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Chapter 1

| ntroduction

Seismic base isolation has become a widely acceptéshique for the earthquake protection
of buildings and bridges. The concept of base igolas quite simple: the introduction of a
flexible base isolation system between the foundatind the structure allows one to move
the period of the latter away from the predominpeatiod of the ground motion with the
benefit of reducing floor accelerations, story sheand interstory drifts (Kelly 1997, Naeim
and Kelly 1999).

The analysis of seismically base-isolated strustuoe determine deformations and forces
induced by the ground excitation is an essentigd 8t the design process.

A structural analysis procedure requires a discsetgctural model of the actual structure, a
representation of the earthquake ground motionaanthod of analysis for assembling and
solving the governing equations. Structural analysiocedures currently adopted for base-
isolated structures are: Linear Static Procedu&P{l_Linear Dynamic Procedure (LDP), and
Nonlinear Dynamic Procedure (NDP).

This thesis deals with the NDP which requires &rdie structural model having nonlinear
elements able to simulate the nonlinear dynamicawieh displayed by seismic isolation
devices due to the nonlinear material responseoanadnlinear geometry under large
displacements, specific earthquake ground moticords, and a nonlinear response history
analysis method.

The three-dimensional (3d) discrete structural rhadean actual base-isolated structure,
generally consisting of frame elements for modebegms and columns, can be divided into
two substructures, namely, the superstructure hadoase isolation system. The former is
usually modeled under the assumption that it defommithin the elastic range. This
assumption is reasonable in the context of badatiso and has been adopted by several
researchers (Tarics et al. 1984, Asher et al. 1890¢duce the computation effort. In some
cases, it may be necessary to consider the supsrst also to be inelastic, although this is

not dealt with in the present study. The base igmlasystem consists of seismic isolation
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bearings, called seismic isolators, and a full kiagm above the seismic isolation devices
that is generally introduced to distribute the daltdoads uniformly to each seismic isolator
(Naeim 2001). The base isolation system can inclingar and nonlinear isolation elements.
Existing phenomenological models (Nagarajaiah.et@®1, Kikuchi and Aiken 1997, Hwang

et al. 2002, Tsai et al. 2003) and plasticity-basemtlels (Way and Jeng 1989, Huang et al.
2000, Huang 2002) can be adopted to simulate tidinear dynamic behavior of seismic

isolators.

As far as the nonlinear response history analysthad is concerned, a conventional non-
partitioned solution approach, characterized by tise of an implicit single-step time

integration method adopted with an iteration pracedsuch as the Newton-Raphson, the
modified Newton-Raphson, or the pseudo-force itemamethod, is generally employed to

solve the nonlinear dynamic equilibrium equatioishase-isolated structures subjected to
earthquake excitation (Wilson 2002).

Among conventional non-partitioned solution metheasl nonlinear mathematical models,
the solution algorithm and analytical model progbdés Nagarajaiah et al. (1991), both

implemented in the computer program 3D-BASIS-ME-MBsopelas et al. 2005), are

presented in this dissertation because specificadlyeloped for the nonlinear dynamic

analysis of base-isolated structures with eithastelmeric and/or sliding isolation systems. In
this non-partitioned solution approach, the equmtiof motion are solved using the implicit

unconditionally stable Newmark's constant averageelaration method with the nonlinear

restoring forces of the seismic isolators beingraspnted as pseudo-forces. An iterative
procedure consisting of corrective pseudo-forcesnmgployed within each time step until

equilibrium is achieved. The analytical model, lthea the set of two first order nonlinear

ordinary differential equations proposed by Parklef1986), is able to represent the uniaxial
and biaxial behavior of both elastomeric and sfidsolation bearings.

The solution of the nonlinear dynamic equilibriumguations using the above-described
conventional implicit single-time step integratiomethod and the use of the differential

eguation model can require significant computatieffart (Vaiana et al. 2017a).

This thesis deals with the development of five raathtical models and a numerical time
integration method for the nonlinear time histonalgsis of base-isolated structures with the
aim of simulating the nonlinear dynamic behavioseismic isolators at both small and large
displacements and reducing numerical computatioding the nonlinear dynamic analysis

almost as fast as a linear dynamic analysis.
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1.1 Mathematical M odels

Seismic devices generally exhibit symmetric sofigniorce-displacement hysteresis loops
within a relatively large displacements range, tisatunder the design earthquake loading
(Constantinou et al. 2007). At large displacemeséseral isolators, such as high damping
rubber bearings and Wire Rope Isolators (WRIs),lekla hardening stiffness (Tsai et al.
2003, Vaiana et al. 2017c, 2017d), whereas otlseri) as unbonded elastomeric bearings
with deformable reinforcing layers, display a soiitg behavior with a negative tangent
stiffness (Spizzuoco et al. 2014).

The differential equation Bouc-Wen Model (BWM), @éped by Bouc (1971) and then
adopted by Wen (1976, 1980) for the study of timeloan vibration of hysteretic systems, has
been adapted for modeling the uniaxial behavialastomeric bearings, sliding bearings, and
WRIs within the relatively large displacements rarf@onstantinou et al. 1990, Nagarajaiah
et al. 1991, Demetriades et al. 1993), and has ingglemented in many computer programs,
such as 3D-BASIS, SAP2000, and ETABS. Neverthelbss, model is unable to efficiently
capture the behavior of seismic isolators at latggplacements (Ni et al. 1999, Tsai et al.
2003). Furthermore, the use of such differentialadigpn model increases the computational
effort very significantly (Vaiana and Serino 201 hgcause of the numerical solution of a
first order nonlinear ordinary differential equaticequired at each time step of a nonlinear
time history analysis.

In this dissertation, four one-dimensional (1d) meabatical models, namely, Nonlinear
Exponential Model (NEM), Parallel Model (PM), Adwaad Nonlinear Exponential Model
(ANEM), and Advanced Parallel Model (APM), are pospd in order to reduce the number
of model parameters to be identified from experitaktests and to avoid the numerical
solution of the nonlinear differential equation uegd in the BWM. The NEM and the PM
are able to predict the bilinear and the rigid-fitabehavior displayed by seismic isolators
within the relatively large displacements range,emdlas the ANEM and the APM can
simulate the nonlinear dynamic response of seigsalation devices having hardening or
softening behavior at large displacements and Ggtuce the smooth transition of the
hysteresis loops from small to large displacemestag only one set of model parameters
evaluated from experimental hysteresis loops wighlargest amplitude.

The PM and the APM are sufficiently versatile todasily implemented in existing nonlinear

finite element computer programs.
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The proposed mathematical models have been validayecomparing the experimental
hysteresis loops obtained from horizontal dynarests, performed at the Department of
Industrial Engineering of the University of Naplesderico Il on four WRIs and a Recycled
Rubber-Fiber Reinforced Bearing (RR-FRB), with #npsedicted numerically.

In addition, a two-dimensional (2d) Parallel Mod2tl PM), able to take into account the
transverse biaxial interaction between the nontinegsteretic restoring forces within the

relatively large displacements range, is also prese

1.2 Numerical Method

The numerical solution of the nonlinear dynamicikguum equations of seismically base-
isolated structures adopting a conventional nomitpared solution approach, that is, an
implicit single-step time integration method emmdyin conjunction with an iterative
procedure, can require considerable computatidfat €Vaiana et al. 2017a, 2017b).

In order to achieve a substantial reduction in cotapon, a partitioned solution approach
(Felippa et al. 2001) can be used to perform thdimear dynamic analysis.

In the last 30 years, various authors (Hughes et1978, Belytschko et al. 1979, Wu and
Smolinski 2000, Combescure and Gravouil 2002, Hatyal. 2002) developed several
partitioned time integration methods allowing diffiet time steps or time integration
algorithms or both to be used in different spatigddomains of the mesh.

In the context of seismically base-isolated strieguthe above-mentioned approach can be
easily employed being the decomposition of therdiscstructural model of such structures
driven by physical considerations: the base ismtatystem is much more flexible than the
superstructure to decouple the latter from thengagke ground motion.

In this dissertation, a Mixed Explicit-Implicit tienintegration Method (MEIM) is specifically
proposed for the nonlinear dynamic analysis of isslated structures: at each time step of
the analysis, the nonlinear response of the badatien system is computed first using the
explicit conditionally stable central difference timed, then the implicit unconditionally stable
Newmark’s constant average acceleration methodhjgaed to evaluate the superstructure
linear response, with the remarkable benefit ofiding the iterative procedure within each
time step of a nonlinear time history analysis meggl by conventional non-partitioned
solution approaches.

Since the MEIM is conditionally stable becausehaf tise of the central difference method, a

procedure to evaluate the critical time step istfadeveloped for 2d base-isolated structures

4
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and then extended to the 3d case.

The proposed numerical time integration methodigéed to analyze four different 3d base-
isolated structures subjected to bidirectionalreprake excitation and the numerical results
are compared with those obtained by using the isolatigorithm proposed by Nagarajaiah et
al. (1991) in order to demonstrate the accuracy thed computational efficiency of the
proposed method.

1.3 Outline of the Dissertation

The dissertation is organized into eight chaptelgse contents are herein briefly described.
Chapter 1 illustrates the objective and scope @fthdy.

Chapter 2 deals with the modeling of seismicallgebsolated structures: starting from the
description of the 3d discrete structural modeswth structures, the superstructure and the
base isolation system modeling are presented amlttie dynamic equilibrium equations are
formulated.

In Chapter 3, two common types of seismic isolatlemices, namely, elastomeric and sliding
bearings, are described. Furthermore, the restiim @xtensive series of experimental tests,
conducted at the Department of Industrial Engimegeaf the University of Naples Federico Il
on a RR-FRB and four WRIs, are presented.

Chapter 4 is concerned with the modeling of seigsotators. After a detailed description of
widely used differential equation models, namelyWM, Modified Bouc-Wen Model
(MBWM), and 2d Bouc-Wen Model (2d BWM), the propdsmathematical models, that is,
NEM, ANEM, PM, APM, and 2d PM, are presented. Thieapter concludes with
comparisons between the described differential emuanodels and the proposed ones.

In order to demonstrate the validity of the progbsgathematical models, in Chapter 5, the
results predicted numerically are compared to tluigained experimentally from horizontal
dynamic tests performed on a RR-FRB and four Waédgjescribed in Chapter 3.

Chapter 6 describes the conventional non-partiloselution approach developed by
Nagarajaiah et al. (1991) specifically for seisychase-isolated structures and presents the
proposed partitioned solution approach. After tlescdiption of the MEIM, a procedure to
evaluate the critical time step is illustrated #meh four numerical applications are presented
to demonstrate the accuracy and the computatidiekacy of the proposed method.

Chapter 7 presents a numerical application in otdeshow the significant reduction of the
computational effort due to the use of the MEIM M.
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In Chapter 8, conclusions are presented, as walbasiderations and suggestions for further
research and future developments.

Parts of this original research have been alreathighed in the proceedings of international

conferences or peer-reviewed journals. The expertiahéests performed on WRIs, described
in Chapter 3, have been presented in Vaiana €2@L7c, 2017d), the mathematical models,
described in Chapter 4 and verified in Chapteravehbeen presented in Vaiana et al. (2016,
2017a, 2017d) and in Vaiana and Serino (2017a, [202017c), the proposed partitioned

solution approach, described in Chapter 6, has pessented in Vaiana et al. (2017a, 2017b),

whereas the content of Chapter 7 in Vaiana e8Il {a).



Chapter 2

Modeling of Base-lsolated Structures

2.1 Introduction

The 3d discrete structural model of an actual base-isolated structure can be decomposed into
two substructures: the superstructure and the base isolation system.

The base isolation system consists of seismic isolation bearings called seismic isolators and a
full diaphragm above the seismic isolation devices which is generally introduced to distribute
the lateral loads uniformly to each bearing (Naeim 2001). Introducing a flexible base isolation
system between the foundation and the superstructure leads to decouple the latter from the
earthquake ground motion.

Figure 2.1 shows the 3d discrete structural model of a two-story base-isolated structure.

superstructure

Figure 2.1. 3d discrete structural model of a two-story base-isolated structure.

In the following, the superstructure and the base isolation system modeling are presented and

the dynamic equilibrium equations are formul ated.
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2.2 Modeling of the Superstructure

The geometry of the 3d discrete structural model of a base-isolated structure is defined in a
global, right-handed Cartesian coordinate system, denoted with upper case letters X, Y, and Z,
and attached to the center of mass of the base isolation system.

The superstructure is considered to remain elastic during the earthquake excitation because it
is assumed that the introduction of a flexible base isolation system allows one to reduce the
earthquake response in such a way that the superstructure deforms within the elastic range.
Each superstructure floor diaphragm (or floor slab) is assumed to be infinitely rigid in its own
plane, the columns are assumed to be axialy inextensible and the beams are considered to be
axially inextensible and flexuraly rigid. These kinematics constraints, generally adopted in
the literature (Chopra 2012) for beams and columns, are here assumed for simplicity and can
be removed straightforwardly without any influence on the generality of the results presented
in this work. Because of this structural idedlization, the tota number of a n-story

superstructure degrees of freedom (dofs), denoted with nts, is equal to 3n and three dofs are
attached to the i-th superstructure diaphragm reference point g belonging to the horizontal
plane of the i-th floor diaphragm and vertically aligned to the globa coordinate system origin

O. The three dofs of the i-th superstructure diaphragm are the two horizontal translations U’

and Ul in the X and Y directions and the torsional rotation u" about the vertical axis Z.

These three floor diaphragm displacements can be defined relative to the ground or relative to
the base isolation system (Muscolino 1990). In this thesis, the former approach is selected so
that the dynamic equilibrium equations of the 3d discrete structural model of an actual base-
isolated structure are coupled in terms of elastic and viscous forces and decoupled in terms of

inertial forces.

The superstructure displacement vector U, having size ntsx 1, is defined by:

u =f{u - u - ul}’, (2.1)

where
u = { u® ul? U }T : (2.2)
y ={u® u® } (2.3)
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]
u ={u® u® o}, (2.9)

are the displacement vectors of the first, i-th, and n-th superstructure floor diaphragm,
respectively.

The superstructure diaphragm mass should include the contributions of the dead load and live
load on the floor diaphragm and the contributions of the structural elements, such as columns
and walls, and of the nonstructural el ements, such as partition walls and architectural finishes,
between floors (Chopra 2012).

The superstructure mass matrix mqis:

m 0 0
0 m, 0

m, = . , (2.5
0O O m

where the i-th superstructure diaphragm mass matrix m; is given by:

m(i) 0 _Sx(i)
m= 0 m gV (2.6)
_szi) Sy(i) |c§i)

in which, m® is the i-th diaphragm mass, S"’ and S" are the first moments of the i-th

diaphragm mass about the global horizontal axes X and Y, respectively, and 1" is the
moment of inertia of the i-th diaphragm about the global vertical axis Z. If the mass center of
the i-th floor diaphragm and the origin of the global coordinate system O are aligned
vertically the superstructure diaphragm mass matrix is diagonal.

The superstructure stiffness matrix k; is:

k,+k, -k, 0
-k K, +ky, .
kS: 2 .2 s . ’ (2'7)
: -k,
0 -k k

where the i-th superstructure story stiffness matrix k; is given by:
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K0 K kY
k=| KO KO KO, (28)

_k(i) k(i) k(i)

X1 yr rr

in which, k%

0, kY, and k@ are the resulting dastic forces in X direction of the i-th
superstructure story due to unit translation in X and Y directions and unit torsional rotation of
the i-th superstructure diaphragm about the vertical axis Z, respectively; ki, k() and k{ are
the resultants of the elastic forces in Y direction of the i-th superstructure story due to unit
trandation in Y and X directions and unit torsiona rotation of the i-th superstructure
diaphragm about the vertical axis Z, respectively; and kU is the resultant of the elastic

torsiona moment of the i-th superstructure story due to unit torsional rotation of the i-th
superstructure diaphragm about the vertical axis Z. The torsiona stiffness of each individual
resisting vertical element, that is, column or wall, is considered negligible (Jangid and Datta
1995).

Classical damping is an appropriate idealization if similar damping mechanisms are
distributed throughout the superstructure. In order to construct a classica damping matrix
from moda damping ratios the Rayleigh damping can be assumed allowing one to express the

damping matrix in terms of the superstructure mass and stiffness matrices:
c.=a,m,+ a, k.. (2.9)

The Rayleigh damping coefficients a, and a, can be selected to match the desired damping

ratio for two modes, oftentimes the two lowest, but not always (Bozorgnia and Bertero 2004).

Denoting these modes as the f-th and the s-th, it is possible to write:

G+ &6 =24, o (2.10)
aO+ ala)szzzgsa)s

With given damping ratios &, and & these two equations can be solved for a, and a; .

10
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2.3 Modeling of the Base | solation System

The base isolation system diaphragm is assumed to be infinitely rigid in its own plane, the
beams are considered to be axially inextensible and flexurally rigid and the seismic isolators
are assumed to be infinitely rigid in the vertical direction. As a result of these kinematic
constraints, the total number of the base isolation system dofs, denoted with ntb, is equal to 3.

These three dofs, which are attached to the mass center of the base diaphragm and are defined

relative to the ground, are the two horizontal trandations u®® and u{® in the X and Y

directions and the torsional rotation u!” about the vertica axis Z.

Theisolation system displacement vector U,, having sizentb x 1, is:
u, :{ u® ul? u® }T. (2.12)

The base isolation system mass matrix m, is defined by:

m® 0 0
m = 0 m® 0 |, (2.12)
0 0 O

where m® is the diaphragm mass and 1 is the moment of inertia of the diaphragm about

the global vertical axis Z. The two first moments S® and S of the base diaphragm mass

about the global horizontal axes X and Y are equal to zero because the diaphragm mass center
and the origin of the global coordinate system O are coincident.

The base isolation system can include linear isolation elements and nonlinear isolation
elements. Considering the linear elements, that is, seismic isolators whose behavior can be

modeled by a linear spring and a linear viscous damper in parallel, the base isolation system

stiffness matrix K, is:

(b) (B _ . (b)
k kXy er

XX

k=] k& kD k® |, (2.13)

yX
— (b) (b)
er kyr krr

11
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where k&, k&, and k{’ are the resultants of the elastic forces in X direction of the linear
elements due to unit trandation in X and Y directions and unit torsional rotation of the base
diaphragm about the vertical axis Z, respectively; k', k%, and k{? are the resultants of the
elastic forcesin Y direction of the linear elements due to unit translation in Y and X directions
and unit torsiona rotation of the base diaphragm about the vertical axis Z, respectively; and
k{” is the resultant elastic torsiona moment of the linear elements due to unit torsiona

rotation of the base diaphragm about the vertical axis Z. The torsiona stiffness of the seismic

isolatorsis negligible and is not included (Kelly 1997).

The base isolation system viscous damping matrix G, is:

¢ 0 o0
c,=| O c® 0 | (2.14)
0 0 C(b)

(b)

where c{) and c;

are the resultants of the viscous damping forces in X and Y directions,

respectively, of the linear elements due to unit velocity of the base digphragm in X and Y
directions, and ¢! is the resultant of the viscous damping torsional moment of the linear
elements due to unit rotational velocity of the base diaphragm about the vertical axis Z. The
off-diagonal terms of the base isolation system viscous damping matrix are neglected (Alhan
and Gavin 2004).

Asfar as the nonlinear e ements is concerned, the resultant nonlinear forces vector of the base

isolation system f, is:

(2.15)

where f_, f , and f,  are the resultant nonlinear forces in X and Y directions and the

nx? ny ?
resultant nonlinear torsional moment about the vertical axis Z of the nonlinear elements. The
nonlinear behavior of each seismic isolator can be modeled using an explicit nonlinear force-

displacement relation (Nagargjaiah et al. 1991).

12
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2.4 Dynamic Equilibrium Equations

The equations of motion for the elastic superstructure are expressed in the following form:

m, Ug +¢, Ug +K, ug+cu, +ku, =-mgr G, (2.16)
with
c=[-¢c, 0], (2.17)
k=[-k 0], (2.18)
i, ={a, @, o}, (2.19)

where m, is the superstructure mass matrix, c, the superstructure damping matrix, K, the
superstructure stiffness matrix, and r, the superstructure earthquake influence matrix.

Furthermore, u,, ug, and U represent the floor displacement, velocity, and acceleration

vectors relative to the ground, respectively, ¢, and k; the viscous damping and stiffness
matrices of the superstructure first story, and U, isthe ground (or support) acceleration vector
inwhich U, and U, arethe X and Y ground acceleration components whereas the rotationa

component is neglected.

The equations of motion for the base are:
m, G, +(c, +¢;) U, +(k, +k)u, +cTu, +kTug+ f =-m,r 0, (2.20)

where m, is the base isolation system mass matrix, c, the damping matrix of linear viscous
isolation elements, k, the stiffness matrix of linear elastic isolation elements, f, the resultant
nonlinear forces vector of nonlinear elements, and r, the base isolation system influence
metrix. Furthermore, u,, u,, and U, represent the base isolation system displacement,

velocity, and acceleration vectors rel ative to the ground, respectively.

Combining Equations (2.16) and (2.20), the following system of 3n + 3 Ordinary Differential
Equations (ODEs) of the second order in time, coupled in terms of elastic and viscous forces
and decoupled in terms of inertial forces, is obtained:

13
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0 m|lty) |c c. |lus) |k ke || Us 0 0 mg|lr,] °
The dynamic equilibrium equations of the 3d discrete structura model of an actual base-

isolated structure given in Equation (2.21) can be written in a more compacted form as

follows:

mi+cu+ku +f =-mrd,, (2.22)

where m is the mass matrix, ¢ the damping matrix, k the stiffness matrix, f the nonlinear

forces vector and r the earthquake influence matrix of the seismically base-isolated structure.
Furthermore, u, u, and U represent the floor displacement, velocity, and acceleration vectors
of the base-isolated structure relative to the ground.

The system of 3n + 3 coupled ODEs is nonlinear because of the presence of the resultant

nonlinear forces vector of the base isolation system f,, which could be function of both

displacement and velocity vectors, according to the model adopted for each seismic isolator.

14



Chapter 3

Seismic | solation Bearings

3.1 Introduction

Seismic isolation bearings are special devices dbleprovide flexibility and energy
dissipation capacity in horizontal directions, suéint vertical stiffness to resist service
loading, rigidity under low levels of later loadsiedto wind or minor earthquakes, and
recentering capability.
Seismic isolators can be divided into two main gates:

= elastomeric bearings;

= sliding bearings.
The former rely on the flexible properties of rublbe achieve isolation, whereas the latter
allow one to achieve low horizontal stiffness thybuhe action of sliding and to dissipate
energy through the friction damping occurring a #liding interface (Constantinou et al.
2007).
Metal devices, such as Wire Rope Isolators, cugremsed for the seismic protection of
equipment in buildings (Demetriades et al. 1993)) be adopted with flat surface sliders
when the complete recentering of the base-isolatedcture is required and when the
displacements of the base isolation system halse teduced (Spizzuoco et al. 2016).
In the following, the two common types of seisnsolation devices, namely, elastomeric and
sliding bearings, are described. Furthermore, éBalts of an extensive series of experimental
tests, conducted at the Department of Industriadifgering of the University of Naples
Federico Il on a Recycled Rubber-Fiber Reinforcedrg and four Wire Rope Isolators, are

presented.
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3.2 Elastomeric Bearings

3.2.1 Introduction

Elastomeric bearings are seismic isolation devioade of alternate layers of rubber (5-20
mm thick) and thin reinforcing steel plates (2-3 nimck). Two thick steel plates (25-30 mm)
are bounded to the top and bottom surfaces of ¢laeiry to facilitate its connection and a
rubber cover is used to wrap the bearing in ordeprbtect steel plates from corrosion.
Elastomeric bearings can be square or circulashasn in Figure 3.1.

(a)
holes for bolting
top steel plate \
.' rubber
bottom steel plate steel plates
(b)

holes for bolting
top steel plate /

~. /

bottom steel plate steel plates

Figure 3.1. (a) Square and (b) circular elastomeric bearing.

Square elastomeric bearings are economical to raeturé, offer the advantage of simple

connection configurations, and have compact gegmeiuiring a minimum of space for
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installation: the space required for a square hgas less than that for a circular bearing for
the equivalent vertical load.

The rubber, a cross-linked polymer that can be yeed in numerous compounds with
different properties, is vulcanized and boundedht steel in a single operation under heat
and pressure in a mold. Vulcanization is the cosigerof raw rubber by means of chemical
crosslinking from a plastic state to an essentwlihstic state (Hills, 1971).

The steel plates prevent bulging of the rubber prodide a vertical stiffness that is several
hundred times the horizontal one without modifyihg latter, which is controlled by the low
shear modulus of the elastomer. The large verst#hess prevents undesirable rocking
response of a base-isolated structure, reduces shedén and creep deformations in the
rubber, and increases the capacity of the beaniogiry axial load at large displacements.
Figure 3.2 illustrates the behavior of elastombsaarings in horizontal and vertical directions.

compression shear

P '='|>
steel __<./'
plates N ( )

3-layer unit
force (compression)

1-layer unit
(compression)

both units
(shear)

displacement

Figure 3.2. Behavior of elastomeric bearings in horizontal sedical directions.
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Elastomeric bearings can be installed dowelledodted, as shown in Figure 3.3. Dowels are
used when tension in the bearing must be avoidedted® bearings are typically used
nowadays because well fabricated elastomeric kgsrimave significant tensile strain
capacity. In the undeformed state, when loaded bwlyertical force, the buckling load of
bearings installed in either configuration is tretmally the same. Under combined vertical

load and lateral deformation, the two bearings rdifferent instability limits.

(@)

(b)

Figure 3.3. (&) Dowelled and (b) bolted elastomeric bearing.

Elastomeric bearings can be divided into three stdgories:
= Low Damping Rubber Bearings;
= High Damping Rubber Bearings;
= Lead Rubber Bearings.

18
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3.2.2 Low Damping Rubber Bearings

Low Damping Rubber Bearings (LDRBSs) are laminatiedtemeric bearings made of natural
rubber or synthetic rubber.

Generally, within a relatively large displacemeange, that is, a rubber shear strain smaller
than 75 %:

» low temperature has a substantial effect on boffness and damping, resulting in
increases in both quantities. The percent incréaggeater when the exposure to low
temperature is longer;

= high temperature has an insignificant effect orifr@ss and damping, with small
reductions in stiffness and damping;

= there are no scragging effects;

= the frequency of motion has insignificant effecttbe mechanical properties, thus, the
behavior can be assumed to be rate independent;

= the equivalent viscous damping ratio is generaibg lthan 5 %.

Figure 3.4 shows the typical symmetric softeningcdedisplacement hysteresis loop

displayed by LDRBs within a relatively large dispdanent range.

force

/ ’
_—

displacement

Figure 3.4. Typical hysteresis loop displayed by LDRBs attretdy large displacements.

Because of their low damping, LDRBs are normallgdus conjunction with supplementary
damping devices such as viscous dampers, steeliéaadsbars, and frictional devices.
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3.2.3 High Damping Rubber Bearings

High Damping Rubber Bearings (HDRBs) are laminagdastomeric bearings with high
inherent damping property obtained by adding eXina carbons, oils, resins, or other
proprietary fillers to the natural rubber compound.
Generally, in HDRBs:
= an increase in the vertical load produces a reolngti the effective horizontal stiffness
and an increase in the equivalent viscous damgaitig; r
= an increase in the frequency of excitation resuitsmodest increases in effective
horizontal stiffness and equivalent viscous dampaiip;
= the effective stiffness and equivalent viscous dampatio are relatively large at small
shear strains (under 20 %). This is a desirableacheristic for minimizing the response
under wind load and low level seismic load;
= the effective stiffness increases at large sheainst(above 150 %) because of the strain
crystallization of the rubber matrix that is accangd by an increase in the energy
dissipation. This characteristic allows one to tidisplacements under unanticipated
input levels that exceed design levels;
= the equivalent viscous damping ratio range is gdlyebetween 5 % and 15 % at
relatively large displacements, that is, shearirgraround 100 %. Damping is neither
viscous nor hysteretic, but somewhat in between;
= the maximum shear strain range is generally bet\288r?6 and 350 %.
Figures 3.5a and 3.5b show the typical symmetricefalisplacement hysteresis loop
displayed by HDRBs at relatively large (shear striaetween 20 % and 150 %) and large
displacements (shear strain above 150 %), respéctil is important to note that the shape
of the hysteresis loops changes according to teplatiements range: at relatively large
displacements (Figure 3.5a), the hysteresis loopplay a softening tangent stiffness
whereas, at large displacements (Figure 3.5b)]¢kee exhibits a hardening behavior.
HDRBs typically display higher characteristic sggmand stiffness when tested for the first
time. The properties under these conditions areergdly termedunscragged Subsequent
testing under the same conditions results in stabldower values of strength and stiffness,
which are termed ascraggedproperties. Figure 3.6 shows the typical effedtscoagging in
a HDRB.
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(@)
force
/ / >
displacement
(b)
force
/ ’
=

displacement

Figure 3.5. Typical hysteresis loop displayed by HDRBs atrédgtively large and (b) large displacements.
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force

~ >
displacement

Figure 3.6. Typical effect of scragging in a HDRB.
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3.2.4 Lead Rubber Bearings

Lead Rubber Bearings (LRBs) are laminated elastienbeiarings made of alternate layers of
low damping natural rubber, reinforcing steel pdadi@d a cylinder of lead inserted into a hole
in the core of the bearing in order to increaseatm®unt of dissipated energy. Figures 3.7a
and 3.7b show a typical square and circular LRBpeetively.

