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Introduction

,letter to a Young Mathematician

Whether one wants it or not, infinite is out there. No, not in the phy-
sical world (perhaps!) but in the rather more comfortable and insidi-
ous world of ideas. It is probably the first unintuitive and unnatural
concept, apart from God (even if, for someone, the two coincide), we
meet in our lives.

It took eons and a bunch of brilliant minds for a satisfying defi-
nition of infinite to appear and now, now that we have one, it’s on
us all to exploit its logical (and beautifully “illogical”) consequences
in every area of mathematics. Most of these areas implicitly and in-
formally dealt with the infinite since the dawn of time. Therefore,
in those, one could satisfyingly test if the infinite is correctly repre-
sented by our modern definition. Others were born from the finite
and spread their wings towards the infinite under the influence of
this contemporary revolution. Group Theory is one of these.

The majority of group theorists have always worked with finite,
and there is nothing wrong in that: group theory deserves to be
studied in whole and finite group theory has such results of incom-
parable beauty. But that is not the end of the story. Many decades
ago, people started to study infinite groups with an eye on the finite,
they began the study of groups with finiteness conditions (i.e., con-
ditions automatically satisfied by all finite groups), and their efforts
produced results that can stand the comparison with the finite ones.
Some of those pioneers also detached themselves from the finiteness
restrictions and began their path outside the Cave.

They saw inconceivable and wonderful groups. But what matters,
they saw light, they saw that there is something worth to be studied.
Their fire today still burn in someone.

However, that is not enough for most people. Infinite group theory
is largely not applicable, at the moment, and that seems to be the
main reason for the full disregard people offer to it.

There is perhaps something better than study a completely use-
less (but intriguing) object? Think about it: working, for instance, on
such unnatural groups, means working on a completely pure world
where the potential became actual, where almost anything, not cor-
rupted from the real world, is beautiful on its own sake (one does
not need to find the beauty in some other place).
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It is understandable that the human kind needs to make tangible
progresses and in order to do so needs to study useful things, but,
as the history proves, often the most groundbreaking results follows
from using old useless things.

I truly think that infinite group theory is beauty and still rich in
fascinating things waiting only to be discovered. So, dear peer, con-
sider for yourself a bath in those objects and see with your eyes if
those are worth your time (do not be caught in the depraved mech-
anism society is imposing now onto us: the continuous search for
applicability), see if you can keep alive the sparkle moving me and
others.

,an introduction

Let’s cut the chase and start to describe the mixture of infinite and
groups that grabbed my attention in these years.

Recall that a group G is said to have finite rank r if every finitely
generated subgroup of G can be generated by r elements, and r is
the least positive integer with such a property. If such an r does not
exists, we will say that G has infinite rank.

In a long series of papers, it has been shown that the structure of
a (generalized) soluble group of infinite rank is strongly influenced
by that of its proper subgroups of infinite rank (see for instance [17],
where a full reference list on this subject can be found). The results
in these papers suggest that the behavior of large subgroups strongly
influence the structure of the group itself, at least for a right choice
of the definition of largeness and within a suitable universe.

Moving from this, I started to study how subgroups of uncount-
able cardinality affect an uncountable group. Let X be a group theo-
retical property, let G be a group of uncountable cardinality and sup-
pose that all its proper uncountable subgroups satisfy X. Is it true
that all (proper) subgroups of G satisfy X? In the affirmative case we
will generically say that the class X is uncountably recognizable.

The thesis exploits this question (see Chapter 2), showing that, un-
der some (generalized) soluble conditions, the answer is often pos-
itive, whenever X is an absolute, countably recognizable property.
Remember that a group class X is said to be countably recognizable if a
group G is an X-group whenever all its countable subgroups belong
to X.
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Conjecture — In a suitable universe of groups, is every countably
recognizable class also uncountably recognizable?

Undertaking the study of this conjecture I was lead to the study of
countably recognizable classes of groups themselves. It turns out, as
will be shown here (see Chapter 1), that almost all reasonable group
theoretical classes you can think of are countably recognizable.

Most of the notation is standard and can be found in [61]. However,
in what follows, we have tried to catch up all the notions we needed
in the former (and main) sections of both chapters.

,groups with restricted conjugacy classes

Both chapters first deal with groups with restricted conjugacy classes,
and in particular with groups with finite conjugacy classes. It will be
proved that most of the classes of groups defined by restrictions on
the conjugacy classes are countably recognizable and that being FC
is uncountably recognizable, at least in a suitable universe of groups.
Here we recall some notions about these groups.

If G is a group, the elements of G admitting only finitely many
conjugates form a subgroup FC(G), called the FC-centre of G, and G
is an FC-group if it coincides with the FC-centre, i.e. if all conjugacy
classes of elements of G are finite. Thus a group G has the FC-proper-
ty if and only if the index |G : CG(x)| is finite for each element x of G.
Clearly, all abelian groups and all finite groups have the FC-property,
and the study of FC-groups was initially developed with the aim of
finding properties common to these two relevant group classes. We
refer to the monographs [75] and [12] for a detailed description of re-
sults and properties concerning this important chapter of the theory
of infinite groups. It is obvious that finitely generated FC-groups are
finite over the centre. Among the basic results, it should be also men-
tioned that if G is any FC-group, then the factor group G/Z(G) is peri-
odic and residually finite; it follows that the commutator subgroup of
any FC-group is periodic, so that in particular torsion-free FC-groups
are abelian.

Moreover, it is easy to show that a periodic group has the FC-pro-
perty if and only if it is covered by finite normal subgroups (this
result is usually known as Dietzmann’s Lemma). If X is any group
class, we shall denote by MX the class of all groups in which every
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finite subset lies in a normal X-subgroup. Thus Dietzmann’s Lemma
just says that MF is the class of all periodic FC-groups.

Recall also that a group G is said to be a BFC-group if it has bound-
edly finite conjugacy classes, i.e. if there is a positive integer k such
that |G : CG(x)| 6 k for all elements x of G. It was proved by B.H. Neu-
mann [54] that a group has the BFC-property if and only if its com-
mutator subgroup is finite.

If G is a group, the upper FC-central series of G is the ascending
characteristic series {FCα(G)}α defined by setting FC0(G) = {1},

FCα+1(G)/FCα(G) = FC
(
G/FCα(G)

)
for each ordinal α and

FCλ(G) =
⋃
α<λ

FCα(G)

if λ is a limit ordinal. The last term of the upper FC-central series of G
is called the FC-hypercentre of G, and G is said to be FC-hypercentral if
it coincides with the FC-hypercentre. Moreover, G is called FC-nilpo-
tent if FCk(G) = G for some non-negative integer k, and in this case
the smallest such k is the FC-nilpotency class of G; then a group has
the FC-property if and only if it is FC-nilpotent of class 6 1.

Obviously, all nilpotent-by-finite groups, i.e., groups with a nor-
mal nilpotent subgroup of finite index, are FC-nilpotent. On the other
hand, if p is any prime number and G is the semidirect product of a
group P of type p∞ by the cyclic group generated by an automor-
phism of P of infinite order, then G is FC-nilpotent, but it is not
nilpotent-by-finite, since P is the Fitting subgroup of G. This situa-
tion cannot occur in the case of finitely generated groups. In fact, the
following result, due to D.H. McLain [50], shows that for finitely gen-
erated groups the properties of being FC-hypercentral, FC-nilpotent
and nilpotent-by-finite are equivalent. In particular, finitely gener-
ated FC-hypercentral groups satisfy the maximal condition on sub-
groups.

Lemma Let G be a finitely generated FC-hypercentral group. Then G is
nilpotent-by-finite.

Proof — Let µ be the smallest ordinal with the property that the fac-
tor group G/FCµ(G) satisfies the maximal condition on subgroups,
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and assume that µ > 0. Then G/FCµ(G) is FC-nilpotent and all fac-
tors of its upper FC-central series are central-by-finite, so that in
particular G/FCµ(G) is polycyclic-by-finite. It follows that FCµ(G)
is the normal closure of a finite subset of G, and so µ cannot be a
limit ordinal. Thus the FC-centre FCµ(G)/FCµ−1(G) of G/FCµ−1(G)
is finitely generated, so that it satisfies the maximal condition and
hence also G/FCµ−1(G) satisfies the maximal condition. This contra-
diction shows that µ = 0, and so G satisfies the maximal condition
on subgroups; in particular, G is FC-nilpotent, and so G = FCk(G) for
some non-negative integer k.

For each positive integer i 6 k, the FC-centre FCi(G)/FCi−1(G)
of G/FCi−1(G) is finitely generated. This implies that also that the
index

|G : CG
(
FCi(G)/FCi−1(G)

)
|

is finite. Therefore

C =

k⋂
i=1

CG
(
FCi(G)/FCi−1(G)

)
is a nilpotent subgroup of finite index of G, and therefore G is nilpo-
tent-by-finite. ut

Let FC0 be the class of all finite groups, and for each non-negative
integer n define by induction FCn+1 as the class consisting of all
groups G such that G/CG(〈x〉G) belongs to FCn for every element x
of G. Notice that FC1 is precisely the class of all FC-groups, and that
the class FCn is closed with respect to subgroups and homomorphic
images for all n. It is also clear that FCn contains all nilpotent groups
of class at most n.

Groups with the FCn-property have been introduced in [29], where
it was proved in particular that ifG is an FCn-group for some positive
integer n, then the subgroup γn(G) is contained in the FC-centre
of G, and so G is FC-nilpotent of class at most n. It follows easily
that γn+1(G) is periodic for every FCn-group G, and in particular
torsion-free groups with the FCn-property are nilpotent of class at
most n. The consideration of the infinite dihedral group shows that

FC∗ =
⋃
n∈N

FCn
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is properly contained in the class of FC-nilpotent groups.
In [29] it was also studied the class FC∞ consisting of all groups G

such that for each element x the factor group G/CG(〈x〉G) belongs
to FCn for some non-negative integer n depending on x. For each
positive integer n, let Gn be a finitely generated nilpotent group of
class n such that Gn/Zn−1(Gn) is infinite; the direct product

G = Dr
n∈N

Gn

is an FC∞-group which does not have the FCn-property for any n.
Therefore FC∞ properly contains the class FC∗.

In a celebrated paper of 1955, B.H. Neumann [55] started the in-
vestigation of groups in which all subgroups are normal up to the
obstruction of a finite section, and proved that such groups are close
to be abelian. In fact, he proved that a group G has finite conjugacy
classes of subgroups (or equivalently each subgroup of G is normal
in a subgroup of finite index) if and only if the centre Z(G) has finite
index in G, while in a group G every subgroup has finite index in its
normal closure if and only if the commutator subgroup G ′ is finite,
and so if and only if G is a BFC-group. A third natural normality
condition was considered forty years later and it is in some sense
much more difficult to handle. A group G is called a CF-group if the
index |X : XG| is finite for each subgroup X of G. The consideration
of the locally dihedral 2-group shows that locally finite groups with
the CF-property need not be FC-groups. The CF-property has been in-
troduced in [9], where it was proved that any locally finite CF-group
contains an abelian subgroup of finite index; this result was later ex-
tended to locally (soluble-by-finite) CF-groups (see [73]), but it can-
not be proved in the general case, as Tarski groups (i.e. infinite simple
groups whose proper non-trivial subgroups have prime order) have
obviously the CF-property.

A group G is said to have the BCF-property if there exists a positive
integer k such that |X : XG| 6 k for all subgroups X of G. It can be
proved that locally finite CF-groups have the BCF-property (see [9]),
and that locally graded BCF-groups are abelian-by-finite (see [73]).
Recall here that a group G is locally graded if every finitely generated
non-trivial subgroup of G contains a proper subgroup of finite index;
in particular, all locally (soluble-by-finite) groups are locally graded.

Let G be a group, and let X be a subgroup of G. The normal oscilla-
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tion of X in G is the cardinal number

min{|X : XG|, |XG : X|}.

Clearly, X is normal in G if and only if it has normal oscillation 1.
Moreover, X has finite normal oscillation in G if and only if either X
has finite index in its normal closure XG or it is finite over its core XG;
in particular, finite subgroups and subgroups of finite index have fi-
nite normal oscillation. We shall say that a group G is an FNO-group if
all its subgroups have finite normal oscillation. Then all groups with
finite commutator subgroup and all CF-groups have the FNO-pro-
perty. It has recently been proved that any locally finite FNO-group
is nilpotent-by-finite (see [28]).

Let G be a group and X a class of groups. Remember that G is
said to be an XC-group (or to have X-conjugacy classes) if the factor
group G/CG(〈g〉G) belongs to X for each element g of G. Thus FC is
precisely the class of FC-groups. If X is chosen to be either the class C
of Černikov groups or the class P of polycyclic-by-finite groups,
we obtain the relevant classes of CC-groups and PC-groups, intro-
duced in [60] and [25], respectively. We mention here that a periodic
group G has the CC-property if and only if 〈x〉G is a Černikov group
for each element x, while PC-groups can be characterized as those
groups which can be covered by their polycyclic-by-finite normal
subgroups. This means that MC is the class of periodic CC-groups
and MP is the class of all PC-groups.

Further classes of generalized FC-groups have been considered by
several authors. Among the most interesting ones, we mention the
class of FCI-groups and that of FNI-groups. A group G is said to be
an FCI-group if every cyclic non-normal subgroup has finite index
in its centralizer, while G is an FNI-group if each non-normal sub-
group of G has finite index in its normalizer. These group classes
have been completely described in the locally (soluble-by-finite) case
by D.J.S. Robinson [64].

,generalized nilpotency properties

The second sections of both chapters concern groups with general-
ized nilpotency properties. Here, the main result is that almost all
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(natural) generalized nilpotency properties we will describe below
are countably recognizable and that both being nilpotent and being
locally nilpotent are uncountably recognizable properties in a suit-
able universe.

Let X be a group class. We say that X is a class of generalized nilpo-
tent groups if every nilpotent group belongs to X and all finite groups
in X are nilpotent. The most relevant classes of generalized nilpotent
groups are described in two diagrams represented at pages 3 and 13

of [61], Part 2.
Obviously, the local class LN of all locally nilpotent groups is a

class of generalized nilpotent groups, and a subclass X of LN is a
class of generalized nilpotent groups if and only if it contains all
nilpotent groups. The most relevant classes of generalized nilpotent
groups contained in LN are the following.

• The class of Gruenberg groups: a group G is a Gruenberg group
if it is generated by its abelian ascendant subgroups, or equiva-
lently if all finitely generated subgroups of G are ascendant. It
follows from the Hirsch-Plotkin theorem that these groups are
locally nilpotent.

• The class of Baer groups: a group G is a Baer group if it is gen-
erated by its abelian subnormal subgroups, or equivalently if
all finitely generated subgroups of G are subnormal. Of course,
every Baer group is a Gruenberg group.

• The class of Fitting groups: a group G is a Fitting group if it is
generated by its nilpotent normal subgroups, or equivalently
if G is covered by its nilpotent normal subgroups. Obviously,
all Fitting groups are Baer groups.

• The class of N-groups: a group G is an N-group if all its sub-
groups are ascendant, or equivalently if every proper subgroup
ofG is properly contained in its normalizer. Thus every N-group
is a Gruenberg group.

• The class of hypercentral groups: a group G is hypercentral if its
upper central series terminates with G. It can be easily proved
that any hypercentral group is an N-group.

• The class of N1-groups; a group G is an N1-group if all its sub-
groups are subnormal. It is known that if all subgroups of
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a group are subnormal of bounded defect, then the group is
nilpotent (see [61] Part 2, p.71), but H. Heineken and I.J. Mo-
hamed [37] gave an example of a periodic metabelian group
with trivial centre and such that all proper subgroups are sub-
normal and nilpotent. On the other hand, a relevant result
of W. Möhres [52] shows that any N1-group is at least soluble.

The main classes of generalized nilpotent groups which are not
contained in LN are reported in the second diagram quoted from [61].
Most of them are local classes, and so also countably recognizable.
We mention in particular that it follows from Mal’cev local theorem
that Z-groups, Z-groups and Z-groups form local classes (see [61]
Part 2, p.99). Recall here that a group G is called a Z-group if it
has a central series (of arbitrary order type), while G is said to be
a Z-group if all its homomorphic images are Z-groups, or equiva-
lently if every chief factor of G is central; finally, G is a Z-group if all
its subgroups are Z-groups. Note that also the class of Ñ-groups (i.e.
groups in which every subgroup is serial) has been proved to be lo-
cal (see [3]). However, there are two relevant classes in this diagram
which are not local.

• The class of hypocentral groups: a group G is hypocentral if its
lower central series terminates with {1}.

• The class of residually nilpotent groups: if X is any class of
groups, the X-residual ρ∗X(G) of a group G is the intersection of
all normal subgroupsN of G such that G/N belongs to X, and G
is residually X if its X-residual is trivial (the class of residual-
ly X-groups will be denoted by RX). In particular, a group G is
residually nilpotent if and only if the ω-th term

γω(G) =
⋂
n∈N

γn(G)

of the lower central series of G is trivial. Thus all residually
nilpotent groups are hypocentral.





Chapter 1

Countable in Group Theory

A group class X is said to be countably recognizable if a group G
is an X-group whenever all its countable subgroups belong to X.
Countably recognizable classes of groups were introduced and stud-
ied by R. Baer [2] in 1962, but already in the fifties the property of
being hyperabelian and that of being hypercentral were proved to
be detectable from the behaviour of countable subgroups by Baer
and S.N. Černikov, respectively (see for instance [61] Part 1, Theo-
rem 2.15 and Theorem 2.19).

Among the countably recognizable group classes there are the
so-called local class: a group class X is said to be local if it contains
all groups in which every finite subset lies in an X-subgroup. Clearly
nilpotent groups of class at most n form a local class Nn for each pos-
itive integer n, and similarly the class Sn, consisting of all soluble
groups of derived length at most n, is local. Although the class N of
nilpotent groups and the class S of soluble groups are not local, the
following easy elementary lemma due to Baer shows in particular
that they are at least countably recognizable.

Lemma 1.1 Let (Xn)n∈N be a countable collection of subgroup closed
and countably recognizable group classes. Then also the class

X =
⋃
n∈N

Xn

is countably recognizable.

Proof — Let G be a group whose countable subgroups belong to X,
and assume for a contradiction that G is not an X-group. Then for
each positive integer n there exists a countable subgroup Hn of G
which is not in Xn. As all classes Xn are subgroup closed, it follows
that the countable subgroup

〈Hn | n ∈ N〉

cannot be in X, and this contradiction proves the statement. ut

In his paper, Baer produced many interesting examples of count-
ably recognizable group classes which are not local; it follows for
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instance from Baer’s methods that if X is a countably recognizable
group class, closed with respect to subgroups and homomorphic im-
ages, then the class of all groups admitting an ascending normal se-
ries with X-factors is likewise countably recognizable, and this class
is not local for many natural choices of X.

Later many other relevant countably recognizable group classes
were discovered. In particular, B.H. Neumann [56] proved that resid-
ually finite groups (i.e. groups in which the intersection of all nor-
mal subgroups of finite index is trivial) form a countably recogniz-
able class. Moreover, R.E. Phillips ([58], [59]) proved that the class
of groups in which every subgroup has all its maximal subgroups
of finite index is countably recognizable, and that the same conclu-
sion holds for the class of groups whose simple sections belong to a
subgroup closed and countably recognizable group class.

Further interesting examples of countably recognizable group clas-
ses can be found in [23] and [72], where it is proved for instance that
groups for which some term (with finite ordinal type) of the derived
series has finite rank form a countably recognizable class, and that
a corresponding result holds if the derived series is replaced by the
lower central series.

Examples of important group classes which are not countably rec-
ognizable are known in the literature. It was proved by G. Hig-
man [40] that there exists a group of cardinality ℵ1 which is not
free but whose countable subgroups are free. Therefore the class of
free groups is not countably recognizable. Note that also the prop-
erty of being free abelian cannot be detected from the behaviour of
countable subgroups; in fact, the cartesian product of any infinite col-
lection of infinite cyclic groups cannot be decomposed into a direct
product of infinite cyclic groups, but all its countable subgroups are
free abelian (see for instance [26], Theorem 19.2). Moreover, M.I. Kar-
gapolov [45] constructed a locally nilpotent group with no abelian
non-trivial ascendant subgroups, and this example shows that the
class SN∗ of all groups admitting an ascending series with abelian
factors is not countably recognizable.

It is straightforward to show that the class of groups with finite
conjugacy classes is countably recognizable, and the aim of the first
section of this chapter is to prove that also many other relevant group
classes defined by restrictions on the conjugacy classes are countably
recognizable (see also [33]). We then move on to prove that most of
the generalized nilpotency properties we stated in the introduction
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have countable character (see also [31]). Finally we obtain the count-
ably recognizability of minimax groups (namely, groups with a finite
series whose factors satisfy either the minimal or the maximal con-
dition on subgroups) and informations about the influence of closed
countable subgroups in topological groups (see also [36] and [32]).
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1.1 Groups with Restricted Conjugacy Classes

If x is an element of a group G admitting infinitely many conju-
gates, it is obvious that x belongs to some countable subgroup of G
where it has again infinitely many conjugates. It follows that the class
of FC-groups is countably recognizable. It is also clear that groups
with finite commutator subgroup (which are precisely the groups
with the BFC-property) form a countably recognizable group class.
In this section it will be proved that all of the relevant classes of
generalized FC-groups we saw in the introduction are countably rec-
ognizable. It was proved by Baer [2] that the class of FC-hypercentral
groups is countably recognizable, and it is also known that the prop-
erty of being nilpotent-by-finite can be detected from the behaviour
of countable subgroups (see for instance [28]). Our first aim is to
prove that also the intermediate class of FC-nilpotent groups is count-
ably recognizable.

Note first that the class FCn, consisting of all FC-nilpotent groups
of class at most n, is not local for any positive integer n. To see this, it
is enough to consider any locally finite group with trivial FC-centre,
like for instance an infinite simple locally finite group or one of the
periodic metabelian groups constructed by V.S. Čarin (see [61] Part 1,
p.152).

