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Abstract 

 

The research activity regards the field of innovative technologies for energy production with high 

efficiency and low environmental impact from renewable sources. 

The steady increase in energy demand associated with the reduced availability of fossil fuels and 

the urgent need to reduce greenhouse gas emissions, are promoted the use of high-efficiency and 

alternative fuel technologies. The use of biogas is an effective solution to the problems of energy 

supply with further benefit of recovery and reutilization of the organic waste to energy scope. The 

biogas, a mixture consisting mainly of methane, carbon dioxide and hydrogen can be produced 

through thermochemical processes (i.e. pyrolysis and gasification) or biological (i.e. biophotolysis 

and biofermentation). The last one have the advantage of a significant energy savings and reduced 

pollutant emissions. 

The technology of fuel cells (FCs) is today the most valid alternative to traditional thermal engines 

for different aspects: the higher efficiency (up to 80-85% in cogeneration systems), the negligible 

environmental impact, flexibility and modularity that allow to obtain power range from a few W up 

to MW. Thanks to these advantages the interest of the international scientific community to the FC 

continues to grow and the technology is beginning to have sufficient maturity to be developed on 

large scale. 

The objective of this PhD thesis is the development of an integrated system for production of 

electrical energy based on FCs, in particular on high-temperature fuel cells (Solid Oxide Fuel Cells) 

fueled with biogas and biohydrogen produced by anaerobic digestion of biomass. 

The development of integrated systems of this type needs further upgrades to became competitive 

for industrial applications.  

The biomethane production from biomass waste, despite being a well-established process, still 

needed improvement in relation to the nature of the starting biomass and operating conditions of the 

digester. The production of biohydrogen for energy applications is still a challenge, and further 

studies are needed to get hydrogen rich streams and to optimize the digestion process towards H2 

production rather than CH4.  

The engineering of the integrated system digester/FC deserves particular attention in order to make 

compatible the characteristics of biogas with the specifics of the FC. This refers in particular to the 

presence of impurities such as H2S and HCl that are harmful for FCs and require a specific design 

for clean-up systems and the choice of suitable adsorbent materials. 

The PhD thesis is divided in four chapters. 
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The first chapter, “Introduction”, reports the state of the climate change, analyzing their causes and 

foreseeable future scenarios. It was decided to report the regulations introduced by European and 

international community that promoted the development of new technologies in the energy field. 

FCs are then treated as an emerging high-efficiency technology for the production of energy 

describing the general principles, the main types and applications already present on an industrial 

scale or foreseeable in a short-medium term. Relevant importance is dedicated to the anaerobic 

digestion process describing the general characteristics such as the reaction network, the steps 

involved, the operating conditions (T, pH, retention time) and the nature of the microbial consortia. 

The second chapter "Biohydrogen Production Processes" concerned the study and optimization of 

fermentation processes (Dark Fermentation) aimed to the production of biohydrogen (and 

biomethane) evaluating the potential for energy exploitation of different biomass. 

Different types of biomass have been studied: two lignocellulosic, Arundo donax (not treated and 

pretreated by steam-explosion process) and a litter from animal house for mice; the organic fraction 

of municipal solid waste and manure from a cattle farm. Sewage sludge, used as inoculum, has been 

collected from the wastewater treatment plant in Nola (Na). All tests have been conducted under 

mesophilic conditions at 38 ° C. It has been developed an innovative experimental procedure aimed 

to the selection of the bacteria hydrogen producers through the use of a salts and nutrients medium 

specific for these bacteria. Compared with literature data the procedure operates under the same 

conditions of anaerobic digestion and does not require further additional costs. It was decided to 

make attractive the development of the process from an industrial point of view. 

The results obtained are very interesting due to high biogas production and H2 concentration (up to 

70% vol). This data confirms the efficiency of experimental procedure able to enhance the growth 

of H2-producer bacteria to the detriment of methanogenic ones. 

The third chapter "The Use of Biogas in Fuel Cells Technology: Adsorption Processes and 

Materials Adsorbent for Removal of Noxious Compounds" deals with the purification system of the 

biogas stream from impurities, which can cause irreversible poisoning phenomena for FCs 

(particularly H2S and HCl). In order to be fed to the FCS, the biogas must have concentration of H2S 

and HCl lower than 1 ppmv. The removal technique used is based on adsorption on microporous 

materials such as activated carbons and 13X zeolites. Such materials have been properly 

functionalized in order to increase the adsorbent capacity and selectivity toward H2S and HCl. The 

experimental activity was conducted on two laboratory plants, that appear innovative compared to 

literature, which allow the continuous monitoring of the H2S and HCl concentrations with high 

accuracy of analysis. From adsorption data breakthrough curves of different materials have been 

obtained making able to compare the performance of the sorbents and to identify the optimal ones. 
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The results obtained are encouraging because have been obtained high purity levels with H2S and 

HCl concentrations lower than 1 ppm and longer saturation time compared to literature data. 

The fourth and final chapter "Integrated Anaerobic Digester System/Fuel Cell" reports the 

feasibility study and the development of the integrated plant anaerobic digester/FCs. Part of the 

research activity has been developed in Switzerland at the Paul Scherrer Institute (Villigen). In the 

contest of the project Biosweet (Biomass Energy Future for Swiss) has developed the line of 

research "Manure to Electricity" which includes the development of small plants (2-5 up to 100 

kWe) using SOFCs fueled with biogas produced by anaerobic digestion of manure. The project 

coordinator is Dr. Serge Biollaz. In addition to the participation of Prof. Turco’s research group, the 

project has been developed in collaboration with various research centres (WSL, the Swiss Federal 

Research Institute) and Swiss Universities (EPFL, University of Applied Sciences in Zurich).  