(a)
holes for bolting
top steel plate \
"~~~ lead plug
rubber
/ A
e AN
bottom steel plate steel plates

(b)

holes for bolting
top steel plate /
\'\. -/

- N
bottom steel plate steel plates

Figure 3.7. (a) Square and (b) circular LRB.

The lead must fit tightly in the elastomeric begriand this is achieved by making the lead
plug slightly larger than the hole and forcingnt The plug is typically cut longer than the
height of the bearing so the core is compresseah Uqmiting the flange plates to the end
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plates. The lead core expands laterally and wedgeshe rubber layers between the steel
plates. Under such confined conditions, the stéstlep force the lead plug to deform in
horizontal direction providing excellent energy simtion capacity with a magnitude
depending on the diameter of the lead plug. The ieahe bearing deforms physically at a
relatively low stress of around 10 MPa.
LRBs have an initial high stiffness, which is aboen times the post-yield stiffness, before
the yielding of the lead plug, and a low post-yistifness equal to the shear stiffness of the
rubber.
Generally, in LRBs:
= temperature has a substantial effect on the effedtiffness and dissipated energy per
cycle;
= the reduction in effective stiffness and dissipadé@ergy with an increasing number of
cycles depends on the heat generated in the lead co
= the velocity of motion has a significant effect e mechanical properties primarily
because of the viscoelastic behavior of the rubber;
= the equivalent viscous damping ratio range is gdlyebetween 15 % and 35 %;
= the maximum shear strain range is generally betw@éro and 200 %.
Figure 3.8 shows the typical symmetric softeningcdedisplacement hysteresis loop with
bilinear characteristics displayed by LRBs at mttall and large displacements.

force

/ ’
/iisplacement

Figure 3.8. Typical hysteresis loop with bilinear charactécstisplayed by LRBs at small and large

displacements.
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3.2.5 Unbonded Elastomeric Bearings with Defor mable Reinforcing Layers

Bonded steel reinforced elastomeric bearings arfobnoted elastomeric bearings having
deformable reinforcing layers, such as Fiber Recdd Bearings (FRBSs), display a different
deformed configuration when subjected to horizotdatls or displacements under the effect
of the vertical load.

In conventional bonded elastomeric bearings (Fi@u®a), the compression is carried through
the overlap region between top and bottom surfaoesthe unbalanced moment is carried by
tension stresses in the regions outside the ovetlmbonded elastomeric bearings with
deformable reinforcing layers show a rollover defation, such as the one represented in
Figure 3.9b, with portions of the isolator detaghirom the structure (Kelly and Takhirov
2001, Kelly and Takhirov 2002, Kelly and Konstaidia 2007, Toopchi-Nezhad et al. 2007,
Mordini and Strauss 2008, Russo et al. 2008, Taedekhad et al. 2008, Toopchi-Nezhad et
al. 2009, Russo and Pauletta 2013). These poréomghen substantially unstressed (Kelly
and Konstantinidis 2007, Toopchi-Nezhad et al. 20h&nce no traction develops between
the reinforcements and the elastomer. In this déemoment created by the offset of the

resultant compressive loads balances the momeateck®y the applied shear

(@) (b)

tension region tension region

VS
— >

r

! |
! !
S !
! l
[ [

compression
region

-+— -+——
~ v

Figure 3.9. Deformed configuration of (a) bonded steel reioéar elastomeric bearing and (b) unbonded

elastomeric bearing with deformable reinforcingelayloaded in compression and shear.
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3.2.5.1 Recycled Rubber-Fiber Reinforced Bearings

3.2.5.1.1 Introduction

Steel reinforced elastomeric bearings are genenaliyvy and expensive. Most of their weight
derives from two steel end plates and a consistemiber of thin reinforcing steel plates used
to achieve the desired vertical stiffness. Theghhcost is due to a highly labor-intensive
manufacturing process that ends with the vulcaiozaif the compounded rubber layers and
the bonding of the steel reinforcements.

The manufacturing cost of FRBs is greater than ohataditional bearings, due to the major
cost of the fibers. Anyhow, the costs connectedh wie labor involved in preparing the steel
reinforcement (cutting, sandblasting, cleaning vaithid, coating with bonding compound) are
eliminated. Moreover, the absence of end plategHeranchorage to the structure and the
substitution of the steel reinforcements with filmeres reduces the isolator weight. Hence,
being FRBs much lighter than the traditional oned also less voluminous, transportation
and installation are simpler and the relevant casgdower. It results that the overall cost of a
FRB is a little lower than the one of a traditiostdel reinforced elastomeric bearing (Russo
et al. 2013).

Spizzuoco et al. (2014) demonstrated that the @isecgcled rubber, derived from used tires
and rubber factory leftovers, represents an idesisipility of a further significant costs
reduction. The prototyping manufacturing of thegweed Recycled Rubber-Fiber Reinforced
Bearings (RR-FRBs) was made by the Italian Companjgomma S.r.l. (Vicenza, Italy),
specialized in the use of recycled rubber for thedpction of antivibrating mats for railway
applications. The Company has computed for theopypé bearing a total cost of about ten
Euros, whereas the market price of an equivalewlittonal steel reinforced rubber isolator is
ten times larger. Most of this difference is duetlte costs of the natural rubber and the
vulcanization process. The manufacturing of a FRBhaw includes the latter two costs,
while it reduces the installation cost due to theemce of the end plates. For this reason, the
ratio between the cost of a FRB and the cost @pnvalent RR-FRB remains significant.

In the following, the experimental force-displacernkysteresis loops, obtained during cyclic
tests conducted on a RR-FRB adopting a testing imacivailable at the Department of

Industrial Engineering of the University of Naplesderico Il, are presented.
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3.2.5.1.2 Description of Tested Device

Figure 3.10 shows the tested RR-FRB, manufactuyetbdgomma S.r.l. (Vicenza, lItaly),

which is made of 12 layers of recycled rubber ahditjh strength quadri-directional carbon
fiber fabric sheets used as reinforcing elements. device is square in plan with dimensions
7 cm x 7 cm and has a total height of approximaéedycm. The equivalent thickness of the
carbon fiber layers is 0.007 cm. The shear modafuke recycled rubber, under the applied

vertical loadP, = 16.9 kN, is equal to 1 MPa at 100 % shear strain

49 °0 51,52 53 54 55 56 51 58 ¢

Figure 3.10. Tested RR-FRB.
3.2.5.1.3 Experimental Tests Results

The RR-FRB has been tested in unbounded configurdiy imposing, in two different
horizontal loading directions, namely, 0° and 4%%®dions (Figure 3.11), three cycles of
harmonic displacement, having frequeticy 0.87 Hz, under the effect of a constant vertical
pressure of 3.45 MPa, for eight different valueswiplitudeA, that is, 1 cm, 1.5 cm, 2 cm,

25cm,3cm, 3.5cm, 4 cm, and 4.5 cm.

!
Y

70 mm

70 mm
Figure 3.11. Loading directions.
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Figures 3.12a and 3.12b show the experimental te@teloops obtained in 0° and 45°
loading directions, respectively. According to tleperimental tests results, the RR-FRB

exhibits a softening behavior at relatively largepthcements and a post-softening behavior
at large displacements.

(a)
0° loading direction
300 : , :
— 1500
£
(5]
o
o
o 0
=
S
(%))
o |
-1500
305 -0.025 0 0.025  0.05
displacement [m]
(b)
45° loading direction
300 ‘ ‘
— 1500
Z,
[¢B)
o
i)
o 0
=
S
[%))]
o
-1500-
30%5  -0.025 0 0.025  0.05

displacement [m]

Figure 3.12. Experimental hysteresis loops of the tested RR-BB#ined in (a) 0° and (b) 45° loading
directions.
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3.3 Sliding Bearings

3.3.1 Introduction

Sliding bearings are seismic isolation devices Wwhadlow one to achieve low horizontal
stiffness through the action of sliding and to igiate energy through the friction damping
occurring at the sliding interface.
Sliding bearings can be divided into two subcategor

= Flat Surface Sliding Bearings;

= Curved Surface Sliding Bearings.

3.3.2 Flat Surface Sliding Bearings

Figure 3.13 shows two different types of Flat Scef&liding Bearings (FSSBs), namely, Pot
and Disk FSSBs.

(a) (b)
polished stainless steel plate
sliding plate
R — PTFE = ——————
e —
i/
//
L— piston L. elastomer L.— shear restriction
L.— ring restrainer
_____ seal L.—.— urethane disk

Figure 3.13. FSSBs: (a) Pot and (b) Disk FSSB.

Materials used for the sliding interface of thesarngs are typically polished stainless steel
in contact with unfilled or filled Polytetrafluorteylene (PTFE or Teflon). To achieve
significant energy dissipation capability, the PTikdeds to be unlubricated.

The frictional forceF at the sliding interface of a FSSB can be desdrase

F=uN, (3.1)
where u is the coefficient of friction antl is the normal load on the interface.
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The static friction force is the maximum force tinaiist be overcome to initiate macroscopic
motion. This force is generally called breakawagtitsn force. Upon initiation of motion, the
friction force generally drops, that is, the stdftiction force is typically higher than the
sliding friction force, the latter being measuredavery low velocity of sliding, immediately
following initiation of motion. Thus, it is import& to distinguish between the static (or

breakaway) coefficient of frictiony4, , and the sliding coefficient of friction,.

The friction coefficient depends on several paramgesuch as the velocity of sliding, the

normal load, and the temperature.

Figure 3.14 illustrates the dependency of the auefft of friction of PTFE-polished stainless

steel interface on the velocity of sliding and natroad. The behavior is characteristic of
clean, unlubricated interfaces at normal ambiemp&rature, that is, around 20 °C. The static
or breakaway value is shown at zero velocity afisti. The sliding value is characterized by
a low value immediately following initiation of gling, (.., and a progressively increasing

value as the velocity increases. At large velogjttbe sliding value attains a constant value,

Hnax INCreases in normal load result in reduction bé tcoefficient of friction; the

percentage rate at whigia__.. reduces diminishes at some limiting value of tbemmal load.

'sfnax

A
=
.S
o //ts,max
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Q
increasing
normal load
4
sliding velocity

Figure 3.14. Dependency of friction coefficient of PTFE-polish&tainless steel interface on sliding velocity
and normal load.

Figure 3.15 illustrates the coefficient of frictias function of the sliding velocity for different
values of temperature. It is evident that the teaipee has a dramatic effect on the static and

the very low velocity coefficients of friction, thes, 1, and y,,, .
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increasing
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>
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Figure 3.15. Dependency of friction coefficient of PTFE-polish&tainless steel interface on sliding velocity

and temperature.
Figure 3.16 shows the typical symmetric softeniogé-displacement hysteresis loop with

rigid-plastic characteristics displayed by FSSBs.

A
force

] >
[ J displacement

Figure 3.16. Typical hysteresis loop with rigid-plastic chaexcstics displayed by FSSBs.

FSSBs do not have the capability to return thectiire to its initial position after an
earthquake since they do not generate restoringe$orThus, they have to be adopted in

conjunction with recentering devices.
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3.3.3 Curved Surface Sliding Bearings

Figure 3.17 shows two different types of Curvedf&e Sliding Bearings (CSSBs), namely,
Friction Pendulum Bearing (FPB) and Double Frictitendulum Bearing (DFPB).

(a)
articulated slider
spherical surface : seal
\, ' /
[ —
|
!
I
—t . ]
| ~
enclosing cylinder stainless steel
| ]
l ]
| J
(b)
spherical \surfaces articulaﬁgd sliders

[ X = ]

NN
I ™\

enclosing cylinders stainless steel

Figure 3.17. CSSBs: (a) FPB and (b) DFPB.
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FPBs consist of an articulated slider that moves @oncave spherical surface. The slider is
coated with a low-friction and high-pressure catyacomposite material, typically PTFE, and
the spherical surface is overlain by polished #as1steel. FPBs also include an enclosing
cylinder that provides a lateral displacement esstand protects the interior components
from environmental contamination.

FPBs have an inherent ability to recenter the stpgacstructure: as the slider moves along
the spherical surface, it causes the supportedtstaito rise, developing a gravity restoring
force that helps bring the structure back to itginal position.

The forceF required to impose a lateral displacemeimt a FPB is given by:

F:%u+,uN, (3.2

whereN is the vertical load on the bearirigjs the effective radius of curvature of the sliding

interface, andu is the coefficient of sliding friction.

Figure 3.18 shows the typical symmetric softeniggtéresis loop displayed by FPBs.

force

4
/‘ dl SplaC ement

Figure 3.18. Typical hysteresis loop displayed by FPBs.

DFPBs consist of two facing concave stainless stedaces. The upper and lower concave
surfaces have radii of curvature which can be difie The coefficients of friction of the
concave surfaces can also be different. An artiedlalider faced with a hon-metallic sliding
material separates the two surfaces. The artiomlais necessary for the appropriate
distribution of pressure on the sliding interfacel do accommodate differential movements

along the top and bottom sliding surfaces.
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3.4 Metal Devices

3.4.1 Wire Rope Isolators

3.4.1.1 Introduction

Wire Rope Isolators (WRIs) are metal devices theatehdemonstrated to be effective in
protecting sensitive equipment from shock and vibraand have been originally used in
numerous military, electronic and air space appboa (Tinker and Cutchins 1992). All the
different types of WRIs, such as helical, arch phesical devices, are made of two basic
elements: a stainless steel cable and two alumailloy or steel retainer bars where the cable
is embedded.

As far as the use of WRIs as seismic devices isarmed, Demetriades et al. (1993) showed
that an isolation system including stiff WRIs caduce the acceleration transmitted to light
but costly equipment allowing very small displacetsein contrast to the classical base
isolation approach of increasing the fundament#linaa period of the system. Serino et al.
(1995a, 1995b) and Di Donna and Serino (2002) tiy&ted the use of WRIs for the seismic
protection of circuit breakers of a transformatmpen-air substation, thus concluding that
these devices permit to reduce remarkably straéissae porcelain insulators. Alessandri et al.
(2015a, 2015b) also investigated the effectivermfss base isolation system including
adequately designed WRIs in reducing the seismicaahel of a high voltage ceramic circuit
breaker.

In the research literature there are no applicatioh WRIs in the seismic isolation of
structures, such as new or existing buildings aigars. Indeed, although WRIs are generally
stiffer in the vertical direction than in the othéwo principal horizontal directions
(Demetriades et al. 1993), namely, Roll and Shé&actibns, the value of the vertical load
which can be supported by these metal devicestifigb enough to allow their use for the
seismic protection of structures. However, a stikable experimental campaign, performed
at the Department of Structures for Engineering Architecture of the University of Naples
Federico Il (ltaly) on a scaled structure mock-gspijsmically isolated using four curved
surface sliders and four WRIs, have shown thatldtter can be strongly useful when the
complete recentering of the base-isolated strugturequired and when the displacements of
the base isolation system have to be reduced (8mbzet al. 2016).
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In order to allow the use of these metal deviceh wiher different types of seismic isolators,
such as sliding or elastomeric bearings, for thensie protection of lightweight structures, an
accurate characterization of their mechanical ptegeeis required. The experimental studies
described in Demetriades et al. (1993) and Alessatdal. (2015a, 2015b) do not provide
enough information to investigate the use of WRIs ibase isolation system of a seismically
base-isolated structure. Indeed, their dynamic \diehan Roll and Shear directions and the
influence of the vertical load have been studiel¢ onthe small displacements range.

To this end, an extensive series of dynamic tests eonducted at the Laboratory of the
Department of Industrial Engineering of the Univtgre®f Naples Federico 1l (Italy) on four
different WRIs, by imposing cyclic sinusoidal diapéments having different amplitudes and
frequencies, under different values of the vertload. More specifically, this experimental
program was aimed at studying the influence of displacement amplitude, frequency,
vertical load, device geometrical characteristicsl avire rope diameter on the dynamic
behavior of the selected WRIs in the two principatizontal directions. In addition, static
tests were also carried out to evaluate the statidynamic effective stiffness ratios for
different values of displacement and applied vattioad.

3.4.1.2 Description of Tested Devices

The selected WRIs, manufactured by Powerflex Slkimatola, Italy), are made of a wire
rope wound in the form of a helix and two slottedtah retainer bars in which the cable is
embedded, as shown in Figure 3.19a. The cros®saaftthe wire rope, which is constructed
by winding a number of strands around an inner,dsrehown in Figure 3.19b. Each strand
has an axial member around which the individualaneires are wrapped. The rope of the
tested devices is made of six strands, each h&@bngteel wires, plus a central one with 49
wires. The material of the wires is American Iramd&Steel Institute (AISI) Stainless Steel
Type 316 whereas the material of the two metal isaatuminum alloy.
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Figure 3.19. (a) WRI; and (b) wire rope cross section.

In order to study the influence of the height taltiiratio,h/v, of the loop and the wire rope
diameter,d, , on the dynamic behavior of WRIs in the two pnoadi horizontal directions,
namely, Roll and Shear directions, four devicesing\B loops have been selected for
experimental tests. Their geometrical charactessire presented in Table 3.1 with reference
to Figure 3.20.

Table 3.1. Geometrical characteristics of tested WRIs.

WRI [ [mm] h [mm] v [mm] hiv d, [mm]
PWHS 16010 267 100 110 0.90 16
PWHS 16040 267 125 150 0.83 16
PWHS 16040 S 267 125 150 0.83 19
PWHS 16060 267 145 185 0.78 16
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Figure 3.20. Schematic of WRIs PWHS 160: (a) lateral view;gbgtion A-A’.

3.4.1.3 Experimental Study

The experimental campaign here presented was aahestudying the influence of the
displacement amplitude, frequency, vertical loagkice geometrical characteristics and wire
rope diameter on the dynamic behavior of WRIs il Red Shear directions. Since in a base-
isolated structure the maximum vertical displacemeh the base isolation system is
considerably smaller than the horizontal one (Smzp et al. 2016), only the dynamic
behavior in the horizontal directions has beenistudStatic tests have been also carried out
to better investigate the static horizontal respoof these devices in three displacements
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ranges, under different values of applied verticald. The experimental set-up and the

dynamic and static tests are described in theviarig.
3.4.1.3.1 Experimental Set-up

The experimental investigation of the dynamic aratics responses of WRIs in the two
principal horizontal directions has been perforntigdadopting the testing machine (TM)
available at the Laboratory of the Department alfustrial Engineering of the University of
Naples Federico Il (Pagano et al. 2014). As shawFkigure 3.21, the TM consists of two
hydraulic actuators for loading in both horizordat vertical directions, thus allowing one to
impose horizontal displacement or load historiethtotested device with a constant vertical
compression. Four guiding rollers, two on each siiéghe horizontal lower frame, prevent
lateral movement of the TM basement. This equipnuant be used as a 1d shaking table
machine (Calabrese et al. 2013, Strano and Terk4)2Uhe maximum vertical force, exerted
by means of the vertical actuator and transferneduigh the horizontal upper plate, is equal
to 190 kN. The horizontal hydraulic actuator, pogeeby a 75 kW AC electric motor, has a

maximum stroke of £ 200 mm, a maximum force of BDdnd a maximum speed of 2.2 m/s.

Vertical frame

Vertical

) actuator
Vertical

slide Horizontal

slide

Test specimen
Horizontal actuator

Horizontal frame

Figure 3.21. TM adopted to perform experimental tests.

The tested WRIs have been mounted by fixing tHamaum retainer bars to the upper and
lower rigid steel plates. Figures 3.22a and 3.2&wsWRI PWHS 16040 mounted in Roll

and Shear directions, respectively.
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(a)

(b)

Figure 3.22. WRI PWHS 16040 mounted in: (a) Roll and (b) Shi¥eections.

The experimental apparatus has been instrumentedder to measure the time histories of
the relative horizontal displacements between ¢iweet and upper plates, the horizontal and
vertical loads. All tests have been conducted atnreemperature and the data was sampled at
250 Hz. Data acquisition and control of the hydiaattuators have been carried out through
a dedicated software package and a dSPACE DS1l@8tter board (Pagano et al. 2013,
Pagano et al. 2014).
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3.4.1.3.2 Dynamic Tests

A large number of dynamic tests in Roll and Shearctions was conducted on the selected
devices. Each test consisted in imposing five cyad sinusoidal displacement having

specified amplitudé and frequency, under different values of vertical lodg).

The dynamic response of WRIs has been analyzetr&e tdisplacements ranges, namely,
small, relatively large and large displacementgyean Three amplitude values have been
chosen for each metal device, with the maximumeraklected in order to avoid damages to
the two aluminum alloy retainer bars during theezxpental tests.

The influence of the frequency has been studiedinipyosing to WRI PWHS 16040 a
sinusoidal motion with amplitude of 3 cm, withouyipdying a vertical load. The frequency
was assumed varying within the range 0.5 + 2 Hz.

The maximum value of the vertical load has beercsetl with the aim of obtaining a
maximum vertical deflection less than one tentthefdevice heightt. The dynamic tests are
listed in Table 3.2.

Table 3.2. Dynamic displacement-controlled tests in Roll &mar directions.

WRI no. of tests  vertical load [kN] frequency [Hz] amplitude [cm]
PWHS 16010 3+3 0 1 0.25,0.5,1
3+3 2 1 0.25,0.5,1
PWHS 16040 3+3 0 1 1,3,6
3+3 1.2 1 1,3,6
3+3 2 1 1,3,6
3+3 3 1 1,3,6
4+4 0 0.5,1,15,2 3
PWHS 16040 S 3+3 0 1 1,3,6
3+3 2 1 1,3,6
PWHS 16060 3+3 0 1 1,4,8
3+3 2 1 1,4,8

3.4.1.3.3 Static Tests

Static tests in Roll and Shear directions were aésoied out to study the overall behavior of
each WRI, that is, to estimate the effective hariabstiffness by the secant line method and
to evaluate the static to dynamic effective stémeatio for different values of maximum
horizontal displacement and applied vertical lo&d. each static test, the horizontal
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displacement has been increased linearly with acigl of 0.5 mm/s. The static tests are
listed in Table 3.3.

Table 3.3. Static displacement-controlled tests in Roll ahé&3 directions.

WRI no. of tests vertical load [kN] max. displacemfm]|
PWHS 16010 2+2 0,2 1
PWHS 16040 4+4 0,12,2,3 6
PWHS 16040 S 2+2 0,2 6
PWHS 16060 2+2 0,2 8

3.4.1.4 Experimental Tests Results

In what follows, the results of the dynamic andistaxperimental tests are presented. The
influence of the following parameters on the dymatehavior of WRIs is described: (1)
displacement amplitude, (2) frequency, (3) vertload, (4) WRI geometrical characteristics
and (5) wire rope diameter. Then, a comparison éetwthe dynamic responses in Roll and
Shear directions is presented, and finally theicstaghavior in both horizontal directions is
analyzed.

Three parameters have been used to analyze thenatybahavior of the tested WRIs in Roll

and Shear directions: the average effective (cardgstiffnessk the average equivalent

eff,a?

viscous damping rati&f,,,, and the average dissipated eneggy,, that is, the mean area

ga’
computed on the experimental hysteresis loops.

The WRI effective stiffness, deduced by each cgélaarmonic motion, has been calculated
by the formula:

keff - I:max_ I:min , (33)

umax - umin

where F , and F , are the forces recorded at the positive and negathaximum
displacementsy ,, and u,,,, respectively. This stiffness is interpreted as akierall stiffness

of the device during one cycle of harmonic motiowl & used to evaluate the elastic energy

E,. The average effective stiffneks; , has been calculated as mean value of those obtaine

from three of the five imposed cycles.
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The equivalent viscous damping ratio of the dewatecsach cycle has been evaluated as

follows:

E,

= : 3.4
o 4 TE, (3.4)
where E; is the restored elastic energy expressed as:
1 2
Es = keff u, , (35)
2
with u, the average value of positive and negative maxirdisplacements given by:
Unae *[Unin
u — max min ) 36
8 > (3.6)

The average equivalent viscous damping raip, has been calculated as mean value of

those obtained from three of the five cycles ofit@mic motion applied to the tested device.
A Matlab script was written to go through the expmmtal data file of a dynamic test,
identify each force-displacement hysteresis loog @wvaluate the mean value of each

parameter, that i $eqar ANAE, .

eff,a?

As regards the static tests, the static effectivescant) stiffnesk’. at displacementi’ has

been estimated according to the secant line medlkddllows:

= (3.7)

where F(u" )is the recorded force corresponding to the appmlisglacement’ .

3.4.1.4.1 Influence of Displacement Amplitude

The values of the average effective stiffness,edent viscous damping ratio and dissipated
energy obtained from the dynamic tests performed@gRoll and Shear directions on device
PWHS 16040 are listed in Table 3.4; a sinusoidationg having frequency equal to 1 Hz,
was applied in the two horizontal directions, withthe effect of the vertical load, for three

different values of amplitude.
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According to these results, the tested metal degicharacterized by high effective stiffness
and equivalent damping ratio in the range of sm#placements. They decrease with
increasing displacement amplitude in the relatiMalge displacements range, whereas, at
larger displacements, the former increases draaigtiand the latter continues to decrease.

Table 3.4. Influence of displacement amplitude | WRI PWHS 460

f =1Hz,R, =0kN  amplitude [cm] Keir.a [N/M] eqa (%] Eq. INM]
Roll 1 131616.18 26.9 21.08
3 96411.65 14.7 81.95

6 172987.50 8.0 327.51
Shear 1 157702.20 215 20.02
3 125189.71 13.8 99.76

6 178735.04 9.8 413.25

In WRIs a significant proportion of energy is dpsied because of the interior rubbing and
sliding friction between the intertwined strandse(ietriades et al. 1993, Piersol and Paez
2009). Table 3.4 shows that the amount of averag®padted energy increases with the
displacement amplitude. In systems with viscousmaghor rate-independent damping, the
dissipated energy increases quadratically withldtgment amplitude whereas, in a system
with Coulomb damping, it is linear in displacemé@hopra 2012). In this case, the average
dissipated energy is proportional to the displaggnaeound the value of power 1.5 in Roll
direction and 1.65 in Shear direction, as showRigure 3.23.
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Figure 3.23. Average dissipated energy in WRI PWHS 16040 al@)droll and (b) Shear directions.

Figures 3.24, 3.25, and 3.26 show the symmetricefalisplacement hysteresis loops obtained
in the two horizontal directions for three diffetelisplacement amplitudes. It is worth to note
that the shape of the hysteresis loops changesdawegdo the displacements range: at small
displacements, the hysteresis loops display arsafiestiffness (Figure 3.24), whereas, in the
relatively large displacements range, the devidabats a hardening stiffness (Figure 3.25).

When large horizontal displacements are applied, ritetal device reaches the limit of

deformation and a stronger nonlinear stiffeningawar can be observed (Figure 3.26). In

spite of this, no damage to aluminum retainer vaas visible after the cyclic tests were

completed.

Since the same dynamic behavior has been obsenvx® iother three selected WRIs, their

tests results are omitted.
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Figure 3.24. Experimental hysteresis loops of WRI PWHS 1604ialed at small displacements in (a) Roll
and (b) Shear directions.
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Figure 3.25. Experimental hysteresis loops of WRI PWHS 1604dialed at relatively large displacements in
(a) Roll and (b) Shear directions.
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Figure 3.26. Experimental hysteresis loops of WRI PWHS 1604aialed at large displacements in (a) Roll and
(b) Shear directions.
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3.4.1.4.2 Influence of Frequency

The experimental studies conducted on WRIs in thaalls displacements range by
Demetriades et al. (1993) and Alessandri et all%B) show the rate independent nature of
these metal devices.

Interesting results have been obtained by studtieginfluence of the frequency on the
dynamic behavior of the selected WRIs in the reddyi large displacements range. Table 3.5
shows the dynamic tests results of WRI PWHS 1664Radll and Shear directions: the metal
device was subjected to a harmonic sinusoidal mohiaving amplitude equal to 3 cm,
without the effect of the vertical load, for diféat frequency values.

It can be observed that an increase in the frequdetermines a decrease in the average

effective stiffness, whereas the average equivalantping ratio increases.

Table 3.5. Influence of frequency | WRI PWHS 16040.

A=3cm,R,=0kN  frequency [Hz] Keir.a [N/M] £eqa (%] Eyo INM]
Roll 0.5 91060.00 14.7 74.62
1 96411.65 14.7 81.95
1.5 73871.54 17.8 79.60
2 57498.65 22.1 79.71
Shear 0.5 117302.66 13.8 90.09
1 125189.71 13.8 99.76
1.5 98304.42 19.1 113.31
2 77313.19 20.3 98.35

Figures 3.27a and 3.27b shows the force-displacemgsteresis loops of the tested metal
device, obtained in Roll and Shear directions.sltevident that, in the relatively large

displacements range, a stronger hardening dynashiavior is obtained at lower frequencies.
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Figure 3.27. Influence of frequency on WRI PWHS 16040 hysterésdps obtained in (a) Roll and (b) Shear

directions.
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3.4.1.4.3 Influence of Vertical L oad

WRIs have flexibility in all directions, that isphzontal and vertical directions. The vertical
deflection of these metal devices depends on tighh& width ratioh/v, and on the wire
rope diameter, . Table 3.6 shows the vertical strain of each tesgvice, due to a vertical

load equal to 2 kN, evaluated as:

, (3.8)

where h' is the device height after the vertical deformatith can be observed that the higher
is the device height to width ratio (see Table 3tib) larger is the vertical deflection. By the
comparison between the vertical strain values ofl W®/HS 16040 and WRI PWHS 16040
S, it can be deduced that the use of a larger rejpe diameter produces a reduction of the
vertical deflection.

