
TESI DI DOTTORATO
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Introduction

T he Linked Open Data (LOD) paradigm is gaining increasing attention
in recent years. The term Linked Data is a set of best practices for

publishing and connecting structured data on Web whereas the term Open Data
refers to data accessible to everyone. The main reasons for the growing interest
in the LOD are essentially two.

First, the LOD fits into a broader trend in which the content of the docu-
ments is no longer primarily human-readable but it is also machine-readable.
This shift in perspective is the basic principle of the Semantic Web. The LOD
is designed as a tool conceiving the Web as a data container that can be pro-
cessed directly or indirectly by machines. The W3C is very active on the this
topic and it published a series of standards and committed several groups on
related topics.

Secondly, LOD receives a big boost to the its affirmation by Governments
of many major countries. The Obama administration enacted a directive in
December 2009 regarding Open Government that imposed to the agencies the
publication of information in a format that is ”open” and ”independent” from
the platform. In Europe, the British Government was the precursor in publis-
hing their data as Linked Data. The European Community issued directives
that go in the same direction and also invested in LOD by funding projects
under the 7th Framework Programme (i.e. the project LOD2).

The potential and the benefits of the LOD model are numerous, such as:
the dissemination of ”collective” knowledge resulting from the combination
of several data sources; the extraction of new knowledge and identification
of regularities emerging from the analysis of large amounts of data; the use
of data for the creation of new economic activities; greater transparency and
participation of public policies.

This broadening of perspective in way of accessing information on the Web
is often referenced as Semantic Web. The possibility of using complex tools
to navigate, correlate, analyze and synthesize vast amounts of data opens very

xiii



xiv Introduction

interesting perspectives both economically and scientifically.
After overcoming the legislative constraints regarding the licensing, the

use and the ownership of the data, it is reasonable to assume the prolifera-
tion of new applications and new services that are able to take advantage of
this huge quantity of information. In fact, the size of the LOD phenomenon
is considerable, we are talking about hundreds of millions of information pu-
blished in the form of ”concepts” and of billions of connections between these
concepts.

On the other hand, from the scientific perspective were observed some
limitations of traditional and well-known technologies, such as relational da-
tabases, relative to exploitation of data shared with the model LOD and this
therefore opened several interesting theoretical and technological problems.

Big data is a term for data sets that are so large or complex that traditi-
onal data processing software application are inadequate to deal with them.
Basically the main features of Big Data, can be summarized in five ”V”:

• Volume: ability to capture, store, and access large volumes of data;

• Velocity: ability to perform data analysis in real time or near;

• Variety: refers to different types of data from different sources (structu-
red and unstructured);

• Variability: Inconsistency of the data set can hamper processes to handle
and manage it;

• Veracity: The quality of captured data can vary greatly, affecting accu-
rate analysis.

In the context of business analytics new models of representation that can
handle large amount of data with parallel processing databases have emerged.
Architectures of distributed processing of large data sets were offered by Goo-
gle’s MapReduce and Apache’s Hadoop. With these frameworks, the elabora-
tion is distributed over several nodes and then it run in parallel (map phase).
Then, the results are collected and returned (reduce phase).

There are a number of open challenges related to LOD and Big Data, for
example, their characteristics make ineffective and inefficient the use of tradi-
tional RDBMS. In fact, these datasets potentially embrace the entire Web and
can be provided by various publishers around the world [5]; they are typically
based on some well-known vocabularies such as: Dublin Core, FOAF, SIOC,
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etc. but they can use also other domain-specific vocabularies [6]; other than the
traditional database queries also Information Retrieval and Ranking capabili-
ties are needed with different levels of granularity [7], such as document-based
or entity-based search/retrieval capabilities [8]; being predominantly read-only
transactions, ACID properties (Atomicity, Consistency, Isolation, and Durabi-
lity) are not required and this leads to a significant simplification for LOD
and Big Data management and consequently to a general improvement of per-
formance [9]. From the foregoing considerations arise actual limitations of
RDBMS and then the operators are moving towards the use of systems with
high scalability and NoSQL solutions.

First of all, the discovery and exploration of the datasets and therefore
the need to index properly resources is certainly the most problematic step
already partially addressed in the scientific community of LOD. There are a
few browsers and search engines developed for the Linked Open Data, such
as: SWSE [10], Falcons [11] and providing search capabilities based on ke-
ywords; Disco, Sig.ma, Visinav, Tabulator, Watson, Marbles [12] to navigate
the Semantic Web as a set of sources not linked to each other and explore the
resources identified in each dataset (in various formats, including Resource
Description Framework and Microformats); Another crucial aspect is the iden-
tification of common entities in separate datasets; in fact, in addition to using
the link ”explicit” as relations ”SameAs” by OWL, some approaches for au-
tomatic discovery of links ”sure” or ”approximated” between entities that are
conceptually identical or similar have been proposed.

One of the greatest benefits resulting of adoption of the paradigm LOD is
the possibility of making automatic reasoning combining data sources. This
opens entirely new scenarios which brings enormous opportunities for the de-
velopment of innovative services and on the other hand opens a series of que-
stions about querying and reasoning.

From the conception of the LOD as a set of Resource Description Frame-
work RDF documents or as a set of RDF triples-each different approaches to
querying and reasoning follow. In any case, it is necessary to consider some
compromises (i.e. expressiveness vs. performance) when you design a system
that provides functionality for querying and reasoning about LOD.

In the first part of the dissertation, the focus is on the concept of index and
on the main features that a semantic index for LOD and Big Data applications
should have. It illustrates the explanation of the choice of k-d tree as base data
structure for the proposed index. The meaning of the term semantic in this
context is specified and the approach to text indexing is presented. It introduces
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the semantic similarity measures and explains how to build a metric space after
the extraction of a set of concept from the text. This part illustrates the concept
of mapping between metric space and vector space, analyze its properties and
presents a couple of well-known mapping algorithms. The resulting vector
space populates a k-d tree and a description of the execution of a semantic
query with this k-d tree follows. Finally, a non-trivial example based on such
k-d tree is presented. The first part ends with the analysis of the drawbacks
following the application of a naive approach in the distribution of a k-d tree
over a network.

The second part of this work starts from the these drawbacks and proposes
an approach that solves them. This part and the following are the main contri-
bution of this dissertation. For the sake of simplicity, it considers a simplified
version of k-d trees, i.e. binary trees, and proofs two properties of binary tree
that allows a novel approach in query processing. In this novel approach, a
query starts in a randomly chosen node s of the tree and ends as soon as possi-
ble in a node n and, with very high probability, neither s nor n are the root of
the tree. Because the root of the tree is the bottleneck of a naive distributed k-d
tree then this approach in query processing solves this drawback. This section
analyzes a number of variants of the proposed approach and made a compari-
son among them on order to choose the best tradeoff. This part also formally
describes all algorithms implementing the proposal and shows their efficiency
in terms of time complexity.

The following part of the dissertation addresses the problem of the alloca-
tion of the nodes of the tree over the network peers. It is noted that, in order to
ensure the efficiency of the algorithms not only the k-d tree must be a balanced
tree but also the peers of the network must form a balanced tree. This part
proposes an allocation strategy that ensures this balance.

The remaining part of the work extends of the previous results to k-d trees.
It provides the proofs of the two basic properties for k-d trees and formally
describes the search algorithms as in previous section.

The outline of the dissertation is the following:

Chapter 1 presents the general background theory. The concept of in-
dex is introduced and the requirements of a semantic index for LOD e Big
Data are described. Furthermore, this chapter introduces our approach to
indexing the text and presents a non-trivial example of the usage of a semantic
index. The chapter ends with a discussion about a naive approach in the
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distribution of the k-d tree over a network and shows the main drawbacks of
this solution.

Chapter 2 moves the first step toward the creation of a distributed ver-
sion of k-d tree by means the description of the main ideas applied to binary
trees. This chapter provides a proof of two basic properties of binary trees on
which the proposed novel approach to k-nearest neighbor query is based.

Chapter 3 proposes an allocation strategy that ensures the balancing of
the network of peers and illustrates this strategy by an example.

Chapter 4 extends of the previous results to k-d trees. It provides the
detailed proofs of the two basic properties for k-d trees and formally describes
the search algorithms as in previous section.

Chapter 5 presents the the state of the art of the related works. It des-
cribes the approaches adopted in other works and made a comparison with the
proposal of current work.

Conclusions summarizes the objective and the results of the work.

Appendix A-F lists all the algorithms referred in the dissertation.

Appendix G presents a brief introduction to the Automatic Query Ex-
pansion (AQE).





Chapter 1

Background Theory

T he term ”index” means an organization of data aimed at improving data
search and storage, the objective of this work is to propose an index

with the following characteristics:

1. Must be used on a large amount of data. The assumption is that it is
not possible or convenient to use a single workstation to host all the
data. Despite the speed of processing and storage capacity of compu-
ters increases with some regularity (”Moore’s law”), on the other hand
the amount of data produced daily grows at a rate significantly higher.
In fact, in addition to the Big Data and Linked Open Data, just think
of specific domains such as research on DNA sequencing that makes
available an amount of data greater than the processing capacity of the
processors [13].

2. In addition to the traditional search (keyword search), must make search
by semantic available. The term ”semantic” means the ability to use
lexical relations (hypernymy, hyponymy1, meronymy, synonymy 2, ho-
lonymy3, etc.) to improve the quality of search. Referring therefore to

1In linguistics, an hyponym is specific term used to designate a member of a class. For
instance, oak is a hyponym of tree, and dog is a hyponym of animal. The opposite of a hyponym
is a hypernym.

2Synonyms are different words which have the same meaning, or almost the same meaning.
3A meronym denotes a constituent part of, or a member of something.That is, ”X” is a

meronym of ”Y” if Xs are parts of Y(s), or ”X” is a meronym of ”Y” if Xs are members of Y(s).
For example, finger is a meronym of hand because a finger is part of a hand. Holonymy is the
opposite of meronymy.

1
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the ability to index not only structured information such as points with
numeric coordinates, but also unstructured information as text files.

3. Must be distributed over a computer network and ensure the greatest
possible benefits in terms of efficiency (insert, delete), i.e. the perfor-
mance should be close to the traditional indexes that use a single work-
station.

When we talk about indexes, we can think of, for simplicity, data in the
form 〈Ki, Pi〉 where Ki is the value of the key attribute and Pi is the pointer to
the data records. Typically, indexes are based on data structures that use trees
or some form of hashing. In the first case (B − tree, B+ − tree, B∗ − tree,
k − dtree, R − tree, etc.) the search is based on comparisons between keys.
The goal is to minimize the number of comparisons to find the search key,
typically O(logN) where N is the number of keys. In the second case (Hash
tables, SHA1, MD5, etc.) the search points directly to the key using arithmetic
operations that transform the keys in addresses.

In addition, a search index should implement at least the insertion and
deletion of key/value pairs. It should be noted that:

1. Tree-based search indexes in order to ensure O(logN) steps in search
must be balanced;

2. Generally an hash table needs much more space than a tree-based index
and it requires careful management of collisions.

It follows that insertions and deletions require other tasks related to balan-
cing (in the case of the trees) or the management of collisions and space (in
the case of the hash tables). Also indexes can be specialized depending on
how you want (or need) to consider the data-type (one-dimensional or multi-
dimensional) and the kind of search to implement (point query, range query,
k-nearest neighbor queries, etc.).

Traditional tools such as RDBMS, are inadequate for several reasons well
outlined in [14] including: the presence of ontologies that do not lend them-
selves to be inserted into a relational schema, the difficulty of using semantic
capabilities in sql-like languages, inadequacy of the approach ACID (Atomi-
city, Consistency, Isolation, and Durability).

The approach taken in this paper (hereinafter described and motivated with
more details) is to propose an extension of a tree based data structures at the
base of traditional indexes. In particular, attention has been paid to indexes
that can handle multi-dimensional data.
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1.1 A comparison between multi-dimensional data
structures

There have been a number of indexing data structures suggested to handle
high-dimensional data: R− tree, k− dtree, X − tree, SS− tree, M − tree,
Quadtree [15], etc. Almost all are tree structures for partitioning space and the
most common in practice are R-trees (and its variants R+ − tree, R∗ − tree),
k − dtrees and Quadtrees.

