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Chapter 1 

Introduction 

Seismic base isolation has become a widely accepted technique for the earthquake protection 

of buildings and bridges. The concept of base isolation is quite simple: the introduction of a 

flexible base isolation system between the foundation and the structure allows one to move 

the period of the latter away from the predominant period of the ground motion with the 

benefit of reducing floor accelerations, story shears and interstory drifts (Kelly 1997, Naeim 

and Kelly 1999). 

The analysis of seismically base-isolated structures to determine deformations and forces 

induced by the ground excitation is an essential step in the design process. 

A structural analysis procedure requires a discrete structural model of the actual structure, a 

representation of the earthquake ground motion and a method of analysis for assembling and 

solving the governing equations. Structural analysis procedures currently adopted for base-

isolated structures are: Linear Static Procedure (LSP), Linear Dynamic Procedure (LDP), and 

Nonlinear Dynamic Procedure (NDP).  

This thesis deals with the NDP which requires a discrete structural model having nonlinear 

elements able to simulate the nonlinear dynamic behavior displayed by seismic isolation 

devices due to the nonlinear material response and/or nonlinear geometry under large 

displacements, specific earthquake ground motion records, and a nonlinear response history 

analysis method. 

The three-dimensional (3d) discrete structural model of an actual base-isolated structure, 

generally consisting of frame elements for modeling beams and columns, can be divided into 

two substructures, namely, the superstructure and the base isolation system. The former is 

usually modeled under the assumption that it deforms within the elastic range. This 

assumption is reasonable in the context of base isolation and has been adopted by several 

researchers (Tarics et al. 1984, Asher et al. 1990) to reduce the computation effort. In some 

cases, it may be necessary to consider the superstructure also to be inelastic, although this is 

not dealt with in the present study. The base isolation system consists of seismic isolation 
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bearings, called seismic isolators, and a full diaphragm above the seismic isolation devices 

that is generally introduced to distribute the lateral loads uniformly to each seismic isolator 

(Naeim 2001). The base isolation system can include linear and nonlinear isolation elements. 

Existing phenomenological models (Nagarajaiah et al. 1991, Kikuchi and Aiken 1997, Hwang 

et al. 2002, Tsai et al. 2003) and plasticity-based models (Way and Jeng 1989, Huang et al. 

2000, Huang 2002) can be adopted to simulate the nonlinear dynamic behavior of seismic 

isolators. 

As far as the nonlinear response history analysis method is concerned, a conventional non-

partitioned solution approach, characterized by the use of an implicit single-step time 

integration method adopted with an iteration procedure, such as the Newton-Raphson, the 

modified Newton-Raphson, or the pseudo-force iteration method, is generally employed to 

solve the nonlinear dynamic equilibrium equations of base-isolated structures subjected to 

earthquake excitation (Wilson 2002). 

Among conventional non-partitioned solution methods and nonlinear mathematical models, 

the solution algorithm and analytical model proposed by Nagarajaiah et al. (1991), both 

implemented in the computer program 3D-BASIS-ME-MB (Tsopelas et al. 2005), are 

presented in this dissertation because specifically developed for the nonlinear dynamic 

analysis of base-isolated structures with either elastomeric and/or sliding isolation systems. In 

this non-partitioned solution approach, the equations of motion are solved using the implicit 

unconditionally stable Newmark's constant average acceleration method with the nonlinear 

restoring forces of the seismic isolators being represented as pseudo-forces. An iterative 

procedure consisting of corrective pseudo-forces is employed within each time step until 

equilibrium is achieved. The analytical model, based on the set of two first order nonlinear 

ordinary differential equations proposed by Park et al. (1986), is able to represent the uniaxial 

and biaxial behavior of both elastomeric and sliding isolation bearings. 

The solution of the nonlinear dynamic equilibrium equations using the above-described 

conventional implicit single-time step integration method and the use of the differential 

equation model can require significant computational effort (Vaiana et al. 2017a).  

This thesis deals with the development of five mathematical models and a numerical time 

integration method for the nonlinear time history analysis of base-isolated structures with the 

aim of simulating the nonlinear dynamic behavior of seismic isolators at both small and large 

displacements and reducing numerical computations, making the nonlinear dynamic analysis 

almost as fast as a linear dynamic analysis. 
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1.1 Mathematical Models  

Seismic devices generally exhibit symmetric softening force-displacement hysteresis loops 

within a relatively large displacements range, that is, under the design earthquake loading 

(Constantinou et al. 2007). At large displacements, several isolators, such as high damping 

rubber bearings and Wire Rope Isolators (WRIs), exhibit a hardening stiffness (Tsai et al. 

2003, Vaiana et al. 2017c, 2017d), whereas others, such as unbonded elastomeric bearings 

with deformable reinforcing layers, display a softening behavior with a negative tangent 

stiffness (Spizzuoco et al. 2014).  

The differential equation Bouc-Wen Model (BWM), developed by Bouc (1971) and then 

adopted by Wen (1976, 1980) for the study of the random vibration of hysteretic systems, has 

been adapted for modeling the uniaxial behavior of elastomeric bearings, sliding bearings, and 

WRIs within the relatively large displacements range (Constantinou et al. 1990, Nagarajaiah 

et al. 1991, Demetriades  et al. 1993), and has been implemented in many computer programs, 

such as 3D-BASIS, SAP2000, and ETABS. Nevertheless, this model is unable to efficiently 

capture the behavior of seismic isolators at large displacements (Ni et al. 1999, Tsai et al. 

2003). Furthermore, the use of such differential equation model increases the computational 

effort very significantly (Vaiana and Serino 2017c) because of the numerical solution of a 

first order nonlinear ordinary differential equation required at each time step of a nonlinear 

time history analysis.  

In this dissertation, four one-dimensional (1d) mathematical models, namely, Nonlinear 

Exponential Model (NEM), Parallel Model (PM), Advanced Nonlinear Exponential Model 

(ANEM), and Advanced Parallel Model (APM), are proposed in order to reduce the number 

of model parameters to be identified from experimental tests and to avoid the numerical 

solution of the nonlinear differential equation required in the BWM. The NEM and the PM 

are able to predict the bilinear and the rigid-plastic behavior displayed by seismic isolators 

within the relatively large displacements range, whereas the ANEM and the APM can 

simulate the nonlinear dynamic response of seismic isolation devices having hardening or 

softening behavior at large displacements and can capture the smooth transition of the 

hysteresis loops from small to large displacements using only one set of model parameters 

evaluated from experimental hysteresis loops with the largest amplitude. 

The PM and the APM are sufficiently versatile to be easily implemented in existing nonlinear 

finite element computer programs.  
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The proposed mathematical models have been validated by comparing the experimental 

hysteresis loops obtained from horizontal dynamic tests, performed at the Department of 

Industrial Engineering of the University of Naples Federico II on four WRIs and a Recycled 

Rubber-Fiber Reinforced Bearing (RR-FRB), with those predicted numerically.   

In addition, a two-dimensional (2d) Parallel Model (2d PM), able to take into account the 

transverse biaxial interaction between the nonlinear hysteretic restoring forces within the 

relatively large displacements range, is also presented. 

1.2 Numerical Method 

The numerical solution of the nonlinear dynamic equilibrium equations of seismically base-

isolated structures adopting a conventional non-partitioned solution approach, that is, an 

implicit single-step time integration method employed in conjunction with an iterative 

procedure, can require considerable computational effort (Vaiana et al. 2017a, 2017b). 

In order to achieve a substantial reduction in computation, a partitioned solution approach 

(Felippa et al. 2001) can be used to perform the nonlinear dynamic analysis.  

In the last 30 years, various authors (Hughes et Liu 1978, Belytschko et al. 1979, Wu and 

Smolinski 2000, Combescure and Gravouil 2002, Herry et al. 2002) developed several 

partitioned time integration methods allowing different time steps or time integration 

algorithms or both to be used in different spatial subdomains of the mesh. 

In the context of seismically base-isolated structures, the above-mentioned approach can be 

easily employed being the decomposition of the discrete structural model of such structures 

driven by physical considerations: the base isolation system is much more flexible than the 

superstructure to decouple the latter from the earthquake ground motion.  

In this dissertation, a Mixed Explicit-Implicit time integration Method (MEIM) is specifically 

proposed for the nonlinear dynamic analysis of base-isolated structures: at each time step of 

the analysis, the nonlinear response of the base isolation system is computed first using the 

explicit conditionally stable central difference method, then the implicit unconditionally stable 

Newmark’s constant average acceleration method is employed to evaluate the superstructure 

linear response, with the remarkable benefit of avoiding the iterative procedure within each 

time step of a nonlinear time history analysis required by conventional non-partitioned 

solution approaches. 

Since the MEIM is conditionally stable because of the use of the central difference method, a 

procedure to evaluate the critical time step is first developed for 2d base-isolated structures 
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and then extended to the 3d case. 

The proposed numerical time integration method is adopted to analyze four different 3d base-

isolated structures subjected to bidirectional earthquake excitation and the numerical results 

are compared with those obtained by using the solution algorithm proposed by Nagarajaiah et 

al. (1991) in order to demonstrate the accuracy and the computational efficiency of the 

proposed method. 

1.3 Outline of the Dissertation 

The dissertation is organized into eight chapters, whose contents are herein briefly described. 

Chapter 1 illustrates the objective and scope of the study.  

Chapter 2 deals with the modeling of seismically base-isolated structures: starting from the 

description of the 3d discrete structural model of such structures, the superstructure and the 

base isolation system modeling are presented and then the dynamic equilibrium equations are 

formulated.  

In Chapter 3, two common types of seismic isolation devices, namely, elastomeric and sliding 

bearings, are described. Furthermore, the results of an extensive series of experimental tests, 

conducted at the Department of Industrial Engineering of the University of Naples Federico II 

on a RR-FRB and four WRIs, are presented.   

Chapter 4 is concerned with the modeling of seismic isolators. After a detailed description of 

widely used differential equation models, namely, BWM, Modified Bouc-Wen Model 

(MBWM), and 2d Bouc-Wen Model (2d BWM), the proposed mathematical models, that is, 

NEM, ANEM, PM, APM, and 2d PM, are presented. The chapter concludes with 

comparisons between the described differential equation models and the proposed ones.  

In order to demonstrate the validity of the proposed mathematical models, in Chapter 5, the 

results predicted numerically are compared to those obtained experimentally from horizontal 

dynamic tests performed on a RR-FRB and four WRIs, as described in Chapter 3. 

Chapter 6 describes the conventional non-partitioned solution approach developed by 

Nagarajaiah et al. (1991) specifically for seismically base-isolated structures and presents the 

proposed partitioned solution approach. After the description of the MEIM, a procedure to 

evaluate the critical time step is illustrated and then four numerical applications are presented 

to demonstrate the accuracy and the computational efficiency of the proposed method. 

Chapter 7 presents a numerical application in order to show the significant reduction of the 

computational effort due to the use of the MEIM and NEM.  
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In Chapter 8, conclusions are presented, as well as considerations and suggestions for further 

research and future developments. 

Parts of this original research have been already published in the proceedings of international 

conferences or peer-reviewed journals. The experimental tests performed on WRIs, described 

in Chapter 3, have been presented in Vaiana et al. (2017c, 2017d), the mathematical models, 

described in Chapter 4 and verified in Chapter 5, have been presented in Vaiana et al. (2016, 

2017a, 2017d) and in Vaiana and Serino (2017a, 2017b, 2017c), the proposed partitioned 

solution approach, described in Chapter 6, has been presented in Vaiana et al. (2017a, 2017b), 

whereas the content of Chapter 7 in Vaiana et al. (2017a). 



Chapter 2 

Modeling of Base-Isolated Structures 

2.1 Introduction 

The 3d discrete structural model of an actual base-isolated structure can be decomposed into 

two substructures: the superstructure and the base isolation system.  

The base isolation system consists of seismic isolation bearings called seismic isolators and a 

full diaphragm above the seismic isolation devices which is generally introduced to distribute 

the lateral loads uniformly to each bearing (Naeim 2001). Introducing a flexible base isolation 

system between the foundation and the superstructure leads to decouple the latter from the 

earthquake ground motion.  

Figure 2.1 shows the 3d discrete structural model of a two-story base-isolated structure. 

 

Figure 2.1. 3d discrete structural model of a two-story base-isolated structure. 

In the following, the superstructure and the base isolation system modeling are presented and 

the dynamic equilibrium equations are formulated. 
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2.2 Modeling of the Superstructure 

The geometry of the 3d discrete structural model of a base-isolated structure is defined in a 

global, right-handed Cartesian coordinate system, denoted with upper case letters X, Y, and Z, 

and attached to the center of mass of the base isolation system.  

The superstructure is considered to remain elastic during the earthquake excitation because it 

is assumed that the introduction of a flexible base isolation system allows one to reduce the 

earthquake response in such a way that the superstructure deforms within the elastic range. 

Each superstructure floor diaphragm (or floor slab) is assumed to be infinitely rigid in its own 

plane, the columns are assumed to be axially inextensible and the beams are considered to be 

axially inextensible and flexurally rigid. These kinematics constraints, generally adopted in 

the literature (Chopra 2012) for beams and columns, are here assumed for simplicity and can 

be removed straightforwardly without any influence on the generality of the results presented 

in this work. Because of this structural idealization, the total number of a n-story 

superstructure degrees of freedom (dofs), denoted with nts, is equal to 3n and three dofs are 

attached to the i-th superstructure diaphragm reference point io  belonging to the horizontal 

plane of the i-th floor diaphragm and vertically aligned to the global coordinate system origin 

O. The three dofs of the i-th superstructure diaphragm are the two horizontal translations )(i
xu  

and )(i
yu  in the X and Y directions and the torsional rotation )(i

ru  about the vertical axis Z. 

These three floor diaphragm displacements can be defined relative to the ground or relative to 

the base isolation system (Muscolino 1990). In this thesis, the former approach is selected so 

that the dynamic equilibrium equations of the 3d discrete structural model of an actual base-

isolated structure are coupled in terms of elastic and viscous forces and decoupled in terms of 

inertial forces.  

The superstructure displacement vector su , having size nts x 1, is defined by:   

 { }T 
nis   uuuu LL1= ,  (2.1) 

where 

 { }T 

ryx  uuu )1()1()1(
1 =u ,  (2.2) 

 { }T i
r

i
y

i
xi  uuu )()()(=u ,  (2.3) 
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 { }T n
r

n
y

n
xn  uuu )()()(=u ,  (2.4) 

are the displacement vectors of the first, i-th, and n-th superstructure floor diaphragm, 

respectively. 

The superstructure diaphragm mass should include the contributions of the dead load and live 

load on the floor diaphragm and the contributions of the structural elements, such as columns 

and walls, and of the nonstructural elements, such as partition walls and architectural finishes, 

between floors (Chopra 2012).   

The superstructure mass matrix sm is:  
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where the i-th superstructure diaphragm mass matrix im  is given by:  
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m ,  (2.6) 

in which, )(im  is the i-th diaphragm mass, )(i 
xS  and )(i 

yS  are the first moments of the i-th 

diaphragm mass about the global horizontal axes X and Y, respectively, and )(i 
OI  is the 

moment of inertia of the i-th diaphragm about the global vertical axis Z. If the mass center of 

the i-th floor diaphragm and the origin of the global coordinate system O are aligned 

vertically the superstructure diaphragm mass matrix is diagonal.  

The superstructure stiffness matrix sk  is: 
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where the i-th superstructure story stiffness matrix ik  is given by: 
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in which, )(i
xxk , )(i

xyk , and )(i
xrk  are the resulting elastic forces in X direction of the i-th 

superstructure story due to unit translation in X and Y directions and unit torsional rotation of 

the i-th superstructure diaphragm about the vertical axis Z, respectively; )(i
yyk , )(i

yxk  and )(i
yrk  are 

the resultants of the elastic forces in Y direction of the i-th superstructure story due to unit 

translation in Y and X directions and unit torsional rotation of the i-th superstructure 

diaphragm about the vertical axis Z, respectively; and )(i
rrk  is the resultant of the elastic 

torsional moment of the i-th superstructure story due to unit torsional rotation of the i-th 

superstructure diaphragm about the vertical axis Z. The torsional stiffness of each individual 

resisting vertical element, that is, column or wall, is considered negligible (Jangid and Datta 

1995).      

Classical damping is an appropriate idealization if similar damping mechanisms are 

distributed throughout the superstructure. In order to construct a classical damping matrix 

from modal damping ratios the Rayleigh damping can be assumed allowing one to express the 

damping matrix in terms of the superstructure mass and stiffness matrices: 

 sss     k mc 10 αα += .  (2.9) 

The Rayleigh damping coefficients 0α  and 1α  can be selected to match the desired damping 

ratio for two modes, oftentimes the two lowest, but not always (Bozorgnia and Bertero 2004). 

Denoting these modes as the f-th and the s-th, it is possible to write: 

 
ss

2
s

ff
2
f

      

      

ωξωαα

ωξωαα

2

2

10

10

=+

=+
.  (2.10) 

With given damping ratios fξ  and sξ  these two equations can be solved for 0α  and 1α . 
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2.3 Modeling of the Base Isolation System 

The base isolation system diaphragm is assumed to be infinitely rigid in its own plane, the 

beams are considered to be axially inextensible and flexurally rigid and the seismic isolators 

are assumed to be infinitely rigid in the vertical direction. As a result of these kinematic 

constraints, the total number of the base isolation system dofs, denoted with ntb, is equal to 3. 

These three dofs, which are attached to the mass center of the base diaphragm and are defined 

relative to the ground, are the two horizontal translations )(b
xu  and )(b

yu  in the X and Y 

directions and the torsional rotation )(b
ru  about the vertical axis Z.  

The isolation system displacement vector bu , having size ntb x 1, is:  

 { }T  b
r

b
y

b
xb  uuu  )()()(=u .  (2.11) 

The base isolation system mass matrix bm  is defined by: 
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where )(bm  is the diaphragm mass and )(b 
OI  is the moment of inertia of the diaphragm about 

the global vertical axis Z. The two first moments )(b 
xS  and )(b 

yS  of the base diaphragm mass 

about the global horizontal axes X and Y are equal to zero because the diaphragm mass center 

and the origin of the global coordinate system O are coincident.  

The base isolation system can include linear isolation elements and nonlinear isolation 

elements. Considering the linear elements, that is, seismic isolators whose behavior can be 

modeled by a linear spring and a linear viscous damper in parallel, the base isolation system 

stiffness matrix bk  is:  
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where )(b
xxk , )(b

xyk , and )(b
xrk  are the resultants of the elastic forces in X direction of the linear 

elements due to unit translation in X and Y directions and unit torsional rotation of the base 

diaphragm about the vertical axis Z, respectively; )(b
yyk , )(b

yxk , and )(b
yrk  are the resultants of the 

elastic forces in Y direction of the linear elements due to unit translation in Y and X directions 

and unit torsional rotation of the base diaphragm about the vertical axis Z, respectively; and 

)(b
rrk  is the resultant elastic torsional moment of the linear elements due to unit torsional 

rotation of the base diaphragm about the vertical axis Z. The torsional stiffness of the seismic 

isolators is negligible and is not included (Kelly 1997). 

The base isolation system viscous damping matrix bc  is:  
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where )(b
xxc  and )(b

yyc  are the resultants of the viscous damping forces in X and Y directions, 

respectively, of the linear elements due to unit velocity of the base diaphragm in X and Y 

directions, and )(b
rrc  is the resultant of the viscous damping torsional moment of the linear 

elements due to unit rotational velocity of the base diaphragm about the vertical axis Z. The 

off-diagonal terms of the base isolation system viscous damping matrix are neglected (Alhan 

and Gavin 2004).  

As far as the nonlinear elements is concerned, the resultant nonlinear forces vector of the base 

isolation system nf  is: 
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 f ,  (2.15) 

where nxf , nyf , and nrf  are the resultant nonlinear forces in X and Y directions and the 

resultant nonlinear torsional moment about the vertical axis Z of the nonlinear elements. The 

nonlinear behavior of each seismic isolator can be modeled using an explicit nonlinear force-

displacement relation (Nagarajaiah et al. 1991).   

 



Chapter 2 | Modeling of Base-Isolated Structures 
 

13 

 

2.4 Dynamic Equilibrium Equations 

The equations of motion for the elastic superstructure are expressed in the following form: 

 gssbbssssss        urmukucukucum &&&&&& −=++++ ,  (2.16) 

with 

 [ ]T    0 cc 1−= ,  (2.17) 

 [ ]T    0 kk 1−= ,  (2.18) 

 { }T 
gygxg  uu 0&&&&&& =u ,  (2.19) 

where sm  is the superstructure mass matrix, sc  the superstructure damping matrix, sk  the 

superstructure stiffness matrix, and sr  the superstructure earthquake influence matrix. 

Furthermore, su , su& , and su&&  represent the floor displacement, velocity, and acceleration 

vectors relative to the ground, respectively, 1c  and 1k  the viscous damping and stiffness 

matrices of the superstructure first story, and gu&&  is the ground (or support) acceleration vector 

in which gxu&&  and gyu&&  are the X and Y ground acceleration components whereas the rotational 

component is neglected. 

The equations of motion for the base are: 

 gbbns
T

s
T

bbbbbb      urmfukucukkuccum &&&&&& −=+++++++ )()( 11 ,  (2.20) 

where bm  is the base isolation system mass matrix, bc  the damping matrix of linear viscous 

isolation elements, bk  the stiffness matrix of linear elastic isolation elements, nf  the resultant 

nonlinear forces vector of nonlinear elements, and br  the base isolation system influence 

matrix. Furthermore, bu , bu& , and bu&&  represent the base isolation system displacement, 

velocity, and acceleration vectors relative to the ground, respectively. 

Combining Equations (2.16) and (2.20), the following system of 3n + 3 Ordinary Differential 

Equations (ODEs) of the second order in time, coupled in terms of elastic and viscous forces 

and decoupled in terms of inertial forces, is obtained: 
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The dynamic equilibrium equations of the 3d discrete structural model of an actual base-

isolated structure given in Equation (2.21) can be written in a more compacted form as 

follows: 

 g          urmfukucum &&&&& −=+++ ,  (2.22) 

where m  is the mass matrix, c  the damping matrix, k  the stiffness matrix, f  the nonlinear 

forces vector and r  the earthquake influence matrix of the seismically base-isolated structure. 

Furthermore, u , u& , and u&&  represent the floor displacement, velocity, and acceleration vectors 

of the base-isolated structure relative to the ground. 

The system of 3n + 3 coupled ODEs is nonlinear because of the presence of the resultant 

nonlinear forces vector of the base isolation system nf , which could be function of both 

displacement and velocity vectors, according to the model adopted for each seismic isolator. 



Chapter 3 

Seismic Isolation Bearings 

3.1 Introduction 

Seismic isolation bearings are special devices able to provide flexibility and energy 

dissipation capacity in horizontal directions, sufficient vertical stiffness to resist service 

loading, rigidity under low levels of later loads due to wind or minor earthquakes, and 

recentering capability. 

Seismic isolators can be divided into two main categories: 

� elastomeric bearings; 

� sliding bearings.  

The former rely on the flexible properties of rubber to achieve isolation, whereas the latter 

allow one to achieve low horizontal stiffness through the action of sliding and to dissipate 

energy through the friction damping occurring at the sliding interface (Constantinou et al. 

2007).  

Metal devices, such as Wire Rope Isolators, currently used for the seismic protection of 

equipment in buildings (Demetriades et al. 1993), can be adopted with flat surface sliders 

when the complete recentering of the base-isolated structure is required and when the 

displacements of the base isolation system have to be reduced (Spizzuoco et al. 2016). 

In the following, the two common types of seismic isolation devices, namely, elastomeric and 

sliding bearings, are described. Furthermore, the results of an extensive series of experimental 

tests, conducted at the Department of Industrial Engineering of the University of Naples 

Federico II on a Recycled Rubber-Fiber Reinforced Bearing and four Wire Rope Isolators, are 

presented.   
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3.2 Elastomeric Bearings 

3.2.1 Introduction 

Elastomeric bearings are seismic isolation devices made of alternate layers of rubber (5-20 

mm thick) and thin reinforcing steel plates (2-3 mm thick). Two thick steel plates (25-30 mm) 

are bounded to the top and bottom surfaces of the bearing to facilitate its connection and a 

rubber cover is used to wrap the bearing in order to protect steel plates from corrosion. 

Elastomeric bearings can be square or circular, as shown in Figure 3.1.  

(a) 

 

(b) 

 

Figure 3.1. (a) Square and (b) circular elastomeric bearing. 

Square elastomeric bearings are economical to manufacture, offer the advantage of simple 

connection configurations, and have compact geometry requiring a minimum of space for 
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installation: the space required for a square bearing is less than that for a circular bearing for 

the equivalent vertical load.  

The rubber, a cross-linked polymer that can be produced in numerous compounds with 

different properties, is vulcanized and bounded to the steel in a single operation under heat 

and pressure in a mold. Vulcanization is the conversion of raw rubber by means of chemical 

crosslinking from a plastic state to an essentially elastic state (Hills, 1971). 

The steel plates prevent bulging of the rubber and provide a vertical stiffness that is several 

hundred times the horizontal one without modifying the latter, which is controlled by the low 

shear modulus of the elastomer. The large vertical stiffness prevents undesirable rocking 

response of a base-isolated structure, reduces shear strain and creep deformations in the 

rubber, and increases the capacity of the bearing to carry axial load at large displacements. 

Figure 3.2 illustrates the behavior of elastomeric bearings in horizontal and vertical directions.  

 

Figure 3.2. Behavior of elastomeric bearings in horizontal and vertical directions. 
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Elastomeric bearings can be installed dowelled or bolted, as shown in Figure 3.3. Dowels are 

used when tension in the bearing must be avoided. Bolted bearings are typically used 

nowadays because well fabricated elastomeric bearings have significant tensile strain 

capacity. In the undeformed state, when loaded only by vertical force, the buckling load of 

bearings installed in either configuration is theoretically the same. Under combined vertical 

load and lateral deformation, the two bearings have different instability limits. 

(a) 

 

(b)  

 

Figure 3.3. (a) Dowelled and (b) bolted elastomeric bearing. 

Elastomeric bearings can be divided into three subcategories:  

� Low Damping Rubber Bearings; 

� High Damping Rubber Bearings; 

� Lead Rubber Bearings. 
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3.2.2 Low Damping Rubber Bearings  

Low Damping Rubber Bearings (LDRBs) are laminated elastomeric bearings made of natural 

rubber or synthetic rubber.  

Generally, within a relatively large displacement range, that is, a rubber shear strain smaller 

than 75 %: 

� low temperature has a substantial effect on both stiffness and damping, resulting in 

increases in both quantities. The percent increase is greater when the exposure to low 

temperature is longer; 

� high temperature has an insignificant effect on stiffness and damping, with small 

reductions in stiffness and damping; 

� there are no scragging effects; 

� the frequency of motion has insignificant effect on the mechanical properties, thus, the 

behavior can be assumed to be rate independent; 

� the equivalent viscous damping ratio is generally less than 5 %. 

Figure 3.4 shows the typical symmetric softening force-displacement hysteresis loop 

displayed by LDRBs within a relatively large displacement range.  

 

Figure 3.4. Typical hysteresis loop displayed by LDRBs at relatively large displacements. 

Because of their low damping, LDRBs are normally used in conjunction with supplementary 

damping devices such as viscous dampers, steel bars, lead bars, and frictional devices. 
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3.2.3 High Damping Rubber Bearings 

High Damping Rubber Bearings (HDRBs) are laminated elastomeric bearings with high 

inherent damping property obtained by adding extra fine carbons, oils, resins, or other 

proprietary fillers to the natural rubber compound.  

Generally, in HDRBs: 

� an increase in the vertical load produces a reduction in the effective horizontal stiffness 

and an increase in the equivalent viscous damping ratio;  

� an increase in the frequency of excitation results in modest increases in effective 

horizontal stiffness and equivalent viscous damping ratio; 

� the effective stiffness and equivalent viscous damping ratio are relatively large at small 

shear strains (under 20 %). This is a desirable characteristic for minimizing the response 

under wind load and low level seismic load;  

� the effective stiffness increases at large shear strains (above 150 %) because of the strain 

crystallization of the rubber matrix that is accompanied by an increase in the energy 

dissipation. This characteristic allows one to limit displacements under unanticipated 

input levels that exceed design levels; 

� the equivalent viscous damping ratio range is generally between 5 % and 15 % at 

relatively large displacements, that is, shear strains around 100 %. Damping is neither 

viscous nor hysteretic, but somewhat in between;  

� the maximum shear strain range is generally between 200 % and 350 %. 

Figures 3.5a and 3.5b show the typical symmetric force-displacement hysteresis loop 

displayed by HDRBs at relatively large (shear strain between 20 % and 150 %) and large 

displacements (shear strain above 150 %), respectively. It is important to note that the shape 

of the hysteresis loops changes according to the displacements range: at relatively large 

displacements (Figure 3.5a), the hysteresis loops display a softening tangent stiffness 

whereas, at large displacements (Figure 3.5b), the device exhibits a hardening behavior. 

HDRBs typically display higher characteristic strength and stiffness when tested for the first 

time. The properties under these conditions are generally termed unscragged. Subsequent 

testing under the same conditions results in stable but lower values of strength and stiffness, 

which are termed as scragged properties. Figure 3.6 shows the typical effects of scragging in 

a HDRB. 
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(a) 

 

(b) 

 

Figure 3.5. Typical hysteresis loop displayed by HDRBs at (a) relatively large and (b) large displacements. 
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Figure 3.6. Typical effect of scragging in a HDRB. 
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3.2.4 Lead Rubber Bearings 

Lead Rubber Bearings (LRBs) are laminated elastomeric bearings made of alternate layers of 

low damping natural rubber, reinforcing steel plates and a cylinder of lead inserted into a hole 

in the core of the bearing in order to increase the amount of dissipated energy. Figures 3.7a 

and 3.7b show a typical square and circular LRB, respectively. 

(a) 

 

(b) 

 

Figure 3.7. (a) Square and (b) circular LRB. 

 

The lead must fit tightly in the elastomeric bearing, and this is achieved by making the lead 

plug slightly larger than the hole and forcing it in. The plug is typically cut longer than the 

height of the bearing so the core is compressed upon bolting the flange plates to the end 
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plates. The lead core expands laterally and wedges into the rubber layers between the steel 

plates. Under such confined conditions, the steel plates force the lead plug to deform in 

horizontal direction providing excellent energy dissipation capacity with a magnitude 

depending on the diameter of the lead plug. The lead in the bearing deforms physically at a 

relatively low stress of around 10 MPa. 

LRBs have an initial high stiffness, which is about ten times the post-yield stiffness, before 

the yielding of the lead plug, and a low post-yield stiffness equal to the shear stiffness of the 

rubber. 

Generally, in LRBs: 

� temperature has a substantial effect on the effective stiffness and dissipated energy per 

cycle; 

� the reduction in effective stiffness and dissipated energy with an increasing number of 

cycles depends on the heat generated in the lead core; 

� the velocity of motion has a significant effect on the mechanical properties primarily 

because of the viscoelastic behavior of the rubber; 

� the equivalent viscous damping ratio range is generally between 15 % and 35 %; 

� the maximum shear strain range is generally between 125 % and 200 %. 