Table 3.6. Vertical strain of tested WRIs due to verticaldoa
vertical load [KN] PWHS 16010 PWHS 16040 PWHS 16840 PWHS 16060
2 -7.0% -5.6 % -2.4% -4.8 %

As far as the effect of the vertical load on thenalyic behavior of WRI PWHS 16040 is
concerned, Table 3.7 shows the results obtainech vehsinusoidal harmonic motion with
amplitude equal to 3 cm and frequency of 1 Hz {gliad in both the horizontal directions. An
examination of these results reveals a reductiothenaverage effective stiffness due to the
increase of the vertical load. For instance, ikdival load equal to 3 kN is applied, the value
of the vertical strain is -8.8 % and the percentagkiction in the average effective stiffness is
34.57 % in Roll direction and 43.55 % in Shear cin. In addition, Table 3.7 also shows
that an increase in the vertical load producesightsincrease in the average equivalent
viscous damping ratio and a reduction in the amaidrdissipated energy. Therefore, it is
important to point out that the application of atieal load allows one to have a more flexible

device with higher equivalent viscous damping ratio
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Table 3.7. Influence of vertical load | WRI PWHS 16040.

A=3cm,f =1Hz  vertical load [kN] Kegr o [N/M] eqa (Y0 Eqa INM]

Roll 0 96411.65 14.7 81.95
1.2 84587.06 14.9 73.52
2 73800.30 17.5 75.22
3 63085.90 18.8 68.69

Shear 0 125189.71 13.8 99.76
1.2 120047.68 12.3 85.44
2 82622.23 14.5 69.29
3 70673.76 15.7 64.16

Figures 3.28, 3.29, and 3.30 show the symmetricefalisplacement hysteresis loops obtained
in Roll and Shear directions under the effect dfedent values of vertical load at small
(Figure 3.28), relatively large (Figure 3.29), dathe displacements (Figure 3.30). It can be
observed that in the small and relatively largepldisements ranges, WRI PWHS 16040
displays a weaker hardening behavior if a largeticad load is applied, whereas, at large
displacements, the applied vertical load affectehmess the dynamic response of the metal
device. Indeed, a percentage reduction of 10.761%Rall direction and 6.12 % in Shear
direction is recorded in the average effectivefrstgs of WRI PWHS 16040, subjected to a
sinusoidal harmonic motion having amplitude of 6 amd frequency equal to 1 Hz, under the
effect of a vertical load of 3 kN. These two petege values are then smaller than the
previous values evaluated considering an ampliaidecm and the same values of frequency
and vertical load.
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Figure 3.29. Influence of vertical load on WRI PWHS 16040 hyssis loops obtained at relatively large

displacements in (a) Roll and (b) Shear directions.
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Figure 3.30. Influence of vertical load on WRI PWHS 16040 hyssis loops obtained at large displacements in
(a) Roll and (b) Shear directions.

The dynamic tests results of WRI PWHS 16040, obthiforA = 6 cm and = 1 Hz, under
the effect of the four different values of applesttical load, are omitted for brevity.

Table 3.8 shows the results of the dynamic test®meed in Roll direction on WRI PWHS
16060, which is the most flexible device testethm present experimental campaign. In this
case, the vertical load acting on the device adfetst dynamic response also when large
displacements are applied. Indeed, the percentection in the average effective stiffness
is equal to 46.06 %, fok = 4 cm, and to 38.54 %, féx = 8 cm. In addition, the increase in
the vertical load produces a slight increase inaherage equivalent viscous damping ratio
and a reduction in the dissipated energy amount.

Table 3.8. Influence of vertical load | WRI PWHS 16060 (Rdilection).

f =1Hz vertical load [kN] Kegr o [N/M] eqa [Y0] Eqa INM]

A=4cm 0 70499.96 16.1 116.78
2 38022.41 20.2 80.18

A=8cm 0 79777.85 10.3 306.90
2 49026.77 11.7 233.28

Figures 3.31a and 3.31b show the force-displacemgsteresis loops of WRI PWHS 16060,
obtained for a frequency of 1 Hz and an amplitugeaéto 4 and 8 cm, respectively. The
comparison of Figure 3.30a with Figure 3.31b caondirthat, when the metal device is more
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flexible, the dynamic response at large displaceasmenmore affected by the vertical load
magnitude.
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Figure 3.31. Influence of vertical load on WRI PWHS 16060 hyssis loops obtained in Roll direction for
(@A=4 cmand (bA=8cm.

55



Chapter 3 | Seismic Isolation Bearings

3.4.1.4.4 Influence of WRI Geometrical Characteristics

In the following, the influence of the height todth ratio on the dynamic behavior of the
tested devices in the horizontal directions is deed.

As shown in Table 3.1, WRIs PWHS 16010, 16040, B8@60 have the same lendth 267
mm, the same wire rope diamet&r = 16 mm, but different height to width rativ.

According to dynamic tests results listed in Takl@, the higher is the height to width ratio
the stiffer is the metal device. For instance, peecentage reduction of WRI PWHS 16060
average effective stiffness, evaluated with respethe WRI PWHS 16010 one, is 74.13 %,
in Roll direction, and 79.88 %, in Shear directitm.addition, lower values of the height to
width ratio allow one to have a larger average \emant viscous damping ratio: the
percentage increase of WRI PWHS 16060 equivalestouis damping ratio, evaluated with
respect to the WRI PWHS 16010 one, is 55.90 % &827% in Roll and Shear directions,
respectively.

Table 3.9. Influence of WRI geometrical characteristics.

A=1cm, f =1Hz,P, = 0kN hiv Keir.a [N/M] eqa %0 Eqa INM]

Roll 0.90 527396.99 16.1 49.03
0.83 131616.18 26.9 21.08
0.78 136390.97 25.1 20.45

Shear 0.90 530276.67 13.1 40.30
0.83 157702.20 21.5 20.02
0.78 106653.68 23.4 14.91

Figure 3.32 shows the force-displacement hysterdesips of the three devices, obtained
imposing a cyclic sinusoidal motion of 1 cm ampdguand 1 Hz frequency, without applying

the vertical load. It can be observed that the WiRIS having an higher height to width ratio

display a softening force-displacement loop, whertéa third one has a hardening behavior.
It is clear that smaller displacements have tonty@osed to the latter device in order to avoid
damages during the dynamic tests. In other worlds, geometrical characteristic here

investigated influences strongly the device capdoitundergo large deformations.
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Figure 3.32. Influence of WRI geometrical characteristics osteyesis loops obtained in (a) Roll and (b) Shear

directions.

The influence of the height to width ratio has bé&srestigated also under the effect of a
vertical load equal to 2 kN. Since the same dyndmeltavior has been observed in both two
horizontal directions, these results are omittedfevity.
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3.4.1.4.5 Influence of Wire Rope Diameter

In order to study the influence of the wire ropandeter on the dynamic behavior of the tested
WRIs, a special device, namely, WRI PWHS 16040&S, leen manufactured by Powerflex
S.r.l. This device has the same geometrical charatits of WRI PWHS 16040 but it has a
wire rope with a diameter equal to 19 mm instead®fnm. As for WRI PWHS 16040, the
rope of the special device is made of six straralangy 25 steel wires plus a central one with
49 wires. The material of the wires is Americamland Steel Institute (AISI) Stainless Steel
Type 316.

Table 3.10 shows the dynamic tests results in Riodiction, obtained for three different
displacement amplitudes by imposing a sinusoidainbaic motion having frequency equal
to 1 Hz, without the effect of the vertical loacheluse of a wire rope with a larger diameter
allows one to have a stiffer device; indeed, thegaage increase of WRI PWHS 16040 S
average effective stiffness, evaluated with respethe WRI PWHS 16040 one, is 59.44 %,
62.08 % and 5.40 %, féx = 1 cm,A = 3 cm, andA = 6 cm, respectively. If it is observed that
the average equivalent damping ratio values otwetested WRIs, obtained fét = 6 cm,
are very close to each other, it can be concluded the wire rope diameter slightly
influences the dynamic behavior of WRIs in the éamjisplacements range in terms of
effective stiffness and equivalent viscous dampatg.

Table 3.10. Influence of wire rope diameter (Roll direction).

f =1Hz,P, =0kN amplitude [cm] Kegr o [N/M] eqa [Y0] Eqa INM]

PWHS 16040 1 131616.18 26.9 21.08
3 96411.65 14.7 81.95
6 172987.50 8.00 327.51

PWHS 16040 S 1 209857.05 22.8 28.66
3 156260.94 12.2 110.17
6 182336.81 7.90 340.97

Figures 3.33a and 3.33b show the force-displacerhgsteresis loops of the two metal
devices, obtained for a frequency of 1 Hz and apliéumne equal to 3 and 6 cm, respectively,
without applying the vertical load. It is evidelat, in both displacements ranges, the tested
WRIs display a hardening behavior, and that, ajelatisplacements, the force-displacement
loops are very similar to each other.
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Figure 3.33. Influence of wire rope diameter on hysteresis $ooptained in Roll direction for:
(@A=3cmand (bA=6 cm.

The influence of the wire rope diameter has beerestigated in both two horizontal
directions also under the effect of a vertical loaglal to 2 kN and the same dynamic
behavior has been observed.
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3.4.1.4.6 Comparison between Roll and Shear Dynamic Responses

WRIs exhibit a similar symmetric hysteresis behaimoRoll and Shear directions. Table 3.11
shows the Roll to Shear average effective stiffnesgiivalent viscous damping ratio and
dissipated energy ratios, evaluated for WRIs PWB&LD, 16040, and 16060, subjected to a
sinusoidal harmonic motion having frequency of 1 Without the effect of the vertical load.
It can be observed that the first and third deviaes stiffer in Roll direction whereas the
second one displays a stiffer dynamic behaviohéndther horizontal direction. In addition, it
is clear that all tested metal devices have a lnigherage equivalent viscous damping ratio in

Roll direction.

Table 3.11. Comparison between Roll and Shear dynamic response

f =1Hz,R,=0kN  amplitude [cm] K& 2/ KSi a Eoal €oa Eqal/ESa
WRI PWHS 16010 0.25 1.50 1.09 1.58
0.50 1.22 1.16 1.39

1 0.99 1.22 1.21

WRI PWHS 16040 1 0.83 1.25 1.05
3 0.77 1.06 0.82

6 0.96 0.81 0.79

WRI PWHS 16060 1 1.27 1.07 1.37
4 1.12 1.53 1.71

8 0.70 1.14 0.78

3.4.1.4.7 Static Behavior

Static tests in both two horizontal directions weagried out, following the scheme listed in
Table 3.3, by applying a horizontal displacemenicWhvas increased linearly with a velocity

of 0.5 mm/s up to a maximum value selected accgrttirthe each device properties.
Table 3.12 shows the static effective stiffneskgs evaluated using the secant line method,
and the static to dynamic effective stiffness mtig,, =k /k$, for WRI PWHS 16040. It

can be observed that the static to dynamic effecstiffness ratio tends to 1 for large

displacement values. Moreover, in the relativelgéadisplacements range, the lowey,,

value is obtained considering the average dynanfiecteve stiffness evaluated for a

frequency of 1 Hz.
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Table 3.12. Static tests results | WRlI PWHS 16040.

R/ =0kN amp”tUde [Cm| SFf [N/m] kratio (1 HZ) kratio (05 HZ) kratio (15 HZ) kratio (2 HZ)
Roll 1 223224.67 1.69 - - -
3 142044.04 1.47 1.55 1.92 2.47
6 174274.07 1.00 - - -
Shear 1 264560.06 1.67 - - -
3 163781.51 1.30 1.39 1.66 2.11
6 196837.06 1.10 - - -

Testing WRI PWHS 16040 under the effect of differeertical loads, that is, 1.2 kN, 2 kN,
and 3 kN, the same static behavior can be observed.

Figure 3.34 shows the force-displacement curveaidd for different vertical load values
during the static tests in Roll direction, wher&agure 3.35 shows the deformed shape of the

metal device displayed in Roll direction for an ditape of 6 cm when no vertical load is

applied.
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Figure 3.34. Force-displacement curves obtained for differemtieal load values during static tests in Roll

direction.
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Figure 3.35. WRI PWHS 16040 deformed shape displayed in Rodafion forA = 6 cm and®, = 0 kN.

Since the other three tested WRIs display a sinstiatic response, these results are omitted

for brevity.
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Chapter 4

Mathematical M odeling of Seismic | solators

4.1 Introduction

Chapter 4 is concerned with the mathematical mogedf seismic isolation bearings and is
organized into three parts.

The first part presents three Differential Equatiodels (DEMs). First, the widely used
Bouc-Wen Model (BWM), which has been adapted fodetimg the uniaxial behavior of
elastomeric bearings, sliding bearings, and wingergsolators (Constantinou et al. 1990,
Nagarajaiah et al. 1991, Demetriades et al. 138%) implemented in many computer
programs, such as 3D-BASIS, SAP2000, and ETABSdescribed. Then, an improved
version of the BWM, namely, Modified Bouc-Wen Mod#MBWM), able to simulate the
increase or decrease of the tangent stiffnessrge ldisplacements, and the 2d Bouc-Wen
Model (2d BWM), developed by Park et al. (1986) #meh adapted for modeling the biaxial
behavior of elastomeric and sliding bearings (Camstou et al. 1990, Nagarajaiah et al.
1991), are presented.

The second part presents five proposed mathematiodkels: two uniaxial models able to
predict the dynamic behavior of seismic isolatorghiv a relatively large displacements
range, namely, Nonlinear Exponential Model (NEMY &marallel Model (PM), two uniaxial
models able to simulate the post-hardening or pofiening behavior at large displacements,
namely, Advanced Nonlinear Exponential Model (ANEBNd Advanced Parallel Model
(APM), which are an improved version of the NEM dPlll, respectively, and one biaxial
model able to take into account the biaxial inteoscbetween the restoring forces along two
orthogonal horizontal directions within the rel&liy large displacements range, namely, 2d
Parallel Model (2d PM).

In the third part, the force-displacement hysterdsops simulated adopting the described

DEMs are compared to those obtained adopting thyegsed ones.
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4.2 Differential Equation M odels
4.2.1 Uniaxial Models

In the following, two uniaxial DEMs are describdthe former is able to simulate symmetric
softening hysteresis loops with bilinear or rigidgiic characteristics, the latter symmetric

hysteresis loops with post-hardening or post-saftgnharacteristics.
4.2.1.1 Bouc-Wen Mode

According to this DEM, the restoring forcgu) of a hysteretic system can be obtained by

solving the following first order nonlinear ordiyadifferential equation, proposed by Wen
(1976, 1980):

z=Au-BJuz"-yu |z

: forn odd (4.1)
z=Au-gu 2" 4-yuz, forn even (4.2)

with n a positive integer number, ad £, and y real constants. Equations (4.1) and (4.2)

can be written in a more compacted form, validnfadd or even, as follows:
. . . n-1 . n
z=Au-puz|4" -yu|7". (4.3)

Constantinou and Adnane (1987) have shown tha# ferl andS +y = 1, the model given

by Equation (4.3) collapses to the model of visaefitity proposed by Ozdemir (1976).
In order to evaluate the tangent stiffness of #saring forcez(u), Equation (4.3) can be

rewritten as follows:

du

dz:Adu_ du
dt

@ e P

2l -y Sl @4)

Then, multiplying both sides of Equation (4.4)diy> O:
dz=Adu-g|duz|4"" - ydu|Z", (4.5)

and dividing Equation (4.5) byu, leads to:
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dz

E:A—ﬁsgnﬁu)z|z| -v|7". (4.6)

Table 4.1 gives the different expressions of tmgeat stiffness obtained forodd or even,

according to the signs of the velocilyand restoring force

Table 4.1. Tangent stiffness of the restoring force in the BW

dz n odd neven
du z<0 z>0 z<0 z>0
iso | ABNZ A7 A(B-NZ A-(BNT
(portion 1) (portion II) (portion 1) (portion II)
i<o  ABENZ A(B-p7 A-(BNZ A(B-NT
(portion V) (portion 111) (portion V) (portion 111)

Figure 4.1 shows a generic force-displacement hgsiteloop simulated adopting the BWM
and obtained by applying to a hysteretic systenaranbnic displacement having amplitude

U, or a harmonic force with amplituds .

Figure 4.1. Generic hysteresis loop obtained with the BWM.

It can be observed that the hysteresis loop cadelsemposed into four different portions,

namely, portions I, II, 1ll, and IV. According toable 4.1, and as shown in Figure 4.1, for
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bothn odd and even, the tangent stiffness of the loadimge evaluated iif—u,,~z,) is equal

to the tangent stiffness of the unloading curvduatad in(u,, z,) . Since it happens for each

pair of points(-u,—z) and (u,z) belonging to the two portions, that is, porticemid 111, it can

be concluded that the latter are symmetric witlpeesto the origin. The same is true for

portions Il and 1V, thus the shape of the hysterésop can be studied by considering only

portions | and 11.

It can be shown that:

1 ¢ dz 2 dz
w=3) | J

jf dz +ZJ9 dz
L AY(B-NT JA-(BtNT

whereasu’ can be evaluated as:

A A-(B-nZ L A-(B+n7 |

! _1 _[ dz _jf dz

21 A-BtNZ S A-B-NT
! ZE_T dz _jf dz

21, A-BtN 7 S AtB-NT '

forn odd

forn even

forn odd

forn even

Finally, the area of the hysteresis loop, thathis,dissipated energy, is given by:

0 2

_ YA 4
SR eyl ey
E,=2 Jq z dz+]9 z

d
AN L A-(BN T

z|, fornodd

z|. forneven

4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

The parameteA represents the tangent to both the loading andadimig curves at their

intersection withu-axis ¢ = 0).

The two parameter® and ) define the shape of the hysteresis loop and csumass positive

or negative values. In order to understand howsktiape of the force-displacement loop varies

according to the values of the latter parameterns, possible to analyze the variation of the
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tangent stiffness which is determined by the sifjthe quantity S —J in the portions | and
I, and of the quantityS + y in portions Il and V.
Considering portion | and moving from poittu,,—z,) to point (-u’,0), Table 4.1 reveals
that the tangent stiffness:

» decreases from the value+ (5 - y) z; > A to valueA, for -y >0;

* js constant and equal fofor -y =0;

* increases from the valud+ (5 - ) z; < A to the valuéj, for 8-y <0; in this case, in

order to have a positive tangent stiffness, thataslu > 0, z, <Q/m.
Considering portion Il and moving from poiftu’,0) to point (u,, z) , Table 4.1 reveals that
the tangent stiffness:
» decreases from the valuA to value A-(8+))z <A, for [+y>0, and
2, <Y N(B+);
* s constant and equal fofor S+ =0;
* increases from the valueto the valueA- (S +y) z; > A, for S+ <O0.

In softening force-displacement hysteresis lodps,darameten defines the sharpness of the
transition from the linear to nonlinear range whke hysteresis approaching bilinear behavior

asn approacheso, as shown in Figure 4.2.
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Figure 4.2. Influence of parameter on the hysteresis loop shape in the BWA(1, S=)=05).
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Equation (4.3) is generally solved numerically bglopting the Runge-Kutta method
(Rosenbrock 1963). In fact, explicit expressionszfare possible only fan=1 orn= 2.

If n=1, it can be shown that:

z,(u) :,B—éy —(zo + ,Béyj e Ww) - for portion | (4.13)

z, (u) :,B—'i‘l/[l—e‘(ﬁ*”(””“)] : for portion Il (4.14)

z”(u):—i+(zo+ A je‘(""y)(”o_”), for portion Il (4.15)

B-y B-y
z,, (U) =—'B—i‘y[1—e‘(ﬁ+y)(”*’“)] : for portion IV (4.16)

with

_1) 1 A+(ﬁ—y)zo} 1 A

“°'2{,8—y'°g{ A +ﬁ+ylog{A-(ﬁ+y)ZJ}’ )
and

101 A 1 A+(,8—y)zo}}

_ | - | . 4.18

: Z{ﬂwog{A—(ﬂw)ZJ ﬁ—yog{ A (4.19)

In this case, the energy dissipated in one cyalgvisn by:

Edzz{( o e e P i

A |-2P% L (419
2]

Figure 4.3 shows the force-displacement hystellesis obtained fom = 1, A = 1, and for

different values of the pairs of parametgtsand y .
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Figure 4.3. Hysteresis loops obtained with the BWM for differ@alues of pairs of parametefs and )
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If n= 2, for portion I

z,(u) = ﬂ—éytan{dA(,B—y)(u+u0)—arctar£1/’8—;yzoﬂ, if 5—y>0 (4.20)

z,(u)=A(u+u,) -z, if 5—-y=0 (4.21)

S U]

_ (A WA-JB=yz)e ) —([Ae [B-yz) o
z,(u) = ﬁ-y(ﬁ—\/ﬂzo)ezm‘“+”°)+(ﬂ+mzo)’ if 5—y<0 (4.22)

whereas, for portion II:

A ez A(p+y (u*+u) -1

By @PTA g

z,(u) = if B+y>0 (4.23)

z,(u)=A(U +u), if B+y=0 (4.24)

z,(u) = 'B_—S/tan[w/—Ai,B+yi (u +u)], if S+y<0 (4.25)

with
uo=1 T dz 2+Zf dz =1, (4.26)
2| L A+(B-NZ LA-(B+p)z
and
u*zi]‘-’ dz z_f dz |, 4.27)
210 A-(B+n T 5, A+(B-))z

taking into account that:

[ 1 B~y ) « n_
! A+(ﬂ—y)z2‘mﬁ—-y)a“’ta{\/TZ°j' Th-y>0 (428)

Jq dz
S A+ (B-N7T

:% if B-y=0 (4.29)
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BT prr e e o
= ! , if B-y<0 (4.30
_J;OA+(,8—y)z2 2JA(B-y og(\/ﬂ_mzo if 5-y<0 (4.30)

2 dz _ 1 \/K+,/ﬁ+yzo .

!A-(ﬁw)zz_z A(B+y log(\/ﬁ—\/mzo) it p+y>0 (4.31)
T—dz =2 if B+y=0 (4.32)
OA_(:B"'V)ZZ A’ '

Z

dZ _ 1 ﬁ+y .
IA— T2 -AGE arcta A z,|. if f+y<0 (4.33)
o A=(B+Y) J=AB+Y) \

For portions Ill and 1V:

z, (u) =-z(-u), (4.34)
z, (U) =-z,(-u). (4.35)

In this case, the energy dissipated in one cydvisn by:

e S (4.36)
_ZOA+(,8—y)22 L A= (B+)) 7

in which

- dzll{ A },'f—¢04.37
| ez 25-0" alp-pz ) A0 6

=)

0 . ) z§ | o
_J;OA+(ﬁ_y)szz_ oA if B~y=0 (4.38)

]O - dz= |09{ A } if B+y#0 (4.39)
A-B+n 7 2(B+y) T A-(B+1)Z

0

) 7 Zg .
IA-(ﬁﬂ/)zzdzz 2A° TA+y=0 (4.40)
0
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Nagarajaiah et al. (1991) have adapted the aboserided uniaxial DEM for simulating the
dynamic behavior of elastomeric bearings, suchigls damping rubber bearings and lead
rubber bearings.

For an elastomeric bearing, the nonlinear restoforge can be evaluated by using the

following equation:

f(u) = f.(u)+ f,(u), (4.41)

in which f_(u) is a linear elastic force evaluated as:

f (u)= a%u, (4.42)

y

and f,(u) is a nonlinear hysteretic force defined as:

)= -0 20, (4.43)

y

where a is the post-yield to pre-yield stiffness ratiy, is the yield force, and, is the yield

displacement. The function which is obtained by solving Equation (4.3), lths unit of
displacement.
Nagarajaiah et al. (1991) suggests the followirlgesfor the model parameters:

09 ~_01

A=1,0=—,vy
u

5 , andn= 2.
Uy

2
y
Figure 4.4 shows the total nonlinear restoring dogiven by Equation (4.41) and its two
components, obtained by Equations (4.42) and (4rd8pectively.

The above-described model has been also adopt&kimetriades et al. (1993) to simulate

the dynamic behavior of wire rope isolators in Rwil Shear directions.
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Figure 4.4. (a) Total nonlinear restoring force and its twanpmnents: (b) linear elastic force and (c) nonlinea
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Constantinou et al. (1990) have adapted the BWMniodeling sliding bearings, such as
friction pendulum bearings and flat sliding beasng

For a friction pendulum bearing, the nonlinearggsy force can be obtained as:

f(u) = f,(u)+ f (u), (4.44)

in which f_(u) is a linear elastic force evaluated as:
f(u) = N u, (4.45)
R
and f, (u) is a nonlinear hysteretic force defined as:

fo(u) = ‘L—N Z(u), (4.46)

y

whereN is the vertical load carried by the seismic ismaR is the radius of curvature of the

spherical concave surface of the bearipgis the sliding friction coefficient, which depends

on the value of bearing pressure and the instaatesneelocity of slidingu .

For a flat sliding bearing, Equation (4.44) becomes

f(u) = f,(u), (4.47)

where f, (U) is the nonlinear hysteretic force given by Equa(i4.46).

The coefficient of sliding friction is modeled bye following equation suggested by
Constantinou et al. (1990):

-l

,U = /us,max - (/usmax - lus,min) € ’ (448)

in which, £ ., is the maximum value of the coefficient of friatio/s ,;, is its minimum
value (atu =0), anda is a parameter which controls the variation ofdbefficient of friction
with the velocity. Values of parametey ... smn, anda for interfaces used in sliding

bearings have been reported in Constantinou €1290) and Mokha et al. (1991). In general,

the latter parameters are functions of bearingspires
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4.2.1.2 Modified Bouc-Wen Modd

Since the BWM is not able to reproduce the hysiterbehavior with post-hardening,
displayed by high damping rubber bearings and wipe isolators at large displacements (Ni
et al. 1999, Tsai et al. 2003), or the hysteregbdvior with post-softening, displayed by
unbounded elastomeric bearings with deformablearmmg layers (Spizzuoco et al. 2014),
in the following, an improved version of such moedlescribed.

As proposed by Ni et al. (1999), in order to predie increase or decrease of the tangent
stiffness at large displacements, the symmetritesofg nonlinear hysteretic force described

by the BWM can be modulated with a nonhysteretimtas follows:
f(u) = f,(u) O, (u), (4.49)

in which f, (u) is the nonlinear elastic modulation function gi\mn
f.(u) =1+ cu® +c,sgnf) u®, (4.50)

wherec, andc, are the two coefficients of the proposed eventioncwhereasf,(u) is the

symmetric softening nonlinear hysteretic force gibg Equation (4.41).
Figures 4.5a and 4.5b show the total nonlineaoriegs force, given by Equation (4.49), in

the case of post-hardening and post-softening behaespectively.

(@)

restoring force

displacement
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(b)

restoring force

displacement

Figure 4.5. Total restoring force with (a) post-hardening @mdpost-softening characteristics at large

displacements simulated by adopting the MBWM.
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4.2.2 Biaxial Models

In what follows, a DEM able to simulate symmetrdtaning hysteresis loops with bilinear or
rigid-plastic characteristics, taking into accotim¢ biaxial interaction between the restoring
forces in two orthogonal horizontal directionsgdéescribed.

4.2.2.1 2d Bouc-Wen M od€

The DEM for the biaxial behavior developed by Patkal. (1986) is an extension of the
model introduced by Wen (1976, 1980) for uniaxighdvior. According to the former model,

the isotropic hysteretic restoring forces in ¥n@ndy directions, that isz (u) and z,(u), can

be obtained by solving the following coupled firstder nonlinear ordinary differential

equations:
2,= AU - Bluz|z -yuZ - Bluz|z -yuzz, (4.51)
z,= Au, —ﬂ‘uyzy‘ z,-yuz - Bluzlz,-yuzz,. (4.52)

The hysteretic behavior prescribed by EquationS1{4and (4.52) can be illustrated by a

simple displacement path as the one shown in Fiduére

A
Uy

Ux

Figure 4.6. Linear displacement path.

In this case, the variables in Equations (4.51)(@R) are expressed as:

z, =zcos?, z, =zsind, u, =ucos?, U, =usind, (4.53)
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in which u andz are the uniaxial displacement and hysteretic reggdorce, respectively.
Substituting Equation (4.53) into Equations (4.&a4) (4.52), it may be shown that the latter

reduce to the following form:
z=Au-Blugz-yu?, (4.54)

which is the nonlinear ordinary differential eqoatiproposed by Wen (1976, 1980) for 2.
The total hysteretic restoring force along the ldispment path of Figure 4.6 is illustrated in

Figure 4.7.

N

/ .
7 y

Figure 4.7. Hysteretic behavior under linear path.

The same is true for any value #ftherefore the restoring force is isotropic.

Nagarajaiah et al. (1991) have adapted the modddi&xial behavior to predict the dynamic
response of elastomeric bearings.

For an elastomeric bearing, the nonlinear restofimges along the orthogonal directioxs

andy can be described by the following equations:

F F
f=a—u+@l-a)—2z, (4.55)
y y

— Fy Fy
f,=a—u,+1-a)—2z, (4.56)

y y
where a is the post-yield to the pre-yield stiffness rattg is the yield forcey is the yield
displacementU, and u, represent the displacements of the isolation @ewicthex andy

directions, respectively. The functior® and z,, obtained by solving Equations (4.51) and

(4.52), respectively, have the unit of displacemsamd account for the direction and biaxial
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interaction of hysteresis forces. To account fer éffects of axial loadg , F,, andy have to

be adjusted based on experimental results (Bu2)1L9
Nagarajaiah et al. (1991) suggests the followirigesfor the model parameters:

A=10 :%, andy :0—'21.
y y

Constantinou et al. (1990) have adapted the DEMhemiaxial behavior developed by Park

et al. (1986) for modeling sliding bearings, susHrection pendulum bearings and flat sliding

bearings.