A Quadtree is a k-ary tree, where k = 2d and d is the number of dimen-
sions. Quadtrees do not scale well to high dimensions, due to the exponen-
tial dependency in the dimension. Range trees provide fast multi-dimensional
range queries at the cost of higher space usage. Performance acceptable only in
low dimensions. Range trees are mainly applicable where a considerable space
overhead is acceptable. Best for prefix queries, but also reliable performance
for range queries. Especially good in 2D (and 3D) [15].

R − tree theoretically, not known to be stronger than k-d trees. Except in
special cases. R − trees and R∗ − trees are known to suffer in high dimen-
sionality settings, which carries over to their decentralized counterparts [16];
e.g., the experiments in [17] showed that for dimensionality close to 20, this
method was outperformed by the non-indexed approach of [18]. Also in R-tree
is crucial the insertion order of the points to get a more balanced tree [19] [20].
The query performance of the resulting target R-tree is likely to be degraded
because of the increased overlapping area among rectangles. For these rea-
sons R-trees come with various optimization strategies, different splits, bulk-
loaders, insertion and reinsertion strategies etc.

K-d trees are more efficient in bulk-loading situations (as required in the
presented approach), they can adapt to different densities in various regions of
the space and they are easier to implement in memory, which actually is their
key benefit. On the other hand, once built, modifying or re-balancing a k-d
tree is non-trivial.

On the basis of the above considerations, we chose k-d tree as the data
structure to extend. A k-d tree indexes a set of N points in k-space size and
allows search nearest neighbors and range queries. Therefore we investigated
the way to distribute a k-d tree over a network of peers and the approach to
index the text indexing on order to perform semantic query on the index (i.e.
the lexical relationship mentioned above).
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1.2 Indexing the text

Regarding the indexing of text, the approach followed is similar to that des-
cribed in [21] in which semantic analysis, including the disambiguation of the
terms, boils down to label each term of a natural language text with a corre-
sponding node in an ontology.

The word ”disambiguation” means an activity in which a specification of
a polysemous term is chosen based on the use of the term in a sentence. On
order to semantically analyze a text a dictionary/ontology that lists the terms
of language and relationships of meaning between the is essential.

It is useful, though not essential, to have an ontology describing the use
of predicates and complements. This ontology allows to improve the disam-
biguation of terms because it suggests the most likely meaning of a word in
accordance with a specific predicate.

The semantic analysis of text provides an intermediate result that
is the identification of the parts of speech (subjects, predicates, ob-
jects, etc.) and their association with the corresponding nodes in
the ontology. In particular, the text is divided into sentences and in
each sentence are detected the subject, the predicate and the comple-
ments. The next step is to construct one or more triples RDF (Resource
Description Framework) in the form 〈subject, predicate, complement1〉,
〈subject, predicate, complement2〉, and so on, where subject, predicate,
complement1 and complement2 are the nodes of ontology. Of course, in some
triples the complement could be empty but for the sake of simplicity and wit-
hout loss of generality, in our model the complement is assumed always to be
a not-empty entity. It is also assumed that the lexical ontology contains all
subjects, predicates and complements related to all the triples. In particular, as
stated later, the lexical ontology used in this work is Wordnet.

Then the main step to index a text is the extraction of a set of RDF
triples that represent it; Note that there aren’t optimal algorithms that per-
form this transformation but there are several heuristics that provide good re-
sults [22] [23] [24]. The next step is to index the set of triples so that queries
can be performed on that index.

The outcome of a query search is a set of triples itself and the final result is
the set of fragments of text corresponding to those triples (or the entire docu-
ment from which have been extracted). It should be noted that by implication
it was assumed that the ”semantic content” of a text and the set of RDF triples
it are equivalent. Of course this is not admissible in an absolute sense but it
is acceptable and advantageous from the point of view of processing semantic
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queries on natural languages texts.

1.2.1 Similarity measures and metric spaces

In order to insert the RDF triples in a k-d tree in the present work it has been
proposed to transform them, i.e. map them, in points of a k dimensions vector
space. The first step is to build a metric space (T, d) where T is the set of
all RDF triples (whose subjects, predicates and complements belong to onto-
logy) and d is a distance function (or metric) d : T × T → R; specifically,
the distance between two RDF triples represents their semantic distance. The
function d can be any function that satisfies the known properties (reflexivity,
symmetry and triangle inequality). A number of semantic similarity measures
between concepts in an ontology have been proposed in the literature and al-
most all of them rely on lexical relationships present in the ontology itself. The
most known are: Resnik, Leacock & Chodorow, Wu & Palmer [25]. Such se-
mantic similarity measures are defined between pairs of concepts of ontology
and the present study has has proposed an extension of them to pairs of RDF
triples by defining a family of distances between two triples as a linear combi-
nation of distances of their respective subjects, predicates and complements. In
particular, let T = {T1, ..., Tn} the set of RDF triples. Each Ti = (Si, Pi, Ci)
has a subject Si, a predicate Pi and a complement Ci. Si, Pi and Ci are nodes
(i.e. concepts) belonging to an ontology that represent the human language,
for instance the Wordnet [26]. Leacock & Chodorow is defined as:

d (w1, w2) = − log

(
length (w1, w2)

2D

)
(1.1)

Where D id the maximum depth of the taxonomy and lenght (w1, w2) is
the shortest path between the nodes representing w1 and w2 in the taxonomy.
Instead, Wu & Palmer is defines as:

d (w1, w2) =
2depth (LCS)

depth (w1) + depth (w2)
(1.2)

Where LCS is the first common ancestor of w1 and w2 and depth (w) is
the length of the path from the root of the taxonomy to the nodew. If we consi-
der only the lexical relation of the type hypernymy/hyponymy in the Wordnet
then the Wordnet reduces itself to a taxonomy and both of the previous distan-
ces can be calculated. At this point, it is possible to define a metric over two
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triples T1 and T2 in T :

h (T1, T2) = αd1 (S1, S2) + βd2 (P1, P2) + γd3 (C1, C2) (1.3)

Where α + β + γ = 1 and α, β, γ ∈ R; di is Leacock & Chodorow
or Wu & Palmer distance (or any other semantic similarity measure). Now,
(T, h) is a metric space. The choice of the coefficients α, β and γ determi-
nes the importance to be assigned to that part of the speech, for example you
can give more emphasis to the similarities of subjects or predicates according
to the specific context. The choice instead of metrics allows you to use the
most appropriate metrics in a that context. The simplest case is d1 = d2 = d3
and α = 0.4, β = 0.3 and γ = 0.3. Under the assumption that the lexical
ontology contains all the concepts of RDF triples, it is always possible to mea-
sure the semantic distance between two triples. In the case of multiple senses,
words are opportunely disambiguated choosing the most fitting sense for the
considered domain using a context-aware and taxonomy-based approach [27],
if necessary.

The table 1.1 shows the results of a comparison between three open-source
Java libraries to calculate semantic similarity measures. These libraries are:

1. Java WordNet Similarity (JWS): http://www.sussex.ac.uk/Users/drh21/

2. SimPack (SP): https://files.ifi.uzh.ch/ddis/oldweb/ddis/research/simpack/index.html

3. Semantic Measures Library & Toolkit (SML): http://www.semantic-
measures-library.org/sml/index.php?q=sml-semantic-measures

The criteria considered for comparison are: the support for OWL4 and
Wordnet; the support for the best known similarity measures and the ease of
use.

The JSW is library used in the tests.

1.2.2 Mapping metric space in vector space

The remaining task is to map the triples of the metric space (T, h) in points
(i.e. vectors) of a vector spaces Rk, i.e. for each triple T must be found a point

4The Web Ontology Language (OWL) is a family of knowledge representation languages
for authoring ontologies.
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Criteria JWS SP SML
OWL X
Wordnet X
Wu & Palmer X X
Lin X X X
Resnik X X X
Jiang Conrath X X X
Levenshtein X X
Jensen Shannon X
Leacock & Chodorow X X
Ease of use X X

Table 1.1: Java Open-Source libraries to calculate similarity measures.

in Rk that represents it. The need of mapping comes from the fact the only
points of Rk can inserted in a k-d tree. In particular, we need a function M :

M : T → Rk (1.4)

The mapping M associates a triple Ti ∈ T to a point P (x1, ..., xk) ∈ Rk,
in other words:

P (x1, ..., xk) =M (Ti) 1 ≤ i ≤ n (1.5)

The mapping M must have the following properties:

1. Must be injective, namely:

Ti 6= Tj ⇒M (Ti) 6=M (Tj) (1.6)

2. It must preserve distances, namely:

d (Ti, Tj) < d (Ti, Tk)⇒ d1 (M (Ti) ,M (Tj)) < d1 (M (Ti) ,M (Tk))
(1.7)

Where d1 represent the distance function in Rk. These properties ensu-
res that a query can be indistinctly executed both in metric space that vector
space having the same result. In fact, the first one requires that distinct tri-
ples are mapped in distinct points and the second one ensure that triples close
together are mapped in points close together. Finally the mapping algorithm
which maps must have sub-quadratic time complexity otherwise it would be
unworkable in practice.
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1.2.3 Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) is a well-known mapping algorithm that map
each object to a point in a k-dimensional space, to minimize the stress function.
There are several variations, but the basic method is described in [28]. The
input of the MDS algorithm is the distance matrix D where the element dij
is the distance between the object i and object j. This the major drawback of
the algorithm because the calculation of the matrix D requires O

(
logN2

)
in

time (N is the number of objects) and for this reason is not applicable on large
amounts of data.

1.2.4 FastMap

FastMap [29] is a much faster mapping algorithm that does not require the
calculation of the entire distance matrix. The time complexity of the FastMap
algorithm is O (log kN) where k is the number of dimensions of the target
vector space and it is much smaller than N. FastMap does not guarantee the
injectivity of the returned mapping but usually in practice it does not seems
a problem because the number of triples associated to the same point (colli-
sions) is very low. The number of collisions is a measure of the goodness of
the mapping algorithms and a some tests on small dataset suggest that MDS
algorithm is better than FatMap. FastMap is the algorithm used to obtain the
required mapping. The distance measure used in FastMap is L2, the euclidean
distance.

FastMap executes k iterations and in the i-th iteration it performs the fol-
lowing main tasks:

1. Randomly select (and memorize) two triplets Ta, Tb ∈ T , named pivots

2. For each Tj ∈ T :

(a) Calculate the i-th coordinate of Pj using:

xi =
d (Ta, Tj)

2 + d (Ta, Tb)
2 − d (Tb, Tj)2

2d (Ta, Tb)

(b) Project Tj on a hyper-plane perpendicular to the line (Ta, Tb). Use
in the next iteration the distances between the projections on that
hyper-plane to calculate xi+1
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At the end of the execution of FastMap, N points Pj ∈ Rk are generated.
The time required to map each, or a new, RDF triplet in a point of Rk is O (k).
See [29] for a more detailed description of FastMap.

It is important to note that there are circumstances where it is not possible
to have a mapping without collisions. For example, because it is not possible
to draw up a plan 4 points equidistant from each other it follows that any set of
4 triples equidistant from each other cannot be mapped into R2 without colli-
sions. On the other hand, can map the same triples in R3 without collisions. In
General, to map a set ofm triple equidistant from each other it is necessary that
the vector space has at leastm−1 dimensions. This observation is a only a ne-
cessary condition and the fact that theoretically there exists a mapping without
collision does not imply that MDS or FastMap can find it.

1.2.5 Semantic Query Processing

Once all RDF triplets Tj ∈ T are mapped in a point Pj (x1, ..., xk) ∈ Rk as
described in previous section, every point Pj is inserted in the k-d tree. Given
N points, the average cost of inserting, as well as searching for (i.e., an exact
match query), a node is O (logN), then the average time complexity to build
the k-d tree is O (NlogN).

The problem of similarity search - the process of finding and retrieving
triples that are similar to a given triple or set of triplet - reduces to finding the
nearest or m nearest neighbors or to performing a range query.

