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1 State of the art 

1.1 Introduction  

 

1.1.1 Ischemia 

Cardiovascular diseases (CVDs) are the principal cause of death in the world (Figure 1), 

accounting for more than 17.3 million deaths per year. More than 15% of these deaths 

happened before the age 60 and could have been prevented. In Europe alone, over 4 

million deaths occur each year due to CVD being the leading cause of death and loss of 

disability-adjusted life years (DALYS), a measure of overall disease burden. This disease 

affects both women and men being responsible for 42% of all deaths of European women 

and 38% of men below 75 years old [1]. Additionally, the treatment for CVD involves 

high costs in developed countries. For instance, in the United States in 2010, the medical 

costs were about $273 billion and are expected to triple by 2030 [2].  

 

Figure 1 – Distribution of major causes of death, including CVDs. 

 

CVD comprises diseases of the heart, vascular diseases of the brain and diseases of blood 

vessels. Among others disorders, CVD also includes ischemia which is characterized by 
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a suppression of blood supply to a tissue being the ischemic heart disease the main 

problem within CVDs and major cause of death of most western countries. Myocardial 

infarction (MI) may be connected to coronary heart disease (CHD) and it is defined as 

the myocardial cell death provoked by prolonged ischemia [3]. Ischemia can be caused 

by blockages due to an embolus or atherosclerosis resulting in tissue hypoxia and 

inflammation. When ischemia occurs, and thus an imbalance between oxygen supply and 

demand, a portion of the heart suffers ischemic necrosis and so a remodeling process 

starts in order to recover the cardiac loss. This process is responsible for modifications of 

myocyte biology, myocardial, extracellular matrix (ECM) and geometry of the left 

ventricular chamber. It has been divided into two phases: an early phase within 72 hours 

and a late phase, beyond 72 hours.  As a result of following inflammation during the early 

phase, the infarct zone expands and human cardiac myocytes fails dealing to a defect on 

contractile function. In the late remodeling phase, as a result of collagen scar maturation, 

tissue fibrosis, distortion of ventricular shape and wall-thinning are experienced. Only 

when the tensile strength balances the distending forces of the heart the process is 

interrupted [4]. When blood supply is deficient to a limb, acute limb ischemia occurs 

which can deal to morbidity, amputation or even death when treatment is delayed [5].  

Nowadays, therapies to treat ischemia include medications, percutaneous interventions 

and surgery. However, these strategies only diminish the symptoms and do not allow the 

tissue to regenerate and in more severe cases organ transplantation is the only alternative. 

Consequently, new strategies such as the use of minimally invasive injectable therapeutic 

hydrogels in order to promote neovascularization by delivering growth factors constitutes 

a promising approach to enhance blood flow, currently known as therapeutic angiogenesis 

[6]. Pro-angiogenic strategies may benefit more than 300 million people in the western 

countries [7].  
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1.1.2 Vascularization 

The vessel growth is induced by several stimuli such as ischemia, hypertrophy, wound 

healing and inflammation [8].   

Three processes contribute for the formation of new blood vessels: vasculogenesis, 

angiogenesis and arteriogenesis (Figure 2). The first one is connected to the formation of 

new blood vessels through the differentiation of endothelial progenitor cells (EPCs) or 

angioblasts in mature endothelial cells (ECs) creating primitive vessel networks. The 

EPCs can be derived from peripheral blood or bone marrow and are usually identified as 

CD34, Flk-1 or CD133 antigen-positive cells [9]. Angiogenesis is responsible for the 

formation of more complex vessels networks by the formation of new vascular structures 

from pre-existing ones. Accordingly, matrix metalloproteinases (MMPs) released by 

activated ECs degrade the surrounded extracellular matrix (ECM) forming new gaps to 

where cells migrate and sprout into novel blood vessels. ECs stimulation occurs by the 

action of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor 

(bFGF). Hence, large caliber vessels can be subdivided into multiple new vessels, a 

process called intussusception process. Angiogenesis contributes to some physiological 

processes like wound healing, ovulation, placenta and ocular maturation [10-12]. Finally, 

arteriogenesis is responsible for the development and remodeling of pre-existing small 

arterioles into more caliber vessels. It occurs as a consequence of local changes in shear 

stress-induced accumulation of blood-derived mononuclear cells at the sites of arterial 

stenosis, occurring outside the ischemic area [8]. For a long time, it was believed that 

vasculogenesis process occurred only during embryonic development, now it’s known 

that neovascularization in the adult includes both angiogenesis and arteriogenesis as well 

as a recapitulation of the embryonic processes. In adult life, endothelial cells, smooth 

muscle cells (SMCs) and other vascular cells are inactivated except when stimulated by 

inflammation, wounding, hypoxia or ischemia [6, 13, 14].  
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Furthermore, maturation and stabilization of the new formed vessels are important in the 

formation of mature blood vessels and it is done by pericytes (PCs) and SMCs, 

suppressing also the endothelial cell growth. It happens through the action of growth 

factors such as platelet derived growth factor (PDGF) or angiopoietin-1 (Ang-1). If this 

event doesn’t occur as the blood vessels grow, they may suffer regression, be 

disorganized, permeable and hemorrhagic [15]. Consequently, when designing new 

vascularization approaches the moment on which maturation occurs is a relevant 

parameter. On one hand, if it occurs in an early stage, there will be no space for blood 

vessels elongation and not the whole tissue will be supplied with nutrients. On the other 

hand, if it begins too late vessels may probably regress and hence no functional blood 

vascularization will be formed [13]. 
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Figure 2 – Blood vessel formation. Adapted from [14]. 
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1.1.3 Hypoxia and Angiogenic factors 

Endogenous angiogenesis is stimulated by hypoxia or ischemia due to arterial occlusion. 

Subsequently, formation of additional vasculature is initiated by the combined work of 

upregulated angiogenic growth factors and activated cellular components on circulation 

[6, 16]. 

Vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and 

hepatocyte growth factor (HGF) have been identified as the most predominant factors in 

the upregulation of angiogenic processes, being the two firsts the most studied ones.   

 

1.1.4 VEGF 

VEGFs, a family of glycoproteins, promote angiogenesis by binding to its receptors on 

the surface of endothelial cells, stimulating the survival, growth and proliferation of 

vascular endothelial cells [17] as well as enhancement of its permeability and production 

of interstitial collagenase and plasminogen activators. In healthy humans, the levels of 

VEGF are low, increasing as a result of hypoxia and reactive oxygen species (ROS). It 

diffuses through the interstitial space binding to the ECM and surface receptors of cells 

and thus creating a gradient concentration which attracts endothelial sprouts towards 

hypoxic sites [7]. 

The VEGF family encompasses structurally related proteins: VEGF-A (VEGF-1 or 

simply VEGF), VEGF-B, VEGF-C (or VEGF-2), VEGF-D, VEGF-E and placental-

derived growth factor (PlGF). Human VEGF-A monomers occur as 5 different isoforms: 

VEGF145, VEGF189, VEGF206, VEGF121 and VEGF165 being this last one the most 

abundant and active form [18].They differ by their heparin binding capacity. Longer 

VEGF isoforms (VEGF165 and VEGF189) bind heparin remaining more attached to the cell 

surface or to heparan sulfate of the ECM. Contrary, the shorter VEGF isoform (VEGF121) 
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does not contain heparin-binding domains, is more soluble and doesn’t bind to ECM [16]. 

Endothelial cells are the principal target of VEGF. VEGF can bind to three homologous 

membrane tyrosine kinases receptors: VEGFR-1 (Flt-1) and VEGFR-2 (KDR/Flk-1) 

expressed by blood vessels endothelial cells and VEGFR-3 (Flt-4) expressed by 

lymphatic endothelial cells [18].  

The VEGF effect on angiogenesis is regulated at different stages. First, the expression of 

VEGF can be induced by various stimuli such as: HIF-1α, growth factors and 

inflammatory cytokines. Then, co-receptors such as HSPGs and neuropilins as well as the 

interaction with adhesion molecules can control the duration and intensity of VEGFR 

signaling. Finally, HIF-1α and TNF-α induces the transcription of VEGFR-2. The 

interaction between endothelial and SMC can also regulate VEGF signal [19]. 

 

1.1.5 FGF 

FGF also induces EC proliferation and production of both collagenase and plasminogen 

activator [20]. Additionally, it induces proliferation of epithelial, mesenchymal and 

neural cell lines. In vitro, this growth factor interacts with specific co-receptor systems 

consisting of heparin-like glycosaminoglycans (HLGAG) and tyrosine kinase receptors 

(FGFRs) inducing cell proliferation, migration and production of proteases in ECs [6]. 

The binding of FGFs with HSPGs and glycosaminoglycans of the ECM produces a local 

pool of FGFs on cell surface and protects them from proteolytic degradation and 

denaturation. They use cell surface heparan sulphate proteoglycans to enable binding to 

tyrosine kinase receptors (RTK) inducing their dimerization and activation triggering 

signaling pathways important for cell growth and differentiation as well as for cell 

development, tissue maintenance and wound repair. At least 23 FGF ligands and seven 

FGFR have been identified in humans and mice. Acidic FGF (FGF-1) and basic FGF 
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(FGF-2) are the most studied and are involved in cardiac repair. Both receptors serve as 

ligands for SMCs and fibroblasts and are potent endothelial cell mitogens [6].  

 

1.1.6 ECM 

Besides the potential of growth factors, ECM plays also an important role on the 

formation and stabilization of new blood vessels. The interaction between ECM and cell 

is also important for cell maturation. Specific interactions between adhesion molecules 

on cell surface and ECM components allow a direct binding. ECM stimulates also 

morphogenesis and tissue repair by recruiting growth receptors that interact with cell 

surface receptors. In the case of angiogenesis, numerous ECM components, both soluble 

and insoluble, can bind angiogenic growth factors and release them as consequence of 

enzymatic ECM degradation mediated by cells. This process involves the development 

of gradients in vivo which can direct the formation of new blood vessels. Such gradients 

can be formed, for instance, by the connection of heparin sulfates and VEGF. So, knowing 

the role of ECM on both bind cells and release enclosed growth factors is essential when 

designing materials to guide tissue morphogenesis [9]. 