The feasibility study of the integrated system is carried out through the designing of the different 

sections of the plant: anaerobic digestion (digester, storage tanks), clean-up (upgrading and 

adsorbent beds), SOFC stack. In particular, a market survey aimed to identify and select the SOFC 

yet available in the market analyzing several characteristics such as power density, lifetime and 

resistance to harmful compounds. In addition, an economic analysis with an initial assessment of 

the costs has been developed.  

The integrated plant Digester/SOFCs for the production of small/medium plant size for electrical 

energy production has characteristics of novelty and may be competitive with other higher power 

plant engineering realities having lower flexibility for the reuse of the agro-industry waste 

materials. 
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Chapter 1 : Introduction  

1.1 Energy Demand and Environmental Impact 

The global energy demand is growing rapidly, and at present time about 88 % of this demand is met 

by fossil fuels [1]. Scenarios have shown that the energy demand will increase during this century 

by a factor of two or three (IEA 2006) [1]. At the same time, concentrations of greenhouse gases 

(GHGs) in the atmosphere are rising rapidly, with fossil fuel-derived CO2 emissions being the most 

important contributor. In order to minimize related global warming and climate change impacts, 

GHG emissions must be reduced to less than half of global emission levels of 1990 (IPCC 2000). 

The Kyoto Protocol identifies several key points to curb greenhouse gas emissions (GHG), among 

which production of renewable fuels from organic waste has a strategic role.  

 

 

 

Fig. 1-1 CO2 concentration change (ppm) in the last 15 years [2] 
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Figures 1-1 and 1-2 show the concentration change of CO2 on Earth in the last decade [2]. The 

change is very significative, since it has increased from a value of about 380 ppm in 2006 to about 

405 ppm in the last year. 

 

 

Fig. 1-2 Increase of CO2 concentration in the last 10 years [2]  

 

CO2 is not the only gas that causes global warming. Methane is one of the gases present in the 

atmosphere, and it has a global warming potential 23 times higher compared to carbon dioxide 

because the methane molecules absorb a fraction of greater thermal infrared photons compared to 

the carbon dioxide molecules. Currently global warming effect due to methane is equal to one third 

of that produced by carbon dioxide. It is assumed that the increase in atmospheric levels of methane 

is the result of human activities, such as increased food production, deforestation and the use of 

fossil fuels. Biologically methane production occurs through the decomposition of plant material in 

damp places, such as swamps, ponds and paddy fields. Many-ruminant herbivore animals including 

cattle, sheep and other wild animals are large producers of methane, which is a by-product of their 

digestion and is emitted into the air. Another important source of methane is given by the anaerobic 

decomposition of organic matter present in the waste which they are deposited in landfills [3]. 

97% of scientists says that the climate is changing and that the main cause is emissions of 

greenhouse gases and the political will has not been strong enough so far to initiate a change of 

mass politics away from fossil fuels and towards forms of sustainable energy. 

Perhaps the most extreme weather events such as droughts, heat waves, fires and floods will 

convince the people to make greater pressure on political leaders to take urgent action to reduce 

carbon emissions and tackle the problem of global warming before it is too late. 
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Air pollution and climate change are closely related, greenhouse gas emissions in addition to 

heating the globe are creating, in the major urban centers, smog conditions that endanger people 

health. 

 

 

Fig. 1-3 Smog effect in Beijing 

 

The countries that mainly contribute to GHG emission are USA, China, Russia, Brazil and India. 

Figure 1-3 shows the effect of smog in Beijing (China), the situation is really alarming because 

many studies are finding that the smog related to cities such as Beijing and Shanghai is not an 

environmental phenomenon "isolated" but it is intensifying storms over the Pacific Ocean, and that 

is promote to make the climatic conditions in the U.S.A. more irregular. Air pollution is a serious 

problem until now has led to 5.5 million deaths, with only 1.4 and 1.6 million deaths in China and 

India. However, some European countries are on the same Asian countries plan for the number of 

deaths due to the air pollution [4].  

OECD (Organization for Economic Co-operation and Development) report [4] shows that in China, 

the registered number of deaths from air pollution is of 957.3 per million inhabitants, while in 

Hungary is 937.6 per million inhabitants (Fig. 1-4). 

Air pollution is the fourth highest factor in the risk of death worldwide, contributing to heart 

disease, stroke, lung cancer, bronchitis and other [4].  
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Fig. 1-4 Deaths due to air pollution (per million inhabitants) 

 

According to the latest report of the MIT (Massachusetts Institute of Tecnhology-2014 Energy and 

Climate Outlook) energy demand in 2050 will double as a result of demographic and economic 

growth of the world population and it is estimated that greenhouse gas emissions could increase by 

up to 77 billion tons of CO2 equivalent in 2050 and reach 92 billion tons in 2100. According to the 

scientists of the IPCC (International Panel of Climate Change) must try to contain greenhouse gas 

emissions to limit global warming within the threshold of 2 °C by promoting the use of renewable 

energy. 

 

 

Fig. 1-5 Prospect of energy demand until 2050 
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The increase in energy demand (Fig. 1-5) as a result of the population growth is the consequence of 

an increase of the productive activities and increasing production of urban and agro-industrial 

waste. 

A significant part of these residues is biodegradable and therefore susceptible to biochemical 

transformations which are associable opportunities but also problems. 

The production of biodegradable waste in Europe amounts to about 2.5 billion tons per year, of 

which 60% of agro-industrial origin and the remaining 40% consisting of organic fraction of 

municipal waste, food industry waste and sewage sludge. 