Lemma 1.1.2 Let G be a group, and let X be a countable subgroup of G.
Then for each non-negative integer n there exists a countable subgroup Hn
of G containing X such that Hn ∩ FCn(G) = FCn(Hn).

Proof — The proof is by induction on n, the statement being ob-
vious for n = 0. If the subgroup X is contained in FCn+1(G), it
is enough to put Hn+1 = X. Assume now that X is not contained
in FCn+1(G), and let x be any element of X \ FCn+1(G). Then the
coset xFCn(G) has infinitely many conjugates in G/FCn(G), and so
there exists a countably infinite subset Yx of G such that

xy1FCn(G) 6= xy2FCn(G)

for all elements y1 and y2 of Yx such that y1 6= y2. Clearly, the
subgroup

K = 〈X, Yx | x ∈ X \ FCn+1(G)〉

is countable, so by induction we can find a countable subgroup U1
of G containing K such that U1 ∩ FCn(G) = FCn(U1). Apply now



22 Countable in Group Theory

the same argument to U1 in order to obtain a new countable sub-
group U2 containing U1, with U2 ∩ FCn(G) = FCn(U2) and such that
for every a ∈ U1 \ FCn+1(G) there is a countably infinite subset Za
of U2 for which az1FCn(G) 6= az2FCn(G) whenever z1 and z2 are
different elements of Za. In this way we can construct an increasing
sequence (Uk)k∈N of countable subgroups of G such that

Uk ∩ FCn(G) = FCn(Uk).

Consider the countable subgroup

U =
⋃
k∈N

Uk.

If u is any element of FCn(U) and if k is a positive integer such
that u ∈ Uk, then u belongs to FCn(Uk) and so also to FCn(G). There-
fore U ∩ FCn(G) = FCn(U). Let v be any element of FCn+1(U), and
assume for a contradiction that u does not belong to FCn+1(G). Fix
a positive integer k such that v ∈ Uk. It follows from our construc-
tion that Uk contains a countably infinite subset W = {wi | i ∈ N}
such that vwiFCn(G) 6= vwjFCn(G) if i 6= j. As FCn(U) is contained
in FCn(G), we have also that vwiFCn(U) 6= vwjFCn(U) if i 6= j,
contradicting the assumption that v belongs to FCn+1(U). There-
fore FCn+1(U) is contained in FCn+1(G), and the proof of the state-
ment can be completed by choosing Hn+1 = U. ut

Theorem 1.1.3 For each positive integer n, the class of FC-nilpotent
groups of class at most n is countably recognizable.

Proof — Let G be a group whose countable subgroups are FC-nil-
potent with class at most n. It follows from Lemma 1.1.2 that every
countable subgroup of G is contained in FCn(G), so that FCn(G) = G
and G is FC-nilpotent with class at most n. ut

Corollary 1.1.4 The class of FC-nilpotent groups is countably recogniz-
able.

Proof — Let FC∞ be the class of FC-nilpotent groups. Then

FC∞ =
⋃
n∈N

FCn,
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and so the statement of the corollary is a direct consequence of The-
orem 1.1.3 and Lemma 1.1. ut

It was claimed in [68], Lemma 5, that the class FCn is countably
recognizable for each non-negative integer n, but unfortunately the
proof of this result contains a mistake. Here we prove in a different
way that this statement holds; as a consequence, it can be deduced
that also Theorem 2 of [68] remains true.

Lemma 1.1.5 Let G be a group, and let X be a countable subgroup of G.
Then for every element g of G, there exists a countable subgroup Y of G
such that 〈g,X〉 6 Y and CX(〈g〉G) = CX(〈g〉Y).

Proof — It can obviously be assumed that CX(〈g〉G) 6= X, so that
in particular X = 〈X \CX(〈g〉G)〉. For each element x of X \CX(〈g〉G),
choose a finite subset Ex of G such that x 6∈ CX(〈g〉Ex), and put

Y = 〈g, x,Ex | x ∈ X \CX(〈x〉G)〉.

Then Y is a countable subgroup of G such that 〈g,X〉 6 Y and

CX(〈g〉G) = CX(〈g〉Y).

The statement is proved. ut

Theorem 1.1.6 The class FCn is countably recognizable for each non-ne-
gative integer n.

Proof — The classes FC0 = F and FC1 = FC are obviously count-
ably recognizable. Suppose by induction that FCn is countably recog-
nizable, and assume for a contradiction that there exists a group G
which is not an FCn+1-group but whose countable subgroups have
all the FCn+1-property. Then there exists an element g of G such
that G/CG(〈g〉G) is not an FCn-group, and so there is a countable
subgroup X of G such that X/CX(〈g〉G) does not have the FCn-proper-
ty. It follows from Lemma 1.1.5 that there is a countable subgroup Y
of G such that 〈g,X〉 6 Y and CX(〈g〉G) = CX(〈g〉Y). By hypothesis, Y
is an FCn+1-group, and so Y/CY(〈g〉Y) belongs to FCn. Then also

X/CX(〈g〉G) = X/CX(〈g〉Y) ' XCY(〈g〉Y)/CY(〈g〉Y)

is an FCn-group, and this contradiction completes the proof. ut
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Of course, it follows from Lemma 1.1 and Theorem 1.1.6 that the
class

FC∗ =
⋃
n∈N0

FCn

is countably recognizable. Furthermore the FC∞-property can be de-
tected from the behaviour of countable subgroups, as our next result
shows.

Theorem 1.1.7 The class FC∞ is countably recognizable.

Proof — Let G be a group. Suppose that all countable subgroups
of G are FC∞-groups, and assume for a contradiction that there ex-
ists an element g of G such that the factor group G/CG(〈x〉G) does
not belong to the class FC∗. If n is any non-negative integer n, the
class FCn is countably recognizable class, and so there exists a count-
able subgroup Xn of G such that XnCG(〈g〉G)/CG(〈g〉G) is not in
the class FCn. It follows from Lemma 1.1.5 that for each n there is a
countable subgroup Yn of G such that

〈g,Xn〉 6 Yn and CXn(〈g〉
G) = CXn(〈g〉

Yn).

The subgroup
Y = 〈Yn | n ∈ N0〉

is countable, so that Y/CY(〈g〉Y) is an FCk-group for some non-nega-
tive integer k, and hence also XkCY(〈g〉Y)/CY(〈g〉Y) belongs to FCk.
On the other hand,

CXk(〈g〉
Y) 6 CXk(〈g〉

Yk) = CXk(〈g〉
G),

and so CXk(〈g〉
Y) = CXk(〈g〉

G). Therefore XkCG(〈g〉G)/CG(〈y〉G) is
an FCk-group, and this contradiction proves the statement. ut

It is easy to show that, like the class of finite-by-abelian groups,
also the class of groups which are finite over the centre is countably
recognizable. Our next result proves that the third class of groups
considered by Neumann has the same property.

Theorem 1.1.8 The class of CF-groups is countably recognizable.

Proof — Let G be a group such that all countable subgroups have
the CF-property. Assume for a contradiction that G is not a CF-group,
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and let X be a subgroup of G such that the index |X : XG| is infinite.
Then X/XG contains a countably infinite subgroup Y/XG. Let W be
a transversal to XG in Y. If y and z are distinct elements of W, the
product y−1z does not belong to XG = YG, and so there exists an
element g(y, z) of G such that y−1z is not in Yg(y,z). Put K = 〈W〉,
and consider the countable subgroup

H = 〈K, g(y, z) | y, z ∈W,y 6= z〉.

Then H is a CF-group, so that the index |K : KH| must be finite, and
hence there exist distinct elements y, z ofW such that y−1z lies in KH,
a contradiction because

KH 6 Kg(y,z) 6 Yg(y,z).

Therefore G has the CF-property, and the class CF is countably recog-
nizable. ut

If n is a positive integer, we say that a group G has the CFn-pro-
perty if |X : XG| 6 n for all subgroups X of G. The same argument
used in the proof of Theorem 1.1.8 shows that the class of CFn-groups
is countably recognizable for each n. Therefore the class

BCF =
⋃
n∈N

CFn

is likewise countably recognizable by Lemma 1.1.

Groups with the FNO-property are of course related to CF-groups,
and they form another countably recognizable group class.

Theorem 1.1.9 The class of FNO-groups is countably recognizable.

Proof — Let G be a group such that all countable subgroups have
the FNO-property, and assume for a contradiction that G contains a
subgroup X such that both indices |XG : X| and |X : XG| are infinite.
Let (xn)n∈N be a countably infinite collection of elements of X such
that xiXG 6= xjXG if i 6= j, and put Y = 〈xn | n ∈ N〉. For all positive
integers i and j such that i 6= j there exists an element g(i, j) of G
such that x−1i xj does not belong to Xg(i,j). On the other hand, as
the index |XG : X| is infinite, there exist countable subgroups Z of X
and U of G such that Y 6 Z and the normal closure ZU contains
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an infinite subset W for which w1X 6= w2X, whenever w1,w2 are
elements of W and w1 6= w2. Then

H = 〈Z,U, g(i, j) | i 6= j〉

is a countable subgroup of G, and x−1i xj is not in Zg(i,j) if i 6= j. It
follows that xiZH 6= xjZH for all i 6= j, and so the index |Z : ZH| is
infinite. Moreover, ZH > ZU > W and hence also the index |ZH : Z|
is infinite, a contradiction because H is an FNO-group. Therefore G
is an FNO-group, and the class FNO is countably recognizable. ut

We will consider now the classes of groups with restricted conju-
gacy classes studied by Robinson.

Theorem 1.1.10 The classes FCI and FNI are countably recognizable.

Proof — Suppose first that G is a group such that all countable
subgroups have the FCI-property, and assume for a contradiction
that G contains a cyclic non-normal subgroup 〈x〉 such that the in-
dex |CG(x) : 〈x〉| is infinite. Let g be an element of Gwith the property
that 〈x〉g 6= 〈x〉, and consider a countably infinite subgroup U/〈x〉
of CG(x)/〈x〉. Then H = 〈U, g〉 is a countable subgroup of G, and 〈x〉
is a non-normal subgroup of H which has infinite index in the cen-
tralizer CH(x). This contradiction shows that G is an FCI-group, and
so the class FCI is countably recognizable.

Suppose now that G is a group whose countable subgroups be-
long to FNI, and assume that G contains a non-normal subgroup X
such that the index |NG(X) : X| is infinite. Let x ∈ X and g ∈ G be
elements such that xg is not in X, and consider a countable sub-
group U of NG(X) such that x belongs to U and UX/X is infinite.
Then H = 〈U, g〉 is a countable subgroup of G, and X ∩U is a non-
normal subgroup of H. Moreover, U is contained in the normali-
zer NH(X∩U), and hence X ∩ U has infinite index in NH(X ∩ U).
This contradiction proves that G is an FNI-group, and so FNI is a
countably recognizable class. ut

As we mentioned, the class of periodic FC-groups is precisely the
class MF. Our next result shows that many classes of the form MX
are countably recognizable.

Theorem 1.1.11 Let X be a subgroup closed and countably recognizable
group class. Then the class MX is countably recognizable.
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Proof — Let G be a group such that all countable subgroups belong
to MX, and assume for a contradiction that G is not in MX. As X
is subgroup closed, it follows that there exists a finitely generated
subgroup E of G such that the normal closure EG does not belong
to X. But X is countably recognizable, and so EG contains a countable
subgroup U which is not in X. Let X be a countable subgroup of G
such that U 6 EX. Then H = 〈E,X〉 is a countable subgroup of G,
and the normal closure EH is not in X, because U 6 EX 6 EH. This
contradiction shows that G lies in MX, and hence MX is countably
recognizable. ut

Since it is known that both the class P of all polycyclic-by-finite
groups and the class C of all Černikov groups are countably recog-
nizable, it follows from the above theorem that the class MP (which
coincides with the class of all PC-groups) and the class MC are count-
ably recognizable. Our next result shows that many other similar
classes, and in particular that of arbitrary CC-groups, have countable
character.

Theorem 1.1.12 Let X be a subgroup closed and countably recognizable
class of groups. Then the class XC, consisting of all groups with X-con-
jugacy classes, is countably recognizable.

Proof — Let G be a group whose countable subgroups belong
to XC, and assume for a contradiction that G contains an element g
such that G/CG(〈g〉G) is not an X-group. As the class X is countably
recognizable, there exists a subgroup H/CG(〈g〉G) of G/CG(〈g〉G)
which is countable but not in X. Clearly H = XCG(〈g〉G), where X
is a suitable countable subgroup, and X/CX(〈g〉G) ' H/CG(〈g〉G) is
not in X. By Lemma 1.1.5 there exists a countable subgroup Y of G
containing 〈g,X〉 and such that CX(〈g〉G) = CX(〈g〉Y). Then

X/CX(〈g〉G) = X/CX(〈g〉Y) ' XCY(〈g〉Y)/CY(〈g〉Y) 6 Y/CY(〈g〉Y),

a contradiction, because X is S-closed and Y/CY(〈g〉Y) belongs to X.
Therefore G is an XC-group and the class XC is countably recogniz-
able. ut

A relevant problem in the theory of groups with finite conjugacy
classes is to establish conditions under which a periodic residually
finite FC-group can be embedded into the direct product of a collec-
tion of finite groups. Therefore groups which are isomorphic to sub-
groups of direct products of finite groups form an important class
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of FC-groups, which is denoted by SDF. We point out here that the
class SDF is not countably recognizable. As P. Hall proved that any
countable periodic residually finite FC-group belongs to SDF (see for
instance [12], Theorem 1.5.1), it is enough to show that there exists
an uncountable periodic residually finite FC-group which is not iso-
morphic to a subgroup of a direct product of finite groups. To prove
this, fix a prime number p, and for each positive integer n let Cn be a
cyclic group of order pn. Consider the cartesian product C of the col-
lection (Cn)n∈N, and let G be the subgroup of all elements of finite
order of C. Then G is residually finite, but it cannot be embedded
into a direct product of finite groups. Therefore the class SDF is not
countably recognizable.
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1.2 Generalized Nilpotency Properties

The main purpose of this section is to prove that all the classes of gen-
eralized nilpotent groups (apart from the local ones) we described in
the introduction (with a single exception) are countably recognizable.
We will begin with the classes of groups which are locally nilpotent.

Among these, the class of Gruenberg groups is the only one which
is not countably recognizable. In fact, it is easy to see that any count-
able locally nilpotent group is a Gruenberg group, and Kargapo-
lov [45], as we saw in the introduction to this chapter, constructed
a locally nilpotent group with no abelian non-trivial ascendant sub-
groups.

Before proving that the class of Baer groups is countably recogniz-
able, we will make some general remarks on subnormal subgroups
of uncountable groups. Actually, it was shown by Baer [2] that if X
is a subgroup of a group G which is subnormal of defect at most k
in 〈X,U〉 for each countable subgroup U of G, then X is subnormal
in Gwith defect at most k+1. Moreover, Baer mentioned that E. Wirs-
ing was able to prove, under the same assumptions, that the defect
of the subnormal subgroup X is bounded by k. However, this latter
result was not published, and an easy proof of it is presented here.

Let G be a group, and let X be a subgroup of G. Recall that the series
of normal closures {XG,n}n∈N0 of X in G is defined by putting XG,0 = G

and
XG,n+1 = XX

G,n

for each non-negative integer n. In particular, X 6 XG,n for all n,
and XG,1 = XG, the normal closure of X in G. Note that X is subnor-
mal in G of defect at most k if and only if XG,k = X.

Lemma 1.2.13 Let G be a group, and let X be a subgroup of G. If Y is a
countable subgroup of G and Y 6 XG,n for some positive integer n, then
there exists a countable subgroup U of G such that Y 6 XU,n.

Proof — The statement is obvious if n = 1, since Y is countable
and XG,1 = XG. Assume by induction that it holds for all count-
able subgroups of XG,n, for some positive integer n, and let Y be
a countable subgroup of XG,n+1. As XG,n+1 is the normal closure
of X in XG,n, there exists a countable subgroup V of XG,n such
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that Y 6 XV . By assumption, there is a countable subgroup W of G
such that V 6 XW,n, and hence

Y 6 XV 6 XX
W,n

= XW,n+1.

The lemma is proved. ut

Lemma 1.2.14 Let G be a group, and let X be a subgroup of G which is
properly contained in XG,n for some positive integer n. Then there exists a
countable subgroup U of G such that X is a proper subgroup of XU,n.

Proof — The statement is obvious if n = 1. Suppose n > 1. As XG,n

is the normal closure of X in XG,n−1, there exists a countable sub-
group V of XG,n−1 such that X 6= XV . It follows from Lemma 1.2.13

that there is a countable subgroup U of G such that V is contained
in XU,n−1, and hence

X < XV 6 XX
U,n−1

= XU,n,

which proves the lemma. ut

Theorem 1.2.15 Let G be a group, and let X be a subgroup of G.

(a) If X is subnormal in 〈X,U〉 for each countable subgroup U of G,
then X is subnormal in G.

(b) If k is a positive integer and X is subnormal in 〈X,U〉 of defect at
most k for each countable subgroup U of G, then X is subnormal in G
of defect at most k.

Proof — Assume that the subgroup X is not subnormal with defect
at most k for some positive integer k. Then X < XG,k, and so it
follows from Lemma 1.2.14 that G contains a countable subgroup Uk
such that X < XUk,k. Then X is not subnormal with defect at most k
in 〈X,Uk〉, and hence part (b) of the statement is proved. Moreover,
if X is not subnormal in G, we have X < XG,k for all k, and so the
countable subgroup Uk can be chosen for each positive integer k.
Then

U = 〈Uk | k ∈ N〉

is a countable subgroup of G, and X < XU,k for each k, so that X is
not subnormal in 〈X,U〉. The proof of the theorem is complete. ut
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As a direct consequence of the first part of Theorem 1.2.15, we
have:

Corollary 1.2.16 The class of Baer groups is countably recognizable.

Our next result shows that also the property of being a Fitting
group can be detected from the behaviour of countable subgroups.

Theorem 1.2.17 The class of Fitting groups is countably recognizable.

Proof — Let G be a group whose countable subgroups are Fitting
groups, and assume for a contradiction that G contains an element x
such that the normal closure 〈x〉G is not nilpotent. As the class of
nilpotent groups is countably recognizable, there exists a countable
non-nilpotent subgroup H of 〈x〉G such that x ∈ H. Moreover, for
each element h of H, there exists a finitely generated subgroup U(h)
of G such that h belongs to the normal closure 〈x〉U(h). Then

U = 〈x,U(h) | h ∈ H〉

is a countable subgroup of G, and H is contained in 〈x〉U, so that 〈x〉U
is not nilpotent and hence U is not a Fitting group. This contradiction
proves the statement. ut

The first non-local class of generalized nilpotent groups which has
been proved to be countably recognizable is probably that of hy-
percentral groups. In fact, S.N. Černikov [13] proved in 1950 that a
group G is hypercentral if and only if given two sequences (xn)n∈N
and (yn)n∈N of elements of G such that [xn,yn] = xn+1 for all n,
there exists a positive integer m such that xm = 1. The countable rec-
ognizability of the class of hypercentral groups can also be obtained
as a special case of a result on ascending normal series that will be
proved in the last section. Note also that Baer [2] showed that also
the wider class of N-groups is countably recognizable.

To complete our analysis of the main classes of generalized nilpo-
tent groups contained in LN, we consider now the case of N1-groups.

Theorem 1.2.18 The class of N1-groups is countably recognizable.

Proof — Let G be a group whose countable subgroups belong to
the class N1, and assume for a contradiction that G contains a sub-
group X which is not subnormal. Then for each positive integer n,
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we have that X is properly contained in XG,n, and so Lemma 1.2.14

yields that there exists a countable subgroup Un of the group G such
that X < XUn,n. It follows that for every n we can choose a countable
subgroup Vn of X such that VUn,n

n is not contained in X. Put

U = 〈Un | n ∈ N〉 and V = 〈Vn | n ∈ N〉,

and consider the countable subgroup H = 〈U,V〉 of G. Then H is
an N1-group, so that V is subnormal in H, with defect k, say, and
hence VH,k = V 6 X. But VH,k contains the subgroup V

Uk,k
k , and

so it cannot be contained in X. This contradiction shows that G is
an N1-group. ut

We now move on the main classes of generalized nilpotent groups
which are not contained in LN. We begin by proving that the class of
hypocentral groups is countably recognizable and, in order to do so,
we need the following lemma.

Lemma 1.2.19 Let G be a group, and let N be a non-trivial normal sub-
group of G such that [N,G] = N. Then there exists a countable subgroup H
of G such that N∩H 6= {1} and [N∩H,H] = N∩H.

Proof — Let x be any non-trivial element of N. Then there exist
countable subgroups X of N and Y of G such that x belongs to [X, Y].
Then H1 = 〈X, Y〉 is countable. Assume that a countable subgroup Hn
has been chosen. For each element h of N∩Hn, let Xn(h) and Yn(h)
be countable subgroups of N and G, respectively, such that h lies
in [Xn(h), Yn(h)], and put

Hn+1 = 〈Xn(h), Yn(h) | h ∈ Hn〉.

Then (Hn)n∈N is an ascending sequence of countable subgroups, and
so

H =
⋃
n∈N

Hn

is likewise a countable subgroup of G with N∩H 6= {1}.
If a is any element of H ∩N, there is a positive integer m such

that a ∈ Hm, and hence a belongs to [Xm(a), Ym(a)] 6 [N ∩H,H].
Therefore [N∩H,H] = N∩H, and the statement is proved. ut

Theorem 1.2.20 The class of hypocentral groups is countably recogniz-
able.
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Proof — Let G be a group such that all its countable subgroups are
hypocentral, and assume for a contradiction that G is not hypocen-
tral. Then γτ(G) = γτ+1(G) 6= {1} for a suitable ordinal τ. It follows
from Lemma 1.2.19 that there exists a countable subgroup H of G
such that γτ(G) ∩H 6= {1} and [γτ(G) ∩H,H] = γτ(G) ∩H, a contra-
diction since H is hypocentral. ut

The class of residually nilpotent groups was discovered to be count-
ably recognizable by B.H. Neumann [56]. Here we obtain this infor-
mation as a special case of a result on sequences of varieties.