 

1.2  Therapeutic angiogenesis 

Therapeutic angiogenesis constitutes a promising strategy to treat ischemic diseases and 

refers to the delivery of angiogenic growth factors to stimulate the growth and 

proliferation of new formed blood vessels. However, controlled release of the 

biomolecules must be achieved in order to let new blood vessels grow adequately and to 

avoid collateral effects [21]. For instance, when released in excess, VEGF has 

demonstrated to be responsible for vascular leakage that leads to edema and nitric oxide 

hypotension and unregulated formation of tumors [14]. Moreover, growth factors show 
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short diffusion distances through ECM because of their short half-life. VEGF has an in 

vivo half-life of around 50 minutes which may imply the injection of great amounts of 

VEGF to achieve the angiogenic effect and thus causing problems related to either the 

induction of vascularization in non-specific sites or tumor growth [22, 23]. So, new 

controlled release strategies may assure an accurate and constant release of growth factors 

over days or weeks and be active proximal to the desired angiogenesis site. In respect to 

VEGF, it has been shown its efficacy in promoting angiogenesis in vivo when 

administrated in engineered matrix polymers, microparticles or viral vector genetically 

encoding for VEGF [24]. Moreover, the matrix may mimic the complex role of the ECM 

in controlling the stability, activity, release and localization of growth factors. 

Hydrogels have been used in order to overcome the main disadvantages of direct 

administration of growth factors, being possible to release it in a controlled manner and 

into the target sites. Strategies include physical entrapment of growth factors, covalent 

immobilization to the delivery system, non-covalent binding and the use of 

micro/nanospheres loaded with protein and embedded in hydrogels. Gene therapy, the 

delivering of genetic material encoded for the desired protein, and cell transplantation, 

encapsulation of cells which secret specific proteins in a hydrogel, are two indirect 

approaches to release growth factors   [22]. The success of VEGF delivering depends on 

the mechanism from which is incorporated into the hydrogel influencing its tissue 

distribution and exposure duration. Injectability plays a crucial role when it concerns 

hydrogels for drug releasing since it increases its effectiveness and limits further damage 

and invasiveness [25, 26].  
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1.3 Hydrogels 

Hydrogels have demonstrated to be a promising polymer network for tissue engineering 

approaches because of their capacity to absorb great amounts of water, potential to be 

biocompatible and similarity to natural tissues [27, 28]. Injectable hydrogels represent an 

attractive drug delivery vehicle as they can be introduced in situ through minimally 

invasive ways and thus reduce the degree of damage upon delivery at the targeted area, 

require shorter procedures and recovery time [26]. After an MI event, a non-toxic in situ 

gelation process can be developed by injecting a liquid precursor into the myocardium 

[29]. However, the degradation properties and crosslinking density of the hydrogel must 

be manipulated to achieve sustained and localized release of growth factors. So, new 

approaches have been studied in order to control the release profile of the growth factors 

from hydrogels according to the cellular demands without changing its mechanic and 

physical properties [14, 30]. 

Hydrogels can be also used as three dimensional scaffolds to delivery cells. Vascular cells 

can be cultivated before transplantation allowing thus an enhancement of vascularization. 

Moreover, stem cell therapy offers therapeutic angiogenesis and treatment of ischemic 

diseases. However, when stem cells are placed in an ischemic tissue, cell survival is poor 

due to hypoxia conditions originated by deficiency of tissue vascularization leading to 

cell apoptosis and thus having a minor effect on the treatment of ischemia. Consequently, 

new approaches to improve cell survival and engraftment in ischemic sites have been 

studied. Among others, strategies include transplantation of stem cells in combination 

with growth factor delivery, genetic modification and use of tissue engineering scaffolds 

[31]. The success of cell therapy is determined by the capacity of the delivery system to 

localize and retain the cells in the damaged site while maintaining their survival for a long 

period. Three main aspects would make a biomaterial perfect for cell therapy: 
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introduction of an accurate cell population at the ischemic region; maintenance of their 

localization and survival over the period of treatment and production and release of 

specific factors into the ischemic site. So, one approach that has been studied is the 

formation of a cell-encapsulating hydrogel formed in situ. This strategy more than being 

non-invasive could allow the translation to clinical practice by using the existing catheter 

delivery technology [32].  

Hydrogels are classified according to their polymer composition being divided into 

natural, synthetic polymer hydrogels and a combination of these two classes [33].  

Natural hydrogels are constituted of proteins and take advantage over synthetic ones since 

they have components of the native extracellular matrix (ECM) and chemical structure 

like natural glycosaminoglycans, exhibiting excellent bioactivity and avoiding 

immunological responses. Moreover, naturally derived hydrogels present cellular binding 

domains allowing the regulation of cell behavior. However, most of these hydrogels show 

weak mechanical properties [34, 35].  

Synthetic hydrogels, on the other hand, may have lower cellular bioactivity but show 

better chemical and physical properties allowing a higher control of ECM architecture 

and chemical composition [28]. In some cases, they are obtained from toxic chemicals 

and may show low degradation ratio at physiological conditions [36]. 
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1.3.1 Hydrogels for Ischemia Applications 

 

1.3.1.1 Natural Polymers 

Natural hydrogels have been widely used as a drug delivery system of angiogenic 

cytokines since they favor biological events such as cell recruiting, regulation of 

inflammatory microenvironment and formation of neovasculature [37].  

1.3.1.2 Alginate 

Alginate is a natural occurring polysaccharide composed of (1-4)-linked β-D-mannuronic 

acid (M) and α-L-guluronic acid (G) monomers (Figure 3). When its chains get in contact 

with divalent cations, such as Ca2+, gelation occurs due to the formation of ionic 

crosslinks. Gelation process results from the interaction of G-blocks with divalent cations 

[38].  

 

Figure 3 - Chemical structure of alginate, composed of (1-4)-linked β-D-mannuronic acid (M) and 

α-L-guluronic acid (G). 

In the post-MI environment, a high concentration of calcium ions is present which can 

work as a local precursor to promote an in situ crosslinking mechanism. Then, as the post-

infarction environment recovers the calcium concentration decreases, the alginate 

dissociates and may be clear from the region [32]. However, alginate deals with a fast 

initial release of hydrophilic drug molecules [39] and its degradation in vivo is slow and 

unpredictable due to the absence of enzymes that cleave the polymer chains. Still the 

manipulation of its mechanical properties and pores size is limited [22]. Modifications to 
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the polymer network can be done to obtain higher control on its degradation such as 

oxidation of polymer chains with sodium periodate. At partial levels of oxidation, gel 

biocompatibility is not altered. The control of molecular weight distribution of alginate 

constitutes another alternative to manipulate degradation of alginate gels by making it 

vulnerable to hydrolysis [38]. The combination of high and low molecular weight 

alginates followed by its partial oxidation and gamma irradiation was studied by Hao et 

al. They showed an increased angiogenic effect in a rat myocardial infarction model by 

releasing VEGF and platelet-derived growth factor-BB (PDGF-BB) in a sequential 

manner [40]. 

Moreover, its biocompatibility, low toxicity, similarity to ECM in tissues and ability to 

gel rapidly under mild conditions has motivated the use of alginate as an injectable system 

to deliver biomolecules or as a cell reservoir [28, 35]. Silva et al [41] produced an alginate 

injectable system and studied its potential to act as a reservoir system of bioactive VEGF. 

They showed the ability of this noninvasive and degradable system to control VEGF’s 

biodistribution at appropriate concentrations for a long period (up to 15 days) in ischemic 

hind limbs and thus an enhancement of angiogenesis on the site of interest. The control 

of these two factors allowed an increasing on the tissue perfusion and thus prevention of 

necrosis associated with ischemia. Peters et al [42] demonstrated also a higher in vitro 

activity of alginate containing VEGF on ECs compared to the same amount added directly 

to the cells due to a higher stability of the growth factor when encapsulated within the 

alginate matrix.  

Additionally, the functionalization of alginate with synthetic peptide sequences has been 

performed aiming an enhancement on cell anchoring and adhesion as cells don’t have any 

specific receptors for binding to alginate and promote vascularization at ischemic sites. 

The arginine-glycine-aspartic acid (RGD) sequence is present in many ECM proteins 
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such as collagen, fibronectin, and laminin being responsible for cell attachment via 

integrins [43]. 

Yu et al. [44] immobilized alginate hydrogels with RGD peptides and studied its influence 

on the myocardial microenvironment and function in a rodent model of ischemic 

cardiomyopathy. Both in the presence or not of RGD modified group, alginate enhanced 

angiogenesis. However, a higher response was shown on the RGD modified alginate as 

it improved human umbilical vein endothelial cells (HUVEC) proliferation and adhesion 

indicating its influence at the infracted myocardium microenvironment. Both hydrogels 

improved heart function after injection into the infarct area of rats 5 weeks post-MI.  

 

1.3.1.3 Collagen 

Collagen is the most abundant protein in the body and the principal constituent of ECM, 

being a potential biomaterial for tissue engineering applications. There are 28 different 

types of collagen being type I the most predominant [45].   

Basically, all types of collagen present a triple helix structure which can form a microfibril 

by aggregation which, in its turn, can come together with others microfibrils to form a 

collagen fiber and collagen hydrogel [35]. 

Collagen gels physically formed are thermally reversible and show restricted mechanical 

properties. However, physical properties can be improved either by chemically cross-

linking collagen using, for instance, glutaraldehyde, formaldehyde, carbodiimide and 

diphenylphosphoryl azide or by physical treatment crosslinking such as freeze-drying, 

UV irradiation and freeze-drying or by combination with other polymers (HA, PLA, 

PLGA, PGA, chitosan, PEO) [35, 46, 47]. 

This natural material contain specific amino acid consequences that can be recognized by 

cell receptors and are naturally degraded by metalloproteases such as collagenases and 

serine proteases [47]. Injectable collagen hydrogels can be produced by solubilizing the 
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collagen in an acidic manner. When injected in vivo at neutral pH and body temperature 

collagen crosslinks through fibrillogenesis forming a hydrogel capable of encapsulating 

cells. Even though it supports cell attachment, viability and proliferation, this process 

affects its structural properties, mainly elasticity and stiffness [32].  

Collagen has been used also to deliver growth factors by hydrogels. Miyagi et al. [48] 

studied the promotion of vascularization by covalently immobilizing VEGF to a porous 

collagen hydrogel. The VEGF released from the collagen scaffolds led to an increasing 

of blood vessel density by enhancing cell proliferation within the hydrogel itself both in 

vitro and in vivo. Immobilized growth factors have shown to increase its stability and 

promote an effect localized in the hydrogel instead of in the surrounded tissue. Thus, this 

approach can allow a better transportation of both oxygen and nutrients into the growing 

tissue. Furthermore, the authors have shown suitable mechanical and biological properties 

of this system being a potential strategy for heart defects repair. 

