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Minimally invasive surgical approaches have revolutionized surgical care and 

are becoming increasingly common and sought after in neurosurgery. Despite 

significant advancements in these techniques and associated technologies, the use of 

spatulas, that remain essentially unchanged since the late 1800s, for brain retraction 

endures as a mainstay of neurosurgical practice. In the last decade, tubular retractors 

have been successfully used in the management of deep-seated intraparenchymal and 

intraventricular lesions but have yet to be used to minimize brain retraction in skull 

base surgery. 

In order to determine the full applicability of transtubular techniques in 

neurosurgery, we compare brain retraction pressures between tubular retractors and 

brain spatulas in common neurosurgical approaches, assess the feasibility of 

performing minimally invasive transtubular skull base and general neurosurgical 

approaches, and introduce a novel technique for closure of transtubular 

minicraniectomies with maintenance of anatomic integrity. 

In all approaches assessed, tubular retraction resulted in average brain 

retraction pressures that were 57% less collectively than those resulting from spatula 

retraction. Tubular retractors demonstrated more consistent average retraction 

pressures between approaches and required 50% less mean retraction distance 



 

compared to spatula retractors, while cortical tearing was observed microscopically in 

39% of cases following spatula retraction. 

Transtubular supraorbital, anterior transpetrosal, interhemispheric 

transcallosal, retrosigmoid, and supracerebellar infratentorial approaches are safe and 

effective surgical corridors to their respective intracranial targets, with ample surgical 

exposure, freedom, and maneuverability and minimal retraction of brain tissue. The 

tubular retractor provided sufficient working space for standard bimanual surgical 

technique without obstruction of the visual field and permitted sufficient surgical 

freedom while allowing for constant monitoring of retracted tissues. Adequate 

preoperative planning of the surgical trajectory was critical for facilitating a safe, 

direct, and practicable surgical corridor. Closure of transtubular minicraniectomies 

could be accomplished by rapid on-demand 3D printing of patient-specific 

cranioprostheses which was found to be a novel, feasible, and inexpensive option that 

was accomplished with minimal technical difficulty. 

Tubular retraction in neurosurgery provides a safe and effective conduit for the 

application of percutaneous minimally invasive approaches while inducing 

substantially reduced brain retraction pressures than conventional spatula retractors. 

Advances in neuronavigation and surgical robotics will continue to expand the 

indications for tubular retraction in neurosurgery.
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PREFACE 

 

“In examining disease, we gain wisdom about anatomy and physiology and biology. 

In examining the person with disease, we gain wisdom about life.” 

—Oliver Sacks M.D. 

 

Skull base surgery developed as a neurosurgical subspecialty in the 1980s with 

the aim of expanding bone removal in cranial approaches to the skull base in order to 

minimize brain retraction and injury, while providing enhanced exposure of the 

neurovasculature and lesions located at the base of the skull. The 1990s saw rapid 

growth and adoption of skull base surgery, as well as significant development of its 

techniques. Despite these advances in surgical access, neurosurgery has for over a 

century relied and continues to rely on retractors, which remain essentially unchanged 

since their development in the late 19th century, to displace brain tissue in order to 

enhance surgical exposure of deeper targets. 

In the last two decades, minimally invasive surgical approaches have 

revolutionized neurosurgical care and are becoming increasingly common and sought 

after by both practitioners and patients. Endoscopic procedures performed through 

smaller corridors, as opposed to large traditional openings of the skull, are gentler on 

the brain and cause less total tissue damage. As the incisions and surgical corridors are 

small, patients tend to have faster recovery times and less discomfort compared with 

conventional surgery. 

The last several years have marked a period of transition from maximal bone 

removal and exposure to minimally invasive and endoscopic surgical techniques, 

however there remains a significant challenge in attempting to merge the goals of open 

surgery with the benefits of minimally invasive techniques using existing surgical 
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technologies, instruments, and tools. 

Three years ago, during a spine surgery case involving a lumbar 

microdiscectomy a colleague made a seemingly innocent observation about the metal 

tube being used to retract the patient’s skin and muscle that would change the course 

of my professional life. We subsequently postulated on the benefits of using such a 

system for accessing lesions at the base of the skull while minimizing the risk of 

retraction injury caused by neural damage from disruption of cortical microcirculation. 

This body of work is the result of that conversation, and many others, which 

ultimately led to the development of a set of minimally invasive transtubular surgical 

techniques. This work describes that process of development, from incision to closure, 

beginning with a comparison of retraction force between retractor types, followed by 

an extensive demonstration of the surgical feasibility of transtubular retraction in a 

number of common neurosurgical approaches, and ultimately defines a novel method 

for closure of the associated miniature craniectomies. 

I firmly believe that transtubular approaches in neurosurgery can safely bridge 

the gaps both between open and endoscopic skull base surgery, as well as between the 

bimanual surgery of today and the robotic surgery of tomorrow—by providing a 

corridor through which a robot can safely work. This set of transtubular approaches, 

combined with the emerging surgical technologies of white matter tractographic 

navigation and robotic exoscopy, will expand the minimally invasive neurosurgical 

armamentarium while improving patient outcomes and satisfaction. 

The work described herein was completed in full at the Skull Base 

Microneurosurgery and Surgical Innovations Laboratory of Weill Cornell Medical 

College. To the best of my knowledge, this dissertation is original work, except where 

references are made to outside sources. This, nor any substantially similar dissertation, 

has been or is being submitted for any other degree, diploma, or qualification at any 
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other university. Extensions of this project have been published in the Journal of 

Neurosurgery and World Neurosurgery, and select portions have been presented at 

several scientific meetings, including but not limited to those of the American 

Association of Neurological Surgeons, the Congress of Neurological Surgeons, and 

the North American Skull Base Society. 
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INTRODUCTION 

Brain Retraction in Neurosurgery 

The history of brain retraction in neurosurgery began on November 25, 1884, when Sir 

Rickman Godlee performed the first primary intracranial brain tumor operation for a glioma and 

first introduced a brain retractor to surgery.1–2 In 1886, in The London Medical Record, Bennett 

and Godlee described using a small malleable spatula to separate the tumor from the brain 

parenchyma,3 and in doing so ushered in the modern era of spatula-based brain retraction. By 

1890, references to brain retractors began appearing in medical texts,4 and in 1909 American 

neurosurgeon Charles Frazier, in a text edited by William Williams Keen, described using the 

handles of ordinary spoons, which he bent to provide visualization of deeper intracranial 

structures (Figure 1).5–6 

During this period, varying types of brain spatulas were introduced by German surgeon 

Lothar Heidenhain and later by Fraizer, who developed an elevator for operations at the base of 

the brain, often used in conjunction with spoon handles.1,7 In 1906, pioneering English 

neurosurgeon Sir Victor Horsley provided the first review of brain retraction, associated 

techniques, and retraction injury in an address to the British Medical Association, in which he 

concluded that retraction was effective, but also posited the important question of “What happens 

to the hemisphere compressed?”1,8 According to a recent review by Assina et al.,1 this began a 

paradigm shift in neurosurgery at the time, and retraction soon became the preferred method, 

compared to excision of obstructing brain tissue as proposed by Frazier. 
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Figure 1. Spoon Handle Retractors. A bent teaspoon handle is used to elevate the temporal lobe 

in the subtemporal approach (left) and retract the cerebellum to visualize the facial and auditory 

nerves (right). Illustrations from the 1909 text, Surgery: Its Principles and Practice, Vol. 5, by 

various authors.1,6 

 

Three years later, in 1909, the father of American neurosurgery, William Harvey 

Cushing, subsequently described his use of a “spoon-shaped, round-edged spatula” that 

reportedly caused less damage to cortical vessels than flat retractors.1,9 Both Cushing and 

Horsley introduced varying sized malleable handheld retractors, in the shape of rectangular 

ribbons with one narrow end known as a taper, that could be bent and shaped as needed (Figure 

2).1,10 This design endured and saw only slight modifications in the 1920s, where some retractors 

took the form of small shovels.10 

In the 1930s, the first skull-mounted retractors were introduced, but due to their 

invasiveness and requirement for drilling additional holes, as well as inherent variabilities in the 

thickness of the skull, they were replaced by skin-mounted, then table-mounted, and ultimately 

headrest-mounted retractor systems. Table-mounted retractors were popularized in the late 1970s 
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by renown Turkish neurosurgeon Gazi Yaşargil, who introduced a table-mounted flexible arm 

that held a brain spatula, and named it the Leyla retractor, after his daughter.10–11 While effective, 

this system allowed for the possibility of independent movement of the patient’s head and the 

retractor arm, so that any movement of the head or table could result in uncontrolled movement 

at the brain-retractor interface.1 This issue was solved with the introduction of self-retaining 

headrest-mounted retractor systems by Greenberg, Sugita, Fukushima, and others.1,12-13 

These skull clamp mounted retractor systems generally consisted of clamps, secondary 

clamps, flexible rod holders, retractor blades, and hand rests for instrument stabilization.1 In 

1981, Richard Budde and Jim Day developed the currently popular Budde Halo Brain Retractor 

System, comprised of a ring that is suspended over a patient’s head by two support rods 

connected to the skull clamp, which allows for 360° retractor arm placement while providing a 

hand rest for the surgeon. Current Budde Halo systems are lightweight, made from carbon fiber, 

and radiolucent.14 

Despite these advancements, the brain spatula itself—also known today as a malleable 

brain retractor or retractor blade—remains essentially unchanged since its original incarnation in 

the late 1800s. Today’s retractor blades are thin, firm or malleable bands of steel and other metal 

alloys, with abrupt or well defined edges and a limited surface area (Figure 2).15 Malleable 

retractors can be easily bent by hand and are placed, under direct observation, on top of brain 

parenchyma or dura to retract tissue out of the surgical field. Retractors are often placed over 

cottonoid strips to protect the underlying tissue, and the handle of the retractor is kept dry to 

avoid slippage while the distal end is moistened in order to prevent adherence to and/or tearing 

of the surface tissue.16 Care must be taken as cottonoid can also adhere to brain tissue, bruise 

underlying tissue, become entangled in the surgical drill, and obstruct the surgeons’ visual 
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field.17 Additionally, the uneven transmission and apportionment of the forces applied to the 

brain tissue can cause retractor-mediated injury. 

 

 
Figure 2. Modern Malleable Brain Retractors. An assortment of varying types of modern 

retractor blades. 

 

Retraction Injury 

Application of a brain retractor induces direct deformation of the underlying parenchyma, 

which can cause retractor-mediated ischemia by a reduction or cessation of local perfusion that 

can lead to cell death or long term neuronal atrophy and cortical thinning (Figure 3).18-24 Venous 

thrombosis and infarction can also result from compression of cortical venous networks and 

stretching of bridging veins by provoking local venous congestion.25–26 Direct induction of a 

focal area of high pressure by a low surface area retractor creates surrounding areas of low 
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pressure that can cause tissue to protrude around the edges of the retractor, limiting visualization, 

necessitating additional retraction, and potentially causing target shift, and can result in direct 

parenchymal injury, including cortical tearing and compromise of the blood–brain barrier.20,27–31 

A number of studies have attempted to quantify the pressure and duration thresholds for 

retraction injury.21,32–35 In a clinical study of 37 patients, Hongo et al. found average 

neurosurgical brain retraction pressure to be 26.6 mmHg.36 Using an animal model, Rosenørn 

and Diemer revealed that focal ischemic damage can occur from retractors held in place for just 

15 minutes with 20 mmHg of pressure.37 

 

 
Figure 3. Clinical Application of Malleable Brain Spatulas. Retraction of brain tissue in the far 

lateral (top, left) and middle fossa (top, right) neurosurgical approaches. Discoloration of brain 

parenchyma around the retractor (bottom, left) and pulling of tissue (bottom, right) can be seen. 
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The severity of parenchymal damage, contusion, or infarction is dependent on the type 

and number of the retractors as well as the pressure, location, and duration of retraction.21–22,38 

Direct retractor-induced brain compression activates inflammatory responses that can exacerbate 

the initial injury and cause secondary brain damage.14,31–32,39–41 The specific effects of these 

responses, the pathogenic roles of matrix metalloproteinase and tyrosine kinases, and the 

complex cascade of metabolic, oxidative, and electrical events that precede retraction injury have 

been studied extensively in both human and animal models, including in the setting of induced 

hypotension, using a wide array of techniques including autoradiography,34,37 tissue 

microdialysis,24,42–43 mechanical transduction,31,38 somatosensory evoked potential mapping,43–44 

intraoperative functional mapping,45 single-photon emission computed tomography,46 and laser 

Doppler cerebral blood flow analysis.35,47–48 

Analysis of regional cerebral blood flow by Bell et al. indicated a perfusion need of 

greater than 10–13 mL/100 g/minute to prevent focal hypoxic-ischemic injury.49 Laha et al. 

additionally showed that maintenance of mean arterial pressure at 200 mmHg above brain 

retraction pressure would be sufficient to counteract retractor-mediated ischemia,50 however in 

most intraoperative conditions the inverse is true, as patients often experience iatrogenically-

induced or hypovolemic hypotension, which increases susceptibility to retraction injury.34 

Additionally, associated systemic conditions including hypoxemia and hypercapnia can 

compound the risk of damage.22 

Biochemical analyses during retraction have revealed metabolic changes further 

consistent with ischemic conditions, including considerably elevated levels of glutamate and 

glycerol, indicative of tissue damage and cell membrane degradation, an increased 
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lactate/pyruvate ratio, indicative of cerebral ischemia, and reduced pH; all of which returned to 

normal levels upon cessation of retraction.22,24 

Positron emission tomography studies have confirmed a primary reduction in metabolism 

in finding a 45% decrease in regional cerebral metabolic rate for oxygen and a 32% reduction in 

regional oxygen extraction fraction in the retracted regions without change in the opposite 

hemisphere, similar to findings reported after ischemic stroke and traumatic brain injury.51 In a 

recent series of 36 patients undergoing surgery for clipping of an intracranial aneurysm, 11.1% 

showed magnetic resonance imaging (MRI) signs of postoperative parenchymal signal 

hyperintensities consistent with retraction injury in fluid-attenuated inversion recovery (FLAIR) 

and T2 sequences in the location of retraction.52 These patients all presented with edema and no 

changes in diffusion weighted or perfusion sequences in the area of the approach.52–53 