Figure 3.8 shows the typical symmetric softening force-displacement hysteresis loop with 

bilinear characteristics displayed by LRBs at both small and large displacements. 

 

Figure 3.8. Typical hysteresis loop with bilinear characteristics displayed by LRBs at small and large 

displacements. 
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3.2.5 Unbonded Elastomeric Bearings with Deformable Reinforcing Layers 

Bonded steel reinforced elastomeric bearings and unbonded elastomeric bearings having 

deformable reinforcing layers, such as Fiber Reinforced Bearings (FRBs), display a different 

deformed configuration when subjected to horizontal loads or displacements under the effect 

of the vertical load.  

In conventional bonded elastomeric bearings (Figure 3.9a), the compression is carried through 

the overlap region between top and bottom surfaces, and the unbalanced moment is carried by 

tension stresses in the regions outside the overlap. Unbonded elastomeric bearings with 

deformable reinforcing layers show a rollover deformation, such as the one represented in 

Figure 3.9b, with portions of the isolator detaching from the structure (Kelly and Takhirov 

2001, Kelly and Takhirov 2002, Kelly and Konstantinidis 2007, Toopchi-Nezhad et al. 2007, 

Mordini and Strauss 2008, Russo et al. 2008, Toopchi-Nezhad et al. 2008, Toopchi-Nezhad et 

al. 2009, Russo and Pauletta 2013). These portions are then substantially unstressed (Kelly 

and Konstantinidis 2007, Toopchi-Nezhad et al. 2011), hence no traction develops between 

the reinforcements and the elastomer. In this case, the moment created by the offset of the 

resultant compressive loads balances the moment created by the applied shear. 

(a)                                                                                   (b)          

            

Figure 3.9. Deformed configuration of (a) bonded steel reinforced elastomeric bearing and (b) unbonded 

elastomeric bearing with deformable reinforcing layers loaded in compression and shear. 
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3.2.5.1 Recycled Rubber-Fiber Reinforced Bearings 

3.2.5.1.1 Introduction 

Steel reinforced elastomeric bearings are generally heavy and expensive. Most of their weight 

derives from two steel end plates and a consistent number of thin reinforcing steel plates used 

to achieve the desired vertical stiffness. Their high cost is due to a highly labor-intensive 

manufacturing process that ends with the vulcanization of the compounded rubber layers and 

the bonding of the steel reinforcements.  

The manufacturing cost of FRBs is greater than that of traditional bearings, due to the major 

cost of the fibers. Anyhow, the costs connected with the labor involved in preparing the steel 

reinforcement (cutting, sandblasting, cleaning with acid, coating with bonding compound) are 

eliminated. Moreover, the absence of end plates for the anchorage to the structure and the 

substitution of the steel reinforcements with fiber ones reduces the isolator weight. Hence, 

being FRBs much lighter than the traditional ones and also less voluminous, transportation 

and installation are simpler and the relevant costs are lower. It results that the overall cost of a 

FRB is a little lower than the one of a traditional steel reinforced elastomeric bearing (Russo 

et al. 2013).  

Spizzuoco et al. (2014) demonstrated that the use of recycled rubber, derived from used tires 

and rubber factory leftovers, represents an ideal possibility of a further significant costs 

reduction. The prototyping manufacturing of the proposed Recycled Rubber-Fiber Reinforced 

Bearings (RR-FRBs) was made by the Italian Company Isolgomma S.r.l. (Vicenza, Italy), 

specialized in the use of recycled rubber for the production of antivibrating mats for railway 

applications. The Company has computed for the prototype bearing a total cost of about ten 

Euros, whereas the market price of an equivalent traditional steel reinforced rubber isolator is 

ten times larger. Most of this difference is due to the costs of the natural rubber and the 

vulcanization process. The manufacturing of a FRB anyhow includes the latter two costs, 

while it reduces the installation cost due to the absence of the end plates. For this reason, the 

ratio between the cost of a FRB and the cost of an equivalent RR-FRB remains significant.  

In the following, the experimental force-displacement hysteresis loops, obtained during cyclic 

tests conducted on a RR-FRB adopting a testing machine available at the Department of 

Industrial Engineering of the University of Naples Federico II, are presented. 
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3.2.5.1.2 Description of Tested Device 

Figure 3.10 shows the tested RR-FRB, manufactured by Isolgomma S.r.l. (Vicenza, Italy), 

which is made of 12 layers of recycled rubber and 11 high strength quadri-directional carbon 

fiber fabric sheets used as reinforcing elements. The device is square in plan with dimensions 

7 cm x 7 cm and has a total height of approximately 6.3 cm. The equivalent thickness of the 

carbon fiber layers is 0.007 cm. The shear modulus of the recycled rubber, under the applied 

vertical load vP  = 16.9 kN, is equal to 1 MPa at 100 % shear strain. 

 

Figure 3.10. Tested RR-FRB.  

3.2.5.1.3 Experimental Tests Results 

The RR-FRB has been tested in unbounded configuration by imposing, in two different 

horizontal loading directions, namely, 0° and 45° directions (Figure 3.11), three cycles of 

harmonic displacement, having frequency f = 0.87 Hz, under the effect of a constant vertical 

pressure of 3.45 MPa, for eight different values of amplitude A, that is, 1 cm, 1.5 cm, 2 cm, 

2.5 cm, 3 cm, 3.5 cm, 4 cm, and 4.5 cm.  

 

Figure 3.11. Loading directions.  
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Figures 3.12a and 3.12b show the experimental hysteresis loops obtained in 0° and 45° 

loading directions, respectively. According to the experimental tests results, the RR-FRB 

exhibits a softening behavior at relatively large displacements and a post-softening behavior 

at large displacements. 

(a) 

 

(b) 

 

Figure 3.12. Experimental hysteresis loops of the tested RR-FRB obtained in (a) 0° and (b) 45° loading 

directions. 
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3.3 Sliding Bearings 

3.3.1 Introduction 

Sliding bearings are seismic isolation devices which allow one to achieve low horizontal 

stiffness through the action of sliding and to dissipate energy through the friction damping 

occurring at the sliding interface. 

Sliding bearings can be divided into two subcategories:  

� Flat Surface Sliding Bearings; 

� Curved Surface Sliding Bearings. 

3.3.2 Flat Surface Sliding Bearings 

Figure 3.13 shows two different types of Flat Surface Sliding Bearings (FSSBs), namely, Pot 

and Disk FSSBs.  

(a)                                                                              (b) 

 

Figure 3.13. FSSBs: (a) Pot and (b) Disk FSSB.  

Materials used for the sliding interface of these bearings are typically polished stainless steel 

in contact with unfilled or filled Polytetrafluoroethylene (PTFE or Teflon). To achieve 

significant energy dissipation capability, the PTFE needs to be unlubricated.  

The frictional force F at the sliding interface of a FSSB can be described as: 

 N   F µ= ,  (3.1) 

where µ  is the coefficient of friction and N is the normal load on the interface.  
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The static friction force is the maximum force that must be overcome to initiate macroscopic 

motion. This force is generally called breakaway friction force. Upon initiation of motion, the 

friction force generally drops, that is, the static friction force is typically higher than the 

sliding friction force, the latter being measured at a very low velocity of sliding, immediately 

following initiation of motion. Thus, it is important to distinguish between the static (or 

breakaway) coefficient of friction, bµ , and the sliding coefficient of friction, sµ . 

The friction coefficient depends on several parameters such as the velocity of sliding, the 

normal load, and the temperature. 

Figure 3.14 illustrates the dependency of the coefficient of friction of PTFE-polished stainless 

steel interface on the velocity of sliding and normal load. The behavior is characteristic of 

clean, unlubricated interfaces at normal ambient temperature, that is, around 20 °C. The static 

or breakaway value is shown at zero velocity of sliding. The sliding value is characterized by 

a low value immediately following initiation of sliding, min s,µ , and a progressively increasing 

value as the velocity increases. At large velocities, the sliding value attains a constant value, 

max s,µ . Increases in normal load result in reduction of the coefficient of friction; the 

percentage rate at which max s,µ  reduces diminishes at some limiting value of the normal load.  

 

Figure 3.14. Dependency of friction coefficient of PTFE-polished stainless steel interface on sliding velocity 

and normal load. 

Figure 3.15 illustrates the coefficient of friction as function of the sliding velocity for different 

values of temperature. It is evident that the temperature has a dramatic effect on the static and 

the very low velocity coefficients of friction, that is, bµ  and min s,µ . 
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Figure 3.15. Dependency of friction coefficient of PTFE-polished stainless steel interface on sliding velocity 

and temperature.  

Figure 3.16 shows the typical symmetric softening force-displacement hysteresis loop with 

rigid-plastic characteristics displayed by FSSBs. 

 

Figure 3.16. Typical hysteresis loop with rigid-plastic characteristics displayed by FSSBs.  

FSSBs do not have the capability to return the structure to its initial position after an 

earthquake since they do not generate restoring forces. Thus, they have to be adopted in 

conjunction with recentering devices. 
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3.3.3 Curved Surface Sliding Bearings 

Figure 3.17 shows two different types of Curved Surface Sliding Bearings (CSSBs), namely, 

Friction Pendulum Bearing (FPB) and Double Friction Pendulum Bearing (DFPB).  

 (a)                                                                

 

                      

(b) 

 

      

Figure 3.17. CSSBs: (a) FPB and (b) DFPB. 
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FPBs consist of an articulated slider that moves on a concave spherical surface. The slider is 

coated with a low-friction and high-pressure capacity composite material, typically PTFE, and 

the spherical surface is overlain by polished stainless steel. FPBs also include an enclosing 

cylinder that provides a lateral displacement restrain and protects the interior components 

from environmental contamination. 

FPBs have an inherent ability to recenter the supported structure: as the slider moves along 

the spherical surface, it causes the supported structure to rise, developing a gravity restoring 

force that helps bring the structure back to its original position.  

The force F required to impose a lateral displacement u in a FPB is given by: 

 N u
R

N
  F µ+= ,  (3.2) 

where N is the vertical load on the bearing, R is the effective radius of curvature of the sliding 

interface, and µ  is the coefficient of sliding friction. 

Figure 3.18 shows the typical symmetric softening hysteresis loop displayed by FPBs. 

 
Figure 3.18. Typical hysteresis loop displayed by FPBs.  

DFPBs consist of two facing concave stainless steel surfaces. The upper and lower concave 

surfaces have radii of curvature which can be different. The coefficients of friction of the 

concave surfaces can also be different. An articulated slider faced with a non-metallic sliding 

material separates the two surfaces. The articulation is necessary for the appropriate 

distribution of pressure on the sliding interface and to accommodate differential movements 

along the top and bottom sliding surfaces. 
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3.4 Metal Devices 

3.4.1 Wire Rope Isolators 

3.4.1.1 Introduction 

Wire Rope Isolators (WRIs) are metal devices that have demonstrated to be effective in 

protecting sensitive equipment from shock and vibration and have been originally used in 

numerous military, electronic and air space applications (Tinker and Cutchins 1992). All the 

different types of WRIs, such as helical, arch or spherical devices, are made of two basic 

elements: a stainless steel cable and two aluminum alloy or steel retainer bars where the cable 

is embedded. 

As far as the use of WRIs as seismic devices is concerned, Demetriades et al. (1993) showed 

that an isolation system including stiff WRIs can reduce the acceleration transmitted to light 

but costly equipment allowing very small displacements in contrast to the classical base 

isolation approach of increasing the fundamental natural period of the system. Serino et al. 

(1995a, 1995b) and Di Donna and Serino (2002) investigated the use of WRIs for the seismic 

protection of circuit breakers of a transformation open-air substation, thus concluding that 

these devices permit to reduce remarkably stresses in the porcelain insulators. Alessandri et al. 

(2015a, 2015b) also investigated the effectiveness of a base isolation system including 

adequately designed WRIs in reducing the seismic demand of a high voltage ceramic circuit 

breaker.   

In the research literature there are no applications of WRIs in the seismic isolation of 

structures, such as new or existing buildings or bridges. Indeed, although WRIs are generally 

stiffer in the vertical direction than in the other two principal horizontal directions 

(Demetriades et al. 1993), namely, Roll and Shear directions, the value of the vertical load 

which can be supported by these metal devices is not high enough to allow their use for the 

seismic protection of structures. However, a shaking table experimental campaign, performed 

at the Department of Structures for Engineering and Architecture of the University of Naples 

Federico II (Italy) on a scaled structure mock-up, seismically isolated using four curved 

surface sliders and four WRIs, have shown that the latter can be strongly useful when the 

complete recentering of the base-isolated structure is required and when the displacements of 

the base isolation system have to be reduced (Spizzuoco et al. 2016).    
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In order to allow the use of these metal devices with other different types of seismic isolators, 

such as sliding or elastomeric bearings, for the seismic protection of lightweight structures, an 

accurate characterization of their mechanical properties is required. The experimental studies 

described in Demetriades et al. (1993) and Alessandri et al. (2015a, 2015b) do not provide 

enough information to investigate the use of WRIs in a base isolation system of a seismically 

base-isolated structure. Indeed, their dynamic behavior in Roll and Shear directions and the 

influence of the vertical load have been studied only in the small displacements range.  

To this end, an extensive series of dynamic tests was conducted at the Laboratory of the 

Department of Industrial Engineering of the University of Naples Federico II (Italy) on four 

different WRIs, by imposing cyclic sinusoidal displacements having different amplitudes and 

frequencies, under different values of the vertical load. More specifically, this experimental 

program was aimed at studying the influence of the displacement amplitude, frequency, 

vertical load, device geometrical characteristics and wire rope diameter on the dynamic 

behavior of the selected WRIs in the two principal horizontal directions. In addition, static 

tests were also carried out to evaluate the static to dynamic effective stiffness ratios for 

different values of displacement and applied vertical load.  

3.4.1.2 Description of Tested Devices 

The selected WRIs, manufactured by Powerflex S.r.l. (Limatola, Italy), are made of a wire 

rope wound in the form of a helix and two slotted metal retainer bars in which the cable is 

embedded, as shown in Figure 3.19a. The cross section of the wire rope, which is constructed 

by winding a number of strands around an inner core, is shown in Figure 3.19b. Each strand 

has an axial member around which the individual metal wires are wrapped. The rope of the 

tested devices is made of six strands, each having 25 steel wires, plus a central one with 49 

wires. The material of the wires is American Iron and Steel Institute (AISI) Stainless Steel 

Type 316 whereas the material of the two metal bars is aluminum alloy.   
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(a) 

 

(b) 

 

Figure 3.19. (a) WRI; and (b) wire rope cross section. 

In order to study the influence of the height to width ratio, h/v, of the loop and the wire rope 

diameter, rd , on the dynamic behavior of WRIs in the two principal horizontal directions, 

namely, Roll and Shear directions, four devices having 8 loops have been selected for 

experimental tests. Their geometrical characteristics are presented in Table 3.1 with reference 

to Figure 3.20. 

Table 3.1. Geometrical characteristics of tested WRIs. 

WRI l [mm] h [mm] v [mm] h/v rd  [mm] 

PWHS 16010  267 100 110 0.90 16 

PWHS 16040  267 125 150 0.83 16 

PWHS 16040 S 267 125 150 0.83 19 

PWHS 16060 267 145 185 0.78 16 
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(a) 

 

(b) 

 

Figure 3.20. Schematic of WRIs PWHS 160: (a) lateral view; (b) section A-A’. 

3.4.1.3 Experimental Study 

The experimental campaign here presented was aimed at studying the influence of the 

displacement amplitude, frequency, vertical load, device geometrical characteristics and wire 

rope diameter on the dynamic behavior of WRIs in Roll and Shear directions. Since in a base-

isolated structure the maximum vertical displacement of the base isolation system is 

considerably smaller than the horizontal one (Spizzuoco et al. 2016), only the dynamic 

behavior in the horizontal directions has been studied. Static tests have been also carried out 

to better investigate the static horizontal response of these devices in three displacements 
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ranges, under different values of applied vertical load. The experimental set-up and the 

dynamic and static tests are described in the following. 

3.4.1.3.1 Experimental Set-up 

The experimental investigation of the dynamic and static responses of WRIs in the two 

principal horizontal directions has been performed by adopting the testing machine (TM) 

available at the Laboratory of the Department of Industrial Engineering of the University of 

Naples Federico II (Pagano et al. 2014). As shown in Figure 3.21, the TM consists of two 

hydraulic actuators for loading in both horizontal and vertical directions, thus allowing one to 

impose horizontal displacement or load histories to the tested device with a constant vertical 

compression. Four guiding rollers, two on each side of the horizontal lower frame, prevent 

lateral movement of the TM basement. This equipment can be used as a 1d shaking table 

machine (Calabrese et al. 2013, Strano and Terzo 2014). The maximum vertical force, exerted 

by means of the vertical actuator and transferred through the horizontal upper plate, is equal 

to 190 kN. The horizontal hydraulic actuator, powered by a 75 kW AC electric motor, has a 

maximum stroke of ± 200 mm, a maximum force of 50 kN and a maximum speed of 2.2 m/s.  

 

Figure 3.21. TM adopted to perform experimental tests. 

The tested WRIs have been mounted by fixing their aluminum retainer bars to the upper and 

lower rigid steel plates. Figures 3.22a and 3.22b show WRI PWHS 16040 mounted in Roll 

and Shear directions, respectively. 
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(a) 

 

(b) 

 

Figure 3.22. WRI PWHS 16040 mounted in: (a) Roll and (b) Shear directions.     

The experimental apparatus has been instrumented in order to measure the time histories of 

the relative horizontal displacements between the lower and upper plates, the horizontal and 

vertical loads. All tests have been conducted at room temperature and the data was sampled at 

250 Hz. Data acquisition and control of the hydraulic actuators have been carried out through 

a dedicated software package and a dSPACE DS1103 controller board (Pagano et al. 2013, 

Pagano et al. 2014).  
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3.4.1.3.2 Dynamic Tests 

A large number of dynamic tests in Roll and Shear directions was conducted on the selected 

devices. Each test consisted in imposing five cycles of sinusoidal displacement having 

specified amplitude A and frequency f, under different values of vertical load vP .  

The dynamic response of WRIs has been analyzed in three displacements ranges, namely, 

small, relatively large and large displacements ranges. Three amplitude values have been 

chosen for each metal device, with the maximum value selected in order to avoid damages to 

the two aluminum alloy retainer bars during the experimental tests.  

The influence of the frequency has been studied by imposing to WRI PWHS 16040 a 

sinusoidal motion with amplitude of 3 cm, without applying a vertical load. The frequency 

was assumed varying within the range 0.5 ÷ 2 Hz.   

The maximum value of the vertical load has been selected with the aim of obtaining a 

maximum vertical deflection less than one tenth of the device height h. The dynamic tests are 

listed in Table 3.2. 

Table 3.2. Dynamic displacement-controlled tests in Roll and Shear directions. 

WRI no. of tests vertical load [kN] frequency [Hz] amplitude [cm] 

PWHS 16010  3+3 0 1 0.25, 0.5, 1 

 3+3 2 1 0.25, 0.5, 1 

PWHS 16040  3+3 0 1 1, 3, 6 

 3+3 1.2 1 1, 3, 6 

 3+3 2 1 1, 3, 6 

 3+3 3 1 1, 3, 6 

 4+4 0 0.5, 1, 1.5, 2 3 

PWHS 16040 S 3+3 0 1 1, 3, 6 

 3+3 2 1 1, 3, 6 

PWHS 16060 3+3 0 1 1, 4, 8 

 3+3 2 1 1, 4, 8 

3.4.1.3.3 Static Tests 

Static tests in Roll and Shear directions were also carried out to study the overall behavior of 

each WRI, that is, to estimate the effective horizontal stiffness by the secant line method and 

to evaluate the static to dynamic effective stiffness ratio for different values of maximum 

horizontal displacement and applied vertical load. In each static test, the horizontal 
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displacement has been increased linearly with a velocity of 0.5 mm/s. The static tests are 

listed in Table 3.3. 

Table 3.3. Static displacement-controlled tests in Roll and Shear directions. 

WRI no. of tests vertical load [kN] max. displacement [cm] 

PWHS 16010  2+2 0, 2 1 

PWHS 16040  4+4 0, 1.2, 2, 3 6 

PWHS 16040 S 2+2 0, 2 6 

PWHS 16060 2+2 0, 2 8 

3.4.1.4 Experimental Tests Results 

In what follows, the results of the dynamic and static experimental tests are presented. The 

influence of the following parameters on the dynamic behavior of WRIs is described: (1) 

displacement amplitude, (2) frequency, (3) vertical load, (4) WRI geometrical characteristics 

and (5) wire rope diameter. Then, a comparison between the dynamic responses in Roll and 

Shear directions is presented, and finally the static behavior in both horizontal directions is 

analyzed.  

Three parameters have been used to analyze the dynamic behavior of the tested WRIs in Roll 

and Shear directions: the average effective (or secant) stiffness a effk , , the average equivalent 

viscous damping ratio a eq,ξ , and the average dissipated energy a dE , , that is, the mean area 

computed on the experimental hysteresis loops.    

The WRI effective stiffness, deduced by each cycle of harmonic motion, has been calculated 

by the formula:    

 
minmax

minmax
eff uu

F  F
k

−
−= ,  (3.3) 

where maxF  and minF  are the forces recorded at the positive and negative maximum 

displacements maxu  and minu , respectively. This stiffness is interpreted as the overall stiffness 

of the device during one cycle of harmonic motion and is used to evaluate the elastic energy 

sE . The average effective stiffness a effk ,  has been calculated as mean value of those obtained 

from three of the five imposed cycles.   
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The equivalent viscous damping ratio of the device at each cycle has been evaluated as 

follows: 

 
s

d
eq E  

E

π
ξ

4
= ,  (3.4) 

where sE  is the restored elastic energy expressed as: 

 2
aeffs u k E

2

1= ,  (3.5) 

with au  the average value of positive and negative maximum displacements given by: 

  
uu

u minmax
a 2

+
= .  (3.6) 

The average equivalent viscous damping ratio a eq,ξ  has been calculated as mean value of 

those obtained from three of the five cycles of harmonic motion applied to the tested device.  

A Matlab script was written to go through the experimental data file of a dynamic test, 

identify each force-displacement hysteresis loop and evaluate the mean value of each 

parameter, that is, a effk , , a eq,ξ , and a dE , .   

As regards the static tests, the static effective (or secant) stiffness st
effk  at displacement *u  has 

been estimated according to the secant line method as follows:   

 *

* )(
u
uF

kst
eff = ,  (3.7) 

where )( *uF  is the recorded force corresponding to the applied displacement *u .  

3.4.1.4.1 Influence of Displacement Amplitude 

The values of the average effective stiffness, equivalent viscous damping ratio and dissipated 

energy obtained from the dynamic tests performed along Roll and Shear directions on device 

PWHS 16040 are listed in Table 3.4; a sinusoidal motion, having frequency equal to 1 Hz, 

was applied in the two horizontal directions, without the effect of the vertical load, for three 

different values of amplitude. 
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According to these results, the tested metal device is characterized by high effective stiffness 

and equivalent damping ratio in the range of small displacements. They decrease with 

increasing displacement amplitude in the relatively large displacements range, whereas, at 

larger displacements, the former increases dramatically and the latter continues to decrease.    

Table 3.4. Influence of displacement amplitude | WRI PWHS 16040. 

kN0Hz,1  P  f v ==  amplitude [cm] a effk ,  [N/m] a eq,ξ  [%] 
a dE ,
 [N m] 

Roll  1 131616.18 26.9 21.08 

 3 96411.65 14.7 81.95 
 6 172987.50 8.0 327.51 

Shear  1 157702.20 21.5 20.02 
 3 125189.71 13.8 99.76 

 6 178735.04 9.8 413.25 
 

In WRIs a significant proportion of energy is dissipated because of the interior rubbing and 

sliding friction between the intertwined strands (Demetriades et al. 1993, Piersol and Paez 

2009). Table 3.4 shows that the amount of average dissipated energy increases with the 

displacement amplitude. In systems with viscous damping or rate-independent damping, the 

dissipated energy increases quadratically with displacement amplitude whereas, in a system 

with Coulomb damping, it is linear in displacement (Chopra 2012). In this case, the average 

dissipated energy is proportional to the displacement around the value of power 1.5 in Roll 

direction and 1.65 in Shear direction, as shown in Figure 3.23.      
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(b)  

 

Figure 3.23. Average dissipated energy in WRI PWHS 16040 along (a) Roll and (b) Shear directions. 

Figures 3.24, 3.25, and 3.26 show the symmetric force-displacement hysteresis loops obtained 

in the two horizontal directions for three different displacement amplitudes. It is worth to note 

that the shape of the hysteresis loops changes according to the displacements range: at small 

displacements, the hysteresis loops display a softening stiffness (Figure 3.24), whereas, in the 

relatively large displacements range, the device exhibits a hardening stiffness (Figure 3.25). 

When large horizontal displacements are applied, the metal device reaches the limit of 

deformation and a stronger nonlinear stiffening behavior can be observed (Figure 3.26). In 

spite of this, no damage to aluminum retainer bars was visible after the cyclic tests were 

completed.  

Since the same dynamic behavior has been observed in the other three selected WRIs, their 

tests results are omitted. 
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(a) 

 

(b)  

 

Figure 3.24. Experimental hysteresis loops of WRI PWHS 16040 obtained at small displacements in (a) Roll 

and (b) Shear directions. 
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(a) 

 

(b)  

 

Figure 3.25. Experimental hysteresis loops of WRI PWHS 16040 obtained at relatively large displacements in 

(a) Roll and (b) Shear directions.  
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(a) 

 

(b)  

 

Figure 3.26. Experimental hysteresis loops of WRI PWHS 16040 obtained at large displacements in (a) Roll and 

(b) Shear directions. 
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3.4.1.4.2 Influence of Frequency 

The experimental studies conducted on WRIs in the small displacements range by 

Demetriades et al. (1993) and Alessandri et al. (2015b) show the rate independent nature of 

these metal devices.    

Interesting results have been obtained by studying the influence of the frequency on the 

dynamic behavior of the selected WRIs in the relatively large displacements range. Table 3.5 

shows the dynamic tests results of WRI PWHS 16040 in Roll and Shear directions: the metal 

device was subjected to a harmonic sinusoidal motion having amplitude equal to 3 cm, 

without the effect of the vertical load, for different frequency values. 

It can be observed that an increase in the frequency determines a decrease in the average 

effective stiffness, whereas the average equivalent damping ratio increases.  

Table 3.5. Influence of frequency | WRI PWHS 16040. 

kN0cm,3  P  A v ==  frequency [Hz] a effk ,  [N/m] a eq,ξ  [%] 
a dE ,
 [N m] 

Roll  0.5 91060.00 14.7 74.62 

 1 96411.65 14.7 81.95 

 1.5 73871.54 17.8 79.60 
 2 57498.65 22.1 79.71 

Shear  0.5 117302.66 13.8 90.09 
 1 125189.71 13.8 99.76 

 1.5 98304.42 19.1 113.31 
 2 77313.19 20.3 98.35 

 

Figures 3.27a and 3.27b shows the force-displacement hysteresis loops of the tested metal 

device, obtained in Roll and Shear directions. It is evident that, in the relatively large 

displacements range, a stronger hardening dynamic behavior is obtained at lower frequencies. 
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(a) 

 

(b) 

 

Figure 3.27. Influence of frequency on WRI PWHS 16040 hysteresis loops obtained in (a) Roll and (b) Shear 

directions. 
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3.4.1.4.3 Influence of Vertical Load 

WRIs have flexibility in all directions, that is, horizontal and vertical directions. The vertical 

deflection of these metal devices depends on the height to width ratio h/v, and on the wire 

rope diameter rd . Table 3.6 shows the vertical strain of each tested device, due to a vertical 

load equal to 2 kN, evaluated as:  

 
h

h   ' h −=ε ,  (3.8) 

where ' h  is the device height after the vertical deformation. It can be observed that the higher 

is the device height to width ratio (see Table 3.1) the larger is the vertical deflection. By the 

comparison between the vertical strain values of WRI PWHS 16040 and WRI PWHS 16040 

S, it can be deduced that the use of a larger wire rope diameter produces a reduction of the 

vertical deflection.     

Table 3.6. Vertical strain of tested WRIs due to vertical load. 

vertical load [kN] PWHS 16010 PWHS 16040 PWHS 16040 S PWHS 16060 

2 -7.0 % -5.6 % -2.4 %  -4.8 % 
 

As far as the effect of the vertical load on the dynamic behavior of WRI PWHS 16040 is 

concerned, Table 3.7 shows the results obtained when a sinusoidal harmonic motion with 

amplitude equal to 3 cm and frequency of 1 Hz is applied in both the horizontal directions. An 

examination of these results reveals a reduction in the average effective stiffness due to the 

increase of the vertical load. For instance, if a vertical load equal to 3 kN is applied, the value 

of the vertical strain is -8.8 % and the percentage reduction in the average effective stiffness is 

34.57 % in Roll direction and 43.55 % in Shear direction. In addition, Table 3.7 also shows 

that an increase in the vertical load produces a slight increase in the average equivalent 

viscous damping ratio and a reduction in the amount of dissipated energy. Therefore, it is 

important to point out that the application of a vertical load allows one to have a more flexible 

device with higher equivalent viscous damping ratio. 
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Table 3.7. Influence of vertical load | WRI PWHS 16040. 

Hz1cm3  f , A ==  vertical load [kN] a effk ,  [N/m] a eq,ξ  [%] 
a dE ,
 [N m] 

Roll  0 96411.65 14.7 81.95 

 1.2 84587.06 14.9 73.52 

 2 73800.30 17.5 75.22 
 3 63085.90 18.8 68.69 

Shear  0 125189.71 13.8 99.76 
 1.2 120047.68 12.3 85.44 

 2 82622.23 14.5 69.29 
 3 70673.76 15.7 64.16 

Figures 3.28, 3.29, and 3.30 show the symmetric force-displacement hysteresis loops obtained 

in Roll and Shear directions under the effect of different values of vertical load at small 

(Figure 3.28), relatively large (Figure 3.29), and large displacements (Figure 3.30). It can be 

observed that in the small and relatively large displacements ranges, WRI PWHS 16040 

displays a weaker hardening behavior if a larger vertical load is applied, whereas, at large 

displacements, the applied vertical load affects much less the dynamic response of the metal 

device. Indeed, a percentage reduction of 10.76 % in Roll direction and 6.12 % in Shear 

direction is recorded in the average effective stiffness of WRI PWHS 16040, subjected to a 

sinusoidal harmonic motion having amplitude of 6 cm and frequency equal to 1 Hz, under the 

effect of a vertical load of 3 kN. These two percentage values are then smaller than the 

previous values evaluated considering an amplitude of 3 cm and the same values of frequency 

and vertical load. 
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(b) 

 

Figure 3.28. Influence of vertical load on WRI PWHS 16040 hysteresis loops obtained at small displacements in 

(a) Roll and (b) Shear directions. 
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(b) 

 

Figure 3.29. Influence of vertical load on WRI PWHS 16040 hysteresis loops obtained at relatively large 

displacements in (a) Roll and (b) Shear directions. 
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(b) 

 

Figure 3.30. Influence of vertical load on WRI PWHS 16040 hysteresis loops obtained at large displacements in 

(a) Roll and (b) Shear directions.  