Given an RFD query triplet q, the execution of a m-nearest neighbors query
is accomplished through the following steps:

1. Map q in Pq ∈ Rk using the memorized pivots

2. Find the closest m points to Pj in the k-d tree

3. Return the RFD triples associated to the retrieved points.

In a similar way, a range query can be performed. Hence, this kind of
search can be done efficiently by using the well-known properties of k-d trees.

1.2.6 A motivating example: Requirements Validation

As an applicative example of possible usages of our approach, let us consider
the problem of finding inconsistencies in software requirements written in na-
tural language. Recent studies on requirement engineering demonstrate that
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software teams still face difficulties in the transition from theory to practice:
formalization of requirements, consistency of textual requirements, require-
ments that describe solutions, definition of specification models [30]. The idea
discussed in some works [31] investigates an alternative approach to verify re-
quirements inconsistencies leveraging on the adoption of similarity measures
between concepts modeled in RDF. It starts from the recent studies on seman-
tic web techniques and intends to investigate if concepts related to semantic
distance between RDF triplets can allow any evaluation of consistency within
each single software artifact and between different software artifacts written
in natural language. For example, consistency requires that no two or more
facts contradict each other. The approach in [31] is essentially based on the
intuition of modeling each software artifact as sets of RDF triplets and try to
find contradiction, conflicts, obstacles, etc. analyzing only the triplet sets. The
verification consists in the detection of a set of patterns (rules) in the sets of tri-
plets. For instance, a simple pattern is: Two triplets Ti and Tj are inconsistent
if they:

1. Have the same subject s;

2. Have the same object o;

3. Have predicates contradict each other.

This rule defines the simplest case of inconsistency rising from an explicit
contradiction and it requires a search over the set of triplets modeling the re-
quirements. Some other rules require the detection of similar (i.e. semantically
close) triplets. Since a requirement has more than one sentence and a sentence
often results in more than one triplet, even a small set of requirements can ge-
nerates a considerable number of RDF triplets. Therefore, there is a need for
a framework to efficiently implement semantic queries (i.e. range query and
k-nearest query) on large set of documents. The purpose of our semantic index
is to give an effective solution to this kind of problems.

1.3 Distributed k-d trees

A distributed k-d tree is a data structure that maintains the links and the no-
des of a k-d tree but nodes are distributed over more than one processor. This
section describes a naive distribution approach and the nearest neighbor que-
ries algorithms with this distributed k-d trees. In general, a distributed k-d tree
has mainly two advantages over a sequential k-d tree (a k-d tree one processor):
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1. It can handle more nodes/points than a sequential k-d tree.

2. It allows the elaboration of multiple queries simultaneously.

Many strategies can be used to achieve a distributed version of a k-d tree.
In general, a mapping between the set of nodes of the tree and the set of pro-
cessors is required. In particular, if N = {n1, ..., nh} is the set of the nodes
of the k-d tree and PR = {pr1, ...prt} is the set of the available processors
then a function MAP : N → PR must be defined, where MAP (ni) = prj
means that the processor prj hosts the node ni. In order to reuse the well-
know searching algorithms all the links of the k-d tree must be preserved in
the distributed k-d tree. This fact ensures that the elaboration of search algo-
rithms with a distributed k-d tree will visit the same nodes, in the same order
with respect the elaboration with a sequential k-d tree. During the elaboration
of these algorithms with a distributed k-d tree, if ni is current node and nj is
the next visited node, the main problem is that ni and nj may be on different
processors, that is, MAP (ni) = pri and MAP (nj) = prj with pri 6= prj .
To cope with this problem, an update to search algorithms needs. In particu-
lar, the processor pri will delegate to prj the remaining part of search. To do
this, pri will send a message containing all necessary information to prj . If
the original search algorithm requires a feedback from the node nj to the node
ni, after its own execution prj will send a message to pri with the result. The
amount of information needed to implement this message passing mechanism
is O (1) in space, in fact, each node n of a k-d tree has at most three neighbors
(the parent, the left child and the right child) and for each of them n must store
their processor. section A.1 and section A.1 contain the pseudocode of the
k-nearest neighbor (KNN) and the distributed k-nearest neighbor (DKNN) as
described.

The time complexity KNN and DKNN algorithms is O (logN), where N
is the number of points stored in the tree, both of them visit the same nodes
in the same order. In addition, the DKNN algorithm must exchange a number
of messages (hop) between processors. The number of hops is less than the
number of nodes visited during the execution of the KNN algorithm because a
message can be sent only when the KNN algorithm moves from one node to
another one. Therefore, the number of hops is O (logN) and the DKNN is an
efficient search algorithm. Formally the objectives (1) and (2) were achieved.

Example The following example illustrates the elaboration of a query with
distributed k-d tree and shows the limits of this approach. Suppose T is a dis-
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tributed k-d tree and q1, q2, q3 and q4 are queries. If T.root is the node root of
T then the processor pr1 =MAP (T.root) at the beginning has four message
in its queue (one for each query). The processors pr1 starts the elaboration of
the message for q1 and cannot elaborate the message for q2 until the query q1
ends or the execution of q1 requires a node belonging to another processor pr2.
In the second case, pr1 sends a message containing q1 and the current result (if
the current node does not have matching points it is empty) to pr2. From now
on, pr2 carries out q1 and pr1 starts the execution of q2. When pr2 ends its
elaboration it sends a message, e.g. q1ResultMessage, to pr1 containing the
final result of q1. The message q1ResultMessage enters the message queue
of pr1 and without any priority associated to q1ResultMessage there is no
guarantee that it will be processed before the execution of the remaining query
q3 and q4.

From the previous example it is possible to make some general remarks:
the processor pr1 is the bottleneck of the entire system and without an accurate
message priority management the throughput of a distributed k-d tree can be
worse than a traditional k-d tree. This behavior does not depend on the dis-
tribution strategy (i.e. the mapping function MAP cannot solve this problem).
This issues represent a substantial limit for distributed k-d tree.

Hence the need for a new distributed search algorithm that can:

1. Start a query from any randomly chosen node/processor.

2. Terminate the execution of a query as soon as the result was obtained
without visiting the root node, if not necessary.



Chapter 2

A First Step Toward
Distributed k-d trees

I
n order to derive a new distributed searching algorithm with distributed
k-d trees and to explain how it works, an example of the elaboration of the

DKNN with binary tree follows. Consider the binary tree in Figure 2.1 with
bucket size equal to 2. For the sake of simplicity, the internal nodes are labeled
with the split value (of the unique coordinate). The buckets are represented
with braces.

Figure 2.1: A binary tree with 16 points and bucket size of 2.

Let q = (12, 3) be a query requiring the three points closer to 12. The
query result is {11, 12, 13} and the sequence of the steps and the nodes

visited with their states by the KNN algorithm are listed in Tables 2.1 and 2.2.

13
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Table 2.1: First execution: steps from 1 to 8
Step 1 2 3 4 5 6 7 8

Status None rightVisited None rightVisited none leftVisited None rightVisited
Node 8 8 12 12 14 14 13 14
Result (13, 14) (13, 14)

Table 2.2: First execution: steps from 9 to 15
Step 9 10 11 12 13 14 15

Status rightVisited None rightVisited none rightVisited rightvisited rightvisted
Node 12 10 10 11 10 12 8
Result (13, 14) (13, 14) (13, 14) (11, 12, 13) (11, 12, 13) (11, 12, 13) (11, 12, 13)

Figure 2.2: Steps of the execution in which the execution moves from
a node to another.

Figure 2.2 shows the steps in which the elaboration moves from a node to
another one. Steps in which only a change of status occurs are not represented
(they should be outcoming and incoming edges to the same node). Please,
note that DKNN algorithm elaborates the same steps of KNN algorithm and
then it visit the same nodes of the k-d tree in the same order therefore the
observations on the elaboration of KNN holds for DKNN also. Suppose a
second elaboration of the same query q starts at node 10 instead of the root
node of the k-d tree. In that case, a number of steps of the KNN can still be
carried out, in particular the steps: 11, 12 and 13. The contents of the Result
in this case is different from the previous run. The row Step2 of Table 2.3
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Table 2.3: Second execution: steps from 1 to 5.
Step2 1 2 3 4 5
Status None rightVisited none rightVisited leftVisited
Node 10 10 11 10 12
Result (11, 12) (11, 12) (11, 12)

enumerate the steps performed in this elaboration, the situation is represented
in Table 2.3.

The Figure 2.3 shows the steps performed in the second elaboration.

Figure 2.3: Steps from 1 to 3 of the second elaboration.

At this point the KNN algorithm moves from node 10 to node 12 which,
until now, has never been visited and then it has status = NIL. Node 12
in the first execution had the status =′ rightV isited′ as in Table 2.2, step
14. Because the node 10 is the left child of the node 12 then the status of the
node 12 might be set to leftV isited (this is a change to the KNN algorithm).
Now, the KNN algorithm checks if the right child of the node 12 node must be
visited and then it performs the steps from 5 to 9 of the first execution. At this
point the situation is represented in Tables 2.4 and 2.5.
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Table 2.4: Second execution: steps from 1 to 6.
Step2 1 2 3 4 5 6 (5 in table

2.1)
Status None rightVisited none rightVisited leftVisited None
Node 10 10 11 10 12 14
Result (11, 12) (11, 12) (11, 12) (11, 12)

Table 2.5: Second execution: steps from 7 to 11.
Step2 7 (6 in table

2.1)
8 (7 in table
2.1)

9 (8 in table
2.2)

10 (9 in ta-
ble 2.2)

11 (15 in
table 2.2)

Status leftVisited None rightVisited rightVisited rightvisted
Nodo 14 13 14 12 8
Result (11, 12) (11, 12,13) (11, 12,13) (11, 12,13) (11, 12, 13)

Figure 2.4: Steps performed in the second elaboration.

Since both subtrees of the node 12 were visited, the KNN algorithm moves
elaboration to node 8 which again haa status = NIL (it has never been visited
also). Node 8 in the first elaboration had the status =′ rightV isited′ as Ta-
ble 2.2, step 15. Again, the status of the node 8 might be set to ′rightV isited′

(this is a change to the KNN algorithm) because node 12 is the right child of
the node 8. The elaboration can continue as in KNN algorithm and it performs
the step 11 (which corresponds to step 15 of Table 2.2). Finally, the elabora-
tion ends with the same result as the KNN algorithm. Reviewing the previous
example the following general observations about the two elaborations can be
stated:
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1. They visit the same nodes: this fact ensures that the same leaves are
visited and the same results are retrieved;

2. They do not visit the nodes in the same order: in fact, the second elabo-
ration visit the subtrees of the node 12 node in reverse order;

3. They do not visit nodes the same number of times: in the first elaboration
nodes 8 and 12 are visited respectively 3 times 2 instead in the second
elaboration they are visited respectively 1 and 2 times;

4. The second elaboration gets the same result the first elaboration if:

(a) It starts from one of the nodes visited of the KNN algorithm;

(b) The status of the nodes that the KNN algorithm would visit before
the node from which the second elaboration starts are properly set.
The status of these nodes is NIL because they have not yet been
visited.

2.1 Starting a search from a node visited by KNN al-
gorithm

This section introduces a new algorithm for k-nearest neighbor query that starts
the search from a visited by KNN algorithm. Assume that:

• T is a binary tree and q = (p, k) is a k-nearest neighbor query where p
is the query point and k is the number of neighbors;

• n is a node visited by KNN algorithm during its elaboration.