The economist Jeremy Rifkin has been studying for several years the world's energy conditions and 

hopes the arrival of the "worldwide web energy", a model where every company or home user, on 

any scale, will have to evolve from a mere consumer of energy in consumer- producer of energy. 

The production of electricity will be divided into units of small self-dispersed or localized in several 

points of the area and connected to the electrical distribution grid. 

The EPA (Environmental Protection Agency) issued its first standard on methane emission limits 

for new and modified sources in the oil and gas sector; everything is important to fight global 

warming but to do so requires strong standards for methane emissions. President Obama has set as a 

goal the reduction of methane emissions from oil and gas by 40-45% from 2012 to 2020. 

 

 

Fig. 1-6 Prospect of CO2 emission reduction by 2050 

 

In addition to, in the recent conference (COP 21- Paris 2015, COP 22- Marrakesh 2016) have been 

drawn up several amendments between the countries participating with the aim of reducing 

pollutant emissions, to limit the temperature increase on our planet and to promote the use of 

renewable energy through the development of technologies with high efficiency and low 
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environmental impact. Figure 1-6 shows the prospective of CO2 emission until 2050. It is possible 

note that the implementation of biofuels and energy-efficient technologies, spend 50% reduction in 

carbon dioxide emissions. 

 

1.2 International legislation for reduction of GHG emissions 

The first international agreement on the issue of air pollution has been reached in 1979 at Geneva 

Convention which set the target of limiting emissions of pollutants related to the phenomenon of 

acid rains. As for gas emissions with global impact, in Montreal in 1987, following the discovery of 

the ozone hole in Antarctica, it was signed a protocol agreement that restricts the use of ozone-

depleting substances: chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). This act 

took the name "Montreal Protocol" [5]. In 1992, after the first report of the IPCC (1990), which 

showed a probable relationship between greenhouse gas emissions from human activities and 

climate change origin, delegates from 150 countries approved the Framework Convention on 

Climate Change (United Nations Framework Convention on climate Change, UNFCCC), then 

entered into force in 1994. It aims to stabilize greenhouse gas concentrations for the protection and 

balance of the climate system, promotes action at national and international level, but it does not 

include binding commitments for the reduction of greenhouse gas emissions. An important step in 

the policy against greenhouse gases has occurred on 11 December 1997 with the approval of the 

Kyoto Protocol, then entered into force in 2005. This act was ratified by all countries except the 

United States [6]. 

The Protocol required that industrialized countries gradually reduce their emission of carbon 

dioxide, methane, nitrous oxide, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur 

hexafluoride (SF6). This protocol envisaged that in the first period, from 2008 to 2012, emissions of 

greenhouse gases were reduced by 5% worldwide compared to the base year 1990. The reduction 

levels are different from country to country. As an example, the reduction of emissions from 

European Union countries had to be 8%, that of the United States by 7%, Japan 6%, and for Russia 

was not increase the amount of emissions. Any limitation on greenhouse gas emissions was 

estimated for emerging countries as they have not significantly contributed to the increase of CO2 

concentration in the atmosphere. For this reasons the significant increase in emissions of some 

developing countries, particularly China and India, that not being required to reduce environmental 

impacts, have not adopted any significant measures, unlike many industrialized countries have, 

however, applied policies for the reduction of emissions, in particular the states belonging to the 

European Union between 2000 and 2011. 
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On 12 November 2014, the US president, Obama, and the President of the Republic of China, Xi, 

have decided to take concrete steps to limit greenhouse gas emissions. Obama said that the United 

States will reduce its emissions by 26-28% by 2050, while Xi said that China emissions will start to 

decrease by 2030 and that, by that date, 20% of electricity will be produced from renewable sources 

[7] .These statements are an important achievement, because for the first time the political leaders 

of the two countries responsible of the largest emissions of greenhouse gases in the world express a 

specific intent to mitigate those emissions, stating concrete goals and with reference to well-defined 

deadlines. 

 

1.3 Renewable Energy 

In recent years, scientific research has been greatly focused on renewable sources. The bioenergy is 

based on a wide range of potential raw materials are can be used as source of bioenergy to be 

employed for several purpose in industry for the production of electricity or biofuels.  

Bioenergy plays an important role in all three main areas for the use of energy: production of heat, 

electricity and transport fields. The contribution of bioenergy for heat production far exceeds that 

related to electricity production and transport (Fig. 1-7) [8]. 

 

 

Fig. 1-7 Use of biomass for energy production 

 

Bioenergy can be obtained by different technologies such as the combustion of fuels for the 

production of heat and energy, anaerobic digestion for the production of methane, heat and energy, 

the conversion of materials raw-rich starches or vegetables for the production of biodiesel, the 

production of liquid fuels from cellulosic materials through thermochemical and biological 

conversion processes. 
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The leading country for electricity production is United States, in 2015 the ability of US to produce 

bioenergy increased by 4% with the 16.7 GW capacity [8]. 

In China, the production of bio-energy has reached a capacity of 10.3 GW in 2015, an increase of 

0.8 GW compared to 2014. It was expected to achieve energy production from 13 GW by 2015 and 

30 GW by 2030, but there have been factors that have limited the progress, essentially the high 

price of raw materials, poor coordination between the various projects and difficulties technical 

operation. 

In Japan was recorded in 2015 an increase in the use of energy power with a power generated of 4.8 

GW, especially after the Fukushima nuclear disaster. The market growth is based on imported fuels 

such as wood pellets (mainly from Canada)[8]. 

