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ABSTRACT 

Modern manufacturing processes have to be continuously updated to catch up with 

fast-evolving requirements, as dictated my competitive and dynamic markets, which 

demand high product variety. Indeed, in the era of smart factories and cyber-physical 

production systems (CPPS) we are experiencing a fast transition from mass production to 

mass customisation. Key Enabling Technologies (KETs) are then necessary to hinge 

business and market needs on digital solutions which enable the rapid delivery of new 

and innovative products. If on one side mass customisation imposes high level of product 

variety, on the other hand customers wish to receive high quality products, which reflect 

the need for near-zero defects manufacturing systems. Therefore, the combination of 

macro-level changes (product variety) and micro-level variety (product defects) leads to 

the concept of self-evolving production systems, one of the KETs to enable CPPS. In this 

context, industrial robots play a key role to deploy automation and fast responsiveness.  

Currently, robots are programmed following off-line methods. Tough those methods 

are still a premium solution to model and simulate production systems, they suffer the 

capability to incorporate dynamic changes. Therefore, it is crucial to introduce the new 

concept of dynamic robot programming which enables real-time robot adjustments. 

Robot programming usually consists of four steps: (1) task planning; (2) task sequencing; 

(3) path planning and (4) motion planning. These steps are strictly coupled although robot 

trajectory is mainly affected by defined tasks. In literature, task sequencing is modelled 

as Travelling Salesman Problem with Neighbourhoods (TSPN). There exist several 

methods for solving TSPN, but no one enables the dynamic programming. 

This thesis aims to develop robot tasks sequencing methodology with the ultimate goal 

of finding the near-optimum task sequence, by minimising computational time to enable 

dynamic robot programming in the case of multiple and coupled tasks’ attributes.  

The thesis introduces two methodologies: (1) “Enhanced Heuristic with Hierarchical 

Clustering” (EH2C); and, (2) “Augmented-EH2C” (A-EH2C). 

EH2C is a general framework to solve TSPN-like problems. The method uses a novel 

approach which hinges on the key idea of pre-computed feasible robot poses based on 



analytical formulation of Euclidian weighted functions. Results and benchmarking 

studies have showed that this approach allows to reach a faster convergence rate, when 

compared to the top-1method available in the public domain. 

The EH2C methods has been then deployed to solve robotic task sequencing problem, 

with multiple attributes. This has led to the A-EH2C method, which introduces the 

concept of multi-attribute task sequencing, as a paradigm to solve coupled and 

hierarchical robotic task sequencing and path planning problems. 

The thesis poses the following contributions: (1) enhanced heuristic approach based 

on Euclidian distance to define the initial guess points for constructing tour in TSPN; (2) 

multi-attribute approach to find the optimised task sequencing via candidate poses solving 

inverse kinematics in T-space; (3) break-through paradigm shift from static robot path 

planning to dynamic robot path to enable on-the-fly robot re-programming to facilitate 

product and process adjustments. 

The proposed solutions have been tested in the context of automotive body assembly 

systems. However, results could impact a wider area, from navigation systems, game and 

graph theory, to autonomous systems.  
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1 INTRODUCTION 

1.1 Motivation 

The race to improve goods and process performances has pushed modern 

manufacturing to re-think and re-structure production systems. This has laid down a 

disruptive paradigm shift: from automated to smart & connected systems. In Germany, 

referring to these paradigm, on the reminiscence of software versioning and inspired by 

future expectations, it was conceived the term “Industrie 4.0” [1] better-known as 

“Industry 4.0”. 

 

Figure 1 – Chronology of industrial revolutions [4]. 

Industry 4.0 refers to the concept of cyber-physical systems (CPSs) [2], which entails 

three mayor ingredients: (1) machinery (physical) with smart sensors; (2) data 

connectivity; (3) model (cyber) representation of the physical systems. Though the 
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concept of “digital” and “physical” integration has been investigated for years in 

engineering and computer science, only over the last decade the IT technology has 

sufficiently evolved to make possible the seamless integration. 

Drath and Horch [3] provide a very clear example of CPS:  

“…traffic lights today either act independently from each other or are controlled by a central 

traffic control system. As a CPS, the physical traffic lights would have an object representation 

in the network providing their current color and time schedule. Based on these data, future cars 

could inform themselves about the plan of the next traffic light, adjust speed, or provide automatic 

motor on–off features to minimize emissions. Future navigation systems could calculate an 

optimal route through traffic for every car, dependent on its position, destination, and other 

related information, such as traffic jams. Once cars feed their position, speed, and destination 

back into the network, the traffic lights could orchestrate and optimize their behavior with respect 

to an optimal traffic flow. Police, ambulances, or fire engines could control green lights for 

optimal security and safety in the city”.  

 

Figure 2 – Concept of cyber-physical systems [5]. 

The application of the CPS concept to the production systems has brought the 

definition of cyber-physical production systems (CPPS) [3], also known as smart factory 

or connected factory, which consists of physical machineries interconnected and 

identified in a factory network where they can be simulated an optimised to improve 

production making it faster, more flexible and efficient having higher-quality goods at 

reduced costs [6]. Therefore, the industrial vision of future production predicts smart 

products which control and optimise themselves in their manufacturing process [7]. 
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One of the most used and implemented machines within production systems are 

industrial robots, which are adopted by automotive, aerospace, electronics, appliance, 

chemical, plastics and rubber and material industry. For instance, total worldwide stock 

operational industrial robots at the end of 2015 was about 1.6 million units (increased by 

11% compared to 2014) estimating an increase by at least 13% on average per year up to 

2019. The market value in 2015 was estimated to be US$35 billion (increased by 9% 

compared to 2014) [8]. 

One of the largest industrial robot installations is the automotive sector. Automotive 

industries widely use multi-stage assembly systems consisting of multiple machine 

stations/stages to obtain the final product [9]. As each stage is composed by one or more 

robots which repeat the same task multiple times, it is important to optimise robot path in 

order to minimise execution cost in terms of cycle time or energy. Optimal path is 

obviously related to a specific sequence of tasks. In classical robot path planning, tasks 

are statically specified. For example, for welding robots, seams’ locations are defined 

using design data and product performances, such as strength and stiffness. Static robot 

path planning underlays the assumption of ideal product and processes. However, it has 

been proved that most of the changes occurring after design release are imputed to 

dimensional and geometrical variations [10]. This leads to the need of dynamically re-

program and re-root tasks to automatically reconfigure the robotic system. For example, 

in case of measurement and inspection stations, in case root cause of defects cannot be 

isolated and localized based on the data gathered by a static measurement systems, the 

measurement systems should be reconfigured by selecting additional measurement points 

to increase likelihood of isolating the root cause. The scenario of dynamic re-

programming is also described in [11] where authors introduce the concept of moving 

goals. Therefore, because the process is constantly changing, adaptive control system 

should be adopted, implying that robots should be adaptively re-programmed.  

How in the traffic light example [3], CPPS shall be able to predict production 

behaviour and perceive the production fluctuations to automatically self-recover and 

adjust to fit on-the-fly the production variations.  

Robot tasks are programmed following two major methods: (i) on-line - robot 

movements are manually recorded in teaching mode and executed in production mode; 
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(ii) off-line - automatic path planning programming through simulation based on CAD 

model [12]. 

Tough off-line programming (OLP) has the premium benefit of developing the 

optimum robot task planning, it is based on a static system assumption which is 

incompatible to dynamically react to fluctuations and variations [13]. This brings the new 

concept of dynamic robot programming which enables real-time robot adjustments.  

Defining the robot tasks entails multiple and coupled attributes, which can be 

summarised as follows: 

• cycle time (A1) – to minimise execution time of multiple tasks; 

• energy consumption (A2) – to minimise energy consumption in robot transitions; 

• path length (A3) – to minimise length of the end-effector’s path 

Either (1), (2) or (3) are strongly correlated to: 

• pose quality (A4) – accuracy and repeatability of the end-effector pose (both 

position and orientation) 

• collision (A5) – robot movement must be collision free and avoid 

• robot placement (A6) – robot placement (both position and orientation) with 

respect to the workpiece. Robot placement is directly related to the accessibility 

of tasks. For instance, it may happen that the same task though feasible in terms 

of collision and pose quality, can be executed by multiple paths (multiple 

accessible paths). As consequence, there is no guarantee of reaching the minimal 

cycle time attribute. 

As finding the exact solution for the robot transition movements is computational 

hard, some approaches decompose the problem in sub-problems. Kolakowska et al. [15] 

decomposed the problem as follows: (1) task planning; (2) task scheduling; (3) motion 

planning. Combining what is defined in [14] and [15], classical resolution approach is 

based on a 4-step decomposition approach: 

1. task planning (step 1) - tasks are described in a well-defined coordinate system 

2. task sequencing (step 2) - sequence of tasks is generated according to attributes. 

It is of interest to notice that classical task sequencing computes (near) optimal 

sequence in the Cartesian space, also called T-space. This implies that robot 

configurations are not accounted, but only end-effector positions. 
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3. path planning (step 3) - inter-tasks route is generated according to task 

sequence and attributes. It allows to computes both the position and orientation 

of the end-effector. The computation is performed into the configuration space 

of the robot, also called C-space. 

4. motion planning (step 4) – robot movements are generated to follow the path. 

Steps (2) to (4) are linked to each-other and the problem becomes NP-hard [16]. In 

fact, step (2) computes the optimal task sequence ignoring the end-effector orientation, 

which is calculated in step (3). This implies that some of the solutions computed in step 

(2), even though guarantee the (near) optimal sequence criterion, might fail to satisfy the 

robot accessibility criterion. 

Proposed methods following the 4-step decomposition approach are heuristics-based. 

They mostly re-iterate step (2) to (4) until satisfying attributes A1 to A6. The integration 

mostly follows a brutal sequential approach which allows to reach optimal solutions, 

however it suffers the number of unnecessary re-iterations.  

1.2 Objectives 

Industrial robots have to perform several tasks, moving among configurations arranged 

for each task and avoiding collisions. A representative scheme is depicted in Figure 3. It 

is quite important as well as very complex to determine the optimal sequence of tasks 

visited by the representative point of the end-effector - also called Tool Centre Point 

(TCP) - to generate the optimal robot’s movements through tasks. 

Classical approaches consider a simplified formulation: task sequencing and path 

planning problem are completely or partially decoupled. Task sequencing is solved in T-

space. Path planning deals with the robot configuration for each end-effector pose and the 

sequence of configurations that moves the robot among configurations; it is solved in C-

space. As no robot information is involved in task sequencing, no feasible solutions are 

guaranteed. Therefore, these methods require some zigzagging iterations between task 

and path to converge on a solution. 
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Figure 3 – Robot performs three tasks arranging three different configurations. 

