007) proposed a simplified approach to compute shear 

deformations. The original procedure to calculate shear deformations was 
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presented by Park and Paulay (1975). Miranda et al. (2005) provided further 

development and study on reinforced concrete columns. Finally, Priestley et al. 

(2007) updated the procedure. According to this approach, the shear force-

displacement response is assumed as multilinear curve, identified through 

four characteristic points: flexural cracking, shear cracking, yielding, and peak 

load. Four different shear stiffness values are defined, based on mechanics’ 

theory. 

Simpler attempts to capture the shear failure in columns were based on a 

post-processing of analyses results in which only flexural behavior is explicitly 

modeled (Otani and Sozen, 1972, Spacone et al., 1996, Liel et al. 2010). This 

approach is able to detect shear failure in a force-approach, but it does not 

properly estimate inelastic shear deformations and degrading behavior after 

shear failure. 

A fairly straightforward approach to model shear effects is represented by 

the introduction of a nonlinear shear spring in series with the axial-flexural 

model (Pincheira et al. 1999, Lee and Elnashai 2001, Sezen and Chowdhury 

2009, Jeon et al 2015). The definition of the backbone curve characterizing this 

shear spring can be based on the modified compression field theory (MCFT) 

(Vecchio and Collins, 1986) or on drift capacity at shear failure. 

Pincheira et al. (1999) added a zero length shear spring that can account for 

the strength and stiffness degradation with increasing deformation demand 

(Figure 2.34a). The model is able to represent flexure or shear failure under 

monotonically increasing or reversed cyclic loading and stiffness degradation 

with cyclic loading can also be represented. Although the procedure they 

suggested to solve the convergence issue, it can be very computationally 

demanding. 

Lee and Elnashai (2001) also utilized the MCFT to define the backbone 

curve of the shear spring and developed hysteretic rules including the 

variation of column axial loads (Figure 2.34b).  

Sezen and Chowdhury (2009) developed the hysteretic model including 

the flexure-shear-axial interaction based on the backbone curve obtained from 

the MCFT, and also employed the bond-slip model developed by Sezen and 

Moehle (2003). 

Jeon et al. (2015) simulated shear response by means of a zero-length shear 

spring located at one end of the column (Figure 2.34c). Shear failure begins 

once the column shear demand exceeds the column shear not-degraded 
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capacity. The adopted shear strength prediction derives from the ASCE 41-06 

shear strength model but it does not take into account the possible degradation 

of shear strength capacity with increased ductility demand. 

Some shear strength models (Kowalsky and Priestley 2000, Sezen and 

Moehle 2004, Biskinis et al.2004) calibrated on empirical data are useful for 

estimating the column shear strength as a function of inelastic ductility 

demand. However, they do not provide a reliable estimate of the drift capacity 

at shear failure (Elwood and Moehle 2005). Nevertheless, models that predict 

drift capacity for columns experiencing shear failure prior to or after than 

flexural yielding can be found in literature (Pujol et al. 1999, Elwood and 

Moehle 2005). 

Pujol et al. (1999) proposed a drift capacity model for shear-critical 

columns by means of a statistical evaluation of an experimental database of 92 

columns, also including columns with quite high transverse reinforcement 

ratios (higher than 0.01), thus not suitable for non-ductile columns. 

Elwood and Moehle (2005) proposed an empirical drift capacity model, 

more inherent to non-ductile elements, by using a database of 50 flexure-shear-

critical RC columns with configurations representative of those used in pre-

1970s American buildings. 

Later, on the basis of this drift capacity model, Elwood (2004) developed a 

drift-based shear failure model (the so-called “limit state material”) that can 

identify a shear failure associated with column shear and column’s total 

deformation by means of a shear spring in series with a nonlinear beam-

column element (Figure 2.34d). The limit state material has a predefined tri-

linear backbone curve and five parameters to define pinching and stiffness 

degradation; the limit state material changes the backbone of the material 

model to include strength degradation once the response of the beam-column 

element exceeds a predefined limit curve. However, a limited number of 

comparison studies with experimental results make it difficult to accurately 

validate the limit curve (Jeon 2013).  

LeBorgne (2012) extended the model of Elwood (2004) to estimate the 

lateral strength degrading behavior of RC columns prone to shear failure 

through a rotation-based shear failure model that triggers shear failure once 

either a shear capacity or a plastic hinge rotation capacity is reached. When 

shear failure is detected, a zero-length shear spring with a tri-linear backbone 

curve linked in series with the beam-column element modifies its constitutive 
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properties to consider pinching and strength and stiffness degradation 

determined through linear regressions from experimental data. 

 

  
(a) (b) 

 
(c) 

 
(d) 

Figure 2.34. Examples of modeling of columns shear behavior – Pincheira et al. (1999) 
(a), Lee and Elnashai (2000) (b), Jeon et al. (2015) (c), Elwood (2004) (d) 

 

Although the shear model offers very accurate results, the direct use of this 

shear model in the current software is not implemented making its 



Chapter 2 

State of the art and background 
 

75 

applicability still too much complex. A review of previous researches on the 

shear behavior of existing columns indicates that a reliable model to predict 

shear behavior both for service and failure conditions should be accurate, 

computationally efficient and compatible with existing software programs in 

order to practically conduct complex analyses. However, it is quite difficult 

that column shear models reviewed above satisfies all these requirements. The 

problem is still an open and important issue, and in the present work, some 

attention will be directly focused on this topic. 

2.3.2.3 Bar slip  

It is well known that, a reinforcing bar embedded in concrete subjected to 

tensile force will accumulate strain over the embedment length of the bar. This 

strain causes the reinforcing bar to extend, or slip, relative to the concrete in 

which it is embedded. 

The longitudinal reinforcement in a reinforced concrete column with fixed 

ends subjected to bending may be in tension at the footing-column interface. 

Slip of the reinforcing bars outside the flexure length and in the anchoring 

concrete (that is, in the footing region) will cause rigid-body rotation of the 

column, as shown in Figure 2.35. This rotation is additive to the rotation 

calculated from flexural analysis of the column (described in Section 2.3.2.1). 

This increased rotation causes greater drift of columns and walls under lateral 

loads; therefore, it is important to account for reinforcement slip when 

determining the response of a reinforced concrete structure subjected to lateral 

loading. In fact, sometimes, reinforcement slip in footings regions can make a 

significant contribution to the total lateral displacement of a reinforced 

concrete member. Some experimental results indicated that the deformations 

due to reinforcement slip might be as large as column flexural deformations, 

and up to 40% of the total lateral displacement (Sezen, 2002). Thus, if 

deformations resulting from reinforcement slip are ignored in the member 

analysis, the predicted lateral deformations may be significantly 

underestimated or the predicted lateral stiffness may be overestimated. 

Numerous researchers have investigated the anchorage behavior of 

reinforcing bars experimentally, and a number of analytical bond-slip models 

have been developed over the years. The various models fall into two broad 

categories. Macro models deal with the average slip behavior and often 

assume a uniform or stepped bond stress over the development length of the 
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reinforcing bar. They are very efficient from a computational standpoint. Micro 

models attempt to model the steel-concrete interface on a local level, and often 

use a varying bond stress-local slip relationship within a numerical model. 

These models tend to agree well with experimental data, but they are 

computationally intense. 

 

 

Figure 2.35. Flexural and slip deformations in reinforced concrete column -  adapted 
from Sezen and Setzler (2008) 

 

In literature, different examples of micro models are present. The model by 

Hawkins et al. (1982) uses a trilinear curve to relate the bond stress to the local 

slip at each location along the embedded length of the bar (Figure 2.36a). 

The widely used bond stress-slip relationships by Eligehausen et al. (1983) 

were based on an experimental program of pullout tests at the University of 

California, Berkeley. They proposed a more complex and refined multilinear 

bond stress-slip relation (Figure 2.36b).  

An analytical procedure was proposed by Alsiwat and Saatcioglu (1992) to 

predict the monotonic force-deformation relationship of a reinforcing bar 

embedded in concrete using a stepped bond stress distribution (Figure 2.36c). 

According to this model, four regions are developed along a reinforcing bar in 

tension, namely, an elastic region, a yield plateau region, a strain-hardening 

region, and a pullout-cone region. For each of these regions, a bond stress 

value is adopted, then the slip is calculated by integrating the strains over the 

development length. 

The first example of macro model for the reinforcing slip evaluation was 

proposed by Otani and Sozen (1972). This model assumed that the stress in the 

bar decreases linearly with the distance and becomes zero at the distance of the 

development length. Using a uniform bond stress of 0.54√fc (where fc is 
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concrete compressive strength) along the development length, they computed 

the slip rotation as a function of the moment. Such a model was based on the 

hypothesis that the strain in the longitudinal reinforcement at column interface 

was at most equal to yield strain. 

Lehman and Moehle (2000) demonstrated that at the beam-column 

interface, the strain in the reinforcing bar could be much larger than yield 

strain, causing columns to experience significant fixed-end rotations due to bar 

slip. Therefore, they proposed a bi-uniform bond stress-slip model according 

to which, for slip values lower than the slip corresponding to the yield strain in 

the bar, the uniform bond stress is taken as 1.0√fc, while for slip values 

exceeding the slip at yield, the bond stress is 0.5√fc.  

Sezen and Setzler (2008) improved the original bar slip model developed 

by Sezen and Moehle (2003). This model assumes a stepped function for bond 

stress between the concrete and reinforcing steel over the embedment length of 

the bar. Based on experimental observations (Sezen 2002), the bond stress is 

taken as 1.0√fc for elastic steel strains and 0.5√fc for inelastic steel strains 

(Figure 2.36a). Under these assumptions, Authors computes the slip rotation as 

a function of the slip (extension of the outermost tension bar from the column 

end). The column lateral displacement due to reinforcement slip is equal to the 

product of the slip rotation and the column length. 

 

 (a) (b) 

 (c) (d) 

Figure 2.36. Reinforcement slip models - Hawkins et al. (1982) (a), Eligehausen et al. 
(1983) (b), Alsiwat and Saatcioglu (1992) (c), Sezen and Setzler (2008) (d) 
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2.3.3. Models for shear strength 

When the assessment of the seismic capacity of existing RC columns is 

approached, it is crucial the classification issue, namely the capacity to predict 

the failure mode for that element. As discussed in detail in section 2.3.1, three 

different failure modes can be identified for a RC column, as a result of the 

adoption of a degrading shear capacity model. In fact, experimental evidence 

produced in the last years has made clear that traditional code formulations to 

predict shear strength tend to be overly conservative at low levels of ductility 

and increasingly non-conservative at high displacement ductility. In order to 

improve the uniformity of the level of conservatism, several phenomenological 

formulations have been proposed aiming to capture the shear strength 

degradation with ductility. 

During the last few decades, several shear strength models have been 

proposed and used for the design and assessment of reinforced concrete 

columns. Examination of these models shows differences in the approaches 

used to develop the equations, and in terms of parameters used in the models. 

Anyway, according to most models, the shear strength can be computed as the 

sum of the strength contributions from concrete and transverse reinforcement. 

However, effects of various parameters such as axial load, displacement 

ductility, and aspect ratio are taken into account differently. 

In the following, main shear strength capacity models from code and 

literature are described and discussed. All the considered shear models are 

based on the results of experimental tests on columns with solid cross sections. 

The studies reviewed in this paper include Aschheim and Moehle (1992), 

Prestley et al. (1994), Kowalsky and Priestley (2000), Sezen and Moehle (2004), 

Biskinis et al. (2004). The most relevant codes for assessment of existing RC 

structures, such as, FEMA 273 (1997), EC8/3 (2005), ASCE/SEI 41-06 (2006), 

FHWA (2006), and C617 (2009), essentially adopted the previously mentioned 

methods. 

2.3.3.1 Aschheim and Moehle (1992)  

The study by Aschheim and Moehle (1992) used laboratory data from 

cantilever bridge column tests. Columns had solid sections of different shapes, 

circular, rectangular and square, in particular. The original experimental 

database was composed of 71 units, characterized by different failure modes. 
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By analyzing the experimental response, Authors identified 49 specimens 

whose failure was influenced significantly by shear. Experimental data 

corresponding to these test were reviewed and analyzed. From the analysis, 

Authors observed that the column shear strength is a function of displacement 

ductility demand, μ, the quantity of transverse reinforcement, and axial load.  

The shear strength is calculated as the summation of strength contributions 

from transverse reinforcement, Vw, and concrete, Vc (Equation 2.1).  

  (2.1) 

The shear strength degradation influences only the concrete contribution, 

Vc, defined as: 

 
 

(2.2) 

Here, k is the degradation factor decreasing with increasing displacement 

ductility (μ): 

 
 

(2.3) 

The contribution of transverse reinforcement, Vw, is computed according to 

the truss analogy for shear strength of reinforced concrete members, assuming 

an inclination of the compression struts with respect to the column 

longitudinal axis of 30°, based on studies of experimental collected data. 

 
 

(2.4) 

In the above reported equations, P is the axial load, which is positive for 

compression, Ag is the cross-sectional area, fc is the cylindrical concrete 

compressive strength, Asw is the area of transverse reinforcement active along 

shear force direction, fyw is the yielding strength of transverse reinforcement, d 

is the effective depth (taken as 0.8 times the cross-sectional height), s is the 

spacing of transverse reinforcement, μ is the ductility demand, i.e. the ratio 
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between the displacement demand and the displacement at yielding, Δy. 

This model was intended to evaluate the shear strength at plastic hinge 

zones, and was later adopted in FEMA 273 (1997). 

2.3.3.2 Priestley et al. (1994) 

According to the model proposed by Priestley et al. (1994), also identified 

as “Original UCSD model”, the shear strength of columns under cyclic lateral 

loads is calculated as the summation of contributions from concrete, Vc, 

transverse reinforcement, Vw, and arch mechanism associated with axial load, 

Vp. Based on experimental data available in literature, related to cantilever RC 

columns with circular and rectangular cross section, Authors proposed the 

following equations for shear strength evaluation. 

 
 

(2.5) 

The concrete component is given by: 

 
 

(2.6) 

where the degradation factor, k, is taken as 0.29 when the displacement 

ductility (μ) is less than 2 and 0.10 when μ is more than 4 (as shown in Figure 

2.37). It linearly decreases between μ equal to two and four. Authors noted that 

the strength degradation is primarily because aggregate interlocking reduces 

as cracks become wider. The contribution of transverse reinforcement to shear 

strength is based on a truss mechanism using a 30-degree angle between the 

diagonal compression struts and the column longitudinal axis. 

 

 

Figure 2.37. Concrete shear strength degradation with displacement ductility, Priestley 
et al. (1994) 
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For rectangular cross-section columns, the truss-mechanism component, 

Vw, is given by: 

 
(2.7) 

in which, D’ is the distance measured parallel to the applies shear between 

centers of peripheral hoop. 

The arch mechanism contribution, VP, is given by: 

 
(2.8) 

where α is the inclination of diagonal compression strut (see Figure 2.38), c 

is the neutral axis depth, D is the overall depth of the section, a is the shear 

span of the column. It should be noted that the neutral axis depth varies with 

the curvature at the critical section and, hence, with the displacement ductility. 

As the aspect ratio increases, the axial load contribution decreases. 

The Italian technical code (C617, 2009), adopts a slightly modified version 

of the Original UCSD model for the evaluation of the shear strength of bridge 

piers. In fact, a 45° instead of a 30° angle truss mechanism is assumed in the 

calculation of Vw, and the coefficient k is assumed to vary between 0.29 and 

0.10 for µ between 1 and 4. 

 

 

Figure 2.38. Axial load contribution to shear strength, Priestley et al. (1994) 
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2.3.3.3 Kowalsky and Priestley (2000) 

Kowalsky and Priestley (2000) proposed three revisions to the Original 

UCSD shear model of Priestley et al. (1994). The revisions account for: the 

effect of column aspect ratio and longitudinal steel ratio on the concrete shear-

resisting mechanism, different strength degradation development (much lower 

at larger displacement ductilities) and height of the truss mechanism. These 

revisions were validated on experimental results of 47 columns with solid 

circular cross-section, failing in shear and flexure. 

The shear strength is still computed according to Equation (2.5), but in this 

case, the concrete contribution and the transverse reinforcement are evaluated 

as reported in the following equations. 

The concrete contribution is given by: 

 
(2.9) 

where α accounts the effect of aspect ratio and β includes the effect of the 

longitudinal steel ratio that would affect aggregate interlocking mechanism 

across concrete shear cracks. These coefficients can be computed as: 

 
(2.10) 

 (2.11) 

In the previous equations, M and V are moment and shear at critical 

section, ρl is longitudinal steel ratio. The variable M/VD is equivalent to the 

aspect ratio L/D where L is the distance from critical section to the point of 

contra-flexure. 

The coefficient k, which represents the reduction in strength of the concrete 

shear resisting mechanism with increasing ductility is taken as 0.29 when the 

displacement ductility (μ) is less than 2 and 0.05 when μ is more than 8 (as 

shown in Figure 2.39). 

The transverse reinforcement contribution is given by: 
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(2.12) 

In the previous definition of the truss mechanism equation, it was assumed 

that a diagonal crack is able to mobilize transverse reinforcement along a crack 

length extending the full width of the confined core of the concrete. Authors 

observed that in the compression zone of the column (defined by the neutral 

axis depth c) however, any cracks are, by definition, closed. Therefore, if the 

crack is closed, shear cannot be transferred across it by tension strain in the 

transverse reinforcement. So they defined a reduced column width of (D’-c) 

more appropriate for calculating the number of spirals or hoops mobilized by 

the cracks between the compression struts (see Figure 2.40). 

 

 

Figure 2.39. k-factor, Kowalsky and Priestley (2000) 

 

 

Figure 2.40. Effect of concrete compression zone on truss mechanism, Kowalsky and 
Priestley (2000) 
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U.S. Federal Highway Administration (FHWA, 2006) provisions document for 

seismic retrofitting of bridges. 

2.3.3.4 Sezen and Moehle (2004) 

Sezen and Moehle (2004) developed a comprehensive shear model for 

older columns having less transverse reinforcement, compared with columns 

designed following current codes. In this model, the concrete contribution is 

affected by column aspect ratio, displacement ductility, and axial load. The 

proposed model was developed starting from experimental data of 51 test 

columns failing in shear after flexural yielding. All tested columns presented 

rectangular solid cross sections and inadequate and poorly detailed transverse 

reinforcement. Shear strength is computed as the summation of strength 

contributions from transverse reinforcement, Vw, and concrete, Vc (Equation 

2.1). The concrete contribution is given by: 

 

(2.13) 

where d is the effective depth (distance from extreme compression fiber to 

centroid of longitudinal tension reinforcement). 

The transverse reinforcement contribution is given by: 

 
(2.14) 

Unlike in any of the above-mentioned models, the k factor multiplies both 

transverse reinforcement and concrete contributions to the shear strength of 

RC columns, since, in the Authors opinion, concrete damage likely leads to loss 

of anchorage of longitudinal and transverse reinforcement to degrade the truss 

mechanism. This factor decreases linearly from 1 to 0.7 for μ varying between 2 

and 6, as depicted in Figure 2.41. 

The shear model by Sezen and Moehle (2004) was adopted in ASCE/SEI 

41-06 (2006), the most recent report on “seismic rehabilitation of existing 

buildings”, which succeeded the previous editions on the same subject, FEMA 

273 (1997) and FEMA 356 (2000). 
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Figure 2.41. Shear strength degradation with displacement ductility, Sezen and Moehle 
(2004) 

 

2.3.3.5 Biskinis et al. (2004) 

Biskinis and colleagues (2004) created a regression model for the 

assessment of shear strength of existing RC columns, which employed a 

database of 239 elements. Columns of the collected database presented 

different cross-section shapes, such as hollow rectangular, in addition to the 

more traditional solid rectangular and circular shapes. 

The analytical formulation changes in the case of shear failure is controlled 

by diagonal compression or by diagonal tension. Both the empirical formulas 

account for shear strength degradation through the plastic ductility factor μΔpl, 

equal to the chord rotation demand over the yielding chord rotation minus 1, 

(ϑ/ϑy-1). The shear strength degradation because of cyclic loads varies linearly 

between μΔpl equal to 0 and 5. μΔpl equal to 5 is the value at which the 

maximum degradation is attained. The regression model by Biskinis and 

colleagues is employed in Eurocode 8 part 3 (EC8/3, 2005) for existing 

buildings. According to this model, in the case of elements characterized by 

aspect ratio lower or equal to 2, shear failure is controlled by diagonal 

compression. On the contrary, in the case of aspect ratio higher than 2, shear 

failure is controlled by diagonal tension. Two different formulations are 

defined for these two different cases. 

However, in most practical cases, the shear failure is controlled by 

diagonal tension. For this reason, in the following, the only regression model 

for elements that fail in diagonal tension, is considered, given its more relevant 

practical interest for typical RC columns.  

The regression model in equations (2.15) to (2.18) accounts for three 
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contributions: the classical 45- degrees truss model (Vw), the concrete 

contribution (Vc), and the axial load contribution (VP).  

  

(2.15) 

  
(2.16) 

  
(2.17) 

  
(2.18) 

where, d’ is the depth of the compression reinforcement layer and x the 

neutral axis depth. For hollow rectangular piers, the concrete cross-sectional 

area is assumed as bwd (where bw is the width of the web and d the effective 

depth). Also for this shear model, the coefficient k accounting for shear 

strength degradation due to ductility demand μ multiplies both the concrete 

and the transverse steel contributions. It varies linearly between 1.00 (non-

degraded shear strength) and 0.75 for μ between 1 and 6. 
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2.4 Summary 

In this chapter, a review of the state of the art and of the theoretical 

background, essential for the comprehension and development of this work, 

has been performed. First of all, the review process has focused on the past 

experimental and analytical research on seismic performance of hollow 

reinforced concrete bridge piers. In the section 2.1, literature review 

considering past experimental tests on RC columns with hollow rectangular 

cross section has been presented. In the section 2.2, similarly, the attention has 

been moved on the experimental tests available in literature on RC columns 

with hollow circular section and a single steel reinforcement layer. It is 

noteworthy that very few experimental studies are available on the latter topic. 

This part of the literature review will be the basis for the collection of the 

database reported in sections 6.1 and 7.1. 

Several analytical models have been reviewed, too. First, some of the 

existing models for the evaluation of lateral response of RC column have been 

briefly discussed. The models have been divided into three main topics: 

flexural behavior, shear behavior and bar slip. Later, main models for shear 

strength evaluation from literature and codes are described and discussed. 

Some of the reviewed models will be applied in next chapters in different 

approaches, depending on the objective that it is intended to pursue, and with 

the addition of new proposals. 
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Chapter 3  

EXPERIMENTAL PROGRAM 

 

 

 

 

 

Experimental simulation is generally paramount for understanding 

fundamental characteristics of the behavior of structural components and 

systems. However, simulation of the effects of real events on actual structures 

usually requires idealization and simplification for most problems of interest. 

This chapter provides details of the experimental investigation carried out 

at the Laboratory of the Department of Structures for Engineering and 

Architecture, University of Naples “Federico II” to address the seismic 

performance of existing reinforced concrete (RC) bridge piers with hollow 

cross-sections. The experimental program, carried out under the financial 

support of STRESS S.c.a.r.l. STRIT Project “PON Ricerca e Competitività 2007-

2013”, comprised testing six reduced-scale reinforced concrete (RC) bridge 

piers with hollow cross-section (four rectangular shaped and two with circular 

shaped), until failure occurring.  

Test units have to be seen as isolated from a typical existing Italian bridge, 

subjected to gravity and earthquake loads, reproduced as a constant axial load 

and a cyclic increasing displacement pattern. 

The design procedure of test specimens is discussed. The construction of 

specimens, crucial for the success of experimental tests, is described. Finally, 

test setup, loading protocol and monitoring system are illustrated and 

analyzed. 

3.1 Test specimen design 

The design of test specimens is discussed in this section, focusing on the 

representativeness issue with respect to the existing Italian transport 
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infrastructures stock. 

3.1.1. Design philosophy 

The main goal of the design procedure is to obtain specimens 

representative in all aspects, such as materials, geometry and reinforcement 

details, of the existing bridge columns typical of the Italian transport 

infrastructures realized before 1980. 

To this aim, the results of a broad investigation on a sample of about 400 

existing Italian RC beam bridges placed along main national roads are 

considered (STRIT RT D.1.2, 2015), intersected with general indications 

available in literature (FIB 39, 2007). Among others, the parameters taken into 

account in this preliminary study are: 

 seismic resisting sub-system typology 

 cross-section shape 

 slenderness (or aspect ratio) 

 axial load ratio 

 geometrical longitudinal reinforcement ratio 

 geometrical transverse reinforcement ratios 

 mean values of materials strength 

The following figures show the distribution of the above-mentioned 

properties characterizing the considered sample of existing Italian RC beam 

bridges. Figure 3.1 shows the distribution of the different typologies of vertical 

structural sub-system resisting to lateral actions. Walls and single piers 

represent the most used, together with frame systems. Seismic performance of 

RC walls and frames are well known, since there are common solutions for 

buildings, while as regards piers, especially if characterized by no ordinary 

cross-section, few experimental studies are available in literature. By observing 

Figure 3.2, it is possible to note that hollow cross-section is the most used 

solution for RC bridge piers. Other widespread solutions are solid circular and 

rectangular piers. In Figure 3.3 and Figure 3.4, the slenderness (or aspect ratio) 

distribution is reported for both principal bridge directions (longitudinal and 

transverse). Slenderness of piers is defined as the height to cross-section depth 

ratio. The most of piers are characterized by an aspect ratio lower than 5.0, and 

a great part presents slenderness values smaller than 2.5.  
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Figure 3.1. Distribution of the seismic resisting sub-system typology  

(STRIT RT D.1.2, 2015) 

 

 
Figure 3.2. Distribution of piers cross-section shape (STRIT RT D.1.2, 2015) 

 

 
Figure 3.3. Distribution of piers slenderness along bridge longitudinal direction  

(STRIT RT D.1.2, 2015) 
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Figure 3.4. Distribution of piers slenderness along bridge transverse direction 

(STRIT RT D.1.2, 2015) 

 

Typical serviceability values of axial load ratio (ν) are included between 

1% and 5% (Figure 3.5). As already discussed in the Chapter 1, most of existing 

Italian bridges have been constructed prior to 1980, before the advancement in 

earthquake engineering principles and seismic design codes. For this reason, 

bridge piers are generally poorly detailed, as it may be observed in Figure 3.6 

and Figure 3.7, in which geometrical longitudinal and transverse 

reinforcement ratios are reported, respectively. Common values for 

longitudinal reinforcement are lower than 1%, while for transverse steel typical 

values are included between 0.04% and 0.12%.  

 

 
Figure 3.5. Distribution of axial load ratio on bridge piers (STRIT RT D.1.2, 2015) 
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Figure 3.6. Distribution of the geometrical longitudinal reinforcement ratio 

 (STRIT RT D.1.2, 2015) 

 

 
Figure 3.7. Distribution of the geometrical transverse reinforcement ratio 

 (STRIT RT D.1.2, 2015) 

Finally, as regards material properties typical of Italian bridge piers, clear 

sketches are reported in Figure 3.8 and Figure 3.9, for concrete and steel 

respectively. Typical mean values of concrete cylindrical compressive strength 

(fc) are between 10 MPa and 30 MPa; mean values of yielding strength (fy) for 

steel range between 400 MPa and 550 MPa. Therefore, typical Italian bridge 

piers are generally characterized by poor concrete and relatively high strength 

steel. 
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Figure 3.8. Distribution of mean values of concrete cylindrical compressive strength 

 (STRIT RT D.1.2, 2015) 

 

 
Figure 3.9. Distribution of mean values of steel yielding strength 

 (STRIT RT D.1.2, 2015) 

3.1.2. Test specimen description: hollow rectangular piers 

Four specimens representing cantilever bridge piers with hollow 

rectangular cross section are considered in this experimental study. The main 

goal of the design procedure is to obtain specimens representative in all 

aspects, such as materials, geometry and reinforcement details, of the existing 

bridge columns typical of the Italian transport infrastructures realized before 

1980. Starting from the results highlighted in the section 3.1.1, a typical bridge 

pier cross-section was designed, as regards both geometry and reinforcement 

details, according with common non-seismic design practice. In order to allow 

for testing within the capacity of the laboratory, a scaling factor equal to 1:4 
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was introduced. Schematic plain and elevation views of all hollow rectangular 

test specimens are illustrated in Figure 3.10. 

All the specimens were characterized by the same cross section and 

reinforcement details. Exterior dimensions of the rectangular hollow section 

were 600×400mm and thickness (tw) was 100mm. The geometrical longitudinal 

reinforcement percentage (ρl) was equal to 0.88%, given by 28 steel bars with a 

diameter (db) equal to 8mm, arranged in two layers of 18 and 10 bars, along the 

external and internal edges respectively. The transverse reinforcement ratio 

(ρw) was equal to 0.12%, with stirrups of diameter (db) 3 mm, spaced at a 

distance of 120 mm and 90-degree end hooks. The tested piers had different 

aspect ratio (LV/H), in which LV is the shear span (height from the base to the 

loading point) and H is the section depth (dimension of the cross-section in the 

loading direction). Two piers had a height of 900mm and two of 1500mm. Each 

one was tested along one of the principal directions, so that four different 

values of the aspect ratio were considered, labelled as P1, P2, P3, and P4. All 

scaled piers reproduced non-seismic design, typical of the considered period, 

thus resulting in poorly detailed reinforcement (no tie between opposite 

longitudinal bars and 90° hooks, leading to lack of confinement). For the tested 

specimens, cyclic response and collapse mode were very sensitive to flexure-

shear interaction, due to low transverse reinforcement ratio as well as the 

shape of the cross-section. Main geometric properties of specimens are 

identified in Table 3.1 together with reinforcement details. Terms B and H in 

Table 3.1 represent the dimensions perpendicular and parallel to imposed 

displacement direction, respectively. A rigid cap was realized on the top of the 

piers in order to distribute axial and lateral loads on section flanges, and to 

represent typical piers cap. Footings were designed to prevent any local 

damage. Applied axial load level was 5% of the compressive axial capacity, 

within the range typical of service conditions of Italian bridge piers. 

 
Test ID LV 

(mm) 
B 

(mm) 
H 

(mm) 
Aspect Ratio 

(LV/H) 
tw 

(mm) 
ρl ρw 

P1 1500 400 600 2.50 100 0.88% 0.12% 

P2  600 400 3.75    

P3 900 400 600 1.50    

P4  600 400 2.25    

Table 3.1. Hollow rectangular specimens’ properties 
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3.1.3. Test specimen description: hollow circular piers 

Also for hollow circular specimens, the design procedure has as main goal 

to obtain specimens representative in all aspects of the existing typical bridge 

columns of the Italian transport infrastructures realized before 1980. 

 Starting from the results highlighted in the section 3.1.1, a typical bridge 

pier cross-section was designed, as regards both geometry and reinforcement 

details, according with common non-seismic design practice. In order to allow 

for testing within the capacity of the laboratory, a scaling factor equal to 1:4 

was introduced. Schematic plain and elevation views of all hollow rectangular 

test specimens are illustrated in Figure 3.11. The experimental program was 

performed on two specimens, identified hereinafter as P5 and P6, representing 

cantilever bridge piers characterized by the same hollow circular cross section 

and reinforcement details. The external diameter D was equal to 55 cm and the 

thickness (tw) was 10 cm. The geometrical longitudinal reinforcement 

percentage (ρl) was 0.85%, given by a single layer of bars with a diameter (db) 

of 8 mm, placed along the external edge, characterized by a cover equal to 17 

mm. The transverse reinforcement ratio (ρw) was equal to 0.06%, with circular 

ties of diameter (db) 3 mm, spaced at a distance of 120 mm and 90-degree end 

hooks.  The taller specimen P5 had a height of 165 cm, while the shorter one P6 

of 110 cm. Consequently, the tested piers had different aspect ratio (LV/D), in 

which LV is the shear span (height from the base to the loading point) and D is 

the external diameter. Main geometric properties of specimens are identified in 

Table 3.2 together with reinforcement details. Terms B and H in Table 3.2 are 

dimensions perpendicular and parallel to imposed displacement direction, 

respectively. A rigid cap was realized on the top of the piers in order to 

distribute axial and lateral loads on section flanges, and to represent typical 

piers cap.  Footings were designed to prevent any local damage. 

 

 

Test ID D 
(mm) 

LV 
(mm) 

Aspect Ratio 
(LV/H) 

tw 
(mm) 

ρl 

(-) 
ρw 

(-) 

P5 550 1650 3.00 100 0.85% 0.06% 

P6  1100 2.00    

Table 3.2.  Hollow circular specimens’ properties 
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3.1.4. Material properties 

The test specimens were constructed using normal weight conventional 

concrete supplied by a local contractor. The target compressive strength was 

20.0 MPa to simulate the typical strength in old Italian bridge. The used 

materials included crushed gravel aggregates with a nominal size of 10 mm, 

natural river sand and ordinary cement. The water to cement ratio (w/c) for 

each specimen was about 0.8. Aggregates dimensions were defined in order to 

be representative of real-scale concrete, on one side, and compatible with the 

tight concrete cover (10mm) due to the small scale of the specimens, on the 

other. Table 3.3 displays the mix design used for the test specimens, while in 

Figure 3.12 granulometric curves for concrete aggregates are showed. 