In particular, the node n is defined the starting node of the query. The result
of the query q is:

result = randomNearestQuery(p, k, n) (2.1)

Where result is an instance of data structure Result described in section A.1.
The algorithm randomNearestQuery is the following:
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Algorithm 1 randomNearestQuery(queryPoint, k, n)
Require: queryPoint and k are integer values, n is a node of T
Ensure: return the k-nearest neighbor points of queryPoint in T

1. result ← createResultInstance(queryPoint, k) {create a new instance
result of Result for queryPoint with size k}

2. randomNearestNeighbor(n, queryPoint, k, result, ’none’)
3. return result {result contains the results of the query}

Algorithm 2 randomNearestNeighbor(v, p, k, result, status)
Require: n is a node of T , p and k are integer values, result is an instance of

Result and status is a string
1. if status 6= NIL then
2. v.status← status
3. end if
4. randomNN(v, p, k, result)
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Algorithm 3 randomNN(v, p, k, result)
Require: v is a node of T p and k are integer values and result is an instance

of Result
1. if v.isLeaf then
2. result.add(v.getBucket)
3. if mustBeSetParentStatus(v) then
4. randomNearestNeighbor(v.parent, p, k, result, NIL)
5. end if
6. else
7. if v.status =′ none′ and not v.isLeaf then
8. if p < v.SplitV alue then
9. v.status←′ leftV isited′

10. randomNearestNeighbor(v.left, p, k, result, ’none’)
11. else
12. v.status←′ rightV isited′
13. randomNearestNeighbor(v.right, p, k, result, ’none’)
14. end if
15. end if
16. if v.status =′ rightV isited′ then
17. if v.left 6= NIL and mustBeV isited(v, p, result) then
18. randomNearestNeighbor (v.left, p, k, result, ’none’)
19. end if
20. if mustBeSetParentStatus(v) then
21. randomNearestNeighbor(v.parent, p, k, result, NIL)
22. end if
23. end if
24. if v.status =′ leftV isited′ then
25. if v.right 6= NIL and mustBeV isited(v, p, result) then
26. randomNearestNeighbor (v.right(), p, k, result, ’none’)
27. end if
28. if mustBeSetParentStatus(v) then
29. randomNearestNeighbor(v.parent, p, k, result, NIL)
30. end if
31. end if
32. end if

The mustBeV isited procedure is described in section A.1, algorithm 15.
The differences between the algorithms 3 (randomNN) and 14 (NN) are the
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calls to the mustBeSetParentStatus procedure. In particular, at the end
of each recursive call, the algorithm 3 checks the status of the parent node
of the current node, e.g. w, and if w has never been visited it sets its status
calling mustBeSetParentStatus. A this point, the node w is elaborated by
a call to randomNearestNeighbor. Without this change the the algorithm
3 would stop its elaboration because there is not a pending recursive call to
randomNearestNeighbor and it would return an incorrect result. The algo-
rithm mustBeSetParentStatus is the following:

Algorithm 4 mustBeSetParentStatus(Node v)
Require: v is a node of T
Ensure: Checks if the status parent of the current node must be set and it

sets the correct value.
1. if v.parent 6= NIL then
2. if v.parent.status = NIL then
3. if v.splitV alue < v.getParent.splitV alue then
4. v.parent.status←′ leftV isited′ {v is a left child of v.parent}
5. return true
6. else
7. v.parent.status ←′ rightV isited′ {v is a right child of

v.parent}
8. return true
9. end if

10. else
11. return false{n.parent.status 6= NIL then do nothing}
12. end if
13. else
14. return false{n is the root of the tree then do nothing}
15. end if

2.2 Finding a starting node

The algorithm 22 (randomNearestQuery) works well only if it starts from a
node that is visited by the algorithm 12 (nearestQuery) in in section A.1. The
following property helps to characterize this kind of nodes:

Theorem 2.1 Let T be a binary tree and M = {m1, ...,mj} the nodes visited
at least once by the algorithm 12 in section A.1 during the of elaboration of
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the query q = (p, k). If for a node m holds (Starting Node Property - SNP):{
m.minV alue ≤ p ≤ m.maxV alue if m is a leaf
m.left.splitV alue ≤ p ≤ m.right.splitV alue otherwise

(2.2)

Thenm ∈M (m.minV alue andm.maxV alue are respectively the minimum
and maximum values contained in the bucket of the leaf m).

Proof: It is a proof by contradiction. Let x be an internal node of the tree for
which the (4.1) holds but such that x /∈ M . Because (4.1) holds then in the
bucket of the leaves of the subtree rooted in x there might be at least a point
t that may be returned in the result of the query q. The value k determines
whether the point t will be part of the result. If the algorithm does not visit
the node x would not have the opportunity to evaluate whether to add t to the
query result and then the search result may be incorrect. This is a contradiction
of the correctness of standard search algorithm then x ? M. The proof in the
case x is a leaf is the same. The SNP in (4.1) can be used to build a recursive
algorithm that starting from a random node n of T and a query point p reaches
a node m ∈M .

Algorithm 5 findStartingNode(p, n)
Require: p is an integer value and n is a node of T
Ensure: return a starting node m ∈M for query point p

1. if n.isRoot then
2. return n
3. else
4. if n.isLeaf then
5. if n.minV alue ≤ p ≤ n.maxV alue then
6. return n
7. else
8. return findStartingNode(p, n.getParent)
9. end if

10. else
11. if n.left.splitV alue ≤ p ≤ n.right.splitV alue then
12. return n
13. else
14. return findStartingNode(p, n.getParent)
15. end if
16. end if
17. end if
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In particular, the algorithm findStartingNode (p, n) returns the node n
if the SNP holds for it otherwise it moves to the father of n. It moves from
bottom to top in the tree therefore its time complexity is O (logN). Please,
note that for given the query q = (p, k):

1. The starting node depends only on the query point p and it do not depend
on the value of k.

2. The (4.1) is a sufficient but not necessary condition. In fact, in the ex-
ample in Figure 2.2 the node 10 is a node visited by the KNN algorithm
during the of elaboration of the query but the (4.1) do not apply.

2.3 Analysis of the findStartingNode algorithm

The findStartingNode algorithm moves to the parent of the current node if
the SNP does not hold and, of course, there is no guarantee that it has not
reached the root of the tree. Let T be a tree and p the query point, in order to
estimate how many times in average the findStartingNode returns the root
of T the following test can be executed:
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Algorithm 6 testFindStartingNode(T, p, percRoot, percNoRoot)
Require: T is binary tree, p is an integer value, percRoot and percNoRoot

are double values
Ensure: Calculate how many times in percentage the findStartingNode re-

turns the root node with the tree T and query point p. It returns percRoot
and percNoRoot

1. nrRoot← 0
2. nrNoRoot← 0
3. for all n ∈ T.allNodes do
4. if n 6= T.root then
5. resultNode← findStartingNode (p, n)
6. if resultNode = T.root then
7. nrRoot← nrRoot+ 1
8. else
9. nrNoRoot← nrNoRoot+ 1

10. end if
11. end if
12. end for
13. percRoot ← 100 ∗ nrRoot/(T.allNodes.size − 1) {do not count the

root}
14. percNoRoot← 100 ∗ nrNoRoot/(T.allNodes.size− 1)

In other words, the algorithm elaborates all nodes in the tree but
the root. At the end, percRoot is the percentage in average of
how many times the algorithm returns the root node. Of course,
percNoRoot = 100percRoot. Now, suppose that treeSet =
{T256, T512, T1.024, T2.048, T4.096, T8.192, T16.384, T32.768} is a set of binary
trees where the tree Ti contains points from 0 to i − 1. A test that calcula-
tes the same percentage of previous test over all the trees in treeSet varying
the query point p is the following:
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Algorithm 7 testAverageF indStartingNode ()
Ensure: Calculate how many times in percentage the findStartingNode re-

turns the root node with the trees in treeSet
1. avgPercRoot← 0
2. avgPercNoRoot← 0
3. for all T ∈ treeSet do
4. queryPoint← 0
5. for queryPoint < T.numPoints do
6. testFindStartingNode(T, queryPoint, percRoot, percNoRoot)
7. sumPercRoot← sumPercRoot+ numRoot
8. sumPercNoRoot← sumPercNoRoot+ numNoRoot
9. queryPoint← queryPoint+ 1

10. end for
11. avgPercRoot← sumPercRoot/T.numPoints
12. avgPercNoRoot← sumPercNoRoot/T.numPoints
13. end for

At the end, the avgPercRoot variable will contains percentage of how
many times on average the root node on each tree in treeSet is returned by
the algorithm findStartingNode regardless of the query point. Of course,
avgPercNoRoot = 100avgPercRoot. The results of tests with bucket size
of 5, 10, 20, 30 and 40 points are shown in the Table 2.6.

Table 2.6: Test results of testAverageF indStartingNode.

bucket dim. %
Number of points in the tree

average
512 1024 2048 4096 8192 16384 32768

5
root 65 65 65 65 65 65 65 65

no root 35 35 35 35 35 35 35 35

10
root 65 65 65 65 65 65 65 65

no root 35 35 35 35 35 35 35 35

20
root 65 65 65 65 65 65 65 65

no root 35 35 35 35 35 35 35 35

30
root 68 68 68 67 67 67 67 67.4

no root 35 32 32 32 33 33 33 32.4

40
root 65 65 65 65 65 65 65 65

no root 35 35 35 35 35 35 35 35

average
root 65.6 65.6 65.6 65.4 65.4 65.4 65.4 65.5

no root 34.4 34.4 34.4 34.6 34.6 34.6 34.6 34.5

Table 2.6 shows that if the bucket size is much smaller than the number of
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points the results do not depend on either the bucket size nor the number of
points and in about 65.5% of runs it returns the root node. When the bucket
size approaches the number of points, the results should not be considered
significant because the trees that result would have very few nodes, e.g. for 64
points and a bucket dimension of 40 points it results a tree with only 3 nodes.

2.4 Improving the findStartingNode algorithm

Intuitively, the algorithm findStartingNode can be improved choosing a
random node in the left subtree of the root r of T if:

p ≤ r.splitV alue (2.3)

The findStartingNodeSide algorithm is the following:

Algorithm 8 findStartingNodeSide (queryPoint)
Require: queryPoint is an integer value
Ensure: return a starting node for query point p

1. if queryPoint < root.splitV alue then
2. {let randomNode be a randomly chosen node in left subtree of the root

of T}
3. else
4. {let randomNode be a randomly chosen node in right subtree of the

root of T}
5. end if
6. startNode← findStartingNode (queryPoint, randomNode)
7. return startNode

Each node of the tree can easily be labeled with left if it belongs to the
left subtree of T and right otherwise. During construction of the tree, every
new node inherits the label of the father. The Table 2.7 show the results of the
same tests of Table 2.6 carried out on the findStartingNodeSide.



26CHAPTER 2. A FIRST STEP TOWARD DISTRIBUTED K-D TREES

Table 2.7: Test results of testAverageF indStartingNode with
findStartingNodeSide algorithm.

bucket dim. %
Number of points in the tree

average
512 1024 2048 4096 8192 16384 32768

5
root 35 35 35 35 35 35 35 35

no root 65 65 65 65 65 65 65 65

10
root 35 35 34 34 34 34 34 34.3

no root 65 65 66 66 66 66 66 65.7

20
root 35 35 35 34 34 34 34 34.4

no root 65 65 65 66 66 66 66 65.6

30
root 36 36 36 34 34 34 34 34.9

no root 64 64 64 66 66 66 66 65.1

40
root 36 35 35 35 34 34 34 34.7

no root 64 65 65 65 66 66 66 65.3

average
root 35.4 35.2 35 34.4 34.2 34.2 34.2 34.7

no root 64.6 64.8 65 65.6 65.8 65.8 65.8 65.3

Results in Table 2.7 shows that in about 65% of runs the
findStartingNodeSide algorithm does not returns the root node of T . The-
refore, about 65% of the queries does not start in the root of the tree.

2.5 Finding starting node conclusions

Table 2.8: Test results of testAverageF indStartingNode with
findStartingNodeSide algorithm.

Algorithm returns root does not return root Notes
findStartingNode 65,5% 34,5% Does not require any changes to the structure of the node.

findStartingNodeSide 34,7% 65,3% It requires the lists of left and right nodes.

The data shown in Table 2.7, although based on binary trees with maximum
16,384 points, show that on average the probability to start a k-nearest neighbor
query on a binary tree in node other than the root is 65%.