This dissertation focuses on robot tasks sequencing and aims to develop a novel 

methodology to find near-optimum solution, by minimising computational time to enable 

dynamic robot programming in the case of multiple and coupled tasks’ attributes. The 

proposed methodology is based on the two steps: 

1. integrated task planning which entails (i) robot placement and (ii) tasks’ 

definition (introduced in ); and, 

2. augmented task sequencing as a measure of the enhanced T-space with pre-

computed feasible configurations. It is of interest to notice that classical task 

sequencing only focuses on the T-space and subsequent robot configurations, 

along with their feasibility, are only computed in the later path planning stage. 

The proposed method allows to take into account the feasibility of the robot 

configurations from the very early stage of the optimisation workflow. This leads 

to the following two benefits: (i) the computed solution is (near) optimal and 

feasible; and, (ii) reduction of costly forward and feedback iterations between task 

sequencing and path planning. 

1.3 Research Questions 

The dissertation addresses the following questions: 

1. How to find the optimal task sequence and poses integrating robot information in 

T-space 
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2. How to develop efficient method to enable seamless integration of task 

sequencing and path planning 

3. How to upscale the integrated task sequencing and path planning model to multi-

attribute scenarios 

4. To demonstrate the proposed solution to automotive door assembly systems 

1.4 Contribution 

The dissertation introduces the concept of multi-attribute task sequencing, as a 

paradigm to solve coupled and hierarchical robotic task sequencing and path planning 

problems. Contributions are summarised as follows: 

(1) Enhanced Travelling Salesmen Problem with Neighbourhoods (TPSN) to solve 

the task sequencing problem. The dissertation proposes to use an enhanced 

heuristic approach based on Euclidian distance to define the initial guess points 

for constructing tour in TSPN;  

(2) Multi-attribute approach to find the optimised task sequencing via candidate poses 

solving inverse kinematics in T-space; 

(3) Break-through paradigm shift from static robot path planning to dynamic robot 

path planning; and, 

(4) Capability to implemented proposed approach to enable on-the-fly robot re-

programming to facilitate product and process adjustments. 

1.5 Thesis Outline 

The reminder of the dissertation is as follows: 

Chapter 2 – Background. It lays down the common terms and concepts used in 

industrial robotics. 

Chapter 3 – Related Works. It reviews state of art and identifies current trends and 

limitations. 

Chapter 4 – Proposed Methodology Overview. It presents the Enhanced Heuristic 

with Hierarchical Clustering method for TSPN and its comparison with well-known 

methods  
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Chapter 5 – Augmented EH2C for Task Sequencing Optimisation. It presents the 

multi-attribute method for robotic task sequencing and a case study. 

Chapter 6 – Conclusions and Further Works. It draws final remarks and potential 

future development. 
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2 BACKGROUND 

This section defines common terms and concepts used for industrial robotics. Besides, 

it explains the robot path planning principles. 

2.1 Definitions 

What is a robot? Nowadays it is very difficult to give a thorough definition of robot. 

Broad associations (like the Robotics Institute of America (RIA) and the Japanese Robot 

Association (JARA)) and Standardisation Institutes (like American National Standards 

Institute (ANSI), Japanese Industrial Standards (JIS) and International Organization for 

Standardization (ISO)) have tried to give a definition and classification of robots. A robot 

is “a reprogrammable, multifunctional manipulator designed to move materials, parts, 

tools or specialised devices through various programmed motions for the performance of 

a variety of tasks” [17].  

The widespread industrial robot is the articulated/anthropomorphic robot belonging to 

the manipulating type. As defined in [18]: “A manipulating industrial robot is an 

automatically controlled, reprogrammable, multipurpose, manipulator programmable in 

three or more axes, which may be either fixed in place or mobile for use in industrial 

automation applications.”  In this thesis, we focus on the articulated robot but any 

assumptions and results can be applied to any industrial robot type. 

An industrial robotic arm is usually composed by a base, a sequence of links (rigid 

bodies) and an end-effector (EE) connected by kinematic pairs (joints), see Figure 4. 

These components define the kinematic chain (sequence of links connecting the two ends 

of the chain: base and end-effector). The common industrial robot has got six revolute 

joints: 𝜗1 – waist; 𝜗2– shoulder; 𝜗3– elbow; 𝜗4 – wrist rotation; 𝜗5 – wrist bend; 𝜗6 – 
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flange rotation. The number of joints determines the number of Degrees of Freedom 

(DOFs). 

We define the TCP as the EE point of interest to be tracked; it can or cannot belong to 

the EE tool as well as exist geometrically because defined by functional parameters. The 

TCP position (𝑥𝐸𝐸 , 𝑦𝐸𝐸 , 𝑧𝐸𝐸) and orientation (𝛼, 𝛽, 𝛾) compose the pose of the TCP. 

 

Figure 4 – Robot components: base, arms and end-effector. They are linked by planar revolute 

joints (red cylinders) and orthogonal revolute joints (yellow cylinders).  

 

Figure 5 – Example of three configurations of a redundant robot. (1) and (3) are named elbow-up 

and elbow-down respectively. 
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The main coordinate reference frame is the robot triad placed in the “base”. 

Henceforth, we will refer to it as robot reference. Starting from the robot reference, a pose 

can be defined in two ways, in two different space: 

• in the task space or Cartesian space (T-space) by coordinates (𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾);  

• in the configuration space or joint space (C-space) by joint configurations 

(𝜗1, 𝜗2, 𝜗3, 𝜗4, 𝜗5, 𝜗6).  

T-space is only related to the EE (it defines the pose) while C-space introduces 

information on the robot and its links (it defines the robot configuration). Therefore, each 

pose can be reached by multiple robot configurations (a typical industrial robot, with 6 

DOFs, could arrange up to 8 configurations for a defined pose – see Figure 5). 

Moving from C-space to T-space is called forward kinematics as to each robot 

configuration correspond only one pose. Conversely, moving from T-space to C-space 

gives multiple solutions and it is called inverse kinematics. 

Robots perform any specific job following a path which robot movements correspond 

to. A job consists of several tasks. There are two types of paths: (1) task or effective path 

which is the robot path to accomplish that specific task; (2) supporting or inter-tasks path 

which is the robot path that connects tasks [15]. Therefore, a job path consists of task and 

inter-tasks paths.  

The route that leads from a robot configuration to another is named path. A path is the 

geometrical description of the robot motion, i.e. locus of points; a trajectory is a path with 

a motion law [19]. Here, we will refer to the path as the locus of TCP points over time. 

All TCP accessible points are contained in a volume named “robot workspace”. 

2.2 Commercial Tools 

This Section introduces the existent commercial solutions, hardware and software, for 

the task sequencing and path planning. Pros and cons are identified and critically 

discussed. 
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2.2.1 Robot Studio 

Robot Studio is an ABB’s PC-based robot programming software (see Figure 6). The 

ability to program a robot in the virtual world before it operates in the real world has 

dramatically changed the way companies and individuals think about programming 

robots. Over the last decade it has become an increasingly popular way to test robot 

operation before a mistake on the factory floor results in damage, stoppage and/or loss of 

money. The traditional method of programming robots, using a Flex Pendant attached to 

the robot controller, works well for some tasks, but robots have been placed into ever 

more intricate and complicated operations and even the most skilled human programmer 

staring at a screen full of countless lines of code would be hard pressed to accomplish. 

Once the program is completed in the virtual world it can simply be downloaded 

straight to the robot controller in the real world, and as long as everything in the real world 

is set up exactly as it was in the virtual world, the program will run exactly like it did on 

the PC. 

 

Figure 6 – Robot Studio collision detection 

Robot Studio allows to check reachability, avoid collision and detect singular issues. 

Robot Studio has several functions for testing how robots reach and move to targets. They 

are useful both for finding the optimal layout when building a station and during 

programming. With Robot Studio we can detect and log collisions between objects in the 
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station. A collision set contains two groups, Objects A and Objects B, in which we place 

the objects to detect any collisions between them. When any object in Objects A collides 

with any object in Objects B, the collision is displayed in the graphical view and logged 

in the output window. 

After having created a collision set, Robot Studio checks the positions of all objects 

and detect when any object in Objects A collides with any object in Objects B. Activation 

of detection and display of collisions depend on how the collision detection is set up. If 

the collision set is active, Robot Studio checks the positions of the objects in the groups, 

and indicate any collision between them according to the current colour settings. 

After detecting a collision, we can modify the path of the robot’s tool and run the 

program again to check whether there are collisions also with the new setup. If now 

collisions are avoided, this new path is saved as a collision-free path for the robot. 

2.2.2 DELMIA 

DELMIA is the Digital Manufacturing and Production Solution of Dassault Systèmes, 

optimising production systems and processes (see Figure 7). DELMIA Device Task 

Definition (DTD) delivers the capability to program and simulate forward kinematic 

mechanical devices, ranging from simple clamps to complex lift-assist mechanisms. It 

also provides the ability to manage multiple devices, integrate them within the V6 3D 

work-cell layout, and perform feasibility studies. Each device is individually programmed 

with tasks that are sequenced and simulated to eliminate any interference and obtain 

optimal cycle times. 

DELMIA Device Task Definition provides an interactive V6 3D environment which 

allows users to define the tasks for each device in the context of the shop floor. Users are 

able to sequence the tasks of each individually programmed device in order to achieve 

synchronised motion between the devices in the work-cell. 

Single or multiple device tasks can be simulated in 3D to locate and correct any 

interferences or collisions in the work-cell. Users can evaluate and optimise device 

activities to achieve desired cycle times.  
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The robot programmer can automatically optimise the robot’s motion by computing 

standard motion parameters such as turn numbers, configuration, gantry and rail values 

along a robot trajectory[20]. It also provides tools which optimise cycle time and reach 

to create a collision-free path. 

Moreover, DELMIA Robotics Path Planner (RPP) provides tools for automatically 

computing collision-free and optimised trajectories for industrial robots. Robotics Path 

Planner provides a highly-efficient command for automatic collision-free path planning 

to facilitate robotic feasibility studies and off-line programming.  

 

Figure 7 – Example of a robot simulation with DELMIA 

Cycle times are minimized by RPP by optimising automatically new trajectories 

calculated to fit exactly each new project. Path of the tool centre point frame for linear 

motion, or path in the configuration space for joint motion, is minimized with better cycle 

times than can be achieved by other methods. By applying RPP to DELMIA robot task 

motion activity, RPP creates collision-free and optimised DELMIA motion activity. 