Let W be a set of words in countably many variables. If G is any
group, the verbal subgroup of G determined by W is defined as the
subgroup W(G) generated by all values of words in W on elements
of G. Recall also that the variety determined by W is the class B(W)
consisting of all groups G such that each word in W reduces to
the identity when the variables are replaced by arbitrary elements
of G; thus a group G belongs to B(G) if and only if W(G) = {1}.
Clearly, every variety is S, H, L and R-closed; on the other hand, it
is well-known that a group class is a variety if and only if it is H

and R-closed (see for instance [61] Part 1, Theorem 1.13).

Lemma 1.2.21 Let (Bn)n∈N be a countable collection of varieties made
by groups, and let

B =
⋃
n∈N

Bn.

Then the class RB of residually B-groups is countably recognizable.

Proof — For each positive integer n, let Wn be a set of words
determining the variety Bn. Consider a group G whose countable
subgroups are residually B, and let x be any element of the B-re-
sidual ρ∗B(G) of G. Clearly,

ρ∗B(G) =
⋂
n∈N

Wn(G),

where Wn(G) is the verbal subgroup of G determined by Wn. Then x
belongs to Wn(G) for each positive integer n, and so there exists
a countable subgroup Hn of G such that x lies also in the verbal
subgroup Wn(Hn). Clearly

H = 〈Hn | n ∈ N〉
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is a countable subgroup of G, and x ∈ Wn(H) for all n, so that x is
an element of the B-residual of H. As H is a residually B-group, it
follows that x = 1, and hence G is residually B. ut

Theorem 1.2.22 The class RN of residually nilpotent groups is countably
recognizable.

Proof — For each positive integer n, the class Nn of all nilpotent
groups of class at most n is a variety, and hence the statement is a
special case of Lemma 1.2.21. ut

More Nilpotency Properties

The aim of this paragraph is to study the countable recognizability
of classes of groups which are close to be nilpotent (the obstruction
being, for instance, a finite section; on this subject see also [39]). The
first of these classes is that consisting of all groups containing a nilpo-
tent subgroup of finite index.

Let X and Y be group classes. We shall denote by XY the class con-
sisting of all (X-by-Y)-groups, i.e. the class of all groups G contain-
ing a normal X-subgroup N such that the factor group G/N belongs
to Y. In particular, if X is any group class and F is the class of finite
groups, XF is the class of all groups containing a normal X-subgroup
of finite index. Thus SF, NF and AF are the classes of soluble-by-fi-
nite, nilpotent-by-finite and abelian-by-finite groups, respectively.

Our next theorem provides a number of countably recognizable
group classes. It shows in particular that if X is a class of groups
such that SX = LX = X, then the class XF is countably recognizable.
In order to prove this result, we need the following result due to Baer,
for a proof of which we refer to [46], Proposition 1.K.2.

Lemma 1.2.23 Let X be an S-closed class of groups, and let G be a group
in which every finitely generated subgroup contains an X-subgroup of index
at most k, where k is a fixed positive integer. Then G contains a subgroup
of index at most k which is locally X.

Theorem 1.2.24 Let (Xn)n∈N be a collection of group classes which are S
and L-closed, and let

X =
⋃
n∈N

Xn.

Then the class XF is countably recognizable.
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Proof — Let G be a group in which every countable subgroup con-
tains an X-subgroup of finite index, and assume for a contradiction
that G does not belong to the class XF. In particular, G is not in XnF
for any n, and so it follows from Lemma 1.2.23 that for all positive
integers n and k there exists a finitely generated subgroup En,k of G
which has no Xn-subgroups of index at most k. Clearly,

E = 〈En,k | n, k ∈ N〉

is a countable subgroup of G, and hence it contains an X-subgroup X
of finite index h. Let m be a positive integer such that X lies in Xm.
Then X∩ Em,h is an Xm-subgroup of Em,h and

|Em,h : X∩ Em,h| 6 h.

This contradiction proves the statement. ut

Corollary 1.2.25 The group classes AF and NF are countably recogniz-
able.

Proof — For each positive integer n, the class Nn is obviously S

and L-closed, and so also the class NnF is countably recognizable
by Theorem 1.2.24. In particular, the class AF is countably recogniz-
able. Moreover, as

N =
⋃
n∈N

Nn,

another application of Theorem 1.2.24 yields that NF is a countably
recognizable group class. ut

Of course, an argument similar to that used in the proof of Corol-
lary 1.2.25 shows that also the class SF is countably recognizable.

Corollary 1.2.26 The class FAF of all finite-by-abelian-by-finite groups
is countably recognizable.

Proof — For each positive integer n, let Fn be the class of all finite
groups of order at most n. Then the class FnA is S and L-closed for
all n, and

FA =
⋃
n∈N

FnA.

Hence the class FAF is countably recognizable by Theorem 1.2.24. ut
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Notice that the above statement can also be obtained as a conse-
quence of a combinatorial result. In fact, it was proved in [14] that a
group G is finite-by-abelian-by-finite if and only it has the permuta-
tional property, i.e. if and only if there exists a positive integer n such
that for all elements x1, . . . , xn of G there is a non-trivial permuta-
tion σ of {1, . . . ,n} such that

x1x2 . . . xn = xσ(1)xσ(2) . . . xσ(n).

Our purpose is now to show that the class FN of all finite-by-nil-
potent groups is countably recognizable. Of course, a group G is
finite-by-nilpotent if and only if there is a positive integer k such
that γk(G) is finite. If G is any group, we shall denote by Count(G)
the set of all countable subgroups of G.

Lemma 1.2.27 Let G be a group, and let

δ : Count(G) −→ N

be an increasing function. Then there exists a positive integer m such
that δ(X) 6 m for each countable subgroup X of G.

Proof — Assume for a contradiction that the function δ is un-
bounded, so that for each positive integer n there exists a countable
subgroup Xn of G such that δ(Xn) > n. Then

X = 〈Xn | n ∈ N〉

is a countable subgroup of G, and δ(Xn) 6 δ(X) for each n, which is
obviously impossible. ut

Theorem 1.2.28 Let X be a countably recognizable group class which is S

and R0-closed. Then the class FX is countably recognizable.

Proof — Let G be a group whose countable subgroups belong
to FX. If X is any countable subgroup of G, it follows from the R0-
closure of X that the X-residual ρ∗X(X) of X is finite and the factor
group X/ρ∗X(X) lies in X. Moreover, if X and Y are countable sub-
groups of G such that X 6 Y, we have that X/X∩ ρ∗X(Y) belongs to X,
and hence ρ∗X(X) 6 ρ∗X(Y). Therefore the map

δ : X ∈ Count(G) 7−→ |ρ∗X(X)| ∈ N
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is bounded by Lemma 1.2.27. Let m be the smallest positive integer
such that ρ∗X(X) has order at most m for each countable subgroup X
of G, and choose a countable subgroup H such that |ρ∗X(H)| = m.

Let U be any countable subgroup of G containing H. Then U/ρ∗X(U)
is an X-group and |ρ∗X(U)| 6 m; moreover ρ∗X(H) 6 ρ∗X(U), and hen-
ce ρ∗X(U) = ρ∗X(H). In particular, if g is any element of G, the sub-
group 〈H, g〉 is countable, and so the subgroup ρ∗X(H) = ρ∗X(〈H, g〉)
is normalized by g. Therefore ρ∗X(H) is normal in G. Let U/ρ∗X(H)
be any countable subgroup of G/ρ∗X(H). Then U is countable, so
that ρ∗X(U) = ρ∗X(H) and hence U/ρ∗X(H) belongs to X. Hence G/ρ∗X(H)
is an X-group and G belongs to FX. ut

Corollary 1.2.29 The class FN is countably recognizable.

The combination of the above statement with Theorem 1.2.22 yields
that also the class F(RN), consisting of all groups whose nilpotent
residual is finite, is countably recognizable.

Two relevant theorems of Baer and P. Hall prove that for a group G
there exists a positive integer h such that the subgroup γh(G) is fi-
nite if and only if the index |G : Zk(G)| is finite for some integer k > 0
(see [61] Part 1, p.113 and p.117). Therefore Corollary 1.2.29 shows
also that the property of being finite over some term with finite or-
dinal type of the upper central series is countably recognizable. Ob-
serve here that if G is a group such that γh(X) is finite for each
countable subgroup X of G and for a fixed positive integer h, then
also γh(G) is finite, because

γh(G) =
〈
[x1, . . . , xh]

∣∣ x1, . . . , xh ∈ G
〉
.

It can also be proved that the class of all groups G which are finite
over Zk(G) for some fixed positive integer k is countably recogniz-
able.

Let B be a variety, and letW be a set of words such that B(W) = B.
Recall that a normal subgroupN of a group G is said to be B-marginal
if

θ(g1, . . . , gi−1, gix, gi+1, . . . , gn) = θ(g1, . . . , gi−1, gi, gi+1, . . . , gn)

for each word θ ∈ W in n variables and for all elements g1, . . . , gn
of G and x of N. Every group G contains a largest B-marginal sub-
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group, which is denoted by W∗(G), and G belongs to B if and only
if W∗(G) = G.

Theorem 1.2.30 Let B be any variety, the class of groups containing
a B-marginal subgroup of finite index is countably recognizable.

Proof — Let W be a set of words such that B(W) = B, and let G be
a group such that the index |X : W∗(X)| is finite for every countable
subgroup X. If X and Y are subgroups of G such that X 6 Y, we have
obviously X∩W∗(Y) 6W∗(X), and so the map

δ : X ∈ Count(G) 7−→ |X :W∗(X)| ∈ N

is bounded by Lemma 1.2.27. Let m be a positive integer with the
property that |X :W∗(X)| 6 m for each countable subgroup X of G.
Assume for a contradiction thatW∗(G) has infinite index in G, so that
there are elements y1, . . . ,ym,ym+1 such that yiW∗(G) 6= yjW

∗(G)
if i 6= j. Then for all i 6= j there exists a word θ(i, j) ∈ W in s(i, j)
variables such that

θ(i, j)
(
g
(i,j)
1 , . . . , g(i,j)k−1, g(i,j)k y−1i yj, g

(i,j)
k+1, . . . , g(i,j)

s(i,j)

)
6= θ(i, j)

(
g
(i,j)
1 , . . . , g(i,j)k−1, g(i,j)k , g(i,j)k+1, . . . , g(i,j)

s(i,j)

)
for suitable elements g(i,j)1 , . . . , g(i,j)

s(i,j) of G. Therefore

H = 〈y1, . . . ,ym,ym+1, g(i,j)1 , . . . , g(i,j)
s(i,j) | i 6= j〉

is a countable subgroup of G, and yiW
∗(H) 6= yjW

∗(H) for i 6= j,
which is impossible because |H :W∗(H)| 6 m. ut

If k is any positive integer, andWk is the set consisting of the single
word [x1, . . . , xk], then B(Wk) is the variety of all nilpotent groups of
class at most k and W∗k(G) = Zk(G) for any group G. Therefore The-
orem 1.2.30 has the following consequence.

Corollary 1.2.31 If k is any positive integer, the class of groups which
are finite over the k-th term of their upper central series is countably recog-
nizable.

It has been recently proved that a group G is finite over its hyper-
centre Z(G) if and only if G contains a finite normal subgroup N
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such that G/N is hypercentral (see [18]). As the class of hypercentral
groups is countably recognizable, it follows from Theorem 1.2.28 that
also the class of groups which are finite over the hypercentre is count-
ably recognizable.

Further Countably Recognizable Classes

For every group G, let Ξ(G) be a set of subgroups of G containing
the identity subgroup {1}; the elements of Ξ(G) are called Ξ-subgroups
of G. We shall say that Ξ is an embedding subgroup property if(

Ξ(G)
)ϕ

= Ξ(G∗)

for every group isomorphism ϕ : G −−→ G∗ and X belongs to Ξ(Y),
whenever X 6 Y 6 G and X ∈ Ξ(G). An embedding property Ξ is
called absolute if it holds for each subgroup X∗ of a group G∗ such
that X∗ ' X, where X is a Ξ-subgroup of some group G; in particular,
if X is any group class, the property for a subgroup to belong to X
is an absolute property. On the other hand, there are many relevant
embedding properties (like for instance normality and subnormality)
which are not absolute.

An embedding property Ξ is said to have countable character when
a subgroup X of an arbitrary group G is a Ξ-subgroup if and only
if Ξ holds for all countable subgroups of X. In particular, if Ξ is an
embedding property of countable character, and X is a Ξ-subgroup
of a group G, then all subgroups of X have the property Ξ. Note also
that, if X is an S-closed group class, the property for a subgroup to
be in X is an absolute property which has countable character if and
only if X is countably recognizable.

The first result of this paragraph shows in particular that if Ξ is an
embedding property of countable character, then the class of group
with a non-trivial normal Ξ-subgroup is countably recognizable.

Lemma 1.2.32 Let Ξ be an embedding property of countable character,
and let k be a positive integer. Then the class of all groups containing a non-
trivial subnormal Ξ-subgroup of defect at most k is countably recognizable.

Proof — Let G be a non-trivial group which has no non-trivial sub-
normal Ξ-subgroups of defect at most k. If x 6= 1 is an element of G,
the subgroup 〈x〉G,k is subnormal in G with defect at most k, and
so it cannot be a Ξ-subgroup. Since Ξ has countable character, there
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exists a countable subgroup Yk of 〈x〉G,k for which the property Ξ
does not hold, and it follows from Lemma 1.2.13 that G contains a
countable subgroup Uk such that Yk 6 〈x〉Uk,k. Note that Ξ does not
hold for 〈x〉Uk,k, because this latter subgroup contains Yk. Put

H1 = 〈x,Uk | k ∈ N〉,

and suppose that a countable subgroup Hn of G has been defined for
some positive integer n. For each element h 6= 1 of Hn and for each
non-negative integer k, the subnormal subgroup 〈h〉G,k cannot have
the property Ξ; as above there exists a countable subgroup Uk(h)

of G such that 〈h〉Uk(h),k is not a Ξ-subgroup, and we can put

Hn+1 = 〈h,Uk(h) | h ∈ Hn, k ∈ N〉.

In this way a chain (Hn)n∈N of countable subgroups of G has been
defined. Then

H =
⋃
n∈N

Hn

is a countable subgroup of G. Moreover, for each element h of H
the property Ξ does not hold for the subnormal subgroup 〈h〉H,k

of H, and hence H has no non-trivial subnormal Ξ-subgroups of de-
fect at most k. The statement is proved. ut

It should be remarked here that the class of all groups having an
abelian non-trivial normal subgroup is not L-closed. In fact, consider
an infinite collection (pn)n∈N of prime numbers, and for each posi-
tive integer n let Cn be a group of order pn. Put G1 = C1 and for
every n consider the standard wreath product Gn+1 = Cn+1 o Gn.
Then

G =
⋃
n∈N

Gn

is a periodic locally soluble group with trivial Hirsch-Plotkin radi-
cal HP(G) (i.e. its largest locally nilpotent normal subgroup), because

HP(Gn)∩HP(Gn+1) = {1}

for all n. In particular, G cannot contain abelian non-trivial normal
subgroups.

An argument similar to that used in the proof of the Lemma 1.2.32

shows that a corresponding result holds when there is no bound for
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the subnormal defect.

Lemma 1.2.33 Let Ξ be an embedding property of countable character.
Then the class of all groups containing a non-trivial subnormal Ξ-subgroup
is countably recognizable.

Lemma 1.2.34 Let Ξ be an embedding property which is inherited by ho-
momorphic images and such that the class of groups containing a non-trivial
normal Ξ-subgroup is countably recognizable. Then the class of groups ad-
mitting an ascending normal series with Ξ-factors is countably recogniz-
able.

Proof — Let G be a group whose countable subgroups have an
ascending normal series with Ξ-factors, and let N be any proper
normal subgroup of G. If H/N is a countable (non-trivial) subgroup
of G/N, there exists a countable subgroup X of H such that H = XN.
Since X∩N 6= X, there exists a normal subgroup Y of X properly
containing X ∩ N such that Y/X ∩ N is a Ξ-subgroup of X/X ∩ N.
Therefore Y ∩N = X∩N and YN/N ' Y/Y ∩N is a non-trivial nor-
mal Ξ-subgroup ofH/N. It follows from the hypotheses that alsoG/N
contains a non-trivial normal Ξ-subgroup, and hence G has an as-
cending normal series with Ξ-factors. ut

Corollary 1.2.35 Let Ξ be an embedding property of countable character
which is inherited by homomorphic images. Then the class of groups admit-
ting an ascending normal series with Ξ-factors is countably recognizable.

Proof — It follow from Lemma 1.2.32 that the class of all groups
containing a non-trivial normal Ξ-subgroup is countably recogniz-
able, and so the statement is a consequence of Lemma 1.2.34. ut

Of course, the above results can be specialized to the case of the
absolute property determined by a group class. Recall that if X is any
class of groups, a group is said to be hyper-X if it has an ascending
normal series whose factors belong to X.

Corollary 1.2.36 Let X be an S and H-closed group class. If X is count-
ably recognizable, then also the class of hyper-X groups is countably recog-
nizable.

This corollary shows in particular that the class of hyperabelian
groups and that of hypercyclic groups are countably recognizable.
Moreover, if we choose as X the class LN of all locally nilpotent
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groups, it follows that also the class of radical groups is countably
recognizable; here a group is called radical if it has an ascending (nor-
mal) series with locally nilpotent factors. Finally, as the class A∪F is
clearly countably recognizable, we have that groups with an ascend-
ing normal series whose factors are either abelian or finite form a
countably recognizable group class.

Note that Corollary 1.2.36 also proves that the class of hyperfinite
groups is countably recognizable. A group G is called a Specht group
if it admits an ascending chain

{1} = G0 < G1 < . . . < Gα < Gα+1 < . . . < Gτ = G

such that Gα has finite index in Gα+1 for all α < τ. These groups
were introduced by W. Specht [74]. An easy transfinite induction
proves that any Specht group is locally finite, and it is also clear
that all countable locally finite groups have the Specht property. On
the other hand, Hickin and Phillips [38] constructed an uncountable
locally finite p-group which is not a Specht group. In particular, the
class of Specht groups is not countably recognizable.

A group G is said to be subsoluble if it has an ascending series Σ
with abelian factors such that all terms of Σ are subnormal. It is easy
to see that in any group G the subgroup generated by all abelian
subnormal subgroups is the largest normal Baer subgroup (the Baer
radical of G); then a group is subsoluble if and only if it has an ascend-
ing normal series whose factors are Baer groups. Thus an application
of Corollary 1.2.16 and Corollary 1.2.36 yields the followiing result.

Corollary 1.2.37 The class of subsoluble groups is countably recogniz-
able.

Let Ξ be an embedding property. If X is any class of groups, a
new embedding property Ξ∨X can be defined, by requiring that a
subgroup X of a group G has such property if and only if either X
is a Ξ-subgroup of G or it belongs to X. Note that if Ξ has count-
able character and X is S-closed and countably recognizable, then
also Ξ∨X has countable character. Therefore Corollary 1.2.35 has
the following interesting consequence.

Corollary 1.2.38 Let Ξ be an embedding property of countable character
which is inherited by homomorphic images, and let X be an S and H-closed
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countably recognizable group class. Then the class of all groups admitting
an ascending normal series with (Ξ∨X)-factors is countably recognizable.

As a special case, we obtain the following result.

Corollary 1.2.39 The class of all groups admitting a normal series whose
factors are either central or finite is countably recognizable.

It is easy to prove that the property of having a non-trivial cen-
tral subgroup is countably recognizable. Next lemma shows that the
same is true for the property of having a non-trivial normal abelian
subgroup.

Lemma 1.2.40 A group G contains an abelian non-trivial normal sub-
group if and only if there exists an element a 6= 1 such that [x,a,ay] = 1
for all elements x,y of G.

Proof — Assume first that G contains an abelian non-trivial normal
subgroup A, and let a 6= 1 be an element of A. If x and y are arbitrary
elements of G, then [x,a] and ay belong to A, and hence [x,a,ay] = 1.

Conversely, suppose that a 6= 1 is an element of G satisfying the
condition of the statement. It can be assumed that Z(G) = {1}, so that
there exists an element x of G such that ax 6= xa. As [x,a,ay] = 1 for
all y ∈ G, the commutator [x,a] is a non-trivial element of Z(〈a〉G),
and hence Z(〈a〉G) is an abelian non-trivial normal subgroup of G. ut

We finally consider the class of residually soluble groups and that
of hypoabelian groups. Recall that a group G is called hypoabelian if
it has a descending (normal) series with abelian factors; it follows
from the definition that a group is hypoabelian if and only if its
derived series terminates with the identity subgroup (after infinitely
many steps, eventually). Of course, every residually soluble group is
hypoabelian.

Theorem 1.2.41 The class RS of residually soluble groups is countably
recognizable.

Proof — For each positive integer n, the class Sn of all soluble
groups of derived length at most n is a variety, and hence the state-
ment is a special case of Lemma 1.2.21. ut

Our next lemma shows that the class consisting of all imperfect
groups, with the addition of the identity group, is countably recog-
nizable.
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Lemma 1.2.42 Let G be non-trivial group G whose countable non-trivial
subgroups contain properly their commutator subgroup. Then G ′ 6= G.

Proof — Assume for a contradiction that the group G is perfect,
and let x 6= 1 be an element of G. Then there exists a finitely gener-
ated (and so countable) subgroup X1 of G such that x belongs to X ′1.
Suppose that a countable subgroup Xn has been chosen for some
positive integer n. As G is perfect, each element of Xn is the prod-
uct of finitely many commutators, and hence there exists a countable
subgroup Xn+1 of G such that Xn is contained in X ′n+1. Consider
now the sequence of countable subgroups (Xn)n∈N. Then

X =
⋃
n∈N

Xn

is a countable subgroup of G and X ′ = X. This contradiction proves
the lemma. ut

Our last result is a direct consequence of Lemma 1.2.42.