In Brazil, bioenergy production is mainly based on sugar cane, the electric power production 

increased to 9.7 GW at the end of 2015. Fig. 1-8 shows the amount of worldwide energy 

production. It is remarkable that the production of green energy has doubled in the last decade 

(about 200 to 464 terawatt-hours). 

 

 

Fig. 1-8 Worldwide bioenergy production 

 

1.4 Biomass 

An important renewable source of bioenergy is given by biomass converted to energy by thermal or 

biological processes. 

The production of biomass occurs through the treatment of material of different nature containing 

organic matrix (to the exclusion of plastic and fossil materials). 
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The production of these energies by means of combustion processes does not increase the amount 

of carbon in the atmosphere but it keeps the constant amount. This means that by increasing the 

production of energy through the use of biomass can contribute decreases not only the total carbon. 

In the last decade the EU has launched various regulations to promote the use of biomass as energy 

source. In 2005 has been published the Action Plan for biomass: “Biomass can help in the fight 

against climate change by reducing greenhouse gas emissions. Used for heating, electricity and fuel 

for transport, biomass can diversify the energy supply of the EU and create growth and jobs”. Green 

Paper “A European Strategy for Sustainable, Competitive and Secure Energy " in 2006 and “EU 

Directive on the promotion of energy from renewable sources” in 2008/2009 have further enhanced 

the use of biomass [8]. 

In this thesis has been studied the process of anaerobic digestion for biogas and biohydrogen 

production using different types of biomass.  

 

1.5 Biomass for Anaerobic Digestion  

Anaerobic digestion (AD) has been developed mainly to process agricultural wastes in order to 

provide renewable sources of energy, but other benefits, such as environmental, agronomic, 

hygienic and social ones, can be obtained by the use of this technology [9].  

The agricultural sector deserves great interest: in the European Union (EU), 1500 million tons of 

biomass could be digested anaerobically each year, and half of this potential is accounted for by 

energy crops [10].  

Anaerobic digester effluents have other agronomic advantages because the pH in manure fed 

digesters increases from 7.0 to 8.0 during AD. Because of this higher pH, AD effluent is more 

appropriate to fertilize acid soils [11]. Anaerobic digestion also has the potential to reduce viability 

of weed seeds in livestock manure [11,12] thereby reducing needs for herbicides and makes the 

manure suitable for organic farms.  

According to the Food and Agriculture Organization of the United Nations (FAO) report entitled 

“Livestock’s Long Shadow” [13], livestock production is achieved at a substantial environmental 

cost. On a worldwide basis, it contributes 18% of global greenhouse gas (GHG) emissions. GHG 

emissions from animal production include CH4 directly emitted from domestic animals or livestock 

manures, and N2O emitted from land applied manures and grazed lands [14].  

Methane recovery from animal waste has been extensively investigated and is 0.2–0.4, 0.2–0.3, and 

0.35–0.6 L CH4/g volatile solids (VS) from swine, cow, and poultry slurries, respectively [15–33].  

Reported values for CH4 recovery from grass, waste grease, and food wastes are 0.55, 1.00, and 

0.60 L/g VS, respectively [33]. Farm bioreactor energy output can be substantially increased by 

improving the C:N ratio via co-digestion of animal manure having low C:N ratio with high C:N 
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ratio feedstocks: municipal organic wastes, industrial organic wastes [34] or crops such as grasses, 

grass silages, or crop residues [35–37]. For example, Comino et al. [36] reported a 109% increase of 

CH4 yield during co-digestion of cow manure and a crop compared to manure alone. Another 

important environmental benefit of co-digestion is that it reduces the volume of municipal solid and 

industrial organic waste going to landfills as these nutrients are recycled onto farmland.  

AD can contribute to drastically reduce uncontrolled fugitive CH4 emissions from stored manure, 

provided that some conditions occur: (1) bioreactor is properly designed (2) bioreactor retention 

time is enough to give the almost complete digestion of substrate; (3) the long-term storage tank 

receiving the biogas should have a gas tight cover to collect and recycle residual CH4.  

A limited number of studies addressing effects of AD treatment on N2O emissions have been 

reported. Amon et al. [10] indicated that AD is an effective way to reduce GHG emissions from 

dairy manure slurries, as AD-treated dairy manure emitted 28% less N2O than raw manure after 

field application.  

Studies dealing with effects of manure AD on NH3 emissions from fields have been contradictory 

with some authors reporting lower NH3 emissions with digested manure than with raw manure.  

One of the main advantages of AD is that it conserves crop nutrients. In addition, the mineralized 

fraction of N and P is increased [38–42].  

The N/P ratio was increased from 3.9 in raw manure to 5.2 in the bioreactor effluent and to 9.2 in 

the supernatant fraction of settled effluent. This separation of nutrients increased the agronomic 

value of manure as it more closely matched crop nutrient requirements. Another advantage of AD 

manure as fertilizer is reduction in odor, with a high mineralized N content and N:P ratio, increases 

the window in which it can be applied to land to meet nutrient requirements at various stages of 

crop growth.  

 

1.5.1 Anaerobic Digestion Steps  

Anaerobic digestion is a complex biological process that converts organic materials to methane 

through three major steps occurring with the help of enzymes acting as catalysts: hydrolysis, 

acetogenesis, and methanogenesis.  

Biogas contains mainly CH4 40–75 % vol. and CO2 15–60 % vol. Trace amounts of other 

components such as H2O 5–10 % vol., H2S 0.005–2 % vol., siloxanes 0–0.02 % vol., halogenated 

hydrocarbons (VOC) < 0.6 % vol., NH3 < 1 % vol., O2 0–1 % vol., CO < 0.6 % vol., and N2 0–2 % 

vol. can be present and might be inconvenient when not removed [43, 44].  