Clinical manifestations of retraction injury largely depend on the region of damage, but 

often include parenchymal hematomas, aphasia, hemiparesis, and/or paresthesia.22 In the 

occipital transtentorial approach, transient and permanent hemianopia from retraction of the 

occipital lobes have been observed.54 In the subfrontal approach to the sellar region, anosmia has 

been observed following retraction of the frontal lobe and olfactory tracts.55 Seizures and edema 

are not uncommon following temporal lobe retraction, and cerebellar retraction has been known 

to manifest as dysmetria, dysdiadochokinesia, and ataxic gait.55–56 In general, retraction injury 

should be considered in patients with postoperative development of lateralizing signs, pupillary 

abnormalities, visual disturbances, and/or seizures.57 

Incidence of brain retraction injury is difficult to determine, as parenchymal damage may 

not be immediately evident postoperatively and delayed or subclinical intracerebral hematomas 

may first be detected on high-resolution computed tomography (CT) or MRI several days 
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postoperatively.19,58 A number of clinical studies published in the late 1980s and early 1990s 

found widely varying rates of postoperative retraction injury detected by postoperative imaging 

and/or clinical presentation, with several studies reporting a retraction injury rate in brain tumor 

and intracranial aneurysm surgery between 0.5% and 10%,58–65 while other studies from the 

same period reported rates between 60% and 100% with smaller subsets developing clinically 

significant or permanent postoperative deficits.66–68 More recent studies have reported rates 

between 11% and 36% for aneurysm surgery and 79% from cerebellar retraction.53–54,69 These 

considerable variations may be the result of heterogeneity in procedure difficulty, intraoperative 

monitoring resources, surgical skill, sensitivity of detection methods, and criteria used to define 

retraction injury.22 

Given that, as previously mentioned, focal ischemic damage has been shown to occur 

from just 15 minutes of retraction at 20 mmHg of pressure,37 and, according to a 2011 survey 

from the American Association of Neurological Surgeons, there are approximately 580,000 

cranial procedures performed per year in the United States with average operative times of 327 

minutes for aneurysms and 198 minutes for tumors,70–71 it is likely that focal tissue damage from 

retraction injury occurs in the vast majority of cases and a significant number of those patients, 

around 10-15%, develop clinically significant manifestations. 

 

Minimally Invasive Neurosurgery 

In order to help mitigate the need for retraction, skull base surgery developed as a 

neurosurgical subspecialty in the 1980s with the aim of expanding bone removal in cranial 

approaches to the base of the skull in order to minimize brain retraction and injury.72 While 

neurosurgical dogma, since the inception of the specialty, had previously dictated that cranial 
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openings be as large as possible in order to mitigate the risk of intracranial hypertension, or brain 

swelling, and safely control hemorrhage, skull base techniques began to transform this belief 

with the development of well-defined surgical corridors that allowed for more deliberate 

placement of cranial osteotomies. Openings evolved from generally large vascularized 

osteoplastic flaps, placed around the temporalis or occipitalis muscles, into large but targeted and 

strategic openings that minimized brain retraction and provided access to lesions of the complex 

neurovasculature at the base of the skull.72–73 

The 1990s saw rapid growth and adoption of skull base surgery as well as significant 

development of its techniques and the integration of surgical technologies that paved the way for 

minimally invasive refinements. Individual tailored approaches lessened the reliance on 

predefined surgical corridors; computerized surgical planning, intraoperative imaging, and 

neuronavigation allowed for increased surgical orientation without the need to rely solely on 

visual markers; special instrumentation facilitated the use of narrow surgical corridors; and 

endoscope-assisted angled visualization provided enhanced visual control.74–75 

The first wave of modern minimally invasive neurosurgery occurred in the mid-1990s 

after endoscopic sinus surgery had gained significant popularity amongst otolaryngologists for 

the treatment of inflammatory sinonasal disorders.76 The excellent visualization and surgical 

results provided by the endoscope prompted the development of the, now popular, purely 

endoscopic endonasal transsphenoidal route to the sellar region by Paolo Cappabiana and Enrico 

Diviitis in Naples in the late 1990s.76–80 At the same time, endoscope-assisted transcranial 

surgery began to evolve, initially as an adjunct that provided views out of the line of sight of the 

microscope that could only be achieved previously with the use of angled mirrors.76,80–81 
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Axel Perneczky, who pioneered the use of the endoscope in intracranial 

neurosurgery,80,82–84 so-called endoscope-assisted neurosurgery, went on to develop the concept 

of keyhole approaches in neurosurgery, and in his eponymous 2008 text aptly defined this 

concept in that: 

The aim of keyhole neurosurgery is not the limited craniotomy, but the limited brain 
exploration and minimal brain retraction. In this way, the limited craniotomy is not the 
goal but the result of the philosophy of minimally invasiveness in neurosurgery. The 
craniotomy should be as limited as possible to offer minimal brain trauma, although as 
large as necessary to achieve a safe surgical dissection.74 
 
The term “minimally invasive surgery” was first described by Fitzpatrick and Wickham 

in 1990∗ and became popular in general surgery with the development of modern endoscopic and 

laparoscopic techniques.85 In 1991, at the first international workshop entitled “Contemporary 

Update on Endoscopic Neurosurgery and Stereotaxy” in Marburg, Germany, the term 

“minimally invasive neurosurgery” was coined with respect to the work of Fitzpatrick and 

Wickham.86 

Today, minimally invasive neurosurgery, as described by Proctor and Black in their text 

on the subject, attempts to deal with complex lesions in a manner that minimizes blood loss and 

trauma to normal tissues, and is comprised by two fundamental tenets: a precise definition of the 

operative anatomy and a minimally invasive surgical corridor to the target.75 The techniques that 

make up minimally invasive—and in some cases non-invasive—neurosurgery are varied, extend 

beyond keyhole approaches, and include endoscopic surgery, image-guided surgery, 

interventional neuroradiology and endovascular techniques, robotic neurosurgery, and 

                                                 
∗ Fitzpatrick and Wickham were the first to describe the concept of minimally invasive surgery as it is currently 
understood, however the term was first used by Chapple and colleagues in 1989 in: Chapple CR, Gelister J, Miller 
RA. Minimally Invasive Surgery for the Retrieval of Complex Fractured Double J Stents. Br J Surg. 
1989;76(7):680. 



11 

radiosurgery including Gamma Knife, as well as conformal radiation, laser ablation, and focused 

ultrasound.75,87 

Despite these advances, and minimizing of the cranial opening, brain retraction and the 

risk of retraction injury remains unchanged, and there now exists the challenge of merging 

effective transcranial skull base techniques with keyhole and minimally invasive concepts using 

novel instruments, tools, imaging, and visualization modalities. While some authors have 

advocated for the use of retractorless surgery to further this goal, others have sought an 

alternative that provides surgical maneuverability while minimizing surrounding tissue 

damage.88 

 

Tubular Retraction in Neurosurgery† 

Stereotactic cylindrical retractors were first introduced by Kelly et al. in 1988 for the 

excision of deep intraparenchymal lesions, and consisted of thin-walled hollow cylinders 2–3 cm 

in diameter.89–90 In 1990, Otsuki and colleagues expanded on this concept by introducing an 

endoscope into this system for resection of intra-axial tumors.91 Concurrently, metallic tubular 

retractors were introduced into spine surgery in 1991 by Faubert and Caspar, and helped form the 

basis of minimally invasive spine surgery which evolved rapidly and independently over the next 

decade.92–95 Over the next six years, a number of reports on the application of mostly metal 

stereotactic cylindrical retractors for deep-seated intraparenchymal lesions, including colloid 

cysts, appeared in the literature.96–100 

As endoscopic neurosurgery began to gain prominence in the early 2000s, several 

surgeons began to investigate the integration of minimally invasive retraction. In 2005, Harris 
                                                 
†A complete timeline of the evolution and adoption of tubular retraction in cranial surgery as seen through published 
research is provided in Appendix A. 
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and colleagues first proposed using a modified thoracic port—an 11.5 mm diameter plastic peg-

shaped blunt-tipped obturator—for accessing intraventricular lesions, which they dubbed a 

“ventriculoport.”101 Subsequently in 2007, Schwartz and Anand expanded on this technique 

which later became more commonly known as an “endoport,”102 and in 2008 co-authored a study 

with Greenfield and colleagues on the use of the spinal Minimal Exposure Tubular Retractor 

system (METRx®, Medtronic, Minneapolis, MN)—comprised of sequentially larger 14–22 mm 

diameter metal tubes—for the resection of 10 deep-seated intracranial lesions.103 This ushered in 

the next generation of transtubular techniques, comprised mainly of microscopic and endoscope-

assisted transcranial resection of deep intraparenchymal and intraventricular lesions, during 

which the tubular retractor evolved from a rigid metal cylinder into an oval-shaped transparent 

plastic tube.104–121 At the same time, a number of authors also described the application of self-

made tubular retractors, often due to the high costs associated with commercially available 

systems.97,99,122–128  

In 2011, Recinos and Jo independently reported the first series of pediatric patients who 

underwent transtubular resection of deep-seated tumors,107,129 and in 2015 a number of cases of 

transtubular evacuation of intracerebral hemorrhage (ICH) and hematoma were reported, 

including one report on transtubular retrieval of intracranial foreign bodies.130–135 These studies 

ultimately led to a multicenter clinical trial on minimally invasive transtubular evacuation of 

ICH. 

The Minimally Invasive Subcortical Parafascicular Transsulcal Access for Clot 

Evacuation (MiSPACE) trial began in 2013 and evaluated outcomes following transtubular 

transcortical evacuation of symptomatic and CT-confirmed supratentorial primary ICH.136–141 

Results of the pilot study presented in 2015 showed a 90% evacuation rate with neurologic 
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improvement in 89% of patients.142–143 As of the time of writing, the trail is ongoing and 

currently recruiting patients to obtain additional information regarding clinical outcomes and the 

economics of the MiSPACE procedure (ClinicalTrials.gov Identifier: NCT02331719).136,143 

Currently, the scope of practicable neurosurgical applications of transtubular techniques 

is expanding with the development of novel surgical technologies, including minimally invasive 

and flexible instruments, exoscopic visualization, surgical robotics, white matter tractography, 

and neuronavigation, which are facilitating the use of tubular retractors in more restricted 

surgical corridors as well as allowing for drilling of bone and micromanipulation of delicate 

tissues through the retractor.144–146 

 

Characteristics of Tubular Retractors 

Several iterations of tubular retractors are currently commercially available and the two 

most common of which are the ViewSite Brain Access System (VBAS) (Vycor Medical Inc., 

Boca Raton, FL) and BrainPath® (NICO Corporation, Indianapolis, IN). 

The Vycor VBAS is set of single-use clear plastic, polished polycarbonate tubes 

comprised of an inner introducer and an outer working channel port that are connected by a 

spring-loaded latch and can be fixed to a Leyla retractor via an extension arm (Figure 4).147 The 

system is available in four different distal port sizes—12×8 mm, 17×11 mm, 21×15 mm, 28×20 

mm—each of which are available in 3 cm, 5 cm, and 7 cm lengths (Appendix B). The introducer 

fits inside of the working channel port and has a blunt rounded tip with a small 2 mm aperture 

designed to mitigate intracranial pressure spikes during insertion by allowing drainage of 

cerebrospinal fluid. The VBASMini are miniaturized, 6 mm wide and 5 or 7 mm long, versions 

of the VBAS designed as alternatives to endoscopic sheaths and for use in pediatric patients. 
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Figure 4. Vycor Medical ViewSite Brain Access System (VBAS). The full range of VBAS sizes 

including VBASMini. 

 

The NICO BrainPath® is a set of 13.5 mm diameter single-use 50 mm, 60 mm, and 75 

mm long semitransparent sheaths with corresponding reusable large aluminum obturators, 

equipped with 8 mm or 15 mm pointed tips with no opening and incremental depth markings 

printed on both the sheath and obturator (Figure 5).148 

Versions of both the Vycor and NICO devices can be easily integrated with 

neuronavigation pointers. The BrainPath® device is the subject of the MiSPACE trial. Several 

other tubular retractors are available in China, including the Goldbov Brain Access System 

(Goldbov Photoelectronics Co., Ltd., Wuhan, China)—nearly identical to the VBAS—and the 

Disposable Tissue Duct Expander (VDY20115, Jingcheng Medical Instruments, Shanghai, 

China).149 
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Figure 5. NICO BrainPath®. Image courtesy of NICO Corporation. 

 

Scope of Objectives 

Despite the significant advancements in skull base and minimally invasive surgical 

techniques described previously, developments in associated surgical technology, and the use of 

tubular retraction in transcortical surgery, tubular retractors have yet to be used to minimize 

brain retraction in skull base surgery. In order to determine the full applicability of transtubular 

techniques in neurosurgery, we (a) compare brain retraction pressure between tubular retractors 

and brain spatulas in the most common neurosurgical approaches, (b) assess the feasibility of 

performing minimally invasive transtubular skull base and general neurosurgical approaches, and 

(c) introduce a novel technique for closure of transtubular mini-craniectomies with maintenance 

of anatomic integrity.  
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COMPARISON OF RETRACTION FORCE 

Rationale and Objective 

In order to determine the difference in applied brain retraction pressure between tubular 

and spatula retractors, we assess and compare the mean retraction force exerted by each to 

achieve minimum adequate visualization of a given target in a series of common neurosurgical 

corridors using a cadaveric model. Additionally, we visually and qualitatively evaluate the 

cortical surface tissue for damage following removal of each retractor. 

