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Introduction

In the current modern Physics description all particle interactions can be
interpreted as expression of four fundamental interactions: electromagnetic,
weak, strong and gravitational. The Standard Model of particle physics is
the theoretical model which describes three of these interactions, excluding
only gravitation.
The last decades of experiments have proved with a remarkable level of preci-
sion all Standard Model predictions. The most recent success is the discovery
of Higgs Boson, a particle responsible to give mass to all elementary particles
through the Higgs-Brout-Englert mechanism. The announcement was given in
2012, at CERN, where Higgs events were produced in proton-proton collisions
at the Large Hadron Collider (LHC).
Whilst Higgs boson discovery emphasizes the robustness of Standard Model,
this successful theoretical framework can not be considered as a complete
theory. Aside gravitational interaction, which is not part of the model, there
are several theoretical problems still unsolved. One of the main concern,
the hierarchy problem, namely the large discrepancy between electroweak
and gravity interaction, can be figured out by introducing new theoretical
models opening to Beyond Standard Model (BSM) Physics. In this new
physics scenarios several models predict the existence of new particles and
interactions.
Supersymmetry (SUSY) is usually one of the most accepted BSM theory:
a supersymmetric particle is assigned to each Standard Model elementary
particle.
Models with extra dimensions are also considered for probing new physics.
Indications for new physics can be also derived from many astrophysical and
cosmological observations, which indicate that the visible matter constitutes
only a small fraction of the whole Universe. Dark Matter and Dark Energy
are currently appealing solutions to explain these experimental evidences, pro-
viding weakly interacting massive particles (WIMPs) as possible candidates.
The theoretical models introduced lead to many possible topologies with
neutral particles candidates that could be produced during LHC collisions,
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INTRODUCTION 2

leading to final states characterized from signatures with missing momentum.
One way to observe them is when they are produced in association with
a visible SM particle. In this context the final state with jet and missing
momentum, the monojet channel, is the most promising channel, expected to
achieve the most sensitive results among these dedicated searches. Although
the monojet channel is the most compelling channel, a dedicated search with
bottom quarks and missing momentum can give both complementary results
and test new theoretical scenarios in which new particles couple to down
generation quarks.
This thesis is organized as follows.
In Chapter 1, an overview of Standard Model particles and interactions is
presented, together with Higgs mechanism description.
In Chapter 2, after motivating the necessity of a Standard Model extension
the most valued Beyond Standard Model theories is provided, in particular
SUSY, Dark Matter and extra dimensions.
The experimental LHC facilities and the main features of ATLAS detectors
are described in Chapter 3, while the identification and reconstruction of the
physics objects used in the analysis are detailed in Chapter 4.
Chapter 5 is dedicated to an extensive description of the analysis with bottom
quarks and missing momentum, reporting selection criteria and background
estimations as well as results on the models considered obtained with the full
available dataset collected from 2015 collisions at the LHC.
Finally in Chapter 6 a brief overview of DM searches will be presented, with
a particular emphasis to the comparison of LHC results with non-collider
experiments.



Chapter 1

The Standard Model of Particle
Physics

The Standard Model (SM) [1, 2, 3] is a quantum field theory who de-
scribes three of the four known fundamental interactions: strong interaction,
electromagnetic interaction and weak interaction. In this chapter an overview
of SM theoretical framework will be provided.

1.1 The Standard Model: a quantum field

theory

Quantum field theory (QFT) is a modern physics theory who describes
quantum mechanical models of particle physics. It incorporates quantum
mechanics, special relativity and the concept of field.
QFT introduced the second quantization, a formalism in which fields are
treated as field operators (as function of space-time coordinates) that create
and destroy particles. These operators obey to equations of motion derived
from a lagrangian L through a variational principle. Usually L is written as
integral of a lagrangian density L simply referred as lagrangian, involving
fields φj(x) and its derivatives

∂φj(x)

∂xµ
≡ ∂µφj(x):

L(t,x) = L (φj(x), ∂µφj(x)) . (1.1)

The equations of motion of fields are obtained by applying Eulero-Lagrange
equations

∂L
∂φj
− ∂

∂xµ

 ∂L

∂
(
∂φj
∂xµ

)
 = 0 (j = 1, 2, ...) (1.2)

3



CHAPTER 1. THE STANDARD MODEL OF PARTICLE PHYSICS 4

belonging to a variational principle. Field interactions are introduced by
imposing that free lagrangian L0 satisfies a local gauge symmetry. In this
way one obtains the interaction term L′

L = L0 + L′.

To each lagrangian a set of Feynman rules is associated.

SM particles belongs to two categories [4]:

• particles constituting matter, that is quarks and leptons, fermions
with spin 1/2 (to each one corresponds an antiparticle). These particles
are classified on the basis of their interactions and divided in generations
each containing a pair of quarks and a pair of leptons. Particles differ
each other for their masses and their quantum numbers. The three
generations are reported in table 1.1 for leptons and table 1.2 for quarks;

• interaction mediator particles, they are bosons, also know as vector
boson o gauge bosons (table 1.3) since they are introduced on the basis
of a symmetry principle, the gauge symmetry.

Generation Lepton Charge [Q/e] Mass [MeV]

First
e −1 0.511
νe 0 < 0.225× 10−3

Second
µ −1 105.7
νµ 0 < 0.19

Third
τ −1 1777
ντ 0 < 18.2

Table 1.1: The three generations of leptons with the corresponding masses.

The SM theoretical framework relies on a symmetry principle: the theory
is invariant under a particular group of transformations, the gauge transfor-
mations. Gauge invariance guarantees the mathematical coherence and the
theory predictivity, that is the theory renormalization. The symmetry group
of SM is

SU(3)C ⊗ SU(2)L ⊗ U(1)Y ,

where:
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Generation Quark Charge [Q/e] Mass [GeV]

First
u +2

3
< 2.3× 10−3

d −1
3

< 4.8× 10−3

Second
c +2

3
1.28

s −1
3

95× 10−3

Third
t +2

3
173.5

b −1
3

4.18

Table 1.2: The three generations of quarks with the corresponding masses.

Interaction Boson Charge [Q/e] Mass [GeV]

Electromagnetic γ 0 0

Weak
W± ±1 80.4
Z 0 91.2

Strong g 0 0

Table 1.3: Gauge bosons for the three fundamental interactions of the Standrd
Model.

• SU(3)C is the non-abelian colour symmetry group, which describes
strong interactions between quarks, via an octet of massless gauge
bosons, the gluons, obeying to the quantum chromodynamics (QCD)
rules.

• SU(2)L ⊗ U(1)Y is the weak isospin symmetry group that describes
the electroweak (EW) interaction obtained from the product of SU(2)L
symmetry group (weak interaction) and U(1)Y symmetry group (elec-
tromagnetic interaction) and described in the Glashow, Weinberg and
Salam model. Electroweak interaction is mediated via four gauge bosons,
three of them massive (W±, Z) and one massless, the photon (γ).

The Standard Model lagrangian can be divided into two parts: QCD term,
describing strong interactions, and EW term, describing electromagnetic and
weak interactions:

LSM = LQCD + LEW .

1.2 Symmetries and conservation laws

Symmetries and conservation laws play an important role in the exploration
and comprehension of physical phenomena. A symmetry of a physical system
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is a transformation under which the system remains unchanged. In that case
the theory is said to be invariant under the transformation. Symmetries can
be classified as global or local.
The former refers to a feature common to the most of the gauge theories,
which describe lagrangians that are globally invariant under a coordinate
transformation. Requiring a global invariance leads to a conserved physical
property of the sistem.

In local transformations, one obtains a different value for each space-time
point. A gauge invariance request leads naturally to the introduction of new
fields which act as force carriers. It can be proved that local gauge invariance
holds for a theory of interacting fields. For the development of gauge theories
their request applied to a free lagrangian introduces interactions.

In the Standard Model case, strong interaction are symmetric under
SU(3)C gauge group, and the symmetry is said to be exact. The symmetry
describing weak interactions are not exact (in that case one refers as symmetry
breaking), thus leading to massive mediator particles. The mechanism of
symmetry breaking, which gives mass to particles and introduces a new scalar
particles, the Higgs boson, will be described in paragraph 1.6.

1.3 Quantum electrodynamics

Quantum electrodynamics (QED) is the quantum theory describing elec-
tromagnetic interactions between charged particles, including in its framework
special relativity. Mathematically QED is an abelian gauge theory, with the
symmetry group being U(1). The lagrangian for a spin 1/2 field with mass
m is:

L = iψ̄γµ∂µψ −mψ̄ψ, (1.3)

where:
ψ̄ = ψ†ψ0,

and γµ are Dirac matrices 4×4, satisfying anticommutation relation {γµ, γν} =
γµγν + γνγµ = 2gµν , with gµν being the metric tensor. The request of local
gauge invariance leads to the following transformation for the fields:

ψ → ψ′ = eiqθ(x)ψ(x) (1.4)

ψ̄ → ψ̄′ = e−iqθ(x)ψ̄′(x)

and, by introducing the covariant derivative

Dµ ≡ ∂µ + iqAµ(x) (1.5)
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Figure 1.1: QED Feynman rules.

the vectorial field Aµ(x) becomes:

Aµ(x)→ Aµ(x)− ∂µθ(x). (1.6)

The Lagrangian
L = iψ̄γµDµψ −mψ̄ψ (1.7)

is now invariant under local gauge transformation. It should be noted that
local gauge invariance request naturally leads the theory to introduce a gauge
field Aµ which is associated to the photon. The complete QED lagrangian
includes the kinetic term describing free photons propagation and that is
invariant under local gauge transformation:

L = iψ̄γµDµψ −mψ̄ψ −
1

4
F µνFµν (1.8)

= iψ̄γµ∂µψ −mψ̄ψ − jµAµ −
1

4
F µνFµν ,

where jµAµ corresponds to the interaction term between Dirac particle and
electromagnetic filed. The Feynman rules obtained from such description of
QED are shown in figure 1.1.

1.4 Quantum chromodynamics

Quantum chromodynamics (QCD) is the theory for strong interactions
between quarks and gluons constituting hadrons. Similarly to QED, it relies
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on a gauge invariance principle, in this case a non abelian colour SU(3)C
group. The non-abelian property allows to auto-interacting terms in QCD
lagrangian, that carry a charge (colour charge). In QCD description quarks
are represented as colour triplets, for each flavour f correspond three spinors
fields ψfj (x) with colour index j = 1, 2, 3. QCD free lagrangian is:

L =
∑
j

ψ̄j(iγ
µ∂µ −mj)ψj. (1.9)

The request of invariance under local gauge transformation for the SU(3)C
group leads to

ψfj → ψ
′f
j = eigs

~λ·~θ(x)ψfj (x), (1.10)

where λi are the 8 Gell-Mann matrices and gs = (4παs)
1
2 is the strong coupling

constant. The invariant lagrangian is obtained by introducing gluon fields (8)
and defining the covariant derivative as

Dµ = ∂µ + ig
λa
2
Ga
µ (1.11)

the lagrangian 1.9 is hence invariant for local gauge transformations. The
kinetic term for each gluon is −1

4
Ga
µνG

µν
a , where Ga

µν = ∂µA
a
ν − ∂νA

a
µ −

gsfabcA
b
µA

c
ν the complete QCD lagrangian is:

L =
∑
f

ψ̄f,a(iγ
µ∂µ−m)ψf,a−gsψ̄f,aγµGa

µ(x)
λa
2
ψf,a−

1

4
Ga
µν(x)Gµν

a (x) (1.12)

with f = 1, 2, 3 and a = 1, 2, ...8. The terms in the lagrangian 1.12 result in
gluon auto-interactions, thus allowing new vertexes not present in QED (as
shown in figure 1.2). The main consequences are asymptotic freedom and
colour confinement.

1.5 Electroweak interaction

The theory of unification of electromagnetic and weak interactions has been
developed in the 60s by Sheldon Glashow, Abdus Salam e Steven Weinberg,
who were awarded with the Physics Nobel Prize in 1979. Mathematically it is
described by SU(2)L ⊗U(1)Y symmetry group, where L refers to left-handed
fields and Y to weak hypercharge.
Electroweak interaction holds for all Standard Model fermions. A fermion
spinor field can be described in terms of its left-handed and right-handed
components by using a projection operator:

ψL,R =
1

2

(
1∓ γ5

)
ψ
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Figure 1.2: QCD vertices.

Experimental evidences show that weak interaction violates parity symmetry.
In particular weak interaction affects only left-handed component of fermions
for charged current processes, described as doublets of the isospin weak
symmetry. In neutral current processes also the right-handed component is
involved, described as singlet.

A conserved charge is associated to U(1)Y group, the weak hypercharge.
The hypercharge Y and the weak isospin I satisfy Gell-Mann-Nishima relation,
which relates them to the electric charge, according the formula:

Q = I3 +
Y

2
,

I3 is the the third component of weak isospin. Table 1.4 reports quantum
numbers for each fermion. Gauge invariance under SU(2)L ⊗ U(1)Y group
leads to:

ψL → ψ′L = eiα
a(x)·Ta+iβ(x)Y ψL (1.13)

ψR → ψ′R = eiβ(x)Y ψR

where αa(x) e β(x) are local phases Ta and Y are respectively SU(2)L and U(1)
group generators. The gauge invariance is preserved after the introduction of
four fields, and defining covariant derivative as:

Dµ = ∂µ + i
g

2
W a
µTa + i

g′

2
BµY (1.14)

with g an g′ coupling constants of the two interactions. The final lagrangian,
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Generations Quantum numbers

1 2 3 I I3 Y Q[e]

Leptons

(
νe
e−

)
L

(
νµ
µ−

)
L

(
ντ
τ−

)
L

1/2
1/2

1/2
−1/2

−1
−1

0
−1

e−R µ−R τ−R 0 0 -2 -1

Quarks

(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

1/2
1/2

1/2
−1/2

1/3
1/3

2/3
−1/3

uR cR tR 0 0 4/3 2/3
dR sR bR 0 0 -2/3 1/3

Table 1.4: Overview on fermion quantum numbers in the Stanrd Model. Right-
handed netrinos do not interact and are not considered.

invariant for SU(2)L ⊗ U(1)Y is then:

Lµ =
∑
j

iψ̄jLγ
µDµψjL +

∑
k

iψ̄kRγ
µDµψkR −

1

4
W a
µνW

µν
a −

1

4
BµνB

µν (1.15)

where indices i and k sum over singlets and doublets reported in table 1.4
and

W a
µν =∂µW

a
ν − ∂νW a

µ − g′εabcW b
µW

c
ν (1.16)

Bµν =∂µBν − ∂νBµ. (1.17)

1.6 Spontaneous symmetry breaking

Although both electroweak and QCD interactions are based on gauge
principles, their lagrangians don’t include mass terms, in contradiction with
what experimental evidences suggest. The mass terms to be added must not
violate gauge invariance. The Higgs mechanism [5, 6, 7] has been introduced
to solve this problem. The masses of the particles are obtained through a
spontaneous symmetry breaking mechanism: an initial symmetrical state turns
out in an asymmetrical state. The idea preserves the gauge invariance of the
lagrangian, but not its fundamental state. The symmetry breaking of the
ground state is due to a scalar field, the Higgs field.
The Higgs field φ consists of a weak isospin doublet of complex scalar fields
with hypercharge Y = 1:
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φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(1.18)

The lagrangian of the Higgs sector contains the following potential terms,

V (φ) = µ2φ†φ+ λ(φ†φ)2 = µ2φ2 + λφ4, (1.19)

thus resulting in:
LH = (Dµφ)†(Dµφ)− V (φ) (1.20)

where Dµ has been defined in equation 1.14.
The choice of λ > 0, necessary for the vacuum stability, and µ2 < 0, leads to
the potential shown in Figure 1.3. The potential has an infinite number of
minimum energy states satisfying the condition:

φ2
0 = −µ

2

2λ
≡ v2 (1.21)

where v is set to 246 GeV. The symmetry invariance is ensured by the following
solution:

φ1 = φ2 = φ4 = 0, φ2
3 = −µ

2

2λ
= v2. (1.22)

A perturbative expansion around the vacuum state of φ

φ0 =

(
0
v

)
(1.23)

as:

φ =

(
0

1√
2

(v +H(x))

)
(1.24)

leads to the symmetry breaking, and the mass terms are obtained by substi-
tuting φ value in the lagrangian.

Gauge boson masses

After the request of global gauge invariance one obtains the following
lagrangian:

L = (Dµφ)†(Dµφ)− V (φ)− 1

4
W a
µνW

µν
a −

1

4
BµνB

µν . (1.25)

From the kinetic term (which includes quadratics terms) the physical fields
W± are defined as:

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ) (1.26)
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Figure 1.3: Higgs potential V (φ). Non-trivial case stands for λ > 0 and µ2 < 0.

while Z field and photon fields are orthogonal:

Zµ =
g′W 3

µ − gBµ√
g′2 + g2

(1.27)

Aµ =
g′W 3

µ + gBµ√
g′2 + g2

. (1.28)

By introducing the mixing angle θw

cos θw =
g′√

g′2 + g2
, sin θw =

g√
g′2 + g2

(1.29)

Z and A fields become:

Zµ = −Bµ sin θw +W 3
µ cos θW (1.30)

Aµ = Bµ cos θw +W 3
µ sin θW. (1.31)

The masses of the bosons are represented by the coefficients of quadratic
terms from the lagrangian 1.25:

MW =
gv

2
(1.32)

MZ =
v

2

√
g′2 + g2 (1.33)

while photon is massless. The relation between boson masses and mixing
angle is:

MW

MZ

= cos θW. (1.34)
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Fermion masses

Fermion mass terms can be added by considering the interaction between
scalar field φ and fermions. The Yukawa terms of the lagrangian are:

LYukawa = −Gij
` L̄

i
Lφ`

j
R −G

ij
d Q̄

i
Lφd

j
R −G

ij
u Q̄

i
LφCu

j
R + h.c. (1.35)

where L̄iL an Q̄i
L are isospin doublets for leptons and quarks, and `jR, djR, ujR

are singlets for letpons and up and down quark states. In the last term
φC = iσ2φ

∗. The matrices Gij
` , Gij

d e Gij
u define the coupling constants and

the quark generation mixing, whose weak interaction eigenstates are linear
combination of mass eigenstates. Fermion masses are obtained by applying
spontaneous symmetry breaking and substituting φ value as in equation 1.24.
As example, electron mass term is reported:

Le = −Ge√
2
v (ēLeR + ēReL)− Ge√

2
(ēLeR + ēReL)H (1.36)

= −meēe−
me

v
ēeH,

where me = Gev√
2

is the electron mass. The coupling constant Ge is arbitrary
and electron mass is not predicted. The lagrangian contains an interaction
terms that couples Higgs field to the electron, proportional to electron mass.
The procedure is the same for remaining fermion masses, with the exception
of neutrinos that are considered massless.
In particular for quarks, the non-diagonal couplings corresponding to non-
diagonal terms in Yukawa matrices persist after symmetry breaking and are
solved through four unitary transformations allowing transition from interac-
tion eigenstates to mass eigenstates. These transformations affect currents:
in charge current interactions charge and parity symmetry is violated.



Chapter 2

Beyond Standard Model
theories

The discovery of Higgs Boson, announced in July 2012 [8, 9], completes
the SM puzzle of particles. Nevertheless Standard Model is not a finite theory:
several problems still don’t have an explanation. It is used to refer as Physics
Beyond Standard Model (BSM) to a class of theories which aim to fill this gap.
In this chapter a brief description of the limits of the Standard Model will be
given, and some of the most promising BSM theories will be introduced.

2.1 Limits of the Standard Model

Despite its numerous successes SM is not a complete theory. The Standard
Model theory shows its incompleteness in several aspects:

• Mass, it contains 19 free parameters, the masses of the particles and
the coupling constants. Neutrino masses are set to zero in the model.

• Unification, the theory does not include gravitation, and a Great
Unification Theory (GUT) of strong and electroweak interactions has
not been successfully developed yet.

• Flavour, the existence of three quark and lepton generations with
consistent mass differences.

• Cosmology, SM does not provide an explanation of matter/antimatter
asymmetry and Dark Matter/Energy contributions.

One of the most discussed theoretical controversy is the hierarchy problem,
namely the huge discrepancy between weak and gravity interaction. Two

14
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mass scales are known in nature: the first corresponds to the electroweak
symmetry breaking at mW ∼ 100GeV and the second is related to gravita-
tional interaction, Planck mass mP ∼ 1019 GeV. The Higgs mass correction
in a fermionic loop can be written as:

(δm2
H)f ' −

λ2
f

16π2

[
−2Λ2 − 6m2

f ln
Λ

mf

+ · · ·
]
, (2.1)

that shows a quadratic divergence depending on the cut-off scale Λ. λf and
mf are respectively the Yukawa couplings and the masses of the fermions. If
Λ = mP , Higgs mass correction becomes several order of magnitudes greater
than the SM expectations. To avoid this issue a large cancellation, fine tuning
would be needed.

2.2 Supersymmetry

A solution to the hierarchy problem has been developed in Supersymmetric
(SUSY) theories [10, 11]. The Higgs mass correction in a scalar loop is:

(δm2
H)S ' −

gS
16π2

[
2Λ2 − 2m2

Sln
Λ

mS

+ · · ·
]

(2.2)

where gS is the coupling between the Higgs and the scalar with mass mS. The
opposite sign with respect to equation 2.1 depends on the Fermi statistics.
It is now evident that quadratic divergence would be cancelled if the two
contributions in equations 2.1 and 2.2 have summed up by imposing:

λ2
f = gS. (2.3)

This cancellation would be mass and coupling independent. Hence, a way to
eliminate divergences is:

• associate to each SM particle a new particle which is a boson if the SM
one is a fermion and vice versa,

• require a symmetry that ensures this cancellation to all perturbativity
orders.

These conditions are satisfied in Supersymmetry. A supersymmetric transfor-
mation turns out a bosonic state into a fermionic one and vice versa, therefore
to each fermion corresponds a boson with identical quantum numbers but with
spin differing of 1/2. If SUSY was an exact symmetry each supersymmetric
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partner (sparticle) should have the same mass of the corresponding SM parti-
cle. Since there is no evidence, SUSY could be a broken symmetry. In order
to avoid the hierarchy problem and the quadratic divergences a soft symmetry
breaking must be required, thus leading to the following Lagrangian:

L = LSUSY + Lsoft, (2.4)

where LSUSY preserves symmetry invariance and Lsoft is responsible to give
higher masses to sparticles, that should be comparable to Higgs mass. Indeed
in order to have a small fine tuning the Higgs mass correction resulting from
2.1 and 2.2

δm2
H =

λ2
f

16π2
|m2

S −m2
f | (2.5)

should give:
|m2

S −m2
f | . 1 TeV2. (2.6)

Minimal Supersymmetric Standard Model

Minimal Supersymmetric Standard Model is the simplest supersymmetric
extension to SM. In this model lepton and quark supersymmetric partners
are respectively sleptons (l̃) and squarks (q̃). The same procedure is applied
to gauge bosons thus giving winos (W̃ ), bino (B̃) (which provides zinos (Z̃0)
and photinos (γ̃) ) and gluinos (g̃). For gauge anomaly reasons two Higgs
scalar doublets are introduced, leading to five Higgs physics states, and the
corresponding supersymmetryc higgsinos. All the supermultiplets are listed
in Table 2.1. Winos, higgsinos and bino mix with each other resulting in four
electrically neutral neutralinos and two electrically charged charginos.
The most general supersymmetric lagrangian contains terms that violate
baryon and lepton number, thus resulting in contrast with experimental
evidences. In the MSSM a new symmetry is introduced, the R-parity which
confers to a spin s particle (standard or supersymmetrycal) the quantum
number

R = (−1)3(B−L)+2s, (2.7)

which is assumed to be conserved in physical processes. R is +1 for particles
and −1 for sparticles. If R is a conserved quantity each vertex contains an
even number of sparticles. As consequence:

• SUSY particles can be only produced in pairs from SM particles.

• The Lightest Supersymmetryc Particle (LSP) must be stable. If it is
neutral, it weakly interacts with ordinary matter and constitutes a good
candidate for Dark Matter.
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SM MSSM

Gauge eigenstates Mass eigenstates
Particle Name Particle Name Particle Name

q = u, d, c, s, t, b quark q̃L, q̃R squark q̃1, q̃2 squark

l = e, µ, τ lepton l̃L, l̃R slepton l̃1, l̃2 slepton
l = νe, νµ, ντ lepton ν̃ sneutrino ν̃ sneutrino

W± W boson W̃± wino

W 3 W 3 field W̃ 3 wino

B B field B̃ bino

H−(+) Higgs boson H̃
−(+)
1(2) higgsino

H0
1,2 Higgs boson H̃0

1,2 higgsino
H0

3 Higgs boson

W̃±, H̃−1 , H̃+
2 χ̃±1,2 chargino

W̃ 3, H̃0
1 ,H̃0

2 , B̃ χ̃0
1,2,3,4 neutralino

Table 2.1: Standard Model fields and corresponding superpartners in the MSSM.

• Each sparticle different from LSP can eventually decay in a state con-
taining an odd number of LSPs.

Compressed Scenarios

MSSM is a model with a huge number of parameters (∼100). It it possible
to build simplified models which provides a scenario where the mass difference
between LSP and next-to-lightest particle (NLSP) is small. These compressed
models predict a single decay chain with neutralino as LSP. Interesting
compressed scenarios are:

• Stop pair production with t̃→ c+ χ̃0;

• Sbottom pair production with b̃→ b+ χ̃0;

• Squark pair production with q̃ → q + χ̃0.

The corresponding diagrams are shown in Figure 2.1. Since the mass dif-
ference between neutralino and decaying sparticle is small the final state is
characterized by low missing transverse momentum thus resulting in a difficult
separation between signal and multi-jet background. To avoid this issue, the
studies presented require in the signal selection the presence of initial state
radiation (ISR).
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(a) (b) (c)

Figure 2.1: Feynman diagrams for SUSY compressed scenarios for stop (a), sbot-
tom (b) and squark (c) decays.