Robotics Path Planner automatically transforms a robot task, updating a motion 

activity with potential collisions between the robot and its environment into a collision-

free trajectory.  When the robot and its environment needs to be modified and updated 

the previously defined task can be automatically recomputed providing a fast versioning 
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check and task update.  Once a trajectory is computed, it can be optimised to reduce the 

robot cycle time. The non-trivial task of robot configuration space optimisation is 

achieved automatically by RPP. The resulting joint motion interpolation yields a faster 

motion and a lower risk of singularity.  

2.2.3 RobCAD 

RobCAD is a Siemens PLM Software for robotic work-cells verification and off-line 

programming. Tecnomatix RobCAD software (see Figure 8) enables the design, 

simulation, optimisation, analysis and off-line programming of multi-device robotic and 

automated manufacturing processes in the context of product and production resources. 

It provides a concurrent engineering platform to optimise processes and calculate cycle 

times. With RobCAD, you can design life-like, full-action mock-ups of complete 

manufacturing cells and systems. RobCAD enables manufacturers to flawlessly introduce 

automated processes by allowing manufacturing engineers to virtually validate 

automation concepts upfront. 

 

Figure 8 – Robcad software for off-line programming 

RobCAD generates configurable motion plans based on the controller features. It 

allows calculation of cycle times, analysis of real-time performance and saves testing 
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time. The RRS (Realistic Robot Simulation), which is based on using the real controller 

motion planning software, offers extremely accurate cycle time calculation. 

Robcad off-line programming enables accurate simulations of robot motion sequences 

and the delivery of machine programs to the shop floor. Moreover, RobCAD can 

dynamically detect collisions during robot simulation and motion, preventing costly 

damages to equipment. In fact, for automatic path planning, RobCAD generates collision-

free robot and part assembly paths by using automatic path planning technology. 

2.2.4 Kineo 

Kineo is a Siemens PLM software. Kineo solutions include advanced software 

components and standalone applications for automatic motion/path planning and collision 

detection (see Figure 9). Kineo products satisfy a wide range of virtual prototyping 

requirements, from assembly or disassembly clearance validation to collision-free robot 

applications. In modern end-user CAD, CAM, CAE, 3D digital mock-up and robotics 

systems, these productivity tools help automate path planning and clash detection factors 

which in turn save customers time, costs and resources. 

 

Figure 9 – Example Kineo software 
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Kineo components provide leading path planning and collision detection tools for 

CAD/CAM applications. In autonomous robotics, Kineo-based path planning and 

collision detection maximize the operational efficiency of robotic systems.  

Kineo Collision Detector allows to check spatial interferences, or collisions, between 

hierarchical assemblies of triangle mesh surfaces, or polyhedrons. Kineo Collision 

Detector can be used to perform different kinds of interference analyses, including: 

• Exhaustive Boolean check to determine if analysed objects are colliding and, if 

so, reports every pair of colliding triangles; 

• Exact distance to determine if analysed objects are colliding and, if not, reports 

the shortest distance between them; and, 

• Penetration to determine if objects are colliding and, if so, reports a translation 

vector that suppresses the collision. 

Every object can have its own tolerance value, which is the size of a clearance zone 

added around the object. Kineo Collision Detector is optimised for low response times, 

with a built-in multithread capability, enabling the best hardware performance. Thanks to 

its stateless, thread-safe mode, Kineo Collision Detector is suitable to run different tests 

over the same scene in simultaneous threads. This offers new possibilities to 

multithreaded applications aimed at performance and reactiveness. Instead of waiting for 

tests to return, the process can span new tests in new threads and use all available 

computing power. 

2.3 Summary and Remarks 

Off-line programming is useful tool for saving money and time when designing a new 

work cell. Simulation and OLP allows designers to study multiple scenarios of a work 

cell and potential failures can be validated in advance and corrective actions generated 

accordingly. 

Commercial and academic/open source robotic software for OLP mostly focuses on 

the motion planning optimisation, and neglect optimisation of the task sequencing. All 

robot targets are programmed by the operator that should simultaneously consider optimal 

EE placements, reachability and sequence constraints.   
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Furthermore, they optimise the path or motion planning on a fixed sequence of tasks. 

For example, after defining the TCP locations, RobCAD computes the connection path 

generating additional via-location and then check the reachability. RobCAD optimises 

path by adjusting just via-location [22]; KUKA Sim works in the same way [23], 

Kawasaki Pc-Roset omits the task sequence optimisation too [25]. DELMIA V5 doesn’t 

include sequencing in path optimisation but can be partially developed using APIs as in 

DELMIA V5 Robotic Drilling Application.  

Although existing solutions for OLP and path planning are standard toolkits in modern 

design architectures, developed solutions are not able to modify and choose a new path 

automatically and to dynamically react to fluctuations and changes, has happening in real-

life production systems. 
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3 RELATED WORKS 

This chapter highlights research key topics. It analyses related works illustrating their 

characteristics and limitations in Robotics application.  

3.1 Introduction 

Although path optimisation concerns both task and inter-tasks paths, they can be 

computed in separate way considering that the input and output configuration of the 

effective path can be considered as two different configurations in the supporting path. 

Hereinafter, supporting path will be referred as path.   

The robot paths have to efficiently avoid collisions and unnecessary movements. The 

path planning problem aims to find the sequence of the robot configurations to accomplish 

the job. Robot systems can reach a given location assuming several configurations, 

ideally, infinite; therefore, the sequence of tasks is affected by multiple attribute and 

objective function; optimisation cannot neglect them.  

3.2 Robot Programming 

Solutions for robot programming aim to generate the optimal trajectory to perform a 

specific job in production. Optimal trajectory is affected by multiple attribute: pose 

quality, robot redundancy, collision and robot placement. Since robot has multiple 

solution for each EE-pose in T-space, robot configurations need to be selected by 

considering simultaneously the attributes assessing reachability, minimising 

configuration transition, avoiding collision and evaluating pose performance. Although 

there are a lot of researches and commercial OLP tools, most of them are not able to 
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provide an optimal robot path automatically but a manual assignment or an adapted 

(APIs) application is necessary [12]. 

3.3 Robotic Task Sequencing 

Sequence of robot tasks are classical tour-searching combinatorial problems modelled 

as the Travelling Salesman Problem (TSP) [27][28]. This is a well-known problem of 

tour-searching in many branches of mathematics, operations research and computer 

science; it aims to find the shortest tour among a given set of points visiting each point 

exactly once and returning to the original one (Hamiltonian cycle). In this case, each task 

is formulated as point. This formulation is not good for multiple inverse kinematics 

because robot can arrange multiple configurations for the same placement as well as 

multiple position to accomplish the same operation. Therefore, TSP can provide only an 

initial tour approximation [29].  

Due to multiple configurations, it is more realistic formulate the problem as a point set 

which corresponding several robot configurations or EE placements. This formulation is 

named Generalised TSP (GTSP) [30]. GTSP is obtained substituting each single point 

with a cluster of points, the shortest path visit one point for each cluster. GTSP is applied 

in [31] where the authors generate the clusters by sampling a set of configurations for 

each location. This solution is always limited among the sampled points. An interesting 

link between GTSP and robotics was established in [32], where the authors introduce the 

multi-goal path planning problem (MTP) where a cluster of poses are modelled as a 

cluster of points. 

3.3.1 Traveling Salesman Problem with Neighbourhoods: Introduction 

Despite GTSP partially overcome the limitations on multi-inverse kinematics (multi-

IK), it requires a certain discretisation that means errors in the final solution and a partial 

task volume representation. GTSP solution quality improves with augmenting point 

numbers increasing computational complexity.   

To obtain an acceptable optimised solution the search space has to be continuous, i.e. 

a region. When the points change in regions (examples: areas in 2D; volumes in 3D) the 
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TSP becomes Traveling Salesman Problem with Neighbourhoods (TSPN) [33] where 

each region is visited once. This problem consists of finding an optimal sequence and an 

optimal point within the neighbourhoods. This can be solved by minimizing the path 

length among neighbourhoods [34] [35] [36]. Gentilini et al. [37] use TSPN to formalise 

the path optimisation but they neglect the multiple inverse kinematics. Some researches 

formalise the multiple configurations for each location goal as a cluster of regions. This 

increases the computational complexity.  

As for TSP, when the region is substituted by a cluster of regions the problem becomes 

generalised: Generalised TSPN (GTSPN) [38]. Vicencio et al. [39] use GTSPN to 

optimise a six-rotor path planning to overcome the limitations of the TSPN formalisation. 

A recent survey on task sequencing problem [40] collects and classifies the main 

implementation pointing out that the TSPN heuristic solvers are focus on ℝ2 and ℝ3 

space. TSPN solvers are not limited by the space rather by currently formulation that 

cannot allow to integrate path and task [41].  

3.3.2 Traveling Salesman Problem with Neighbourhoods: Modelling 

TSPN aims to find the shortest path via regions visiting each region once. This 

formulation allows to optimise both sequence and location within neighbourhoods. 

Arkin and Hassin [33] first introduce TSPN studying an approximation algorithm to 

solve it. Later, other researchers ([36], [42] among others) face TSPN in approximation 

domain. Over the time, interesting in TSPN from application technologies generated a 

new requirement: solve TSPN faster. This has lead researchers to develop efficiently 

TSPN heuristic algorithms. 

Mennell [43] faces the Close-Enough TSP (CETSP) that is a TSPN-like problem 

where regions are assumed as disk. His proposed approach splits the main problem in 

TSP and Touring a sequence of Polygons Problem (TPP) [44]. The approach provides a 

decomposed approach based on two steps: (i) find an initial sequence; (ii) improve 

solution. It first finds a sequence among disk by a TSP solver assuming disk as centre 

points; then it optimises point inside disk by TPP solver. The approach’s weakness is 

nestled into initial point’s selection. On the same decomposition principle, Elbassoni et 
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al. [36] face TSPN providing an approach that first optimise the point using a Euclidean 

metrics and then find the optimal sequence. The same decomposition idea driven 

Alatartsev et al. [45] which proposed the Constricting Insertion Heuristic (CIH) method 

as an efficient way to solve TSPN based on a simultaneous Mennell-like approach (TSP 

+ TPP).   

Gentilini et al. [46] first applied TSPN to model robotic task sequencing considering 

the neighbourhoods as a continuous domain. However, the developed method has been 

proved with only 16 tasks because the Mixed Integer Non-Linear Programming (MINLP) 

formulation proposed is computationally expensive. In [34], authors adopted the CIH 

algorithm to integrate task and path. Although CIH tries to solve TSPN simultaneous, it 

is structured in sequential way. 

3.4 Robotic Path Planning 

Robot path planning is an interested topic in the robotic community. The path planning 

problem is applied to all those applications with involve automated systems: painter 

robots [47]; cleaner robots [48]; spot welding robots [49]; remote laser welding robots 

[50]; underwater inspection vehicles [51]; measurement robots [52]. 