For a friction pendulum bearing, the nonlinearagsg forces along the orthogonal directions

x andy are described by the following equations:

=2, +%zx(u) , (4.57)

N UN
f=—u,+5~—2z(u), 458
R ,(U) (4.58)

y

whereN is the vertical load carried by the beariRgs the radius of curvature of the spherical

concave surface of the bearing, gads the sliding friction coefficient which depenads the

value of bearing pressure and on the instantaneslasity of slidingu, given by:

U= Ju?+12. (4.59)
X y

The functionsz, and z,, obtained by solving Equations (4.51) and (4.53pectively, have

the unit of displacement and account for the dioacand biaxial interaction of hysteresis
forces.
For a flat sliding bearing, the nonlinear restorfagces along the two orthogonal directions

andy are given by:

fy -#N z(u), (4.60)
y
f, :% z,(u). (4.61)
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4.3 Proposed Mathematical Models

In the following, four uniaxial mathematical modeteamely, Nonlinear Exponential Model
(NEM), Advanced Nonlinear Exponential Model (ANEMRarallel Model (PM), and

Advanced Parallel Model (APM), and one biaxial nemttatical model, namely, 2d Parallel
Model (2d PM), are presented. The ANEM and the Al an improved version of the
NEM and PM, respectively.

4.3.1 Uniaxial Models

4.3.1.1 Nonlinear Exponential M odel

Figure 4.8a shows the normalized symmetric softeriorce-displacement hysteresis loop
with bilinear characteristics typical of elastoneebearings, such as high damping rubber
bearings and lead rubber bearings, and metal deveteh as wire rope isolators, whereas
Figure 4.8b presents the normalized symmetric swite force-displacement loop having

rigid-plastic characteristics generally displayeg d&iding bearings, such as flat sliding

bearings. Each hysteresis loop can be decomposedhiree curves: the first loading curve

(portion a-b), namely, virgin curve, the unloadicyyve (portion b-c), and the loading curve
(portion c-d).

(@)

restoring force

displacement
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(b)

restoring force
o
|
|
|
|
|
|
|
|

displacement

Figure 4.8. Normalized hysteresis loop with (a) bilinear abiirigid-plastic characteristics.

The loading curve tangent stiffness of the two radired hysteresis loops shown in Figure
4.8 is plotted in Figure 4.9 as function of theibontal displacement. Since the tangent
stiffness functions of the loading and unloadingves are antisymmetric, only the former has
been plotted. It can be observed that, in both tases, the tangent horizontal stiffness

exponentially decreases with increasing displacémen

(@)

loading curve tangent stiffness

displacement
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(b)

loading curve tangent stiffness

displacement
Figure 4.9. Tangent stiffness variation of the loading cunithwa) bilinear and (b) rigid-plastic characteidst

The tangent stiffnesk, (U) can be expressed by the following two mathematizatessions,

valid for a loading and an unloading curve, respebt:
k(U) =k, + (K —k,) €, (u>0) (4.62)
k(U) =k, +(k —k,) €=, (u<0) (4.63)

where k; and k, are the initial and the asymptotic values of tegent stiffnessy, ., and
U, are the horizontal displacement values at the meagnt point of unloading and loading,

respectively, and is a parameter that defines the transition figno k, .

Integrating Equations (4.62) and (4.63):

T [k2 +(k, —k,) gt ]du, (u>0) (4.64)

Upin

T [k, +(k,—k,) €= Jau, (U<0)  (4.65)

the following nonlinear hysteretic restoring forsebtained:
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fh(u) = fh(umin)+k2 (u_umin) _g[e_a(u_umn) _1]! (U >O) (466)

0= o) ke (U0 + 2 [ -1]. @<0) (67
Equations (4.66) and (4.67) can be written in aeremmpacted form as follows:
— . b -sgn(u)a(u-uy)
fo(u) = f, +k;, (U-u,) _Sgn(u)g[e -1, (4.68)

where (U,, f,) is the most recent point of load reversal.

According to Masing’s rule, the virgin curve can lobtained applying a similitude

transformation of ratio 0.5 to the generic loadanginloading curve of the nonlinear restoring

force f, (u). This means that for a givenon the virgin curve, whene is computed starting

from zero, the corresponding tangent stiffn&sfu) must be equal to the one obtained from

the generic loading or unloading curve for a vatbfe2u. For this reason, if the initial
displacement of the bearing is equal to zero, tinginv curve can be evaluated using the

following expressions, valid for a loading and aroading curve, respectively:

— _i -2au _ .
f(U) =k, U 2a[e 1], (>0 (4.69)

f(U)=k, u+2—ba[e2"ﬂ‘u -1]. (w<0) (4.70)
Equations (4.69) and (4.70) can be written in aertmmpacted form as follows:
— . b —sgn(u)2au
f. (u) =k, u—sgn(u)g[e —1]. (4.71)

The area within a force-displacement hysteresip,ldbat is, the value of the dissipated

energy in one cycle of motion, can be evaluated as:

Ey = )+ (U= t) 2 [ €207 =1 o -
(4.72)

umax

f(u_)-K, (um—u)+9 g —1 |du
a

Urrin

85



Chapter 4 | Mathematical Modeling of Seismic Ismisit

which gives:

E, = 4k, U, +i—? g 2%m —1 +4?b U =4 (U ) Un, - (4.73)
It is worth to notice that the proposed analytiocaddel requires the evaluation of only 3
parameters, that ik, , k,, anda, whereas in the widely used uniaxial differengguation
BWM (Bouc 1971, Wen 1976, 1980) the number of patans to be identified is equal to 7
for both elastomeric and sliding bearings (Congtant et al. 1990, Nagarajaiah et al. 1991)
and wire rope isolators (Demetriades et al. 198B8addition, the presented model allows one
to reduce the computational effort of a nonlinearet history analysis by avoiding, for each
time step, the numerical solution of the first ardenlinear ordinary differential equation
required by the BWM to evaluate the hystereticalalg.
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4.3.1.2 Advanced Nonlinear Exponential Model

Figure 4.10a shows the typical normalized symmédirice-displacement hysteresis loop
displayed by seismic isolators having post-hardghiehavior at large displacements, such as
high damping rubber bearings and wire rope isadatwhereas Figure 4.10b shows the typical
normalized symmetric force-displacement loop ofsisec isolators with post-softening

behavior at large displacements, such as unbouedgdled rubber-fiber reinforced bearings.

(@)

restoring force

(b)

restoring force

displacement

Figure 4.10. Normalized hysteresis loop with (a) post-hardergingd (b) post-softening characteristics.
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The loading curve tangent stiffness of the two radired hysteresis loops shown in Figure
4.10 is plotted in Figure 4.11 as function of theirontal displacement. Since the tangent
stiffness functions of the loading and unloadingves are antisymmetric, only the former has

been plotted.

(@)

05N\

loading curve tangent stiffness

(b)

0.5 - N

loading curve tangent stiffness

displacement

Figure 4.11. Tangent stiffness variation of the loading cunithya) post-hardening and (b) post-softening

characteristics.
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The increase or decrease of the tangent stiffreas®e simulated by connecting in parallel to
the proposed NEM, a nonlinear elastic spring haangngent stiffness function given by the

following mathematical expression:
k(u)=c(e"" -1, (u>0)
k(u)=c(e""-), (u<Q)

wherec andd are two parameters of the proposed exponentiatifum
Integrating Equations (4.74) and (4.75):

jf[c(edm—l)]du, (u>0)
f[c(e-dm—n] du, (u<0)

the following nonlinear elastic restoring forceolstained:

f(u)= -cu +§(e““‘—l), (u>0)

f(u)= —cu —g(e'dm—l). (u<0)

Equations (4.78) and (4.79) can be written in aerammpacted form as follows:

f.(U)= -cu +sgn(u)§[e59“<“>d“ 1.

Hence, the nonlinear total restoring force of ars& device is:
f(u) = f,(u) + f(u),

where f, (U) is given by Equation (4.68).

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

(4.80)

(4.81)

Figures 4.12a and 4.12b show the two componerttseafionlinear total restoring force(u)

at large displacements, namely, the nonlinear hgtteforce f,(U) and the nonlinear elastic
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force f,(u), in the case of force-displacement loop with gustening and post-softening

characteristics, respectively.

(@)
()
o
Ke)
(@]
£
o
7]
Qo

displacement
(b)

restoring force

displacement

Figure 4.12. Total restoring force components for hysteresig lwith (a) post-hardening and (b) post-softening

characteristics.
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Figure 4.13 shows the mechanical model postulatedgresent the 1d dynamic response of
seismic isolators with hardening or softening bébraat large displacements. The model
comprises a uniaxial Nonlinear Hysteretic SprindH@ and a uniaxial Nonlinear Elastic

Spring (NES) in parallel and two rigid columns regenting the heiglit of the bearing.

column
—-— NHS
-— NES
column

Figure 4.13. 1d mechanical model.

As it will be shown in Chapter 5, the mathematiceldel expressed by Equation (4.81) can
capture the smooth transition of the hysteresigpdofrom the small to large horizontal
displacement levels by using the same set of 5npetexs, that isk,, k,, a, ¢, andd,

identified from the experimental loops with theglest amplitude. Finally, it has to be noted
that the axial load effects in the isolator devian be accounted for by adjusting the

appropriate model parameters.
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4.3.1.3 Parallel Modd

In this section, a 1d PM is proposed to reprodiheedynamic behavior of seismic isolators
having a continuously decreasing tangent stiffngesgrally displayed within the relatively
large displacements range.

4.3.1.3.1 Parallel Modeling of Inelastic Material Behavior

Hysteretic curves with continuously decreasing ¢amgstiffness can be easily discretized
using the parallel modeling concept. The basic idda consider purely elastic elements and
elastic-perfectly plastic elements connected iralper all having the same deformation but
each carrying a different force. The total forceirer on the parallel assemblage is then
obtained by summing the forces acting on each eleme

Parallel modeling has been already used in thefpasépresenting the mechanical behavior
of inelastic materials. The idea of effective séréstroduced by Terzaghi to describe the
behavior of wet soils is essentially a parallel elp@s water and soil fabric both carry the
total stress. The concept was first formalized bpM(1963) in treating nonassociated flow
plasticity and then used by Owen et al. (1974) Badde et al. (1977) to achieve a better
representation of actual material behavior throaghumber of overlays of simple models.
Nelson and Dorfmann (1995) have used parallel madlieal models in incremental
elastoplasticity to represent strain hardening etais and to develop models of frictional
materials such as soils, rock and concrete.

In what follows, the parallel modeling conceptirstfpresented through a simple 1d example.
Figure 4.14a shows the 1d stress-strain curvewbrk hardening material which is elastic

with Young’s modulus up to a yield stresg, and presents a tangent stiffndss< E above

the yield stress. The material is assumed to haeesame yield stress in compression as in
tension and to exhibit kinematic hardening, thathe difference between the stresses which
limit the elastic range remains constant durindicyjoading. A mathematical representation

of the elasto-plastic response of the materialhma in the schematic diagram of Figure

4.14d, where an elastic element with Young’'s mosiuly (Figure 4.14c) is connected in
parallel to an elastic-perfectly plastic elementihg elastic stiffness=—E and a yield stress

@-E/E)o, (Figure 4.14b). The parallel model does not omgroduce the stress-strain
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curve during the loading, but also the behavioirduunloading and cyclic loops as well as
kinematic hardening.

(a)
OAN
O-max __________________
Oy| _ E: E
| l :
/’ E N
y . g
(b)
OAN
(l—Et/E) Oy
iE—Et /
/ 8)’ / Emax E
(©)
oA\
Eé&max oo
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(d)
E:
/\/\/\ OEL
o o o
PL OrL
E-FE. O = Oy

Figure 4.14. Parallel modeling of a 1d stress-strain curveafarork hardening material (two elements case).

The previous simple two-element model can be egsiheralized to the case of a multilinear
1d stress-strain curve, using one elastic elenmahidinite number of elastic-perfectly plastic
elements connected in parallel. As shown in Figudb for the case of four constitutive
elements, the initial stiffness of the paralleleasblage is the sum of the elastic stiffness of
each element. As the carried load increases, ddtte @lasto-plastic elements yields and the
total stiffness correspondingly decreases.

ON

™ WV

Figure 4.15. Parallel modeling of a 1d stress-strain curveafarork hardening material (four elements case).

It is easy to understand that 1d curves with cowtiisly decreasing stiffness, like those
exhibited by isolation bearings, can be effectivapproximated through parallel modeling

using a sufficiently high number of constitutivemlents.
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4.3.1.3.2 Application of Parallel Modeling to Seismic I solators

The continuously decreasing tangent stiffness, rgdigadisplayed by seismic isolators within
the relatively large displacements range, can Ipeessed by the following two mathematical

expressions, valid for a loading and an unloadunge, respectively:
ka(U) =k, +(k, —k,) e @) (u>0) (4.82)
ka(U) = K, +(k —k,) €73 =", (u<0) (4.83)

where Kk, and k_ are the initial and the asymptotic values of thegémt stiffnessU, ., and
U,, are the displacement values at the most recenit pufi unloading and loading,

respectively, and, is a parameter that defines the transition filgnto k_ .

Equations (4.82) and (4.83) can be written in aenmmpacted form, valid for a generic

loading or unloading curve obtained during cyadisting on a single seismic isolation device:
k,(u) =k, +ae ™, (4.84)

wherea=k, —k_ andu is evaluated starting from the latest point ofoaaling or reloading.

Figure 4.16 shows a plot of the tangent stiffnesetion k,,(u) given by Equation (4.84).

ke (u) 4

7

\ 4

Figure 4.16. Plot of the tangent stiffness functidey (u) .
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The proposed continuously decreasing tangent sfifffiunction can be approximated through
a piecewise constant function with-1 equally spaced decreasing valuekgfu), as shown

in Figure 4.17.

kzl (I/t) /

el |

\4

Figure4.17. Continuous and discretized tangent stiffness fandk; (u) .

Assumingda =al/N, the discretized tangent stiffness values are:

Koo = k. +a, (4.85)

Kos = K, +(N-1)4a, (4.86)
kKiz = Ko +(N=2) 4a, (4.87)
s (4.88)

Kane = K, +4a, (4.89)
Kan = Ke (4.90)

and the corresponding values of the displacemest®latained by solving Equation (4.84)

with respect tau:

-k
Uy, =-ilog(bj j=01,2,.,N-1. (4.91)
C a
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Thus, the expression of the tangent stiffndggu) can be approximated through the

piecewise constant function given by:

usuy - ky(U) =ky=k, +a, (4.92)
W Su<uy - Kg(u) = ky, (4.93)
Up Su<uy’ - kg(u) = Ky, (4.94)

o (4.95)

Uy su<uy - K (W) = Ky (4.96)

Uz uy - kg(u) =kgy =k, (4.97)

where the limit displacement values are:

| Yoty ’ (4.98)
2
u' = Uy, + U, , (4.99)
2
| (4.100)
u- =Um+lﬁwl , (4.101)
W = Uinor s (4.102)

and a IS an appropriate constant.
The above-described discretization of the tangéffhass function k,(u) allows one to

simulate the dynamic behavior of seismic isolatithin the relatively large displacements

range by adopting a parallel assemblage made ofldnelastic element, having stiffness

ky = K., andN 1d elastic-perfectly plastic elements, havingrsi$sk,,, = da, when in the

elastic state, and yielding displacement for i =1,11,...,N . Thus, the nonlinear hysteretic
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restoring force of the seismic isolation device banobtained by summing the forces acting

on each element. More specifically, the generidilog curve can be evaluated as:
f(U) = £ (Upn) + fo (U=Upp) + Ty (U= Upy) . (U>0) (4.103)
where the restoring force of the 1d elastic elensegiven by:
fo(u-u,,) =k, (u-u,,), (4.104)

whereas the total restoring force of théd elastic-perfectly plastic elements is obtaiasd
N
fopror (U= Upin) = D fopi (U=Upy) (4.105)
i=l

in which the restoring force of theh 1d elastic-perfectly plastic element is evaddads:

Aa(u_umin) If (u_umin)<u'i1

_ _ . (4.106)
da u if (u-u,)>u

fep,i (U - umin) = {

The generic unloading curve is given by:
f(u) = f, (Up) = o (U —U) = fop i (Ui 1), (U<0) (4.107)
with the restoring force of the 1d elastic elengamén by:
fo (Upax —U) =K, (U —U) (4.108)

and the total restoring force of theld elastic-perfectly plastic elements obtained as:

N

fep,tot (un‘ax - U) = Z fep,i (umax - U) ! (4109)

i=1
where the restoring force of tith 1d elastic-perfectly plastic element is evatdaas:

da(u, —u) if (u_ -u)<y

_ _ . (4.110)
da u if (U, —U)>u

fep,i (umax - U) = {

Equations (4.103) and (4.107) can be written inarercompacted form, valid for a generic

loading or unloading curve:
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f,(u) = f, (u,) +sgn(u) f, [sgn(u) (u—u,)]+sgn(V) fy, . [san) (u-u,)], (4.111)
in which;

fe[san(v) (u-u,)] =k, sgn(@) (u-u,), (4.112)
o500 @=0)] =Y. 1, o0 0-u,)], (4.113)

Adasgn(u) (u=uy) if [sgn(u) (u-u,)]< Uil_ . (4114)

o [SON(U) (U-u,)] = { Aau, if [sgn(u) (u-u,)]>u;

and u, is the value of the displacement at the latesttpoi unloading or reloading, that is,

U, andu,. , respectively.

min ?
According to Masing’s rule, the first loading curugamely virgin curve, can be obtained
from the generic loading curve from a similitudansformation of ratio 0.5. This means that
for a givenu on the virgin curve, where is computed starting from zero, the corresponding
tangent stiffness must be equal to the one obtdnoed the generic loading curve for a value
of 2u. Thus, in order to obtain the tangent stiffnessthe virgin curve, it is just necessary to

substitutec, with 2 ¢, in Equation (4.84):
k,(u) = k, +ae?®", (4.115)

Figures 4.18 and 4.19 show the nonlinear hystefetice f,(u) having bilinear and rigid-
plastic characteristics, respectively, simulatedptithg 5 and 50 1d elastic-perfectly plastic
elements, that ig\ = 5 andN = 50.

It is worth to notice that the proposed mathematicadel requires the evaluation of only 3

parameters, that ik, k,, andc,, whereas in the widely used uniaxial differenggliation

BWM (Bouc 1971, Wen 1976, 1980) the number of paians to be identified is equal to 7

for both elastomeric and sliding bearings (Congtant et al. 1990, Nagarajaiah et al. 1991)
and wire rope isolators (Demetriades et al. 198B8addition, the presented model allows one
to reduce the computational effort of a nonlinearet history analysis by avoiding, for each

time step, the numerical solution of the first ardenlinear ordinary differential equation

required by the BWM to evaluate the hystereticafalg.
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Figure 4.18. Nonlinear hysteretic forcd, (u) having bilinear characteristics simulated adopting

=50.
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(@)
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(b)

0.5

|
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displacement

Figure 4.19. Nonlinear hysteretic forcd, (u) having rigid-plastic characteristics simulated @ttty

=50.
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4.3.1.4 Advanced Parallel M odd

In the following, the proposed 1d PM is modifiedarder to reproduce the dynamic response
of seismic isolators with post-hardening or podtesong behavior at large displacements.
The increase or decrease of the tangent stiffnegdagied at large displacements can be

obtained by summing the following mathematical esgions to Equation (4.84):
ko(U)= -c,+c,e™", (u>0) (4.116)
ko(U)= -c,+c,e ™", (u<0) (4.117)

wherec, andC; are two parameters of the proposed exponentiatifum

Equations (4.116) and (4.117) can be written inarentompacted form, valid for positive or

negative displacement values:
k,(Uu) = —c, +c, ey, (4.118)

Figure 4.20 shows a plot of the tangent stiffnesstion k,(u) , given by Equation (4.118),

obtained for positive values of the parametgrand C,.

ki (u)

Cd

v

Figure 4.20. Plot of the tangent stiffness functidg,(u) obtained forc, >0 andc, >0.
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The proposed continuously increasing or decreasamgent stiffness function given by
Equation (4.118) can be approximated through aepiese constant function witll equally

spaced increasing or decreasing valueskgfu) . Figure 4.21 shows the continuous and

discretized increasing tangent stiffness functibtamed for positive values @, andc;.

k[2 (I/l) /A

\
kzz,M
______________________________________________________________ k_ éz_)M___l
AbI ________________________________________________________________ b
L N .
_____________________________________________ k:z,z oo
- ktz,l ! ! roa
1 k;z,() : : . L oaN
Cd
o T

Figure 4.21. Continuous and discretized increasing tangerihest functionk;,(u) obtained for

c, >0 and ¢;>0.

Assuming4b =b/M , the discretized tangent stiffness values are:

Ko =0, (4.119)

K, = 4b, (4.120)

ko, =24b, (4.121)

. (4.122)

Kom-1 = (M =1) 4b, (4.123)
Kow = M 4b = b, (4.124)

and the corresponding values of the displacemeartslatained by solving Equation (4.118)

with respect tau:
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1 kt . +cC )
Uy, :C—|09(%J j=012...M. (4.125)
3 2

Thus, the expression of the tangent stiffndggu) can be approximated through the

piecewise constant function given by:

usu, - ky(U) =Kk, (4.126)

U S U<U - Ky(U) = Ky, (4.127)
U S U<u' - ky(U) = kg, (4.128)
. (4.129)

Uyt u<uy - ky(u) = Koo, (4.130)
uzu' - ky(u) =k,, =b, (4.131)

where the limit displacement values are:

U = Uz,o’; Uzs (4.132)

u = Uz;"z'uz,z' (4.133)

L (4.134)

ot = Uy, —2;U2M—1 , (4.135)
o = Uz,M—12+ Yo (4.136)

The above-described discretization of the tangéffnass functionk.,(u) allows one to

obtained a nonlinear elastic force by adopting el assemblage made df 1d linear

elastic gap elements, having stiffnesk,; = 4b and gap length equal to

u,, for i =1,11,...,M. More specifically, the nonlinear elastic force t@nevaluated as:
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f2(u) = fge,tot (U) ' (4137)

where the total restoring force of thkld linear elastic gap elements is given by:
M
Faesor (U) =D Foei (U) (4.138)
i=l

in which the restoring force of theh 1d gap element is evaluated as:

W)= 0 if |u <u, (4.139)
ger W Ab[u—sgn@)u‘z] if Ju>u, '

Hence, the nonlinear total restoring force of areét device can be calculated as:
f(u)= f(u)+ f,(u), (4.140)

where f,(u) is given by Equation (4.111).
Figures 4.22a and 4.22b show the two componerttseafionlinear total restoring force(u)
at large displacements, namely, the nonlinear hgtiteforce f,(u) and the nonlinear elastic

forcef,(u), in the case of force-displacement loop with gwaidening and post-softening

characteristics, respectively, obtained adopting bad elastic element, 5 1d elastic-perfectly

plastic elements, and 5 1d linear elastic gap adsnéhat isN =5 andM = 5.

(@)

restoring force

displacement
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(b)

restoring force

displacement

Figure 4.22. Total restoring force components for hysteresig lwith (a) post-hardening and (b) post-softening
characteristicsN = 5,M = 5).
Figures 4.23a and 4.23b show the two componerttseafionlinear total restoring force(u)

at large displacements in the case of force-digpiant loop with post-hardening and post-
softening characteristics, respectively, obtaindabting one 1d elastic element, 50 1d elastic-

perfectly plastic elements, and 50 1d linear etagdp elements, that i¥,= 50 andV = 50.

(@)

restoring force

displacement
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(b)

restoring force

displacement

Figure 4.23. Total restoring force components for hysteresig lwith (a) post-hardening and (b) post-softening
characteristicsN = 50,M = 50).

As it will be shown in Chapter 5, the mathematicadel expressed by Equation (4.140) can

capture the smooth transition of the hysteresigpdofrom the small to large horizontal
displacement levels by using the same set of 5npetexs, that isk;, k., ¢, ¢,, and G;,

identified from the experimental loops with theglest amplitude. Finally, it has to be noted
that the axial load effects in the isolator devian be accounted for by adjusting the
appropriate model parameters.
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4.3.2 Biaxial M odél
4.3.2.12d Paralld Modd

In what follows, the parallel modeling of the ingtia material behavior is extended to the 3d
case and the proposed PM is improved in order poesent the coupling of the nonlinear

restoring forces along two orthogonal horizonta¢diions.
4.3.2.1.1 Parallel Modeling of Inelastic Material Behavior

The parallel modeling concept presented in 4.3l118ing a 1d representation can be
extended to 2d or 3d without difficulty.

By considering the case ®f elastic-perfectly plastic 3d elements and onetielasement
connected in parallel, at each step of an increaheasto-plastic analysis, all the elements

have the same incremental strain tensor components:

whereas the increments of stress tensor comporeanted by each element are summed

together to obtain the total incremental stressdenomponents:
do, = dg +dg' +...+dg +dg’. (4.142)

In the above, the total incremental strain andssttensor components are indicated without
apex, whereas the apicés .., refer to each elastic-perfectly plastic elemerd #me
apex® to the elastic element.

Denoting with [Ce'J the symmetric positive definite 6x6 stiffness matf the elastic element

and with {dae'} and {dee'} the corresponding 6x1 vectors of incremental strasd

incremental strain components, respectively, weehav
{do®} =|c®|{de}. (4.143)

Regarding th&-th elastic-perfectly plastic element, its behawsoassumed to depend on the

state of stress only, represented by the 6x1 ve{cmﬁ} of the stress tensor components, and
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is determined by the value assumed by a scalad igliction (). If f(og*)<O0, the

behavior is elastic:
{do*}=|c*[{de"}, (4.142)

where ICKJ is the element stiffness matrix in the elastictestaWhen f(o*)=0, the

plasticity mechanism becomes active and an increaheiastic flow, denoted b{/deK‘p' }

may occur, which in that case is added to the mergal elastic strain vector. In other words:
{de¥}={de**} +{de"}, (4.145)

where
{de*e} = [c¥|™ {do*]. (4.146)

Plastic flow occurs wherf (6 ) =0 and the incremental stress vec{cdaK} lies in the

tangent plane to the yield surface. Mathematidaily is expressed by:
{0} {do*} = 0, (4.147)

with {Elf} the 6x1 gradient vector of the yield function.tms way, for an infinitesimal

{dJK } the state of streisa'( +d0’K} is still represented by a point on the yield stefaas:
f(o +do®) = f(o*)+{0f} {do*} = 0. (4.148)

When f(g")=0 and{Df}T{daK} < 0, the behavior is elastic and Equation (4.144) is

valid, whereasf (") =0 and{ Df}T{dJK} > 0 is not permitted because this would imply

a change of the yield surface, which is not allowad to the hypothesis of perfect plasticity.

Assuming an associated plasticity law, the incremlguiastic flow is given by:
{de®?} = aa{of}, (4.149)

where d4 is an undetermined positive quantity. In otherdsoithe plastic strain incremental
vector is always perpendicular to the yield surface
According to Equations (4.145), (4.146), and (4)18 have:
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{dex} ={de e} + {de*r} = [c¥]™ {do*} + m{ 0}, (4.150)
which can be rearranged by solving with respedida™ -
{do*} = |c*|{de*} - ar |c¥|{oH}. (4.151)
Once{ ds* } is known, the value ofl can be determined from Equation (4.147):
(o} {do*} = {0} ([c¥] {de*} - a1 [c¥]{x}) = o, (4.152)

which gives:

(4.153)

It can be noted that, when plastic flow occurss ipossible to define a tangent elasto-plastic

stiffness matrixlC K'ep] such that:
{do*} = |cke|{de¥], (4.154)
obtained from Equations (4.151) and (4.153) anchkiqu

ooy

e S CGaIE

(4.155)

In summary, for a given incremental strain vec{(ﬂf}, it is possible to compute the

corresponding incremental stress vector for alleleenents of the parallel assemblage. This is
given by Equation (4.143) or (4.144), respectivélyhe element is elastic or is elasto-plastic
with an elastic response, or by Equation (4.154gmthe element is elasto-plastic and plastic

flow is occurring.
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4.3.2.1.2 Application of Parallel Modeling to Seismic I solators

In what follows, the presented 1d PM is extendedht® 2d case to take into account the

transverse biaxial interaction between the nontinegsteretic restoring forces along the

orthogonal directions andy, namely, f,(u,) and f (u,).

The discretization of the tangent stiffness funetlg,, described in 4.3.1.3.2, allows one to
simulate the 2d dynamic behavior of seismic isotatdevices within the relatively large
displacements range by adopting a parallel assgmbtzade of one elastic element, having

stiffness ky = K, andN 2d elastic-perfectly plastic elements, havingfrstiés Kpi = 42,
when in the elastic state, and yielding functibh+ f* - (dau; )?, for i =1,11,...,N.