 

Cement Water Coarse aggregates Fine aggregates Plasticizer 

460 380 992 2972 2.76 

Table 3.3.  Concrete mix design (kg/m3) 

 

 
Figure 3.12. Concrete aggregates granulometry 
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strength of the corresponding specimens, for hollow rectangular and circular 

specimens respectively. The variation in concrete strength was mainly due to 

the variation in age on the day of testing and to the difference in sampling 

stages. In the following of this study, mean values of cylindrical compressive 

strength equal to 17 MPa and 13.3 MPa are considered for hollow rectangular 

and circular specimens, respectively. These values were evaluated by applying 

the widely assumed relationship for which compressive cylinder strength may 

be assumed as 80% of compressive cube strength (Neville and Brooks, 1987). 

 

Sample 
ID 

Mass 
(kg) 

Compressive cube strength 
(MPa) 

P1a 7.63 18.4 
P1b 7.50 18.8 

P1c 7.58 18.2 
P2a 7.59 20.8 
P2b 7.56 20.9 
P2c 7.52 20.5 
P3a 7.67 22.2 
P3b 7.56 20.5 
P3c 7.55 22.1 
P4a 7.64 22.0 
P4b 7.53 22.6 

P4c 7.56 18.2 

Table 3.4.  Concrete compressive cube strength for hollow rectangular specimens 

 

Sample 
ID 

Mass 
(kg) 

Compressive cube strength 
(MPa) 

P5a 7.63 14.7 
P5b 7.50 16.4 
P5c 7.58 18.2 
P6a 7.59 14.8 
P6b 7.56 16.2 
P6c 7.52 18.1 

Table 3.5.  Concrete compressive cube strength for hollow circular specimens 

 

Commercial typology of reinforcing steel, adopted for longitudinal 

deformed bars with a diameter of 8 mm, is B450C (NTC 2008), i.e., class C 

reinforcement with fyk = 450 MPa according to Annex C provisions of 
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Eurocode 2 (EN 1992-1-1:2004 Annex C). High strength plain commercial steel 

was used for transverse reinforcement with a diameter of 3 mm. Steel with 

yielding strength of 540 MPa and ultimate strength at approximately 620 MPa 

was used for longitudinal bars. Yielding strength of transverse reinforcement 

steel was equal to 655 MPa, and ultimate strength equal to 690 MPa. Tensile 

tests were carried out on three samples for each bar diameter. In Figure 3.13 

and Figure 3.14, steel stress-strain behavior are reported for all samples, 

corresponding to longitudinal and transverse reinforcement respectively. 

 

 
Figure 3.13. Steel tensile test stress-strain relation (longitudinal reinforcement) 

 

 
Figure 3.14. Steel tensile test stress-strain relation (transverse reinforcement) 
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Table 3.6 reports mean values of their mechanical properties, namely yield 

strength (fy), ultimate strength (ft) and hardening ratio (ft/fy). 

 

db 
(mm) 

fy 
(MPa) 

ft 
(MPa) 

ft/fy 
(-) 

8 540 620 1.15 

3 655 690 1.05 

Table 3.6.  Properties of steel 

 

3.2 Construction of the specimens 

The construction of two groups of specimens (namely, hollow rectangular 

and hollow circular) was carried-out at two different stages at the same 

construction site of a local contractor. First specimens with hollow rectangular 

section were realized, later the hollow circular series.  Construction steps were 

the same for both specimens, therefore they are described below.  

The construction site was prepared by cleaning and leveling the ground, 

and building the wooden forms for the specimens’ foundations. Special care 

was given to leveling the formwork during construction to minimize the 

effects of accidental eccentricities.  

The foundation reinforcement cages were assembled outside the forms, in 

order to ensure its crucial symmetry and the right location of PVC tubes, 

placed to create the dedicated holes for laboratory restrain system (Figure 

3.15). Then, after a careful check on steel reinforcement spacing and alignment, 

the steel cages were placed into the wooden forms (Figure 3.16). After the 

foundation reinforcement cages were fixed in the right position using 

appropriate spacers, pier reinforcement cages were partially assembled.  

The planned longitudinal and transverse steel bars (see section 3.4) were 

removed to be subject to a strain gauging process at a different venue. A 

meticulous labeling method was applied to the strain gauges installed onto the 

steel reinforcement that enabled identification of their locations by quick 

inspection of the label (Figure 3.17). Throughout the construction process, 

functionality of strain gauges was checked to identify, fix, or replace any 

malfunctioning gauge. At the end of the strain gauging process, the gauged 

steel bars were put back in the cage. It is worthy to mention that installing the 

longitudinal reinforcement with strain gauges was a quite challenging job, due 
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to the intersection with the foundation reinforcement (Figure 3.18). 

Before completing pier reinforcement cages, for each specimen, 3 post-

tensioned high strength (db = 15.7 mm) steel strands were positioned, fixed by 

means of anchorages on the bottom side of the foundation. The steel strands 

passed through a special system designed ad hoc to avoid local rupture at 

steel/concrete interface, and crossed the void in the piers.  

The system, illustrated in Figure 3.19, was fixed to the top steel bars of the 

foundation. At this point, the foundations of the specimens were cast. In order 

to avoid any cracking problem, a high strength concrete was used. Since the 

engorgement of steel bars, especially within the overlap between pier and 

foundation, shoot and shovel were used to place the concrete in the bottom of 

the form. Concrete was vibrated using high-frequency vibrator to reduce the 

presence of voids or honeycombs. After casting, the top concrete surface of the 

foundations was finished (Figure 3.20). Piers cages were completed and a 

careful check on steel reinforcement spacing and alignment was performed. 

Polystyrene profiles were inserted to create the void. Wooden forms for piers 

were assembled and closed (Figure 3.21).  

After the construction of the dedicated forms, the pier cap cages were 

assembled in place, being careful to the overlap with the pier longitudinal bars 

(Figure 3.22). Pier shafts and pier caps were cast together. Concrete was 

supplied by a local contactor. The mix design required at least 160-210 mm of 

slump to facilitate casting in the congested areas of specimens and along the 

thin walls. Concrete was thoroughly compacted using electrical rod type 

vibrators that were applied internally within the fresh concrete body and 

externally on the column and joint wooden form surfaces. After casting, the 

top concrete surface of the caps was finished. Each test unit was allowed to 

cure for at least seven days before they were removed from the forms. The 

completed specimens are shown in Figure 3.23. 

All specimens were placed at the construction site during the hardening 

process of concrete, under shelter from the weather. The test specimens were 

moved into the laboratory two months after the columns were cast. 
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Figure 3.15. Foundation steel cage construction 

 

 

 
Figure 3.16. Foundation steel cage in the formwork 
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Figure 3.17. Strain gauges labelling 

 

 

 

 
Figure 3.18. Strain gauges installation 
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Figure 3.19. System for centering of steel strands 

 

 

 
Figure 3.20. Foundation after concrete casting 
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Figure 3.21. Pier steel cage in the formwork 

 

 

 

  
Figure 3.22. Pier cap steel cage construction 
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Figure 3.23. Completed test specimens after removing wood forms 

 

3.3 Test setup and loading protocol 

The experimental tests were carried out at the Laboratory of the 

Department of Structures for Engineering and Architecture, University of 

Naples “Federico II”. The overall test setup is depicted in Figure 3.26. All tests 

were performed in quasi-static way by applying increasing horizontal 

displacement cycles with constant axial load. In this Section, the test setups for 

gravity and lateral load simulation are described separately, together with the 

corresponding loading protocol. 

3.3.1. Axial loading setup 

The objective of the axial loading setup was to simulate service gravity 

load on the specimens. As already discussed in Section 3.1.1, the designed 

gravity load ratio was of about 5%, typical value for existing Italian bridges. 

This load was monotonically applied to each specimen by means of an 

appropriate closed system. The system consisted of 3 post-tensioned high 

strength db = 15.7 mm steel strands, fixed on the bottom side by means of 

anchorages embedded in the foundation. A full height hole is realized in the 
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cap in order to allow strands crossing the specimen. On the top, between the 

anchor plate of the strands and the cap top surface, a hydraulic jack was 

interposed, acting in load control. Between the anchor plate and the hydraulic 

jack, a load cell was installed to monitor the axial load value during the test. 

This closed system was designed in order to clear the view for taking pictures 

of the damage states and to avoid P-Δ effects, since axial load direction was 

always identical to specimens’ axis. The footing was restrained to the 

laboratory strong floor by four post-tensioned tempered steel bars avoiding 

any rotation or movement during the test. A global graphic scheme of the axial 

loading setup is illustrated in Figure 3.27. 

3.3.2. Lateral loading setup 

The lateral earthquake load was simulated as a symmetric, quasi-static, 

cyclic, increasing displacement pattern. The lateral loading protocol was 

applied to the centerline of the pile cap by a single horizontal 500 kN capacity 

hydraulic actuator under displacement control. The actuator-to-specimen 

connection was schematized as a hinge constraint that does not restrain the 

rotation of the top during the test. The horizontal actuator was attached to a 

steel reaction wall. 

For tests on hollow rectangular specimens, the horizontal loading sequence 

consisted of three cycles alternatively in push and pull direction at 

displacements of 1/3Δy, 2/3Δy, Δy, 2Δy, 4Δy, 6Δy, 8Δy, 10Δy, 12Δy, where Δy is 

the theoretical yielding displacement estimated according to Biskinis and 

Fardis (2010), unless failure occurred earlier (Figure 3.24). 

For tests on hollow circular specimens, the horizontal loading sequence, 

consisted of three cycles at displacements corresponding to peak drifts (i.e. top 

displacement-to-shear span ratio) values: 0.25%, 0.50%, 0.75%, 1.00%, 2.00%, 

3.00%, 4.00%, 5.00%, unless failure occurred earlier. (Figure 3.25). 

It is worth noting that such displacement protocol corresponded to that 

measured from the internal transducer of the hydraulic actuator. Since the 

reaction system was affected by small spurious deformations (due mainly to 

backlashes and deformations of contrast system), actual specimen 

displacements do not match exactly those values, especially for lower levels of 

drift. Anyway, all experimental considerations are based on the exact values 

obtained from the external potentiometer positioned at the level of the 

horizontal actuator axis. The loading rate was 0.5 mm/sec for elastic cycles and 
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1.0 mm/sec for the inelastic cycles. In order to better understand the 

experimental results reported in the following sections, an orientation system 

is provided herein: specimens were tested along East–West direction. 

 

 
Figure 3.24. Lateral loading history for hollow rectangular specimens 

 

 
Figure 3.25. Lateral loading history for hollow circular specimens 
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Figure 3.27. Schematic view of the axial loading setup 
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3.4 Monitoring system 

Monitoring system was composed of two sub-systems, the former used for 

global measures, defining structural response of the specimen (forces and 

displacement), and the latter for local measures, related to local deformation 

components associated with different response mechanisms. Global system 

consisted of two load cells, for horizontal and vertical forces respectively, and a 

wire potentiometer fixed to an external steel column and connected to centroid 

of the pier cap (see Figure 3.26). 

In order to investigate deeply about local deformation components 

coexisting in the specimens (flexure contribution, shear contribution and fixed 

end rotation at cantilever base), an appropriate instrumentation was installed 

along the pier height by using an arrangement of Linear Potentiometers (LPs), 

located along the horizontal loading direction. The installation of the LPs 

system was different for the two series of specimens (namely, hollow 

rectangular and hollow circular). A schematic view of the LPs frame installed 

on hollow rectangular specimens is reported in Figure 3.28. In order to 

preserve the reliability of the local measures, no drillings in the thin flanges 

were performed, which might have affected cracks opening. Therefore, wood 

pieces were screwed and glued on both sides of the pier surface perpendicular 

to the loading direction. Then, aluminum tubes were mounted on the wood 

pieces on both sides, connected each other by two springs, aimed at holding 

the instrumentation frame together. Both vertical and diagonal LPs (identified 

as “LPv” and “LPd” respectively in Figure 3.28a) were connected to the ends 

of these aluminum tubes. To prevent the buckling of the diagonal LPs under 

compression deformations, the LPs section was increased by appropriate 

aluminum rigid boxes. Figure 3.29 shows a schematic view of the LPs 

arrangement for hollow circular specimens. Due to the circular cross-section 

shape, the aluminum tubes were fixed to the pier external edge by means of 

two bolts embedded in specific holes realized in the wall thickness along the 

loading direction. Then, aluminum tubes were connected by two springs 

aimed at holding the instrumentation frame together and to give more stiffness 

to the instrumentation system. The diagonal LPs (identified as “LPd” in Figure 

3.29a), were connected to the ends of the aluminum tubes, while the vertical 

LPs (identified as “LPv” in Figure 3.29a) to the central bolts. Also in this case, 

to prevent the buckling of the diagonal and horizontal LPs under compression 
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deformations, the LPs section was increased by appropriate aluminum rigid 

boxes. Each LP measured diagonal/vertical displacement between two 

opposite points. In this way, two curvature cells and two shear deformation 

panels were realized.  

A couple of vertical Linear Variable Displacement Transducers (LVDTs) 

monitored flexural deformations and fixed-end-rotation at cantilever base. 

They were fixed to the center of the flanges and connected to the foundation 

upper surface (see Figure 3.28.b), for hollow rectangular specimens.  

For hollow circular specimens, they were placed diametrically opposed 

along the loading direction, fixed to the external edge of the base cross-section 

and connected to the foundation upper surface (identified as “LVDTb” in 

Figure 3.29a, where “b” indicates base deformation). Four additional LVDTs 

are installed as shown in Figure 3.29b only for squat specimen P6, in order to 

monitor the width of shear cracks during the test. 

In order to monitor longitudinal strain in steel reinforcement, strain 

gauges (SGs) were installed on longitudinal and transverse reinforcement. 

Figure 3.28 shows the SGs arrangement for hollow rectangular specimens. Of 

the sixteen SGs, eight were placed on the corner longitudinal bars, above the 

column base end and inside the footing, to control the development of plastic 

deformations. The remaining SGs were placed on the first two stirrups, along 

all four braces in the direction parallel to the lateral loading direction. Eigth 

SGs were installed on the outermost couple of longitudinal bars (along the 

loading direction) and on a couple of longitudinal bars identified by a 45° 

inclined direction respect to the loading direction (see Figure 3.29c). Also these 

strain gauges were installed above the column base end and inside the footing, 

in order to control the development of plastic deformations. Finally, four 

cameras were installed along the four cardinal directions, on the opposite sides 

and at same distance from the specimen; a couple on the loading direction (i.e. 

East, West) and the other on the orthogonal one (i.e. North, South), in order to 

monitor cracking development. For hollow circular specimens, since the three-

dimensional cracking development, a reference grid with square mesh was 

plotted on the external surface of the specimen, so that locations and directions 

of cracks could be uniquely determined. 

Figure 3.30 and Figure 3.31 show a view of the applied system for hollow 

rectangular and hollow circular specimens, respectively. 
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(a) 

 
(b) 

(c) 

Figure 3.28. Instrumentation scheme: LPs (a), Base LVDTs (b) and Strain Gauges (SGs) 
(c) – Hollow rectangular specimens 
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(a) 

 
(b) 

 
(c) 

Figure 3.29. Instrumentation scheme: LPs and Base LVDTs (a), Horizontal LVDT for 
Test P6 (b) and Strain Gauges (SGs) (c) – Hollow circular specimens 
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Figure 3.30. View of the applied monitoring system (hollow rectangular) 

 

 

  
Figure 3.31. View of the applied monitoring system (hollow circular) 
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3.5 Summary 

In this Chapter, the main issues about the experimental campaign have 

been approached.  

The main goal of the design procedure is to obtain specimens 

representative of the existing bridge columns typical of the Italian transport 

infrastructures realized before 1980. To this aim, the results of an important 

investigation on a sample of about 400 existing Italian RC beam bridges are 

considered (STRIT RT D.1.2, 2015), taking into account key parameters, such as 

cross-section shape, slenderness, axial load ratio, geometrical reinforcement 

ratio, materials strength, among others. Starting from those results, two typical 

bridge pier cross-section are designed (hollow rectangular and hollow 

circular), as regards both geometry and reinforcement details, according with 

common non-seismic design practice. In order to allow for testing within the 

capacity of the laboratory, a scaling factor equal to 1:4 is introduced. Therefore, 

six reduced-scale reinforced concrete (RC) bridge piers with hollow cross-

section (four rectangular shaped and two with circular shape) are defined. 

Fixed the cross-section, test specimens differ for aspect ratio (height to depth 

ratio). Medium-low aspect ratios are considered (between 1.5 and 3.75), since 

the main goal of the experimental program is to investigate deeply about 

flexure-shear interaction and failure mode prediction. The representativeness 

issue is considered also for the material properties definition, resulting into a 

poor concrete and relatively high strength steel. 

The construction process, crucial for the success of experimental tests, has 

been described, focusing on some critical aspects of the construction 

procedure. 

All tests are performed in quasi-static way by applying increasing 

horizontal displacement cycles with constant axial load of about 5%, typical 

value for existing Italian bridges service load. The gravity load is applied by 

means of a closed system able to avoid P-Δ effects, since axial load direction 

was always identical to specimens’ axis. The lateral loading protocol was 

applied to the centerline of the pile cap by a single horizontal hydraulic 

actuator under displacement control. 

In order to investigate deeply about local deformation components 

coexisting in the specimens (flexure contribution, shear contribution and fixed 

end rotation at cantilever base), an appropriate instrumentation is installed. In 
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particular, it is composed of an arrangement of Linear Potentiometers (LPs) 

and Linear Variable Displacement Transducers (LVDTs), monitoring flexural 

and shear deformation, and strain gauges (SGs), monitoring axial steel strain of 

both longitudinal and transverse reinforcement. 
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Chapter 4  

EXPERIMENTAL RESULTS: 

HOLLOW RECTANGULAR RC PIERS 

 

 

 

 

 

This chapter provides a summary of the test results for specimens 

characterized by hollow rectangular cross-section, including damage 

description and test data measured during each test.  

Based on visual observations and recorded test data, the performance of 

each test specimen is analyzed and discussed. For each specimen, the 

measured lateral load-displacement relations and plots of other important test 

parameters are presented. The damage description of specimens and their 

implications are discussed, and the measured response are compared. 

The following sections discuss, first, the global response of each specimen, 

and then the evolution of damage observed during the tests. Later, 

experimental local behavior, in particular referred to the main deformability 

contributions due to different deformation mechanisms, is analyzed and 

discussed. Finally, the hysteretic energy dissipation and the related equivalent 

damping are investigated. Discussions about experimental results are 

presented, by making in each section a comparison between the four tests. 
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4.1 Analysis of global response 

In this Section, the lateral load-displacement response of tested specimens 

is analyzed. Response curves, in terms of lateral load versus drift (i.e. top 

displacement-to-shear span ratio) are shown and commented. The results are 

reported for each specimen, separately. 

4.1.1. Test P1 – Aspect ratio equal to 2.5 

The loading history actually applied consists of eight complete cycles of 

three push/pull sub-cycles. The results in terms of lateral load versus drift 

response for Test P1 are shown in Figure 4.1.  

 

 
Figure 4.1. Lateral load versus cyclic response (Test P1) 

 

Experimental response appears quite symmetric during the push-pull 

cycles. A first reduction of the initial stiffness was already observed during the 

first cycle, for a drift equal to 0.08%, due to first flexural hairline cracks on the 

flanges. Second loading step (drift = 0.21%) was characterized by a further 

stiffness decrease corresponding to the development of horizontal flexural 

cracks towards webs. Stiffness decreased gradually for a drift range between 

0.21% and 0.34%, during the third cycle, when existing cracks increased their 

width and new others formed up. A considerable stiffness reduction was 

observed during the fourth set of sub-cycles, for a drift value of 0.76% and a 

force equal to about 153 kN Specimen reached yielding condition, as 
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confirmed by longitudinal bars strain measures provided by strain gauges 

located at the base of the test unit. It is interesting to highlight the pinching 

effect characterizing the hysteretic loops starting from this cycles set, exalted 

by the sudden increase in width of diagonal cracks. Peak load was reached for 

a drift equal to +1.68% for positive loading direction (push) and -1.63% for 

negative loading direction (pull). The corresponding peak values of top lateral 

load were +164 kN and -168 kN, respectively. The post-peak response was 

governed by flexure. Indeed, it was characterized by a gradual degradation 

due to concrete spalling and buckling of longitudinal bars, with a softening 

stiffness (calculated on the envelope of first sub-cycles) equal to -7.3% and -

6.7% of the initial stiffness, in positive and negative loading direction 

respectively.  

Experimental response was symmetric also in inelastic cycles. The intra-

cycle strength drop developed from 10% to 27% from fourth to seventh loading 

step. In particular, during the seventh cycle (drift = 3.47%) a maximum load 

value of about 155 kN was reached (-7% respect to peak load). This because of 

a significant concrete spalling together with significant buckling of 

longitudinal bars. During the last cycle (drift = 4.37%) a sudden intra-cycle 

strength drop/stiffness decrease in negative/positive direction was observed 

due to failure in tension due to oligo-cyclic fatigue caused by buckling/tension 

cycles. The drops in shear strength were of -52% and -43% in push and pull 

directions, respectively. Test P1 was characterized by flexural failure. 

4.1.2. Test P2 – Aspect ratio equal to 3.75 

The loading history actually applied consisted of seven complete sets of 

three push/pull sub-cycles. The results in terms of lateral load versus drift 

response for Test P2 are shown in Figure 4.2. 

Experimental response appeared quite symmetric during the push-pull 

cycles only up to peak load, while post-peak phase was characterized by 

different evolutions in positive and negative load direction. Also for Test unit 

P2, a first reduction of the initial stiffness was observed during the first cycle 

(drift = 0.23%), for a lateral load value of about +48 kN (push) and -42 kN 

(pull). Such a stiffness reduction was a consequence of first hairline cracks. 

Stiffness decreased gradually for a drift range between 0.23% and 0.79%, that is 

during second and third loading cycles, when gradual development of 

cracking was observed along the specimen. Longitudinal bars reached yielding 
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strain value during the third loading step (drift = 0.79%), as confirmed by the 

strain gauges located at the base of the test unit. In fact, a substantial stiffness 

reduction was observed during the fourth cycle (drift = 1.69%). Also for Test 

unit P2, a clear pinching effect characterized the hysteresis loops starting from 

this cycle.  

 

 
Figure 4.2. Lateral load versus cyclic response (Test P2) 

 

Peak load was reached for a drift equal to 3.50% for both positive and 

negative loading direction, with a corresponding strength peak of 116 kN This 

loading step was characterized by an intra-cycle drop in strength equal to -

22.7% (push) and -13.1% (pull).  

The post-peak response was asymmetric and governed by flexure. In fact, 

during sixth cycle (drift = 5.25%) different load values were reached in positive 

and negative direction, equal to +91 kN and -111 kN respectively. Such an 

asymmetry was due to first longitudinal corner rebar failure in tension 

(because of oligo-cyclic fatigue) during pushing phase. Softening stiffness 

values (calculated on the envelope of first sub-cycles) were equal to -6% and -

3% of the initial stiffness in positive and negative loading direction, 

respectively. During the last cycles, for a drift of 7.08%, a sudden intra-cycle 

strength drop/stiffness decrease in negative/positive direction was observed 

due to failure in tension due to oligo-cyclic fatigue caused by buckling/tension 

cycles. In fact, remaining longitudinal corner bars failed in tension and this 
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phenomenon implicated a drop in strength (45% in push direction and 60% in 

pull respect to peak lateral load). Corresponding hysteresis loops were very 

narrow. Test P2 was characterized by flexural failure. 

4.1.3. Test P3 – Aspect ratio equal to 1.50 

The loading history actually applied consisted of four complete cycles of 

three push/pull cycles and a last single push/pull sub-cycle corresponding to 

shear failure. The results in terms of lateral load versus drift response for Test 

P3 are shown in Figure 4.3. Experimental response appeared slightly non-

symmetric during the push-pull cycles. This effect, more evident with 

increasing drift, is associated with the shear cracking extension and reversal 

process. Once a set of cracks is open for a given loading direction, the reversal 

into the opposite direction is partially characterized by closing of the 

previously opened shear cracks. Therefore, for a given imposed horizontal 

displacement, a stiffness decrease is observed. 

 

 
Figure 4.3. Lateral load versus cyclic response (Test P3) 

 

A first reduction of the initial stiffness was observed during the first cycle 

(drift = 0.02%), for load values of about 69 kN and 58 kN in positive and 

negative direction respectively. Stiffness decreased gradually during second 

and third loading step, for a drifts range between 0.08% and 0.28%, when 

flexural and shear cracks developed along webs surfaces. A substantial 
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stiffness reduction was observed during the fourth cycle at a drift of 0.78%, 

corresponding to a lateral load of +264 kN in pushing phase and -240 kN in 

pulling phase.  

Longitudinal bars reached yielding strain value, as confirmed by the strain 

gages located at the base of the test unit. Fifth cycles set (drift = 1.92%) was 

characterized by a single push/pull cycle. During pushing phase, for a drift 

value of +1.26%, drop in strength equal to 58% was observed, from +278 kN to 

+118 kN, at a drift value of +1.92%. For this drift value, a relevant diagonal 

crack suddenly opened. Pull phase was characterized by a lower stiffness. For 

a drift equal to -1.16% another drop in strength was observed (from -228 kN to 

-92 kN), corresponding to the opening of a reverse diagonal crack. Test P3 

failed in shear after flexural yielding. 

4.1.4. Test P4 – Aspect ratio equal to 2.25 

The loading history actually applied consisted of five complete cycles and 

a last single push/pull sub-cycle corresponding to shear failure. The results in 

terms of lateral load versus drift response for Test P4 are shown in Figure 4.4. 

 

 
Figure 4.4. Lateral load versus cyclic response (Test P4) 

 

Experimental response appeared quite symmetric during all the applied 

push-pull cycles. Also in Test unit P4, a first reduction of the initial stiffness 

was observed during the first three sub-cycles (drift = 0.06%), at which the 
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specimen reached lateral load values of +57 kN and -52 kN, in positive and 

negative directions. Stiffness decreased gradually during second and third 

cycles, for a drift range between 0.06% and 0.43%, when gradual development 

of cracking was observed along the specimen, first as flexural cracks, quickly 

evolving in diagonal cracks.  

A substantial stiffness reduction was observed during the fourth cycle 

(drift = 0.99%). Longitudinal bars reached yielding strain value, as confirmed 

by the strain gages located at the base of the test unit.  

Lateral load reached values of +178kN (push) and -174kN (pull). Peak load 

values were reached for a drift of 2.19%, +193kN and -188kN, in positive and 

negative loading direction respectively. The inter-cycle strength drop 

developed from 5% to 19% passing from fourth to fifth cycle. Sixth cycle (drift 

= 3.40%) was characterized by one push/pull sub-cycle. During pushing 

phase, for a drift value of +2.80%, response curve evolved along a horizontal 

slope, maintaining an about constant force value equal to +155 kN (equal to 

80% of peak load) up to a drift of +3.40%. This was due to a sudden opening of 

main diagonal crack on the specimens’ webs.  

During the following pull phase, for a drift value of -2.49%, a sudden 

strength drop was observed (from -137 kN to -87 kN). The loss in strength 

respect to global peak load was equal to 54%. Corresponding to this drop, 

reverse main shear crack opened suddenly up to a width of about 10 mm. Test 

P4 failed in shear after flexural yielding. 

4.1.5. Comparison of global response  

Table 4.1 summarizes experimental first yielding values (V+-, V-y, D+ y, D-y), 

peak values (V+max, V-max, D+ max, D-max) and “ultimate” drifts (D+u, D-u), of 

lateral force and drifts for both positive and negative loading directions. 

Ultimate drifts values were evaluated as those corresponding to a strength 

reduction equal to 20% with respect to the peak load on the experimental 

backbone. Observed failure modes are also reported (F: flexure mode; FS: shear 

failure after flexural yielding). 

Lateral load-drift envelopes corresponding to the first sub-cycles for each 

loading step are shown in Figure 4.5 for all tests.  

As expected, it can be observed that lateral strength increases as the aspect 

ratio decreases, fixed the loading direction. On the other hand, similarly, a 

reduction of ultimate deformation capacity with decreasing level of aspect 



Experimental results: hollow rectangular RC piers 

 
 

132 

ratio can be noted. 

 

 
Figure 4.5. Envelopes of lateral load versus drift response 

 

Lower values of ultimate drifts are related to shorter specimens, 

characterized by shear failure after flexural yielding. 
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Table 4.1. Yielding, peak and ultimate values of lateral force and drift together with observed failure modes 

Test ID Aspect Ratio V+
y D+

y V-
y D-

y V+
max D+

max V-
max D-

max D+
u D-

u Failure Mode* 

 (-) (kN) (%) (kN) (%) (kN) (%) (kN) (%) (%) (%) (-) 

P1 2.50 132.1 0.49 -116.4 -0.32 168.3 1.68 -164.4 -1.63 3.80 -3.79 F 

P2 3.75 89.3 0.58 -87.3 -0.55 116.6 3.48 -115.2 -3.53 5.15 -5.25 F 

P3 1.50 233.5 0.56 -211.4 -0.62 277.7 1.26 -240.6 -0.78 1.35 -1.27 FS 

P4 2.25 152.3 0.65 -149.2 -0.62 193.0 2.24 -187.5 -2.13 3.40 -2.53 FS 

 

+ (-) : push (pull) direction of the applied displacement. 

Vy, D+ 
y, are experimental first yielding values of lateral force and drifts, respectively. 

Vmax, Dmax, are experimental peak values of lateral force and corresponding drifts. 

Du, is the ultimate drift corresponding to a strength reduction of 20% of the peak load on the experimental backbone. 

* : experimental failure mode (F: flexure mode; FS: shear failure after flexural yielding). 
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4.2 Damage evolution and crack pattern 

In this Section, the evolution of observed damage with increasing imposed 

displacement is described and related to the above-analyzed lateral load-drift 

response of tested specimens. Damage evolutions and final damage states are 

shown and damage descriptions are summarized in tabular form for each 

loading step. The results are reported for each specimen, separately. 

4.2.1. Test P1 – Aspect ratio equal to 2.5 

The evolution with the drift of the damage state and the final damage state 

are showed in Figure 4.6 and summarized in Table 4.2. During the first cycle, 

for a drift value of 0.08%, some horizontal hairline cracks formed up on the 

flanges, in the lower part of the specimen. The second loading step 

(drift = 0.21%) was characterized by the development of horizontal flexural 

cracks on the webs along the first three layers of transverse reinforcement (see 

Figure 4.6a). For a drift range between 0.21% and 0.34%, the flexural cracks 

located on the lower half of the element evolved along diagonal directions and 

slight cracks appeared on the central part (Figure 4.6b). 

After the first yielding condition was reached, during the fourth cycle 

(drift = 0.76%), existing cracks increased their width and new flexural cracks 

formed up to a height of about 1 m from the column base. Further shear cracks 

formed as extensions of flexural cracks on the upper part of the specimen. It is 

noteworthy, the sudden increase in width of diagonal cracks causing a 

pronounced pinching effect in the hysteretic loops (Figure 4.6c). The cycle 

corresponding to peak load was characterized by the extension of existing 

cracks towards the compression zone and their considerable increase in width. 

In particular, the damage at the base of the column developed quickly: vertical 

cracks appeared in concrete cover corners due to longitudinal bars buckling 

(Figure 4.6d). The post-peak cycles were characterized by concrete spalling and 

buckling of longitudinal bars at the base of the column, and the gradual 

widening of the existing diagonal cracks, leading to a slight softening of the 

experimental response. In particular, during the sixth cycle, for a drift of 2.55%, 

flexural cracks at the column base considerably widened and concrete cover 

corners completely spalled off. The subsequent cycles set (drift = 3.47%) was 

characterized by a significant concrete spalling together with significant 
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buckling of longitudinal bars within the distance between the base and the first 

layer of transverse reinforcement (Figure 4.6e). During the last cycle 

(drift = 4.37%), concrete of the compressed flanges was completely crashed and 

spalled (Figure 4.6f). Longitudinal corner bars failed in tension due to oligo-

cyclic fatigue caused by buckling/tension cycles (detail in Figure 4.6h). A 

picture of the final damage state is reported in Figure 4.6g. 