 

Experimental Design and Methods 

Surgical Approach Selection and Classification 

 Standard supraorbital, middle fossa, retrosigmoid, supracerebellar infratentorial, 

interhemispheric, and transcortical neurosurgical approaches were selected in order to sample an 

array of different cranio-geometric openings and retracted surfaces, and were performed on 3 

preserved adult cadaveric heads (6 sides) without arteriovenous injection. Each approach was 

classified based on the anatomical placement of the retractor as either between brain/dura and 

bone, between brain and dura, or within brain. All surgical corridors were intradural except for 

the middle fossa approach, where the retractors were placed extradurally underneath the 

temporal lobe dura. 

Intracranial target structures were defined for each approach in order to provide a 

standard and consistent means for retractor comparison (Table 1). Each retractor was placed into 



17 

the surgical corridor and the minimum amount of brain retraction required to visually expose the 

given target structure was applied. 

 

Surgical Approach Retractor Placed 
Between 

Surgical Corridor 
Between 

Intracranial Target 

Supraorbital Brain and bone Frontal lobe and roof of 
the orbit 

Anterior communicating 
artery 

Middle Fossa Dura and bone Temporal lobe dura and 
middle fossa floor 

Petrous apex 

Retrosigmoid Brain and bone Cerebellum and 
occipital bone 

Trigeminal nerve 
(CN V) 

Supracerebellar 
Infratentorial 

Brain and dura Cerebellum and falx 
cerebri 

Pineal gland 

Interhemispheric Brain and dura Frontal lobe and 
tentorium cerebelli 

Corpus callosum 

Transcortical Within brain Fenestration of cortical 
tissue 

Lateral ventricle 

Table 1. Intracranial Targets and Retractor Placement by Approach. 

 

Estimation of Mean Retraction Pressure 

A digital force measurement system (FlexiForce Economical Load & Force Measurement 

[ELF™] System, Tekscan, Inc., South Boston, MA) was used to measure the brain retraction 

force applied by each retractor. The ELF system comprised of software, a plastic handle that 

connected to a sensor, and a FlexiForce™ Sensor (B201, Tekscan) that functioned as a force 

sensitive resistor, translating specific applied forces to corresponding output voltages (Figures 6–

7). The sensor was calibrated a using linear calibration technique with weights ranging from 50 g 

to 150 g, according to manufacturer guidelines.150–151 
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Figure 6. Tekscan FlexiForce Economical Load & Force Measurement System. Software and 

hardware components of the force measurement system as well as spatula and tubular retractors, 

calibration weights, and a self-retaining snake arm. 

 

 
Figure 7. FlexiForce Handle Electronics Schematic. Image courtesy of Tekscan, Inc. 
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For the purposes of this study, mean retraction pressure (MRP) was defined as the mean 

quotient of the resultant force acting on the sensor and the surface area in direct contact with the 

tissue22: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀 𝑃𝑃𝑅𝑅𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑀𝑀 =
𝑅𝑅𝑀𝑀𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀
𝑆𝑆𝑃𝑃𝑅𝑅𝑆𝑆𝑀𝑀𝑅𝑅𝑀𝑀 𝐴𝐴𝑅𝑅𝑀𝑀𝑀𝑀

 

Wherein, the circular surface area of the force sensor was 73.9 mm2 (radius 4.85 mm). 

 

Craniotomy Placement and Target Visualization 

For each approach, three-point fixation was achieved using a Mayfield head holder and 

the head was placed in a standard surgical position. Following conventional skin incisions, 

craniotomies were fashioned using an Anspach® EMAX® 2 Plus high-speed surgical drill (The 

Anspach Effort, Inc., Palm Beach Gardens, FL). Extreme care was taken to maintain dural 

integrity during bone removal. Each approach was performed 6 times, of which 3 were 

performed with tubular retraction and 3 with spatula retraction. A 229 mm long by 3–13 mm 

wide Greenberg® Tapered Retractor Blade (Symmetry Surgical Inc., Antioch, TN) was used for 

direct spatula retraction in a standard curvilinear configuration, without surgical patties or 

cottonoid pads, and a 12L VBAS (12×8 mm wide, 7 cm long, TC 12/7, Vycor) was used for 

tubular retraction in all but the retrosigmoid and middle fossa approaches, in which 12S (12×8 

mm wide, 3 cm long, TC 12/3) and 17L (17×11 mm wide, 7 cm long, TC 17/7) retractors were 

used, respectively (Figure 4, Appendix B). Both retractors were fashioned to a non-tapered self-

retraining snake arm (Mizuho America, Inc., Union City, CA); the VBAS was connected to the 

snake arm via the Vycor Extension Arm (Vycor) (Figure 8). Retractors were placed into the 

surgical corridor under direct microscopic visualization (Zeiss OPMI Neuro/NC 4 System, Carl 

Zeiss Meditec AG, Jena, Germany), and upon achieving target visualization, the snake arm was 
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locked in place and force readings were obtained and recorded. Mean retraction distance (MRD) 

of the brain tissue was measured using a flexible surgical ruler at the cranial opening, from the 

margin of the tissue in a neutral non-retracted position to its final position once the target 

structure was exposed using the given retraction modality, in all approaches. 

 

 
Figure 8. Retraction Force Sensor. Retraction force sensor adhered to the spatula (left) and 

tubular (right) retractors, both connected to the self-retraining snake arm, prior to insertion into 

the surgical corridor. The cadaveric specimen pictured here is for illustrative purposes and was 

not used for experimentation. 

 

Measurement of Retraction Force 

Multiple force readings were recorded at different points along each retractor. In all 

approaches, 2 points of measurement, proximal and distal, were obtained along the spatula 

retractor, where the proximal point was located at the shallowest point of contact between the 

retractor and the retracted tissue, and the distal point was located at the distal tip of the retractor 

(Figure 9). Four points of measurement were obtained for the tubular retractor in approaches 

where it was placed between brain and dura or within brain (i.e. supracerebellar infratentorial, 

interhemispheric, and transcortical), including proximal and distal readings on both the superior 
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(or lateral) and inferior (or medial) sides of the retractor, in relation to the specimen (Figure 9). 

Two points of measurement were obtained for the tubular retractor, at proximal and distal points 

along the surface in contact with the retracted tissue, in approaches where the retractor was 

placed between brain or dura and bone (i.e. supraorbital, middle fossa, and retrosigmoid). Each 

measurement was repeated 4 times. 

 
Figure 9. Location of Retraction Force Measurements. Artistic rendering of the location of force 

sensing points on both the spatula and tubular retractors, as well as the locations of a number of 

neurosurgical approaches. 

 

Post-Retraction Microscopic Parenchymal Inspection 

Upon completion of all measurements and removal of the retractor following each 

approach, the surgical microscope was used to visually assess for cortical tissue deformity, 

vessel collapse, damage to cortical surfaces, and parenchymal tearing along the surgical corridor 

and at the margins of the retractor. 
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Statistical Analysis 

All obtained force values were recorded and converted into pressure values in millimeters 

of mercury (mmHg), and are displayed as mean ± standard error of the mean. Statistical 

significance of differences in MRP values were assessed using a one-tailed two-sample t-test. 

Statistical significance was considered for any P value less than or equal to 0.05. All analyses 

were performed using the Statistical Package for the Social Sciences software version 24.0 

(SPSS Inc., Chicago, IL, USA). 

 

Results 

Each approach was completed bilaterally on all 3 specimens, for a total of 36 cranial 

openings, of which 18 were used to measure spatula retraction pressure and 18 to measure 

tubular retraction pressure. Target visualization was achieved in all cases with the minimum 

amount of brain retraction required to visually expose the given structure and retraction pressure 

values were successfully obtained in all 36 approaches. Collectively, MRP was 56.93% lower 

with the use of tubular retraction at 37.89±5.18 mmHg (range: 17.00–49.72 mmHg) compared to 

spatula retraction at 87.98±10.80 mmHg (range: 54.92–118.71 mmHg; P < 0.01). Aggregate 

MRP at the proximal end of the tubular retractor was 59.27% lower (mean: 41.12±2.89 mmHg, 

range: 13.44–63.41 mmHg) than that from the spatula retractor (mean: 100.96±5.99 mmHg, 

range: 56.82–129.11 mmHg), while aggregate distal MRP was 58.25% lower in the tubular 

group (33.31±1.87 mmHg, range: 12.68–46.93 mmHg) compared to the spatula group (mean: 

75.00±5.06 mmHg, range: 52.25–113.13 mmHg; P < 0.01) (Figure 10). Additionally, both 

tubular and spatula groups demonstrated statistically significant reductions in MRP from the 

proximal to distal points (P < 0.01). 
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Figure 10. Aggregate Mean Retraction Pressure at Proximal and Distal Measurement Points. 

Statistically significant reductions in MRP from the proximal to distal points were observed 

within as well as between groups (P < 0.01). 

 

Mean Retraction Pressure by Approach 

Tubular retractors significantly reduced MRP in all approaches performed when 

compared to spatula retractors (P < 0.01) (Figure 11). The greatest reductions in MRP were 

observed in the supraorbital and transcortical approaches, with 66.82% and 69.05% MRP 

reductions from tubular retraction, respectively. In the supracerebellar infratentorial approach, 

MRP decreased by 60.92%, from 118.71±2.77 to 46.39±1.27 mmHg in the tubular retractor 

group. MRP in the middle fossa approach was 56.73% less in the tubular group, at 49.72±1.36 

mmHg, than the spatula group, at 114.91±6.72 mmHg. Similarly, tubular retraction reduced 

MRP in the retrosigmoid approach from 93.47±7.35 to 42.11±1.87 mmHg, a change of 54.95%. 
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The smallest reduction in MRP from tubular retraction occurred in the interhemispheric 

approach, with an average reduction of 17.57 mmHg, or 28.44%. 

 

 
Figure 11. Mean Tubular and Spatula Retraction Pressures by Approach. **P < 0.01. 

 

In the spatula group, the supracerebellar infratentorial, middle fossa, and retrosigmoid 

approaches had the highest MRPs, whereas the middle fossa, supracerebellar infratentorial, and 

interhemispheric approaches had the highest MRPs in the tubular group (Table 2). 



25 

Table 2. Mean Retraction Pressure and Distance. *Superior corresponded to lateral, or brain, in both the interhemispheric and 

transcortical approaches. **Inferior corresponded to medial in the interhemispheric (falx cerebri) and transcortical (brain) approaches. 
†Tubular MRD is a fixed value based on the distal port height of the retractor + 1 mm to account for the thickness of the port. MRP, 

mean retraction pressure; MRD, mean retraction distance; SD, standard deviation; SEM, standard error.

 Supraorbital Middle Fossa Supracerebellar 
Infratentorial Interhemispheric Retrosigmoid Transcortical 

Craniotomy Size (cm) 2.0×3.5 4.0×5.5 2.0×2.0 2.5×2.5 1.5×1.5 2.0×2.0 

Tubular Retractor       

MRP (mmHg±SD)       

Proximal Superior/Lateral*  27.90±2.68 52.51±1.28 49.46±6.85 63.41±2.42 45.91±2.09 14.46±1.28 

Distal Superior 27.90±2.68 46.93±3.65 46.62±4.57 30.69±4.17 38.30±5.00 27.39±5.30 

Proximal Inferior/Medial** – – 46.04±5.58 56.82±6.14 – 13.44±1.73 

Distal Inferior – – 43.63±5.43 25.87±1.01 – 12.68±1.76 

Mean±SE 27.90±0.86 49.72±1.36 46.39±1.36 44.20±4.19 42.11±1.87 17.00±2.70 

MRD (mm)† 9.00 12.00 9.00 9.00 9.00 9.00 

Spatula Retractor       

MRP (mmHg±SD)       

Proximal 115.92±3.55 129.11±17.29 124.29±6.44 66.97±3.21 112.62±7.64 56.82±6.14 

Distal 52.25±4.87 100.70±6.11 113.13±4.87 56.57±9.31 74.32±3.35 53.01±10.36 

Mean±SE 84.09±11.89 114.91±6.72 118.71±2.77 61.77±2.95 93.47±7.35 54.92±2.83 

MRD (mm±SD) 19.75±0.50 29.50±2.50 16.25±0.96 15.50±1.00 24.75±2.5 14.00±1.41 

MRP Reduction (%) 70.93 59.12 61.81 31.71 58.24 70.57 

P value 0.00117 < 0.01 < 0.01 0.00141 < 0.01 < 0.01 

MRD Reduction (%) 54.43 59.32 44.62 41.94 63.64 35.71 

P value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.01501 



26 

Spatula Retraction Pressure Distribution 

Within the spatula retractor group, statistically significant differences in proximal and 

distal MRPs were observed in all but the interhemispheric and transcortical approaches, 

indicative of focal areas of high pressure toward the origin of the retractor (Figure 12). In the 

supraorbital and retrosigmoid approaches, proximal MRPs were 54.92% and 34.01% greater, 

respectively, than distal MRPs (P < 0.01); and in the middle fossa and supracerebellar 

infratentorial approaches, proximal MRPs were 22.00% and 8.98% greater, respectively (P < 

0.05). 

 

 
Figure 12. Pressure Distribution along the Spatula Retractor by Approach. *P < 0.05; **P < 0.01.  
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Tubular Retraction Pressure Distribution 

Within the tubular retractor group, statistically significant differences in proximal and 

distal MRPs were only observed in the interhemispheric, middle fossa, and retrosigmoid 

approaches (Figure 13). In the middle fossa and retrosigmoid approaches, proximal MRPs were 

10.63% and 16.57% greater, respectively, than distal MRPs (P < 0.05), indicative of more equal 

pressure distribution along the axis of the retractor; while in the interhemispheric approach, 

proximal MRP was 52.95% greater than distal MRP (P < 0.01). In the 3 approaches where 

measurements were taken on both sides of the retractor (Table 2), no statistically significant 

difference in MRP between the superior/lateral and inferior/medial aspects was observed. 