 

1.3.1.4 Gelatin 

Gelatin is a biodegradable and denatured form of collagen which is obtained by 

hydrolysis, breaking the triple helix structure into single-strand molecules [28]. Gelatin 

shows both cationic and anionic ions with hydrophobic groups in the ratio of 1:1:1. 

Glycine, proline and hydroxyproline complete the rest of the chain. The triple helical 

structure is due to the representation (Gly-X-Pro)n, where X corresponds the amino acid, 

commonly lysine, methionine, arginine and valine. About 33% of the whole chain 

contains glycine, another 33% either proline or hydroxyproline and the remaining by 

other residues. Figure 4 depicts the primary gelatin structure, a polypeptide chain 

composed of 18 different aminoacids [49].  
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Figure 4 – Gelatin chemical structure in terms of aminoacids. 

During the production process, the isoelectric point can be manipulated to obtain either a 

negatively charged acidic gelatin or positively charged basic gelatin at physiological pH 

[50]. Both gelatin types are available commercially. Cationic gelatin (gelatin type A) is 

prepared by an acidic hydrolysis of pig skin type I collagen, showing an isoelectric point 

of 7-9. Contrary, anionic gelatin, commercially known as gelatin type B, shows an 

isoelectric point of 4.8-5 and is obtained by an alkaline hydrolysis of bovine collagen 

[49]. 

Gelatin hydrogels have been used as delivery systems of angiogenic molecules since 

Thompson et al. used it for the first time to deliver acidic FGF [51]. The release of acid 

FBF occurs as a result of the in vivo degradation of the hydrogel [52, 53] and the releasing 

profile can be manipulated by varying the water content of the hydrogel [53]. Both 

electrostatic interactions between the gelatin and the growth factors and the type of gelatin 

(basic or acid) influence either there is a controllable release of the biomolecules or not 

[54].  Several reports have demonstrated the bFGF-incorporating acidic gelatin hydrogel 

potential to improve angiogenic effects, in contrast to bFGF in solution [55, 56]. 

Moreover, in order to study the safety and application of gelatin hydrogels releasing bFGF 

on patients with critical limb ischemia, a clinical trial has been started recently [57].  

Strategies including covalent attachment of heparin to collagen, manipulation of the 

amount of glutaraldehyde used and thus degradation rate have been taken in consideration 
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to control the initial high burst release of growth factors and increase the growth factors 

loading capacity into gelatin [54, 58].  

 

1.3.1.5 Hyaluronic Acid 

Hyaluronic acid (HA) is a naturally occurring non-sulfated glycosaminoglycan consisting 

of repeating disaccharide units of β-(1-4)-linked guluronic acid and β-(1-3)-linked N-

acetyl-D-glucosamine (Figure 5) with a molecular weight ranging from 100 to 5000kDa 

and is present in the ECM of mammalian tissues. 

 

 

Figure 5 – Chemical structure of hyaluronic acid, composed of β-(1-4)-linked guluronic acid and β-

(1-3)-linked N-acetyl-D-glucosamine. 

 

Low molecular weight HA stimulates endothelial cell proliferation and spreading while 

the high ones have inhibitory angiogenic effects [59]. It’s degraded by hyaluronidase and 

despite of being biocompatible, biodegradable and with excellent gel-forming properties, 

shows poor mechanical properties in its native form. Therefore, modifications are 

performed to obtain HA cross-linked networks and, consequently, achieve better 

properties in terms of hydrophobicity and biological activity. The most widely used are 

the chemical modifications such as esterification, crosslinking with hydrazide derivates 

and annealing. While increasing the mechanical and processability properties, these 
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chemical modifications may compromise its biological activity. Xin et al [60] have 

produced a collagen-HA semi-interpenetrating gel by allowing the collagen 

fibrillogenesis occur in the presence of HA molecules with different molecular weights. 

Results demonstrated the influence of the molecular weight on the mechanical properties 

which increased in the presence of low molecular weight hyaluronic acid (LMWHA), 

corresponding to a molecular weight of 155x103. 

HA plays important rules in cellular signaling, morphogenesis, wound repair, matrix 

organization and it is able to promote angiogenesis and suppress fibrous tissue formation 

showing its potential as cardiac biomaterial [28, 35, 61]. Abdalla et al. [62] have shown 

the potential of acellular hyaluronic acid-based hydrogel to increase cardiac function 

post-myocardial infarction in a rat model. An improvement in cardiac function was 

observed up to 3 weeks in the injection fraction, there was an increase in new vasculature 

formation and a decrease scarring and collagen deposition. 

 

1.3.1.6 Fibrin 

Fibrin is a fibrous protein and the major component of blood clots. Its precursor is 

fibrinogen which, under certain conditions, polymerizes into fibrin. Upon tissue bleeding, 

fibrinogen is converted into fibrin by the action of the proteolytic enzyme thrombin. 

Thrombin converts fibrinogen in fibrin in 10-60 seconds [11]. Fibrin-based materials are 

biocompatible and have been used as tissue scaffold, cell and angiogenesis support. 

However, natural fibrin gels present low mechanical strength so it must be seeded for 

long periods of time to enhance their properties. Alternatively, by increasing fibrinogen 

concentration, gelation times are faster resulting in a tighter network which may lead to 

an improvement of mechanical properties. Cell-seeded fibrin scaffolds with elastic 

moduli of around 10-30kPa, a range suitable for myocardial tissue applications, have been 

obtained by varying the concentration of thrombin [32]. Nevertheless, over a threshold 
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concentration it can be prejudicial for cell surviving and spreading. It has been reported 

that this protein-based hydrogel has the ability to promote angiogenesis by itself through 

the release of degradation products which are non-immunogenic amino acids products 

[63-65]. Christman et al [64] showed the potential of fibrin glue to treat ischemic 

myocardium since its injection after one week of MI induction in a ratmodel of ischemia 

showed an increased cell transplant survival and retention, induction of neovasculature 

formation, decreasing infarct size and increased blood flow to ischemic myocardium and 

thus improvement in cardiac function. 

Growth factors can be loaded into fibrin network, for instance, by physically mixing them 

with fibrinogen and thrombin during coagulation. However, a drawback relies on an 

initial rapid release (within 24h) and consequently a rapid clearance of the growth factors. 

So, new strategies have been studied to control the release kinetics of growth factors. One 

approach consists on the incorporation of growth factors to fibrin by transglutaminase 

activity of factor XIIIa during coagulation [9]. Another one consists on the 

immobilization of heparin within the fibrin network since most of angiogenic factors are 

heparin-binding peptides. Chung et al [23] developed a VEGF-loaded nanoparticle-fibrin 

gel complex showing an increased angiogenic bioactivity in respect to collateral density 

in a rabbit ischemic hind limb model.  

 

1.3.1.7 Matrigel  

Matrigel is constituted by a complex protein mixture comprising laminin, collagen IV and 

heparan sulfate proteoglycans [28]. It is produced by mouse tumour cells and constitutes 

one of the most used materials to evaluate the potential of cells and growth factors to 

promote angiogenesis [66]. It presents a combination of various angiogenic growth 

factors such as VEGF, insulin-like growth factor I (IGF-1) and epidermal growth factor 

(EGF) which favor the development of new blood vessels and also platelet-derived  
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growth factor (PDGF) and transforming growth factor (TGF)-β which are responsible for 

the maturation of newly  formed blood vessels [67].  

Schumann et al. [68] used Matrigel-filled PLGA scaffolds preincubated either with 

osteoblast-like cells (OLCs) or mesenchymal stems cells (bmMSCs) and the combination 

of both to study their effects on the vascularization process in tissue engineering scaffolds 

in vivo. The host tissue response in respect to angiogenesis and inflammatory processes 

was studied. Both scaffolds seeded with bmMSCs and both cell types showed an 

improved development of microvascular networks being more predominant between day 

3 and 6 after implantation.  

One disadvantage of this material, however, is the batch to batch variability and possible 

tumor formation after implantation since it is derived from a mouse sarcoma line [69]. 

 

1.3.1.8 Chitosan 

Chitosan is polysaccharide obtained by deacetylation of chitin, a naturally occurring 

source present in crustaceans, insect’s exoskeleton and fungi. The conditions used in the 

process of deacetylation will define the polymer molecular weight and the degree of 

deacetylation [70]. Chitosan is a linear copolymer which contains β-(1,4)-linked D-

glucosamine and N-acetyl-D-glucosamine molecules (Figure 6) which facilitates 

electrostatic interactions with naturally occurring glycosaminoglycans (GAGs) and 

proteoglycans of the ECM [28].  
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Figure 6 – Chitosan chemical structure, composed of β-(1,4)-linked D-glucosamine and N-acetyl-D-

glucosamine. 

Since this polysaccharide can be obtained from abundant natural and renewable resources 

and be chemically and physically modified, it has been investigated for many tissue 

engineering applications. It’s biocompatible, biodegradable, has low immunogenicity and 

it’s positively charged due to the presence of amine groups. Thus, chitosan is soluble in 

acidic solutions and can form a hydrogel via UV radiation, glutaraldehyde crosslinking 

or thermal variations [35, 70].  Chitosan hydrogels respond to different external stimuli 

such as temperature, pH and light. For instance, an injectable hydrogel combining the 

temperature-responsive chitosan and glycerol phosphate (GP) may be very attractive as a 

drug delivery system. This combined polymer solution allows the incorporation of 

bioactive factors which can be trapped within the injected area when exposed to body 

temperature due to rapid polymerization [28]. Moreover, the degradation of chitosan in 

vivo by lysozyme produces oligosaccharides which have been shown to enhance vascular 

endothelial cell migration and angiogenesis [32]. Biomaterials aimed to be applied in 

ischemic sites must be injectable and capable to overcome or minimize the hostile 

environment generated by the ischemic region such as lack of angiogenesis, 

inflammation, reactive oxygen species (ROS) [71, 72]. Liu et al [71] developed an 

injectable thermoresponsive chitosan hydrogel for stem cell delivery into ischemic heart 
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evidencing the efficiency of this system to alter the myocardial infraction 

microenvironment and hence enhance cell engraftment, survival and homing.  