 

II - Drift 0.21% (a) III - Drift 0.34% (b) IV - Drift 0.76% (c) 

   
V - Drift 1.65% (d) VII - Drift 3.47% (e) VIII - Drift 4.37% (f) 

   
(g) (h) 

  
Figure 4.6. Test P1: evolution of damage (a) – (f), final damage state (g), corner bar 

fracture (h) 
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Cycle Drift (%) Damage description 

1 0.08 Horizontal hairline cracks on flanges 

2 0.21 Horizontal cracks on webs 

3 0.34 Evolution of the flexural cracks along diagonal directions 

4 0.76 Increase in width of existing cracks and new diagonal cracks 

5 1.65 Vertical cracks in concrete cover corners due to longitudinal bars 
buckling 

6 2.55 Wide crack at the pier/foundation interface and spalling of 
concrete cover corners 

7 3.47 Complete concrete cover spalling and significant buckling of 
longitudinal bars 

8 4.37 Failure in tension of longitudinal corner bars due to oligo-cyclic 
fatigue 

Table 4.2.  Overview of the evolution of damage during Test P1 

4.2.2. Test P2 – Aspect ratio equal to 3.75 

The evolution with the drift of the damage state and the final damage state 

are showed in Figure 4.7 and summarized in Table 4.3. 

A first reduction of the initial stiffness was observed during the first cycle 

(drift = 0.23%), when hairline cracks were observed on the East and West 

surfaces, along the first three layers of transverse reinforcement (Figure 4.7a). 

For a drift range between 0.23% and 0.79%, slight cracks appeared on the 

upper half of the element and the existing flexural cracks evolved along 

diagonal directions (Figure 4.7b). Specimen reached first yielding condition 

during the third loading step (drift = 0.79%), in fact a substantial aggravation 

of damage state was observed in the subsequent cycles. The fourth cycle 

(drift = 1.69%) was characterized by a sudden increase in width of the existing 

cracks, new flexural cracks formed and further shear cracks appeared as 

extensions of flexural cracks in the central zone (Figure 4.7c). 

When peak load was reached, for a drift equal to 3.50%, diagonal cracks 

increased their width suddenly, intersecting with each other in correspondence 

of the central longitudinal bar, causing a concrete cover spalling along a 

vertical centerline. Damage at the base of the column developed quickly: 

vertical cracks appeared on cover corners due to longitudinal bars buckling 

and concrete spalled off (Figure 4.7d)., leading to a considerable strength drop. 

The post-peak response was asymmetric, mainly due to first longitudinal 
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corner rebar failure in tension (because of oligo-cyclic fatigue) during the first 

pushing phase of sixth cycle (drift = 5.25%), when damage state developed 

further, as shown  in Figure 4.7e. During the last cycle, for a drift of 7.08%, 

compressed concrete between the base and the first stirrups layer completely 

crushed and spalled off. Remaining longitudinal corner bars failed in tension 

and this phenomenon implicated a severe drop in strength (Figure 4.7f). 

 

I - Drift 0.23% (a) II - Drift 0.50% (b) III - Drift 0.79% (b) 

   
IV - Drift 1.60% (c) V - Drift 3.50% (d) VI - Drift 5.25% (e) 

   
VII - Drift 7.08% (f) (g) (h) 

   
Figure 4.7. Test P2: evolution of damage (a) – (f), final damage state (g), corner bar 

fracture (h) 
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By inspecting the damage state at the end of the test (see Figure 4.7g – 

4.6h), it is interesting to note that also internal layers of longitudinal steel bars 

are characterized by an intense buckling. 

 

Cycle Drift (%) Damage description 

1 0.23 Horizontal hairline cracks on flanges 

2 0.50 Horizontal cracks along webs  

3 0.79 Evolution of the flexural cracks along diagonal directions and new 
diagonal cracks 

4 1.60 Increasing in width of existing cracks and new diagonal cracks  

5 3.50 Spalling of concrete cover corners due to buckling of corner bars 

6 5.25 Wide crack at the pier/foundation interface and first corner bar 
failure due to oligo-cyclic fatigue 

7 7.08 Complete concrete crushing and failure of further longitudinal 
corner bars  

Table 4.3.  Overview of the evolution of damage during Test P2 

4.2.3. Test P3 – Aspect ratio equal to 1.50 

The evolution with the drift of the damage state and the final damage state 

are showed in Figure 4.8 and summarized in Table 4.4. No cracks were 

observed along the specimen surfaces during the first cycle (drift = 0.02%). 

Only at the base/foundation interface, at the extreme external fibers, slight 

cracks were observed. 

For a drifts range between 0.02% and 0.28%, cracks appeared on the East 

surface along the first four layers of transverse reinforcement and on and West 

surface along first, second, third and fifth stirrups level. Flexural cracks 

evolved quickly along diagonal directions towards compressed zone, during 

the third step (drift = 0.28%). In particular, two diagonal cracks formed from 

top to down opposite corners with an inclination angle of about 45 degrees 

(Figure 4.8 a). 

During the fourth cycle, at a drift of 0.78%, first yielding condition was 

reached and damage state developed quickly: existing shear cracks increased 

their width and length, particularly two principal ones, no flexural cracks 

formed and new slight shear cracks appeared as extensions of flexural ones in 

the central zone. It is noteworthy highlighting that, unlike Test P1 and Test P2, 

no considerable damage was observed on the base zone (Figure 4.8 b). 
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Fifth cycle (drift = 1.92%) was characterized by a single push/pull cycle. 

During pushing phase, for a drift value of +1.26%, the main existing shear 

crack opened suddenly up to a width of about 10 mm, along an ideal concrete 

strut with a medium inclination angle of about 42 degrees (Figure 4.8c). A 

sliding between the upper and the lower part of the specimen was observed, 

with buckling of longitudinal bars crossing the main diagonal crack (Figure 

9d). Shear sliding also caused buckling of the longitudinal bars next to the base 

section with resulting concrete cover spalling (Figure 4.8e).  

 

III - Drift 0.28% (a) IV - Drift 0.78% (b) 

  
V - Drift 1.92% (c) (d) 

  
(e) (f) 

  
Figure 4.8. Test P3 evolution of damage (a) – (f), final damage state (g), corner bar 

fracture (h) 

 

Pull phase was characterized by a lower stiffness. For a drift equal to -
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1.16% another drop in strength was observed (from -228kN to -92kN). Shear 

crack with a medium inclination of about 47 degrees opened suddenly, causing 

buckling in longitudinal bars and concrete cover spalling (Figure 4.8f). Test P3 

failed in shear after flexural yielding. 

 

Cycle Drift (%) Damage description 

1 0.02 Horizontal hairline cracks on flanges at the pier/foundation 
interface 

2 0.08 Horizontal cracks along flanges 

3 0.28 Evolution of the flexural cracks along diagonal directions and new 
diagonal cracks 

4 0.78 Increasing in width of existing cracks and new diagonal cracks  

5 1.92 Sudden widening of main diagonal cracks up to 10 mm 

Table 4.4.  Overview of the evolution of damage during Test P3 

4.2.4. Test P4 – Aspect ratio equal to 2.25 

The evolution with the drift of the damage state and the final damage state 

are showed in Figure 4.9 and summarized in Table 4.5. Also for Test unit P4, 

during the first cycle, no cracks were observed along the specimen surfaces, 

but only at the specimen/foundation interface. The second cycle (drift = 0.17%) 

was characterized by slight cracks on the East and West specimen surfaces, 

along second and third stirrups layers, evolving quickly along diagonal 

directions toward compressed zone. Existing cracks increased their width 

during the third loading step (drift = 0.43%), some flexural hairline cracks 

appeared next to the base and two wider diagonal cracks formed from top to 

down opposite corners with an inclination angle of about 38 degrees (Figure 

4.9a). Specimen reached yielding condition for a drift = 0.99% and damage 

state developed quickly: existing shear cracks increased their width and length 

and new slight shear cracks appeared in the central zone, next to principal 

ones (Figure 4.9b). 

Peak load values were reached for a drift of 2.19%, during the fifth cycle, 

both in positive and negative loading direction. Damage state evolved quickly 

causing a severe inter-cycle strength drop: new shear cracks formed in the 

upper part, existing main diagonal cracks increased their width and extended 

reaching the base corners, causing concrete cover cracking. A clear fixed-end 
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rotation was observed (Figure 4.9c).  

 

III - Drift 0.43% (a) IV - Drift 0.93% (b) 

  
V - Drift 2.23% (c) VI – Drift 3.40% (d) 

  
(e) (f) 

  
Figure 4.9. Test P4: evolution of damage (a) – (d), final damage state (e), corner bar 

buckling (f) 

 

Sixth loading step (drift = 3.40%) was characterized by one push/pull 

cycle. During pushing phase, for a drift value of +2.80%, East-West main 

diagonal crack opened suddenly. During the following pull phase, for a drift 

value of -2.49%, a sudden widening of West-East main shear crack was 

observed, along an ideal concrete strut with a medium inclination of about 38 

degrees (Figure 4.9d). A sliding between the upper and the lower part of the 

specimen was observed (Figure 4.9e), with buckling of longitudinal bars 

crossing the shear crack. Shear sliding caused buckling of the longitudinal bars 

38 
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next the base section with resulting concrete cover spalling (Figure 4.9f).  

 

Cycle Drift (%) Damage description 

1 0.06 Horizontal hairline cracks on flanges at the pier/foundation 
interface 

2 0.17 Horizontal cracks along flanges 

3 0.43 Evolution of the flexural cracks along diagonal directions and new 
diagonal cracks 

4 0.99 Increasing in width of existing cracks and new diagonal cracks  

5 2.19 Lengthening of main diagonal crack and concrete cover cracking 

6 3.40 Sudden widening of main diagonal cracks up to about 10 mm 

Table 4.5. Overview of the evolution of damage during Test P4 

 

4.3 Local behavior 

In this Section, the most significant local measurement data are analyzed 

and discussed. 

4.3.1. Strain of longitudinal and transverse reinforcement 

During the experimental tests, strain of both longitudinal and transverse 

reinforcement was monitored by means of strain-gauges (SGs) installed 

according the scheme reported in Figure 3.28. 

Figure 4.10 shows strain of longitudinal bars (εs) during the test for each 

specimen, until measures can be considered as reliable. Yielding strain 

(εs,y = 2.7‰) is indicated through a dotted line in the diagrams, so it is possible 

to identify the cycle and the drift value at which first yielding was reached. In 

particular, Test P1 reached the first yielding condition between third and 

fourth loading step, for a drift of about 0.40%. In Test P2, first yielding 

occurred between second and third cycles set, for a drift of about 0.50%. Test 

P3 and P4 reached first yielding condition during fourth cycle, for drift range 

between 0.28% and 0.90%. 

Experimental measures related to SGs installed on the longitudinal bars 

under the base section at a depth of 60mm (identified as SG-Down) are 

analyzed too, in order to investigate about strain penetration into the 

foundation block. As expected, these measures are smaller than the 

corresponding located above the base section. Also in this case, it is possible to 
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identify the cycle and the drift range at which yielding strain reached the 

above mentioned depth. For both taller specimens (namely P1 and P2), this 

condition was reached during the loading step following the one in which first 

yielding occurred. In particular, for Test P1 the condition was reached during 

fifth loading step, for a drift range between 0.76% and 1.65%, corresponding to 

peak load. For Test P2, yielding strain penetration was detected during fourth 

cycle, for a drift varying between 1.60% and 3.50%. For Test P3, it is interesting 

to note that the shear failure after flexural yielding limited strain penetration 

into the foundation, so yielding strain was not recorded. Finally, for Test P4, 

yielding strain penetration was recorded during pushing phase, while the drop 

in strength related to shear failure during pulling phase limited strain 

penetration. 

 

    

(a) (b) 

    
(c) (d) 

Figure 4.10. Strain of longitudinal bars for Tests P1(a), P2(b), P3(c), P4(d) 

 

The strain in transverse reinforcement provided by strain gauges mounted 
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on both braces of the two stirrups at Level #1 and at Level #2 (see Figure 3.28) 

is reported in Figure 4.11. 

 

    
(a) (b) 

    
(c) (d) 

Figure 4.11. Envelope of mean strain of stirrups versus drift for Tests P1 (a), P2 (b), P3 
(c), P4 (d) 

 

The average strain at each level is evaluated, as measured at the first 

(positive and negative) sub-cycle, for each imposed drift, until the measures 

can be considered reliable. As observed, in all the tests the stirrup strain is 

nearly null during the very first cycles, before the development of first 

diagonal cracks (e.g., for the first two cycles, up to 0.17% drift, for Test P3). 

Moreover, the measured strain at Level #2 is systematically higher than at 

Level #1. This is consistent with the generally more severe observed diagonal 

cracking involving Level #2 stirrups compared with Level #1, given equal the 
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imposed drift. In Tests P1 and P2, which showed a failure mode controlled by 

flexure, the strain in stirrups does not reach the yielding value. In both of these 

specimens, both at Level #1 and #2, the peak value of strain in stirrups is 

attained in the cycle corresponding to maximum lateral load – as expected – or 

in the immediately previous or following cycle. Subsequently, softening in 

lateral response leads to a slightly decreasing or quasi-constant strain with 

increasing drift. In Tests P3 and P4, characterized by a shear failure after 

flexural yielding, a monotonic increase in stirrup strain is observed with 

imposed drifts. In both cases, yielding of stirrups is observed at Level #2, 

roughly in correspondence with the peak load. 

4.3.2. Flexural and Shear Deformability Contributions 

Seismic response of RC elements with hollow sections, typical of bridge 

piers, can be governed by a considerable flexure-shear interaction, depending 

on their aspect ratio. Such an interaction leads to typical cracks layout on web 

surfaces, similar to cantilever walls. Shear deformation mechanism may 

represent a considerable portion of the global deflections, limiting ductile 

energy dissipation. In order to investigate experimentally this issue, an 

appropriate monitoring system was installed (see Figure 3.28). 

The top displacement of the specimens (Δ) can be interpreted as the results 

of three response mechanisms: flexure (Δf), shear deformation along webs (Δs) 

and fixed-end-rotation due to longitudinal bar slip at column base (Δθ) (see 

Figure 4.12 and Eq. (4.1)). 

 

 
Figure 4.12. Deformability contributions to total displacement 

 

Assuming a uniform curvature distribution along each of the two 

curvature cells, the flexural component Δf was calculated as the sum of the 

Δf Δs Δθ
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rotations measured by vertical LPs multiplied by corresponding distances 

from the top of the column (Eq. (4.2)). Strictly speaking, the fixed-end-rotation 

contribution Δθ is due to the slip from the foundation and it cannot be directly 

evaluated; instead, the base rotation θb can be measured by the two LVDTs 

monitoring vertical deformation along the height hb = 50 mm from the base 

section. θb is associated to the base crack width including slip from element 

and from foundation, and to flexural deformation along hb. The corresponding 

displacement Δb was calculated according to Eq. (4.3), similar to Eq. (4.2).  

Based on the hypothesis of small angles and uniform shear deformation 

over the measuring panel height, the shear component Δs was estimated using 

Eq. (4.4). In Eqs. (4.2) – (4.4), hi, hj, l, d, are respectively heights, width and 

diagonal of the measuring panels; hb is the height of first curvature cell, next to 

base section; δo,i and δe,i, δ1 and δ2 are average values between North and South 

specimen surfaces of vertical and diagonal experimental measurements. 

f b sΔ=Δ +Δ +Δ  
(4.1) 

  
   
   

 
2 i-1

o,i e,i
f i v j i b i

i=1 j=1

δ -δ
Δ = θ L - h +h /2 -h  ;  θ =

l  

(4.2) 

 b b V bΔ =θ L -h /2
 

(4.3) 

 s 1 2

d
Δ = δ -δ

2l  

(4.4) 

Figure 4.13 and Figure 4.14 show deformability components as a function 

of the top displacement, for tall and short specimens respectively (until all 

measures can be considered reliable and for first cycle at each drift level, both 

in positive and negative directions). Global symmetry of the response in 

push/pull direction is confirmed also in terms of local deformations. For Tests 

P1 and P2, damage state evolution led to a loss of some instruments, so for 

these specimens, diagrams stop at peak load drift, while for Tests P3 and P4 

measures are reliable up to failure drift. For all the tests, flexural deformability 

contribution (sum of Δb and Δf) was predominant with respect to shear one. 
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(a) 

 
(b) 

Figure 4.13. Experimental deformability contributions to total displacement ratio for 
tall specimens: Test P1 (a) and Test P2 (b) 

 

It is interesting to note that for tall specimens (i.e. P1 and P2) flexural 

deformation was distributed over the height since from first cycle, with a 

cracking layout typical of slender elements (balanced dark and light grey in 

figure). For short columns (i.e. P3 and P4), flexural deformation was initially 

concentrated at the base, with hairline cracks formed only at 

column/foundation interface (dark grey predominance in Figure 4.13). It 

seems possible to identify a relation between shear contribution to top 
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displacement (Δs/Δ) and aspect ratio (LV/H). In fact, for slenderest specimen 

(i.e. P2) maximum value of shear contribution is equal to 10.8%. For Test units 

P1 and P4, characterized by similar aspect ratios (equal to 2.50 and 2.25 

respectively), for a drift value corresponding to peak load, shear contribution 

is about 20.0% of the top displacement. 

 

             

  
(a) 

  
(b) 

Figure 4.14. Experimental deformability contributions to total displacement ratio for 
short specimens: Test P3 (a) and Test P4 (b) 

 

At shear failure, shear contribution to top displacement for Test P4 reaches 
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a value of 27%. The Test P3 is characterized by higher shear deformations since 

first cycles. In fact, Δs/Δ ratio reached an average value of 31.9% at yielding 

cycle and 44.9% at shear failure. Another interesting observation about 

deformability contributions is that for taller Tests P1 and P2, after flexural 

yielding, the base contribution Δb/Δ starts to grow (of about 10% respect to 

previous value), due ductile dissipative system concentrated at the base. For 

tests P3 and P4, Δb/Δ is about constant from yielding to shear failure.  

It is noteworthy to underline that the subdivision of deformations of 

inelastic RC hollow piers into shear and flexural deformations can provide a 

useful link between the experiments and numerical models, particularly if 

beam models are used. Of particular interest is the assessment of the shear 

contribution to lateral displacement in the inelastic range, to better understand 

whether shear deformations are essential to consider in structural analysis.  In 

this regard, Figure 4.15 shows the trend of shear contribution Δs/Δ with the 

drift for all tests (i.e. for different values of the aspect ratio Lv/H). As expected, 

shear deformation increases when aspect ratio decreases. Furthermore, by 

observing Tests P1 and P4 trends, it seems that shear contribution depends 

also by the web depth. In fact, even if Test P1 is characterized by a lower aspect 

ratio respect to Test P4, it is interested by higher shear deformations, especially 

for drift values lower than drift corresponding to load peak. Anyway, these 

specimens are characterized by similar aspect ratios and they present vary 

close values of shear deformations. 

 

 
Figure 4.15. Shear deformability contributions for all Tests 
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Finally, it is very interesting to observe the averaged experimental 

deformability contribution to total displacement ratios between push and pull 

direction (Figure 4.16), in order to draw up some conclusions about their 

trends. It is possible to note an almost constant trend of shear contribution 

(Δs/Δ) after yielding, characterizing both ductile specimens; for the specimens 

interested by a shear failure, a clear linear increasing trend with the drift 

demand is otherwise observable. 

 

 

    
(a) (b) 

    
(c) (d) 

Figure 4.16. Averaged deformability contributions for Tests P1(a), P2(b), P3(c), P4(d) 
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displacement curve, is shown in Figure 4.17 for all the tests, with increasing 

drift. In particular, Figure 4.17a reports the cumulative dissipated energy, 

whereas Figure 4.17b shows the energy dissipated in each cycle. 

 

 
(a) 

 
(b) 

Figure 4.17. Hysteretic energy dissipation: cumulative dissipated energy (a), energy 
dissipated in each cycle (b) 
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interested by a shear failure after yielding. In particular, assuming a loading 

direction, for Test P1 total CDE is about six times that related to Test P3, while 

Test P2 shows a total CDE equal to 3.5 times that of Test P4. In a comparison 

between shorter specimens, Test P4 shows a higher CDE, of about 60%, respect 

to Test P3, since shear failure occurred for a larger drift value, after that peak 

value of lateral force was reached. With regard to cumulative dissipated 

energy evolutions, it is possible to note that CDEs are very similar in the 

specimens, for drift values lower than 0.8%. Starting from this drift value, CDE 

of Test P1 is higher respect to others specimens. In fact, given equal drift, Test 

P2 shows a cumulative dissipated energy varying between 35% and 60% 

compared to Test P1. This because, on one side the former was tested along the 

minimum stiffness direction, so lower values of horizontal reaction (up to 35%) 

during pre-peak phase, on the other side, during post-peak phase it was 

characterized by a larger strength and stiffness degradation. Similar 

consideration for tests P3 an P4, with the former that shows higher values of 

CDE (given equal drift, between 20% and 31%). 

Another interesting way to deal with the experimental dissipated energy is 

through the evaluation of the equivalent damping ratio ξeq, often adopted in 

literature to normalize the dissipated energy (Priestley et al., 2007). The 

equivalent viscous damping accounts for both elastic damping and energy 

dissipation due to hysteresis in nonlinear response caused by the inelastic 

deformations of the structure. This coefficient is widely used in displacement-

based seismic design or assessment (as in our case, for existing structures, e.g. 

Cardone (2014)), together with a stiffness secant to the performance point of 

interest (Priestley et al., 2007). Basically, the value of the equivalent viscous 

damping ratio can be defined as the sum of elastic and hysteretic damping, 

according to Eq. (4.5). 

eq el hystξ = ξ ξ
 

(4.5) 

The hysteretic damping ξhyst can be obtained equating the energy 

dissipated by a linear viscous damper with the energy dissipated from 

nonlinear behavior. According to this definition, the equivalent viscous 

damping is evaluated herein for each test. First of all, each cycle i can be 

identified through a maximum value and a minimum value of lateral load (Vi+ 

and Vi-, respectively), and a maximum value and a minimum value of top 
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displacement (Δi+ and Δi-, respectively). The lateral load iV is defined as the 

mean between Vi+ and Vi-, and the displacement i  is defined as the mean 

between Δi+ and Δi-. Then, the equivalent damping at each cycle ξeq,i is 

calculated as function of the energy dissipated in each cycle Eh,i (area within 

one complete cycle of stabilized force-displacement response), according to Eq. 

(4.6): 

h,i
eq,i

i i

E1
ξ = 

2π V Δ


  

(4.6) 

In literature, several expressions have been developed to provide such a 

coefficient as a function of the displacement ductility (μ), based on different 

hysteretic models. Generally, ignoring the period dependency, the equations 

have a common functional form (Blandon and Priestley, 2005), reported in Eq. 

(4.7): 

eq 0 β

1
ξ = ξ + a 1-

μ

 
   
   

(4.7) 

where ξ0 is the initial viscous damping (usually equal to 0.05 for RC 

structures), μ is the ductility, a and β are coefficient based on the hysteretic 

model adopted. For RC bridge piers, as indicated by Blandon and Priestley 

(2005) and Kowalsky et al., (1995), the evaluation of the equivalent viscous 

damping ξeq has to be computed by assuming a modified “thin” Takeda 

hysteresis model (with “narrow” loops) in which the unloading coefficient is 

taken equal to 0.5 and the post-yield stiffness ratio is assumed to be 5%. Under 

these assumptions, coefficients a and β in Eq. (4.7) are equal respectively to 

95/π and 0.5, as reported in Priestley (2003), leading to Eq. (4.8): 

eq 0.5

95 1
ξ = 5 + 1-

π μ

 
  
   

(4.8) 

In order to perform a comparison between experimental and predicted 

viscous damping ratios, herein, for each specimen, the equivalent damping is 

computed as a function of the displacement ductility (μ). μ is defined as the 
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ratio between the maximum imposed displacement in each cycle and the 

yielding displacement (Δy). The latter is obtained through a bi-linearization of 

the experimental envelope according to EC8-1 (Annex B.3), by imposing the 

equal-area rule until the lateral peak load is reached. Then, a non-linear least 

square regression is performed to obtain the best-fit to the experimental results 

for the parameters a and β, assuming the functional form reported in Eq. (4.7) 

with initial damping ξ0 = 5%. The resulting expression (Eq. (4.9)) is depicted in 

Figure 4.18 together with Eq. (4.8). 

eq 2.9

50 1
ξ = 5 + 1-

π μ

 
  
   

(4.9) 

On average, quite similar values are observed, but the experimental fitting 

is characterized by a steeper increasing trend of the equivalent viscous 

damping for lower ductility values (namely, for μ up to about 4), and a quasi-

constant trend for higher ductility levels. The obtained results seem to 

highlight a lower energy dissipation capacity with respect to the “thin” Takeda 

model hypothesis in large inelastic field. Finally, note that the equivalent 

damping–displacement ductility relationship is strongly influenced by the 

yielding displacement, and, therefore, by the approach followed in its 

calculation. 

 

 
Figure 4.18. Equivalent damping-displacement ductility relationship 
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eq 2.9

50 1
= 5+ 1

 

 
  
 

 

eq 0.5

95 1
= 5+ 1

 

 
  
 
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4.5 Comparison between experimental results and code-
based capacity models 

In this section, the experimental responses of the tests P1, P2, P3, and P4, 

are compared with code-based capacity models. In particular, the aim of such a 

comparison is to evaluate the capability of relevant code-based shear strength 

models in prediction the experimental failure modes and the shear capacity 

(for specimens failing in shear). As deeply discussed in section 2.3, for an 

adequate assessment of existing RC members, it is crucial the classification, i.e. 

the prediction of the failure mode, in order to plan, eventually, suitable 

retrofitting systems. As described in section 4.1, based on experimental 

evidence and observed damage, two tests (P1 and P2) were characterized by a 

flexure-controlled failure mode (F-mode), and the remaining two (P3 and P4) 

by a shear failure following flexural yielding (FS-mode), hence due to shear 

strength degradation in post-elastic field. In the following, the capability of 

main shear strength capacity models from code and literature in predicting 

such failure modes will be evaluated. The considered models have been 

described in detail in section 2.3.3. Therefore, they’re briefly recalled below: 

 FHWA: the model adopted by the U.S. Federal Highway 

Administration provisions document for seismic retrofitting of 

bridges (FHWA, 2006) corresponds to the model proposed by 

Kowalsky and Priestley, (2000) 

 EC8/3: the model adopted by the Eurocode 8 – part 3 (EC8/3, 

2005) corresponds to the model proposed by Biskinis et al., (2004) 

 C617: the model suggested by the Italian Code (Circolare 617, 

2009) for the assessment of shear capacity of bridge columns is a 

slightly modified version of the Original UCSD model (Priestley 

et al., 1994). A 45° instead of a 30° angle truss mechanism is 

assumed, and the degradation coefficient is assumed to vary 

between 0.29 and 0.10 for displacement ductility between 1 and 4 

Note that the degrading shear strength models considered herein require 

the estimation of the expected displacement at yielding, in order to evaluate 

the displacement ductility, which should be evaluated consistent with the 

procedures proposed or adopted by the respective Authors. Hence, when 

applying the C617 and the FHWA models, the expected displacement at 

yielding is estimated as reported in Priestley et al. (1996): 
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 
*

2y

y V y bΔ =  L + 0.022f d
3



 

(4.10) 

where y* is the curvature at the corner of a bilinear envelope of the 

moment-curvature relationship (Priestley et al., 1996), LV is the shear span, fy is 

the steel yielding strength and db is the diameter of the longitudinal bars. When 

applying the EC8/3 model, the expected displacement at yielding is estimated 

as reported in Biskinis and Fardis (2010): 

y V y y b

y V

c

L f d
Δ = + 0.0013 + L

3 8 f

  
 
 
 

 

(4.11) 

where, y is the curvature at first yielding and fc is the concrete 

compressive strength. As discussed in section 2.3.1, the behavior of a RC 

element can be classified based on the ratio between plastic shear capacity and 

degrading shear strength. For this reason, it is necessary the evaluation of the 

plastic load for the specimens. The following Table 4.6 reports a comparison 

between observed and predicted lateral loads at first yielding (Vy) and at 

maximum (Vmax), based on corresponding moments My and Mmax evaluated on 

the basis of a section analysis, assuming the Mander et al. (1988) stress-strain 

model for concrete, and elastic-plastic with strain hardening stress-strain 

relationship for steel. 

 

Test ID 

Experimental Analytical (Anal. - Exp.) / Exp. 

V+
y 

(kN) 
V-

y 

(kN) 
V+

max 

(kN) 
V-

max 

(kN) 
Vy 

(kN) 
Vmax 
(kN) 

yielding 
(%) 

peak 
(%) 

P1 132.1 -116.4 168.3 -164.4 121.6 167.7 4.5 -0.4 

P2 89.3 -87.3 116.6 -115.2 79.2 110.3 -9.3 -5.4 

P3 255.9 -211.4 277.7 -240.6 202.7 279.4 -4.1 - 

P4 152.3 -149.2 193.0 -187.5 132.0 183.9 -11.5 - 

Table 4.6. Yielding and peak lateral load: experimental vs analytical comparison 

 

A moderate underestimation, on average equal to 5%, is observed between 

the calculated Vy and the corresponding experimental value (minimum 

between positive and negative) assumed as corresponding to the attainment of 
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yielding strain in longitudinal reinforcement; a similar underestimation, on 

average equal to 3%, is observed for Vmax (maximum between positive and 

negative). Note that such a comparison should be carried out mainly for P1 

and P2 tests, since in tests P3 and P4 the development of flexural over-strength 

might have been at least partially prevented by the occurrence of shear failure. 

On that note, the predicted failure mode can be derived by comparing the 

analytical value of the yielding (Vy) and peak lateral load (Vmax) with the 

maximum (non-degraded) and minimum shear strength values, as reported in 

Table 4.7. The same procedure is depicted in Figure 4.19 and Figure 4.20 in 

terms of shear strength envelopes an experimental response. 

 

Test 
ID 

Analytical FHWA C617 EC8/3 Exp 

Vy 

(kN) 
Vmax 

(kN) 
Max 
(kN) 

Min 
(kN) 

FM 
Max 
(kN) 

Min 
(kN) 

FM 
Max 
(kN) 

Min 
(kN) 

FM FM 

P1 122 168 260 174 F 266 166 FS 128 101 FS F 

P2 79 110 205 120 F 228 127 F 78 62 S F 

P3 203 279 327 199 FS 282 182 FS 150 121 S FS 

P4 132 183 216 130 FS 238 138 FS 96 77 S FS 

Table 4.7. Predicted and observed lateral loads corresponding to flexural strength at 
yielding and maximum and failure mode 

 

As observed, the FHWA model (FHWA, 2006) shows a very good capacity 

of failure mode prediction; similarly, except for the Test P1, C617 model 

(Circolare 617, 2009) shows a good capacity of failure mode prediction, too; a 

lower predictive capacity is observed for EC8/3 model (EC8/3, 2005), due to 

the conservatism in model predictions. Note that this model was applied 

assuming the formulations providing shear strength in the case of diagonal 

tension failure, which generally controls the shear failure. Strictly speaking, the 

displacement ductility capacity of RC members failing in shear should not be 

evaluated from the inverse application of the shear strength model because 

this would not lead to a reliable evaluation of the drift at shear failure (Biskinis 

et al., 2004). Vice-versa, it is possible to evaluate the predicted degraded shear 

strength corresponding to the observed ductility at failure. Therefore, for Tests 

P3 and P4, showing a shear failure following flexural yielding, Table 4.8 

reports the failure mode and the shear strength capacity predicted by the 

considered models (as described, the latter is evaluated corresponding to the 
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observed ductility at failure if a FS failure is predicted, otherwise as the non-

degraded shear strength if a S failure is predicted).  

 

 
(a) 

 
(b) 

Figure 4.19. Experimental lateral load-drift responses and shear strength envelopes 
predicted according to the considered capacity models for tall specimens 

 

The displacement at failure (see Table 4.1) is evaluated as the displacement 

corresponding to 20% strength decay on the envelope of the experimental 

lateral load-drift response, for the EC8/3 model, whereas, for the remaining 

models, it is assumed as that corresponding to the maximum load. The 

corresponding ductility values are calculated depending on the displacement 

at yielding evaluated consistent with each model.  
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(a) 

 
(b) 

Figure 4.20. Experimental lateral load-drift responses and shear strength envelopes 
predicted according to the considered capacity models for short specimens 

 

Test 
ID 

Experimental FHWA C617 EC8/3 

Failure 
Mode 

Vmax 

(kN) 
Du 

(%) 
FM 

Dy 

(%) 
μ 

(-) 
VR 

(kN) 
FM 

Dy 

(%) 
μ 

(-) 
VR 

(kN) 
FM 

VR 

(kN) 

P3 FS 279 1.50 FS 0.37 4.05 232 FS 0.37 4.05 182 S 150 

P4 FS 183 2.53 FS 0.50 5.06 140 FS 0.50 5.06 138 S 96 

Table 4.8. Predicted failure mode and shear strength for Tests P3 and P4 

 

In terms of shear strength evaluation, the quite good predictive capacity of 
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FHWA and C617 models is not confirmed by the results reported in Table 4.8. 

In fact, a quite large shear strength underestimation of 20% is highlighted on 

average for the specimens; vice-versa, the EC8/3 model confirm the low 

predictive capacity, underestimating the experimental shear strength by about 

50%. 