The dynamic tests results of WRI PWHS 16040, obtained for A = 6 cm and f = 1 Hz, under 

the effect of the four different values of applied vertical load, are omitted for brevity.  

Table 3.8 shows the results of the dynamic tests performed in Roll direction on WRI PWHS 

16060, which is the most flexible device tested in the present experimental campaign. In this 

case, the vertical load acting on the device affects its dynamic response also when large 

displacements are applied. Indeed, the percentage reduction in the average effective stiffness 

is equal to 46.06 %, for A = 4 cm, and to 38.54 %, for A = 8 cm. In addition, the increase in 

the vertical load produces a slight increase in the average equivalent viscous damping ratio 

and a reduction in the dissipated energy amount.  

Table 3.8. Influence of vertical load | WRI PWHS 16060 (Roll direction). 

Hz1 f =  vertical load [kN] a effk ,  [N/m] a eq,ξ  [%] 
a dE ,
 [N m] 

A = 4 cm  0 70499.96 16.1 116.78 

 2 38022.41 20.2 80.18 
A = 8 cm 0 79777.85 10.3 306.90 

 2 49026.77 11.7 233.28 

Figures 3.31a and 3.31b show the force-displacement hysteresis loops of WRI PWHS 16060, 

obtained for a frequency of 1 Hz and an amplitude equal to 4 and 8 cm, respectively. The 

comparison of Figure 3.30a with Figure 3.31b confirms that, when the metal device is more 
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flexible, the dynamic response at large displacements is more affected by the vertical load 

magnitude.  

(a) 

 

(b)  

 

Figure 3.31. Influence of vertical load on WRI PWHS 16060 hysteresis loops obtained in Roll direction for      

(a) A = 4 cm and (b) A = 8 cm. 
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3.4.1.4.4 Influence of WRI Geometrical Characteristics 

In the following, the influence of the height to width ratio on the dynamic behavior of the 

tested devices in the horizontal directions is described.  

As shown in Table 3.1, WRIs PWHS 16010, 16040, and 16060 have the same length l = 267 

mm, the same wire rope diameter rd  = 16 mm, but different height to width ratio h/v.   

According to dynamic tests results listed in Table 3.9, the higher is the height to width ratio 

the stiffer is the metal device. For instance, the percentage reduction of WRI PWHS 16060 

average effective stiffness, evaluated with respect to the WRI PWHS 16010 one, is 74.13 %, 

in Roll direction, and 79.88 %, in Shear direction. In addition, lower values of the height to 

width ratio allow one to have a larger average equivalent viscous damping ratio: the 

percentage increase of WRI PWHS 16060 equivalent viscous damping ratio, evaluated with 

respect to the WRI PWHS 16010 one, is 55.90 % and 78.62 % in Roll and Shear directions, 

respectively.   

Table 3.9. Influence of WRI geometrical characteristics. 

 P  f ,   A v kN 0Hz,1cm1 === h/v a effk ,  [N/m] a eq,ξ  [%] 
a dE ,
 [N m] 

Roll  0.90 527396.99 16.1 49.03 
 0.83 131616.18 26.9 21.08 

 0.78 136390.97 25.1 20.45 
Shear  0.90 530276.67 13.1 40.30 

 0.83 157702.20 21.5 20.02 

 0.78 106653.68 23.4 14.91 
 

Figure 3.32 shows the force-displacement hysteresis loops of the three devices, obtained 

imposing a cyclic sinusoidal motion of 1 cm amplitude and 1 Hz frequency, without applying 

the vertical load. It can be observed that the two WRIs having an higher height to width ratio 

display a softening force-displacement loop, whereas the third one has a hardening behavior. 

It is clear that smaller displacements have to be imposed to the latter device in order to avoid 

damages during the dynamic tests. In other words, the geometrical characteristic here 

investigated influences strongly the device capacity to undergo large deformations.     
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(a) 

 

(b)  

 

Figure 3.32. Influence of WRI geometrical characteristics on hysteresis loops obtained in (a) Roll and (b) Shear 

directions. 

The influence of the height to width ratio has been investigated also under the effect of a 

vertical load equal to 2 kN. Since the same dynamic behavior has been observed in both two 

horizontal directions, these results are omitted for brevity. 
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3.4.1.4.5 Influence of Wire Rope Diameter 

In order to study the influence of the wire rope diameter on the dynamic behavior of the tested 

WRIs, a special device, namely, WRI PWHS 16040 S, has been manufactured by Powerflex 

S.r.l. This device has the same geometrical characteristics of WRI PWHS 16040 but it has a 

wire rope with a diameter equal to 19 mm instead of 16 mm. As for WRI PWHS 16040, the 

rope of the special device is made of six strands having 25 steel wires plus a central one with 

49 wires. The material of the wires is American Iron and Steel Institute (AISI) Stainless Steel 

Type 316.  

Table 3.10 shows the dynamic tests results in Roll direction, obtained for three different 

displacement amplitudes by imposing a sinusoidal harmonic motion having frequency equal 

to 1 Hz, without the effect of the vertical load. The use of a wire rope with a larger diameter 

allows one to have a stiffer device; indeed, the percentage increase of WRI PWHS 16040 S 

average effective stiffness, evaluated with respect to the WRI PWHS 16040 one, is 59.44 %, 

62.08 % and 5.40 %, for A = 1 cm, A = 3 cm, and A = 6 cm, respectively. If it is observed that 

the average equivalent damping ratio values of the two tested WRIs, obtained for A = 6 cm, 

are very close to each other, it can be concluded that the wire rope diameter slightly 

influences the dynamic behavior of WRIs in the large displacements range in terms of 

effective stiffness and equivalent viscous damping ratio.  

Table 3.10. Influence of wire rope diameter (Roll direction). 

kN0Hz,1  P  f v ==  amplitude [cm] a effk ,  [N/m] a eq,ξ  [%] 
a dE ,
 [N m] 

PWHS 16040 1 131616.18 26.9 21.08 

 3 96411.65 14.7 81.95 
 6 172987.50 8.00 327.51 

PWHS 16040 S 1 209857.05 22.8 28.66 
 3 156260.94 12.2 110.17 

 6 182336.81 7.90 340.97 
 

Figures 3.33a and 3.33b show the force-displacement hysteresis loops of the two metal 

devices, obtained for a frequency of 1 Hz and an amplitude equal to 3 and 6 cm, respectively, 

without applying the vertical load. It is evident that, in both displacements ranges, the tested 

WRIs display a hardening behavior, and that, at large displacements, the force-displacement 

loops are very similar to each other.     
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(a)  

 

(b) 

 

Figure 3.33. Influence of wire rope diameter on hysteresis loops obtained in Roll direction for:  

(a) A = 3 cm and (b) A = 6 cm. 

The influence of the wire rope diameter has been investigated in both two horizontal 

directions also under the effect of a vertical load equal to 2 kN and the same dynamic 

behavior has been observed.    
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3.4.1.4.6 Comparison between Roll and Shear Dynamic Responses 

WRIs exhibit a similar symmetric hysteresis behavior in Roll and Shear directions. Table 3.11 

shows the Roll to Shear average effective stiffness, equivalent viscous damping ratio and 

dissipated energy ratios, evaluated for WRIs PWHS 16010, 16040, and 16060, subjected to a 

sinusoidal harmonic motion having frequency of 1 Hz, without the effect of the vertical load. 

It can be observed that the first and third devices are stiffer in Roll direction whereas the 

second one displays a stiffer dynamic behavior in the other horizontal direction. In addition, it 

is clear that all tested metal devices have a higher average equivalent viscous damping ratio in 

Roll direction. 

Table 3.11. Comparison between Roll and Shear dynamic responses. 

kN0Hz,1  P  f v ==  amplitude [cm] S
a eff

R
a eff kk ,, /  S

a eq
R

a eq ,, /ξξ  S
a d

R
a d EE ,, /  

WRI PWHS 16010 0.25 1.50 1.09 1.58 

 0.50 1.22 1.16 1.39 
 1 0.99 1.22 1.21 

WRI PWHS 16040 1 0.83 1.25 1.05 
 3 0.77 1.06 0.82 

 6 0.96 0.81 0.79 

WRI PWHS 16060 1 1.27 1.07 1.37 
 4 1.12 1.53 1.71 

 8 0.70 1.14 0.78 

3.4.1.4.7 Static Behavior 

Static tests in both two horizontal directions were carried out, following the scheme listed in 

Table 3.3, by applying a horizontal displacement which was increased linearly with a velocity 

of 0.5 mm/s up to a maximum value selected according to the each device properties.  

Table 3.12 shows the static effective stiffnesses st
effk , evaluated using the secant line method, 

and the static to dynamic effective stiffness ratios dy
eff

st
effratio kk  k /= , for WRI PWHS 16040. It 

can be observed that the static to dynamic effective stiffness ratio tends to 1 for large 

displacement values. Moreover, in the relatively large displacements range, the lower ratiok  

value is obtained considering the average dynamic effective stiffness evaluated for a 

frequency of 1 Hz.   
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Table 3.12. Static tests results | WRI PWHS 16040. 

kN0 Pv =  amplitude [cm] st
effk  [N/m] ratiok  (1 Hz) ratiok  (0.5 Hz) ratiok  (1.5 Hz) ratiok  (2 Hz) 

Roll  1 223224.67 1.69 - - - 

 3 142044.04 1.47 1.55 1.92 2.47 
 6 174274.07 1.00 - - - 

Shear  1 264560.06 1.67 - - - 
 3 163781.51 1.30 1.39 1.66 2.11 

 6 196837.06 1.10 - - - 

Testing WRI PWHS 16040 under the effect of different vertical loads, that is, 1.2 kN, 2 kN, 

and 3 kN, the same static behavior can be observed.    

Figure 3.34 shows the force-displacement curves obtained for different vertical load values 

during the static tests in Roll direction, whereas Figure 3.35 shows the deformed shape of the 

metal device displayed in Roll direction for an amplitude of 6 cm when no vertical load is 

applied. 

 

Figure 3.34. Force-displacement curves obtained for different vertical load values during static tests in Roll 

direction. 
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Figure 3.35. WRI PWHS 16040 deformed shape displayed in Roll direction for A = 6 cm andvP = 0 kN. 

Since the other three tested WRIs display a similar static response, these results are omitted 

for brevity.    



Chapter 4 

Mathematical Modeling of Seismic Isolators 

4.1 Introduction 

Chapter 4 is concerned with the mathematical modeling of seismic isolation bearings and is 

organized into three parts.  

The first part presents three Differential Equation Models (DEMs). First, the widely used 

Bouc-Wen Model (BWM), which has been adapted for modeling the uniaxial behavior of 

elastomeric bearings, sliding bearings, and wire rope isolators (Constantinou et al. 1990, 

Nagarajaiah et al. 1991, Demetriades  et al. 1993) and implemented in many computer 

programs, such as 3D-BASIS, SAP2000, and ETABS, is described. Then, an improved 

version of the BWM, namely, Modified Bouc-Wen Model (MBWM), able to simulate the 

increase or decrease of the tangent stiffness at large displacements, and the 2d Bouc-Wen 

Model (2d BWM), developed by Park et al. (1986) and then adapted for modeling the biaxial 

behavior of elastomeric and sliding bearings (Constantinou et al. 1990, Nagarajaiah et al. 

1991), are presented. 

The second part presents five proposed mathematical models: two uniaxial models able to 

predict the dynamic behavior of seismic isolators within a relatively large displacements 

range, namely, Nonlinear Exponential Model (NEM) and Parallel Model (PM), two uniaxial 

models able to simulate the post-hardening or post-softening behavior at large displacements, 

namely, Advanced Nonlinear Exponential Model (ANEM) and Advanced Parallel Model 

(APM), which are an improved version of the NEM and PM, respectively, and one biaxial 

model able to take into account the biaxial interaction between the restoring forces along two 

orthogonal horizontal directions within the relatively large displacements range, namely, 2d 

Parallel Model (2d PM).  

In the third part, the force-displacement hysteresis loops simulated adopting the described 

DEMs are compared to those obtained adopting the proposed ones.  
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4.2 Differential Equation Models 

4.2.1 Uniaxial Models 

In the following, two uniaxial DEMs are described. The former is able to simulate symmetric 

softening hysteresis loops with bilinear or rigid-plastic characteristics, the latter symmetric 

hysteresis loops with post-hardening or post-softening characteristics. 

4.2.1.1 Bouc-Wen Model 

According to this DEM, the restoring force )(uz  of a hysteretic system can be obtained by 

solving the following first order nonlinear ordinary differential equation, proposed by Wen 

(1976, 1980): 

 nn z  u z u u A z &&&& γβ −−= , for n odd  (4.1) 

 nn z u z z u u A z &&&& γβ −−= −1 , for n even  (4.2) 

with n a positive integer number, and A, β , and γ  real constants. Equations (4.1) and (4.2) 

can be written in a more compacted form, valid for n odd or even, as follows:  

 
nn

z u z z u u Az &&&& γβ −−= −1
.  (4.3) 

Constantinou and Adnane (1987) have shown that, for A = 1 and γβ + = 1, the model given 

by Equation (4.3) collapses to the model of viscoplasticity proposed by Ozdemir (1976). 

In order to evaluate the tangent stiffness of the restoring force )(uz , Equation (4.3) can be 

rewritten as follows: 

 nn
z 

dt

du
  z z 

dt

du
  

dt

du
A

dt

dz γβ −−= −1 .  (4.4) 

Then, multiplying both sides of Equation (4.4) by dt > 0:  

 
nn

z du  z z du  du Adz γβ −−= −1
,  (4.5) 

and dividing Equation (4.5) by du, leads to: 
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nn

z   zz  du   A  
du

dz γβ −−= −1
)sgn( .  (4.6) 

Table 4.1 gives the different expressions of the tangent stiffness obtained for n odd or even, 

according to the signs of the velocity u&  and restoring force z. 

Table 4.1. Tangent stiffness of the restoring force in the BWM. 

du

dz
 

n odd n even 

z < 0 z > 0 z < 0 z > 0 

u&  > 0 
nz  A )( γβ −−  

(portion I) 

nz  A )( γβ +−  

(portion II) 

nz  A )( γβ −+  

(portion I) 

nz  A )( γβ +−  

(portion II) 

u&  < 0 
nz  A )( γβ ++  

(portion IV) 

nz  A )( γβ −+  

(portion III) 

nz  A )( γβ +−  

(portion IV) 

nz  A )( γβ −+  

(portion III) 

Figure 4.1 shows a generic force-displacement hysteresis loop simulated adopting the BWM 

and obtained by applying to a hysteretic system a harmonic displacement having amplitude 

0u  or a harmonic force with amplitude 0z . 

 

Figure 4.1. Generic hysteresis loop obtained with the BWM. 

It can be observed that the hysteresis loop can be decomposed into four different portions, 

namely, portions I, II, III, and IV. According to Table 4.1, and as shown in Figure 4.1, for 
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both n odd and even, the tangent stiffness of the loading curve evaluated in ),( 00 zu −−  is equal 

to the tangent stiffness of the unloading curve evaluated in ),( 00 zu . Since it happens for each 

pair of points ),( zu −−  and ),( zu  belonging to the two portions, that is, portion I and III, it can 

be concluded that the latter are symmetric with respect to the origin. The same is true for 

portions II and IV, thus the shape of the hysteresis loop can be studied by considering only 

portions I and II.  

It can be shown that: 
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whereas *u can be evaluated as: 
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Finally, the area of the hysteresis loop, that is, the dissipated energy, is given by: 
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The parameter A represents the tangent to both the loading and unloading curves at their 

intersection with u-axis (z = 0).  

The two parameters β  and γ  define the shape of the hysteresis loop and can assume positive 

or negative values. In order to understand how the shape of the force-displacement loop varies 

according to the values of the latter parameters, it is possible to analyze the variation of the 
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tangent stiffness which is determined by the sign of the quantity γβ −  in the portions I and 

III, and of the quantity γβ +  in portions II and IV. 

Considering portion I and moving from point ),( 00 zu −−  to point )0,( *  u− , Table 4.1 reveals 

that the tangent stiffness: 

� decreases from the value Az  A n >−+ 0)( γβ  to value A, for 0>−γβ ; 

� is constant and equal to A for 0=−γβ ; 

� increases from the value Az  A n <−+ 0)( γβ  to the value A, for 0<−γβ ; in this case, in 

order to have a positive tangent stiffness, that is, dz/du > 0, n A/z )(0 γβ −−< . 

Considering portion II and moving from point )0,( *  u−  to point ),( 00 zu , Table 4.1 reveals that 

the tangent stiffness: 

� decreases from the value A to value Az  A n <+− 0)( γβ , for 0>+γβ , and 

n A/z )(0 γβ +< ; 

� is constant and equal to A for 0=+γβ ; 

� increases from the value A to the value Az  A n >+− 0)( γβ , for 0<+γβ . 

In softening force-displacement hysteresis loops, the parameter n defines the sharpness of the 

transition from the linear to nonlinear range with the hysteresis approaching bilinear behavior 

as n approaches ∞ , as shown in Figure 4.2. 

 

Figure 4.2. Influence of parameter n on the hysteresis loop shape in the BWM (A = 1, 5.0    ==γβ ). 
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Equation (4.3) is generally solved numerically by adopting the Runge-Kutta method 

(Rosenbrock 1963). In fact, explicit expressions for z are possible only for n = 1 or n = 2.  

If n = 1, it can be shown that: 
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In this case, the energy dissipated in one cycle is given by: 
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Figure 4.3 shows the force-displacement hysteresis loop obtained for n = 1, A = 1, and for 

different values of the pairs of parameters β  and γ . 
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(c) 

 

(d) 
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(e) 

 

(f) 

 

Figure 4.3. Hysteresis loops obtained with the BWM for different values of pairs of parameters β  and γ         

(A = 1, n = 1). 
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If n = 2, for portion I: 
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whereas, for portion II: 
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taking into account that: 
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For portions III and IV: 

 )()( IIII uzuz −−= ,  (4.34) 

 )()( IIIV uzuz −−= .  (4.35) 

In this case, the energy dissipated in one cycle is given by: 
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in which 
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Nagarajaiah et al. (1991) have adapted the above described uniaxial DEM for simulating the 

dynamic behavior of elastomeric bearings, such as high damping rubber bearings and lead 

rubber bearings.  

For an elastomeric bearing, the nonlinear restoring force can be evaluated by using the 

following equation: 

 )()()( ufufuf he += ,  (4.41) 

in which )(ufe  is a linear elastic force evaluated as: 

 u 
u

f
 αuf

y

y
e =)( ,  (4.42) 

and )(ufh  is a nonlinear hysteretic force defined as: 

 )()1()( uz  
u

f
 αuf

y

y
h −= ,  (4.43) 

where α  is the post-yield to pre-yield stiffness ratio, yf  is the yield force, and yu  is the yield 

displacement. The function z, which is obtained by solving Equation (4.3), has the unit of 

displacement.  

Nagarajaiah et al. (1991) suggests the following values for the model parameters: 

 A = 1, 2

0.9

yu
   =β , 2

0.1

yu
   =γ , and n = 2. 

Figure 4.4 shows the total nonlinear restoring force given by Equation (4.41) and its two 

components, obtained by Equations (4.42) and (4.43), respectively. 

The above-described model has been also adopted by Demetriades et al. (1993) to simulate 

the dynamic behavior of wire rope isolators in Roll and Shear directions. 
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Figure 4.4. (a) Total nonlinear restoring force and its two components: (b) linear elastic force and (c) nonlinear 

hysteretic force.  
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Constantinou et al. (1990) have adapted the BWM for modeling sliding bearings, such as 

friction pendulum bearings and flat sliding bearings.  

For a friction pendulum bearing, the nonlinear restoring force can be obtained as: 

 )()()( ufufuf he += ,  (4.44) 

in which )(ufe  is a linear elastic force evaluated as: 

 u 
R

N
ufe =)( ,  (4.45) 

and )(ufh  is a nonlinear hysteretic force defined as: 

 )()( uz 
u

N 
uf

y
h

µ= ,  (4.46) 

where N is the vertical load carried by the seismic isolator, R is the radius of curvature of the 

spherical concave surface of the bearing, µ  is the sliding friction coefficient, which depends 

on the value of bearing pressure and the instantaneous velocity of sliding u& .  

For a flat sliding bearing, Equation (4.44) becomes:  

 )()( ufuf h= ,  (4.47) 

where )(ufh  is the nonlinear hysteretic force given by Equation (4.46). 

The coefficient of sliding friction is modeled by the following equation suggested by 

Constantinou et al. (1990): 

 
ua  -

min s,max s,max s, e &)( µµµµ −−= ,  (4.48) 

in which, max s,µ  is the maximum value of the coefficient of friction, min s,µ  is its minimum 

value (at 0=u& ), and a is a parameter which controls the variation of the coefficient of friction 

with the velocity. Values of parameters max s,µ , min s,µ , and a for interfaces used in sliding 

bearings have been reported in Constantinou et al. (1990) and Mokha et al. (1991). In general, 

the latter parameters are functions of bearing pressure. 
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4.2.1.2 Modified Bouc-Wen Model 

Since the BWM is not able to reproduce the hysteretic behavior with post-hardening, 

displayed by high damping rubber bearings and wire rope isolators at large displacements (Ni 

et al. 1999, Tsai et al. 2003), or the hysteretic behavior with post-softening, displayed by 

unbounded elastomeric bearings with deformable reinforcing layers (Spizzuoco et al. 2014), 

in the following, an improved version of such model is described. 

As proposed by Ni et al. (1999), in order to predict the increase or decrease of the tangent 

stiffness at large displacements, the symmetric softening nonlinear hysteretic force described 

by the BWM can be modulated with a nonhysteretic term as follows: 

 )()()( 21 ufufuf ⋅= ,  (4.49) 

in which )(1 uf  is the nonlinear elastic modulation function given by: 

 3
2

2
11 )sgn(1)( u ucucuf ++= ,  (4.50) 

where 1c  and 2c  are the two coefficients of the proposed even function, whereas )(2 uf  is the 

symmetric softening nonlinear hysteretic force given by Equation (4.41). 

Figures 4.5a and 4.5b show the total nonlinear restoring force, given by Equation (4.49), in 

the case of post-hardening and post-softening behavior, respectively. 
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(b) 

 

Figure 4.5. Total restoring force with (a) post-hardening and (b) post-softening characteristics at large 

displacements simulated by adopting the MBWM. 
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4.2.2 Biaxial Models 

In what follows, a DEM able to simulate symmetric softening hysteresis loops with bilinear or 

rigid-plastic characteristics, taking into account the biaxial interaction between the restoring 

forces in two orthogonal horizontal directions, is described. 

4.2.2.1 2d Bouc-Wen Model 

The DEM for the biaxial behavior developed by Park et al. (1986) is an extension of the 

model introduced by Wen (1976, 1980) for uniaxial behavior. According to the former model, 

the isotropic hysteretic restoring forces in the x and y directions, that is, )(uzx  and )(uzy , can 

be obtained by solving the following coupled first order nonlinear ordinary differential 

equations: 

 yxyxyyxxxxxxx zzu z zu  zu z zu u Az &&&&&& γβγβ −−−−= 2 ,  (4.51) 

 yxxyxxyyyyyyy zzu z zu  zu z zu u Az &&&&&& γβγβ −−−−= 2 .  (4.52) 

The hysteretic behavior prescribed by Equations (4.51) and (4.52) can be illustrated by a 

simple displacement path as the one shown in Figure 4.6. 

 

Figure 4.6. Linear displacement path. 

In this case, the variables in Equations (4.51) and (4.52) are expressed as:  

 ϑcoszzx = , ϑsinzzy = , ϑcosuux = , ϑsinuuy = ,  (4.53) 
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in which u and z are the uniaxial displacement and hysteretic restoring force, respectively. 

Substituting Equation (4.53) into Equations (4.51) and (4.52), it may be shown that the latter 

reduce to the following form:  

 2z u  z z u u Az &&&& γβ −−= ,  (4.54) 

which is the nonlinear ordinary differential equation proposed by Wen (1976, 1980) for n = 2.  

The total hysteretic restoring force along the displacement path of Figure 4.6 is illustrated in 

Figure 4.7.  

 

Figure 4.7. Hysteretic behavior under linear path. 

The same is true for any value of ϑ  therefore the restoring force is isotropic. 

Nagarajaiah et al. (1991) have adapted the model for biaxial behavior to predict the dynamic 

response of elastomeric bearings.  

For an elastomeric bearing, the nonlinear restoring forces along the orthogonal directions x 

and y can be described by the following equations: 

 x
y
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y
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y

F
 αu 

y

F
 αf )1( −+= ,  (4.55) 

 y
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y
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y z 
y

F
 αu 

y

F
 αf )1( −+= ,  (4.56) 

where α  is the post-yield to the pre-yield stiffness ratio, yF  is the yield force, y is the yield 

displacement, xu  and yu  represent the displacements of the isolation device in the x and y 

directions, respectively. The functions xz  and yz , obtained by solving Equations (4.51) and 

(4.52), respectively, have the unit of displacement and account for the direction and biaxial 
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interaction of hysteresis forces. To account for the effects of axial load, α , yF , and y have to 

be adjusted based on experimental results (Built 1982).  

Nagarajaiah et al. (1991) suggests the following values for the model parameters: 

 A = 1, 2y
   
0.9=β , and 2y

   
0.1=γ .  

Constantinou et al. (1990) have adapted the DEM for the biaxial behavior developed by Park 

et al. (1986) for modeling sliding bearings, such as friction pendulum bearings and flat sliding 

bearings. 

For a friction pendulum bearing, the nonlinear restoring forces along the orthogonal directions 

x and y are described by the following equations: 

 )(uz
y

N 
u 

R

N
f xxx

µ+= ,  (4.57) 

 )(uz 
y

N 
u 

R

N
f yyy

µ+= ,  (4.58) 

where N is the vertical load carried by the bearing, R is the radius of curvature of the spherical 

concave surface of the bearing, and µ  is the sliding friction coefficient which depends on the 

value of bearing pressure and on the instantaneous velocity of sliding u& , given by: 

 22
yx uuu &&& += .  (4.59) 

The functions xz  and yz , obtained by solving Equations (4.51) and (4.52), respectively, have 

the unit of displacement and account for the direction and biaxial interaction of hysteresis 

forces. 

For a flat sliding bearing, the nonlinear restoring forces along the two orthogonal directions x 

and y are given by:   

 )(uz 
y

N 
f xx

µ= ,  (4.60) 

 )(uz 
y

N 
f yy

µ= .  (4.61) 



Chapter 4 | Mathematical Modeling of Seismic Isolators 
 

82 

 

4.3 Proposed Mathematical Models 

In the following, four uniaxial mathematical models, namely, Nonlinear Exponential Model 

(NEM), Advanced Nonlinear Exponential Model (ANEM), Parallel Model (PM), and 

Advanced Parallel Model (APM), and one biaxial mathematical model, namely, 2d Parallel 

Model (2d PM), are presented. The ANEM and the APM are an improved version of the 

NEM and PM, respectively. 

4.3.1 Uniaxial Models 

4.3.1.1 Nonlinear Exponential Model 

Figure 4.8a shows the normalized symmetric softening force-displacement hysteresis loop 

with bilinear characteristics typical of elastomeric bearings, such as high damping rubber 

bearings and lead rubber bearings, and metal devices, such as wire rope isolators, whereas 

Figure 4.8b presents the normalized symmetric softening force-displacement loop having 

rigid-plastic characteristics generally displayed by sliding bearings, such as flat sliding 

bearings. Each hysteresis loop can be decomposed into three curves: the first loading curve 

(portion a-b), namely, virgin curve, the unloading curve (portion b-c), and the loading curve 

(portion c-d).  
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(b) 

                   

Figure 4.8. Normalized hysteresis loop with (a) bilinear and (b) rigid-plastic characteristics. 

The loading curve tangent stiffness of the two normalized hysteresis loops shown in Figure 

4.8 is plotted in Figure 4.9 as function of the horizontal displacement. Since the tangent 

stiffness functions of the loading and unloading curves are antisymmetric, only the former has 

been plotted. It can be observed that, in both two cases, the tangent horizontal stiffness 

exponentially decreases with increasing displacement. 
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(b) 

 

Figure 4.9. Tangent stiffness variation of the loading curve with (a) bilinear and (b) rigid-plastic characteristics. 

The tangent stiffness )(ukt  can be expressed by the following two mathematical expressions, 

valid for a loading and an unloading curve, respectively:  

 )(
212 )()( minu  u a

t e kkkuk −−−+= , )0( >u&   (4.62) 

 )(
212 )()( u u a

t
maxe kkkuk −−−+= , )0( <u&   (4.63) 

where 1k  and 2k  are the initial and the asymptotic values of the tangent stiffness, maxu  and 

minu  are the horizontal displacement values at the most recent point of unloading and loading, 

respectively, and a is a parameter that defines the transition from 1k  to 2k .  

Integrating Equations (4.62) and (4.63): 
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the following nonlinear hysteretic restoring force is obtained: 
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 [ ] e  
a

b
uu kufuf minu  u a

minminhh 1)()()( )(
2 −−−+= −− , )0( >u&   (4.66) 

 [ ] e  
a

b
uu kufuf u u a

maxmaxhh
max 1)()()( )(

2 −+−−= −− . )0( <u&   (4.67) 

Equations (4.66) and (4.67) can be written in a more compacted form as follows: 

 [ ] e  
a

b
 u uu kfuf lru  ua  u

lrlrh 1)(sgn)()( )()( sgn 
2 −−−+= −− &

& ,  (4.68) 

where ),( lrlr f u  is the most recent point of load reversal. 