Theorem 1.2.43 The class of hypoabelian groups is countably recogniz-
able.

Proof — The statement follows from Lemma 1.2.42, as clearly a
group is hypoabelian if and only if all its non-trivial subgroups have
a proper commutator subgroup. ut
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1.3 The Class of Minimax Groups

Recall that a group G satisfies the minimal condition on subgroups if
there are no infinite descending chains of subgroups, and G satisfies
the maximal condition on subgroups if it admits no infinite ascend-
ing chains of subgroups. It is almost obvious that both the class of
groups satisfying the minimal condition and that of groups satisfy-
ing the maximal condition on subgroups are countably recognizable.
A group G is called minimax if it has a series of finite length

{1} = G0 < G1 < . . . < Gn = G

each of whose factors satisfies either the minimal or the maximal
condition on subgroups. The structure of soluble minimax groups
has been described by Robinson (see [61] Part 2, Chapter 10).

As the class of soluble groups of finite rank is countably recogniz-
able, and all soluble groups of finite rank are countable, it follows
that any group whose countable subgroups are soluble and mini-
max is countable, and so also minimax. Therefore the class of solu-
ble minimax groups is countably recognizable. However, the situa-
tion is much more complicated in the insoluble case, and in particu-
lar V.N. Obraztsov [57] constructed an uncountable group satisfying
the minimal condition on subgroups. The aim of this section is to
prove that the class of minimax groups is countably recognizable.

Denote by ∨ and ∧ the minimal and the maximal condition on sub-
groups, respectively, and for a positive integer n let σ = (σ1, . . . ,σn)
be any n-tuple whose entries belong to the set {∨,∧}. We shall say
that a group G is minimax of type σ (or σ-minimax) if it has a σ-series,
i.e. a finite series

{1} = G0 6 G1 6 . . . 6 Gn = G

of length n such that the factor group Gi/Gi−1 satisfies the condi-
tion σi for each positive integer i 6 n. Clearly, σ-minimax groups
are minimax and every minimax group is σ-minimax for some σ, but
for a minimax group the minimax type is not uniquely determined.
Note also that any abelian minimax group is (∧,∨)-minimax. We
point out finally that the class of σ-minimax groups is closed with
respect to subgroups and homomorphic images, and that if H and K
are normal subgroups of a group G such that both G/H and G/K
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are σ-minimax, then also the factor group G/H∩K is σ-minimax.
Let G be a minimax group of type σ = (σ1, . . . ,σn). A subnormal

subgroup X of G is called a σ-subgroup if it satisfies σ1 and there
exists a series

X = X1 6 . . . 6 Xn = G

such that Xi/Xi−1 satisfies σi for each i = 2, . . . ,n. Of course, a
normal subgroup N of a group G is a σ-subgroup if and only if
it satisfies σ1 and the factor group G/N is σ ′-minimax, where we
put σ ′ = (σ2, . . . ,σn).

Recall that if X is a class of groups, the residual of a group G with
respect to X is the intersection of all normal subgroups N of G such
that G/N belongs to X.

Lemma 1.3.44 Let G be a σ-minimax group for some σ = (σ1, . . . ,σn),
where n > 2 and σ1 = ∨. Then G contains a normal subgroupN satisfying
the minimal condition on subgroups and such that the factor group G/N
is (σ2, . . . ,σn)-minimax.

Proof — Let
{1} = G0 6 G1 6 . . . 6 Gn = G

be a σ-series of G. As the statement is obvious if n = 2, we may sup-
pose n > 3. It can be assumed by induction on n that Gn−1 has a nor-
mal subgroup K with the minimal condition and such that Gn−1/K
is σ ′-minimax, where σ ′ = (σ2, . . . ,σn−1). As K contains the resid-
ual R of Gn−1 with respect to the class of σ ′-minimax groups, it
follows that also the group Gn−1/R is σ ′-minimax. Clearly, R is a nor-
mal subgroup of G and G/R is a (σ2, . . . ,σn)-minimax group, and so
the proof is complete. ut

Next lemma is the crucial point in the proof of countably recogniz-
ablity of minimax groups.

Lemma 1.3.45 LetG be a group whose countable subgroups are σ-minimax
for a fixed minimax type σ = (σ1, . . . ,σn). Then G is minimax.

Proof — Assume for a contradiction that the statement is false, and
choose a counterexample for which the minimax type σ has shortest
length n. Then n > 1, because the class of groups with the minimal
condition and that of groups satisfying the maximal condition are
countably recognizable.
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Put σ ′ = (σ2, . . . ,σn), and suppose first σ1 = ∨. Let C be the
set of all countable subgroups of G, and for each element X of C

denote by X0 the residual of Xwith respect to the class of σ ′-minimax
groups. Write

G0 =
⋃
X∈C

X0.

If X and Y are arbitrary elements of C, we have

〈X0, Y0〉 6 〈X, Y〉0

and hence G0 is a subgroup of G, which is obviously normal. Let H
be any countable subgroup of G0, and for each element h of H choose
a countable subgroup X(h) of G such that h belongs to X(h)0. Then

K = 〈X(h) | h ∈ H〉

is a countable subgroup of G and

H 6 〈X(h)0 | h ∈ H〉 6 K0.

Moreover, since K is σ-minimax, it follows from Lemma 1.3.44 that K0
satisfies the minimal condition on subgroups, and hence also H has
the minimal condition. Therefore G0 satisfies the minimal condition
on subgroups. Let V/G0 be any countable subgroup of G0, and let W
be a countable subgroup of G such that V = G0W. Then V/G0 is
a homomorphic image of W/W0, and so it is a σ ′-minimax group
by Lemma 1.3.44. It follows now from the minimal assumption on n
that the factor group G/G0 is minimax, so that G itself is minimax,
and this contradiction shows that σ1 = ∧.

Let K be any countable subgroup of G, and let E(K) be the set
of all σ-subgroups of K. Clearly, E(K) is countable, because all its
elements are finitely generated. For each element E of E(K), we will
define a suitable countable subgroup U1(E) of G containing K.

If E is not subnormal in G of defect at most n− 1, it follows Lem-
ma 1.2.14 that there exists a countable subgroup V of G contain-
ing K such that EV ,n−1 6= E, and in this case we put U1(E)=V .
Suppose now that E is subnormal in G of defect at most n − 1, so
that EG,n−1 = E. As the group G is not minimax, there is a non-
negative integer i < n− 1 such that EG,i/EG,i+1 is not minimax, and
so the minimal assumption on n yields that EG,i contains a count-
able subgroup X such that XEG,i+1/EG,i+1 is not σ ′-minimax. In this
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situation, Lemma 1.2.13 can be applied to obtain a countable sub-
group W containing K such that X lies in EW,i. Note that the group
EW,i/EW,i+1 is not σ ′-minimax, because it admits a section isomor-
phic to XEG,i+1/EG,i+1. In this second case, we put U1(E)=W.

As the subgroup

U1 =
〈
U1(E) | E ∈ E(K)

〉
is clearly countable, the above argument can be iterated to construct
an ascending sequence (Un)n∈N of countable subgroups of G. Then

U∞ =
⋃
n∈N

Un

is a countable subgroup of G, so that it is σ-minimax and we may
consider an element E∞ in the set E(U∞). In particular, E∞ is a
finitely generated subgroup of U∞, and hence it is contained in Um
for some positive integer m. Moreover, E∞ is subnormal in U∞ of
defect 6 n− 1, and so it follows from the definition of Um+1 that E∞
must be even subnormal in G of defect at most n− 1. Therefore the
group

E
Um+1(E∞),i∞ /E

Um+1(E∞),i+1∞
is not σ ′-minimax for some i, which is impossible because E∞ be-
longs to the set E

(
Um+1(E∞)). This last contradiction completes the

proof of the lemma. ut

Theorem 1.3.46 The class of minimax groups is countably recognizable.

Proof — Let G be a group whose countable subgroups are mini-
max, and assume for a contradiction that G is not minimax. Then it
follows from Lemma 1.3.45 that for each minimax type σ there exists
a countable subgroup Gσ of G which is not σ-minimax. As the set Σ
of all minimax types is obviously countable, the subgroup

G∞ = 〈Gσ | σ ∈ Σ〉

is countable and it cannot be minimax. This contradiction proves the
theorem. ut

A group G is said to satisfy the weak minimal condition on sub-
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groups if it has no infinite descending chains of subgroups

X1 > X2 > . . . > Xn > . . .

such that the index |Xn : Xn+1| is infinite for all n. The weak maximal
condition on subgroups is defined replacing descending chains by as-
cending chains. It was independently proved by Baer [4] and D.I. Za-
icev [79] that for soluble groups the weak minimal condition, the
weak maximal condition and the property of being minimax are
equivalent. Our last result shows that also the weak minimal and
the weak maximal conditions can be detected from the behaviour of
countable subgroups.

Proposition 1.3.47 The class of groups satisfying the weak minimal con-
dition and that of groups satisfying the weak maximal condition are count-
ably recognizable.

Proof — Let G be a group whose countable subgroups satisfy the
weak minimal condition, and assume for a contradiction that G ad-
mits an infinite descending chain of subgroups

X1 > X2 > . . . > Xn > . . .

such that the index |Xn : Xn+1| is infinite for all positive integers n.
Then for each n we can choose a countably infinite subset Un of Xn
such that uXn+1 6= vXn+1 whenever u and v are elements of Un
and u 6= v. Then

U = 〈Un | n ∈ N〉

is a countable subgroup of G and Un lies inU∩Xn for all n. It follows
that

U∩X1 > U∩X2 > . . . > U∩Xn > . . .

is an infinite descending chain of subgroups of U such that the in-
dex |U∩Xn : U∩Xn+1| is infinite for each n. This contradiction pro-
ves that the class of groups satisfying the weak minimal condition
is countably recognizable. A similar argument proves that also the
class of groups satisfying the weak maximal condition is countably
recognizable. ut
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1.4 Subgroups Closed in the Profinite Topology

Let G be any group, and let J(G) be the set of all normal subgroups
of finite index of G. The profinite topology on G can be defined by
choosing the set J(G) as a base of neighbourhoods of the identity; if X
is any subgroup of G, the closure X̂ of X with respect to this topology
is the intersection of all subgroups of finite index of G containing X,
i.e.

X̂ =
⋂

H∈J(G)

XH.

In particular, a subgroup X is closed (with respect to the profinite
topology) if and only if it is the intersection of a collection of sub-
groups of finite index, and a group G is residually finite if and only
if the trivial subgroup {1} is closed. It is also well-known that every
subgroup of an arbitrary polycyclic group is closed. The structure
of nilpotent groups in which all subgroups are closed was studied
by M. Menth [51], while Robinson, A. Russo and G. Vincenzi [67]
recently characterized groups with the same property within the
universe of groups with finite conjugacy classes, and B.A.F. Wehr-
fritz [76] investigated the case of linear groups.

The aim of the first part of this section is to show that closure
properties with respect to profinite topology can be detected from
the behavior of countable subgroups. In particular, if G is a group
and X is a subgroup of G, we will prove that for X being closed in G,
is equivalent to require that X ∩ K is closed in K for each countable
subgroup K of G. This result, obtained as a special case of a more
general result, has a number of interesting consequences, the most
striking being that the class of groups in which all subgroups are
closed is countably recognizable. Furthermore, it follows that residu-
ally supersoluble groups form a countably recognizable class; more-
over, if Fπ denotes the class of finite π-groups, it turns out that RFπ
is countably recognizable for each set π of prime numbers.

We have seen that the class F(RF), consisting of all groups G
whose finite residual J(G) is finite is countably recognizable (see The-
orem 1.2.28). In the final part of the section, among other results on
properties of the finite residual, it will be shown that in the above
statement the class F can be replaced by any subgroup closed and
countably recognizable group class.
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Closure Properties

Let X be a class of groups, and for any group G let JX(G) be the
set of all normal subgroups N of G such that G/N belongs to X. A
subgroup X of a group G is said to be X-closed in G if

X =
⋂

N∈JX(G)

XN.

In particular, if F is the class of all finite groups, we have

JF(G) = J(G)

and so the subgroup X is F-closed in G if and only if it is the intersec-
tion of a collection of subgroups of finite index of G, i.e. if and only
if it is a closed subgroup of G. Note also that, if the group class X
is closed under homomorphic images, then a normal subgroup H of
a group G is X-closed if and only if the factor group G/H is residu-
ally X.

Lemma 1.4.48 Let X be a subgroup closed class of groups, and let X
be an X-closed subgroup of a group G. Then X ∩ K is X-closed in K for
each subgroup K of G. In particular, X is X-closed in H, whenever H is a
subgroup of G containing X.

Proof — As the class X is subgroup closed, the intersection N ∩ K
belongs to JX(K) for every N ∈ JX(G), so that

X∩K =
( ⋂
N∈JX(G)

XN
)
∩K =

⋂
N∈JX(G)

(XN∩K)

>
⋂

N∈JX(G)

(X∩K)(N∩K) >
⋂

L∈JX(K)

(X∩K)L

and hence
X∩K =

⋂
L∈JX(K)

(X∩K)L

is an X-closed subgroup of K. ut

To the purposes of this paragraph, we will need the following clas-
sical theorem of Kurosh on inverse systems of finite sets (see for
instance [46], Theorem 1.K.1).
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Lemma 1.4.49 The inverse limit of an inverse system of finite non-empty
sets is non-empty.

Theorem 1.4.50 Let X be a subgroup closed class of finite groups, and
let X be a subgroup of a group G. If X∩K is X-closed in K for every count-
able subgroup K of G, then X is X-closed in G.

Proof — Let g be any element of G \X, and for each countable sub-
group K of G containing g, let H(K) be a normal subgroup of K such
that g does not belong to (X ∩ K)H(K) and K/H(K) is an X-group
whose order h(K) is smallest possible under these conditions. Con-
sider the set E of all finitely generated subgroups of G containing g,
and assume that there exists an infinite sequence (En)n∈N of ele-
ments of E such that

h(E1) < h(E2) < . . . < h(En) < . . .

Clearly,
U = 〈En | n ∈ N〉

is a countable subgroup of G, and |En : H(U) ∩ En| 6 |U : H(U)|, so
that we have h(En) 6 h(U) for all n. This contradiction shows that
the set of positive integers

{h(E) | E ∈ E }

is finite, and so it has a largest element m.
For each element E of E , let L (E) be the set of all normal sub-

groups L of E such that g /∈ (X∩ E)L and E/L is an X-group of order
at most m. Clearly, the set L (E) is finite, because any finitely gener-
ated group contains only finitely many subgroups of a given finite
index; moreover, it follows from the choice of m that every L (E) is
non-empty. If E and F are elements of E such that F 6 E, the intersec-
tion L ∩ F belongs to L (F) for each subgroup L ∈ L (E), and so we
may consider the intersection map αE,F of L (E) into L (F). Then

{L (E),αE,F | E, F ∈ E , F 6 E}

is an inverse system of finite non-empty sets, and so its inverse limit

L = lim
←−

L (E)

is not empty by Lemma 1.4.49. Let (YE)E∈E be an element of L .
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If E and F are arbitrary elements of E , we have 〈YE, YF〉 6 Y〈E,F〉 and
hence

Y =
⋃
E∈E

YE

is a subgroup of G. Moreover, Y is normal in G, because if y is
any element of Y and x is an arbitrary element of G, then yx lies
in Y〈g,y,x〉 6 Y.

If F and F∗ are arbitrary elements of E , we have F∩ Y〈F,F∗〉 = YF, so
that

F∩ Y = F∩
( ⋃
E∈E

Y〈E,F〉

)
=
⋃
E∈E

(F∩ Y〈E,F〉) = YF.

Assume now for a contradiction that |G : Y| is infinite, and let

g1, . . . , gm, gm+1

be m+ 1 different elements of a transversal to Y in G. Then

E = 〈g, g1, . . . , gm, gm+1〉

is an element of E and

|E : YE| = |E : Y ∩ E| > m,

which is impossible because YE belongs to L (E). Therefore the in-
dex |G : Y| is finite. Consider the element W of E generated by g and
by a transversal to Y in G. Then WY = G and hence

G/Y 'W/W ∩ Y =W/YW

is an X-group.
Assume finally that g belongs to

XY =
⋃
E∈E

XYE,

so that there exist an element E of E and a finitely generated sub-
group X0 of X such that g lies in X0YE. Then the subgroup F = 〈X0,E〉
is an element of E and g belongs to (X ∩ F)YF. This contradiction
proves that g is not in XY, so that X is X-closed in G because g is an
arbitrary element of G \X. ut

The following result is obtained as an easy combination of Lem-
ma 1.4.48 and Theorem 1.4.50.
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Corollary 1.4.51 Let X be a subgroup closed class of finite groups, and
let X be a subgroup of a group G. Then the following statements are equiva-
lent:

(a) X is X-closed in G;

(b) X is X-closed in 〈X,K〉 for each countable subgroup K of G;

(c) X∩K is X-closed in K for each countable subgroup K of G.

It follows from the above statement that if X is any subgroup
closed class of finite groups, then the class of groups in which all sub-
groups are X-closed is countably recognizable. In particular, groups
all of whose subgroups are closed in the profinite topology form a
countably recognizable class, although it is clear that such class is
not local. Another special case is the following interesting fact.

Corollary 1.4.52 Let G be a group whose countable subgroups are closed.
Then all subgroups of G are closed.

Actually, it can be remarked that for a single subgroup the embed-
ding property of being closed is countably detectable.

Corollary 1.4.53 Let X be a subgroup of a group G. If all countable sub-
groups of X are closed in G, then X itself is closed in G.

Proof — Let K be any countable subgroup of G. Then the intersec-
tion X ∩ K is obviously countable and so it is closed in G. In parti-
cular, X∩K is closed in K, and hence X is a closed subgroup of G
by Corollary 1.4.51. ut

Notice also that the proof of Corollary 1.4.53 can be used to prove
that a corresponding more general statement holds for the property
of being X-closed, where X is any subgroup closed class of finite
groups.

Corollary 1.4.54 Let X be a subgroup closed class of finite groups. Then
the class RX of residually X groups is countably recognizable.

In particular, the latter statement improves Neumann’s theorem on
residually finite groups, showing for instance that the class RFπ is
countably recognizable, for any set π of prime numbers.
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Corollary 1.4.55 Let X be a group class which is closed with respect
to subgroups and homomorphic images. If X is contained in RF, then the
class RX is countably recognizable.

Proof — Since the class X is closed with respect to homomorphic
images, we have

RX = R(X∩ F),

and hence the statement follows from Corollary 1.4.54. ut

Since any supersoluble group is residually finite, the above state-
ment has the following special case.

Corollary 1.4.56 The class of residually supersoluble groups is countably
recognizable.

Theorem 1.4.50 can be used to prove that also some other relevant
group classes defined by closure properties in the profinite topology
are countably recognizable. In fact, if Θ is any subgroup property
such that X∩H is a Θ-subgroup of H whenever X is a Θ-subgroup of
a group G and H 6 G, it follows that the class of groups whose Θ-
subgroups are closed is countably recognizable. For instance, we
have that the class of groups whose abelian subgroups are closed
is countably recognizable, while if we apply this remark to the prop-
erty of being a normal subgroup, we obtain the following interesting
result.

Corollary 1.4.57 The class of groups whose homomorphic images are
residually finite is countably recognizable.

Note that the above corollary can also be obtained as a special case
of the following result.

Lemma 1.4.58 Let X be a countably recognizable class of groups. Then
also the subclass XH of X, consisting of all groups whose homomorphic
images belong to X, is countably recognizable.

Proof — Let G be any group whose countable subgroups belong
to the class XH, and let N be any normal subgroup of G. If H/N is
any countable subgroup of G/N, there exists a countable subgroup X
of G such that H = XN, and so

H/N ' X/X∩N
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is an X-group. As X is countably recognizable, it follows that G/N
belongs to X. Therefore the class XH is countably recognizable. ut

Corollary 1.4.59 Let X be a subgroup closed class of finite groups. Then
the class of groups whose homomorphic images are residually X is countably
recognizable.

Proof — The class of residually X is countably recognizable by Co-
rollary 1.4.54. Therefore, the statement follows directly from Lem-
ma 1.4.58. ut

The Finite Residual

This paragraph is devoted to the study of countably detectable prop-
erties of the finite residual. For any group G, we shall denote by J(G)
the finite residual of G.

Theorem 1.4.60 Let X be a subgroup closed countably recognizable class
of groups. Then the class X(RF), consisting of all groups whose finite resid-
ual belongs to X, is countably recognizable.

Proof — Let G be a group such that the finite residual of every
countable subgroup of G belongs to X, and let C be the set of all
countable subgroups of G. For each countable subgroup H of G, the
set-theoretic union

L(H) =
⋃
C∈C

(
H∩ J(〈H,C〉)

)
is obviously a subgroup of H. If h is any element of L(H), there
exists a countable subgroup Kh of G containing H such that h lies
in H∩ J(Kh). Then

K = 〈Kh | h ∈ L(H)〉

is a countable subgroup of G and L(H) is contained in the finite resid-
ual J(K) of K. It follows that L(H) = H∩ J(K) is the largest element of
the set {

H∩ J(〈H,C〉) | C ∈ C
}

.

Moreover L(H1) 6 L(H2) whenever H1 and H2 are countable sub-
groups of G such that H1 6 H2, and so

L =
⋃
H∈C

L(H)
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is a subgroup of G. Let X be any countable subgroup of L, and let x be
an arbitrary ele ment of X. Then there exist countable subgroups Vx
and Wx of G such that Vx 6Wx and x lies in L(Vx) = Vx ∩ J(Wx),
and hence X 6 J(W), where

W = 〈Wx | x ∈ X〉

is countable. Therefore X belongs to the subgroup closed class X, and
so L itself is an element of X, because X is countably recognizable.

Let Y be any countable subgroup of G. Then L ∩ Y is a countable
subgroup of L, and so there exists a countable subgroup E of G con-
taining Y such that L ∩ Y 6 L(E). Then L(E) = E ∩ J(H) for some
countable subgroup H > E, and hence

L(Y) 6 L∩ Y 6 L(E)∩ Y = E∩ J(H)∩ Y = J(H)∩ Y 6 L(Y).