The theoretical or stoichiometric production of methane in anaerobic digestion can be calculated 

according to [45]: 
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CαHβOδNγSε + yH2O → xCH4 + γNH3 + εH2S + (α − x) CO2 
    (1.1) 

In which  

x = (4α + β − 2δ − 3γ − 2ε)/8         (1.2) 

and  

y = (4α − β − 2δ + 3γ + 2ε)/4         (1.3) 

 

Taking into account the stoichiometry of the above equations, the levels of methane and CO2 

produced from the decomposition of different substrates can be estimated: 50–70 % for CH4 and 

30–50 % for CO2 [46]. Levels of methane from the decomposition of fat were about 70 %, about 63 

% from protein, and about 50 % from cellulose decomposition.  

AD process can be divided up into four phases: hydrolysis, acidogenesis, 

acetogenesis/dehydrogenation, and methanation (Fig. 1.9). 

The different phases are carried out by different consortia of microorganisms [47].  

A microbial community may contain up to 60 bacterial and Archaean species growing under anoxic 

conditions [48, 49]. Their coexistence is based on trophic interactions, growth factor exchange, and 

the action of physiologically active substances [50, 51].  

A microbial community consumes a broad range of organic substrates: poly and monosaccharides, 

proteins, amino acids, organic acids, alcohols, aromatic compounds, etc. [49, 52, 53]. As reported 

by Davies [54], the following amounts of final products are produced from one glucose gram: 

  

1.0 g C6H12O6 → 0.25g CH4 + 0.69g CO2 + 0.06g of cells + 632 kJ of energy (3.51 kJ mol) (1.4)  

 

In other words, 2.8 mol of CH4 and 2.6 mol of CO2 can be produced from 1 mol of glucose.  

Methane-producing microorganisms (or methanogens) are obligate anaerobes, which represent a 

dominant group of Archaea. They are included in five orders of the Euryarchaeota phylum: 

Methanobacteriales, Methanococcales, Methanosarcinales, Methanomicrobiales, and 

Methanopyrales [55–58]. Methanogens are very diverse in morphology (from simple rods, cocci, or 

sarcinae to spirals and irregular coccoids), cell wall structure, metabolism, and physiology [59]. 

Many species can utilize single carbon compounds (methanol, formate, or methylated amines) as 

carbon sources. For example, methanol is an important methanogenesis substrate. It is formed 

during the hydrolysis of pectin, which is common in cellulose containing substrates [60, 61]. Recent 

studies have revealed numerous newly identified methanogen strains and taxa [58].  
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Methanogens are narrowly focused “specialists.” They consume a limited range of substrates 

produced by other members of the community.  

 

 

Fig. 1-9 Anaerobic digestion scheme 

 

The main methanogenesis substrates are carbon dioxide and hydrogen (hydrogenotrophic 

methanogenesis), acetate (acetoclastic methanogenesis), formate, methanol, and methyl amines. The 

most energetically favorable process is the formation of methane and water [62, 63]:  

 

4H2 + CO2 = CH4 + 2H2O  ΔG° = +135.6 kJ/mol     (1.5)  

 

Hydrolyzing and fermenting microorganisms are responsible for the initial attack on polymers and 

monomers and produce mainly acetate and hydrogen and some amounts of volatile fatty acids 

(VFA) such as propionate and butyrate. Hydrolytic microorganisms lead to hydrolytic enzymes, 

e.g., cellulose, cellobiase, xylanase, amylase, lipase, and protease.  

Most of the bacteria are anaerobes such as Bacteriocides, Clostridia, and Bifidobacteria, but some 

facultative anaerobes such as Streptococci and Enterobacteriaceae can take part. The higher VFA 

are converted into acetate and hydrogen by obligate hydrogen-producing acetogenic bacteria, like as 

Acetobacterium woodii and Clostridium. The accumulation of hydrogen can inhibit the metabolism 

of the acetogenic bacteria. Therefore, an extremely low partial pressure of hydrogen is essential for 

the acetogenic and hydrohen-producing bacteria. Although many microbial details of metabolic 

networks in a methanogenic consortium are not clear, present knowledge suggests that hydrogen 

may be a limiting substrate for methanogens [64]. Since it is recognized that the addition of 
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hydrogen-producing bacteria to the natural biogas-producing consortium increases the daily biogas 

production [1].  

Acs et al. [65] had found the positive correlation between the enhancement of biogas production 

and the presence of an added hydrogen-producing new member into the natural consortia such as 

Caldicellulosiruptor saccharolyticus [66].  

CO2 is produced in large amounts from the acetogenesis and methanogenesis while the H2 produced 

with very small quantities from acetogenesis process. Approximately 70 % CH4 in biogas produced 

from acetate, and 30 % CH4 produced from CO2 and H2 [67].  

At the end of the degradation chain, two groups of methanogenic strict anaerobes bacteria produce 

methane from acetate or hydrogen and carbon dioxide. Only few species are able to degrade acetate 

into CH4 and CO2, e.g., Methanosarcina barkeri, Metanonococcus mazei, and Methanotrix 

soehngenii, whereas all methanogenic bacteria are able to use hydrogen to form methane. The first 

and second groups of microbes as well as the third and fourth groups are linked closely with each 

other [68]. Therefore, the process is completed in two stages that requires equal rates so that 

anaerobic digestion should be balanced. If the first degradation step is too fast, the acid 

concentration rises, and the pH drops below 7.0 which inhibits the methanogenic bacteria. On the 

contrary if the second phase is too fast, methane production is limited by the hydrolytic stage. Thus, 

the rate-limiting step depends on the nature of the substrate used for AD. For example, compounds 

like cellulose, proteins, or fats are cracked slowly into monomers within several days, whereas the 

hydrolysis of soluble carbohydrates occurs within few hours.  