Path planning aim to find the optimal robot path according to multiple attribute and 

objectives. Path planning problem involve all robot aspects (except robot motion law) and 

is solved in C-space where all robot information is present.  

Spitz et al. [52] proposed heuristics method based on TSP tour construction to solve 

CMM path planning minimising path length. They consider obstacles but neglect robot 

redundancy assuming just one configuration for each pose. 

Gueta et al. [29] proposed a method to avoid collisions between robot and workpiece 

placed on rotating table. They optimise cycle time considering system redundancy to 

select a different configuration for collision-free path assuming straight-line path fixed in 

C-space. They model the problem as a cluster of configuration solved by a heuristics TSP 

algorithm. 

It is difficult to manage C-space information because robot is described by 

configurations missing a clear search space representation, that why researchers prefer 
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solve the problem in T-space where the robot can be modelled by TCP positions (please 

refer to [29], [31], [53], [54]). 

As path planning solution is strictly affected by task sequence, to generate the optimal 

sequence to get a real near-optimal path.     

3.5 Integration Approaches 

Wurll et al. [32] first introduced the integration concept. The authors introduce the 

multi-goal path planning problem (MTP) where a cluster of poses is modelled as a GTSP 

to find a collision-free path solved in T-space. Later, Faigl et al. [68] face MTP with 

regions. In general, given a set of robot goals, MTP stands to find a shortest path among 

goals. 

The problem of task integration is presented in [56], even if the authors predefine the 

sequence by means sampling without consider it in the optimisation.  

Zacharia et al. [53] introduce a method to simultaneously solving motion planning and 

task sequencing with a TSP formulation. Indeed, they deal with a fixed task-points 

therefore with a fixed EE positions. 

Recently, in robotic remote laser welding, Kovacs [41] introduces a novel model 

problem: Traveling Salesman Problem with Neighbourhoods and Durative visits (TSP-

ND) for task integration. He proposes a meta-heuristic approach based on Greedy 

Randomised Adaptive Search Procedure (GRASP) to solve TSP-ND.  

3.6 Summary and Remarks 

Finding optimal sequence of tasks is crucial in all industrial applications where 

repetitive jobs are performed. Currently, there are few approaches that allow an automatic 

task sequencing. None of them use a complete integration of task sequencing and path 

planning lead to solutions far from the optimal one. 

Multi-attribute path planning with a relatively simple computation process seems be a 

very big challenge. Adding multiple attributes increase the search space making exact 

methods application difficult [40]. Researchers use mainly decomposition approaches to 
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reduce the problem to simple ones that can be solved sequentially or parallel applying 

heuristics methods to get solution in reasonable time. 

A novel effort in the problem formulation is then required to provide a synergic 

attributes integration. 
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4 PROPOSED METHODOLOGY OVERVIEW 

This chapter describes the proposed methodology and highlights formulation and gives 

an overview of the developed approach.  

The proposed methodology aims to solve the task sequencing problem using the 

Travelling Salesman Problem with Neighbourhoods (TSPN). It optimises both sequence 

and via-points and it is named Enhanced Heuristic with Hierarchical Clustering (EH2C). 

Compared to the best methods published in the public domain, EH2C allows to reach a 

faster convergence rate, because it analytically evaluates the most promising via-points 

by solving a preliminary sub-optimisation model. Instead, existing methods generate 

guessed via-points by random sampling, which are not guaranteed to be sufficiently close 

to the sub-optimal solution. 

 

Figure 10 - Sequence of tasks 
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4.1 Introduction 

Industrial robots perform a cycle of tasks to carry out a job. For a given task, 𝑇𝑖, robot 

can reach a pose 𝝀𝑖 to perform that task.

Given 𝑛 number of tasks, for each task "𝑖" there exist a region "𝑇𝑅" defined by 

technological parameters which characterise EE-pose for the task execution (see Figure 

10). These parameters are related to specific applications. For example, technological 

parameters for inspection robots with optical camera system are: optimal operating 

distance, depth, length and width of field of view.  

We aim to find the optimal sequence, 𝝈, of poses, for pre-defined multi-attribute, by 

minimising cycle time 𝑡𝑚𝑖𝑛 as well as selection of the optimal pose for each task/region. 

Therefore, one can formally write: 

∀ 𝑇𝑖 ∃ 𝝀𝑖 ∈ 𝑇𝑅𝑖  ∶ 𝝈 ⇒ 𝑡𝑚𝑖𝑛 

𝑖 ∈ [1, 𝑛] 
(1) 

4.2 Methodology Overview & Key Principles  

The proposed method aims to find an optimal task sequencing taking into account 

robot attributes into the T-space (see Figure 11).   

A pose can be defined in T-space by means of position 𝑷 = (𝑥, 𝑦, 𝑧) and orientation 

𝑶𝒓 = (𝛼, 𝛽, 𝛾); whereas, in C-space through configuration 𝒒 = (𝜗1, … , 𝜗𝑚) where 𝑚 is 

joint numbers. Although in C-space it is possible to define a complete EE-pose as well as 

robot configuration, it is difficult to define an optimal task sequence. Therefore, it is more 

convenient to model the robot task sequencing problem in the T-space; therefore, the 

proposed approach formalises the task sequencing problem in T-space and brings 

attributes from C-space, with the aim of calculating both optimal task sequence and 

feasible poses. The reader may notice that feasible poses can only be computed in the C-

space, where robot information is made available. 

Given a set of  𝑛 tasks, the proposed method firstly defines task regions 𝑇𝑅𝑠 and, then, 

calculates minimum distances among them. Subsequently, it selects via-pose by 

simultaneously optimising pose-to-pose distances, pose accuracy, collision and 

reachability; finally, a task sequencing 𝝈 is generated through via-poses λi, ∀𝑖 = 1, … , 𝑛.  
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Figure 11 - Task sequencing flowchart 

In the T-space, robotic task sequencing can be modelled as TSPN, where each 

neighbourhood (region 𝑇𝑅) represents robot task and any inner points represent the 

position, 𝑷, of the EE-pose. 

The proposed method, named Enhanced Heuristic with Hierarchical Clustering 

(EH2C), solves the TSPN using Euclidean distance as key metric. Then, EH2C has been 

expanded and named Augmented EH2C (A-EH2C) to introduce pose orientation, 𝑶𝒓, and 

enable to check the feasibility of reachability, collision and pose accuracy.  
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4.3 Heuristic with Hierarchical Clustering 

TSPN, which belongs to TSP-like problems, is a tour-searching model that generalises 

the TSP by substituting points for regions. Each region corresponds to the assigned 

robotic task. It aims to find the minimal cost cycle via regions visiting each region only 

once. TSPN entails two sub-problems: (1) allocate a via-point inside each region; and, (2) 

find the best tour through via-points.  

TSPN is an NP-hard problem and exact solution is computational expensive. Classical 

methods use heuristics approaches. In literature, these methods are classified as follows: 

(1) TSP tour construction – it finds a feasible tour; (2) TSP tour improvement – it modifies 

exist tour to minimise its cost [28]. 

Mennell [43] proposed a 3-step method as follows: (1) reduce search space of each 

region; (2) select a point for each area and solving TSP; (3) improve TSP solution with 

TPP method. The novelty of Mennell’s approach is the concept of running TSP algorithm 

on skimmed regions. However, the method assumes the centre point of the region is the 

starter point. This implies a slower convergence rate because optimal via-point is usually 

located on the boundary.  

Elbassoni et al. [36] proposed a method based on Euclidian distance. Firstly, the 

algorithm sorts regions by size and then it discretises regions by set of points. Starting 

from the smallest region an inner point is picked up. Next point is selected as the nearest 

point to the previous one. When all regions are described by inner point a TSP tour is 

generated.    

Alatartsev et al. [45] proposed the CIH method based on Elbassoni and Mennell-like 

approach (TSP + TPP). Authors proposed an algorithm structured as follow: (1) generate 

an initial convex hull border tour; (2) insertion of a new region with the nearest centre to 

the previous tour optimising via-point by rubber-band algorithm (RBA); (3) repeat step 2 

up to visiting all regions. Although CIH simultaneously solves via-point allocation and 

sequence position, it is structured in a sequential manner. Another issue is related to the 

new region selection; indeed, it is based on minimum distance between region centre and 

tour. Let’s consider two regions with different size, the smallest one presents the nearest 



Chapter 4  PROPOSED METHODOLOGY OVERVIEW 

 

29 

centre, whereas the biggest one presents the nearest boundary. CIH select the smallest 

one although the nearest is the biggest one. 

All these methods have articulated solution to select via-point which are then passed 

over to classical TSP solver to compute the optimal sequence. This highlights that the 

leading challenge is related to the via-point selection. 

This chapter presents a new enhanced heuristics method based on Euclidian distance 

to select best via-points in continuous regions. Then, TSP tour construction and TSP tour 

improvement methods are used. Comparative benchmarking results are then showed to 

prove the effectiveness of the proposed method. 

 

Figure 12 – TSPN formulation. Blue line represents minimum cost tour 

4.3.1 Problem formulation 

Let tour 𝝈𝑝 = {𝑷𝑖}, 𝑖 = 1, … , 𝑛 be the sequence of via-points, 𝑷𝑖 , to be optimised 

within neighbourhoods which are locus of feasible solutions. 

Given a set of regions 𝑇𝑅𝑠 we aim to find the minimum cost tour 𝝈𝑝 that visits each 

region once (Figure 12). The cost associated to the sequence is defined by Euclidean 

distance; that means, the minimal cost tour represents the shortest path, 𝑑𝑚𝑖𝑛. 
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∀ 𝑇𝑅𝑖 ∈ 𝑇𝑅𝑠 ∃ 𝑷𝑖  ∶ 𝝈𝑝 = {𝑃1, … 𝑃𝑛} ⇒ 𝑑𝑚𝑖𝑛 𝑤𝑖𝑡ℎ: 𝑖 ∈ [1, 𝑛] 

(2) 

  𝑛 no. of TR 

  𝑷𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) 

  𝑑𝑖 = 𝑃𝑖𝑃𝑖−1
̅̅ ̅̅ ̅̅ ̅̅  

  
𝑑𝑚𝑖𝑛 = ∑

1

𝑑𝑖
2

𝑛

𝑖

 

T1 - Compute min distances among n regions
   T1.1.1 - Initialise distance matrix
  L = { D[nxn] | P[nxn] }
   Repeat for each i =     n
      Repeat for each j = i+1,  n
         T1.1.2 - Define clusters
         T1.1.2 - Calculate minimum distance dij=dji

         T1.1.3 - Calculate boundaries point Pij and Pji  
         T1.1.4 - Update distance matrix
            D(i,j) = D(j,i) = dij

            P(i,j) = Pij; P(j,i) = Pji         
      next j
   next i          

T2 - Points evaluation
   T2.1 - Initialise via-points matrix

VP = [3xn]
   Repeat for each i =     n
      T2.2 - Calculate minimum weight

Pti_opt : WPti = min(  j1/||Pti - Pji||2)
      T2.3 - Update via-points matrix
         VP(i) = Pti

   next i

T3 - Tour construction
   T3.1 - Initialise tour vector

σ = [n]
   T3.2 - Generate tour σ = [Pt1,  Ptn] by GA  

T4 - Tour improvement
   T4.1 - Initialise old tour vector

σold = σ
   T4.2 - Improve tour σ = [Pt1,  Ptn] by RBA 

See section 5.3.1

see section 5.3.2

see section 5.3.3

 

Figure 13 – EH2C flowchart 
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4.3.2 Proposed Approach 

EH2C splits TSPN in four sub-problems: (T1) compute minimum distances among 

regions; (T2) points evaluation; (T3) tour construction; (T4) tour improvement (see 

Figure 13).  