It follows that L ∩ Y = J(H) ∩ Y is a closed subgroup of Y, and an
application of Theorem 1.4.50 yields that L is a closed subgroup of G.
Therefore the finite residual J(G) of G is contained in L, and hence it
belongs to X. ut

Corollary 1.4.61 The class P(RF) of all groups admitting a finite series
with residually finite factors is countably recognizable.

Proof — For each positive integer n, let (RF)n be the class of all
groups admitting a finite series of length at most n whose factors are
residually finite. An obvious induction argument and Theorem 1.4.60

yield that (RF)n is countably recognizable for every n. Since it is also
clear that each (RF)n is subgroup closed, it follows that also the class

P(RF) =
⋃
n∈N

(RF)n

is countably recognizable (see for instance [31], Lemma 2.1). ut
We have seen that the class of imperfect groups is countably recog-

nizable (see Lemma 1.2.42). Our next result shows that also the class
of groups which are not F-perfect can be countably detected; recall
here that a group is called F-perfect if it has no proper subgroups of
finite index.

Theorem 1.4.62 Let G be a non-trivial group in which every countable
non-trivial subgroup has a proper subgroup of finite index. Then G itself
contains a proper subgroup of finite index.
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Proof — Assume that the statement is false, and suppose first that
each element of G belongs to the finite residual of some countable
subgroup of G. Fix a non-trivial element x of G, and let X1 be a count-
able subgroup of G such that x belongs to the finite residual J(X1)
of X1. Assume now that a countable subgroup Xn has been chosen
for some positive integer n. If y is any element of Xn, there exists a
countable subgroup Hy of G such that Xn 6 Hy and y lies in J(Hy),
and

Xn+1 = 〈Hy | y ∈ Xn〉

is a countable subgroup of G such that Xn 6 J(Xn+1). It follows that

X =
⋃
n∈N

Xn

is a countable subgroup of G which coincides with its finite residual,
i.e. which has no proper subgroups of finite index. This contradiction
shows that there exists a non-trivial element g of G such that every
countable subgroup K of G contains a subgroup of finite index H(K)
such that g /∈ K and the index h(K) = |K : H(K)| is smallest possible.

Let E be the set of all finitely generated subgroups of G contain-
ing g, and let F be any countable subset of E . Then

F = 〈X | X ∈ F 〉

is a countable subgroup of G and h(X) 6 h(F) for all X ∈ F . It
follows that there exists a positive integer m such that h(E) 6 m
for all E ∈ E . For each element E of E , consider the set L (E) of all
subgroups L of E such that g /∈ L and |E : L| 6 m. Then each L (E) is
a finite non-empty set, and if E and F are elements such that F 6 E,
the intersection map αE,F goes from L (E) into L (F). Therefore

{L (E),αE,F | E, F ∈ E , F 6 E}

is an inverse system, and its inverse limit

L = lim
←−

L (E)

is not empty by Lemma 1.4.49. If (YE)E∈E is an element of L , it is
easy to prove that

Y =
⋃
E∈E

YE
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is a subgroup of finite index of G, and g /∈ Y. This contradiction
completes the proof. ut

Observe that the argument of the above proof can also be used
to show that, for any set π of prime numbers, the class of groups
admitting a homomorphic image which is a finite non-trivial π-group
is countably detectable.

Since a group G has a descending series with finite factors if and
only if every non-trivial subgroup of G contains a proper subgroup
of finite index, Theorem 1.4.62 has the following consequence.

Corollary 1.4.63 The class „PF of groups admitting a descending series
with finite factors is countably recognizable.

Notice that „Pn(RF) = „P(RF) = „PF, because the finite residual of
any group is a characteristic subgroup, and so the above corollary
should also be seen in relation to Corollary 1.4.61.

We shall say that an arbitrary group class X has countable type (or
that X is Lℵ0-closed) if a group G belongs to X whenever each count-
able subgroup of G is contained in some X-subgroup. Of course, ev-
ery class of countable nature is countably recognizable, and for sub-
group closed group classes these two concepts coincide. On the other
hand, a countably recognizable class need not have countable nature:
to see this, it is enough to consider the class A∗0 formed by the trivial
group and by all countable non-abelian groups, and observe that if G
is any uncountable non-abelian group, then each countable subgroup
of G lies in some countable non-abelian subgroup.

Recall that a topological group is said to be profinite if it is iso-
morphic to the inverse limit of an inverse system of finite groups
endowed with discrete topologies. It is well known that a topologi-
cal group is profinite if and only if it is compact and totally discon-
nected (see [78], Corollary 1.2.4). Of course, any profinite group is
residually finite. The following example shows that the class of profi-
nite groups does not have countable nature.

Let C = {0, 1} be the group with two elements, and in the carte-
sian power CI of C over a set I of cardinality ℵ1 consider the sub-
group G consisting of all elements with countable support, endowed
with the topology induced by the product topology of CI. If X is
any countable subgroup of G, there exists a countable subset I0 of I
such that X 6 CI0 6 G, and CI0 is compact by Tychonoff’s theorem.
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Since G is totally disconnected (see for instance [21], Theorem 1.8), it
follows that every countable subgroup of G is contained in a profinite
subgroup. On the other hand, the group G is not profinite because it
is not compact.





Chapter 2

Uncountable in Group Theory

Let X be a group theoretical property, let G be a group of uncountable
cardinality and suppose that all its proper uncountable subgroups
satisfy X. In this chapter we will try to answer the following question:

Is it true that all (proper) subgroups of G satisfy X?

The main obstacle here is a relevant result by S. Shelah [71], who
proved (without appeal to the continuum hypothesis) that there ex-
ists a group of cardinality ℵ1 whose proper subgroups (and even
subsemigroups) have cardinality strictly smaller than ℵ1. In such a
way, he answered to a question, generalizing the classical Šmidt’s
problem, that A.G. Kuroš and S.N. Černikov asked in their seminal
paper [47]. This question was later extended to the case of arbitrary
algebras by B. Jónsson (see for instance [44], p.133) and such groups
are now called Jónsson groups.

Observe that the situation is completely different in the case of
fields, since it is well-known that any uncountable field contains a
proper uncountable subfield (see for instance [10]).

In order to avoid Shelah’s example and other similar obstructions,
it will be often used the additional requirement that the group has
no simple homomorphic images of cardinality ℵ, a condition which
is obviously satisfied in the case of locally soluble groups, or some
other generalized soluble condition.

In the the first two sections of this chapter, it will be proved that (in
a suitable universe of groups) the class of FC-groups is uncountably
recognizable as well as the class of nilpotent groups. Then, it will
be studied the uncountable character of the class of groups in which
the normality is transitive; and, finally, we turn our attention to some
classes of groups defined by restriction on their lattice of subgroups.

We refer to the monograph [43] for terminology and properties
concerning cardinal numbers.

Some Preliminaries

This paragraph collects some elementary results concerning the car-
dinality of subgroups of infinite abelian groups.
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It is well-known that a torsion-free abelian group A has finite
rank r = r(A) if and only if the rational vector space

V(A) = A⊗Z Q

has dimension r. Moreover, an abelian p-group A (where p is a prime
number) has finite rank r = r(A) if and only if r is the dimension of
the Zp-vector space

V(A) = Hom(Zp,A).

These remarks enable us to define in both cases the rank r(A) of A as
the dimension of the vector space V(A), even if this dimension is an
infinite cardinal number. It turns out that r(A) is the cardinality of
any maximal linearly independent subset of A consisting of elements
of infinite order, when A is torsion-free, and of elements of order p,
if A is a p-group.

Consider now an abelian group A of finite rank, and let T be the
subgroup of all elements of finite order of A. Then

r(A) = r(A/T) + max
p
r(Ap),

where p ranges over the set of all prime numbers andAp is the p-com-
ponent of A. This relation can be used to define the rank of an arbi-
trary abelian group as the sum of cardinal numbers

r(A) = r(A/T) + sup
p
r(Ap).

It follows easily that for an uncountable abelian group the rank and
the cardinality coincide.

Let A be an abelian group. For each positive integer m, we shall
denote by A[m] the characteristic subgroup of A consisting of all
elements a such that am = 1. In particular, if A is an abelian p-group
for some prime number p, the subgroup A[p] coincides obviously
with the socle of A, and so its cardinality is precisely the rank of A.
Therefore we have:

Lemma 2.64 LetA be an uncountable abelian p-group (where p is a prime
number). Then A and A[p] have the same cardinality.
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Lemma 2.65 Let A be a torsion-free abelian group, and let B be a sub-
group of A such that A/B is periodic. Then A and B have the same cardi-
nality.

Proof — Let ℵ be the cardinality of A, and assume for a contra-
diction that B has cardinality ℵ ′ < ℵ. Then the periodic group A/B
has cardinality ℵ, and so there exists a prime number p such that
the p-component P/B of A/B has cardinality strictly larger than ℵ ′.
As ℵ ′ is an infinite cardinal number, it follows from Lemma 2.64 that
also the socle S/B of P/B has cardinality stricly larger than ℵ ′. On
the other hand, S is isomorphic to the subgroup Sp of B, and this
contradiction proves the lemma. ut

Lemma 2.66 Let A be an infinite abelian group. Then A contains a proper
subgroup B such that A/B is countable.

Proof — As the statement is obvious if A has a proper subgroup
of finite index, it can be assumed that A is divisible. Then A can be
decomposed into a direct product of a collection of countable sub-
groups, and in particular it admits a countable non-trivial homomor-
phic image. ut

Our next result deals with large homomorphic images of uncount-
able abelian groups.

Lemma 2.67 Let A be an uncountable abelian group of cardinality ℵ.
Then A contains a subgroup B of cardinality ℵ such that also A/B has
cardinality ℵ.

Proof — Let E be a maximal free abelian subgroup of A, and as-
sume first that E has cardinality ℵ. Then also E/E2 has cardinality ℵ,
so that A/E2 has cardinality ℵ, and it is enough to put B = E2 be-
cause E2 ' E. Suppose now that E has cardinality strictly smaller
than ℵ, so that A/E has cardinality ℵ, and replacing A by the peri-
odic group A/E it can be assumed that A is periodic.

For each prime number p, let Ap be the p-component of A, so that

A = Dr
p
Ap.

Assume that every Ap has cardinality strictly smaller than ℵ. As

sup
p
card(Ap) = ℵ,
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there exists a set π of prime numbers such that both Aπ and Aπ ′ have
cardinality ℵ, and we can choose B = Aπ. Suppose finally that Ap
has cardinality ℵ for some prime p. Then Lemma 2.64 yields that also
the socle S of Ap has cardinality ℵ and so it is the direct product of
ℵ subgroups of order p. It follows that S can be decomposed into the
direct product of two subgroups of cardinality ℵ, and the statement
is proved also in this case. ut

Observe that Lemma 2.67 shows in particular that a Jónsson group
cannot be abelian. It is known that if ℵ is an uncountable regular
cardinal, then a locally finite group of cardinality ℵ cannot be a Jóns-
son group (see [46], Theorem 2.6). However, as we mentioned, Shelah
constructed a Jónsson group of cardinality ℵ1, and it was remarked
by A. Macintyre that Shelah’s example is simple over the centre.

Lemma 2.68 Let G be a Jónsson group of cardinality ℵ. Then 〈x〉G = G
for every non-central element x of G.

Proof — Let x be any element of the set G \Z(G). Then the central-
izer CG(x) is a proper subgroup of G, so that its cardinality is strictly
smaller than ℵ, and so |G : CG(x)| = ℵ. It follows that the conjugacy
class of x has cardinality ℵ, and hence 〈x〉G = G. ut

Corollary 2.69 Let G be a Jónsson group of cardinality ℵ. Then G is
perfect and G/Z(G) is a simple group of cardinality ℵ.

Proof — It follows from Lemma 2.68 that the factor group G/Z(G)
is simple. Since G cannot be abelian, the centre Z(G) is a proper
subgroup, and so its cardinality is strictly smaller than ℵ. Therefore
the simple group G/Z(G) has cardinality ℵ, and in particular G ′

cannot be contained in Z(G). If x is an element of G ′ \ Z(G), we
have 〈x〉G 6 G ′, so that G = G ′ is perfect. ut
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2.1 Groups with Restricted Conjugacy Classes

The group G is said to be minimal non-FC if it is not an FC-group but
all its proper subgroups have the FC-property. The structure of min-
imal non-FC groups has been completely described by V.V. Belyaev
and N.F. Sesekin ([6],[7]) in the case of groups admitting a non-trivial
homomorphic image which is either finite or abelian. Since the prop-
erty FC is countably recognizable, it follows that minimal non-FC
group must be countable. Moreover, it has been proved in [20] that
if G is a soluble group of infinite rank whose proper subgroups of
infinite rank have the FC-property, then G is an FC-group. The main
result of this section shows that if ℵ is an uncountable regular car-
dinal and G is a group of cardinality ℵ whose proper subgroups of
cardinality ℵ have the FC-property, then G itself is an FC-group, pro-
vided that it has no simple homomorphic images of cardinality ℵ. It
follows that similar results hold for groups whose proper subgroups
of large cardinality are either central-by-finite or finite-by-abelian.

We begin with the following lemma.

Lemma 2.1.70 Let G be an uncountable group of cardinality ℵ. If G
contains a proper normal subgroup N of cardinality ℵ such that

ℵ∗ = sup
{
|H : CH(h)|

∣∣ N 6 H < G, h ∈ H
}
< ℵ ,

then every proper subgroup of G is contained in a proper subgroup of cardi-
nality ℵ.

Proof — Let X be any subgroup of Gwhose cardinality ℵ ′ is strictly
smaller than ℵ; since XN has cardinality ℵ, it can obviously be as-
sumed that XN = G. Suppose first that N has finite index in G. As

(X∩N)G = (X∩N)N =
〈
〈x〉N | x ∈ X∩N

〉
,

it follows from the hypotheses that the cardinality of the normal sub-
group (X ∩N)G is bounded by max{ℵ0,ℵ ′,ℵ∗}, and so it is strictly
smaller than ℵ. Thus the factor group G/(X∩N)G has cardinality ℵ,
and so replacing G by G/(X∩N)G it can be assumed without loss of
generality that X∩N = {1}, so that in particular X is finite. If N is not
abelian, and a is a non-central element of N, the centralizer CN(a) is
a proper subgroup of N and the index |N : CN(a)| is strictly smaller
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than ℵ; this remark and Lemma 2.66 show that in any case N con-
tains a proper subgroup K such that |N : K| < ℵ. Then

K0 =
⋂
x∈X

Kx

is a proper X-invariant subgroup of N and |N : K0| < ℵ, so that XK0
is a proper subgroup of G of cardinality ℵ.

Suppose now that the index |G : N| is infinite, so that in particular X
is infinite. If N is contained in a proper subgroup H of finite index,
then N is also contained in the core HG of H, and the statement fol-
lows from the above argument applied to HG. Assume that N is not
contained in any proper subgroup of finite index of G. Then 〈x,N〉 is
a proper subgroup of G for each element x of X, so that

|〈x,N〉 : C〈x,N〉(x)| 6 ℵ∗

and hence the normal subgroup

〈x〉G = 〈x〉〈x,N〉X =
〈
xg | g ∈ 〈x,N〉

〉X
has cardinality at most max{ℵ ′,ℵ∗}. It follows that the subgroup XG

has cardinality strictly smaller than ℵ, and so G/XG has cardinal-
ity ℵ. Since G = NXG, the factor group G/XG is either abelian or
contains a non-central element admitting less than ℵ conjugates, and
so it follows that G/XG has a proper subgroup L/XG of cardinality ℵ.
The lemma is proved. ut

Theorem 2.1.71 Let ℵ be an uncountable regular cardinal, and let G
be a group of cardinality ℵ whose proper subgroups of cardinality ℵ have
the FC-property. If G has no simple homomorphic images of cardinality ℵ,
then G is an FC-group.

Proof — Clearly, it follows from Lemma 2.66 that every uncount-
able FC-group contains a proper subgroup with the same cardinality.
Assume for a contradiction that G has no proper normal subgroups
of cardinality ℵ. If K is any proper normal subgroup of G, the fac-
tor group G/K has cardinality ℵ, so that it cannot be simple and it
follows from Corollary 2.69 that G/K contains a proper subgroup of
cardinality ℵ, i.e. K is contained in a proper subgroup of G of car-
dinality ℵ. Therefore all proper normal subgroups of G have finite
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conjugacy classes. Let M be the subgroup generated by all proper
normal subgroups of G. As the factor group G/M is simple, it can-
not have cardinality ℵ and hence G = M is the join of its proper
normal subgroups. Moreover, as the product of two proper normal
subgroups of G is also properly contained in G, we obtain that G can
be decomposed into a set-theoretic union

G =
⋃
V∈Ω

V ,

where Ω is a chain of proper normal subgroups. Let X be any sub-
group of G of cardinality strictly smaller than ℵ. For each element x
of X there exists a subgroup Wx ∈ Ω such that x belongs to Wx, and
hence

X =
⋃
x∈X

(X∩Wx)

is contained in the normal subgroup

W =
⋃
x∈X

Wx

of G. Clearly, W is properly contained in G, because ℵ is a regular
cardinal, and so it is an FC-group. Therefore all proper subgroups
of the uncountable group G have the FC-property, and hence G itself
is an FC-group. This contradiction shows that G contains a proper
normal subgroup N of cardinality ℵ.

Consider any proper subgroup H of G containing N. Then H is
an FC-group, so that the index |H : CH(h)| is finite for each element h
of H and hence

sup
{
|H : CH(h)|

∣∣ N 6 H < G, h ∈ H
}
6 ℵ0 < ℵ .

It follows from Lemma 2.1.70 that every proper subgroup of G is
contained in a proper subgroup of cardinality ℵ, and so it is an FC-
group. Therefore G itself is an FC-group. ut

As a consequence of the theorem, we obtain corresponding results
for some special classes of FC-groups, namely that of groups which
are finite over the centre and that of groups with finite commutator
subgroup. These two group classes are related by the celebrated the-
orem of I. Schur on the finiteness of the commutator subgroup of a
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group whose centre has finite index (see for instance [61] Part 1, The-
orem 4.12).

Corollary 2.1.72 Let ℵ be an uncountable regular cardinal, and let G
be a group of cardinality ℵ which has no simple homomorphic images of
cardinality ℵ.

(a) If all proper subgroups of G of cardinality ℵ are abelian, then G is
abelian.

(b) If all proper subgroups ofG of cardinality ℵ are central-by-finite, then
the index |G : Z(G)| is finite.

(c) If all proper subgroups of G of cardinality ℵ are finite-by-abelian,
then the commutator subgroup G ′ of G is finite.

Proof — The group G has the FC-property by Theorem 2.1.71. In
particular, if G is not abelian, it contains a proper normal subgroup of
finite index, so that G satisfies the hypotheses of Lemma 2.1.70 and
hence every proper subgroup of G is contained in a proper subgroup
of cardinality ℵ. Then statement (a) follows immediately. Moreover,
it is well-known that if an FC-group contains an abelian subgroup of
finite index, then it is finite over the centre, and this remark proves
statement (b).

Suppose finally that G is a non-abelian group satisfying the condi-
tion of statement (c), and let N be a proper normal subgroup of G
such that G/N is finite. Then G/N ′ is an abelian-by-finite FC-group,
so that it is finite over the centre and it follows from Schur’s theorem
that G ′/N ′ is finite. As N ′ is finite by hypothesis, also the commuta-
tor subgroup G ′ of G is finite. ut

The additional assumption in the statements of the above theorem
and its corollary is imposed in order to avoid Jónsson groups and
other pathologies. In fact, it is also enough to assume that the group
contains some large proper normal subgroup. For instance, if we sup-
pose that the group G has a non-trivial homomorphic image whose
cardinality is strictly smaller than ℵ, the arguments used in the above
proofs can be applied, even in the case of an arbitrary uncountable
cardinal number.

In the next section, it will be clear that all the results we stated
here are susceptible of improvements with respect to the cardinality
of the group. In fact, we can replace the regularity condition on the
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cardinality, with the request of having uncountable cofinality. Fur-
thermore, it will be shown how to remove all the requests when the
generalized continuum hypothesis holds.
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2.2 Generalized Nilpotency Properties

A group G is said to be locally graded if every finitely generated non-
trivial subgroup of G contains a proper subgroup of finite index.
Thus locally graded groups form a large class of generalized solu-
ble groups, containing in particular all locally (soluble-by-finite) and
all residually finite groups.

The aim of this section is to show the following main results.

Theorem 2.2.6 Let ℵ be a regular cardinal number, and let G be a locally
graded group of cardinality ℵ which has no simple homomorphic images
of cardinality ℵ. If all proper subgroups of G of cardinality ℵ are nilpo-
tent-by-finite, then G itself is nilpotent-by-finite.

This first theorem is susceptible of the same improvements we
spoke of at the end of the previous section. However, we still state
(and prove) it in these terms to get the reader acquainted with these
kind of results. Starting from this on, results will be stated (and
proved) directly in the most general hypotheses.

Theorem 2.2.14 Let ℵ be a cardinal number whose cofinality is strictly
larger than ℵ0, and let G be a group of cardinality ℵ which has no infinite
simple homomorphic images. If all proper subgroups of G of cardinality ℵ

are nilpotent, then G itself is nilpotent.

Of course, any uncountable regular cardinal number has cardinal-
ity strictly larger than ℵ0, and so the above theorems hold in partic-
ular for such cardinals. On the other hand, there exist cardinals with
cofinality strictly larger than ℵ0 which are not regular, like for in-
stance ℵℵ1 . However it will be proved that the assumption on the co-
finality of the cardinal number ℵ in Theorem 2.2.13 can be dropped
out under the assumption of GCH, the generalized continuum hypothe-
sis.

As a consequence of Theorem 2.2.14, it turns out that, under the
same hypotheses, if all proper subgroups of cardinality ℵ of G have
nilpotency class bounded by a positive integer c, then also G has
nilpotency class at most c.