It is difficult to describe the whole process by reliable kinetics since hydrolysis of complex 

insoluble substrate depends on many different parameters such as particle size, production of 

enzymes, pH, and temperature. A systematic description of the complex kinetics models is given in 

few works on organic waste digestion [47, 69]. For solid wastes, several kinetic models were 

developed for mesophilic and thermophilic digestion [70–72]. The kinetic of biogas production 

from energy crops and manure was studied recently in detail by Anhuradha et al. [73]. Results from 

quasi-continuous digestion experiments have shown that the degradation can be described by a 

simple first-order reaction. For the application of this simple model, only the maximum gas yield of 

the substrate and the specific reaction rate must be known from a continuously digestion test.  

Temperature 

The digestion process takes place at psicofilic (5–20 °C), mesophilic (30– 45 °C), or thermophilic 

(45–60 °C) temperature conditions. It is important to keep a constant temperature during the 

digestion process, as temperature changes or fluctuations will affect the biogas production 

negatively.  
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Thermophilic processes are more sensitive to temperature fluctuations and require longer time to 

adapt to a new temperature. Mesophilic bacteria tolerate temperature fluctuations of ±3 °C without 

significant reductions in methane production. The growth rate of methanogenic bacteria is higher at 

thermophilic temperatures making the process faster and more efficient. Therefore, thermophilic 

digester can operate at higher loadings or at a lower retention times than at mesophilic conditions. 

But the thermophilic process temperature results in higher instability and a higher risk for ammonia 

inhibition. Ammonia toxicity increases with increasing temperature, and washout of microbial 

population can occur [74, 75]. Ammonia is considered to be responsible for process inhibition at 

high concentrations [76].  

Nutrients 

For the growth and survival of the specific groups of microorganisms, several macro- and 

micronutrients are necessary. Macronutrients are carbon, phosphor, and sulphur. The need of 

nutrients is very low due to the fact that not much biomass is developed, so that a nutrient ratio of 

C:N: P:S = 600:15:5:1 is sufficient. Trace elements like iron, nickel, cobalt, selenium, molybdenum, 

and tungsten are important for the growth rate of microorganisms and must be added if, e.g., energy 

crops are used for biogas production as the only substrate [77, 78].  

The necessary concentration for the micronutrients is very low and in the range between 0.05 und 

0.06 mg/L. Only iron is necessary in higher concentration between 1 and 10 mg/L [79].  

pH 

Variations in pH may be crucial for the operation of a methanogenic commu- nity. Neutral pH 

values are optimal for methanogen growth, and values below 5.0 suppress it. However, it has been 

reported by Kim et al. [80] that low pH (4.5) does not inhibit hydrogenotrophic methanogenesis in a 

methanogenic community grown in a semibatch fermenter process with glucose as a substrate and 

the hydraulic retention time equal to 9 days. Other authors [81] suppose that a fermenter has niches 

with neutral pH, where methanogenesis can be initiated. Methane formation takes place within a 

relatively narrow pH interval, from 6.5 to 8.5 with an optimum interval between 7.0 and 8.0. The 

process is severely inhibited if the pH decreases below 6.0 or rises above 8.5.  

 

1.5.2 Substrates for Anaerobic Digestion  

All types of biomass can be used as substrates for biogas production as long as they contain 

carbohydrates, proteins, fats, cellulose, and hemicelluloses as main components. The composition 

of biogas and the methane yield depends on the feedstock type, the digestion system, and the 

retention time [82]. The theoretical gas yield varies with the content of carbohydrates, proteins, and 

fats (Table 1.1).  
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Substrate 
Biogas Volume 

(Nm3/t TS) 

Concentration 

(% v/v) 

CH4 CO2 

Carbohydrates 790-800 50 50 

Raw Protein 700 70-71 29-30 

Raw fat 1200-1250 67-68 32-33 

Lignin 0 0 0 

Tab. 1-1 Maxim gas yields and theoretical methane contents [82] 

 

The real methane content in practice is generally higher than the theoretical values shown in Table 

1.1 because a part of CO2 is solubilized in the digestate.  

Carbohydrates and proteins show much faster conversion rates but lower gas yields. All substrates 

should be free of pathogens and other organisms; otherwise, pasteurization at 70 °C or sterilization 

at 130 °C is necessary prior fermentation.  

The contents of nutrients, and the corresponding C/N ratio should be well balanced to avoid process 

failure by ammonia accumulation. The C/N ratio should be in the range 15–30 [83, 84]. The 

composition of the fermentation residue should be such that it can be used as fertilizer.  

 

 

Fig. 1-10 Biomass sources 

 

Forage crops have the advantage of being suitable for harvesting and storing with existing 

machinery and methods. The specific methane yield is affected by the chemical composition of the 

crop which changes as the plant matures [85]. Harvesting time and frequency of harvest thus affect 

the substrate quality and biogas yield. Amon et al. [10] have shown that maize crops were harvested 

after 97 days of vegetation at milk ripeness produced up to 37 % greater methane yields when 
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compared with maize at full ripeness. In Table 1.2, the biogas amounts from different substrates are 

reported [86, 87]. 

The main materials for biogas production in industrial enterprises are manure and the organic 

fraction of household and industrial waste in the form of sewage [86, 87]. Studies are being 

conducted on biogas production from hard to process materials, such as peat coal biochar [88, 89].  