4.3.2.1 Initial Via-Points Selection (T1 and T2) 

EH2C uses Euclidian distance as a key metric for selecting initial points. First of all, 

minimum distances among clustered regions are computed. For instance, 𝑑𝑖𝑗 represents 

the minimum distance between 𝑖𝑡ℎ and 𝑗𝑡ℎ region. This distance is associated to two 

boundary points 𝑃𝑖𝑗 and 𝑃𝑗𝑖 located on the two boundaries, respectively. 

 

Figure 14 - Initial via-point selection 

Assuming that a straight-line represents the minimum route length, the straight-line 

𝑃𝑖𝑗𝑃𝑗𝑖
̅̅ ̅̅ ̅̅   is the best route to move from 𝑖𝑡ℎ to 𝑗𝑡ℎ region and vice versa. This assumption 

translates the minimum energy concept: 𝑃𝑖𝑗 represents the starting point which 

corresponds the minimum energy consumption for moving on 𝑃𝑗𝑖. Therefore, as 𝑃𝑖𝑗 is the 
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best point to move from 𝑖𝑡ℎ to 𝑗𝑡ℎ region, the two boundary points will be named as target 

points.  

Considering that a tour consists of multiple regions, multiple boundary points have to 

be simultaneously computed, that is, tour can be represented as multiple connected 

straight-line. Referring to Figure 14, for any points 𝑃𝑡𝑖
 we can define a weight, 𝑊𝑃𝑡𝑖

: 

𝑊𝑃𝑡𝑖
= ∑

1

‖𝑃𝑡𝑖
− 𝑃𝑗𝑖‖

2

𝑛

𝑗=1
𝑗≠𝑖

 
(3) 

For each region, points with minimum weight are selected as via-points. This is 

formulated as follows: 

𝑎𝑟𝑔𝑚𝑖𝑛
𝑃𝑡𝑖

∈𝑇𝑅𝑖

(𝑊𝑃𝑡𝑖
) 

(4) 
∀ 𝑖 ∈ [1, 𝑛] 

Note is made that the selection of the optimisation algorithm depends on the 

complexity of the problem. We have used genetic algorithm (GA) because it is flexible 

enough to be tailored to a wide class of problems, from small to medium large number of 

tasks. Nevertheless, other optimisation strategies could be implemented in this stage of 

the methodological work-flow. 

Via-points selection is based on minimum energy principle; all via-points represent 

points with minimum weight. Indeed, 𝑃𝑡𝑖
 represents the via-point with minimum amount 

of energy consumption for moving on any 𝑃𝑗𝑖. 

4.3.2.1.1 Clustering 

Regions clustering is based on agglomerative technique of hierarchical and k-means 

algorithms. K-means aims to partition a set of 𝑛 elements into 𝑘 clusters minimising the 

squared error between the empirical mean of a cluster and the point in the cluster [59]. 

Hierarchical clustering can be used to generate a partition by specifying a threshold on 

the similarity (see among others [60], [59]). Hierarchical clustering is often portrayed as 

the better-quality clustering approach, but is limited because of its quadratic time 
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complexity. In contrast, K-means and its variants have a time complexity that is linear in 

the number of documents, but are thought to produce inferior clusters.  

We use a K-means algorithm that operates in hierarchical manner for clustering 

regions which respect to a distance threshold. The method operates on 3 consecutive 

steps:  

(1) Clustering (Step 1). It operates by using the central points of each region. Let 

𝑘𝑐𝑙𝑢𝑠𝑡𝑒𝑟 be the number of calculated clusters. Note is made that 𝑘𝑐𝑙𝑢𝑠𝑡𝑒𝑟 is 

hierarchically incremented until a convergence threshold is reached. The proposed 

algorithm selects via-points for each region associated to the 𝑖𝑡ℎ cluster;  

(2) Via-point selection (Step 2). It calculates via points by running T2 and T2 steps of 

the main methodological workflow (see Figure 13); and,  

(3) Outermost via-point optimisation (Step 3). The outermost via-point 𝑃𝑜𝑠
𝑖  

corresponds to the point belonging to the 𝑠𝑡ℎ region and enclosed by the 𝑖𝑡ℎ cluster, 

and is the closest to the neighbourhoods. For example, in Figure 15, the outermost 

point of the cluster1 is 𝑃𝑜3
1  which belongs to 𝑇𝑅3 and is closest to the cluster 2 and 

3.  

Having computed the outermost points, the tour is then calculated on the pre-computed 

points (see T3). 

 

Figure 15 – Hierarchical K-means clustering 
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4.3.3 Tour Construction (T3) 

Having computed via-points tour is constructed using classical TSP solver. We have 

implemented a robust TSP based on GA. GA has been triggered by initial random 

population. Tournament selection method has been used to initiate the 2-point cross-over, 

followed by flip-swap-slide mutation. Fixed number of iterations has been adopted as 

termination criterion. The effectiveness of the implemented TSP solver has been validated 

against reference solutions (please refer, for example at [61]). 

4.3.4 Tour Improvement (T4) 

RBA [62][63] is used to further improve solution. It works on a fixed tour sequence 

improving via-points location inside each region to reduce tour length. It is based on 

Euclidian distance and on the assumption that straight-line represents minimum length 

between two points.  

Considering a group of three consecutive via-points, it optimises the middle one: 𝑃𝑖 

(Figure 16). If the minimum length between 𝑃𝑖−1 to 𝑃𝑖+1 is a straight-line, the best 

position of 𝑃𝑖 is on that line. Therefore, the algorithm moves 𝑃𝑖 inside 𝑇𝑅𝑖 to obtain the 

minimum distance between 𝑃𝑖 and segment 𝑃𝑖−1𝑃𝑖+1
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 

Figure 16 – Point 𝑷𝒊 moves into a new position 𝒏𝑷𝒊.  

Figure 17 shows a 2D example with improvement via-points selection based on RBA. 

http://pubsonline.informs.org/doi/abs/10.1287/ijoc.3.4.376?journalCode=ojoc
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.3.4.376?journalCode=ojoc
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Figure 17 – red squares: initial via-points; red solid-line: initial tour; blue squares: improved via-

points; blue solid-line: improved tour. 

4.4 Results and Discussion 

EH2C has been tested on TSPN benchmarks available in literature. Gentilini et al. [46] 

provide a set of 64 TSPN test instances formed by ellipsoids and polyhedral in ℝ2 and 

ℝ3. All test instances are available from [65]. Test instances have coded name, for 

example “tspn2DE15” that means 2D test with 15 ellipses. Besides, they provide the 

optimal solution for each test.  

Using 2D ellipses instances, we compare EH2C with the optimal values and two 

different algorithms: CIH developed by Alatartsev et al. [45] and BONMIN developed 

by Gentilini et al. [46]. Results are presented in Table 1. Tour generated by BONMIN 

and EH2C for instance tspn2DE15_1 are depicted in Figure 18. 

Using 3D ellipsoid instances, we compare EH2C with the optimal values and 

BONMIN. Comparing results are presented in Table 2. Tour generated by EH2C for 

instance tspn3DE12 is depicted in Figure 19. 

Please note that either ellipses or ellipsoids refers to task regions, 𝑇𝑅𝑠. Alatartsev et 

al [45] provide 2D test instances up to 70 ellipses. Tests are available from [66]. Test 

instances have coded name, for example “30_1_5” that means one of the axis radius 

stretched from 1 to 5 times in comparison to the other axis radius. Using these instances, 

we compare EH2C with the optimal values and CIH. Comparing results are presented in 

Table 3. Diagrams comparing errors and computational times are depict in Figure 20. The 

proposed algorithm has been implemented in C++ and linked to MatLAB via MEX 
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interface. Tests have been ran on Intel Core i7-3630QM CPU 2.4GHz with 16GB RAM 

running Windows 10. Reference computational times was calculated with different 

machine: 

• CIH (Alatartsev et al. [45]) - Intel Core 2 Quad CPU 2.83 GHz and 8 GB RAM 

running Windows Vista; 

• BONMIN (Gentilini et al. [46]) -  Dell Precision T7500 with Intel Xeon 3.33 

GHz CPU and 12 GB RAM running Fedora 14. 