According to Masing’s rule, the virgin curve can be obtained applying a similitude 

transformation of ratio 0.5 to the generic loading or unloading curve of the nonlinear restoring 

force )(ufh . This means that for a given u on the virgin curve, where u is computed starting 

from zero, the corresponding tangent stiffness )(uk t  must be equal to the one obtained from 

the generic loading or unloading curve for a value of 2u. For this reason, if the initial 

displacement of the bearing is equal to zero, the virgin curve can be evaluated using the 

following expressions, valid for a loading and an unloading curve, respectively:   

 [ ] e  
a 

b
u k uf u a  

h 1
2

)( 2
2 −−= − , )0( >u&   (4.69) 

 [ ] e  
a 

b
u k uf u a  

h 1
2

)( 2
2 −+= . )0( <u&   (4.70) 

Equations (4.69) and (4.70) can be written in a more compacted form as follows: 
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a 

b
 u  u k  uf ua   u  

h 1
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2 −−= − &

& .  (4.71) 

The area within a force-displacement hysteresis loop, that is, the value of the dissipated 

energy in one cycle of motion, can be evaluated as: 

 

[ ]

[ ] ,1)()(

1)()(

)(
2

)(
2

  du  e  
a

b
uu kuf        

  du  e  
a

b
uu kufE

max

min

max

max

min

min

u

u

u ua 
maxmaxh

u

u

u  ua 
minminhd

∫

∫

−+−−

−−−−+=

−−

−−

  (4.72) 
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which gives: 

 [ ] maxmaxhmax
ua  

maxd u uf u 
a

b 
 e  

a

b 
u k   E max )(4

4
1

2
4 2

2
2

2 −+−+= − .  (4.73) 

It is worth to notice that the proposed analytical model requires the evaluation of only 3 

parameters, that is, 1k , 2k , and a, whereas in the widely used uniaxial differential equation 

BWM (Bouc 1971, Wen 1976, 1980) the number of parameters to be identified is equal to 7 

for both elastomeric and sliding bearings (Constantinou et al. 1990, Nagarajaiah et al. 1991) 

and wire rope isolators (Demetriades et al. 1993). In addition, the presented model allows one 

to reduce the computational effort of a nonlinear time history analysis by avoiding, for each 

time step, the numerical solution of the first order nonlinear ordinary differential equation 

required by the BWM to evaluate the hysteretic variable. 
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4.3.1.2 Advanced Nonlinear Exponential Model 

Figure 4.10a shows the typical normalized symmetric force-displacement hysteresis loop 

displayed by seismic isolators having post-hardening behavior at large displacements, such as 

high damping rubber bearings and wire rope isolators, whereas Figure 4.10b shows the typical 

normalized symmetric force-displacement loop of seismic isolators with post-softening 

behavior at large displacements, such as unbounded recycled rubber-fiber reinforced bearings. 

 (a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

                          

Figure 4.10. Normalized hysteresis loop with (a) post-hardening and (b) post-softening characteristics. 



Chapter 4 | Mathematical Modeling of Seismic Isolators 
 

88 

 

The loading curve tangent stiffness of the two normalized hysteresis loops shown in Figure 

4.10 is plotted in Figure 4.11 as function of the horizontal displacement. Since the tangent 

stiffness functions of the loading and unloading curves are antisymmetric, only the former has 

been plotted.  

(a)   

 

(b) 

 

Figure 4.11. Tangent stiffness variation of the loading curve with (a) post-hardening and (b) post-softening 

characteristics. 
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The increase or decrease of the tangent stiffness can be simulated by connecting in parallel to 

the proposed NEM, a nonlinear elastic spring having a tangent stiffness function given by the 

following mathematical expression:   

 )1()( −= ⋅u  d 
t e c uk , )0( >u   (4.74) 

 )1()( −= ⋅− u  d 
t e c uk , )0( <u   (4.75) 

where c and d are two parameters of the proposed exponential function.  

Integrating Equations (4.74) and (4.75):  

 [ ]∫ −⋅
u

u  d du   ec   
0

)1( , )0( >u   (4.76) 

 [ ]∫ −⋅−
u

u  d du   ec   
0

)1( , )0( <u   (4.77) 

the following nonlinear elastic restoring force is obtained: 

 )1()( −+−= ⋅u  d 
e e 

d

c
  u c uf , )0( >u   (4.78) 

 )1()( −−−= ⋅− u  d  
e e 

d

c
  u c uf . )0( <u   (4.79) 

Equations (4.78) and (4.79) can be written in a more compacted form as follows: 

 ]1[)(sgn)( )(sgn −+−= u d u  
e e

d

c
 u   u cuf   .  (4.80) 

Hence, the nonlinear total restoring force of a seismic device is: 

 )()()( u fu fuf eh += ,  (4.81) 

where )(ufh  is given by Equation (4.68).  

Figures 4.12a and 4.12b show the two components of the nonlinear total restoring force )(uf  

at large displacements, namely, the nonlinear hysteretic force )(ufh  and the nonlinear elastic 
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force )(ufe , in the case of force-displacement loop with post-hardening and post-softening 

characteristics, respectively.  

(a)   

 

(b) 

 

Figure 4.12. Total restoring force components for hysteresis loop with (a) post-hardening and (b) post-softening 

characteristics. 
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Figure 4.13 shows the mechanical model postulated to represent the 1d dynamic response of 

seismic isolators with hardening or softening behavior at large displacements. The model 

comprises a uniaxial Nonlinear Hysteretic Spring (NHS) and a uniaxial Nonlinear Elastic 

Spring (NES) in parallel and two rigid columns representing the height h of the bearing. 

 

Figure 4.13. 1d mechanical model. 

As it will be shown in Chapter 5, the mathematical model expressed by Equation (4.81) can 

capture the smooth transition of the hysteresis loops from the small to large horizontal 

displacement levels by using the same set of 5 parameters, that is, 1k , 2k , a, c, and d, 

identified from the experimental loops with the largest amplitude. Finally, it has to be noted 

that the axial load effects in the isolator device can be accounted for by adjusting the 

appropriate model parameters. 

 

 

 

 

 

 

 



Chapter 4 | Mathematical Modeling of Seismic Isolators 
 

92 

 

4.3.1.3 Parallel Model 

In this section, a 1d PM is proposed to reproduce the dynamic behavior of seismic isolators 

having a continuously decreasing tangent stiffness, generally displayed within the relatively 

large displacements range.  

4.3.1.3.1 Parallel Modeling of Inelastic Material Behavior 

Hysteretic curves with continuously decreasing tangent stiffness can be easily discretized 

using the parallel modeling concept. The basic idea is to consider purely elastic elements and 

elastic-perfectly plastic elements connected in parallel, all having the same deformation but 

each carrying a different force. The total force acting on the parallel assemblage is then 

obtained by summing the forces acting on each element. 

Parallel modeling has been already used in the past for representing the mechanical behavior 

of inelastic materials. The idea of effective stress introduced by Terzaghi to describe the 

behavior of wet soils is essentially a parallel model, as water and soil fabric both carry the 

total stress. The concept was first formalized by Mroz (1963) in treating nonassociated flow 

plasticity and then used by Owen et al. (1974) and Pande et al. (1977) to achieve a better 

representation of actual material behavior through a number of overlays of simple models. 

Nelson and Dorfmann (1995) have used parallel mathematical models in incremental 

elastoplasticity to represent strain hardening in metals and to develop models of frictional 

materials such as soils, rock and concrete. 

In what follows, the parallel modeling concept is first presented through a simple 1d example. 

Figure 4.14a shows the 1d stress-strain curve of a work hardening material which is elastic 

with Young’s modulus E up to a yield stress yσ  and presents a tangent stiffness EEt <  above 

the yield stress. The material is assumed to have the same yield stress in compression as in 

tension and to exhibit kinematic hardening, that is, the difference between the stresses which 

limit the elastic range remains constant during cyclic loading. A mathematical representation 

of the elasto-plastic response of the material is shown in the schematic diagram of Figure 

4.14d, where an elastic element with Young’s modulus tE  (Figure 4.14c) is connected in 

parallel to an elastic-perfectly plastic element having elastic stiffness tEE −  and a yield stress 

yt  EE σ)/1( −  (Figure 4.14b). The parallel model does not only reproduce the stress-strain 
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curve during the loading, but also the behavior during unloading and cyclic loops as well as 

kinematic hardening. 

(a) 

 

(b) 

 

(c) 
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(d) 

 

Figure 4.14. Parallel modeling of a 1d stress-strain curve for a work hardening material (two elements case). 

The previous simple two-element model can be easily generalized to the case of a multilinear 

1d stress-strain curve, using one elastic element and a finite number of elastic-perfectly plastic 

elements connected in parallel. As shown in Figure 4.15 for the case of four constitutive 

elements, the initial stiffness of the parallel assemblage is the sum of the elastic stiffness of 

each element. As the carried load increases, each of the elasto-plastic elements yields and the 

total stiffness correspondingly decreases.  

 

Figure 4.15. Parallel modeling of a 1d stress-strain curve for a work hardening material (four elements case). 

It is easy to understand that 1d curves with continuously decreasing stiffness, like those 

exhibited by isolation bearings, can be effectively approximated through parallel modeling 

using a sufficiently high number of constitutive elements. 
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4.3.1.3.2 Application of Parallel Modeling to Seismic Isolators 

The continuously decreasing tangent stiffness, generally displayed by seismic isolators within 

the relatively large displacements range, can be expressed by the following two mathematical 

expressions, valid for a loading and an unloading curve, respectively:      

 )(
01

1)()( minu-u c 
t e kkk    uk −

∞∞ −+= , )0( >u&   (4.82) 

 )(
01

1)()( uu c 
t

maxe kkk    uk −−
∞∞ −+= , )0( <u&   (4.83) 

where 0k  and ∞k are the initial and the asymptotic values of the tangent stiffness, maxu  and 

minu  are the displacement values at the most recent point of unloading and loading, 

respectively, and 1c  is a parameter that defines the transition from 0k  to ∞k .  

Equations (4.82) and (4.83) can be written in a more compacted form, valid for a generic 

loading or unloading curve obtained during cyclic testing on a single seismic isolation device: 

 uc 
t ea k    uk 1)(1

−
∞ += ,  (4.84) 

where ∞−= kka 0  and u is evaluated starting from the latest point of unloading or reloading.  

Figure 4.16 shows a plot of the tangent stiffness function )(1 ukt  given by Equation (4.84). 

 

Figure 4.16. Plot of the tangent stiffness function )(1 ukt . 
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The proposed continuously decreasing tangent stiffness function can be approximated through 

a piecewise constant function with N+1 equally spaced decreasing values of )(1 ukt , as shown 

in Figure 4.17.   

 

Figure 4.17. Continuous and discretized tangent stiffness function )(1 ukt . 

Assuming a/NΔa = , the discretized tangent stiffness values are: 

 ak    k ,t += ∞01 ,  (4.85) 

 Δa Nk    k ,t )1(11 −+= ∞ ,  (4.86) 

 Δa Nk    k ,t )2(21 −+= ∞ ,  (4.87) 

 … ,  (4.88) 

 Δa k   k -N ,t += ∞11 ,  (4.89) 

 ∞= k    k N ,t1 ,  (4.90) 

and the corresponding values of the displacements are obtained by solving Equation (4.84) 

with respect to u: 

 1..., 2, 1, 0,log
1 1

1
1 −=







 −
−= ∞ N j     

a

kk
  

c
  u j ,t

j, .  (4.91) 
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Thus, the expression of the tangent stiffness )(1 ukt  can be approximated through the 

piecewise constant function given by:  

 a k   k    u k      u    u ,tt
I
 +==→≤ ∞0111 )( ,  (4.92) 

 11111 )( ,tt
II
 

I k    u k      u    u    u =→<≤ ,  (4.93) 

 21111 )( ,tt
III
 

II
 k    u k      u    u    u =→<≤ ,  (4.94) 

 … ,  (4.95) 

 1111
1

1 )(  N ,tt
N
 

 N
 k    u k      u    u    u −

− =→<≤ ,  (4.96) 

 ∞==→≥ k   k    u k      u    u N ,tt
N
 111 )( ,  (4.97) 

where the limit displacement values i u1  are: 
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1101
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 u u
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= ,  (4.98) 
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2111
1

,,II uu
  u

+
= ,  (4.99) 

 … ,  (4.100) 

 
2

11211
1

  N ,  N ,  N uu
  u −−− +

= ,  (4.101) 

  u  α  u   N ,
N

111 −= ,  (4.102) 

and α  is an appropriate constant.   

The above-described discretization of the tangent stiffness function )(1 ukt  allows one to 

simulate the dynamic behavior of seismic isolators within the relatively large displacements 

range by adopting a parallel assemblage made of one 1d elastic element, having stiffness 

∞= k   kel , and N 1d elastic-perfectly plastic elements, having stiffness a   k i ep, ∆= , when in the 

elastic state, and yielding displacement N  ,. . . II, I, i     ,u i =for1 . Thus, the nonlinear hysteretic 
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restoring force of the seismic isolation device can be obtained by summing the forces acting 

on each element. More specifically, the generic loading curve can be evaluated as: 

 )()()()( 11 mintot ep,minemin uu fuu fu fuf −+−+= , )0( >u&   (4.103) 

where the restoring force of the 1d elastic element is given by: 

 )()( minmine uu k uu f −=− ∞ ,   (4.104) 

whereas the total restoring force of the N 1d elastic-perfectly plastic elements is obtained as: 

 ∑
=

−=−
N

Ii 
mini ep,mintot ep, uu f uu f )()( ,   (4.105) 

in which the restoring force of the i-th 1d elastic-perfectly plastic element is evaluated as: 
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i
minmin

mini ep,
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uu f

11

1

)(if

)(if)(
)( .   (4.106) 

The generic unloading curve is given by: 

 )()()()( 11 uu fuu fu fuf maxtot ep,maxemax −−−−= , )0( <u&   (4.107) 

with the restoring force of the 1d elastic element given by: 

 )()( uu k uu f maxmaxe −=− ∞ ,   (4.108) 

and the total restoring force of the N 1d elastic-perfectly plastic elements obtained as: 

 ∑
=

−=−
N

Ii 
maxi ep,maxtot ep, uu f uu f )()( ,   (4.109) 

where the restoring force of the i-th 1d elastic-perfectly plastic element is evaluated as: 

 


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>−
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=−
i
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i
maxmax

maxi ep,
u uu                    uΔa  

u uu         uuΔa 
uu f

11

1

)(if

)(if)(
)( .   (4.110) 

Equations (4.103) and (4.107) can be written in a more compacted form, valid for a generic 

loading or unloading curve: 
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 [ ] [ ])()(sgn)(sgn)()(sgn)(sgn)()( 11 lrtot ep,lrelr u  u u  f u  u  u u  f u u fuf −+−+= &&&& ,  (4.111) 

in which: 

 [ ] )()(sgn)()(sgn lrlre u  u u  k u  u u  f −=− ∞ && ,  (4.112) 
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)()(sgn

&

&&
& ,  (4.114) 

and lru  is the value of the displacement at the latest point of unloading or reloading, that is, 

maxu  and minu , respectively. 

According to Masing’s rule, the first loading curve, namely virgin curve, can be obtained 

from the generic loading curve from a similitude transformation of ratio 0.5. This means that 

for a given u on the virgin curve, where u is computed starting from zero, the corresponding 

tangent stiffness must be equal to the one obtained from the generic loading curve for a value 

of 2u. Thus, in order to obtain the tangent stiffness for the virgin curve, it is just necessary to 

substitute 1c  with 12 c  in Equation (4.84): 

 u c   
t ea k    uk 12
1 )( −

∞ += .  (4.115) 

Figures 4.18 and 4.19 show the nonlinear hysteretic force )(1 uf  having bilinear and rigid-

plastic characteristics, respectively, simulated adopting 5 and 50 1d elastic-perfectly plastic 

elements, that is, N = 5 and N = 50.  

It is worth to notice that the proposed mathematical model requires the evaluation of only 3 

parameters, that is, 0k , ∞k , and 1c , whereas in the widely used uniaxial differential equation 

BWM (Bouc 1971, Wen 1976, 1980) the number of parameters to be identified is equal to 7 

for both elastomeric and sliding bearings (Constantinou et al. 1990, Nagarajaiah et al. 1991) 

and wire rope isolators (Demetriades et al. 1993). In addition, the presented model allows one 

to reduce the computational effort of a nonlinear time history analysis by avoiding, for each 

time step, the numerical solution of the first order nonlinear ordinary differential equation 

required by the BWM to evaluate the hysteretic variable.  
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(a)   

 

(b) 

 

Figure 4.18. Nonlinear hysteretic force )(1 uf  having bilinear characteristics simulated adopting 

 (a) N = 5 and (b) N = 50. 
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(a)   

 

(b) 

 

Figure 4.19. Nonlinear hysteretic force )(1 uf  having rigid-plastic characteristics simulated adopting 

 (a) N = 5 and (b) N = 50. 
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4.3.1.4 Advanced Parallel Model 

In the following, the proposed 1d PM is modified in order to reproduce the dynamic response 

of seismic isolators with post-hardening or post-softening behavior at large displacements. 

The increase or decrease of the tangent stiffness displayed at large displacements can be 

obtained by summing the following mathematical expressions to Equation (4.84): 

 u c  
t e c c  uk 3

222 )( +−= , )0( >u   (4.116) 

 u c  
t e c c  uk 3

222 )( −+−= , )0( <u   (4.117) 

where 2c  and 3c  are two parameters of the proposed exponential function. 

Equations (4.116) and (4.117) can be written in a more compacted form, valid for positive or 

negative displacement values: 

 u c u  
t e c c    uk 3)(sgn

222 )( +−= .  (4.118) 

Figure 4.20 shows a plot of the tangent stiffness function )(2 ukt , given by Equation (4.118), 

obtained for positive values of the parameters 2c  and 3c . 

 

Figure 4.20. Plot of the tangent stiffness function )(2 ukt  obtained for 02 >c  and 03 >c . 
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The proposed continuously increasing or decreasing tangent stiffness function given by 

Equation (4.118) can be approximated through a piecewise constant function with M equally 

spaced increasing or decreasing values of )(2 ukt . Figure 4.21 shows the continuous and 

discretized increasing tangent stiffness function obtained for positive values of 2c  and 3c . 

 

Figure 4.21. Continuous and discretized increasing tangent stiffness function )(2 ukt  obtained for  

02 >c  and 03 >c .  

Assuming b/MΔb = , the discretized tangent stiffness values are: 

 002     k ,t = ,  (4.119) 

 bΔ    k ,t =12 ,  (4.120) 

 bΔ     k ,t 222 = ,  (4.121) 

 … ,  (4.122) 

 Δb   M    k  M ,t )1(12 −=− ,  (4.123) 

 b    b M    k M ,t == ∆2 ,  (4.124) 

and the corresponding values of the displacements are obtained by solving Equation (4.118) 

with respect to u: 
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Thus, the expression of the tangent stiffness )(2 ukt  can be approximated through the 

piecewise constant function given by:  

 0222 )( ,tt
I k    uk      u    u =→≤ ,  (4.126) 

 12222 )( ,tt
III k    uk      u   u    u =→<≤ ,  (4.127) 
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 b    k    uk      u    u M ,tt2
M ==→≥ 22 )( ,  (4.131) 

where the limit displacement values i u2  are: 
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= − .  (4.136)                                                            

The above-described discretization of the tangent stiffness function )(2 ukt  allows one to 

obtained a nonlinear elastic force by adopting a parallel assemblage made of M 1d linear 

elastic gap elements, having stiffness b    k i eg, ∆=  and gap length equal to 

M.  ,. . . II, I, i     ,u i =for2  More specifically, the nonlinear elastic force can be evaluated as: 
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 )()(2 u fuf tot ge,= ,  (4.137) 

where the total restoring force of the M 1d linear elastic gap elements is given by: 

 ∑
=

=
M

Ii 
i ge,tot ge, u f u f )()( ,   (4.138) 

in which the restoring force of the i-th 1d gap element is evaluated as: 

 [ ]
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=
ii
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i ge, u u          u uu  Δb

u u                                     
u f

22

2

if)sgn(

if0
)( .   (4.139) 

Hence, the nonlinear total restoring force of a seismic device can be calculated as: 

 )()()( 21 u fu fuf += ,  (4.140) 

where )(1 uf  is given by Equation (4.111).  

Figures 4.22a and 4.22b show the two components of the nonlinear total restoring force )(uf  

at large displacements, namely, the nonlinear hysteretic force )(1 uf  and the nonlinear elastic 

force )(2 uf , in the case of force-displacement loop with post-hardening and post-softening 

characteristics, respectively, obtained adopting one 1d elastic element, 5 1d elastic-perfectly 

plastic elements, and 5 1d linear elastic gap elements, that is, N = 5 and M = 5.  
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(b) 

 

Figure 4.22. Total restoring force components for hysteresis loop with (a) post-hardening and (b) post-softening 

characteristics (N = 5, M = 5). 

Figures 4.23a and 4.23b show the two components of the nonlinear total restoring force )(uf  

at large displacements in the case of force-displacement loop with post-hardening and post-

softening characteristics, respectively, obtained adopting one 1d elastic element, 50 1d elastic-

perfectly plastic elements, and 50 1d linear elastic gap elements, that is, N = 50 and M = 50. 
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(b) 

        

Figure 4.23. Total restoring force components for hysteresis loop with (a) post-hardening and (b) post-softening 

characteristics (N = 50, M = 50). 

As it will be shown in Chapter 5, the mathematical model expressed by Equation (4.140) can 

capture the smooth transition of the hysteresis loops from the small to large horizontal 

displacement levels by using the same set of 5 parameters, that is, 0k , ∞k , 1c , 2c , and 3c , 

identified from the experimental loops with the largest amplitude. Finally, it has to be noted 

that the axial load effects in the isolator device can be accounted for by adjusting the 

appropriate model parameters. 
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4.3.2 Biaxial Model 

4.3.2.1 2d Parallel Model 

In what follows, the parallel modeling of the inelastic material behavior is extended to the 3d 

case and the proposed PM is improved in order to represent the coupling of the nonlinear 

restoring forces along two orthogonal horizontal directions. 

4.3.2.1.1 Parallel Modeling of Inelastic Material Behavior 

The parallel modeling concept presented in 4.3.1.3.1 using a 1d representation can be 

extended to 2d or 3d without difficulty. 

By considering the case of N elastic-perfectly plastic 3d elements and one elastic element 

connected in parallel, at each step of an incremental elasto-plastic analysis, all the elements 

have the same incremental strain tensor components: 

 el 
ij

N 
ij

II 
ij

I 
ijij d    d        d    d    d εεεεε ===== ... ,  (4.141) 

whereas the increments of stress tensor components carried by each element are summed 

together to obtain the total incremental stress tensor components: 

 el 
ij

N 
ij

II 
ij

I 
ijij d    d        d    d    d σσσσσ ++++= ... .  (4.142) 

In the above, the total incremental strain and stress tensor components are indicated without 

apex, whereas the apices 
NIII  ...,    ,,  refer to each elastic-perfectly plastic element and the 

apex el  to the elastic element.  

Denoting with [ ]el C  the symmetric positive definite 6x6 stiffness matrix of the elastic element 

and with { } el d σ  and { } el d ε  the corresponding 6x1 vectors of incremental stress and 

incremental strain components, respectively, we have: 

 { } [ ] { } el el  el d   C    d εσ = .  (4.143) 

Regarding the K-th elastic-perfectly plastic element, its behavior is assumed to depend on the 

state of stress only, represented by the 6x1 vector { } K  σ  of the stress tensor components, and 
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is determined by the value assumed by a scalar yield function )(  K f σ . If 0)( < K f σ , the 

behavior is elastic: 

 { } [ ] { } K K  K d   C    d εσ = ,  (4.144) 

where [ ]K C  is the element stiffness matrix in the elastic state. When 0)( = K f σ , the 

plasticity mechanism becomes active and an incremental plastic flow, denoted by { } pl K, d ε , 

may occur, which in that case is added to the incremental elastic strain vector.  In other words: 

 { } { } { } pl K,  el K,  K d     d     d εεε += ,  (4.145) 

where 

 { } [ ] { } K  K  el K, d   C    d σε 1−= .  (4.146) 

Plastic flow occurs when 0)( = K f σ  and the incremental stress vector { } K d σ  lies in the 

tangent plane to the yield surface. Mathematically this is expressed by: 

 { } { } 0    d  f  K T =∇ σ ,  (4.147) 

with { }f ∇  the 6x1 gradient vector of the yield function. In this way, for an infinitesimal 

{ } K d σ , the state of stress { } K K d   σσ +  is still represented by a point on the yield surface, as: 

 { } { } 0)()(     d  f f    d  f  K T K  K K =∇+=+ σσσσ .  (4.148) 

When 0)( = K f σ  and { } { } 0    d  f  K T <∇ σ , the behavior is elastic and Equation (4.144) is 

valid, whereas 0)( = K f σ  and { } { } 0    d  f  K T >∇ σ  is not permitted because this would imply 

a change of the yield surface, which is not allowed due to the hypothesis of perfect plasticity.  

Assuming an associated plasticity law, the incremental plastic flow is given by:  

 { } { }f  d    d  pl K, ∇= λε ,  (4.149) 

where λd  is an undetermined positive quantity. In other words, the plastic strain incremental 

vector is always perpendicular to the yield surface. 

According to Equations (4.145), (4.146), and (4.149) we have: 
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 { } { } { } [ ] { } { }f  d    d   C    d     d     d  K  K  pl K,  el K,  K ∇+=+= − λσεεε 1
,  (4.150) 

which can be rearranged by solving with respect to { } K d σ : 

 { } [ ] { } [ ] { }f   C  d    d   C    d K  K K  K ∇−= λεσ .  (4.151) 

Once { } K d ε  is known, the value of λd  can be determined from Equation (4.147): 

 { } { } { } [ ] { } [ ] { }( ) 0     f   C  d    d   C  f     d f K  K K T  K T =∇−∇=∇ λεσ ,  (4.152) 

which gives: 

 
{ } { }
{ } { }f   C   f 

d   C   f 
     d

K T 

 K K T 

∇∇
∇=

][

][ ελ .  (4.153) 

It can be noted that, when plastic flow occurs, it is possible to define a tangent elasto-plastic 

stiffness matrix [ ]ep K, C  such that: 

 { } [ ] { } K ep K,  K d   C    d εσ = ,  (4.154) 

obtained from Equations (4.151) and (4.153) and equal to: 

 [ ] [ ] [ ] { } { } [ ]
{ } { }f   C  f 

C f   f   C
    C    C

K T 

K T K 
K ep K, 

∇∇
∇∇−=
][

.  (4.155) 

In summary, for a given incremental strain vector { } d ε , it is possible to compute the 

corresponding incremental stress vector for all the elements of the parallel assemblage. This is 

given by Equation (4.143) or (4.144), respectively, if the element is elastic or is elasto-plastic 

with an elastic response, or by Equation (4.154), when the element is elasto-plastic and plastic 

flow is occurring. 
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4.3.2.1.2 Application of Parallel Modeling to Seismic Isolators 

In what follows, the presented 1d PM is extended to the 2d case to take into account the 

transverse biaxial interaction between the nonlinear hysteretic restoring forces along the 

orthogonal directions x and y, namely, )( xx uf  and )( yy uf . 

The discretization of the tangent stiffness function 1tk , described in 4.3.1.3.2, allows one to 

simulate the 2d dynamic behavior of seismic isolation devices within the relatively large 

displacements range by adopting a parallel assemblage made of one elastic element, having 

stiffness ∞= k   kel , and N 2d elastic-perfectly plastic elements, having stiffness a   k i ep, ∆= , 

when in the elastic state, and yielding function N  ,. . . II, I, i     , ua   f  f i
yx =−+ for)( 2

1
22 ∆ .  

The nonlinear hysteretic restoring forces of the seismic isolator can be obtained by summing 

the forces acting on each element. More specifically, the generic loading curves along x and y 

directions can be evaluated as: 
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,  (4.156) 

where the restoring forces of the elastic element are given by: 

 )()( min xxmin xxx e u  u k u  uf −=− ∞ ,  (4.157) 

 )()( miny yminy yy e u  u k u  uf −=− ∞ ,  (4.158) 

whereas the total restoring forces of the N 2d elastic-perfectly plastic elements are: 

 ∑
=

−=−
N

I i  
min xxi x, epmin xxx tot ,ep u  u f u  uf )()( ,  (4.159) 

 ∑
=

−=−
N

I i  
miny yi y, epminy yy tot ,ep u  u f u  uf )()( ,  (4.160) 

in which the restoring forces of the i-th 2d elastic-perfectly plastic element are evaluated as: 
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The generic unloading curves along x and y directions can be evaluated as: 
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where the restoring forces of the elastic element are given by: 

 )()( xmax xxmax x x e u  u k u  uf −=− ∞ ,  (4.164) 

 )()( ymaxy ymaxy  y e u u k u uf −=− ∞ ,  (4.165) 

whereas the total restoring forces of the N 2d elastic-perfectly plastic elements are: 

 ∑
=

−=−
N

I i  
xmax xi x, epxmax xx tot ,ep u  u f u  uf )()( ,  (4.166) 

 ∑
=

−=−
N

I i  
ymaxy i y, epymaxy y tot ,ep u u f u uf )()( ,  (4.167) 

in which the restoring forces of the i-th 2d elastic-perfectly plastic element are evaluated as: 
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Equations (4.156) and (4.163) can be written in a more compacted form, valid for a generic 

loading or unloading curve: 
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in which: 

 )()( lr xxlr xxx e u  u k u  uf −=− ∞ ,  (4.171) 
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 )()( lry ylry yy e u  u k u  uf −=− ∞ ,  (4.172) 

 [ ] [ ]∑
=

−=−
N

Ii 
lr xxxi x, eplr xxxx  tot ep,  u  u u    f    u  u u   f )()(sgn)()(sgn && ,  (4.173) 

 [ ] [ ]∑
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& ,  (4.176) 

where lr xu  and lry u  are the values of the displacement along x and y directions, respectively, 

at the latest point of unloading or reloading. 

According to Masing’s rule, the first loading curve, namely virgin curve, can be obtained 

from the generic loading curve from a similitude transformation of ratio 0.5. This means that 

for a given u on the virgin curve, where u is computed starting from zero, the corresponding 

tangent stiffness must be equal to the one obtained from the generic loading curve for a value 

of 2u. Thus, in order to obtain the tangent stiffness for the virgin curve, it is just necessary to 

substitute 1c  with 12 c  in Equation (4.84). 
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4.4 Comparisons between DEMs and Proposed Mathematical Models 

4.4.1 Comparison between BWM and NEM 

Figure 4.24 shows a symmetric softening force-displacement hysteresis loop with bilinear 

characteristics, typical of elastomeric bearings, such as high damping rubber bearings and 

lead rubber bearings, and metal devices, such as wire rope isolators, simulated using the 

differential equation BWM and the proposed NEM. The values of the parameters adopted in 

the two analytical models are listed in Table 4.2. 

Table 4.2. BWM and NEM parameters | Hysteresis loop with bilinear characteristics. 

BWM yf  [N] yu  [m] α  A β  γ  n 

 45400.29 0.0171 0.10 1 0.5 0.5 2 

NEM 1k  [N/m] 2k  [N/m] a     

 4513479 265498 50     

 

Figure 4.24. Symmetric softening hysteresis loop with bilinear characteristics simulated adopting the BWM and 

the proposed NEM. 

Figure 4.25 presents a symmetric softening force-displacement hysteresis loop having bilinear 

characteristics and a very high value of the initial stiffness, generally displayed by friction 

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

displacement

re
st

or
in

g 
fo

rc
e

 

 

BWM
NEM



Chapter 4 | Mathematical Modeling of Seismic Isolators 
 

115 

 

pendulum bearings, simulated using the BWM and the proposed NEM. The adopted models 

parameters are listed in Table 4.3. 

Table 4.3. BWM and NEM parameters | Loop with bilinear characteristics and high initial stiffness. 