2.3 Extra Spatial Dimension

In 1998 Arkani-Ahmed, Dimopolous and Dvali proposed a theory (ADD)
based on extra-dimensions in order to solve the hierarchy problem [12]. In
their model the large disparity between weak and Planck scale is united at
weak scale. In this alternative framework they postulated the existence of n
extra-dimensions (bulk) that could lead to potentially measurable effects on
the TeV scale. While SM fields are confined in the four-dimensional space,
gravity could propagate in these compactified extra dimensions. If we assume
that the only fundamental scale in nature is the weak scale, extra spatial
dimension of radius ∼ R are then introduced to relate Planck scale to the
weak one. The gravitational potential of two masses m1 and m2 at a distance
r � R in (4 + n) dimension can be written as:

V (r) ∼ m1m2

Mn+2
Pl(4+n)

1

rn+1
, (2.8)

where MPl(4+n) is the gravity scale in the (4 + n) dimensions. If the masses
are placed at a distance r � R one obtains the Newton’s classical potential:

V (r) ∼ m1m2

Mn+2
Pl(4+n)R

n

1

r
, (2.9)

giving the following relation for MPl:

M2
Pl ∼M2+n

P l(4+n)R
n. (2.10)

Constraining it to the weak scale mEW the expression for the radius becomes:

R ∼ 10
30
n
−17cm×

(
1TeV

mEW

)1+ 2
n

. (2.11)
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The n = 1 case, resulting in R ∼ 1013 cm, would imply deviations of classical
gravitation over solar system distances, hence is excluded by experimental
cosmological evidences. The n > 1 cases result in small distances that can
not be probed by experiment. In particular, the case where n = 2 yields
R ∼ 100µm− 1mm is very interesting since LHC has the sensitivity to study
it.
Only graviton field can propagate in the bulk. It’s a spin-2 particle which
mediates gravitational interaction and its projection into the four-dimensional
space are massive graviton states called Kaluza-Klein towers. At LHC gravi-
tons may escape detection and can be produced in association with an
energetic jet. In Figure 2.2 are shown Feynamn diagrams at LO for graviton
production in association with a quark or gluon.

Figure 2.2: LO Feynman diagrams for graviton production with a quark or a
gluon.

2.4 Dark Matter

Dark Matter (DM) existence in the Universe is highly motivated by many
astrophysical and cosmological observations [13]. Neverthless, its nature and
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properties are still unknown as well as no direct observations were reported.
The ΛCDM (Cold Dark Matter) model, the standard model of cosmology, is
based on:

• Einstein’s general relativity equations, which connect the geometry of
the Universe with its matter and energy content,

• a metrics describing the space-time geometry,

• equation of state for studying properties of the evolving system.

The request of homogeneity and isotropy of our Universe turns into a particular
metrics expression which is applied to Einstein’s field equation. A density
parameter is introduced in order to evaluate the geometry of the Universe
which results to be flat for the critical density

ρc =
3H2

8πGN

, (2.12)

where GN is the Newton constant,H is the Hubble parameter whose recent
estimation yields H0 = 67.8± 0.9km s−1Mpc−1 [14]. A standard convention
is to use the total density of the Universe Ω which is the ratio of the sum of all
densities ρi over the critical one. According to this definition the Universe can
be flat (Ω = 1), open (Ω < 1) or closed(Ω > 1). Most accurate observation
[15] estimated baryons and Dark Matter densities to be:

Ωbh
2 = 0.02226± 0.00023, ΩDMh

2 = 0.1186± 0.0020. (2.13)

Since ΛCDM model assumes flat Universe an additional contribution is
needed to satisfy this condition, leading to the presence of Dark Energy. The
corresponding densities for baryonic matter, Dark Matter and Dark Energy
are respectively 5%, 26% and 69% revealing that a very small part of the
Universe is known.

2.4.1 Experimental evidences

One of the most powerful evidence of DM presence in the Universe comes
from the observations of the rotation curves of galaxies, reporting the velocities
of stars and gases as function of their distance from the galactic center. The
observed curves are in disagreement with Newtonian dynamics, from which
orbital velocity can be written as:

v =

√
GNM(r)

r
, (2.14)
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with

M(r) ≡ 4π

∫
ρ(r)r2dr (2.15)

where ρ(r) is the visible matter density. It is expected that v ∝ 1/
√
r, but

observations shown a constant behaviour of v(r) which implies the existence
of an halo with M(r) ∝ r and ρ ∝ r2 (Figure 2.3).

Figure 2.3: Rotation curve of galaxy NGC 6503. The dotted, dashed and dash-
dotted lines are respectively the contributions of gas, disk and dark
matter [16].

Dark Matter contribution can be estimated through the observation of the
gravitational lensing. According to Einstein’s theory of general relativity a
massive body can deform the space-time curvature leading to different effects
to a luminous source: deflection, luminous intensity amplification, doubling.
The amount of matter present in a region can be inferred from the study
of these phenomena. Observations proved that ordinary matter can not be
solely responsible of such effects. See [17] for reviews.
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2.4.2 Candidates

A wide class of particles, belonging to SM and to BSM models, has been
introduced in order to find adequate DM candidates. Cosmological and
astrophysical observations suggest that DM candidates must satisfy several
requirements:

• they must be stable or having a long life on cosmological time scale,

• they must interact weakly with electromagnetic radiation,

• their abundance must fulfill the observed relic density.

SM candidates

Neutrinos have been for long considered as DM candidates, since they
satisfy all the requests described above. However they are ruled out since
they are relativistic particles and observations measured a neutrino density
Ωνh

2 = 0.0062 at 95% C.L. [4], which show that neutrinos are not abundant
enough to be considered as dominant component of DM.

Sterile neutrinos

These particles have similar characteristics as SM neutrinos, but they
interact only gravitationally. In the model proposed by Dodelson and Widrow
[18] in 1993, sterile neutrinos are right-handed and couple to left-handed
neutrinos thus leading to a production mechanism via neutrino oscillations.
Some models provides sterile neutrinos as cold DM, if there is a small lepton
asymmetry.

Axions

Axions have been introduced in order to solve the strong CP problem
of QCD, that is the fact that although QCD lagrangian has CP-violating
terms no evidence has been yet observed. Experimental evidence suggests
that axions are very light particles (with a mass . 0.01 eV [13]), which could
exist in sufficient numbers to act as cold DM but they weren’t in thermal
equilibrium in the early Universe. Axion supersymmtric partner, the axino
could explain hot DM.

Weakly interacting massive particles

Weakly interacting massive particles (WIMPs) are presented in many
theoretical models as the most adequate DM candidates, with masses spacing
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from GeV to TeV and weak cross sections.
In SUSY models WIMPs are identified with the LSP, namely neutralinos
or gravitinos according to the model. In large extra-dimensions theories
Kaluza-Klein towers are possible DM candidates.

2.4.3 WIMP searches: direct and indirect detection

Three typologies of experiments can be used for WIMP searches (a scheme
of the approaches is shown in Figure 2.4):

• Direct detection experiments looking for scattering processes between
DM and ordinary matter,

• Indirect detection experiments that search for the annihilation products
originating from WIMP collisions,

• Collider searches with WIMP production through SM collisions.

In this section direct and indirect searches will be described, while collider
searches at LHC will be illustrated in section 2.4.4.

Collider

D
ire
ct

Indirect

DM

DM SM

SM

Figure 2.4: Scheme of the possible approaches for DM detection.

Direct detection

If DM fills the Universe, then it should be travelling around the earth
and subsequently interacts with ordinary matter. This is the idea of direct
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detection experiments: identifying nuclear recoils produced by the collisions
between WIMPs and detector’s target nuclei. The expected recoil energies
for DM masses in the range 10 GeV to 10 TeV are typically 1 to 100 keV.
To identify such low-energy and rare interactions a very efficient background
suppression strategy must be adopted. Typically these experiments use large
volumes of active material in order to collect a significant number of interesting
events and are placed deep underground in order to suppress cosmic radiation
and strong interactions. The rate of events expected in direct detection
experiments can be written as [13]:

R ≈
∑
i

Ninχ〈σiχ〉, (2.16)

where the index i refers to nuclei species composing the active material in the
detector. The number of target nuclei in the detector is the ratio between
detector mass Mdet and the atomic mass of nuclei mA:

Ni =
Mdet

mA

. (2.17)

nχ is the local WIMP density depending on WIMP energy and mass, and σiχ
the WIMPs-nuclei scattering cross section:

nχ ≡
Eχ
mχ

. (2.18)

The type of scattering processes are classified by their spin dependency:

• Spin dependent (SD) interactions with pseudo-scalar or axial-vector
coupling. In this case cross sections are proportional to J(J + 1) rather
than the number of nucleon: there’s no advantage to use heavy nuclei.

• Spin independent (SI) interactions have scalar or vector coupling, and
cross sections strongly depend on the mass of the target nuclei.

A lots of experimental efforts have been done in the last decades to detect
DM signals. In these experiments nuclear recoils have been measured with
different techniques: scintillation, ionization, photon, which give the great
advantage to vary the systematic errors according to the experiment.
In Figure 2.5 and 2.6 are shown the limits obtained for WIMP scattering cross
sections normalized to scattering on a single nucleon, for spin independent
and spin dependent case, as functions of WIMP mass. It should be pointed
out that sensitivity for these searches is strongly dependent on the WIMP
mass: at low WIMP mass the sensitivity drops because of the not detectable
recoil energy; the sensitivity is also low at high WIMP mass since the WIMP
flux decreases as ∝ 1/mχ. The best sensitivity is reached when WIMP mass
is comparable to the mass of recoiling nuclei.
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Figure 2.5: WIMP cross sections as function of WIMP mass in the spin-
independent coupling scenario [4]. The cross sections are normalized
to a single nucleon. The results are reported for different direct de-
tection experiments. Also some supersymmetry results are reported:
green and blue area refer to MSSM models.

Indirect detection

Complementary to direct detection, indirect detection approach is the
technique to observe radiation produced in DM annihilations. These methods
can explore higher masses and different coupling scenarios. Final radiation
can be neutrinos, positrons, anti-protons and gamma-rays. Since the flux of
this radiation is proportional to the annihilation rate, these searches point to
regions where SM density is large.
Since neutrino is weakly interacting, its detection is more challenging with
respect to gamma rays. Detectors are placed in the underground to suppress
background and typically use Cherenkov techniques to identify neutrino inter-
actions. Super-Kamiokande [19] and IceCube [20] are examples of neutrino
telescopes which can measure the flux of muon neutrinos interacting with
the Earth. Results can also be translated in terms of WIMP-nucleon cross
section for direct detection comparison.
Gamma-rays production from WIMP annihilation mostly originate from the
galactic centre, with gamma rays released from jets produced in WIMP
annihilation, or directly produced in WIMPs decays such as χχ→ γγ and
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Figure 2.6: WIMP cross sections as function of WIMP mass in the spin-dependent
coupling scenario for interactions with neutron (a) and proton (b)
[4].

χχ → γZ. To typical WIMP masses of thousands GeV correspond high
energetic gamma-rays, whose detection would constitute a clear indication of
DM annihilation. Fermi/LAT experiment reported a 3.2 σ excess in a search
around the galactic centre [21].
Antiparticles such as positron and anti-protons produced in WIMP annihila-
tions are subject to galactic magnetic field, they can be detected as excesses
with respect to the background generated by known processes. Positron flux
measurements come from PAMELA [22] and AMS-02 [23] experiments.

2.4.4 WIMP searches at LHC

If interactions between DM and SM particles exist they could be produced
at LHC. Because WIMPs are weakly interacting, they do not deposit energy
in the calorimeter, leading, for DM events, to a final signature with an
unbalanced momentum in the transverse plane, where the kinematic is closed.
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One way to observe them is when they are produced in association with a
visible SM particle X (gluon, photon, quark, Z, W or Higgs) thus leading to
the so called mono-X signature. In this section details about final state with
jets and missing energy will be given.
During LHC Run-1 searches Effective Field Theory (EFT) approach was used.
In this theoretical framework the interaction between DM and SM particles is
described as contact interaction involving quark-antiquark pair, or two gluons
and DM pair (Figure 2.7).

Figure 2.7: Feynman diagram for DM pair production through an EFT operator
[24].

The mediator of the interaction (with mass Mmed) is assumed to be
too heavy to be produced, thus leading to a model described by only one
parameter, the suppression scale M∗, which give a measurement of the validity
of the EFT. EFT is valid when

M∗ & Qtr, (2.19)

where Qtr is the momentum transfer.
The lower limit on M∗ must satisfy some condition in order to have a valid
EFT approach [24]. It is possible to relate it to a more complete description
involving SM and DM couplings (gq and gχ ) and the mediator mass. For
example, if we consider the lowest dimensional operator

OS =
1

M2
∗

(χ̄χ)(q̄q), (2.20)

we obtains the matching condition

1

M2
∗

=
gχgq
M2

med

. (2.21)
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The perturbative regime implies gq ,gχ< 4π, and assuming Mmed > mχ and
Qtr > 2mχ one obtains:

M∗ >
Qtr√
gq gχ

>
Qtr

4π
>
mχ

2π
(2.22)

which gives the dependence of suppression scale from mχ .
EFT provides an optimal way to compare results with non-collider DM
searches: the limit on the suppression scale can be translated in terms of
WIMP-nucleon scattering cross section.
With the large energies employed in LHC searches (especially from Run-2) a
more detailed description can be achieved, leading to the simplified DM models,
which are able to describe the full kinematics of the process. The interaction
between SM and DM particles occurs via mediator in s- or t- channel. While
more detailed than EFTs, simplified models are not a complete theory (like
SUSY), since it does not cover the full parameter space and does not take into
account all correlations between observables. On the other hand complete
DM models suffer the inverse problem, that is the incapability to determine
without ambiguities all parameters from a finite amount of data. Simplified
models adopted in Run-2 searches follow the prescription of DM Forum [25]
and are based on several assumptions:

• WIMPs are long-lived particles that escape LHC detectors: only Dirac
fermion WIMP will be used in the models;

• The Lagrangian is built by adding additional terms to the SM one;

• The new interaction should not violate SM symmetries. In particular
Minimal Flavour Violation (MFV) [26] is assumed, which implies that
the SM flavour structure is preserved and ensures that a spin-0 resonance
has a couplings to fermions proportional to the SM Higgs couplings.
Baryon and lepton numbers are also conserved quantities.

• The models follow the minimal decay width (Γ) assumptions: only SM
and DM decays are allowed.

Given these assumption the minimal set of parameters of simplified models
are:

{gq , gχ ,mχ ,Mmed }. (2.23)

DM production cross section is related to the size of the momentum transfer
with respect to the mediator mass. From the following relation

1

Q2
tr −M2

med + iMmed Γ
(2.24)
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three different cases are possible:

• off-shell mediator satisfying Q2
tr �M2

med which yields suppressed cross
sections depending on the couplings and not on mediator width (σ ∝
g2
qg

2
χ);

• on-shell mediator where Q2
tr ∼ M2

med and cross section are enhanced,
thus providing the most interesting scenario at LHC searches: in the
narrow width approximation Γ�Mmed which implies σ ∝ g2

qg
2
χ/Γ;

• Q2
tr �M2

med case which addresses to EFT limit, with suppressed cross
sections.

In the following details on spin-1 and spin-0 mediators will be given.

Vector and Axial-Vector Mediators

An additional U(1) gauge symmetry to the SM lagrangian leads to the
introduction of a mediator in the interaction between SM and DM. For the
s-channel spin-1 mediator exchange the diagram is illustrated in Figure 2.8.

V,A(Mmed)

q̄

q

χ̄(mχ)

χ(mχ)g

gq gDM

Figure 2.8: DM pair production via spin-1 mediator in association with an initial
parton.

The lagrangians for models with vector and axial-vector mediators are
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respectively:

Lvector = gq
∑

q=u,d,s,c,b,t

Z ′ µq̄γ
µq + gχ Z

′
µχ̄ γ

µχ (2.25)

Laxial−vector = gq
∑

q=u,d,s,c,b,t

Z ′ µq̄γ
µγ5q + gχ Z

′
µχ̄ γ

µγ5χ . (2.26)

where couplings gq are the same for all the quarks. In the minimal decay
width assumption one obtains:

ΓV
min =

gχ
2Mmed

12π

(
1 +

2mχ
2

Mmed
2

)
βDMθ(Mmed − 2mχ ) (2.27)

+
∑
q

3gq
2Mmed

12π

(
1 +

2m2
q

Mmed
2

)
βqθ(Mmed − 2mq),

ΓA
min =

gχ
2Mmed

12π
β3
DMθ(Mmed − 2mχ ) (2.28)

+
∑
q

3gq
2Mmed

12π
β3
qθ(Mmed − 2mq) .

where βf =

√
1− 4m2

f

Mmed
2 is the velocity of a fermion with mass mf .

The kinematic properties of this model have been studied as function of the
parameters. Based on different choices of Mmed and mχ it was observed that
the shape of kinematic distributions does not depend neither on the couplings
nor on the mediator width, both for on-shell and off-shell cases. Figure
2.9 shows missing energy distribution for a fixed Mmed and mχ mass choice.
For EFT limit, when mediators are extremely heavy, the missing energy
distribution Emiss

T is shown in Figure 2.10. Simplified models can reproduce
with a good approximation an EFT model (in Figure 2.10 a D5 EFT model
with 5 TeV mediator has been compared).

A scan over mχ , by fixing Mmed and couplings shows that in the on-shell
regime shape distributions do not depend on the DM masses while a finer
binning is needed for Mmed ∼ 2mχ and off-shell cases (Figure 2.11).

The situation is reverted when scanning on Mmed , showing (see Figures
2.12 and 2.13 ) different shape distributions for on-shell case and more similar
shapes for off-shell mediators.

No significant shape differences have been found by comparing vector and
axial-vector couplings as shown in Figure 2.14. The cross sections are found
to be similar only for the on-shell regime.
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Figure 2.9: Emiss
T distribution when scanning over couplings. Parameters used

are listed in the plot. Ratios of the normalized distributions with
respect to the first one are shown. A300 and A500 in the table denote
the acceptance of the Emiss

T > 300 GeV and Emiss
T > 500 GeV cut,

respectively [25].
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T comparison for the D5 EFT sample and simplified models

with Mmed = 5 TeV for various widths. Ratios of the normalized
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T > 300 GeV and

Emiss
T > 500 GeV cut, respectively [25].
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Figure 2.11: Emiss
T distribution when scanning over mχ . Parameters used are

listed in the plot. Ratios of the normalized distributions with respect
to the first one are shown. A300 and A500 in the table denote the
acceptance of the Emiss

T > 300 GeV and Emiss
T > 500 GeV cut,

respectively [25].
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Figure 2.12: Emiss
T distribution when scanning over Mmed . Parameters used are

listed in the plot. Ratios of the normalized distributions with respect
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respectively [25].
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Figure 2.13: Emiss
T distribution when scanning over Mmed . Parameters used are

listed in the plot. Ratios of the normalized distributions with respect
to the first one are shown. A300 and A500 in the table denote the
acceptance of the Emiss

T > 300 GeV and Emiss
T > 500 GeV cut,

respectively [25].
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Scalar and Pseudoscalar Mediators

A spin-0 resonance model would lead to an interaction with the SM Higgs
field. In the following a simpler case without mediator-Higgs mixing will be
described. These processes are loop suppressed giving the diagrams in Figure
2.15 with the interaction lagrangians:

Lφ = gχ φχ̄ χ +
φ√
2

∑
i

(
guy

u
i ūiui + gdy

d
i d̄idi + g`y

`
i
¯̀
i`i
)
, (2.29)

La = igχ aχ̄ γ5χ +
ia√

2

∑
i

(
guy

u
i ūiγ5ui + gdy

d
i d̄iγ5di + g`y

`
i
¯̀
iγ5`i

)
. (2.30)

where the couplings gq are assumed universal for all SM particles and the

Yukawa couplings yfi are normalized to the Higgs vacuum expectation value as
yfi =

√
2mf

i /v. The scan over the parameters resulted in the same conclusions
found for spin-1 case, as shown in Figures 2.16-2.20.

Scalar and Pseudoscalar Mediators in association with heavy quarks

Although one would expect that monojet inclusive searches provide the
most solid limits for DM searches (since cross sections are highest) when
mediators are scalar or pseudoscalar, a dedicated search with tagged jets
could probe interesting scenarios. For example it could explore the case when
up- and down-type couplings are not universal or if the loop-induced gluon
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q

χ̄

χq

(a)

S, P
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g
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χ

g
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Figure 2.15: One-loop process with exchange of scalar or pseudoscalar mediator
in the s-channel.
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Figure 2.16: Emiss
T distribution when scanning over couplings. Parameters used

are listed in the plot. Ratios of the normalized distributions with
respect to the first one are shown. A300 and A500 in the table denote
the acceptance of the Emiss

T > 300 GeV and Emiss
T > 500 GeV cut,

respectively [25].
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Figure 2.17: Emiss
T distribution when scanning over mχ . Parameters used are

listed in the plot. Ratios of the normalized distributions with respect
to the first one are shown. A300 and A500 in the table denote the
acceptance of the Emiss

T > 300 GeV and Emiss
T > 500 GeV cut,

respectively [25].
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Figure 2.18: Emiss
T distribution when scanning over Mmed . Parameters used are

listed in the plot. Ratios of the normalized distributions with respect
to the first one are shown. A300 and A500 in the table denote the
acceptance of the Emiss

T > 300 GeV and Emiss
T > 500 GeV cut,

respectively [25].
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Figure 2.19: Emiss
T distribution when scanning over Mmed . Parameters used are

listed in the plot. Ratios of the normalized distributions with respect
to the first one are shown. A300 and A500 in the table denote the
acceptance of the Emiss

T > 300 GeV and Emiss
T > 500 GeV cut,

respectively [25].
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Figure 2.20: Comparison of the Emiss
T distributions for the scalar and pseu-

doscalar models for different Mmed = 300 GeV and different Dark
Matter masses. Ratios of the normalized distributions with respect
to the first one are shown. A300 and A500 in the table denote
the acceptance of the Emiss

T > 300 GeV and Emiss
T > 500 GeV cut,

respectively [25].

coupling does not depend only on top and bottom quarks, then it is possible
that other production mechanism are strongly suppressed in the monojet
channel. As previously described the MVF assumption for spin-0 mediators
privileges coupling with top and bottom quarks leading to the diagrams in
Figure 2.21.

For the b-tagged channel a lower sensitivity is expected with respect to top
and monojet channels. However it could provide information on down-sector
and eventual deviations from universal coupling assumption that can not be
observed in top channel since it has the same coupling as the loop-induced
monojet channel. Moreover some theoretical models (like 2HDM and pMSSM)
predict coupling of spin-0 mediators to down generation quarks, motivating
the study of final states with bottom quarks, in order to probe the b-quark
coupling.
The kinematical distributions depends on Mmed and mχ (Figures 2.22 and
2.23 have same behaviour both for t̄t and b̄b case. The Emiss

T spectrum
broadens with larger Mmed , and also depends on on-shell and off-shell cases,
as previously discussed. There’s no strong dependence on the couplings and
the width except for the case where Mmed is slightly larger than 2mχ as shown
in Figure 2.24.
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Figure 2.21: DM pair production via spin-0 mediator in association with t̄t or b̄b.
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Figure 2.22: Emiss
T distribution in the t̄t case for scalar mediator [25].

b-quark signatures in t-channel

In order to explain the Galactic Center gamma ray excess observed by
the Fermi-LAT collaboration [27] a new model involving bottom quark in
t-channel has been introduced [28]. The bottom Flavoured Dark Matter
(b-FDM) assumption is that DM privileges down-type quark couplings. The
model includes a Dirac fermion transforming as a flavour triplet, and its third



CHAPTER 2. BEYOND STANDARD MODEL THEORIES 39

 [GeV]miss
TE

0 100 200 300 400 500 600 700

  
m

is
s

T
/d

E
σd

-310

-210

-110

) = (10, 1) GeV
chi

, m
Phi

(m
) = (20, 1) GeV

chi
, m

Phi
(m

) = (50, 1) GeV
chi

, m
Phi

(m
) = (100, 1) GeV

chi
, m

Phi
(m

) = (150, 1) GeV
chi

, m
Phi

(m

) = (200, 1) GeV
chi

, m
Phi

(m
) = (300, 1) GeV

chi
, m

Phi
(m

) = (500, 1) GeV
chi

, m
Phi

(m
) = (1000, 1) GeV

chi
, m

Phi
(m

) = (1500, 1) GeV
chi

, m
Phi

(m

Figure 2.23: Emiss
T distribution in the t̄t case for pseudoscalar mediator [25].
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Figure 2.24: Emiss
T distribution in the t̄t case. The width dependence becomes

relevant when Mmed is slightly larger than 2mχ [25].
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component χb comprises the cosmological DM. The interaction between SM
and DM is mediated via a flavour singlet, colour triplet scalar field Φ under
MFV assumption. The lagrangian considered is:

L ⊃ gΦ∗χ̄bbR + h.c.. (2.31)

The corresponding diagram is shown in Figure 2.25.

Figure 2.25: b-FDM Feynman diagram.



Chapter 3

The ATLAS experiment at
LHC

The Large Hadron Collider (LHC) [29] is a proton-proton high energy
collider. Particles created in these collisions are detected by four big exper-
iments: ALICE, ATLAS, CMS and LHCb1. In this chapter details about
LHC and ATLAS experiment will be given.

3.1 Large Hadron Collider

The Large Hadron Collider (LHC) [32] is a proton-proton particle ac-
celerator placed in the same tunnel where LEP accelerator operated in the
past. LHC is the largest and most powerful particle accelerator in the world,
based at CERN (Conseil Européen pour la Recherche Nucléaire) near Geneva,
Switzerland (Figure 3.1). The maximum reachable energy of each proton
beam is 7 TeV, with a design luminosity of L = 1034 cm−2 s−1. LHC can
also collide heavy (Pb) ions providing Pb-Pb or proton-Pb collisions, with a
nominal luminosity of L = 1027 cm−2 s−1.
LHC is a two-ring-superconducting accelerator, with a circumference of 26.7
km. The entire LHC experimental area is based on the border between
Switzerland and France.

3.1.1 Technical design

The LHC physics programme aims at searches for new physics phenom-
ena. After the successful Higgs boson discovery, the main goals are the

1LHC experimental area also hosts two minor experiments: Totem [30] and LHCf [31].

41
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Figure 3.1: Overall view of the LHC experiments.

Figure 3.2: Placement of the main experiments at LHC.
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measurements of its properties, and searches for Beyond Standard Model
Physiscs (SUSY, DM). Exploiting the energy frontier is both a technical and
experimental challenge: it requires an excellent design and operation of the
accelerator complex, together with a deep understanding of each detector
subsystem.

Layout

The LHC provides collisions in four collision points along its circumference
where detector experiments are located.
Since LHC accelerates two beams of same sign particles, two separate acceler-
ating cavities and two different magnetic fields are needed: LHC is equipped
with 1232 superconducting magnets and 16 radiofrequency cavities which
bend and accelerate the proton beams in the two parallel beam lines in the
machine. The magnetic field used to bend such energetic proton beams is of
8.3 T and to reach this value the superconducting magnets are cooled down
to 1.9 K and a 13 kA current circulates inside them.