Table 1 - Comparison of EH2C, CIH and BONMIN on TSPN instances from 5 to 16 ellipses 

Instance 
Optimal 

value 

BONMIN CIH EH2C 

error(%) t(s) error(%) t(s) error(%) t(s) 

tspn2DE5_1 191.255 0.00 0.14 0.00 0.00139 1.09e-4 0.29929 

tspn2DE5_2 219.307 0.00 0.13 0.00 0.00093 -2.10e-4 0.25558 

tspn2DE6_1 202.995 0.00 0.24 0.00 0.00149 3.83e-3 0.25957 

tspn2DE6_2 248.860 0.00 0.18 0.00 0.00145 1.96e-4 0.27113 

tspn2DE7_1 201.492 0.00 0.3 0.00 0.00646 8.60e-2 0.26886 

tspn2DE7_2 239.788 0.00 0.25 0.00 0.00286 8.99e-4 0.26632 

tspn2DE8_1 190.243 0.00 0.37 0.28 0.00046 -9.46e-5 0.28076 

tspn2DE8_2 229.150 0.00 0.4 0.00 0.00534 0.29 0.29166 

tspn2DE9_1 259.290 0.00 0.4 0.00 0.00859 4.23 0.28528 

tspn2DE9_2 262.815 0.00 0.41 0.00 0.00704 1.861e-4 0.27524 

tspn2DE10_1 225.126 0.00 0.41 0.00 0.00850 0.15 0.28516 

tspn2DE10_2 273.192 0.21 0.35 0.00 0.00882 0.21 0.28464 

tspn2DE11_1 247.886 0.75 0.63 0.00 0.01221 2.80e-5 0.29400 

tspn2DE11_2 258.003 0.00 0.39 0.00 0.01236 6.66e-5 0.30048 

tspn2DE12_1 265.858 0.00 0.55 0.00 0.01490 4.13e-5 0.30796 

tspn2DE12_2 312.493 0.50 0.86 0.00 0.01916 0.27 0.30329 

tspn2DE13_1 278.876 0.00 1.15 0.00 0.02400 7.52e-5 0.33388 

tspn2DE13_2 324.271 0.20 0.49 0.00 0.02278 0.21 0.31025 

tspn2DE14_1 310.794 0.00 0.95 0.00 0.03766 2.82e-2 0.31652 

tspn2DE14_2 270.638 0.56 0.69 0.04 0.02693 4.81 0.31630 

tspn2DE15_1 289.716 0.22 1.08 0.00 0.04500 0.20 0.32337 

tspn2DE15_2 293.357 0.01 1.20 1.36 0.04731 3.96e-2 0.33464 

tspn2DE16_1 369.945 1.09 2.84 6.24 0.04467 4.21 0.33365 

tspn2DE16_2 295.130 0.00 1.20 0.00 0.05375 7.53 0.36789 
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Table 2 - Comparison of EH2C and BONMIN on TSPN instances from 5 to 12 ellipsoids 

Instance 
Optimal 

value 

BONMIN EH2C 

error(%) t(s) error(%) t(s) 

tspn23DE5 253.495 0.00 0.20 -1.43e-4 0.29600 

tspn3DE6 276.996 0.00 0.27 1.35e-4 0.25854 

tspn23DE7 323.689 0.00 0.32 8.50e-5 0.26130 

tspn3DE8 296.918 0.00 0.46 0.9225 0.26813 

tspn3DE9 312.920 0.0091 0.44 1.7946 0.28457 

tspn3DE10 328.627 0.00 0.73 0.3923 0.28876 

tspn3DE11 301.307 0.00 0.58 0.0016 0.29771 

tspn3DE12 320.575 0.00 1.32 1.3513 0.31169 

Table 3 - Comparison of EH2C and CIH on TSPN instances from 20 to 70 ellipses 

Instance 
Optimal 

value 

CIH EH2C 

error(%) t(s) error(%) t(s) 

20_1_1 320.720 1.81 0.089 5,35 0.43153 

20_1_5 313.497 3.11 0.101 2,04 0.38049 

20_1_10 276.793 0.00 0.182 -1,80 0.39265 

30_1_1 383.578 1.46 0.363 1,69 0.44931 

30_1_5 316.922 0.00 0.443 3,62 0.47585 

30_1_10 321.188 0.00 0.654 -3,14 0.45994 

40_1_1 421.339 2.41 0.625 -0,61 0.53795 

40_1_5 368.802 0.00 1.140 4,78 0.61665 

40_1_10 312.353 0.75 1.211 11,28 0.57299 

50_1_1 438.182 4.27 1.595 -0,27 0.64281 

50_1_5 457.114 2.12 1.904 0,60 0.71835 

50_1_10 397.472 3.34 2.182 15,66 0.70082 

60_1_1 563.603 7.99 2.355 6,87 0.78522 

60_1_5 563.438 0.38 2.320 5,89 0.79706 

60_1_10 499.973 3.60 2.621 5,71 0.78940 

70_1_1 622.098 3.39 3.326 7,23 0.93148 

70_1_5 587.004 3.43 3.921 5,23 0.95362 

70_1_10 509.905 0.02 4.713 4,56 0.97601 
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Figure 18 - tour generated for instance tspn2D15_1: a) BONMIN solution [46]; b) EH2C solution   

 

 

Figure 19 - Instance tspn3DE12 solved by EH2C 
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Figure 20 – Comparing errors and computation times among BONMIN, CIH and EH2C 
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Results show that computation time for all methods increases as the number of tasks, 

𝒏, increases. This trend was expected because the complexity for solving test instances 

increases as 𝒏 increases. Complexity of computational process can be assessed by 

comparing computation time for tspn2DE16 (Table 1) and computation time for tspn2D5 

(calculated as average between instance “…_1” and “…_2”). BONMIN increases by 15 

times in computation time, CIH by 42 and EH2C by only 1.2. This results translate saying 

that the computation time of CIH is strongly coupled to 𝒏, although it is the fastest method 

up to 30 ellipses. BONMIN is the slowest one but the most accurate and its complexity 

increases less than CIH. EH2C appears to have the most effective computation process. 

Indeed, the number of neighbourhoods affects slightly the computation time. 

Furthermore, EH2C is only slightly coupled to 𝒏. This aspect is strengthened by test 

instances up to 70 ellipses. Comparing computation time for 70 and 20 ellipses (calculated 

as average among “…_1_1”, “…_1_5” and “…_1_10”), EH2C only increases by 2 times 

in computation time while CIH does by 32. To better understand how computation time 

increases as 𝒏 increases we can compare instances “70_...” (Table 3) with “tspn2D5_...” 

(Table 1). Results show that CIH increases by 3437 times in computation time; whereas 

EH2C increases only by 3.3. 

Table 4 shows fractions of the time needed for solving 2D instances. Data show that, 

unsurprisingly, the computation time for all steps increases as 𝑛 increases. Unexpected 

results are related to step computation time of T3; indeed, it almost takes the majority of 

the time (90%) with few instances up to 50% with 70 ellipses. This is in contrast with all 

other methods where time for initial tour construction is the smallest and however smaller 

than time for tour improvement [46]. Other important result is related to step T1: the 

computation time rate increases more than others up to 25% for 70 ellipses. Therefore, 

we can conclude that step T1 predominate steps T2 to T4, when the number of instances 

gets relatively large. 

Same patterns for T1, T2, T3 and T4 are highlighted by 3D instances (Table 5). 

Besides, comparing the time needed for solving ellipses and ellipsoids there are no 

differences; this means that EH2C is not affected by neighbourhoods’ geometry. This is 

in contrast with others methods. For example, Gentilini et al. [46] claim that 3D instances 

are harder to solve than 2D ones, given the same number 𝑛 of neighbourhoods. Besides, 
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authors state that dimensional factor affects computation time too, i.e. larger 

neighbourhoods are harder to solve than instances with smaller ones when number 𝑛 is 

fixed. However, there are instances for which the opposite is true; therefore, other aspects 

not considered in the analysis may also influence computation time. 

Table 4 – Fractions of time for solving 2D instances by EH2C  

Instance Step T1 (s) 

distances 

Step T2 (s) 

via-points 

Step T3 (s) 

construction 

Step T4 (s) 

improvement 

TOT (s) 

tspn2DE5_1 0,00609 0,03988 0,23664 0,01668 0,29929 

tspn2DE5_2 0,00210 0,00994 0,23148 0,01206 0,25558 

tspn2DE6_1 0,00223 0,00731 0,23542 0,01461 0,25957 

tspn2DE6_2 0,00205 0,00677 0,24917 0,01313 0,27113 

tspn2DE7_1 0,00283 0,01098 0,24140 0,01365 0,26886 

tspn2DE7_2 0,00267 0,00895 0,24118 0,01352 0,26632 

tspn2DE8_1 0,00386 0,01271 0,24670 0,01750 0,28076 

tspn2DE8_2 0,00385 0,01659 0,25141 0,01981 0,29166 

tspn2DE9_1 0,00548 0,00839 0,25285 0,01857 0,28528 

tspn2DE9_2 0,00404 0,00831 0,24953 0,01336 0,27524 

tspn2DE10_1 0,00492 0,00866 0,25630 0,01528 0,28516 

tspn2DE10_2 0,00507 0,00894 0,25661 0,01402 0,28464 

tspn2DE11_1 0,00641 0,01040 0,26153 0,01566 0,29400 

tspn2DE11_2 0,00629 0,00978 0,26958 0,01484 0,30048 

tspn2DE12_1 0,00729 0,01023 0,27236 0,01808 0,30796 

tspn2DE12_2 0,00841 0,01124 0,26608 0,01756 0,30329 

tspn2DE13_1 0,00872 0,01162 0,26774 0,04581 0,33388 

tspn2DE13_2 0,00928 0,01263 0,26924 0,01909 0,31025 

tspn2DE14_1 0,01050 0,01347 0,27155 0,02100 0,31652 

tspn2DE14_2 0,01050 0,01387 0,27209 0,01986 0,31630 

tspn2DE15_1 0,01153 0,01319 0,27878 0,01986 0,32337 

tspn2DE15_2 0,01311 0,01922 0,28044 0,02187 0,33464 

tspn2DE16_1 0,01327 0,01898 0,27810 0,02330 0,33365 

tspn2DE16_2 0,01696 0,01902 0,30130 0,03061 0,36789 

20_1_1 0,02858 0,07711 0,28053 0,04530 0,43153 

20_1_5 0,02294 0,02896 0,28155 0,04704 0,38049 

20_1_10 0,02281 0,03983 0,27633 0,05368 0,39265 

30_1_1 0,04372 0,04386 0,31158 0,05014 0,44931 

30_1_5 0,04556 0,03306 0,31948 0,07775 0,47585 

30_1_10 0,04539 0,04066 0,31944 0,05444 0,45994 

40_1_1 0,07778 0,04241 0,36957 0,04819 0,53795 

40_1_5 0,08987 0,06558 0,37158 0,08963 0,61665 

40_1_10 0,08079 0,04093 0,36406 0,08721 0,57299 

50_1_1 0,12448 0,05324 0,40909 0,05600 0,64281 
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50_1_5 0,12494 0,07239 0,41832 0,10269 0,71835 

50_1_10 0,12981 0,06171 0,41503 0,09427 0,70082 

60_1_1 0,17937 0,08087 0,46062 0,06436 0,78522 

60_1_5 0,18394 0,08000 0,46578 0,06734 0,79706 

60_1_10 0,18260 0,07427 0,46192 0,07062 0,78940 

70_1_1 0,24672 0,09154 0,51575 0,07747 0,93148 

70_1_5 0,24873 0,09347 0,51123 0,10018 0,95362 

70_1_10 0,24713 0,09094 0,51197 0,12596 0,97601 

Table 5 - Fractions of time for solving 3D instances by EH2C 

Instance Step T1 (s) 

distances 

Step T2 (s) 

via-points 

Step T3 (s) 

construction 

Step T4 (s) 

improvement 

TOT (s) 

tspn23DE5 0,00994 0,04979 0,22008 0,01620 0,29600 

tspn3DE6 0,00717 0,01105 0,22317 0,01715 0,25854 

tspn23DE7 0,01013 0,00885 0,22777 0,01455 0,26130 

tspn3DE8 0,01148 0,01048 0,22953 0,01664 0,26813 

tspn3DE9 0,01472 0,01489 0,23800 0,01695 0,28457 

tspn3DE10 0,01959 0,01142 0,23857 0,01918 0,28876 

tspn3DE11 0,02248 0,01164 0,24505 0,01855 0,29771 

tspn3DE12 0,02787 0,01444 0,24759 0,02179 0,31169 

 

 

We have generated a quantitative index to predict model complexity, as represented 

equations (5) and (6). We consider only ellipse instances neglecting geometric and 

dimensional factors. 