BWM N [N] R [m] yu  [m] µ  A β  γ  n 

 265976 1.5522 0.0001 0.06 1 0.5 0.5 2 

NEM 1k  [N/m] 2k  [N/m] a      

 28756272 171354 850      

 

Figure 4.25. Symmetric softening hysteresis loop with bilinear characteristics and very high initial stiffness 

simulated adopting the BWM and the proposed NEM. 

Figure 4.26 shows a symmetric softening force-displacement hysteresis loop having rigid-

plastic characteristics, generally displayed by flat sliding bearings, simulated using the BWM 

and the proposed analytical model. The parameters adopted in the two models are listed in 

Table 4.4. 

Table 4.4. BWM and NEM parameters | Hysteresis loop with rigid-plastic characteristics. 

BWM N [N] yu  [m] µ  A β  γ  n 

 265976 0.0001 0.06 1 0.5 0.5 2 

NEM 1k  [N/m] 2k  [N/m] a     

 14362714 0 850     
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Figure 4.26. Symmetric softening hysteresis loop with rigid-plastic characteristics simulated adopting the BWM 

and the proposed NEM. 

The theoretical force-displacement hysteresis loops produced by use of the BWM and NEM 

have been obtained, as done in experimental tests, by applying a sinusoidal harmonic 

displacement having amplitude equal to 0.50 m and frequency of 0.40 Hz. 

It is worth to notice that the proposed analytical model requires the evaluation of only 3 

parameters whereas in the BWM the number of parameters to be identified is equal to 7 for 

elastomeric bearings, flat sliding bearings, and wire rope isolators, and equal to 8 for friction 

pendulum bearings. In addition, it has to be noted that the proposed analytical model allows 

one to reduce the computational effort of a nonlinear time history analysis by avoiding, for 

each time step, the numerical solution of the first order nonlinear ordinary differential 

equation required by the BWM. 
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4.4.2 Comparison between BWM and PM 

Figure 4.27 shows a symmetric softening force-displacement hysteresis loop with bilinear 

characteristics, typical of elastomeric bearings, such as high damping rubber bearings and 

lead rubber bearings, and metal devices, such as wire rope isolators, simulated using the 

BWM and the proposed PM. The values of the parameters adopted in the two models are 

listed in Table 4.5. In the PM, 50 1d elastic-perfectly plastic elements have been used, that is, 

N = 50.  

Table 4.5. BWM and PM parameters | Hysteresis loop with bilinear characteristics. 

BWM yf  [N] yu  [m] α  A β  γ  n 

 45400.29 0.0171 0.10 1 0.5 0.5 2 

PM 0k  [N/m] ∞k  [N/m] 1c      

 4513479 265498 50     

 

Figure 4.27. Symmetric softening hysteresis loop with bilinear characteristics simulated adopting the BWM and 

the proposed PM with N = 50. 

Figures 4.28a and 4.28b show the same force-displacement hysteresis loop simulated 

adopting 5 and 100 1d elastic-perfectly plastic elements, respectively, in the proposed PM. 
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(a) 

 

(b) 

 

Figure 4.28. Symmetric softening hysteresis loop with bilinear characteristics simulated adopting the BWM and 

the proposed PM with (a) N = 5 and (b) N = 100. 
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Figure 4.29 presents a symmetric softening force-displacement hysteresis loop having bilinear 

characteristics and a very high value of the initial stiffness, generally displayed by friction 

pendulum bearings, simulated using the BWM and the proposed PM. The adopted models 

parameters are listed in Table 4.6. In the PM, 50 1d elastic-perfectly plastic elements have 

been used, that is, N = 50. 

Table 4.6. BWM and PM parameters | Loop with bilinear characteristics and high initial stiffness. 

BWM N [N] R [m] yu  [m] µ  A β  γ  n 

 265976 1.5522 0.0001 0.06 1 0.5 0.5 2 

PM 0k  [N/m] ∞k  [N/m] 1c       

 28756272 171354 850      

 

Figure 4.29. Symmetric softening hysteresis loop with bilinear characteristics and very high initial stiffness 

simulated adopting the BWM and the proposed PM with N = 50. 

Figures 4.30a and 4.30b show the same force-displacement hysteresis loop simulated 

adopting 5 and 100 1d elastic-perfectly plastic elements, respectively, in the proposed PM. 
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(a) 

 

(b) 

 

Figure 4.30. Symmetric softening hysteresis loop with bilinear characteristics and very high initial stiffness 

simulated adopting the BWM and the proposed PM with (a) N = 5 and (b) N = 100. 
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Figure 4.31 shows a symmetric softening force-displacement hysteresis loop having rigid-

plastic characteristics, generally displayed by flat sliding bearings, simulated using the BWM 

and the proposed mathematical model. The parameters adopted in the two models are listed in 

Table 4.7. In the PM, 50 1d elastic-perfectly plastic elements have been used, that is, N = 50. 

Table 4.7. BWM and PM parameters | Hysteresis loop with rigid-plastic characteristics. 

BWM N [N] yu  [m] α  A β  γ  n 

 265976 0.0001 0.06 1 0.5 0.5 2 

PM 0k  [N/m] ∞k  [N/m] 1c      

 14362714 0 850     

 

Figure 4.31. Symmetric softening hysteresis loop with rigid-plastic characteristics simulated adopting the BWM 

and the proposed PM with N = 50. 

Figures 4.32a and 4.32b show the same force-displacement hysteresis loop simulated 

adopting 5 and 100 1d elastic-perfectly plastic elements, respectively, in the proposed PM. 
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(a) 

 

(b) 

 

Figure 4.32. Symmetric softening hysteresis loop with rigid-plastic characteristics simulated adopting the BWM 

and the proposed PM with (a) N = 5 and (b) N = 100. 
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The theoretical force-displacement hysteresis loops produced by use of the BWM and PM 

have been obtained, as done in experimental tests, by applying a sinusoidal harmonic 

displacement having amplitude equal to 0.50 m and frequency of 0.40 Hz. 

It is worth to observe that the proposed mathematical model requires the evaluation of only 3 

parameters whereas in the BWM the number of parameters to be identified is equal to 7 for 

elastomeric bearings, flat sliding bearings, and wire rope isolators, and equal to 8 for friction 

pendulum bearings. In addition, it has to be noted that the proposed mathematical model 

allows one to reduce the computational effort of a nonlinear time history analysis by avoiding, 

for each time step, the numerical solution of the first order nonlinear ordinary differential 

equation required by the BWM. 
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4.4.3 Comparison between MBWM and ANEM 

Figure 4.33 shows a symmetric force-displacement hysteresis loop, displayed by seismic 

isolators having post-hardening behavior at large displacements, such as high damping rubber 

bearings and wire rope isolators, simulated using the MBWM and the proposed ANEM. The 

values of the parameters adopted in the two analytical models are listed in Table 4.8. 

Table 4.8. MBWM and ANEM parameters | Hysteresis loop with post-hardening characteristics. 

MBWM yf  [N] yu  [m] α  A β  γ  n 1c  2c  

 2025 0.0015 0.2407 1 0.9 0.1 2 1300 500 

ANEM 1k  [N/m] 2k  [N/m] a c [N/m] d     

 780000 81000 784.8 140000 36.75     

 

Figure 4.33. Symmetric hysteresis loop with post-hardening characteristics simulated adopting the MBWM and 

the proposed ANEM. 

Figure 4.34 shows a symmetric force-displacement hysteresis loop, displayed by seismic 

isolators having post-softening behavior at large displacements, such as unbounded 

elastomeric bearings with deformable reinforcing layers, simulated using the MBWM and the 

proposed ANEM. The values of the parameters adopted in the two analytical models are listed 

in Table 4.9. 
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Table 4.9. MBWM and ANEM parameters | Hysteresis loop with post-softening characteristics. 

MBWM yf  [N] yu  [m] α  A β  γ  n 1c  2c  

 2025 0.0015 0.0481 1 0.9 0.1 2 -3000 500 

ANEM 1k  [N/m] 2k  [N/m] a c [N/m] d     

 2025000 64989 500 -1875000 8      

 

Figure 4.34. Symmetric hysteresis loop with post-softening characteristics simulated adopting the MBWM and 

the proposed ANEM. 

The theoretical force-displacement hysteresis loops produced by use of the MBWM and the 

ANEM have been obtained, as done in experimental tests, by applying a sinusoidal harmonic 

displacement having amplitude equal to 0.01 m and frequency of 1 Hz. 

It is important to notice that the proposed ANEM requires the evaluation of only five 

parameters whereas in the improved BWM the number of parameters to be identified is equal 

to nine. In addition, the proposed model allows one to reduce the computational effort of 

nonlinear time history analyses by avoiding, for each time step, the numerical solution of the 

first order nonlinear differential equation required in the MBWM. 
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4.4.4 Comparison between MBWM and APM 

Figure 4.35 shows a symmetric force-displacement hysteresis loop, displayed by seismic 

isolators having post-hardening behavior at large displacements, such as high damping rubber 

bearings and wire rope isolators, simulated using the MBWM and the proposed APM. The 

values of the parameters adopted in the two mathematical models are listed in Table 4.10. In 

the APM, 50 1d elastic-perfectly plastic elements and 50 1d linear elastic gap elements have 

been used, that is, N = 50 and M = 50. 

Table 4.10. MBWM and APM parameters | Hysteresis loop with post-hardening characteristics. 

MBWM yf  [N] yu  [m] α  A β  γ  n 1c  2c  

 2025 0.0015 0.2407 1 0.9 0.1 2 1300 500 

APM 0k  [N/m] ∞k  [N/m] 1c  2c  [N/m] 3c      

 780000 81000 784.8 140000 36.75      

 

Figure 4.35. Symmetric hysteresis loop with post-hardening characteristics simulated adopting the MBWM and 

the proposed APM with N = 50 and M = 50. 

Figure 4.36a shows the same force-displacement hysteresis loop simulated adopting 5 1d 

elastic-perfectly plastic elements and 5 1d linear elastic gap elements in the proposed PM, 

whereas Figure 4.36b shows the hysteresis loop obtained using 100 1d elastic-perfectly plastic 

elements and 100 1d linear elastic gap elements. 
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(a) 

 

(b) 

 

Figure 4.36. Symmetric hysteresis loop with post-hardening characteristics simulated adopting the MBWM and 

the proposed APM with (a) N = M = 5 and (b) N = M = 100. 
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Figure 4.37 shows a symmetric force-displacement hysteresis loop, displayed by seismic 

isolators having post-softening behavior at large displacements, such as unbounded 

elastomeric bearings with deformable reinforcing layers, simulated using the MBWM and the 

proposed APM. The values of the parameters adopted in the two mathematical models are 

listed in Table 4.11. In the APM, 50 1d elastic-perfectly plastic elements and 50 1d linear 

elastic gap elements have been used, that is, N = 50 and M = 50. 

Table 4.11. MBWM and APM parameters | Hysteresis loop with post-softening characteristics. 

MBWM yf  [N] yu  [m] α  A β  γ  n 1c  2c  

 2025 0.0015 0.0481 1 0.9 0.1 2 -3000 500 

APM 0k  [N/m] ∞k  [N/m] 1c  2c  [N/m] 3c      

 2025000 64989 500 -1875000 8     

 

Figure 4.37. Symmetric hysteresis loop with post-softening characteristics simulated adopting the MBWM and 

the proposed APM with N = 50 and M = 50. 

Figure 4.38a shows the same force-displacement hysteresis loop simulated adopting 5 1d 

elastic-perfectly plastic elements and 5 1d linear elastic gap elements in the proposed PM, 

whereas Figure 4.38b shows the hysteresis loop obtained using 100 1d elastic-perfectly plastic 

elements and 100 1d linear elastic gap elements. 
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(a) 

 

(b) 

 

Figure 4.38. Symmetric hysteresis loop with post-softening characteristics simulated adopting the MBWM and 

the proposed APM with (a) N = M = 5 and (b) N = M = 100. 
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The theoretical force-displacement hysteresis loops produced by use of the MBWM and APM 

have been obtained, as done in experimental tests, by applying a sinusoidal harmonic 

displacement having amplitude equal to 0.01 m and frequency of 1 Hz. 

It is worth to observe that the proposed mathematical model requires the evaluation of only 5 

parameters whereas in the MBWM the number of parameters to be identified is equal to 9. In 

addition, it has to be noted that the proposed APM allows one to reduce the computational 

effort of a nonlinear time history analysis by avoiding, for each time step, the numerical 

solution of the first order nonlinear ordinary differential equation required by the MBWM. 

 

 

 



Chapter 5 

Verification of the Proposed Models 

5.1 Introduction 

In order to demonstrate the validity of the two advanced mathematical models, namely, 

Advanced Nonlinear Exponential Model (ANEM) and Advanced Parallel Model (APM), 

which are an improved version of the Nonlinear Exponential Model (NEM) and Parallel 

Model (PM), respectively, and are able to simulate the dynamic response of seismic isolators 

having softening behavior within the relatively large displacements range and a post-

hardening or post-softening behavior at large displacements, in this chapter, the results 

predicted numerically are compared to the experimental ones obtained from horizontal 

dynamic tests performed on four Wire Rope Isolators (WRIs) and a Recycled Rubber-Fiber 

Reinforced Bearing (RR-FRB), as described in Chapter 3. 

5.2 Simulation of Experimental Response of WRIs 

5.2.1 Advanced Nonlinear Exponential Model 

In what follows, the ANEM is used to predict the force-displacement hysteresis loops 

displayed by the four tested WRIs, namely, WRI PWHS 16010, WRI PWHS 16040, WRI 

PWHS 16040 S, and WRI PWHS 16060, in both two principal horizontal directions, namely, 

Roll and Shear directions, under different values of the vertical load. Then, a comparison 

between the experimental hysteresis loops, obtained testing WRI PWHS 16010 along the Roll 

direction, at small, relatively large, and large displacements, and those simulated by adopting 

the proposed ANEM and the Modified Bouc-Wen Model (MBWM), described in Chapter 4, 

is presented. Finally, the limitation of the proposed ANEM in predicting the stronger 

nonlinear stiffening behavior, shown by WRI PWHS 16040 at large horizontal displacements, 

is described. 
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5.2.1.1 WRI PWHS 16010 

The geometrical characteristics of WRI PWHS 16010 and its two principal horizontal 

directions, namely, Roll and Shear directions, are shown in Figure 5.1. 

(a)                                                                 (b) 

 

Figure 5.1. Geometrical characteristics and principal horizontal directions of WRI PWHS 16010:                     

(a) Roll and (b) Shear directions. 

Figures 5.2, 5.3, and 5.4 give the comparisons of the analytical and experimental results 

obtained, in both Roll and Shear directions, for a frequency of 1 Hz and without the effect of 

the vertical load, at small (i.e., A = 0.25 cm), relatively large (i.e., A = 0.5 cm), and large (i.e., 

A = 1 cm) displacements, respectively. The force-displacement hysteresis loops have been 

simulated using the set of five model parameters listed in Table 5.1 and determined from the 

experimental loops having the largest amplitude, that is, A = 1 cm. 

Table 5.1. ANEM parameters for WRI PWHS 16010 (vP = 0 kN). 

vP = 0 kN  k1 [N/m]  k2 [N/m] a c  [N/m] d 

Roll 2600000 300000 720 400000 35 

Shear 1650000 200000 670 620000 58 

Figure 5.5 shows the hysteresis force-displacement loops obtained for vP  = 2 kN. In order to 

account for the effect of the applied vertical load, the five model parameters, listed in Table 

5.2, have been adjusted based on the experimental results.  

Table 5.2. ANEM parameters for WRI PWHS 16010 (vP = 2 kN). 

vP = 2 kN  k1 [N/m]  k2 [N/m] a c  [N/m] d 

Roll 2100000 220000 710 160000 120 

Shear 2000000 220000 900 650000 46 



Chapter 5 | Verification of the Proposed Models 

133 

 

(a) 

 

(b) 

 

Figure 5.2. Analytical and experimental hysteresis loops of WRI PWHS 16010 obtained for                                

A = 0.25 cm, f = 1 Hz, and vP  = 0 kN in (a) Roll and (b) Shear directions. 

 

 

-3 -1.5 0 1.5 3
x 10

-3

-3000

-1500

0

1500

3000

displacement [m]

re
st

or
in

g 
fo

rc
e 

[N
] 

ROLL

 

 

Exp
Model

P
v
 =  0.0 kN

f    = 1.0 Hz

-3 -1.5 0 1.5 3
x 10

-3

-3000

-1500

0

1500

3000

displacement [m]

re
st

or
in

g 
fo

rc
e 

[N
]

SHEAR

 

 

Exp
Model

P
v
 =  0.0 kN

f    = 1.0 Hz



Chapter 5 | Verification of the Proposed Models 

134 

 

(a) 

 

(b) 

 

Figure 5.3. Analytical and experimental hysteresis loops of WRI PWHS 16010 obtained for                                

A = 0.5 cm, f = 1 Hz, and vP  = 0 kN in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.4. Analytical and experimental hysteresis loops of WRI PWHS 16010 obtained for                                

A = 1 cm, f = 1 Hz, and vP  = 0 kN in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.5. Analytical and experimental hysteresis loops of WRI PWHS 16010 obtained for                                 

f = 1 Hz and vP  = 2 kN in (a) Roll and (b) Shear directions. 
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5.2.1.2 WRI PWHS 16040 

The geometrical characteristics of WRI PWHS 16040 and its two principal horizontal 

directions are shown in Figure 5.6. 

(a)                                                                 (b) 

 

Figure 5.6. Geometrical characteristics and principal horizontal directions of WRI PWHS 16040:                     

(a) Roll and (b) Shear directions. 

Figure 5.7 reveals the comparisons of the analytical and experimental results obtained, in both 

Roll and Shear directions, under a test frequency of 1 Hz and for two different displacement 

amplitudes, that is, A = 1 cm and A = 3 cm, without the effect of the vertical load. The force-

displacement hysteresis loops have been simulated using the set of five model parameters 

listed in Table 5.3 and determined from the experimental loops having the largest amplitude, 

that is, A = 3 cm. 

Table 5.3. ANEM parameters for WRI PWHS 16040 (vP = 0 kN). 

vP = 0 kN  k1 [N/m]  k2 [N/m] a c  [N/m] d 

Roll 600000 25000 370 80000 30 

Shear 790000 54000 400 90000 25 

Figure 5.8 shows the hysteresis force-displacement loops obtained for vP  = 3 kN. In order to 

account for the effect of the applied vertical load, the five model parameters, listed in Table 

5.4, have been adjusted based on the experimental results. 

Table 5.4. ANEM parameters for WRI PWHS 16040 (vP = 3 kN). 

vP = 3 kN  k1 [N/m]  k2 [N/m] a c  [N/m] d 

Roll 600000 16500 499.5 48000 30 

Shear 553000 23400 504 72000 20 



Chapter 5 | Verification of the Proposed Models 

138 

 

(a) 

 

(b) 

 

Figure 5.7. Analytical and experimental hysteresis loops of WRI PWHS 16040 obtained for                                 

f = 1 Hz and vP  = 0 kN in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.8. Analytical and experimental hysteresis loops of WRI PWHS 16040 obtained for                                 

f = 1 Hz and vP  = 3 kN in (a) Roll and (b) Shear directions. 
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5.2.1.3 WRI PWHS 16040 S 

The geometrical characteristics of WRI PWHS 16040 S and its two principal horizontal 

directions are shown in Figure 5.9. 

(a)                                                                 (b) 

 

Figure 5.9. Geometrical characteristics and principal horizontal directions of WRI PWHS 16040 S:                   

(a) Roll and (b) Shear directions. 

Figure 5.10 shows the comparisons of the analytical and experimental results obtained, in 

both Roll and Shear directions, under a test frequency of 1 Hz and for two different 

displacement amplitudes, that is, A = 1 cm and A = 3 cm, without the effect of the vertical 

load. The force-displacement hysteresis loops have been simulated using the set of five model 

parameters listed in Table 5.5 and determined from the experimental loops having the largest 

amplitude, that is, A = 3 cm. 

Table 5.5. ANEM parameters for WRI PWHS 16040 S (vP = 0 kN). 

vP = 0 kN  k1 [N/m]  k2 [N/m] a c  [N/m] d 

Roll 900000 73000 450 70000 36 

Shear 1000000 140000 380 30000 32 

Figure 5.11 shows the hysteresis force-displacement loops obtained for vP  = 2 kN. In order to 

account for the effect of the applied vertical load, the five model parameters, listed in Table 

5.6, have been adjusted based on the experimental results. 

Table 5.6. ANEM parameters for WRI PWHS 16040 S (vP = 2 kN). 

vP = 2 kN  k1 [N/m]  k2 [N/m] a c  [N/m] d 

Roll 640000 39000 370 70000 30 

Shear 700000 50000 340 95000 30 
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(a) 

 

(b) 

 

Figure 5.10. Analytical and experimental hysteresis loops of WRI PWHS 16040 S obtained for                                 

f = 1 Hz and vP  = 0 kN in (a) Roll and (b) Shear directions. 
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(a)  

 

(b) 

 

Figure 5.11. Analytical and experimental hysteresis loops of WRI PWHS 16040 S obtained for                                 

f = 1 Hz and vP  = 2 kN in (a) Roll and (b) Shear directions. 
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5.2.1.4 WRI PWHS 16060 

The geometrical characteristics of WRI PWHS 16060 and its two principal horizontal 

directions are shown in Figure 5.12. 

(a)                                                                 (b) 

 

Figure 5.12. Geometrical characteristics and principal horizontal directions of WRI PWHS 16060:                   

(a) Roll and (b) Shear directions. 

Figure 5.13 reveals the comparisons of the analytical and experimental results obtained, in 

both Roll and Shear directions, under a test frequency of 1 Hz and for two different 

displacement amplitudes, that is, A = 1 cm and A = 4 cm, without the effect of the vertical 

load. The force-displacement hysteresis loops have been simulated using the set of five model 

parameters listed in Table 5.7 and determined from the experimental loops having the largest 

amplitude, that is, A = 4 cm. 

Table 5.7. ANEM parameters for WRI PWHS 16060 (vP = 0 kN). 

vP = 0 kN  k1 [N/m]  k2 [N/m] a c  [N/m] d 

Roll 850000 35000 500 65000 12 

Shear 750000 25000 700 50000 20 

Figure 5.14 shows the hysteresis force-displacement loops obtained for vP  = 2 kN. In order to 

account for the effect of the applied vertical load, the five model parameters, listed in Table 

5.8, have been adjusted based on the experimental results. 

Table 5.8. ANEM parameters for WRI PWHS 16060 (vP = 2 kN). 

vP = 2 kN  k1 [N/m]  k2 [N/m] a c  [N/m] d 

Roll 595000 15750 550 26000 15 

Shear 320000 12000 300 32000 15 
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(a) 

 

(b) 

 

Figure 5.13. Analytical and experimental hysteresis loops of WRI PWHS 16060 obtained for                                 

f = 1 Hz and vP  = 0 kN in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.14. Analytical and experimental hysteresis loops of WRI PWHS 16060 obtained for                               

f = 1 Hz and vP  = 2 kN in (a) Roll and (b) Shear directions. 
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5.2.1.5 Comparison with the MBWM 

Table 5.9 shows the parameters of the proposed ANEM and the MBWM, described in 

Chapter 4, adopted to simulate the experimental response of WRI PWHS 16010 obtained 

applying, in Roll direction, a sinusoidal harmonic motion having frequency of 1 Hz, without 

the effect of the vertical load. These models parameters have been determined from the 

experimental loops having the largest amplitude, that is, A = 1 cm. 

Table 5.9. MBWM and ANEM parameters for WRI PWHS 16010 (vP = 0 kN). 

MBWM yf  [N] yu  [m] α  A β  γ  n 1c  2c  

 2025 0.0015 0.2407 1 0.1 0.9 2 1300 500 

ANEM 1k  [N/m] 2k  [N/m] a c [N/m] d     

 2600000 300000 720 400000 35     

Figures 5.15a and 5.15b compare the experimental hysteresis force-displacement loops with 

those predicted analytically using the proposed ANEM and the MBWM, respectively. It can 

be seen that both analytical models are able to well reproduce the experimental behavior of 

the tested device by capturing the smooth transition of the hysteresis loops from the small to 

the large displacements range using the set of parameters listed in Table 5.9. 

It is worth to notice that the proposed ANEM requires the evaluation of only five parameters 

whereas in the MBWM the number of parameters to be identified is equal to nine. 
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(b) 

 

Figure 5.15. Comparisons of analytical and experimental hysteresis loops of WRI PWHS 16010:                      

(a) ANEM and (b) MBWM. 
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5.2.1.6 Limitation of the Proposed ANEM 

According to the experimental tests results, WRI PWHS 16040, 16040 S, and 16060 display a 

stronger nonlinear stiffening behavior and a slight variation of the hysteresis force-

displacement loops shape at large horizontal displacements. 

Figure 5.16 shows the comparisons of analytical and experimental hysteresis loops of WRI 

PWHS 16040 obtained applying a sinusoidal harmonic motion, in Roll and Shear directions, 

with a test frequency of 1 Hz, without the effect of the vertical load.  

It can be observed that, adopting the five model parameters evaluated with respect to the 

experimental hysteresis loops having maximum displacement of 3 cm, the proposed analytical 

model cannot simulate correctly the dynamic behavior in the large displacements range. 

Moreover, using the five parameters calibrated by considering the hysteresis loops obtained 

for a displacement amplitude of 6 cm, it is not possible to adequately simulate the responses 

in the small and relatively large displacements ranges. Therefore, further work is required to 

improve the analytical model by including a procedure of updating the parameters to specify 

the shape of the hysteresis curve according to the maximum displacement at the point of 

loading or unloading.  

In spite of this, the proposed analytical model can be adopted to simulate the dynamic 

behavior of WRIs because small or relatively large displacements are generally reached under 

the design earthquake.       
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(b) 

 

Figure 5.16. Comparisons of analytical and experimental hysteresis loops of WRI PWHS 16040 obtained at 

large displacements in (a) Roll and (b) Shear directions. 
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5.2.2 Advanced Parallel Model 

5.2.2.1 WRI PWHS 16010 

The geometrical characteristics of WRI PWHS 16010 and its two principal horizontal 

directions, namely, Roll and Shear directions, are shown in Figure 5.1. 

Figures 5.17, 5.18, and 5.19 give the comparisons of the experimental and mathematical 

results obtained, in both Roll and Shear directions, for a frequency of 1 Hz and without the 

effect of the vertical load, at small (i.e., A = 0.25 cm), relatively large (i.e., A = 0.5 cm), and 

large (i.e., A = 1 cm) displacements, respectively. The hysteresis loops have been simulated 

using the set of five model parameters listed in Table 5.10, that have been determined from 

the experimental loops having the largest amplitude, that is, A = 1 cm, and adopting 50 

elastic-perfectly plastic elements (i.e., N = 50) and 50 linear elastic gap elements (i.e., M = 

50). 

Table 5.10. APM parameters for WRI PWHS 16010 (vP = 0 kN). 

vP = 0 kN  k0 [N/m]  k∞ [N/m]  c1   c2 [N/m] 3c  

Roll 2600000 300000 720 400000 35 

Shear 1650000 200000 670 620000 58 

Figures 5.20, 5.21, and 5.22 show the same force-displacement hysteresis loops obtained 

adopting 5 elastic-perfectly plastic elements (i.e., N = 5) and 5 linear elastic gap elements 

(i.e., M = 5), whereas, in Figures 5.23, 5.24, and 5.25, 100 elastic-perfectly plastic elements 

(i.e., N = 100) and 100 linear elastic gap elements (i.e., M = 100) have been used in the 

proposed APM. 

Figure 5.26 shows the hysteresis loops obtained for vP  = 2 kN. In order to account for the 

effect of the applied vertical load, the five model parameters, listed in Table 5.11, have been 

adjusted based on the experimental results. The hysteresis loops have been simulated using 50 

elastic-perfectly plastic elements (i.e., N = 50) and 50 linear elastic gap elements (i.e., M = 

50). 

Table 5.11. APM parameters for WRI PWHS 16010 (vP = 2 kN). 

vP = 2 kN  k0 [N/m]  k∞ [N/m]  c1   c2 [N/m] 3c  

Roll 2100000 220000 710 160000 120 

Shear 2000000 220000 900 650000 46 
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(a) 

 

(b) 

 

Figure 5.17. Experimental and mathematical hysteresis loops of WRI PWHS 16010 obtained for                                

A = 0.25 cm, f = 1 Hz, and vP  = 0 kN (N = 50, M = 50) in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.18. Experimental and mathematical hysteresis loops of WRI PWHS 16010 obtained for                                

A = 0.5 cm, f = 1 Hz, and vP  = 0 kN (N = 50, M = 50) in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.19. Experimental and mathematical hysteresis loops of WRI PWHS 16010 obtained for                                

A = 1 cm, f = 1 Hz, and vP  = 0 kN (N = 50, M = 50) in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.20. Experimental and mathematical hysteresis loops of WRI PWHS 16010 obtained for                                

A = 0.25 cm, f = 1 Hz, and vP  = 0 kN (N = 5, M = 5) in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.21. Experimental and mathematical hysteresis loops of WRI PWHS 16010 obtained for                                

A = 0.5 cm, f = 1 Hz, and vP  = 0 kN (N = 5, M = 5) in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.22. Experimental and mathematical hysteresis loops of WRI PWHS 16010 obtained for                                

A = 1 cm, f = 1 Hz, and vP  = 0 kN (N = 5, M = 5) in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.23. Experimental and mathematical hysteresis loops of WRI PWHS 16010 obtained for                                

A = 0.25 cm, f = 1 Hz, and vP  = 0 kN (N = 100, M = 100) in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.24. Experimental and mathematical hysteresis loops of WRI PWHS 16010 obtained for                                

A = 0.5 cm, f = 1 Hz, and vP  = 0 kN (N = 100, M = 100) in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.25. Experimental and mathematical hysteresis loops of WRI PWHS 16010 obtained for                                

A = 1 cm, f = 1 Hz, and vP  = 0 kN (N = 100, M = 100) in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.26. Experimental and mathematical hysteresis loops of WRI PWHS 16010 obtained for                                

f = 1 Hz and vP  = 2 kN (N = 50, M = 50) in (a) Roll and (b) Shear directions. 
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5.2.2.2 WRI PWHS 16040 

The geometrical characteristics of WRI PWHS 16040 and its two principal horizontal 

directions are shown in Figure 5.6. 

Figure 5.27 reveals the comparisons of the experimental and mathematical results obtained, in 

both Roll and Shear directions, under a test frequency of 1 Hz and for two different 

displacement amplitudes, that is, A = 1 cm and A = 3 cm, without the effect of the vertical 

load. The force-displacement hysteresis loops have been simulated using the set of five model 

parameters listed in Table 5.12, which have been determined from the experimental loops 

having the largest amplitude, that is, A = 3 cm, and adopting 50 elastic-perfectly plastic 

elements (i.e., N = 50) and 50 linear elastic gap elements (i.e., M = 50). 