Eight experimental halls are built. The LHC has eight arcs and eight
straight sections. Each straight section is approximately 528 m long and can
serve as an experimental or utility insertion. The two highest luminosity
experimental area, where ATLAS and CMS experiments are located, are
placed at opposite straight sections: Point 1 and Point 5 (Figure 3.2). ALICE
and LHCb are respectively located in Point 2 and Point 8 (Figure 3.2), where
the machine has the minimum luminosity. Two more experimental insertions
are located at Point 2 and Point 8, which also include the injection systems
for Beam 1 and Beam 2, respectively. The injection kick occurs in the vertical
plane with the two beams arriving at the LHC from below the LHC reference
plane. The beams cross from one magnet bore to the other at four locations.
The remaining four straight sections do not have beam crossings. Insertions at
Points 3 and 7 each contain two collimation systems. The insertion at Point
4 contains two RF systems: one independent system for each LHC beam.
The straight section at Point 6 contains the beam dump insertion, where the
two beams are vertically extracted from the machine using a combination of
horizontally deflecting fast-pulsed (’kicker’) magnets and vertically-deflecting
double steel septum magnets.

Accelerating mechanism

To reach the designed energy, the protons are accelerated in several steps.
The accelerator chain is a succession of machines with increasingly higher
energies as illustrated in Figure 3.3. From proton source to final step we find:
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Figure 3.3: Accelerator facilities at LHC.

• LINAC2

• Proton Synchrotron Booster (PSB)

• Proton Synchrotron (PS)

• Super Proton Synchroton (SPS)

• LHC

A proton beam is produced from H2 gas and then accelerated with a 300 mA
beam current. Protons are then injected into the PSB at an energy of 50 eV
from the LINAC2. The PSB accelerates the protons up to 1.4 GeV and the
proton beams are injected to the PS where they are accelerated to 25 GeV.
The protons are then sent to the SPS where they reach an energy of 450 GeV.
Finally, the beams are transferred to the LHC where beams are circulated
both in clockwise and anticlockwise direction while reaching their final energy.
The injected beam will be captured, accelerated and stored using a 400 MHz
superconducting cavity system.

Protons are collected in bunches of particle. Collisions take place when
bunches coming from the two beams interact each other (bunch crossing):
the design bunch crossing periods is about 25 ns.
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Machine luminosity

The event number generated during collisions is

Nev = L · σev, (3.1)

where σev is the cross section of the event and L is the machine luminosity.
The latter depends on its intrinsic features:

L =
N2
b nbfrevγr
4πεnβ∗

F, (3.2)

where Nb is the number of protons in each bunch, nb the number of bunches
circulating in the beam, frev is the revolution frequency, γr is the gamma
relativistic factor, εn is the beam emittance2, β∗ is the beta function at the
collision point3, F is the luminosity reduction factor due to the crossing angle
at the interaction point (IP). LHC luminosity is not constant on an entire
data taking cycle (run). The main reason of the luminosity decay during a
physics run is the beam loss from collisions. The initial decay time of the
bunch intensity, due to this effect, is:

τnuclear =
Ntot(0)

Lσtotk
, (3.3)

where Ntot(0) is the beam intensity, L the initial luminosity, σtot the total
cross section and k the number of interaction points. Further contributions
to beam losses are related to intrabeam scattering (IBS), and the interaction
between particles on residual gas, to which a corresponding decay constant
is assigned. If we approximate the decay by an exponential process, the
luminosity lifetime can be estimated as:

1

τL
=

1

τIBS
+

1

τgas
+

1

τnuclear
, (3.4)

Assuming

τIBS =80 h

τgas =100 h

τnuclear =29 h

2The emittance ε is defined as the product of the width position distribution of bunch
particles σ and momentum width, σ′.

3β∗ function, known as betatron oscillation, is defined as σ
σ′ .
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One obtains
τL = 14.9 h (3.5)

Integrating luminosity over a run one obtains:

Lint = L0τL
[
1− e−Trun/τL

]
(3.6)

where Trun is the total length of luminosity run. The overall machine efficiency
depends on the Lint parameters. Assuming the machine operates for 200 days
per year, if the 3.5 holds, the optimum run time is 12 hours, for a maximum
total integrated luminosity per year of 80 fb−1 to 120 fb−1.

3.1.2 LHC experiments

The main four experiments at LHC, hosted in the four collision points
are:

• ATLAS (A Toroidal LHC ApparatuS) [33];

• CMS (Compact Muon Solenoid) [34];

• LHCb [35];

• ALICE (A Large Ion Collider Experiment) [36];

ATLAS and CMS are multi-purpose detectors, the main goals are Higgs
physics, Standard Model precision measurements and search for beyond
Standard Model physics.
ALICE focuses on the quark-gluon plasma searches, produced in heavy-ions
collisions.
LHCb focuses on the study of CP violation processes occurring in b and c
hadron decays.

3.1.3 Run-1 data taking

The first LHC operations started in autumn 2008, but they were inter-
rupted due to a problem to superconducting magnets. The repair required a
long technical intervention. In November 2009 operations resumed with pp
collisions with a center of mass energy of 900 GeV, followed by

√
s = 7 TeV

from March 2010 to the end of 2011. In 2012 the energy reached 8TeV per
beam. Figure 3.4 reports the integrated luminosity collected by the ATLAS
experiment in 2011, 2012 and in total, while Figure 3.5 shows the number of
bunches per data taking year.
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(a) (b)

(c)

Figure 3.4: Integrated luminosity collected by the ATLAS experiment during
LHC Run-1 data taking, in 2011 (a), 2012(b) and total (c) [37].

Figure 3.5: Number of bunches during LHC data taking in 2010, 2011 and 2012
[37].
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(a) (b)

Figure 3.6: Integrated luminosity collected by the ATLAS experiment at the
LHC during 2015 (a) and 2016(b) operations [38].

3.1.4 Run-2 data taking

In 2015 the second phase of event production at LHC, called Run-2 started.
During the Run-2 the LHC will reach its design energy collision, 14 TeV,
aiming to collect data corresponding to an integrated luminosity of 100 fb−1

during 2015− 2018. The initial phase of Run-2 performed collision with 50 ns
bunch spacing integrating a total luminosity of 1 fb−1; the data collected were
dedicated to control the performances of the magnet and of the alignment of
the spectrometer. Just after the commissioning phase the beams, characterized
by 25ns bunch-spacing, circulated in the accelerator and produced collisions
at
√
s = 13TeV with a peak luminosity of 5, 0 · 1033cm−2s−1. The total

integrated luminosity as a function of the days of running during 2015 and
2016 are represented in Figure 3.6. At the end of June, beams were maintained
in the accelerator for a record of 37 consecutive hours. But the main indicator
of success for the operators is luminosity, the measurement of the number
of potential collisions in a given time period. On 29 June, peak luminosity
exceeded 1034 cm−2s−1. This represents a success for the LHC operators
because it corresponds to the ultimate objective defined by those who originally
designed the LHC machine.

3.2 The ATLAS experiment

The experimental ATLAS [39] apparatus has the following structure:

• An Inner Detector (ID), placed in a solenoidal superconducting magnet,
for charged track identification and reconstruction, and for momentum
and direction measurement.
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• Electromagnetic and hadronic caloremeter to measure energy deposited
by electrons photons and hadrons.

• Muon Spectrometer (MS), for muon identification and reconstruction.
An air-cored superconductiong toroidal magnet system provides the
magnetic filed to the MS.

• The trigger system, to effectively reduce background before recording
events.

• The data acquisition system, to store interesting events.

The wide range of particles to be detected imposes very stringent requirements
on the detector:

• Radiation-hard electronics and sensor elements in combination with
fast readout of high granularity detector elements to handle the particle
flux and reduce the influence of pile-up.

• Large acceptance in pseudorapidity (η) and full azimuthal angle cover-
age.

• Good momentum resolution and good particle reconstruction in the
inner detector to allow primary and secondary vertex reconstruction.

• Very good electromagnetic and hadronic calorimetry to allow electrons,
photons, jets and missing transverse energy reconstruction and mea-
surement.

• An optimal muon identification and muon momentum resolution is
required.

• Fast and highly efficient trigger on events of interest to achieve an
acceptable rate of events to be stored.

The ATLAS detector is shown in Figure 3.7. It is 20 m tall and 45 m long
and weights more than 7000 tons. In the following sections details about its
sub-detectors will be given.

3.2.1 ATLAS coordinate system

Two different coordinate systems are used in the ATLAS experiment,
according to the needs: a cartesian coordinate system for geometry studies,
and a spherical coordinate system mostly used in physics analyses. The



CHAPTER 3. THE ATLAS EXPERIMENT AT LHC 50

Figure 3.7: ATLAS detector at LHC.

nominal interaction point is the origin, while the beam direction defines the
z axis and the x− y plane is transverse to the beam direction. The x axis
points to the center of the LHC ring, the y axis goes upwards. The interaction
point defines two regions, with z > 0 and z < 0, called respectively side A
and side C. The z = 0 plane defines side B (see Figure 3.8).

In spherical coordinate the azimuthal angle φ ∈ [−π, π] is measured in
x− y plane and is defined as:

φ =
1

tan(x/y)
. (3.7)

where φ is zero in correspondance of the x axis and grows in clockwise direction
in positive z direction. The polar angle θ is the angle from the z axis in the
y − z plane.
Pseudorapidity is defined as:

η = −ln
[
tan

θ

2

]
, (3.8)

η (Figure 3.9) is 0 at θ = π/2 (barrel), growing asymptotically for θ → 0
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Figure 3.8: ATLAS coordinate system.

(endcap). For massive objects (like jets) rapidity is adopted:

y =
1

2
ln

[
E + pL
E − pL

]
, (3.9)

where pL is the longitudinal momentum component.
The quantity:

∆R ≡
√

(∆η)2 + (∆φ)2 (3.10)

is used for measuring angular distance between two tracks in the η− φ plane.
LHC collisions does not occur via elementary particles, but rather via compos-
ite particles (containing quarks and gluons). The energy in the center-of-mass
system depends on the momenta of the partons involved in the interaction
and is unknown. As a consequence, the kinematics is studied in the transverse
plane x− y, where energy and momentum are conserved.

3.3 ATLAS experimental apparatus

3.3.1 The Magnet System

ATLAS main feature is an hybrid four superconducting magnet system,
26 m long and with a diameter of 22 m. The Magnet System (Figure 3.10) is
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Figure 3.9: Pseudorapidity η as function of θ angle.

composed by:

• a central solenoid (CS), with its symmetry axis along beam direction,
placed within the Inner Detector in the barrel region. It provides an
uniform magnetic field of approximately 2 T along the z axis, it is 5.3
m long with a diameter of 2.4 m.

• a three superconducting toroid system (one central and one for each
endcap). It provides a magnetic field whose peak intensities are 3.9 T
in the central region of the detector and 4.1 T in the forward region.
The aim of such a toroid is to have a large lever arm to improve the
measurement of the muon transverse momentum, and it is built ”in air”
in order to minimize the muon multiple scattering within the detector.

3.3.2 The Inner Detector

The inner detector (ID) [40, 41] has been designed to allow a good pattern
recognition, provide an optimal momentum resolution and primary and
secondary vertex reconstruction for charged tracks with transverse momentum
above 0.2 GeV. These purposes have been achieved through the use of 2 T
solenoid magnet and an high granularity for position measurements. The
ID layout consists in three complementary detectors (Figure 3.11). In the
central part silicon pixel and silicon Semiconductor Tracker (SCT) detectors
are installed.
Each track goes through three layers of pixel detectors and eight silicon strips,
while in the outer part the Transition Radiation Tracker (TRT) can provide
on average 30 and up to 36 hits per track. The two combined vertexing
techniques allow to obtain an high precision both in φ and z. The inner
detector is able to cover the |η| < 2.5 region.
The ID is the part of the ATLAS apparatus mostly exposed to radiation, thus
a frequent maintenance is necessary to guarantee excellent performances.
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Figure 3.10: ATLAS magnets.

Pixel detectors

The purpose of pixel detectors is high precision measuring, impact parame-
ter and vertex reconstruction. The system consists of three barrels at average
radii of ∼4 cm, 10 cm, and 13 cm, and five disks on each side, between radii
of 11 and 20 cm, which complete the angular coverage.

Spatial resolution (averaged on pseudorapidity distribution) are:

σ(R− φ) ' 12 µm for all the pixels

σ(z) ' 66 µm in the barrel region

σ(R) ' 77 µm for the disks

Insertable B-Layer

The Insertable B-Layer (IBL) [42] is a fourth pixel layer that was installed
during the long shutdown between Run-1 and Run-2. It adds protection
against radiation of the pixel detector. The fourth module gives more robust-
ness in tracking measurements improving tracking precision, thus allowing
better impact parameter reconstruction for tracks and b-tagging performance.
The IBL is placed at a radius of about 3.2 cm between the Pixel Detector
and a new beam pipe with smaller radius.
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Figure 3.11: ATLAS inner detector.

Semiconductor tracker

The Semiconductor tracker (SCT) is placed in the intermediate radial
range, and provides eight precision measurements per track, contributing
to the measurements of impact parameter and vertex position, as well as
providing good pattern recognition by the use of high granularity. In the
barrel eight layers of silicon microstrip detectors are placed, providing with
precision R− φ and z coordinates. The spatial resolution is 16 µm in R− φ
e 580 µm in z. Tracks can be distinguished if separated by more than ∼ 200
µm.
Due to the highly radioactive ambient the SCT operate at low temperature
regime (typically between −5 and −10 °C). The structures are equipped with
systems that remove the heat generated by the electronics and the detector
leakage current.

Transition radiation tracker

The Transition radiation tracker (TRT) is based on the use of straw
detectors with small diameter (4mm), able to operate at very high rates
expected during LHC collisions due to the sense wires within individual gas
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volumes. The TRT operate with a non-flammable gas mixture of 70% Xe,
20% CO2 e 10% CF4. When charged particles pass through the detector
they generate a transition radiation. The large number of straws employed
guarantees a resolution of 50 µm at the LHC design luminosity, averaged over
all straws and including a systematic error of ∼ 30 µm from alignment. TRT
arrangement is shown in Figure 3.13.

3.3.3 Calorimeters

ATLAS calorimeters (Figure 3.14) are placed between the inner detector
and the muon spectrometer. They adopt a sampling technique where the active
material layers alternate with layers of passive material (absorber). Particles
interact in the the passive material thus producing an avalanche of particles
(shower) detected in the active material and gradually loosing their energies,
until a complete absorption in the medium. Different types of calorimeters
are used to provide an excellent reconstruction for electromagnetic showers
and to limit the hadronic particle flow that can reach the muon spectrometer.
The ATLAS calorimeter system [43] is composed as:

• An electromagnetic (EM) calorimeter covering |η| < 3.2 region;

• An hadronic cylindrical (HC Tile Barrel) calorimeter covering |η| < 1.7
region;

• Two hadronic calorimeters in the endcap zone (HEC), covering 1.5 <
|η| < 3.2 region;

• Two forward calorimeters (FCAL), covering 3.2 < |η| < 4.9 region;

Figure 3.12: 3D view of pixel detectors.
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Figure 3.13: Placement of the three subdetectors in the ID.

The EM calorimeter is a lead/liquid-argon (LAr) detector with accordion
geometry, it is preceded by a presampler detector, installed immediately
behind the cryostat cold wall,and used to correct for the energy lost in the
material.

The hadronic barrel calorimeter consists on plastic scintillator plates (tiles)
embedded in an iron absorber. It is divided in three sections: a central barrel
and two extended barrels. For the end-cap calorimeter LAr detector with
parallel-plate geometry, and the forward calorimeter, a dense LAr calorimeter
with rod-shaped electrodes in a tungsten matrix.

Electromagnetic calorimeter

The Electromagnetic calorimeter consists of a barrel part (η| < 1.475) and
two end-cap zones (1.375 < |η| < 3.2). The barrel consists of two identical
half-barrels while end-cap calorimeters have internal (2.5 < |η| < 3.2) and
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Figure 3.14: ATLAS calorimeter system.

external ( 1.375 < |η| < 2.5) wheel. The calorimeter is segmented in cells of
variable dimensions as a function of η as well as its thickness.
The barrel calorimeter is divided into three layers, with different cell gran-
ularity. In the first layer the segmentation is ∆η × ∆φ = 0.0031 × 0.098
for a 4.3 X0 thickness, mainly used to distinguish photons from π0 → γγ
and electrons from π±, its fine granularity in η of this layer is used to deter-
mine the pseudo-rapidity of the particle. The second layer is segmented in
∆η ×∆φ = 0.025× 0.025 cells providing a radiation length of 16 X0 allowing
to contain the largest energy fraction of the shower. The third later, specif-
ically dedicated to high energy electrons and photons, has a segmentation
corresponding to ∆η ×∆φ = 0.05× 0.0245.
The total readout channels are 190000.

Hadronic calorimeter

ATLAS Hadronic calorimeters cover the |η| < 4.9 range by adopting
different optimized techniques. Thickness, as mentioned before, is one of the
main feature of hadronic calorimeters, being able to absorb jets produced by
the hadronization of quarks and gluons and reduce the number of particle
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Figure 3.15: Electromagnetic caloremeter structure.

arriving to muon spectrometer.

Tile Calorimeter: it’s a sampling calorimeter usign iron as absorber
material and tiles of scintillating material as active medium. It is placed in
the |η| < 1.7 region, with a (∆η ×∆φ ' 0.1× 0.1) granularity, its thickness
offers about 10 interactions lengths λ at η = 0.

Hadronic end-cap calorimeter (HEC) : this calorimeter is equipped
with LAr scintillating material and coppier plates as absorber. It covers a
1.5 < |η| < 3.2 with a granularity of (∆η ×∆φ ' 0.1× 0.1).

Forward calorimeter (FCAL): this calorimeter has a complex design,
due to the high radiation flux. It has a distance from the interaction point of
4.7 m, covering a pseudorapidity range of 3.1 < |η| < 4.9. It consists of three
modules per side: FCAL1, FCAL2, FCAL3 all equipped with LAr as active
material. The first module, having copper as absorber, has been designed
for electromagnetic calorimeter measurements while FCAL2 and FCAL3 are
hadronic calorimeter using tungsten as absorber.
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Performances of calorimeters

For the EM calorimeter the energy resolution can be obtained by summing
in quadrature (denoted as ⊕) the independent terms:

σE
E

=
a√
E
⊕ b

E
⊕ c, (3.11)

where a is the sampling term (which includes statistical fluctuation), b is the
noise term and c a constant term. The expected resolution is :

σE
E

=
10%√
E
⊕ 10% (3.12)

between 2 GeV and 5 TeV. The angular resolution expected is 40 mrad/
√
E(GeV ).

For hadronic calorimeters:

σE
E

=

√
c2
int + c2

camp

E
⊕ a (3.13)

where a is a term that describes the non-gaussian fluctuations of electromag-
netic showers, cint represents gaussian fluctuation of the initial energy and
ccamp refers to statistical and sampling fluctuations. The expected energy
resolution are:

σE
E

=
50%√
E(GeV )

⊕ 3% for |η| < 3.0 (3.14)

σE
E

=
100%√
E(GeV )

⊕ 10% for 3.0 < |η| < 4.9.

3.3.4 Muon spectrometer

The muon spectrometer (MS) [44] constitutes the outer part of the ATLAS
apparatus. It has been designed to detect and measure charged particles
coming from the central barrel and from end-caps in the |η| < 2.7 region,
allowing muon identification with energy ranging from 3 GeV (lower energy
muon are absorbed in the hadronic calorimeter) to 1 TeV. It also provides
a trigger system in the |η| < 2.4 region. MS adopts three different magnet
systems (one in the barrel and two in the end-caps). It consists of three parts:

• large superconducting air-core toroid magnets to bend charged tracks
along η coordinate;
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Detector η Number Number Employment
of chambers of channels

MDT |η| < 2.7 1088 339000 High
(internal layer (1150) (354000) precision
|η| < 2.0) tracking

CSC 2.0 < |η| < 2.7 32 31000 High
(354000) precision

trcking

RPC |η| < 1.05 544 359000 Trigger,
(606) (373000) second

coordinate

TGC 1.05 < |η| < 2.7 3588 318000 Trigger,
(2.4 for second
trigger) coordinate

Table 3.1: Main parameters of muon spectrometer subdetectors.

• high precision tracking chambers: Monitored Drift Tubes (MDT) in the
barrel and Cathode Strip Chambers (CSC) in the end-caps;

• a trigger system composed of Resistive Plate Chamber (RPC) and Thin
Gap Chambers (TGC).

The main MS component parameters are listed in Table 3.1. To have better
MS performances several considerations have been taken into account:

• resolutions in barrel and end-caps regions are different. For a given
pT , momentum increases as function of η, while bending does not with
the same rapidity. This leads to a η depending granularity in end-cap
regions.

• Radiation flux in end cap regions are ten times greater than in the
barrel, readout electronics should be more permissive to radiations.

• Some magnetic field inhomogeneities in the transition region requires
good trigger strategies in order to reject fake events.

• A bunch crossing identification is required in order to have a time
resolution better than the LHC bunch spacing.
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Figure 3.16: Schematic view of the transversal section of the muon spectrometer.

• A trigger with well-defined pT cut-offs in moderate magnetic fields,
requiring a granularity of the order of 1 cm.

• φ measurement with a spatial resolution of 5 − 10 mm for offline
reconstruction.

The MS layout is show in Figures 3.16 and 3.17.

Magnets

The toroidal magnetic fields are provided by superconducting air-core
coils. The magnetic field resulting is orthogonal to muon trajectory with
minimised resolution losses due to multiple scattering. Each toroid has eight
concentric coils, symmetric with respect to the beam direction. The finite
number of coils leads to a non complete toroidal magnetic configuration,
solved by combining contribution from end-cap and barrel magnetic fields.

Precision chambers

The precision chambers used in the MS system are MDT and CSC.
MDT chambers provide a precise muon momentum measurement in |η| < 2.0
range. They are mainly composed by aluminium drift tubes (Figure 3.18)
with a diameter of ∼ 30 mm. Each drift-tube consists of a central Tungsten-
Rhenium wire of 50 µm and is filled with a mixture of Ar/CO2 (93/7). Muon
passing drift-tubes ionize the gas, causing an avalanche of electrons drifting
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Figure 3.17: Muon spectrometer layout and subdetectors placement.

to the central wire; once hit has been read and the time of arrival has been
recorded, the distance of the muon track from the wire can be obtained,
providing a single spatial resolution of 80 µm per single wire.
CSC chambers are multi-wire proportional chambers. They replace the MDTs
in the η region from 2.0 to 2.7, where the high counting rates expected (> 200
Hz/cm2) make them not efficient in this area. CSC are designed with a
symmetrical cell filled with an argon–carbon dioxide mixture, where the
anode-cathode spacing is equal to the anode wire pitch. The track position is
obtained by measuring the charge induced on the cathode by the avalanche
created on the anode. Electron drift time is less than 25 ns, while spatial
resolution achieved is 50 µm. Figure 3.20 shows CSC design.

Trigger chambers

Trigger chambers operating in the MS are RPC and TGC.
RPC chambers are gas detectors composed by two parallel bakelite plates
separated by an insulating spacer resulting in a 2mm gap, filled with a non-
flammable gas mixture of tetrafluoroethane (C2H2F4), isobutane ((CH3)3CH)
and sulfur hexafluoride (SF6) respectively with a percentage of 96.7%, 3.0%
and 0.3% under an electric field of typically 4.5kV/mm. Electron avalanches
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Figure 3.18: MDT section. Figure 3.19: MDT mechanical structure.

Figure 3.20: CSC structure.
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(a) Schema di funzionamento di una
RPC a singola gap.

(b) Sovrapposizione delle camere lungo
z.

Figure 3.21: RPC chamber in the muon spectrometer.

creating after muons ionizes gas produce a signal which is read out via
two metal strips placed at both side of the chamber and orthogonal each
other, providing a two dimensional coordinate measurement with a spatial
resolution of 5-10 mm. The strips are arranged to be parallel (η coordinate)
and orthogonal (φ coordinate) to the MDT wires.
In the end-cap trigger chambers adopted are TGC, which are multi–wire
proportional chambers, but unlike CSC the anode-cathode separation is
smaller (1.4 mm), thus resulting in an improved time resolution. They
operate in a gas mixture of CO2 and n− C5H12 (55% and 45% respectively).
The anode wires are parallel to the MDT wires, and provide the trigger
information together with read-out strips orthogonal to the wires. Time
resolution achieved is 5 ns.

3.3.5 External detectors

Three small detectors are placed in the outer part of ATLAS:

• LUCID (LUminosity measurement using Cerenkov Integrating Detector)
is a Cherenkov detector placed at a distance of ±17 m from the inter-
action point. It monitors luminosity and beam condition and measure
inelastic pp scattering;

• ZDC (Zero-Degree Calorimeter) with the purpose of detecting neutrons
from heavy ions collisions;

• ALFA (Absolute Luminosity For ATLAS) placed at ±240 m from the
interaction point, it measures the absolute luminosity.
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3.4 The ATLAS Trigger System

A very challenging effort for LHC experiments is the online event selection,
which requires an efficient trigger system to reduce the high rate of events
generated during collisions corresponding to 40 MHz. The current technology
allows to record data at about 200 Hz: it is evident that the trigger system
needs to be optimized in order to reduce the event rate by a factor of 106−107

preserving at the same time the interesting events (Figure 3.22).
ATLAS Trigger system [45] has been initially designed with three different

Figure 3.22: Event rate at LHC.

levels of event selection: Level 1 (L1), Level 2 (L2) and Event Filter (EF). In
each level a more stringent selection criteria are applied. Figure (3.23) shows
ATLAS trigger organization. In Run-2 ATLAS adopted a two-level trigger
system [46] consisting in Level 1 Trigger and High Level Trigger (HLT).

A recorded event has to be accepted at least from one of the triggers
composing the trigger menu and then shared according the trigger that passed.
In regime of high luminosity triggers can be prescaled : the prescale factor fps
defines the number of the interesting events discarded, i.e. a prescale factor of
5 means that only one of the 5 events will be recorded. Most of the analyses
use unprescaled trigger fps = 1 for their selections.
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Figure 3.23: ATLAS trigger scheme.

3.4.1 L1 trigger

The first level trigger has been designed to reduce the initial rate of event
from 1 GHz to 75 kHz, by selecting events in less than 2.5 µs. A first selection
is applied on the basis of information collected by the muon spectrometer
and calorimeters.
L1 trigger searches for events with high transverse momentum, electron, pho-
tons, jets, hadronic-decaying τ leptons, large missing transverse energy. High
momentum muons are identified by using trigger chambers in the end-cap
and barrel regions of the spectrometer.
For each event a Region of Interest (RoI) is defined, in η and φ coordinate.
RoI data include information on the event, used by higher level triggers.
L1 calorimeter trigger level (L1Calo) is composed by 7000 trigger towers (TT)
(0.1× 0.1 in ∆η×∆φ, but granularity increases for greater |η| ) placed in the
two calorimeters. The trigger algorithm (Figure 3.24) computes the transverse
energy of electromagnetic clusters with a precision of 1 GeV. When a relevant
amount of energy is detected in a 2× 2 cluster three requirements must be
satisfied to consider hte cluster as a seed to be propagated to the next level: a
threshold on the transverse energy and electromagnetic and hadronic isolation.