 

 
Figure 13. Pressure Distribution along the Tubular Retractor by Approach. *P < 0.05; **P < 0.01.  
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Spatula versus Tubular Retractor Pressure Distribution 

The reductions in MRP provided by the tubular retractor were also statistically significant 

in all approaches when proximal and distal measurement points were compared independently 

between retractor groups (Figure 14). As such, distal tubular MRP was significantly less than the 

distal spatula point in each approach, and proximal tubular MRP was significantly less than the 

proximal spatula point in each approach. 
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Figure 14. Spatula and Tubular Retraction Pressures by Location and Approach. (A) Distal and 

(B) proximal MRPs for each retractor in all approaches. *P < 0.05; **P < 0.01. 

 
 

Retraction Pressure by Retractor Placement 

In all classifications of retractor placement (Table 1), tubular MRP was significantly less 

than spatula MRP (P < 0.01) (Figure 15). For approaches where the retractors were placed 

between brain and dura, aggregate spatula MRP was 88.94±7.47 mmHg, whereas aggregate 

tubular MRP was 49.79% less at 44.66±2.16. For approaches where the retractors were placed 

between brain/dura and bone, aggregate spatula MRP was 96.08±5.60 mmHg and aggregate 

tubular MRP was 59.06% less at 39.33±2.01 mmHg. For the transcortical approach, where the 

retractors were placed within brain parenchyma, aggregate spatula MRP was 54.13±2.83 mmHg, 

compared to an aggregate tubular MRP of 16.75±1.66 mmHg, a 69.05% decrease. 
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Figure 15. Spatula and Tubular Retraction Pressures by Retractor Position. **P < 0.01. 

 

Mean Retraction Distance 

Tubular MRD was a fixed value based on the distal port height of the retractor plus 1 mm 

to account for the thickness of the port itself, and was 9.00 mm in all approaches except the 

middle fossa approach where it was 12.00 mm. Spatula MRD varied between approaches and 

ranged between 15.50±1.00 and 29.50±2.50 mm (Table 2). Tubular MRD was significantly less 

than spatula MRD in all approaches with an average reduction of 10.00±5.96 mm or 

49.94±10.87% 

 

Post-Retraction Microscopic Parenchymal Inspection 

Qualitative microscopic visual inspection of the parenchymal tissue along the surgical 

corridor was performed following removal of the retractor at the conclusion of each approach. In 
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both the tubular and spatula retractor groups, tissue deformity was observed and in most cases 

found to be slightly less than the MRD. The deformed tissue returned to its pre-retracted position 

within 10 minutes following cessation of retraction. Vessels along the surgical corridor were 

noted to be compressed; however, the non-perfused nature of the specimen did not permit 

determination of vessel collapse, as the vessels were not physiologically patent. Damage to 

cortical surfaces was observed in both groups. In the tubular group, brain tissue was noted to 

have entered into the retractor through the aperture at the tip of the introducer on 3 occasions 

during the transcortical approach. In the spatula group, parenchymal damage and tearing was 

observed on 3 occasions during the middle fossa approach, 3 occasions during the transcortical 

approach, and on 1 occasion during the supraorbital approach; all of which were noted to be 

where the edges of the spatula had been placed. 

 

Summary 

Collectively, tubular retraction resulted in average brain retraction pressures that were 50 

mmHg or 57% less than those resulting from spatula retraction. In all cases, retraction pressure 

was significantly greater at the distal, or deep, end of both the spatula and tubular retractors. 

Spatula-based retraction pressures were greatest in the supracerebellar infratentorial, middle 

fossa, and retrosigmoid approaches, as well as the supraorbital approach, with a maximum single 

reading of 150 mmHg, whereas tubular retraction pressures were greatest in the middle fossa, 

supracerebellar infratentorial, and interhemispheric approaches and no single reading exceeded 

65 mmHg. In both groups, the transcortical approach had the lowest mean retraction pressures. 

Tubular retractors demonstrated more consistent average retraction pressures between 

approaches with a standard deviation (SD) of only 12.70 mmHg, compared to spatula retractors 
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with a SD of 26.44 mmHg. No significant differences in retraction pressure were found between 

the superior/lateral and inferior/medial sides of the tubular retractor. Mean retraction distance 

was 50% less in the tubular retraction group and, upon visual inspection, cortical tearing was 

observed in 39% of cases following spatula retraction. 
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SURGICAL FEASIBILITY OF TUBULAR RETRACTION AND TRANSTUBULAR APPROACHES 

Rationale and Objective 

 In order to determine the full applicability of transtubular techniques in neurosurgery, we 

propose and investigate the surgical feasibility and efficacy of performing a series of 5 common 

neurosurgical approaches through percutaneous minimally invasive transtubular surgical 

corridors, including complex skull base approaches, in a cadaveric model using a number of 

different surgical adjuncts. 

 

Experimental Design and Methods 

 Microscopic (5 sides) and 3-dimensional (3D) endoscopic (5 sides) percutaneous 

supraorbital, anterior transpetrosal, interhemispheric transcallosal, retrosigmoid, and 

supracerebellar infratentorial approaches were performed through a tubular retractor system on 5 

preserved cadaveric heads (10 sides), previously injected with colored latex—red for arteries and 

blue for veins (Figure 9). Six sides were also previously injected with a synthetic intracanalicular 

tumor model for assessment of resection in the transtubular anterior transpetrosal approach. 

Dissections were completed with a neurosurgical microscope (Zeiss) and 3D endoscope (VSIII, 

Visionsense Ltd., New York, New York, USA) with 0°, 30°, and 90° angled optics. An Anspach 

eMax 2 Plus (Anspach) high-speed electric neurosurgical drill was used to perform all bone 

work, and was used transtubularly with a minimally invasive attachment. 
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Synthetic Tumor Model 

Three specimens (6 sides) were preoperatively injected with synthetic tumor models (ST-

540 Injection Resin, Strata-Tech, Des Moines, Iowa, USA) bilaterally using a Teflon integrated 

curved IV catheter through a retrosigmoid route to simulate small intracanalicular tumors (≤1.5 

cm in diameter) with minimal extension into the posterior fossa.146,152–153 The tumors were 

placed anterior (2 sides), posterior (2 sides), superior (1 side), and inferior (1 side) to the cranial 

nerve (CN) VII–VIII complex. The synthetic tumor resin was mixed with a radiopaque solution 

(Omnipaque [iohexol] solution, GE Healthcare Inc., Little Chalfont, United Kingdom) to appear 

hyperdense on CT (Figure 16). 

 

 
Figure 16. Synthetic Intracanalicular Tumor Model. CT scan of a cadaveric specimen with a 

small (≤1.5 cm in diameter) hyperdense contrast-enhancing synthetic intracanalicular tumor 

(green arrow) with extension into the cerebellopontine angle. 
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Neuronavigation 

For image-guided neuronavigation, 6 radiopaque skin markers (fiducials) were affixed to 

the cranium. One-millimeter spiral CT axial slices (Biograph TruePoint PETCT, Siemens AG; 

Munich, Germany) were obtained of each specimen and transferred to a neuronavigation 

workstation (Kolibri Image-Guided Surgery Platform, Brainlab AG; Feldkirchen, Germany) for 

spatial registration and preoperative surgical planning. 

 

Entry and Trajectory Planning 

Because of the small size of the bone openings and the rigid nature of the tubular 

retractor, determination of optimal entry points was important for ensuring accurate surgical 

trajectories, especially in the interhemispheric transcallosal and supracerebellar infratentorial 

approaches to prevent injury to the nearby dural venous sinuses. Preoperative trajectory planning 

was essential in the anterior transpetrosal approach due to the rigid surgical corridor and need for 

a precise path to the petrous apex. 

To define an optimal entry zone for a subtemporal trajectory to the petrous apex, the 

lateral petroclival angle—the angle between the petrous bone and a sagittal line passing through 

the petroclival suture at the level of petrous ridge—and the distance from the petroclival suture 

to the porus acusticus internus, the petroclival-acoustic distance, were determined using the 5 

cadaveric CT scans as well as an additional 20 normal adult head CT scans (50 sides).154 A 

trajectory, perpendicular to the petrous ridge, was then plotted and measured from the porus 

acusticus internus to an external point on the skull flush with the floor of the middle fossa 

(Figure 17). Mean lateral petroclival angles and corresponding distances were calculated to 

determine an optimal entry zone. The calculated optimal entry zone was correlated to external 
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landmarks and then verified for target accuracy using the trajectory planning feature of the 

neuronavigation software on all ten cadaveric sides (Figure 18). 

 

 
Figure 17. Entry Point Geometry. (A) A midsagittal line was drawn between the nasion and 

inion, and the distance, A, to a parallel sagittal line passing through the petroclival suture was 

measured. The lateral petroclival angle, α, was measured between the petrous bone and the 

sagittal line passing through the petroclival suture at the level of petrous ridge. The petroclival-

acoustic distance, B, also was measured at the level of petrous ridge from the petroclival suture 

to the porus acusticus internus. A trajectory perpendicular to the petrous ridge, C, was then 

plotted and measured from the porus acusticus internus to an external point on the skull. (B) A 

representative CT scan showing collection of the midsagittal-petroclival suture distance, lateral 

petroclival angle, petroclival-acoustic distance, and trajectory length. (Note: To calculate the true 

petroclival angle—the angle between the posterior surface of the clivus and the posterior surface 

of the petrous bone at the level of the petrous ridge—90° should be added to the lateral 

petroclival angle). 
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Figure 18. Neuronavigation Trajectory Planning. Verification of the optimal entry zone and 

surgical trajectories in the anterior transpetrosal (left) and supraorbital (right) approaches. 

 

Positioning, Incision, and Burr Hole Placement 

For each approach, three-point fixation was achieved using a Mayfield head holder and 

the head was placed in a standard surgical position (Figure 19). In the supraorbital approach, the 

head was positioned supine with 15–35° rotation to the contralateral side, 15° elevation, and 10–

15° retroflection, and 10° lateroflection. In the anterior transpetrosal approach, the head was 

positioned supine with 90° rotation to the contralateral side to provide an unobstructed view of 

the middle fossa floor and 20° lateroflection to facilitate gravitational retraction of the temporal 

lobe. In the interhemispheric transcallosal approach, the head was positioned supine with 15–30° 

neck flexion; in the retrosigmoid approach, the head was positioned supine with 100° rotation to 

the contralateral side and 10° anteroflexion; and in the supracerebellar infratentorial approach, 

the head was positioned prone with 45° anteroflexion and 5–10° of rotation to the ipsilateral side. 
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Figure 19. Patient Positioning. A neuronavigation pointer is placed for trajectory planning 

following positioning of the head and head holder (top), and skin markings were placed for the 

interhemispheric transcallosal approach (bottom). 
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Following 2–4 cm linear skin incisions above the craniectomy site, large burr holes or 

minicraniectomies were fashioned using the high-speed surgical drill. In the anterior 

transpetrosal approach, care was taken to preserve the frontal branch of the facial nerve, and in 

the supraorbital approach care was taken to preserve the supraorbital nerve. Based on the size of 

the tubular retractor and the predetermined optimal entry zone, a 2.5–3 cm diameter burr hole 

was fashioned as appropriate for each approach (Figure 20). The dura was gently detached from 

the inner bone table and, in all but the anterior transpetrosal approach, incised linearly. 

 

 
 

 
Figure 20. Burr Hole Placement. Drilling (top) and sizing (bottom) of a percutaneous burr hole. 
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Introduction of the Tubular Retractor System 

A 12L VBAS (12×8 mm wide, 7 cm long, TC 12/7, Vycor) was used for tubular 

retraction in all but the retrosigmoid and anterior transpetrosal approaches, in which 12S (12×8 

mm wide, 3 cm long, TC 12/3) and 17L (17×11 mm wide, 7 cm long, TC 17/7) retractors were 

used, respectively (Figure 4, Appendix B). The selected tubular retractor was mounted onto an 

extension arm (Vycor) attached to a self-retaining snake retractor (Mizuho) and gently inserted 

into the surgical corridor while correct advancement along the preplanned trajectory was verified 

using neuronavigation (Figure 21). Upon reaching the target region, the introducer was removed 

(Figure 22). 

 

 
Figure 21. Insertion of the Tubular Retractor. The tubular retractor is inserted into the 

interhemispheric transcallosal surgical corridor. 
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Figure 22. Removal of the Introducer. 

 

Intraoperative Orientation and Anatomical Quadrant Segmentation 

In order to ensure proper surgical positioning of the tubular retractor before manipulation 

of or around the surgical target, correct anatomical alignment was ensured by verifying that the 

appropriate anatomical landmarks appeared within the correct visual quadrants (upper left, upper 

right, lower left, and lower right). At any point, to ensure correct positioning, two of these 

quadrants had to be lined up with correct corresponding landmarks (Figure 23). 

 

 
Figure 23. Transtubular Visual Field Quadrants. 
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For example, in the interhemispheric transcallosal approach, the following quadrant 

combinations may be used for proper surgical orientation when entering the lateral ventricle: 

upper and lower left, upper and lower right, upper left and right, lower left and right, upper left 

and lower right, and upper right and lower right (Figure 24). If the anatomy appeared in each 

quadrant and the quadrants were properly aligned, the surgical positioning was determined to be 

correct. Confirmation of alignment was performed during each segment of each approach to 

ensure a safe working area and correct anatomical awareness. 

 

 
Figure 24. Transtubular Visual Field Quadrant Alignment. Potential quadrant alignment 

configurations in the transchoroidal or transforaminal interhemispheric transcallosal approach. 