The nonlinear hysteretic restoring forces of thisrag isolator can be obtained by summing
the forces acting on each element. More specifictie generic loading curves alorg@ndy
directions can be evaluated as:

f f i f - i f ot x WUy = Uy
x(ux) — x(uxmn) + ex(ux uxmln) + ep,tot ( ) , (4156)
fy(uy) fy(uymin) fey(uy _uymin) eptoty(u _uymin)
where the restoring forces of the elastic elemengaven by:

fo (U, —

ex

) k (U xmin) ! (4157)

fey(uy a uymin) = koo (uy - uymin) ) (4.158)

whereas the total restoring forces of fh2d elastic-perfectly plastic elements are:

ep,tot x U _uxmn) e x,i U _uxmin)' (4159)

..Mz

N
fep,toty(uy ymm) Z fepy| (U - uymm) ) (4160)

in which the restoring forces of tivth 2d elastic-perfectly plastic element are evi@ldas:

Aa(U, ~Ug) I 2+ f2—(dau})? <0

u, -u, . )= _ : , 4.161
epXI( xmm) {Aa Ui |f fX2+fy2—(AaU|1)2:0 ( )
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Aa(u, -u,,) if f2+f2-(daul)? <0

f (u-u_.)= . : . 4.162
epy,l( y ymm) {Aa Ui If fX2+fy2—(Aan)2:0 ( )

The generic unloading curves alaxngndy directions can be evaluated as:

{ fx(ux)} — { fx(uxmax)} _ { fex (uxmax - ux)} _ { pr,totx(uxmx - ux)} ' (4163)
f,(uy) fy (Uy ) foy (Uym —Uy) fep,toty(uymax - uy)
where the restoring forces of the elastic elemengaven by:
Fox (Unmax = Uy) = Koy (Uy e — Uy ) s (4.164)
foy (U —Uy) =K, (U —U), (4.165)

whereas the total restoring forces of Mh&d elastic-perfectly plastic elements are:

N
fep,totx(uxrrax - ux) = Z fepx,i (uxmax - ux)a (4166)
i=1

N

fep,toty(uymax - uy) = Z fep y,i (uymax - uy) ’ (4.167)

in which the restoring forces of tiwth 2d elastic-perfectly plastic element are evi@das:

da(u,, -u) if f2+f2-(dau)*<0
foi (U —U) = e D . , 4.168
er,I( X max x) {Aa u|1 |f fX2+fy2_(AaU|1)2:O ( )
0= Aa(Uym —U,) if f2+f2—(daul)?<0 4.169)
Pyt ymec T au) if f2+f72-(dau})?=0" '

Equations (4.156) and (4.163) can be written inarercompacted form, valid for a generic

loading or unloading curve:

{fx(ux)} _ { fx(uxlr)} + { fex(ux - u><Ir }4_ {Sgn(ux) fep,totx[sgn(ux) (ux - u><Ir )]

) L] | e, — )| |san() fo e, lson(,) u, -u,,))]

} , (4.170)
in which:

fex(ux - uxlr) = koo (ux - l'ler) ’ (4171)
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fey(uy - uylr) = koo (uy _uylr) ’ (4172)
N
fep,tot x[ Sgn (ux) (ux _uxlr) ] :Z fepx,i [Sgn (ux) (ux _uxlr) ] ! (4173)
i=l
N
fapir | SO () (U, =) | =Y Fpys [sON(0) (0, -0 |, (4.174)
i=l
. dasgn(u,)(u,-u,) if f2+f>-(dau)*<0
o [SIN(0) (U, = y,)] = i A v (4.175)
da u, if fo+f,—(dau )" =0
_ dasgn(u,) (u, —u,,) if f2+f?-(dau )’ <0
f - = YAy e X y : , (4.176
o [50008,) (1, =ty {Aa u 12+ 12-(sau ) =0’ 17O

whereu,,, andu,, are the values of the displacement algramndy directions, respectively,

ylr
at the latest point of unloading or reloading.

According to Masing’s rule, the first loading curweamely virgin curve, can be obtained

from the generic loading curve from a similitudansformation of ratio 0.5. This means that
for a givenu on the virgin curve, where is computed starting from zero, the corresponding
tangent stiffness must be equal to the one obtdnoed the generic loading curve for a value

of 2u. Thus, in order to obtain the tangent stiffnegsstiie virgin curve, it is just necessary to

substitutec, with 2 ¢, in Equation (4.84).
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4.4 Comparisons between DEMs and Proposed Mathematical M odels

4.4.1 Comparison between BWM and NEM

Figure 4.24 shows a symmetric softening force-disgent hysteresis loop with bilinear
characteristics, typical of elastomeric bearingsghsas high damping rubber bearings and
lead rubber bearings, and metal devices, such es npe isolators, simulated using the
differential equation BWM and the proposed NEM. Madues of the parameters adopted in

the two analytical models are listed in Table 4.2.

Table4.2. BWM and NEM parameters | Hysteresis loop withnigiéir characteristics.

BWM fy IN] uy [m] a A B y n
45400.29  0.0171 0.10 1 0.5 0.5 2
NEM K, [N/m]  k, [N/m] a
4513479 265498 50

restoring force

displacement

Figure 4.24. Symmetric softening hysteresis loop with bilineharacteristics simulated adopting the BWM and

the proposed NEM.

Figure 4.25 presents a symmetric softening forepldcement hysteresis loop having bilinear

characteristics and a very high value of the ihsi#fness, generally displayed by friction
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pendulum bearings, simulated using the BWM andpttoposed NEM. The adopted models

parameters are listed in Table 4.3.

Table4.3. BWM and NEM parameters | Loop with bilinear ch&eastics and high initial stiffness.

BWM N [N] R [m] u, [m] U A Ji; y n
265976 1.5522 0.0001 0.06 1 0.5 0.5 2
NEM k, [N/m]  k, [N/m] a
28756272 171354 850

restoring force

displacement

Figure 4.25. Symmetric softening hysteresis loop with bilinebaracteristics and very high initial stiffness

simulated adopting the BWM and the proposed NEM.

Figure 4.26 shows a symmetric softening force-disgent hysteresis loop having rigid-
plastic characteristics, generally displayed by dlaling bearings, simulated using the BWM
and the proposed analytical model. The parametiwptad in the two models are listed in
Table 4.4.

Table4.4. BWM and NEM parameters | Hysteresis loop withdriglastic characteristics.

BWM N [N] uy [m] H A B y n
265976  0.0001 0.06 1 0.5 0.5 2
NEM k; [N/m]  k, [N/m] a
14362714 0 850
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restoring force

displacement

Figure 4.26. Symmetric softening hysteresis loop with rigidgtia characteristics simulated adopting the BWM

and the proposed NEM.

The theoretical force-displacement hysteresis Iqopsluced by use of the BWM and NEM
have been obtained, as done in experimental tegtsapplying a sinusoidal harmonic
displacement having amplitude equal to 0.50 m asgliency of 0.40 Hz.

It is worth to notice that the proposed analytiocaddel requires the evaluation of only 3
parameters whereas in the BWM the number of paeméd be identified is equal to 7 for
elastomeric bearings, flat sliding bearings, ancewope isolators, and equal to 8 for friction
pendulum bearings. In addition, it has to be ndked the proposed analytical model allows
one to reduce the computational effort of a nomlingme history analysis by avoiding, for
each time step, the numerical solution of the fostler nonlinear ordinary differential

equation required by the BWM.
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4.4.2 Comparison between BWM and PM

Figure 4.27 shows a symmetric softening force-disgent hysteresis loop with bilinear

characteristics, typical of elastomeric bearingsghsas high damping rubber bearings and
lead rubber bearings, and metal devices, such es npe isolators, simulated using the

BWM and the proposed PM. The values of the parasmetdopted in the two models are

listed in Table 4.5. In the PM, 50 1d elastic-pettieplastic elements have been used, that is,
N = 50.

Table4.5. BWM and PM parameters | Hysteresis loop with baincharacteristics.

BWM fy [N] uy [m] a A B y n
45400.29  0.0171 0.10 1 0.5 0.5 2
PM Ko [N/m] Kk, [N/m] o)
4513479 265498 50

restoring force

-1 -0.5 0 0.5 1
displacement

Figure 4.27. Symmetric softening hysteresis loop with bilineharacteristics simulated adopting the BWM and
the proposed PM witN = 50.

Figures 4.28a and 4.28b show the same force-deplawt hysteresis loop simulated
adopting 5 and 100 1d elastic-perfectly plastienapts, respectively, in the proposed PM.
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(@)

restoring force

1 0.5 0 0.5 1
displacement

(b)

restoring force

-1 -0.5 0 0.5 1
displacement

Figure 4.28. Symmetric softening hysteresis loop with bilinebaracteristics simulated adopting the BWM and
the proposed PM with (& = 5 and (b)N = 100.
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Figure 4.29 presents a symmetric softening forepldcement hysteresis loop having bilinear
characteristics and a very high value of the ihsi#fness, generally displayed by friction
pendulum bearings, simulated using the BWM andpituposed PM. The adopted models
parameters are listed in Table 4.6. In the PM, 8Celastic-perfectly plastic elements have
been used, that il = 50.

Table 4.6. BWM and PM parameters | Loop with bilinear chaggstics and high initial stiffness.

BWM N [N] R[m] u, [m] U A B y n
265976 1.5522 0.0001 0.06 1 0.5 0.5 2
PM Ko [IN/m] Kk, [N/m] o)
28756272 171354 850

restoring force

-1 -0.5 0 0.5 1
displacement

Figure 4.29. Symmetric softening hysteresis loop with bilineharacteristics and very high initial stiffness
simulated adopting the BWM and the proposed PM With50.

Figures 4.30a and 4.30b show the same force-deplawt hysteresis loop simulated
adopting 5 and 100 1d elastic-perfectly plastiecnapts, respectively, in the proposed PM.
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(@)

restoring force

1 0.5 0 0.5 1
displacement

(b)

restoring force

-1 -0.5 0 0.5 1
displacement

Figure 4.30. Symmetric softening hysteresis loop with bilinebaracteristics and very high initial stiffness
simulated adopting the BWM and the proposed PM {@)iN = 5 and (b)N = 100.
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Figure 4.31 shows a symmetric softening force-disgnent hysteresis loop having rigid-
plastic characteristics, generally displayed by dlaling bearings, simulated using the BWM
and the proposed mathematical model. The paramederged in the two models are listed in
Table 4.7. In the PM, 50 1d elastic-perfectly ptastements have been used, thaNis, 50.

Table4.7. BWM and PM parameters | Hysteresis loop with kjgfiastic characteristics.

BWM N [N] uy, [m] a A B y n
265976  0.0001 0.06 1 0.5 0.5 2
PM Ko [N/m] Kk, [N/m] (o)
14362714 0 850

restoring force

3 - [m=BWM
) 3 3 ..... PM | N =50
st -0.5 0 0.5 1

displacement

Figure 4.31. Symmetric softening hysteresis loop with rigidgtia characteristics simulated adopting the BWM
and the proposed PM witk = 50.

Figures 4.32a and 4.32b show the same force-deplast hysteresis loop simulated
adopting 5 and 100 1d elastic-perfectly plastieraets, respectively, in the proposed PM.
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(a)
o | |
o | |
E | |
o 1 |
E 0 77777777 : 777777777 [ : 777777777
B | | |
17 | | |
= | | |
B T —
| | — WM
) | s PM|N=5
] 0.5 0 0.5 1
displacement
(b)

restoring force
o
|
|
|
|
|
|
|
|

| " [=BWM
, 3 | PM | N = 100
] -0.5 0 0.5 1

displacement

Figure 4.32. Symmetric softening hysteresis loop with rigidgtia characteristics simulated adopting the BWM
and the proposed PM with (&)= 5 and (b)N = 100.
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The theoretical force-displacement hysteresis Iqmosluced by use of the BWM and PM
have been obtained, as done in experimental tegtsapplying a sinusoidal harmonic

displacement having amplitude equal to 0.50 m asgliency of 0.40 Hz.

It is worth to observe that the proposed mathembltmdel requires the evaluation of only 3
parameters whereas in the BWM the number of paemébd be identified is equal to 7 for
elastomeric bearings, flat sliding bearings, ancewope isolators, and equal to 8 for friction
pendulum bearings. In addition, it has to be ndteat the proposed mathematical model
allows one to reduce the computational effort abalinear time history analysis by avoiding,
for each time step, the numerical solution of tist forder nonlinear ordinary differential

equation required by the BWM.
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4.4.3 Comparison between MBWM and ANEM

Figure 4.33 shows a symmetric force-displacemenstengsis loop, displayed by seismic
isolators having post-hardening behavior at laigpldcements, such as high damping rubber
bearings and wire rope isolators, simulated udnegMBWM and the proposed ANEM. The

values of the parameters adopted in the two acalytmodels are listed in Table 4.8.

Table 4.8. MBWM and ANEM parameters | Hysteresis loop witlstgeardening characteristics.
MBWM  f, [N] uy [m] a A B y n o) c,
2025 0.0015 0.2407 1 0.9 0.1 2 1300 500
ANEM Kk [N/m] k, [N/m] a ¢ [N/m] d
780000 81000 784.8 140000 36.75

restoring force

displacement

Figure 4.33. Symmetric hysteresis loop with post-hardening abt@ristics simulated adopting the MBWM and
the proposed ANEM.

Figure 4.34 shows a symmetric force-displacemenstengsis loop, displayed by seismic
isolators having post-softening behavior at largepldcements, such as unbounded
elastomeric bearings with deformable reinforcingela, simulated using the MBWM and the
proposed ANEM. The values of the parameters adaptdte two analytical models are listed

in Table 4.9.
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Table4.9. MBWM and ANEM parameters | Hysteresis loop witlstesoftening characteristics.
mBwMm  f, [Nl uy [m] a A B y n c c,
2025 0.0015 0.0481 1 0.9 0.1 2 -3000 500
ANEM Kk [N/m] Kk, [N/m] a ¢ [N/m] d
2025000 64989 500 -1875000 8

restoring force

displacement

Figure 4.34. Symmetric hysteresis loop with post-softening abteristics simulated adopting the MBWM and
the proposed ANEM.

The theoretical force-displacement hysteresis Iqgmpsluced by use of the MBWM and the
ANEM have been obtained, as done in experimenstéd,t®y applying a sinusoidal harmonic
displacement having amplitude equal to 0.01 m asguiency of 1 Hz.

It is important to notice that the proposed ANEMjuies the evaluation of only five
parameters whereas in the improved BWM the numbpa@ameters to be identified is equal
to nine. In addition, the proposed model allows tmeeduce the computational effort of
nonlinear time history analyses by avoiding, focketime step, the numerical solution of the
first order nonlinear differential equation require the MBWM.
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4.4.4 Comparison between MBWM and APM

Figure 4.35 shows a symmetric force-displacemenstengsis loop, displayed by seismic
isolators having post-hardening behavior at laigpldcements, such as high damping rubber
bearings and wire rope isolators, simulated ushregMBWM and the proposed APM. The
values of the parameters adopted in the two mattieghanodels are listed in Table 4.10. In
the APM, 50 1d elastic-perfectly plastic elementd &0 1d linear elastic gap elements have
been used, that isl = 50 andM = 50.

Table 4.10. MBWM and APM parameters | Hysteresis loop withtg@ardening characteristics.
MBWM  f, [N] uy [m] a A B y n C, c,
2025 0.0015 0.2407 1 0.9 0.1 2 1300 500
APM Ko [IN/m]  k, [N/m] (o C, [N/m] C
780000 81000 784.8 140000  36.75

restoring force

1 0.5 0 0.5 1
displacement

Figure 4.35. Symmetric hysteresis loop with post-hardening abristics simulated adopting the MBWM and
the proposed APM withN = 50 andVl = 50.

Figure 4.36a shows the same force-displacemenefeg$ loop simulated adopting 5 1d
elastic-perfectly plastic elements and 5 1d linglastic gap elements in the proposed PM,
whereas Figure 4.36b shows the hysteresis loopnalokaising 100 1d elastic-perfectly plastic

elements and 100 1d linear elastic gap elements.
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(@)

restoring force

-1 -0.5 0 0.5 1
displacement

(b)

restoring force

-1 -0.5 0 0.5 1
displacement

Figure 4.36. Symmetric hysteresis loop with post-hardening abt@ristics simulated adopting the MBWM and
the proposed APM with (& =M =5 and (bN =M = 100.
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Figure 4.37 shows a symmetric force-displacemerstengsis loop, displayed by seismic
isolators having post-softening behavior at largepldcements, such as unbounded
elastomeric bearings with deformable reinforcingeta, simulated using the MBWM and the
proposed APM. The values of the parameters addptélde two mathematical models are
listed in Table 4.11. In the APM, 50 1d elasticfpetly plastic elements and 50 1d linear
elastic gap elements have been used, thit+s50 andv = 50.

Table4.11. MBWM and APM parameters | Hysteresis loop witht{gsustening characteristics.
mBwM  f, [N] u, [m] a A B y n c c,
2025 0.0015 0.0481 1 0.9 0.1 2 -3000 500
APM Ko [IN/m]  k, [N/m] (o C, [N/m] C
2025000 64989 500 -1875000 8

restoring force

1 0.5 0 0.5 1
displacement

Figure 4.37. Symmetric hysteresis loop with post-softening abteristics simulated adopting the MBWM and
the proposed APM withN = 50 andVl = 50.

Figure 4.38a shows the same force-displacemenefeg$ loop simulated adopting 5 1d
elastic-perfectly plastic elements and 5 1d linglastic gap elements in the proposed PM,
whereas Figure 4.38b shows the hysteresis loopnaloskaising 100 1d elastic-perfectly plastic

elements and 100 1d linear elastic gap elements.
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(@)

restoring force

-1 -0.5 0 0.5 1
displacement

(b)

restoring force

-1 -0.5 0 0.5 1
displacement

Figure 4.38. Symmetric hysteresis loop with post-softening abteristics simulated adopting the MBWM and
the proposed APM with (& =M =5 and (bN =M = 100.
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The theoretical force-displacement hysteresis Igopduced by use of the MBWM and APM
have been obtained, as done in experimental tegtsapplying a sinusoidal harmonic
displacement having amplitude equal to 0.01 m asguiency of 1 Hz.

It is worth to observe that the proposed mathembltmdel requires the evaluation of only 5
parameters whereas in the MBWM the number of patensi¢o be identified is equal to 9. In
addition, it has to be noted that the proposed A&lglws one to reduce the computational
effort of a nonlinear time history analysis by aling, for each time step, the numerical

solution of the first order nonlinear ordinary éiféntial equation required by the MBWM.
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Chapter 5

Verification of the Proposed Models

5.1 Introduction

In order to demonstrate the validity of the two adsed mathematical models, namely,
Advanced Nonlinear Exponential Model (ANEM) and Adeed Parallel Model (APM),
which are an improved version of the Nonlinear Euial Model (NEM) and Parallel
Model (PM), respectively, and are able to simutate dynamic response of seismic isolators
having softening behavior within the relatively dar displacements range and a post-
hardening or post-softening behavior at large dispinents, in this chapter, the results
predicted numerically are compared to the experialeanes obtained from horizontal
dynamic tests performed on four Wire Rope Isolaf@vRIs) and a Recycled Rubber-Fiber
Reinforced Bearing (RR-FRB), as described in Chéapte

5.2 Simulation of Experimental Response of WRIs
5.2.1 Advanced Nonlinear Exponential M odel

In what follows, the ANEM is used to predict therde-displacement hysteresis loops
displayed by the four tested WRIs, namely, WRI PWH®10, WRI PWHS 16040, WRI
PWHS 16040 S, and WRI PWHS 16060, in both two gpeidchorizontal directions, namely,
Roll and Shear directions, under different valuéshe vertical load. Then, a comparison
between the experimental hysteresis loops, obtaestthg WRI PWHS 16010 along the Roll
direction, at small, relatively large, and largepacements, and those simulated by adopting
the proposed ANEM and the Modified Bouc-Wen ModdBWM), described in Chapter 4,

is presented. Finally, the limitation of the propdsANEM in predicting the stronger
nonlinear stiffening behavior, shown by WRI PWH®486 at large horizontal displacements,

is described.
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5.2.1.1 WRI PWHS 16010

The geometrical characteristics of WRI PWHS 1601@ a&s two principal horizontal
directions, namely, Roll and Shear directions,shr@wvn in Figure 5.1.

(a) (b)
Roll

16 mm
100 mm

] | —]

110 mm 267 mm

Figure5.1. Geometrical characteristics and principal horiabdtrections of WRI PWHS 16010:
(a) Roll and (b) Shear directions.

Figures 5.2, 5.3, and 5.4 give the comparisonshefanalytical and experimental results
obtained, in both Roll and Shear directions, féreguency of 1 Hz and without the effect of
the vertical load, at small (i.eA, = 0.25 cm), relatively large (i.eA = 0.5 cm), and large (i.e.,
A = 1 cm) displacements, respectively. The forcgldisement hysteresis loops have been
simulated using the set of five model parametetedi in Table 5.1 and determined from the
experimental loops having the largest amplitudat ihA = 1 cm.

Table5.1. ANEM parameters for WRI PWHS 16018, 0 kN).

R,=0kN K, [N/m] k, [N/m] a c [N/m] d
Roll 2600000 300000 720 400000 35
Shear 1650000 200000 670 620000 58

Figure 5.5 shows the hysteresis force-displacemoepts obtained fo?, = 2 kN. In order to

account for the effect of the applied vertical IpHte five model parameters, listed in Table
5.2, have been adjusted based on the experimestats.

Table5.2. ANEM parameters for WRI PWHS 16018, 2 kN).

RP,=2kN K, [N/m] K, [N/m] a c [N/m] d
Roll 2100000 220000 710 160000 120
Shear 2000000 220000 900 650000 46
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Figure5.2. Analytical and experimental hysteresis loops of WR/HS 16010 obtained for
A=0.25cmf=1Hz, and?, = 0 kN in (a) Roll and (b) Shear directions.
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(@)

400

2000

restoring force [N]

-2000

-400(

0
displacement [m]

(b)

400

2000

restoring force [N]

-2000

Model

5 -3 0 3
displacement [m]

Figure5.3. Analytical and experimental hysteresis loops of WR/HS 16010 obtained for
A=0.5cmf=1Hz, and®, = 0KkN in (a) Roll and (b) Shear directions.
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(@)

800

4000

restoring force [N]

-4000

'898. 12 -0.006 0 0.006 0.012
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(b)

800

4000

restoring force [N]

-4000

'898. 12 -0.006 0 0.006 0.012
displacement [m]

Figure5.4. Analytical and experimental hysteresis loops of WR/HS 16010 obtained for
A=1cm,f=1Hz and®, = 0kN in (a) Roll and (b) Shear directions.
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(@)
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(b)

800
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restoring force [N]

-4000

'898. 12 -0.006 0 0.006 0.012
displacement [m]

Figure5.5. Analytical and experimental hysteresis loops of WR/HS 16010 obtained for
f=1Hz and?, =2 kN in (a) Roll and (b) Shear directions.
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5.2.1.2 WRI PWHS 16040

The geometrical characteristics of WRI PWHS 1604@ a&s two principal horizontal

directions are shown in Figure 5.6.

(a) (b)
Roll

16 mm
125 mm

i
||

f————————————————————————— = ,
150 mm 267 mm

Figure5.6. Geometrical characteristics and principal horiabdtrections of WRI PWHS 16040:
(a) Roll and (b) Shear directions.

Figure 5.7 reveals the comparisons of the analyaicd experimental results obtained, in both
Roll and Shear directions, under a test frequericy ldz and for two different displacement
amplitudes, that ish = 1 cm andA = 3 cm, without the effect of the vertical loadh€elforce-

displacement hysteresis loops have been simulaged) uhe set of five model parameters
listed in Table 5.3 and determined from the expental loops having the largest amplitude,

that is, A= 3 cm.

Table 5.3. ANEM parameters for WRI PWHS 16048, 0 kN).

R,=0kN K, [N/m] k, [N/m] a c [N/m] d
Roll 600000 25000 370 80000 30
Shear 790000 54000 400 90000 25

Figure 5.8 shows the hysteresis force-displacemoepts obtained fo?, = 3 kN. In order to

account for the effect of the applied vertical IpHte five model parameters, listed in Table

5.4, have been adjusted based on the experimestats.

Table 5.4. ANEM parameters for WRI PWHS 16048, 3 kN).

RP,=3 kN K, [N/m] K, [N/m] a c [N/m] d
Roll 600000 16500 499.5 48000 30
Shear 553000 23400 504 72000 20
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(a)
400
—. 2000
£
(]
o
o
o 0
£
S
(%]
o
-2000
-40_%
displacement [m]
(b)

400

2000

restoring force [N]

-2000

0

displacement [m]

Figure5.7. Analytical and experimental hysteresis loops of WR/HS 16040 obtained for
f=1Hz and®, = 0 kN in (a) Roll and (b) Shear directions.
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Figure5.8. Analytical and experimental hysteresis loops of WR/HS 16040 obtained for
f=1Hz and®, = 3 kN in (a) Roll and (b) Shear directions.
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5.2.1.3WRI PWHS 16040 S

The geometrical characteristics of WRI PWHS 1604@n8 its two principal horizontal

directions are shown in Figure 5.9.

(a) (b)

Roll Shear

T

AR

= |t —

150 mm 267 mm

\_\
19 mm ‘
125 mm

Figure5.9. Geometrical characteristics and principal horiabdtrections of WRI PWHS 16040 S:
(a) Roll and (b) Shear directions.

Figure 5.10 shows the comparisons of the analyacal experimental results obtained, in
both Roll and Shear directions, under a test frequeof 1 Hz and for two different
displacement amplitudes, that A,= 1 cm andA = 3 cm, without the effect of the vertical
load. The force-displacement hysteresis loops baes simulated using the set of five model
parameters listed in Table 5.5 and determined fileemexperimental loops having the largest
amplitude, that ish = 3 cm.

Table5.5. ANEM parameters for WRI PWHS 16040 B, € 0 kN).

R,=0kN K, [N/m] k, [N/m] a c [N/m] d
Roll 900000 73000 450 70000 36
Shear 1000000 140000 380 30000 32

Figure 5.11 shows the hysteresis force-displaceineps obtained foP, = 2 kN. In order to

account for the effect of the applied vertical IpHte five model parameters, listed in Table

5.6, have been adjusted based on the experimestats.

Table 5.6. ANEM parameters for WRI PWHS 16040 B, € 2 kN).

R,=2kN K, [N/m] k, [N/m] a c [N/m] d
Roll 640000 39000 370 70000 30
Shear 700000 50000 340 95000 30
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Figure5.10. Analytical and experimental hysteresis loops of WR/HS 16040 S obtained for
f=1Hz and®, = 0 kN in (a) Roll and (b) Shear directions.
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Figure5.11. Analytical and experimental hysteresis loops of WR/HS 16040 S obtained for
f=1Hz and?, =2 kN in (a) Roll and (b) Shear directions.
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5.2.1.4 WRI PWHS 16060

The geometrical characteristics of WRI PWHS 1606@ s two principal horizontal

directions are shown in Figure 5.12.

(a) (b)
Roll

16 mm
145 mm

L e E—— | | —]

185 mm 267 mm

Figure5.12. Geometrical characteristics and principal horiabdtrections of WRI PWHS 16060:
(a) Roll and (b) Shear directions.

Figure 5.13 reveals the comparisons of the analyiad experimental results obtained, in
both Roll and Shear directions, under a test frequeof 1 Hz and for two different
displacement amplitudes, that A,= 1 cm andA = 4 cm, without the effect of the vertical
load. The force-displacement hysteresis loops baes simulated using the set of five model
parameters listed in Table 5.7 and determined fileemexperimental loops having the largest

amplitude, that ish = 4 cm.

Table5.7. ANEM parameters for WRI PWHS 16068, 0 kN).

R,=0kN K, [N/m] k, [N/m] a c [N/m] d
Roll 850000 35000 500 65000 12
Shear 750000 25000 700 50000 20

Figure 5.14 shows the hysteresis force-displaceineps obtained foP, = 2 kN. In order to

account for the effect of the applied vertical IpHte five model parameters, listed in Table

5.8, have been adjusted based on the experimestats.

Table 5.8. ANEM parameters for WRI PWHS 16068, 2 kN).

RP,=2kN K, [N/m] K, [N/m] a c [N/m] d
Roll 595000 15750 550 26000 15
Shear 320000 12000 300 32000 15
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Figure5.13. Analytical and experimental hysteresis loops of WR/HS 16060 obtained for
f=1Hz and®, = 0 kN in (a) Roll and (b) Shear directions.

144



Chapter 5 | Verification of the Proposed Models

(@)

(b)

400

2000

restoring force [N]

-2000

'40-%.05 -0.025 0 0.025 0.05
displacement [m]
SHEAR
400 ‘ ; ;
P,= 2.0kN ; ;
f =1.0Hz | |
— 2000 -~ - - R et e
Z, l l l
o) l l .
8 | |
L l :
()]
£ g |
S ‘ l
175} | | |
o l l l
2000 - o pooooooo e
| |  Exp
l l . Model
'40-%.05 -0.025 0 0.025 0.05

displacement [m]

Figure5.14. Analytical and experimental hysteresis loops of WR/HS 16060 obtained for
f=1Hz and?, =2 kN in (a) Roll and (b) Shear directions.
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5.2.1.5 Comparison with the MBWM

Table 5.9 shows the parameters of the proposed ANiBM the MBWM, described in

Chapter 4, adopted to simulate the experimentgdorese of WRI PWHS 16010 obtained
applying, in Roll direction, a sinusoidal harmomotion having frequency of 1 Hz, without
the effect of the vertical load. These models patans have been determined from the

experimental loops having the largest amplitudat ikhA = 1 cm.

Table5.9. MBWM and ANEM parameters for WRI PWHS 1601R, € 0 kN).
MBWM  f, [N] uy [m] a A B y n o C,

2025  0.0015 0.2407 1 01 0.9 2 1300 500
ANEM Kk [N/m] k, [N/m] a  c[N/m] d
2600000 300000 720  4000C0 35

Figures 5.15a and 5.15b compare the experimenstetgsis force-displacement loops with
those predicted analytically using the proposed MN\&nhd the MBWM, respectively. It can
be seen that both analytical models are able tb neptoduce the experimental behavior of
the tested device by capturing the smooth tramsibiothe hysteresis loops from the small to
the large displacements range using the set ofrpeas listed in Table 5.9.