 

1.4 Self-assembling peptides 

Self-assembling peptides (SAPs) are oligopeptides composed of alternating hydrophilic 

and hydrophobic amino acids and thus highly soluble in water.  Normally, SAPs form 

stable β-sheet structures in water. When exposed to physiological salt concentrations they 

can form hydrogels. These materials are appropriate for tissue engineering applications 

as they can support cell attachment and differentiation of a diversity of tissue culture and 

mammalian cells under physiological conditions due to the formation of a extracellular 

matrix like structure [73, 74]. Moreover, their chemical composition and mechanical 

strength can be manipulated by controlling peptides parameters [75, 76]. Accordingly, 

higher G’/G’’ ratio may stimulate longer cell-cell interactions resulting in more extended 

and larger structures when compared to those obtained with lower G’/G’’ ratio which 

were smaller and denser. Similarly, modification of the mechanical properties allows the 

improvement of pore size and capillary formation [77]. SAPs can be applied for protein 

delivery as they are able of binding clinically relevant levels of growth factors [32]. Thus, 

studies have been demonstrating the ability of these self-assembly scaffolds to promote 

angiogenesis by providing cells with a soft three-dimensional support. For instance, Kim 

et al [78] demonstrated an increasing of angiogenesis for treatment of myocardial 

infarction by controlling the dual release of growth factors (FGF-2 and PDGF-BB) and 

its stability from SAPs into ischemic areas.  
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1.5 Synthetic Polymers 

Synthetic hydrogels show various advantages in comparison to the natural ones. Their 

mechanical and degradation properties can be easily and precisely tunable; they show 

batch-to-batch consistency and offer availability to be chemically functionalized. 

Conversely, they lack the innate bioactivity characteristic of natural polymers, 

compromising cellular interactions such as adhesion, proliferation and remodeling [32].    

   

1.5.1 Poly(ethylene glycol) 

Poly(ethylene glycol) (PEG) is being used as a synthetic matrix in tissue engineering since 

it’s highly hydrophilic, presents low immunogenicity and protein adsorption and has 

demonstrated safety on in vivo uses [79]. PEG-based hydrogels can be obtained by 

covalently crosslink PEG polymers through different methods.  The most common 

method consists on photopolymerization of acrylate functionalized PEG monomers. 

However, this process makes use of UV which can be harmful for cells and results in 

materials with no controllable structures. Thus, hydrogels formed through Michael-type 

addition reaction constitute an alternative since it’s performed under physiological 

conditions. For vascularization applications, modifications to PEG must be done such as 

chemical bioconjugation. Peptide sequences have been coupled to the polymer in order 

to improve its cell adhesion or degradability. For instance, RGD sequences have been 

used to allow cell adhesion [80].  

Kraehenbuehl and colleagues [81] produced a PEG hydrogel via Michael-type addition 

reaction of thiol-containing peptides onto vinylsulfone-functionalized PEG. MMPs were 

added to the peptides sequence in order to allow the hydrogel degradation and remodeling 

along with RGDSP cell adhesive ligand. Thus, the potential of this MMP-responsive 

PEG-based hydrogel to encapsulated both thymosin β4 (Tβ4), a pro-angiogenic and pro-
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survival factor, and HUVEC was studied. Gels with entrapped Tβ4 showed an increased 

number of attached HUVECs and acceleration of vascular-like network formation. It also 

allowed the up-regulation of cadherin and angiopoietin-2 and secretion of MMP-2 and 

MMP-9 from encapsulated HUVECs and thus controlled release of Tβ4 from the system. 

This system can be useful for in situ regeneration of ischemic tissues where the expression 

and activation of MMPs is increased. More than chemical modifications, similar 

polymers can be added to obtain specific properties.  

 

1.5.2 Poly(N-isopropylacrylamide) 

PNIPAAM is a temperature sensitive hydrogel which undergoes a reversible phase 

transition from sol to gel at physiological temperature conditions due to its lower critical 

solution temperature (LCST) of around 32ºC. Therefore, it enables a rapid gelation in situ 

when injected being a potential strategy for cardiac tissue engineering. This 

thermoresponsive polymer allowed the release of VEGF to human vascular endothelial 

cells for a long period of time [82].  

As for PEG, this material shows low bioactivity and it is non degradable since it LCST 

remains constant being not cleared by the body. Thus, this polymer is often modified by 

combining it with other polymers such as collagen, hyaluronic acid and gelatin [83-85] 

or biomolecules [86].  

When tested in vitro most systems provide a sustainable and controllable release of 

angiogenic factors as well as a functional improvement at early time points. Therefore, it 

constitutes a drawback for clinical implementation where there is the influence of the 

surrounded environment such as changes in pH due to ischemia and fluctuations in 

extracellular milieu as a result of the inflammatory response [21].  Consequently, the 

incorporation of carboxylic acid-derived monomers has been useful to modify the LCST 
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and respond to acid conditions. Garbern et al. [21] developed an injectable, pH and 

thermoresponsive hydrogel based on the copolymerization of N-isopropylacrylamide 

(NIPAAm), propylacrylic acid (PAA) and butylacrylic (BA) (p[NIPAAm-co-PAA-co-

BA]) for therapeutic angiogenesis. At pH 6.8 and 37ºC this polymer forms a gel being 

suitable for drug delivery in ischemic sites which are regions with an acidic environment 

(pH 6-7) and eliminated once the ischemic conditions are reduced. p[NIPAAm-co-PAA-

co-BA] was used to deliver bFGF in vivo immediately post-MI in a rat and compared to 

saline, polymer alone and bFGF in saline. Contrary to bFGF in saline and polymer itself 

where no effects were observed, this system showed a 2-fold improvement in blood flow 

after 28 days. In addition, there was an increasing in 30-40% on capillary and arteriolar 

densities. The cardiac function was also enhanced since both angiogenesis and thickness 

of the infarcted wall were improved. However, the increased wall thickness was increased 

by using the polymer alone which may be connected to collagen deposition due to 

inflammatory responses.  

 

1.6 Micro- and Nano-particles 

Hydrogels show biocompatibility and high inertness to protein drugs which make them a 

great candidate as a protein release network. However, they can suffer chemical 

modifications and thus reduce the bioactivity of functional moieties; experience 

irreversible complexation and retain residual cross linkers dealing with the denaturation 

of growth factors and induce of immune responses or acute inflammation [23]. 

Consequently, controllable release of proteins from hydrogels may not be accomplished 

since it’s a process mainly diffusion-controlled. Hence, the use of loaded micro (>1µm 

and <1000µm sized) or nanoparticles (<1µm sized) [87] embedded in hydrogels has been 
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used as a strategy to multimodal protein delivery. These systems are developed to release 

drugs over time in a sustained and controllable manner, to diminish the number of doses 

needed to treat the disease and to allow biomolecules to reach the target site without being 

inactivated [88]. Microparticles are capable of providing sustained release kinetics after 

implantation and their diffusion from the implantation site is unusual avoiding collateral 

effects in adjacent tissues. Nanoparticles, instead, can internalize the cells through 

capillaries [87]. Polymeric microparticles take advantage, for instance, over osmotic 

pumps as no surgical procedures are needed for their application or removal from the 

body; they are more stable than liposomes at biological conditions and they allow the 

encapsulation of hydrophilic and hydrophobic molecules [88].  

For instance, poly (d,l-lactide-co-glycolide) (PLGA) microparticles have been widely 

used as growth factor delivery systems for angiogenesis and have shown to improve blood 

vessel formation in tests performed in hindlimb ischemia models [89, 90].  

Lee et al. [39] developed a microsphere/hydrogel combination system to increase 

angiogenesis in vivo by promoting the release of bioactive molecules. This system was 

composed by PLGA microspheres and alginate hydrogels loaded with rhVEGF. The ratio 

influence of PLGA microspheres and hydrogel on the release profile of rhVEGF was 

studied being more controllable as the amount of microspheres increased. No cytotoxicity 

was showed against endothelial cells showing the possibility to be used in vivo as an 

injectable delivery system. When used at small doses in vivo this combination showed to 

improve the formation of new blood vessels. 

Des Rieux et al. [25] studied whether the encapsulation of VEGF into dextran 

sulfate/chitosan nanoparticles could increase angiogenesis in vivo when compared to its 

free incorporation into matrigel hydrogels and PLGA scaffolds. Regardless the VEGF 

dose, implantation type and time, results have shown a better colonization of endothelial 
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cells and blood vessel formation when VEGF was incorporated within the nanoparticles 

in comparison to those obtained when it was added freely into the matrices. 

Gelatin microparticles have been used also as a carrier for controlled release such as 

bFGF, transforming growth factor (TGF-β1), insulin-like growth factor-1 and bone 

morphogenetic protein-2 (BMP-2). Growth factors are released through an enzymatic 

degradation of the gelatin by the action of matrix metalloproteinases such as collagenase. 

The crosslink degree can influence the degradation rate and consequently the release 

profile. Patel et al [54] studied the efficacy of acidic gelatin microparticles to release 

VEGF in a controllable manner by varying the gelatin crosslinking degree, the amount of 

VEGF and release medium in vitro and in vivo. Results have demonstrated the potential 

of gelatin microparticles to deliver VEGF over 4 weeks in a dose independent manner. 

The addition of collagenase increased the VEGF release confirming its degradation 

through an enzymatic-driven process. A controllable release profile was achieved, both 

in vitro and in vivo, by manipulating the crosslinking extent. 

Gelatin nanoparticles represent also a favorable vehicle system for controllable drug 

release. They can be obtained, for instance, by techniques including: desolvation, 

coacervation-phase separation, emulsification-solvent evaporation, reverse phase 

microemulsion, nanoprecipitation, self-assembly and layer-by-layer (LbL) coating. The 

coacervation method is a process of liquid-liquid separation followed by a crosslinking 

step. This method shows a poor loading efficiency and non-homogeneous crosslinking. 

The emulsion-solvent evaporation technique is based on water-in-oil emulsion process. 

Large quantities of surfactant are necessary to obtain small-sized particles, requiring a 

complex post-process. In fact, these methods showed to be responsible for the production 

of large and heterogeneous particles because of the discrepancy of molecular weight of 

the gelatin polymer. So, desolvation was found to be an adequate method to produce 
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gelatin nanoparticles. This method begins with the dehydration of gelatin molecules by 

the addition of a desolvating agent such as alcohol or acetone. However, this first step of 

desolvation produces large particles with a high polydispersivity index (PDI) because of 

the heterogeneity in molecular weight of gelatin. By performing a second step of 

desolvation, smaller and more homogeneous gelatin particles are formed [91].  This 

occurs because after the first step of desolvation, there is deposition of the high molecular 

weight (HMW) gelatin and so the low molecular weight (LMW) gelatin can be removed. 