Our third relevant result deals with uncountable locally graded
groups whose proper uncountable subgroups are locally nilpotent.

Theorem 2.2.12 Let G be an uncountable locally graded group of cardi-
nality ℵ which has no simple homomorphic images of cardinality ℵ. If all
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proper subgroups of cardinality ℵ of G are locally nilpotent, then G itself is
locally nilpotent.

It is known that in many problems concerning (generalized) super-
soluble groups the main obstacle is the behaviour of the commutator
subgroup. For instance, it was proved in [34] that if G is a group
of infinite rank whose proper subgroups of infinite rank are locally
supersoluble, then G itself is locally supersoluble, provided that its
commutator subgroup G ′ is locally nilpotent. A corresponding result
holds for groups of large cardinality.

Theorem 2.2.13 Let G be a group of uncountable cardinality ℵ whose
proper subgroups of cardinality ℵ are locally supersoluble. If the commuta-
tor subgroup G ′ of G is locally nilpotent, then G is locally supersoluble.

The final part of the section is dedicated to the study of uncount-
able groups whose proper subgroups of large cardinality are soluble,
and in this case the following result has been proved.

Theorem 2.2.23 Let G be an uncountable group of cardinality ℵ which
has no simple non-abelian homomorphic images. If all proper subgroups of
cardinality ℵ are soluble with derived length at most k (where k is a fixed
positive integer), then G itself is soluble with derived length at most k.

We leave as an open question whether results similar to Theo-
rems 2.2.6 and 2.2.14 hold when nilpotency is replaced by solubility.
An obstacle here is caused by the fact that the structure of unsoluble
locally soluble groups whose proper subgroups are soluble seems
to be unknown; although such groups must be countable, they may
occur as homomorphic images of uncountable groups whose proper
subgroups of large cardinality are soluble.

Uncountable Recognizability of Nilpotent-by-Finite Groups

We begin with the following lemma.

Lemma 2.2.73 Let G be an uncountable group of cardinality ℵ whose
proper subgroups of cardinality ℵ are nilpotent-by-finite. If G is not nilpo-
tent-by-finite, then either G is perfect or G/G ′ is a group of type p∞ for
some prime number p.

Proof — Since G is not nilpotent-by-finite and the class of nilpo-
tent-by-finite groups is countably recognizable, G must contain a
proper subgroup X which is not nilpotent-by-finite. In particular, X
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cannot be contained in a proper subgroup of G of cardinality ℵ, and
hence the cardinality of the abelian group G/G ′ is strictly smaller
than ℵ by Lemma 2.67. As G ′ has cardinality ℵ, it follows that the
divisible group G/G ′ cannot be decomposed into the product of two
proper subgroups, and so G/G ′ is either trivial or a group of type p∞
for some prime number p. ut

We will also need the following result, that was proved by B. Bruno
and R.E. Phillips (see [8], Lemma 2.3).

Lemma 2.2.74 Let G be a periodic group, and let A be a G-module whose
additive group is torsion-free. If π is any finite set of prime numbers, there
exists a G-submodule B of A such that the group A/B is periodic and π is
contained in the set π(A/B).

Our next lemma put together results by F. Napolitani and E. Pego-
raro [53] and by A.O. Asar [1]. It shows that within the universe of
locally graded groups there are no minimal non-(nilpotent-by-Černi-
kov) groups.

Lemma 2.2.75 Let G be a locally graded group whose proper subgroups
are nilpotent-by-Černikov. Then G itself is nilpotent-by-Černikov.

Finally, we need information on the existence of large submodules
in uncountable modules over a Prüfer group, which can be obtained
using the following elementary lemma concerning endomorphisms
of vector spaces (see for instance [77], Theorem 5.4.6).

Lemma 2.2.76 Let V be a vector space over a field F, and ϕ an endomor-
phism of V such that h(ϕ) = 0 for some non-zero polynomial h ∈ F[x]. If f
is the minimal polynomial of ϕ over F, and f = g1 · · ·gt is the product of
pairwise coprime polynomials g1, . . . , gt, then

V =W1 ⊕ . . .⊕Wt,

where Wi is the kernel of gi(ϕ) for every i = 1, . . . , t.

Lemma 2.2.77 Let P be a group of type p∞ for some prime number p,
and let A be a P-module whose additive group has prime exponent q and
uncountable regular cardinality ℵ. Then A contains a proper P-submodule
of cardinality ℵ.
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Proof — Assume for a contradiction that every proper P-submodu-
le of A has cardinality strictly smaller than ℵ, and let

{yn | n ∈ N0}

be a set of generators of P with the usual relations

y0 = 1 and ypn+1 = yn

for each non-negative integer n. Since every subgroup of A contain-
ing [A,P] is a P-submodule, we have [A,P] = A, and so also

A =
⋃
n∈N

[A,yn].

But ℵ is a regular cardinal, so that the P-submodule [A,yk] has car-
dinality ℵ for some positive integer k, and hence [A,yk] = A. In
particular, the group 〈yk,A〉 cannot be nilpotent, and hence q 6= p by
a result of Baumslag (see [61] Part 2, Lemma 6.34).

Consider the elementary abelian q-group A as a vector space over
the field Fq with q elements, and for each positive n, let ϕn be the
automorphism of A determined by yn. As yp

n

n = 1, the automor-
phism ϕn is a root of the polynomial

xp
n
− 1

over the field Fq. Thus ϕn admits a minimal polynomial fn over Fq;
moreover, fn has only simple roots, because it divides xp

n
− 1 and

p 6= q. Let
fn = g1 · · ·gt

be a decomposition of fn into the product of polynomials g1, . . . , gt
which are irreducible over Fq. As fn has only simple roots, the poly-
nomials g1, . . . , gt are pairwise coprime, and hence it follows by us-
ing Lemma 2.2.76 that

A =W1 ⊕ · · · ⊕Wt,

where the subspace Wi is the kernel of gi(ϕn) for each i = 1, . . . , t.
On the other hand, every gi(ϕn) is a P-endomorphism of A, be-
cause P is abelian, and hence W1, . . . ,Wt are P-submodules of A.
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But all proper P-submodules of A have cardinality strictly smaller
than ℵ, and so that A = Wi for some i 6 t. Thus gi(ϕn) = 0, and
hence fn = gi is an irreducible polynomial over Fq. It follows that the
subring Rn generated by ϕn in the endomorphism ring of the Fq-vec-
tor space A is a finite field. Moreover, Rn 6 Rn+1 for all n, so that
also

R =
⋃
n∈N

Rn

is a countable subfield of the endomorphism ring of A, and P is
contained in the multiplicative group of R. Let

A =
⊕
i∈I

Ai

be a decomposition of A into the direct sum of R-subspaces of dimen-
sion 1. Then every Ai is a countable P-submodule of A, and hence⊕

i 6=j
Ai

is a proper P-submodule of A of cardinality ℵ for any fixed index j.
This contradiction completes the proof of the lemma. ut

We are now in a position to prove the first main theorem of the
section.

Proof of Theorem 2.2.6 — Assume for a contradiction that we have
a group G which is not nilpotent-by-finite, so that in particular G
has no proper subgroups of finite index. Moreover, the uncountable
group G contains a proper subgroup X which is not nilpotent-by-
finite, because the class of nilpotent-by-finite groups is countably
recognizable.

Suppose that all proper normal subgroups of G have cardinality
strictly smaller than ℵ. Since G has no simple homomorphic images
of cardinality ℵ, we have that in this case G is covered by its proper
normal subgroups; as in the proof of Theorem 2.1.71, it can be shown
that every proper subgroup of G is contained in a proper subgroup
of cardinality ℵ, and so it is nilpotent-by-finite. This contradiction
proves that G has a proper normal subgroup N of cardinality ℵ,
and G/N has cardinality strictly smaller than ℵ since G = XN.

As N is nilpotent-by-finite, its Fitting subgroup F has finite in-
dex, and it is known that the factor group G/F is likewise locally
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graded (see [49]). It follows that also G/N is locally graded. Moreover,
all proper subgroups of G/N are nilpotent-by-finite, and so Lem-
ma 2.2.75 yields that G/N contains a nilpotent normal subgroup K/N
such that G/K is a Černikov group. Since G has no proper subgroups
of finite index, we have that G/K is abelian, so that G/N is soluble
and G ′ 6= G. Moreover, G/G ′ is a group of type p∞ for some prime
number p by Lemma 2.2.73, and G ′ is nilpotent-by-finite. It follows
that G is nilpotent-by-abelian-by-finite, and so even nilpotent-by-a-
belian. Thus G ′ is a nilpotent group of cardinality ℵ. On the other
hand, the tensor product of two abelian groups of cardinality strictly
smaller than ℵ has likewise cardinality strictly smaller than ℵ, and
hence G ′/G ′′ must have cardinality ℵ (see [61] Part 1, Theorem 2.26).
Moreover, the factor group G/G ′′ is not nilpotent (see [61] Part 1, The-
orem 2.27), so that it is also a counterexample, and so replacing G
by G/G ′′ it can be assumed without loss of generality that G is
metabelian.

Let T be the subgroup consisting of all elements of finite order
of G ′, and assume that T 6= G ′. An application of Lemma 2.2.74 to
the G/G ′-module G ′/T yields that there exists a normal subgroup L
of G such that T < L < G ′, G ′/L is periodic and the set π(G ′/L)
contains more than two prime numbers. Moreover, L has cardinal-
ity ℵ by Lemma 2.65, so that all proper subgroups of G/L are nilpo-
tent-by-finite. As π(G/L) contains more than two elements, it follows
from the structure of minimal non-(nilpotent-by-finite) groups that G
is either locally nilpotent or nilpotent-by-finite (see [8], Corollary 2.7).
But G has no proper subgroups of finite index, so that G/L is locally
nilpotent, a contradiction, because the periodic group G/L cannot
be decomposed into the product of two proper normal subgroups.
Therefore G ′ is periodic.

Since ℵ is an uncountable regular cardinal, and G ′ is a periodic
abelian group of cardinality ℵ, there exists a prime number q such
that also the q-component Q of G ′ has cardinality ℵ. Then the so-
cle A of Q has exponent q and cardinality ℵ. But the subgroup X
is not nilpotent-by-finite, so that G = XA and A ∩ X is a normal
subgroup of G. The action by conjugation of G on A induces a struc-
ture of G/G ′-module on A/A ∩ X, and hence an application of Lem-
ma 2.2.77 yields that there exists a normal subgroup B of G with
cardinality ℵ with the property that A ∩ X < B < A. Then XB = G,
and so A = XB∩A = B. This last contradiction completes the proof
of the theorem. ut
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It is clear from results in the first part of the thesis that the class
of abelian-by-finite groups is countably recognizable. Therefore any
minimal non-(abelian-by-finite) group is countable and we obtain
the following corollary (which is still true if we substitute the term
abelian with nilpotent of fixed nilpotency class).

Corollary 2.2.7 Let ℵ be an uncountable regular cardinal, and let G be
a locally graded group of cardinality ℵ which has no simple homomorphic
images of cardinality ℵ. If all proper subgroups of G of cardinality ℵ are
abelian-by-finite, then G itself is abelian-by-finite.

Proof — It can clearly be assumed that the group G has no proper
subgroups of finite index. Moreover, G is nilpotent-by-finite by Theo-
rem 2.2.6, and so even nilpotent. It follows that the factor group G/G ′

has cardinality ℵ, and hence Lemma 2.67 yields that there exists a
subgroup K of G containing G ′ such that both K and G/K have car-
dinality ℵ. If X is any subgroup of G of cardinality strictly smaller
than ℵ, the product XK is a proper subgroup of G, and hence X is abe-
lian-by-finite. Therefore all proper subgroups of G are abelian-by-fi-
nite, and so G itself is abelian-by-finite. ut

Corollary 2.2.8 Let ℵ be an uncountable regular cardinal, and G be a
group of cardinality ℵ admitting a non-trivial homomorphic image whose
cardinality is strictly smaller than ℵ.

(a) If all proper subgroups of G of cardinality ℵ are nilpotent-by-finite,
then G is nilpotent-by-finite.

(b) If all proper subgroups of G of cardinality ℵ are abelian-by-finite,
then G is abelian-by-finite.

Proof — Assume for a contradiction that the statement is false, so
that it follows from Theorem 2.2.6 and Corollary 2.2.7 that G con-
tains a normal subgroup N such that G/N is a simple group of car-
dinality ℵ. Let K be a proper normal subgroup of G such that the
factor group G/K has cardinality strictly smaller than ℵ, so that in
particular K has cardinality ℵ, and hence it is nilpotent-by-finite. Ob-
viously, K is not contained in N, and so KN = G. Then the infinite
simple group is nilpotent-by-finite, which is clearly impossible. ut
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Uncountable Recognizability of Locally Nilpotent Groups

We start with two easy lemmas.

Lemma 2.2.9 Let X be a subgroup closed class of groups, and let G be
an uncountable group of cardinality ℵ whose proper subgroups of cardinal-
ity ℵ belong to X. IfG has no Jónsson homomorphic images of cardinality ℵ,
then every proper normal subgroup of G is an X-group.

Proof — Let N be any normal subgroup of G of cardinality strictly
smaller than ℵ. Then G/N has cardinality ℵ, and so it cannot be
a Jónsson group. It follows that N is contained in a proper subgroup
of G of cardinality ℵ, and hence N belongs to X. ut

Our next lemma shows in particular that any uncountable abelian
group admits a countable homomorphic image which is not finitely
generated.

Lemma 2.2.10 Let G be a nilpotent-by-finite group whose countable ho-
momorphic images are finitely generated. Then G is finitely generated, and
so it satisfies the maximal condition.

Proof — Suppose first that G is abelian-by-finite. Let A be an
abelian subgroup of finite index of G, and consider a countable ho-
momorphic image A/H of A. Clearly, H has only finitely many conju-
gates in G, so that G/HG is countable and hence even finitely gener-
ated. Thus A/H is finitely generated, and so all countable homomor-
phic images of A are finitely generated.

Obviously, A has no divisible non-trivial homomorphic images,
and in particular it is reduced. Suppose first that A is periodic. Since
every non-trivial primary component of A has a non-trivial cyclic
direct factor, it is clear that A has only finitely many non-trivial pri-
mary components. Let P be any primary component of A, and let B
be a basic subgroup of P. Then P/B is a divisible homomorphic im-
age of A, so that it is trivial and P = B is the direct product of a
collection of cyclic subgroups and hence it is finite. It follows that A
itself is finite. In the general case, let T be the subgroup consisting of
all elements of finite order of A. Since A has no divisible non-trivial
homomorphic images, a maximal free abelian subgroup U/T of A/T
must be finitely generated. Moreover, it follows from the first part of
the proof that the periodic group A/U is finite, so that A/T is finitely
generated and A splits over T . Thus T is a homomorphic image of A
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and so it is finite. Therefore A is finitely generated, and hence also G
is finitely generated.

Suppose finally that G is nilpotent-by-finite, and let N be a nilpo-
tent normal subgroup of finite index ofG. Then the factor groupG/N′

is abelian-by-finite, and it follows from the first part of the proof
that G/N ′ is finitely generated. In particular, N/N ′ is finitely gen-
erated, so that N itself is finitely generated. Therefore G is finitely
generated. ut

Recall that a group class X is N0-closed if in any group the product
of two normal X-subgroups is likewise an X-subgroup. Generalizing
this concept, if U is a class of groups, we shall say that a group class X
is N0-closed in the universe U if, whenever G is an U-group and X
and Y are normal X-subgroups of G, also the product XY belongs
to X. Of course, a group class is N0-closed in the ordinary sense if
and only if it is N0-closed in the universe of all groups.

In our considerations we will need the well-known facts that the
order of any finite minimal non-supersoluble group is divisible by
at most three prime numbers (see [24]), and that a polycyclic group
whose finite homomorphic images are supersoluble is likewise super-
soluble (see [5]). Combining these two results, it is easy to show that
if G is a finitely generated soluble group whose proper subgroups
are supersoluble, then G is either finite or supersoluble (see for in-
stance [34, Lemma 3.1]).

Theorem 2.2.11 Let X be a class of locally supersoluble groups which
is S- and N0-closed in a universe U, and let G be an uncountable U-group
of cardinality ℵ whose proper subgroups of cardinality ℵ belong to X. If G
is locally graded and has no simple homomorphic images of cardinality ℵ,
then G is locally X.

Proof — Assume for a contradiction that the statement is false, so
that G contains a finitely generated subgroup E which is not in X.
By Lemma 2.2.9 all proper normal subgroups of G belong to X. As
the class X is N0-closed in U, the subgroup E cannot be contained
in the product of finitely many proper normal subgroups of G, and
so in particular G cannot be the join of its proper normal subgroups.
Since G has no simple homomorphic images of cardinality ℵ, it fol-
lows that G contains a proper normal subgroup of cardinality ℵ. If N
is any such normal subgroup, all proper subgroups of G contain-
ing N belong to X, and in particular they are locally supersoluble.



82 Uncountable in Group Theory

On the other hand, the product EN is a subgroup of cardinality ℵ

which is not in X, so that EN = G and G/N is finitely generated.
As N is locally supersoluble, its commutator subgroup N ′ is locally
nilpotent, and hence the factor group G/N is locally graded (see [49]).
Then G/N has a finite non-trivial homomorphic image, which is sol-
uble because all its proper subgroups are supersoluble. Therefore the
commutator subgroup G ′ is properly contained in G.

Since EN = G for each normal subgroup N of G of cardinality ℵ,
all countable homomorphic images of G are finitely generated, and
an application of Lemma 2.2.10 yields that any abelian-by-finite ho-
momorphic image of G is finitely generated. In particular, G/G ′ is
finitely generated. As G cannot be the product of two proper normal
subgroups, it follows that G/G ′ is cyclic of prime-power order, and
so G is locally polycyclic, because G ′ is locally supersoluble.

Suppose that G/G(i) is finite for some positive integer i, and as-
sume that the next factor G(i)/G(i+1) of the derived series of G is infi-
nite. Since the abelian-by-finite group G/G(i+1) is finitely generated,
the subgroup G(i+1) has cardinality ℵ, and so all proper subgroups
of G/G(i+1) are supersoluble. Therefore G/G(i+1) is an infinite su-
persoluble group whose commutator subgroup has finite index, and
hence it admits an infinite dihedral homomorphic image, which is
impossible because G/G ′ has prime-power order. This contradiction
shows that the group G/G(n) is finite for each non-negative integer n,
i.e. all soluble homomorphic images of G are finite.

Let J be the finite residual of G. As G = NE for each normal
subgroup of finite index N of G, the factor group G/J is soluble,
and so also finite. Moreover, J = J ′ and J cannot contain proper G-
invariant subgroups which have cardinality ℵ. Let M be the join of
all proper G-invariant subgroups of J. If M is properly contained
in J, we have that J/M is a chief factor of G, and hence it is abelian,
a contradiction. Therefore J =M is the join of its proper G-invariant
subgroups. As G is locally polycyclic, the subgroup E ∩ J is finitely
generated, and so its normal closure (E∩ J)G is a proper subgroup
of J. Put G = G/(E∩ J)G. Since J is perfect, there exists a proper G-in-
variant subgroup K of J containing an element x such that [x, J] 6= {1}.
Now, the index of C = CG(x) in G is strictly smaller than ℵ, because
all conjugates of x belong to K. If y is any element of the finite sub-
group E, then

|C : C∩Cy| 6 |G : C
y
| < ℵ
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and hence
W = J∩

( ⋂
y∈E

C
y)

is a proper E-invariant subgroup of J of cardinality ℵ. It follows that
the product EW is a proper subgroup of G of cardinality ℵ, and this
contradiction completes the proof of the theorem. ut

Observe that the class of locally nilpotent groups is N0-closed by
the theorem of Hirsch and Plotkin, while it follows easily from a re-
sult of Baer that the class of locally supersoluble groups is N0-clo-
sed in the universe of groups with locally nilpotent commutator
subgroup (see for instance [34, Lemma 2.2]). Therefore both Theo-
rem 2.2.12 and Theorem 2.2.13 are special cases of Theorem 2.2.11.

Uncountable Recognizability of Nilpotency

Now we are able to prove that the class of nilpotent groups is un-
countably recognizable.

Proof of Theorem 2.2.14 — Assume for a contradiction that the
statement is false. As the class of nilpotent groups is countably rec-
ognizable, there exists in G a countable non-nilpotent subgroup X.
Moreover, all proper normal subgroups of G are nilpotent by Lem-
ma 2.2.9, and so X cannot be contained in a proper normal subgroup
of G, i.e. XG = G.

Let H be a normal subgroup of G of cardinality strictly smaller
than ℵ, and suppose that G has no proper normal subgroups of car-
dinality ℵ containing H. Since G has no infinite simple homomorphic
images, it follows that G is generated by its proper normal subgroups
containing H. Moreover, there exists clearly a sequence (Kn)n∈N of
proper normal subgroups of G containing H such that X lies in

〈Kn | n ∈ N〉,

and this latter is a proper normal subgroup of G, because ℵ has
cofinality strictly larger than ℵ0. This contradiction proves that H is
contained in a proper normal subgroup of G of cardinality ℵ, and
in particular G has proper normal subgroups of cardinality ℵ. If N
is any such normal subgroup, the product NX is not nilpotent, so
that NX = G and hence G/N is countable. Moreover, N/N ′ likewise
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has cardinality ℵ, and then the commutator subgroup N ′ of N must
have cardinality strictly smaller than ℵ.

Let a be any element of G such that 〈a〉G 6= G. The above argument
shows that a belongs to a proper normal subgroup N of G of cardi-
nality ℵ. As N ′ has cardinality ℵ ′ < ℵ, the element a has less than ℵ

conjugates in N, and so also in G. Then the normal closure 〈a〉G has
cardinality strictly smaller than ℵ. On the other hand, X is count-
able and XG = G, so that by the cofinality assumption on ℵ there
exists an element x of X such that 〈x〉G = G. It follows in partic-
ular that G properly contains the join M of all its proper normal
subgroups. Then M is nilpotent and G/M is finite.