It is worth to notice that the proposed ANEM reegsithe evaluation of only five parameters

whereas in the MBWM the number of parameters tmléstified is equal to nine.
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Figure5.15. Comparisons of analytical and experimental hysierfeops of WRI PWHS 16010:
(a) ANEM and (b) MBWM.
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5.2.1.6 Limitation of the Proposed ANEM

According to the experimental tests results, WRIHSAL6040, 16040 S, and 16060 display a
stronger nonlinear stiffening behavior and a sliglatriation of the hysteresis force-
displacement loops shape at large horizontal dieph&nts.

Figure 5.16 shows the comparisons of analytical expkrimental hysteresis loops of WRI
PWHS 16040 obtained applying a sinusoidal harmorotion, in Roll and Shear directions,
with a test frequency of 1 Hz, without the effetthee vertical load.

It can be observed that, adopting the five mode&paters evaluated with respect to the
experimental hysteresis loops having maximum degsteent of 3 cm, the proposed analytical
model cannot simulate correctly the dynamic behawiothe large displacements range.
Moreover, using the five parameters calibrated taysaering the hysteresis loops obtained
for a displacement amplitude of 6 cm, it is notgble to adequately simulate the responses
in the small and relatively large displacementsyesn Therefore, further work is required to
improve the analytical model by including a proaedaf updating the parameters to specify
the shape of the hysteresis curve according tortheimum displacement at the point of
loading or unloading.

In spite of this, the proposed analytical model ¢enadopted to simulate the dynamic
behavior of WRIs because small or relatively ladggplacements are generally reached under

the design earthquake.
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Figure 5.16. Comparisons of analytical and experimental hysisrieops of WRI PWHS 16040 obtained at
large displacements in (a) Roll and (b) Shear tioes.
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5.2.2 Advanced Parallel M odd

5.2.2.1 WRI PWHS 16010

The geometrical characteristics of WRI PWHS 1601@ a&s two principal horizontal
directions, namely, Roll and Shear directions,slr@wvn in Figure 5.1.

Figures 5.17, 5.18, and 5.19 give the comparisdnthe experimental and mathematical
results obtained, in both Roll and Shear directidosa frequency of 1 Hz and without the
effect of the vertical load, at small (i.&,= 0.25 cm), relatively large (i.eA = 0.5 cm), and
large (i.e.,A = 1 cm) displacements, respectively. The hystelesigs have been simulated
using the set of five model parameters listed ibl@®.10, that have been determined from
the experimental loops having the largest amplitutat is,A = 1 cm, and adopting 50
elastic-perfectly plastic elements (i.8l,= 50) and 50 linear elastic gap elements (Me=
50).

Table 5.10. APM parameters for WRI PWHS 1601B,€E 0 kN).

R,= 0 kN Ko [N/m] K, [N/m] (o) C, [N/m] C,
Roll 2600000 300000 720 400000 35
Shear 1650000 200000 670 620000 58

Figures 5.20, 5.21, and 5.22 show the same fosq@atiement hysteresis loops obtained
adopting 5 elastic-perfectly plastic elements (= 5) and 5 linear elastic gap elements
(i.,e., M = 5), whereas, in Figures 5.23, 5.24, and 5.25, d@stic-perfectly plastic elements

(i.,e., N = 100) and 100 linear elastic gap elements (Mes 100) have been used in the
proposed APM.

Figure 5.26 shows the hysteresis loops obtainedPfor 2 kN. In order to account for the
effect of the applied vertical load, the five mogarameters, listed in Table 5.11, have been
adjusted based on the experimental results. Therdegss loops have been simulated using 50
elastic-perfectly plastic elements (i.l,= 50) and 50 linear elastic gap elements (Me5

50).

Table5.11. APM parameters for WRI PWHS 1601B,€E 2 kN).

R,=2 kN Ko [N/m] K, [N/m] (o C, [N/m] C,
Roll 2100000 220000 710 160000 120
Shear 2000000 220000 900 650000 46
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Figure5.17. Experimental and mathematical hysteresis loop&/Rf PWHS 16010 obtained for
A=0.25cmf=1Hz, and®, =0 kN (N = 50,M = 50) in (a) Roll and (b) Shear directions.
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Figure5.18. Experimental and mathematical hysteresis loop&/Rf PWHS 16010 obtained for
A=0.5cmf=1Hz, and®, =0kN (N =50,M =50) in (a) Roll and (b) Shear directions.
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Figure5.19. Experimental and mathematical hysteresis loop/Rf PWHS 16010 obtained for
A=1cm,f=1Hz and®, =0 kN (N=50,M = 50) in (a) Roll and (b) Shear directions.
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Figure 5.20. Experimental and mathematical hysteresis loop/Rf PWHS 16010 obtained for
A=0.25cmf=1Hz, and®, =0 KN (N=5,M =5) in (a) Roll and (b) Shear directions.
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Figure5.21. Experimental and mathematical hysteresis loop/Rf PWHS 16010 obtained for
A=0.5cmf=1Hz, and®, =0kN (N=5,M =5) in (a) Roll and (b) Shear directions.
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Figure5.22. Experimental and mathematical hysteresis loop&/Rf PWHS 16010 obtained for
A=1cm,(f=1Hz, and®, =0kN (N =5,M =5) in (a) Roll and (b) Shear directions.
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Figure5.23. Experimental and mathematical hysteresis loop/Rf PWHS 16010 obtained for
A=0.25cmf=1Hz, and®, =0 kN (N = 100,M = 100) in (a) Roll and (b) Shear directions.
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Figure5.24. Experimental and mathematical hysteresis loop/Rf PWHS 16010 obtained for
A=0.5cmf=1Hz, and®, =0kN (N=100,M = 100) in (a) Roll and (b) Shear directions.
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Figure5.25. Experimental and mathematical hysteresis loopg/Rf PWHS 16010 obtained for
A=1cm,f=1Hz and®, =0 kN (N =100,M = 100) in (a) Roll and (b) Shear directions.
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Figure5.26. Experimental and mathematical hysteresis loop&/Rf PWHS 16010 obtained for
f=1Hzand?, =2 kN (N=50,M = 50) in (a) Roll and (b) Shear directions.
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5.2.2.2 WRI PWHS 16040

The geometrical characteristics of WRI PWHS 1604@ a&s two principal horizontal
directions are shown in Figure 5.6.

Figure 5.27 reveals the comparisons of the expatahand mathematical results obtained, in
both Roll and Shear directions, under a test frequeof 1 Hz and for two different
displacement amplitudes, that A,= 1 cm andA = 3 cm, without the effect of the vertical
load. The force-displacement hysteresis loops baea simulated using the set of five model
parameters listed in Table 5.12, which have bedaraned from the experimental loops
having the largest amplitude, that &,= 3 cm, and adopting 50 elastic-perfectly plastic

elements (i.e = 50) and 50 linear elastic gap elements (Mes, 50).

Table5.12. APM parameters for WRI PWHS 1604B,€E 0 kN).

R,= 0 kN ko [N/m] K, [N/m] (o) C, [N/m] C,
Roll 600000 25000 370 80000 30
Shear 790000 54000 400 90000 25

Figure 5.28 shows the hysteresis force-displaceineps obtained foP, = 3 kN. In order to

account for the effect of the applied vertical Iptte five model parameters, listed in Table
5.13, have been adjusted based on the experintestdts. In the proposed APM, 50 elastic-
perfectly plastic elements (i.d\,= 50) and 50 linear elastic gap elements (Mes 50) have
been adopted.

Table5.13. APM parameters for WRI PWHS 1604B,€E 3 kN).

P,=3 kN Ko [N/m] K, [N/m] (o C, [N/m] C,
Roll 600000 16500 499.5 48000 30
Shear 553000 23400 504 72000 20
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Figure5.27. Experimental and mathematical hysteresis loop/Rf PWHS 16040 obtained for
f=1Hzand?, =0 kN (N=50,M = 50) in (a) Roll and (b) Shear directions.
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Figure5.28. Experimental and mathematical hysteresis loop/Rf PWHS 16040 obtained for
f=1Hzand?, =3 kN (N =50,M = 50) in (a) Roll and (b) Shear directions.
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5.2.2.3WRI PWHS 16040 S

The geometrical characteristics of WRI PWHS 1604@n8 its two principal horizontal
directions are shown in Figure 5.9.

Figure 5.29 shows the comparisons of the experiahamd mathematical results obtained, in
both Roll and Shear directions, under a test frequeof 1 Hz and for two different
displacement amplitudes, that A,= 1 cm andA = 3 cm, without the effect of the vertical
load. The force-displacement hysteresis loops baea simulated using the set of five model
parameters listed in Table 5.14, which have bedaraned from the experimental loops
having the largest amplitude, that &,= 3 cm, and adopting 50 elastic-perfectly plastic

elements (i.e = 50) and 50 linear elastic gap elements (Mes, 50).

Table 5.14. APM parameters for WRI PWHS 16040 B, € 0 kN).

R,= 0 kN ko [N/m] K, [N/m] (o) C, [N/m] C,
Roll 900000 73000 450 70000 36
Shear 1000000 140000 380 30000 32

Figure 5.30 shows the hysteresis force-displaceineps obtained foP, = 2 kN. In order to

account for the effect of the applied vertical Iptte five model parameters, listed in Table
5.15, have been adjusted based on the experintestdts. In the proposed APM, 50 elastic-
perfectly plastic elements (i.d\,= 50) and 50 linear elastic gap elements (Mes 50) have
been adopted.

Table5.15. APM parameters for WRI PWHS 16040 B, € 2 kN).

P,=2 kN Ko [N/m] K, [N/m] (o C, [N/m] C,
Roll 640000 39000 370 70000 30
Shear 700000 50000 340 95000 30
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Figure5.29. Experimental and mathematical hysteresis loop&/Rf PWHS 16040 S obtained for
f=1Hzand?, =0 kN (N=50,M = 50) in (a) Roll and (b) Shear directions.
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Figure 5.30. Experimental and mathematical hysteresis loop&/Rf PWHS 16040 S obtained for
f=1Hzand?, =2 kN (N=50,M = 50) in (a) Roll and (b) Shear directions.
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5.2.24WRI PWHS 16060

The geometrical characteristics of WRI PWHS 1606@ s two principal horizontal
directions are shown in Figure 5.12.

Figure 5.31 reveals the comparisons of the expatahand mathematical results obtained, in
both Roll and Shear directions, under a test frequeof 1 Hz and for two different
displacement amplitudes, that A,= 1 cm andA = 4 cm, without the effect of the vertical
load. The force-displacement hysteresis loops baea simulated using the set of five model
parameters listed in Table 5.16, which have bedaraned from the experimental loops
having the largest amplitude, that &,= 4 cm, and adopting 50 elastic-perfectly plastic

elements (i.e = 50) and 50 linear elastic gap elements (Mes, 50).

Table5.16. APM parameters for WRI PWHS 16068B,€E 0 kN).

R,= 0 kN ko [N/m] K, [N/m] (o) C, [N/m] C,
Roll 850000 35000 500 65000 12
Shear 750000 25000 700 50000 20

Figure 5.32 shows the hysteresis force-displaceineps obtained foP, = 2 kN. In order to

account for the effect of the applied vertical Iptte five model parameters, listed in Table
5.17, have been adjusted based on the experinrestdts. In the proposed APM, 50 elastic-
perfectly plastic elements (i.d\,= 50) and 50 linear elastic gap elements (Mes 50) have
been adopted.

Table5.17. APM parameters for WRI PWHS 1606B,E 2 kN).

P,=2 kN Ko [N/m] K, [N/m] (o C, [N/m] C,
Roll 595000 15750 550 26000 15
Shear 320000 12000 300 32000 15
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Figure5.31. Experimental and mathematical hysteresis loop&/Rf PWHS 16060 obtained for
f=1Hzand?, =0 kN (N=50,M = 50) in (a) Roll and (b) Shear directions.
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Figure 5.32. Experimental and mathematical hysteresis loop/Rf PWHS 16060 obtained for
f=1Hzand?, =2 kN (N=50,M = 50) in (a) Roll and (b) Shear directions.
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5.3 Simulation of Experimental Response of RR-FRB

5.3.1 Advanced Nonlinear Exponential M odel

The tested RR-FRB and the two different horizotdaling directions, namely, 0° and 45°
directions, are shown in Figure 5.33.

() (b)

—~= - 70 mm

70 mm

bt

Figure5.33. (a) Tested RR-FRB and (b) horizontal loading dioers.

Figures 5.34, 5.35, 5.36, 5.37, 5.38, 5.39, 5.40%A1 show the experimental and simulated
hysteresis loops of RR-FRB obtained applying a sordal harmonic motion having
frequency of 0.87 Hz, under the effect of a veltioad of 16.9 kN, for a displacement
amplitude A equal to 1 cm, 1.5 cm, 2 cm, 2.5 cm, 3 cm, 3.5 dntm, and 4.5 cm,
respectively, in both 0° and 45° horizontal loadingpctions.

The force-displacement hysteresis loops have bewuolated using the set of five model
parameters listed in Table 5.18 and determined freexperimental loops having the largest

amplitude, that isA = 4.5 cm.

Table 5.18. ANEM parameters for RR-FRBR = 16.9 kN).

P=16.9kN k; [N/m] K, [N/m] a c [N/m] d
0° 350000 38000 80 -20000 45
45° 250000 40000 70 -80000 12
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Figure5.34. Analytical and experimental hysteresis loops ofIRRB obtained for

A=1cm,f=0.87 Hz, and®, = 16.9 kN in (a) 0° and (b) 45° loading directions
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Figure5.35. Analytical and experimental hysteresis loops ofIRRB obtained for

A=15cmf=0.87 Hz, and®, = 16.9 kN in (a) 0° and (b) 45° loading directions
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Figure5.36. Analytical and experimental hysteresis loops ofIRRB obtained for

A=2cm,f=0.87 Hz, and®, = 16.9 kN in (a) 0° and (b) 45° loading directions
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Figure5.37. Analytical and experimental hysteresis loops ofIRRB obtained for

A=25cmf=0.87 Hz, and®, = 16.9 kN in (a) 0° and (b) 45° loading directions
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Figure5.38. Analytical and experimental hysteresis loops ofIRRB obtained for

A=3cm,f=0.87 Hz, and®, = 16.9 kN in (a) 0° and (b) 45° loading directions
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Figure5.39. Analytical and experimental hysteresis loops ofIRRB obtained for

A=3.5cmf=0.87 Hz, and®, = 16.9 kN in (a) 0° and (b) 45° loading directions
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Figure5.40. Analytical and experimental hysteresis loops ofIRRB obtained for

A=4cm,f=0.87 Hz, and®, = 16.9 kN in (a) 0° and (b) 45° loading directions
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Figure5.41. Analytical and experimental hysteresis loops ofIRRB obtained for

A=4.5cmf=0.87 Hz, and®, = 16.9 kN in (a) 0° and (b) 45° loading directions
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5.3.2 Advanced Parallel M odd

Figure 5.42a and 5.42b show the experimental amailated hysteresis loops of RR-FRB

obtained applying a sinusoidal harmonic motion hg¥requency of 0.87 Hz, under the effect

of a vertical load of 16.9 kN, for a displacememipditudeA equal to 1 cm, 1.5cm, 2cm, 2.5

cm, 3cm, 3.5 cm, 4 cm, and 4.5 cm, in 0° and d&dihg directions, respectively.

The force-displacement hysteresis loops have berulated using the set of five model

parameters listed in Table 5.19, which have bedaraned from the experimental loops

having the largest amplitude, that A,= 4.5 cm, and adopting 50 elastic-perfectly ptasti

elements (i.eN = 50) and 50 linear elastic gap elements (Mes, 50).

Table5.19. APM parameters for RR-FRBR( = 16.9 kN).

P=16.9kN ko, [Nm] k. [N/m] c c, [N/m]
0° 350000 38000 80 -20000 45
45° 250000 40000 70 -80000 12
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Figure5.42. Experimental and mathematical hysteresis loofRR¥RB obtained for

f=0.87 Hz and®, = 16.9 kN N = 50,M = 50) in (a) 0° and (b) 45° loading directions.
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Chapter 6

Numerical Time Integration Methods

6.1 Introduction

Chapter 6 deals with the nonlinear response histogtysis methods, required to solve the
dynamic equilibrium equations of the discrete sticed model of a seismically base-isolated
structures, and is organized into three parts.

The first part presents a conventional non-partéob solution method, developed by
Nagarajaiah et al. (1991) specifically for the moar time history analysis of base-isolated
structures and implemented in the computer progd@¥yBASIS-ME-MB (Tsopelas et al.
2005). For brevity, in this work, the latter imptidime integration method adopted in
conjunction with the pseudo-force approach is datleeudo-Force Method.

The second part presents a proposed partitionedi@olapproach, that is, a Mixed Explicit-
Implicit time integration Method, characterized two substeps called Explicit Integration
Substep and Implicit Integration Substep.

The third part is concerned with the stability agpeaccuracy and computational efficiency
of the proposed time integration method. Firstraedure to evaluate the critical time step is
developed for 2d base-isolated structures and ée&temo the 3d case. Then, the proposed
numerical time integration method is adopted tolyaea four different 3d base-isolated
structures subjected to bidirectional earthquakeit@&xon and the numerical results are
compared with those obtained by using the solugilgorithm introduced by Nagarajaiah et
al. (1991) in order to demonstrate the accuracy thed computational efficiency of the

proposed method.
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6.2 Conventional Non-Partitioned Solution Approach

6.2.1 Introduction

The response of real civil structures subjected large dynamic excitation, such as blast or
seismic loading, often involves significant nonAnéehavior which generally includes the

effects of large displacements and/or nonlineaenstproperties (Wilson 2002).

Direct time integration methods used to solve thelinear dynamic equilibrium equations of

structures subjected to external excitation, tlsattime-dependent applied forces and/or

earthquake excitation, are basically categorizemtino groups:

= explicit time integration methods, such as the remlifference method;

= implicit time integration methods, such as the Newkis method.

A time integration method is explicit if the solori at timet + 4t is obtained by considering
the equilibrium conditions at timeé and the integration algorithm does not require
factorization of the effective stiffness matrix (Kzanish and Subbarai 1989a).

A time integration method is implicit if the solaki at timet + At is evaluated by considering
the equilibrium conditions at time+ At and a set of simultaneous equations has to bedolv
at each time step wherein the effective stiffneatrimnis a combination of the mass, damping
and stiffness matrices (Dokainish and Subbarai 8289

In general, each type of time integration methosd it& own advantages and disadvantages.
Explicit algorithms require a much lower computatibeffort per time step when compared
with implicit methods but are conditionally stab@n the other hand, implicit algorithms can
be designed to have unconditional stability, ireéinanalysis, so that the choice of time step
size is limited by accuracy requirements only (Bat896).

A conventional non-partitioned solution approacharacterized by the use of an implicit
single-step time integration method adopted wita {modified) Newton-Raphson or the
pseudo-force iteration procedure, is generally eygd to solve the nonlinear dynamic
equilibrium equations of seismically base-isolatsttuctures subjected to earthquake
excitation.

Nagarajaiah et al. (1989) investigated the usenahwgplicit time integration method adopted

with the modified Newton-Raphson iteration procediar the nonlinear dynamic analysis of
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base-isolated structures with elastomeric or djdioearings. This study reveals that the
modified Newton-Raphson iteration method:

= converges when 3d base-isolated structures witttcgteeric bearings are analyzed,;

= does not converge when 3d base-isolated structitbssliding bearings are analyzed

because of the severe nonlinearities involved.

Among conventional non-partitioned solution methaith® solution algorithm proposed by
Nagarajaiah et al. (1991), which has been impleeteint the computer program 3D-BASIS-
ME-MB (Tsopelas et al. 2005), is presented in theowing because specifically developed
for nonlinear time history analysis of base-isalastructures with either elastomeric and/or
sliding isolation systems. In this non-partitionsalution approach, the equations of motion
are solved using the implicit unconditionally s&alblewmark's constant average acceleration
method, chosen because unconditionally stabledtir positive and negative tangent stiffness
(Cheng 1988), with the nonlinear forces being repnéed as pseudo-forces. An iterative
procedure consisting of corrective pseudo-forcesngployed within each time step until
equilibrium is achieved. For brevity, in this workhe above-described implicit time
integration method adopted in conjunction with plseudo-force approach is referred to as the
Pseudo-Force Method (PFM).
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6.2.2 Pseudo-Force Method

The dynamic equilibrium equations of the 3d diserstructural model of an actual base-

isolated structure written at tinhe@nd at timet + At are:
mu(t)+cu(t)+ku(t)+ f(t)=-mr G, (L), (6.1)
mu(t+4t)+cu(t+4t)+ku(t+4t) + f (t+4t) =-mr G, (t + 4t). (6.2)

Subtracting Equation (6.1) from Equation (6.2) giwke following incremental dynamic

equilibrium equations:

mAG(t+Aat)+cAu(t+At)+kAu(t+4a)+Af(t+4t)=

—mr G (t+ 4t -mi () —cu ) -kut) - £t), 63)
with
At(t+ A =0+ 4 - (D), (6.4)
Au(t+A)=a(t+a)-u(), (6.5)
Aut+AY=u(t+an-u(), (6.6)
AF(t+a)= ft+a)-1 (1), 6.7)

where AU (t+4t), Au(t+4t), and Au(t+4t) are the incremental acceleration, velocity,

and displacement vectors, respectively, ahdi(t + At) is the incremental nonlinear forces
vector.

The coupled incremental nonlinear ordinary difféel@requations of the second order in time,
given by Equation (6.3), can be solved adopting timgplicit unconditionally stable
Newmark's constant average acceleration method fiethod is based on the assumption
that the variation of acceleration over a time siepconstant, equal to the average
acceleration. Taking constant time steps, the espas for the incremental velocity and

acceleration vectors are:

AU(t+At)=%Au(t+At)—2U(t), (6.8)
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. _ 4 A
Au(t+At)—WAu(t+At) Atu(t) 20(t). (6.9)

Bringing the incremental nonlinear forces vectdrf (t+4t) to the right hand side of
Equation (6.3) and substituting the two expressfonsdu (t + 4t) and AU (t + 4t) into the

incremental dynamic equilibrium equations gives:

K Au (t+4t) = p(t+4t), (6.10)
where
k= 42m+3c+k , (6.11)
(4t) At
and

P(t+At)=—mr i (t+4t)-mit)-cu(t)-ku(t) - f(t)

_Af(t+At)+m{iua)wua)}zcua). (6.12)

The incremental nonlinear forces vectdrf (t + 4t) can be function of both displacement
and velocity vectors at time+ 4t. Thus, treatingd f (t + 4t) as incremental pseudo-forces

vector and applying an iterative procedure in ofdecorrect the latter within the time step

until equilibrium is achieved allows one to evakuztu (t + At) .
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6.2.3 Solution Algorithm

The solution algorithm is given in the following:

1. Initial calculations:

1.1 Form mass matrixn, damping matrixc, and stiffness matrix .

1.2 Initialize displacement, velocity, and accelerati@ctorsu (0), u (0), G (0).

1.3 Select time stepdt and calculate the integration constants:

2 4

%:E, %:E-

"y

1.4 Form the effective stiffness matrix:
k= am+a,c+Kk.
15 TriangularizeR using Gaussian elimination:
k=LDL".
2. Calculations for each time step:

2.1 Assume the incremental pseudo-forces vegtdr' (t + 4t) =0 in iterationi = 1.

2.2 Calculate the effective load vector at time At :

P(t+4t)=—mr U (t+40) -mi(t)-cu(t)-ku(t) - f ()
—Afi(t+at)+m [a, 0 () +20 (0] +2cu ().

2.3 Solve for incremental displacement vector:
LDL" Au' (t+4t)=p(t+4t).
2.4 Evaluate acceleration, velocity, and displacemextors at time + At :

U(t+4t)=u(t)+a AU (t+4)-a,u(t) -2 (t),
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u(t+4)=u(t)+a,4u (t+4)-2u(t),
u(t+4t)=u(t)+Au (t+4).

2.5 Compute the state of motion at each bearing aruliledé the nonlinear restoring force
of each isolator, using the unconditionally stad@eni-implicit Runge-Kutta method if

required.

2.6 Compute the incremental pseudo-forces vegtdr'*(t + 4t) at the mass center of the

base isolation system.

2.7 Compute:
error =|A4 Nt + At) - A (t+4t)|,
Where| []] is the euclidean norm.

2.8 If error = tolerance, further iteration is needed. Iterseting from step 2.1 and use
A f "t +4t) as incremental pseudo-forces vector and the sfateotion at timet,

thatis,u (t), u(t), andi(t).

2.9 If error < tolerance, no further iteration is needed. Uptlagenonlinear forces vector

f(t+4t)=f(t)+4f " (t+4t) and go to step 2.1.
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6.3 Proposed Partitioned Solution Approach

6.3.1 Introduction

In most practical civil engineering problems, thereasing complexity of structural models
requires the use of a partitioned solution appraactvhich a discrete structural model is
spatially decomposed into interacting componentsiegeally called partitions. The
mathematical foundations of Domain Decompositiortiidds (DDMs), which can be used in
the framework of any discretization method for hrdifferential equations (finite elements,
finite differences) to make their algebraic solatimore efficient on parallel computer
platforms, can be found in recent numerical analyexts (Quarteroni and Valli 1999;
Quarteroni 2014). The decomposition may be driven ghysical or computational
considerations (Felippa et al. 2001). For instamtahe nonlinear soil-structure interaction
analysis, being the soil more flexible than theictire, the partitioning of the problem may
be a natural choice. In the nonlinear dynamic aslgf a structure subjected to a localized
impact, because a small part of the structure [geebed to experience strong nonlinear
behavior whereas the remaining part would deforto the elastic range, the decomposition
of the structural model into two subdomains is einiloy computational considerations (Brun
et al. 2012): in this case, the use of differemietisteps and time integration methods (explicit
or implicit methods) depending on parts of the yred structure instead of adopting a non-
partitioned solution approach, that is, a converdioprocedure adopting a single time
integration method with a unique time step, camcedhe computational effort significantly.
To overcome the limitations of conventional sintilee step integration, partitioned time
integration methods have been developed by sewagithlors in the last 30 years to allow
different time steps (multi-time step integratiar)time integration algorithms (mixed time
integration) or both to be used in different sdatabdomains of the mesh. Mixed time
integration procedures using explicit and implitiine integration methods have been
proposed by Hughes and Liu (1978), assuming theedame step for all the parts of the
mesh. Early works of Belytshko et al. (1979) inigetied the use of explicit time integration
methods with different time steps according to itiesh subdivision and the finite elements
size. Wu and Smolinski (2000) proposed a new eitplialti-time step integration method for
solving structural dynamics problems derived frdme imodified trapezoidal rule method
developed by Pezeshk and Camp (1995). All the pusvinulti-time step integration methods

are essentially based on a nodal partition andcpbes the continuity of displacements,
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velocities or accelerations at the interface intrang way, by imposing the equality of
subdomain kinematic quantities at the interfaceceR#dy, new methods have been proposed
allowing one to prescribe the continuity of thosgamgities in a weak way by means of
Lagrange multipliers (Farhat and Roux 1991; Fadtaal. 1994; Gravouil and Combescure
2001; Combescure and Gravouil 2002; Herry et @220

In the following, a Mixed Explicit-Implicit time itegration Method (MEIM) is proposed for
predicting the nonlinear response of base-isolas&dictures subjected to earthquake
excitation. Indeed, in the case of seismicallyasad structures (buildings and bridges) the
above-mentioned partitioned solution approach @adsily applied being the decomposition
of the discrete structural model of such structuhegen by physical considerations: the base
isolation system is much more flexible than theessgucture to decouple the latter from the
earthquake ground motion. Thus, an explicit conddlly stable time integration method can
be used to evaluate the base isolation systemmsspmnd an implicit unconditionally stable
time integration method can be adopted to prediet superstructure response with the
remarkable benefit in avoiding the iterative pragedwithin each time step of a nonlinear

time history analysis required by conventional iiwiptime integration methods.
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6.3.2 Proposed Mixed Explicit-lmplicit Time Integration Method

The solution algorithm is characterized by two s$eps called Explicit Integration Substep
(EIS) and Implicit Integration Substep (1IS): inchatime step of a nonlinear time history
analysis, the nonlinear response of the base isolatystem is computed first using the
explicit time integration method, then the implicitethod is adopted to evaluate the

superstructure linear response.
6.3.2.1 Explicit Integration Substep

The explicit time integration method adopted todgethe response of the base isolation
system is the second order Central Difference Methbich is one of the most used among
explicit methods in structural dynamics programed mnsaid to have the highest accuracy and
maximum stability limit for any explicit method ofder two (Krieg 1973).