CIH: 𝑡 = 0.001𝑛2 − 0.02𝑛 + 0.1122 (5) 

EH2C: 𝑡 = 0.0118𝑛 + 0.1448 (6) 

Computation time and forecasted time by equations (3) and (4) are represented in 

Figure 21. Time needed for solving instances by CIH follows a 2nd degree polynomial; 

whereas EH2C is approximated with a linear polynomial.  

Accuracy is comparable for all methods up to 15 ellipses. Then, error has fluctuation 

for both CIH and EH2C and there is no clear pattern. EH2C fluctuations are likely related 

to hierarchical clustering but, we have not found a clear relation yet. EH2C finds new 

optimal values compared to the well-known values in literature:  for instances 20_1_10, 
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30_1_10, 40_1_1 and 50_1_1 equal to 271.811, 311.103, 418.769 and 436.999 

respectively. 

 

Figure 21 - Polynomial fitting functions  

4.5 Summary and Remarks 

We have proposed a new method - EH2C – for solving the TSPN problem. It 

decomposes TSPN into four sub-problems: (T1) find minimum distance among regions; 

(T2) select best initial via-points for each region; (T3) construct initial tour; (T4) improve 

tour by modifying via-points. 

EH2C was evaluated on three different test instances:  

- 2D space with small numbers of ellipses comparing with two different methods;  

- 2D space with medium numbers of ellipses comparing with the best existing 

method;  

- 3D space with small numbers of ellipsoids comparing with the best existing 

method.  

Results with small numbers of ellipses 𝑛 showed that EH2C is able to solve these 

instances close to the optimum value and for medium 𝑛 it finds even better solutions 

compared to the best know solutions. EH2C is the fastest method with medium 𝑛 and 
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appears to be the best method in terms of complexity of computational process as it is 

slightly affected by 𝑛. 

Benchmarking studies have highlighted that the complexity of the TSPN solution 

mostly depends on the following properties of the regions: (1) number; (2) topology; (3) 

size. For instance, BONMIN suffers when solving 3D geometry because of the 

topological complexity to compute the optimal tour. Instead, the proposed EH2C method    

appears to be insensitive to topology. Further investigation is needed to better understand 

the effect of size.
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5 AUGMENTED 𝑬𝑯𝟐𝑪 FOR TASK 

SEQUENCING OPTIMISATION 

This chapter presents the proposed methodology to solve the robotic task sequencing 

problem using A-EH2C. The proposed method optimises both sequence and via-poses by 

augmenting T-space with robot attributes. We have applied A-EH2C for solving task 

sequencing of an inspection robots with optical camera system. 

5.1 Augmented EH2C 

We have augmented EH2C algorithm for solving robotic task sequencing problem. It 

is based on integration of multiple attributes to identify optimal via-poses.  

As in T-space there are no robot information, we have defined an index for each 

attribute in order to evaluate the attribute impact on sequence of tasks. 

A-EH2C flowchart is depicted in Figure 22. For each position 𝑷𝑡𝑖
 within a task region, 

𝑇𝑅, Euclidean distance attribute 𝑊𝑑 is computed (see also Equation (3) in Chapter 4). 

Then, a set of orientation 𝑶𝒓 is sampled, to generate a set of poses 𝚲 = {𝛌i, … , 𝛌m}, where 

𝝀𝑠 have same position 𝑷 and different orientations 𝑶𝒓𝑠.  

Three robot attributes are calculated for each generated pose 𝝀: 

(1) pose accuracy’s index 𝜆𝐴;  

(2) pose reachability’s index 𝜆𝑅; and,  

(3) pose collision’s index 𝜆𝐶.  
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Poses eligibility is calculated for each task region 𝑇𝑅 and sequence of tasks is generated 

via elected 𝚲 which has same position 𝑷 for all poses 𝝀𝑠.  

In this way, although there is no information on path planning, we can generate an 

optimal sequence which corresponds to the best feasible sequence. 

Select TR(i)

Select Pti ϵ TR(i) 

Calculate distance 
dob(λ(j))=||(Pti+RS)-WP)||

k=1

n = # of task regions (TRs)
m = # of pose samples
WP = workpiece
dob(j) = distance between end-effector and WP
Rs = sphere radius (scanner)

k>1

ε < tol

k>2

yes

P(i)=Pti

W(i)=W(Pti)
Wopt(i)={P(i)|W(i)}

k<ktr
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ε >0

ε =W(Pti-1)-W(Pti)

yes

i n

no

i=1

Wopt

no

yes

Orientation Or 
sampling 

dob(λ(j))<0

Calculate distance 
Wd=Σl||Pti-PTR(i,l)||

j=1

λC=λC+1

λC=0

j m

Solve IK   #q(λ(j))

λR(j)=#q(λ(j))/8

yes

yes

Calculate pose accuracy 
λA(j)

j=j+1 no

AcI=mean(λA)
RI=mean(λR)

CoI=λC/m

W(P(k))=Wd+RII+AcI+CoI

k=k+1

i=i+1

no

no

 

Figure 22 - Flowchart of the A-EH2C  

5.1.1 Accuracy Index (𝑨𝒄𝑰) 

Accuracy index 𝐴𝑐𝐼 aims to evaluate the quality of task execution. It is calculated as 

average of all pose accuracy indices 𝜆𝐴𝑠 within set of poses 𝚲.  

𝐴𝑐𝐼 = 𝑚𝑒𝑎𝑛(𝜆𝐴𝑠) (7) 
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5.1.2 Reachability Index (𝑹𝑰) 

Reachability index 𝑅𝐼 aims to evaluate the feasibility degree of the poses. Solving 

inverse kinematics for each pose 𝝀 of the set 𝚲, a pose reachability 𝜆𝑅  is calculated as 

number of solutions by admissible solutions. 

𝜆𝑅 =
𝑛𝑜. 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑛𝑜.  𝑜𝑓 𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠
 (8) 

 

𝑅𝐼 is calculated as average of all pose reachability indices 𝜆𝑅𝑠 within set of poses 𝚲. 

𝑅𝐼 = 𝑚𝑒𝑎𝑛(𝜆𝑅𝑠 )  (9) 

5.1.3 Collision Index (𝑪𝒐𝑰) 

Collision index aims to evaluate the collision tendency of a pose. If collision exist, 

count collision, not count. For each pose 𝝀, pose collision index 𝜆𝐶 is 1 if collision exist, 

otherwise 0. 

𝜆𝐶 = {
1  𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑡𝑟𝑢𝑒
0 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑓𝑎𝑙𝑠𝑒

 (10) 

 

𝐶𝑜𝐼 is calculated as average of all pose collision indices 𝜆𝐶𝑠 within set of poses 𝚲. 

𝐶𝑜𝐼 = 𝜆𝐶𝑠/𝑚 (11) 

5.2 Results and Discussion 

The proposed methodology has been applied using a robotic metrology 3D scanner 

measuring the right-front door of automotive SUV (Figure 23). 

Door is one of the key element in automotive industries and its measurement is very 

important to reduce defect such as gap and flush during the assembly process between 

doors and bodies.  
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Gap and flush measurement is commonly carried out to inspect fit and alignment 

between two surfaces, for example, as said before, the gap between car door and body 

panels. 

 

Figure 23 - Right-front door of automotive SUV door [67] 

Each component may be manufactured by different suppliers, potentially in different 

locations, using many wide and varied processes that eventually all have to fit together to 

make one product. This means that fit and quality control is vital, gap and flush 

measurement is highly beneficial. If fit and finish is out of specification it not only affects 

the aesthetics of the product but also the performance, efficiency and risk of failure. 

For this reason, is crucial to be able to measure a door, in short time and with a high 

accuracy. Figure 24 shows the robot cell installed at University of Warwick, WMG.  

 

Figure 24 - Robot cell installed at WMG 
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5.2.1 System Description 

The metrology system entails (1) Hexagon Metrology WLS400A (Figure 25) as end-

effector on a 6-axis ABB IRB 6620 robot. 

 

Figure 25 - Hexagon Metrology WLS400A 

WLS400A is a white light scanner measuring system equipped with 3 x 4.0 megapixel 

digital cameras. It has a field of view equal to 500 x 500 mm, 230 mm as depth of field 

and an optimal working distance of 780 mm. 

IRB 6620 is a six axes robot. It has a position repeatability of 0.03 mm and his working 

data are showed in Table 6. 

Table 6 - Robot technical data 

Axis Working range Max. speed [°/s] 

1. Rotation +170° to -170° 100 

2. Arm +140° to -65° 90 

3. Arm +70° to -180° 90 

4. Wrist +300° to -300° 150 

5. Bend +130 to -130° 120 

6. Turn +300 to -300° 190 
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5.2.2 Task Planning 

Task region is the locus of feasible points, which can be visited the end-effector 

(WLS400A) to perform that task. For a camera vision system, the task corresponds to 

feasible measurement volume, i.e. the locus of feasible capture points 𝑃𝐶.    

Task region is defined by: optimal working distance (𝑟𝑜𝑝𝑡 = 780 𝑚𝑚); depth of field 

(𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛 = 230 𝑚𝑚); minimum reflection feasible angle (𝜙𝑚𝑖𝑛 = 15°); maximum 

reflection feasible angle (𝜙𝑚𝑎𝑥 = 35°). 

Region is built assuming focal point 𝑃𝑓 at the centre of field of view (Figure 26). 𝑟𝑜𝑝𝑡 

generates, around 𝑃𝑓, a sphere surface that represent the locus of optimal capture points. 

Depth of field implies a variable capture distance within range [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥]. This working 

range distance generates an offset respect to sphere surface. Normal of field of view 

represents z-axis in the point of focus reference. Feasible angles 𝜙𝑚𝑎𝑥, evaluated respect 

to z-axis, implies a volume reduction to a sphere calotte. Considering rotation limits of 

joint 6 (𝜃6𝑚𝑖𝑛 and 𝜃6𝑚𝑎𝑥)  we overall define task region as depicted in Figure 26.  