Table 5.12. APM parameters for WRI PWHS 16040 (vP = 0 kN). 

vP = 0 kN  k0 [N/m]  k∞ [N/m]  c1   c2 [N/m] 3c  

Roll 600000 25000 370 80000 30 

Shear 790000 54000 400 90000 25 

Figure 5.28 shows the hysteresis force-displacement loops obtained for vP  = 3 kN. In order to 

account for the effect of the applied vertical load, the five model parameters, listed in Table 

5.13, have been adjusted based on the experimental results. In the proposed APM, 50 elastic-

perfectly plastic elements (i.e., N = 50) and 50 linear elastic gap elements (i.e., M = 50) have 

been adopted. 

Table 5.13. APM parameters for WRI PWHS 16040 (vP = 3 kN). 

vP = 3 kN  k0 [N/m]  k∞ [N/m]  c1   c2 [N/m] 3c  

Roll 600000 16500 499.5 48000 30 

Shear 553000 23400 504 72000 20 
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(a) 

 

(b) 

 

Figure 5.27. Experimental and mathematical hysteresis loops of WRI PWHS 16040 obtained for                                

f = 1 Hz and vP  = 0 kN (N = 50, M = 50) in (a) Roll and (b) Shear directions. 
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(a) 

 

(b) 

 

Figure 5.28. Experimental and mathematical hysteresis loops of WRI PWHS 16040 obtained for                                

f = 1 Hz and vP  = 3 kN (N = 50, M = 50) in (a) Roll and (b) Shear directions. 

 

-0.04 -0.02 0 0.02 0.04
-4000

-2000

0

2000

4000

displacement [m]

re
st

or
in

g 
fo

rc
e 

[N
]

ROLL

Exp
Model

P
v
 =  3.0 kN

f    = 1.0 Hz

-0.04 -0.02 0 0.02 0.04
-4000

-2000

0

2000

4000

displacement [m]

re
st

or
in

g 
fo

rc
e 

[N
]

SHEAR

Exp
Model

P
v
 =  3.0 kN

f    = 1.0 Hz



Chapter 5 | Verification of the Proposed Models 

164 

 

5.2.2.3 WRI PWHS 16040 S 

The geometrical characteristics of WRI PWHS 16040 S and its two principal horizontal 

directions are shown in Figure 5.9. 

Figure 5.29 shows the comparisons of the experimental and mathematical results obtained, in 

both Roll and Shear directions, under a test frequency of 1 Hz and for two different 

displacement amplitudes, that is, A = 1 cm and A = 3 cm, without the effect of the vertical 

load. The force-displacement hysteresis loops have been simulated using the set of five model 

parameters listed in Table 5.14, which have been determined from the experimental loops 

having the largest amplitude, that is, A = 3 cm, and adopting 50 elastic-perfectly plastic 

elements (i.e., N = 50) and 50 linear elastic gap elements (i.e., M = 50). 

Table 5.14. APM parameters for WRI PWHS 16040 S (vP = 0 kN). 

vP = 0 kN  k0 [N/m]  k∞ [N/m]  c1   c2 [N/m] 3c  

Roll 900000 73000 450 70000 36 

Shear 1000000 140000 380 30000 32 

Figure 5.30 shows the hysteresis force-displacement loops obtained for vP  = 2 kN. In order to 

account for the effect of the applied vertical load, the five model parameters, listed in Table 

5.15, have been adjusted based on the experimental results. In the proposed APM, 50 elastic-

perfectly plastic elements (i.e., N = 50) and 50 linear elastic gap elements (i.e., M = 50) have 

been adopted. 

Table 5.15. APM parameters for WRI PWHS 16040 S (vP = 2 kN). 

vP = 2 kN  k0 [N/m]  k∞ [N/m]  c1   c2 [N/m] 3c  

Roll 640000 39000 370 70000 30 

Shear 700000 50000 340 95000 30 
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(a) 

 

(b) 

 

Figure 5.29. Experimental and mathematical hysteresis loops of WRI PWHS 16040 S obtained for                                

f = 1 Hz and vP  = 0 kN (N = 50, M = 50) in (a) Roll and (b) Shear directions. 
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(a)  

 

(b) 

 

Figure 5.30. Experimental and mathematical hysteresis loops of WRI PWHS 16040 S obtained for                                

f = 1 Hz and vP  = 2 kN (N = 50, M = 50) in (a) Roll and (b) Shear directions. 
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5.2.2.4 WRI PWHS 16060 

The geometrical characteristics of WRI PWHS 16060 and its two principal horizontal 

directions are shown in Figure 5.12. 

Figure 5.31 reveals the comparisons of the experimental and mathematical results obtained, in 

both Roll and Shear directions, under a test frequency of 1 Hz and for two different 

displacement amplitudes, that is, A = 1 cm and A = 4 cm, without the effect of the vertical 

load. The force-displacement hysteresis loops have been simulated using the set of five model 

parameters listed in Table 5.16, which have been determined from the experimental loops 

having the largest amplitude, that is, A = 4 cm, and adopting 50 elastic-perfectly plastic 

elements (i.e., N = 50) and 50 linear elastic gap elements (i.e., M = 50). 

Table 5.16. APM parameters for WRI PWHS 16060 (vP = 0 kN). 

vP = 0 kN  k0 [N/m]  k∞ [N/m]  c1   c2 [N/m] 3c  

Roll 850000 35000 500 65000 12 

Shear 750000 25000 700 50000 20 

Figure 5.32 shows the hysteresis force-displacement loops obtained for vP  = 2 kN. In order to 

account for the effect of the applied vertical load, the five model parameters, listed in Table 

5.17, have been adjusted based on the experimental results. In the proposed APM, 50 elastic-

perfectly plastic elements (i.e., N = 50) and 50 linear elastic gap elements (i.e., M = 50) have 

been adopted. 

Table 5.17. APM parameters for WRI PWHS 16060 (vP = 2 kN). 

vP = 2 kN  k0 [N/m]  k∞ [N/m]  c1   c2 [N/m] 3c  

Roll 595000 15750 550 26000 15 

Shear 320000 12000 300 32000 15 
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(a)  

 

(b) 

 

Figure 5.31. Experimental and mathematical hysteresis loops of WRI PWHS 16060 obtained for                                

f = 1 Hz and vP  = 0 kN (N = 50, M = 50) in (a) Roll and (b) Shear directions. 
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(a)  

 

(b)  

 

Figure 5.32. Experimental and mathematical hysteresis loops of WRI PWHS 16060 obtained for                                

f = 1 Hz and vP  = 2 kN (N = 50, M = 50) in (a) Roll and (b) Shear directions. 
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5.3 Simulation of Experimental Response of RR-FRB 

5.3.1 Advanced Nonlinear Exponential Model 

The tested RR-FRB and the two different horizontal loading directions, namely, 0° and 45° 

directions, are shown in Figure 5.33. 

(a)                                                                              (b)                                                                     

                                                

Figure 5.33. (a) Tested RR-FRB and (b) horizontal loading directions. 

Figures 5.34, 5.35, 5.36, 5.37, 5.38, 5.39, 5.40 and 5.41 show the experimental and simulated 

hysteresis loops of RR-FRB obtained applying a sinusoidal harmonic motion having 

frequency of 0.87 Hz, under the effect of a vertical load of 16.9 kN, for a displacement 

amplitude A equal to 1 cm, 1.5 cm, 2 cm, 2.5 cm, 3 cm, 3.5 cm, 4 cm, and 4.5 cm, 

respectively, in both 0° and 45° horizontal loading directions. 

The force-displacement hysteresis loops have been simulated using the set of five model 

parameters listed in Table 5.18 and determined from the experimental loops having the largest 

amplitude, that is, A = 4.5 cm. 

Table 5.18. ANEM parameters for RR-FRB (vP = 16.9 kN). 

vP = 16.9 kN  k1 [N/m]  k2 [N/m] a c  [N/m] d 

0°    350000 38000 80 -20000 45 

45° 250000 40000 70 -80000 12 
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(a)  

 

(b) 

 

Figure 5.34. Analytical and experimental hysteresis loops of RR-FRB obtained for                                               

A = 1 cm, f = 0.87 Hz, and vP  = 16.9 kN in (a) 0° and (b) 45° loading directions. 
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(a)  

 

(b) 

 

Figure 5.35. Analytical and experimental hysteresis loops of RR-FRB obtained for                                               

A = 1.5 cm, f = 0.87 Hz, and vP  = 16.9 kN in (a) 0° and (b) 45° loading directions. 
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(a)  

 

(b) 

 

Figure 5.36. Analytical and experimental hysteresis loops of RR-FRB obtained for                                               

A = 2 cm, f = 0.87 Hz, and vP  = 16.9 kN in (a) 0° and (b) 45° loading directions. 
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(a)  

 

(b) 

 

Figure 5.37. Analytical and experimental hysteresis loops of RR-FRB obtained for                                               

A = 2.5 cm, f = 0.87 Hz, and vP  = 16.9 kN in (a) 0° and (b) 45° loading directions. 
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(a)  

 

(b) 

 

Figure 5.38. Analytical and experimental hysteresis loops of RR-FRB obtained for                                               

A = 3 cm, f = 0.87 Hz, and vP  = 16.9 kN in (a) 0° and (b) 45° loading directions. 
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(a)  

 

(b) 

 

Figure 5.39. Analytical and experimental hysteresis loops of RR-FRB obtained for                                               

A = 3.5 cm, f = 0.87 Hz, and vP  = 16.9 kN in (a) 0° and (b) 45° loading directions. 

 

-0.04 -0.02 0 0.02 0.04
-3000

-1500

0

1500

3000

displacement [m]

re
st

or
in

g 
fo

rc
e 

[N
]

0° loading direction

Model
Exp

P
v
 = 16.9 kN

f
 
   = 0.87 Hz

-0.04 -0.02 0 0.02 0.04
-3000

-1500

0

1500

3000

displacement [m]

re
st

or
in

g 
fo

rc
e 

[N
]

45° loading direction

Model
Exp

P
v
 = 16.9 kN

f
 
   = 0.87 Hz



Chapter 5 | Verification of the Proposed Models 

177 

 

(a)  

 

(b) 

 

Figure 5.40. Analytical and experimental hysteresis loops of RR-FRB obtained for                                               

A = 4 cm, f = 0.87 Hz, and vP  = 16.9 kN in (a) 0° and (b) 45° loading directions. 
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(a)  

 

(b) 

 

Figure 5.41. Analytical and experimental hysteresis loops of RR-FRB obtained for                                               

A = 4.5 cm, f = 0.87 Hz, and vP  = 16.9 kN in (a) 0° and (b) 45° loading directions. 
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5.3.2 Advanced Parallel Model 

Figure 5.42a and 5.42b show the experimental and simulated hysteresis loops of RR-FRB 

obtained applying a sinusoidal harmonic motion having frequency of 0.87 Hz, under the effect 

of a vertical load of 16.9 kN, for a displacement amplitude A equal to 1 cm, 1.5 cm, 2 cm, 2.5 

cm, 3 cm, 3.5 cm, 4 cm, and 4.5 cm, in 0° and 45° loading directions, respectively. 

The force-displacement hysteresis loops have been simulated using the set of five model 

parameters listed in Table 5.19, which have been determined from the experimental loops 

having the largest amplitude, that is, A = 4.5 cm, and adopting 50 elastic-perfectly plastic 

elements (i.e., N = 50) and 50 linear elastic gap elements (i.e., M = 50). 

Table 5.19. APM parameters for RR-FRB (vP = 16.9 kN). 

vP = 16.9 kN  k0 [N/m]  k∞ [N/m]  c1   c2 [N/m] 3c  

0°   350000 38000 80 -20000 45 

45° 250000 40000 70 -80000 12 

(a)  
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(b) 

 

Figure 5.42. Experimental and mathematical hysteresis loops of RR-FRB obtained for                                          

f = 0.87 Hz and vP  = 16.9 kN (N = 50, M = 50) in (a) 0° and (b) 45° loading directions. 
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Chapter 6 

Numerical Time Integration Methods 

6.1 Introduction 

Chapter 6 deals with the nonlinear response history analysis methods, required to solve the 

dynamic equilibrium equations of the discrete structural model of a seismically base-isolated 

structures, and is organized into three parts. 

The first part presents a conventional non-partitioned solution method, developed by 

Nagarajaiah et al. (1991) specifically for the nonlinear time history analysis of base-isolated 

structures and implemented in the computer program 3D-BASIS-ME-MB (Tsopelas et al. 

2005). For brevity, in this work, the latter implicit time integration method adopted in 

conjunction with the pseudo-force approach is called Pseudo-Force Method.  

The second part presents a proposed partitioned solution approach, that is, a Mixed Explicit-

Implicit time integration Method, characterized by two substeps called Explicit Integration 

Substep and Implicit Integration Substep.  

The third part is concerned with the stability aspects, accuracy and computational efficiency 

of the proposed time integration method. First, a procedure to evaluate the critical time step is 

developed for 2d base-isolated structures and extended to the 3d case. Then, the proposed 

numerical time integration method is adopted to analyze four different 3d base-isolated 

structures subjected to bidirectional earthquake excitation and the numerical results are 

compared with those obtained by using the solution algorithm introduced by Nagarajaiah et 

al. (1991) in order to demonstrate the accuracy and the computational efficiency of the 

proposed method. 
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6.2 Conventional Non-Partitioned Solution Approach 

6.2.1 Introduction  

The response of real civil structures subjected to a large dynamic excitation, such as blast or 

seismic loading, often involves significant nonlinear behavior which generally includes the 

effects of large displacements and/or nonlinear material properties (Wilson 2002).    

Direct time integration methods used to solve the nonlinear dynamic equilibrium equations of 

structures subjected to external excitation, that is, time-dependent applied forces and/or 

earthquake excitation, are basically categorized into two groups: 

� explicit time integration methods, such as the central difference method; 

� implicit time integration methods, such as the Newmark’s method.  

A time integration method is explicit if the solution at time Δtt +  is obtained by considering 

the equilibrium conditions at time t and the integration algorithm does not require 

factorization of the effective stiffness matrix (Dokainish and Subbarai 1989a).  

A time integration method is implicit if the solution at time Δtt +  is evaluated by considering 

the equilibrium conditions at time Δtt +  and a set of simultaneous equations has to be solved 

at each time step wherein the effective stiffness matrix is a combination of the mass, damping 

and stiffness matrices (Dokainish and Subbarai 1989b). 

In general, each type of time integration method has its own advantages and disadvantages. 

Explicit algorithms require a much lower computational effort per time step when compared 

with implicit methods but are conditionally stable. On the other hand, implicit algorithms can 

be designed to have unconditional stability, in linear analysis, so that the choice of time step 

size is limited by accuracy requirements only (Bathe 1996).  

A conventional non-partitioned solution approach, characterized by the use of an implicit 

single-step time integration method adopted with the (modified) Newton-Raphson or the 

pseudo-force iteration procedure, is generally employed to solve the nonlinear dynamic 

equilibrium equations of seismically base-isolated structures subjected to earthquake 

excitation. 

Nagarajaiah et al. (1989) investigated the use of an implicit time integration method adopted 

with the modified Newton-Raphson iteration procedure for the nonlinear dynamic analysis of 
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base-isolated structures with elastomeric or sliding bearings. This study reveals that the 

modified Newton-Raphson iteration method: 

� converges when 3d base-isolated structures with elastomeric bearings are analyzed; 

� does not converge when 3d base-isolated structures with sliding bearings are analyzed 

because of the severe nonlinearities involved. 

Among conventional non-partitioned solution methods, the solution algorithm proposed by 

Nagarajaiah et al. (1991), which has been implemented in the computer program 3D-BASIS-

ME-MB (Tsopelas et al. 2005), is presented in the following because specifically developed 

for nonlinear time history analysis of base-isolated structures with either elastomeric and/or 

sliding isolation systems. In this non-partitioned solution approach, the equations of motion 

are solved using the implicit unconditionally stable Newmark's constant average acceleration 

method, chosen because unconditionally stable for both positive and negative tangent stiffness 

(Cheng 1988), with the nonlinear forces being represented as pseudo-forces. An iterative 

procedure consisting of corrective pseudo-forces is employed within each time step until 

equilibrium is achieved. For brevity, in this work, the above-described implicit time 

integration method adopted in conjunction with the pseudo-force approach is referred to as the 

Pseudo-Force Method (PFM).  
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6.2.2 Pseudo-Force Method 

The dynamic equilibrium equations of the 3d discrete structural model of an actual base-

isolated structure written at time t and at time Δtt +  are: 

 )()()()()( t  t  t  t  t  gurmfukucum &&&&& −=+++ ,  (6.1) 

 )()()()()( Δtt  Δtt  Δtt  Δtt  Δtt  g +−=+++++++ urmfukucum &&&&& .  (6.2) 

Subtracting Equation (6.1) from Equation (6.2) gives the following incremental dynamic 

equilibrium equations: 

 
 ,t  t  t  t   Δtt        

Δtt   Δtt   Δtt   Δtt   

g )()()()()(

)()()()(

fukucumurm

fukucum

−−−−+−
=+++++++

&&&&&

&&& ∆∆∆∆
  (6.3) 

with 

 )()()( t Δtt  Δtt  uuu &&&&&& −+=+∆ ,  (6.4) 

 )()()( t Δtt  Δtt  uuu &&& −+=+∆ ,  (6.5) 

 )()()( t Δtt  Δtt  uuu −+=+∆ ,  (6.6) 

 )()()( tΔttΔtt fff −+=+∆ ,  (6.7) 

where )( Δtt  +u&&∆ , )( Δtt  +u&∆ , and )( Δtt  +u∆  are the incremental acceleration, velocity, 

and displacement vectors, respectively, and )( Δtt +f∆  is the incremental nonlinear forces 

vector. 

The coupled incremental nonlinear ordinary differential equations of the second order in time, 

given by Equation (6.3), can be solved adopting the implicit unconditionally stable 

Newmark's constant average acceleration method. This method is based on the assumption 

that the variation of acceleration over a time step is constant, equal to the average 

acceleration. Taking constant time steps, the expressions for the incremental velocity and 

acceleration vectors are: 

 )(2)(
2

)( t  tt  
t

tt  uuu && −+=+ ∆∆
∆

∆∆ ,  (6.8) 
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 )(2)(
4

)(
)(

4
)(

2
t  t 

t
tt  

t
tt  uuuu &&&&& −−+=+

∆
∆∆

∆
∆∆ .  (6.9) 

Bringing the incremental nonlinear forces vector )( tt  ∆∆ +f  to the right hand side of 

Equation (6.3) and substituting the two expressions for )( tt  ∆∆ +u&  and )( tt  ∆∆ +u&&  into the 

incremental dynamic equilibrium equations gives:  

 )(ˆ)(ˆ Δtt Δtt  +=+ puk ∆ ,  (6.10) 

where 

 






 ++= kcmk  
t

 
t Δ

 
∆
2

)(

4ˆ
2

,  (6.11) 

and 

 
).(2)(2)(

4
)(

)()()()()()(ˆ

t    t   t 
t Δ

   Δtt                    

t  t  t  t   Δtt   Δtt g

ucuumf

fukucumurmp

&&&&

&&&&&

+




 +++−

−−−−+−=+

∆
  (6.12) 

The incremental nonlinear forces vector )( tt  ∆∆ +f  can be function of both displacement 

and velocity vectors at time Δtt + . Thus, treating )( tt  ∆∆ +f  as incremental pseudo-forces 

vector and applying an iterative procedure in order to correct the latter within the time step 

until equilibrium is achieved allows one to evaluate )( Δtt  +u∆ .   
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6.2.3 Solution Algorithm 

The solution algorithm is given in the following: 

1. Initial calculations: 

1.1 Form mass matrix m , damping matrix c , and stiffness matrix k . 

1.2 Initialize displacement, velocity, and acceleration vectors )0( u , )0( u& , )0( u&& .  

1.3 Select time step t∆  and calculate the integration constants:  

21 )(

4

t
a

∆
= , 

t
a

∆
2

2 = , 
t

a
∆
4

3 = . 

1.4 Form the effective stiffness matrix:  

kcmk ++=   a  a 21
ˆ . 

1.5 Triangularize k̂  using Gaussian elimination: 

T   LDLk =ˆ . 

2. Calculations for each time step: 

2.1 Assume the incremental pseudo-forces vector 0)( =+ Δtt i f∆  in iteration i = 1. 

2.2 Calculate the effective load vector at time Δtt + :  

[ ] ).(2)(2)()(

)()()()()()(ˆ

3 t    t   t  a   Δtt                    

t  t  t  t   Δtt   Δtt 
i

g

ucuumf

fukucumurmp

&&&&

&&&&&

++++−

−−−−+−=+

∆
  

2.3 Solve for incremental displacement vector: 

)(ˆ)( Δtt Δtt     i T +=+ puLDL ∆ . 

2.4 Evaluate acceleration, velocity, and displacement vectors at time Δtt + :  

)(2)()()()( 31 t  t  att   at tt i uuuuu &&&&&&& −−++=+ ∆∆∆ , 
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)(2)()()( 2 t  tt   at tt i uuuu &&& −++=+ ∆∆∆ , 

)()()( tt   t tt i ∆∆∆ ++=+ uuu . 

2.5 Compute the state of motion at each bearing and calculate the nonlinear restoring force 

of each isolator, using the unconditionally stable semi-implicit Runge-Kutta method if 

required. 

2.6 Compute the incremental pseudo-forces vector )(1 Δtt i ++f∆  at the mass center of the 

base isolation system. 

2.7 Compute: 

)()(1
Δtt Δtt   error i i +−+= + ff ∆∆ , 

where   ⋅  is the euclidean norm. 

2.8 If error ≥   tolerance, further iteration is needed. Iterate starting from step 2.1 and use  

)(1 Δtt i ++f∆  as incremental pseudo-forces vector and the state of motion at time t, 

that is, )(t u , )(t u& , and )(t u&& . 

2.9 If error ≤   tolerance, no further iteration is needed. Update the nonlinear forces vector 

)()()( 1 Δtt   tΔtt i ++=+ +fff ∆  and go to step 2.1. 
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6.3 Proposed Partitioned Solution Approach 

6.3.1 Introduction  

In most practical civil engineering problems, the increasing complexity of structural models 

requires the use of a partitioned solution approach in which a discrete structural model is 

spatially decomposed into interacting components generically called partitions. The 

mathematical foundations of Domain Decomposition Methods (DDMs), which can be used in 

the framework of any discretization method for partial differential equations (finite elements, 

finite differences) to make their algebraic solution more efficient on parallel computer 

platforms, can be found in recent numerical analysis texts (Quarteroni and Valli 1999; 

Quarteroni 2014). The decomposition may be driven by physical or computational 

considerations (Felippa et al. 2001). For instance, in the nonlinear soil-structure interaction 

analysis, being the soil more flexible than the structure, the partitioning of the problem may 

be a natural choice. In the nonlinear dynamic analysis of a structure subjected to a localized 

impact, because a small part of the structure is expected to experience strong nonlinear 

behavior whereas the remaining part would deform into the elastic range, the decomposition 

of the structural model into two subdomains is driven by computational considerations (Brun 

et al. 2012): in this case, the use of different time steps and time integration methods (explicit 

or implicit methods) depending on parts of the analyzed structure instead of adopting a non-

partitioned solution approach, that is, a conventional procedure adopting a single time 

integration method with a unique time step, can reduce the computational effort significantly.  

To overcome the limitations of conventional single-time step integration, partitioned time 

integration methods have been developed by several authors in the last 30 years to allow 

different time steps (multi-time step integration) or time integration algorithms (mixed time 

integration) or both to be used in different spatial subdomains of the mesh. Mixed time 

integration procedures using explicit and implicit time integration methods have been 

proposed by Hughes and Liu (1978), assuming the same time step for all the parts of the 

mesh. Early works of Belytshko et al. (1979) investigated the use of explicit time integration 

methods with different time steps according to the mesh subdivision and the finite elements 

size. Wu and Smolinski (2000) proposed a new explicit multi-time step integration method for 

solving structural dynamics problems derived from the modified trapezoidal rule method 

developed by Pezeshk and Camp (1995). All the previous multi-time step integration methods 

are essentially based on a nodal partition and prescribe the continuity of displacements, 
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velocities or accelerations at the interface in a strong way, by imposing the equality of 

subdomain kinematic quantities at the interface. Recently, new methods have been proposed 

allowing one to prescribe the continuity of those quantities in a weak way by means of 

Lagrange multipliers (Farhat and Roux 1991; Farhat et al. 1994; Gravouil and Combescure 

2001; Combescure and Gravouil 2002; Herry et al. 2002). 

In the following, a Mixed Explicit-Implicit time integration Method (MEIM) is proposed for 

predicting the nonlinear response of base-isolated structures subjected to earthquake 

excitation. Indeed, in the case of seismically isolated structures (buildings and bridges) the 

above-mentioned partitioned solution approach can be easily applied being the decomposition 

of the discrete structural model of such structures driven by physical considerations: the base 

isolation system is much more flexible than the superstructure to decouple the latter from the 

earthquake ground motion. Thus, an explicit conditionally stable time integration method can 

be used to evaluate the base isolation system response and an implicit unconditionally stable 

time integration method can be adopted to predict the superstructure response with the 

remarkable benefit in avoiding the iterative procedure within each time step of a nonlinear 

time history analysis required by conventional implicit time integration methods.  
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6.3.2 Proposed Mixed Explicit-Implicit Time Integration Method 

The solution algorithm is characterized by two substeps called Explicit Integration Substep 

(EIS) and Implicit Integration Substep (IIS): in each time step of a nonlinear time history 

analysis, the nonlinear response of the base isolation system is computed first using the 

explicit time integration method, then the implicit method is adopted to evaluate the 

superstructure linear response.  

6.3.2.1 Explicit Integration Substep 

The explicit time integration method adopted to predict the response of the base isolation 

system is the second order Central Difference Method which is one of the most used among 

explicit methods in structural dynamics programs and is said to have the highest accuracy and 

maximum stability limit for any explicit method of order two (Krieg 1973). 

In the EIS, the equations of motion at time t are used to evaluate the base isolation system 

displacement vector bu  for time Δtt + . Hence, writing the first set of ntb dynamic 

equilibrium equations of the 3d discrete structural model at time t gives:   

 )()()()()()()()()( 11 t  ttt tt t gbbns
T

bbs
T

bbbb urmfukukkucuccum &&&&&& −=+++++++ .  (6.13) 

This method is based on a finite difference approximation of the time derivatives of 

displacement, that is, velocity and acceleration. Taking constant time steps, the central 

difference expressions for velocity and acceleration vectors at time t are:  

 [ ])()(
2

1
)( tttt

t 
t bbb ∆∆

∆
−−+= uuu& ,  (6.14) 

 [ ])()(2)(
)(

1
)(

2
ttttt

t
t bbbb ∆∆

∆
−+−+= uuuu&& .  (6.15) 

The error in the expressions (6.14) and (6.15) is of order 2)( t∆ , so the error in bu  is quartered 

when t∆  is halved. 

Substituting the relations for )(tbu&  and )(tbu&& , from Equations (6.14) and (6.15), respectively, 

into Equation (6.13), and rearranging terms, gives: 

 )(ˆ)(ˆ ttΔt bbb puk =+ ,  (6.16) 
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where 

  
tt Δ bbb 


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∆

,  (6.17) 

and 
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uccm

ukkm

fukucurmp

∆

&&&

  (6.18) 

from which )( Δttb +u  can be evaluated. 

In Equation (6.18), )( Δttb −u , )(tbu , )(tsu , and )(tsu&  are assumed known from 

implementation of the procedure for the preceding time steps. In order to calculate the 

solution at time t∆ , a special starting procedure must be used. Since )0(bu , )0(bu& , and )0(bu&&  

are known at time t = 0, )( Δtb −u  can be obtained using the following relation (Bathe 1996):  

 )0(
2

)(
)0()0()(

2

bbbb

t Δ
 Δt Δt uuuu &&& +−=− .  (6.19) 

The resultant nonlinear forces vector of the base isolation system nf  depends on the response 

at time t and could be function of both displacement and velocity, according to the explicit 

nonlinear force-displacement relation used to model each seismic isolator. The base isolation 

system velocity vector at time t can be evaluated in terms of displacement vectors using the 

three-point backward difference approximation (D’Acunto 2012):   

 [ ])2()(3)(4
2

1
)( Δtt  t   Δtt  

Δt 
t bbbb −++−−= uuuu& .  (6.20) 

The error in the Equation (6.20) is of order 2)( t∆ . It is worth noting that the base isolation 

system velocity vector at time t cannot be determined by using Equation (6.14) because 

)( Δttb +u  is unknown. 
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6.3.2.2 Implicit Integration Substep 

The implicit time integration method adopted to compute the linear response of the 

superstructure is the second order Newmark's Constant Average Acceleration Method which 

is one of the most effective and popular implicit methods, especially for the linear and 

nonlinear time history analysis of civil structures.  

In the IIS, the equations of motion at time Δtt +  are used to evaluate the superstructure 

displacement vector su  for time Δtt + . Hence, writing the second set of nts dynamic 

equilibrium equations of the 3d discrete structural model at time Δtt +  gives: 

 )()()()()()( Δtt  Δtt Δtt ΔttΔttΔtt gssbbssssss +−=+++++++++ urmukucukucum &&&&&& .  (6.21) 

This method is based on the assumption that the variation of acceleration over a time step is 

constant, equal to the average acceleration. Taking constant time steps, the expressions for the 

superstructure velocity and acceleration vectors at time Δtt +  are: 

 [ ] )()()(
2

)( tttt
t

tt ssss uuuu && −−+=+ ∆
∆

∆ ,  (6.22) 
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)(

4
)(

2
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t
ttt

t
tt sssss uuuuu &&&&& −−−+=+

∆
∆

∆
∆ .  (6.23) 

Substitution of these two expressions for )( tts ∆+u&  and )( tts ∆+u&&  into Equation (6.21) gives:  

 )(ˆ)(ˆ ΔttΔtt sss +=+ puk ,  (6.24) 

where 
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In order to solve for )( Δtts +u , first the base isolation system velocity vector at time Δtt +  

has to be predicted. This vector can be computed in terms of displacement vectors using the 

three-point backward difference approximation (D’Acunto 2012): 

 [ ])()(3)(4
2

1
)( Δtt  Δtt   t  

Δt 
Δtt bbbb −+++−=+ uuuu& .  (6.27) 

The error in the Equation (6.27) is of order 2)( t∆ .  

The use of a modal representation for the superstructure, assumed to remain elastic, can 

reduce the computational cost of the nonlinear time history analysis. 
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6.3.3 Solution Algorithm  

Recently developed time integration algorithms, such as those introduced by Noh and Bathe 

(2013) and Noh et al. (2013) for the analysis of wave propagation problems, are not adopted 

in this work because the main idea is reducing the computational effort required for the 

solution of nonlinear dynamic equilibrium equations of base-isolated structures, by coupling 

two of the most widely used time integration methods in the seismic analysis of civil 

structures. The proposed solution algorithm is given in the following: 

1. Initial calculations: 

1.1 Form superstructure mass matrix sm , damping matrix sc , and stiffness matrix sk  and 

base isolation system mass matrix bm , damping matrix bc , and stiffness matrix bk .  