Then, the precipitated HMW is redissolved and desolved again (second step of 

desolvation). Finally, to harden the nanoparticles, a step of crosslinking is essential. This 

last step represents one of the disadvantages of this method as well as the use of organic 

solvents [49]. 

Glutaraldehyde (GA) is normally used as a crosslinker for gelatin nanoparticles. It is a 

non-zero length crosslinker which binds to free amino groups of lysine and hydroxylysine 

residues. One disadvantage of using this crosslinker is the possibility to initiate undesired 

immune or toxicological responses [49]. Gelatin nanoparticles produced through this 

method showed an average particle size between 250-300 nm with a homogeneous size 

distribution (PDI 0.02) [92].  

Gelatin nanoparticles have been encapsulated with bovine serum albumin (BSA), they 

can absorb large amounts of water (51-72%) and the release of BSA from these 

nanoparticles follows a diffusion controlled mechanism [93]. The release mechanism of 

hydrophilic proteins may involve water infusion and adsorption by the nanoparticles, 

swelling and finally diffusion of BSA molecules [94]. Encapsulation of drugs into 

nanoparticles can be accomplished either by adding the drug at the time of nanoparticle 

production or by drug adsorption after nanoparticle formation through its incubation in 

the drug solution [93]. Won et al [95] have demonstrated a sustained and reduced burst 
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release of FITC-BSA from recombinant human gelatin (rHG) nanoparticles.  Li et al [96] 

have produced a system composed of gelatin nanoparticles loaded with BSA encapsulated 

into PLGA microspheres which was able to release the molecule in a controllable manner 

and to avoid its denaturation. 

bFGF was also encapsulated into gelatin nanoparticles showing a controlled release more 

dependent on the crosslinking degree than on the type of gelatin [97]. 

 

1.7 Dendrimers 

The growth factors delivery systems described before constitute the most studied and 

versatile ones but there are others which have been also used to delivery growth factors 

such as dendrimers. 

These are a class of synthetic, well-defined hyperbranched polymers of nanometer 

dimensions that resemble, at molecular level, the architecture of a tree. Three distinct 

structural regions can be described in a typical dendrimer structure: a multifunction 

central core; branched monomeric units organized in layers called “generations” (Gn) and 

external functional groups which are important in their properties and designed to offer 

functionality to the dendrimer. Dendrimers are produced in a layer-by-layer fashion 

(generations - Gn), being the size dependent on monomer layers.  By the removal of the 

functional core, identical fragments called dendrons remain (Figure 7). Dendrons of 

higher generations present more branches and terminal groups being larger 

macromolecules in respect to those of lower generations [98, 99]. 
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Figure 7 – Basic structure of a dendrimer and dendron. 

Dendrimers can be prepared by two different synthetic approaches which main difference 

relies on the direction of dendrimer growth: the divergent and convergent method. In the 

divergent method, the dendrimer grows in a stepwise manner by the addition of 

successive branching units from a core molecule. In the convergent method, instead, the 

opposite sequence is performed: the dendrimer growth starts from the end groups towards 

the inside being finalized by the addition of a central core [100]. The ability to control 

properties such as size, branching points and surface functionality make dendrimers an 

ideal candidate as vehicles to deliver biomolecules and small drugs. Dendrimers are 

biocompatible, high soluble, can encapsulate drugs and present nano-scaffolding 

properties as surface adsorption or attachment of a drug [99].  
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2 Materials and Methods 

 

2.1 Collagen gels 

Collagen solution from bovine skin (Sigma Aldrich) and rat tail collagen high 

concentration (HC), TYPE 1 (BD Bioscience) were used in this study. 

Collagen gels were prepared by diluting the collagen solution in Dulbecco’s Modified 

Eagle’s Medium (DMEM). In detail, collagen was mixed with DMEM, subsequently 0.1 

M NaOH solution was added and mixed to obtain a specific collagen concentration. The 

pH of the solution was then adjusted to 7.4 ± 0.2. The solution was properly diluted 

providing a final collagen concentration of 1.2 mg/ml or 4 mg/ml. The solution was then 

incubated in a thermostatic bath at 37°C for 1 h to allow collagen fibrillogenesis. During 

the incubation, the atelocollagen molecules assemble to each other to form collagen 

fibres, and after 1 h a firm collagen gel was obtained. 

 

2.2 Collagen- LMWHA semi-Interpenetrating networks (s-IPNs) 

Collagen-LMWHA s-IPNs were obtained by promoting collagen fibrillogenesis in the 

presence of LMWHA. LMWHA powder dissolved in DMEM was suitably mixed with 

the collagen solution, thus obtaining a final LMWHA concentration of 2.5 mg/ml (and a 

collagen concentration of 1.2 mg/ml or 4 mg/ml). The solution was incubated at 37°C to 

allow collagen fibrillogenesis. After the incubation, the collagen was completely 

fibrillated and collagen-LMWHA s-IPNs were obtained.  
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2.3 Gelatin particles 

Gelatin particles (GPs) were prepared using a two-step desolvation method reported by 

Coester et al. Briefly, 1.25 g of gelatin type A from porcine skin was dissolved in 25 ml 

of distilled water under heating (37ºC) along with magnetic stirring (300 rpm). 25 ml 

acetone was added to the gelatin solution as a desolvation agent. Then, the supernatant 

was discarded and the remaining sediment was redissolved by adding 25 ml of water with 

stirring under constant heating and the pH adjusted to 3.0. Gelatin was again desolvated 

by drop-wise addition of 75 ml of acetone to form the particles. At the end of the process, 

500 µl of glutaraldehyde (8%) was added as crosslinking agent and the solution was 

stirred overnight. The particles were purified by threefold centrifugation and redispersion 

in acetone/water (30/70). After the last redispersion, fabricated particles, were freeze-

dried and stored at room temperature. 

 

2.4 Protein encapsulation within gelatin particles 

Gelatin particles were produced by the classical two-step desolvation method as described 

before. To achieve Bovine serum albumin (BSA) loading by matrix incorporation, BSA 

was added to the formulation during the second desolvation step. Different concentrations 

of BSA were added (0.2%, 0.5%, 1%, 2% and 5% w/w) and dissolved in the pH adjusted 

gelatin solution, followed by dropwise addition of acetone to form gelatin particles. 500 

µl of glutaraldehyde (8%) was added and the solution left to crosslink overnight. The 

particles were purified by threefold centrifugation and redispersion in acetone/water 

(30/70). After the last redispersion the particles were freeze-dried and stored at 4°C. 

In the same manner, as a final stage of the research activity, VEGF- and PlGF-loaded 

gelatin particles were also obtained. 
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2.5 Characterization of gelatin particles 

Gelatin particles were characterized in terms of mean particle size and morphology using 

a Zetasizer Nano ZS (Malvern Instruments) and scanning electron microscopy (FEI 

Quanta 200 FEG). 

 

2.6 Cumulative release of BSA from gelatin particles 

The releasing profiles of BSA from gelatin NPs were monitored by the UV-Vis 

spectrophotometer (Perkin Elmer) at 278 nm. Briefly, gelatin particles were suspended in 

Phosphate Buffer Solution (PBS, 10 mg/ml) and allocated in an orbital shaker at 37°C. 

The release sample was collected at regular time intervals, after centrifugation (8000 rpm 

for 15 min) and re-dispersion in fresh phosphate buffer solution (PBS). All the points for 

each time interval were measured in triplicate. A standard curve was plotted to represent 

the correlation of the concentration of BSA and the corresponding intensity of the 

absorbance in the UV-Vis spectra.  

The BSA release was evaluated as follows: 

𝐵𝑆𝐴 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 (%) = 100 
𝑀𝑡

∑ 𝑀𝑡
𝑡=∞
𝑡=0

 

where Mt represents the amount of BSA released at the time t. 
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2.7 Solid phase peptide synthesis (SPSS) 

Solid phase peptide synthesis is the most common method used for peptide synthesis. In 

this work, the tethered poly (ε-lysine) dendrons of three (G3K) branching generation type 

were synthesised on a Tenta Gel S (-NH2) resin using a 9-fluorenylmethoxycarbonyl 

(Fmoc) solid phase peptide method. Di-phenylalanine (FF) were used as core molecules. 

0.50 g of resin was placed inside a syringe and swollen in N, N-dimethylformamide 

(DMF) for 10 min. Resin was attached to the C-group of a fourfold excess of a rink amide 

linker mixed with 0.152 g of O-Benzotriazole-N,N,N’,N’-tetramethyl-uronium-

hexafluoro-phosphate (HBTU), 3 ml DMF and 140 µl of 33% v/v N,N-

diisopropylethylamine (DIPEA) for 40 min which are used as activators. Then, a 

deprotection step was done to remove the base-labile Fmoc-group by washing 3 times 

with 2 ml of 20% v/v piperidine and twice with DMF. The exposure of a new N-terminal 

amine allowed the assembly of a series of Fmoc-amino acids (Table I). 

Addition 

Step 
Amino acid 

No. cycles 

(0.4mmol) 

Reactive sites at start/end of 

cycle (nmol) 

Molar 

Excess 

Rink 

Amide 

Fmoc Rink Amide 

Linker 

1 

0.1/0.1 

4 

FF Fmoc-Phe-OH 0.1/0.1 

G0 
Fmoc-Lys(Fmoc)-

OH 
0.1/0.2 

G1 
Fmoc-Lys(Fmoc)-

OH 
2 0.2/0.4 

G2 
Fmoc-Lys(Fmoc)-

OH 
4 0.4/0.8 

G3 
Fmoc-Lys(Fmoc)-

OH 
8 0.8/1.6 

Table I - Assembly sequence of FFG3K. 
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After the addition of all amino acids by a series of coupling and deprotection steps, the 

peptide was allowed to stand for 30 minutes for a final deprotection in 4 ml of 20% 

piperidine. Then a series of washes were done: 4 times with 8 ml of dichloromethane; 4 

times with 8 ml of methanol and 4 times with 8 ml of diethyl ether. The product of 

synthesis was then dried overnight under the hood and weighed. The final cleavage of the 

synthesised peptide from the Tenta Gel resin was obtained by the introduction of a linker 

bearing an ester moiety which is susceptible to cleavage by trifluoroacetic acid (TFA). 