 

Biomass 
Biogas Volume 

(m3/t TSV) 

Animal residues 200-500 

Agricultural 

residues 
350-400 

Industrial 

residues 
400-800 

Organic waste 

from slaughter 
550-1000 

Municipal solid 

waste 
400-600 

Energy crops 550-750 

Sewage 250-350 

Tab. 1-2 Amount of biogas obtainable with different biomass 

 

Numerous basic and biotechnological studies are dedicated to biogas formation from manure, 

sewage sludge, and various kinds of organic waste [90–93]. Animal manure has a surplus of 

alkalinity which stabilizes the pH value at VFA accumulation. VFA are a key intermediate in the 

process and can inhibit methanogenesis in high concentrations. Acetic acid is usually present in 

higher concentration than other fatty acids, but propionic and butyric acids have more inhibitory 

effective to methanogens [94, 95].  

Anaerobic digestion produces biogas at average rates of 0.30, 0.25, and 0.48 L/g volatile solids 

from swine, bovine, and poultry slurries, respectively. The biogas produced is of high quality with a 

CH4 concentration of 60–80 %.  

It is much more profitable from both economic and environmental viewpoints to supplement pure 

waste with co-substrates, for example, matter obtained from energetic plants. Such plants are 

purposely grown herbs (sugarcane, maize, millet, sunflower, silver grass, rapeseed, etc.) or 

underwood [96–98]. Plant waste obtained from wood processing, agriculture, and animal husbandry 

can also improve the biogas yield significantly. Additional benefit is that their growth, collection, 
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and processing do not require additional costs [96]. Some authors [49, 99] reported that the yields of 

biogas with the use of grass, potato tops, maize stems, sunflower husk, and wheat straw were 630, 

420, 420, 300, and 340 L CH4/kg, respectively, whereas the fermentation of cattle manure alone 

yields 250 CH4/kg. In other studies [97], the yields of biogas from cattle feces, pig feces, and 

farmyard manure were 25, 30, and 60 L CH4/kg of wet biomass, respectively. The fermentation of 

beet leaves, fodder beet, Sudan grass (Sorghum vulgare var. sudanense), herb silage, maize silage, 

and grain residues yielded 60, 90, 130, 160, 230, and 550 L CH4/kg of wet biomass, respectively. 

Maize and herb silages are most commonly used in Germany as co-substrates in fermenters [97].  

The most important parameter for choosing energy crops is their net energy yield per hectare. Many 

conventional forage crops produce large amounts of easily degradable biomass which is necessary 

for high biogas yields [82].  

The methane-rich biogas from lignocellulosic materials comes mostly from hemicelluloses and 

cellulose [45]. The production of biogas from lignocellulosic materials was dependent on the 

performance, cost effectiveness, and product generation of pretreatment process. Hence, the 

methane yield per wastes volume can be further improved.  

Few data are reported on cellulose as a substrate for biogas production, although cellulose is the 

abundant component of municipal solid waste (MSW) [100–102]. Nowadays, the conversion of 

paper materials to biogas attracts attention again. It is partially related to the separate collection of 

waste, used in many countries. In addition, paper and cardboard are the largest biodegradable MSW 

fraction [96, 102, 103] and the sewage formed in anaerobic degradation of cellulose containing 

materials is nontoxic [103].  

The main feature of anaerobic degradation of cellulose is the complex structure of the microbial 

communities, which form a specific food chain [99]. Due to its complexity, the organic compounds 

in lignocellulosic material were not fully degraded during the process [111, 112]. Hydrolysis can be 

the rate-limiting step for anaerobic digestion process in cases that the substrate was in particulate 

form [113].  

Microbial populations converting cellulose to biogas are taxonomically diverse. They are different 

under psychrophilic, mesophilic, or thermophilic conditions, but they generally act in similar way 

[104–106]. The composition and stability of a microbial community and, consequently, the 

efficiency of the whole process depends on the growth conditions (temperature and pH), organic 

substrate composition and structure, the rate of organic material load in the fermenter, the retention 

time of the solid matter, and other factors [92, 107–109].  

In using the lignocellulosic materials, the biodegradability of the substrate was a key factor in 

determine the percentage of the theoretical yield [110].  
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1.6 Improvement of Biogas Production Techniques  

To enhance biogas production, various techniques can be applied, such as pretreatments (chemical, 

thermal, enzymatic) and/or biotechnological such as co-digestion of the substrate (manure, sewage 

sludge) with other wastes that make the anaerobic digestion more profitable [114], the use of serial 

digester. Co-digestion with other wastes, whether industrial (glycerin), agricultural (fruit and 

vegetable wastes), or domestic (municipal solid waste) is a profitable option for improving biogas 

production [114–116]. Serial digester configuration which consists of main digester with long 

retention time and post-digester with short retention time could improve biogas production and 

achieve better effluent quality in terms of VFA concentration compared to a single reactor [117].  

Maceration of biomass, like as manure, to produce particle sizes below 0.35 mm has increased 

biogas yield by 15–20 % [118]. Extrusion as pretreatment was reported by Hjorth et al. [111] and it 

had shown 18–70 % increment of biogas yield after 28 days. Thermal treatment of sewage sludge 

has been shown to increase the biogas yield by 50 and 80 % after heating to 70 and 170 °C, 

respectively [119]. Alkaline treatment of sewage sludge had been observed to increase the speed of 

biogas production and to cause an initial rate increase of 150 % [120]. Pretreatment using N-

methylmorpholine-N-oxide (NMMO or NMO) had been reported by Teghammar et al. [110]. This 

pretreatment improved the methane yield by 400–1,200 % compared to untreated materials. Ozone 

oxidation of sewage sludge resulted in an initial biogas yield increase of 200 % [121], while wet 

oxidation produced 35 % methane yield increase. Ultrasound and microwave treatments of sewage 

sludge had been shown to increase initial gas production by 20–50 % [122]. Biological pretreatment 

could also be an effective method for optimizing biodegradability and enhancing the highly 

efficient biological conversion of lignocellulosic wastes into biogas. Zong et al. [123] used corn 

straw at ambient temperature (about 20 °C) treated by new complex microbial agents to improve 

anaerobic biogas production. This treatment resulted in an increase of total biogas yield of 33.07 %, 

of 75.57 % for methane yield, and 34.6 % shorter technical digestion time compared with the 

untreated sample. 