4.6 Load-deformation numerical modelling 

As outlined in section 2.3.2, several models are available in literature to 

simulate the actual behavior of structures. Generally, the response of RC 

columns subjected to lateral load can be interpreted as the results of three 

coexisting mechanisms: flexure deformation, shear deformation, and fixed-

end-rotation due to longitudinal bar slip at column base. While for columns 

with height-to-depth ratio higher than 4 the shear flexibility can be neglected, 

the latter has to be computed for columns characterized by medium-low aspect 

ratio. This is confirmed also by the experimental measures presented in section 

4.3.2, which highlight considerable shear deformations for all the tests. 

In this section, a load-deformation numerical model is analyzed and 

applied, in order to reproduce the experimental response of the test specimens 

P1, P2, P3, and P4, described in the section 4.1. The main goal is the monotonic 

modelling of the experimental response, and, in particular, the assessment of 

the local deformability contributions reported in the section 4.3.2. To this aim, 

a three-component model is adopted, in which the three mechanisms 

characterizing the lateral response of RC columns are separately modelled.  

4.6.1. Numerical model 

In this section, the adopted three-component model is described and 

analyzed, focusing on details and formulations, in order to provide the 

background for the understanding of the analysis results. 

 

Flexural deformation 

The flexural response is modelled with a displacement-based (DB) 

nonlinear beam-column fiber element with distributed plasticity, available in 

OpenSees (McKenna et al., 2011), with five Gauss-Lobatto integration points. 

The cross section has been divided into 6400 concrete fibers. In addition, 28 

steel fibers have been used to model the longitudinal reinforcement (see Figure 
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4.21). Two different stress-strain relationships have been used to describe the 

mechanical behavior of concrete and steel, and then assigned to the 

corresponding fibers of the column model. Since the specimens were 

characterized by the absence of reinforcement details (no tie between opposite 

longitudinal bars, 90° hooks, high spacing between stirrups), unconfined 

concrete is assumed for all concrete fibers. The mechanical behavior of 

unconfined concrete has been modelled with the law by Popovics (1973). The 

constitutive model by Giuffré-Menegotto-Pinto (1973) has been adopted for 

steel.  

 

 
(a) 

 

 

(b) (c) 

Figure 4.21. Fiber discretization of the transverse cross-section (a) and constitutive laws 
for concrete (b) and steel (c) 

 
All the previously mentioned stress-strain relationships have been 

calibrated based on the experimental results of the characterization tests 

carried out on the specimens collected during the construction of the piers (see 
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the section 3.4). In Figure 4.22 the predicted moment-curvature relationships 

are reported for all the specimens, with the comparisons between experimental 

and predicted values of cracking, yielding and peak moment. The 

experimental yielding moments are well predicted by the fiber section 

analysis, with slight overestimation for tests P2 and P4. Slightly less rigorous 

are the predictions of the flexural cracking moment, with a mean error, 

evaluated as the predicted-to-experimental cracking moment ratio, equal to 

85%.  

The peak loads are well predicted for tests P1 and P2, subjected to flexural 

failure. For tests P3 and P4, the experimental peak values are lower than the 

predicted ones, since shear failure occurred before reaching of the flexural 

capacity. 

 

  

  

Figure 4.22. Moment-curvature predictions compared with experimental results 
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Shear deformation 

The shear flexibility of the test specimens up to the peak force is accounted 

through the procedure proposed by Krolicki et al. (2011). This procedure was 

initially presented by Park and Paulay (1975). Later it was improved by 

Miranda et al. (2005), updated by Priestley et al. (2007), and, finally, revised by 

Krolicki et al. (2011). In particular, Krolicki et al. (2011) applied the procedure 

to obtain the lateral response of reinforced concrete walls. According to this 

approach, the calculation of shear deformation is carried out assuming a 

multilinear response. In particular, starting from the fiber moment-curvature 

(M,χ) relationship for the base critical section, four phases are identified, each 

one characterized by a different shear stiffness. They are listed below. 

 

Shear response prior to flexural cracking (M ≤ Mf,cr) 

Shear stiffness of uncracked column is assumed as that given by Park and 

Paulay (1975): 

   v
se v w

GA
k ;   A 2 t d

H  
(4.12) 

where, G is the shear elastic modulus, Av is the effective shear area, tw and 

d represent thickness and effective depth of the cross section, respectively, the 

latter assumed as 0.8 times cross-sectional height (H). The corresponding 

displacements are computed as: 

   
f ,cr

se f ,cr

se V

M
;  0 M M

k L   
(4.13) 

where, Mf,cr is the moment at flexural cracking and LV  is shear span. 

 

Shear response after flexural cracking (Mf,cr ≤ M ≤ Ms,cr) 

Shear stiffness prior to shear cracking is approximately proportional to the 

reduction in flexural stiffness, taken as: 

  


yeffv
sf eff

g y

MEIGA
k ;   EI

H EI
 

(4.14) 



Experimental results: hollow rectangular RC piers 

 
 

164 

where, E is concrete Young’s modulus, Ig and Ieff are the inertia moment of 

uncracked and cracked section, respectively, My and χy are yielding moment 

and curvature, respectively. The corresponding displacements are computed 

as: 


   

f ,cr
sf f ,cr s,cr

sf V

(M M )
;   M M M

k L  
(4.15) 

in which Ms,cr is the measured moment at shear cracking.  

 

Shear response after shear cracking (Ms,cr ≤ M ≤My) 

Shear stiffness after onset of diagonal cracking is based on an equivalent 

strut-and-tie model, incorporating both the compression of the diagonal strut, 

and the extension of the tie representing the transverse reinforcement: 

4 2

s,sc s w4

''sin ( )cot ( )
k E 2t d

sin ( ) 10 ''

  
  

    
(4.16) 

In equation (4.16), ρ’’ is transverse reinforcement ratio, θ is the measured 

angle between diagonal cracks and member axis, Es is steel Young’s modulus, 

and d is the effective depth. The corresponding displacements are computed as 

reported in eq. (4.17) 


   

s,cr
sc s,cr y

s,sc V

(M M )
;   M M M

k L
 

(4.17) 

 

Shear response after flexural first yield (My ≤ M ≤ Mmax) 

In the post-yield phase the concrete compression struts will continue to 

soften, and thus shear deformation will continue to increase. Therefore, after 

flexural first yield the shear deformation increases proportional to the flexural 

deformation: 


    



s,sc
sc f y max

f ,y

;   M M M

 
(4.18) 
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where Δf,y is the top flexural lateral displacement corresponding to first 

yielding moment, Δs,sc is top shear displacement corresponding to first yielding 

moment (computed according to eq. 4.17), Δf is top flexural displacement. A 

scheme of the adopted shear response is depicted in Figure 4.23. 

 

 

Figure 4.23. Lateral load-shear displacement response – adapted from Krolicki et al., 
(2011) 

 

In Figure 4.24 the predicted relationships between lateral-load and shear-

displacement are reported for all the specimens, together with the 

characteristic point of the lateral response, namely, flexural cracking, shear 

cracking, flexural yielding and peak load. All the plots are reported with the 

same axis limits, in order to carry out a comparison of the results between 

specimens. The predicted response is assessed starting from the moment-

curvature analysis: for each of the four above-described phases, the moment 

values are placed in equations (4.13 – 4-15 – 4.17 – 4.18), and the corresponding 

displacement is computed. 

As expected, the shear deformability is very low for the slenderest 

specimen P2, while it is almost similar for the remaining specimens. For all the 

specimens, the shear stiffness is very high up to diagonal cracking onset, with 

a behavior almost rigid up to first flexural yielding. After first diagonal 

cracking, shear deformation increases with the drift demand as a function of 

the measured inclination of the compressive strut, since all the other 

parameters of equation (4.16) are constant for all the specimens. Note that the 

values of lateral load (V) corresponding to first shear cracking and yielding are 
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very similar for test P2. For this reason, the increase of shear deformation in 

this range of the lateral response is almost negligible. Once yielding condition 

is reached, shear deformation increase proportionally with flexural 

deformations. 

 

  

  

Figure 4.24. Predicted lateral load-shear displacement response 
 

 

Bar slip 

The longitudinal reinforcement in a reinforced concrete column with fixed 

ends subjected to bending may be in tension at the footing-column interface. 

Slip of the reinforcing bars outside the flexure length and in the anchoring 

concrete (that is, in the footing region) will cause rigid-body rotation of the 

column, additive to the rotation calculated from flexural. Sometimes, 

reinforcement slip in footings regions can make a significant contribution to 

the total lateral displacement of a reinforced concrete member; therefore, 
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deformations resulting from reinforcement slip have to be accounted in the 

member analysis. 

As outlined in the section 2.3.2.3, several bar slip models are available in 

literature. In this study, a practice-oriented macro model is used, in lieu of 

complex and computationally micro models. In particular, the model by Sezen 

and Setzler (2008) is adopted. This model assumes a stepped function for bond 

stress (ub) between the concrete and reinforcing steel over the embedment 

length of the bar within the foundation. Based on experimental observations 

(Sezen 2002), the bond stress is taken as 1.0√fc for elastic steel strains and 0.5√fc 

for inelastic steel strains for deformed bars. Under these assumptions, Authors 

computes the rotation due to reinforcement slip (θs) as reported in equation 

(4.19).  


    



s s b
slip s y

b

f d
 for 

8u (d d')  

          


b
slip s y s y s y s y

b

d
( f 2( )(f f )) for 

8u (d d')  

(4.19) 

In equation (4.19): εs and fs are respectively steel deformation and stress of 

the outermost bars layer at the column-foundation section, db is the 

longitudinal bars diameter, ub is the assumed bond stress, εy and fy are 

respectively steel yielding deformation and stress, d is the effective depth, and 

d’ is the center of the compression reinforcement from the extreme 

compression fibers. The column lateral displacement due to reinforcement slip 

is equal to the product between the slip rotation and the column length LV: 

 

slip slip VL    (4.20) 

 

In Figure 4.25 the predicted relationships between moment and slip-

rotation are reported for all the specimens, together with the yielding point. 

Also in this case, all the plots are reported with the same axis limits, in order to 

carry out a comparison of the results between specimens. The predicted 

response is assessed starting from the moment-curvature analysis: for each of 

the two above-described phases (namely before and after the yielding 

condition is reached from longitudinal bars at the base section), the moment 
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values are placed in equation (4.19), and the corresponding displacement is 

computed. The rotation due to reinforcement slip is higher for specimen P2, 

characterized by the higher value of aspect-ratio and whose response was 

dominated by flexural mechanisms. For the remaining specimens, the 

deformation due to slip is almoste comparable. 

 

  

  

Figure 4.25. Predicted moment-slip rotation response 
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The experimental deformability contributions can be assumed as reliable 

up to the peak load, due to the severe damage state characterizing the test 

specimens, which compromised the monitoring system (see section 4.3.2). 

Since, as above discussed, the main goal of the numerical analysis is to 

reproduce the experimental deformability contributions, the numerical lateral 
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model defined in the previous section. A schematic view of the adopted 

numerical model is shown in Figure 4.26. 

 

 

Figure 4.26. Scheme of the adopted three-component numerical model 

 

In Figure 4.27 the monotonic predicted response is reported for each 

deformation component, namely flexure, shear and bar slip, together with the 

global response, defined as the sum of the three components. By observing 

Figure 4.27, the flexural component is predominant for all the specimens, 

particularly for test P2, with the higher aspect ratio. Regarding tests P1 and P4, 

characterized by similar aspect ratio, shear and bar slip contributions are close, 

even if, after yielding condition, the deformation due to shear damage became 

slightly higher. Finally, concerning test P3, on the shorter specimen, flexural 

and shear deformations became very similar after the shear-cracking onset. 
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Figure 4.27. Predicted global response and flexure, shear and bar slip components 

 

In Figure 4.28 and Figure 4.29, the monotonic numerical global response, 

obtained by applying the model described in section 4.6.1, is compared with 

cyclic experimental loops, for short and tall specimens, respectively. 

The monotonic numerical model is able to well reproduce the envelope of 

the experimental global response up to peak condition for all the specimens. 

For the tests P3 and P4, subjected to flexure-shear failure, the numerical model 

slightly overestimates the negative peak load (namely, measured during pull 

phase). This is due to the experimental asymmetry caused by the shear damage 

state: once the peak load is reached during pushing phase, diagonal cracks 

formed cause degradation of strength in the reverse direction (i.e., pull 

direction).  
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(a) 

  
(b) 

Figure 4.28. Numerical vs experimental global response for tests P1 (a) and P2 (b)  
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(a) 

  
(b) 

Figure 4.29. Numerical vs experimental global response for tests P3 (a) and P4 (b) 
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It is very interesting to compare the experimental deformability 

contributions with those numerically obtained. The comparison is depicted 

from Figure 4.30 to Figure 4.33 for all the specimens.  

 

 

   
(a) (b) 

Figure 4.30. Comparison between averaged experimental (a) and numerical (b) 
deformability contributions Tests P1 (shear cracking, yielding, peak load) 

 

 

   
(a) (b) 

Figure 4.31. Comparison between averaged experimental (a) and numerical (b) 
deformability contributions for Tests P2 (shear cracking, yielding, peak load) 
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(a) (b) 

Figure 4.32. Comparison between averaged experimental (a) and numerical (b) 
deformability contributions for Tests P3 (shear cracking, yielding, peak load) 

 

 

  
(a) (b) 

Figure 4.33. Comparison between averaged experimental (a) and numerical (b) 
deformability contributions for Tests P4 (shear cracking, yielding, peak load) 
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the taller specimen P2 is captured by the numerical analysis. Similarly, the 

increasing trend of the shear contribution with the drift demand is well 

represented for all the other specimens. 

The same comparison is depicted in Figure 4.34 in terms of experimental 

and predicted flexural contributions to the total lateral top displacement for all 

the specimens. In this case, the numerical flexural contribution accounts for 

both flexure and fixed-end rotation, in order to be directly compared with the 

corresponding experimental value. On the horizontal and vertical axis are 

reported the experimental and numerical flexural contribution, respectively. 

 

  
(a) (b) 

  
(c) (d) 

Figure 4.34. Comparison between averaged experimental (a) and numerical (b) flexural 
deformability contribution for Tests P1 (a), P2 (b), P3 (c), and P4 (d) 
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experimental and numerical values: all the points are close to the bisector, 

highlighting an almost exact reproduction of the experimental deformability 

contributions. A similar comparison is depicted in Figure 4.35 in terms of shear 

contribution to total top displacement. Also in this case, the shear contibutions 

is well predicted. 

 

  
(a) (b) 

  
(c) (d) 

Figure 4.35. Comparison between averaged experimental (a) and numerical (b) shear 
deformability contribution for Tests P1 (a), P2 (b), P3 (c), and P4 (d) 
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4.7 Summary 

In this chapter, experimental results of cyclic tests on reduced-scale RC 

bridge piers with rectangular hollow cross-section are shown and analyzed. 

Test units were representative of typical Italian bridge piers constructed prior 

to 1980s, and they were designed without earthquake provisions (low 

transverse reinforcement ratio and inadequate seismic details). Given the 

cross-section and the reinforcement details, different aspect ratios were 

considered depending on height of the specimens and loading direction. 

Depending on the aspect ratio, different failure modes were expected, 

namely flexure failure for tall piers and shear failure after flexural yielding for 

short piers. Experimental results, in terms of lateral load versus drift and 

damage evolution showed that: 

• Tests P1 and P2, characterized by a higher aspect ratio (LV/H ≥ 2.5), 

showed flexural failure modes, with an inelastic response controlled by ductile 

mechanisms. Damage evolution was typical of ductile members, with most of 

damage consisting of concrete crushing and longitudinal bars buckling. 

• Test P3, characterized by an aspect ratio LV/H=1.5, showed shear failure 

after flexural yielding. The cyclic response was typical of squat columns, 

governed by shear mechanisms. In fact, damage evolution was characterized 

by significant diagonal cracking since linear phase. Shear failure mode was 

characterized by a large drop in strength (of about 60% respect to maximum 

reached value) related to evident diagonal cracks opening, inclined of about 45 

degrees. 

• Test P4, characterized by an aspect ratio LV/H=2.25, showed shear 

failure after flexural yielding. The cyclic response was characterized by 

flexure-shear interaction. In fact, during non-linear phase damage evolution 

was characterized initially by flexural cracks at the base, for drift values higher 

than Test P3, and later by significant diagonal cracks, up to shear failure. 

An experimental analysis of deformability contributions to the top 

displacement was performed, mainly in order to better understand the 

relevance of taking into account shear deformations for bridge piers 

assessment. From experimental results, it seems possible to identify a relation 

between shear contribution to top displacement (Δs/Δ) and aspect ratio 

(LV/H). In particular, (i) for slenderest specimen P2, maximum value of shear 

contribution was about equal to 11%; (ii) for Test units P1 and P4, 
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characterized by lower similar aspect ratios, about 20% of top displacement 

corresponding to peak load was due to shear deformations; (iii) for squat Test 

unit P3, shear deformability contribution to top displacement was about 32% 

and 45% respectively at yielding and peak load conditions. 

The energy dissipation capacity was analyzed, evaluating the equivalent 

damping ratio and its evolution with ductility, which was compared with a 

common literature formulation usually used for RC bridge piers, highlighting 

a slightly lower energy dissipation capacity in large inelastic field for the tested 

specimens. 

The reported comparison between the observed failure modes and shear 

strength values and the corresponding predictions based on capacity models 

from literature and/or codes provided a useful support to the evaluation of the 

reliability of these models when applied to existing hollow rectangular RC 

piers. From this comparison, it seems clear the need to improve the prediction 

capacity of shear strength models available in codes and literature. This issue 

will be addressed in the Chapter 6. 

The global response is modelled through a three-component numerical 

model, in which flexure, shear and bar slip are considered separately. The 

numerical results show that the adopted model is able to reproduce the 

experimental global response and the deformability contributions, with 

adequate accuracy. 

The tests presented herein can provide a useful contribution to enlarge the 

relatively limited experimental database on existing hollow rectangular RC 

piers. In particular, the experimental analysis of all the sources of 

deformability characterizing cyclic response can be a valid reference for the 

proposal/validation of nonlinear modeling approaches and capacity models 

for seismic assessment of existing bridge structures.  
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Chapter 5  

EXPERIMENTAL RESULTS: 

HOLLOW CIRCULAR RC PIERS 

 

 

 

 

 

This chapter provides a summary of the experimental results of the hollow 

circular cross-section specimens, including damage description and test data 

measured during each test. 

Based on visual observations and recorded test data, the performance of 

each test specimen is analyzed and discussed. For each specimen, the 

measured lateral load-displacement relations and plots of other important test 

parameters are presented. The damage description of specimens and their 

implications are discussed, and the measured response are compared. 

The following sections discuss, first, the global response of each specimen, 

and then the evolution of damage observed during the tests. Experimental 

local behavior, in particular about the main deformability contributions due to 

different deformation mechanisms, later is analyzed and discussed. Finally, the 

hysteretic energy dissipation and the related equivalent damping are 

investigated. Analysis and discussion of the above mentioned experimental 

topics are presented, considering together the two tests in each section in order 

to develop some consideration through comparisons. 
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5.1 Analysis of global response 

The most relevant global results obtained from the two tests are reported 

in this section. In particular, the lateral load-displacement response of tested 

specimens is analyzed. Response curves, in terms of lateral load versus drift 

(i.e. top displacement-to-shear span ratio) are shown and commented. 

5.1.1. Test P5 – Aspect ratio equal to 3.0 

The results in terms of lateral load versus drift response for Test P5 are 

shown in Figure 5.1. The loading history actually applied consisted of eight 

complete sets of three push/pull cycles. The experimental response appears 

quite symmetric during the push/pull cycles. Test P5 exhibited an initial 

uncracked stiffness equal to 67.7 kN/mm, a secant lateral stiffness to first 

cracking of 37.9 kN/mm, while the secant value at the first point of the 

experimental backbone was 17.3 kN/mm. A first reduction of the uncracked 

stiffness was observed for a lateral load of 29 kN, from which some horizontal 

flexural cracks formed up. Lateral stiffness decreased considerably for a drift 

range between 0.20% and 0.67%. In particular, during the third loading step 

(drift = 0.67%), for values equal to 86.7 kN and -86.4 kN of the horizontal force, 

respectively in push and pull directions, specimen reached first yielding 

condition. This was confirmed by longitudinal bars strain measures, provided 

by strain gauges located at the base of the test unit. Steel strain of longitudinal 

bars exceeded yielding strain (εs,y = 2.7‰) both in push and pull directions, for 

drift values of +0.49% and - 0.44%, respectively. Beyond those values, SGs 

measures cannot be considered reliable. Peak load was reached for a drift 

equal to 1.91% for positive (push) loading direction and and -1.87% for 

negative (pull) loading direction. The corresponding peak values of lateral 

load were +108.2 kN and -102.4 kN, respectively. The post-peak response was 

governed by flexure. In fact, it was characterized by a gradual degradation due 

to concrete spalling and buckling of longitudinal bars next to the base section. 

The post-peak backbone evolved along an almost linear branch with a 

softening stiffness (calculated on the envelope of first cycles of V, VI and VII 

loading steps) equal to -10% and -5% of the uncracked stiffness, in positive and 

negative loading direction respectively. Experimental response appeared quite 

symmetric also in inelastic cycles. The intra-cycle strength drop developed 

from 15% to 23% from fifth to seventh loading step. During the last cycles set 
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(drift = 4.90%), a series of sudden intra-cycle strength drops/stiffness 

decreases was observed both in negative/positive direction. Such drops 

corresponded to the failure of outer longitudinal bars in tension due to oligo-

cyclic fatigue caused by buckling/tension cycles. This phenomenon occurred 

when the imposed drift overcame the maximum drift attained during the 

previous cycles set. When the test was interrupted (at the end of the eighth 

loading step at 4.90% drift), the strength reduction respect to peak load 

(evaluated on the backbone of the response) was equal to 40%, both in positive 

and negative directions. Test P5 was characterized by flexural failure. 

 

 
Figure 5.1. Lateral load versus cyclic response (Test P5) 

 

5.1.2. Test P6 – Aspect ratio equal to 2.0 

The results in terms of lateral load versus drift response for Test P6 are 

shown in Figure 5.2. The loading history actually applied consisted of five 

complete sets of three push/pull cycles and a last single push/pull cycle 

corresponding to shear failure. As opposed to previous case, the experimental 

response is characterized by a slight asymmetry during the push/pull cycles. 

This effect, more evident with increasing drift, is associated with the shear 

cracking extension and reversal process. Once a set of cracks is open for a 

given loading direction, the reversal into the opposite direction is partially 

characterized by closing of the previously opened shear cracks. Therefore, for a 
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given imposed horizontal displacement, a stiffness decrease is observed. 

Test P6 exhibited an initial uncracked stiffness equal to 206.8 kN/mm, a 

secant lateral stiffness at first cracking of 133.8 kN/mm, while the secant value 

at the first point of the experimental backbone was 46.8 kN/mm. A first 

reduction of the uncracked stiffness was observed for a lateral load of 45 kN, 

from which some flexural cracks started to occur. A more significant reduction 

was observed for a drift range between 0.16% and 0.60%. In particular, during 

the third loading step (drift = 0.60%), for horizontal force values equal to 138.0 

kN and -133.6 kN, respectively in push and pull directions, specimen reached 

first yielding condition. Longitudinal bars strain measures provided by strain 

gauges located at the base of the test unit confirmed this aspect. Steel strain of 

longitudinal bars exceeded yielding strain (εs,y = 2.7‰) both in push and pull 

directions, for drift values of 0.49% and - 0.52% respectively. SGs measures are 

reported up to values considered to be reliable. 

 

 
Figure 5.2. Lateral load versus cyclic response (Test P6) 
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to 72% was observed, from +149 kN to +42 kN at a drift value of +2.87%. The 

sudden and deep widening of the main shear crack caused such a drop. The 

strength reduction with respect to peak load (evaluated on the backbone of the 

response) was equal to 75%. Test P6 was interested by a shear failure after 

flexural yielding. 

5.1.3. Comparison of global response  

Table 5.1 summarizes experimental first yielding values (V+-, V-y, D+ y, D-y), 

peak values (V+max, V-max, D+ max, D-max) and “ultimate” drifts (D+u, D-u), of 

lateral force and drifts for both positive and negative loading directions. 

Ultimate drifts values were evaluated as those corresponding to a strength 

reduction equal to 20% with respect to the peak load on the experimental 

backbone. Observed failure modes are also reported (F: flexure mode; FS: shear 

failure after flexural yielding). Lateral load-drift envelopes corresponding to 

the first sub-cycles for each loading step are shown in Figure 5.3 for all tests.  

 

 
Figure 5.3. Envelopes of lateral load versus drift response 

 

As expected, it can be observed that lateral strength increases as the aspect 

ratio decreases, fixed the loading direction. Similarly, a reduction of ultimate 
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Specimen P6, characterized by flexure_shear failure, presents a lower value of 

ultimate drift. 

-200

-150

-100

-50

0

50

100

150

200

-6 -4 -2 0 2 4 6

L
a

te
ra

l 
lo

a
d

 [
k
N

]

Drift [%]

Test P5

Test P6



Experimental results: hollow circular RC piers 

 
 

186 

 

 

 

Table 5.1. Yielding, peak and ultimate values of lateral force and drift together with observed failure modes 

Test ID Aspect Ratio V+
y D+

y V-
y D-

y V+
max D+

max V-
max D-

max D+
u D-

u Failure Mode* 

 (-) (kN) (%) (kN) (%) (kN) (%) (kN) (%) (%) (%) (-) 

P5 3.0 86.7 +0.49 -86.4 -0.44 108.2 1.91 -102.4 -1.87 4.18 -4.30 F 

P6 2.0 138.0 0.49 -133.6 -0.52 166.9 1.78 -147.1 -1.80 2.55  FS 

 

+ (-) : push (pull) direction of the applied displacement. 

Vy, D+ 
y, are experimental first yielding values of lateral force and drifts, respectively. 

Vmax, Dmax, are experimental peak values of lateral force and corresponding drifts. 

Du, is the ultimate drift corresponding to a strength reduction of 20% of the peak load on the experimental backbone. 

*  experimental failure mode (F: flexure mode; FS: shear failure after flexural yielding). 
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5.2 Damage evolution and crack pattern 

In this section, the evolution of observed damage with increasing imposed 

displacement is described and related to the above-analyzed lateral load-drift 

response of tested specimens. Damage evolutions and final damage states are 

shown and damage descriptions are summarized in tabular form for each 

loading step. The results are reported for each specimen, separately. 

 

5.2.1. Test P5 – Aspect ratio equal to 3.0 

The evolution with the drift of the damage state is showed in Figure 5.4, 

for the pre-yielding phase, and in Figure 5.5, for the post-yielding phase. Due 

to three-dimensionality of the crack patterns, each damage state is represented 

by four points of view, identified with the cardinal points. Finally, Table 5.2 

presents a summary of damage states. Horizontal hairline cracks, orthogonal 

to loading direction, formed up on the west and wast faces along the first three 

layers of transverse reinforcement during first loading stages, namely at 0.20% 

drift (see Figure 5.4a).  

 

I - Drift 0.20% (a) 

 
II - Drift 0.43% (b) 

 
Figure 5.4. Test P5: evolution of damage (a, b) during pre-yielding phase 



Experimental results: hollow circular RC piers 

 
 

188 

  

III - Drift 0.67% (a) 

 
IV - Drift 0.91% (b) 

 
V - Drift 1.91% (c) 

 
VIII - Drift 4.93% (d) 

 
Figure 5.5. Test P5: evolution of damage (a, d) during post-yielding phase 
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The second loading step (drift = 0.43%) was characterized by a spreading 

of flexural cracks along the specimen’s height, as reported in Figure 5.4b. 

First slight diagonal cracks appeared on the north and south faces as extension 
of the flexural cracks for a drift of 0.67% (see Figure 5.5a), at 96.2 kN in positive 
direction and -96.4 kN in negative direction. For a drift value of 0.91%, the 
existing cracks increased their width and further shear cracks formed as 
extensions of flexural cracks. It is interesting to highlight the pinching effect 
characterizing the hysteretic loops starting from this cycles set, exalted by the 
sudden increase in width of diagonal cracks (see Figure 5.5b). When a drift 
equal to 1.91% was reached, corresponding to peak load, damage at the base of 
the column developed quickly: vertical cracks appeared in concrete cover due 
to longitudinal bars buckling and concrete spalling was observed near to base 
section on west face (negative loading direction), as showed in Figure 5.5c.  

A significant concrete spalling related to intense buckling of longitudinal 

bars within the distance between the base and the first layer of transverse 

reinforcement was observed at 2.92% drift. The concrete cover spalling 

resulted into a strength reduction with respect to the peak load (evaluated on 

the backbone of the response) of about 7% and 3% for positive and negative 

loading respectively.  

 

Cycle Drift (%) Damage description 

1 0.20 Horizontal hairline cracks on the West and East faces 

2 0.43 Spread of horizontal cracks along specimen’s height 

3 0.67 First slight diagonal cracks  

4 0.91 Increase in width of existing cracks and new diagonal cracks  

5 1.91 Longitudinal bars buckling and concrete cover spalling near to base 
section on West face 

6 2.92 Intense buckling of longitudinal bars and significant concrete 
spalling 

7 3.91 Complete concrete cover spalling, intense buckling of longitudinal 
bars and wide diagonal cracks 

8 4.93 Failure in tension of the outer longitudinal bars due to oligo-cyclic 
fatigue 

Table 5.2.  Overview of the evolution of damage during Test P5 

 

During seventh cycles set, for a drift of 3.91%, diagonal cracks 

considerably widened and concrete cover within the distance between the base 

and the first layer of transverse reinforcement completely spalled off, except 
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for a small central portion. This phenomenon is associated to an intra-cycle 

strength degradation equal to about 23% for both loading directions. 

 During the last cycles set (drift = 4.93%), concrete of the compressed 

flanges was completely crashed and concrete cover spalling spread at second 

level of transverse reinforcement (see Figure 5.5d). Test P5 failed in flexure. 

A picture of the final damage state at the base of the column is reported in 

Figure 5.6. 

 
Figure 5.6. Test P5: final damage state at the base of the column 

5.2.2. Test P6 – Aspect ratio equal to 2.0 

The evolution with the drift of the damage state is showed in Figure 5.7, 

for the pre-yielding phase, and in Figure 5.8, for the post-yielding phase. Due 

to three-dimensionality of the crack patterns, each damage state is represented 

by four points of view, identified with the cardinal points. Table 5.3 presents a 

summary of damage states. 

First hairline cracks appeared on the west and wast faces along the first 

three layers of transverse reinforcement during first loading stages, namely at 

0.16% drift (see Figure 5.7a). The second loading step (drift = 0.37%) was 

characterized by a spreading of flexural cracks and the appearance of first 

diagonal cracks as extension of the flexural ones toward compressed zone (see 

Figure 5.7b). More evident diagonal cracks appeared on the north and south 

faces for a drift of 0.60%, at 146 kN in positive direction and -137 kN in 

negative direction. In particular, two diagonal cracks formed from top to down 

opposite corners with an inclination angle of about 42 degrees (see Figure 

5.8a).  

For a drift value of 0.83%, existing shear cracks increased their width, 

particularly two principal ones, and further shear cracks formed in the central 

part of the specimen. It is noteworthy highlighting that, unlike Test P5, no 
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considerable damage was observed on the base zone at this drift level (see 

Figure 5.8b). When a drift equal to 1.82% was reached, corresponding to peak 

load, damage at the base of the column developed quickly: vertical cracks 

appeared in concrete cover due to longitudinal bars buckling and concrete 

spalling was observed in a small portion near to base section along the 

east/west direction, as showed in Figure 5.8c.  

During the subsequent pushing phase, for a drift value of +2.49%, the main 

shear crack opened suddenly up to a width of about 13 mm, along an ideal 

concrete strut with a medium inclination angle of about 42 degrees (see Figure 

5.8d). Shear sliding between the upper and the lower part of the specimen was 

observed, which caused the failure in tension of the circular ties along the main 

diagonal crack and the flexural deformation of the dowel bars involved. 

Test P6 failed in shear after flexural yielding. 

 

I - Drift 0.16% (a) 

 
II - Drift 0.37% (b) 

 
Figure 5.7. Test P6: evolution of damage (a, b) during pre-yielding phase 
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III - Drift 0.60% (a) 

 
IV - Drift 0.83% (b) 

 
V - Drift 1.82 (c) 

 
VIII - Drift 2.87% (d) 

 
Figure 5.8. Test P6: evolution of damage (a, d) during post-yielding phase 
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Cycle Drift (%) Damage description 

1 0.16 Horizontal hairline cracks on the West and East faces 

2 0.37 First slight diagonal cracks on the Nord and South faces 

3 0.60 Increasing in width of existing cracks and new diagonal cracks 

4 0.83 Widening of existing main shear cracks 

5 1.82 
Concrete cover spalling in a small portion near to base section 
along the East/West direction 

6 2.87 Sudden widening of main diagonal crack up to 13 mm 

Table 5.3.  Overview of the evolution of damage during Test P6 

 

Figure 5.9 shows a picture of the final damage state, together with a detail 

of a circular tie failed in tension and the flexural deformation of a dowel bar 

involved along the main diagonal crack and. 