The synthesis of the dendrons was confirmed by mass spectrometry. 

 

2.8 Functionalization of gelatin particles 

The attachment of the FFG3K peptide to the gelatin particles was performed by using 1-

ethyl-3- (3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide 

(NHS) (Figure 8). Briefly, FFG3K peptide was activated by mixing with 0.1 M MES (2-

[morpholino]ethanesulfonic acid) at pH 6.0, EDC and NHS. The mixture was shaken 

gently for one hour at 37ºC. Thus, FFG3K peptide was added and kept under shaking 

overnight at 37ºC. After the incubation period, the particles were purified by threefold 

centrifugation at 6000 rpm for 20 min and washed with water.  Functionalisation

Gelatin Nanoparticles

Overnight

Method

9

0.1M MES pH 6.0 + 
EDC + NHS + 
dendrimer

creates stability

Increases efficiency
Allows conjugation to 

primary amines
FFG3K

Gelatin NPs

 

Figure 8 - A schematic representation of the functionalization process. 



Chapter 2                                                                                        Materials and Methods 

 35 

Functionalized gelatin particles were characterized by attenuated reflectance Fourier 

transform spectroscopy (FTIR). The infrared spectra of the samples were measured over 

a wavelength range of 4000-500 cm-1 and acquired in the spectral range through the 

accumulation of 8 scans with a 4 cm-1. 

 

2.9 Multilayer hydrogel 

As the final stage of the present work, a multilayer hydrogel based on collagen/collagen–

gelatin particles/collagen- LMWHA acting as a drug and/or cell delivery system was 

developed (Figure 9). 

 

 

Figure 9 – Representation of the multilayer composite hydrogel with a gradient of gelatin particles.  

 

Eight different systems were produced which are described in the following table (Table 

II). 

 Lower Middle Upper 

System 1 

Collagen 

5 mg/ml 

Collagen 5 mg/ml 

Collagen 

1.2 mg/ml 

System 2 
Collagen 5 mg/ml 

Gelatin particles 0.025 mg/ml 

System 3 
Collagen 5 mg/ml 

Gelatin particles 0.05 mg/ml 

System 4 
Collagen 5 mg/ml 

Gelatin particles 0.1 mg/ml 

System 5 Collagen 5 mg/ml Collagen 

Cell-loaded collagen gel and/or cell-

loaded collagen/LMWHA gel 

Collagen (type I) 

Collagen with gelatin particles gradient 
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System 6 
Collagen 5 mg/ml 

Gelatin particles 0.025 mg/ml 

1.2 mg/ml 

+ 

LMWHA 

2.5 mg/ml 
System 7 

Collagen 5 mg/ml 

Gelatin particles 0.05 mg/ml 

System 8 
Collagen 5 mg/ml 

Gelatin particles 0.1 mg/ml 

Table II – Composition of each single system composed by three different layers. 

 

The viscoelastic properties as well as the morphological and biological features of the 

different developed systems have been studied. Rheological analyses (i.e. small 

amplitude oscillatory shear tests and steady state shear measurements) were performed 

on all the proposed systems in order to highlight its mechanical spectra. 

 

2.10 Rheological Analysis 

The mechanical properties of hydrogels have been demonstrated to be an important 

parameter to understand whether a hydrogel is suitable for a specific biological 

application. The crosslinking density of the polymers influences the mechanical 

properties of hydrogels and consequently the spreading behavior of cells. The cellular 

behavior can be improved by manipulating the stiffness of the hydrogels since the 

decreasing of stiffness increases the pore size and then favors cell spreading. On the other 

hand, mechanical properties are improved by increasing the substrate stiffness which is 

related to the increase of polymer concentration [101].  

Among others methods, oscillatory rheometry, dynamic mechanical analysis (DMA) and 

elongation/compression analysis are the most commonly used. It provides information on 

the gel strength by terms of viscosity or elasticity and its dependence on gel composition 

and stability [102].  
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Rheology constitutes the first experimental method to assess the viscoelastic properties 

of hydrogels. Small amplitude oscillatory shear tests allow the evaluation of the time-

dependent response and linear viscoelastic properties of hydrogels. These measurements 

are performed within linear viscoelastic region of a material to ensure a no dependence 

of the magnitude of imposed strain or stress on the measured hydrogel properties.  

So, a sinusoidal shear strain is imposed to the material: 

𝛾 = 𝛾0 sin(𝜔𝑡) 

and the measured shear stress (𝜏), which is intermediate between an ideal pure elastic 

solid and an ideal viscous fluid for viscoelastic materials, is phase-shifted with respect to 

the applied deformation:  

𝜏 = 𝐺′(𝜔)𝛾0 sin(𝜔𝑡) + 𝐺′′(𝜔)𝛾0 cos(𝜔𝑡) 

in which 𝛾0is the shear strain amplitude, 𝜔 the oscilation frequency, 𝑡 the time, 𝐺′(𝜔) the 

storage or elastic modulus and 𝐺′′(𝜔) the loss or viscous modulus. The elastic modulus 

measures the energy stored in the material during deformation or elasticity and the viscous 

modulus the energy dissipated as heat during shear, the viscous component. The loss 

tangent or loss factor is defined as the ratio between these two moduli: 

tan 𝛿 =
𝐺′′

𝐺′
 

where 𝛿 is the phase angle. If tan 𝛿 > 1 the material shows a viscous liquid behavior, on 

the contrary if tan 𝛿 < 1 it behaves as an elastic solid [103].  

Hydrogels constitute an excellent approach for the development of injectable drug 

vehicles as long as they present accurate flow properties: shear-thinning and self-healing 

behavior.   
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Viscosity as a function of shear rate can be assessed by steady shear tests knowing that 

the strains during injection-based measurements are usually higher to the ones applied by 

oscillatory rheometer. Injection of a gel may influence its rheological behavior and 

viscoelastic properties. Since the materials are injected through a catheter it can disrupt 

the polymer network decreasing its elastic modulus and consequently its gel-like 

behavior. [26, 104] 

 

2.10.1.1 Small amplitude oscillatory shear tests 

Small amplitude oscillatory shear tests were carried out in order to evaluate the time-

dependent response of the materials and their linear viscoelastic properties. All of the 

measurements were performed at a temperature of 37°C, using a rheometer (Gemini, 

Bohlin, Sweden). The frequency was varied from 0.1 to 10 Hz. The dynamic moduli G’ 

(storage modulus or elastic modulus) and G’’ (loss modulus or viscous modulus) were 

evaluated in the frequency range investigated as follows: 











sin''

cos'

0

0

0

0


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G

 

where δ is the phase shift between the input and the output signals (the stress, τ, and the 

strain, γ, respectively), whilst τ0 and γ0 represent stress and strain amplitudes.  

2.10.1.2 Steady shear measurements  

The viscosity as a function of the shear rate was evaluated through steady state shear 

measurements performed on the proposed materials. All the measurements were carried 

out at a temperature of 37°C in a wide range of shear rate (0.01 – 100 s-1), using a 

rheometer (Gemini, Bohlin, Sweden). 
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2.11 Injectability tests 

The injectability of collagen gels and collagen-LMW HA s-IPNs was investigated by 

means of an INSTRON 5566 testing machine, using a custom-made experimental setup 

schematically reported in Figure 10.  

 

Figure 10 – Schematic representation of the experimental setup used to carry out the injectability 

tests. 

The injectability measurements were performed using a syringe with a 26 G needle. The 

syringe (with an inner diameter of 4.5 mm) was filled with the material which was then 

injected through the needle by applying a force on the syringe piston. This device was 

mounted on the INSTRON 5566 testing machine and the piston was driven at a constant 

and a fixed speed of 40 mm/min, thus controlling the injection rate and the apparent shear 

rate in the needle. All the tests were carried out at 37°C. The load applied to the piston 

for injecting the material into and through the 26 G needle was measured using a suitably 

calibrated load cell. An empty syringe (with a 26 G needle) was also tested at the same 

speed to estimate the effect due to the friction between syringe wall and piston.  
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2.12 Cell adhesion study 

Human mesenchymal stem cells (hMSCs - Clonetics, Italy), at the 4th passage, were 

cultured in -Modified Eagle’s medium (-MEM) containing 10% (v/v) FBS, 100 U/ml 

penicillin and 0.1 mg/ml streptomycin, in a humidified atmosphere at 37°C and 5% CO2. 

Preliminary results were obtained suspending 8x105 hMSCs in 1mL of collagen 1.2 

mg/ml and collagen/hyaluronic acid 2.5 mg/ml. Cell constructs were placed in 24 well 

culture plates and, incubated for 30 minutes in a humidified atmosphere (37°C, 5% CO2) 

to promote collagen fibrillogenesis. Subsequently, 0.5 ml of cell-culture medium was 

added to each well. The gels were maintained in culture for 5 days and the cell-culture 

medium was changed after 2 days. Cultures were characterized in terms of cell attachment 

and proliferation and preliminary results on cell morphology were obtained by means of 

a photocamera-equipped optical microscope. Cell viability and proliferation were 

evaluated by using the MTT assay (reduction of 3-(4, 5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide to a purple formazan product). The cell–matrix medium was 

removed from the culture plates at days 2 and 5, washed with PBS (Sigma–Aldrich, Italy), 

and placed into 24 well culture plates. For each gel, 1 ml of DMEM medium without 

Phenol Red containing 10% (v/v) MTT assay was added, followed by incubation for 4 h 

at 37°C and 5% CO2. The solution was subsequently removed from the wells and 

analyzed by a spectrophotometer at 570 nm. The number of viable cells into the gels was 

finally determined by comparing the absorbance values at different culture times with 

those of the calibration curve. The calibration curve was obtained from the correlation 

between known cell numbers in the 24 well culture plates with the corresponding 

absorbance values. Results are presented as mean ± standard deviation in triplicate.  
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Considering the optimized multilayer hydrogel, human mesenchymal stem cells were 

statically seeded and grown in Dulbecco’s modified Eagle’s medium (DMEM) without 

fetal bovine serum (FBS).  

In order to evaluate cell adhesion and viability/proliferation, the Alamar Blue assay (AbD 

Serotec Ltd, UK) was also performed on the 3D cell constructs (hMSC-multilayer 

hydrogel). Alamar Blue assay was also used for the evaluation of cytocompatibility of 

gelatin particles alone or embedded into the collagen matrix.  