In the EIS, the equations of motion at timare used to evaluate the base isolation system

displacement vectoru, for time t+4t. Hence, writing the first set oftb dynamic

equilibrium equations of the 3d discrete structunadel at time gives:
m, Uy (1) + (G, +€,) Uy (1) + €70, (1) + (K, + ky) Uy (1) +KTug(t) + F (1) =-m, 1, Gg (1) . (6.13)

This method is based on a finite difference appnation of the time derivatives of
displacement, that is, velocity and acceleratioakifig constant time steps, the central

difference expressions for velocity and acceleratiectors at time¢ are:
) 1
0, (t) :ﬂ[ub(t +4t) —u (t - 4t)], (6.14)

() =L _ _
(G, (t) = e [u, (t + 4t) = 2u, (t) +u, (t - 4t)]. (6.15)

The error in the expressions (6.14) and (6.15] @rder (4t)?, so the error iry, is quartered
when 4t is halved.
Substituting the relations faii (t) and U, (t), from Equations (6.14) and (6.15), respectively,

into Equation (6.13), and rearranging terms, gives:

Ky Uy (t+ 4t) = (1), (6.16)
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where

. [ 1 1
kb_{(ﬁt)z mb+2At(Cb+Cl)j|l (6.17)

and

B, (t) = —m, 1, Gy (1) —cTuy(t) —kTug(t) - f,(t)

2
; {_(A k- kl} W) (6.18)

1 1
J{_ (41)? mb+2At(Cb+C1)}ub(t—At),

from which u,(t + 4t) can be evaluated.
In Equation (6.18), u,(t—-4t), ut), ult), and u/t) are assumed known from

implementation of the procedure for the precedimgetsteps. In order to calculate the

solution at time4t, a special starting procedure must be used. Sip@, u, (0), and U, (0)

are known at timé= 0, u,(—4t) can be obtained using the following relation (Rat996):

(4t)°

U, (—4t) =u, (0) — 4t u, (0) + (i, (0) . (6.19)

The resultant nonlinear forces vector of the baskation systemf, depends on the response

at timet and could be function of both displacement anaaig}, according to the explicit
nonlinear force-displacement relation used to medeh seismic isolator. The base isolation
system velocity vector at timtecan be evaluated in terms of displacement vectsirsg the
three-point backward difference approximation (Dito 2012):

(1) =ﬁ [- 4y, (t = ) +3u, () + uy (t - 248)] (6.20)

The error in the Equation (6.20) is of ordedt)”. It is worth noting that the base isolation
system velocity vector at time cannot be determined by using Equation (6.14) umsxa

U, (t + 4t) is unknown.
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6.3.2.2 Implicit I ntegration Substep

The implicit time integration method adopted to qute the linear response of the
superstructure is the second order Newmark's Cainétzgerage Acceleration Method which
is one of the most effective and popular impliciethods, especially for the linear and
nonlinear time history analysis of civil structures

In the 1IS, the equations of motion at tinte- At are used to evaluate the superstructure

displacement vectown, for time t+4t. Hence, writing the second set ofs dynamic

equilibrium equations of the 3d discrete structanaldel at timet + At gives:
myU, (t + 4t) +c U (t + 4t) + ku (t + 4t) + ey, (t + 4t) + k u, (t + A4t) =—m 1, U, (t+ 4t). (6.21)

This method is based on the assumption that thatwar of acceleration over a time step is
constant, equal to the average acceleration. Talongtant time steps, the expressions for the

superstructure velocity and acceleration vectotsra t + At are:

0t 20 = 20+ 40 -] -0, (6.22)

) _ 4 A
us(t+At)—W[us(t+At> uy(t)] ~ b= 0. (6.23)

Substitution of these two expressions €Qft + 4t) and U (t + At) into Equation (6.21) gives:

k, U (t+A4t) = p(t +4t), (6.24)
where
k, = 4 . ms+£cs+ks , (6.25)
(4t) A
and

P (t + 4t) = —m 1, Gy (t + 4t) —c 4, (t + At) -k u, (t + 4t)

o2 meZe ug(t) (6.26)
at)? > 4 | '

4 i .
+| —m,+C, [u(t) +m u.t).
ome, ) +m, 60)
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In order to solve foru (t + 4t), first the base isolation system velocity vectotime t + At

has to be predicted. This vector can be computedrins of displacement vectors using the

three-point backward difference approximation (Duto 2012):
0, (t+ At) = ﬁ [- 4u, (t) + 3, (t + 4t) + Uy (t - A1) (6.27)

The error in the Equation (6.27) is of ordett)>.

The use of a modal representation for the supetstie, assumed to remain elastic, can

reduce the computational cost of the nonlinear tistory analysis.
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6.3.3 Solution Algorithm

Recently developed time integration algorithms,hsas those introduced by Noh and Bathe
(2013) and Noh et al. (2013) for the analysis ovevaropagation problems, are not adopted
in this work because the main idea is reducing dbenputational effort required for the
solution of nonlinear dynamic equilibrium equatiarfsbase-isolated structures, by coupling
two of the most widely used time integration methad the seismic analysis of civil

structures. The proposed solution algorithm is givethe following:

1. Initial calculations:

1.1 Form superstructure mass matrix, damping matrixc,, and stiffness matrikx, and

base isolation system mass maitmiy, damping matrixc,, and stiffness matrik, .

1.2 Initialize superstructure displacement, velocityl @tceleration vectorg,(0), U, (0),
U,(0), and base isolation system displacement, veloait§f acceleration vectors

u,(0), u, (0), G, (0); then calculate:

(4t)°

u, (=4t) = u, (0) - 4t u, (0) + (i, (0) .

1.3 Select time stepdt and calculate the integration constants:

:L :i = 1 a, = 4 :i :i
YT T T T A

1.4 Form effective mass matrix and effective stiffnessrix:
m”=a, m +a,(c, +c,),
k"=a, m +a,c +k..

1.5 Triangularizem” andk":

m’=L, D, L]

e —e?

k=L, D L.
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2. Calculations for each time step:

2.1 Compute the state of motion at each seismic iswldiearing at timée.

2.2 Compute the resultant nonlinear forces veckdt) at the center of mass of the base

isolation system.

2.3 Calculate the explicit integration substep effeetivad vector at time

By (1) =—m, 1, G, (t) — Ty (1) —KTuy(t) - () +[a, m, —k, — k] uy (1)
+[-a,m, +ay(c, + )] u,(t - 41).

2.4 Solve for base isolation system displacement veatttmet + At :
L. D, L. u(t+4t)=p,(t).
2.5 Evaluate base isolation system velocity and acatber vectors at time
U, (t) =a, [u,(t+4t) —u, (t—41)],
U, (t) =a, [u,(t+4t) —2u,(t) +u, (t—4t)].
2.6 Calculate the implicit integration substep effeetisad vector at time+ 4t :

P (t+4t) =—m, r, G, (t + 4t) —a; c[-4 Uy, (1) + 3uy, (t + 4t) + u, (t — 4t)] -k u, (t + 4t)
+ [a4 ms + aS Cs] us(t) +[a6 ms + Cs] us(t) + msus(t)

2.7 Solve for superstructure displacement vector a¢ timAt :
L D, L u(t+4t)=p,(t+4).

2.8 Evaluate superstructure velocity and acceleratemtors at timet + At :
U (t+4t) =a; [u(t+4t) —u (t)] - u,(t),
U (t+4t) =a, [u(t+4t) —u ()] —a, u(t) — Ug(t).

3. Repetition for next time step: repladey t + A4t and repeat steps 2.1 - 2.8.
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6.4 Stability Aspects, Accuracy and Computational Efficiency of the MEIM
6.4.1 Introduction

The proposed MEIM is conditionally stable because second order central difference
method is employed in the EIS to compute the nealinresponse of the base isolation
system. Thus, in the following, a procedure to eatd the critical time step is first developed
for 2d base-isolated structures with linear isolatelements, neglecting the superstructure
and base isolation system viscous damping, andakiemded to the 3d case.

The proposed partitioned approach is then appbedetermine the dynamic response of two
3d base-isolated structures subjected to a bithresdt earthquake excitation. The first
structure is a two-story reinforced concrete stitetwith vertical geometric irregularity, the
second one a four-story reinforced concrete stracwithout plan and vertical geometric
irregularities. For each structure, two types cdébaolation systems are considered, namely,
base isolation system with lead rubber bearings laase isolation system with friction
pendulum bearings. The latter kind of base isatasigstem allows one to investigate the use
of the mixed time integration procedure also inpghesence of isolators with very high initial
stiffness for which the critical time step size kkbbhecome smaller than the one used to define
the ground acceleration accurately. The accuradythe computational efficiency of the
proposed MEIM are assessed by comparing the nuaheesults and the computational time
with those obtained by using the PFM.
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6.4.2 Evaluation of the Critical Time Step
6.4.2.1 2d Base-| solated Structures

Considering the 2d discrete structural model ofaaebisolated structure with only linear
isolation elements and neglecting the superstractamd base isolation system viscous

damping, Equation (6.13) at tim&ecomes:
m, Uy (1) + (K, +k;) U, (1) —k; uy (t) =-m, G, (t) . (6.28)
The superstructure first floor displacementcan be expressed in termswfas follows:
u =u,+au, (6.29)

where the first term is the base isolation systéspldcement relative to the ground whereas
the last term is the superstructure first floopthsement relative to the base isolation system;

generally, the latter is very small compared tofthener, that is,a <<1.
Dividing Equation (6.28) byn, , the dynamic equilibrium equation becomes:

(i, (t) +(kf—mf’k1) Uy(t) = -0, (1) (6.30)

Substituting the central difference expression tfoe acceleration at timeinto Equation

(6.30) and solving fou,(t + 4t) gives:

u (t + ) :{2-%(& —akl)} Uy (1) — Uy (t - 4t) - A% T (t). (6.31)

Equation (6.31) can be reformulated into a recersmatrix form as follows:

WA Jw® ] L 6.32
{ub(t) }_ {ub(t—m)} ) o

with:
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(6.33)

L= {Atz}, (6.34)

where A and L are the integration approximation and load opesatcespectively (Bathe
1996).
The stability of an integration method is determdingy examining the behavior of the

numerical solution for arbitrary initial conditionthus it is possible to consider the integration

of Equation (6.32) when load is absent, thatijgt) = O.

In this work, the numerical stability is analyzed Wsing the spectral decomposition of the
matrix A. Since the stability of an integration method depeonly on the eigenvalues of the

approximation operatak, the following eigenvalue problem has to be solved

At?
2-— (k. - -1
(k, —ak)

V=AvV. 6.35
0 (6.35)

1

The eigenvalues of the matrixare the roots of the following characteristic paynial:
p(A)=det (A-A1), (6.36)

which, in this case, is defined as:

p()l):{2—%(kb—akl)—)l}(—/1)+1. (6.37)
Thus, the two eigenvalues Afare:
12 LI PN
/11{1 2mo(kb akl)}+\/4[2 m (K, akl)} 1, (6.38)
12 o] 2222 g aiy ] -
Az{l TR akl)} Mz ko akl)} 1. (6.39)
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For stability, the absolute values a@f and A, have to be smaller than or equal to 1, that is,

the spectral radiug(A) of the approximation operatoh , defined aso(A) = rqag|)l,| must

satisfy the conditionp(A) <1. It follows from this condition that the criticime step4t, is

T, m
&, =—=2 /kb_akl . (6.40)

The same time step stability limit is also appliealwhen the viscous damping is not
neglected (Bathe 1996).

It is important to observe that the highest hortabstiffness of each seismic isolator has to be

given by:

used in order to evaluatét, and thata can be assumed equal to zero. In practice, sihce a

isolation bearings are modeled by a bilinear madelwhich the post-yield stiffness is
generally smaller than the initial elastic stiffee@Naeim and Kelly 1999), the pre-yield

stiffness of each isolator has to be chosen tahéate At .

6.4.2.2 3d Base-l solated Structures

Considering the 3d discrete structural model oasebisolated structure, the critical time step
4t can be evaluated considering the lower naturabgeagiven by the following eigenvalue

problem:
ki &d=m, & Q°, (6.41)

where k! is the stiffness matrix of the base isolation eystassembled using the highest

horizontal stiffness of each nonlinear elemeant,is the modal matrix, and?® the spectral

matrix of the eigenvalue problem.
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6.4.3 Numerical Applications

In what follows, the PFM and the proposed MEIM adopted to simulate the seismic
response of two 3d base-isolated structures, nar8atycture A and Structure B, subjected to
a bidirectional earthquake excitation, that is, Nerthridge earthquake of January 17, 1994,
for Structure A, and the Loma Prieta earthquak®©dadtober 17, 1989, for Structure B. For
each structure, two types of base isolation systaresconsidered, namely, Lead Rubber
Bearing System (LRBS) and Friction Pendulum Bea8ggtem (FPBS).

6.4.3.1 Analysis of Base-lsolated Structureswith LRBS
6.4.3.1.1 Analyzed 3d Base-1solated Structure A

The superstructure is a two-story reinforced caecrgtructure with vertical geometric
irregularity, plan dimensions 10 m x 8 m, and stheyghth = 3.5 m. The weight of the
superstructure is 1802.9 kN and the first threema&fperiods are 0.15 s, 0.14 s, and 0.10 s,
respectively. Each superstructure diaphragm ma$sdes the contributions of the dead load
and live load on the floor diaphragm and the cobnotions of structural elements and
nonstructural elements between floors.

The base isolation system, having a total weigha1ef.9 kN, consists of an orthogonal mesh
of foundation beams having rectangular cross seetith dimensions 30 cm x 50 cm, and 9
identical Lead Rubber Bearings (LRBs), positionedtacally under all columns.

The typical floor plan, the base floor plan, andextion of the analyzed 3d base-isolated
structure are shown in Figure 6.1.

As a result of the kinematic constraints assumeclapter 2, the total number of dofs,
defined relative to the ground, is equal to 9. Fegb.2 shows the 3d discrete structural model
of the analyzed base-isolated structure.

The base isolation system has been designed im tirggovide an effective isolation period

T, = 2.25 s and an effective viscous damping = 0.15 at the design displacemeljt =
0.50 m. Thus, each elastomeric bearing has a foete F, = 31422 N, a yield displacement

y =0.017 m and a post-yield to pre-yield stiffnestso @ = 0.10.
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Figure6.1. Structure A: (a) typical floor plan; (b) base fiq@an; (c) section A-A’.
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superstructure

Figure 6.2. 3d discrete structural model of Structure A.
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6.4.3.1.2 Analyzed 3d Base-Isolated Structure B

The superstructure is a four-story reinforced cetecstructure with plan dimensions 19 m x
11 m, and story heiglit= 3.5 m. The weight of the superstructure is 982KkN and the first
three natural periods are 0.33 s, 0.33 s, and 8,26espectively. Each superstructure
diaphragm mass includes the contributions of thadd®ad and live load on the floor
diaphragm and the contributions of structural eletmend nonstructural elements between
floors.

The base isolation system, having a total weigh8@¥6.44 kN, consists of an orthogonal
mesh of foundation beams having rectangular cresos with dimensions 60 cm x 75 cm,
and 24 identical Lead Rubber Bearings (LRBs), pms#d centrically under all columns.

The typical floor plan, the base floor plan, andextion of the analyzed 3d base-isolated
structure are shown in Figure 6.3.

As a result of the kinematic constraints assumedclapter 2, the total number of dofs,
defined relative to the ground, is equal to 15.uFeg6.4 shows the 3d discrete structural
model of the analyzed base-isolated structure.

The base isolation system has been designed im trgovide an effective isolation period

T, = 2.50 s and an effective viscous damping = 0.15 at the design displacemeljt =
0.50 m. Thus, each elastomeric bearing has a yeide F, = 45400.3 N, a yield

displacemeny = 0.017 m, and a post-yield to pre-yield stiffnestso @ = 0.10.

(@)
A
- | || || || | ||
4
30/60 30/60
1 = i 2 B | |
Y
; L,
X
1B 0 : : : :
4
- || || || || || |
L 1 | l A% 1 |
I 4 T 4 T 3 T 4 T 4 1

203



Chapter 6 | Numerical Time Integration Methods

(b)
1
7
13
19
()

Figure 6.3. Structure B: (a) typical floor plan; (b) base fiqan; (c) section A-A’.
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Figure 6.4. 3d discrete structural model of Structure B.
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6.4.3.1.3 Model Adopted for Lead Rubber Bearings

The dynamic behavior of each LRB is simulated bpgi® mathematical model, introduced
by Nagarajaiah et al. (1991) and described in Gnagt capable of predicting the biaxial
behavior of elastomeric bearings. According to thidel, the LRB nonlinear restoring forces

along the orthogonal directiomsandy are described by the following equations:

F F
f,=a—2u +1-a)—2z, (6.42)
y y

_ kK Fy
f,=a—u, +1-a)—2z, (6.43)
y y

in which a is the post-yield to the pre-yield stiffness rattg is the yield forcey is the yield
displacementu, and u, represent the displacements of the isolation @ewicthex andy

directions, respectively. The functiong and z,, having the unit of displacement and

accounting for the direction and biaxial interactiof hysteresis forces, are obtained solving
the following coupled first order nonlinear ordipatifferential equations proposed by Park et
al. (1986):

2,=Au - Bluz|z -yuZ - Bluz|z -yuzz, (6.44)
z,=Au, —ﬂ‘uyzy‘ z,-yuz - Bluzlz,-yuzz,, (6.45)

in which A, B, and y are parameters that control the shape of the tegsseloop,u, and

U, are the velocities that occur at the isolationickin x andy directions, respectively.

In the numerical applications presented in thiskyre following values are adopted for the

model parameters:

A=1,p :O—ZS,andy:O—ZS.
y y

The unconditionally stable semi-implicit Runge-Kuttmethod (Rosenbrock 1963) is
employed to solve the differential equations gowegnthe behavior of each nonlinear

isolation element with a number of steps equaltto 5
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6.4.3.1.4 Numerical Resultsfor Structure A

Bidirectional earthquake excitation is imposed wibmponent SN and SP of the 1994
Northridge motion applied along directioé and Y of the global coordinate system,

respectively. The two components of the horizogtalund acceleration record, having time
step equal to 0.005 s, are shown in Figure 6iS.ithportant to note that normally 200 points
per second are used to define accurately an aatelerecord, and that the time step of the
ground motion can be reduced through linear intatfpm because it is generally assumed
that the acceleration function is linear within leéiene increment (Wilson 2002).
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Figure6.5. (a) SN and (b) SP component of horizontal growwtkeration recorded at the Jensen Filter Plant
station during the Northridge earthquake of Jandary1994.
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Table 6.1 gives the Nonlinear Time History Analy$lé THAS) results obtained using the
proposed MEIM and the PFM, both implemented onsdime computer (Intel® Core™ i7-
4700MQ processor, CPU at 2.40 GHz with 16 GB of RAM using the computer program

Matlab and verified using SAP2000. In the PFM theged convergence tolerance value is

equal to107®.
Table 6.1. NLTHASs results withZAt = 0.005 s | Structure A with LRBS.
G WM G g M (o]
tct[s] tctp[%] max min max min max min max min
MEIM 45 18.44  0.3332 -0.3327 0.2286 -0.1787 0.5298.4586 1.0986 -1.0783
PFEM 244 - 0.3330 -0.3327 0.2287 -0.1787 0.5456 6244 1.0874 -1.0399

The comparison of the maximum and minimum valueshef base isolation system mass

center MC,) displacements and superstructure second story ceader IC,) accelerations

(relative to the ground) ir andy directions, obtained using the MEIM and PFM, rése¢hat
the proposed method provides numerical results @natclose enough to those obtained
adopting the PFM.

As regards the stability of the MEIM, the critidaine step 4t , evaluated using Equation

(6.40) and considering the lowest natural periagtigiby the eigenvalue problem in Equation
(6.41), is equal to 0.32 s. It is evident thatthis case, being the critical time step larger than
the imposed ground acceleration time step, ther@austability problems.

As far as the computational efficiency is concerribd total computational tim&t, required

by the MEIM is significantly reduced in comparistmthe PFM. It must be noted that the
comparisons using thet are meaningful only qualitatively because it defgseon the CPU
speed, memory capability and background procestdbeocomputer used to obtain the
previous results. To this end, in order to norneatize computational time results, Table 6.1
also shows the percentage of the MEttlevaluated with respect to the PRdflas follows:

MEIM tctp [%] =%Mttc‘t:tﬂoo

In addition, according to the numerical resultgelisin Table 6.2, the proposed MEIM,
performed with a smaller time step, that 4, = 0.001 s, which allows one to minimize the
error in Equations (6.20) and (6.27@guires less computational effort than the PFivhate

the latter is performed using the larger time sthpf is, At = 0.005 s. Indeed, the MEIM
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tctp, referred to the PFNtt evaluated adoptinglt = 0.005 s, is equal to 90.16 %.

Table 6.2. NLTHAs results withZt = 0.001 s | Structure A with LRBS.

L B A o B el B
tct[s] tctp[%]  max min max min max min max min
MEIM 220 26.79 0.3341 -0.3333 0.22¢2 -0.1794 0.5419.4705 1.1285 -1.0728
PFM 821 - 0.3341 -0.3333 0.2292 -0.1794 0.5418 7@4 1.1274 -1.0743

It can therefore be concluded that even when a sii@e smaller than the one used to define
the ground acceleration accurately has to be addpteause of stability requirements, as in
the case of base isolation systems having isolawdts very high initial stiffness, such as
sliding bearings, or very high stiffness at largepthcements, such as high damping rubber
bearings, the proposed method preserves its cotigndh efficiency with respect to the
PFM.

Figures 6.6, 6.7, and 6.8 illustrate, respectiviig, displacement, velocity and acceleration
time histories of the base isolation system massecewhereas Figures 6.9, 6.10, and 6.11
show, respectively, the displacement, velocity aaxteleration time histories of the
superstructure second story mass center (relatitreetground).

In addition, Figures 6.12 and 6.13 illustrate, exdwely, the force-displacement hysteresis
loops displayed by Isolator 1 and Isolator 5, tlaged in Figure 6.1b.

It is evident the good agreement between respamaputed using the proposed MEIM and
the PFM.
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Figure 6.6. Displacement time history of the base isolatiostasyn mass center in (@pand (b)y directions

(Structure A with LRBS).
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Figure6.7. Velocity time history of the base isolation systarass center in (&)and (b)y directions

(Structure A with LRBS).
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Figure 6.8. Acceleration time history of the base isolatiosteyn mass center in (@and (b)y directions

(Structure A with LRBS).
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Figure 6.9. Displacement time history of the superstructusord story mass center in gagind (b)y directions

(Structure A with LRBS).
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Figure 6.10. Velocity time history of the superstructure secstaty mass center in (&)and (b)y directions

(Structure A with LRBS).
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Figure 6.11. Acceleration time history of the superstructureosel story mass center in fand (b)y directions

(Structure A with LRBS).
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Figure 6.12. Hysteresis loop displayed by Isolator 1 inXand (b)y directions
(Structure A with LRBS).
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Figure 6.13. Hysteresis loop displayed by Isolator 5 inXand (b)y directions
(Structure A with LRBS).
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6.4.3.1.5 Numerical Resultsfor Structure B

Bidirectional earthquake excitation is imposed vatmponent SN and SP of the 1989 Loma
Prieta motion applied along directioRsandY of the global coordinate system, respectively.
The two components of the horizontal ground aceélan record, having time step equal to

0.005 s, are shown in Figure 6.14. It is importanbote that normally 200 points per second
are used to define accurately an acceleration de@ord that the time step of the ground

motion can be reduced through linear interpolabecause it is generally assumed that the
acceleration function is linear within each timerement (Wilson 2002).
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Figure6.14. (a) SN and (b) SP component of horizontal growwtkeration recorded at the LGPC station
during the Loma Prieta earthquake of October 18919
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Table 6.3 gives the Nonlinear Time History Analy$é THAS) results obtained using the
proposed MEIM and the PFM, both implemented onsdime computer (Intel® Core™ i7-
4700MQ processor, CPU at 2.40 GHz with 16 GB of RAM using the computer program

Matlab and verified using SAP2000. In the PFM theged convergence tolerance value is

equal to107®.
Table 6.3. NLTHAS results withAt = 0.005 s | Structure B with LRBS.
L I e b Sl - I
tct[s] tctp[%] max min max min max min max min
MEIM 9356 17.35 0.5643 -0.3957 0.3053 -0.2105 0O®2 -0.7925 0.4795 -0.5594
PFM 539 - 0.5642 -0.3958 0.3054 -0.2106 0.9266 O&RE 0.4939 -0.5770

The comparison of the maximum and minimum valueshef base isolation system mass

center MGC,) displacements and superstructure fourth storysroaster IC,) accelerations

(relative to the ground) ir andy directions, obtained using the MEIM and PFM, rés¢hat
the proposed method provides numerical results @natclose enough to those obtained
adopting the PFM.

As regards the stability of the MEIM, the critidéine step 4t , evaluated using Equation

(6.40) and considering the lowest natural periagtigiby the eigenvalue problem in Equation
(6.41), is equal to 0.12 s. It is evident thatthis case, being the critical time step larger than
the imposed ground acceleration time step, ther@austability problems.

As far as the computational efficiency is concerribd total computational tim&t, required

by the MEIM is significantly reduced in comparistmthe PFM. It must be noted that the
comparisons using thet are meaningful only qualitatively because it defgseon the CPU
speed, memory capability and background procestdbeocomputer used to obtain the
previous results. To this end, in order to norneatize computational time results, Table 6.3
also shows the percentage of the MEttlevaluated with respect to the PRdflas follows:

MEIM tctp [%] =%Mttc‘t:tﬂoo

In addition, according to the numerical resultgelisin Table 6.4, the proposed MEIM,
performed with a smaller time step, that 4, = 0.001 s, which allows one to minimize the
error in Equations (6.20) and (6.27@guires less computational effort than the PFivhate

the latter is performed using the larger time sthpf is, At = 0.005 s. Indeed, the MEIM
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tctp, referred to the PFNtt evaluated adoptinglt = 0.005 s, is equal to 87.94 %.

Table 6.4. NLTHASs results withAt = 0.001 s | Structure B with LRBS.

G WM aM g M (g
tct[s] tctp[%]  max min max min max min max min
MEIM 474 25.73 0.5651 -0.3957 0.3058 -0.2107 0.9408.8372 0.4953 -0.5621
PFM 1842 - 0.5651 -0.3957 0.3058 -0.2107 0.94068310L 0.4935 -0.5628

It can therefore be concluded that even when a sii@e smaller than the one used to define
the ground acceleration accurately has to be addpteause of stability requirements, as in
the case of base isolation systems having isolawdts very high initial stiffness, such as
sliding bearings, or very high stiffness at largepthcements, such as high damping rubber
bearings, the proposed method preserves its cotigndh efficiency with respect to the
PFM.

Figures 6.15, 6.16, and 6.17 illustrate, respeltiveéhe displacement, velocity and
acceleration time histories of the base isolatigstesn mass center, whereas Figures 6.18,
6.19, and 6.20 show, respectively, the displacematbcity and acceleration time histories
of the superstructure fourth story mass centeatfre to the ground).

In addition, Figures 6.21 and 6.22 illustrate, exdwely, the force-displacement hysteresis
loops displayed by Isolator 1 and Isolator 11 siitated in Figure 6.3b.

It is evident the good agreement between respawaputed using the proposed MEIM and
the PFM.
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Figure 6.15. Displacement time history of the base isolatiostasyn mass center in (@and (b)y directions

(Structure B with LRBS).
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Figure 6.16. Velocity time history of the base isolation systarass center in (&)and (b)y directions

(Structure B with LRBS).
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Figure 6.17. Acceleration time history of the base isolatiosteyn mass center in (@and (b)y directions

(Structure B with LRBS).
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Figure 6.18. Displacement time history of the superstructurgtfo story mass center in (@and (b)y directions

(Structure B with LRBS).
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Figure 6.19. Velocity time history of the superstructure foustory mass center in (&)and (b)y directions

(Structure B with LRBS).
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Figure 6.20. Acceleration time history of the superstructurertb story mass center in (@and (b)y directions

(Structure B with LRBS).
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Figure 6.21. Hysteresis loop displayed by Isolator 1 inXand (b)y directions
(Structure B with LRBS).
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Figure 6.22. Hysteresis loop displayed by Isolator 11 inXand (b)y directions
(Structure B with LRBS).
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6.4.3.2 Analysis of Base-Isolated Structureswith FPBS
6.4.3.2.1 Analyzed 3d Base-1solated Structure A

The superstructure is a two-story reinforced cdecrgtructure with vertical geometric
irregularity, plan dimensions 10 m x 8 m, and stheyghth = 3.5 m. The weight of the
superstructure is 1802.9 kN and the first threeinahtperiods are 0.15 s, 0.14 s, and 0.10 s,
respectively. Each superstructure diaphragm ma$sdes the contributions of the dead load
and live load on the floor diaphragm and the cobotions of structural elements and
nonstructural elements between floors.

The base isolation system, having a total weigha1af.9 kN, consists of an orthogonal mesh
of foundation beams having rectangular cross seetith dimensions 30 cm x 50 cm, and 9
identical Friction Pendulum Bearings (FPBs), posi¢id centrically under all columns.

The typical floor plan, the base floor plan, andextion of the analyzed 3d base-isolated
structure are shown in Figure 6.1.

As a result of the kinematic constraints assumehapter 2, the total number of dofs,
defined relative to the ground, is equal to 9. Fegb.2 shows the 3d discrete structural model
of the analyzed base-isolated structure.

The base isolation system has been designed im trgovide an effective isolation period
T4 = 2.25 s and an effective viscous damping = 0.10 at the design displacemeht =
0.50 m. Thus, each sliding bearing has a radiugiofature of the spherical concave surface
R =1.25 m, a sliding friction coefficient = 0.07, and a yield displacememnt 0.0002 m. In

the numerical application, the vertical loBdcarried by each device is assumed equal to the
weight W acting on the isolator and the dependency of titing friction coefficient on

bearing pressure and sliding velocity is neglected.
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6.4.3.2.2 Analyzed 3d Base-Isolated Structure B

The superstructure is a four-story reinforced cetecstructure with plan dimensions 19 m x
11 m, and story heiglit= 3.5 m. The weight of the superstructure is 982KkN and the first
three natural periods are 0.33 s, 0.33 s, and 8,26espectively. Each superstructure
diaphragm mass includes the contributions of thadd®ad and live load on the floor
diaphragm and the contributions of structural eletmend nonstructural elements between
floors.