Muon L1 trigger uses RPC in the barrel and TGC in the end-caps. In
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Figure 3.24: Calorimeter trigger scheme algorithm.

both regions three stations perform the tracking measurements. The trigger
algorithm starts from the hit on the central station to find a coincidence in
the remaining stations. Once the hit is found the RoI is propagated to the
next level.

3.4.2 HLT Trigger

In Run-2 Level 2 Trigger and Event Filter have been merged in a single
farm, the High Level Trigger [?]. This new farm has the advantage of
simplicity, since allows a code reduction and an algorithm duplication. During
the shutdown, HLT selection have been optimized in order to reduce differences
between offline and online selections, minimizing the trigger inefficiencies by
a factor two. The final event rate is ∼ 1 kHz.



Chapter 4

Physiscs Objects
Reconstruction in ATLAS

The events selected by trigger algorithms are recorded for the offline
analyses. They are processed by identification and reconstruction algorithms
in order to build physics objects, providing a set of physics objects that can
be used in physics analyses.

4.1 Muon reconstruction

Muons pass through calorimeters and reach spectrometer with a large
fraction of their initial energies. This feature is used to detect and identify
them in muon chambers. All information from the sub-detectors are exploited,
and different types of muon can be defined according the sub-detectors used
in the reconstruction [47]:

• “Combined” (CB) Muons whose tracks are separately reconstructed
in the spectrometer and in the inner detector and then matched together.
Track matching is realized by a combination algorithm that uses χ2

minimization. Combined measurement improves momentum resolution,
allowing rejection of muons coming from kaons and pions decays.

• “Segment tagged” (ST) Muons are muons with low pT who reach
the firs layer of the spectrometer. Tracking is performed combining inner
detector information and the partial information of the spectrometer.

• “Calorimeter-tagged” (CaloTag) Muons whose ID tracks are
extrapolated to calorimeters and matched with energy deposits. CaloTag
muons are mainly used to increase efficiency in the region not covered
by the spectrometer (η ∼ 0).

68
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• “Extrapolated” (ME) Muons whose reconstruction is performed
only in spectrometer. Extrapolated muons are mainly used to extend
the acceptance for muon reconstruction in the region not covered by
the interaction point, corresponding to 2.5 < |η| < 2.7.

Muon identification is performed through the application of quality criteria
to suppress background muons (mainly from pion and kaon decays), and
select signal (prompt) muons by using discriminating variables. There are
four muon identification selections: Medium, Loose, Tight and High-pT .
Medium muons include CB and ME muons with hits requirements in the
MDT layers for CB muons and in the MDT/CSC layers for ME. The matching
between the inner detector and the muon spectrometer must satisfy a loose
criteria in order to suppress the contamination due to hadrons mis-identified
as muons.
Loose muons are mainly used to reconstruct Higgs boson candidates, select-
ing all muon types. In the |η| < 2.5 region about 97.5% of the Loose muons
are combined muons, approximately 1.5% are CT and the remaining 1% are
reconstructed as ST muons.
Tight muons selects the purest sample of muons, with only CB muons
populating the sample. High pT muons are defined in order to maximise
the momentum resolution for muons with pT> 100 GeV. They are CB muons
passing the Medium selection and satisfying requirements on the number of
hits in the spectrometer layers. These requirements improves pT resolution of
30% for muons above 1.5 TeV.

Reconstruction efficiency

The reconstruction efficiency for muons follow two steps adopting a tag
and probe procedure. In the first the efficiency ε(X|CT ) of reconstructing
muons assuming a reconstructed track in the inner detector is measured, using
CaloTag as muon probe. Then, in the second step, the efficiency is corrected
by the efficiency ε(ID|MS) of the inner detector track:

ε(Type) = ε(Type|ID) · ε(ID) where Type=Medium, Tight, High pT

(4.1)
Scale factor (SF) measures the level of agreement of the efficiency measured
from data εData and from expected MC simulation εMC :

SF =
εDati

εMC
. (4.2)

The tag and probe method uses Z(µµ) + jets decays. Figure 4.1 shows the
muon reconstruction efficiency as function of η for the different muon selection.
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(a) (b)

(c)

Figure 4.1: Muon reconstruction efficiency as function of η for Medium (a), Tight
(b) and High-pT (c) measured in Z(µµ) + jets events [47].

The efficiencies for Loose, Medium and Tight muons are above 90%, while
for High-pT muons the lower values are mainly due to the tight requirement
on momentum resolution.

Muon isolation

To reject muons from hadronic decays isolation criteria are applied in
order to select muons originating from W,Z decays. Two variables are defined:

• a track isolation variable, pvarcone30
T , defined as the sum of the transverse

momenta of all tracks within a cone size of ∆R = min(10 GeV/pT , 0.3)
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Figure 4.2: Isolation efficiency for LooseTrackOnly muons as a function of muon
pT [47].

around the track associated to the muon candidate and originating from
the reconstructed primary vertex of the hard collision, excluding the
muon associated tracks.

• a calorimeter isolation variable, Etopocone20
T , defined as the sum of the

energies of topological clusters within a cone of ∆R = 0.2 around the
candidate electron cluster.

Seven isolation working points are then defined as function of the ratio between
the track or calorimeter isolation variable and the transverse momentum of the
muon. In Figure 4.2 the isolation efficiency for the LooseTrackOnly working
point is reported. This working point is defined as pvarcone30

T /pT with a 99%
efficiency constant in η and pT .

4.2 Electron reconstruction

Electron reconstruction uses calorimeter and inner detector information.
The algorithm has been designed to provide an high efficiency electron recon-
struction on a wide pT and η range, maximizing jets rejection.
The reconstruction algorithm [48] relies on a clustering procedure in EM
calorimeter to which a track in the ID is associated.
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Reconstruction in the central region In the central region (|η| < 2.47)
seed clusters must have energies above 2.5 GeV in a window size of 3× 5 in
∆η∆φ (0.025×0.025). Seed clusters are then matched to track candidates from
the ID using the distance (η, φ). Several tracks can be matched to the same
seed cluster (as in the case of electromagnetic showers). If this condition occurs
tracks are ordered according the minimum difference ∆R =

√
∆η2 + ∆φ2

between ID and seed cluster (η, φ) coordinate.
Starting from the seed cluster electron objects are constructed by clustering
cells in all four layers of the EM calorimeter. The size of the clustering
corresponds to ∆η∆φ equals to 3× 7 ( 5× 5) in the central region (in the
end-caps). Finally the four-momentum of central electron is computing using
information from both the primary track and the EM cluster. Electron
candidates without any track associated are considered as photons.

Reconstruction in the forward region In the forward region, with
2.5 < |η| < 4.9, no tracking information is available. Electron candidates are
reconstructed from energy deposit in the EM calorimeter with a procedure
that takes into account the significance of the interested cells with respect to
the expected noise. An electron candidate must have a transverse energy of
ET > 5 GeV and small hadronic energy component. The barycentre of the
cluster defines the electron direction and its energy is computed by summing
the energies in the cluster cells.

Electron identification

Electron identification [49] is performed through algorithms that use
information from calorimeters and inner detector. The selection criteria
applied define a set of quality conditions for the electrons (called menu).
Three different level of identification are defined: Loose, Medium and Tight ;
reported here in increasing background rejection. As consequence, Tight
electron selection contains the Medium one, which in turn contains Loose
selection. The tighter the operating point the purer is the electron sample
selected and the lower its identification efficiency.
The identification algorithms exploit the information of the electron cluster
and track measurement. A multivariate (MVA) that simultaneously eval-
uates several properties of the electron candidates is built and used in a
likelihood-based (LH) method. The LH method uses the signal and back-
ground probability density functions (PDFs) of the discriminating variables
and assigns a given probability for the candidate object to be a signal electron
or background.
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(a) (b)

Figure 4.3: Electron identification efficiencies as function of Emiss
T (a) and η (b) in

Z(ee) + jets events for Loose (blue), Medium (red) and Tight (black)
electrons [50].

Finally for high energy electrons, which deposit small fractions of their en-
ergies in in the first layers of the EM calorimeter and more in the hadronic
calorimeter a different definition of Tight electrons (which show inefficiencies)
is applied. For electron candidates with ET above 125 GeV, Tight electrons
have the same definition as Medium one with the supplement of rectangular
cuts on some discriminating variables.

Electron identification efficiency

The distribution of electron shower depends on the pseudorapidity of the
electron candidates and on their energies. For this reason the identification
operating points were optimised in η and ET bins. Figure4.3 shows the
performance of the LH algorithm. Z(ee) + jets events are selected using 8.8
fb−1 of data recorded at

√
s= 13 TeV and MC simulations.

Electron isolation

Electron isolation is performed to select prompt electrons useful for the
analysis from non-prompt electrons originating from converted photons, elec-
trons from heavy flavour hadron decays, and light hadrons mis-identified as
electrons. Isolation discriminating variables used are:
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Efficiency

Operating point Calorimeter isolation Track isolation Total efficiency

LooseTrackOnly - 99% 99%

Loose 99% 99% ∼ 98%

Tight 96% 99% ∼ 95%

Gradient 0.1143%×ET + 92.14% 0.1143%×ET + 92.14% 90/99% at 25/60 GeV

GradientLoose 0.057%×ET + 95.57% 0.057%×ET + 95.57% 95/99% at 25/60 GeV

Table 4.1: Electron isolation operating point definitions. The calorimeter and
track isolation refer to the selection based on Econe 0.2

T and pcone 0.2
T [49].

• a track isolation variable, pcone R
T , defined as the sum of the transverse

momenta of all tracks within a cone size of ∆R = min(R, 10 GeV/ET)
around the track associated to the electron candidate and originating
from the reconstructed primary vertex of the hard collision, excluding
the electron associated tracks.

• a calorimeter isolation variable, Econe R
T , defined as the sum of the

energies of topological clusters within a cone of ∆R = R around the
candidate electron cluster.

Table 4.1 reports all the electron isolation operating point definitions.

4.3 Jet reconstruction

Due to color confinement partons can’t exist in free form but they
hadronize. The particles produced in this process can be narrowed to a
cone of given dimension and constituting a jet. Jet properties (and conse-
quently original quark or gluon properties) can be determined according the
algorithm used in reconstruction.
In ATLAS jets are reconstructed from an algorithm which has as starting
point the analysis of energies deposited in the calorimeters from hadronic
and electromagnetic showers (called topological clusters). Jet four-momenta
is assigned from energies and angles with respect to the interaction vertex.
Jet energy calibration considers several aspects:

1. Non compensation of the calorimeter due to a partial measurement of
hadron energies.

2. Energy losses in region of detector constituted by passive materials.
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3. Energy losses of particles outcoming calorimeter.

4. Energy deposits of particles belonging to the jet but non included in
the reconstructed jet.

Jet reconstruction starts from topological cluster, corresponding to a com-
bination of calorimeter cells that follow shower developing. The algorithm
identifies a seed cell that has a signal-to-noise ratio greater than 4. The noise
is defined as ratio of the energy deposited in the calorimeter cell over the
RMS of the energy distribution in events triggered at random bunch crossing.
Neighbouring cells around seed with a signal-to-noise ratio greater than 2 are
included and finally added to form the topological cluster with final energy
corresponding to the sum of the energies of all cells included

The anti− kT algorithm

The anti− kT [51] clustering algorithm is the procedure applied for jet
reconstruction.

The algorithm is based on the definition of distance dij between two
objects i and j and the distance diB between the i− th objects and the beam
(B). Clustering procedure selects the smallest distance, if this condition
is satisfied by dij the objects i and j are combined (the four-momenta are
summed), otherwise if diB matches the requirements i is considered as jet and
removed from the list. The iteration procedure ends when all object list is
completed. The distance definitions are:

dij = min
(
k2p
Ti
, k2p

Tj

) ∆ij

R2
(4.3)

diB = k2p
Ti

(4.4)

where ∆ij = (yi − yj)2 + (φi − φj)2 ans kTi , yi and φi are respectively the
transverse momentum, the rapidity and the azimuthal angle of the particle i.
The power parameter p is a feature of the algorithm: p = 1 for kT algorithm.
For p = −1 the distance is

dij = min

(
1

k2p
Ti

,
1

k2p
Tj

)
∆ij

R2

completely dominated by the particle with the greatest transverse momentum,
hence soft particles will cluster with this particle. In this way a jet is defined
around the particle with the highest kT , which includes all the soft particles
within a circle of radius R. If two hard particles are present and close each
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Figure 4.4: Shape output of the different reconstruction jet algorithms for the
same event. anti− kT algorithm is on right bottom.

other, the overlapping region is assigned to the hardest particle. Soft particles
don’t change the shape of the jet: jet boundary is not dependent from soft
radiation (soft-resilient) but only from the hard one.

Pile-up suppression

The suppression of pile-up jets has been developed with the definition
of a jet-vertex tagging technique, JVT [52]. This algorithm combines both
calorimeter and tracking information in a two-dimensional discriminant. The
variables used in the discriminant definition are Jet Vertex Fraction and RpT

which contribute to separate hard-scatter (HS) events from pile-up events:

• Jet Vertex Fraction (JVF), is defined as the scalar transverse momentum
sum of the tracks that are associated with the jet and originate from
the hard-scatter vertex divided by the scalar pT sum of all associated
tracks. This quantity is then corrected by including a term which takes
into account the scalar pT sum of the tracks originating from pile-up
interactions.
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(a) (b)

Figure 4.5: 2-dimensional correlation of JVT and RpT for pile-up (left) and hard
scatter (right) jets [52].

• RpT is defined as the the scalar pT sum of the tracks that are associated
with the jet and originate from the hard-scatter vertex divided by the
fully calibrated jet pT , which includes pileup subtraction.

The correlation plots in Figure 4.5 show that pile-up jets are expected to have
low values of both variables, while HS jets are characterized by large values
of JVT and RpT .

Jet calibration

Reconstructed jets do not have energies corresponding to the initial one. A
calibration is hence needed in order to assign the correct value of the energy.
A jet energy scale (JES) calibration is applied in order to correct the values
of measured energy, which takes into account several effects: calorimeter
non compensations, energy losses due to passive materials in the detector,
leaking due to showers outgoing calorimeters, pile-up jets and signal losses
in the calorimeter clustering. The method relates the energy measured by
the calorimeters to the true jet energy by considering the mean of the jet
response distribution (Ereco/Etruth) in pT and η bins. The calibration follows
four steps, as described in details in [53].
The width of jet energy distribution provides the jet energy resolution (JER)
term. JER can be measured studying the asymmetry observed between
the jet pT in the same pseudorapidity region (in order to minimize detector
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effects). The jet energy resolution is obtained in pT × η bins. The JER can
be parametrised as follows [54]:

σpT
pT

=
N

pT

⊕ S
√
pT

⊕ C (4.5)

Where N , S, and C are the noise, stochastic and constant terms respec-
tively. Equation 4.5 shows that JER becomes less significant for high jet
energies.

4.4 b-tagging

The b-tagging identification is crucial in top quark reconstruction and in
b-tagged analyses. In Run-2 the fourth pixel layer installed in ATLAS, the
insertable B-layer (IBL) provides a better track and vertex reconstruction
performances. Also b-tagging algorithms have been revisited, thus leading to
an improvement in the low and medium jet pT region.
The b-tagging algorithms [55, 56] use track information of charged particles
from ID, which cover the |η| < 2.5 region. Three different algorithms which
provides complementary information constitute the b-tagging identification:

• IP2D, IP3D are algorithms based on the impact parameter,

• SV is a secondary vertex algorithm,

• JetFitter algorithm evaluates the decay chain.

These information constitute the inputs for a boosted decision tree (BDT)
algorithm, giving MV2 algorithm as output, which discriminate b-jets from
c-jets and light jets. In the following details on the algorithm will be provided.

IP2D and IP3D algorithms

These algorithms exploit the topology of b-hadron decays. Due to their
long lifetimes, b-hadron decay vertexes are displaced from primary vertexes.
The transverse impact parameter d0 and the longitudinal impact parameter
z0sinθ measure this distance. The corresponding significance parameters,
d0/σd0 and z0sinθ/σz0sinθ are then built and used to discriminate tracks
matched to jets. A sign is assigned to the impact parameter as function of
primary vertex and the jet direction: positive (negative) if primary vertex
is in front (behind) with respect to the jet direction. Both transverse and
longitudinal impact parameters information are taken into account in the IP3D
tagger, which uses a two dimensional template, while IP2D only uses transverse
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(a) (b)

Figure 4.6: The transverse (a) and longitudinal (b) signed impact parameter
significance for b (solid green), c (dashed blue) and light-flavour
(dotted red) jets [55].

impact parameters, thus resulting in a more performing discriminant not
depending on pile-up effects, which are related to the longitudinal impact
parameter. Finally a log-likelihood-ratio (LLR) discriminant is built for b-jets,
c-jets and light jets separations. In Figure 4.6 the distributions for d0/σd0
and z0sinθ/σz0sinθ significances are shown for b-, c- and light jets.

SV algorithm

The secondary vertex algorithm looks for a displaced secondary vertex
within the jet. Candidate tracks are considered in pairs and used to reconstruct
two-track vertices. If the candidate pair forms a secondary vertex that can be
associated to long-lived particles (Ks or Λ), photon conversions or hadronic
interaction with the detector material, it is rejected. The final reconstruction
efficiency as function of jet pT and η is shown in Figure 4.7 for light, c- and b-
jets.

Jet Fitter algorithm

This algorithm reconstruct the whole decay chain, from primary vertex
to c-jet, using a Kalman filter to find a common line on which the primary,
bottom and charm vertices lie. Some output variables distributions are shown
in Figure 4.8.
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(a) (b)

Figure 4.7: Secondary vertex reconstruction rate as function of jet pT (a) and |η|
(b ). Blue, green and red lines correspond respectively to b-, c- and
light flavour jets [55].

(a) (b)

Figure 4.8: JetFitter vertex efficiency as function of jet pT (a) and η for b (green),c
(blue) and light-flavour (red) jets [56].

MV2 algorithm

The outputs of the three algorithms described above, constitute the inputs
for a boosted decision tree algorithm, which gives MV2 output. The training
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Figure 4.9: BDT output for MV2c10 tagger. Blue, green and red lines correspond
respectively to b-, c- and light flavour jets [55].

has been performed on a sample of 5 million tt̄ events. It also takes into
account pT and |η| of the jets in order to exploit correlations with the other
input variables, but pT and |η| signal distributions are reweighted to match
the light flavour jets ones.
Three different versions of the algorithm are implemented: MV2c00, MV2c10
and MV2c20, where cXX represents the c-jet fraction in the training. Hence
MV2c20 is a tagger in which 20% (80%) of the background sample is composed
by c- (light-flavour) jets. In the current analyses the c-jet rejection has a
greater relevance than light flavour rejection: it is possible to perform a
training more dedicated to c-jets rejection. This improvement has been
reached in the the 2016 tagger configurations: e.g. for MV2c10 provides a
light flavour rejection improved of 4% at 77% b-jet efficiency with respect to
2015 configuration, while for c-jet rejection provides an improvement of 40%.
Figure 4.9 show the BDT output for the signal and background for MV2c10
and in table 4.2 are reported the relative operating points for different b-jet
efficiencies.

4.5 Missing energy reconstruction

Protons colliding at LHC have low momenta in the plane orthogonal to
beam pipe. Hence momentum conservation is expected in the transverse
plane, whose value is zero. An imbalance in the sum of visible momenta is
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BDT Cut Value b-jet Efficiency [%] c-jet Rejection Light-jet Rejection τ Rejection

0.9349 60 34 1538 184
0.8244 70 12 381 55
0.6459 77 6 134 22
0.1758 85 3.1 33 8.2

Table 4.2: Operating points for MV2c10 tagger [55].

defined as missing transverse energy, Emiss
T . The missing transverse energy

can indicate the presence of non-detectable particles, such as neutrinos in
SM, or new non-interacting particles expected in BSM theories.
Different algorithms for missing transverse energy have been developed: CSR
Emiss

T , Track Emiss
T and TST Emiss

T [57, 58].
CST (calorimeter-based soft term) Emiss

T compute missing energy form energy
deposits in the calorimeters. The measurement include contribution from
hard objects (electrons, photons, taus, muons or jets) and soft term related
to soft radiation. This method is affected by pile-up interactions, which give
additional contributions to the CST term. The Inner Detector information
is used in Track-based methods, thus giving a more robustness with respect
to pile-up but the method is insensitive to neutral particles and has an
acceptance limited by the region covered from ID. TST Emiss

T method both
combines information from calorimeters and trackers, the latter being included
as track-based soft term (TST).In Run-2 analyses TST Emiss

T is the method
adopted.
The Emiss

T of an event is computed as the negative sum of the momenta of all
final state objects in the transverse plane:

Emiss
x(y) = Emiss,e

x(y) + Emiss,γ
x(y) + Emiss,τ

x(y) + Emiss,jets
x(y) + Emiss,µ

x(y) + Emiss,soft
x(y) . (4.6)

Where the order of the objects follows the reconstruction order of energy
deposits in the calorimeters. The choice of soft term (TST or CST) affects
the performance and the uncertainties in the missing energy reconstruction.
The corresponding magnitude and azimuthal angle are:

Emiss
T =

√
(Emiss

x )2 + (Emiss
y )2 (4.7)

φmiss = arctan(Emiss
y /Emiss

x ). (4.8)



Chapter 5

Search for beyond Standard
Model Physics in events with
bottom quarks and missing
transverse energy

The analysis with bottom quarks and missing transverse energy in the
final state will be described in this chapter. The dataset corresponds to the
full available Run-2 statistics collected by ATLAS at

√
s = 13TeV . Several

improvements in the analysis have been introduced with respect to the Run-1
results: for the signal samples simplified models have been adopted in place of
EFT models and new fitting strategies have been used to improve sensitivity
limits.

5.1 Data and Monte Carlo samples

5.1.1 Experimental dataset

The full Run-2 dataset collected by ATLAS detector at a center of mass
energy of

√
s = 13TeV has been used. 2015 data taking operations covered

the period from June to November while 2016 from April to October, both
with a bunch-crossing space of 25 ns. The data collected in 2015 and 2016
correspond respectively to an integrated luminosity of 3.2 fb−1 and 32.9 fb−1 ,
for a total collected luminosity of 36.1 fb−1 . For physics analyses only datasets
satisfying some quality criteria are used: the list containing these runs is the
GoodRunList (GRL), which provides that events have been selected when all
ATLAS subdetectors were fully operating thus ensuring good data quality.
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5.1.2 Monte Carlo simulation

Monte Carlo (MC) samples have been generated in order to reproduce
Run-2 LHC collisions with an energy in the centre of mass of

√
s= 13 TeV and

a bunch cross spacing of 25 ns. These simulations are used to control each step
of physics analyses, from background and signal modelling to final results.
Different MC generators have been used in order to simulate signal and
background processes.

Signal samples: s-channel models

The signal processes for the s-channel models are generated from LO
matrix elements with two b-quarks and up to one extra parton, using the
MadGraph [59] v2.2.3 generator interfaced to Pythia 8.186 with the A14
tune [60] for the modelling of parton showering, hadronisation and the de-
scription of the underlying event. Parton luminosities are provided by the
NNPDF30LO [61] PDF set. The samples were generated following 4-flavour
scheme with massive b-quarks. Jet-parton matching is realised following the
CKKW-L prescription [62], with a fixed matching scale (30 GeV). Following
the prescriptions agreed with CMS in the DMForum [25], the samples were
generated applying the following cuts at MadGraph level:

1. ptj cut 30 GeV ,

2. xptb cut 30 GeV .

The second cut is effectively increasing the generation fiducial phase space and
effectively behaving as a filter. The effect of this requirement is propagated
into the LO MadGraph cross section. An additional Emiss

T filter of 80 GeV
was also applied, in order to enhance the samples efficiency in the phase space
interesting for this analysis. Two grids of signals have been generated, both
for scalar and pseudoscalar mediators. For the fixed DM mass mχ = 1 GeV
a scan on mediator mass mΦ has been performed with considered masses
mΦ = 10, 20, 50, 100, 200, 300, 500, 1000 GeV . The corresponding Feynman
diagram for this process is shown in Figure 5.1a.

Signal samples: t-channel b-FDM models

The signal processes for the t-channel models are generated from LO
matrix elements with up to three extra parton (in addition to the DM
pair), using the MadGraph v2.2.3 generator interfaced to Pythia 8.186
with the A14 tune for the modelling of parton showering, hadronisation and
the description of the underlying event. Parton luminosities are provided
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by the NNPDF30LO PDF set. The samples were generated following
5-flavour scheme with massless b-quarks. The grid for t-channel models
is a two-dimensional grid produced by scanning the mediator mass mΦ =
10, 50, 100, 200, 400, 500, 600, 800, 1000, 1200, 1400, 1600, for few DM masses
mχ = 1, 35, 50, 100 GeV . The corresponding Feynman diagram for this
process is shown in Figure 5.1b.

(a) s-channel (b) t-channel

Figure 5.1: Representative diagrams for s-channel spin-0 (a) and t-channel scalar
(b) mediators production.

Background samples

V+jets backgrounds have been generated using Sherpa [63]. Each final
state, Z → νν, Z → ee, Z → µµ, Z → ττ , W → eν, W → µν, W → τν is
separately generated. All single final state process is split in pT slices and in
heavy flavour components, namely B-veto, C-filter-B-veto and B-filter and
then summed to get an inclusive set of samples. The Z → `` samples have a
cut on m(``) > 40GeV applied.
The production of top quark pairs (tt̄ ) is simulated using Powheg+Pythia6 us-
ing the P2012 tune. Single top samples are generated with Powheg+Pythia6,
with the P2012 tune and the PDF set CTEQ6L1.
Diboson MC samples have also been generated with Sherpawith next-to-
leading order (NLO) parton distribution functions (PDF) set CT10, with up
to 4 jets from matrix element (ME), with massive charm and bottom quarks.
Samples of tt̄ +V (with V = W and Z, including non-resonant Z/γ∗ contribu-
tions) production are generated at NLO with MadGraph5 aMC@NLO v2.2.2
interfaced to the Pythia 8.186 parton shower model [64].
Samples of tt̄+WW production are generated at LO with MadGraph5 aMC@NLO +
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Pythia 8 without additional partons included in the generation. The A14
tune [60] was used together with the NNPDF23LO PDF set[65].
The tt̄ + W , tt̄ + Z, tt̄ + WW events are normalised to their NLO cross
section [59]. In order to reproduce the pile-up levels present in the collisions
data the distribution of the average number of expected interactions per
bunch crossing (< µ >) in the MC is re-weighted to match that observed in
data.

5.2 Object Reconstruction

In this analysis jets, b-jets, muons, electrons and missing transverse
momentum are the objects selected. Baseline and Good object definitions
are introduced for jets, electrons and muons: baseline objects are used for
preselection and overlap removal procedure good objects are required for the
final event selection both in signal and control regions.