 

Transtubular Skull Base Dissection 

To assess the feasibility of performing complex drilling through the tubular retractor at 

the base of the skull, transtubular anterior petrosectomies were performed and are described 

extensively herein in order to illustrate the principles required for transtubular skull base 

techniques. 
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After insertion of the tubular retractor, the microscope was angled so that visualization 

through the retractor could be achieved, the blunt end of the introducer was advanced into the 

opening, and the dura was gently peeled off of the floor of the middle fossa. The middle 

meningeal artery was identified and cut to untether the temporal lobe dura from the floor of the 

middle fossa. The retractor was yawed slightly along the axial plane allowing for identification 

of the middle meningeal artery and foramen spinosum. The greater superficial petrosal nerve 

(GSPN) was identified at its exit from the facial hiatus and carefully dissected from the outer 

layer of temporal dura and middle fossa periosteum. The tubular retractor was yawed slightly to 

follow the GSPN posteriorly until the arcuate eminence was identified. The introducer was 

removed, the working channel was positioned up against the petrous ridge, and the arcuate 

eminence was fully exposed (Figures 22 and 25). Improper positioning of the retractor could 

result in obstruction of the surgical field by temporal dura. The self-retaining snake retractor 

connected and locked in place, and the 3D endoscope was introduced into the tubular retractor. 

 

 
Figure 25. Placement of the Tubular Retractor along the Skull Base. The minimally invasive 

percutaneous surgical trajectory (left) with the working channel positioned up against the right 

petrous ridge and exposure of the arcuate eminence in the posterosuperior quadrant after removal 

of the introducer (right). 
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Before proceeding with dissection of the internal auditory canal (IAC), correct surgical 

positioning was verified by confirming that the GSPN and facial hiatus were visualized in the 

anterosuperior quadrant and the arcuate eminence in the posterosuperior quadrant in order to 

help ensure safe drilling of the petrous bone (Figure 26). 

 

 
Figure 26. Transtubular Surgical Anatomy of the Anterior Temporal Bone. Anatomic orientation 

of the tubular retractor at the target structure in the anterior transpetrosal approach. Key surgical 

landmarks, including the GSPN, facial hiatus (FH), arcuate eminence (AE), mandibular nerve 

(V3), petrous ridge, and tegman tympani, as seen through the tubular retractor (left) and through 

the petrous bone (right). The tip of the retractor could achieve 20° of yaw and the opening of the 

retractor could achieve 10° of negative pitch (downward in relation to the visual field, 

superior/rostral toward to the top of the head in relation to the anatomy) at full insertion (left). 

 

Because the arcuate eminence—a superficial landmark for the deep intrapetrous location 

of the superior semicircular canal—has a constant relationship to the location of the IAC, an 

imaginary line bisecting the angle between the arcuate eminence and the GSPN was located and 

corresponded to the location of the IAC. The location of the cochlea was identified at the vertex 

of the angle between the GSPN and the IAC, where the GSPN corresponds anatomically to the 
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course of the horizontal portion of the intrapetrous internal carotid artery. A minimally invasive 

surgical drill was used through the retractor to remove the thin layer of bone along this bisecting 

line to expose the entire length of the IAC from the fundus to the porus acusticus (Figure 27). 

Drilling of the IAC was initiated medially at the intersection with the petrous ridge, where the 

bone is thickest, and continued laterally toward the fundus where Bill's bar was exposed. 

 

 
Figure 27. Drilling of the Internal Auditory Canal. 

 

To further confirm surgical accuracy, the superior semicircular canal was blue-lined in 4 

cadaveric sides and a line 60° anterior to the blue-line was used to indicate the course of the IAC. 

With the high-speed drill, bone was removed along this imaginary line down to the porus 

acusticus. As the bone became more compact and the dura of the IAC was approached, a 

diamond burr was used with copious irrigation to mitigate the risk of thermal injury to any 

neurovascular structures pushed up against the dura by mass effect from a tumor. In some cases, 

a thin shell of bone was left over the dura and subsequently removed using a blunt dissector or 

fine Kerrison punch. A curved microsuction aspirator was used to provide an unobstructed visual 

field and allowed for enhanced visualization of the transtubular surgical field. Drilling proceeded 

laterally using the diamond burr and bone was removed until Bill's bar was exposed at the fundus 

of the canal. At this step, extreme care was taken as the facial nerve becomes increasingly 
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superficial as it nears the fundus and joins the geniculate ganglion—which in some cases may be 

dehiscent. 

Once the dura was properly identified, a cutting burr was again used to remove bone in 

the pre- and postmeatal triangles. Care was taken to avoid damage to the cochlea. The IAC was 

unroofed by approximately 270° and exposed in its entire length from the lateral aspect of the 

fundus to the porus acusticus. The tubular retractor adequately limited the amount of exposure 

needed. The dura of the IAC was exposed and incised linearly at the posterior aspect of the IAC 

toward the petrous ridge. 

After the dura was opened, the intracanalicular segment of the facial nerve, Bill's bar, the 

superior vestibular nerve, the loop of the anterior inferior cerebellar artery, and the lateral surface 

of the pons were observed (Figure 28). The 90° medial rotation of the nerves at their entrance 

into the porus acusticus and the resulting anatomy, with the superior vestibular nerve posterior, 

the inferior vestibular nerve inferoposterior, and the cochlear nerve inferior relative to CN VII, 

was clearly visualized. Care was taken to preserve the internal auditory (labyrinthine) artery, 

which was identified between the facial and the cochlear nerves. At the fundus, Bill's bar was 

observed clearly dividing the superior aspect of the IAC. Anterior to Bill's bar, in the 

anterosuperior quadrant of the transtubular visual field, CN VII and the nervus intermedius were 

observed. 

The cochlea was identified in the anterosuperior quadrant, the tegmen tympani in the 

posterosuperior quadrant, and the intrapetrous internal carotid artery—running underneath the 

GSPN—in the anterosuperior quadrant. The medial portion of the IAC coursed within the 

anteroinferior quadrant. 
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Figure 28. Intradural Exposure in the Anterior Transpetrosal Approach. The right facial nerve, 

Bill's bar, the superior vestibular nerve (cut to expose the inferior vestibular nerve), the loop of 

the anterior inferior cerebellar artery, the labyrinthine artery, and the lateral surface of the pons 

following dural opening. 

 

In specimens containing a synthetic tumor model, resection was completed. After closure 

of the IAC, the retractor was removed and the field was copiously irrigated (Figure 29). 

 

 
Figure 29. Removal of the Tubular Retractor. 
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Assessment of Tumor Resection, Exposure, and Maneuverability 

The degree of tumor resection was quantitatively assessed for all specimens with 

synthetic intracanalicular tumors (Table 3). Additionally, the degree of exposure of important 

surgical landmarks was assessed to evaluate surgical freedom and maneuverability on and 

around key structures (Table 4).115,146,155 Accordingly, a value of exposure less than 90° indicates 

that the structure can be exposed from a single angle, but circumferential control is absent and 

surgical maneuverability is not possible. A degree of exposure between 90° and 180° indicates 

that the structure can be exposed from different angles, but full circumferential control and 

surgical maneuverability are still somewhat difficult, particularly if the structure is completely 

encircled within a lesion. A degree of exposure greater than 180° indicates that the structure is 

fully exposed from different angles, control along its entire circumference is complete, and 

surgical maneuvers using a combination of microinstruments, suction, flexible instruments, 

bayoneted instruments, and/or tube shaft instruments through the tubular retractor are possible. 

 

Grade Description Percentage 
Removed* 

I Gross total removal of all visible macroscopic tumor model 98-100% 
II Near total removal with only a small amount of inaccessible or 

unobservable tumor left in situ 
91-97% 

III Subtotal removal with significant portions of inaccessible 
tumor left in situ 

50-90% 

IV Partial removal with portions of visible tumor left in situ < 50% 
V Biopsy-like access with removal of only a small portion of 

tumor 
< 20% 

Table 3. Synthetic Tumor Resection Scale. *Determined by weight. 
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Degree of Exposure Angles Exposed Circumferential Control 
< 90° Single Absent 

90°-180° Multiple Difficult 
> 180° All Present 

Table 4. Degree of Exposure Scale. 

 

Results 

All approaches, both microscopic and endoscopic, were successfully completed through 

the tubular retractor via minimally invasive percutaneous openings, with minimal retraction of 

brain tissue. 

 

Tubular Retraction 

The tubular retractors provided sufficient space to allow for simultaneous placement of 

the endoscope and any combination of 2 microsuction aspirators, microinstruments, 

bayoneted instruments, flexible instruments, and/or tube shaft instruments (Figure 30). Use of 

flexible, bayonetted, and/or tube shaft instruments in the retractor did not obstruct the 

microscopic or endoscopic visual fields (Figure 27). The conical shape of the retractor greatly 

facilitated its insertion and advancement, and its transparent walls provided excellent 

visualization of the peripheral anatomy—especially the key bony landmarks—while allowing 

for constant monitoring of the surrounding vasculature. Microsuction, microinstruments, and 

flexible, bayonetted, and tube shaft instruments were all used through the retractor without 

difficulty. A neuronavigation pointer was also easily used through the working channel, and 

irrigation was applied through the retractor as needed without difficulty. 
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Figure 30. Surgical Instrumentation and Bimanual Transtubular Techniques. Transtubular use of 

bayonetted and flexible instruments (first row), suction and a minimally invasive surgical drill 

(second row); unlatching of the introducer and integration of a neuronavigation pointer (third 

row); and bimanual technique (fourth row) and integration of the endoscope (fourth row, 

middle). 
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The smooth nature of the retractor prevented adherence to any tissues and mitigated the 

need for underlying cottonoid pads or surgical patties, and facilitated smooth insertion into the 

field. The introducer was placed in situ whenever advancing the retractor deeper into the surgical 

corridor and irrigation with sterile water or saline was applied during any movement of the 

retractor. The latch that releases the introducer was tested and locked prior to insertion. When 

removing the introducer from the surgical field, it was important to consider that the end of the 

working channel was approximately 1 cm proximal to the tip of the introducer, and thus to avoid 

tissue obstructing the field, the introducer was unlatched from the working channel and the 

working channel was then slid further into the field, over the introducer, until it reached the 

target; the introducer was then removed from the field. This maneuver positioned the retractor at 

the target site in a single motion without requiring repositioning or advancement without the 

introducer in place. 

At full insertion, the retractor provided 3–4 degrees of freedom, depending if the retractor 

was placed along a rigid boney surface, and in most cases, the tip of the retractor could achieve 

20° of yaw and the opening of the retractor could achieve 10° of pitch, alleviating the need to 

pull brain tissue in any single direction (Figure 26). 

Careful and precise preoperative planning, considering the ~1 cm distance from the tip of 

the introducer to the distal edge the working channel, and integration with neuronavigation 

significantly reduced the need for intraoperative repositioning, further reducing trauma to 

retracted tissues, and eliminated the need for so-called “wanding” of the retractor wherein the 

working channel is angled or transposed inside the surgical field. This maneuver was avoided 

unless absolutely necessary as it can cause additional bleeding and damage to cortical tissue 

during intraparenchymal approaches. Surgical planning also allowed for easy determination of 
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optimal retractor size, although having additional distal port sizes readily available clinically is 

advisable. 

 

Surgical Opening and Trajectory 

In the anterior transpetrosal approach, the mean lateral petroclival angle was 41±5° and 

the mean petroclival-acoustic distance was 21±2 mm (Appendix C). The corresponding mean 

optimal entry point was located 4 cm posterior to the lateral orbital wall, 2 cm anterior to the 

external auditory meatus, and flush with the superior rim of the zygomatic arch. This calculated 

optimal entry zone and trajectory was successfully verified for target accuracy on all cadaveric 

specimens via the trajectory planning feature of the neuronavigation software (Figure 18). 

In the supracerebellar infratentorial and interhemispheric approaches, trajectories were 

slightly more variable, as the corridors were between brain and dura; however, neuronavigation 

was successfully used in call cases to avoid injury to the nearby dural venous sinuses. Placement 

of bone openings in the supraorbital and retrosigmoid approaches were based on the use of 

conventional surface landmarks coupled with neuronavigation. 

 

Surgical Exposure and Maneuverability by Approach 

The degree of circumferential exposure of important surgical landmarks was assessed in 

each approach to evaluate surgical freedom and maneuverability on and around key structures 

(Table 5). 

Supraorbital Approach. The transtubular supraorbital approach provided good 

visualization of the anterior fossa and its neurovascular contents, as well as the supra- and 

parasellar regions, with minimal frontal lobe manipulation (Figure 31). The suprasellar pyramid 
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and carotid cistern were accessed with 15–20° contralateral rotation of the head. After the 

arachnoid membrane was dissected the anterolateral structures of the supraseller pyramid 

including the ipsilateral optic nerve, optic chiasm, anterior communication artery (ACOM), 

supraclinoid (ophthalmic) segment of the internal carotid artery, and A1 segment of  the anterior 

cerebral artery were identified. After minimal retraction of the frontal lobe, the optic-carotid and 

intraoptic windows were visible. The Sylvian fissure was approached with the head rotated 15°to 

the contralateral side, and opened from medially to laterally to expose the M1 segment of the 

middle cerebral artery. The optic chiasm was approached with the head positioned with 20° 

contralateral rotation and the entire A1 segment, ACOM, lamina terminalis, and contralateral A1, 

as well as the Heubner artery were exposed. The pericarotid triangles were approached with the 

head positioned with 15–20° contralateral rotation. The anatomical windows between CN II, the 

internal carotid artery, CN III, and the anterior petroclinoid ligament were observed. The deep 

prepontine and interpeduncular cisterns were observed and approached via the optic-carotid and 

carotid-oculomotor surgical corridors. The interpeduncular fossa was accessed through the optic-

carotid window the head positioned with 15–20° contralateral rotation to expose the ipsilateral 

superior cerebellar artery and basilar trunk. Contralateral structures could be approached with the 

head positioned with 35° contralateral rotation. With the tubular retractor pointed medially, the 

contralateral CN II and the internal carotid artery were exposed along with the origin of the 

ophthalmic artery. The internal carotid artery bifurcation was observed. As the carotid cistern 

was opened, the temporal lobe and contralateral A1 and M1 became visible. Accurate placement 

of the craniotomy, which includes the superior aspect of the supraorbital rim, is essential for 

basal placement of the retractor and avoiding injury to the supraorbital nerve medially and the 

temporal branches of the facial nerve laterally. Careful removal of the inner bone table was 
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necessary to provide the correct surgical trajectory and allow for insertion of the tubular 

retractor, as insufficient bone removal will push the retractor superiorly toward the frontal lobe. 