The base isolation system, having a total weigh8@¥6.44 kN, consists of an orthogonal
mesh of foundation beams having rectangular cresos with dimensions 60 cm x 75 cm,
and 24 identical Friction Pendulum Bearings (FPBs§itioned centrically under columns.
The typical floor plan, the base floor plan, andextion of the analyzed 3d base-isolated
structure are shown in Figure 6.3.

As a result of the kinematic constraints assumedclapter 2, the total number of dofs,
defined relative to the ground, is equal to 15.uFeg6.4 shows the 3d discrete structural
model of the analyzed base-isolated structure.

The base isolation system has been designed im trgovide an effective isolation period
T4 = 2.50 s and an effective viscous damping = 0.10 at the design displacemeht =
0.50 m. Thus, each sliding bearing has a radiugiofature of the spherical concave surface
R = 1.55m, and a sliding friction coefficientz = 0.06, and a yield displacemegnt 0.0001

m. In the numerical application, the vertical Idddarried by each device is assumed equal to
the weightW acting on the isolator and the dependency of lideng friction coefficient on

bearing pressure and sliding velocity is neglected.
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6.4.3.2.3 Model Adopted for Friction Pendulum Bearings

The dynamic behavior of each FPB is simulated bggua mathematical model, introduced
by Constantinou et al. (1990) and described in @rag, capable of predicting the biaxial
behavior of sliding bearings. According to this mhdhe FPB nonlinear restoring forces

along the orthogonal directiomsandy are described by the following equations:

f| :%ux +%zx(u), (6.46)
£ =%uy +% 2,(u), (6.47)

in which, N is the vertical load carried by the beariiyjs the radius of curvature of the

spherical concave surface of the bearing, and u, represent the displacements of the

isolation device in th& andy directions, respectively; is the yield displacement, angd is

the sliding friction coefficient which depends dmetvalue of bearing pressure and on the

instantaneous velocity of sliding, given by:

uzq/u§+u§, (6.48)

where U, and U, are the velocities that occur at the isolationickwn x andy directions,

respectively.

The functionsz, and z,, obtained by solving Equations (6.44) and (6.4&pectively, have

the unit of displacement and account for the dioacand biaxial interaction of hysteresis
forces.

In the numerical applications, the following valie® adopted for the model parameters in
Equations (6.44) and (6.45):

A= ]_”B :(;)/_'Zs,andy :0_5

y:
The unconditionally stable semi-implicit Runge-Kuttmethod (Rosenbrock 1963) is
employed to solve the differential equations gowegnthe behavior of each nonlinear

isolation element with a number of steps equaltto 5
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6.4.3.2.4 Numerical Resultsfor Structure A

Bidirectional earthquake excitation is imposed wibmponent SN and SP of the 1994
Northridge motion applied along directioé and Y of the global coordinate system,
respectively. The two components of the horizogtalund acceleration record, having time
step equal to 0.005 s, are shown in Figure 6iS.ithportant to note that normally 200 points
per second are used to define accurately an aatielerecord, and that the time step of the
ground motion can be reduced through linear intatfpm because it is generally assumed
that the acceleration function is linear within leéiene increment (Wilson 2002).

Table 6.5 gives the Nonlinear Time History Analy$lé THAS) results obtained using the
proposed MEIM and the PFM, both implemented onsdwme computer (Intel® Core™ i7-
4700MQ processor, CPU at 2.40 GHz with 16 GB of RAM using the computer program

Matlab. In the PFM the adopted convergence toleramtue is equal ta0™®.

Table 6.5. NLTHAs results withZt = 0.005 s | Structure A with FPBS.

G WM G g M (o]
tct[s] tctp[%]  max min max min max min max min
MEIM 47 7.86 0.3312 -0.3133 0.2831 -0.2507 0.470®.4772 1.1883 -0.9682
PFM 598 - 0.3310 -0.3137 0.2829 -0.2505 0.4729 1&4 1.0778 -1.1374

The comparison of the maximum and minimum valuethefMC, displacements an1C,

accelerations (relative to the ground)xrandy directions, obtained using the MEIM and
PFM, reveals that the proposed method provides noaheesults that are close enough to

those obtained adopting the PFM.
As regards the stability of the MEIM, the critid@éine step 4t , evaluated using Equation

(6.40) and considering the lowest natural periagtigiby the eigenvalue problem in Equation
(6.41), is equal to 0.015 s. It is evident thathis case, being the critical time step largentha
the imposed ground acceleration time step, thexenarstability problems despite of the very
high initial stiffness value of FPBs.

As far as the computational efficiency is concerribd total computational tim&t, required

by the MEIM is significantly reduced in comparistmthe PFM. It must be noted that the
comparisons using thet are meaningful only qualitatively because it defgeon the CPU
speed, memory capability and background procestdbeocomputer used to obtain the
previous results. To this end, in order to norneatize computational time results, Table 6.5
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also shows the percentage of the MEttevaluated with respect to the PRdflas follows:

MEIM tctp [%] :%moo

In addition, according to the numerical resultgelisin Table 6.6, the proposed MEIM,
performed with a smaller time step, that #, = 0.001 s, which allows one to minimize the
error in Equations (6.20) and (6.27@guires less computational effort than the PFivhate
the latter is performed using the larger time sthpt is, At = 0.005 s. Indeed, the MEIM
tctp, referred to the PFNtt evaluated adoptinglt = 0.005 s, is equal to 38.46 %.

Table 6.6. NLTHAs results withZt = 0.001 s | Structure A with FPBS.

UM Uy [ml oM o] 4" (]
tct[s] tctp[%]  max min max min max min max min
MEIM 230 1854 0.3312 -0.3139 0.2832 -0.2507 0.4779.4692 1.2015 -0.9925
PFM 1240 - 0.3312 -0.3139 0.2832 -0.2507 0.47834698 1.2067 -0.9835

It can therefore be concluded that even when a sii@e smaller than the one used to define
the ground acceleration accurately has to be addpeause of stability requirements, as in
the case of base isolation systems having isolawdts very high initial stiffness, such as
sliding bearings, or very high stiffness at larggpthcements, such as high damping rubber
bearings, the proposed method preserves its cotigndh efficiency with respect to the
PFM.

Figures 6.23, 6.24, and 6.25 illustrate, respeltiveéhe displacement, velocity and
acceleration time histories of the base isolatigstesn mass center, whereas Figures 6.26,
6.27, and 6.28 show, respectively, the displacematbcity and acceleration time histories
of the superstructure second story mass centatigrelto the ground).

In addition, Figures 6.29 and 6.30 illustrate, extpvely, the force-displacement hysteresis
loops displayed by Isolator 1 and Isolator 5, tilaged in Figure 6.1b.

It is evident the good agreement between respasaputed using the proposed MEIM and
the PFM.
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Figure 6.23. Displacement time history of the base isolatiostasyn mass center in (@and (b)y directions

(Structure A with FPBS).
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Figure 6.24. Velocity time history of the base isolation systarass center in (&)and (b)y directions

(Structure A with FPBS).
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Figure 6.25. Acceleration time history of the base isolatiosteyn mass center in (@and (b)y directions

(Structure A with FPBS).
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Figure 6.26. Displacement time history of the superstructusmrd story mass center in faiind (b)y

directions (Structure A with FPBS).
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Figure 6.27. Velocity time history of the superstructure secstaty mass center in (&)and (b)y directions

(Structure A with FPBS).
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Figure 6.28. Acceleration time history of the superstructurecsel story mass center in faqind (b)y directions

(Structure A with FPBS).

239



Chapter 6 | Numerical Time Integration Methods

(@)

[N] @210} Buniolsal

displacement [m]

(b)

x 10°

<
o
s =2
0w
o=
| i
0]
S
-
[
()
“““““““ ok
(&S]
o
o
0
©
N
“““““ Q
<
— -

[N] @210} Buniolsal
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Figure 6.30. Hysteresis loop displayed by Isolator 5 inXand (b)y directions
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6.4.3.2.5 Numerical Resultsfor Structure B

Bidirectional earthquake excitation is imposed vatmponent SN and SP of the 1989 Loma
Prieta motion applied along directioRsandY of the global coordinate system, respectively.
The two components of the horizontal ground aceélan record, having time step equal to
0.005 s, are shown in Figure 6.14. It is importanbote that normally 200 points per second
are used to define accurately an acceleration de@ord that the time step of the ground
motion can be reduced through linear interpolabecause it is generally assumed that the
acceleration function is linear within each timerement (Wilson 2002).

Table 6.7 gives the Nonlinear Time History Analy$lé THAS) results obtained using the
proposed MEIM and the PFM, both implemented onsdime computer (Intel® Core™ i7-
4700MQ processor, CPU at 2.40 GHz with 16 GB of RAM using the computer program

Matlab. In the PFM the adopted convergence toleramtue is equal ta0™®.

Table 6.7. NLTHAS results withAt = 0.005 s | Structure B with FPBS.

L I s I
tct[s] tctp[%]  max min max min max min max min
MEIM  99.8 7.00 0.5642 -0.4575 0.2971 -0.1831 1.137/3.0563 0.5581 -0.7436
PFM 1425 - 0.5641 -0.4575 0.2970 -0.1839 1.17811190 0.6006 -0.7293

The comparison of the maximum and minimum valuethefMC, displacements an¥iC,

accelerations (relative to the ground)xrandy directions, obtained using the MEIM and
PFM, reveals that the proposed method provides rnioaheesults that are close enough to
those obtained adopting the PFM.

As regards the stability of the MEIM, the critidéine step 4t , evaluated using Equation

(6.40) and considering the lowest natural periagtigiby the eigenvalue problem in Equation
(6.41), is equal to 0.012 s. It is evident thathis case, being the critical time step largentha
the imposed ground acceleration time step, thexenarstability problems despite of the very
high initial stiffness value of FPBs.

As far as the computational efficiency is concerribd total computational tim&t, required
by the MEIM is significantly reduced in comparistmthe PFM. It must be noted that the
comparisons using thet are meaningful only qualitatively because it defgenon the CPU
speed, memory capability and background procestdbeocomputer used to obtain the
previous results. To this end, in order to norneatize computational time results, Table 6.7
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also shows the percentage of the MEttlevaluated with respect to the PRéflas follows:

MEIM tctp [%] :%moo

In addition, according to the numerical resultgelisin Table 6.8, the proposed MEIM,
performed with a smaller time step, that #, = 0.001 s, which allows one to minimize the
error in Equations (6.20) and (6.27@guires less computational effort than the PFivhate
the latter is performed using the larger time sthpt is, At = 0.005 s. Indeed, the MEIM
tctp, referred to the PFNEt evaluated adoptinglt = 0.005 s, is equal to 34.42 %.

Table 6.8. NLTHAS results withAt = 0.001 s | Structure B with FPBS.

G M A g 0 [l
tct[s] tctp[%]  max min max min max min max min
MEIM  490.6 18.02 0.5590 -0.4466 0.2954 -0.1810 0.8799.95M 0.5443 -0.6542
PFM 2722 - 0.5590 -0.4466 0.2954 -0.1810 0.88259610 0.5452 -0.6547

It can therefore be concluded that even when a sit@e smaller than the one used to define
the ground acceleration accurately has to be addpeause of stability requirements, as in
the case of base isolation systems having isolawdts very high initial stiffness, such as
sliding bearings, or very high stiffness at larggpthcements, such as high damping rubber
bearings, the proposed method preserves its cotigndh efficiency with respect to the
PFM.

Figures 6.31, 6.32, and 6.33 illustrate, respeltiveéhe displacement, velocity and
acceleration time histories of the base isolatigstesn mass center, whereas Figures 6.34,
6.35, and 6.36 show, respectively, the displacematbcity and acceleration time histories
of the superstructure fourth story mass centeatfxe to the ground).

In addition, Figures 6.37 and 6.38 illustrate, extpvely, the force-displacement hysteresis
loops displayed by Isolator 1 and Isolator 11 siitated in Figure 6.3b.

It is evident the good agreement between resparsaputed using the proposed MEIM and
the PFM.
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Figure 6.31. Displacement time history of the base isolatiostasyn mass center in (@and (b)y directions

(Structure B with FPBS).
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Figure 6.32. Velocity time history of the base isolation systarass center in (&)and (b)y directions

(Structure B with FPBS).
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Figure 6.35. Velocity time history of the superstructure foustory mass center in (&)and (b)y directions
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(Structure B with FPBS).

249



Chapter 6 | Numerical Time Integration Methods

(@)

0.6

—PFM
MEIM

0.3

[N] @210} Buniolsal

displacement [m]

(b)

x 10°

0.4

—PFM
MEIM

0.2

0
displacement [m]

-0.2

[N] @210} Buniolsal

Figure 6.37. Hysteresis loop displayed by Isolator 1 inXand (b)y directions

(Structure B with FPBS).

250



Chapter 6 | Numerical Time Integration Methods

(@)

0.6

= MEIM

0.3

[N] @210} Buniolsal

displacement [m]

(b)

x 10°

0.4

-~ MEIM

0.2

0
displacement [m]

0.2

[N] @210} Buniolsal
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Chapter 7

Speeding Up Nonlinear Dynamic Analysis
Usingthe MEIM and NEM

7.1 Introduction

In Chapter 7, the nonlinear dynamic response ofl as@smically base-isolated structure
subjected to harmonic earthquake excitation is ipredl using the Pseudo-Force Method
(PFM), described in 6.2.2, and the proposed MixepliEit-Implicit time integration Method
(MEIM), presented in 6.3.2. In order to simulate thonlinear dynamic behavior of each
seismic isolator within the relatively large dispganents range, generally reached under the
design earthquake, the Bouc-Wen Model (BWM), désctiin 4.2.1.1, and the proposed
Nonlinear Exponential Model (NEM), presented in.4.B, are adopted. More specifically,
the former is used when the nonlinear time historglysis is performed with the PFM (PFM-
BWM), whereas the latter is employed when the ma&ar dynamic analysis is carried out
using the MEIM (MEIM-NEM). The main aim of the folving numerical application is to
demonstrate how the significant reduction of thenpotational effort, due to the use of the
proposed partitioned solution approach and nonliaealytical model, makes the nonlinear

dynamic analysis almost as fast as a linear dynamagysis.
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7.2 Numerical Application
7.2.1 Analyzed 3d Base-Isolated Structure

In the following, the analyzed 3d structure, secalty isolated by adopting a lead rubber
bearing system, is described.

The superstructure is a four-story reinforced cetecstructure with plan dimensions 19 m x
11 m, and story heiglit= 3.5 m. The weight of the superstructure is 982KkN and the first
three natural periods are 0.33 s, 0.33 s, and 8,26espectively. Each superstructure
diaphragm mass includes the contributions of thadd®ad and live load on the floor
diaphragm and the contributions of structural eletmend nonstructural elements between
floors.

The base isolation system, having a total weigh8@¥6.44 kN, consists of an orthogonal
mesh of foundation beams having rectangular cresos with dimensions 60 cm x 75 cm,
and 24 identical Lead Rubber Bearings (LRBs), pws#d centrically under all columns.

The typical floor plan, the base floor plan, andextion of the analyzed 3d base-isolated
structure are shown in Figure 6.3.

As a result of the kinematic constraints assumedclapter 2, the total number of dofs,
defined relative to the ground, is equal to 15.uFeg6.4 shows the 3d discrete structural
model of the analyzed base-isolated structure.

The base isolation system has been designed im trgovide an effective isolation period

T, = 2.50 s and an effective viscous damping = 0.15 at the design displacemeljt =
0.50 m. Thus, each elastomeric bearing has a yielde f, = 45400.3 N, a yield

displacement, = 0.017 m, and a post-yield to pre-yield stiffnestso a = 0.10.
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7.2.2 Analytical M odels Parameters

Table 7.1 shows the parameters of the two unianalytical models adopted to simulate the

dynamic behavior of each LRB, that is, the différ@nequation BWM, described in 4.2.1.1,
and the proposed NEM, presented in 4.3.1.1.

Table7.1. BWM and NEM parameters.

BWM f, [N] uy [m] a A B y n
45400.29 0.0171 0.10 1 0.5 0.5 2
NEM k, [N/m]  k, [N/m] a
4513479 265498 50

Figure 7.1 illustrates the force-displacement hesis loops produced by use of the BWM
and NEM. They are obtained, as done in experimetasils, by applying a sinusoidal
harmonic displacement having amplitude equal t@ @5and frequency of 0.40 Hz. It can be
seen that the two analytical models adopting thrarpaters listed in Table 7.1 can reproduce
a hysteresis loop having the same area and eféestiiffness.

=

o

restoring force [N]

1
=

%5  -0.25 0 0.25 05
displacement [m]

Figure7.1. Hysteresis loop simulated using the BWM and thé/NE
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7.2.3 Dynamic Response of the 3d Base-l solated Structure

Harmonic ground motion, having amplitudg, = 2.5 m/$, frequencyw, = 27 rad/s, and
time durationt, = 20 s, is imposed with an angtg, that is, the angle that the epicentral

direction forms with theX-axis, equal ton/6. The time step of the harmonic earthquake
excitation is chosen equal to 0.005 s because nigr@0 points per second are used to
define accurately an acceleration record (Wilsod2}0The two components of the horizontal

harmonic ground acceleration are shown in Figuze 7.
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Figure7.2. (a) X and (b)Y components of the applied horizontal harmonic gdoacceleration.
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Table 7.2 gives the Nonlinear Time History Analy$lé THAS) results obtained using the
PFM-BWM and the proposed MEIM-NEM, both implementedthe same computer (Intel®
Core™ i7-4700MQ processor, CPU at 2.40 GHz wittGBof RAM) by using the computer
program Matlab and verified using SAP2000. In theMPBWM, the adopted convergence
tolerance value is equal to®, and the unconditionally stable semi-implicit Rarigutta
method (Rosenbrock 1963 employed to solve the differential equations egaing the

behavior of each nonlinear isolation element wittuenber of steps equal to 50.

Table7.2. NLTHAS results withA4t = 0.005 s.

uM g Wm0 g 0t [g]
tct[s] tctp[%] mMax min max min max min  max min
MEIM-NEM 1.25 0.33 0.073 -0.060 0.095 -0.140 0.3230.331 0.512 -0.527
PFM-BWM 373.24 - 0.071 -0.065 0.099 -0.146 0.329.342 0.591 -0.562

The comparison of the maximum and minimum valueshef base isolation system mass
center MG,) displacements and superstructure fourth storysmeaster MG,) accelerations

(relative to the ground) ir andy directions, obtained using the PFM-BWM and the MEI
NEM, reveals that the proposed partitioned soluapproach and analytical model provide

numerical results that are close enough to thotsrea adopting the PFM-BWM.

As regards the stability of the MEIM, the critidéine step 4t , evaluated using Equation

(6.40) and considering the lowest natural periogtigiby the eigenvalue problem in Equation
(6.41), is equal to 0.12 s. It is clear that the Ktiffness value of the base isolation system
allows one to have a critical time step considgralarger than the imposed ground
acceleration time step, thus avoiding stabilityljems.

As far as the computational efficiency is concerribd total computational timigt, required

by the MEIM-NEM is significantly reduced in compson to the PFM-BWM. It must be
noted that the comparisons using ttteare meaningful only qualitatively because it dejsen
on the CPU speed, memory capability and backgrqamdesses of the computer used to
obtain the previous results. To this end, in otdemormalize the computational time results,
Table 7.2 also shows the percentage of the MEIM-NteMevaluated with respect to the
PFM-BWM tct as follows:

MEIM — NEM tct

MEIM - NEM tctp [%] = eV BV a
- Cl
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In addition, according to the numerical resultgelisin Table 7.3, the proposed MEIM-NEM,
performed with a smaller time step, that i, = 0.001 s, requires less computational effort
than the PFM-BWM even if the latter is performedngsthe larger time step, that igt =
0.005 s. Indeed, the MEIM-NER&tp, referred to the PFM-BWNtt evaluated adoptinglt
0.005 s, is equal to 1.53 %.

Table 7.3. NLTHAS results with4t = 0.001 s.

M .. -+ (MC
uM mp W m g™ g @M [l
tct[s] tctp[%] mMax min max min max min  max  min
MEIM-NEM 5.73 153 0.073 -0.060 0.095 -0.140 0.3280.325 0.514 -0.510

Figures 7.3, 7.4, and 7.5 illustrate, respectiviig, displacement, velocity, and acceleration
time histories of the base isolation system massecefor a time duration of the harmonic

earthquake excitatiom, = 10 s, whereas Figures 7.6, 7.7, and 7.8 shospentively, the

displacement, velocity, and acceleration time hiegoof the superstructure fourth story mass
center (relative to the ground).

Furthermore, Figures 7.9 and 7.10 illustrate, retbpaly, the force-displacement hysteresis
loops displayed by Isolator 1 and Isolator 11 siitated in Figure 6.3b.

It is evident the good agreement between respocm@puted using the proposed MEIM-
NEM and the PFM-BWM.
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Figure 7.9. Hysteresis loop displayed by Isolator 1 inXand (b)y directions.
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Chapter 8

Conclusions

8.1 Summary of the Dissertation

In this dissertation, five mathematical models, abm Nonlinear Exponential Model,
Advanced Nonlinear Exponential Model, Parallel Modedvanced Parallel Model, and 2d
Parallel Model, and a Mixed Explicit-Implicit tim@tegration Method have been proposed
for the nonlinear time history analysis of seisttjchase-isolated structures with the main
aim of simulating the nonlinear dynamic behavioseismic isolators at both small and large
displacements and reducing numerical computatioaking the nonlinear dynamic analysis

almost as fast as a linear dynamic analysis.
8.1.1 Mathematical Models

The proposed Nonlinear Exponential Model (NEM) dpatallel Model (PM) are able to
predict the dynamic behavior of seismic isolati®vides displaying symmetric softening
force-displacement loops with bilinear charactasstsuch as elastomeric bearings and wire
rope isolators, or rigid-plastic characteristicaclts as sliding bearings, within a relatively
large displacements range, generally reached uhdeatesign dynamic loading. The PM can
be easily implemented in existing nonlinear firelement computer programs. Both models
need only three parameters to be identified fromeernental tests, whereas in the widely
used uniaxial differential equation Bouc-Wen Mo(B¥WM) the number of parameters to be
identified is equal to seven for both elastomernid aliding bearings and wire rope isolators.
In addition, the presented models allow one to cedhie computational effort of a nonlinear
time history analysis by avoiding, at each timgstee numerical solution of the first order
nonlinear ordinary differential equation requirey the BWM to evaluate the hysteretic
variable.

The proposed Advanced Nonlinear Exponential ModeNEM) and Advanced Parallel

Model (APM), which are an improved version of thENM and PM, respectively, can predict
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the uniaxial dynamic response of seismic isolabt@@ng hardening or softening behavior at
large displacements. The APM can be easily impleetkim existing nonlinear finite element
computer programs. Both models require the evalnatf only five model parameters
whereas in the Modified Bouc-Wen Model (MBWM), deked in 4.2.1.2, the number of
parameters to be identified is equal to nine. Farrttore, the two proposed models are able to
capture the smooth transition of the hysteresipddoom the small to the large displacements
range using only one set of parameters evaluated fhe experimental hysteresis loops with
the largest amplitude. Compared to the MBWM, theppsed models do not require the
numerical solution of a first order nonlinear owin differential equation at each time step of
the analysis, thus decreasing the computationatteff

The experimental hysteresis loops obtained fromicytynamic tests, performed on four
Wire Rope Isolators (WRIs) and a Recycled RubbbeiReinforced Bearing (RR-FRB),
have been simulated adopting the presented modelsder to demonstrate their accuracy.
Good agreement between the experimental and nuatheggults has been obtained.

The proposed 2d Parallel Model (2d PM) is ableaketinto account the transverse biaxial
interaction between the nonlinear hysteretic ra@sgoforces along two orthogonal directions,
within a relatively large displacements range. din cbe easily implemented in existing
nonlinear finite element computer programs. Thiglatigequires the evaluation of only five
model parameters and, compared to the 2d BWM ¢ amt require the numerical solution of
two coupled first order nonlinear ordinary diffeti@h equations at each time step of a

nonlinear dynamic analysis.

8.1.2 Numerical Method

A Mixed Explicit-Implicit time integration MethodEIM) has been proposed for predicting
the nonlinear response of base-isolated structuigiected to earthquake excitation.

Adopting a partitioned solution approach, currentbed in most practical civil engineering
problems, the discrete structural model of a typReé base-isolated structure has been
decomposed into two substructures, namely, therstipeture and the base isolation system.
Being the base isolation system much more flexibén the superstructure to decouple the
latter from the earthquake ground motion, an ekptionditionally stable time integration
method, that is, the central difference method, leen employed to evaluate the nonlinear
base isolation system response and an implicitnohtonally stable time integration method,

that is, the Newmark's constant average acceleratiethod, has been adopted to predict the
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linear superstructure response with the remarkiadtefit of avoiding the iterative procedure
within each time step of a nonlinear time histonalgsis required by conventional non-
partitioned solution approaches.

In order to investigate the accuracy, the stabiitd the computational efficiency of the
proposed method, the dynamic response of two 3é-isatated structures, subjected to
bidirectional earthquake excitation, has been aealyusing the MEIM. Two types of base
isolation systems have been considered for batietstres, namely, base isolation system with
lead rubber bearings and base isolation system fwdtion pendulum bearings. The latter
allowed one to investigate the use of the mixecetimegration procedure in presence of
isolators with very high initial stiffness. The acacy and the computational efficiency of the
proposed MEIM have been assessed by comparingethits with those obtained by using
the solution algorithm specifically developed bygdeajaiah et al. (1991) for the analysis of
base-isolated structures. For brevity, in this eligdion, the latter implicit time integration
method adopted in conjunction with the pseudo-fapproach has been referred to as the
Pseudo-Force Method (PFM).

From the numerical results presented in this thésesfollowing conclusions can be drawn:

= as regards the accuracy, the proposed MEIM provigists that are close enough to those
obtained adopting the PFM, for both two valuesimktstep adopted in the nonlinear time
history analyses of the selected 3d base-isolatedttsres. Both numerical methods,
implemented on the same computer by using the ctanguogram Matlab, have been
verified using SAP2000;

= as far as the stability is concernéte proposed MEIM is conditionally stable becaumse t
central difference method is employed to prediat tionlinear response of the base
isolation system. The low stiffness value of theeasolation system with lead rubber
bearings allows one to have a critical time stepswterably larger than the imposed
ground acceleration record time step. Furthermitre,critical time step continues to be
larger than the ground acceleration time step ialsbe case of base isolation system with

friction pendulum bearings in spite of their vergtinitial stiffness;

= regarding the computational efficiency, the totaimputational timeict, required by the
MEIM is significantly reduced in comparison to tiFM. In addition, the MEIM,

performed with a smaller time stegt( = 0.001 s), requires less computational efforhtha
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the PFM even if the latter is performed using gedatime step it = 0.005 s). It transpires
that even when the critical time step size aridirgn stability requirements becomes
smaller than the one used to accurately definggtband acceleration, as in the case of
base isolation systems having isolators with veigh hinitial stiffness (e.g., sliding
bearings) or very high stiffness at large displaeei® (e.g., high damping rubber
bearings), the proposed method preserves its catipudl efficiency with respect to

conventional implicit time integration methods.

It follows that the proposed MEIM can be effectiveldopted in the context of earthquake
engineering structural applications being a veficieht solution approach for the nonlinear
time history analysis of base-isolated structureden seismic loads.

8.1.3 MakingtheNLTHA almost asfast asaLTHA

The proposed MEIM and NEM have been adopted tooparthe Nonlinear Time History
Analysis (NLTHA) of a 3d seismically base-isolatstlucture with Lead Rubber Bearings
(LRBs) in order to demonstrate the significant i&dhn of the computational effort which
makes the NLTHA almost as fast as a Linear TimédrysAnalysis (LTHA).

From the numerical results presented in this thésesfollowing conclusions can be drawn:

= the presented MEIM and NEM provide results that dose enough to those obtained
adopting the PFM and the BWM, for both time stefuea used in the NLTHAs of the
analyzed 3d base-isolated structure with LRBSs;

= the low stiffness value of the base isolation systeith LRBs allows one to have a
critical time step considerably larger than the asgd ground acceleration time step, thus
avoiding stability problems in the MEIM,;

= thetct required by the MEIM-NEM is significantly reducéd comparison to the PFM-
BWM: the MEIM-NEM total computational time perceggtctp, evaluated with respect
to the PFM-BWMtct for a At = 0.005 s, is equal to 0.33 %. In addition, thelMENEM,
performed with a smaller time step, that i, = 0.001 s, requires less computational
effort than the PFM-BWM even if the latter is perfed using the larger time step (i.e.,
At = 0.005 s): indeed, the MEIM-NENttp, referred to the PFM-BWMct evaluated
adopting4t = 0.005 s, is equal to 1.53 %.
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8.2 Recommendations for Futur e Research

8.2.1 Mathematical M oddls

In order to accurately predict the dynamic respais&/Rls in the large displacements range,
further work is required to improve the mathemadtmmadels, that is, ANEM and APM, by
including a procedure of updating the parametespexify the shape of the hysteresis curve
according to the maximum displacement at the poinibading or unloading. In addition,
further work is required in order to verify the posed 2d PM by comparing the numerical

results with those obtained experimentally.

8.2.2 Numerical Method

The proposed solution algorithm could be improvedorder to take into account the
nonlinear behavior of the superstructure, thusaatlg one to analyze the response of base-
isolated structures under extreme earthquake éwciga In addition, recently developed
explicit and implicit time integration algorithmsych as those introduced by Noh and Bathe
(2013) and Noh et al. (2013) for the analysis ovevaropagation problems, could be adopted
in the explicit and implicit substeps, respectivefyorder to improve stability, accuracy and

computational efficiency of the proposed partitids®lution approach.
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