1.2 Initialize superstructure displacement, velocity and acceleration vectors )0(su , )0(su& , 

)0(su&& , and base isolation system displacement, velocity and acceleration vectors 

)0(bu , )0(bu& , )0(bu&& ; then calculate: 

)0(
2

)(
)0()0()(

2

bbbb

t Δ
 Δt Δt uuuu &&& +−=− . 

1.3 Select time step t∆  and calculate the integration constants:  

21 )(

2

t
a

∆
= , 

22 )(

1

t
a

∆
= , 

t
a

∆2
1

3 = , 24 )(
4
t

a
∆

= , 
t

a
∆
2

5 = , 
t

a
∆
4

6 = . 

1.4 Form effective mass matrix and effective stiffness matrix:  

)( 132 ccmm ++=∗
bb  a a , 

sss  a a kcmk ++=∗
54 . 

1.5 Triangularize ∗m  and ∗k : 

T 
eee   LDLm =∗ , 

T 
iii   LDLk =∗ . 
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2. Calculations for each time step: 

2.1 Compute the state of motion at each seismic isolation bearing at time t . 

2.2 Compute the resultant nonlinear forces vector )(tnf  at the center of mass of the base 

isolation system. 

2.3 Calculate the explicit integration substep effective load vector at time t: 

[ ]
[ ] . t Δt a a            

t  atttt  t

bbb

bbbns
T

s
T

gbbb

)()(

)()()()()()(ˆ

132

11

−++−+

−−+−−−−=

uccm

ukkmfukucurmp &&&
 

2.4 Solve for base isolation system displacement vector at time Δtt + : 

)(ˆ)( t  tt   bb
T 
eee puLDL =+ ∆ . 

2.5 Evaluate base isolation system velocity and acceleration vectors at time t: 

)]()([)( 3 t Δtt Δt at bbb −−+= uuu& , 

)]()(2)([)( 2 t Δtt t Δt at bbbb −+−+= uuuu&& . 

2.6 Calculate the implicit integration substep effective load vector at time Δtt + :  

).()(][)(][

)()]()(3)(4[)()(ˆ

654

3

tt   at  a a                   

Δtt Δtt Δtt t   aΔtt  Δtt

ssssssss

bbbbgsss

umucmucm

ukuuucurmp

&&&

&&

+++++

+−−+++−−+−=+
 

2.7 Solve for superstructure displacement vector at time Δtt + : 

)(ˆ)( tt  tt   ss
T 
iii ∆∆ +=+ puLDL . 

2.8 Evaluate superstructure velocity and acceleration vectors at time Δtt + :  

)()]()([)( 5 ttt Δt at Δt ssss uuuu && −−+=+ , 

)()()]()([)( 64 tt att Δt at Δt sssss uuuuu &&&&& −−−+=+ . 

3. Repetition for next time step: replace t by Δtt +  and repeat steps 2.1 - 2.8. 
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6.4 Stability Aspects, Accuracy and Computational Efficiency of the MEIM 

6.4.1 Introduction  

The proposed MEIM is conditionally stable because the second order central difference 

method is employed in the EIS to compute the nonlinear response of the base isolation 

system. Thus, in the following, a procedure to evaluate the critical time step is first developed 

for 2d base-isolated structures with linear isolation elements, neglecting the superstructure 

and base isolation system viscous damping, and then extended to the 3d case.  

The proposed partitioned approach is then applied to determine the dynamic response of two 

3d base-isolated structures subjected to a bidirectional earthquake excitation. The first 

structure is a two-story reinforced concrete structure with vertical geometric irregularity, the 

second one a four-story reinforced concrete structure without plan and vertical geometric 

irregularities. For each structure, two types of base isolation systems are considered, namely, 

base isolation system with lead rubber bearings and base isolation system with friction 

pendulum bearings. The latter kind of base isolation system allows one to investigate the use 

of the mixed time integration procedure also in the presence of isolators with very high initial 

stiffness for which the critical time step size could become smaller than the one used to define 

the ground acceleration accurately. The accuracy and the computational efficiency of the 

proposed MEIM are assessed by comparing the numerical results and the computational time 

with those obtained by using the PFM. 
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6.4.2 Evaluation of the Critical Time Step 

6.4.2.1 2d Base-Isolated Structures 

Considering the 2d discrete structural model of a base-isolated structure with only linear 

isolation elements and neglecting the superstructure and base isolation system viscous 

damping, Equation (6.13) at time t becomes: 

 )()()()()( 111 tu mtu ktu kktu m gbbbbb &&&& −=−++ .  (6.28) 

The superstructure first floor displacement 1u  can be expressed in terms of bu  as follows: 

 bb u uu α+=1 ,  (6.29) 

where the first term is the base isolation system displacement relative to the ground whereas 

the last term is the superstructure first floor displacement relative to the base isolation system; 

generally, the latter is very small compared to the former, that is, 1  <<α . 

Dividing Equation (6.28) by bm , the dynamic equilibrium equation becomes: 

 )()(
)(

)( 1 tu tu 
m

k k
tu gb

b

b
b &&&& −=−+ α

.  (6.30) 

Substituting the central difference expression for the acceleration at time t into Equation 

(6.30) and solving for )( t tub ∆+  gives: 
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Equation (6.31) can be reformulated into a recursive matrix form as follows: 
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with: 
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where A and L are the integration approximation and load operators, respectively (Bathe 

1996).   

The stability of an integration method is determined by examining the behavior of the 

numerical solution for arbitrary initial conditions, thus it is possible to consider the integration 

of Equation (6.32) when load is absent, that is, 0)(   tug =&& .  

In this work, the numerical stability is analyzed by using the spectral decomposition of the 

matrix A. Since the stability of an integration method depends only on the eigenvalues of the 

approximation operator A, the following eigenvalue problem has to be solved: 
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The eigenvalues of the matrix A are the roots of the following characteristic polynomial:  

 )()( IA    detp λλ −= ,  (6.36) 

which, in this case, is defined as: 
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Thus, the two eigenvalues of A are: 
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For stability, the absolute values of 1λ  and 2λ  have to be smaller than or equal to 1, that is, 

the spectral radius )( Aρ  of the approximation operator A , defined as i 
,i
 max λρ

21
)(

=
=A , must 

satisfy the condition 1)( ≤Aρ . It follows from this condition that the critical time step crt∆  is 

given by: 

  
k k

m
 

π

T
t

b

b
cr

1

2
α

∆
−

== .  (6.40) 

The same time step stability limit is also applicable when the viscous damping is not 

neglected (Bathe 1996).  

It is important to observe that the highest horizontal stiffness of each seismic isolator has to be 

used in order to evaluate crt∆  and that α  can be assumed equal to zero. In practice, since all 

isolation bearings are modeled by a bilinear model in which the post-yield stiffness is 

generally smaller than the initial elastic stiffness (Naeim and Kelly 1999), the pre-yield 

stiffness of each isolator has to be chosen to determine crt∆ .  

6.4.2.2 3d Base-Isolated Structures 

Considering the 3d discrete structural model of a base-isolated structure, the critical time step 

crt∆  can be evaluated considering the lower natural period given by the following eigenvalue 

problem: 

 2 ΩΦmΦk   b
h
b = ,  (6.41) 

where h
bk  is the stiffness matrix of the base isolation system assembled using the highest 

horizontal stiffness of each nonlinear element, Φ  is the modal matrix, and 2
Ω  the spectral 

matrix of the eigenvalue problem. 
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6.4.3 Numerical Applications 

In what follows, the PFM and the proposed MEIM are adopted to simulate the seismic 

response of two 3d base-isolated structures, namely, Structure A and Structure B, subjected to 

a bidirectional earthquake excitation, that is, the Northridge earthquake of January 17, 1994, 

for Structure A, and the Loma Prieta earthquake of October 17, 1989, for Structure B. For 

each structure, two types of base isolation systems are considered, namely, Lead Rubber 

Bearing System (LRBS) and Friction Pendulum Bearing System (FPBS).  

6.4.3.1 Analysis of Base-Isolated Structures with LRBS 

6.4.3.1.1 Analyzed 3d Base-Isolated Structure A 

The superstructure is a two-story reinforced concrete structure with vertical geometric 

irregularity, plan dimensions 10 m x 8 m, and story height h = 3.5 m. The weight of the 

superstructure is 1802.9 kN and the first three natural periods are 0.15 s, 0.14 s, and 0.10 s, 

respectively. Each superstructure diaphragm mass includes the contributions of the dead load 

and live load on the floor diaphragm and the contributions of structural elements and 

nonstructural elements between floors.  

The base isolation system, having a total weight of 914.9 kN, consists of an orthogonal mesh 

of foundation beams having rectangular cross section with dimensions 30 cm x 50 cm, and 9 

identical Lead Rubber Bearings (LRBs), positioned centrically under all columns. 

The typical floor plan, the base floor plan, and a section of the analyzed 3d base-isolated 

structure are shown in Figure 6.1. 

As a result of the kinematic constraints assumed in Chapter 2, the total number of dofs, 

defined relative to the ground, is equal to 9. Figure 6.2 shows the 3d discrete structural model 

of the analyzed base-isolated structure. 

The base isolation system has been designed in order to provide an effective isolation period 

effT  = 2.25 s and an effective viscous damping effυ  = 0.15 at the design displacement dd  = 

0.50 m. Thus, each elastomeric bearing has a yield force yF  = 31422 N, a yield displacement 

y = 0.017 m and a post-yield to pre-yield stiffness ratio α  = 0.10. 
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(a) 

 

(b) 

 

(c) 

 

Figure 6.1. Structure A: (a) typical floor plan; (b) base floor plan; (c) section A-A’. 
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Figure 6.2. 3d discrete structural model of Structure A. 
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6.4.3.1.2 Analyzed 3d Base-Isolated Structure B 

The superstructure is a four-story reinforced concrete structure with plan dimensions 19 m x 

11 m, and story height h = 3.5 m. The weight of the superstructure is 9921.24 kN and the first 

three natural periods are 0.33 s, 0.33 s, and 0.26 s, respectively. Each superstructure 

diaphragm mass includes the contributions of the dead load and live load on the floor 

diaphragm and the contributions of structural elements and nonstructural elements between 

floors.  

The base isolation system, having a total weight of 3006.44 kN, consists of an orthogonal 

mesh of foundation beams having rectangular cross section with dimensions 60 cm x 75 cm, 

and 24 identical Lead Rubber Bearings (LRBs), positioned centrically under all columns. 

The typical floor plan, the base floor plan, and a section of the analyzed 3d base-isolated 

structure are shown in Figure 6.3. 

As a result of the kinematic constraints assumed in Chapter 2, the total number of dofs, 

defined relative to the ground, is equal to 15. Figure 6.4 shows the 3d discrete structural 

model of the analyzed base-isolated structure. 

The base isolation system has been designed in order to provide an effective isolation period 

effT  = 2.50 s and an effective viscous damping effυ  = 0.15 at the design displacement dd  = 

0.50 m. Thus, each elastomeric bearing has a yield force yF  = 45400.3 N, a yield 

displacement y = 0.017 m, and a post-yield to pre-yield stiffness ratio α  = 0.10. 

(a) 
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(b) 

 

(c) 

 

Figure 6.3. Structure B: (a) typical floor plan; (b) base floor plan; (c) section A-A’. 
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Figure 6.4. 3d discrete structural model of Structure B. 
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6.4.3.1.3 Model Adopted for Lead Rubber Bearings 

The dynamic behavior of each LRB is simulated by using a mathematical model, introduced 

by Nagarajaiah et al. (1991) and described in Chapter 4, capable of predicting the biaxial 

behavior of elastomeric bearings. According to this model, the LRB nonlinear restoring forces 

along the orthogonal directions x and y are described by the following equations: 

 x
y

x
y

x z 
y

F
 αu 

y

F
 αf )1( −+= ,  (6.42) 

 y
y

y
y

y z 
y

F
 αu 

y

F
 αf )1( −+= ,  (6.43) 

in which α  is the post-yield to the pre-yield stiffness ratio, yF  is the yield force, y is the yield 

displacement, xu  and yu  represent the displacements of the isolation device in the x and y 

directions, respectively. The functions xz  and yz , having the unit of displacement and 

accounting for the direction and biaxial interaction of hysteresis forces, are obtained solving 

the following coupled first order nonlinear ordinary differential equations proposed by Park et 

al. (1986): 

 yxyxyyxxxxxxx zzu z zu  zu z zu u Az &&&&&& γβγβ −−−−= 2 ,  (6.44) 

 yxxyxxyyyyyyy zzu z zu  zu z zu u Az &&&&&& γβγβ −−−−= 2 ,  (6.45) 

in which A , β , and γ  are parameters that control the shape of the hysteresis loop, xu&  and 

yu&  are the velocities that occur at the isolation device in x and y directions, respectively.  

In the numerical applications presented in this work, the following values are adopted for the 

model parameters: 

 A = 1, 2y
   

50.=β , and 2y
   

50.=γ .  

The unconditionally stable semi-implicit Runge-Kutta method (Rosenbrock 1963) is 

employed to solve the differential equations governing the behavior of each nonlinear 

isolation element with a number of steps equal to 50. 
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6.4.3.1.4 Numerical Results for Structure A 

Bidirectional earthquake excitation is imposed with component SN and SP of the 1994 

Northridge motion applied along directions X and Y of the global coordinate system, 

respectively. The two components of the horizontal ground acceleration record, having time 

step equal to 0.005 s, are shown in Figure 6.5. It is important to note that normally 200 points 

per second are used to define accurately an acceleration record, and that the time step of the 

ground motion can be reduced through linear interpolation because it is generally assumed 

that the acceleration function is linear within each time increment (Wilson 2002).  

(a) 

 

(b) 

 

Figure 6.5. (a) SN and (b) SP component of horizontal ground acceleration recorded at the Jensen Filter Plant 

station during the Northridge earthquake of January 17, 1994. 
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Table 6.1 gives the Nonlinear Time History Analyses (NLTHAs) results obtained using the 

proposed MEIM and the PFM, both implemented on the same computer (Intel® Core™ i7-

4700MQ processor, CPU at 2.40 GHz with 16 GB of RAM) by using the computer program 

Matlab and verified using SAP2000. In the PFM the adopted convergence tolerance value is 

equal to 810− . 

Table 6.1. NLTHAs results with t∆ = 0.005 s | Structure A with LRBS. 

   )( bMC
xu  [m] 

)( bMC
yu  [m] )( 2MC 

xu&&  [g] 
)( 2MC 

yu&&  [g] 

 tct [s] tctp [%] max min max min max min max min 

MEIM 45 18.44 0.3332 -0.3327 0.2286 -0.1787 0.5293 -0.4586 1.0986 -1.0783 

PFM 244 - 0.3330 -0.3327 0.2287 -0.1787 0.5456 -0.4624 1.0874 -1.0399 

The comparison of the maximum and minimum values of the base isolation system mass 

center ( bMC ) displacements and superstructure second story mass center ( 2MC ) accelerations 

(relative to the ground) in x and y directions, obtained using the MEIM and PFM, reveals that 

the proposed method provides numerical results that are close enough to those obtained 

adopting the PFM. 

As regards the stability of the MEIM, the critical time step crt∆ , evaluated using Equation 

(6.40) and considering the lowest natural period given by the eigenvalue problem in Equation 

(6.41), is equal to 0.32 s. It is evident that, in this case, being the critical time step larger than 

the imposed ground acceleration time step, there are no stability problems. 

As far as the computational efficiency is concerned, the total computational time, tct, required 

by the MEIM is significantly reduced in comparison to the PFM. It must be noted that the 

comparisons using the tct are meaningful only qualitatively because it depends on the CPU 

speed, memory capability and background processes of the computer used to obtain the 

previous results. To this end, in order to normalize the computational time results, Table 6.1 

also shows the percentage of the MEIM tct evaluated with respect to the PFM tct as follows: 

 [ ] 100
PFM

MEIM
MEIM ⋅=

tct 

tct 
% tctp .  

In addition, according to the numerical results listed in Table 6.2, the proposed MEIM, 

performed with a smaller time step, that is, t∆  = 0.001 s, which allows one to minimize the 

error in Equations (6.20) and (6.27), requires less computational effort than the PFM even if 

the latter is performed using the larger time step, that is, t∆  = 0.005 s. Indeed, the MEIM 
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tctp, referred to the PFM tct evaluated adopting t∆  = 0.005 s, is equal to 90.16 %. 

Table 6.2. NLTHAs results with t∆ = 0.001 s | Structure A with LRBS.  

   )( bMC
xu  [m] 

)( bMC
yu  [m] )( 2MC 

xu&&  [g] 
)( 2MC 

yu&&  [g] 

 tct [s] tctp [%] max min max min max min max min 

MEIM 220 26.79 0.3341 -0.3333 0.2292 -0.1794 0.5415 -0.4705 1.1285 -1.0728 

PFM 821 - 0.3341 -0.3333 0.2292 -0.1794 0.5418 -0.4701 1.1274 -1.0743 

It can therefore be concluded that even when a time step smaller than the one used to define 

the ground acceleration accurately has to be adopted because of stability requirements, as in 

the case of base isolation systems having isolators with very high initial stiffness, such as 

sliding bearings, or very high stiffness at large displacements, such as high damping rubber 

bearings, the proposed method preserves its computational efficiency with respect to the 

PFM. 

Figures 6.6, 6.7, and 6.8 illustrate, respectively, the displacement, velocity and acceleration 

time histories of the base isolation system mass center, whereas Figures 6.9, 6.10, and 6.11 

show, respectively, the displacement, velocity and acceleration time histories of the 

superstructure second story mass center (relative to the ground). 

In addition, Figures 6.12 and 6.13 illustrate, respectively, the force-displacement hysteresis 

loops displayed by Isolator 1 and Isolator 5, illustrated in Figure 6.1b. 

It is evident the good agreement between responses computed using the proposed MEIM and 

the PFM.  
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(a) 

 

(b) 

 

Figure 6.6. Displacement time history of the base isolation system mass center in (a) x and (b) y directions 

(Structure A with LRBS). 
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(a) 

 

(b) 

 

Figure 6.7. Velocity time history of the base isolation system mass center in (a) x and (b) y directions   

(Structure A with LRBS). 
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(a) 

 

(b) 

 

Figure 6.8. Acceleration time history of the base isolation system mass center in (a) x and (b) y directions 

(Structure A with LRBS).  
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(a) 

 

(b) 

 

Figure 6.9. Displacement time history of the superstructure second story mass center in (a) x and (b) y directions 

(Structure A with LRBS). 
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(a) 

 

(b) 

 

Figure 6.10. Velocity time history of the superstructure second story mass center in (a) x and (b) y directions 

(Structure A with LRBS). 
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(a) 

 

(b) 

 

Figure 6.11. Acceleration time history of the superstructure second story mass center in (a) x and (b) y directions 

(Structure A with LRBS). 
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(a) 

 

(b) 

 

Figure 6.12. Hysteresis loop displayed by Isolator 1 in (a) x and (b) y directions                                      

(Structure A with LRBS). 
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(a) 

 

(b) 

 

Figure 6.13. Hysteresis loop displayed by Isolator 5 in (a) x and (b) y directions                                      

(Structure A with LRBS). 
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6.4.3.1.5 Numerical Results for Structure B 

Bidirectional earthquake excitation is imposed with component SN and SP of the 1989 Loma 

Prieta motion applied along directions X and Y of the global coordinate system, respectively. 

The two components of the horizontal ground acceleration record, having time step equal to 

0.005 s, are shown in Figure 6.14. It is important to note that normally 200 points per second 

are used to define accurately an acceleration record, and that the time step of the ground 

motion can be reduced through linear interpolation because it is generally assumed that the 

acceleration function is linear within each time increment (Wilson 2002). 

(a) 

 

(b) 

 

Figure 6.14. (a) SN and (b) SP component of horizontal ground acceleration recorded at the LGPC station 

during the Loma Prieta earthquake of October 17, 1989. 
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Table 6.3 gives the Nonlinear Time History Analyses (NLTHAs) results obtained using the 

proposed MEIM and the PFM, both implemented on the same computer (Intel® Core™ i7-

4700MQ processor, CPU at 2.40 GHz with 16 GB of RAM) by using the computer program 

Matlab and verified using SAP2000. In the PFM the adopted convergence tolerance value is 

equal to 810− . 

Table 6.3. NLTHAs results with t∆ = 0.005 s | Structure B with LRBS. 

   )( bMC
xu  [m] 

)( bMC
yu  [m] )( 4MC 

xu&&  [g] 
)( 4MC 

yu&&  [g] 

 tct [s] tctp [%] max min max min max min max min 

MEIM 93.56 17.35 0.5643 -0.3957 0.3053 -0.2105 0.9210 -0.7925 0.4795 -0.5594 

PFM 539 - 0.5642 -0.3958 0.3054 -0.2106 0.9266 -0.8062 0.4939 -0.5770 

The comparison of the maximum and minimum values of the base isolation system mass 

center ( bMC ) displacements and superstructure fourth story mass center ( 4MC ) accelerations 

(relative to the ground) in x and y directions, obtained using the MEIM and PFM, reveals that 

the proposed method provides numerical results that are close enough to those obtained 

adopting the PFM.   

As regards the stability of the MEIM, the critical time step crt∆ , evaluated using Equation 

(6.40) and considering the lowest natural period given by the eigenvalue problem in Equation 

(6.41), is equal to 0.12 s. It is evident that, in this case, being the critical time step larger than 

the imposed ground acceleration time step, there are no stability problems. 

As far as the computational efficiency is concerned, the total computational time, tct, required 

by the MEIM is significantly reduced in comparison to the PFM. It must be noted that the 

comparisons using the tct are meaningful only qualitatively because it depends on the CPU 

speed, memory capability and background processes of the computer used to obtain the 

previous results. To this end, in order to normalize the computational time results, Table 6.3 

also shows the percentage of the MEIM tct evaluated with respect to the PFM tct as follows: 

 [ ] 100
PFM

MEIM
MEIM ⋅=

tct 

tct 
% tctp .  

In addition, according to the numerical results listed in Table 6.4, the proposed MEIM, 

performed with a smaller time step, that is, t∆  = 0.001 s, which allows one to minimize the 

error in Equations (6.20) and (6.27), requires less computational effort than the PFM even if 

the latter is performed using the larger time step, that is, t∆  = 0.005 s. Indeed, the MEIM 
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tctp, referred to the PFM tct evaluated adopting t∆  = 0.005 s, is equal to 87.94 %.  

Table 6.4. NLTHAs results with t∆ = 0.001 s | Structure B with LRBS. 

   )( bMC
xu  [m] 

)( bMC
yu  [m] )( 4MC 

xu&&  [g] 
)( 4MC 

yu&&  [g] 

 tct [s] tctp [%] max min max min max min max min 

MEIM 474 25.73 0.5651 -0.3957 0.3058 -0.2107 0.9408 -0.8372 0.4953 -0.5621 

PFM 1842 - 0.5651 -0.3957 0.3058 -0.2107 0.9406 -0.8371 0.4935 -0.5628 

It can therefore be concluded that even when a time step smaller than the one used to define 

the ground acceleration accurately has to be adopted because of stability requirements, as in 

the case of base isolation systems having isolators with very high initial stiffness, such as 

sliding bearings, or very high stiffness at large displacements, such as high damping rubber 

bearings, the proposed method preserves its computational efficiency with respect to the 

PFM. 

Figures 6.15, 6.16, and 6.17 illustrate, respectively, the displacement, velocity and 

acceleration time histories of the base isolation system mass center, whereas Figures 6.18, 

6.19, and 6.20 show, respectively, the displacement, velocity and acceleration time histories 

of the superstructure fourth story mass center (relative to the ground). 

In addition, Figures 6.21 and 6.22 illustrate, respectively, the force-displacement hysteresis 

loops displayed by Isolator 1 and Isolator 11, illustrated in Figure 6.3b. 

It is evident the good agreement between responses computed using the proposed MEIM and 

the PFM.  
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(a) 

 

(b) 

 

Figure 6.15. Displacement time history of the base isolation system mass center in (a) x and (b) y directions 

(Structure B with LRBS). 
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(a) 

 

(b) 

 

Figure 6.16. Velocity time history of the base isolation system mass center in (a) x and (b) y directions  

(Structure B with LRBS). 
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(a) 

 

(b) 

 

Figure 6.17. Acceleration time history of the base isolation system mass center in (a) x and (b) y directions 

(Structure B with LRBS). 
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(a) 

 

(b) 

 

Figure 6.18. Displacement time history of the superstructure fourth story mass center in (a) x and (b) y directions 

(Structure B with LRBS). 
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(a) 

 

(b) 

 

Figure 6.19. Velocity time history of the superstructure fourth story mass center in (a) x and (b) y directions 

(Structure B with LRBS). 
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(a) 

 

(b) 

 

Figure 6.20. Acceleration time history of the superstructure fourth story mass center in (a) x and (b) y directions 

(Structure B with LRBS). 

 

 

0 5 10 15 20 25
-10

-5

0

5

10

time [s]

M
C

4 a
cc

el
er

at
io

n 
al

on
g 

x 
[m

/s2 ]

 

 

PFM
MEIM

0 5 10 15 20 25
-10

-5

0

5

10

time [s]

M
C

4 a
cc

el
er

at
io

n 
al

on
g 

y 
[m

/s2 ]

 

 

PFM
MEIM



Chapter 6 | Numerical Time Integration Methods 

227 

 

(a) 

 

(b) 

 

Figure 6.21. Hysteresis loop displayed by Isolator 1 in (a) x and (b) y directions                                      

(Structure B with LRBS). 
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(a) 

 

(b) 

 

Figure 6.22. Hysteresis loop displayed by Isolator 11 in (a) x and (b) y directions                                     

(Structure B with LRBS). 
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6.4.3.2 Analysis of Base-Isolated Structures with FPBS 

6.4.3.2.1 Analyzed 3d Base-Isolated Structure A 

The superstructure is a two-story reinforced concrete structure with vertical geometric 

irregularity, plan dimensions 10 m x 8 m, and story height h = 3.5 m. The weight of the 

superstructure is 1802.9 kN and the first three natural periods are 0.15 s, 0.14 s, and 0.10 s, 

respectively. Each superstructure diaphragm mass includes the contributions of the dead load 

and live load on the floor diaphragm and the contributions of structural elements and 

nonstructural elements between floors.  

The base isolation system, having a total weight of 914.9 kN, consists of an orthogonal mesh 

of foundation beams having rectangular cross section with dimensions 30 cm x 50 cm, and 9 

identical Friction Pendulum Bearings (FPBs), positioned centrically under all columns. 

The typical floor plan, the base floor plan, and a section of the analyzed 3d base-isolated 

structure are shown in Figure 6.1. 

As a result of the kinematic constraints assumed in Chapter 2, the total number of dofs, 

defined relative to the ground, is equal to 9. Figure 6.2 shows the 3d discrete structural model 

of the analyzed base-isolated structure. 

The base isolation system has been designed in order to provide an effective isolation period 

effT  = 2.25 s and an effective viscous damping effυ  = 0.10 at the design displacement dd  = 

0.50 m. Thus, each sliding bearing has a radius of curvature of the spherical concave surface 

R = 1.25 m, a sliding friction coefficient μ  = 0.07, and a yield displacement y = 0.0002 m. In 

the numerical application, the vertical load N carried by each device is assumed equal to the 

weight W acting on the isolator and the dependency of the sliding friction coefficient on 

bearing pressure and sliding velocity is neglected. 
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6.4.3.2.2 Analyzed 3d Base-Isolated Structure B 

The superstructure is a four-story reinforced concrete structure with plan dimensions 19 m x 

11 m, and story height h = 3.5 m. The weight of the superstructure is 9921.24 kN and the first 

three natural periods are 0.33 s, 0.33 s, and 0.26 s, respectively. Each superstructure 

diaphragm mass includes the contributions of the dead load and live load on the floor 

diaphragm and the contributions of structural elements and nonstructural elements between 

floors.  

The base isolation system, having a total weight of 3006.44 kN, consists of an orthogonal 

mesh of foundation beams having rectangular cross section with dimensions 60 cm x 75 cm, 

and 24 identical Friction Pendulum Bearings (FPBs), positioned centrically under columns. 

The typical floor plan, the base floor plan, and a section of the analyzed 3d base-isolated 

structure are shown in Figure 6.3. 

As a result of the kinematic constraints assumed in Chapter 2, the total number of dofs, 

defined relative to the ground, is equal to 15. Figure 6.4 shows the 3d discrete structural 

model of the analyzed base-isolated structure. 

The base isolation system has been designed in order to provide an effective isolation period 

effT  = 2.50 s and an effective viscous damping effυ  = 0.10 at the design displacement dd  = 

0.50 m. Thus, each sliding bearing has a radius of curvature of the spherical concave surface 

R = 1.55 m, and a sliding friction coefficient μ  = 0.06, and a yield displacement y = 0.0001 

m. In the numerical application, the vertical load N carried by each device is assumed equal to 

the weight W acting on the isolator and the dependency of the sliding friction coefficient on 

bearing pressure and sliding velocity is neglected. 
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6.4.3.2.3 Model Adopted for Friction Pendulum Bearings 

The dynamic behavior of each FPB is simulated by using a mathematical model, introduced 

by Constantinou et al. (1990) and described in Chapter 4, capable of predicting the biaxial 

behavior of sliding bearings. According to this model, the FPB nonlinear restoring forces 

along the orthogonal directions x and y are described by the following equations:  

 )(uz
y

N 
u 

R

N
f xxx

µ+= ,  (6.46) 

 )(uz 
y

N 
u 

R

N
f yyy

µ+= ,  (6.47) 

in which, N is the vertical load carried by the bearing, R is the radius of curvature of the 

spherical concave surface of the bearing, xu  and yu  represent the displacements of the 

isolation device in the x and y directions, respectively, y is the yield displacement, and µ  is 

the sliding friction coefficient which depends on the value of bearing pressure and on the 

instantaneous velocity of sliding u& , given by: 

 22
yx uuu &&& += ,  (6.48) 

where xu&  and yu&  are the velocities that occur at the isolation device in x and y directions, 

respectively.  

The functions xz  and yz , obtained by solving Equations (6.44) and (6.45), respectively, have 

the unit of displacement and account for the direction and biaxial interaction of hysteresis 

forces. 

In the numerical applications, the following values are adopted for the model parameters in 

Equations (6.44) and (6.45): 

 A = 1, 2y
   

50.=β , and 2y
   

50.=γ .  

The unconditionally stable semi-implicit Runge-Kutta method (Rosenbrock 1963) is 

employed to solve the differential equations governing the behavior of each nonlinear 

isolation element with a number of steps equal to 50. 
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6.4.3.2.4 Numerical Results for Structure A 

Bidirectional earthquake excitation is imposed with component SN and SP of the 1994 

Northridge motion applied along directions X and Y of the global coordinate system, 

respectively. The two components of the horizontal ground acceleration record, having time 

step equal to 0.005 s, are shown in Figure 6.5. It is important to note that normally 200 points 

per second are used to define accurately an acceleration record, and that the time step of the 

ground motion can be reduced through linear interpolation because it is generally assumed 

that the acceleration function is linear within each time increment (Wilson 2002).  