2.6 Finding ending nodes

Suppose that the q = (p, k) has two boolean attributes named: upFromLeft
and upFromRight both of them set to false at start. Furthermore, suppose
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that the KNN algorithm is updated with the following: Let v be the current
node:

1. If KNN algorithm visited the left subtree of v and the right subtree
of v must not be visited (i.e. mustBeV isited returns false) and
upFromLeft = TRUE then mark v as an endingnode otherwise set
upFromRight = TRUE.

2. If KNN algorithm visited the right subtree of v and the left subtree
of v must not be visited (i.e. mustBeV isited returns false) and
upFromRight = TRUE then mark v as an endingnode otherwise
set upFromLeft = TRUE.

Theorem 2.2 If the KNN algorithm stops its elaboration in an ending node it
returns the correct results to query q.

Proof: Suppose the case 1) holds, (the proof of the case 2) is the same) then
upFromRight = upFromLeft = TRUE. Of course, all points p such that
p < v.splitV alue cannot belong to the result of the query, Figure 2.5.

Figure 2.5: The points in the right subtree of v cannot be in the result
of the query.

In addition, there must be a node w for which the algorithm previously set
upFromLeft = TRUE. Only one of the following conditions holds:

1. w is in the left subtree of v, Figure 2.7.

2. w is in the right subtree of v.parent, Figure 2.8.
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Figure 2.6: w is in the left subtree of v.

Figure 2.7: w is in the right subtree of v.parent.

In both of the previous conditions, all points p such that p < w.splitV alue
cannot belong to the result of the query. Now, it must be proved that in re-
maining part of its elaboration, the algorithm does not visit any subtree in the
path from v to the root. Let Path = {n0, n1, ..., nx} be that path, where
n0 = root (i.e. the gray nodes in Figure 2.8 and Figure 2.9). One of the
following alternatives holds:

1. If w belongs to the left subtree of v then nx = v.parent, Figure 2.8.

2. If w belongs to the left subtree of v then nx = v.parent.parent, Fi-
gure 2.9.
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Figure 2.8: Case a)

Figure 2.9: Case b)
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In both cases a) and b) it must be proved that ∀ni, ni+1 ∈ Path:

1. If ni+1 is a right child of ni then the left subtree of ni will not be visited.

2. If ni+1 is a left child of ni then the right subtree of ni will not be visited.

In Figure 2.8 and Figure 2.9 the node v is a right child of v.parent, the proof
is the same if v is a left child.

Case a) If ni+1 is a right child of ni and the algorithm should visit the
left subtree of ni then the point p such that p < ni.splitV alue could be
in the result of the query. This is a contradiction because ni.splitV alue <
w.splitV alue and the points p < w.splitV alue cannot be in the result of the
query. If ni+1 is a left child of ni and the algorithm should visit the right sub-
tree of ni then the point p such that p > ni.splitV alue could be in the result
of the query. This is a contradiction because ni.splitV alue > v.splitV alue
and the points p > v.splitV alue cannot be in the result of the query.

Case b) Same of the previous one. In conclusion, if the algorithm during the
elaboration of the nodes along the path from v to the root does not visit any
other subtree therefore it cannot add any new point to the result of the query
then the search can be stopped in v. section A.1 lists the pseudocode of the
KNN using ending nodes. Table 2.6 shows test results of KNN algorithms
using ending nodes. In particular, it was used the traditional algorithm of k-
nearest neighbor queries varying the values of k between 3 and 10 for each
value of p.

Table 2.9: Test results of KNN using ending nodes.

bucket dim. %
Number of points in the tree

average
512 1024 2048 4096 8192 16384 32768

5
end root 7 4 3 2 1 1 0 2.6

end no root 93 96 97 98 99 99 100 97.4

10
end root 0 1 1 1 1 1 0 0.7

end no root 100 99 99 99 99 99 100 99.3

20
end root 1 1 1 1 1 1 1 1

end no root 99 99 99 99 99 99 99 99

30
end root 1 1 1 1 1 1 1 1

end no root 99 99 99 99 99 99 99 99

40
end root 1 1 1 1 1 1 1 1

end no root 99 99 99 99 99 99 99 99

average
end root 2 1.6 1.4 1.2 1 1 0.6 1.3

end no root 98 98.4 98.6 98.2 99 99 99.4 98.7
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Table 2.9 shows that in about 98% of cases the ending node is different
from the root node of the tree.

2.7 Random k-nearest neighbor query on binary trees

section A.1 shows the pseudocode for the random k-nearest neighbor queries
on binary trees. The algorithm described has the following features:

1. It can start the query with a randomly chosen binary tree node;

2. In 65% of cases the beginning of the query does not involve the root of
the tree;

3. In 98% of cases the end of the query does not involve in the root of the
tree;

4. It has the same time complexity of the algorithm KNN.





Chapter 3

Allocation strategy

T he allocation of the nodes of the tree over the processors is based on
the full condition of the processor. The full condition is a criteria in-

dicating that the processor cannot contains other nodes of the tree because it
consumed its resources. Resources can be, for example RAM, disk space or
a combination of them. If there are identical processor then the full condition
is the same for all of them but if not, each processor may have its own full
condition. When a processor reach its full condition it means that a predeter-
mined constant number of nodes can be added to it, e.g. 2, 3, 5 nodes, and
the processor will redirect to others processors the insertion of new nodes in
the tree. Assume the scenario of bulk load points in the tree, this ensure that
the resulting tree is a balanced tree. Suppose N = {p1, ...pn} is the set of the
points, the proposed distribution strategy works as follow:

1. while N 6= ∅ do
2. {Choose next point p in N to be inserted (e.g. the median with respect

the split coordinate)}
3. SendMessage(pr0, INSERT(p))
4. end while

Follows the pseudocode for each processor.

33
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Algorithm 9 onReceiveMessage(MessageM)

Require: M is message
Ensure: Elaborate every new message

1. if M is an INSERT message then
2. insert(M.p, M.senderProcessor)
3. else
4. if if M is a MOVE message then
5. moveRightSubtree(M.subtree)
6. end if
7. end if

Algorithm 10 insert(p, sender)
Require: p is a point and sender is the processor that sent the message

1. if full condition is TRUE then
2. nextProcessor = requireNewProcessor
3. if next 6= NIL then
4. insertion (p)
5. subtree← getNextRightSubtree (root)
6. SendMessage(nextProcessor, MOVE(subtree))
7. create a proxy node proxy for the root of subtree pointing to

nextProcessor
8. replace subtree with proxy
9. else

10. SendMessage(sender, REJECT(p))
11. end if
12. else
13. insertion (p)
14. end if

Algorithm 11 getNextRightSubtree(n)
Require: n is a node

1. if n.right is not a proxy node then
2. return n.right
3. else
4. return getNextRightSubtree (n.left)
5. end if
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The insertion procedure is the well-known insert algorithm with binary
trees or k-d trees.

The following example shows how the distribution strategy works. Sup-
pose that:

1. A processor reach its full condition when it contains 7 nodes;

2. The bucket dimension is 1, therefore the insertion of each new point will
create a new node;

3. Nodes are labeled with integers following the creation order.

After the insertion of the first seven points the processor pr0 reached its
full condition, Figure 3.1.

Figure 3.1:

The insertion of the next point will require a new processor, pr0 will move
its right subtree on it and will create the proxy node for node 3, Figure 3.2.

Figure 3.2:
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Next point, point 9, causes pr0 full condition become again true then point
10 (inserted under node 5) will require again a new processor and pr0 will
move another subtree. The procedure getNextRightSubtree will return the
subtree rooted at node 5 therefore pr0 will move it and will create the proxy
node for node 5, Figure 3.3.

Figure 3.3:

At this point, because the resulting tree should be balanced (bulk load),
suppose for the sake of simplicity that the following four points (11, 12, 13
and 14) will be added on processor pr1, Figure 3.4.
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Figure 3.4:

If next point, the point 15, will be inserted on pr1 under node 11 the situa-
tion is depicted in Figure 3.5.

Figure 3.5:

Please, note that:

1. Each processor never contains more than seven nodes, i.e. the full con-
dition

2. Every subtree moved contains approximatively about half of the nodes
defined in the full condition. This is true because about half of the tree
hosted in the processor will be moved when the full condition became
true
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3. Every subtree moved is a balanced subtree then every processor will con-
tain a balanced subtree. If a search algorithm does not move on another
processor and it will follows links on the left subtree it will traverse a
balanced tree.



Chapter 4

Query processing: a novel
approach

I
n order to introduce the random k-nearest neighbor algorithm with k-d
trees the FindSartingNode and FindEndingNode algorithms with binary

trees must be extended to k-d trees.

4.1 Starting nodes with k-d trees

The Starting Node Property with k-d trees is the following:

Theorem 4.1 Let T be a d-dimensional k-d tree, p =
(
x1, Å¬xd

)
the query

point and M = {m1, ...,mj} the nodes visited at least once by the algorithm
12 in section A.1 during the of elaboration of the query q = (p, k). If for a
node m holds (k-d tree Starting Node Property - KSNP):

If xj is the split coordinate of m.left and m.right and if:{
m.minV alue ≤ xj ≤ m.maxV alue if m is a leaf
m.left.splitV alue ≤ xj ≤ m.right.splitV alue otherwise

(4.1)

Then m ∈ M (m.minV alue and m.maxV alue are respectively the mi-
nimum and maximum values contained in the bucket of the leaf m).

Proof: If the KSNP applies to m then the subtree of m can contains points
matching query q and if the KNN algorithm do not visit this subtree the result
may be incomplete.

39
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Example Let T be the k-d tree in the Figure 4.1. Each node is labeled with
the split coordinate and the split value. For instance, the label y = 110 means
that y is the split coordinate and 11 is the split value. Let p = (47, 114) be the
query point and k = 4 the number of nearest neighbor points required. The
KNN algorithm in 17 steps retrieves the result of the query q = (p, k). The
result contains the points {(49, 109) , (51, 114) , (52, 115) , (53, 113)}.

Figure 4.1: A 2-dimensional k-d tree with bucket size of 4.

The Figure 4.2 highlight the nodes visited by the KNN algorithm. Next
to each visited nodes there are the steps in which each nodes is traversed.
For instance, the node labeled as y = 110 is traversed three times during the
elaboration of KNN, that is, in the steps n.2, n.10 and n.16.

Figure 4.2: Nodes and steps traversed during the elaboration of the
KNN algorithm.
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Please, note that the KSNP applies to the node y = 110. The KSNP is
a sufficient condition but it is not necessary. In fact, the node y = 100 is
traversed by the KNN but the KSNP condition do not apply.

4.2 Ending nodes with k-d trees

Denote the split coordinate related to a node v as v.splitCoordinate and sup-
pose that the q = (p, k), where p =

(
x1, Å¬xd

)
, for each xi has two boolean

attributes named: upFromLeft (xi) and upFromRight (xi) both of them
set to false at start. Furthermore, suppose that the KNN algorithm is updated
with the following:

Let v be the current node:

1. If KNN algorithm visited the left subtree of v and the right
subtree of v must not be visited (i.e. mustBeV isited re-
turns false) and upFromLeft (v.splitCoordinate) = TRUE
then mark v as an endingnodeforv.splitCoordinate otherwise set
upFromRight (v.splitCoordinate) = TRUE.

2. If KNN algorithm visited the right subtree of v and the left
subtree of v must not be visited (i.e. mustBeV isited re-
turns false) and upFromRight (v.splitCoordinate) = TRUE
then mark v as an endingnodeforv.splitCoordinate otherwise set
upFromLeft (v.splitCoordinate) = TRUE.

Theorem 4.2 If a node v is an ending node for each xi then v is an ending
node. If the KNN algorithm stops its elaboration in an ending node it returns
the correct results of query q.

Proof: Iterating the the proof of the demonstration for ending nodes in binary
tree for each coordinates follows that no subtree will be visited in the path from
the ending node to the root.

Example Consider the k-d tree of the Figure 4.2 and the query q of the pre-
vious example, the node y = 110 in is an ending node.