Jets

The jet reconstruction follows the procedure described in Section 4.3.
Baseline jets requires pT > 20 GeV and |η| < 2.8; good jets are further
required to pass JVT > 0.59 (defined in Section 4.3) if its pT is below 60
GeV and |η| < 2.4. The non-collision background originating from muons
coming from inelastic interactions and calorimeter noise contributions are
suppressed by requiring the Loose jet cleaning criteria to baseline jets that
pass the overlap removal procedure.
Jets with pT > 20 GeV and |η| < 2.4 are identified as b-jets if MV2c10
b-tagging discriminant (Section ) is above 0.9349, which corresponds to a
b-tagging efficiency εb = 60.03%. The rejection rated for c-, light flavour and
τ jets are reported in Table 4.2. The choice of a tighter Working Point (WP)
is motivated by sensitivity studies, which show (Figure 5.2) a better rejection
on the background with a small signal efficiency loss (for a signal benchmark
with Mmed = 20 GeV and mχ = 1 GeV the sensitivity of requiring 2 b-jets
at 60% WP is ∼ 30% greater with respect to the 85% WP).
The analysis jet selection is summarised in Table 5.1.

Electrons and Muons

Baseline electrons are required to have ET > 7 GeV and |η| < 2.47
and pass the ”LooseAndBLayerLLH” definition. Baseline electrons are used
to perform the overlap removal between jets and electrons, and in lepton
veto. This definition improves the W+jets rejection at preselection step
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(a) nBjet 85% WP (b) nBjet 60% WP

Figure 5.2: Study of the optimal working point at preselection level for s-channel
models. MV2c10 with 85% (a) and 60% (b) are shown.

of the analysis (between 10% and 40%) with respect to a previous tighter
definition of baseline electrons with ET > 20 GeV . Signal electrons are
”TightLLH” electrons with ET > 25 GeV. Further requirements are applied
by requiring isolated electrons with ”LooseTrackOnly” as working point,
and cuts are applied on impact significance parameters d0/σd0 < 5 and
z0sinθ/σz0sinθ < 0.5.
Muon candidates pass ”Medium” identification criteria. Baseline muons have
pT > 6 GeV and |η| < 2.5, d0/σd0 < 3 and z0sinθ/σz0sinθ < 0.5. They are
used in the overlap removal procedure between jets and muons and for vetoing
events. Signal muons have pT > 25 GeV and satisfy ”LooseTrackOnly”
isolation criteria.
Electrons and Muons definitions are listed in Table 5.2.

Missing transverse momentum

The missing transverse momentum used in this analysis includes track-
soft-term (TST, see Section 4.5). Quality criteria are applied to remove
fakes or bad tracks included in the TST: jet threshold is above 20 GeV while
only charged particle below this threshold will be included in TST. The
missing transverse momentum is calculated as the negative vector sum of the
transverse momenta of all objects, after internal overlap removal to avoid
double counting. Two missing transverse momentum are used according to
selection: the standard one, referred as Emiss

T and the missing energy corrected
by the lepton momenta Emiss

T nolep, which treats leptons as invisible objects.
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Cut Value

Baseline

pT > 20 GeV

Signal

pT > 20 GeV
|η| < 2.8
JVT > 0.59 for |η| < 2.4 and pT < 60 GeV

b-jets

pT > 20 GeV
|η| < 2.5
JVT > 0.59 for |η| < 2.4 and pT < 60 GeV
MV2c10 60% WP

Table 5.1: Selection criteria for jets and b-jets.

Cut Value

Baseline

ID LooseAndBLayerLLH
ET > 7 GeV
|η| < 2.47

Signal

ID TightLLH
ET > 25 GeV
Isolation LooseTrackOnly
d0 significance < 5
z0 sin(θ) < 0.5 mm

(a) Electron selection criteria

Cut Value

Baseline

ID Medium
pT > 6 GeV
|η| < 2.5

Signal

ID Medium
pT > 25 GeV
Isolation LooseTrackOnly
d0 significance < 3
z0 sin(θ) < 0.5 mm

(b) Muon selection criteria

Table 5.2: Summary of the electron (a) and muon (b) selection criteria.
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5.2.1 Overlap removal

An overlap removal procedure is applied in order to avoid overlapping
between candidate objects. The ambiguity is solved according to the distance
∆R between the objects. The following criteria are applied:

1. A jet is removed if its distance with a baseline electron is ∆R < 0.2.
The object is considered as electron unless the jet is b-tagged (85%
WP): in this case the electron is removed.

2. A muon is removed if its distance with a jet is ∆R < 0.4 and the jet
has at least three tracks (with pT > 500 MeV ), otherwise the muon is
kept and the jet is removed.

3. If an electron and a jet are within a distance 0.2 ≤ ∆R < 0.4, the jet is
kept and the electron is removed.

5.2.2 Trigger

The trigger items used in this analysis are missing energy (xe) and single
lepton triggers.
The signal samples show have a very soft Emiss

T spectrum: for a signal with
Mmed = 20 GeV and mχ = 1 GeV a Emiss

T > 200 GeV cut leads to a signal
efficiency of 0.4%. In order to improve the signal efficiency trigger strategy is
based on the lowest unprescaled Emiss

T triggers. Since they change during data
taking periods, different trigger items have been considered in the selection:

• 2015: HLT xe70 mht or HLT j80 xe80

• 2016 until period D3: HLT xe90 mht L1XE50 or HLT xe100 mht L1XE50

• 2016 from period D3: HLT xe110 mht L1XE50

where ” L1XE50” indicates a seed corresponding to a Level 1 requiremet on
Emiss

T > 50 GeV and mht refers to the Emiss
T calculation implemented from

the vectorial sum of all jets in the event with pT > 7 GeV. For each trigger
the efficiency curve (turn-on) as function of the Emiss

T has been obtained
both on data and on MC using a single muon trigger as support. The
selection requires events with exactly one muon, 2-3 jets, 1 b-jet. The
corresponding turn-on curves are shown in Figure 5.3 for 2015 triggers, in
Figure 5.4 for HLT xe90 mht L1XE50 and HLT xe100 mht L1XE50 triggers,
and Figure 5.5 for the HLT xe110 mht L1XE50 trigger as a function of the
offline Emiss

T corrected for the leptons. All trigger items are fully efficient for
Emiss

T > 180 GeV.
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(a) HLT xe70 (b) HLT j80 xe80

Figure 5.3: Trigger efficiency curves for 2015 xe triggers (data and MC), as a
function of the offline Emiss

T , corrected for the leptons.

(a) HLT xe90 mht L1XE50 (b) HLT xe100 mht L1XE50

Figure 5.4: Trigger efficiency curves for 2016 xe primary triggers (data and MC),
as a function of the offline Emiss

T , corrected for the leptons.

Single lepton triggers are used in selection containing one or two leptons,
using an OR of the triggers listed in Table 5.3. The trigger items employ
different identification and isolation criteria for the leptons (loose, medium,
tight); HLT e24 lhmedium L1EM20VH and HLT mu20 iloose L1MU5 use a
Level 1 seed on lepton transverse energy, and nod0 indicates that requirements
on d0 are not applied in the online identification. A full trigger efficiency is
reached for lepton pT > 30 GeV.
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Figure 5.5: Trigger efficiency for the highest xe trigger threshold in 2016 data, as
a function of Emiss

T , corrected for the leptons.

Year Lepton Trigger chains

2015 electron HLT e24 lhmedium L1EM20VH ‖ HLT e60 lhmedium ‖ HLT e120 lhloose
2015 muon HLT mu20 iloose L1MU5 ‖ HLT mu50
2016 electron HLT e26 lhtight nod0 ivarloose ‖ HLT e60 lhmedium nod0 ‖ HLT e140 lhloose nod0
2016 muon HLT mu26 ivarmedium ‖ HLT mu50

Table 5.3: Lepton trigger scheme for the 1- and 2-lepton control regions.

5.3 Event selection

5.3.1 Preselections

A preliminary data/MC comparison has been performed at the initial step
of the anlaysis (Preselection). The modelling of kinematic variables has been
validated by defining different preselection cuts for s-channel and t-channel
analyses. Both models are characterized by the presence of b-jets with a low
jet multiplicity. In s-channel models in order to reduce the contamination
from high jet multiplicity backgrounds, especially tt̄ production, a veto on
the third jet with pT > 60 GeV is applied.
For s-channel models preselections applied are:

• a zero lepton selection (PRE0L 2b) to collect events with similar kine-
matic properties of signal region,

• a single lepton selection (PRE1L 2b) to validate backgrounds containing
leptonic W-decays,

• a dilepton selection to validate backgrounds containing a Z boson. In
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this selection Emiss
T nolep has been used in order to mimic the Z → νν

decay which constitutes the dominant background in signal region.

The full list of cuts applied is shown in Table 5.4.
For t-channel models preselections are the following:

• a zero lepton selection (PRE0L 1b) in order to have a region kinemati-
cally similar to the signal region,

• a dilepton selection (PRE2L 1b) to validate backgrounds containing a
Z boson in the event.

All selection cuts are summarized in Table 5.5. Both for one lepton and two
lepton preselections, the electron and muon channels are combined.
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Variable PRE0L 2b

Trigger xe
Njets [2, 3]
Nbjets > 1
Nlep (baseline) 0

pj1
T > 150 GeV

pj2
T > 20 GeV

pj3
T < 60 GeV
Emiss

T > 180 GeV
min ∆φ(ji, E

miss
T )i=1,2,3 > 0.4

(a) Zero lepton pre-selections

Variable PRE1L 2b

Trigger single lepton
Njets [2, 3]
Nbjets > 0
Nbjets > 1
Nlep (signal) 1
Nlep (baseline) 1

pj1
T > 150 GeV

pj2
T > 20 GeV

pj3
T < 60 GeV
Emiss

T > 180 GeV
min ∆φ(j1,2,3, E

miss
T ) > 0.4

lep pT > 30 GeV

mlep
T > 30

(b) Single lepton pre-selections

Variable PRE2L 2b

Trigger single lepton
Njets [2, 3]
Nbjets > 1
Nlep (signal) 2
Nlep (baseline) 2

pj1
T > 150 GeV

pj2
T > 20 GeV

pj3
T < 60 GeV
Emiss

T (nolep) > 180 GeV
Emiss

T < 60 GeV
min ∆φ(ji, E

miss
T )i=1,2,3 > 0.4

lep1 pT > 30 GeV
lep2 pT > 25 GeV
m`` [71, 111]

(c) Two leptons pre-selections

Table 5.4: Preselection cuts for zero (a) one (b) and two leptons (c) preselections
for s-channel models.
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Variable PRE0L 1b

Trigger xe
Njets [2, 3]
Nbjets > 0
Nlep (baseline) 0

pj1
T > 100 GeV

pj2
T > 100 GeV

pj3
T < 60 GeV
Emiss

T > 300 GeV
min ∆φ(ji, E

miss
T )i=1,2,3 > 0.4

(a) Zero lepton pre-selections

Variable PRE2L 1b

Trigger single lepton
Njets [2, 3]
Nbjets > 0
Nlep (signal) 2
Nlep (baseline) 2

pj1
T 100 GeV

pj2
T 100 GeV

pj3
T -
Emiss

T (nolep) 100 GeV
Emiss

T < 60 GeV
min ∆φ(ji, E

miss
T )i=1,2,3 > 0.4

lep1 pT > 30 GeV
lep2 pT > 25 GeV
m`` [71, 111]

(b) Two leptons pre-selections

Table 5.5: Preselection cuts for zero (a) and two leptons (b) preselections for
t-channel models.



CHAPTER 5. BSM SEARCHES IN b/bb +Emiss
T EVENTS 95

5.3.2 Discriminating variables

In order to improve signal selection with respect to the background several
kinematic variables have been implemented:

Minimum angular separation of all jets to Emiss
T , min ∆φ(ji, E

miss
T ).

A cut on this variable helps to reduce multi-jet contamination.
min ∆φ(ji, E

miss
T ) computes the minimum of the azimuthal distance

between the Emiss
T and all jets selected in the event. (Figure 5.6a)

Minimum angular jets separation, ∆Rmin. The angular separation ∆R
between two jets is defined as

∆R(j1, j2) =
√

(η1 − η2)2 + (φ1 − φ2)2. (5.1)

In this analysis, ∆Rminis used, as the minimum ∆R between all jets in
the event (Figure 5.6f).

Event imbalance, pjet1
T /HT, particularly performing in tt̄ event rejection, is

defined as the ratio between the leading jet transverse momentum (pjet1
T )

and the jet transverse momentum scalar sum of all signal jets in the
event HT (Figure 5.6b).

Pseudorapidity separation, ∆ηbb, which is the pseudorapidity separation
between the two bjets of the event. If only one b-jet is present in
the selected event, the second jet with the highest b-tagging weight is
considered in the variable computation.

Correlation variables x1 and y1. These two variables are strongly corre-
lated to min ∆φ(ji, E

miss
T ) and ∆φbb and defined as:

x1 = min ∆φ(ji, E
miss
T )−∆φbb (5.2)

y1 = π −min ∆φ(ji, E
miss
T )−∆φbb (5.3)

Their representation can be seen in a min ∆φ(ji, E
miss
T ) − ∆φbb cor-

relation plot, as shown in Figures 5.6d 5.6e and 5.7 for the major
backgrounds and a signal model.

The variable cos θ∗, proposed for DM searches in [66], is used as discriminating
variable in the fit procedure. It is defined as the cosine of the bjets system
opening angle (Figure 5.6c):

cos θ∗ = | tanh(∆ηbb/2)|. (5.4)
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(a) min ∆φ(ji, E
miss
T )i=1,2,3 (b) pjet1T /HT

(c) cos θ∗ (d) x1

(e) y1 (f) ∆Rmin

Figure 5.6: Comparison between the benchmark signal model with Mmed =
20 GeV and mχ = 1 GeV and the SM background at preselection
level for the most important discriminating variables of this analysis.
The signal yields are multiplied by a factor 20.
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Figure 5.7: 2-dimensional representation of the definition of variable x1 and y1.
x-axis is the ∆φbb and y-axis is the min ∆φ(ji, E

miss
T )i=1,2,3.
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5.3.3 Signal region selections

Signal region for s-channel models

Signal samples from simplified models are characterized by low jet multi-
plicity and low Emiss

T spectrum. The analysis selections exploits the kinematic
variables described in section 5.3.2 in order to maximize the following figure
of merit (significance)

s√
(1 + b+ (b× errb)2

, (5.5)

where s and b are respectively the expected number of signal and background
events and errb refers to a global systematic uncertainty on the background.
This means that each cut has been chosen in a such way to give the highest
value of the significance. In order to adopt a conservative approach before
background uncertainty estimation for signal region optimizations the value
chosen corresponds to errb = 0.20.
Two signal regions have been defined for this analysis: SRB and SRM. While
the former is the nominal one, the latter is kept as a cross check for its
similarity with the previous analysis [67]. In SRM a different momentum
imbalance has been used, and defined as

I(jw1, jw2) =
jw1− jw2

jw1 + jw2
, (5.6)

that is the pT imbalance for the two most ”b-like” jets in the event. The
corresponding applied cuts are listed in Table 5.6. The distributions of
discriminating variables where all cuts are applied except the one based on
the plotted variable (usually referred as N-1 distributions) are shown in
Figure 5.8 for SRB and in Figure 5.9 for SRM.

Signal region for t-channel models

These models are characterized by a high momentum b-jet and large Emiss
T .

The signal region optimization has been designed for high mediator masses
(> 1 TeV), by following the procedure described for s-channel models, using
as figure of merit the significance defined in equation 5.5. The final selections
are listed in Table 5.7 for a signal region named SRBFH. The variable HT3
defined as

HT3 =

Njets∑
i=3

pjet
T (5.7)

has been exploited to control tt̄ .
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Quantity SRB

Preselections 0-lep
Njets [2, 3]
Nbjets ≥ 2
Bjet 1 pT [GeV] > 150
jet 1 pT [GeV] > 150
jet 2 pT [GeV] > 20
jet 3 pT [GeV] < 60
Emiss

T [GeV] > 180

pjet1
T /HT > 0.75
x1 < 0
|y1| < 0.5

(a) SRB definition

Quantity SRM

Preselections 0-lep
Njets [2, 3]
Nbjets 2
Bjet 1 pT [GeV] > 50
jet 1 pT [GeV] > 150
jet 2 pT [GeV] > 20
jet 3 pT [GeV] < 60
Emiss

T [GeV] > 180
I(jw1, jw2) > 0.5
∆Rmin(j1, j2) > 2.5

(b) SRM definition

Table 5.6: Summary of the selections for SRB and SRM. Preselection refers to
the requirements summarised in Table 5.4.

Quantity SRBFH

Nbjets ≥ 1
Njets ≥ 2
Emiss

T [GeV] > 650
Jet 1 pT [GeV] > 160
Jet 2 pT [GeV] > 160
HT3 [GeV] > 100
| min ∆φ(ji, E

miss
T ) | i = 1, 2 > 0.6

Table 5.7: Selections applied in SRBFH.
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(a) pjet1T /HT (b) x1

(c) y1

Figure 5.8: Discriminating variables for SRB. For each distribution all cuts except
the one showed in the plot are applied. Signal models with mχ =
1 GeV and Mmed = 20, 200 GeV have been considered with a cross
section increased by a factor 5.
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(a) ∆Rmin (b) Jet Imbalance

Figure 5.9: Discriminating variables for SRM. For each distribution all cuts
except the one showed in the plot are applied. Signal models with
mχ = 1 GeV and Mmed = 20 GeV have been considered with a cross
section increased by a factor 5.
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(a) | min ∆φ(ji, E
miss
T ) | i = 1, 2 (b) Nbjets

(c) Njets (d) Leading jet pT

(e) Emiss
T (f) Subleading jet pT

Figure 5.10: N-1 plots for t-channel bFDM models in Signal Region targeting
high mediator masses. All requirements of SRBFH are applied
except for the one on the distribution shown in the figure. Only
statistical uncertainties are shown in the plots. Signal models with
mχ = 35, 50 GeV and Mmed = 1000 GeV have been considered
with a cross section increased by a factor 5.
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5.4 Background estimation strategy

The impact of the major backgrounds has been performed by exploiting a
semi-data-driven approach, in which Control Regions (CR) are defined. Each
CR has been designed in order to obtain a region with a high purity of a
specific background, that can be controlled by comparison to data samples.
The normalization factors extrapolated from a simultaneous fit in all regions
are used to rescale Monte Carlo predictions in the signal regions and account
for cross contamination between control regions. Further information on
fitting strategy are given in section 5.5.

5.4.1 s-channel background estimation

Background estimation for SRB

In the s-channel the main contribution corresponds to the irreducible
background from Z(νν) + jets events, since its topology is the same of the
signal. This background is estimated in a two lepton dedicated control region,
CRZB, where the selected leptons of Z(``)+jets events are treated as invisible
particles in the Emiss

T calculation. Further cuts are required to be as close as
possible to the signal region to minimize extrapolation uncertainties, hence
same b-tag multiplicities and similar angular cuts have been applied.
The second dominant background is tt̄ production. These events are selected
in SR mainly when leptonically W decay yields to a mis-identified lepton. A
single lepton control region, denoted as CRTB, is designed for this purpose.
In order to increase the purity of the control region a minimal requirement
on the transverse mass of the neutrino-lepton system coming from W boson
is required.
Finally W+jets , single top and diboson background, which give a minor
contribution in signal region, are estimated from MC predictions.
Dedicated Validation Regions (VR) are defined to validate the normalization
factors extrapolated from the fitting procedure before signal region data
unblinding. A zero lepton validation region denoted as VRB2 is defined. The
region has low signal contamination, with the same background composition
as signal region whose orthogonality is ensured by reverting the y1 cut.
Table 5.8 reports all the requirements for SRB, CRs and VRs.

Background estimation for SRM

The background composition for this region is very similar to SRB. While
Z(νν)+jets events are estimated in a two lepton control region, CRZM, as for
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Quantity SRB CRTB CRZB VRB2

Preselections 0-lep 1-lep 2-lep 0-lep
Njets 2− 3 2− 3 2− 3 2− 3
Nbjets ≥ 2 ≥ 2 ≥ 2 ≥ 2
Bjet 1 pT [GeV] > 150 > 150 > 150 > 150
jet 1 pT [GeV] > 150 > 150 > 150 > 150
jet 2 pT [GeV] > 20 > 20 > 20 > 20
jet 3 pT [GeV] < 60 < 60 < 60 < 60
Emiss

T [GeV] > 180 > 180 < 60 > 180
Emiss

T (nolep) [GeV ] - - > 120 -

mlep
T - > 30 - -

pjet1
T /HT > 0.75 > 0.75 - -
x1 < 0 < 0 < 1 < 0
|y1| < 0.5 < 0.5 < 0.5 > 0.5

Table 5.8: Summary of the Control and Validation region selections for SRB.
Preselection cuts refer to Tables 5.4a, 5.4b and 5.4c.

SRB approach, two different single lepton control regions have been designed
according to b-jet multiplicity. A single lepton control region with two b-jet
is defined for tt̄ estimation denoted as CRTM, while for W+jets and single
top backgrounds only one b-jet is required in CRWB definition.
Two validation regions are designed, one for a zero lepton selection, VRLR and
the second for a single lepton selection with two b-jet requirement, VRWM.
For both VRs orthogonality is ensured by reverting ∆Rmin cut. All the CR
and VR definitions are listed in Table 5.9.

5.4.2 t-channel background estimation

For b-FDM models Z(νν) + jets is completely dominant and is the only
background estimate from a control region designed with the same cuts as
SR except a relaxed cut on Emiss

T (nolep) in order to collect more statistics. It
is not possible to define a VR for the high Emiss

T phase space of the SR, given
the smaller BR of Z(``) with respect to Z(νν). The full selection list of this
control region, denoted as CRZBFH is reported in Table 5.10.

5.4.3 Multi-jet background

Multi-jet background is due to mis-reconstructed jet energies in the
calorimeters and to neutrinos present in the jet cone. The estimation of



CHAPTER 5. BSM SEARCHES IN b/bb +Emiss
T EVENTS 105

Quantity SRM CRZM CRWM VRWM CRTM VRLR

Preselections 0-lep 2-lep 1-lep 1-lep 1-lep 0-lep
Njets(|η| < 2.8) 2− 3 2− 3 2− 3 2− 3 2− 3 2− 3
Nbjets = 2 = 2 = 1 = 2 = 2 = 2
jet 1 pT [GeV ] > 150 > 150 > 150 > 150 > 150 > 150
jet 2 pT [GeV ] > 20 > 20 > 20 > 20 > 20 > 20
jet 3 pT [GeV ] < 60 < 60 < 60 < 60 < 60 < 60
Emiss

T [GeV ] > 180 < 80 > 180 > 180 > 180 > 180
Emiss

T (nolep) [GeV ] - > 180 - - - -
∆Rmin > 2.5 - > 2.5 [1.25, 2.5] > 2.5 [2, 2.5]
I(jw1, jw2) > 0.5 > 0.5 > 0.5 > 0.5 > 0.3 [0.3, 0.5]

mlep
T [GeV ] - - [30, 100] [30, 100] > 30 -

m`` - [71, 111] - - - -
lep 1 pT [GeV ] - > 30 > 30 > 30 > 30 -
lep 2 pT [GeV ] - > 25 - - - -

Table 5.9: Summary of the selections which define control and validation regions
for SRM. Preselection cuts refer to Tables 5.4a, 5.4b and 5.4c.

Quantity SRBFH CRZBFH

Nbjets ≥ 1 ≥ 1
Njets ≥ 2 ≥ 2
Emiss

T [GeV] > 650 < 120
Emiss

T (nolep) - 300
Jet 1 pT [GeV] > 160 > 160
Jet 2 pT [GeV] > 160 > 160
HT3 < 100 < 100
| min ∆φ(ji, E

miss
T ) | i = 1, 2 > 0.6 -

| min ∆φ(ji, E
miss
T (nolep)) | i = 1, 2 - > 0.6

Table 5.10: Control and signal region summary for the b-flavoured DM model
SRBFH. In CRZBFH 2 lepton are required in the selection.
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such background is evaluated with the Jet Smearing method which is based
on the following procedure:

1. Events passing a defined set of cuts are selected and considered as seed
events,

2. A jet response function R is built as the ratio

R =
preco

T

ptruth
T

, (5.8)

which is a map that compares truth and reco jet pT for b-veto and
b-tagged jets. ”Pseudo-events” are generated by correcting each jet
4-momentum in a seed event for a random number extracted from the
R map.

3. The smeared jets are rotated around z-axis to match di-jet data.

4. Variables of the pseudo-events are recalculated.

5. A multi-jet control region is defined, where normalization on pseudo-
data is performed.

A control region with a loose SR-like selection and min ∆φ(ji, E
miss
T ) < 0.1 is

defined and the estimate is used to predict the amount of multi-jet events
in SR, which is found to be negligible for the cut min ∆φ(ji, E

miss
T ) > 0.4

applied in SR (Figure 5.11).

5.5 Fit strategy

The normalization factors extrapolated result from a fit to data which is
based on CRs and SRs, each with a different Probability Density Function
(PDF), successively combined into a simultaneous fit. All regions share the
same PDF parameters thus providing consistent information from each signal
and background component and systematics uncertainties. The strategy
adopted is the following:

1. Fit CRs to normalize MC predictions to data.

2. Transfer factors (TF) extrapolated from CRs are then validated in VRs
in order to estimate fitting procedure.
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Figure 5.11: min ∆φ(ji, E
miss
T )i=1,2,3 at preselection level before a selection on

the variable. The hashed area in the lower panel represents the
uncertainty due to MC statistics and systematic uncertainty on the
QCD (from JetSmearing) described in the text.

3. Backgrounds are extrapolated to SR to achieve final results. By con-
vention the unblinding procedure, that is the comparison with observed
data, is the final step of the analysis: once all previous steps are validated
the unblinding is performed. This methodology avoids to introduce
biases in the analysis.

The first two steps described above constitute the Background-only fit proce-
dure. If we denote with Np(region, est.) the background estimate of a process
in a certain region and with Np(region, in.) the expected background, the
following relation is valid:

Np(SR, est.) = µp ×Np(SR, in.), (5.9)

Np(CR, est.) = µp ×Np(CR, in.), (5.10)

where µp is the normalization factor obtained from fit. Defining Np(CR,fit)
as the fitted number of the process p in the CR, the relation between SR and
CR background estimation can be written as:

Np(SR, est.) = µp ×Np(SR, in.)

≡ Np(CR, fit)×
[
Np(SR, in.)

Np(CR, in.)