 

  
(a) 

  
(b) 

Figure 5.9. Test P5: final damage state (a) and failure in tension of circular ties involved 
in the main diagonal crack (b) 

5.3 Local behavior 

In this Section, the most significant local measurement data are analyzed 

and discussed. 

5.3.1. Strain of longitudinal reinforcement 

During the experimental tests, strain of both longitudinal and transverse 

reinforcement was monitored by means of strain-gauges (SGs) installed 

according the scheme reported in Figure 3.29. Figure 4.10 shows strain of 

longitudinal bars (εs) during the test for each specimen, until measures can be 
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considered as reliable. Yielding strain (εs, y= 2.7‰) is indicated through a 

dotted line in the diagrams, so it is possible to identify the cycle and the drift 

value at which first yielding was reached. Test P5 reached the first yielding 

condition between second and third loading step, for drift values of +0.49% 

and - 0.44% respectively in push and pull directions, when steel strain of 

longitudinal bars exceeded yielding strain (εs,y = 2.7‰). Beyond those values, 

SGs measures cannot be considered reliable. Test P6 reached the first yielding 

condition during the third loading step, for a drift equal to 0.60%. Longitudinal 

bars strain measures provided by strain gauges located at the base of the test 

unit confirmed that steel strain exceeded yielding strain for drift values of 

0.49% and - 0.52% respectively in push and pull directions. Experimental 

measures related to SGs installed on the longitudinal bars under the base 

section at a depth of 60mm (identified as SG-Down) are analyzed, too, in order 

to investigate about strain penetration into the foundation block.  

 

  
(a) 

 
(b) 

 

  
(c) (d) 

Figure 5.10. Strain of longitudinal bars for Tests P5 (a, b) and P6(c, d) 
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(a) (b) 

Figure 5.11. Strain of longitudinal bars in the footing for Tests P5 (a) and P6(b) 

 

As expected, these measures are smaller than the corresponding located 

above the base section. Also in this case, it is possible to identify the cycle and 

the drift range at which yielding strain is eventually reached. For Test P5, this 

condition was reached during the sixth loading step, corresponding to the first 

cycle after the load peak. For Test P6, it is interesting to note that the shear 

failure after flexural yielding limited strain penetration into the foundation, so 

yielding strain was not recorded. 

5.3.2. Shear cracks monitoring – Test P6 

Focusing on Test P6, as well described in the section 5.2.2, during the 

pushing phase of the last cycle, the main diagonal crack suddenly increased in 

width, causing an irreversible drop in shear strength. Such a phenomenon was 

directly controlled by dedicate monitoring system described in Figure 2.34. 

Figure 5.12 reports the difference between data recorded by two diametrically 

opposed horizontal LVDTs for each horizontal level. 

 

 
Figure 5.12. Shear cracks width – Test P6 
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It can be noted that up to third loading step (drift = 0.60%), the width of 

diagonal cracks is almost negligible and only some diagonal cracks near to 

base section are present. The fifth loading step (drift = 1.82%) is characterized 

by an almost linear increase of the shear cracks width with repetition of the 

three push/pull cycles. During first push phase at +2.87%, for a drift of +2.49% 

a sudden increase in width is observable, corresponding to the widening of 

main shear crack. Maximum width measured is about 13 mm. It is noteworthy 

to underline that the main shear crack is larger in the upper part with respect 

to lower one. So, it seems that the failure mechanism has been characterized by 

a slight rotation as well as a horizontal sliding. 

5.3.3. Flexural and Shear Deformability Contributions 

As already discussed in Section 4.3.2, seismic response of RC elements 

with hollow sections, typical of bridge piers, can be characterized by a 

considerable flexure-shear interaction. Shear deformations may represent a 

considerable portion of the global deflections, limiting ductile energy 

dissipation. 

In order to investigate experimentally this issue, an appropriate 

monitoring system was installed. 

The top displacement of the specimens (Δ) can be interpreted as the results 

of three response mechanisms: flexure (Δf), shear deformation along webs (Δs) 

and fixed-end-rotation due to longitudinal bar slip at column base (Δθ) (see 

Figure 5.13 and Eq. (5.1)). 

 

 
Figure 5.13. Deformability contributions to total displacement 

 

Assuming a uniform curvature distribution along each of the two 

curvature cells, the flexural component Δf was calculated as the sum of the 

Δf Δs Δθ
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rotations measured by vertical LPs multiplied by corresponding distances 

from the top of the column (Eq. (5.2)). 

Strictly speaking, the fixed-end-rotation contribution Δθ is due to the slip 

from the foundation and it cannot be directly evaluated; instead, the base 

rotation θb can be measured by the two LVDTs monitoring vertical 

deformation along the height hb=50 mm from the base section. θb is associated 

to the base crack width including slip from element and from foundation, and 

to flexural deformation along hb. The corresponding displacement Δb was 

calculated according to Eq. (5.3), similar to Eq. (5.2).  

Based on the hypothesis of small angles and uniform shear deformation 

over the measuring panel height, the shear component Δs was estimated using 

Eq. (5.4).  

In Eqs. (5.2) – (5.4), hi, hj, l, d, are respectively heights, width and diagonal 

of the measuring panels; hb is the height of first curvature cell, next to base 

section; δo,i and δe,i, δ1 and δ2 are average values between north and south 

specimen surfaces of vertical and diagonal experimental measurements. 

f b sΔ=Δ +Δ +Δ  
(5.1) 

  
   
   

 
2 i-1

o,i e,i
f i v j i b i

i=1 j=1

δ -δ
Δ = θ L - h +h /2 -h  ; θ =

l
 

(5.2) 

 b b V bΔ =θ L -h /2
 

(5.3) 

 s 1 2

d
Δ = δ -δ

2l  

(5.4) 

Figure 5.14 shows the deformability components as a function of the top 

displacement for both Tests P5 and P6 (until all measures can be considered as 

reliable and for first cycle at each drift level, both in positive and negative 

directions). For Tests P5, damage state evolution led to a loss of some 

instruments, so for these specimens, diagrams stop at peak load drift, while for 

Tests P6 measures are reliable up to failure drift. Global symmetry of the 

response in push/pull direction is almost confirmed also in terms of local 
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deformations.  

 

 
(a) 

 
(b) 

 
Figure 5.14. Experimental deformability contributions to total displacement ratio for 

Test P5 (a) and Test P6 (b) 

 

A slight dissymmetry can be noted as regards shear deformability 

contribution, during the first two cycles of Test P5. This is probably due to a 

slight dissymmetry of crack patterns, which are more developed on the east 

side, i.e. the push direction. For all the tests, flexural deformability contribution 

(sum of Δb and Δf) was predominant respect to shear one. It is interesting to 

note that flexural deformation was distributed over the height since from first 
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cycle (balanced dark and light grey in figure).  It seems possible to identify a 

relation between shear contribution to top displacement (Δs/Δ) and aspect 

ratio (LV/H). In fact, for slenderest specimen (i.e. P5), shear contribution is 

almost constant and very low (namely, Δs/Δ = 4.5%) up to 0.91% drift. 

Corresponding to peak (drift = 1.91%), the increase in width of existing 

diagonal cracks lead to a shear contribution on peak top displacement equal to 

9.4%, which is the maximum value measured during Test P5. Test P6 is 

characterized by shear contribution higher than 10% since second cycle (drift = 

0.37%), when Δs/Δ already reaches a value of 11.0%. Unlike Test P5, Test P6 is 

characterized by an almost linear growing trend. In fact, Δs/Δ ratio reaches an 

average value of 15.3% at yielding cycle and 25.4% at shear failure. 

Another interesting observation about deformability contributions is that 

for Test P6, after flexural yielding, the base contribution Δb/Δ starts to grow (of 

about 10% respect to previous value) together with shear contribution Δs/Δ. 

This is mainly because significant cracks on the specimen were diagonal, while 

flexural dissipative damages were concentrated at the base. On the other side, 

for test P5, Δb/Δ is about constant, probably because flexural cracks were 

distributed along the specimen. 

It is noteworthy to underline that the subdivision of deformations of 

inelastic RC hollow piers into shear and flexural deformations can provide a 

useful link between the experiments and numerical models, particularly if 

beam models are used.  

Of particular interest is the assessment of the shear contribution to lateral 

displacement in the inelastic range, to understand when it is essential to 

consider shear deformations in structural analysis. In this regard, Figure 5.15 

shows the trend of shear contribution Δs/Δ with the drift for all the tests (i.e. 

for different values of the aspect ratio Lv/H), while Figure 5.16 shows the 

averaged (between push and pull direction) experimental deformability 

contributions to total displacement ratios.  

As expected, shear deformation increases when aspect ratio decreases. 

Furthermore, it is possible to observe an almost constant trend of shear 

contribution (Δs/Δ) characterizing ductile specimen P5, and a proportionally 

linear increasing trend for the specimens interested by a shear failure. 

 

 



Experimental results: hollow circular RC piers 

 
 

200 

 
Figure 5.15. Shear deformability contributions for Tests P5 and P6 

 

 

    
(a) (b) 

Figure 5.16. Averaged deformability contributions for Tests P5(a) and P6(b) 

 

5.4 Dissipated energy and equivalent viscous damping 

In this Section, the hysteretic energy dissipated in the presented tests is 

shown and analyzed and equivalent viscous damping is estimated. 

The dissipated energy, calculated as the area underneath the experimental 

lateral force-displacement curve, is shown in Figure 5.17 for all the tests, with 

increasing drift. In particular, Figure 5.17a reports the cumulative dissipated 

energy, whereas Figure 5.17b shows the energy dissipated in each cycle. 
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(a) 

 
(b) 

Figure 5.17. Hysteretic energy dissipation: cumulative dissipated energy (a), energy 
dissipated in each cycle (b) 
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drift value, after that peak value of lateral force was reached. With regard to 

dissipated energy for each cycle, it is possible to note that Test P6 is 

characterized by a drop during the last cycle (drift = 2.87%) of about 48% 

respect to the previous. The reason of such a drop is probably due to the 

sudden development of shear cracks and the reduction of the other more 

dissipative mechanism (as shown in Figure 5.16). Finally, focusing on Test P5, 

dissipated cyclic energy is characterized by a significant increase since the 

fourth cycle (drift = 0.91%), from which the element is in non-linear field 

(yielding of longitudinal bars steel reached during the previous cycle). 

Another interesting way to deal with the experimental dissipated energy is 

through the evaluation of the equivalent damping ratio ξeq, often adopted in 

literature to normalize the dissipated energy (Priestley et al., 2007). 

The equivalent viscous damping accounts for both elastic damping and 

energy dissipation due to hysteresis in nonlinear response caused by the 

inelastic deformations of the structure. This coefficient is widely used in 

displacement-based seismic design or assessment (as in our case, for existing 

structures, e.g. Cardone (2014)), together with a stiffness secant to the 

performance point of interest (Priestley et al., 2007). 

Basically, the value of the equivalent viscous damping ratio can be defined 

as the sum of elastic and hysteretic damping, according to Eq. (5.5). 

eq el hystξ = ξ ξ
 

(5.5) 

The hysteretic damping ξhyst can be obtained equating the energy 

dissipated by a linear viscous damper with the energy dissipated from 

nonlinear behavior. According to this definition, the equivalent viscous 

damping is evaluated herein for each Test. First of all, each cycle i can be 

identified through a maximum value and a minimum value of lateral load (Vi+ 

and Vi-, respectively), and a maximum value and a minimum value of top 

displacement (Δi+ and Δi-, respectively). The lateral load iV is defined as the 

mean between Vi+ and Vi-, and the displacement i  is defined as the mean 

between Δi+ and Δi-. Then, the equivalent damping at each cycle ξeq,i is 

calculated as function of the energy dissipated in each cycle Eh,i (area within 

one complete cycle of stabilized force-displacement response), according to 

Eq. (5.6): 
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h,i
eq,i

i i

E1
ξ = 

2π V Δ


  

(5.6) 

In literature, several expressions have been developed to provide such a 

coefficient as a function of the displacement ductility (μ), based on different 

hysteretic models. Generally, ignoring the period dependency, the equations 

have a common functional form (Blandon and Priestley, 2005), reported in Eq. 

(5.7): 

eq 0 β

1
ξ = ξ + a 1-

μ

 
   
   

(5.7) 

where ξ0 is the initial viscous damping (usually equal to 0.05 for RC 

structures), μ is the ductility, a and β are coefficient based on the hysteretic 

model adopted.  

For RC bridge piers, as indicated by Blandon and Priestley (2005) and 

Kowalsky et al., (1995), the evaluation of the equivalent viscous damping ξeq 

has to be computed by assuming a modified “thin” Takeda hysteresis model 

(with “narrow” loops) in which the unloading coefficient is taken equal to 0.5 

and the post-yield stiffness ratio is assumed to be 5%. Under these 

assumptions, coefficients a and β in Eq. (5.7) are equal respectively to 95/π and 

0.5, as reported in Priestley (2003), leading to Eq. (5.8): 

eq 0.5

95 1
ξ = 5 + 1-

π μ

 
  
   

(5.8) 

In order to perform a comparison between experimental and predicted 

viscous damping ratios, herein, for each specimen, the equivalent damping is 

computed as a function of the displacement ductility (μ). μ is defined as the 

ratio between the maximum imposed displacement in each cycle and the yield 

displacement (Δy). The latter is obtained through a bi-linearization of the 

experimental envelope according to EC8-1 (Annex B.3), by imposing the equal-

area rule until the lateral peak load is reached. Then, a non-linear least square 

regression is performed to obtain the best-fit to the experimental results for the 

parameters a and β, assuming the functional form reported in Eq. (5.7) with 
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initial damping ξ0 = 5%. 

The resulting expression (Eq. (5.9)) is depicted in Figure 5.18 together with 

Eq. (5.8). 

eq 2.2

51 1
ξ = 5 + 1-

π μ

 
  
   

(5.9) 

On average, quite similar values are observed, but the experimental fitting 

is characterized by a steeper increasing trend of the equivalent viscous 

damping for lower ductility values (namely, for μ up to about 4), and a quasi-

constant trend for higher ductility levels. The obtained results seem to 

highlight a lower energy dissipation capacity with respect to the “thin” Takeda 

model hypothesis in large inelastic field. Finally, note that the equivalent 

damping–displacement ductility relationship is strongly influenced by the 

yielding displacement, and, therefore, by the approach followed in its 

calculation. 

 

 
Figure 5.18. Equivalent damping-displacement ductility relationship 
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5.5 Comparison between experimental results and code-
based capacity models 

In this section, the experimental responses of the tests P5 and P6, are 

compared with code-based capacity models. In particular, the aim of such a 

comparison is to evaluate the capability of relevant code-based shear strength 

models in prediction the experimental failure modes, and the shear capacity 

(for specimens failing in shear). As discussed in detail in section 2.3, for an 

adequate assessment of existing RC members, it is crucial the classification, i.e. 

the prediction of the failure mode. It is noteworthy, despite their widespread 

use (bridge piers, piles, offshore platforms), none of the codes addresses 

specialized attention to shear strength of RC hollow core members, both for 

design and assessment (Turmo et al. 2009). As described in section 5.1, based 

on experimental evidence and observed damage, test P5 was characterized by 

a flexure-controlled failure mode (F-mode), and test P6 by a shear failure 

following flexural yielding (FS-mode), hence due to shear strength degradation 

in post-elastic field.  

In the following, the capability of main shear strength capacity models 

from code and literature in predicting such failure modes will be evaluated. 

The considered models have been described in detail in section 2.3.3. 

Therefore, they’re briefly recalled below: 

 FHWA: the model adopted by the U.S. Federal Highway 

Administration provisions document for seismic retrofitting of 

bridges (FHWA, 2006) corresponds to the model proposed by 

Kowalsky and Priestley, (2000) 

 EC8/3: the model adopted by the Eurocode 8 – part 3 (EC8/3, 

2005) corresponds to the model proposed by Biskinis et al., (2004) 

 C617: the model suggested by the Italian Code (Circolare 617, 

2009) for the assessment of shear capacity of bridge columns is a 

slightly modified version of the Original UCSD model (Priestley 

et al., 1994). A 45° instead of a 30° angle truss mechanism is 

assumed, and the degradation coefficient is assumed to vary 

between 0.29 and 0.10 for displacement ductility between 1 and 4 

The degrading shear strength models considered herein require the 

estimation of the expected displacement at yielding, in order to evaluate the 
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displacement ductility, which should be evaluated consistent with the 

procedures proposed or adopted by the respective Authors. Hence, when 

applying the C617 and the FHWA models, the expected displacement at 

yielding is estimated as reported in Priestley et al. (1996): 

 
*

2y

y V y bΔ =  L + 0.022f d
3



 

(5.10) 

where φy* is the curvature at the corner of a bilinear envelope of the 

moment-curvature relationship (Priestley et al., 1996), LV is the shear span, fy is 

the steel yielding strength and db is the diameter of the longitudinal bars. 

When applying the EC8/3 model, the expected displacement at yielding is 

estimated as reported in Fardis (2007): 

y V y y bv
y V

c

L f dL
Δ = + 0.0022 max 0, 1  + L

3 6D 8 f

    
        

 

(5.11) 

where, φy is the curvature at first yielding, fc is the concrete compressive 

strength, and D is the external diameter of the cross section. As discussed in 

section 2.3.1, the behavior of a RC element can be classified based on the ratio 

between plastic shear capacity and degrading shear strength. For this reason, it 

is necessary the evaluation of the plastic load for the specimens. The following 

Table 5.4 reports a comparison between observed and predicted lateral loads at 

first yielding (Vy) and at maximum (Vmax), based on corresponding moments 

My and Mmax evaluated on the basis of a section analysis, assuming the Mander 

et al. (1988) stress-strain model for concrete, and elastic-plastic with strain 

hardening stress-strain relationship for steel. 

 

Test ID 

Experimental Analytical (Anal. - Exp.) / Exp. 

V+
y 

(kN) 
V-

y 

(kN) 
V+

max 

(kN) 
V-

max 

(kN) 
Vy 

(kN) 
Vmax 
(kN) 

yielding 
(%) 

peak 
(%) 

P5 86.7 -86.4 108.2 -102.4 80.1 105.3 -7.3% -2.7% 

P6 138.0 -133.6 166.9 -147.1 120.0 158.0 -10.1% -5.3% 

Table 5.4. Yielding and peak lateral load: experimental vs analytical comparison 

 

A moderate underestimation, on average equal to 8%, is observed between 
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the calculated Vy and the corresponding experimental value (minimum 

between positive and negative) assumed as corresponding to the attainment of 

yielding strain in longitudinal reinforcement; a similar underestimation, on 

average equal to 4%, is observed for Vmax (maximum between positive and 

negative). Note that such a comparison should be carried out mainly for test 

P5, since in test P6 the development of flexural over-strength might have been 

at least partially prevented by the occurrence of shear failure. On that note, the 

predicted failure mode can be derived by comparing the analytical value of the 

yielding (Vy) and peak lateral load (Vmax) with the maximum (non-degraded) 

and minimum shear strength values, as reported in Table 5.5.  

 

Test 
ID 

Analytical FHWA C617 EC8/3 Exp 

Vy 

(kN) 
Vmax 

(kN) 
Max 
(kN) 

Min 
(kN) 

FM 
Max 
(kN) 

Min 
(kN) 

FM 
Max 
(kN) 

Min 
(kN) 

FM FM 

P5 86 103 147 75 FS 187 101 FS 116 91 FS F 

P6 134 167 155 82 S 195 109 FS 135 107 S FS 

Table 5.5. Predicted and observed lateral loads corresponding to flexural strength at 
yielding and maximum and failure mode 

 

In Figure 5.19, the comparison between shear strength envelopes and 

experimental response is reported. In the plots, flexural strength and yielding 

force are also depicted as black horizontal lines. As observed, neither of the 

considered models is able to predict the failure mode for test P5. Conversely, 

only C617 model (Circolare 617, 2009) shows a good capacity of failure mode 

prediction for test P6, whereas, the FHWA (FHWA, 2006) and EC8/3 model 

(EC8/3, 2005) show a lower predictive capacity, due to the conservatism in 

model predictions. Note that the latter model was applied assuming the 

formulations providing shear strength in the case of diagonal tension failure, 

which generally controls the shear failure. Strictly speaking, the displacement 

ductility capacity of RC members failing in shear should not be evaluated from 

the inverse application of the shear strength model because this would not lead 

to a reliable evaluation of the drift at shear failure (Biskinis et al., 2004). Vice-

versa, it is possible to evaluate the predicted degraded shear strength 

corresponding to the observed ductility at failure.  Therefore, for Tests P6, 

showing a shear failure following flexural yielding, Table 5.6 reports the 

failure mode and the shear strength capacity predicted by the considered 
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models (as described, the latter is evaluated corresponding to the observed 

ductility at failure if a FS failure is predicted, otherwise as the non-degraded 

shear strength if a S failure is predicted). The displacement at failure (see Table 

5.6) is evaluated as the displacement corresponding to 20% strength decay on 

the envelope of the experimental lateral load-drift response, for the EC8/3 

model, whereas, for the remaining models, it is assumed as that corresponding 

to the maximum load. The corresponding ductility values are calculated 

depending on the displacement at yielding evaluated consisting with each 

model.  

 
(a) 

 
(b) 

Figure 5.19. Experimental lateral load-drift responses and shear strength envelopes 
predicted according to the considered capacity models for tall specimens 
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Test 
ID 

Experimental FHWA C617 EC8/3 

FM 
Vu 

(kN) 
Du 

(%) 
FM 

VR 

(kN) 
E FM 

VR 

(kN) 
E FM 

VR 

(kN) 
E 

P6 FS 149 2.49 S 121 0.81 FS 109 0.73 S 107 0.72 

Table 5.6. Predicted failure mode and shear strength for Tests P6 

 

In Table 5.6 the error (evaluated as the predicted to experimental shear 

strength ratio) is specified for each of the considered models. A quite large 

shear strength underestimation (of about 20%) characterizes the FHWA model; 

the error is higher for both C617 and EC8/3 models, whose underestimation of 

the experimental shear strength is of about 30%. 
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5.6 Summary 

In this chapter, experimental results of cyclic tests on reduced-scale RC 

bridge piers with circular hollow cross-section are shown and analyzed. Test 

units were representative of typical Italian bridge piers constructed prior to 

1980s, and they were designed without earthquake provisions (low transverse 

reinforcement ratio and inadequate seismic details). Given the cross-section 

and the reinforcement details, different aspect ratios were considered 

depending on height of the specimens and loading direction. 

Depending on the aspect ratio, different failure modes were expected, 

namely flexure failure for tall pier P5 and shear failure after flexural yielding 

for short pierP6. 

Experimental results, in terms of lateral load versus drift and damage 

evolution showed that: 

• Tests P5, characterized by a higher aspect ratio (LV/H = 2.5), showed 

flexural failure modes, with an inelastic response controlled by ductile 

mechanisms. Damage evolution was typical of ductile members, with most of 

damage consisting of concrete crushing and longitudinal bars buckling. 

• Test P6, characterized by an aspect ratio LV/H = 2.0, showed shear 

failure after flexural yielding. The cyclic response was typical of squat 

columns, governed by shear mechanisms. In fact, damage evolution was 

characterized by significant diagonal cracking since linear phase. Shear failure 

mode was characterized by a large drop in strength (of about 75% respect to 

maximum reached value) related to evident diagonal cracks opening, inclined 

of about 42 degrees. 

An experimental analysis of deformability contributions to the top 

displacement was performed, mainly in order to better understand the 

relevance of taking into account shear deformations for hollow bridge piers 

assessment. From experimental results, it seems possible to identify a relation 

between shear contribution to top displacement (Δs/Δ) and aspect ratio 

(LV/H). In particular, (i) for slenderest specimen P5, maximum value of shear 

contribution was about equal to 9.4%; (ii) for squat Test unit P3, shear 

deformability contribution to top displacement was about 15% and 25% 

respectively at yielding and shear failure conditions. 

The energy dissipation capacity was analyzed, evaluating the equivalent 

damping ratio and its evolution with ductility, which was compared with a 
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common literature formulation usually used for RC bridge piers, highlighting 

a slightly lower energy dissipation capacity in large inelastic field for the tested 

specimens. 

The reported comparison between the observed failure modes and shear 

strength values and the corresponding predictions based on capacity models 

from literature and/or codes, provided a useful support to the evaluation of 

the reliability of these models when applied to existing hollow circular RC 

piers. From this comparison, it seems clear the need to improve the prediction 

capacity of shear strength models available in codes and literature. This issue 

will be addressed in the 0. 

The tests presented herein can provide a useful contribution to enlarge the 

relatively limited experimental database on existing hollow circular RC piers. 

In particular, the experimental analysis of all the sources of deformability 

characterizing cyclic response can be a valid reference for the 

proposal/validation of nonlinear modeling approaches and capacity models 

for seismic assessment of existing bridge structures. 
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Chapter 6  

SHEAR STRENGTH AND DEFORMABILITY OF 

RC BRIDGE COLUMNS WITH HOLLOW 

RECTANGULAR CROSS SECTION 

 

 

 

 

 

Hollow section piers are a widespread structural solution for highway 

bridges. While the flexural response of this structural typology can be 

considered completely defined, their shear capacity assessment is still an open 

issue. Quite few experimental studies are available in literature focusing on 

this topic. Moreover, despite their widespread use, none of the current codes 

addresses specific attention to shear assessment of RC hollow core members, 

both for design and assessment. 

From the results of the preliminary comparison, carried out in the section 

4.5 of the present work, between experimental results and main code-based 

shear strength models, the need to assess the effectiveness and the reliability of 

these models for hollow rectangular columns has been highlighted. Moreover, 

the quite recent progress toward displacement-based approaches for design 

and assessment, requires models able to define the drift value beyond which 

shear failure is expected. It has been well established that the shear strength 

models are not adequate for estimating the displacement at shear failure. 

Consequently, during the last decades, several drift-based methods to evaluate 

the shear failure have been proposed. The majority of these models has an 

empirical nature, based on experimental results of buildings columns with 

solid rectangular section, collected in different databases.  

In order to assess the reliability of the existing shear capacity models in 



Shear strength and deformability of RC bridge columns with hollow rectangular cross section 

 
 

214 

predicting the shear failure, in this chapter an experimental database of tests 

on hollow rectangular columns will be collected and integrated with the tests 

presented in this work. Then, a comparison between experimental and 

predicted shear capacity values will be carried out considering the main 

capacity models, both in terms of force and displacement. Based on the results 

of the comparison, some improvements in shear strength assessment are 

discussed and proposed. Finally, a new empirical drift-capacity model based 

on the observations from the column database is developed and proposed. 

6.1 Experimental database 

The assessment of the shear capacity is a crucial issue for existing RC 

columns. While for ordinary columns with solid cross section several capacity 

models are available in literature and codes, concerning hollow rectangular 

columns, none ad-hoc model is suggested in literature and adopted in codes. It 

is clear the need to investigate the applicability of the existing models to this 

structural typology, and to develop some improvements or new proposal. To 

the aim a database of 28 experimental tests is collected, representing the 

experimental state-of-the-art about RC columns with hollow rectangular cross 

section and exhibiting a shear failure, occurred with or without flexural 

yielding. All the considered specimens were tested under unidirectional cyclic 

lateral load in single curvature. They presented a fixed-end at the bottom 

(cantilever scheme) and uniform longitudinal details throughout the height (no 

reinforcement variations, such as bars cut-off).  

The main properties of the collected tests are included in the following 

ranges: 

 Concrete cylindrical compressive strength: 17.0 ≤ fc ≤ 61.1 (MPa) 

 Yield stress of longitudinal reinforcement: 418 ≤ fy ≤ 625 (MPa) 

 Longitudinal reinforcement ratio: 0.88 ≤ ρ’ ≤ 1.88 (%) 

 Yield stress of transverse reinforcement: 363 ≤ fyw ≤ 655 (MPa) 

 Transverse reinforcement ratio: 0.09 ≤ ρ’’ ≤ 0.52 (%) 

 Axial load ratio: 0.05 ≤ P/Ac∙fc ≤ 0.22 (-) 

 Tie spacing to depth ratio: 0.08 ≤ s/H ≤ 0.30 (-) 

 Aspect ratio: 1.50 ≤ LV/H ≤ 3.60 (-) 
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In the previous list, the axial load ratio is evaluated as the ratio between 

the applied axial load P and the product between the concrete compressive 

strength fc and the concrete area Ac (the gross section area minus the void); the 

aspect ratio (LV/H) is defined as the ratio between the shear span LV and the 

cross section depth H (assumed as the dimension along the loading direction); 

the longitudinal reinforcement ratio ρ’ is evaluated with respect to the concrete 

area, namely ρ’= Al /Ac; the transverse reinforcement ratio ρ’’ is computed as 

the ratio between the total area of transverse reinforcement in the loading 

direction and the product of cross-sectional width (assumed as twice the web 

thickness bw = 2tw) times the tie spacing s; fy and fyw are the yielding stresses for 

longitudinal and transverse reinforcement, respectively. 

The original experimental lateral load-deformation relations for the 

selected columns are presented in Appendix 6.  

Table 6.1 shows geometry and reinforcement details of the test specimens 

included in the database. In this table, B is the external width of the column 

cross section, while the remaining terms have been already defined above. 

Table 6.2 shows material properties, characteristic values of lateral force (V) 

and drift ratio (DR, defined as displacement to shear span ratio), and failure 

modes (FM), as defined in the following. 

For the specimens failing in shear after flexure yielding (FS-failure mode), 

the IDRy corresponding to first flexural yielding (i.e., for which the first bar in 

tension reaches the nominal yield stress) is assumed equal to the experimental 

value, if declared. Otherwise, a section analysis is performed, assuming the 

Mander et al. (1988) stress-strain model for concrete, and elastic-plastic with 

strain hardening stress-strain relationship for steel. As a result, the moment My 

corresponding to first yielding condition is computed, from which the 

corresponding lateral load Vy is derived, known the shear span. The DRy is 

derived by the intersection between the horizontal line corresponding to Vy 

and the backbone curve of the global response, namely the force-deformation 

curve that envelopes the entire cyclic response (Figure 6.1). 

The shear strength Vtest is assumed as the maximum value of the lateral 

force reached during the test. The corresponding drift ratio (namely, the 

displacement to shear span ratio) is referred as DRmax. The drift ratio at shear 

failure (DRs) is determined based on the experimental backbone curve. Shear 

failure is conventionally defined by the displacement corresponding to a drop 

in lateral load below 80% of the maximum shear (Vtest). This definition of the 
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shear failure occurrence is consistent with that generally used in literature 

within the context of a displacement-based assessment (Sezen, 2002; Elwood 

and Moehle, 2004; Pujol et al., 1999; Kato and Ohnishi, 2002). 

 

 
Figure 6.1. Definition of the characteristic points on the experimental envelope  

 

When the shear strength does not drop below the 80% of Vtest, the DRs is 

taken as the maximum-recorded displacement, and thus it somehow 

represents a lower bound of the true displacement at shear failure. Note that, 

since all the collected tests were performed under cyclic loadings, two possible 

values of each characteristic point could be considered, eventually different. In 

this study, the considered values are those corresponding to the loading 

direction for which the maximum lateral load is reached. 

Regarding the failure mode definition of the specimens of the database, it 

has been already specified that for all tests, a shear failure occurred, with or 

without flexural yielding. The failure mode definition (namely, S or FS mode) 

is not coherent among the various Authors. Some Authors defined the failure 

mode based on phenomenological aspects (analysis of the damage evolution) 

and capacity model predictions; some others had adequate instrumentation 

(strain gauges on longitudinal bars located at the critical section) to check the 

achievement of yielding. In order to uniform the failure mode definition, an 

unequivocal definition has been used in this study, based on the above-

described values of lateral load (Vy) and drift ratio (DRy) at first yielding. 