Supine positioning with the contralateral frontal area fixed with one pin allowed for free 

manipulation of the ipsilateral side. 

 

 
Figure 31. Transtubular Supraorbital Approach. A keyhole craniotomy was fashioned as basal as 

possible and included the superior aspect of the supraorbital rim (top). Anterolateral aspect of the 

right suprasellar area medial to the supraclinoid internal carotid artery (middle). The window 

between CN II, the internal carotid artery, CN III, and the anterior petroclinoid ligament (bottom, 

left). The ipsilateral superior cerebellar artery and basilar trunk through the optic-carotid window 

following posterior clinoidectomy (bottom, right). 
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Anterior Transpetrosal Approach. The transtubular anterior transpetrosal approach, as 

described extensively in the previous section, provided excellent exposure of the entire length of 

the IAC as well and the facial and vestibular nerves from the inner ear to the pons (Figures 25, 

27–28). Placement of the bone opening flush with the floor of the middle fossa was essential for 

achieving minimal temporal lobe retraction. Insertion of the tubular retractor into the surgical 

field was performed from a lateral to medial direction with the tip aimed a few degrees anterior 

to the planned trajectory toward the middle meningeal artery and mandibular nerve. Due to the 

45° angle between the course of the IAC and the superior surface of the petrous bone, the tubular 

retractor was pitched 10° superiorly in order to align the surgical trajectory as perpendicular as 

possible to the petrous bone and with the roof of the IAC while applying only minimal retraction 

of the temporal lobe. This maneuver allowed for full exposure of the fundus of the IAC. Due to 

the small size of the bone opening, the complexity of petrous bone anatomy, and the limited 

peripheral vision, accurate placement of key visible anatomical structures in the correct 

transtubular visual quadrants was essential for safe drilling of the petrous bone. The GSPN and 

facial hiatus were visualized and confirmed in the anterosuperior quadrant and the arcuate 

eminence in the posterosuperior quadrant. Thus, the cochlea corresponded to the anterosuperior 

quadrant, the tegmen tympani to the posterosuperior quadrant, and the intrapetrous internal 

carotid artery to the anterosuperior quadrant. The medial portion of the IAC then coursed within 

the anteroinferior quadrant. Extreme care was taken while drilling in case of dehiscent geniculate 

ganglia as well as when dissecting near the fundus where the facial nerve is partially covered by 

the transverse crest and visualization may be limited. Maneuvers within the IAC were performed 

from a medial to lateral direction in order to avoid traction of CN VIII as it entered the modiolus. 

Intradurally, the facial nerve, Bill’s bar, the superior vestibular nerve, the loop of the anterior 
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inferior cerebellar artery, and the lateral surface of the pons were clearly observed. Sacrifice of 

the superior petrosal sinus was only necessary when there was synthetic tumor extending 

medially and rostrally into the cerebellopontine angle. 

Interhemispheric Transcallosal Approach. The transtubular interhemispheric 

transcallosal approach provided excellent access to the lateral ventricle through an 

interhemispheric burr hole, as well as access to the third ventricle via the transforaminal, 

transchoroidal, or transseptal interforniceal corridors (Figures 20–21, 32). Careful placement of 

the burr hole was essential for avoiding the superior sagittal sinus. In some cases, a small shell of 

bone was left above the superior sagittal sinus to protect its lateral aspect. A small fenestration of 

the corpus callosum was fashioned and the tubular retractor was carefully advanced into the 

lateral ventricle. The normal ventricular anatomy was identified including the choroid plexus, 

foramen of Monro, body and columns of the fornix, thalamus, superior choroidal vein, 

thalamostriate vein, and septal vein. The foramen of Monro and the fornix were located by using 

the choroid plexus, thalamostriate vein, superior choroidal vein, septal vein, and vein of the 

caudate nucleus. The foramen of Monro was easily identified as an oval opening between the 

columns of the fornix and the anterior end of the thalamus. Just posterior to the interventricular 

foramen, a small bulge on the surface of the thalamus, the anterior nucleus of the thalamus, was 

seen. The choroid plexus was also easily identified projecting in the ventricular cavity, extending 

from the interventricular foramen, where it meets the plexus of the contralateral ventricle, to the 

end of the inferior cornu (horn). In the transchoroidal corridor, efforts were made to preserve the 

small perforators brunching off of the choroidal arteries and entering the thalamus. The superior 

and anterior thalamic veins, thalamostriate vein, and choroidal arteries were observed passing 

through the tenia choroidea. The body of the fornix was elevated to expose the internal cerebral 
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veins and the tela chorioidea. The junction between the anterior septal vein and internal cerebral 

vein was observed relative to the foramen of Monro, usually in a posterior position that allowed 

for enlargement of the foramen posteriorly along the choroidal fissure without sacrifice of neural 

or vascular structures. Fenestration of the corpus callosum and splitting of the septum pellucidum 

and forniceal columns allowed for entrance into the third ventricle. The roof of the third 

ventricle, formed by a thin layer of ependyma, was opened and entered with the tubular retractor 

to reveal the body and floor of the third ventricle. 

 

 
Figure 32. Transtubular Interhemispheric Transcallosal Approach. Identification of the corpus 

callosum and pericallosal arteries (top), fenestration of the corpus callosum (top, right), 

identification of the choroid plexus in the right lateral ventricle (bottom, left) and the transseptal 

interforniceal corridor to the third ventricle (bottom, middle and right). 
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Retrosigmoid Approach. The transtubular retrosigmoid approach provided full access to 

the cerebellopontine angle through a suboccipital keyhole craniectomy (Figure 33). Correct 

placement of the bone opening was essential for preservation of the underlying structures. Prior 

to drilling, the root of the zygoma, the mastoid tip, and the external occipital protuberance were 

identified and correlated with neuronavigation. The keyhole craniectomy was fashioned 

superiorly with its anterior border along the sigmoid sinus. Care was taken to protect the sigmoid 

sinus while drilling. Adequate bone removal, especially of the inner bone table, was essential for 

minimizing cerebellar retraction, avoiding injury to the sigmoid sinus, and providing an adequate 

angle of visualization. After sufficient bone removal, the dura was opened, the tubular retractor 

was introduced into the surgical corridor, and the arachnoid was dissected with a blunt dissector 

through the tip of the introducer as it was advanced deeper into the field. The angle between the 

tentorium and posterior surface of the petrous bone were identified and used to help facilitate a 

safe trajectory during insertion following the course of the superior petrosal sinus. The CN VII–

VIII complex was identified in the superior aspect of the surgical corridor and the upper 

cerebellopontine angle, including and the superior petrosal vein, were explored. The trigeminal 

nerve and superior cerebellar arties were located and the trigeminal was exposed along its entire 

length, from the brainstem to the porus trigemini. CN III was observed deep to CN V. The 

relationships between CN V, VII, VIII, the superior petrosal vein, the flocculus, and the superior 

cerebellar artery were visualized. The transtubular surgical corridor provided excellent 

visualization of the neurovasculature of the cerebellopontine angle and provided a sufficient 

conduit for performing microvascular decompression for trigeminal neuralgia or resection of a 

cerebellopontine angle lesion. 
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Figure 33. Transtubular Retrosigmoid Approach. Left side skin incision and introduction of the 

tubular retractor through the keyhole craniectomy (first row). Initial cerebellar retraction (second 

row, left) and opening of the arachnoid (second row, right). Identification of the facial nerve 

superiorly (third row). The trigeminal roots, superior petrosal vein, and superior cerebellar artery 

are exposed on the left side (bottom row, left), and the relationship between the superior 

cerebellar artery and the trigeminal on the right side (bottom row, right). 
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Supracerebellar Infratentorial Approach. The transtubular median and paramedian 

supracerebellar infratentorial approaches provided excellent exposure of the pineal region, 

including the superior and inferior colliculi, origin of the trochlear nerve, entire quadrigeminal 

plate, and posterior ambient cistern with minimal cerebellar retraction. The mini-craniectomies 

were fashioned at either median (5 sides) or paramedian (5 sides) locations after identification of 

external boney landmarks. Extreme care was taken during bone removal and opening of the dura 

to avoid injury to the occipital and transverse sinuses. The tubular retractor was gently inserted 

into the field, several bridging veins were divided, the introducer was removed, and arachnoid 

dissection was completed. The vein of Galen was identified and the lateral quadrigeminal cistern 

was exposed. The internal cerebral vein was identified and the pineal gland was exposed 

between the central cerebellar and internal cerebral veins. The tubular retractor provided 

excellent access to the entire pineal region and allowed for sufficient surgical maneuverability. 

 

 
Figure 33. Transtubular Supracerebellar Infratentorial Approach. Placement of the burr hole 

craniectomy (top, left). Left side median supracerebellar infratentorial approach (top, middle and 

right). Left side paramedian supracerebellar infratentorial approach to the pineal region; before 

(bottom, left), during (bottom, middle), and after (bottom, right) of the arachnoid to expose the 

quadrigeminal cistern. 
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Anatomical Structure Microscopic Exposure Endoscopic Exposure* 

Supraorbital Approach   
Optic chiasm 180° 220° 
A1 segment of the anterior cerebral artery 120° 360° 
Anterior communicating artery 210° 270° 
Ophthalmic internal carotid artery 210° 220° 
Basilar trunk 90° 180° 

Anterior Transpetrosal Approach   
Anterior inferior cerebellar artery loop 220° 360° 
CN VII 220° 360° 
CN VIII 120° 220° 
Geniculate ganglion 180° 180° 
Inferior vestibular nerve 120° 220° 
Superior vestibular nerve 220° 360° 

Interhemispheric Transcallosal Approach   
Choroid plexus of the third ventricle 180° 300° 
Mammillary bodies 60° 120° 
Foramen of Monro 150° 220° 
Tela choroidea 180° 220° 
Forniceal columns 180° 210° 

Retrosigmoid Approach   
Anterior inferior cerebellar artery 270° 360° 
CN VI-VIII 180° 360° 
CN V 150° 270° 
Superior cerebellar artery 150° 220° 
Superior petrosal vein 270° 300° 

Supracerebellar Infratentorial Approach   
Superior colliculi 180° 220° 
Inferior colliculi 120° 180° 
Pineal gland 180° 270° 
CN IV 220° 220° 
Basal vein of Rosenthal 220° 270° 

Table 5. Transtubular Exposure of Target Surgical Structures by Approach. *Including the use of 

30° or 45° angle endoscopes. 
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Synthetic Tumor Resection 

Of the 6 synthetic intracanalicular tumors (≤1.5 cm in diameter) resected, gross total 

(Grade I) resections were achieved in 5 cases with greater than 98% of the tumor recovered as 

determined by weight, and included the tumors placed anterior, posterior, and superior to the CN 

VII–VIII complex. A near-total (Grade II) resection, with 96% of the tumor recovered, was 

achieved in the remaining case in which the tumor was placed inferior to the CN VII–VIII 

complex. All minute portions of tumor that extended into the posterior fossa were resected 

without difficulty (Figure 35). 

 

 
Figure 35. Synthetic Tumor Resection. Endoscopic view of the loop of the anterior inferior 

cerebellar artery and inferior vestibular nerve with residual tumor visible in the cerebellopontine 

angle. 

 

Summary 

Tubular retraction in neurosurgery provides a safe and effective conduit for the 

application of percutaneous minimally invasive approaches. Transtubular supraorbital, anterior 



63 

transpetrosal, interhemispheric transcallosal, retrosigmoid, and supracerebellar infratentorial 

approaches are all feasible and provide effective surgical corridors to the para- and suprasellar 

regions, internal auditory canal, lateral and third ventricles, cerebellopontine angle, and pineal 

region, respectively, with ample surgical exposure, freedom, and maneuverability while 

providing reduced retraction of brain tissue. The tubular retractor provided sufficient working 

space for standard bimanual surgical technique without obstruction of the visual field while 

using a microscope and/or an endoscope, and permitted sufficient surgical freedom in all 

directions not limited by bone. The transparent nature of the retractor allowed for constant 

monitoring of surrounding vessels and retracted surfaces, and facilitated maintenance of 

anatomic orientation throughout the procedure. The smooth surfaces of the working channel 

allowed for easy insertion and removal without impingement of retracted tissues. Additionally, 

the working channel limited instrumentation to the surgical corridor, thus protecting surrounding 

tissues from inadvertent injury. Adequate preoperative planning of the surgical trajectory was 

critical for facilitating a safe, direct, and practicable surgical corridor. Drilling and navigating the 

complex anatomical structures at the base of the skull through the tubular retractor was possible, 

even in the extremely restricted corridors of the anterior transpetrosal approach. The use of a 

synthetic tumor model provided a means for more closely simulating clinical conditions and 

provided an additional method for quantitatively verifying the surgical applicability of 

transtubular approaches through confirmation of resection ability. The magnification and angled 

view provided by the endoscope allowed for enhanced anatomic exposure and inspection for 

residual tumor. 
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NOVEL BONE CLOSURE TECHNIQUES FOR TRANSTUBULAR NEUROSURGERY 

Rationale and Objective 

The increasing availability and affordability of high-resolution 3D printers has expanded 

their potential for surgical application. As such, we investigate the possibility of creating on-

demand intraoperative patient-specific 3D printed cranioplastic prostheses as an alternative 

technique for the closure of transtubular minicraniectomies where excised bone is not available 

for reimplantation. 

 

Experimental Design and Methods 

Miniature retrosigmoid, supraorbital, occipital, and interhemispheric craniotomies were 

fashioned on 3 adult cadaveric specimens (3 sides) using a high-speed surgical drill (Anspach). 