]
. (5.11)
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The ratio in the square brackets is the transfer factor. Being defined as a
ratio, systematics uncertainties on the predicted background can be cancelled
in the extrapolation: background uncertainties in the SR are a combination
of statistical uncertainties in the CR and residual systematic uncertainties
from the extrapolation. As a consequence usually CRs are defined with a
kinematic as close as possible to the SR to avoid large uncertainties coming
from extrapolation and with a larger statistics.
The PDF contains the normalization factors obtained from data, the rate
of a signal process and the systematic uncertainties (described by the nui-
sance parameters). The corresponding likelihood is the product of Poisson
distribution in each region considered and an additional distribution for the
systematic uncertainties:

L(n,θ0|µsig,µp,θ) = PSR × PCR × Csyst

=
∏
i∈SR

P (ni|λS(µsig,µp,θ)) ×
∏
i∈CR

P (ni|λi(µsig,µp,θ))

× Csyst(θ
0,θ) , (5.12)

where P SR and PCR are Poisson distributions of the observed events. The
number of observed events in a region in the i-th bin is ni with expectation
λi which is function of the normalization factors, the signal strength µsig

and nuisance parameters θ that parametrize systematics uncertainties. The
function Csyst(θ

0,θ), usually a Gaussian probability density function with
mean zero, constrains nuisance parameters. The signal strength equals to
zero means no signal contribution; when µsig = 1 the signal corresponds to
the expected number of events of the considered model.
As mentioned before the background only-fit is performed only on CR in order
to extrapolate transfer factors, the SR term of equation 5.12 is not considered
in the likelihood. The full likelihood is built in a model-independent signal
fit, where the purpose is to set an upper limit on the signal cross sections. A
profile likelihood ratio test statistic is computed in both fitting approaches, the
CLS method is used to derive exclusion limits for signal models with a given
confidence level. The fitting is performed using the HistFitter package [68].

Fit strategy for SRB and SRM

In order to increase the discovery potential a shape-fit on cos θ∗ as dis-
criminating variable has been performed for SRB and SRM regions. The
fit strategy implemented is based on a simultaneous shape fit where signal
region is binned in cos θ∗. The shape information is hence considered and a
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single TF from each CR is extrapolated. In order to avoid any source of bias
signal region selections does not include any cut on variables that could be
correlated to the discriminating variable. The choice of the binning has been
optimized to avoid large statistical uncertainties, thus resulting in a 4 bin
division, with 0 < cos θ∗ < 1.

Fit strategy for SRBFH

This signal region selects few events and hence has been optimized for a
cut-and-count selection: no shape information has been exploited.

5.6 Systematic Uncertainties

Systematics uncertainties give a measure of the impact of experimental
and theoretical uncertainties to the final result. For the shape fit approach
each systematic uncertainty is considered fully correlated across the bins of the
discriminating variable. In addition, a normalisation and a shape component
have been considered for all backgrounds which are not normalized in CRs
while for backgrounds estimated in CRs the total normalisation uncertainty
is not considered since is taken into account by the normalisation factor.
A statistical uncertainties related to MC statistics is also considered.

5.6.1 Experimental uncertainties

Luminosity and pile-up

The integrated luminosity measured in data has an uncertainties estimated
in a 3.2% for the combined 2015-2016 dataset and taken into account for MC
normalization. In order to evaluate differences between data and MC after
pile-up a proper systematics is considered by varying pile-up scaling with
respect to the nominal value.

Jet, b-jet and Emiss
T

Jet energy scale (JES) and jet energy resolution (JER) are evaluated by
in-situ studies. A smearing to jet pT is performed on jets according to their
pT and η in order to take into account a possible underestimation of the JER.
b-tagging uncertainties are evaluated by up/down variation on scale factor
uncertainty for b-, c-, light jets and extrapolations. This uncertainty is
expected to be independent of the jet multiplicity.
Emiss

T systematics accounts for the Emiss
T track soft term scale and resolution
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uncertainties. It should be noted that JES and JER effects are also propagated
to Emiss

T .

Leptons

These sources of systematics are related to lepton identification efficiency
scale factor and momentum or energy scale and resolution by performing an
up/down variation of these parameters.

5.6.2 Theoretical systematics

V+jets

Theoretical systematic uncertainties on V+jets are evaluated by varying
a set of parameters fixed in generation phase for Sherpa, samples. These
parameters are:

• Matrix element matching (ckkw): this is the merging scale, with a
nominal value of 20 GeV , the variations go down to 15 GeV and up to
30 GeV .

• Renormalisation scale (renorm): it’s a variation on the scale for the
running strong coupling constant. The varied values wit respect to
nominal one are 2 and 1/2.

• Factorisation scale (fac): variation on the scale for the parton density
functions, it’s fixed to 2 and 1/2 with respect to nominal value.

• Resummation scale (qsf): varies the scale used for the resummation of
soft gluon emission. 2 and 1/2 are the varied values.

The corresponding weights are calculated from binned boson pT and jet
multiplicities map distributions for each Sherpasample as the ratio of the
number of events in the sample with up/down varied parameter over the
nominal number of events:

wi,j =
NSyst
i,j

NNomonal
i,j

. (5.13)

The impact of each V+jets systematic is evaluated by computing the
up/down yields variation of cos θ∗distribution with respect to nominal (Nom)
as follows:

∆ =
(SysHigh − SysLow)

2× Nom
(5.14)
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The results are shown in Table 5.11 and 5.12, for the control, validation
and signal B-regions. CRZB is missing for the W+jets uncertainty as this
background’s yield in 2-lep selections is zero.

SRB Variation ∆ ∆ ∆ ∆ ∆
cos θ∗ [0, 0.25] cos θ∗ [0.25, 0.5] cos θ∗ [0.5, 0.75] cos θ∗ [0.75, 1]

CKKW 0.064 0.066 0.064 0.062 0.064
Fac. Scale -0.019 -0.020 -0.019 -0.019 -0.020
Ren. Scale -0.125 -0.123 -0.133 -0.130 -0.114
QSF -0.065 -0.064 -0.064 -0.066 -0.067

CRZB Variation ∆

CKKW 0.059
Fac. Scale -0.031
Ren. Scale -0.179
QSF -0.060

CRTB Variation ∆

CKKW 0.077
Fac. Scale -0.027
Ren. Scale -0.120
QSF -0.051

VRB Variation ∆

CKKW 0.073
Fac. Scale -0.017
Ren. Scale -0.193
QSF -0.060

Table 5.11: Z+jets theoretical uncertainties: Variations in SRB regions. Values
are provided for the inclusive and per-bin cos θ∗distribution.

Top

Single top and tt̄ uncertainties are the following:

• Cross section: for tt̄ are not relevant in the analysis as consequence of
using a dedicated CR. For single top cross section uncertainty is taken
into account.

• MC generator/hard scatter: a comparison between different genera-
tors has been done. The differences are symmetrized and statistical
uncertainties added in quadrature.
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SRB Variation ∆ ∆ ∆ ∆ ∆
cos θ∗ [0, 0.25] cos θ∗ [0.25, 0.5] cos θ∗ [0.5, 0.75] cos θ∗ [0.75, 1]

CKKW 0.040 0.036 0.041 0.053 0.024
Fac. Scale -0.032 -0.032 -0.033 -0.032 -0.032
Ren. Scale -0.181 -0.187 -0.171 -0.172 -0.209
QSF -0.041 -0.043 -0.038 -0.045 -0.032

CRTB Variation ∆

CKKW 0.040
Fac. Scale -0.035
Ren. Scale -0.209
QSF -0.035

VRB Variation ∆

CKKW 0.052
Fac. Scale -0.032
Ren. Scale -0.208
QSF -0.039

Table 5.12: W+jets theoretical uncertainties: Variations in SRB regions.

• Additional radiation, fragmentation and hadronization evaluated by
comparing different samples and taking the difference as uncertainty.

Diboson

Only expected MC yields are used for diboson hence the uncertainties
include only the full cross section uncertainty of 7%.

Signal

Several source of systematic uncertainties have been taken into account for
the signal models, namely factorisation and normalisation scale, uncertainty
related to the merging of the matrix element and the parton shower as well
as the choice of the parton shower tune and the choice of the pdf.
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5.7 Results

5.7.1 Background only fits

The background estimation in SRs and VRs has been performed through
a background only fit strategy. In this procedure the background prediction
obtained from data are independent of the observed number of events in SRs
and VRs, since only CRs are used, thus ensuring an unbiased comparison
between observed and expected events in each region. All the results are
obtained with the full Run-2 statistics of 36.1 fb−1 . All systematics described
in Section 5.6 are included in the fit.

SRB background only fit

The results for the background only fit in control and validation regions
are shown in Table 5.13 and the extrapolated yields in SRB in Table 5.14.
The two fitted normalization factors are:

• µtt̄ = 0.66± 0.12

• µZ = 1.29± 0.29.

The distributions of cos θ∗ after background has been rescaled are shown in
Figure 5.12 for each CR and VR.
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CRZB CRTB VRB2

Observed 161 129 194

Fitted bkg 160.93± 12.66 129.19± 11.36 179.51± 20.35

Fitted Zjets 147.30± 14.36 0.20± 0.07 102.13± 14.95
Fitted Wjets 0.00± 0.00 7.00± 4.11 19.13± 12.27
Fitted ST 1.19± 1.18 24.60± 7.75 20.57± 6.18
Fitted ttbar 11.35± 7.90 97.12± 14.83 35.29± 8.89
Fitted Others 1.09± 0.83 0.28± 0.15 2.39± 1.46

MC exp. SM 133.17± 24.97 180.07± 17.02 174.76± 26.42

MC exp. Zjets 113.52± 22.92 0.15± 0.06 78.66± 20.07
MC exp. Wjets 0.00± 0.00 7.04± 4.13 19.22± 12.33
MC exp. ST 1.20± 1.19 24.70± 7.81 20.65± 6.21
MC exp. ttbar 17.35± 10.18 147.90± 11.86 53.82± 8.78
MC exp. Others 1.10± 0.83 0.28± 0.15 2.42± 1.47

Table 5.13: Background only fits in the CRs relative to the SRB selections and ex-
trapolated yields in the validation region. All systematic uncertainties
except muon and electron scales are included.
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SRB bin0 SRB bin1 SRB bin2 SRB bin3

Observed - - - -

Fitted bkg 77.28± 12.81 71.79± 11.34 75.61± 12.70 66.35± 9.18

Fitted Zjets 39.59± 6.31 44.36± 6.65 53.29± 9.88 55.55± 8.58
Fitted Wjets 4.90± 3.95 3.31± 2.27 2.73± 1.72 0.99± 0.95
Fitted ST 14.71± 5.83 10.18± 3.72 5.51± 3.14 2.56± 1.67
Fitted ttbar 17.79± 6.49 13.89± 5.59 14.09± 4.78 6.97± 2.90

Fitted Others 0.29+0.32
−0.29 0.05+0.10

−0.05 0.00± 0.00 0.28± 0.22

MC exp. SM 77.61± 14.52 68.83± 12.54 70.71± 13.13 57.31± 9.08

MC exp. Zjets 30.57± 6.15 34.21± 6.74 41.07± 9.51 42.84± 7.99
MC exp. Wjets 4.92± 3.96 3.32± 2.28 2.74± 1.73 1.00± 0.95
MC exp. ST 14.74± 5.86 10.18± 3.72 5.50± 3.13 2.57± 1.68
MC exp. ttbar 27.08± 8.20 21.07± 6.93 21.41± 6.45 10.62± 3.85

MC exp. Others 0.30+0.32
−0.30 0.05+0.10

−0.05 0.00± 0.00 0.28± 0.22

Table 5.14: SRB extrapolated yields from the background only fit in the control
regions, divided per bin. All major systematic uncertainties are
included.
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(a) CRTB (b) CRZB

(c) VRB2

Figure 5.12: cos θ∗ distributions for CRB and VRB regions after background only
fits. All systematics described in Section 5.6 have been included in
the shaded band.
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SRM background only fit

As cross check to SRB, a background only-fit for SRM was performed.
The three normalization factors obtained are:

• µtt̄ = 0.91± 0.28

• µW = 1.06± 0.26

• µZ = 1.28± 0.44

while pre and post-fit yields are listed in Table 5.15 for each control and
validation regions and in Table 5.16 for SR. After fit cos θ∗ distributions are
shown in Figure 5.12.

CRWM CRTM CRZM VRWM VRLR

Observed events 313 115 109 111 71

Fitted bkg events 312.91± 17.64 114.96± 10.68 108.95± 10.37 109.85± 12.95 68.98± 7.16

Fitted Zll 0 events 1.82± 0.49 0.40± 0.12 98.90± 10.67 0.04± 0.01 36.79± 5.13
Fitted Wlnu 0 events 134.96± 19.68 3.93± 1.11 0.00± 0.00 17.70± 3.96 3.62± 1.65
Fitted ttbar 0 events 79.94± 15.38 94.00± 12.70 8.00± 2.08 57.49± 9.27 16.95± 3.32
Fitted Wt 0 events 12.78± 3.39 3.58± 1.32 2.06± 0.96 5.69± 1.59 0.29± 0.29
Fitted singletop 0 events 80.16± 17.21 13.05± 4.22 0.00± 0.00 28.49± 7.60 11.10± 3.65
Fitted diboson 0 events 3.26± 1.12 0.00± 0.00 0.00± 0.00 0.44± 0.33 0.23± 0.12

MC exp. SM events 307.17± 65.66 122.76± 32.06 87.90± 28.03 112.42± 29.24 61.67± 17.90

MC exp. Zll 0 events 1.42± 0.63 0.31± 0.10 77.20± 24.73 0.03± 0.00 28.72± 8.49
MC exp. Wlnu 0 events 127.22± 38.01 3.70± 1.28 0.00± 0.00 16.68± 5.07 3.41± 2.03
MC exp. ttbar 0 events 87.67± 18.25 103.07± 27.27 8.77± 3.49 63.05± 18.50 18.58± 5.96
MC exp. Wt 0 events 12.04± 3.01 3.37± 1.53 1.94± 1.02 5.36± 1.57 0.27± 0.24
MC exp. singletop 0 events 75.56± 18.54 12.30± 3.99 0.00± 0.00 26.86± 6.21 10.45± 3.48
MC exp. diboson 0 events 3.25± 1.14 0.00± 0.00 0.00± 0.00 0.44± 0.33 0.23± 0.12

Table 5.15: Background only fits in the CRs relative to the SRM selections
and extrapolated yields in the validation region. All systematic
uncertainties except muon and electron scales are included.
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SRM 0 SRM 25 SRM 50 SRM 75 SRM

Observed events − − − − −

Fitted bkg events 16.57± 2.98 23.19± 3.74 42.57± 6.20 99.90± 12.82 182.2± 21.0

Fitted Zll events 7.38± 1.37 13.31± 2.58 29.96± 4.92 86.98± 11.39 137.6± 17.9
Fitted Wlnu events 1.06± 0.57 1.32± 0.73 1.77± 0.86 1.35± 1.20 5.5± 2.7
Fitted ttbar events 6.18± 2.73 4.62± 1.71 7.96± 2.04 6.29± 1.99 25.1± 6.4
Fitted Wt events 0.04± 0.02 0.39± 0.19 0.09± 0.06 1.17± 0.76 1.7± 0.9
Fitted singletop events 1.79± 0.79 3.40± 1.28 2.79± 1.91 4.09± 2.07 12.1± 5.3
Fitted diboson events 0.12± 0.11 0.13± 0.10 0.00± 0.00 0.02± 0.01 0.3± 0.2

MC exp. SM events 15.38± 3.98 20.42± 6.02 36.48± 12.31 81.02± 28.05 153.30± 48.48

MC exp. Zll events 5.76± 2.03 10.39± 3.69 23.38± 8.23 67.89± 22.93 107.42± 36.04
MC exp. Wlnu events 0.99± 0.60 1.25± 0.75 1.67± 0.94 1.27± 1.07 5.18± 2.69
MC exp. ttbar events 6.79± 2.30 5.07± 1.85 8.73± 2.85 6.89± 3.33 27.47± 8.27
MC exp. Wt events 0.03± 0.02 0.37± 0.18 0.08± 0.06 1.10± 0.77 1.59± 0.94
MC exp. singletop events 1.69± 0.85 3.21± 1.16 2.63± 1.81 3.85± 2.26 11.37± 5.45
MC exp. diboson events 0.12± 0.11 0.13± 0.10 0.00± 0.00 0.02± 0.01 0.26± 0.19

Table 5.16: SRM extrapolated yields from the background only fit in the control
regions. Both per-bin and inclusive values are reported. All major
systematic uncertainties are included.
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(a) CRWB (b) CRTB

(c) CRZB

(d) VRLR (e) VRWM

Figure 5.13: cos θ∗ distributions after background only fits.
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SRBFH

For b-FDM only Z+jets background has been fitted, giving a normalisation
factor of

• µZ = 1.17± 0.18.

Table 5.17 reports fit results and the background extrapolation to the SR.
Emiss

T distribution after fit is shown in Figure 5.14.

SRBFH CRZBFH

Observed − −

Fitted bkg 16.94± 5.21 47.98± 6.92

Fitted Zjets 14.16± 5.12 46.25± 6.97
Fitted Wjets 1.25± 0.82 0.00± 0.00

Fitted ST 0.25+0.42
−0.25 0.34+0.43

−0.34

Fitted ttbar 0.58± 0.17 0.25± 0.01
Fitted Others 0.71± 0.53 1.14± 0.72

MC exp. SM 14.89± 4.10 41.31± 1.73

MC exp. Zjets 12.11± 3.98 39.58± 1.42
MC exp. Wjets 1.24± 0.82 0.00± 0.00

MC exp. ST 0.25+0.43
−0.25 0.35+0.43

−0.35

MC exp. ttbar 0.58± 0.17 0.25± 0.01
MC exp. Others 0.70± 0.54 1.13± 0.73

Table 5.17: Background only fit results for SRBFH. Total integrated luminosity
is 36.1 fb−1 . Statistical uncertainties only are included.

5.7.2 Limits

s-channel limits

In the absence of a signal excess over expected backgrounds, the results
can be interpreted in terms of upper limits on the production cross section
of BSM Physics. The signal-plus-background hypothesis for a specific signal
models can be excluded by using a profile likelihood ratio test statistics, and
CLS method is used to derive the confidence level of the exclusion limits:
signal models whose CLS value are below 0.05 are excluded at 95% CL. The
quantity used is the signal strength (σexcl/σ(g)), which is the scaling factor
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Figure 5.14: Corrected Emiss
T distribution in CRZBFH, where the corrected Emiss

T

requirement is relaxed to 100 GeV . All systematics described in
Section 5.6 are included in the shaded band.

to be applied to the theoretical cross section of the signal model analysed
in order to exclude it at 95% CL. Upper limits are obtained as a function
of mediator mass, with mediator (scalar or pseudoscalar) decaying in a DM
pair, for a fixed choice of the coupling and DM mass.
For the s-channel analysis, observed limits are available for a dataset corre-
sponding to 13.3 fb−1 for both scalar and pseudoscalar mediator, assuming
mχ = 1 GeV and equal couplings gq = gχ = 1.0 as shown in Figure 5.15.
The selection criteria used for derive this results are described in Appendix
B. Expected limits at 36.1 fb−1 for SRB and SRM are respectively shown in
Figure 5.16 and 5.17 with the same assumption described above. Finally a
comparison between the results obtained for SRB, SRM and 13.3 fb−1 data
are shown Figure 5.18 for both scalar and psudoscalar mediator. As expected,
the increasing luminosity and the employment of shape information lead to a
significant improvement of upper limits with respect to the results obtained in
[67]. Although SRM gives similar results as SRB, the latter is best performing
for the largest parameter space, validating the choice of using it as nominal
selection in the analysis.

b-FDM limits

The results for b-FDM models are interpreted as contour exclusion plot
in the Mmed −mχ plane, as shown in Figure 5.19. The behaviour at mχ =
100 GeV is due to the fact that DM masses above 100 GeV have not been
generated, as the interest for this model was driven by the Galactic Center
Excess and therefore was focused around mχ = 35 GeV. The observed value
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(a) Scalar mediator

(b) Pseudoscalar mediator

Figure 5.15: Cross section limits obtained for the s-channel analysis with
13.3 fb−1 of data. The dashed red line indicated the expected
limits, the solid black line the observed ones [67].

(solid red line) refers to blind pre-fit expected MC yields and it has not been
derived from observed data.
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Figure 5.16: Expected cross section limits obtained for SRB. The systematics
described in Section 5.6 (both theory and detector) are included in
the fit.
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Figure 5.17: Expected cross section limits obtained for SRM for DM scalar (a)
and pseudoscalar (b) mediators with a DM mass of 1 GeV. The
systematics described in Section 5.6 (both theory and detector) are
included in the fit.
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Figure 5.18: Comparison between limits obtained with observed results with
13.3 fb−1 data (solid black line) [67] and SRB (dashed red line)
and SRM (dashed blue line) expected results for DM scalar (a) and
pseudoscalar (b) mediators with a DM mass of 1 GeV.
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Figure 5.19: Final limit contour for b-FDM models including all major system-
atics. Mediator masses below 400 GeV are not interesting for this
search as they have already been excluded by sbottom analysis and
DM masses above 100 GeV have not been generated.



Chapter 6

Summary of Dark Matter
analyses

The DM programme at LHC involves several analyses, each one sensitive
to a particular simplified model, as described in section 2.4.4. In order to
place the search with bottom quarks in a context with a wider description
of DM searches, a brief overview on the other analyses will be described in
this chapter as well as the possibility to combine them in the direction of
achieving more performing results.

6.1 DM production in association with tt̄

As for bottom quarks, dedicated DM analyses involving final states with
top pairs can probe information about scalar and pseudoscalar spin-0 me-
diators. As such interactions occur via Yukawa coupling, final states with
top quarks are privileged, and higher cross sections with respect to bottom
quarks allow to achieve better limits on the models studied.
Depending on top decay, which can be hadronic, semileptonic or leptonic three
corresponding signatures have been considered: with no leptons in the final
state, with one and two leptons. The results that will be shown correspond
to a dataset of 13.3 fb−1 collected at

√
s= 13 TeV.

Upper limits at 95% CL are set in a Mmed −mχ plane, where Mmed = mφ, ma

for scalar and pseudoscalar scenario, for a given choice of the couplings. For
DM + tt̄ analyses the choice adopted is g = gχ = gq = 3.5, which provides
the scenario with the highest cross sections (∼ 10 times higher than the cross
sections with g = gχ = gq = 1). The most sensitive region is expected to
correspond to the part of the plane where mediator is on-shell (Mmed > 2mχ )
and low DM masses.

127
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0 lepton analysis

The signal region for this analysis [69] has been optimized for a model
with Mmed = 350 GeV and mχ = 1 GeV: at least four jets are selected, two
of which must be b-tagged. The most powerful discriminating variables are
mb,min
T (the transverse mass calculated from Emiss

T and the b-jets closest in φ to
the missing transverse energy direction) useful to reject tt̄ background and a jet
reclustered variable with distance parameter R = 1.2, with m0

jet > 140 GeV
and m1

jet > 60 GeV , where m indicates the mass of leading and subleading

jet. Additional cuts on Emiss
T , Emiss

T /
√
HT and ∆R(b, b) are applied.

Z(νν) + jets , tt̄ , W+jets and single top events constitute the major back-
grounds and have been studied from data in dedicated control regions. A
simultaneous fit has been applied in order to determine all SM contributions,
which includes theoretical and experimental systematic uncertainties.
The results are interpreted as exclusion limits at 95% CL in the Mmed −mχ

plane, for g = gχ = gq = 3.5, as shown in Figure 6.1, where the numbers in
the contour plot indicate the limits on the coupling.

(a) Scalar mediator (b) Pseudoscalar mediator

Figure 6.1: Exclusion limits at 95% CL in the Mmed −mχ plane with g = 3.5
for the DM+tt̄model with no lepton in the final state [69]. Expected
(observed) contour plot corresponds to the blue dashed (red solid)
line.

1 Lepton analysis

This analysis targets final states with one lepton, with one W boson from
top decaying leptonically. Two signal regions have been developed, DM low
and DM high, both using angular and kinematic cuts, as described in detail
in [70]. Top quark pair, W+jets and single top backgrounds are estimated
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from data in three corresponding enriched control regions. The irreducible
background of the analysis, namely tt̄ events produced in association with
a Z boson decaying into neutrinos can not be evaluated in a CR using Z
boson since the small branching ratio of Z decaying into leptons and the
limited dataset available. For this purpose a data-driven approach using tt̄ +γ
events has been exploited, considering a control region developed in such
a way to avoid significant kinematic differences between the two processes
and reduce theoretical uncertainties in the extrapolation. Deviations from
SM expectations corresponding respectively to 3.3σ and 1.3σ have been
observed in DM low and DM high SRs, and the 95% CL upper limits in the
in the Mmed −mχ plane are shown in Figure 6.2. For a maximum coupling
g = gχ = gq = 3.5 the mediator masses (both for scalar and psudoscalar)
excluded for Mdm = 1 GeV are up to 350 GeV.

(a) Scalar mediator (b) Pseudoscalar mediator

Figure 6.2: Exclusion limits at 95% CL in the Mmed −mχ plane with g = 3.5 for
the DM+tt̄model with one lepton in the final state [70]. Expected
(observed) contour plot corresponds to the blue dashed (red solid)
line.

2 Lepton analysis

As for 1 lepton analysis, in 2 lepton search [71] two signal regions op-
timized for low and high mediator mass have been optimized. The major
SM contributions are tt̄ and tt̄ + Z events, are estimated simultaneously in
two control regions. A simultaneous fit on SRs and CRs is performed when
setting upper limits at 95% CL on the cross section for each signal model.
The observed results are shown in Figure 6.3 in the Mmed −mχ plane.
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(a) Scalar mediator (b) Pseudoscalar mediator

Figure 6.3: Exclusion limits at 95% CL in the Mmed −mχ plane with g = 3.5 for
the DM+tt̄model with two leptons in the final state [69]. Expected
(observed) contour plot corresponds to the blue dashed (red solid)
line.

6.2 Monojet analysis

In the DM searches picture, the final state with missing transverse mo-
mentum and high-pT jets coming from initial state radiation from colliding
partons, provides the most sensitive channel for DM discovery. This signature,
usually referred as monojet, is mainly important in scenarios where DM is
produced via an axial-vector mediator, setting limits in the low DM ranges.
For the pseudoscalar mediator case monojet channel extends results coming
from heavy flavour searches. The results [72] based on 3.2 fb−1 data, collected
during 2015 collisions will be presented in this section.
The idea pursued in monojet signal region definition is simplicity. In order to
be model independent the selection requires a set of cuts on jet multiplicity,
leading jet pT and Emiss

T .
The triggers employed for the selection of SR events correspond to the lowest
unprescaled Emiss

T triggers, with Emiss
T > 250 GeV cut, which ensures that all

triggers are fully efficient. Events having a primary interaction vertex with at
least two associated ID tracks with pT > 0.4 GeV are required. A lepton veto
for electrons and muons is applied, and at most four jets are required, the lead-
ing one passing tight jet cleaning, with pT > 250 GeV and |η| < 2.4. In order
to suppress multi-jet backgrounds a cut on min ∆φ(ji, E

miss
T )i=1,2,3,4 > 0.4 is

applied.
The main source of background to this search is related to the electroweak
background, namely the irreducible background from Z(νν) + jets events,
which mimics the signal, and W (`ν) + jets and Z(``) + jets events with mis-
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reconstructed leptons. Three dedicated CRs are defined in order to estimate
these contributions:

1. a CR with exactly one required muon, CR1µ, to evaluate Z(νν)+jets and
W (µν) + jets backgrounds. The Emiss

T corr is taken into account, by
treating the selected muon as invisible particle. Although for Z(νν) +
jets a dilepton region would have been the most appropriate choice to
control this background, such region suffers of lack of statistics, thus
resulting in a larger uncertainty on the final estimate.