The group G is locally nilpotent by Theorem 2.2.12, and so its ele-
ments of finite order form a subgroup T . Suppose that T is properly
contained in G. As G is nilpotent-by-finite, it follows from the the-
ory of isolators in torsion-free locally nilpotent groups that the factor
group G/T is nilpotent (see for instance [48, Section 2.3]); on the other
hand, G cannot be the product of two proper normal subgroups, and
so it has no torsion-free abelian non-trivial homomorphic images.
Then G = T is a periodic group, and hence it is the direct product of
its Sylow subgroups. But all proper normal subgroups of G are nilpo-
tent, and so it follows that G is a p-group for some prime number p.

As M =M/M ′ has cardinality ℵ, also its socle S has cardinality ℵ,
and so G/S is countable. Let U be a G-invariant subgroup of S which
is maximal with respect to the condition of being the direct product
of a collection of finite G-invariant subgroups, and assume that U
has cardinality strictly smaller than ℵ. Then

S = U× V

for a suitable subgroup V , and the index of |G : V | is strictly smaller
than ℵ. On the other hand, V has finitely many conjugates in G, so
that also the index |G : VG| is strictly smaller than ℵ, and hence the
core VG of V in G has cardinality ℵ. If y is a non-trivial element
of VG, the normal closure 〈y〉G is finite and

〈U, 〈y〉G〉 = U× 〈y〉G.

This contradiction shows thatU has cardinality ℵ, and soU=U1×U2,
where both U1 = U1/M

′ and U2 = U2/M
′ have cardinality ℵ. It

follows that XU1 is a proper subgroup of G of cardinality ℵ, and this
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last contradiction completes the proof of the theorem. ut

Our next result deals with groups whose proper subgroups of
large cardinality are nilpotent, but under the assumption of (GCH).

Theorem 2.2.14
′ Assume that the generalized continuum hypothesis holds,

and let G be an uncountable group of cardinality ℵ which has no infinite
simple homomorphic images. If all proper subgroups of G of cardinality ℵ

are nilpotent, then G itself is nilpotent.

Proof — Assume for a contradiction that the statement is false,
so that G contains a countable non-nilpotent subgroup X, and The-
orem 2.2.14 yields that ℵ > ℵ1. By Lemma 2.2.9 all proper normal
subgroups of G are nilpotent, so that in particular G cannot be the
product of two proper normal subgroups. Then G/G ′ is a locally
cyclic p-group for some prime number p, and hence all nilpotent
homomorphic images of G are countable. It follows that if K is any
normal subgroup of G of cardinality strictly smaller than ℵ, the fac-
tor group G/K is not nilpotent, and so it is a counterexample to the
statement.

Suppose that all proper normal subgroups of G have cardinality
strictly smaller than ℵ, and let N be a proper normal subgroup of G
containing a non-central element x. The factor group G/CG(〈x〉G)
embeds into the automorphism group of 〈x〉G, and so it has cardinal-
ity at most 2ℵ

′
, where ℵ ′ < ℵ is the cardinality of N. On the other

hand, also the cardinality of CG(〈x〉G) is strictly smaller than ℵ, so
that G/CG(〈x〉G) has cardinality ℵ, and hence 2ℵ

′
= ℵ by (GCH).

It follows that each proper normal subgroup of G has cardinality
at most ℵ ′. Moreover, G cannot contain proper subgroups of finite
index, so that it has no simple homomorphic images, and hence
by Zorn’s Lemma G can be decomposed as the set-theoretic union
of a chain (Nλ)λ∈Λ of proper normal subgroups. Let Λ0 be a count-
able subset of Λ such that X is contained in the normal subgroups

W =
⋃
λ∈Λ0

Nλ,

which of course has cardinality at most ℵ ′. This is a contradiction,
because all proper normal subgroups of G are nilpotent. Therefore G
contains a proper normal subgroup M of cardinality ℵ.

As M is nilpotent, the group M/M ′ likewise has cardinality ℵ.
Then the product XM ′ is a proper subgroup of G, so that M ′ has
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cardinality strictly smaller than ℵ and hence G/M ′ is not nilpotent.
Thus G may be replaced by G/M ′, and so without loss of generality
it can be assumed that M is abelian. Clearly XM = G, so that X ∩M
is a normal subgroup of G and the factor group G/X∩M is not nilpo-
tent. A further replacement of G by G/X∩M allows now to suppose
that X∩M = {1}. Clearly, M has a countable non-trivial homomor-
phic image M/L, and the subgroup L has only countably many con-
jugates in G. Therefore there exists a countable subset Y of G such
that the factor group M/LG embeds into the cartesian product of the
collection of groups (M/Ly)y∈Y , and hence M/LG has cardinality at
most ℵ1. But ℵ > ℵ1, and so the normal subgroup LG has cardinal-
ity ℵ. Then XLG = G and hence

M = XLG ∩M = LG(X∩M) = LG.

This last contradiction completes the proof of the theorem. ut

Corollary 2.2.15 Let G be an uncountable group of cardinality ℵ which
has no infinite simple homomorphic images. If all proper subgroups of G of
cardinality ℵ are nilpotent with class at most c (where c is a fixed positive
integer), then G itself is nilpotent with class at most c, provided that either
the cofinality of ℵ is strictly larger than ℵ0 or the generalized continuum
hypothesis is assumed to hold.

Proof — The group G is nilpotent either by Theorem 2.2.14 or
by Theorem 2.2.14

′, and so the factor group G/G ′ has cardinality ℵ.
It follows from Lemma 2.2.10 that G contains a normal subgroup N
such that G/N is a countable abelian group which is not finitely gen-
erated. Let E be any finitely generated subgroup of G. Then EN is
a proper subgroup of G of cardinality ℵ, and hence it has class at
most c. Therefore also G has nilpotency class at most c. ut

Uncountable Recognizability of Soluble Groups

We turn now to the solubility. The first lemma shows that if G is an
uncountable group whose proper subgroups of large cardinality be-
long to a group class X, then G contains a large normal X-subgroup,
under suitable closure conditions on the class X.

Lemma 2.2.16 Let X be a class of groups which is S and L-closed, and
let G be an uncountable group of cardinality ℵ whose proper subgroups
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of G of cardinality ℵ belong to X. Then either G/Z(G) is a simple group
of cardinality ℵ or G contains a normal X-subgroup N such that the factor
group G/N is simple.

Proof — Assume for a contradiction that the group G does not
contain any normal X-subgroup N such that G/N is simple. Then it
follows from Zorn’s Lemma and from the L-closure of the class X
that G contains proper normal subgroups which are not in X. Let K
be any such subgroup, and let E = 〈x1, . . . , xt〉 be any finitely gener-
ated subgroup of K which is not in X. It follows from the S-closure
of X that E cannot be contained in a proper subgroup of G of cardinal-
ity ℵ. The conjugacy class of any element of K in G has cardinality
strictly smaller than ℵ, and so in particular |G : CG(xi)| < ℵ for
each i = 1, . . . , t. Thus |G : CG(E)| < ℵ, and so the centralizer CG(E)
has cardinality ℵ. On the other hand, the product ECG(E) cannot be-
long to X, so that G = ECG(E) and the subgroup CG(E) is normal
in G. If CG(E) 6= G, the centralizer CG(E) is contained in a maximal
normal subgroup M of G, which of course has cardinality ℵ and so
belongs to X, contrary to our assumptions. Therefore E is contained
in Z(G), and so also K lies in Z(G). The factor group G/E has cardinal-
ity ℵ, while all its proper subgroups have cardinality strictly smaller
than ℵ, i.e. G/E is a Jónsson group, and so G/C is simple of cardinal-
ity ℵ, where C/E = Z(G/E). Moreover, the normal subgroup C of G
is not in X, and hence the same argument used above for K yields
that C is contained in Z(G). Therefore C = Z(G), and G/Z(G) is a
simple group of cardinality ℵ. ut

The consideration of Jónsson groups shows that in the above re-
sults the group G can be far from being in X. However, something
more can be said if the group has no large simple homomorphic im-
ages.

Corollary 2.2.17 Let X be a class of groups which is S and L-closed and
contains all abelian groups. If G is an uncountable group of cardinality ℵ

whose proper subgroups of cardinality ℵ belong to X, then G contains a
normal X-subgroup N such that the factor group G/N is simple.

Corollary 2.2.18 Let G be an uncountable group of cardinality ℵ whose
proper subgroups of cardinality ℵ locally satisfy the maximal condition.
If G has no infinite simple homomorphic images, then it locally satisfies the
maximal condition.
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Proof — It follows from Corollary 2.2.17 that G contains a normal
subgroup N locally satisfying the maximal condition such that G/N
is simple. Then G/N is finite, and so G locally satisfies the maximal
condition. ut

Corollary 2.2.19 Let X be a class of groups which is S and L-closed, and
let G be an uncountable group of cardinality ℵ which has no simple homo-
morphic images of cardinality ℵ. If every proper subgroup of cardinality ℵ

of G belongs to X, then G contains a normal X-subgroup N such that G/N
is a finitely generated simple group.

Proof — The statement is obvious when G lies in X, so that we may
suppose that G is not an X-group, and hence it contains a finitely
generated subgroup E which is not in X. Since G has no simple ho-
momorphic images of cardinality ℵ, it follows from Lemma 2.2.16

that there exists a normal X-subgroup N of G such that the factor
group G/N is simple and has cardinality strictly smaller than ℵ.
Then N has cardinality ℵ, so that EN = G and hence G/N is finitely
generated. ut

Corollary 2.2.20 Let G be an uncountable group of cardinality ℵ whose
proper subgroups of cardinality ℵ are locally soluble. If G has no simple
non-abelian homomorphic images, then it is locally soluble.

Corollary 2.2.21 Let G be an uncountable group of cardinality ℵ which
has no simple non-abelian homomorphic images. If all proper subgroups ofG
of cardinality ℵ are locally polycyclic, then G itself is locally polycyclic.

If in the statements of Lemma 2.2.16 and Corollary 2.2.19 we cho-
ose for X the class of soluble groups with derived length at most k,
where k is a fixed positive integer, we obtain the following conse-
quence.

Corollary 2.2.22 Let G be an uncountable group of cardinality ℵ whose
proper subgroups of cardinality ℵ are soluble with derived length at most k,
where k is a fixed positive integer. Then G contains a soluble normal sub-
group N of derived lenght at most k such that the factor group G/N is sim-
ple. Moreover, if G is locally graded and has no simple homomorphic images
of cardinality ℵ, then G/N is finite and in particular G is soluble-by-finite.

Proof — The first part of the statement is just a special case of Corol-
lary 2.2.17. Suppose now in addition that G is locally graded and has
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no simple homomorphic images of cardinality ℵ. Then the simple
factor group G/N is finitely generated by Corollary 2.2.19. Moreover,
as N is soluble, G/N is locally graded (see [49]) and hence it must be
finite. ut

We can finally prove the last theorem of the section.

Proof of Theorem 2.2.23 — The group G is soluble by Corolla-
ry 2.2.20 and Corollary 2.2.22. Assume for a contradiction that G has
derived length n > k, and consider a finitely generated subgroup E
of G with derived length n. Let i be the largest non-negative integer
such that the term G(i) of the derived series of G has cardinality ℵ. In
particular, the subgroup G(i)E has cardinality ℵ, and so G = G(i)E.
Suppose that E/E ∩ G(i) is infinite. Then E ∩ G(i) is properly con-
tained in a proper subgroup X of E with derived length n (see [22],
Theorem 1), so that G(i)X = G and hence

E = E∩G(i)X = (E∩G(i))X = X.

This contradiction shows that E/E ∩G(i) must be finite, so that also
the factor group G/G(i) is finite. However, the subgroup G(i+1) has
cardinality strictly smaller than ℵ, and therefore the abelian factor
group G(i)/(EG(i+1) ∩G(i)) is infinite and hence it contains a proper
subgroup U/(EG(i+1) ∩G(i)) such that G(i)/U is countable. Then the
factor group G(i)/UG is likewise countable, and so UG has cardinal-
ity ℵ. Therefore UGE = G, so that

G(i) = UGE∩G(i) = UG(E∩G(i)) 6 U

and this last contradiction completes the proof. ut





91

2.3 Groups with a Normal Transitive Property

The aim of this section is to investigating uncountable groups of car-
dinality ℵ in which all proper subgroups of cardinality ℵ have a
transitive normality relation. The corresponding problem in the case
of groups of infinite rank has been solved in [16].

We say that a group G has the T -property (or is a T -group) if nor-
mality in G is a transitive relation, i.e. if all subnormal subgroups
of G are normal. The structure of soluble T -groups has been descri-
bed by W. Gaschütz [27] in the finite case and, for arbitrary groups,
by Robinson [62]. It turns out in particular that soluble groups with
the T -property are metabelian and hypercyclic, and that finitely gen-
erated soluble T -groups are either finite or abelian. Although the
class of T -groups is not subgroup closed (because any simple group
is obviously a T -group), it is known that subgroups of finite so-
luble T -groups likewise have the T -property. A group G is called
a T -group if all its subgroups have the T -property. It follows easily
from the properties of T -groups, that any finite T -group is soluble,
and so even supersoluble, while soluble non-periodic groups with
the T -property are abelian.

It turns out that an uncountable soluble group in which all proper
normal subgroups have the T -property need not be a T -group. How-
ever, our first main result shows in particular that a group of this type
has finite conjugacy classes of subnormal subgroups. The structure
of soluble groups with this latter property was investigated by C. Ca-
solo [11].

Theorem 2.3.8 Let G be an uncountable soluble group of cardinality ℵ

whose proper normal subgroups of cardinality ℵ have the T -property. Then
every subnormal subgroup of G has only finitely many conjugates.

Recall that a group is subsoluble if it has an ascending series with
abelian factors consisting of subnormal subgroups; in particular, all
hyperabelian groups are subsoluble. Our second main result deals
with uncountable subsoluble groups in which every proper large sub-
group is a T -group, and proves that these groups have the T -property.

Theorem 2.3.15 Let G be an uncountable subsoluble group of cardinali-
ty ℵ whose proper subgroups of cardinality ℵ have the T -property. Then G
is a T -group.
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The T -Property for Large Normal Subgroups

It seems to be unclear whether a subsoluble (or even hyperabelian)
uncountable group of cardinality ℵ must contain at least one proper
normal subgroup of cardinality ℵ. However, this property obviously
holds in the case of abelian groups, and hence also for uncountable
groups which properly contain their commutator subgroup.

Lemma 2.3.23 Let G be an uncountable group with cardinality ℵ and
such that G ′ 6= G. Then G contains a proper normal subgroup of cardinal-
ity ℵ.

The imposition of the T -property to large proper normal subgroups
of uncountable groups has a strong effect, at least when the commu-
tator subgroup is not large. In fact, it turns out in particular that
if G is an uncountable group whose proper normal uncountable sub-
groups have the T -property, then G itself is a T -group, provided that
its commutator subgroup G ′ is countable.

Lemma 2.3.24 Let G be an uncountable group of cardinality ℵ whose
proper normal subgroups of cardinality ℵ have the T -property. If G/G ′ has
cardinality ℵ, then G is a T -group.

Proof — Let X be a subnormal subgroup of G such that XG ′/G ′

has cardinality strictly smaller than ℵ, and let g be any element of G.
Then the abelian group G/〈g,X,G ′〉 has cardinality ℵ, and so it con-
tains a proper subgroup H/〈g,X,G ′〉 of cardinality ℵ. Then H is a
normal subgroup of cardinality ℵ, so that it is a T -group and X is
normal in H. It follows that Xg = X, and hence X is a normal sub-
group of G.

Suppose now that X is any subnormal subgroup of G. If x is any
element of X, the subgroup 〈x,X ′〉 is subnormal in G, and the factor
group 〈x,X ′〉G ′/G ′ = 〈x〉G ′/G ′ is countable, so that 〈x,X ′〉 is normal
in G by the first part of the proof. Therefore also

X =
〈
〈x,X ′〉 | x ∈ X

〉
is a normal subgroup of G, and hence G is a T -group. ut

Corollary 2.3.25 Let G be an uncountable group of cardinality ℵ whose
proper normal subgroups of cardinality ℵ have the T -property. If G ′ has
cardinality strictly smaller than ℵ, then G is a T -group.
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Notice that in the latter two statements the assumption that the
cardinal number ℵ is uncountable cannot be omitted. In fact, in the
direct product G = Alt(4)× P, where Alt(4) is the alternating group
of degree 4 and P is a group of type p∞ for some prime number p > 3,
all infinite proper normal subgroups have the T -property but G is not
a T -group, although its commutator subgroup is finite.

As we mentioned, a soluble group in which all proper normal sub-
groups have the T -property need not be a T -group. To see this, let M
be an abelian group of exponent 7 and let α be the automorphism
of M defined by putting aα = a2 for all a ∈M. Then α3 = 1, and we
may consider a homomorphism

θ : Alt(4) −−→ Aut(M)

such that Imθ = 〈α〉. The semidirect product

G = Alt(4)nθM

is a periodic metabelian group whose proper normal subgroups are
abelian, but clearly G is not a T -group. If the group M is chosen to
be uncountable, this example also shows that under the assumptions
of Theorem 2.3.8 the T -property may not hold for the group G. The
above construction can be slighty modified in order to produce a
soluble group of derived length 3 whose proper normal subgroups
have the T -property; it is enough to replace M by the direct prod-
uct K = Q8 ×M, where Q8 is a quaternion group of order 8, and
extend α to K in such a way that it acts on Q8 as an automorphism
of order 3.

It is clear that if all proper normal subgroups of a group G have
the T -property, then such property also holds for all proper subnor-
mal subgroups of G. Our next lemma shows that this situation also
occurs whenever G is an uncountable soluble group whose proper
normal subgroups of high cardinality have the T -property.

Lemma 2.3.26 Let G be an uncountable soluble group of cardinality ℵ

whose proper normal subgroups of cardinality ℵ have the T -property. Then
all proper subnormal subgroups of G have the T -property.

Proof — Let X be any proper subnormal subgroup of G. If the nor-
mal closure XG of X has cardinality strictly smaller than ℵ, the factor
group G/XG has cardinality ℵ, and so by Lemma 2.3.23 it contains a
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proper normal subgroup of cardinality ℵ. Thus in any case X is con-
tained in a proper normal subgroup H of G of cardinality ℵ. As H is
a T -group and X is subnormal, it follows that also X has the T -pro-
perty. ut

Corollary 2.3.27 Let G be an uncountable soluble group of cardinality ℵ

whose proper normal subgroups of cardinality ℵ have the T -property. Then
the group G has derived length at most 3.

Lemma 2.3.28 Let G be a group whose proper normal subgroups have
the T -property, and let X be a subgroup of G such that [X,G ′] 6 X. Then X
has only finitely many conjugates in G.

Proof — As the normalizer NG(X) contains G ′, it is normal in G
and so the subgroup X is subnormal in G. Of course, it can be as-
sumed that X is not normal in G. As all proper subgroups of G con-
taining NG(X) have the T -property and so normalize X, it follows
that NG(X) is a maximal subgroup of G. Hence the index |G : NG(X)|
is finite, and so X has finitely many conjugates in G. ut

Note that the proof of Lemma 2.3.28 actually shows that under the
same assumptions the subgroup X either is normal or has a prime
number of conjugates.

If G is any uncountable soluble group of cardinality ℵ whose
proper normal subgroups of cardinality ℵ are T -groups, it follows
from Lemma 2.3.26 that each proper subnormal subgroup of G has
the T -property, and so Theorem 2.3.8 is a special case of our next
result.

Theorem 2.3.29 Let G be a soluble group whose proper normal subgroups
have the T -property. Then every subnormal subgroup of G has only finitely
many conjugates.

Proof — Assume for a contradiction that the statement is false, and
let X be a subnormal subgroup of G admitting infinitely many conju-
gates. As the commutator subgroup G ′ of G is a T -group, it follows
from Lemma 2.3.28 that each subnormal subgroup of G ′ has finitely
many conjugates in G. In particular, the normalizer NG(X∩G ′) has
finite index in G, so that X has infinitely many conjugates in the sub-
group NG(X∩G ′). Moreover, NG(X ∩G ′) is normal in G, because it
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contains G ′, and so all its proper normal subgroups have the T -pro-
perty. Therefore the factor group NG(X ∩G ′)/X ∩G ′ is also a coun-
terexample to the statement, and hence it can be assumed without
loss of generality that X∩G ′ = {1}.

Another application of Lemma 2.3.28 yields that X is not normal-
ized by G ′, so that XG ′ is not a T -group and hence XG ′ = G. It
follows from the Dedekind’s modular law that the subnormal sub-
group XG ′′ is properly contained in G, so that it has the T -property
and X is normalized by G ′′. Then

G ′′ 6 NG(X)∩G ′ < G ′,

and so NG(X) ∩G ′ is normal in G = XG ′. Let K be any normal sub-
group of G such that

NG(X)∩G ′ 6 K < G ′.

Thus XK is a proper subnormal subgroup of G, so that it is a T -group
and X is normalized by K, and hence K = NG(X) ∩ G ′. Therefo-
re G ′/NG(X)∩G ′ is a chief factor of G. Let g be an element of G ′

such that Xg 6= X, so that

G ′ =
〈
g,NG(X)∩G ′

〉G.

On the other hand,
〈
g,NG(X) ∩G ′

〉
is a normal subgroup of G ′, so

that it has finitely many conjugates in G. It follows that the chief fac-
tor G ′/NG(X)∩G ′ is finitely generated, and hence even finite. There-
fore

|G : NG(X)| = |G ′ : G ′ ∩NG(X)|

is finite, and this contradiction completes the proof of the theorem. ut
As soluble groups with finite conjugacy classes of subnormal sub-

groups are metabelian-by-finite (see [11]), the following statement is
a consequence of Theorem 2.3.29; it applies in particular to the case
of an uncountable soluble group of cardinality ℵ whose proper nor-
mal subgroups of cardinality ℵ have the T -property.