CT based cranioplastic implants were designed, formulated, and implanted into the cadaveric 

specimens, and the accuracy of development and fabrication, as well as implantation ability and 

fit, integration with exiting fixation devices, and incorporation of integrated seamless fixation 

plates was evaluated. Additionally, time required for fabrication was analyzed and compared 

with existing methodologies. 

 

Computed Tomography 

Following craniotomy placement, all specimens underwent half-millimeter spiral CT 

(Siemens). The obtained data, in Digital Imaging and Communications in Medicine file format, 
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was then transferred to Materialise Mimics® software (Materialise NV, Leuven, Belgium) for 

conversion to standard triangle language (STL) file format. 

 

Prosthesis Design  

Based on manufacturer guidelines, the STL files were imported into Materialise 3-matic® 

(Materialise NV, Leuven, Belgium) and the prostheses models for each craniotomy were created 

using a superimposition technique, wherein a model was created to fill a defined area around the 

surgical opening and the curvature of its surface was matched to that of the surface of the intact 

contralateral bone.156 To accomplish this using the 3-matic® software, a free forming curve was 

created and superimposed onto the bone surrounding the defect. The area within the curve was 

then exported onto a 2D plane and the contralateral surface was mirrored and superimposed in 

order to create the correct curvature for the prosthesis. The software’s prosthesis algorithm 

function was then used to create a 3D master implant to exact thickness specifications that 

adequately filled the skull defect. Following creation of the digital design, the model was refined 

using variable thickness and Boolean subtraction to achieve continuity with the surrounding 

bone. Any obstructing material on the underside was removed and the edges were smoothed and 

chamfered. 

Several prostheses were designed with integrated fixation strips to assess the feasibility of 

providing seamless fixation (Figure 36). To accomplish this, adherence points were designed on 

a 2D plane, projected onto the prostheses, and fused using a unionizing function. These 

adherence, or fixation, plates were then given a thickness of 1.0 mm with 0.5 mm rounded edges. 

Prefabricated holes were designed into the plates to allow for titanium screw placement. 
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Additionally, these integrated fixation plates were projected onto the surface of the skull so that 

they would contour and become flush with the natural curvature of the bone. 

 

 
Figure 36. Design of 3D Printable Prostheses with Integrated Fixation Strips. 

 

Design of Polymethyl Methacrylate Injection Molds 

As an alternative method for creating artificial custom prostheses, 3D printed injection-

molds were also developed in order to cast cranioprostheses using polymethyl methacrylate 

(PMMA). The box molds were constructed using a subtraction method of a previously generated 

cranioprosthesis within a computer generated mold box. Once the box molds were 3D printed, 

they were injected with PMMA (HydroSet™, Stryker Corporation, Kalamazoo, MI) and allowed 

to dry for 15 minutes (Figure 37). 
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Figure 37. Polymethyl Methacrylate Cranioplasty Injection Molds. 

 

3D Printing of Cranial Prostheses 

All cranioprostheses and box molds were created using a fused deposition modeling 3D 

printer (Fortus 250mc, Stratasys Ltd., Eden Prairie, MN) with a production grade acrylonitrile 

butadiene-styrene thermoplastic (ABSplus™, Stratasys) material. 

 

Prosthetic Cranial Flap Placement, Fixation, and Assessment 

Each printed prostheses was implanted into its corresponding cranial opening using 

standard surgical techniques. The fit of the 3D printed prostheses within the opening was 

assessed using a surgical microscope (Zeiss) for approximation of the defect, and titanium plates 

and self-tapping screws (Universal Neuro 3, Stryker) were assessed for fixation to the skull. 

Cranioprostheses printed with integrated fixation plates were fixed to the skull with titanium 

screws and pressure was applied to assess fixation strength. 
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Results 

All cranioprostheses were successfully designed using the superimposition technique and 

were printed and detached from the support material without difficulty (Figure 38). Support 

material was either dissolved away in an agitated detergent bath or simply broken away without 

damaging the prosthesis. The average time for design, from importation of CT data to initiation 

of printing was 14.6 minutes. 

 

 
Figure 38. 3D Printed Cranial Prostheses. 

 

Prosthetic Cranial Flap Placement and Fixation 

All prostheses seamlessly approximated the outer bone table of the skull defect and were 

flush with the skull when inserted. Each cranioprosthesis was fixed to the skull using 3–4 points 

of fixation. The use of titanium plates and screws allowed for uncomplicated fixation and the 

screw were used in the printed material without difficulty (Figure 39). 

Due to the nature of the material used, it was not possible to print integrated fixation 

strips less than 1 mm in thickness, so 1 mm thick fixation strips were incorporated into several 

printed models. These strips achieved sturdy fixation with the surrounding bone, did not break or 

loosen when pried with significant force, and, as they were designed to conform to the contour of 

the skull, did not require additional bending or shaping. However, these strips were significantly 

thicker than standard titanium plates and were not flush with the outer surface of the bone. 
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Figure 39. Implantation and Fixation of 3D Printed Cranial Prostheses. 

 

3D Printed PMMA Injection Molds 

Detailed injection molds were easily created using the 3-matic® software and PMMA was 

injected into the box mold without difficulty (Figure 3). To facilitate removal of the dried 

PMMA from the mold, the mold was covered with plastic wrap prior to injection of PMMA.157 

After removing the dried PMMA, any uneven edges were easily smoothed using the surgical 

drill. The mold consistently created a prosthesis that provided an exact fit within the skull defect 

and sat flush with the surrounding bone. 

 

Assessment of Print Time 

The average print time for all cranioprostheses was 108.6 minutes (Table 6). Print time 

was assessed for different resolutions, where high resolution correlated to 0.178 mm layer 
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thickness, medium resolution to 0.254 mm, and low resolution to 0.330 mm. At medium 

resolution, all cranioprostheses were printed in less than 3 hours. The addition of integrated 

fixation strips increased average print time by a moderate 16 minutes in the retrosigmoid 

approach and a substantial 62 minutes in the interhemispheric approach. This significant increase 

in print time in the latter was due in part to the additional support material required to stabilize 

the prosthesis during printing. As titanium plates and screws integrated easily with the printed 

material, this large increase in print time for integration of adherence strips may not be justified 

with currently available technologies. 

 

Cranioplasty Site 
High 

Resolution 
(0.17 mm) 

Medium 
Resolution 
(0.254 mm) 

Lowest 
Resolution 
(0.33 mm) 

Average 
Print Time 

Retrosigmoid 82 55 41 59 
Retrosigmoid with fixation plates 92 58 42 64 
Interhemispheric 92 54 96 80 
Interhemispheric with fixation plates 195 126 106 142 
Occipital 293 169 132 198 

Table 6. 3D Printing Time versus Resolution. 

 

Comparison of On-Demand and Commercial Prosthesis Development 

Currently, commercially produced custom designed craniofacial implants are extremely 

expensive, at greater than $10,000 per unit, and can take weeks to design and obtain (Figure 

40).158–159 The rapid prototyping and fabrication process described here could be performed 

bedside by in-house personnel after minimal training, provide a significant reduction in cost, and 

produce a prosthesis ready for implantation in 2.5 to 3 hours, while providing all of the same 

clinical benefits as commercially produced variants. 
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Figure 40. Comparison of On-Demand and Commercial Prosthesis Development. 

 

Summary 

On-demand 3D printing of cranial prostheses is a simple, feasible, inexpensive, and 

rapid solution with a number of potential clinical benefits. The technical difficulty of developing 

these prostheses is minimal and implantation is technically comparable and potentially easier 

than current fixation techniques. Low fabrication times highlight the advancement of user-

friendly rapid prototyping software and underscore the ability for rapid production of patient-

specific prostheses. In the future, these concepts could be applied intraoperatively wherein a 

rapid CT or surface scan of the bone opening is performed and a custom cranioprosthesis is 

designed and 3D printed during the remainder of the operation. On-demand printing of custom 

prostheses may help improve cosmetic outcomes, decrease operative times, reduce costs and 

production time, and decrease perioperative complications including infection and resorption. 

Clinical studies are necessary to determine full practicability of this technique as well as to 

evaluate the potential for incorporation of antibiotic and biomaterials, including osteoblasts, and 
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integration of intracranial pressure monitors and flexible materials for use in decompressive 

craniotomies, among others possibilities. 
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DISCUSSION 

Since the introduction of stereotactic cylindrical retractors by Kelly et al. in 1988,89–90 

transtubular excision of intraparenchymal lesions via transcortical routes has been aptly 

described in the literature.91,96–100,103–143 

In 2008 Greenfield et al. reported their findings on transtubular resection of deep brain 

lesions in 10 patients in which radiographic gross total resection was achieved in all cases.103 In 

2011, Raza, Recinos, and colleagues published 2 studies in which VBAS was used for deep 

intracranial lesions in 13 adult and pediatric patients wherein satisfactory resection or biopsy was 

obtained in all cases and no new neurological deficits were observed postoperatively.107,109 The 

same year, Jo et al. reported on 21 patients who underwent endoscopic transtubular resection of 

deep-seated lesions, in which gross total resection was achieved in 66% of cases and partial 

resection in 19%, and discussed their difficulty with resection of large calcified lesions but 

concluded that transtubular techniques can minimize brain retraction and provide satisfactory 

visualization.108 In 2015, Akiyama and colleagues contributed data from an additional 18 patients 

to the literature, in which no complications were observed, helping to establish the safety of 

transtubular techniques.120 

In 2015, Przybylowski et al. and Wang et al. both published some of the first findings on 

transtubular intracrerebral hemorrhage evacuation.130,132 Wang and colleagues reported their 

findings from 21 patients and, although the hematoma evacuation rates were similar between the 

endoscope (90%) and craniotomy (85%) groups, they found that median intensive care unit stay 
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decreased from 11 to 6 days due to reduced surgical invasiveness—representing an important 

advancement in the treatment of spontaneous supratentorial ICH, which is the subject of the 

ongoing MiSPACE trial.130,136 

The following year Hong et al. reported the first comparison of endoscope- versus 

microscope-assisted transtubular tumor resection in a series of 20 patients, wherein total or near 

total resection was achieved in 90% of cases.117 Eliyas et al. also reported in 2016 on 21 patients 

who underwent transsulcal resection of intraventricular and periventricular lesions using the 

NICO BrainPath®, in which gross total resection was achieved in 17 patients.116 

The same year, Bander and colleagues performed a quantitative analysis of FLAIR 

hyperintensity and apparent diffusion coefficient maps on 21 patients who underwent 

transtubular transcortical resection of deep intraparenchymal lesions, and found that tubular 

retractors did not significantly increase FLAIR signal in the brain, indicating minimal trauma to 

surrounding white matter.114 

Despite the adoption of minimally invasive transtubular transcortical approaches in 

neurosurgery, as of yet there have been no reports on the application of transtubular techniques 

in non-transcortical approaches or studies comparing brain retraction pressures between 

retraction modalities. 

In comparing the retraction pressure induced by spatula and tubular retractors in a 

cadaveric model, we observed herein a substantial 57% decrease in mean brain retraction 

pressure in the tubular group compared to the spatula group in 6 different neurosurgical 

approaches collectively. Mean retraction distance was 50% less in the tubular retraction group 

and, upon visual inspection, cortical tearing was observed in 39% of cases following spatula 

retraction. Notably, tubular retractors demonstrated more consistent average retraction pressures 
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between approaches compared to spatula retractors, potentially indicative of increased stability. 

Furthermore, the tubular retractor provided nearly equal pressure distribution between its 

proximal and distal ends in the supraorbital, middle fossa, supracerebellar infratentorial, and 

retrosigmoid approaches. These findings confirm that tubular retraction provides reduced and 

symmetrically, or conically, distributed pressure onto retracted brain tissue, reduces the risk of 

parenchymal injury and cortical tearing, and can thus help decrease the incidence of retraction 

injury. Additionally, several other studies have shown that the blunt tip of the introducer 

provides progressive dilation that minimizes retraction injury to white matter tracts in 

transcortical or transcallosal corridors.103,114,166 

The tubular retractor provided sufficient working space for standard bimanual surgical 

technique without obstruction of the visual field while using a microscope and/or an endoscope, 

and permitted sufficient surgical freedom (Figures 26 and 30). In addition, by limiting the range 

of instrument movement and protecting the surrounding tissues from instruments within the 

working channel, the tubular retractor may reduce inadvertent iatrogenic instrumental injury and 

thermal injury from the endoscope light or electrocautery.115,146 Compared with freehand 

manipulation of the retractor, the use of self-retaining snake and extension arms may also 

decrease the risk of injury from torque effect (Figure 41).101 

 

 
Figure 41. Fixation of the Tubular Retractor. Clinical integration of VBAS with self-retaining 

snake and extension arms in a transcortical approach. 
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The transparent construction of the retractor allowed for visual monitoring of the 

retracted surfaces, including any vessels in contact with the working channel, throughout the 

procedure and facilitated maintenance of anatomic orientation by allowing for good visualization 

of the surrounding anatomy through the walls of the channel. The smooth surfaces of the 

working channel allowed for easy insertion and removal without impingement of retracted 

tissues, and optimally distribute light so that it does not reflect back into the microscope or 

endoscope. 

The tubular retractor provided sufficient space within the working channel to allow for 

simultaneous placement of an endoscope and any combination of 2 microsuction aspirators, 

microinstruments, bayoneted instruments, flexible instruments, and/or tube shaft instruments 

without visually obstructing the surgical field. Instruments could be interchanged easily and 

quickly—with the surrounding tissues protected from accidental injury. If the use of a larger 

instrument or device, including an ultrasonic aspirator, is necessary, a retractor with a larger 

distal port size may be used, but would necessitate a larger bone opening. Flexible, tube shaft, 

bayonetted, and long endoscopic instruments were the most efficient geometrically and 

ergonomically, and provided more space for movement within the retractor. 