2. a CR with exactly one required electron, CR1e, for W (eν) + jets ,
W (τν) + jets and Z(ττ) + jets estimates. In this CR standard Emiss

T has
been used in event selection, mainly for constrainingW (τν)+jets process,
which is the second dominant background in SR.

3. a CR with exactly two muons, CR2µ for estimating Z(µµ)+jets background.
Although this contribution is marginal in SR, this CR can give an indi-
cation of the compatibility of the normalization factors with the other
muon CR.

Z(ee) + jets and diboson events yields a negligible contribution in SR and are
estimated only for MC expectations. Despite cuts on Emiss

T and jet multiplicity,
top contributions is not negligible due to high cross sections, but the low
statistics of a dedicated control regions lead to a MC-only estimation. Non-
collision background (NCB) mainly originates from muons created in inelastic
beam-gas interactions and from cosmic ray. This source of background
dominates the signal region and Tight jet cleaning criteria are applied in
order to reject this source which otherwise would be dominating in signal
region, and residual NCB is estimated using a data-driven method. Finally
multi-jet background is estimated from data with jet smearing method.
The fit strategy used in the analysis relies on a shape fit approach, using
Emiss

T as discriminating variable. The distribution has been divided into
exclusive Emiss

T bins, and for each bin, a cut-and-count experiment is performed,
leading to a final number of normalization factors that depends on the number
of defined CRs and bins, NCR × Nbins. The choice of bin number has been
optimized in order to both maximize shape information and avoid statistical
fluctuation in the bins. This compromise results in a seven variable Emiss

T bins,
starting from Emiss

T > 250 GeV and yielding inclusive and exclusive regions.
Systematics uncertainties are assumed to be fully correlated between the bins,
thus preserving striking changes in nuisance parameters due to statistical
fluctuation, particularly significant in high Emiss

T bins. The most significant
source of systematics after the fit are related to the theoretical top uncertainties
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(2%) and muon uncertainties (2%).
Figure 6.4 shows limits on Dark Matter models set in the mχ −Mmed for an
Axial Vector Mediator with gχ = 1 and gq = 0.25. Mediator mass up to 1
TeV are excluded at 95% CL.

 [GeV]Am
0 500 1000 1500 2000

 [G
eV

]
χ

m

0

200

400

)expσ 1 ±Expected limit (

)PDF, scale
theory

σ 1 ±Observed limit (

Perturbativity Limit

Relic Density

ATLAS  
-1 = 13 TeV, 3.2 fbs

Axial Vector Mediator

Dirac Fermion DM

 = 1.0
χ

 = 0.25, g
q

g

95% CL limits

χ

 =
 2

 m
Am

Figure 6.4: 95% CL exclusion contours in the mχ −Mmed plane for an Axial
Vector Mediator. The solid (dashed) curve is the observed (expected)
limit. The red curve corresponds to the expected relic density (more
detail in section 6.5. The region excluded due to perturbativity,
defined by mχ >

√
π/2 mA, is indicated by the hatched area. The

signal models considered assume minimal mediator width and the
coupling values of gq = 1/4 and gχ = 1 [72].

6.3 Monophoton analysis

The final state with Emiss
T and photon coming from initial state radiation

(monophoton) constitutes a clear and distinctive signature in DM searches
providing a useful cross-check to monojet analysis. However, since αEM � αS
a lower statistics is expected to be collected.
In the analysis using 36.1 fb−1 data collected, five signal regions have been
designed: three inclusive (SRI1, SRI2, SRi3) with increasing Emiss

T thresholds
and two exclusive (SRE1, SRE2) with Emiss

T in two different intervals. A com-
mon selection requires at least one isolated photon with ET > 150 GeV with
∆φ(γ,Emiss

T ) > 0.4. Lepton and jet vetoes are applied, the latter rejecting
events with more than one jet or with a jet with ∆φ(jets, Emiss

T ) < 0.4. A final
cuts on Emiss

T /
√

ΣET > 8.5 GeV 1/2 is required to suppress fake Emiss
T events.
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The dominant backgrounds of the analysis are Z/W + γ events with uniden-
tified electrons or muons and γ + jets events where the jets information is
partially lost creating fake Emiss

T . These contributions are estimated in four
dedicated control regions properly defined for each SR. Finally backgrounds
originating from fake photons are estimated using data-driven techniques.
Two different backgrounds estimation fitting strategies have been adopted:
for inclusive signal regions the normalisation factor have been derived inde-
pendently, while for exclusive signal regions and SRI3 (which is mutually
exclusive with SRE1 and SRE2) a background-only multiple-bin fit using
simultaneously all corresponding CRs has been applied.
As no excess over SM predictions have been found, limits in the (mχ −Mmed )
plane are set for DM simplified models with an axial-vector and vector
mediator. The results are shown in sections 6.5 and 6.6.

6.4 Di-jet analyses

Di-jet searches offer a complementary approach to the mono-X signatures,
providing the possibility to look for resonances decaying into a pair quark,
which can be interpreted as spin-1 DM mediators. As shown in Figure 6.5
this kind of processes are strongly dependent on the gq couplings since the
cross section results to be proportional to g2

q .
Different di-jet analyses have been developed in the ATLAS collaboration,
using different techniques in order to select the interested events. In the
following a brief description of such studies will be given.

Figure 6.5: Feynman diagram of a di-jet process. The resonance X can be
interpreted as vector or axial vector mediator decaying into a quark
pair.
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6.4.1 Di-jet analysis

Proton-proton interactions at LHC may lead to a 2→ 2 parton scattering
processes via strong interactions. The presence of a resonance decaying into
two jets can be inferred from the study of dijet invariant mass, mjj, in the
form of an excess over SM background in the mjj distribution. In particular
the dominant SM di-jet background processes coming from multijet events
are typically produced at small angles θ∗, defined as the polar angle with
respect to the direction of the initial partons, while for new BSM signals θ∗
is expected to have large values.
The final selection [73] for the analysis based on the total Run-2 statistics
of 36.1 fb−1 requires at least two jets with leading (subleading) jet pT above
440 (60) GeV, with at least one jet passing an high level trigger with a
380 GeV pT threshold. The mjj distribution obtained from the selected jets
is analysed for two different selections of the Lorentz invariant quantity
y∗ = y1 − y2, defined as the rapidity difference of the two outcoming partons,
where y = 1/2ln[(E + pz)/(E − pz)] with E parton energy and pz z-axis
momentum component. The two selections applied correspond to |y∗| < 0.6
and |y∗| < 1.2, both optimized for reducing QCD background processes. The
respective mjj distributions are shown in Figure 6.6, showing how, with the
described requirements, |y∗| < 0.6 (|y∗| < 1.2) selection is fully efficient above
mjj > 1.1 TeV (mjj > 1.7 TeV).
A dedicated algorithm, BumpHunter [74, 75] is employed for searching
resonances in the distribution by evaluating the statistical significance of any
localized excess between data and predictions computed in adjacent mjj bins.
Final results found a local excess in the interval 4326− 4595 GeV for both y∗

selections (in Figure 6.6 is indicated by two vertical lines), where, however,
without taking into account systematic uncertainties, the probability that
background fluctuations would produce an excess at least as significant as the
one observed in the data anywhere in the distribution is 0.63 for |y∗| < 0.6
selection and 0.83 for |y∗| < 1.2 selection. In conclusion, no significant excesses
have been found in di-jet analysis.

The energies reached in Run-2 collisions lead to jet triggers with increased
thresholds, with the consequence of loosing sensitivity on lighter resonances. In
this context the Run-1 di-jet results obtained with

√
s = 8TeV collisions give

complementarity to the Run-2 searches. The 8 TeV analysis [76], performed
on 20.3fb−1 data is similar to 13 TeV one, and the possibility to collect
jets with lower pT lead to the mjj distribution shown in Figure 6.7, where
only |y∗| < 0.6 was applied and a further cut on mjj > 250 GeV is required
such that the di-jet mass spectrum was unbiased by the kinematic selection
on the jet transverse momenta. The most significant discrepancy found by



CHAPTER 6. SUMMARY OF DARK MATTER ANALYSES 135

(a) |y∗| < 0.6 (b) |y∗| < 1.2

Figure 6.6: The reconstructed di-jet invariant mass in the |y∗| < 0.6 (a) and
|y∗| < 1.2 selections. The vertical lines indicate the most discrepant
intervals identified by the BumpHunter algorithm. In the middle
panel the Gaussian significance bin-by-bin of the data with respect
to the predicted background is shown. The lower panel shows the
relative differences between the data and the prediction of simulation
of QCD processes, corrected for NLO and electroweak effects. The
shaded band denotes the experimental uncertainty in the jet energy
scale calibration [73].

BumpHunter algorithm correspond to a probability of 0.075 and is located
in the 390− 599 GeV interval.

6.4.2 Trigger Level di-jet analysis

A further possibility to study light resonances in di-jet analysis is to
perform a Trigger-object Level Analysis (TLA) exploiting trigger algorithms
able to record events containing only information needed for such searches.
This technique allows to avoid trigger limitations thus extending discovery
potential of di-jet searches to mass range below 1 TeV. The TLA analysis
[77] has been performed by ATLAS in Run-2, with an available dataset of
3.4 fb−1 collected events at

√
s = 13 TeV.

A first-level trigger (L1) is implemented to collect jets with ET > 75 GeV ,
identified in region of interest (ROI) in calorimeter segments. The recorded
events do not rely on information from tracking on muon detectors, nor on any
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Figure 6.7: The reconstructed di-jet invariant mass in the |y∗| < 0.6 selection,
for the 8 TeV Analysis [76]. The vertical lines indicate the most
discrepant intervals identified by the BumpHunter algorithm. The
central panel shows the relative differences between the data and
the background fit, while in the lower panel the data-background
difference considering statistical uncertainties only is shown.

readout of individual calorimeter elements. Further calibration procedures
are then applied on collected jet in order to correct jet four-momenta, pile-up
and jet energy scale to match with the calibration scheme used in offline
reconstruction.
Event selection follows what described in section 6.4.1. Two signal regions
are defined, for |y∗| < 0.6 and |y∗| < 0.3, with at least two trigger jets within
|η| < 2.8 with pT above 85 GeV, with the leading trigger jet having pT > 185
GeV. The distribution of mjj is shown in Figure 6.8 for the two signal regions,
where the blue vertical lines indicate the mass interval where BumpHunter
algorithm found the most discrepant interval. As no evidence for significant
excess has been found, 95% upper limits on the coupling gq are derived as
function of an axial-vector mediator mass and shown in Figure 6.9 where
coupling values above the curves are excluded.
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(a) |y∗| < 0.6 (b) |y∗| < 0.3

Figure 6.8: The reconstructed di-jet invariant mass in the |y∗| < 0.6 (a) and
|y∗| < 0.3 (b) selections, for the TLA Analysis [77]. The vertical lines
indicate the most discrepant intervals identified by the BumpHunter
algorithm. The lower panels show the bin-by-bin significances of the
data–fit differences, considering only statistical uncertainties.

Figure 6.9: The 95% CL upper limit on the coupling gq as function of the res-
onance mass mZ′ . The solid (dotted) lines indicates the observed
(expected) limits [77].
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6.4.3 Di-jet analysis with Initial State Radiation ob-
jects

Another way to go beyond trigger limitations is a search where the
resonance produced is boosted in the transverse direction via recoil from an
initial state radiation (ISR) object with high pT , namely a photon or a jet, as
illustrated in Figure 6.10. While paying in term of signal rates production due
to the low cross sections, the ISR tagging allows to explore lower dijet mass
ranges: 200−1500 GeV for the search with an ISR photon and 300−600 GeV
for an ISR jet. The results of the analysis with 15.5 fb−1 [78] at

√
s = 13

TeV will be briefly described in the following.
In the search with a photon (X + γ) an isolated photon with pT > 150GeV
and at least two jets with pT > 25 GeV and |η| < 2.8 are required. The
QCD background is reduced by applying a cut on |y∗/2| < 0.8. In the ISR
jet selection (X + j) a jet with pT > 430 GeV is required along with the
aforementioned criteria for the remaining jets. The angular requirements is
performed on the difference rapidity of the second and third highest pT jets,
|y∗23/2 < 0.6|. The distribution of dijet invariant mass for the two searches
are shown in Figure 6.11. No significant excesses have been found and 95%
upper limits on the coupling gq as function of mediator mass are shown in
Figure 6.12.

(a) X + γ (b) X + j

Figure 6.10: Feynman diagrams for the production of a new resonance X recoiling
against an ISR (a) photon or (b) jet [78].

6.4.4 Setting limits on di-jet analyses

Di-jet analysis results can be interpreted as DM limits in the (mχ ,Mmed )
plane in order to compare them with monojet and monophoton results for
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(a) X + γ (b) X + j

Figure 6.11: The reconstructed di-jet invariant mass in the X + γ (a) and X + j
analyses [78]. The vertical lines indicate the most discrepant
intervals identified by the BumpHunter algorithm. In the lower
panel the Gaussian significance bin-by-bin of the data with respect
to the predicted background is shown.

(a) X + γ (b) X + j

Figure 6.12: The 95% CL upper limit on the coupling gq as function of the
resonance mass mZ′ for X + γ (a) and X + j (b) selections. The
solid (dotted) lines indicates the observed (expected) limits [78].

the vector and axial-vector mediator scenario. The procedure relies on
resonances that are approximately Gaussian near the core, with tails smaller
than background and it follows several steps:

1. A MC samples with new particle with mass M is generated. The



CHAPTER 6. SUMMARY OF DARK MATTER ANALYSES 140

kinematic selection on the parton η, pT and |y∗| is applied.

2. The signal mass distribution is smeared to take into account detector
effects. The smearing factor distribution depends on di-jet invariant
mass as shown in Figure 6.13.

3. The Gaussian signal distribution is limited to 0.8M and 1.2M : this
allows to reject long tails in the reconstructed mjj. The mean mass m
is recalculated after this truncation. The fraction of surviving events
determines the acceptance A.

4. Select the Gaussian signal with mG so that mG = m. If there’s no
exact correspondence among Gaussian samples, consider the limits for
mG values above and below m, and take the larger one in order to be
conservative.

5. For this mass point, choose the value of σG/mG such that the region
within ±2σG is contained in the truncated mass range.

6. The tabulated 95% CL upper limit corresponding to the chosen Gaussian
signal is finally compared to the product of theoretical cross section
and acceptance (taking into account its branching ration into two jets),
σ ×A.

Figure 6.13: Dijet mass resolution obtained from fully simulated Pythia QCD
Monte Carlo [76].
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6.5 Comparison of results

The limits resulting from the monojet, monophoton and di-jet analyses
are presented in the (mχ ,Mmed ) plane for a fixed choice of the couplings.
In the freeze-out scheme of the early Universe the DM abundance, initially
present in thermal equilibrium, has changed due to annihilation processes
during universe expansion and set the DM density observed today. Simplified
models can be used in order to predict the relic density and compare with
most recent measurements observed by Planck collaboration, corresponding
to Ωχh

2 = 0.12 [15, 79]. Hence relic density calculations can be shown on
the (mχ ,Mmed ) plane as an indication of where a specific simplified model is
likely to explain the observed value [80]. It should be noted that a simplified
model is not excluded if its parameters are inconsistent with the relic density
curve, rather that other processes in addition to the specific simplified model
should be considered.
In Figure 6.14a summary results for an axial-vector mediator with gq = 0.25
and gχ = 1 are shown. The DM scenarios tested does not include lepton
couplings, hence gl = 0. In the region between the two dashed curve indicating
relic density annihilation processes described by simplified model lead to Ωχ

below 0.12h2. The dotted curve divides on-shell and off-shell regions while
the shading in the upper left indicates excluded regions due to perturbativity
unitarity. A similar plot for a vector mediator is shown in Figure 6.14b for
the same coupling choice and di-jet results combined in a single exclusion.
Di-jet searches can exclude up to the TeV scale for both DM and mediator
masses, while the mono-X searches are sensitive to low DM masses, thus
providing complementary results.

6.6 Comparison with Dark Matter direct de-

tection searches

Simplified models results can be reinterpreted in terms of DM-nucleon
scattering cross section as function of DM mass in order to compare with
non-collider direct detection searches. The inverse procedure, interpreting
non collider results in the simplified model framework, requires a set of
assumptions and it is typically more complicated. For example the relic
density predicted by the simplified models depends on the specific point of
the (mχ ,Mmed ) plane, whereas non-collider results assume that DM density
saturates the cosmological density thus allowing only one type of DM.
It should be noted that, while non-collider results can be valid for different
DM models, this assumption does not hold for simplified models, since only
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the specific mediator and couplings choice can be excluded.
As direct detection experiments distinguish between spin-dependent (SD)
and spin-independent (SI) results, it is possible to translate vector and scalar
mediators for the first case and axial-vector mediator for the second one [79].
In particular, for SD results it is necessary to distinguish between DM-proton
and DM-neutron scattering cross section because DM scatters with the spin
of the isotope which is approximately due to an unpaired neutron or proton.
The SI cross section can be written in the form

σSI =
f 2(gq )gχ

2µ2
nχ

πMmed
4

, (6.1)

where µnχ = mnmχ /(mn + mχ ) is the DM-nucleon reduced mass with
mn ' 0.939 GeV the nucleon mass and f(gq ) is the mediator-nucleon coupling,
which for a vector mediator is

f(gq ) = 3gq , (6.2)

and hence

σSI ' 6.9× 10−41 cm2 ·
(gq gχ

0.25

)2
(

1 TeV

Mmed

)4 ( µnχ
1 GeV

)2

. (6.3)

For the axial-vector mediator, the SD cross sections is

σSD =
3f 2(gq )gχ

2µ2
nχ

πMmed
4

. (6.4)

The term fp,n(gq ) is different for protons and neutrons and can be w

fp,n(gq ) = ∆(p,n)
u gu + ∆

(p,n)
d gd + ∆(p,n)

s gs , (6.5)

where ∆
(p)
u = ∆

(n)
d = 0.84, ∆

(p)
d = ∆

(n)
u = −0.43 and ∆s = −0.09 are the

values recommended by the Particle Data Group [4].
Assuming that the coupling gq is the same all quarks, one obtains

f(gq ) = 0.32gq , (6.6)

and thus

σSD ' 2.4× 10−42 cm2 ·
(gq gχ

0.25

)2
(

1 TeV

Mmed

)4 ( µnχ
1 GeV

)2

. (6.7)

This result is valid for both DM-neutron and DM-proton scattering.
These procedures have been applied to monophoton and di-jet searches
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providing the results shown in Figure 6.15 and 6.16 respectively for SD and
SI cases. For direct detection with SD DM-nucleon cross sections 95% limits
are both inferred for the DM-neutron (Figure 6.15a) and DM-proton (Figure
6.15b) cross section. The results show the complementarity of LHC searches
in the low DM mass region corresponding to mχ < 10,GeV , where the very
low energy exchanged during the collisions with the nuclei can not be detected
from direct direction experiments.
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(a) Axial-vector mediator

(b) Vector mediator

Figure 6.14: Excluded region at 95% CL in the (mχ ,Mmed ) in the axial-vector
(a) and vector (b) mediator scenarios in the monojet, monophoton
and di-jet combination results. The choice of couplings corresponds
to gq = 0.25, gχ = 1 and gl = 0. The dashed curve denotes the
points in the plane for which Ωχh

2 = 0.12. The dotted line delimits
the on-shell and off-shell regions of the plane. For the axial-vector
mediator, the shaded regions are excluded due to perturbativity
unitarity [81].
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(a) DM-neutron cross section

(b) DM-proton cross section

Figure 6.15: A comparison of the inferred limits to the constraints from direct
detection experiments on the spin-dependent DM-nucleon scattering
cross section in the context of the simplified model with axial-vector
couplings [81]. The choice of couplings corresponds to gq = 0.25,
gχ = 1 and gl = 0. LHC limits are shown at 95% CL and direct
detection limit at 90%. For DM-neutron cross section limits (a)
collider results are compared with LUX experiment [82, 83] while for
DM-proton cross section limits PICO-60 [84] results are reported.
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Figure 6.16: A comparison of the inferred limits to the constraints from direct
detection experiments on the spin-independent DM-nucleon scat-
tering cross section in the context of the simplified model with
axial-vector couplings [81]. The choice of couplings corresponds to
gq = 0.25, gχ = 1 and gl = 0. LHC limits are shown at 95% CL
and direct detection limit at 90%. Collider results are compared
with LUX [82, 83] and PandaX [85] experiments.



Conclusions

Many theoretical models, such as SUSY, DM, Extra dimensions have been
developed in order to provide an extension to the Standard Model framework,
which, despite the plethora of experimental successes, can not be considered
as a finite theory of Particle Physics. Henceforth Beyond Standard Model
Physics represents one of the most challenging goal in the LHC programme
where the large energies reached in proton-proton collisions can offer the
possibility to discover new particles.
Most of BSM candidates predicted by theory are neutral non interacting
particles leading to a peculiar signature with missing transverse momentum
Emiss

T . This thesis work describes a search for these particles produced in
association with jets with a particular focus on signatures involving bottom
quarks.
In Run-2 DM analyses simplified models are the paradigma adopted at LHC.
Dark Matter pair production occurs via a massive mediator (scalar, pseu-
doscalar, vector, axial-vector) who couples with non vanishing coupling with
SM and DM particles. Several Dark Matter benchmark models have been
produced, which cover a wide range of phenomenology, allowing to probe all
the phase space and maximise possibilities for early discovery of DM with
the upcoming data. As mediators of the scalar and pseudoscalar types are
expected to have Yukawa-like couplings to the SM quarks, the final state of
Emiss
T with heavy flavour quarks (b or t) represents an important signature

to probe at hadronic colliders. The bb̄ + Emiss
T final state is theoretically

motivated by scenarios in which a spin-0 mediator couples to down generation
quarks. These studies allow a complementary search to the tt̄+ DM models.
The channel is also interpreted in light of the bottom-Flavoured Dark Matter
model (b-FDM). This model has been proposed for explaining the excess
of gamma rays from the galactic centre, observed by the Fermi Gamma-ray
Space Telescope and interpreted as a signal for annihilating DM which favors
couplings to third generation quarks via Yukawa couplings.
The analysis is based on the full dataset of 36.1 fb−1 collected at

√
s= 13

TeV. Results are expressed in terms of limits on the production cross-section
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of scalar and pseudoscalar mediators decaying into DM particles. Upper
limits on the signal strength have been obtained as function of the mediator
mass. A new fitting procedure has been introduced, which exploits the shape
information of the most relevant discriminating variable cosθ∗ (the cosine
of the bjets system opening angle), thus providing better sensitivity with
respect to the approach adopted in [67]. An overall improvement has been
achieved in all mediator masses studied, with the best limit obtained for a
signal with mχ = 1 GeV and Mmed = 50 GeV with couplings gq = gχ = 1
where expected results have been improved by a factor 5 with respect to the
observed results corresponding to 13.3fb−1 .
Finally an overview of the latest results of DM searches has been illustrated:
mono-X signatures (final states tagging a SM particle and Emiss

T ) are com-
pared with di-jet searches. A particular emphasis has been dedicated to the
interpretation of LHC results in terms of DM-nucleon scattering cross section
to have a direct comparison with non-collider searches.