 

     

 

Figure 26 - Task region definition for robotic optical scanner WLS400A 
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5.2.3 Task Sequencing 

Firstly, we have characterised all robot attributes based on the described optical vision 

system.  

5.2.3.1 Pose Reachability Index 

ABB IRB 6620 is a 6 axes robot; therefore, it has 6 DoF. Such a robot admits up to 8 

solutions; which are the number of admissible solutions. 

𝑅𝐼 = 𝑚𝑒𝑎𝑛 (
𝑛𝑜.𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

8
)  

5.2.3.2 Accuracy Index 

Accuracy of capture point 𝑃𝑐 of the Hexagon WLS400A is related to image capture 

problem. Accuracy is affected by three main problem: light reflection; material properties 

of the workpiece and optics. 

Light reflection 

When we take a photo, is important to illuminate the object so that every point of it is 

reached by the same amount of light. If the surface isn’t flat, however, is possible that 

some point of the surface may be in the shade. To overcome this problem the position of 

the light is crucial (Figure 27).  

 
Figure 27 - a) side lighting; b) front lighting 

The two figures show with the blue light triangle (  ) the Field of view of the 

camera in the light direction and with the red waves (       ) the surface reached by the 
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light. It is clear from Figure 27-a that a side lighting creates more shadows especially if 

the surface has a high roughness. Figure 27-b Figure 23shows the best configuration with 

the light source and the camera on the same direction and normal to the surface. In this 

case, all the point in the Field of View (FoV) of camera are illuminated homogeneously. 

Material properties 

There are two properties that can influence how light interact with an object; roughness 

and colour. In Figure 28 is shown in red the specular reflection and in yellow the diffuse 

reflection (scatter). In the former, the camera is placed normal to the surface in the 

specular beam, where most likely, the photo will be overexposed. In the latter Figure 28-

b is shown what happens if the camera is placed with a higher angle. The lens is far from 

both beams and the photo will appear darker, underexposed. 

For the reasons mentioned above, the best predicted position is within a range between 

the specular and great angles Figure 29. 

 

Figure 28 - a) overexposed; b) underexposed 
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Figure 29 - Optimal expected position 

Optics 

With the regulation of the exposure in an optical system we can decide the amount of 

light that reaches the sensor. It means that the system can move closer or farther from the 

point kipping an acceptable quality image as shown in Figure 30.  

 

Figure 30 - Exposure 

Moving close or further the image quality remain acceptable however there are some 

drawbacks in both cases Figure 31 
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Figure 31 - Quality difference moving from 1 to 2 

Moving closer to the point in position 1 higher quantity of light reaches the camera. 

To ensure a good quality of the photo we should reduce aperture, decrease ISO and 

increase shutter speed. Moreover, we will focus on a smaller area so less point will be 

measured. On the other side, moving to position   2   we will focus on a bigger area but 

since less quantity of light arrives to the sensor we should increase aperture, set higher 

ISO and change shutter speed. All this changes leads to a lower quality of the image even 

though more points are measured in once. 

CI calculation 

For evaluating capture quality we have used the coverage index (CI) which is defined 

as ratio between valuate area covered by point cloud and nominal area of the geometry. 

It can assume values between zero and one. 

0 < 𝐶𝑜𝑣𝑒𝑟 𝐼𝑛𝑑𝑒𝑥 =
𝑉𝑎𝑙𝑢𝑎𝑡𝑒 𝐴𝑟𝑒𝑎

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐴𝑟𝑒𝑎
< 1 

CI is calculated respect incident angle 𝜙 using a mapping function of WLS400A 

(Figure 32) developed at WMG (University of Warwick). 
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Figure 32 - CI map for WLS400A 

Discretising turn angle 𝜃6 in 𝑚 angle samples. For a given camera position, we 

calculate CI as average of 𝐶𝐼𝜃 that is calculated as average of 𝐶𝐼𝑃𝑐
 between the camera 

and the sampled points in the FoV (Figure 33): 

𝐶𝐼 =
∑ 𝐶𝐼𝜃𝑖

𝑚
𝑖

𝑚
      𝐶𝐼𝜃𝑖

=
∑ 𝐶𝐼𝑃𝐶𝑗

𝑘
𝑗

𝑘
 

 

 

Figure 33 - Sampling points within FoV and related incident angle evaluation 
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5.2.3.3 Collision Index 

We evaluate collision as intersection between card door and a spherical envelop of the 

scanner. WLS400A scanner is bounded by a structure of protection (Figure 24). Then, the 

spherical envelope of the scanner is obtained considering as centre of the sphere the mean 

point of the cage and as radius the biggest distance from a point of the scanner to this mean 

point (Figure 34). 

Collision is defined as binary state: if collision exist 1 (see Figure 35) otherwise 0. 

 

Figure 34 - Scanner envelope 

 

Figure 35 - Collision between scanner envelope and workpiece 
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5.2.3.4 Case-in-point 

Robot cell has been developed in Matlab. The proposed algorithm has been 

implemented in C++ and linked to MatLAB via MEX interface.  

In literature, there is no benchmarks for task sequencing problem, this impeded us to 

compare our approach with existing ones. 

In order to assess the benefits of a such multi-attribute approach, we have compared 

two task sequencing solutions generated after an iteration by using only one attribute 

(distance) and all attributes (distance, accuracy, reachability and collision) respectively. 

In the first case, as depict in Figure 36, obtained via-poses present collisions with the 

workpiece. Therefore, further iterations are needed to generate a feasible solution and 

more computation time are required. In the second case, using all attributes, no more 

actions are needed; indeed, as show in Figure 37, the generated solution is feasible 

because no collisions occur. Besides, obtained via-points are the optimum ones in terms 

of measurement quality, robot reachability and path length.   

 

Figure 36 -Robot cell representation in Matlab environment: task sequencing solved with distance 

attribute 
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Figure 37 - Task sequencing solved with all attributes: distance, accuracy, reachability and collision  
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6 CONCLUSIONS AND FURTHER WORKS 

This chapter briefly summarises the present research and points out the main 

contributions. Besides, it discusses further works in robotic task sequencing.   

6.1 Conclusions 

This dissertation addresses the technical problem of finding near-optimal task 

sequencing for robotic systems, with the ultimate goal of minimising computational time 

to enable dynamic robot programming in the case of multiple and coupled tasks’ 

attributes. The dissertation introduces the concept of multi-attribute task sequencing, as a 

paradigm to solve coupled and hierarchical robotic tasks. Task sequencing problem is 

modelled using the Travelling Salesman Problem with Neighbourhoods (TSPN) 

approach.  

The dissertation has proposed a new method - Enhanced Heuristic with Hierarchical 

Clustering (EH2C) – for solving the TSPN problem using Euclidean distance. It 

decomposes TSPN into four sub-problems: (T1) find minimum distance among regions; 

(T2) select best initial via-points for each region; (T3) construct initial tour; (T4) improve 

tour by modifying via-points. EH2C was evaluated on three different benchmarks. Results 

show that EH2C is able to find near-optimal values, and in some cases the computed 

solution is even better than the best-known solutions, and faster than well-established 

heuristic methods.  

 Then, the dissertation has proposed a new methodology for solving robotic task 

sequencing named A-EH2C which enables to check the feasibility of reachability, 
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collision and pose accuracy. A-EH2C has been tested for solving task sequencing of an 

inspection robots with optical camera system. 

The proposed method can be exploited to any industrial robotic system carrying out 

repetitive tasks; besides, it can be used for sequencing of those tasks which require 

automatic tool movements, such as navigation problems. 

The research opens up new avenues for dynamic robot programming which enables 

real-time robot adjustments. 

6.2 Key Findings 

Results has showed EH2C is the fastest method with medium number of tasks and 

appears to be the best method in terms of complexity of computational process as it is 

only slightly affected by the number of tasks. 

Benchmarking studies have highlighted that the complexity of the TSPN solution 

mostly depends on the following properties of the regions: (1) number; (2) topology; (3) 

size. For instance, BONMIN suffers when solving 3D geometry because of the 

topological complexity to compute the optimal tour. Instead, the proposed EH2C method 

appears to be insensitive to topology. Further investigation is needed to better understand 

the effect of size. 

6.3 Further Works 

Further research is clearly needed in the task sequencing domain. This section provides 

several possible routes for researchers involved in robotic task sequencing. 

6.3.1 EH2C  

The proposed method for TSPN points out good results, though it presents error 

fluctuations with several instances. Fluctuation seems to appear when some ellipses are 

in contact or in overlapping. This should be better investigated and an overlapping logic 

should be implemented (as in [68]).  Further, improving of the hierarchical clustering 

algorithm could improve solution quality. 
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Besides, the complexity of the TSPN solution mostly depends on the following 

properties of the regions: (1) number; (2) topology; (3) size. EH2C method appears to be 

insensitive to topology. Further investigation is needed to better understand the effect of 

size. 

6.3.2 A-EH2C Attributes  

Currently, the proposed method evaluates collisions between end-effector and 

workpiece. There are other collisions to take into account: end-effector and obstacles; 

robot and obstacles; end-effector and robot; robot and obstacles; robot and workpiece. An 

improvement of the collision attribute is required to increase the feasibility of the solution. 

 

This method has a general formulation and can be applied to all sequencing problems. 

It can be exploited for any industrial robot that carries out tasks or in all navigation 

systems.  

6.3.3 Obstacles 

The proposed method has neglected obstacles within robot workspace. Obstacles can 

be classified in two way: fixed and mobile. The first one could be added as further 

attribute considering their volume as unfeasible robot space. Instead, obstacle movements 

require robot real adjustment to avoid collision    

The proposed method is overlooking the dynamic reprogramming of the robot which 

opens up the possibility to real adjust robot according to obstacles movements; additional 

research is needed to implement this aspect.   

6.3.4  Task Sequencing and Path Planning Integration 

Researchers are spending time on task sequencing and path planning integration. 

Kovac [50] introduces a novel model problem: Traveling Salesman Problem with 

Neighbourhoods and Durative visits (TSP-ND) for task integration. Additional research 

is needed in this direction as it is still not clear how made a whole integration to generate 

the optimal path in reasonable time. 
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6.3.5 Robot Dynamics 

The proposed method neglects robot movements as well as motion law; this allow us 

to have only an approximation of cycle time. Future works should implement further 

aspects related to robot movements in order to include the time dimension into solution 

process. Researches are needed in this direction to understand how formalised this aspect.   

6.3.6 Task Sequencing Benchmarks 

Although there exist instances for TSP, TSPN and CETSP, there is no benchmarks for 

task sequencing problem. This impedes to compare existing approaches. For this reason, 

researchers use different case study to test their approaches solving specific case as well 

as features and constraints. Developing a benchmark for robotic task sequencing problem 

is an open research question.   
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