In all, the tubular retractor minimizes brain retraction, reduces compression of cortical 

venous networks, allows for constant monitoring of retracted tissues, lessens the potential for 

target shift, helps prevent inadvertent injury to surrounding tissues, provides a direct route to the 

surgical target, and allows for significantly smaller and less invasive skin incisions and boney 

openings, which have been associated with shorter recovery times, reduced hospital stays, and 

reduced costs (Figure 42).130 
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Figure 42. Transtubular versus Conventional Anterior Transpetrosal Craniotomy. Right image 

courtesy of the Rhoton Collection. 

 

In examining the feasibility and applicability of transtubular approaches and techniques 

in neurosurgery, we found that tubular retractors provide a safe and effective conduit for the 

application of percutaneous minimally invasive approaches. Transtubular supraorbital, anterior 

transpetrosal, interhemispheric transcallosal, retrosigmoid, and supracerebellar infratentorial 

approaches were all successfully completed and represent feasible and effective corridors to their 

respective targets with ample surgical exposure, freedom, and maneuverability, and minimal 

parenchymal retraction. Drilling and navigating the complex anatomical structures of the skull 

base through the tubular retractor was possible, even in the extremely restricted corridors of the 

anterior transpetrosal approach.160 The interhemispheric transcallosal approach further facilitated 

controlled aspiration of ventricular cerebrospinal fluid and formation of an air medium that 

provided better intraoperative visualization.101,122 The use of a synthetic tumor model provided a 

means for more closely simulating clinical conditions and provided an additional method for 

quantitatively verifying the surgical applicability of transtubular approaches through 

confirmation of resection ability. 
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Adequate preoperative planning of the surgical trajectory and intraoperative navigation 

was critical for facilitating a safe, direct, and practicable surgical corridor. While the 

neuronavigation pointer was used without difficulty through the retractor (Figure 43), a tubular 

retractor system with integrated neuronavigation markers would greatly ease insertion and enable 

constant monitoring of position and trajectory relative to anatomical landmarks. Emerging 

technologies related to transtubular surgery, including integration of the tubular-specific 

trajectory into the planning software and use of robotic exoscopy will facilitate increased 

applications of transtubular techniques.161–162 One of these technologies is BrightMatter™ from 

Synaptive Medical, an optical robotic exoscopy system designed for transtubular neurosurgery 

and coupled to a trajectory-centric planning and navigation system with integration of white 

matter tractography (Figure 44). 

 

 
Figure 43. VBAS Integration with Neuronavigation. 
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The exoscopic robot system is a potential replacement for the surgical microscope that provides 

hands free movement of the camera and can automatically align to a surgical tool in the field. 

This device will allow for improved efficiency, as the surgeon is able to control visualization 

without letting go of the surgical instruments. While these systems are able to replace the 

traditional surgical microscope, especially with integration of stereoscopic displays, they still 

cannot offer the angled views provided by the endoscope, which in this study allowed for 

enhanced anatomic exposure of the target region and inspection for residual tumor. 

 

 
Figure 44. Synaptive BrightMatter™. Synaptive Medical’s integrated robotic exoscopy surgical 

camera and white matter tractographic navigation system for transtubular neurosurgery. Image 

courtesy of Synaptive Medical. 

 

Despite the detailed multiangled anatomical exposure provided by the endoscope, 

surgeons should be extremely familiar with the associated anatomy, as well as the use of 

instruments through a tubular retractor, before attempting a transtubular approach. The 
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transtubular surgical field is substantially narrowed compared to conventional approaches and 

necessitates a thorough understanding of key surgical landmarks (Figure 45). Although the 

retractor provides a safe corridor for the approach, it should not provide the surgeon with a false 

sense of safety—awareness of the position and anatomical surroundings of each instrument is 

still paramount for preventing iatrogenic tissue damage. It is advisable to spend several hours 

practicing the use of different instruments to handle objects, such as small paper cubes and tissue 

paper, through the retractor in order to gain familiarity with transtubular techniques before 

attempting them. Despite the learning curve associated with transtubular techniques, the 

principles are mainly the same as those of microsurgery.101,109,115 

 

 
Figure 45. Reduced Field of View in Transtubular Neurosurgery. 

 

Future tubular retractor designs may benefit from additional lengths, diameters, and 

shapes, as well as multiple beveled tip options for retraction along different surfaces. Further 

development of instruments and training devices specifically designed to accompany this system 

would contribute to the safety of this technique (Figure 46). 
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Figure 46. Synaptive Brightmatter™ Brain Simulator. 

 

The use of on-demand 3D printing to produce patient-specific cranial prostheses for 

closure of transtubular minicraniectomies represents a feasible and novel technique that is rapid, 

simple, and inexpensive. The ability for the surgical team to easily build and incorporate a real-

time form-fitting and patient-specific cranioprosthesis could help improve postoperative 

cosmetic appearances and mitigate the risk of post-cranioplasty complications.158,163 

Additionally, design and fabrication of patient-specific implants by clinical personnel would 

significantly lower associated costs and allow for wider use of custom designed implants, 

especially in developing regions. However, these findings must be further verified using 

clinically approved materials. 

While the data reported herein on mean tubular retraction pressure is quite promising, 

additional studies are necessary to determine clinical tubular retraction dynamics. The use of 

more sophisticated sensors could help determine how tubular retraction pressure varies over time 
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in a clinical model, and the roles of cerebral profusion pressure and systemic intraoperative 

factors on retraction pressure and injury. Additionally, this study is limited by its cadaveric 

nature, the potential for brain atrophy and its effect on retraction distances, and the use of 

preserved and potentially stiffer tissue, even when reporting relative values. As transtubular 

neurosurgery likely represents the next incarnation of minimally invasive neurosurgery, and 

transtubular techniques are applied in various neurosurgical disciplines and subspecialties, 

continued research, training, and refinement are essential for the development of improved 

clinical proficiency and outcomes while furthering the development of these techniques.  
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CONCLUSION 

This body of work establishes the safety and efficacy of minimally invasive transtubular 

neurosurgery. Application of tubular retractors significantly reduces brain retraction pressure in a 

range of neurosurgical approaches, results in less damage to retracted tissues, and provides a 

safe, valid, and transparent conduit for the application of microscopic and/or endoscopic 

miniaturized percutaneous approaches that can achieve improved cosmetic outcomes, while 

protecting surrounding tissues from inadvertent instrumental or thermal injury. Advances in 

neuronavigation and other supplementary surgical technologies will continue to expand the 

indications for tubular retraction in neurosurgery and will help pave the way for the eventual 

application of transtubular surgical robotics.  
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APPENDIX A 

Timeline of Published Research on Tubular Retraction in Cranial Surgery 

Year First Author Title 

1988 Kelly PJ The Stereotaxic Retractor in Computer-Assisted Stereotaxtic Microsurgery: Technical Note 

1990 Otsuki T Stereotactic Guiding Tube for Open-System Endoscopy: A New Approach for the Stereotactic 
Endoscopic Resection of Intra-Axial Brain Tumors 

1991 Eiras J Stereotactic Open Craniotomy And Laser Resection of Brain Tumors A Five Years Experience 

1993 Ross DA A Simple Stereotactic Retractor for Use with the Leksell Stereotactic System 

1995 Cabbell KL Stereotactic Microsurgical Craniotomy for the Treatment of Third Ventricular Colloid Cysts 

1994 Barlas O A Simple Stereotactic Retractor for Use with the Leksell System 

1996 Cabell KL Stereotactic Microsurgical Craniotomy for the Treatment of Third Ventricular Colloid Cysts 

2002 Jho HD Endoscopic Removal of Third Ventricular Tumors: A Technical Note 

2004 Barlas O Stereotactically Guided Microsurgical Removal of Colloid Cysts 

2005 Harris AE Microsurgical Removal of Intraventricular Lesions Using Endoscopic Visualization and Stereotactic 
Guidance 

2006 Ogura K New Microsurgical Technique for Intraparenchymal Lesions of the Brain: Transcylinder Approach 

2008 Akai T Intra-Parenchymal Tumor Biopsy Using Neuroendoscopy with Navigation 

2008 Greenfield JP Stereotactic Minimally Invasive Tubular Retractor System for Deep Brain Lesions 

2008 Dorman JK Tumor Resection Utilizing a Minimally Invasive Spinal Retractor with a Novel Cranial Adaptor 

2009 Fahim DK Transtubular Microendoscopic Approach for Resection of a Choroidal Arteriovenous Malformation 

2009 Singh L Cylindrical Channel Retractor for Intraventricular Tumour Surgery–A Simple and Inexpensive 
Device 

2010 Ichinose T Microroll Retractor for Surgical Resection of Brainstem Cavernomas 

2010 Herrera SR Use of Transparent Plastic Tubular Retractor in Surgery for Deep Brain Lesions: A Case Series 

2011 Jo KW Efficacy of Endoport-Guided Endoscopic Resection for Deep-Seated Brain Lesions 

2011 Recinos PF Use of a Minimally Invasive Tubular Retraction System for Deep-Seated Tumors in Pediatric 
Patients 



85 

2011 Raza SM Minimally Invasive Trans-Portal Resection of Deep Intracranial Lesions 

2012 Almenawer SA Minimal Access to Deep Intracranial Lesions Using a Serial Dilatation Technique 

2013 Cohen-Gadol AA Minitubular Transcortical Microsurgical Approach for Gross Total Resection of Third Ventricular 
Colloid Cysts: Technique and Assessment 

2014 Ajlan AM Endoscopic Transtubular Resection of a Colloid Cyst 

2015 Ding D Endoport-Assisted Microsurgical Resection of Cerebral Cavernous Malformations 

2015 Nagatani K High-Definition Exoscope System for Microneurosurgery: Use Of an Exoscope in Combination 
with Tubular Retraction and Frameless Neuronavigation for Microsurgical Resection of Deep Brain 
Lesions 

2015 Shoakazemi A A 3D Endoscopic Transtubular Transcallosal Approach to the Third Ventricle 

2015 Bernardo A A Percutaneous Transtubular Middle Fossa Approach for Intracanalicular Tumors 

2015 Akiyama Y Rigid Endoscopic Resection of Deep-Seated or Intraventricular Brain Tumors 

2015 Wang WH Endoscopic Hematoma Evacuation in Patients with Spontaneous Supratentorial Intracerebral 
Hemorrhage 

2015 Rymarczuk GN Use of a Minimally Invasive Retractor System for Retrieval of Intracranial Fragments in Wartime 
Trauma 

2015 Ding D A Minimally Invasive Anterior Skull Base Approach for Evacuation of a Basal Ganglia Hemorrhage 

2015 Przybylowski CJ Endoport-Assisted Surgery for the Management of Spontaneous Intracerebral Hemorrhage 

2016 Bander ED Utility of Tubular Retractors to Minimize Surgical Brain Injury in the Removal of Deep 
Intraparenchymal Lesions: A Quantitative Analysis of FLAIR Hyperintensity and Apparent 
Diffusion Coefficient 

2016 Eliyas JK Minimally Invasive Transsulcal Resection of Intraventricular and Periventricular Lesions through a 
Tubular Retractor System: Multicentric Experience and Results 

2016 Angileri FF Fully Endoscopic Freehand Evacuation of Spontaneous Supratentorial Intraparenchymal 
Hemorrhage 

2016 Hong CS Comparison of Endoscope- versus Microscope-Assisted Resection of Deep-Seated Intracranial 
Lesions Using a Minimally Invasive Port Retractor System 

2016 Ratre S Microendoscopic Removal of Deep-Seated Brain Tumors Using Tubular Retractions System 

2016 Eibach S Less Traumatic Technique to Access Deep Brain Lesions with the “Doigt-De-Dieu” 

2016 Kutlay M Fully Endoscopic Resection of Intra-Axial Brain Lesions Using Neuronavigated Pediatric Anoscope 

2017 Habboub G A Novel Combination of Two Minimally Invasive Surgical Techniques in the Management of 
Refractory Radiation Necrosis: Technical Note 

2017 White T Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted 
Tracking Device for Resection of Deep Brain Lesions: Technical Report 
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APPENDIX B 

Vycor Medical ViewSite Brain Access System (VBAS) Sizing Chart 
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APPENDIX C 

Petroclival Angles and Petroclival-Auditory Distance Findings 
Patient 

No. 
Midsagittal*-Petroclival 
Suture Distance (mm) 

Lateral Petroclival 
Angle (°)† 

Petroclival-Acoustic 
Distance (mm) 

Trajectory Length 
(mm) 

1 11 39 22 42 
2 10 31 23 44 
3 11 43 21 42 
4 9 41 21 37 
5 10 44 21 37 
6 9 34 22 39 
7 10 43 27 40 
8 10 28 25 38 
9 12 43 23 43 

10 12 45 24 40 
11 10 36 23 43 
12 10 39 22 44 
13 12 40 20 39 
14 11 39 21 41 
15 11 40 22 41 
16 10 46 22 41 
17 12 33 22 42 
18 10 36 23 43 
19 12 48 21 37 
20 11 47 21 36 
21 10 48 19 38 
22 10 44 19 39 
23 9 37 20 39 
24 9 35 20 39 
25 11 41 21 42 
26 11 42 23 40 
27 10 44 18 34 
28 10 41 20 36 
29 8 42 20 43 
30 9 41 21 42 
31 10 41 19 33 
32 10 45 20 35 
33 11 38 21 36 
34 11 45 24 40 
35 11 44 20 47 
36 11 32 21 46 
37 12 42 18 44 
38 12 45 23 42 
39 10 41 21 40 
40 10 37 21 38 
41 11 42 19 39 
42 11 45 20 40 
43 11 37 21 39 
44 10 36 21 38 
45 8 33 20 38 
46 8 32 20 40 
47 12 46 22 47 
48 11 42 23 47 
49 11 49 24 37 
50 12 48 24 39 
  

Mean* 10 ± 1 41 ± 5 21 ± 2 40 ± 3 
Range 8–12 28–49 18–27 33–47 

*The midsagittal line was placed between the nasion and the inion. 
†The true petroclival angle can calculated by adding 90° to the lateral petroclival angle. 
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