The Alamar Blue Assay is based on a redox reaction that occurs in the mitochondria of 

the cells. Thus, the colored product is transported out of the cell and can be measured 

through a spectrophotometer. Specifically, at 1, 3 and 7 days after cell seeding, the cell 

constructs were rinsed with PBS (Sigma-Aldrich, Italy), and for each sample, 200 ml of 

DMEM without Phenol Red (HyClone, UK) containing 10% (v/v) Alamar Blue (AbD 

Serotec Ltd, UK) was added, followed by incubation in 5% CO2 diluted atmosphere for 

4 h at 37ºC. A specific volumetric amount of solution was then removed from the wells 

and transferred to a new 96-well plate. The optical density was immediately measured 

with a spectrophotometer (Sunrise; Tecan, Männedorf, Zurich, Switzerland) at 

wavelengths of 570 and 595 nm [105]. The number of viable cells correlates with the 

magnitude of dye reduction and is expressed as a percentage of Alamar Blue reduction, 

according to the manufacturer’s protocol. Each experiment was performed at least three 

times. Cell densities of 1.5 x 104 and 3 x 104 cells per sample were used for cell adhesion 

and viability/proliferation tests, respectively. The cell-particle interactions as well as the 

different kinds of cell constructs were analyzed at different times after cell seeding using 

confocal laser scanning microscopy (CLSM). Cell constructs were fixed with 4% 

paraformaldehyde for 20 min at room temperature, rinsed twice with PBS buffer and 

incubated with PBS-BSA 0.5% to block unspecific binding. Actin microfilaments were 
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stained with phalloidin tetramethylrhodamine B isothiocyanate (Sigma-Aldrich). 

Phalloidin was diluted in PBS-BSA 0.5% and incubated for 30 min at room temperature. 

The images were acquired at different times from cell seeding by using a He-Ne excitation 

laser at the wavelength of 543 nm and a 20x objective. 

Image J software (National Institutes of Health, USA) was involved for quantitatively 

evaluation of the cell morphology using a shape factor. The shape factor was expressed 

as follows: 

 

 

where ϴ represents a geometric constant (4π) related with the footprint area A and P is 

the perimeter of a cell [106]. 

Alamar blue assay has been also performed in order to evidence results in terms of Human 

Umbilical Vein Endothelial Cells (HUVECs) adhesion and viability/proliferation on the 

cell constructs at different culture times, also evidencing the effect of the inclusion of 

VEGF-loaded GPs and PlGF-loaded GPs on cell behaviour, over time. HUVECs 

(HUVEC – Clonetics, Italy) were prepared and analyzed as reported in the literature 

[107]. Briefly, they were grown in human endothelial-SFM basal growth medium 

supplemented with HI-FBS, 1% endothelial cell growth factor (ECGS), 100U/ml porcine 

heparin, 1% pen/strep in a humidified atmosphere at 37ºC and 5% CO2, and used at early 

passages (I–IV). 

HUVECs were statically seeded on the optimized multilayer composite hydrogel, 

collagen (1.2 mg/mL), collagen-LMWHA (1.2 mg/mL – 2.5 mg/mL), collagen (1.2 

mg/mL) reinforced with GPs.  
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GPs were loaded with VEGF (25 ng/mL) and PlGF (10 ng/mL), and the effects on cell 

behavior were investigated. In order to evaluate cell adhesion and viability/proliferation, 

the Alamar Blue assay (AbD Serotec Ltd, UK) was also performed on the different 3D 

cell constructs (HUVEC- hydrogel). Specifically, at 1, 3 and 7 days after cell seeding, the 

optical density was measured with a spectrophotometer (Sunrise; Tecan, Männedorf, 

Zurich, Switzerland) at wavelengths of 570 and 595 nm [105]. 8 x 104 cells per sample 

were used for cell adhesion and viability/proliferation tests.  

The several kinds of cell constructs were also analyzed at different times after cell seeding 

using optical microscopy. In vitro methods suitable for drug validation and for 

quantifying angiogenesis (i.e., Matrigel Assay) were also considered. 
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3 Results and Discussion 

3.1 Small amplitude oscillatory shear tests 

Small amplitude oscillatory shear tests have shown a gel-like behaviour for all the 

proposed materials, as the storage modulus G’ is always greater than the loss modulus G” 

in the frequency range investigated (Figure 11). Both dynamic moduli depend on 

frequency and collagen - LMW HA composition, generally rising with frequency and 

collagen concentration. 

 

Figure 11 – Mechanical spectra of: A. Collagen 1.2 mg/ml and collagen 1.2 mg/mL – LMW HA 2.5 

mg/mL; B. collagen 4 mg/ml and collagen 4 mg/mL – LMW HA 2.5 mg/mL. 

 

Values of dynamic moduli G’ and G’’ increased by increasing collagen concentration.  

 

3.2 Steady shear measurements  

Steady state shear measurements performed on all the materials have shown a shear 

thinning behaviour: viscosity decreases as the shear rate increases (Figure 12). This 

behaviour clearly suggests the possibility to inject the materials. 
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Figure 12 – Viscosity as function of shear rate for selected collagen-based materials: collagen 1.2 

mg/ml and collagen 1.2 mg/ml- LMW HA 2.5 mg/ml; collagen 4 mg/ml and collagen 4 mg/ml – 

LMW HA 2.5 mg/ml. 

 

3.3 Injectability tests 

The injectability of collagen gels and collagen-LMW HA s-IPNs has been evaluated from 

the load-displacement curves, using the experimental setup schematically reported in 

Figure 10. The above-mentioned materials have generally shown similar load-

displacement curves: a linear region is initially observed at low displacement values. 

After a maximum load occurred, load values sharply dropped, then fluctuating and 

reaching a plateau. At the end of the plateau-like region all the materials were completely 

injected (Figure 13). 
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Figure 13 - Typical load-displacement curve obtained from a material injected into and through the 

26 G needle (solid line) in comparison with an empty syringe (dashed line). 

 

Mean values of maximum load and plateau load have been reported in the following table 

(Table III). 

 

Material Maximum Load (N) Plateau Load (N) 

Empty Syringe 2.07 ± 0.31 0.65 ± 0.13 

Collagen (1.2 mg/ml) 3.48 ± 0.70 1.33 ± 0.31 

Collagen (1.2 mg/ml) – LMW HA (2.5 mg/ml) 3.58 ± 0.45 1.17 ± 0.19 

Collagen 4 mg/ml 4.11 ± 0.45 1.58 ± 0.11 

Collagen (4 mg/ml) – LMW HA (2.5 mg/ml) 4.31 ± 0.44 1.49 ± 0.41 

Table III - Results obtained from the injectability tests. Maximum load and plateau load reported 

as mean value ± standard deviation. 

 

As already discussed, it appears clear that the values of maximum load also include the 

contribution of the initial friction. For this reason, the maximum load may represent the 

initial resistance to material flow, whilst the plateau load may give important information 

on the continuous flow of material through the needle.   



Chapter 3                                                                                        Results and Discussion 

 47 

3.4 Gelatin particles 

The preparation of biodegradable gelatin particles (GPs) was accomplished by the 

optimized conditions of the two-step desolvation method. Figure 14A shows the 

micrograph of the obtained gelatin particles without BSA, revealing a uniform spherical 

shape with a smooth surface.  

 

BSA, a model protein, is normally used in various studies due to its abundance and low 

cost. In this study, before using the desired protein, the varying BSA loading was tested 

for its effect on the morphology of the particles (Figure 14B-E). There were no differences 

on the morphology when BSA was added (Figure 14B-D), except for 2% w/w BSA where 

seems to occur an elongation of the particles showing a non-spherical geometry and 

roughness on the surface (Figure 14E).  

When designing drug delivery systems, size plays an important role since it influences 

the drug release rate. Figure 15 shows the influence of BSA loading on particle size. The 

results showed that the encapsulation process affects the gelatin particles as the particle 

size seems to decrease by increasing the amount of BSA. The average mean size for the 

A. B. C. 

D. E. 

Figure 14 - SEM micrographs showing the morphology of gelatin particles with different BSA 

loadings (w/w): A. 0% B. 0.2% C. 0.5% D. 1% E. 2%. 
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unmodified gelatin particles was 195 nm and about 150 nm for 1% w/w BSA. However, 

there are no significant differences in particle size among the produced gelatin particles. 

Particle size prior to lyophilisation was also evaluated by laser diffractometry. As 

discussed before, the results showed an influence of the encapsulation process and the 

results showed a unimodal distribution, with a low PDI. 

 

 

Figure 15 - Variation of fibrils diameter with the concentration of gelatin particles. 

The matrix morphology of dried collagen hydrogels and collagen-GPs samples were 

examined by SEM at different magnifications (Figure 16). For the collagen hydrogel, a 

fibrillar and highly porous structure with macropores and smaller interconnecting pores 

was obtained (Figure 16A). This feature is very important because it allows cells, 

embedded in the scaffold, to properly adhere and proliferate. Moreover, the presence of 

interconnecting pores makes possible a good distribution of the nutrients which may reach 

all the cells and also the residues do not stay confined to a single pore thus compromising 

cell survival. The middle layer was prepared by mixing homogeneously the GPs at 

various concentrations with the collagen solution. Then, the final solution was electro 

sprayed on the collagen hydrogel prepared previously (lower layer). For the collagen-
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gelatin particles hydrogels, SEM analysis showed also a highly fibrillar collagen structure 

(average diameter size of 100 nm) where gelatin particles with similar size (60 nm) were 

embedded and well-integrated in the collagen network (Figure 16B). 

  

Figure 16 – SEM images of the dried hydrogels at different magnifications. A. Collagen hydrogel 5 

mg/mL and B. Collagen-GPs (0.05mg/mL) hydrogel. 

 

3.5 Cumulative release of BSA from gelatin particles 

The release profiles of BSA from the systems were also measured by UV-Vis 

spectrophotometer (Perkin Elmer), evaluating the absorbance at a wavelength of 278 nm. 

Figure 17 shows typical release profiles. At the initial stage a fast release phase is evident, 

then followed by a slower phase. 

A. B. 
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Figure 17 – Cumulative release over time. 

 

3.6 Solid phase peptide synthesis (SPSS) and functionalization of 

gelatin particles 

Solid phase peptide synthesis has demonstrated to be an adequate method to produce 

complex sequences such as FFG3K. Mass spectrum shows a main peak corresponding to 

the desired product (Figure 18). 