Table 6.5 gives the Nonlinear Time History Analyses (NLTHAs) results obtained using the 

proposed MEIM and the PFM, both implemented on the same computer (Intel® Core™ i7-

4700MQ processor, CPU at 2.40 GHz with 16 GB of RAM) by using the computer program 

Matlab. In the PFM the adopted convergence tolerance value is equal to 610− . 

Table 6.5. NLTHAs results with t∆ = 0.005 s | Structure A with FPBS. 

   )( bMC
xu  [m] 

)( bMC
yu  [m] )( 2MC 

xu&&  [g] 
)( 2MC 

yu&&  [g] 

 tct [s] tctp [%] max min max min max min max min 

MEIM 47 7.86 0.3312 -0.3138 0.2831 -0.2507 0.4708 -0.4772 1.1883 -0.9682 

PFM 598 - 0.3310 -0.3137 0.2829 -0.2505 0.4729 -0.4164 1.0778 -1.1374 

The comparison of the maximum and minimum values of the bMC  displacements and 2MC  

accelerations (relative to the ground) in x and y directions, obtained using the MEIM and 

PFM, reveals that the proposed method provides numerical results that are close enough to 

those obtained adopting the PFM.   

As regards the stability of the MEIM, the critical time step crt∆ , evaluated using Equation 

(6.40) and considering the lowest natural period given by the eigenvalue problem in Equation 

(6.41), is equal to 0.015 s. It is evident that, in this case, being the critical time step larger than 

the imposed ground acceleration time step, there are no stability problems despite of the very 

high initial stiffness value of FPBs. 

As far as the computational efficiency is concerned, the total computational time, tct, required 

by the MEIM is significantly reduced in comparison to the PFM. It must be noted that the 

comparisons using the tct are meaningful only qualitatively because it depends on the CPU 

speed, memory capability and background processes of the computer used to obtain the 

previous results. To this end, in order to normalize the computational time results, Table 6.5 
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also shows the percentage of the MEIM tct evaluated with respect to the PFM tct as follows: 

 [ ] 100
PFM

MEIM
MEIM ⋅=

tct 

tct 
% tctp .  

In addition, according to the numerical results listed in Table 6.6, the proposed MEIM, 

performed with a smaller time step, that is, t∆  = 0.001 s, which allows one to minimize the 

error in Equations (6.20) and (6.27), requires less computational effort than the PFM even if 

the latter is performed using the larger time step, that is, t∆  = 0.005 s. Indeed, the MEIM 

tctp, referred to the PFM tct evaluated adopting t∆  = 0.005 s, is equal to 38.46 %. 

Table 6.6. NLTHAs results with t∆ = 0.001 s | Structure A with FPBS. 

   )( bMC
xu  [m] 

)( bMC
yu  [m] )( 2MC 

xu&&  [g] 
)( 2MC 

yu&&  [g] 

 tct [s] tctp [%] max min max min max min max min 

MEIM 230 18.54 0.3312 -0.3139 0.2832 -0.2507 0.4779 -0.4692 1.2015 -0.9925 

PFM 1240 - 0.3312 -0.3139 0.2832 -0.2507 0.4783 -0.4693 1.2067 -0.9835 

It can therefore be concluded that even when a time step smaller than the one used to define 

the ground acceleration accurately has to be adopted because of stability requirements, as in 

the case of base isolation systems having isolators with very high initial stiffness, such as 

sliding bearings, or very high stiffness at large displacements, such as high damping rubber 

bearings, the proposed method preserves its computational efficiency with respect to the 

PFM. 

Figures 6.23, 6.24, and 6.25 illustrate, respectively, the displacement, velocity and 

acceleration time histories of the base isolation system mass center, whereas Figures 6.26, 

6.27, and 6.28 show, respectively, the displacement, velocity and acceleration time histories 

of the superstructure second story mass center (relative to the ground). 

In addition, Figures 6.29 and 6.30 illustrate, respectively, the force-displacement hysteresis 

loops displayed by Isolator 1 and Isolator 5, illustrated in Figure 6.1b. 

It is evident the good agreement between responses computed using the proposed MEIM and 

the PFM.  
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(a) 

 

(b) 

 

Figure 6.23. Displacement time history of the base isolation system mass center in (a) x and (b) y directions 

(Structure A with FPBS). 
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(a) 

 

(b) 

 

Figure 6.24. Velocity time history of the base isolation system mass center in (a) x and (b) y directions 

(Structure A with FPBS). 
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(a) 

 

(b) 

 

Figure 6.25. Acceleration time history of the base isolation system mass center in (a) x and (b) y directions 

(Structure A with FPBS). 
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(a) 

 

(b) 

 

Figure 6.26. Displacement time history of the superstructure second story mass center in (a) x and (b) y 

directions (Structure A with FPBS). 
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(a) 

 

(b) 

 

Figure 6.27. Velocity time history of the superstructure second story mass center in (a) x and (b) y directions 

(Structure A with FPBS). 
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(a) 

 

(b) 

 

Figure 6.28. Acceleration time history of the superstructure second story mass center in (a) x and (b) y directions 

(Structure A with FPBS). 
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(a) 

 

(b) 

 

Figure 6.29. Hysteresis loop displayed by Isolator 1 in (a) x and (b) y directions                                      

(Structure A with FPBS). 
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(a) 

 

(b) 

 

Figure 6.30. Hysteresis loop displayed by Isolator 5 in (a) x and (b) y directions                                      

(Structure A with FPBS). 
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6.4.3.2.5 Numerical Results for Structure B 

Bidirectional earthquake excitation is imposed with component SN and SP of the 1989 Loma 

Prieta motion applied along directions X and Y of the global coordinate system, respectively. 

The two components of the horizontal ground acceleration record, having time step equal to 

0.005 s, are shown in Figure 6.14. It is important to note that normally 200 points per second 

are used to define accurately an acceleration record, and that the time step of the ground 

motion can be reduced through linear interpolation because it is generally assumed that the 

acceleration function is linear within each time increment (Wilson 2002).  

Table 6.7 gives the Nonlinear Time History Analyses (NLTHAs) results obtained using the 

proposed MEIM and the PFM, both implemented on the same computer (Intel® Core™ i7-

4700MQ processor, CPU at 2.40 GHz with 16 GB of RAM) by using the computer program 

Matlab. In the PFM the adopted convergence tolerance value is equal to 610− . 

Table 6.7. NLTHAs results with t∆ = 0.005 s | Structure B with FPBS. 

   )( bMC
xu  [m] 

)( bMC
yu  [m] )( 4MC 

xu&&  [g] 
)( 4MC 

yu&&  [g] 

 tct [s] tctp [%] max min max min max min max min 

MEIM 99.8 7.00 0.5642 -0.4575 0.2971 -0.1831 1.1373 -1.0563 0.5581 -0.7436 

PFM 1425 - 0.5641 -0.4575 0.2970 -0.1839 1.1781 -1.1190 0.6006 -0.7293 

The comparison of the maximum and minimum values of the bMC  displacements and 4MC  

accelerations (relative to the ground) in x and y directions, obtained using the MEIM and 

PFM, reveals that the proposed method provides numerical results that are close enough to 

those obtained adopting the PFM.   

As regards the stability of the MEIM, the critical time step crt∆ , evaluated using Equation 

(6.40) and considering the lowest natural period given by the eigenvalue problem in Equation 

(6.41), is equal to 0.012 s. It is evident that, in this case, being the critical time step larger than 

the imposed ground acceleration time step, there are no stability problems despite of the very 

high initial stiffness value of FPBs. 

As far as the computational efficiency is concerned, the total computational time, tct, required 

by the MEIM is significantly reduced in comparison to the PFM. It must be noted that the 

comparisons using the tct are meaningful only qualitatively because it depends on the CPU 

speed, memory capability and background processes of the computer used to obtain the 

previous results. To this end, in order to normalize the computational time results, Table 6.7 
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also shows the percentage of the MEIM tct evaluated with respect to the PFM tct as follows: 

 [ ] 100
PFM

MEIM
MEIM ⋅=

tct 

tct 
% tctp .  

In addition, according to the numerical results listed in Table 6.8, the proposed MEIM, 

performed with a smaller time step, that is, t∆  = 0.001 s, which allows one to minimize the 

error in Equations (6.20) and (6.27), requires less computational effort than the PFM even if 

the latter is performed using the larger time step, that is, t∆  = 0.005 s. Indeed, the MEIM 

tctp, referred to the PFM tct evaluated adopting t∆  = 0.005 s, is equal to 34.42 %. 

Table 6.8. NLTHAs results with t∆ = 0.001 s | Structure B with FPBS. 

   )( bMC
xu  [m] 

)( bMC
yu  [m] )( 4MC 

xu&&  [g] 
)( 4MC 

yu&&  [g] 

 tct [s] tctp [%] max min max min max min max min 

MEIM 490.6 18.02 0.5590 -0.4466 0.2954 -0.1810 0.8799 -0.9578 0.5443 -0.6542 

PFM 2722 - 0.5590 -0.4466 0.2954 -0.1810 0.8825 -0.9610 0.5452 -0.6547 

It can therefore be concluded that even when a time step smaller than the one used to define 

the ground acceleration accurately has to be adopted because of stability requirements, as in 

the case of base isolation systems having isolators with very high initial stiffness, such as 

sliding bearings, or very high stiffness at large displacements, such as high damping rubber 

bearings, the proposed method preserves its computational efficiency with respect to the 

PFM. 

Figures 6.31, 6.32, and 6.33 illustrate, respectively, the displacement, velocity and 

acceleration time histories of the base isolation system mass center, whereas Figures 6.34, 

6.35, and 6.36 show, respectively, the displacement, velocity and acceleration time histories 

of the superstructure fourth story mass center (relative to the ground). 

In addition, Figures 6.37 and 6.38 illustrate, respectively, the force-displacement hysteresis 

loops displayed by Isolator 1 and Isolator 11, illustrated in Figure 6.3b. 

It is evident the good agreement between responses computed using the proposed MEIM and 

the PFM.  
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(a) 

 

(b) 

 

Figure 6.31. Displacement time history of the base isolation system mass center in (a) x and (b) y directions 

(Structure B with FPBS). 
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(a) 

 

(b) 

 

Figure 6.32. Velocity time history of the base isolation system mass center in (a) x and (b) y directions 

(Structure B with FPBS). 
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(a) 

 

(b) 

 

Figure 6.33. Acceleration time history of the base isolation system mass center in (a) x and (b) y directions 

(Structure B with FPBS). 
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(a) 

 

(b) 

 

Figure 6.34. Displacement time history of the superstructure fourth story mass center in (a) x and (b) y directions 

(Structure B with FPBS). 
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(a) 

 

(b) 

 

Figure 6.35. Velocity time history of the superstructure fourth story mass center in (a) x and (b) y directions 

(Structure B with FPBS). 

 

 

0 5 10 15 20 25
-1.5

-0.75

0

0.75

1.5

time [s]

M
C

4 v
el

oc
ity

 a
lo

n
g 

x 
[m

/s
]

 

 

PFM
MEIM

0 5 10 15 20 25
-1

-0.5

0

0.5

1

time [s]

M
C

4 v
el

oc
ity

 a
lo

n
g 

y 
[m

/s
]

 

 

PFM
MEIM



Chapter 6 | Numerical Time Integration Methods 

249 

 

(a) 

 

(b) 

 

Figure 6.36. Acceleration time history of the superstructure fourth story mass center in (a) x and (b) y directions 

(Structure B with FPBS). 
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(a) 

 

(b) 

 

Figure 6.37. Hysteresis loop displayed by Isolator 1 in (a) x and (b) y directions                                      

(Structure B with FPBS). 
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(a) 

 

(b) 

 

Figure 6.38. Hysteresis loop displayed by Isolator 11 in (a) x and (b) y directions                                      

(Structure B with FPBS). 
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Chapter 7 

Speeding Up Nonlinear Dynamic Analysis 

Using the MEIM and NEM 

7.1 Introduction 

In Chapter 7, the nonlinear dynamic response of a 3d seismically base-isolated structure 

subjected to harmonic earthquake excitation is predicted using the Pseudo-Force Method 

(PFM), described in 6.2.2, and the proposed Mixed Explicit-Implicit time integration Method 

(MEIM), presented in 6.3.2. In order to simulate the nonlinear dynamic behavior of each 

seismic isolator within the relatively large displacements range, generally reached under the 

design earthquake, the Bouc-Wen Model (BWM), described in 4.2.1.1, and the proposed 

Nonlinear Exponential Model (NEM), presented in 4.3.1.1, are adopted. More specifically, 

the former is used when the nonlinear time history analysis is performed with the PFM (PFM-

BWM), whereas the latter is employed when the nonlinear dynamic analysis is carried out 

using the MEIM (MEIM-NEM). The main aim of the following numerical application is to 

demonstrate how the significant reduction of the computational effort, due to the use of the 

proposed partitioned solution approach and nonlinear analytical model, makes the nonlinear 

dynamic analysis almost as fast as a linear dynamic analysis. 
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7.2 Numerical Application 

7.2.1 Analyzed 3d Base-Isolated Structure 

In the following, the analyzed 3d structure, seismically isolated by adopting a lead rubber 

bearing system, is described.  

The superstructure is a four-story reinforced concrete structure with plan dimensions 19 m x 

11 m, and story height h = 3.5 m. The weight of the superstructure is 9921.24 kN and the first 

three natural periods are 0.33 s, 0.33 s, and 0.26 s, respectively. Each superstructure 

diaphragm mass includes the contributions of the dead load and live load on the floor 

diaphragm and the contributions of structural elements and nonstructural elements between 

floors.  

The base isolation system, having a total weight of 3006.44 kN, consists of an orthogonal 

mesh of foundation beams having rectangular cross section with dimensions 60 cm x 75 cm, 

and 24 identical Lead Rubber Bearings (LRBs), positioned centrically under all columns. 

The typical floor plan, the base floor plan, and a section of the analyzed 3d base-isolated 

structure are shown in Figure 6.3. 

As a result of the kinematic constraints assumed in Chapter 2, the total number of dofs, 

defined relative to the ground, is equal to 15. Figure 6.4 shows the 3d discrete structural 

model of the analyzed base-isolated structure. 

The base isolation system has been designed in order to provide an effective isolation period 

effT  = 2.50 s and an effective viscous damping effυ  = 0.15 at the design displacement dd  = 

0.50 m. Thus, each elastomeric bearing has a yield force yf  = 45400.3 N, a yield 

displacement yu  = 0.017 m, and a post-yield to pre-yield stiffness ratio α  = 0.10. 
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7.2.2 Analytical Models Parameters 

Table 7.1 shows the parameters of the two uniaxial analytical models adopted to simulate the 

dynamic behavior of each LRB, that is, the differential equation BWM, described in 4.2.1.1, 

and the proposed NEM, presented in 4.3.1.1. 

Table 7.1. BWM and NEM parameters. 

BWM yf  [N] yu  [m] α  A β  γ  n 

 45400.29 0.0171 0.10 1 0.5 0.5 2 

NEM 1k  [N/m] 2k  [N/m] a     

 4513479 265498 50     

Figure 7.1 illustrates the force-displacement hysteresis loops produced by use of the BWM 

and NEM. They are obtained, as done in experimental tests, by applying a sinusoidal 

harmonic displacement having amplitude equal to 0.50 m and frequency of 0.40 Hz. It can be 

seen that the two analytical models adopting the parameters listed in Table 7.1 can reproduce 

a hysteresis loop having the same area and effective stiffness. 

 

Figure 7.1. Hysteresis loop simulated using the BWM and the NEM. 
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7.2.3 Dynamic Response of the 3d Base-Isolated Structure 

Harmonic ground motion, having amplitude 0gu&&  = 2.5 m/s2, frequency gω  = 2π  rad/s, and 

time duration dt  = 20 s, is imposed with an angle gα , that is, the angle that the epicentral 

direction forms with the X-axis, equal to π /6. The time step of the harmonic earthquake 

excitation is chosen equal to 0.005 s because normally 200 points per second are used to 

define accurately an acceleration record (Wilson 2002). The two components of the horizontal 

harmonic ground acceleration are shown in Figure 7.2. 

(a) 

 

(b) 

 

Figure 7.2. (a) X and (b) Y components of the applied horizontal harmonic ground acceleration. 
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Table 7.2 gives the Nonlinear Time History Analyses (NLTHAs) results obtained using the 

PFM-BWM and the proposed MEIM-NEM, both implemented on the same computer (Intel® 

Core™ i7-4700MQ processor, CPU at 2.40 GHz with 16 GB of RAM) by using the computer 

program Matlab and verified using SAP2000. In the PFM-BWM, the adopted convergence 

tolerance value is equal to 810− , and the unconditionally stable semi-implicit Runge-Kutta 

method (Rosenbrock 1963) is employed to solve the differential equations governing the 

behavior of each nonlinear isolation element with a number of steps equal to 50. 

Table 7.2. NLTHAs results with Δt  = 0.005 s. 

   )( bMC
xu  [m] 

)( bMC
yu  [m] )( 4MC 

xu&&  [g] 
)( 4MC 

yu&&  [g] 

 tct [s] tctp [%] max min max min max min max min 

MEIM-NEM 1.25 0.33 0.073 -0.060 0.095 -0.140 0.323 -0.331 0.512 -0.527 

PFM-BWM 373.24 - 0.071 -0.065 0.099 -0.146 0.329 -0.342 0.591 -0.562 

The comparison of the maximum and minimum values of the base isolation system mass 

center ( bMC ) displacements and superstructure fourth story mass center ( 4MC ) accelerations 

(relative to the ground) in x and y directions, obtained using the PFM-BWM and the MEIM-

NEM, reveals that the proposed partitioned solution approach and analytical model provide 

numerical results that are close enough to those obtained adopting the PFM-BWM. 

As regards the stability of the MEIM, the critical time step crt∆ , evaluated using Equation 

(6.40) and considering the lowest natural period given by the eigenvalue problem in Equation 

(6.41), is equal to 0.12 s. It is clear that the low stiffness value of the base isolation system 

allows one to have a critical time step considerably larger than the imposed ground 

acceleration time step, thus avoiding stability problems. 

As far as the computational efficiency is concerned, the total computational time, tct, required 

by the MEIM-NEM is significantly reduced in comparison to the PFM-BWM. It must be 

noted that the comparisons using the tct are meaningful only qualitatively because it depends 

on the CPU speed, memory capability and background processes of the computer used to 

obtain the previous results. To this end, in order to normalize the computational time results, 

Table 7.2 also shows the percentage of the MEIM-NEM tct evaluated with respect to the 

PFM-BWM tct as follows: 

 [ ] 100
BWMPFM

NEMMEIM
NEM MEIM ⋅

−
−=−

tct 

tct 
% tctp .  
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In addition, according to the numerical results listed in Table 7.3, the proposed MEIM-NEM, 

performed with a smaller time step, that is, Δt  = 0.001 s, requires less computational effort 

than the PFM-BWM even if the latter is performed using the larger time step, that is, Δt  = 

0.005 s. Indeed, the MEIM-NEM tctp, referred to the PFM-BWM tct evaluated adopting Δt  = 

0.005 s, is equal to 1.53 %. 

Table 7.3. NLTHAs results with Δt  = 0.001 s. 

   )( bMC
xu  [m] 

)( bMC
yu  [m] )( 4MC 

xu&&  [g] 
)( 4MC 

yu&&  [g] 

 tct [s] tctp [%] max min max min max min max min 

MEIM-NEM 5.73 1.53 0.073 -0.060 0.095 -0.140 0.325 -0.325 0.514 -0.510 

Figures 7.3, 7.4, and 7.5 illustrate, respectively, the displacement, velocity, and acceleration 

time histories of the base isolation system mass center, for a time duration of the harmonic 

earthquake excitation dt  = 10 s, whereas Figures 7.6, 7.7, and 7.8 show, respectively, the 

displacement, velocity, and acceleration time histories of the superstructure fourth story mass 

center (relative to the ground).  

Furthermore, Figures 7.9 and 7.10 illustrate, respectively, the force-displacement hysteresis 

loops displayed by Isolator 1 and Isolator 11, illustrated in Figure 6.3b. 

It is evident the good agreement between responses computed using the proposed MEIM-

NEM and the PFM-BWM.  
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(a) 

 

(b) 

 

Figure 7.3. Displacement time history of the base isolation system mass center in (a) x and (b) y directions. 
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(a) 

 

(b) 

 

Figure 7.4. Velocity time history of the base isolation system mass center in (a) x and (b) y directions. 

 

0 2 4 6 8 10
-1

-0.5

0

0.5

1

time [s]

M
C

b v
el

oc
ity

 a
lo

n
g 

x 
[m

/s
]

 

 

PFM-BWM
MEIM-NEM

0 2 4 6 8 10
-1

-0.5

0

0.5

1

time [s]

M
C

b v
el

oc
ity

 a
lo

n
g 

y 
[m

/s
]

 

 

PFM-BWM
MEIM-NEM



Chapter 7 | Speeding Up Nonlinear Dynamic Analysis Using the MEIM and NEM 

260 

 

(a) 

 

(b) 

 

Figure 7.5. Acceleration time history of the base isolation system mass center in (a) x and (b) y directions. 
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(a) 

 

(b) 

 

Figure 7.6. Displacement time history of the superstructure fourth story mass center in (a) x and (b) y directions. 
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(a) 

 

(b) 

 

Figure 7.7. Velocity time history of the superstructure fourth story mass center in (a) x and (b) y directions. 
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(a) 

 

(b) 

 

Figure 7.8. Acceleration time history of the superstructure fourth story mass center in (a) x and (b) y directions. 
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(a) 

 

(b) 

 

Figure 7.9. Hysteresis loop displayed by Isolator 1 in (a) x and (b) y directions. 
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(a) 

 

(b) 

 

Figure 7.10. Hysteresis loop displayed by Isolator 11 in (a) x and (b) y directions. 
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Chapter 8 

Conclusions 

8.1 Summary of the Dissertation 

In this dissertation, five mathematical models, namely, Nonlinear Exponential Model, 

Advanced Nonlinear Exponential Model, Parallel Model, Advanced Parallel Model, and 2d 

Parallel Model, and a Mixed Explicit-Implicit time integration Method have been proposed 

for the nonlinear time history analysis of seismically base-isolated structures with the main 

aim of simulating the nonlinear dynamic behavior of seismic isolators at both small and large 

displacements and reducing numerical computations making the nonlinear dynamic analysis 

almost as fast as a linear dynamic analysis. 

8.1.1 Mathematical Models 

The proposed Nonlinear Exponential Model (NEM) and Parallel Model (PM) are able to 

predict the dynamic behavior of seismic isolation devices displaying symmetric softening 

force-displacement loops with bilinear characteristics, such as elastomeric bearings and wire 

rope isolators, or rigid-plastic characteristics, such as sliding bearings, within a relatively 

large displacements range, generally reached under the design dynamic loading. The PM can 

be easily implemented in existing nonlinear finite element computer programs. Both models 

need only three parameters to be identified from experimental tests, whereas in the widely 

used uniaxial differential equation Bouc-Wen Model (BWM) the number of parameters to be 

identified is equal to seven for both elastomeric and sliding bearings and wire rope isolators. 

In addition, the presented models allow one to reduce the computational effort of a nonlinear 

time history analysis by avoiding, at each time step, the numerical solution of the first order 

nonlinear ordinary differential equation required by the BWM to evaluate the hysteretic 

variable. 

The proposed Advanced Nonlinear Exponential Model (ANEM) and Advanced Parallel 

Model (APM), which are an improved version of the NEM and PM, respectively, can predict 
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the uniaxial dynamic response of seismic isolators having hardening or softening behavior at 

large displacements. The APM can be easily implemented in existing nonlinear finite element 

computer programs. Both models require the evaluation of only five model parameters 

whereas in the Modified Bouc-Wen Model (MBWM), described in 4.2.1.2, the number of 

parameters to be identified is equal to nine. Furthermore, the two proposed models are able to 

capture the smooth transition of the hysteresis loops from the small to the large displacements 

range using only one set of parameters evaluated from the experimental hysteresis loops with 

the largest amplitude. Compared to the MBWM, the proposed models do not require the 

numerical solution of a first order nonlinear ordinary differential equation at each time step of 

the analysis, thus decreasing the computational effort. 

The experimental hysteresis loops obtained from cyclic dynamic tests, performed on four 

Wire Rope Isolators (WRIs) and a Recycled Rubber-Fiber Reinforced Bearing (RR-FRB), 

have been simulated adopting the presented models in order to demonstrate their accuracy. 

Good agreement between the experimental and numerical results has been obtained.  

The proposed 2d Parallel Model (2d PM) is able to take into account the transverse biaxial 

interaction between the nonlinear hysteretic restoring forces along two orthogonal directions, 

within a relatively large displacements range. It can be easily implemented in existing 

nonlinear finite element computer programs. This model requires the evaluation of only five 

model parameters and, compared to the 2d BWM, it does not require the numerical solution of 

two coupled first order nonlinear ordinary differential equations at each time step of a 

nonlinear dynamic analysis. 

8.1.2 Numerical Method 

A Mixed Explicit-Implicit time integration Method (MEIM) has been proposed for predicting 

the nonlinear response of base-isolated structures subjected to earthquake excitation.  

Adopting a partitioned solution approach, currently used in most practical civil engineering 

problems, the discrete structural model of a typical 3d base-isolated structure has been 

decomposed into two substructures, namely, the superstructure and the base isolation system. 

Being the base isolation system much more flexible than the superstructure to decouple the 

latter from the earthquake ground motion, an explicit conditionally stable time integration 

method, that is, the central difference method, has been employed to evaluate the nonlinear 

base isolation system response and an implicit unconditionally stable time integration method, 

that is, the Newmark's constant average acceleration method, has been adopted to predict the 
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linear superstructure response with the remarkable benefit of avoiding the iterative procedure 

within each time step of a nonlinear time history analysis required by conventional non-

partitioned solution approaches. 

In order to investigate the accuracy, the stability and the computational efficiency of the 

proposed method, the dynamic response of two 3d base-isolated structures, subjected to 

bidirectional earthquake excitation, has been analyzed using the MEIM. Two types of base 

isolation systems have been considered for both structures, namely, base isolation system with 

lead rubber bearings and base isolation system with friction pendulum bearings. The latter 

allowed one to investigate the use of the mixed time integration procedure in presence of 

isolators with very high initial stiffness. The accuracy and the computational efficiency of the 

proposed MEIM have been assessed by comparing the results with those obtained by using 

the solution algorithm specifically developed by Nagarajaiah et al. (1991) for the analysis of 

base-isolated structures. For brevity, in this dissertation, the latter implicit time integration 

method adopted in conjunction with the pseudo-force approach has been referred to as the 

Pseudo-Force Method (PFM). 

From the numerical results presented in this thesis, the following conclusions can be drawn: 

� as regards the accuracy, the proposed MEIM provides results that are close enough to those 

obtained adopting the PFM, for both two values of time step adopted in the nonlinear time 

history analyses of the selected 3d base-isolated structures. Both numerical methods, 

implemented on the same computer by using the computer program Matlab, have been 

verified using SAP2000;  

� as far as the stability is concerned, the proposed MEIM is conditionally stable because the 

central difference method is employed to predict the nonlinear response of the base 

isolation system. The low stiffness value of the base isolation system with lead rubber 

bearings allows one to have a critical time step considerably larger than the imposed 

ground acceleration record time step. Furthermore, the critical time step continues to be 

larger than the ground acceleration time step also in the case of base isolation system with 

friction pendulum bearings in spite of their very high initial stiffness;   

� regarding the computational efficiency, the total computational time, tct, required by the 

MEIM is significantly reduced in comparison to the PFM. In addition, the MEIM, 

performed with a smaller time step (Δt  = 0.001 s), requires less computational effort than 
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the PFM even if the latter is performed using a larger time step (Δt  = 0.005 s). It transpires 

that even when the critical time step size arising from stability requirements becomes 

smaller than the one used to accurately define the ground acceleration, as in the case of 

base isolation systems having isolators with very high initial stiffness (e.g., sliding 

bearings) or very high stiffness at large displacements (e.g., high damping rubber 

bearings), the proposed method preserves its computational efficiency with respect to 

conventional implicit time integration methods. 

It follows that the proposed MEIM can be effectively adopted in the context of earthquake 

engineering structural applications being a very efficient solution approach for the nonlinear 

time history analysis of base-isolated structures under seismic loads. 

8.1.3 Making the NLTHA almost as fast as a LTHA 

The proposed MEIM and NEM have been adopted to perform the Nonlinear Time History 

Analysis (NLTHA) of a 3d seismically base-isolated structure with Lead Rubber Bearings 

(LRBs) in order to demonstrate the significant reduction of the computational effort which 

makes the NLTHA almost as fast as a Linear Time History Analysis (LTHA). 

From the numerical results presented in this thesis, the following conclusions can be drawn: 

� the presented MEIM and NEM provide results that are close enough to those obtained 

adopting the PFM and the BWM, for both time step values used in the NLTHAs of the 

analyzed 3d base-isolated structure with LRBs; 

� the low stiffness value of the base isolation system with LRBs allows one to have a 

critical time step considerably larger than the imposed ground acceleration time step, thus 

avoiding stability problems in the MEIM; 

� the tct required by the MEIM-NEM is significantly reduced in comparison to the PFM-

BWM: the MEIM-NEM total computational time percentage, tctp, evaluated with respect 

to the PFM-BWM tct for a Δt  = 0.005 s, is equal to 0.33 %. In addition, the MEIM-NEM, 

performed with a smaller time step, that is, Δt  = 0.001 s, requires less computational 

effort than the PFM-BWM even if the latter is performed using the larger time step (i.e., 

Δt  = 0.005 s): indeed, the MEIM-NEM tctp, referred to the PFM-BWM tct evaluated 

adopting Δt  = 0.005 s, is equal to 1.53 %. 
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8.2 Recommendations for Future Research 

8.2.1 Mathematical Models 

In order to accurately predict the dynamic response of WRIs in the large displacements range, 

further work is required to improve the mathematical models, that is, ANEM and APM, by 

including a procedure of updating the parameters to specify the shape of the hysteresis curve 

according to the maximum displacement at the point of loading or unloading. In addition, 

further work is required in order to verify the proposed 2d PM by comparing the numerical 

results with those obtained experimentally. 

8.2.2 Numerical Method 

The proposed solution algorithm could be improved in order to take into account the 

nonlinear behavior of the superstructure, thus allowing one to analyze the response of base-

isolated structures under extreme earthquake excitations. In addition, recently developed 

explicit and implicit time integration algorithms, such as those introduced by Noh and Bathe 

(2013) and Noh et al. (2013) for the analysis of wave propagation problems, could be adopted 

in the explicit and implicit substeps, respectively, in order to improve stability, accuracy and 

computational efficiency of the proposed partitioned solution approach.  
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