Finally, in Table 6.2, the ductility demands (μ), namely the ratios between 

the DR demand and the DRy, are reported for the peak and the shear failure 

conditions, identified as μmax and μs respectively. 
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Table 6.1. Geometry and reinforcement details  

ID Specimen 
H B tw LV s ρ' ρ'' 

(mm) (mm) (mm) (mm) (mm) (%) (%) 

Calvi et al., (2005) 

1 S250 450 450 75 900 75 1.07 0.13 
2 S500 450 450 75 900 75 1.07 0.13 
3 S750 450 450 75 900 75 1.07 0.13 
4 T250 450 450 75 1350 75 1.79 0.25 
5 T500A 450 450 75 1350 75 1.79 0.25 
6 T500B 450 450 75 1350 75 1.79 0.25 
7 T750 450 450 75 1350 75 1.79 0.25 

Delgado, (2009) 

8 PO1-N1 450 450 75 1400 75 1.79 0.20 
9 PO1-N2 450 450 75 1400 75 1.79 0.09 

10 PO1-N3 450 450 75 1400 75 1.79 0.09 
11 PO1-N4 450 450 75 1400 75 1.79 0.09 
12 PO1-N5 450 450 75 1400 75 1.79 0.09 
13 PO1-N6 450 450 75 1400 75 1.79 0.19 
14 PO2-N1 900 450 75 1400 75 1.79 0.20 
15 PO2-N2 900 450 75 1400 75 1.79 0.09 
16 PO2-N3 900 450 75 1400 75 1.79 0.09 
17 PO2-N4 900 450 75 1400 75 1.79 0.09 
18 PO2-N5 900 450 75 1400 75 1.79 0.09 
19 PO2-N6 900 450 75 1400 75 1.79 0.19 

Cassese et al., (2017) 

20 P3 400 600 100 900 120 0.88 0.12 
21 P4 600 400 100 900 120 0.88 0.12 

Mo and Nien, (2002) 

22 HI-2-a 500 500 120 1800 40 1.88 0.52 
23 HI-1-b 500 500 120 1500 40 1.88 0.52 
24 HI-0-b 500 500 120 1500 40 1.88 0.52 

Yeh, Mo and Yang, (2002) 

25 MI1 1500 1500 300 5400 150 1.29 0.28 
26 MI2 1500 1500 300 5400 150 1.29 0.28 

Yeh et al., (2002) 

27 PI2 1500 1500 300 3500 200 1.72 0.26 

Mo et al., (2004) 

28 NI1-b 500 500 120 1500 50 1.88 0.24 
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Table 6.2. Material properties, axial load ratio and characteristic values of the 
experimental response 

ID Specimen 
fc fy fyw νa DRy DRs Vtest FM μmax μs 

(MPa) (MPa) (MPa) (%) (%) (%) (kN) (-) (-) (-) 

Calvi et al., (2005) 

1 S250 35.0 550 550 0.06 0.65 2.18 217 FS 3.4 3.4 
2 S500 23.7 550 550 0.19 0.65 1.48 247 FS 1.2 2.3 
3 S750 32.3 550 550 0.21 0.84 1.30 297 FS 1.3 1.5 
4 T250 30.3 550 550 0.07 1.20 2.71 217 FS 1.9 2.3 
5 T500A 29.7 550 550 0.15 0.95 2.10 209 FS 1.1 2.2 
6 T500B 32.7 550 550 0.14 1.02 2.69 226 FS 2.2 2.6 
7 T750 30.8 550 550 0.22 1.20 2.00 258 FS 1.7 1.7 

Delgado, (2009) 

8 PO1-N1 19.8 625 390 0.11 - 1.72 190 S - - 
9 PO1-N2 27.9 435 437 0.08 - 2.52 130 S - - 
10 PO1-N3 27.9 435 437 0.08 - 2.52 130 S - - 
11 PO1-N4 28.5 560 443 0.08 - 1.79 170 S - - 
12 PO1-N5 28.5 560 443 0.08 - 1.79 170 S - - 
13 PO1-N6 28.5 560 443 0.08 1.20 2.14 210 FS 1.4 1.8 
14 PO2-N1 19.8 625 390 0.07 - 1.73 240 S - - 
15 PO2-N2 27.9 435 437 0.05 - 1.79 190 S - - 
16 PO2-N3 27.9 435 437 0.05 - 1.79 220 S - - 
17 PO2-N4 28.5 560 443 0.05 - 2.14 190 S - - 
18 PO2-N5 28.5 560 443 0.05 - 2.14 200 S - - 
19 PO2-N6 28.5 560 443 0.05 - 2.86 250 S - - 

Cassese et al., (2017) 

20 P3 17.0 540 655 0.05 0.62 1.35 278 FS 2.0 2.2 
21 P4 17.0 540 655 0.05 0.62 2.53 193 FS 3.6 4.1 

Mo and Nien, (2002) 

22 HI-2-a 61.1 476 363 0.13 1.06 4.09 350 FS 1.8 3.9 
23 HI-1-b 50.5 476 363 0.11 1.05 4.62 364 FS 1.7 4.4 
24 HI-0-b 49.7 476 363 0.06 1.01 4.75 302 FS 2.2 4.7 

Yeh, Mo and Yang, (2002) 

25 MI1 33.6 476 480 0.09 1.08 4.67 2350 FS 2.4 4.3 
26 MI2 29.1 476 480 0.21 1.24 4.30 2610 FS 1.9 3.5 

Yeh et al., (2002) 

27 PI2 32.0 418 420 0.08 0.52 2.13 2650 FS 2.6 4.1 

Mo et al., (2004) 

28 NI1-b 20.2 476 405 0.14 1.01 4.23 270 FS 2.1 4.2 

νa: axial load ratio, defined as P/Acfc 
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6.2 Shear strength evaluation 

Seismic bridge design philosophy is to pursue energy dissipation by 

ductile flexural hinges at the piers base, unlike columns used in building 

frames that are typically designed following the weak beam-strong column 

philosophy for seismic resistance (Priestley et al., 1996; Paulay and Priestley, 

1992). Brittle shear failure of bridge piers clearly has to be prevented to avoid 

disastrous collapse, and special attention has to be paid also to shear strength 

degradation with increasing flexural ductility demand. In fact, shear resisting 

mechanisms typical of hollow RC columns are very similar to those 

characterizing tube sections, depending mainly on webs aspect ratio. In 

particular, in terms of degradation mechanisms, small thickness limits the 

confined concrete core, crucial to seismic energy dissipation (Kim et al., 2012). 

As known, reinforced concrete (RC) hollow section piers are a widespread 

structural solution for bridge structures, due to their economic and structural 

convenience. Despite their widespread use, none of the current codes 

addresses specialized attention to shear strength of RC hollow core members, 

both for design and assessment (Turmo et al. 2009). Recent principal 

earthquakes around the world have highlighted the inadequate seismic 

performance of existing hollow piers, generally characterized by poor 

structural detailing and small web thickness (Kim et al., 2012). It becomes clear 

the relevance of a thorough investigation about the predictive capability of the 

models available in literature and codes. In particular, in the following the 

attention will be focused on the shear strength assessment. First, the main 

models available in literature, described in detail in the section 2.3.3, are briefly 

recalled. Then, the experimental shear strengths of the columns reported in the 

database is compared to the strengths calculated according to the considered 

models. Finally, a modification to the concrete contribution on the shear 

strength proposed by Kowalsky and Priestley (2000) is evaluated and 

proposed. 

6.2.1. Considered shear strength models 

The main models available in literature for the shear strength assessment 

are considered with the aim to carry out a comparison with the measured 

shear strength reported in the collected database (see Table 6.2). The analyzed 

models have been described and discussed in details in the section 2.3.3. In the 
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following, these models are recalled, focusing in particular on their 

formulations, in order to simplify the understanding of the comments derived 

from the comparison. 

 

Aschheim and Moehle (1992) 

The shear strength is calculated as the sum of strength contributions from 

transverse reinforcement, Vw, and concrete, Vc. 

The shear strength degradation influences only the concrete contribution, 

Vc, through the degradation factor k decreasing with increasing displacement 

ductility (μ). The contribution of transverse reinforcement, Vw, is computed 

according to the well-known truss analogy. The corresponding formulations 

are recalled below: 

 
(6.1) 

 
(6.2) 

sw yw

w

A f d
V

stan(30 )




 

(6.3) 

where, Ac is the cross-sectional area, Asw is the area of the transverse 

reinforcement, d is the effective depth (distance from extreme compression 

fiber to centroid of longitudinal tension reinforcement), and μ is the ductility 

demand, assumed here as μmax (see Table 6.2) consistently with the model 

assumption. All the remaining terms have been defined above. 

 

Kowalsky and Priestley (2000) 

The shear strength is calculated as the sum of contributions from concrete, 

Vc, transverse reinforcement, Vw, and arch mechanism associated with axial 

load, Vp. The shear strength degradation influences only the contribution due 

to concrete, through the degradation factor k that decreases with increasing 

displacement ductility (μ). The corresponding formulations are reported 
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below: 

 (6.4) 
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where, c is the neutral axis depth, d’ is the distance parallel to the applied 

shear between centers of peripheral hoop, μ is assumed as μmax (see Table 6.2), 

consistently with the model assumption. All the remaining terms have been 

defined above. Note that the effective shear area is assumed here as 0.8 times 

the cross-sectional area (Ac). The coefficient k, is as assumed equal to 0.29 when 

the displacement ductility (μ) is less than 2 and 0.05 when μ is more than 8, 

and decrease linearly between these two values.  

 

Sezen and Moehle (2004) 

Shear strength is computed as the sum of strength contributions from 

transverse reinforcement, Vw, and concrete, Vc. The degradation factor k factor 

multiplies here both transverse reinforcement and concrete contributions. The 

corresponding formulations are reported below: 

c
c c
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
sw yw

s

A f d
V k

s

 

(6.10) 

where all terms have been already defined. The factor k decreases linearly 

from 1 to 0.7 for μ varying between 2 and 6. The ductility demand (μ), is 

assumed here as μs (see Table 6.2) consistently with the model assumption. 

 

Biskinis et al., (2004) 

The shear strength is calculated according to the regression model in 

equations (6.11) to (6.14) accounting for three contributions: the classical 45- 

degrees truss model (Vw), the concrete contribution (Vc), and the axial load 

contribution (VP).  
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where, d0 is the depth of the compression reinforcement layer, and bw is the 

width of the section web (for hollow rectangular equal to twice the thickness). 

Also for this shear model, the coefficient k multiplies both the concrete and the 

transverse steel contributions. It varies linearly between 1.00 (non-degraded 

shear strength) and 0.75 for μ between 1 and 6. Consistently with the model 

assumptions, the ductility demand (μ), is assumed as μs. 
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6.2.2. Comparison of shear strength models with column database 

In this section, the selected shear capacity models are applied to all the 

columns of the database, using the formulations as described above. The 

results of the comparison are reported in Table 6.3, where, in addition to the 

predicted to measured shear strengths ratio (labelled as E in the table, i.e. error 

in the prediction), the failure mode (FMpred) predicted by each of the 

considered models is shown and compared to the experimental corresponding 

values, for all the specimens of the collected database. 

As discussed in detail in the section 2.3.1, the predicted failure mode 

(FMpred) is identified through a comparison between the predicted non-

degraded and residual values of the shear strength (VR,max and VR,min, 

respectively), with the maximum value of the lateral force reached during the 

test (Vtest). When VR,max is lower than Vtest, shear failure occurs limiting flexural 

response (S). When VR,min is higher than Vtest, the flexural response can 

completely develop (F). In all the other cases, the element fails in FS mode.  

The model by Aschheim and Moehle (1992) overestimates the 

experimental shear strength on average. In fact, it is characterized by a mean 

trend of the predicted to measured shear strength ratio (E) equal to 1.29 and a 

coefficient of variation (COV) equal to 0.28. The experimental failure mode is 

well-predicted for the 54% of the specimens. A similar trend characterizes the 

prediction of the model by Kowalsky and Priestley (2000), with a mean of 1.36 

and a slightly less dispersion (COV = 0.23). In this case, the prediction of the 

experimental failure mode is obtained for the 50% of the specimens. Vice-

versa, for the model by Sezen and Moehle (2004), a considerable 

underestimation and a substantially lower dispersion are observed. In 

particular, it is characterized by a mean of E equal to 0.75 and a COV of 0.13. 

This model is able to predict the 54% of the experimental failure modes. 

Finally, the model by Biskinis et al. (2004) is characterized by significant 

underestimation, with a mean of E equal to 0.73, and a quite large dispersion 

(COV of 0.30). In this case, the 50% of the experimental failure modes are well 

predicted. 
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Table 6.3. Shear strength comparison 

 
Experimental Aschheim and 

Moehle (1992) 
Kowalsky and 

Priestley (2000) 
Sezen and 

Moehle (2004) 
Biskinis et al., 

(2004) 

ID 
Vtest FM E* FMpred E* FMpred E* FMpred E* FMpred 

(kN) (-) (-) (-) (-) (-) (-) (-) (-) (-) 

Calvi et al., (2005) 

1 217 FS 0.45 FS 1.00 FS 0.74 FS 0.59 S 
2 247 FS 0.83 S 1.05 FS 0.75 S 0.72 S 
3 297 FS 0.85 S 1.09 FS 0.76 S 0.78 S 
4 217 FS 0.94 FS 1.35 FS 0.74 S 0.72 S 
5 209 FS 1.27 FS 1.53 F 0.85 S 0.93 S 
6 226 FS 0.95 FS 1.43 FS 0.78 S 0.84 S 
7 258 FS 1.02 FS 1.33 FS 0.77 S 0.85 S 

Delgado, (2009) 

8 190 S 0.96 S 1.06 FS 0.61 S 0.60 S 
9 130 S 1.45 FS 1.47 FS 0.81 S 0.80 S 

10 130 S 1.45 FS 1.47 FS 0.81 S 0.80 S 
11 170 S 1.12 FS 1.14 FS 0.62 S 0.62 S 
12 170 S 1.12 FS 1.14 FS 0.62 S 0.62 S 
13 210 FS 0.93 FS 1.12 FS 0.61 S 0.60 S 
14 240 S 1.06 S 1.11 S 0.61 S 0.48 S 
15 190 S 1.44 FS 1.39 FS 0.75 S 0.55 S 
16 220 S 1.24 FS 1.20 FS 0.65 S 0.48 S 
17 190 S 1.45 S 1.39 S 0.76 S 0.55 S 
18 200 S 1.38 S 1.32 S 0.72 S 0.52 S 
19 250 S 1.20 FS 1.21 FS 0.67 S 0.51 S 

Cassese et al., (2017) 

20 278 FS 0.68 FS 1.18 FS 0.86 S 0.56 S 
21 193 FS 0.41 FS 1.00 FS 0.70 S 0.48 S 

Mo and Nien, (2002) 

22 350 FS 1.81 F 2.22 F 1.00 F 1.29 F 
23 364 FS 1.51 FS 1.97 F 0.91 F 1.19 F 
24 302 FS 1.42 FS 2.11 F 0.96 FS 1.16 FS 

Yeh, Mo and Yang, (2002) 

25 2350 FS 1.06 FS 1.54 F 0.72 S 0.78 S 
26 2610 FS 1.21 FS 1.58 F 0.76 FS 0.91 FS 

Yeh et al., (2002) 

27 2650 FS 0.77 FS 1.32 FS 0.74 S 0.80 S 

Mo et al., (2004) 

28 270 FS 0.96 FS 1.45 FS 0.69 FS 0.84 FS 

E*: ratio of predicted to measured shear strengths (Vpred/Vtest) 
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In order to develop some critical comments to these results, it seems 

crucial to investigate deeply about the experimental basis of the considered 

shear capacity models. The model by Biskinis et al. (2004) is a regression model 

calibrated on a very large experimental database including also hollow piers. It 

is adopted by the Eurocode 8 part 3 (EC8/3, 2005) for existing buildings, and it 

is suggested by some literature studies for the shear capacity assessment of 

existing bridge piers (Fardis, 2007; Pinto et al., 2009). Nevertheless, this model 

confirms the underestimating trend highlighted from the experimental to 

predicted comparison related to the tests presented in the present work (see 

section 4.5) also for the comparison with the database.  

The model by Sezen and Moehle (2004), adopted in ASCE/SEI 41-06 

(2006), is based on experimental data from a database including only RC 

columns with solid rectangular cross section, inadequate and poorly detailed 

transverse reinforcement, failing in shear during the inelastic response. This 

may be the reason of the substantial underestimation in prediction the shear 

strength. 

The model by Kowalsky and Priestley (2000) was developed based on 18 

solid circular columns that failed in shear after yielding and 20 solid circular 

columns failing in shear before yielding. It is adopted by the U.S. Federal 

Highway Administration (FHWA, 2006) provisions document for seismic 

retrofitting of bridges. Aschheim and Moehle (1992) calibrated their model on 

a database of 51 scale models of bridge columns with solid square, rectangular 

and circular cross section, failing in shear after flexural yielding. The 

overestimation that characterize these two models may be related to the higher 

value of the concrete contribution to shear strength contribution deriving from 

the only solid sections considered. 

The results of the comparison are depicted from Figure 6.2 to Figure 6.5, in 

which the ratio between predicted and experimental shear strength is 

represented for each capacity model, separately. 
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Figure 6.2. Ratio of predicted to measured shear strength - Aschheim and Moehle 

(1992) 

 

 
Figure 6.3. Ratio of predicted to measured shear strength - Kowalsky and Priestley 

(2000) 
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Figure 6.4. Ratio of predicted to measured shear strength - Sezen and Moehle (2004) 

 

 

 
Figure 6.5. Ratio of predicted to measured shear strength - Biskinis et al., (2004) 
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6.2.3. Proposed modifications to improve shear capacity assessment 

The number of experimental tests on hollow rectangular RC columns 

available in literature is not sufficient to develop a reliable shear capacity 

model. Nevertheless, it seems interesting to discuss about reasonable 

improvements of existing models, based on the comments of the comparison 

results reported in the previous section. In particular, the model by Kowalsky 

and Priestley (2000) adopts a concrete contribution to shear strength 

characterized by an effective shear area of 0.8Ac and a factor β taking into 

account the clamping effect of the longitudinal reinforcement (see Equation 

6.4). In seems reasonable to modify these two terms in order to apply this 

model to hollow rectangular columns. As regards the effective shear area for 

hollow rectangular columns subjected to cyclic shear forces (seismic loading), 

it is well-known that shear stress distribution is substantially concentrated on 

the webs, while the flanges are essentially involved in the flexural response. 

Therefore, for hollow rectangular sections, it can be assumed that only the 

confined concrete of the webs gives a contribution to the shear strength of the 

columns (Figure 6.6). 

The β factor takes into account the beneficial effect of the dowel action of 

the longitudinal reinforcement on the shear resisting mechanisms. Its 

formulation has been calibrated on experimental results of solid circular 

columns. Considering two RC columns, whose cross sections have the same 

external dimensions, but one of them solid and the other characterized by a 

void (hollow section), it is known that the concrete contribution to shear 

strength is higher for solid section. If the β factor is computed as reported in 

Equation 6.6, the apparent effect of having a larger concrete contribution is 

obtained, when, actually, there is less concrete and the same amount of 

reinforcement.  Therefore, it makes more sense to compute β factor on a solid 

section with the same external dimensions of the actual section (Calvi et al., 

2005). By applying these modifications to Equations (6.4) and (6.6), the 

following equations are obtained: 

c c wV k f (2t d)  

 

(6.15) 
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where the effective depth of the rectangular webs d is assumed as 0.8 times 

the gross-section dimension parallel to the applied shear (H), tw is the thickness 

of the webs, A’ is the total area of longitudinal reinforcement, B and H are the 

external dimensions of the cross section perpendicular and parallel to the 

applied shear,  respectively (see Figure 6.6) 

 

 
Figure 6.6. Proposed effective shear area 

 

Table 6.4 summarizes the comparison between the predicted shear 

strength values and failure modes with the corresponding measured ones. The 

proposed model is characterized by a mean trend of the predicted to measured 

shear strength ratio equal to 1.01 and a coefficient of variation (COV), of 0.34. 

Therefore, the capability in prediction of the experimental shear strength is 

substantially improved through the proposed modifications. A considerable 

improvement is observed also in terms of experimental failure mode 

prediction, with an exact prediction for 71% of the specimens. 
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Table 6.4. Shear strength comparison for the proposed modified version of the model 
by Kowalsky and Priestley (2000) 

 Experimental Proposed modified Kowalsky and Priestley (2000) 

ID 
Vtest FM Vpred Vpred/Vtest FMpred 

(kN) (-) (kN) (-) (-) 

Calvi et al., (2005) 

1 217 FS 173 0.80 FS 
2 247 FS 217 0.88 S 
3 297 FS 273 0.92 S 
4 217 FS 229 1.06 FS 
5 209 FS 259 1.24 F 
6 226 FS 261 1.15 FS 
7 258 FS 279 1.08 FS 

Delgado, (2009) 

8 190 S 151 0.80 S 
9 130 S 131 1.01 S 
10 130 S 131 1.01 S 
11 170 S 133 0.78 S 
12 170 S 133 0.78 S 
13 210 FS 173 0.82 FS 
14 240 S 153 0.64 S 
15 190 S 130 0.68 S 
16 220 S 130 0.59 S 
17 190 S 128 0.67 S 
18 200 S 128 0.64 S 
19 250 S 167 0.67 S 

Cassese et al., (2017) 

20 278 FS 278 1.00 FS 
21 193 FS 149 0.77 FS 

Mo and Nien, (2002) 

22 350 FS 658 1.88 F 
23 364 FS 607 1.67 F 
24 302 FS 531 1.76 F 

Yeh, Mo and Yang, (2002) 

25 2350 FS 2997 1.28 F 
26 2610 FS 3517 1.35 F 

Yeh et al., (2002) 

27 2650 FS 2815 1.06 FS 

Mo et al., (2004) 

28 270 FS 322 1.19 FS 
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Figure 6.7 shows the predicted to measured shear strengths ratio for all the 

columns of the database, evaluated by applying the proposed modifications to 

the model by Kowalsky and Priestley (2000). 

 

 
Figure 6.7. Ratio of predicted to measured shear strengths for the proposed modified 

version of the model by Kowalsky and Priestley (2000) 

6.3 Drift at shear failure 

As discussed in the previous section, several models have been developed 

to represent the degradation of shear strength with increasing inelastic 

deformations. Although these models are useful for estimating the column 

capacity for conventional force-based design and assessment, the quite recent 

progress toward displacement-based approaches for design and assessment, 

requires models able to define the drift value beyond which shear failure is 

expected. Ideally, a shear strength model could be used to estimate the drift at 

shear failure, as that at which the idealized backbone curve intercepts the 

shear-failure curve. Actually, it is well established that the shear strength 

models are not adequate for estimating the displacement at shear failure. This 

is because these models have been calibrated in order to obtain the best result 

in terms of shear strength given a displacement ductility. If the inverse process 

is performed, a small variation in shear strength, corresponds to a large change 

in estimated drift ratio at shear failure (Sezen, 2002). This is even truer if the 
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shear failure occurs after flexural yielding, since an almost horizontal line can 

generally represent the nonlinear flexural response of a column (Figure 6.8). 

Moreover, the degrading shear strength models accounts for the benefic 

axial load effect on shear capacity. In fact, shear strength increase as 

compressive axial load increases. Hence, if the shear strength model is used to 

estimate the drift ratio at shear failure, an increase in axial load will result in an 

increase in the predicted drift at shear failure (Elwood and Moehle, 2005). This 

is in contrast with the experimental evidence for which an increase in the axial 

load may reduce the drift ratio at shear failure, as schematically reported in 

Figure 6.9 (it is known how, in general, high axial loads tend to increase the 

strength on one side and to reduce the ductility of the response on the other 

side). 

 
Figure 6.8. Variability of the drift at shear failure using a shear strength model by 

Sezen (2002) – adapted from Elwood and Moehle (2005)  

 

 
Figure 6.9. Variability of the drift at shear failure due to change of axial load – adapted 

from Elwood and Moehle (2005)  

 



Chapter 6 

Shear strength and deformability of RC bridge columns with hollow rectangular cross section 

233 

Consequently, it seems to be clear the reliability of drift-based methods to 

evaluate the shear failure with respect to force-based approaches. Most models 

for estimating the drift capacity of reinforced concrete columns are based on 

the performance of building columns with good seismic detailing. Such models 

assume that the response is dominated by flexural deformations, and use 

estimates of the ultimate concrete and steel strains to determine the ultimate 

curvatures the section can withstand. Generally, these models are not 

applicable to existing reinforced concrete columns, generally characterized by 

poor details and materials, since the degradation of the shear strength begins 

before the flexural deformation capacity can be achieved. In order to assess the 

shear drift capacity, these models cannot be used, since they does not take into 

account shear deformations and damages. 

Various drift capacity models are available in literature, developed and 

proposed during the last decades, all developed for solid building columns. 

The majority of these has an empirical nature, based on experimental results of 

columns collected in different databases. In the following, the main drift 

capacity models are described and discussed. Later, their applicability to 

bridge columns with hollow rectangular sections is investigated. Finally, a new 

empirical model based on the observations from the column database (defined 

in the section 6.1) is developed and proposed. 

6.3.1. Considered drift-at-shear-failure capacity models 

Within the context of a performance-based seismic assessment, it is crucial 

the definition of displacement-based criteria for the identification of shear 

failure of RC members. Vertical members, namely columns, in particular, are 

subjected to higher shear demand during seismic events. Moreover, it is 

known that existing RC columns are generally characterized by poor details 

and materials, so they present high shear vulnerability. With the aim to 

evaluate the drift at shear failure of existing RC columns, various models have 

been developed during the last decades. 

 

Aslani and Miranda (2005) 

Aslani and Miranda (2005) on the basis of 92 cyclic tests of non-ductile RC 

columns with solid cross-section, defined four damage states for flexure-shear 

critical RC columns: light cracking, severe cracking, shear failure and loss of 
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axial carrying capacity. Lognormal fragility functions predict the probability of 

being in each damage state as a function of the column drift ratio, column axial 

load ratio and amount of transverse reinforcement. The third damage state 

(DS3) is used to identify the onset of column shear failure, manifested by the 

characteristic X-cracking and yielding of transverse reinforcement. The related 

equation that provides the drift ratio (DR) capacity at DS3 is reported in 

equation (6.17), where P, Ac, fc, ρ’’ represent axial load, concrete area, 

compressive concrete strength and transverse reinforcement ratio in column, 

respectively.  

1 1
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Elwood (2004) 

Elwood (2004) introduced an empirical model based on observations from 

the experimental database of 50 tests collected by Sezen (2002), characterized 

by observed shear failure after flexural yielding. According to this model, drift 

at shear failure is defined as that where shear resistance drops below 80%of the 

maximum shear recorded (Vtest). When the shear strength does not drop below 

the 80% of Vtest, the IDRs is taken as the maximum displacement.  

Author noted that the drift at shear failure depends on axial load ratio, 

transverse reinforcement ratio and maximum nominal shear stress (ν), the 

latter assumed as the ratio between the maximum experimental shear and the 

cross-sectional area (taken equal to B∙d for solid and square sections). Drift-

capacity model is expressed by the equation (6.18): 
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Zhu et al., (2007) 

Zhu et al. (2007) developed two different drift-capacity models separately 

for shear-dominated and flexural dominated columns. In fact, a database of 
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125 columns representative of typical older reinforced concrete buildings was 

selected. All these columns were characterized by degradation in the lateral 

load capacity, but for some of them the degradation was due to flexural 

deformations (flexural dominated columns), for some others the degradation 

was related to shear failure occurred before or after yielding of the 

longitudinal reinforcement (shear dominated columns). 

In order to determine the column failure mode, therefore the 

corresponding drift-capacity model to be used, Zhu et al. (2007) proposed an 

alternative method, called two-zone classification, based on three columns 

parameters: the plastic shear demand to shear strength ratio (Vp/VR), the aspect 

ratio (LV/d), and the transverse reinforcement ratio (ρ’’). The plastic shear 

demand of the column is determined by its maximum moment capacity 

divided by the shear span, Vp = Mmax/LV, where the maximum moment 

capacity, Mmax, is computed through a moment-curvature analysis for the 

column’s cross section using the Mander concrete constitutive model (Mander 

et al., 1988) and Burns-Siess steel constitutive model (Burns and Siess, 1962). 

The column shear strength, VR, is calculated according to a shear strength 

model proposed by Sezen and Moehle (2004). The columns of the database 

were divided into two zones, namely 85 flexure dominated columns (Zone F, 

i.e. flexural failure mode) and 40 shear dominated columns (Zone S, i.e. 

flexure-shear or shear failure modes).  

The classification was performed according to the flowchart reported in 

Figure 6.10. Columns with very low transverse reinforcement ratio (ρ’ ’≤ 0.002) 

were always categorized into Zone S. The columns for which the aspect ratio 

was less than 2.0 (LV/d ≤ 2) or the plastic shear demand to shear strength ratio 

was higher than 1.05 (Vp/VR ≥ 1.05), were classified into Zone S. The remaining 

were categorized as flexural dominated columns (Zone F). 

Since the mechanics leading to a 20% loss in shear capacity is expected to 

be different for shear-dominated columns and flexure-dominated columns a 

separate drift capacity model is developed for columns failing in each zone. In 

particular, for Zone S columns, the drift at shear failure is influenced by 

transverse reinforcement ratio (ρ’’), hoop spacing ratio (s/d), aspect ratio (LV/d), 

and axial load ratio (P/(Acfc)), according to Authors. 

The formulation expressing the relation between these parameters and the 

drift at shear failure is reported in equation (6.19): 
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DR 2.02 '' 0.025 0.013 0.031

d d A f
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(6.19) 

in which, s is the transverse reinforcement spacing. It is noteworthy to 

observe that the previous equation is referred to the median value of the 

predicted drift at shear failure. 

 

 
Figure 6.10. Flowchart of two-zone column classification method – adapted from Zhu 

et al., (2005)  

6.3.2. Comparison of drift capacity models with the column database 

In this section, the selected drift capacity models are applied to all the 

columns of the database. Before the application of the above-reported 

formulations, some statements are necessary.  

The columns of the databases collected by the Authors described in the 

previous section are characterized by solid square and rectangular cross-

sections. Therefore, with the aim to investigate the applicability of such drift 

capacity models to hollow rectangular columns, the transverse reinforcement 

ratio (ρ’’) and the maximum nominal shear stress (ν) have to be defined in a 

consistent way. 

With regard to the first parameter, two possible definitions of transverse 

reinforcement will be adopted herein, depending on the assumed width bw of 

the section: 

- transverse reinforcement ratio is evaluated assuming bw equal to 

external width of the hollow section (dimension perpendicular to 
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the applied shear force): 

swA
''

B s
 

  
(6.20) 

 

- transverse reinforcement ratio is evaluated assuming bw equal to 

twice the thickness of the webs of the hollow section: 

sw

w

A
''

2 t s
 

   
(6.21) 

 

Two possible definitions of the maximum nominal shear stress (ν) 

(adopted only in the model by Elwood (2004)) will also be adopted, depending 

on the assumed effective shear area: 

- the maximum recorded shear force Vtest is assumed acting on the 

whole cross-sectional concrete area: 

test

c

V

A
 

 
(6.22) 

- the maximum recorded shear force Vtest is assumed acting only on 

the two webs: 

test

w

V

2 t d
 

  
(6.23) 

 

The results of the comparison are depicted from Figure 6.11 to Figure 6.16 

in which the measured DRs is reported on the horizontal axis and the DRs 

predicted by each capacity model, on the vertical axis. In particular, Figure 6.11 

and Figure 6.12 show the comparison for the model by Aslani and Miranda 

(2005), in which transverse reinforcement ratio is computed as reported in 

equations (6.20) and (6.21), respectively. The comparison for the model by 

Elwood (2004) is reported in Figure 6.13 and Figure 6.14, where transverse 

reinforcement ratio is computed as reported in equations (6.20) and (6.21) and 
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maximum nominal shear stress is evaluated according to equations (6.22) and 

(6.23), respectively. Finally, Figure 6.15 and Figure 6.16 show the comparison 

for the model by Zhu et al (2007), assuming transverse reinforcement ratio 

computed as equations (6.20) and (6.21), respectively. In all the figures, mean 

value (Mean) and Coefficient of Variation (COV) for the predicted to measured 

DRs ratios are specified. 

The same results are presented in Table 6.5, where the drift values at shear 

failure (DRs) predicted by each of the considered models are summarized and 

compared to the experimental corresponding values (DRs,exp), for all the 

specimens of the collected database. In this case, the predicted DRs are 

evaluated considering all the different definitions expressed from equations 

(6.20) to (6.23 

For the model by Aslani and Miranda (2005), DRs1 is computed assuming 

eq. (6.21) and DRs2 assuming eq. (6.20). The same assumptions are adopted for 

Zhu et al. (2007). As regards the model by Elwood (2004), DRs1 is evaluated 

assuming equations (6.21) and (6.23), whereas DRs2 assuming equations (6.20) 

and (6.22). The predicted to measured ratio of DRs are labelled as E. Void cells 

in Table 6.5 represent the cases of inapplicability of the corresponding models. 

In fact, the model by Elwood (2004) have to be applied, according to Author, 

only for columns failing in shear after flexural yielding, while the model by 

Zhu et al. (2007) define the drift at shear failure (DRs) only for columns 

classified as shear failing (Zone S). 

None of the analyzed models is able to predict the experimental values of 

drift at shear failure with adequate accuracy. 

The model by Elwood (2004) underestimates the experimental drift at 

shear failure on average, both considering only webs and whole cross section. 