 

Figure 18 - Mass spectrum of FFG3K. 
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This value corresponds to a fourfold charged ion with a total molecular weight of 2237.63 

and is in accordance with the theoretical one of FFG3K 2234.95. Minor peaks might be 

attributed to the system noise or some fragments of the sequence. GPs were functionalised 

with FFG3K by the EDC/NHS coupling reaction. Functionalised GPs were characterised 

by attenuated reflectance Fourier transform spectroscopy (FTIR). The infrared spectra of 

the samples were measured over a wavelength range of 4000-500 cm-1 and acquired in 

the spectral range through the accumulation of 8 scans with a 4 cm-1. Specifically, FTIR 

was performed on GPs, FFG3K and 10% and 20% of total functionalisation of the GP to 

determine whether the process of functionalization was well succeed (Figure 19). GPs 

show the typical peaks of the raw gelatin. An amide I peak (C=O stretch) at 1620-1635 

cm-1, amide II peak (N-H bend and C-H stretch) at 1520-1540 cm-1, amide III peak (C-N 

stretch and N-H in phase bending) at 1240 cm-1 and amide A peak (N-H stretching 

vibration) at 3300 cm-1. In the functionalised GPs, all these peaks were present but most 

of them much stronger and shifted. Furthermore, additional peaks were also formed such 

as the peak at 1200 cm-1 where it changed from smooth to two peaks.  

 

 

Figure 19 - FTIR of GPs, FFG3K and GPs functionalized with FFG3K (10% and 20% of total 

functionalization). 
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3.7 Multilayer hydrogels 

For all the analyzed systems, a gel-like behavior was also observed (Figure 20). Both 

dynamic moduli increased with the frequency. As for the systems with the LMWHA-

based middle layer (systems 5-8 described in 2.9) both G’ and G’’ values increased with 

GP concentration, thus acting as a reinforcement for the system up to a threshold 

concentration. 

 

Figure 20 - Mechanical spectra for all the systems depicted in 2.9. 

 

When in the presence of hMSCs, at day 0, the gel like behavior was not altered. However, 

by increasing the amount of gelatin particles systems on the systems composed by 

LMWHA, both G’ and G’’ values decreased (Figure 21). This behavior might change 

over time by the production of ECM, which makes the system more rigid, thus increasing 

both dynamic moduli. 
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For all the analyzed systems, mechanical spectra with G’ values higher than G’’ ones 

were observed. Both dynamic moduli increased with the frequency. It is well known that 

the inclusion of particles influences both dynamic moduli and G’ values generally 

increase with particle concentration [26, 105]. However, after the injection through 

clinical needles, G’ decreases when the particle concentration is increased beyond a 

threshold limit. In particular, if the particle concentration exceeds a threshold value, the 

polymer–based network can be completely destroyed during the injection through clinical 

needles, as the particles start to act as “weak points” for the system as already reported in 

the literature [26, 108]. 

 

3.8 Cell adhesion study 

Interesting results in terms of cell adhesion and viability/proliferation tests were obtained. 

HMSC viability was assessed for all the proposed systems and the presence of 

collagen/LMWHA-based materials seems to favor cell attachment and spreading. The 

following Figure 22 summarizes the results obtained from MTT assay and imaging 

microscopy in terms of cell viability and attachment over time.  
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Figure 21 - Mechanical spectra for all cell-loaded multilayer composite hydrogels at day 0. 
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Figure 22 – MTT assay and imaging microscopy. 

Thus, taking into account the rheological/mechanical results, as well as the 

structural/functional features, the multilayer hydrogel marked as “system 6” was selected 

for further analysis.  

Alamar blue assay performed on cell constructs characterized by collagen-LMWHA gels 

with BSA-loaded gelatin particles have highlighted that hMSCs are viable on all the 

proposed materials. There was no significant difference in cell adhesion with varying 

BSA concentration after 1 day (Figure 23). Cell viability was significantly higher after 7 

days with a 1% BSA concentration (Figure 24).   
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Figure 23 - Alamar Blue assay: adhesion tests and effects of BSA-loaded particles embedded in the 

matrix. GPs were loaded with different BSA concentrations (0.2, 0.5, and 1%). 

 

Figure 24 - Alamar Blue assay: viability/proliferation tests and effects of BSA-loaded particles 

embedded in the matrix. GPs were loaded with different BSA concentrations (0.2, 0.5, 1%) 

 

On the other hand, CLSM images obtained from cell-particle interactions and from all the 

3D cell constructs (hMSC-multilayer hydrogel) (Figure 25 and Figure 26) were also 

suitably analysed through Image J software (National Institutes of Health, USA) to 

evaluate the cell morphology using a shape factor. The shape factor was expressed as 

follows: 
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Φ =
Θ𝐴

𝑃2
 

where ϴ represents a geometric constant (4π) related with the footprint area A and P is 

the perimeter of a cell [106]. 

 

Figure 25 - Results from CLSM analysis on cell-particle interactions at 7 days after cell seeding. 

 

 

Figure 26 - Results from CLSM analysis on 3D cell constructs at 7 days after cell seeding. 

 

Considering that circular objects possess the greatest area-to-perimeter ratio, a shape 

factor of 1 represents a perfect circle. On the other hand, a thin thread-like object has the 

lowest shape factor approaching zero. Thus, studies on cell adhesion and spreading were 

also performed based on CLSM images, the aim being to determine the shape factor of 

the cells. As an example, for the optimised system with BSA (1%)-loaded particles, the 

cell shape factor decreased significantly from 0.79 ± 0.04 at day 1 to 0.09 ± 0.01 at day 

7. It is worth noting that the lower the cell shape factor, the more elongated the cells [108]. 
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Briefly, an increased total cellular area (i.e., the establishment of multiple cellular 

extensions) implies elongated cells and, hence, the reduction in the shape factor, thus 

leading to better adhesion and spreading process. 

Figure 27 reports the results in terms of cell adhesion and viability/proliferation obtained 

by the Alamar Blue assay performed on the cell constructs at different culture times, in 

the presence of VEGF- and PlGF-loaded gelatin particles. In comparison to the neat 

collagen, cell adhesion was better on collagen with VEGF- and PlGF-loaded GPs. 

However, in terms of cell adhesion, at day 1 there were no significant differences between 

collagen with VEGF-loaded GPs and collagen with PlGF-loaded GPs. At day 3, in terms 

of cell proliferation, differences were found between collagen with VEGF-loaded GPs 

and collagen with PlGF-loaded GPs. The effect of PlGF was evident over 3 days and then 

decreased until day 7. On the other hand, the effect of VEGF decreased after 1 day. All 

of these results were also consistent with those obtained from optical imaging 

microscopy.  
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Figure 27 - Alamar Blue assay: HUVEC adhesion and proliferation in collagen and collagen 

reinforced with GPs. In panels A–I are reported representative microscopy images of HUVEC 

culture at day 1, 3 and 7: collagen (A, D, G); collagen with VEGF-loaded GPs (B,E,H); collagen 

with PlGF-loaded GPs (C,F,I). 

 

Figure 28 reports the results in terms of cell adhesion and viability/proliferation obtained 

by the Alamar Blue assay performed on the cell constructs at different culture times. If 

compared to the neat collagen-LMWHA, cell adhesion (i.e., at day 1) was better on the 

optimized systems with VEGF- and PlGF-loaded GPs. However, differently from 

collagen with VEGF-loaded GPs, in the multilayer systems with VEGF-loaded GPs a 

slight decrease of cell proliferation was observed at day 7 consistently with the results 

from optical microscopy. Differently from the systems reinforced with VEGF-loaded 

GPs, cell proliferation increased over time for the multilayer systems with PlGF-loaded 

GPs. 
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Figure 28 - Alamar Blue assay: HUVEC adhesion and proliferation in collagen-LMWHA and 

multilayer systems with GPs. In panels A–I are reported representative microscopy images of 

HUVEC culture at day 1, 3 and 7: collagen-LMWHA (A, D, G); multilayer system with VEGF-

loaded GPs (B,E,H); multilayer system with PlGF-loaded GPs (C, F, I).  

 

The bioactivity of the VEGF released from GPs after 6 h was evaluated by an in vitro bi-

dimensional tube formation assay (Figure 29). This assay was chosen since it is one of 

the most widely used test for the evaluation of the efficacy of pro-angiogenic factors in 

vitro. As evidenced by preliminary experiments, VEGF-loaded GPs showed no 

cytotoxicity effect on HUVECs when cultured in the presence of either a GP-

preconditioned medium or a medium with GPs (data not shown). Then, HUVECs were 

plated onto a Matrigel coat and the angiogenic response was measured by the extent and 

shape of the capillary-like network formed by HUVECs after 6 h of incubation in culture 

medium without angiogenic inducer (Figure 29A), with free VEGF (Figure 29B) with 
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free PlGF (Figure 29C), with VEGF-loaded GPs (Figure 29D), with PlGF–loaded GPs 

(Figure 29E). It is worth noticing that in terms of number of tube-like structures and grid 

intersections, which were measured and quantified by Scion Image Software, no 

differences were found between the PlGF released from GPs and the same amount of free 

PlGF. Conversely, a lower number was evaluated for the VEGF-loaded GPs in 

comparison to that obtained for free VEGF. These results also suggested the different 

ability of the system to control the release of VEGF and PLGF. Furthermore, all the 

obtained results indicated that the process of encapsulation did not affect negatively the 

VEGF and PlGF biological activity. 
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Figure 29 - Matrigel assay: capillary like tube formation and quantification of tubular structures 

(average number of intersections ± SD, Scion Image Software Analysis). 
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4 Conclusions 

A multifunctional hydrogel acting as a reservoir system to deliver specific biomolecules 

to targeted ischemic sites was designed in the form of a multilayer composite hydrogel 

integrating conventional and advanced methods (i.e., electrospray-based technique). 

Protocols for scale-up of hydrogel system components were developed. Gelatin particles 

were further developed, loaded with a model protein (BSA) and analyzed. Gelatin 

particles were functionalized. Gelatin particles were also loaded with VEGF and PlGF 

and analyzed. The effects of the VEGF and PlGF released from GPs/multilayer system 

on the cell behavior, as well as the capillary like tube formation by HUVECs, were 

properly measured.   

The optimized system was properly selected taking into account the 

rheological/mechanical results, as well as the structural/functional features. The 

developed system showed adequate mechanical/rheological properties and can be also 

easily injected. The biological features of the system were analyzed and the profile release 

was evaluated. 
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