Appendix A

Systematics breakdown

The breakdown of the systematics for all backgrounds in each CRB, VRB
and SRB bin are shown in Tables A.1-A.4

The breakdown of the systematics for all backgrounds in each SRBFH bin
and CRZBFH are shown in Tables A.5-A.6
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Uncertainty of channel CRTB

Total background expectation 129.19

Total statistical (
√
Nexp) ±11.37

Total background systematic ±11.36 [8.79%]

mu ttbar ±17.87 [13.8%]
alpha JER ±7.71 [6.0%]
alpha METSoftTrkResoPara ±5.59 [4.3%]
gamma stat CRTB cuts bin 0 ±5.28 [4.1%]
alpha jesNP1 ±4.21 [3.3%]
alpha FTEFFB ±4.15 [3.2%]
alpha EGRES ±3.13 [2.4%]
alpha stRad ±3.11 [2.4%]
alpha Stxsec ±2.45 [1.9%]
alpha jesNP3 ±1.71 [1.3%]
alpha WjetsTHSyst3 ±1.57 [1.2%]
alpha FTEFFC ±0.97 [0.75%]
alpha jesNP2 ±0.84 [0.65%]
alpha FTEFFextrap ±0.78 [0.60%]
alpha FTEFFLight ±0.44 [0.34%]
alpha METSoftTrkScale ±0.39 [0.30%]
alpha METSoftTrkResoPerp ±0.37 [0.29%]
alpha MUONSSCALE1 ±0.35 [0.27%]
alpha Wjetxsec ±0.35 [0.27%]
alpha WjetsTHSyst1 ±0.28 [0.22%]
alpha PRWDATASF ±0.25 [0.20%]
alpha WjetsTHSyst4 ±0.23 [0.18%]
alpha WjetsTHSyst2 ±0.21 [0.16%]
alpha MUONEFFTrigSyst ±0.15 [0.12%]
alpha JvtEff ±0.15 [0.12%]
alpha MUONEFFTrigStat ±0.10 [0.08%]
alpha ELEFFID ±0.09 [0.07%]
alpha MUONEFFSYS1 ±0.05 [0.04%]
mu Z ±0.04 [0.03%]
alpha ELEFFTrigger ±0.04 [0.03%]
alpha JETEtaNonClosure ±0.03 [0.03%]
alpha ELEFFIso ±0.03 [0.02%]
alpha ZjTHren ±0.02 [0.02%]
alpha ZjTHckkw ±0.02 [0.01%]
alpha MUONEFFSTAT ±0.01 [0.01%]
alpha ELEFFReco ±0.01 [0.01%]
alpha EGSCALE ±0.01 [0.01%]
alpha MUONISOSYS1 ±0.01 [0.01%]
alpha ZjTHqsf ±0.01 [0.01%]
alpha ZjTHfac ±0.01 [0.00%]
alpha MUONISOSTAT ±0.00 [0.00%]
gamma stat SRB bin1 cuts bin 0 ±0.00 [0.00%]
gamma stat SRB bin3 cuts bin 0 ±0.00 [0.00%]
gamma stat VRB2 cuts bin 0 ±0.00 [0.00%]
alpha VVTheory ±0.00 [0.00%]
alpha MUONEFFSYSLOWPT ±0.00 [0.00%]
alpha topRad ±0.00 [0.00%]
gamma stat CRZB cuts bin 0 ±0.00 [0.00%]
alpha ttbarGen ±0.00 [0.00%]
alpha ELEFFTriggerEff ±0.00 [0.00%]
alpha FTEFFextrapC ±0.00 [0.00%]
gamma stat SRB bin0 cuts bin 0 ±0.00 [0.00%]
alpha MUONEFFSTATLOWPT ±0.00 [0.00%]
gamma stat SRB bin2 cuts bin 0 ±0.00 [0.00%]

Table A.1: Breakdown of the dominant systematic uncertainties on background
estimates in the various signal regions. Note that the individual uncer-
tainties can be correlated, and do not necessarily add up quadratically
to the total background uncertainty. The percentages show the size
of the uncertainty relative to the total expected background.
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Uncertainty of channel CRZB

Total background expectation 160.93

Total statistical (
√
Nexp) ±12.69

Total background systematic ±12.66 [7.87%]

mu Z ±32.85 [20.4%]
alpha ZjTHren ±26.08 [16.2%]
alpha ZjTHqsf ±8.75 [5.4%]
alpha ZjTHckkw ±8.61 [5.3%]
alpha METSoftTrkResoPara ±6.02 [3.7%]
alpha ZjTHfac ±4.38 [2.7%]
gamma stat CRZB cuts bin 0 ±4.34 [2.7%]
mu ttbar ±2.09 [1.3%]
alpha PRWDATASF ±1.08 [0.67%]
alpha jesNP1 ±0.77 [0.48%]
alpha METSoftTrkResoPerp ±0.74 [0.46%]
alpha JER ±0.69 [0.43%]
alpha stRad ±0.59 [0.37%]
alpha JETEtaNonClosure ±0.36 [0.23%]
alpha FTEFFC ±0.21 [0.13%]
alpha jesNP3 ±0.21 [0.13%]
alpha FTEFFextrap ±0.16 [0.10%]
alpha Stxsec ±0.12 [0.07%]
alpha METSoftTrkScale ±0.12 [0.07%]
alpha EGRES ±0.11 [0.07%]
alpha jesNP2 ±0.07 [0.04%]
alpha ELEFFID ±0.07 [0.04%]
alpha MUONEFFSYS1 ±0.06 [0.04%]
alpha FTEFFB ±0.05 [0.03%]
alpha MUONEFFSTAT ±0.02 [0.01%]
alpha MUONISOSYS1 ±0.02 [0.01%]
alpha ELEFFIso ±0.02 [0.01%]
alpha MUONEFFTrigSyst ±0.01 [0.01%]
alpha MUONSSCALE1 ±0.01 [0.01%]
alpha ELEFFReco ±0.01 [0.01%]
alpha MUONEFFTrigStat ±0.01 [0.01%]
alpha EGSCALE ±0.01 [0.00%]
alpha JvtEff ±0.00 [0.00%]
alpha ELEFFTrigger ±0.00 [0.00%]
alpha MUONISOSTAT ±0.00 [0.00%]
alpha FTEFFLight ±0.00 [0.00%]
gamma stat SRB bin1 cuts bin 0 ±0.00 [0.00%]
gamma stat SRB bin3 cuts bin 0 ±0.00 [0.00%]
alpha WjetsTHSyst1 ±0.00 [0.00%]
gamma stat VRB2 cuts bin 0 ±0.00 [0.00%]
gamma stat CRTB cuts bin 0 ±0.00 [0.00%]
alpha VVTheory ±0.00 [0.00%]
alpha MUONEFFSYSLOWPT ±0.00 [0.00%]
alpha topRad ±0.00 [0.00%]
alpha Wjetxsec ±0.00 [0.00%]
alpha ttbarGen ±0.00 [0.00%]
alpha ELEFFTriggerEff ±0.00 [0.00%]
alpha FTEFFextrapC ±0.00 [0.00%]
alpha WjetsTHSyst2 ±0.00 [0.00%]
gamma stat SRB bin0 cuts bin 0 ±0.00 [0.00%]
alpha MUONEFFSTATLOWPT ±0.00 [0.00%]
alpha WjetsTHSyst4 ±0.00 [0.00%]
alpha WjetsTHSyst3 ±0.00 [0.00%]
gamma stat SRB bin2 cuts bin 0 ±0.00 [0.00%]

Table A.2: Breakdown of the dominant systematic uncertainties on background
estimates in the various signal regions. Note that the individual uncer-
tainties can be correlated, and do not necessarily add up quadratically
to the total background uncertainty. The percentages show the size
of the uncertainty relative to the total expected background.
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Uncertainty of channel VRB2

Total background expectation 179.51

Total statistical (
√
Nexp) ±13.40

Total background systematic ±20.35 [11.33%]

mu Z ±22.78 [12.7%]
alpha ZjTHren ±19.47 [10.8%]
alpha EGRES ±9.79 [5.5%]
alpha FTEFFC ±9.34 [5.2%]
alpha ZjTHckkw ±7.58 [4.2%]
alpha METSoftTrkResoPerp ±6.53 [3.6%]
mu ttbar ±6.49 [3.6%]
gamma stat VRB2 cuts bin 0 ±6.35 [3.5%]
alpha METSoftTrkResoPara ±6.27 [3.5%]
alpha ZjTHqsf ±6.06 [3.4%]
alpha WjetsTHSyst3 ±4.06 [2.3%]
alpha jesNP3 ±3.55 [2.0%]
alpha FTEFFB ±2.68 [1.5%]
alpha Stxsec ±2.05 [1.1%]
alpha ZjTHfac ±2.02 [1.1%]
alpha JETEtaNonClosure ±1.70 [0.95%]
alpha MUONSSCALE1 ±1.51 [0.84%]
alpha EGSCALE ±1.34 [0.75%]
alpha jesNP2 ±1.32 [0.73%]
alpha PRWDATASF ±1.14 [0.64%]
alpha MUONEFFSYS1 ±1.11 [0.62%]
alpha ELEFFID ±1.09 [0.61%]
alpha jesNP1 ±1.04 [0.58%]
alpha WjetsTHSyst1 ±1.03 [0.58%]
alpha Wjetxsec ±0.95 [0.53%]
alpha WjetsTHSyst4 ±0.74 [0.41%]
alpha WjetsTHSyst2 ±0.59 [0.33%]
alpha METSoftTrkScale ±0.59 [0.33%]
alpha FTEFFLight ±0.56 [0.31%]
alpha FTEFFextrap ±0.40 [0.22%]
alpha ELEFFIso ±0.38 [0.21%]
alpha MUONEFFTrigSyst ±0.34 [0.19%]
alpha MUONISOSYS1 ±0.26 [0.14%]
alpha MUONEFFSTAT ±0.24 [0.13%]
alpha MUONEFFTrigStat ±0.23 [0.13%]
alpha stRad ±0.22 [0.12%]
alpha ELEFFReco ±0.21 [0.12%]
alpha ELEFFTrigger ±0.12 [0.07%]
alpha JvtEff ±0.12 [0.07%]
alpha JER ±0.06 [0.03%]
alpha MUONISOSTAT ±0.03 [0.01%]
gamma stat SRB bin1 cuts bin 0 ±0.00 [0.00%]
gamma stat SRB bin3 cuts bin 0 ±0.00 [0.00%]
gamma stat CRTB cuts bin 0 ±0.00 [0.00%]
alpha VVTheory ±0.00 [0.00%]
alpha MUONEFFSYSLOWPT ±0.00 [0.00%]
alpha topRad ±0.00 [0.00%]
gamma stat CRZB cuts bin 0 ±0.00 [0.00%]
alpha ttbarGen ±0.00 [0.00%]
alpha ELEFFTriggerEff ±0.00 [0.00%]
alpha FTEFFextrapC ±0.00 [0.00%]
gamma stat SRB bin0 cuts bin 0 ±0.00 [0.00%]
alpha MUONEFFSTATLOWPT ±0.00 [0.00%]
gamma stat SRB bin2 cuts bin 0 ±0.00 [0.00%]

Table A.3: Breakdown of the dominant systematic uncertainties on background
estimates in the various signal regions. Note that the individual uncer-
tainties can be correlated, and do not necessarily add up quadratically
to the total background uncertainty. The percentages show the size
of the uncertainty relative to the total expected background.
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Uncertainty of channel SRB bin0 SRB bin1 SRB bin2 SRB bin3

Total background expectation 77.28 71.79 75.61 66.35

Total statistical (
√
Nexp) ±8.79 ±8.47 ±8.70 ±8.15

Total background systematic ±12.81 [16.57%] ±11.34 [15.80%] ±12.70 [16.80%] ±9.18 [13.84%]

mu Z ±8.83 [11.4%] ±9.89 [13.8%] ±11.89 [15.7%] ±12.39 [18.7%]
alpha jesNP1 ±6.90 [8.9%] ±7.10 [9.9%] ±6.54 [8.6%] ±3.29 [5.0%]
alpha ZjTHren ±4.82 [6.2%] ±5.84 [8.1%] ±6.85 [9.1%] ±6.27 [9.4%]
alpha ttbarGen ±4.62 [6.0%] ±2.49 [3.5%] ±3.10 [4.1%] ±1.60 [2.4%]
alpha FTEFFC ±4.37 [5.7%] ±1.70 [2.4%] ±0.02 [0.03%] ±0.17 [0.26%]
gamma stat SRB ±4.36 [5.6%] ±3.47 [4.8%] ±4.24 [5.6%] ±4.24[6.4%]
alpha JER ±3.36 [4.3%] ±3.38 [4.7%] ±5.20 [6.9%] ±0.86 [1.3%]
mu ttbar ±3.27 [4.2%] ±2.55 [3.6%] ±2.59 [3.4%] ±1.28 [1.9%]
alpha MUONSSCALE1 ±3.04 [3.9%] ±0.01 [0.01%] ±0.02 [0.03%] ±0.03 [0.05%]
alpha METSoftTrkResoPara ±3.02 [3.9%] ±1.08 [1.5%] ±1.58 [2.1%] ±1.93 [2.9%]
alpha FTEFFB ±2.91 [3.8%] ±2.36 [3.3%] ±2.25 [3.0%] ±1.62 [2.4%]
alpha ZjTHckkw ±2.59 [3.4%] ±2.81 [3.9%] ±3.22 [4.3%] ±3.52 [5.3%]
alpha ZjTHqsf ±2.51 [3.2%] ±2.81 [3.9%] ±3.48 [4.6%] ±3.69 [5.6%]
alpha EGRES ±2.46 [3.2%] ±1.65 [2.3%] ±1.22 [1.6%] ±0.51 [0.77%]
alpha METSoftTrkResoPerp ±2.07 [2.7%] ±3.05 [4.3%] ±4.53 [6.0%] ±2.22 [3.3%]
alpha Stxsec ±1.46 [1.9%] ±1.01 [1.4%] ±0.55 [0.72%] ±0.26 [0.39%]
alpha stRad ±1.21 [1.6%] ±0.36 [0.50%] ±0.59 [0.78%] ±1.42 [2.1%]
alpha jesNP3 ±1.17 [1.5%] ±2.13 [3.0%] ±0.08 [0.10%] ±0.69 [1.0%]
alpha topRad ±1.07 [1.4%] ±1.11 [1.5%] ±1.83 [2.4%] ±1.53 [2.3%]
alpha WjetsTHSyst3 ±0.93 [1.2%] ±0.58 [0.80%] ±0.48 [0.63%] ±0.22 [0.33%]
alpha ZjTHfac ±0.78 [1.0%] ±0.88 [1.2%] ±1.06 [1.4%] ±1.10 [1.7%]
alpha PRWDATASF ±0.57 [0.74%] ±0.28 [0.39%] ±0.07 [0.10%] ±0.95 [1.4%]
alpha METSoftTrkScale ±0.50 [0.65%] ±0.28 [0.39%] ±0.46 [0.61%] ±0.28 [0.42%]
alpha MUONEFFSYS1 ±0.45 [0.58%] ±0.47 [0.66%] ±0.56 [0.74%] ±0.55 [0.83%]
alpha ELEFFID ±0.44 [0.57%] ±0.47 [0.65%] ±0.55 [0.73%] ±0.53 [0.81%]
alpha EGSCALE ±0.43 [0.55%] ±0.47 [0.65%] ±0.62 [0.82%] ±0.68 [1.0%]
alpha FTEFFextrap ±0.33 [0.42%] ±0.39 [0.54%] ±0.18 [0.23%] ±0.07 [0.11%]
alpha Wjetxsec ±0.24 [0.32%] ±0.16 [0.23%] ±0.14 [0.18%] ±0.05 [0.07%]
alpha WjetsTHSyst4 ±0.21 [0.28%] ±0.13 [0.18%] ±0.12 [0.16%] ±0.03 [0.05%]
alpha WjetsTHSyst1 ±0.20 [0.26%] ±0.14 [0.19%] ±0.14 [0.19%] ±0.03 [0.04%]
alpha ELEFFIso ±0.16 [0.20%] ±0.16 [0.23%] ±0.19 [0.25%] ±0.19 [0.28%]
alpha WjetsTHSyst2 ±0.15 [0.20%] ±0.11 [0.15%] ±0.09 [0.11%] ±0.03 [0.05%]
alpha VVTheory ±0.15 [0.19%] ±0.03 [0.04%] ±0.00 [0.00%] ±0.14 [0.21%]
alpha MUONEFFTrigSyst ±0.15 [0.19%] ±0.14 [0.20%] ±0.16 [0.21%] ±0.13 [0.20%]
alpha JvtEff ±0.11 [0.14%] ±0.07 [0.10%] ±0.08 [0.11%] ±0.03 [0.05%]
alpha MUONISOSYS1 ±0.10 [0.13%] ±0.11 [0.15%] ±0.13 [0.17%] ±0.13 [0.19%]
alpha MUONEFFTrigStat ±0.10 [0.13%] ±0.09 [0.13%] ±0.11 [0.14%] ±0.09 [0.14%]
alpha MUONEFFSTAT ±0.10 [0.13%] ±0.10 [0.14%] ±0.12 [0.16%] ±0.12 [0.18%]
alpha FTEFFLight ±0.09 [0.11%] ±0.02 [0.03%] ±0.11 [0.14%] ±0.21 [0.32%]
alpha ELEFFReco ±0.08 [0.11%] ±0.09 [0.12%] ±0.10 [0.14%] ±0.10 [0.15%]
alpha JETEtaNonClosure ±0.07 [0.09%] ±0.64 [0.90%] ±0.22 [0.29%] ±0.09 [0.14%]
alpha ELEFFTrigger ±0.05 [0.07%] ±0.05 [0.07%] ±0.06 [0.08%] ±0.06 [0.08%]
alpha jesNP2 ±0.03 [0.03%] ±0.87 [1.2%] ±0.60 [0.80%] ±0.44 [0.66%]
alpha MUONISOSTAT ±0.01 [0.01%] ±0.01 [0.02%] ±0.01 [0.02%] ±0.01 [0.02%]
alpha MUONEFFSYSLOWPT ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha ELEFFTriggerEff ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha FTEFFextrapC ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]
alpha MUONEFFSTATLOWPT ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%] ±0.00 [0.00%]

Table A.4: Breakdown of the dominant systematic uncertainties on background
estimates in the various signal regions. Note that the individual uncer-
tainties can be correlated, and do not necessarily add up quadratically
to the total background uncertainty. The percentages show the size
of the uncertainty relative to the total expected background.
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Uncertainty of channel CRZBFH

Total background expectation 53.97

Total statistical (
√
Nexp) ±7.35

Total background systematic ±7.34 [13.59%]

mu Z ±7.71 [14.3%]
gamma stat CRZBFH cuts bin 0 ±2.05 [3.8%]
alpha ZjetsTHSyst3 ±0.52 [0.97%]
alpha jesNP2 ±0.47 [0.88%]
alpha PRWDATASF ±0.47 [0.87%]
alpha jesNP1 ±0.45 [0.83%]
alpha ZjetsTHSyst1 ±0.37 [0.68%]
alpha ttbarGen ±0.35 [0.66%]
alpha METSoftTrkResoPara ±0.29 [0.54%]
alpha jesNP3 ±0.26 [0.48%]
alpha JER ±0.24 [0.44%]
alpha ZjetsTHSyst4 ±0.16 [0.29%]
alpha ELEFFID ±0.15 [0.27%]
alpha ZjetsTHSyst2 ±0.14 [0.25%]
alpha FTEFFC ±0.10 [0.18%]
alpha FTEFFLight ±0.09 [0.16%]
alpha METSoftTrkScale ±0.07 [0.13%]
alpha FTEFFB ±0.06 [0.11%]
alpha Wtxsec ±0.03 [0.05%]
alpha WjetsTHSyst3 ±0.00 [0.01%]
alpha Wjetxsec ±0.00 [0.00%]
alpha WjetsTHSyst2 ±0.00 [0.00%]
alpha WjetsTHSyst1 ±0.00 [0.00%]
alpha WjetsTHSyst4 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 5 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 7 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 6 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 3 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 2 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 9 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 8 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 11 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 10 ±0.00 [0.00%]
alpha WtTheory ±0.00 [0.00%]
alpha VVTheory ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 4 ±0.00 [0.00%]
alpha ttTheory ±0.00 [0.00%]
gamma stat SRBFH cuts bin 0 ±0.00 [0.00%]

Table A.5: Breakdown of the dominant systematic uncertainties on background
estimates in the various signal regions. Note that the individual uncer-
tainties can be correlated, and do not necessarily add up quadratically
to the total background uncertainty. The percentages show the size
of the uncertainty relative to the total expected background.
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Uncertainty of channel SRBFH

Total background expectation 10.89

Total statistical (
√
Nexp) ±3.30

Total background systematic ±2.31 [21.22%]

mu Z ±1.42 [13.0%]
gamma stat SRBFH cuts bin 0 ±0.93 [8.6%]
alpha jesNP1 ±0.82 [7.6%]
alpha ZjetsTHSyst3 ±0.53 [4.8%]
alpha jesNP2 ±0.51 [4.7%]
alpha JER ±0.39 [3.5%]
alpha ZjetsTHSyst1 ±0.37 [3.4%]
alpha ttbarGen ±0.35 [3.3%]
alpha jesNP3 ±0.25 [2.3%]
alpha PRWDATASF ±0.23 [2.1%]
alpha METSoftTrkResoPara ±0.21 [2.0%]
alpha ZjetsTHSyst4 ±0.16 [1.4%]
alpha VVTheory ±0.14 [1.3%]
alpha ZjetsTHSyst2 ±0.14 [1.3%]
alpha ELEFFID ±0.12 [1.1%]
alpha ttTheory ±0.11 [0.98%]
alpha WjetsTHSyst3 ±0.10 [0.96%]
alpha METSoftTrkScale ±0.05 [0.43%]
alpha FTEFFLight ±0.04 [0.39%]
alpha FTEFFC ±0.04 [0.38%]
alpha WjetsTHSyst1 ±0.03 [0.23%]
alpha Wjetxsec ±0.02 [0.21%]
alpha WjetsTHSyst2 ±0.02 [0.17%]
alpha FTEFFB ±0.01 [0.05%]
alpha WjetsTHSyst4 ±0.00 [0.04%]
alpha WtTheory ±0.00 [0.00%]
alpha Wtxsec ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 5 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 7 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 6 ±0.00 [0.00%]
gamma stat CRZBFH cuts bin 0 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 3 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 2 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 9 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 8 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 11 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 10 ±0.00 [0.00%]
gamma stat CRZBFHL MEtNoLep bin 4 ±0.00 [0.00%]

Table A.6: Breakdown of the dominant systematic uncertainties on background
estimates in the various signal regions. Note that the individual uncer-
tainties can be correlated, and do not necessarily add up quadratically
to the total background uncertainty. The percentages show the size
of the uncertainty relative to the total expected background.



Appendix B

Analysis results with 13.3 fb−1

of collected data

The analysis with 13.3 fb−1 data collected in the first phase of Run-2
is briefly described in the following. The signal models studied cover only
s-channel DM production. Further details can be found in [67].
Since signal models are characterized by low Emiss

T spectra, in order to increase
signal selection, a 2-dimensional trigger selection has been adopted. By
exploting the correlation between the Emiss

T and the leading jet pT , it is
possible to perform a combined Emiss

T -pjet1
T cut which increases the fraction

of signal selected, still guaranteeing a fully efficient trigger performance. In
Figure B.1 are shown the map obtained for data for the lowest unprescaled
Emiss

T trigger used in the analysis.
The best performance was obtained by a hyperbolic requirement according

to the formula in Eq B.1:

pjet1
T > 85GeV and Emiss

T >

(
150 · pjet1

T − 11700

pjet1
T − 85

)
GeV . (B.1)

The gain on the signal yield obtained with this method are ∼ 20% with
respect to a simple Emiss

T cut.
The low statistics available lead to a SR optimised for a cut-and-count analyses,
without using any shape information. The major backgrounds are the same
as described in section 5.4.1. The SR, CRs, and VRs definitions are listed in
table B.1.

The results of the background-only fit are listed in Table B.2, where
each background contribution is shown individually, before and after fit
normalization.
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Figure B.1: Study of the effect of applying a 2D plateau requirements. The
yellow line in (a) and the black lines in (b) and (c) correspond to the
plateau hyperbolic requirement described in Eq B.1.

The observed results for 13.3 fb−1 In the SR are reported in Table B.3 ,
and in Figure B.2 the distribution for imbalance and ∆Rmin in the N-1 form.

As no evidence of excess has been found, upper limits on the cross section
have been derived, as shown in Figure 5.15 in section 5.7.2. In Table B.4
are listed, as a function of the mediator mass, model-dependent cross-section
upper limits, for a DM mass of 1 GeV.
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Quantity SR CRZ1b VRZ2b CRW1b VRW1b CRW2b VRLR

Nlepton (baseline) 0 2 (SFOS) 2 (SFOS) 1 1 1 0
Nlepton (high-purity) 0 2 (SFOS) 2 (SFOS) 1 1 1 0

∆φjmin > 0.4 > 0.4 > 0.4 > 0.4 > 0.4 > 0.4 > 0.4
Njets 2− 3 2− 3 2− 3 2− 3 2− 3 2− 3 2− 3
Nbjets = 2 = 1 = 2 = 1 = 1 = 2 = 2
jet 1 pT [GeV] > 100 > 100 > 85 > 100 > 100 > 100 > 100
jet 2 pT [GeV] > 20 > 20 > 20 > 30 > 30 > 20 > 20
jet 3 pT [GeV] < 60 < 60 < 60 < 60 < 60 < 60 < 60
pT

b-jet1 [GeV] > 50 > 50 > 50 > 50 > 50 > 50 > 50
Emiss

T [GeV] > 150 < 100 < 80 > 130 > 150 > 120 > 150
ET (nolep) [GeV] - > 120 > 100 - - - -
∆Rmin > 2.8 > 2.8 > 2.8 > 2.5 > 2.8 > 2.8 < 2.5
∆η(b1, b2) > 0.5 - - - > 0.5 - > 0.5
Imb(b1, b2) > 0.5 - - - - - > 0.5

mlep
T - - - [30, 100] [30, 100] > 30 -

m`` - [75, 105] [80, 100] - - - -
lepton 1 pT [GeV] - > 30 > 30 > 30 > 30 > 30 -
lepton 2 pT [GeV] - > 25 > 25 - - - -
∆φ(b1, b2) > 2.2 > 2.2 - [1, 2.2] > 2.2 > 2.2 > 2.2

Table B.1: Summary of the selections of the signal, control and validation regions
of the analysis.

CRW1b CRZ1b CRW2b VRW1b VRZ2b VRLR

Observed 96 176 131 121 67 87

Total background 96.0± 9.8 176± 13 131± 11 105± 20 58± 13 98± 18

W+jets 49.2± 7.8 0.01+0.02
−0.01 4.3± 1.8 30.2± 8.3 - 3.4± 1.2

Z+jets 0.6± 0.5 168± 13 0.03+0.04
−0.03 1.0± 0.6 49.7± 11.5 36.7± 9.2

tt̄ 12.8± 2.7 5.8± 1.7 109± 13 26.0± 7.9 7.8± 2.6 47± 14
single top 33.1± 6.0 1.5± 1.0 17.7± 4.0 47± 10 0.52± 0.44 10.7± 3.0

others 0.3+0.4
−0.3 1.2± 0.9 0.03+0.06

−0.03 0.5± 0.3 0.04+0.07
−0.04 0.1± 0.1

pre-fit W+jets 51± 11 0.02+0.02
−0.02 4.4± 1.8 31.3± 8.4 - 3.5± 1.3

pre-fit Z+jets 0.6± 0.4 149± 24 0.03+0.04
−0.03 0.9± 0.5 44± 12 33± 11

pre-fit tt̄ 15.9± 2.5 7.2± 1.9 135.3± 1.6 32.3± 9.1 9.7± 2.9 58± 16
pre-fit single top 34.3± 4.9 1.7± 1.1 18.3± 3.0 48.6± 7.6 0.54± 0.45 11.0± 2.6

pre-fit others 0.3+0.4
−0.3 1.2± 0.9 0.07+0.08

−0.07 0.5± 0.3 0.04+0.07
−0.04 0.1± 0.1

Table B.2: Background-only fit results results in all control and validation regions
for an integrated luminosity of 13.3 fb−1 with yields before and after
fit [67].



APPENDIX B. ANALYSIS RESULTSWITH 13.3FB−1 OF COLLECTEDDATA159

SR

Observed 33

Total background 31.0± 6.2

W+jets 1.2± 0.8
Z+jets 22.6± 5.7
tt̄ 4.7± 1.4
single top 2.6± 1.1
others -

pre-fit W+jets 1.2± 0.8
pre-fit Z+jets 20.1± 6.0
pre-fit tt̄ 5.8± 1.5
pre-fit single top 2.7± 1.1
pre-fit others -

Table B.3: Fit results in the SR for an integrated luminosity of 13.3 fb−1 with
yields before and after fit [67].
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Figure B.2: Transverse momentum imbalance (a) and ∆Rmin (b) in SR with all
selection criteria applied except the one on the distribution shown.
The requirement in each case is indicated by the arrow. The SM
backgrounds are normalised to the fit results. The shaded band
includes statistical uncertainties, as well as detector-related and
theoretical systematic uncertainties [67].
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mΦ(a) [GeV ] σUL [pb]
Scalar Pseudoscalar

10 6366 897
20 510 574
50 569 213
100 110 222
200 52 76
500 29 48
1000 9.3 -

Table B.4: Model-dependent cross-section upper limits for scalar and pseudoscalar
DM mediators as a function of the mediator mass. A DM mass of
1 GeV is assumed [67].
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