In fact, in the first case (DRs1) the mean of the predicted to measured ratio (E1) 

is 0.81, while in the latter case (DRs2), the mean of E2 is equal to 0.88, slightly 

better. In both the cases high dispersion in the prediction is observed, with a 

coefficient of variation, evaluated as the ratio between the standard deviation 

of E and the mean of E, of about 0.30. This model cannot be applied to eleven 

columns since they are characterized by brittle shear failure (before yielding of 

longitudinal reinforcement).  
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Figure 6.11. Predicted vs measured drift ratio at shear failure (DRs) - Aslani and 

Miranda (2005) 

 

 
Figure 6.12. Predicted vs measured drift ratio at shear failure (DRs) - Aslani and 

Miranda (2005) 
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Figure 6.13. Predicted vs measured drift ratio at shear failure (DRs) – Elwood (2004) 

 

 
Figure 6.14. Predicted vs measured drift ratio at shear failure (DRs) – Elwood (2004) 
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Figure 6.15. Predicted vs measured drift ratio at shear failure (DRs) – Zhu et al. (2007) 

 

 
Figure 6.16. Predicted vs measured drift ratio at shear failure (DRs) – Zhu et al. (2007) 
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Table 6.5. Drift at shear failure comparison 

  Aslani and Miranda (2005) Elwood (2004) Zhu et al., (2007) 

ID 
DRs,exp DRs1 DRs2 E1 E2 DRs1 DRs2 E1 E2 DRs1 DRs2 E1 E2 

(%) (%) (%) (-) (-) (%) (%) (-) (-) (%) (%) (-) (-) 

Calvi et al., (2005) 

1 2.18 2.59 1.54 1.19 0.71 1.88 2.20 0.86 1.01 2.79 2.62 1.28 1.20 

2 1.48 1.56 1.00 1.05 0.68 1.00 1.57 0.68 1.06 2.40 2.23 1.62 1.51 

3 1.30 1.47 1.00 1.13 0.77 0.89 1.49 0.69 1.15 2.34 2.17 1.80 1.67 

4 2.71 3.03 2.08 1.12 0.77 2.24 2.28 0.83 0.84 4.63 4.30 1.71 1.59 

5 2.10 2.45 1.39 1.16 0.66 2.09 2.11 1.00 1.00     

6 2.69 2.53 1.48 0.94 0.55 2.08 2.12 0.77 0.79 4.44 4.10 1.65 1.52 

7 2.00 2.09 1.08 1.05 0.54 1.60 1.76 0.80 0.88 4.19 3.85 2.10 1.93 

Delgado, (2009) 

8 1.72 2.51 1.45 1.46 0.84 - - - - 4.59 4.32 2.67 2.51 

9 2.52 2.11 1.10 0.84 0.43 - - - - 4.48 4.35 1.78 1.73 

10 2.52 2.11 1.10 0.84 0.43 - - - - 4.48 4.35 1.78 1.73 

11 1.79 2.13 1.11 1.19 0.62 - - - - 4.48 4.36 2.51 2.44 

12 1.79 2.13 1.11 1.19 0.62 - - - - 4.48 4.36 2.51 2.44 

13 2.14 2.77 1.74 1.29 0.81 1.98 2.18 0.93 1.02 4.67 4.42 2.18 2.06 

14 1.73 2.90 1.26 1.68 0.73 - - - - 4.72 4.39 2.74 2.54 

15 1.79 2.56 1.00 1.43 0.56 - - - - 4.57 4.41 2.56 2.47 

16 1.79 2.56 1.00 1.43 0.56 - - - - 4.57 4.41 2.56 2.47 

17 2.14 2.58 1.00 1.20 0.47 - - - - 4.57 4.42 2.13 2.06 

18 2.14 2.58 1.00 1.20 0.47 - - - - 4.57 4.42 2.13 2.06 

19 2.86 3.11 1.52 1.09 0.53 - - - - 4.76 4.45 1.67 1.56 

Cassese et al., (2017) 

20 1.35 2.74 2.11 2.03 1.56 1.86 2.06 1.38 1.52 1.90 1.78 1.40 1.32 

21 2.53 2.74 1.71 1.08 0.68 1.75 2.30 0.69 0.91 2.80 2.64 1.11 1.04 

Mo and Nien, (2002) 

22 4.09 3.12 2.54 0.76 0.62 3.70 3.05 0.90 0.75 - - - - 

23 4.62 3.25 2.73 0.70 0.59 3.61 3.03 0.78 0.66 - - - - 

24 4.75 3.55 3.21 0.75 0.68 3.94 3.28 0.83 0.69 - - - - 

Yeh, Mo and Yang, (2002) 

25 4.67 2.95 2.14 0.63 0.46 2.66 2.52 0.57 0.54 - - - - 

26 4.30 2.21 1.34 0.52 0.31 2.12 2.08 0.49 0.48 - - - - 

Yeh et al., (2002) 

27 2.13 3.02 2.23 1.42 1.05 2.43 2.41 1.14 1.13 - - - - 

Mo et al., (2004) 

28 4.23 2.48 1.77 0.59 0.42 2.16 2.29 0.51 0.54 4.62 4.37 1.09 1.03 

   Mean 1.10 0.65  Mean 0..81 0.88  Mean 1.95 1.85 

   COV 0.31 0.37  COV 0.27 0.30  COV 0.26 0.27 
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The model by Zhu et al. (2007) considerably overestimates the 

experimental drift at shear failure. In fact, both considering only webs and 

whole cross section, the mean of the predicted DRs is higher than 1.85, with a 

relatively high dispersion (COV of about 0.30). Moreover, this model cannot be 

applied to seven specimens, classified as flexural-dominated.  Finally, for the 

model by Aslani and Miranda (2005) different prediction are obtained 

depending on the assumed transverse reinforcement ratio (ρ’’). When ρ’’ is 

computed according to eq. (6.21), namely considering only the webs of the 

cross section, a better prediction is obtained, with a mean of 1.10. Conversely, 

when ρ’’ is computed according to eq. (6.20), this model considerably 

underestimates the experimental DRs (mean equal to 0.65). In both the cases, 

high dispersion in prediction is observed, with COV higher than 0.30. 

6.3.3. Proposed drift capacity model 

The comparison reported in the previous section showed that none of the 

considered models is able to predict the experimental values of drift at shear 

failure with adequate accuracy. Moreover, high dispersion in the prediction 

characterizes all the models. Therefore, in this section, an ad-hoc drift capacity 

model to predict the shear failure of hollow rectangular columns is developed 

and proposed. The goal of developing a new model is to reduce the coefficient 

of variation and mean error prediction, providing a simple relationship that 

identifies the critical parameters influencing the drift at shear failure for shear-

critical hollow bridge columns. First, several structural key parameters, 

potentially affecting the shear response of hollow rectangular columns, are 

identified. They are listed below: 

 geometrical transverse reinforcement ratio (ρ’’) 

 mechanical transverse reinforcement ratio (ω’’= ρ’’fyw/fc) 

 geometrical longitudinal reinforcement ratio (ρ’) 

 aspect ratio (LV/H) 

 tie spacing to depth ratio (s/H) 

 axial load ratio (P/Acfc) 

 maximum nominal shear stress (ν = Vtest/2twd) 

 width to thickness ratio (B/2tw) 

 void to solid area ratio (Avoid/Ac) 
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(a) 

(b) 

(c) 

Figure 6.17. Effect of key parameters on drift at shear failure (DRs) – (1) 
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(a) 

(b) 

 (c) 

Figure 6.18. Effect of key parameters on drift at shear failure (DRs) – (2) 
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(a) 

(b) 

(c) 

Figure 6.19. Effect of key parameters on drift at shear failure (DRs) – (3) 
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Figure 6.17, Figure 6.18, and Figure 6.19 compare the drift ratio at shear 

failure (i.e., the displacement at shear failure divided by the height of the 

column) with the selected key parameters. By observing the plots, considerable 

variability in the results can be noted and clear relationships can be identified 

only for some of the analyzed key parameters. The data in Figure 6.17a suggest 

that columns with higher transverse reinforcement ratios, ρ’’, tend to reach 

larger drifts at shear failure compared with columns characterized by lower 

transverse reinforcement ratios. In contrast, there is no clear relationship 

between the mechanical transverse reinforcement ratio, ω’’, and the drift at 

shear failure (Figure 6.17b). Therefore, it seems that for the specimens included 

in the database, the drift ratio may be better correlated to the amount of 

transverse steel rather than to the steel strength. The effect of the dowel action 

of longitudinal reinforcement does not seem to influence the drift at shear 

failure (Figure 6.17c). Actually, such a result may be related to the limited 

variability of longitudinal reinforcement ratio, ρ’, for the columns in the 

database. Almost clear relationship can be observed between the aspect ratio 

and the shear drift capacity (LV/H) in Figure 6.18a. In fact, the higher the aspect 

ratio, the lower the drift at shear failure, according to a linear relationship. The 

identified relationship between transverse reinforcement ratio and drift at 

shear failure is also confirmed in Figure 6.18b, in which a decreasing trend of 

DRs can be identified with increasing tie spacing-to-depth ratio (s/H). Also in 

this case, the small variability of this parameter within the database leads to a 

not so clear trend. Between axial load ratio (P/Acfc) and drift at shear failure no 

clear relationship is observable. In fact, the mean trend is almost horizontal. 

However, a slight tendency of DRs to reduce with increasing axial load ratio 

can be identified (Figure 6.18c), as expected. The clearest relationship can be 

observed in Figure 6.19a, where an almost clear linear decreasing trend of DRs 

is identified with increasing maximum nominal shear stress (ν). Finally, no 

relationship is identified between width to thickness ratio (B/2tw) or void to 

solid area ratio (Avoid/Ac), and drift at shear failure (Figure 6.19b and Figure 

6.19c). 

Then, the key parameters influencing the drift at shear failure are 

transverse reinforcement ratio (ρ’’), aspect ratio (LV/H), maximum nominal 

shear stress (ν), and axial load ratio(P/Acfc). Based on this observation, two 

different simple empirical expressions are proposed to estimate the drift ratio 

at shear failure. The first one is expressed by the following equation: 
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(6.24) 

where LV is the column shear span, and H is the external dimension of the 

cross section along shear force direction. Transverse reinforcement ratio (ρ’’) 

and maximum nominal shear stress (ν) are evaluated according to the 

following equations: 

 
  

 

sw

w

A
'' ( )

2 t s   
(6.25) 

 


0.5test

w

V
(MPa )

2 t d   
(6.26) 

The coefficients in Equation (6.24) were chosen based on a least-squares fit 

of the data. In equations (6.25) and (6.26), d is assumed as 0.8∙H.  Figure 6.20 

compares the drift at shear failure (DRs) evaluated trough the equation (6.24) 

with the corresponding experimental value, from the database.  

 

 
Figure 6.20. Comparison of calculated drift ratio at shear failure using Equation (6.24) 

with results from the hollow rectangular column database. 
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The accuracy in the prediction is considerably improved with respect to 

the models considered in the section 6.3.2. The mean of the calculated drift 

ratio divided by the measured drift ratio is 1.04, the coefficient of variation 

(COV) is 0.20. Note that the calculated drift ratio was determined using the 

maximum experimental shear stress.   

In order to use eq. (6.24) for the seismic assessment of existing reinforced 

concrete columns with hollow rectangular section, it is necessary to define a 

value of shear strength for the calculation of the maximum nominal shear 

stress (ν). To this aim, it seems reliable, first, to classify the column by using the 

model by Kowalsky and Priestley (2000) with the modifications proposed in 

equations (6.15) and (6.16). Defined as Vp the plastic shear capacity (namely, 

the flexural capacity Mp divided by the shear span LV), if Vp is lower than the 

minimum degraded shear strength (VR,min), than no shear distress should be 

expected, so there is no need to compute DRs. Otherwise, the DRs may be 

computed by assuming in eq. (6.26) Vtest equal to Vp, if flexure-shear failure is 

expected, and the maximum non-degraded shear Vp strength, if shear failure is 

expected. Note that the application of the proposed empirical drift capacity 

model should be limited to hollow rectangular columns representative of those 

included in the database, namely, whose properties are included into the 

variability ranges defined in section 6.1. 

Analyzing the relationships between key parameters and measured drift 

ratios at shear failure, it is possible to develop another empirical expression for 

the assessment of the drift ratio at shear failure, independent from the 

maximum nominal shear stress (ν). In this case, in fact, the considered key 

parameters are transverse reinforcement ratio (ρ’’), aspect ratio (LV/H), and 

axial load ratio (P/Acfc). Based on a least-squares fit to the data, the following 

empirical expression is proposed: 

v
s

c c

L5.8 1.4 P 1.3
IDR 5.7 ''

1000 H 100 A f 1000
    

 
(6.27) 

where the transverse reinforcement ratio (ρ’’) is evaluated according to eq. 

(6.25). Figure 6.21 compares the drift at shear failure (DRs) evaluated trough 

the equation (6.27) with the corresponding measured, from the database. 

The accuracy in the prediction for eq. (6.27) is slightly lower than eq. (6.24), 

but it can still be considered adequate with respect to the models considered in 
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the section 6.3.2. In fact, the mean of the calculated drift ratio divided by the 

measured drift ratio is 1.05; the coefficient of variation (COV) is 0.23. 

Eq. (6.27) could be more practice-oriented since only geometrical, 

reinforcement details and axial load ratio are required to compute the expected 

drift at shear failure. Engineering judgement suggests that also in this case, 

before using eq. (6.27) for seismic assessment of existing reinforced concrete 

columns with hollow rectangular section, it is necessary to carry out a 

classification by using the model by Kowalsky and Priestley (2000) with the 

modifications proposed in equations (6.15) and (6.16). If shear failure is 

expected (with or without flexural yielding), then eq. (6.27) can be applied to 

compute the drift at shear failure. 

 

 
Figure 6.21. Comparison of calculated drift ratio at shear failure using Equation (6.27) 

with results from the hollow rectangular column database. 
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6.4 Summary 

This chapter has been focused on the assessment of the shear capacity of 

hollow rectangular columns, both in terms of strength and displacement. To 

this aim, an experimental database of tests on hollow rectangular columns 

subjected to shear failure, with or without flexural yielding, has been collected.  

Several main shear strength models, described in detail in section 2.3.3, 

have been selected and applied to all the database columns. Based on the 

results of the comparison between predicted shear strengths and experimental 

response, some critical aspects have been identified. Adopting the model by 

Kowalsky and Priestley (2000), some modifications have been discussed in 

order to improve the reliability of this model for the applicability to hollow 

rectangular columns. In particular, the improvements concern the concrete 

contribution to the shear strength: different definitions of effective shear area 

and dowel-action contribution have been proposed. 

Within the context of a displacement-based approach for design and 

assessment of bridges, it is crucial to predict the displacement corresponding 

to shear failure. To this aim, several drift-capacity models have been developed 

during the last decades. All these models are based on empirical formulations 

calibrated on experimental results of building columns with solid cross-

section. The effectiveness of these models when applied to hollow rectangular 

columns has been investigated for all the columns of the collected database. 

The results of this comparison show that existing models are not adequate to 

assess drift at shear failure of hollow rectangular columns. For this reason, 

based on the database data, new drift capacity models have been developed, 

characterized by adequate and less scattered predictions.  
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Appendix 6: experimental responses of the columns 

considered in the database 

During the last two decades, a number of researchers carried out 

experiments to investigate the seismic behavior of RC bridge columns with 

hollow rectangular cross section. 

The test parameters included column aspect ratio, material properties, 

details and amount of longitudinal and transverse reinforcement, axial load 

ratio. This appendix provides a summary of these experiments, while a 

detailed description can be found in the section 2.1.  

In particular, the recorded lateral load-displacement responses are 

provided in this appendix, for all the tests considered in the database 

presented in the section 6.1. The test data reported here represent the basis of 

comparisons and proposals presented in Chapter 6. 

 

 

 
Figure 6.22. Lateral load-displacement relations (Yeh, Mo and Yang, 2002) 
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Figure 6.23. Lateral load-displacement relations (Mo and Nien, 2002) 

 
Figure 6.24. Lateral load-displacement relations (Yeh et al., 2002) 

 
Figure 6.25. Lateral load-displacement relations (Mo et al., 2004) 
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Figure 6.26. Lateral load-displacement relations (Delgado, 2009) – (1) 
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Figure 6.27. Lateral load-displacement relations (Delgado, 2009) – (2) 
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Figure 6.28. Lateral load-displacement relations (Delgado, 2009) – (3) 
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Figure 6.29. Lateral load-displacement relations (Calvi et al., 2005) 

 

  



Shear strength and deformability of RC bridge columns with hollow rectangular cross section 

 
 

258 

Reference 

Aschheim M. and Moehle J. P. (1992) Shear strength and deformability of RC bridge columns 

subjected to inelastic cyclic displacements. Rep. No. UCB/EERC-92/04, Earthquake 

Engineering Research Centre, University of California at Berkeley, Berkeley, CA, 100 pp. 

Aslani H., Miranda E. (2005). Probabilistic Earthquake Loss Estimation and Loss Disaggregation in 

Buildings, Doctoral Dissertation, Stanford University. 

Biskinis D.E., Roupakias G.K., Fardis M.N. (2004). Degradation of shear strength of reinforced 

concrete members with inelastic cyclic displacement. ACI Structural Journal, 101(6):773–83. 

Calvi G. M., Pavese A., Rasulo A., Bolognini D. (2005) Experimental and numerical studies on the 

seismic response of RC hollow bridge piers. Bulletin of Earthquake Engineering; 3(3): 267-

297. 

Cassese P., Ricci P., Verderame G.M. (2017). Experimental study on the seismic performance of 

existing reinforced concrete bridge piers with hollow rectangular section. Engineering 

Structures (under review). 

Delgado, P. (2009). Avaliação da Segurança Sísmica de Pontes (Doctoral dissertation, Ph. D., 

FEUP, 2009 (in Portuguese) (http://ncrep. fe. up. pt/web/artigos/PDelgado_PhD_Thesis. 

pdf)). 

Elwood K. J. Modelling failures in existing reinforced concrete columns. Canadian Journal of Civil 

Engineering 31.5 (2004): 846-859. 

Elwood K. J., Moehle J. P. (2005). Drift capacity of reinforced concrete columns with light 

transverse reinforcement. Earthquake Spectra, 21(1), 71-89. 

Fardis M. N. (2007). LESSLOSS–Risk mitigation for earthquakes and landslides. Guidelines for 

displacement-based design of buildings and bridges. Report n 5/2007." (2007). 

Kato, D., and Ohnishi, K., 2002. Axial load carrying capacity of R/C columns under lateral load 

reversals, Third U.S.-Japan Workshop on Performance-Based Earthquake Engineering 

Methodology for Reinforced Concrete Building Structures, Seattle, WA, PEER Report 

2002/02, Pacific Earthquake Engineering Research Center, University of California, Berkeley, 

CA, pp. 247–255. 

Kim IH, Sun CH, Shin M. (2012) Concrete contribution to initial shear strength of RC hollow 

bridge columns. Structural Engineering and Mechanics; 41(1): 43-65. 

Kowalsky M.J. and Priestley M.J.N. (2000) Improved analytical model for shear strength of circular 

reinforced concrete columns in seismic regions. ACI Structural Journal. 97(3), 388–396. 

Mander JB, Priestley MJN, Park R. Theoretical stress-strain model for confined concrete. ASCE 

Journal of Structural Engineering 1988, 114(8): 1804-1826. 

Mo Y. L. and Nien I. C. (2002). Seismic performance of hollow high-strength concrete bridge 

columns. Journal of Bridge Engineering, 7(6), 338-349. 

MoY. L., Yeh Y. K., Hsieh D. M. (2004). Seismic retrofit of hollow rectangular bridge columns. 

Journal of Composites for Construction, 8(1), 43-51. 

Paulay T, Priestley MJN. (1992) Seismic Design of Reinforced Concrete and Masonry Buildings. 

New York: John Wiley & Sons. 

Pinto P. E., Lupoi A., Franchin P. (2009). Valutazione e consolidamento sismico dei ponti esistenti. 

IUSS Press.(in italian) 



Chapter 6 

Shear strength and deformability of RC bridge columns with hollow rectangular cross section 

259 

Priestley MJN, Seible F, Calvi GM. (1996) Seismic design and retrofit of bridges. New York: John 

Wiley & Sons. 

Pujol, S., Ramirez, J. A., and Sozen, M. A., 1999. Drift capacity of reinforced concrete columns 

subjected to cyclic shear reversals, Seismic Response of Concrete Bridges, SP-187, American 

Concrete Institute, Farmington Hills, MI, pp. 255–274. 

Sezen H. (2002). Seismic Response and Modeling of Lightly Reinforced Concrete Building 

Columns, Ph.D. dissertation, Department of Civil and Environmental Engineering, University 

of California, Berkeley. 

Sezen H. and Mohele J.P. (2004). Shear Strength Model for Lightly Reinforced Concrete Columns. 

ASCE Journal of Structural Engineering, 130(11), 1692-1703. 

Turmo J, Ramos G, Aparicio AC. (2009) Shear truss analogy for concrete members of solid and 

hollow circular cross section. Engineering Structures, 31(2): 455-465. 

Yeh Y. K., Mo Y. L., Yang C. Y. (2002). Full-scale tests on rectangular hollow bridge piers. 

Materials and Structures, 35(2), 117-125. 

Yeh, Y. K., Mo, Y. L., & Yang, C. Y. (2002). Seismic performance of rectangular hollow bridge 

columns. Journal of Structural Engineering, 128(1), 60-68. 

Zhu L., Elwood K. J., Haukaa T. (2007). Classification and seismic safety evaluation of existing 

reinforced concrete columns. Journal of Structural Engineering, 133(9), 1316-1330. 

 



 

 



 

261 

Chapter 7  

SHEAR STRENGTH OF RC BRIDGE COLUMNS 

WITH HOLLOW CIRCULAR CROSS SECTION 

 

 

 

 

Hollow section piers with a circular shape are widespread for highway 

bridges, because its lateral response under wind and seismic loads is similar in 

any direction. While the flexural response of this structural typology can be 

considered completely understood, the shear strength assessment is still an 

open issue. It can be said that this problem has been more or less ignored, so 

far, by the experimental literature; in fact, only one experimental study is 

available in literature focusing on the experimental shear strength assessment 

of RC bridge columns with hollow circular section. 

From the results of the preliminary comparison, carried out in the section 

5.5 of the present work, between experimental results and main code-based 

shear strength models, the need to evaluate the effectiveness and the reliability 

of these models for hollow circular columns has been highlighted. To this aim, 

in this chapter an experimental database will be collected and integrated with 

the tests presented in this work. Then, a comparison will be carried out, 

between experimental and predicted shear strength values. Finally, some 

improvements in shear strength assessment are discussed and a new proposal 

is carried out and assessed. 
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7.1  Experimental database 

Hollow section piers are a very popular structural solution for reinforced 

concrete (RC) bridge structures, due to their economical higher efficiency with 

respect to solid sections. In particular, RC piers with hollow circular cross 

section are widespread for highway bridges, because its lateral response under 

wind and seismic loads is similar in any direction. This structural typology is 

in fact extensively used in Europe and in Japan since the early seventies 

(Priestley et al., 1996). While it seems evident the advantage of using hollow 

sections in viaducts with very tall piers, where the weight of the vertical 

members is no longer negligible compared to that of the superstructure, a little 

less immediate is the case of short piers. Short hollow columns are often used 

when high stiffness is needed, since section diameter can be increased without 

causing construction problem related to internal cracking, due to the hydration 

process (Ranzo and Priestley, 2001). In the past, hollow circular columns were 

typically designed with two layers of reinforcement and crossties. This aspect 

represented a significant inconvenience in terms of time needed to place that 

type of reinforcement, and it was not counterbalanced by significantly 

improved performance. Therefore, hollow circular columns with a single 

reinforcement layer started to spread for the construction of bridge piers, 

chimneys, pipes and other structures (Turmo et al. 2009). Several experimental 

studies have shown that the performance attainable with only one layer of 

reinforcement near the outside face is ductile, if moderate axial load is applied 

and medium-low ratios of longitudinal reinforcement are used (Zahn et al., 

1990; Hoshikuma and Priestley, 2001). While the flexural response of this 

structural typology has been investigated enough through some experimental 

studies (Zahn et al., 1990; Hoshikuma and Priestley, 2001), the issues related to 

shear strength mechanisms characterizing hollow circular columns with only 

one layer of reinforcement in the outside face are still almost unknown. In fact, 

only one experimental study concerning the above-mentioned topic is 

available in literature, carried out by Ranzo and Priestley in 2001, and 

described in detail in the section 2.2. 

It becomes clear the relevance of a thorough investigation about the 

predictive capability of the shear strength models available in literature and 

codes when applied to this structural typology. To this aim, data from tests on 

RC columns with hollow circular cross section and a single layer of 
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reinforcement from literature (see section 2.2) are collected and integrated with 

the tests presented in this work (see Chapter 5). 

All the considered specimens were tested under unidirectional cyclic 

lateral load in single curvature and were characterized by uniform 

reinforcement details across the height (no reinforcement variations, such as 

bars cut-off). The main properties of the selected tests are included in the 

following ranges:  

 Concrete cylindrical compressive strength: 14.0 ≤ fc ≤ 40.0 (MPa) 

 Yield stress of longitudinal reinforcement: 306 ≤ fy ≤ 540 (MPa) 

 Longitudinal reinforcement ratio: 0.85 ≤ ρ’ ≤ 5.40 (%) 

 Yield stress of transverse reinforcement: 318 ≤ fyw ≤ 655 (MPa) 

 Transverse reinforcement ratio: 0.06 ≤ ρ’’ ≤ 1.14 (%) 

 Axial load ratio: 0.05 ≤ P/Ac∙fc ≤ 0.40 (-) 

 Tie spacing to depth ratio: 0.02 ≤ s/H ≤ 0.23 (-) 

 Aspect ratio: 2.00 ≤ LV/H ≤ 4.28 (-) 

In the previous list, the axial load ratio is evaluated as the ratio between 

the applied axial load P and the product of the concrete compressive strength fc 

times the concrete area Ac (the gross section area minus the void); the aspect 

ratio (Lv/D) is defined as the ratio between the shear span LV and the cross 

section external diameter D; the longitudinal reinforcement ratio ρ’ is 

evaluated with respect to the concrete area; the transverse reinforcement ratio 

ρ’’ is computed as the ratio between the total area of transverse reinforcement 

in the loading direction and the product of cross-sectional width (assumed as 

twice the thickness of the concrete ring bw = 2tw) times the tie spacing s; fy and 

fyw are the yielding strengths for longitudinal and transverse reinforcement, 

respectively. The original experimental lateral load-deformation relations for 

the selected columns are reported in section 2.2. Table 7.1 shows geometry, 

reinforcement details, and material properties of the test specimens included in 

the database. Note that, except for the tests #12 and #13 (presented in this 

study), with circular ties (Type s1), all test specimens are characterized by 

continuous spiral transverse reinforcement (Type s2). Some of the terms in 

Table 7.1 have been defined above; the remaining ones are specified in the 

legend. 
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Table 7.1. Geometry, reinforcement details and material properties 

Test ID Specimen ID 
D tw c LV fc Φl

a ρ' fy Typeb Φt
c Sd ρ'' fy νe 

(mm) (mm) (mm) (mm) (MPa) (mm) (%) (MPa)  (mm) (mm) (%) (MPa) (--) 

Zahn et al., (1990) 
1 1 400 94 36 1625 29.6 16 3.56 306 s1 10 75 0.56 340 0.08 
2 2 400 94 38 1625 29.6 16 3.56 306 s1 12 90 0.67 318 0.40 
3 3 400 75 36 1625 29.6 16 4.20 306 s1 10 75 0.70 340 0.10 
4 4 400 75 38 1625 29.6 16 4.20 306 s1 12 90 0.84 318 0.22 
5 5 400 55 36 1625 27.3 16 5.40 306 s1 10 75 0.95 340 0.12 
6 6 400 55 38 1625 27.3 16 5.40 306 s1 12 90 1.14 318 0.12 

Hoshikuma and Priestley, (2000) 
7 HF1 1524 140 35 6528 37.4 13 1.42 427 s1 6 35 0.32 625 0.13 
8 HF2 1524 140 38 6528 38.5 19 3.18 444 s1 6 35 0.32 625 0.13 

Ranzo and Priestley, (2001) 
9 HS1 1560 152 26 3880 40.0 13 1.30 450 s1 6 70 0.15 635 0.05 
10 HS2 1524 139 27 3880 40.0 16 2.25 450 s1 6 70 0.16 635 0.05 
11 HS3 1524 139 27 3880 35.0 16 2.25 450 s1 6 70 0.16 635 0.15 

Authors’ tests 
12 P5 550 100 17 1650 14.0 8 0.85 540 s2 3 120 0.06 655 0.05 
13 P6 550 100 17 1100 14.0 8 0.85 540 s2 3 120 0.06 655 0.05 

a Diameter of longitudinal steel bars equally spaced along a unique external reinforcement layer. 
b Transverse reinforcement typology: circular ties (s1) or continuous spiral (s2). 
c Cross sectional diameter of circular ties (s1) or of continuous spiral (s2), equally spaced along specimens’ height. 
d Spacing between circular ties (s1) or pitch of the continuous spiral (s2). 
e Axial load ratio (ν = P/Acfc) 

 



Chapter 7 

Shear strength of RC bridge columns with hollow circular cross section 

 

265 

7.2 Shear strength capacity 

Recent principal earthquakes around the world have highlighted the 

inadequate seismic performance of existing hollow core piers, generally 

characterized by poor structural detailing and small web thickness (Kim et al., 

2012). As known, seismic bridge design philosophy is to pursue energy 

dissipation by ductile flexural hinges at the piers base (Priestley et al., 1996; 

Paulay and Priestley, 1992). Therefore, brittle shear failure of bridge piers 

clearly has to be prevented to avoid disastrous collapse. For hollow RC 

columns, special attention has to be paid also to shear strength degradation 

with increasing flexural ductility demand, since their shear resisting 

mechanisms are very similar to those characterizing tube sections, depending 

mainly on webs aspect ratio. Small thickness can limit the confined concrete 

core, crucial to seismic energy dissipation (Kim et al., 2012). Despite their 

widespread use, none of the current codes addresses specialized attention to 

shear strength of RC hollow circular members, both for design and assessment, 

while some code suggests formulations for solid circular columns (Turmo et al. 

2009). 

For all these reasons, the failure mode prediction and the shear strength 

evaluation of hollow circular columns assume clear relevance, particularly 

when the assessment of existing piers is approached. In section 5.5, a 

comparison between the experimental responses of the specimens presented in 

this work and the main code-based shear strength models have been carried 

out. This comparison highlighted a low predictive capacity of the considered 

models and a trend to underestimate the experimental shear strength. 

In order to extend the comparison and to obtain a more reliable evaluation 

of existing capacity models, thus evaluating their effectiveness in terms of 

failure mode prediction and shear strength assessment, a database has been 

developed and integrated with the above-mentioned tests (see section 7.1). As 

discussed in section 7.1, very few experimental studies are available in 

literature dealing with the lateral response of RC columns with hollow circular 

cross section and a single reinforcement layer. Most of these focuses on the 

flexural behavior, and only two experimental tests failed in shear after flexural 

yielding. In the following, some of the main models available in literature are 

briefly described. In particular, the attention will be focused on shear strength 
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models based on experimental data including also specimens with hollow or 

solid circular cross section. Then, the measured shear strengths of the columns 

reported in the database is compared to the values calculated by using the 

considered models. Finally, some modifications are discussed and a new shear 

model is proposed. 

7.2.1. Considered shear strength models 

With the aim to carry out a comparison with the measured shear strength 

of the collected database specimens, the main models available in literature for 

the shear strength assessment are analyzed. In particular, only capacity models 

based on test data including specimens with hollow or solid circular cross 

section are adopted. Some of the considered models have been described and 

discussed in details in the section 2.3.3 (Kowalsky and Priestley, 2000; Biskinis 

et al., 2004). Therefore, they are only recalled in the following, focusing in 

particular on their formulations, in order to uniform symbols and to simplify 

the understanding of the comments derived from the comparison. In addition 

to the above-mentioned models, the specification of the model by Kowalsky 

and Priestley to hollow circular columns, proposed by Ranzo and Priestley 

(2001), is also taken into account. 

 

Kowalsky and Priestley (2000)  

The shear strength is calculated as the sum of the contributions from 

concrete, Vc, transverse reinforcement, Vw, and arch mechanism associated 

with axial load, Vp. The shear strength degradation influences only the 

concrete contribution, through the degradation factor k decreasing with 

increasing displacement ductility (μ). The corresponding formulations are 

reported below: 

 

c c eV k f A 

 

(7.1) 

e cA 0.8A

  

(7.2) 
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where, x is the neutral axis depth, and Asw is the cross-sectional area of the 

transverse reinforcement. All the remaining terms have been defined above. 

The coefficient k, is taken as 0.29 when the displacement ductility (μ) is less 

than 2 and 0.05 when μ is more than 8, and decrease linearly between these 

two values. Hereinafter, the displacement ductility (μ) is assumed as that 

corresponding to the maximum value of the lateral force reached during the 

test. This model will be identified in the following as “Revised UCSD-A”, since 

it is a review of the original model by Priestley et al. (1994) developed at the 

University of California San Diego. 

 

Biskinis et al., (2004) 

The shear strength is calculated according to the regression model in 

equations (7.7) to (7.10) accounting for three contributions: the classical 45- 

degrees truss model (Vw), the concrete contribution (Vc), and the axial load 

contribution (VP).  

 

  R P c wV V k(V V )  
 

(7.7) 
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where, d0 is the depth of the compression reinforcement layer, and bw is the 

width of the section web (for hollow rectangular equal to twice the thickness). 