Chapter 5

Related Works

I
n the last decade multi-dimensional and high-dimensional indexing in de-
centralized peer-to-peer (P2P) networks, received extensive research at-

tention. Naturally, most such methods are tree-based and the data space is
hierarchically divided into smaller subspaces (regions), such that the higher
level data subspace contains the lower level subspaces and acts a guide in se-
arching. These methods can be data-partitioning based, where data subspaces
are allowed to overlap (eg. R-tree) or space-partitioning based, where data
subspaces are disjoint (eg. k-d tree) and they can be classified into three broad
categories: tree-based, DHTs-based and skiplist-based.

5.1 Tree-based

TerraDir [32] is a tree-based structured P2P system. It organizes nodes in a
hierarchical fashion according to the underlying data hierarchy. Each query
request will be forwarded upwards repeatedly until reaching the node with the
longest matching prefix of the query. Then the query is forward to the destina-
tion downwards the tree. In TerraDir, each node maintains constant number of
neighbors and routing hops are bounded in O(h), where h is the height of the
tree. In [2] Mohamed et al. proposed a distributed k-d tree based on MapRe-
duce framework [33]. In such index structures queries are processed similar
to the centralized approach, i.e., the query starts in root node and traverse the
tree. These methods exhibit logarithmic search cost, but face a serious limi-
tation. Peers that correspond to nodes high in the tree can quickly become
overloaded as query processing must pass through them. In centralized in-
dexes this was a desirable property because maintaining these nodes in main

43
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memory allow the minimization of the number of I/O operations. In distribu-
ted indexes it is a limiting factor leading to bottlenecks. Moreover, this causes
an imbalance in fault tolerance: if a peer high in the tree fails than the system
requires a significant amount of effort to recover. Finally, R-trees are known
to suffer in high dimensionality settings, which carries over to their decen-
tralized counterparts; the experiments in [17] showed that for dimensionality
close to 20, this method was outperformed by the non-indexed approach of
[18]. The VBI-tree proposed in [17] provided a solution to the bottlenecks and
imbalance problems introducing a distributed framework (inspired to BATON
– Balanced Tree Overlay Network [34]) based on multidimensional tree struc-
tured overlays, e.g., R-tree. It provides an abstract tree structure on top of an
overlay network that supports any kind of hierarchical tree indexing structu-
res. However, it was shown in [35] that for range queries the VBI-tree suffers
in scalability in terms of throughput. Furthermore, it can cause unfairness as
peers corresponding to nodes high in the tree are heavily hit.

5.2 DHTS-based

Approaches based on distributed hash tables (DHTs) employ a globally con-
sistent protocol to ensure that any peer can efficiently route a search to the
peer that has the desired content, regardless of how rare it is or where it is lo-
cated. A DHT system provides a lookup service similar to a hash table; (key,
value) pairs are stored in a DHT, and any participating node can efficiently
retrieve the value associated with a given key. Responsibility for maintaining
the mapping from keys to values is distributed among the nodes, in such a way
that a change in the set of participants causes a minimal amount of disruption.
This allows a DHT to scale to extremely large numbers of nodes and to handle
continual node arrivals, departures, and failures. DHT systems include Chord
[36], Tapestry [37], Pastry [38], CAN [18] and Koorde [39]. The routing algo-
rithms used in Tapestry and Pastry are both inspired by Plaxton [40]. The idea
of the Plaxton algorithm is to find a neighboring node that shares the longest
prefix with the key in lookup message, repeat this operation until find a des-
tination node that shares the longest possible prefix with the key. In Tapestry
and Pastry, each node has O(logN) neighbors and the routing path takes at
most O(logN) hops. MAAN [41] extends Chord to support multidimensional
range queries by mapping attribute values to the Chord identifier space via uni-
form locality preserving hashing. MAAN and Mercury [42] can support multi-
attribute range queries through single attribute query resolution. They do not
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feature pure multidimensional schemes, as they treat attributes independently.
As a result, a range query is forwarded to the first value appearing in the range
and then it is spread along neighboring peers exploiting the contiguity of the
range. This procedure is very costly particularly in MAAN, which prunes the
search space using only one dimension. MIDAS [43] is similar to these works
and in particular, MIDAS implements a distributed k-d tree, where leaves cor-
respond to peers, and internal nodes dictate message routing. The proposed
algorithms process point and range queries over the multidimensional indexed
space in O(logn) hops in expectance. Two algorithms for Nearest Neighbor
Queries are described: the first (expected O(logn)) has low latency and in-
volve a large number of peers; the second (expected O(log2n) ) has higher
latency but involves far fewer peers.

5.3 Skiplist-based

Skip Graphs [44] and SkipNet [45] are two skip-list based structured P2P sys-
tems. Skip Graphs and SkipNet maintain O(logN) neighbors in their routing
table. For each node, the neighbor at level h has the distance of 2h to this node,
i.e. they are 2h nodes far away. This is very similar to the fingers in Chord.
There are 2h rings at level hwith n/2h nodes per ring. Searching a key in Skip
Graphs or SkipNet is started at the top-most level of the node seeking the key.
It proceeds along the same level without overshooting the key, continuing at a
lower level if required, until it reaches level 0. Their routing hops of searching
a key are also O(logN). The above structured P2P systems provide scalable
distributed lookup for unique keys. However they can not support efficient
search, such as keyword search and multi-dimensional range queries.

Finally, SCRAP [46], ZNet [47], employ a space filling curve , such as
Hilbert or z-curve, to map the multidimensional space to a single dimension
and then use a conventional system to index the resulting space. For instance,
[35] uses the z-curve and P-Grid to support multi-attribute range queries. The
problem with such methods is that the locality of the original space cannot be
preserved well, especially in high dimensionality. For instance, a rectangular
range in the original space corresponds to multiple non-contiguous ranges in
the mapped space. As a result a single range query is decomposed to multiple
range queries in the mapped space, which increases the processing cost.
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5.4 Comparison with Related Works

This section illustrates a set of works at the state of the art related to the topic
of the thesis. For each related work this section reports its description and a
comparison with the proposal of the thesis.

5.4.1 Index-based Query Processing on Distributed Multidimen-
sional Data (2013) [1]

Description: Multi-attribute Indexing for Distributed Architecture Systems
(MIDAS) implements a distributed k-d tree, where leaves correspond to peers,
and internal nodes dictate message routing. MIDAS distinguishes the concepts
of physical and virtual peer. A physical peer is an actual machine responsible
for several peers due to node departures or failures, or for load balancing and
fault tolerance purposes. A virtual peer in MIDAS corresponds to a leaf of
the k-d tree, and stores/indexes all key-value tuples, whose keys reside in the
leaves rectangle and for any point in space, there exists exactly one peer in
MIDAS responsible for it. Algorithms for reallocation of virtual peers are
provided if a new physical peers are added o deleted. Two algorithmsO(logn)
and O(log2n) for Nearest Neighbor Queries are also provided. The first one
may involve a large number of peers whereas the second has higher latency
but involves far fewer peers.

Comparison: The paper does not explicitly mention the term semantic.
It is possible to think that semantic is embedded in distance function used
to build the k-d tree. MIDAS shares with our proposal the usage of k-d
trees. A virtual peer in MIDAS contains only partial information about the
k-d tree. MIDAS distinguishes the concepts of physical and virtual peer.
As our proposal, each virtual peer may start a query. A limitation of this
approach could be the fact that initially it assume there is a single physical
peer responsible for entire space. In other words they build the entire k-d tree
on a single machine. In the case of skewed data distribution a tree balancing
could be required. They do not present balancing algorithms.

5.4.2 Distributed k-d Trees for Retrieval from Very Large Image
Collections (2011) [2]

Description: A global k-d Tree is built across M + 1 machines. The root
machine stores the top of the tree, while the leaf machines store the leaves of
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the tree. At query time, the root machine directs features to a subset of the
leaf machines. They do not build the k-d tree on one machine, they rather
build a feature ”‘distributor”’, that represents the top part of the tree, on the
root machine. Since can not fit all the features in the database in one machine,
they simply subsample the features and use as many as the memory of one
machine can take. They claim that this does not affect the performance of
the resulting k-d tree since computing the means in the k-d tree construction
algorithm subsamples the points anyway. They construct the distributed k-d
tree using the Map Reduce paradigm.

Comparison: It seems that the root machine could be a bottleneck.

5.4.3 MD-HBase A Scalable Multi-dimensional Data Infrastruc-
ture for Location Aware Services (2011) [3]

Description: MD-HBase (Multi Dimensional-HBase), is a scalable data
management system for location based sevices. MD-HBase builds two stan-
dard index structures the k-d tree and the Quad tree over a range partitioned
Key-value store. Their prototype implementation using HBase, a standard
open-source Key-value store. They implemented different variants of their
proposal and they have made a performance comparison among them.

Comparison: A limitation of this approach could be the centralized
query entry point.

5.4.4 Using a distributed quadtree index in peer-to-peer networks
(2007) [4]

Description: Their distributed spatial index assigns responsibilities for
regions of space to the peers in the system. Using a quadtree, each subregion
is uniquely identified by its centroid where the recursive space subdivision
lines meet. They call this centroid a control point. They then pass this
information as a key and use a key-based routing protocol. A hash function
is commonly used to randomize the mapping from keys to address locations.
Roughly equal, contiguous blocks of address locations are assigned to each
peer. They attach a peer to a region of space and that peer is responsible
for all query computations that intersect that region, and for storing the
objects that are associated with that region. They use the Chord [48] met-
hod to hash these control points. They used the Network Simulator, ns-2
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(http://www.isi.edu/nsnam/ns), in tandem with the Georgia-Tech Internetwork
Topology Generator, GT-ITM (http://www.cc.gatech.edu/projects/gtitm) in
their experiments.
This index is based on key-based routing protocol, named Chord. As side
effect, Chord create an implicitly load-balanced method that can handle
skewed data distributions.

Comparison: A limitation could be that a query which covers these
multiple control points may return the same object a multiple number of times,
and thus they have to eliminate such superfluous hits. It is not clear how much
does this fact affect the performance.



Conclusions

The main objective of this work is the proposal of index with the following
characteristics:

1. Must be used on a large amount of data. The assumption is that it is not
possible or convenient to use a single workstation to host all the data.

2. In addition to the traditional search (keyword search), must make search
by semantic available. The term ”semantic” means the ability to use lex-
ical relations (hypernymy, hyponymy, meronymy, synonymy, holonymy,
etc.) to improve the quality of search. Referring therefore to the ability
to index not only structured information ?such as points with numeric
coordinates, but also unstructured information as text files.

3. Must be distributed over a computer network and ensure the greatest
possible benefits in terms of efficiency (search, insert, delete), i.e. the
performance should be as close as to the traditional indexes that use a
single workstation.

The basic ideas behind are:

1. A data structure, called Random Trees, based on k-d tree (it has and
embedded a k-d tree) that can be deployed over a network of peers. Both
Random Trees and k-d trees have the time complexity O (logN) for
search, insertion and deletion operations. The Random Trees represent
the main contribution of this work. With a Random Tree distributed over
a network of peers a randomly chosen peer can start the propagation of
a query in the network and the result will be returned by the first peer
that determines that the search is complete. With high probability that
peer is not the peer containing the root of the embedded k-d tree. Of
course, due the distributed nature of the Random Trees, more than one
query can be running at the same time.
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2. The indexing of a text written in natural language by means the set of
steps:

(a) Transform of the text in a set T = {T1, ...Tn} of RDF triples

(b) Define a semantic distance d over T so that (T, d) is a metric space

(c) Define a mapping function M : T → Rk and calculate the points
P = {P1, ...Pn} where Pi = (x1, ...xk) =M (Ti)

(d) Insert the points P1, ...Pn in the Random Tree

(e) Execute queries over the Random Trees. Suppose the resulting
points are R1, ...Rm, return the triples T1, ...Tm such that Ri =
M (Ti).

It was discussed:

1. What a semantic distance between RDF triples is and a set of proposal
suggests how it can be defined combining well-known semantic simila-
rity measures such as Resnik, Leacock & Chodorow, Wu & Palmer [25].

2. What a mapping between metric space e vector space is and, in particu-
lar, what properties it must have. A well-know algorithm (FastMap) was
proposed to calculate the mapping.