Corollary 2.3.9 Let G be a soluble group whose proper normal subgroups
have the T -property. Then G has derived length at most 3 and contains a
metabelian subgroup of finite index.
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The T -Property for Large Subgroups

Let X be a class of groups. A group G is said to be minimal non-X if
it is not an X-group but all its proper subgroups belong to X. The
structure of minimal non-X groups has been studied for several dif-
ferent choices of the group class X. As the T -property is local, it is
clear that any minimal non-T group is countable. Moreover, finite
minimal non-T groups are soluble, since it is well-known that any
finite group with only supersoluble proper subgroups is soluble. It
seems to be an open question whether there exist infinite minimal
non-T groups. On the other hand, it was proved that a locally finite
group whose proper subgroups have the T -property is either finite
or a T -group (see [63]), and a similar result holds also in the case of
groups with no infinite simple sections [15].

It is also clear that every group with no infinite simple sections
is locally graded. Therefore the following theorem extends both the
above quoted results about minimal non-T groups.

Theorem 2.3.10 Let G be an infinite locally graded group whose proper
subgroups have the T -property. Then G is a T -group.

Proof — Assume for a contradiction that G is not a T -group, so
that G is minimal non-T , and hence it is finitely generated, because
the T -property is local. If J is the finite residual of G, it follows that
the group G/J is infinite.

Let N be any normal subgroup of finite index of G. Then the factor
group G/N either is minimal non-T or has the T -property, so that
in any case it is soluble and has derived length at most 3. Therefore
also the infinite group G/J is soluble, so that it cannot be minimal
non-T (see [15]) and hence it has the T -property. Moreover, G/J can-
not be periodic, and so it is a finitely generated abelian group. In
particular, there exist two maximal subgroups M1 and M2 of G both
containing J. AsM1 andM2 have the T -property, it follows that every
subnormal subgroup of J is normal in G.

Let X be a subnormal non-normal subgroup of G. Clearly, G can
be generated by elements having infinite order with respect to J, and
so there exists an element g of G such that Xg 6= X and the coset gJ
has infinite order. The intersection X ∩ J is a normal subgroup of G,
and the factor group G/X ∩ J is likewise a counterexample, so that
without loss of generality we may suppose that X∩ J = {1}. Then X is
abelian, and hence it is contained in the Baer radical B of G. Moreover,
the subgroup 〈B, g〉 is subsoluble, so that it is properly contained in G
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and hence it is a non-periodic group with the T -property. Therefo-
re 〈B, g〉 is abelian, which is impossible as Xg 6= X. This contradiction
proves the statement. ut

We turn now to the proof of Theorem 2.3.15. The first lemma shows
in particular that any uncountable abelian group of cardinality ℵ

has a residual system consisting of normal subgroups with indices
strictly smaller than ℵ.

Lemma 2.3.11 Let A be an uncountable abelian group of cardinality ℵ,
and let B be a subgroup of A of cardinality strictly smaller than ℵ. Then A
contains a subgroup C such that B∩C = {1} and |A : C| < ℵ.

Proof — Let A∗ be the divisible hull of A. Then A∗ has cardinal-
ity ℵ, and so

A∗ = Dr
i∈I
D∗i

where each D∗i is isomorphic either to the additive group of rational
numbers or to a Prüfer group, and the index set I has cardinality ℵ.
Clearly, I has a subset I ′ of cardinality strictly smaller than ℵ such
that

B∗ = Dr
i∈I ′

D∗i

contains B. If
C∗ = Dr

i∈I\I ′
D∗i

we have that C = A∩C∗ is a subgroup of A such that B∩C = {1} and

|A : C| 6 |A∗ : C∗| < ℵ.

The statement is proved. ut

Lemma 2.3.12 Let G be a group, and let A be an uncountable abelian
normal subgroup of G of cardinality ℵ. If each subgroup of A has only
finitely many conjugates in G, then there exists a collection (aα)α∈ℵ of
non-trivial elements of A such that

〈aα | α ∈ ℵ〉G = Dr
α∈ℵ
〈aα〉G.

Proof — Choose any non-trivial element a0 of A, and suppose
that λ is an element of ℵ for which aα has been defined for all α < λ
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in such a way that

B = 〈aα | α < λ〉G = Dr
α<λ
〈aα〉G.

Since every 〈aα〉G is countable, the subgroup B has cardinality strict-
ly smaller than ℵ, and so Lemma 2.3.11 yields that A contains a
subgroup C such that B ∩ C = {1} and |A : C| < ℵ. But C has only
finitely many conjugates in G, and hence we have also |A : W| < ℵ,
where W is the core of C in G. In particular, W cannot be trivial and
so we can choose an element aλ in W. The normal closure 〈aλ〉G is
contained in W, so that B∩ 〈aλ〉G = {1} and hence

〈aα | α 6 λ〉 = B× 〈aλ〉G = Dr
α6λ
〈aα〉G.

The proof of the statement can now be completed by transfinite in-
duction on λ. ut

Corollary 2.3.13 Let G be a subsoluble uncountable group of cardinal-
ity ℵ whose proper subgroups of cardinality ℵ have the T -property. Then G
is metabelian.

Proof — It is well-known that any subsoluble T -group is metabe-
lian, so that all proper subgroups ofG of cardinality ℵ are metabelian.
Therefore the group G is metabelian by Theorem 2.2.3. ut

Next lemma is the main step in the proof of Theorem 2.3.15.

Lemma 2.3.14 LetG be an uncountable subsoluble group of cardinality ℵ

whose proper subgroups of cardinality ℵ have the T -property. Then G is
a T -group.

Proof — The group G is metabelian by Corollary 2.3.13, so that
in particular each subgroup of G ′ has only finitely many conjugates
in G by Lemma 2.3.28. Moreover, by Corollary 2.3.25 it can be as-
sumed without loss of generality that the commutator subgroup G ′

of G has cardinality ℵ, so that it follows from Lemma 2.3.12 that G ′

contains a G-invariant subgroup of the form

U = Dr
i∈I
Ui,

where each Ui is a countable non-trivial normal subgroup of G and
the set I has cardinality ℵ.



Groups with a Normal Transitive Property 99

Let X be any subnormal subgroup of G, and suppose first that X
has cardinality strictly smaller than ℵ. The above decomposition of U
shows the existence of two G-invariant subgroups V and W of U of
cardinality ℵ such that

V ∩W = 〈V ,W〉 ∩X = {1}.

The factor groups G/V and G/W are T -groups by Theorem 2.3.10. It
follows that the subnormal subgroups XV and XW of G are normal,
so that also X = XV ∩XW is normal in G. In particular, all cyclic sub-
normal subgroups of G are normal, and hence every subgroup of G ′

is normal in G.
Suppose now that the subnormal subgroup X has cardinality ℵ. If

the commutator subgroup X ′ has cardinality strictly smaller than ℵ,
the above argument yields that the subgroup 〈x,X ′〉 is normal in G
for each element x of X, so that also

X =
〈
〈x,X ′〉 | x ∈ X

〉
is normal in G. Suppose finally that the abelian subgroup X ′ has car-
dinality ℵ, so that by Lemma 2.2.10 it contains a proper subgroup Y
such that the index |X ′ : Y| is countably infinite. Then Y is a nor-
mal subgroup of G of cardinality ℵ, so that all proper subgroups of
the infinite group G/Y have the T -property and hence G/Y itself is
a T -group. Therefore X is normal in G, and G is a T -group. ut

Proof of Theorem 2.3.15 — The group G is a T -group by Lem-
ma 2.3.14, and in particular it is metabelian. Assume for a contra-
diction that G is not a T -group, so that it contains a subgroup H
of cardinality strictly smaller than ℵ, which has a subnormal non-
normal subgroup K. If G contains an abelian normal subgroup A of
cardinality ℵ, an application of Lemma 2.3.12 yields that A contains
two G-invariant subgroups V and W of cardinality ℵ such that

V ∩W = 〈V ,W〉 ∩K = {1}.

Then the subgroups HV and HW have the T -property, so that the
subgroups KV and KW are normal in HV and HW, respectively, and
hence

K = KV ∩KW

is normal in H. This contradiction shows that G has no abelian nor-
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mal subgroups of cardinality ℵ. In particular, the Fitting subgroup F
of G has cardinality strictly smaller than ℵ, so that the index |G : F|
is infinite. It follows that F is periodic (see [62]), and hence also G ′ is
a periodic subgroup of cardinality strictly smaller than ℵ. Of course,
the intersection K ∩ G ′ is normal in G, and the replacement of G
by G/K∩G ′ allows to assume that K∩G ′ = {1}.

Suppose that G is not periodic, so that G ′ is divisible and the equal-
ity [G ′,G]=G ′ holds. Write

G ′ = Dr
i∈I
Pi

where each Pi is a group of type p∞i for some prime number pi and
put

P∗i = Dr
j6=i

Pj

for each index i. Then
K =

⋂
i∈I
KP∗i

and so there is an index j such that KP∗j is not normalized by H.
It follows that the factor group G/P∗j is also a counterexample, and
hence it can be assumed without loss of generality that G ′ is a group
of type p∞ for some prime p. As [G ′,G] = G ′, the cohomology class
of the extension

G ′ // // G // // G/G ′

has finite order and hence G nearly splits over G ′ (see [65] and [66]).
This means that there exists a subgroup L of G such that G = LG ′

and L∩G ′ is finite. Clearly, L contains an element a of infinite order,
and [G ′,a] 6= {1} because CG(G ′) = F is periodic. Let x be an element
of G ′ such that L ∩G ′ 6 〈x〉 and [x,a] 6= 1. As 〈x, L〉 is a subgroup
of G of cardinality ℵ, it has the T -property and hence also its normal
subgroup 〈x,a〉 is a T -group. But finitely generated soluble T -groups
are abelian, so that xa = ax and this contradiction proves that the
counterexample G must be periodic.

For each prime number p, let G ′(p ′) be the subgroup consisting of
all elements of G ′ whose order is prime to p. As

K =
⋂
p

KG ′(p ′)
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there exists a prime number q such that H does not normalize the
subgroup KG ′(q ′) and hence a further replacement of G by G/G ′(q ′)
allows to assume that G ′ is a q-group. It follows that the factor
group G/CG(G

′) is finite, because it is isomorphic to a group of
power automorphisms of G ′ and all periodic groups of power au-
tomorphisms of an abelian q-group are finite. This last contradiction
completes the proof of Theorem 2.3.15. ut
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2.4 Lattice Properties

The aim of this section is to investigating uncountable groups of
cardinality ℵ in which all proper subgroups of cardinality ℵ have
modular subgroup lattice. The corresponding problem in the case of
groups of infinite rank has been solved in [19]. Recall here that a
lattice L is modular if the identity

(x∨ y)∧ z = x∨ (y∧ z)

holds for all elements x,y, z of L such that x 6 z. Obviously, any
abelian group has modular subgroup lattice, and hence groups with
modular subgroup lattice naturally arise in the study of projectivi-
ties (i.e. lattice isomorphisms) between groups; on the other hand,
there exist also infinite simple groups with modular subgroup lat-
tice, like for instance Tarski groups (i.e. infinite simple groups all
of whose proper non-trivial subgroups have prime order). Our first
main result is the following.

Theorem 2.4.4 Let G be an uncountable group of cardinality ℵ whose
proper subgroups of cardinality ℵ have modular subgroup lattice. If G has
no simple homomorphic images of cardinality ℵ, then the lattice of sub-
groups of G is modular.

Our second main result deals with uncountable groups whose
proper uncountable subgroups are quasihamiltonian. A group G is
said to be quasihamiltonian if all its subgroups are permutable, i.e.
if XY = YX for all subgroups X and Y of G. Of course, all quasihamil-
tonian groups have modular subgroup lattice, and in fact it turns out
that a group is quasihamiltonian if and only if it is locally nilpotent
and the lattice of its subgroups is modular.

Theorem 2.4.5 Let G be an uncountable group of cardinality ℵ whose
proper subgroups of cardinality ℵ are quasihamiltonian. If G has no simple
homomorphic images of cardinality ℵ, then it is quasihamiltonian.

The consideration of Jónsson groups shows that the assumption
on the simple homomorphic images cannot be dropped out from our
statements.
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Proofs of the Theorems

The structure of groups with modular subgroup lattice has been com-
pletely described by K. Iwasawa ([41],[42]) and R. Schmidt [69]. We
give here a short account of their results, and refer to [70] for a de-
tailed treatment of groups with such property.

Let G be any non-periodic group with modular subgroup lattice.
Then the set T of all elements of finite order of G is an abelian sub-
group and the factor group G/T is abelian; moreover, if G is not
abelian, the torsion-free abelian group G/T has rank 1 (see [70], The-
orem 2.4.11). It follows that the commutator subgroup of any group
with modular subgroup lattice is periodic, and so torsion-free groups
with modular subgroup lattice are abelian.

We consider now periodic groups with modular subgroup lattice,
describing their structure first in the locally finite case. It is necessary
to recall here that an automorphism θ of a group G is a power auto-
morphism if θ maps every subgroup of G onto itself. The set PAut(G)
of all power automorphisms of a group G is a subgroup of the full
automorphism group of G, and it is easy to see that PAut(G) is resid-
ually finite (i.e. the intersection of all its subgroups of finite index is
trivial). Power automorphisms play a crucial role in many relevant
problems of group theory.

Let p and q be two different prime numbers. A group is called
a P∗-group of type (p,q) if it is a semidirect product 〈x〉nA, where A
is an abelian normal subgroup of exponent p and x is an element of
order qn acting on A as a power automorphism of order q. The lattice
of subgroups of any P∗-group is modular (see [70], Lemma 2.4.1),
and it turns out that a locally finite group G has modular subgroup
lattice if and only if it is a direct product

G = Dr
i∈I
Gi,

where each factor Gi is either a P∗-group or a locally finite p-group
with modular subgroup lattice and elements in different factors have
coprime orders (see [70], Theorem 2.4.13). Note also that, if p is any
prime number, a locally finite p-group G has modular subgroup lat-
tice if and only if either G is a Dedekind group or it contains an
abelian normal subgroup A of finite exponent pk and an element x
such that G/A = 〈xA〉 has order pm, and ax = a1+p

s
for all a ∈ A,

where s is a positive integer such that s < k 6 s +m, and s > 2
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if p = 2 (see [70], Theorem 2.4.14).
As we mentioned, the lattice of all subgroups of a Tarski group is

obviously modular, and groups of this type must occur in the struc-
ture of periodic groups with modular subgroup lattice which are not
locally finite. A group G is an extended Tarski group if it contains a
cyclic normal subgroup N with prime-power order such that G/N is
a Tarski group and each subgroup of G either contains or is contained
in N; it is easy to show that extended Tarski groups must be primary
and have modular subgroup lattice. The classification of groups with
modular subgroup lattice was completed by R. Schmidt, who proved
that a periodic group has modular subgroup lattice if and only if it
is a direct product of Tarski groups, extended Tarski groups and lo-
cally finite groups with modular subgroup lattice such that elements
in different factors have coprime orders (see [70], Theorem 2.4.16).

Our first elementary lemma shows that in our considerations the
attention can be restricted to the case of groups with small centre.

Lemma 2.4.15 Let X be a subgroup closed class of groups, and let G be
an uncountable group of cardinality ℵ whose proper subgroups of cardinal-
ity ℵ belong to X. If the centre Z(G) has cardinality ℵ, then all proper
subgroups of G are X-groups.

Proof — As Z(G) is an abelian group of cardinality ℵ, it contains a
subgroup C such that both C and Z(G)/C have cardinality ℵ by Lem-
ma 2.3.11. If X is any proper subgroup of G of cardinality strictly
smaller than ℵ, the product XC is a proper subgroup of G of cardi-
nality ℵ. Then XC belongs to X, and so also X is an X-group. ut

Our next result provides a further information on uncountable
groups with modular subgroup lattice, that will be relevant in the
proof of Theorem 2.2.4.

Lemma 2.4.16 Let G be an uncountable non-abelian group of cardinal-
ity ℵ. If G has modular subgroup lattice, then for some prime number p it
contains a normal Sylow p-subgroup P of cardinality ℵ which is a finite ex-
tension of an abelian subgroup A of finite exponent such that all subgroups
of A are normal in G.

Proof — Since G is a non-abelian group with modular subgroup
lattice, its elements of finite order form a subgroup T and the fac-
tor group G/T is countable. Then T has cardinality ℵ, and it can be
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decomposed into a direct product

T = Dr
i∈I
Ti,

where each factor Ti is either a Tarski group or an extended Tarski
group or locally finite, and elements of different factors have co-
prime orders. In particular, only countably many factors which are
not locally finite can occur in such decomposition, and so T = H×K,
where H is countable, K is locally finite and π(H) ∩ π(K) = ∅. It fol-
lows now from the structure of locally finite groups with modular
subgroup lattice that K = U × V , where the factor U has cardinal-
ity ℵ and it is either a p-group for some prime p or a P∗-group of
type (p,q) for two different primes p and q, and π(U)∩ π(V) = ∅. In
both cases, U has a unique Sylow p-subgroup P, which has cardinal-
ity ℵ and is a finite extension of an abelian subgroup A of finite ex-
ponent, such that U induces on A a group of power automorphisms.
Then all subgroups of A are normal in T . On the other hand, it is
well known that if G is not periodic, i.e. if T 6= G, all subgroups of T
are normal in G (see [70], Lemma 2.4.8), and so it follows that in any
case every subgroup of A is normal in G. ut

Proof of Theorem 2.2.4 — Assume for a contradiction that the
statement is false. As the class of groups with modular subgroup lat-
tice is local, G contains a finitely generated subgroup E = 〈x1, . . . , xt〉
whose subgroup lattice is not modular, and E cannot be contained in
a proper subgroup of G of cardinality ℵ.

Suppose first that there exists in G a proper normal subgroup N
of finite index. Then N has modular subgroup lattice, and so it fol-
lows from Lemma 2.4.16 that N contains an abelian characteristic
subgroup A of cardinality ℵ and prime exponent p such that every
subgroup of A is normal in N, and so has only finitely many conju-
gates in G. As E is finitely generated, A contains a subgroup A0 such
that A/A0 is countable and E∩A0 = {1}. Obviously, A0 has cardinal-
ity ℵ, and contains a proper subgroup B such that A0/B is countable.
Let C = BG be the core of B in G. Then also A/C is countable, be-
cause B has finitely many conjugates in G, and so C has cardinality ℵ.
It follows that EC = G, and hence

A0 = EC∩A0 = C(E∩A0) = C.

This contradiction shows that G has no proper subgroups of finite
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index.
All proper normal subgroups of G have modular subgroup lattice

by Lemma 2.2.9, so that EG = G and hence the group G cannot be the
join of a chain of proper normal subgroups. It follows from Zorn’s
lemma that G contains a maximal normal subgroup M. By hypothe-
sis the simple group G/M has cardinality strictly smaller than ℵ, so
that M has cardinality ℵ and hence EM = G. Let i 6 t be any posi-
tive integer such that the subgroup 〈xi,M〉 is not abelian. As 〈xi,M〉
is properly contained in G, it has modular subgroup lattice, and
by Lemma 2.4.16 we can find a prime number pi such that 〈xi,M〉
has a normal Sylow pi-subgroup Pi of cardinality ℵ which is a fi-
nite extension of an abelian subgroup Ui of finite exponent such
that all subgroups of Ui are normal in 〈xi,M〉. Then also M has a
normal Sylow pi-subgroup Qi = Pi ∩M, and Qi has cardinality ℵ

because G/M is countable. Clearly, Qi is a normal subgroup of G,
so that EQi = G and in particular M/Qi is countable; note also that
the subgroup Vi = Ui ∩M has finite index in Qi, and hence M/Vi is
countable (although not necessary, it can be noted here that pi = pj
whenever 〈xi,M〉 and 〈xj,M〉 are both non-abelian). Whenever k 6 t
is a positive integer such that 〈xk,M〉 is abelian, put also Vk =M.
Then the abelian subgroup

V =

t⋂
i=1

Vi

is normal in G = EM, and the factor group M/V is countable, so
that V has cardinality ℵ. Moreover, all subgroups of V are normal
in G, and hence G/CG(V) is isomorphic to a group of power automor-
phisms of V . Since any group of power automorphisms is residually
finite, it follows that G/CG(V) is trivial, so that V lies in the centre
of G, and hence Z(G) has cardinality ℵ. Then all proper subgroups
of G have modular subgroup lattice by Lemma 2.4.15, and this last
contradiction completes the proof of the theorem. ut

Similar cardinality problems can of course be studied for other lat-
tice properties of groups, like for instance the (much) stronger prop-
erty of having distributive subgroup lattice. On the other hand, it is
well known that a group has distributive subgroup lattice if and only
if it is locally cyclic (see [70], Theorem 1.2.3), and so it follows that
if G is any uncountable group whose proper uncountable subgroups
have distributive subgroup lattice, then G has the Jónsson property.
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Proof of Theorem 2.2.5 — The group G has modular subgroup
lattice by Theorem 2.2.4, so that in particular the commutator sub-
group G ′ of G is periodic. Moreover, all proper normal subgroups
of G are quasihamiltonian by Lemma 2.2.9. Suppose first that G is
not periodic, so that it is generated by its elements of infinite order.
If a is any element of infinite order of G, we have 〈a〉 = 〈ap,aq〉 for
all different primes p and q, and hence

G = 〈H | G ′ 6 H < G〉.

As all proper subgroups of G containing G ′ are locally nilpotent, it
follows from the well known theorem of Hirsch and Plotkin that G
itself is locally nilpotent, and hence quasihamiltonian.

Suppose now that G is periodic, so that it is a direct product
of Tarski groups, extended Tarski groups and a locally finite group of
cardinality ℵ. On the other hand, since all proper normal subgroups
of G are quasihamiltonian, Tarski and extended Tarski factors cannot
occur in this decomposition. Then G is locally finite and all its proper
subgroups of cardinality ℵ are locally nilpotent, so that G itself is lo-
cally nilpotent by Theorem 2.2.12. Therefore G is a quasihamiltonian
group. ut
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