Also for this shear model, the coefficient k multiplies both the concrete and the 

transverse steel contributions. It varies linearly between 1.00 (non-degraded 

shear strength) and 0.75 for μ between 1 and 6. 

 

Ranzo and Priestley (2001)  

Ranzo and Priestley (2001) carried out an experimental studies aiming to 

investigate the lateral response of hollow circular columns with one external 

layer of steel reinforcement and spiral transverse reinforcement. Based on the 

results of only two tests failing in shear after flexural yielding, Authors 

proposed some specifications to adapt the model by Kowalsky and Priestley to 

the hollow circular columns. The modifications concern the concrete 

contribution to the shear strength, (Vc). In particular, the effective shear area 

and the position of neutral axis with respect to the inside column face are 

modified by the coefficients λ and β, respectively defined in equations (7.12) 

and (7.13): 

c c eV k f A 
 

  

(7.11) 
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Moreover, Authors suggest neglecting the axial load contribution (Vp). This 

model will be identified as “Revised UCSD-B” in the following. 

7.2.2. Comparison of shear strength models with column database 

Selected shear capacity models are applied herein to all the columns of the 

database, using the formulations described above. The aim is to investigate 

about the capability of the considered models in predicting experimental 

failure modes for the database columns, that is, the reliability of these models 

in a classification issue typical of seismic assessment.The comparison is 

summarized in Table 7.2: for each considered shear strength model, the 

maximum (non-degraded, VR,max) and the minimum (degraded, VR,min) values 

of the predicted shear capacity are reported, together with the predicted failure 

mode (FMpred). These values are compared with the corresponding 

experimental data. For all the test specimens, the experimental lateral load at 

yielding is known (Vy). The predicted failure mode (FMpred) is identified 

through a comparison between the predicted non-degraded and residual 

values of the shear strength (VR,max and VR,min, respectively), and the maximum 

value of the lateral force reached during the test (Vtest) and the yielding force 

(Vy). When VR,max is lower than Vy, brittle shear failure occurs limiting flexural 

response (S). When VR,min is higher than Vtest, the flexural response can 

completely develop (F). In all the other cases, the element fails in FS mode. As 

observed, all the considered models are able to predict the flexural failure 

modes for the tests 1-9, characterized by higher transverse geometrical 

reinforcement ratios and shear span-to-diameter ratios.  Conversely, none of 

the considered models presents an adequate capacity in prediction of flexural 

failure mode for the test 12 (namely, specimen P5 presented in Chapter 5). 

Regarding the tests failing in shear after flexural yielding (FS-mode), 

Revised UCSD-A (Kowalsky and Priestley, 2000) shows a low prediction 

capacity of the failure mode, since it is able to catch the experimental failure 

mode only for test #10, while it is non-conservative for test 11 and very 

conservative for test #13 (namely, specimen P5 presented in Chapter 5).  
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Table 7.2. Failure mode prediction 

Test ID 

Experimental Revised UCSD-A Revised UCSD-B Biskinis et al., (2004 

Vy
a VTEST

b FMobs
c VR,max

d VR,min
d FMpred

e VR,max
d VR,min

d FMpred
e VR,max

d VR,min
d FMpred

e 

(kN) (kN) (-) (kN) (kN) (-) (kN) (kN) (-) (kN) (kN) (-) 

Zahn et al., (1990) 

1 74.6 110.8 F 380.0 285.6 F 327.5 260.7 F 300.6 230.2 F 

2 119.9 144.0 F 485.5 391.1 F 356.2 289.4 F 397.3 322.0 F 

3 75.4 112.0 F 363.8 283.8 F 313.5 258.3 F 301.7 231.4 F 

4 91.7 123.7 F 416.9 336.9 F 342.2 287 F 346.1 270.8 F 

5 72.7 105.2 F 336.6 276.8 F 295.8 255.3 F 295.0 225.7 F 

6 72.5 102.8 F 365.3 305.5 F 324.5 283.9 F 315.0 240.6 F 

Hoshikuma and Priestley, (2000) 

7 500.0 730.0 F 2520.6 1961.0 F 2057.9 1682.3 F 1797.7 1408.4 F 

8 840.0 1150.0 F 2724.4 1999.2 F 2188.7 1702 F 2139.4 1666.4 F 

Ranzo and Priestley, (2001) 

9 700.0 972.0 F 1920.9 1418.5 F 1498.5 1160.8 F 1415.4 1107.8 F 

10 900.0 1396.0 FS 2036.2 1334.5 FS 1555.2 1084.2 FS 1656.7 1285.9 FS 

11 1200.0 1457.0 FS 2202.6 1546.3 F 1460.1 1007.6 FS 1850.5 1493.0 F 

Authors’ tests 

12 86.4 108.2 F 147.4 74.6 FS 104.9 54.8 FS 116.2 90.6 FS 

13 133.6 166.9 FS 154.9 82.1 S 104.9 54.8 S 131.4 106.6 S 
a Vy is the value of the shear corresponding to measured first flexural yielding  
b VTEST is the maximum experimental value of shear force. 
c FMobs = observed failure mode: “F” = Flexure failure mode; “FS” = Shear failure mode following yielding. 
d VR,max and VR,min are maximum (non-degrading) and minimum values of shear strength according to the considered capacity model. 
e FMpred = predicted failure mode according to the considered capacity model. 
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Revised UCSD-B (Ranzo and Priestley, 2001) is characterized by an 

adequate predictive capacity of the failure mode for the tests #10-#11 (on 

which it is calibrated), whereas it provides a very conservative prediction for 

the test #13. A lower prediction capacity is observed for Biskinis et al. (2004) 

model, due to the conservatism in prediction for the test #13 and the non-

conservatism for the test #11. Note that the latter model was applied assuming 

the formulations providing shear strength in the case of diagonal tension 

failure, according to equations (7.7) to (7.10), since such phenomenon governs 

the shear failure for the columns in the database. 

7.2.3. Proposed shear strength model for hollow circular columns 

The number of experimental tests on RC columns with hollow circular 

section and a single external layer of steel reinforcement available in literature 

is not sufficient to develop a reliable shear capacity model. Nevertheless, it 

seems interesting to discuss about reasonable improvements of existing 

models, based on the comparison results reported in the previous section. 

Among the shear strength models considered in the previous section, the 

Revised UCSD-B (Ranzo and Priestley, 2001) is characterized by the higher 

capacity in failure mode prediction. In fact, it is able to predict well the 

experimental failure modes for all the specimens of the database, except the 

tests #12 and #13, reported in the present work. The main difference between 

the latter tests and the remaining tests of the database, which can influence 

shear-resisting mechanisms, is represented by the different layout of the 

transverse reinforcement. In fact, the test specimens P5 and P6 are the only 

ones with isolated circular ties, whereas all the others are characterized by 

continuous spirals. This because the specimen tests P5 and P6 (corresponding 

to tests 12 and 13 in the database) are characterized by reinforcement details 

typical of Italian existing bridges, and therefore isolated circular ties, 

widespread solution for circular columns in Italy (Cardone et al., 2013). 

Based on this observation, a numerical study (Turmo et al. 2009) available 

in literature has been considered. This study focuses on the steel contribution 

to shear strength (Vs). In particular, Turmo et al. (2009) focuses their attention 

on the specification to solid and hollow circular columns of the common shear 

truss analogy (widely used by main shear strength models available in 

literature or codes). Authors proposed an analytical model for evaluating the 

contribution of transverse reinforcement (for both continuous spiral and 
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circular ties) in concrete members of solid and hollow circular cross section. 

According to the model by Turmo et al., (2009) the transverse steel 

contribution on the shear strength of hollow core and solid circular concrete 

members, reinforced with circular and spiral reinforcement can be computed 

as reported in equation (7.14): 

 

s st ywV zcot( )A f  
 
 

(7.14) 

where, z is the lever arm, ϑ is the angle between the inclined strut and the 

longitudinal axis of the member (it can be assumed as 30°), Ast is the area per 

unit length of the transverse reinforcement. The coefficients χ and λ are 

efficiency factors taking into account the average inclination of the ties crossing 

a given crack and the inclination of the spiral respect to the longitudinal axis, 

respectively. The terms Ast, χ, and λ in equation (7.14) are expressed by the 

following equations: 
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In the equation (7.15), Asw is the area of a single rod (cross-sectional area of 

transverse reinforcement), s and p are the spacing of the circular ties and the 

pitch of the spiral, respectively. In the equations (7.16) and (7.17), R’ is the 

radius of the circular or helical transverse reinforcement, z0 is the distance from 

the centroid of the tensile forces to the center of masses of the member, while 
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the other terms have already been described above. The integral of equation 

(7.16) can be solved numerically by a change in variable, in function of the 

ratios z/D’ and z0/D’, with D’ equal to the diameter of the circular or helical 

transverse reinforcement. By assuming a constant value for the lever arm z 

equal to 0.8∙D and the same distance from the center of the cylinder for the 

resultant forces of compressive and tensile stresses (namely, z0 equal to 0.5), 

the product of χ times λ is equal to π/4. The latter result is that adopted by the 

Revised UCSD-A and Revised UCSD-B models. For hollow core circular 

members with circular ties, the product of χ times λ is equal to 1, namely, for 

this structural solution the maximum efficiency in shear strength is achieved. 

This apparently surprising result can be easily explained with the examination 

of Figure 7.1.  

 

 

3  

Figure 7.1. Elastic shear stresses in solid and hollow core circular cross sections – 
adapted by Turmo et al., (2009) 

 

Shear stresses in solid circular members are mainly vertical; whereas in 

annular members, shear stresses have the same orientation as the stirrups. 

Hence, in annular members, circular stirrups are more effective as their 

geometry follows the orientation of the shear stresses provided by the Theory 

of Elasticity. Based on the above-described results, a new method for the shear 

strength evaluation is identified and proposed. The proposed model evaluates 

the shear strength as the summation of two contributions, one due to concrete 

shear resisting mechanisms (Vc), and the other due to transverse steel 

reinforcement (Vs). The concrete contribution is evaluated according to the 
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model by Ranzo and Priestley (2001), expressed by the equation (7.11). The 

transverse reinforcement contribution is computed through the equations (7.14 

– 7.17). Note that the contribution of the arch mechanism associated with axial 

load, Vp, is not considered because such a mechanism for hollow core concrete 

members seems to be less efficient in enhancing shear strength with respect to 

solid circular members (as observed, also, by Ranzo and Priestley, 2001). In 

fact, it is not clear how the arch mechanism could develop along curved struts. 

Therefore, a conservative assumption can be done by neglecting this 

contribution in the shear strength assessment. The capability of the proposed 

method in predict the experimental failure modes is firstly investigated with 

regard to the results of the database columns. The comparison is summarized 

in Table 7.3, where the maximum (non-degraded, VR,max) and the minimum 

(degraded, VR,min) values of the predicted shear capacity are reported, together 

with the predicted failure mode (FMpred).  

 

Test ID 

Experimental Proposed model 

Vy VTEST
 FMobs

 VR,max VR FMpred 

(kN) (kN) (-) (kN) (kN) (-) 

Zahn et al., (1990) 

1 74.6 110.8 F 389.8 323.1 F 

2 119.9 144.0 F 427.2 360.5 F 

3 75.4 112.0 F 375.9 320.7 F 

4 91.7 123.7 F 413.2 358.1 F 

5 72.7 105.2 F 358.1 317.6 F 

6 72.5 102.8 F 395.5 355.0 F 

Hoshikuma and Priestley, (2000) 

7 500.0 730.0 F 2329.7 1954.1 F 

8 840.0 1150.0 F 2464.0 1977.2 F 

Ranzo and Priestley, (2001) 

9 700.0 972.0 F 1383.4 1045.7 F 

10 900.0 1396.0 FS 1521.9 1050.9 FS 

Authors’ tests 

11 1200.0 1457.0 FS 1485.1 1044.6 FS 

12 86.4 108.2 F 178.2 128.1 F 

13 133.6 166.9 FS 178.2 128.1 FS 

Table 7.3. Failure mode prediction for the proposed model 
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These values are compared with the corresponding experimental data. The 

predicted failure mode (FMpred) is identified here again through a comparison 

between the predicted non-degraded and residual values of the shear strength 

(VR,max and VR,min, respectively), with the maximum value of the lateral force 

reached during the test (Vtest) and the measured yielding force (Vy). 

As observed, the proposed model shows very good capacity of failure 

mode prediction for all the considered tests. The reason of this efficiency in 

prediction seems to be related to the formulation for transverse reinforcement 

contribution to shear strength, which is able to taking into account the 

difference of shear reinforcement typology (namely, circular ties and 

continuous spiral). 

In order to investigate further about the prediction capacity of shear 

strength for the tests characterized by shear failure, a comparison is carried out 

between the shear strength computed according to all the considered models 

(see section 7.2.1) and by the proposed model, and the experimental shear 

strength values. As known, the displacement ductility capacity of RC members 

failing in shear should not be evaluated from the inverse application of the 

shear strength model because this would not lead to a reliable assessment of 

the drift at shear failure (Biskinis et al., 2004). Vice-versa, it is possible to 

evaluate the predicted degraded shear strength corresponding to the observed 

ductility at failure. To this aim, the displacement ductility at failure (μ) is 

computed as the ratio of the displacement corresponding to shear failure to the 

experimental yielding displacement. The displacement at shear failure is 

assumed as that where shear resistance drops below 80% of the maximum 

shear recorded (Vtest), if measured, otherwise as the maximum recorded 

displacement.  

For the tests #10, #11, and #13, showing a shear failure following flexural 

yielding (FS-mode), Table 7.4 reports the failure mode and the shear strength 

predicted by all the considered models and by the proposed model. Note that 

the shear strength is evaluated corresponding to the observed ductility at 

failure if FS failure is predicted, otherwise as the non-degraded shear strength 

if S failure is predicted.  
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Table 7.4. Shear strength prediction comparison 

Test ID 

Experimental Revised UCSD-A Revised UCSD-B Biskinis et al. Proposed Model 

Vu
a Du

a μa VR
b FMpred

 Vp/Vt VR
b

 FMpred Vp/Vt VR
b FMpred Vp/Vt VR

b FMpred Vp/Vt 

(kN) (%) (-) (kN) (-) (-) (kN) (-) (-) (kN) (-) (-) (kN) (-) (-) 

Ranzo and Priestley, (2001) 

10 1396 2.65% 6.0 1873 FS 1.34 1445 FS 1.04 1479 FS 1.06 1412 FS 1.01 

11 1457 2.27% 3.4 2201 FS 1.51 1447 FS 0.99 1484 F 1.22 1778 FS 1.02 

Authors’ test 

13 149 2.49% 4.8 121 S 0.81 82 S 0.55 114 S 0.76 151 FS 1.01 

     Mean 1.22  Mean  0.86  Mean 1.01  Mean  1.01 

     COV 0.30  COV 0.31  COV 0.23  Cov 0.01 

 

a Vu, Du, μ, are the value of the shear, drift-ratio and ductility corresponding to the onset of the shear strength decay on 

the envelope of the experimental response. 
b VR is the shear strength evaluated for a ductility μ 
c Vp/Vt = predicted-to-experimental shear strength. 
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The very good predictive capacity of the proposed model is confirmed by 

the results reported in Table 7.4, highlighting an almost exact assessment of the 

shear strength for all specimens, with a mean of the predicted-to-experimental 

shear strength ratio equal to 1.01, and a coefficient of variation (COV) 

technically zero. Revised UCSD-A is characterized by a high overestimation, 

up to about 50% for members with spiral transverse reinforcement (type s2); 

vice-versa, the same model tends to underestimate the shear strength of the 

test #13 (type s1), with circular ties. Revised UCSD-B is characterized by a very 

good predictive capacity only for type s2 members, with a negligible error, 

while it underestimates of about 45% the shear strength for the test 13. Finally, 

the Biskinis et al. (2004) model is characterized by a lower predictive capacity, 

since it overestimates shear strength for the tests #11 and underestimates shear 

strength for the test #13.  

A graphic comparison is carried out between the shear strength envelopes 

and the experimental responses, for tests #10, #11, and #13, in Figure 7.2, 

Figure 7.3, and Figure 7.4. Such a comparison is shown in terms of lateral load 

versus displacement ductility (μ). 

 

 
Figure 7.2.Experimental lateral load-drift response and shear strength envelopes 

predicted according to the considered capacity models for Test 10 
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Figure 7.3. Experimental lateral load-drift response and shear strength envelopes 

predicted according to the considered capacity models for Test 11 

 

 

 
Figure 7.4. Experimental lateral load-drift response and shear strength envelopes 

predicted according to the considered capacity models for Test 13 
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The high predictive capacity of the proposed model is confirmed by the 

results depicted in the above-reported figures. The shear strength is evaluated 

almost exactly for all tests. It is to be noted that this model certainly needs 

much more experimental data to be properly validated. In particular, the effect 

of the axial load has to be experimentally investigated, considering different 

values of axial load ratio, higher than those characterizing the database 

columns. However, the proposed model can be considered the most reliable 

simple shear strength model available in literature for the assessment of shear 

capacity of RC columns with hollow circular section and one external layer of 

transverse reinforcement. 

7.3 Summary 

In this chapter, the shear strength assessment of RC bridge piers with 

hollow circular section and a single external reinforcement layer has been 

discussed. The results of a preliminary comparison carried out in the section 

5.5, between experimental results and main code-based shear strength models, 

revealed the need to evaluate the effectiveness and the reliability of existing 

capacity models when used for the assessment of this structural typology. 

To this aim, firstly, an experimental database has been collected and 

integrated with the tests reported in the present work. Then, a comparison is 

carried out, between experimental and predicted shear strength values. The 

results of such comparison revealed that none of the main shear strength 

models is able to predict the experimental failure mode for hollow circular 

columns, especially when their transverse reinforcement consists of isolated 

circular ties, and not continuous spiral. Some improvements in shear strength 

assessment are discussed, particularly regarding the transverse reinforcement 

contribution on shear strength. Finally, a new shear strength model is defined 

and proposed. This new model is characterized by a predictive capacity of 

failure mode and shear strength almost exact for all the specimens of the 

database. 

 

Differently from Chapter 6, here an assessment of drift capacity model has 

not been presented due to the very limited amount of tests available in 

literature. 
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Chapter 8  

CONCLUSIONS AND FUTURE DEVELOPMENTS 

 

 

 

 

 

Among civil structures, highway bridges can be considered as crucial for 

life and security of the served urban areas. Damages to highway bridges due to 

earthquake events, may have dramatic impact on the interested area, with or 

without life threatening consequences. Therefore, the assessment of seismic 

performance of existing bridge structures is a paramount issue, especially in 

those countries, such as Italy, where most of existing bridges was constructed 

before the advancement in earthquake engineering principles and seismic 

design codes.  

Seismic performance of bridges substantially depends on lateral behavior 

of vertical structural sub-systems, in particular of the bridge piers. To persue 

sufficient energy dissipation, reinforced concrete bridge piers have to be 

designed with adequate seismic details, so that ductile flexural hinges at base 

could develop due to intense seismic demand. Brittle shear failure of bridge 

piers clearly has to be prevented to avoid disastrous collapse, and special 

attention has to be paid also to shear strength degradation with increasing 

flexural ductility demand. The seismic vulnerability of the bridge piers, due to 

obsolete design, has been highlighted by several major earthquakes occurred 

throughout the world. 

For ordinary shaped reinforced concrete (RC) bridge columns (namely, 

with solid rectangular or circular cross-section) the seismic assessment issue 

can be considered as almost resolved, since many experimental and analytical 

studies are available in literature, from which several analytical assessment 

formulations have been proposed, and adopted by codes. The same cannot be 

said for columns with hollow-core cross section. Despite their widespread use, 



Conclusions and future developments 

 
 

282 

in fact, none of the current codes addresses specialized attention to RC hollow 

core members, both for design and assessment. Moreover, only quite recently, 

attention has been paid to experimental cyclic response of hollow columns: 

relatively few experimental studies, especially if compared with columns with 

solid cross section, are available in literature.  

A critical, and still open, issue is the assessment of shear capacity of hollow 

RC columns, special focusing on degradation mechanisms. In fact, shear-

resisting mechanisms typical of this structural typology are very similar to 

those characterizing tube sections, depending mainly on webs aspect ratio and 

transverse reinforcement details. Another important issue related to existing 

hollow RC piers is that their seismic response is characterized by high shear 

deformations, comparable to ones typical of RC walls, which may represent 

also a considerable portion of global top displacement.  

The situation outlined above is sufficient to understand that the state of the 

art on seismic assessment of hollow bridges piers still needs to be advanced in 

several areas: proper predictions of nonlinear behavior, failure modes, and 

shear capacity, in particular. 

A contribution towards this direction has been carried out in this work 

through the investigation of cyclic lateral response of RC existing bridge piers 

with hollow rectangular and hollow circular cross-section, characterized by not 

sufficient seismic reinforcement details, therefore susceptible to high shear 

deformations and, eventually, shear failure. Special attention has been focused 

on failure mode prediction and shear capacity assessment. For these purposes, 

both experimental and analytical studies have been carried out and presented 

herein.  

 

A critical review of the state-of-the-art and of the theoretical background, 

essential for the development of this work, has been performed. Firstly, the 

review process has been focused on the past experimental and analytical 

research on seismic performance of hollow reinforced concrete bridge piers. 

After a critical description of past experimental tests on RC columns with 

hollow rectangular cross section, the attention has been moved on the 

experimental tests available in literature on RC columns with hollow circular 

section and a single steel reinforcement layer. It has been underlined that very 

few experimental studies are available in literature, especially on the latter 

topic. This part of the literature review has been used for the collection of the 



Chapter 8 

Conclusions and future developments 

 

283 

databases, presented in the last part of the work.  

Several analytical models have been reviewed, too. First, some of the 

existing models for the evaluation of lateral response of RC column have been 

briefly discussed. The models have been divided into three main topics: 

flexural behavior, shear behavior and bar slip. Later, main models for shear 

strength evaluation from literature and codes have been described and 

discussed in details. 

 

An experimental campaign was carried out at the Laboratory of the 

Department of Structures for Engineering and Architecture, University of 

Naples “Federico II”, to address the seismic performance of existing reinforced 

concrete (RC) bridge piers with hollow cross-sections. The experimental 

program, realized under the financial support of STRESS S.c.a.r.l. STRIT 

Project “PON Ricerca e Competitività 2007-2013”, comprised tests on six 

reduced-scale RC bridge piers with hollow cross-section (four rectangular 

shaped and two circular shaped). All tests were performed in quasi-static way 

by applying increasing horizontal displacement cycles with constant axial load 

(equal to 5% of the axial compressive capacity) until collapse.  

The main goal of the design procedure was to obtain specimens 

representative of the existing bridge columns typical of the Italian transport 

infrastructures realized before 1980. To this aim, the results of an important 

investigation on a sample of about 400 existing Italian RC beam bridges were 

considered, taking into account key parameters, such as cross-section shape, 

slenderness, axial load ratio, geometrical reinforcement ratio, materials 

strength, among others. Starting from those results, two typical bridge pier 

cross-sections were designed (hollow rectangular and hollow circular), in 

terms of geometry and reinforcement details, according with common non-

seismic design practice. In order to allow for testing within the capacity of the 

laboratory, a scaling factor equal to 1:4 was introduced.  

The test variable was the aspect ratio (namely, height to depth ratio). 

Medium-low aspect ratios are considered (between 1.5 and 3.75), since the 

main goal of the experimental program was to investigate deeply about 

flexure-shear interaction and failure mode prediction. The representativeness 

issue was considered also for the material properties definition, resulting into a 

poor concrete and relatively high strength steel. The construction process, 

crucial for the success of experimental tests, has been described, focusing on 
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some critical aspects of the construction procedure. In order to investigate 

deeply about local deformation components coexisting in the specimens 

(flexure contribution, shear contribution and fixed end rotation at cantilever 

base), an appropriate instrumentation was installed. In particular, it was 

composed of a system of Linear Potentiometers (LPs) and Linear Variable 

Displacement Transducers (LVDTs), monitoring flexural and shear 

deformation, and strain gauges (SGs), monitoring axial steel strain of both 

longitudinal and transverse reinforcement. 

 

Experimental results have been presented for hollow rectangular and 

hollow circular specimens, separately.  

Concerning hollow rectangular specimens, depending on the aspect ratio, 

different failure modes were expected, namely flexure failure for tall piers and 

shear failure after flexural yielding for short piers. Experimental results, in 

terms of lateral load versus drift and damage evolution showed that: 

 Tests P1 and P2, characterized by a higher aspect ratio (LV/H ≥ 

2.5), showed flexural failure modes, with an inelastic response 

controlled by ductile mechanisms. Damage evolution was typical 

of ductile members, with most of damage consisting of concrete 

crushing and longitudinal bars buckling. 

 Test P3, characterized by an aspect ratio LV/H =1.5, showed shear 

failure after flexural yielding. The cyclic response was typical of 

squat columns, governed by shear mechanisms. In fact, damage 

evolution was characterized by significant diagonal cracking 

since linear phase. Shear failure mode was characterized by a 

large drop in strength (of about 60% respect to maximum reached 

value) related to evident diagonal cracks opening, inclined of 

about 45 degrees. 

 Test P4, characterized by an aspect ratio LV/H=2.25, showed shear 

failure after flexural yielding. The cyclic response was 

characterized by flexure-shear interaction. In fact, during non-

linear phase damage evolution was characterized initially by 

flexural cracks at the base, for drift values higher than Test P3, 

and later by significant diagonal cracks, up to shear failure. 

An experimental analysis of deformability contributions to the top 

displacement was performed, mainly in order to better understand the 
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relevance of taking into account shear deformations for bridge piers 

assessment. From experimental results, as expected, a relation between shear 

contribution to top displacement (Δs/Δ) and aspect ratio (LV/H) has been 

identified. In particular, (i) for slenderest specimen P2, maximum value of 

shear contribution was about equal to 11%; (ii) for Test units P1 and P4, 

characterized by lower similar aspect ratios, about 20% of top displacement 

corresponding to peak load was due to shear deformations; (iii) for squat Test 

unit P3, shear deformability contribution to top displacement was about 32% 

and 45% respectively at yielding and peak load conditions. 

The energy dissipation capacity was analyzed, evaluating the equivalent 

damping ratio and its evolution with ductility, which was compared with a 

common literature formulation usually used for RC bridge piers, highlighting 

a slightly lower energy dissipation capacity in large inelastic field for the tested 

specimens. 

The reported comparison between the observed failure modes and shear 

strength values and the corresponding predictions based on capacity models 

from literature and/or codes provided a useful support to the evaluation of the 

reliability of these models when applied to existing hollow rectangular RC 

piers. From this comparison, a clear need to improve the prediction capacity of 

shear strength models available in codes and literature has been highlighted.  

The global response of test specimens has been modelled through a three-

component numerical model, in which flexure, shear and bar slip are 

considered separately. The numerical results show that the adopted model is 

able to reproduce the experimental global response and the deformability 

contributions with adequate accuracy. 

 

As regards hollow circular specimens, depending on the aspect ratio, 

different failure modes were expected, namely flexure failure for tall pier P5 

and shear failure after flexural yielding for short pierP6. Experimental results, 

in terms of lateral load versus drift and damage evolution showed that: 

 Tests P5, characterized by a higher aspect ratio (LV/H = 2.5), 

showed flexural failure modes, with an inelastic response 

controlled by ductile mechanisms. Damage evolution was typical 

of ductile members, with most of damage consisting of concrete 

crushing and longitudinal bars buckling. 

 Test P6, characterized by an aspect ratio LV/H = 2.0, showed shear 
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failure after flexural yielding. The cyclic response was typical of 

squat columns, governed by shear mechanism: damage evolution 

was characterized by significant diagonal cracking since linear 

phase. Shear failure mode was characterized by a large drop in 

strength (of about 75% respect to maximum reached value) 

related to evident diagonal cracks opening, inclined of about 42 

degrees. 

Also in this case, as expected, the experimental analysis of deformability 

contributions to the top displacement confirmed a relation between shear 

contribution to top displacement and aspect ratio. In particular, (i) for 

slenderest specimen P5, maximum value of shear contribution was about equal 

to 9.4%; (ii) for squat Test unit P3, shear deformability contribution to top 

displacement was about 15% and 25% respectively at yielding and shear 

failure conditions. 

The analysis of the energy dissipation capacity and the evaluation of the 

equivalent damping ratio evolution with ductility, highlighted a slightly lower 

energy dissipation capacity in large inelastic field for the tested specimens with 

respect to models available in literature. 

From the reported comparison between observed failure modes and shear 

strength values and corresponding predictions based on capacity models from 

literature and/or codes, also in this case, a clear need to improve the prediction 

capacity emerged. 

The tests presented herein can provide a useful contribution to enlarge the 

relatively limited experimental database on existing hollow circular RC piers. 

In particular, the experimental analysis of all the sources of deformability 

characterizing cyclic response can be a valid reference for the 

proposal/validation of nonlinear modeling approaches and capacity models 

for seismic assessment of existing bridge structures. 

 

While for ordinary columns with solid cross section several capacity 

models are available in literature and codes, concerning hollow rectangular 

columns, none ad-hoc model is suggested in literature or adopted in codes. It is 

clear the need to investigate the applicability of the existing models to this 

structural typology, and to develop some improvements or new proposal. To 

this aim a database of 28 experimental tests has been collected in this work, 

representing the experimental state-of-the-art about RC columns with hollow 
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rectangular cross section and exhibiting a shear failure, occurred with or 

without flexural yielding. Several main shear strength models have been 

selected and applied to all the database columns, showing a low predictive 

capacity of both failure modes and shear strength. Based on the results of the 

comparison between predicted shear strengths and experimental response, 

some critical aspects have been identified. Adopting the model by Kowalsky 

and Priestley (2000), some modifications have been discussed in order to 

improve the reliability of this model for the applicability to hollow rectangular 

columns. In particular, the improvements concern the concrete contribution to 

the shear strength: different definitions of effective shear area and dowel-

action contribution have been proposed. The capability in prediction of the 

experimental failure modes and shear strength is substantially improved 

through the proposed modifications. In particular, a mean trend of the 

predicted to measured shear strength ratio equal to 1.01 and a coefficient of 

variation (COV), of 0.34 has been achieved.  

Within the context of a displacement-based approach for design and 

assessment of bridges, it is crucial to predict the displacement corresponding 

to shear failure. To this aim, several drift-capacity models have been developed 

during the last decades. All these models are based on empirical formulations 

calibrated on experimental results of building columns with solid cross-

section. The effectiveness of these models when applied to hollow rectangular 

columns has been investigated for all the columns of the collected database. 

The results of this comparison show that existing models are not adequate to 

assess drift at shear failure of hollow rectangular columns. For this reason, 

based on the database data, new drift capacity models have been developed. 

The goal of developing a new drift-capacity model was to reduce the 

coefficient of variation and mean error predictions characterizing the existing 

models, through simple relationship depending on some critical parameters 

influencing the drift at shear failure for shear-critical hollow rectangular bridge 

columns. These goals have been achieved through the development of two 

different formulations to compute the drift at the shear failure as a function of 

some key parameters, identified from the analysis of the experimental 

database. Both expressions provide accurate prediction of drift at shear failure 

for the considered columns, with mean of about 1.04 and COV equal to about 

0.20, considerably better if compared with existing models. 
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Finally, the shear strength assessment of RC bridge piers with hollow 

circular section and a single external reinforcement layer has been discussed. 

Based on the results of a preliminary comparison between the presented 

experimental results and main code-based shear strength models, the need to 

evaluate the effectiveness and the reliability of existing capacity models, when 

used for the assessment of this structural typology, emerged. To this aim, 

firstly, an experimental database has been collected and integrated with the 

tests reported in the present work. Then, a comparison has been carried out, 

between experimental and predicted shear strength values. The results of such 

comparison revealed that none of the main shear strength models is able to 

predict the experimental failure mode for hollow circular columns, especially 

when their transverse reinforcement consists of isolated circular ties, and not 

continuous spiral.  

Some improvements in shear strength assessment have been discussed, 

particularly regarding the transverse reinforcement contribution on shear 

strength. Starting from a critical analyisis of studies available in literature, a 

new shear strength model is defined and proposed. This new model is 

characterized by a predictive capacity of failure mode and shear strength 

almost exact for all the specimens of the database, with mean equal to 1.01 and 

COV equal to 0.01. It is to be noted that this model certainly needs much more 

experimental data to be properly validated. However, it can be considered the 

most reliable simple shear strength model available in literature for the 

assessment of shear capacity of RC columns with hollow circular section and 

one external layer of transverse reinforcement. Differently from what is done 

for hollow rectangular, in this case an assessment of drift capacity model has 

not been presented due to the very limited amount of tests available in 

literature. 

 

In the future, a more comprehensive experimental investigation on hollow 

rectangular and circular RC columns failing in shear after yielding should be 

carried out, considering different test variables (such as axial load, longitudinal 

reinforcement, among others), in order to improve the reliability of the 

provided shear capacity models.  

More refined modelling of seismic response of the considered specimen 

will be developed, taking into account the degradation of flexural and shear 

mechnisms due to cyclic displacement demand. 