An interesting non trivial motivation example related to the software re-
quirements validation (the problem of finding inconsistencies in software re-
quirements written in natural language) was also described [31].
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A.1 K-nearest neighbor searching with a k-d tree

The k-nearest neighbor algorithm can be applied of course both with k-d trees
and binary trees. Let p be the query point and k the number of neighbors to be
extracted from the tree. If T is an instance of the tree and root is its root the
result of the query is:

result = nearestQuery (p, k) (A.1)

Result is a data structure that implements a priority queue having at top
the farthest point from the query point p and it contains at most k points. When
a new instance of a Result is created the query point p and the size k of the
queue must be specified. On an instance of a Result the add point operation
can be performed. After the new point has been added to queue if the size of
the queue exceeds k then the point at the top of the queue is deleted. Result
has a flag that indicates if it is full and the operation getFarthest returns the
top of the queue.

Algorithm 12 nearestQuery(queryPoint, k)
Require: queryPoint and k are integer values
Ensure: return the k-nearest neighbor points of queryPoint in T

1. result ← createResultInstance(queryPoint, k) {create a new in-
stance result of Result for queryPoint with size k}

2. nearestNeighbor(root, queryPoint, k, result, ’none’)
3. return result {result contains the results of the query}
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Algorithm 13 nearestNeighbor(v, p, k, result, status)
Require: n is a node of T p and k are integer values, result is an instance of

Result and status is a string
1. if status 6= NIL then
2. v.status← status
3. end if
4. NN(v, p, k, result)

Algorithm 14 NN(v, p, k, result)
Require: v is a node of T , p and k are integer values and result is an instance

of Result
1. if v.isLeaf then
2. result.add(v.getBucket)
3. else
4. if v.status =′ none′ and not (v.isLeaf) then
5. if p < v.splitV alue then
6. v.status←′ leftV isited′
7. nearestNeighbor(v.left, p, k, result, ’none’)
8. else
9. v.status←′ rightV isited′

10. nearestNeighbor(v.right, p, k, result, ’none’)
11. end if
12. end if
13. if v.status =′ rightV isited′ then
14. if v.left 6= NIL and mustBeV isited(v, p, result) then
15. nearestNeighbor(v.left, p, k, result, ’none’)
16. end if
17. end if
18. if v.status =′ leftV isited′ then
19. if v.right 6= NIL and mustBeV isited(v, p, result) then
20. nearestNeighbor(v.right(), p, k, result, ’none’)
21. end if
22. end if
23. end if
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Algorithm 15 mustBeVisited(v, p, result)
Require: v is a node of T , p is integer value and result is an instance of

Result
1. if result is not full then
2. return true{do always descend}
3. end if
4. if distance(p, v.splitV alue) < distance(p, result.getFarthest) then
5. return true{descend other sibling also}
6. else
7. return false{do not descend}
8. end if
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A.1 K-nearest neighbor searching with a distributed
k-d tree

Suppose that:

1. The k-d tree has the set of nodes N = {n1, ..., nh};

2. There are PR = {pr1, ..., prt} processors. Each processor:

(a) executes the same algorithm;

(b) can send a message M to any other processor pr calling
SendMessage(pr,M);

(c) has a priority queue containing the messages. After the startup
each processor pr waits for a message and on receiving a message
the function onReceivingMessage is called.

3. There is a mapping function MAP : N → PR between nodes and
processor is defined. That is, MAP (n) = pr means that the node n is
allocated on processor pr;

4. The query q = (p, k) must be executed on the k-d tree, where p ≡
(x1, ..., xd) is a d-dimensional point and k is an integer;

5. Each node n ∈ N :
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(a) has a structure Status containing the fields 〈q, value〉, where
q = (p, k) is the current query and value ∈ S =
{none, allV isited, rightV isited, leftV isited};

(b) knows the processor pr that hosts it, that is MAP (n) = pr.

6. Each message carries the fields 〈q, v, results, statusV alue, priority〉,
where q = (p, k) is the current query, v ∈ N , result is the same of
section A.1, statusV alue ∈ S and priority is the priority value of the
massage.

IfM = 〈q, n, results, status, priority〉 is a message assume, for the sake
of simplicity, that it is possible to access to the information in the message
M with dot notation. For example, the query point p of the current query
q = (p, k) contained in M is M.q.p.

On receiving the message M , the onReceiveMessage method starts the
distributed search in the current processor.

Algorithm 16 onReceiveMessage (M)

Require: M is a message
1. DistributedNN (M.q,M.v,M.results,M.status)

Algorithm 17 DistributedNN (q, n, results, status, priority)

Require: q is query, n is a node of T , results is an instance of Results,
status is an instance of Status and priority is an integer value

1. if results = NIL then
2. {Create a new instance results of typeResults for query point q.p and

q.k points}
3. end if
4. pr ←MAP (n)
5. if pr is the current processor then
6. if status 6= NIL then
7. n.setStatus (q, status)
8. end if
9. DNN (q, n, results, priority) {same processor}

10. else
11. M ← 〈q, n, results, status, priority〉
12. SendMessage (pr,M) {another processor}
13. end if
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Each node n has a distinct status for each q because more than one query
could be executed simultaneously. In fact, a new q1 can start even if the previ-
ous query q is still running. Even if a single processor can execute one nearest
neighbors at time, it can be idle because it is waiting for the elaboration of q
in its subtree that is contained in another processor and it is waiting for a mes-
sage. In the meantime, the same processor can receive a new message for q1
and then it starts the elaboration of q1.
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Algorithm 18 DNN (q, n, results, status, priority)

Require: q is query, n is a node of T , results is an instance of Results,
status is an instance of Status and priority is an integer value

1. if n.isLeaf then
2. results.add (q, n.points)
3. if n.parent 6= NIL then
4. DistributedNN (q, n.parent, results,NIL, prty + 1)
5. else
6. G← 〈q, results〉
7. SendMessage (S,G) {the search has been completed. Returns

results to sender S}
8. end if
9. else

10. if n.getStatus (q) =′ leftV isited′ then
11. if n.right 6= NIL and mustBeV isited (n.right) then
12. n.setStatus(q,′ allV isited′)
13. DistributedNN (q, n.right, results,′ none′, prty + 1)
14. end if
15. end if
16. if n.getStatus (q) =′ rightV isited′ then
17. if n.left 6= NIL and mustBeV isited (v.left) then
18. n.setStatus (q,′ allV isited′)
19. DistributedNN (q, n.left, results,′ none′, prty + 1)
20. end if
21. end if
22. if n.getStatus (q) =′ none′ then
23. if p (v.splitAxis) < v.splitV alue then
24. n.setStatus(q, v,′ leftV isited′) {Descend Left}
25. DistributedNN(q, n.left, results,′ none′, prty + 1)
26. else
27. n.setStatus(q, n,′ rightV isited′) {Descend right}
28. DistributedNN(q, n.right, results,′ none′, prty + 1)
29. end if
30. end if
31. end if

Please, note that the older messages the higher the priority. Let r the root of
the k-d tree and suppose that pr = MAP (r). The k-nearest neighbor search
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for query point p starts with:

M ←
〈
Q, q, v,NIL,′ none′

〉
(A.1)

SendMessage(pr,M) (A.2)

At the end of elaboration the data structure results in pr contains the results
of the query.
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A.1 K-nearest neighbor searching with a k-d tree using
ending nodes

The result of the query is:

result = nearestQueryWithEndingNode(p, k) (A.1)

The data structure Result of the previous sections is was updated with the
boolean attributes upFromLeft and upFromRight.

Algorithm 19 nearestQueryWithEndingNode(queryPoint, k)

Require: queryPoint and k are an integer values
Ensure: return the k-nearest neighbor points of queryPoint in T

1. result ← createResultInstance(queryPoint, k) {create a new in-
stance result of Result for queryPoint with size k}

2. result.EndingNode← root
3. nearestNeighborWithEndingNode(root, queryPoint, k, result, ’none’)
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Algorithm 20 nearestNeighborWithEndingNode(v, p, k, result, status)

Require: v is a node, p and k are an integer values, result is an instance of
Result and status is a string

1. if status 6= NIL then
2. v.status← status
3. end if
4. NNWithEndingNode (v, p, k, result)
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Algorithm 21 NNWithEndingNode(v, p, k, result)

Require: v is a node, p and k are an integer values, result is an instance of
Result

1. if v.isLeaf then
2. result.add(v.Bucket)
3. else
4. if v.Status =′ none′ then
5. if p < v.SplitV alue then
6. v.status←′ leftV isited′
7. nearestNeighborWithEndingNode(v.left, p, k, result, ’none’)
8. else
9. v.status←′ rightV isited′

10. nearestNeighborWithEndingNode(v.right, p, k, result, ’none’)
11. end if
12. end if
13. if result.UpFromLeft 6= TRUE or result.UpFromRight 6=

TRUE then
14. if v.status =′ rightV isited′ then
15. if v.left 6= NIL and mustBeV isited(v, p, result) then
16. nearestNeighborWithEndingNode(v.left, p, k, result, ’none’)
17. else
18. result.UpFromLeft← TRUE
19. end if
20. end if
21. if v.status =′ leftV isited′ then
22. if v.right 6= NIL and mustBeV isited(v, p, result) then
23. nearestNeighborWithEndingNode(v.right, p, k, result, ’none’)
24. else
25. result.UpFromRight← TRUE
26. end if
27. end if
28. else
29. if result.EndingNode = root then
30. result.EndingNode← v
31. end if
32. end if
33. end if
34. v.setStatus← NIL
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Please, note that the procedure NNWithEndingNode stops if the follo-
wing condition is true and it does not elaborate any other subtrees:

result.UpFromLeft = TRUE OR result.UpFromRight = TRUE (A.2)
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A.1 Random k-nearest neighbor searching with a k-d
tree using ending nodes

These section lists the complete pseudocode of the random k-nearest neighbor
algorithm with binary trees. The following code assume that:

1. The function randInt(inf, sup) returns a random integer such that:
inf ≤ i ≤ sup

2. The list leftSideNodes contains nodes belonging to the left subtree of
the root.

3. The list rightSideNodes contains nodes belonging to the right subtree of
the root.
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Algorithm 22 randomNearestQuery(queryPoint, k)
Require: queryPoint and k are an integer values

1. randomNodeIndex← 0
2. randomNode← NIL
3. {select the side}
4. if queryPoint < root.splitV alue then
5. {choose a node in left subtree}
6. randomNodeIndex← randInt(0, (leftSideNodes.size()− 1))
7. randomNode← leftSideNodes.get(randomNodeIndex)
8. else
9. {choose a node in right subtree}

10. randomNodeIndex← randInt(0, (rightSideNodes.size()− 1))
11. randomNode← rightSideNodes.get(randomNodeIndex)
12. end if
13. startNode← findStartingNode(queryPoint, randomNode)
14. {create a new object result}
15. result← newResult(queryPoint, k)
16. result.endingNode← root
17. randomNearestNeighbor(startNode, queryPoint, k, result, none)
18. {return result}

Algorithm 23 nearestNeighbor(v, p, k, result, Stringstatus)
Require: v is a node, p and k are an integer values, result is an instance of

Result and status is an instance of Status
1. if status 6= NIL then
2. v.status← status
3. end if
4. RandomNN (v, p, k, result)
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Algorithm 24 RandomNN(v, p, k, result)

Require: v is a node, p and k are an integer values, result is an instance of
Result

1. if v.isLeaf then
2. result.add(v.Bucket)
3. if mustBeSetParentStatus(v) then
4. nearestNeighbor(v.parent, p, k, result, null)
5. end if
6. else
7. if v.Status =′ none′ then
8. if p < v.SplitV alue then
9. v.status←′ leftV isited′

10. nearestNeighbor(v.left, p, k, result, ’none’)
11. else
12. v.status←′ rightV isited′
13. nearestNeighbor(v.right, p, k, result, ’none’)
14. end if
15. end if
16. if result.UpFromLeft 6= TRUE or result.UpFromRight 6=

TRUE then
17. if v.status =′ rightV isited′ then
18. if v.left 6= NIL and mustBeV isited(v, p, result) then
19. nearestNeighbor(v.left, p, k, result, ’none’)
20. else
21. result.UpFromLeft← TRUE
22. end if
23. if mustBeSetParentStatus(v) then
24. nearestNeighbor(v.parent, p, k, result, null)
25. end if
26. end if
27. if v.status =′ leftV isited′ then
28. if v.right 6= NIL and mustBeV isited(v, p, result) then
29. nearestNeighbor(v.right, p, k, result, ’none’)
30. else
31. result.UpFromRight← TRUE
32. end if
33. if mustBeSetParentStatus(v) then
34. nearestNeighbor(v.parent, p, k, result, null)
35. end if
36. end if
37. else
38. if result.EndingNode = root then
39. result.EndingNode← v
40. end if
41. end if
42. end if
43. v.setStatus← null
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A.1 Starting Node Property with min/max values
(SNPMinMax)

If the internal nodes of the tree also contain the minimum and maximum values
of the points contained its subtree (leaves already have this information) the
Starting Node Property could be rewritten as:

Theorem A.1 Let M = {m1, ...,mj} be the set of nodes visited by the KNN
algorithm during the execution of the query q = (p, k). If the point p is in the
tree then (SNPMinMax):

m.minV alue ≤ p ≤ m.maxV alue⇔ m ∈M (A.1)

The SNPMinMax is a necessary and sufficient condition to determine whet-
her a node is visited by the KNN algorithm. If the node is a leaf m.minV alue
andm.maxV alue are respectively the minimum and maximum values contai-
ned in the bucket.
Proof: m.minV alue ≤ p ≤ m.maxV alue ⇒ m ∈ M . The proof is the
same of SNP.
m ∈ M ⇒ m.minV alue ≤ p ≤ m.maxV alue. Suppose m is a left child of
m.parent, then:

p ≤ m.parent.splitV alue (A.2)

Note that:

m.maxV alue = m.parentSplitV alue (A.3)
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Then:
p ≤ m.maxV alue (A.4)

The proof of the other inequality:

m.minV alue ≤ p (A.5)

is by induction. Because p is in the tree then for the root node holds that:

r.minV alue ≤ p (A.6)

Suppose the inequality applies for the parent of m, that is:

m.parent.minV alue ≤ p (A.7)

Then:
m.parent.minV alue = m.minV alue (A.8)

It follows that the inequality applies to m also:

m.minV alue ≤ p. (A.9)

If m is a right child the proof is symmetrical.
The findStartingNodeminMax uses SNPMinMax property to find a

starting node.

Algorithm 25 findStartingNodeMinMax(p, n)

Require: p is an integer vale and n is a node
Ensure: return a starting node m ∈M for query point p

1. if n.isRoot then
2. return n
3. else
4. if n.minV alue ≤ p ≤ n.maxV alue then
5. return n
6. else
7. return findStartingNodeMinMax(p, n.parent())
8. end if
9. end if

Table 2.6 shows test results of the execution of
testAverageF indStartingNode using findStartingNodeMinMax
algorithm.



A.1. STARTING NODE PROPERTY WITH MIN/MAX VALUES (SNPMINMAX)71

Table A.1: Test results of testAverageF indStartingNode with
findStartingNodeMinMax algorithm.

bucket dim. %
Number of points in the tree

average
512 1024 2048 4096 8192 16384 32768

5
root 65 65 65 65 65 65 65 65
root 35 35 35 35 35 35 35 35

10
root 65 65 65 65 65 65 65 65

no root 35 35 35 35 35 35 35 35

20
root 64 65 65 65 65 65 65 64.9

no root 36 35 35 35 35 35 35 35.1

30
root 66 67 67 67 67 67 67 66.9

no root 34 33 33 33 33 33 33 33.1

40
root 63 64 65 65 65 65 65 64.6

no root 37 35 35 35 35 35 35 35.4

average
root 64.6 65.2 65.4 65.4 65.4 65.4 65.4 65.3

no root 35.4 34.8 34.6 34.6 34.6 34.6 34.6 34.7

A comparison between Table 2.7 and Table 2.9 shows that there are no
significant improvement using the findStartingNodeMinMax instead of
findStartingNode.
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A.1 Iterating the findStartingNode algorithm appro-
ach

It is interesting to try to extend the findStartingNode algorithm approach to
the second level of the tree. Basically, node are labeled as:

1. left children of left child of the root as left-left;

2. right children of right child of the root as left-right;

3. left children of right child of the root as right-left;

4. right children of right child of the root as right-right;

The new findStartingNodeSide2 algorithm is the algorithm 26.
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Algorithm 26 findStartingNodeSide2 (queryPoint)
Require: queryPoint is an integer value
Ensure: return a starting node for query point p

1. if queryPoint < root.splitV alue then
2. if queryPoint < root.left.splitV alue then
3. {let randomNode a left-left randomly chosen node}
4. else
5. {let randomNode a left-right randomly chosen node}
6. end if
7. else
8. if queryPoint < root.right.splitV alue then
9. {let randomNode a right-left randomly chosen node}

10. else
11. {let randomNode a right-right randomly chosen node}
12. end if
13. end if
14. start← tree.findStartingNode(queryPoint, randomNode)
15. return start

The Table A.1 show the results of the same tests of Table 2.7 carried out
on the findStartingNodeSide2.

Table A.1: Test results of testAverageF indStartingNode with
findStartingNodeSide2 algorithm.

bucket dim. %
Number of points in the tree

average
512 1024 2048 4096 8192 16384 32768

5
root 34 34 34 34 34 34 34 34

no root 66 66 66 66 66 66 66 66

10
root 38 39 38 38 38 38 38 38.1

no root 62 61 62 62 62 62 62 61.9

20
root 38 38 39 38 38 38 38 38.1

no root 62 62 61 62 62 62 62 61.9

30
root 35 36 37 34 34 34 34 34.9

no root 66 64 63 66 66 66 66 65.1

40
root 38 38 38 38 38 38 38 38

no root 62 62 62 62 62 62 62 61

average
root 36.6 37 37.2 36.4 36.4 36.4 36.4 36.6

no root 63.2 63 62.8 63.6 63.6 63.6 63.6 63.4
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A comparison between Table A.1 and Table 2.7 shows that there
are no significant improvement using the findStartingNode2 instead of
findStartingNode
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Follows a brief introduction to the Automatic Query Expansion (AQE) alt-
hough it is not directly related to Multi-dimensional data structures. The AQE
is a widespread approach for information retrieval, and it can provide useful
insights to the definition of new measures of semantic similarity.

A.1 Automatic Query Expansion state of the art

Search Engines are essential tools form most computer users in a wide variety
of context. As result, Information Retrieval has become an important field of
research over the last 30 years or so. Many document indexing and retrieval
have been proposed which have been shown to be generally effective. Howe-
ver, a deeper analysis reveals that even though these techniques improve per-
formance on average, there is often wide variation in the impact of a particular
technique on the retrieval effectiveness for individual queries. The problem
knows as the vocabulary problem Furnas et al. [49] is the most critical issue
for the for retrieval effectiveness: the indexers and the users do often not use
the same words. Furthermore, synonymy (different words with the same or si-
milar meanings, such as tv and television together with word inflections (such
as with plural forms, television versus televisions, may result in a failure to
retrieve relevant documents, with a decrease in recall (the ability of the system
to retrieve all relevant documents) and polysemy (same word with different
meanings, such as ÔaavaÔ c© may cause retrieval of erroneous or irrelevant
documents, thus implying a decrease in precision (the ability of the system to
retrieve only relevant documents).

To cope with the problem of vocabulary, different approaches have been
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proposed: interactive query refinement, relevance feedback, word sense disam-
biguation and search results clustering. One of the most common techniques
is to expand the original adding related keywords to a (typically short) query
provided by a user. These additional keywords (or expansion terms) generally
increase the likelihood of a match between the query and relevant documents
during retrieval, thereby improving user satisfaction. Automatic query expan-
sion has a long history in information retrieval (IR), as has been suggested
since 1960 by Maron and Kuhns [50].

According to [51] AQE techniques can be classified into five main groups
according to the conceptual paradigm used for finding the expansion featu-
res: linguistic methods, corpus-specific statistical approaches, query-specific
statistical approaches, search log analysis and Web data.

Linguistic methods leverage global language properties such as morpholo-
gical, lexical, syntactic and semantic word relationships to expand or reformu-
late query terms. They are typically based on dictionaries, thesauri, or other
similar knowledge representation sources such as WordNet. These techniques
are usually generated independently of the full query and of the content of the
database being searched, they are usually more sensitive to word sense am-
biguity. In [52], a semantic query expansion methodology called SQX-Lib,
that combines different techniques, such as lemmatization, NER and seman-
tics, for information extraction from a relational repository is presented. It in-
cludes a disambiguation engine that calculates the semantic relation between
words in case it finds ambiguities and selects the best meaning for those words.
SQX-Lib is integrated in a real major Media Group in Spain. Dalton et al. [53]
proposed an AQE method based on annotations of entities from large general
purpose knowledge bases, such as Freebase and the Google Knowledge Graph.
They proposed a new technique, called entity query feature expansion (EQFE)
which enriches the query with features from entities and their links to kno-
wledge bases, including structured attributes and text. One limitation of this
work is that it depends upon the success and accuracy of the entity annotations
and linking. Bouchoucha et al. [54] presented a unified framework to integrate
multiple resources for Diversified Query Expansion. By implementing two
functions, one to generate expansion term candidates and the other to com-
pute the similarity of two terms, any resource can be plugged into their fra-
mework. Experimental results show that combining several complementary
resources performs better than using one single resource. In [55] a new way of
using WordNet for Query Expansion is proposed with a combination of three
QE methods that takes into account different aspects of a candidate expansion



A.1. AUTOMATIC QUERY EXPANSION STATE OF THE ART 79

terms usefulness. For each candidate expansion term, this method considers its
distribution, its statistical association with query terms, and also its semantic
relation with the query.

Corpus-specific statistical approaches analyze the contents of a full data-
base to identify features used in similar ways. Most early statistical approaches
to AQE were corpus-specific and generated correlations between pairs of terms
by exploiting term co-occurrence, either at the document level, or to better
handle topic drift, in more restricted contexts such as paragraphs, sentences, or
small neighborhoods. In [56], a new method, called AdapCOT, which applies
co-training in an adaptive manner to select feedback documents for boosting
QEs effectiveness is proposed. Co-training is an effective technique for clas-
sification over limited training data, which is particularly suitable for selecting
feedback documents. The proposed AdapCOT method makes use of a small
set of training documents, and labels the feedback documents according to
their quality through an iterative process. Colace et al. [57] used a minimal
relevance feedback to expand the initial query with a structured representation
composed of weighted pairs of words. Such a structure is obtained from the
relevance feedback through a method for pairs of words selection based on the
Probabilistic Topic Model. The proposed approach computes the expanded
queries considering only endogenous knowledge

Query-specific techniques take advantage of the local context provided by
the query. They can be more effective than corpus-specific techniques because
the latter might be based on features that are frequent in the collection but ir-
relevant for the query at hand. Ermakova et al. [58] proposed a new automatic
QE method that estimates the importance of expansion candidate terms by the
strength of their relation to the query terms. The method combines local ana-
lysis and global analysis of texts. Yang [59] suggested a method that applies a
linguistic filter and a C-value method to extend the query terms, and then uses
the Normalized Google Distance-based method to calculate the term weight
and choose Top-N terms as extended query. They claim that the Normalized
Google Distance (NGD) with some global factors enhance the relevance bet-
ween initial query and extended query, and improve the accuracy of the search
results of the expert finding system.

Search log analysis paradigm is based on analysis of search logs. The
idea is to mine query associations that have been implicitly suggested by Web
users, thus bypassing the need to generate such associations in the first place
by content analysis. Search logs typically contain user queries, followed by the
URLs of Web pages that are clicked by the user in the corresponding search
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results page. One advantage of using search logs is that they may encode
implicit relevance feedback, as opposed to strict retrieval feedback. Web data
techniques rely on the presence of the anchor texts. Anchor texts and real
user search queries are very similar because most anchor texts are succinct
descriptions of the destination page.
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