 

1.6.1 Pretreatment of Biomass  

Hydrolysis of organic matter is considered to be the rate limiting step in biomass degradation. If 

biomass have low biodegradability, high sludge handling/disposal costs, and/or produce a low 

amount of biogas. Adequate pretreatments (PTs) can be taking into account as sustainable 

improvements [124]. Such PTs include mechanical, thermal, chemical, biological, and 

combinations of them [125]. PTs further hydrolyze the so-treated feed, thus improving the AD step, 
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since organic matter is now more accessible to the anaerobic microorganism consortium [126]. 

Solubilization of chemical oxygen demand (COD) and reductions of total and volatile solids (TS, 

VS) are achieved for greater solids reduction rates during mesophilic and thermophilic AD. This 

typically leads to added pathogen reduction, shorter hydraulic residence times, reduction of residual 

solids, and smaller reactor volumes.  

Such treatments generally favor the access of methanogenic bacteria to the intra-cellular matter, 

thereby improving biogas production by 30–50 % [127]. It is also important the efficacy of PTs 

typically increases with the concentration of feed solids, so it could be relevant to evaluate cost and 

energy demands of concentrating the sludge prior to PT [126]. More research is needed to ascertain 

the level of benefit that would be gained by applying PTs under full-scale conditions [124, 128].  

The PTs described in literature [129] were ultrasound (ULT), chemical (CM), conventional heating 

(CH), and microwave heating (MWH), based on energy intensiveness, commonality, feasibility, and 

novelty, respectively.  

 

1.6.1.1 Ultrasound PT  

In recent years have been proposed the use of ultrasound technique as an efficient treatment of 

biomass in AD processes [124,128]. ULT frequency and specific energy (Es) are the main factors 

affecting chemical oxygen demand (COD) solubilization and biogas production. Low frequencies 

(<100 kHz) can promote mechanical and physical degradation while high frequencies promote 

sonochemical favoring the solubilization of the organic matter. Optimal working ranges (20–42 

kHz, 70–300 W, 6,000–18,000 kJ/kg TS) for frequencies and Es have been found and do not 

demonstrate much significant variance regardless of feed characteristics [124, 128].  

 

1.6.1.2 Chemical PT  

Acid and alkaline PTs can be used to degrade complex organic compounds regardless of low 

temperatures. Acid treatments have been carried out with H2SO4 or HCl solutions (2-10% wt) in 

range temperature (40-80 °C) [3] Alkaline treatment is performed by increasing the sludge pH to 12 

and sustaining it for an optimal duration. Complex organics such as polycyclic aromatic 

hydrocarbons, lipids, and proteins are hydrolyzed into smaller and more soluble compounds. 

Desired bacteria can be harmed, however, and chemical addition speeds up equipment corrosion 

and fouling. Additionally, some of the soluble compounds that are formed are not biodegradable 

[130, 131] Energy demands in these processes include also mixing and any heating energy. Typical 

working ranges are: 1–21 kg/m3 NaOH, 0.25–24 h, pH = 10–12 [129].  
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1.6.1.3 Conventional Heating PT  

Temperatures required for conventional heating PT typically range from 60 to 180 °C. Heating is 

supplied by heat exchangers or steam injection. Though conventional heating requires a high 

increase in energy demand, it is balanced by higher sludge biodegradability and by the use of sludge 

residual heat to maintain the temperature in the digester. Dewaterability and pathogen reduction are 

increased with thermal pretreatment and result in reduced sludge disposal costs and improved 

sludge stabilization. Heat transfer is limited by the wastewater’s (WW) thermal conductivity, 

density, viscosity, and specific heat; moreover, heating to the depth of the material is time-

consuming [127]. Energy is also lost in the process. Demands in the process of conventional heating 

include heat and mixing energy. Working ranges are: 50–170 °C, 0.25–1 h.  

 

1.6.1.4 Microwave Heating PT  

Microwave irradiation has been studied as an alternative to conventional heating [129, 132, 133]. 

The irradiation corresponds to 10-3-1 m wavelengths in the electromagnetic spectrum with 

equivalent frequencies of 300 GHz–300 MHz, respectively. For the heating or drying of thin 

substances, frequencies of 2,450 MHz with correspondingly short wavelengths (12.24 cm) are 

adequate. If deep penetration into materials is required, frequencies of 900 MHz with 

correspondingly long wavelengths (37.24 cm) and energy outputs of up to 100 kW are required. 

MWH is absorbed selectively by substances containing more moisture, sugars, or fats. The 

distribution of heat in microwave irradiated WW is thus not uniform because the fluid is two-phase 

(solid and liquid) and heterogeneous in both phases. Warming or cooling the unit as in conventional 

heating is not required and energy is conserved because microwaves can be instantly activated or 

deactivated. Microwave irradiation can be up to 50 % more efficient than conventional heating 

methods. Microwave units also experience less fouling because their surfaces are not brought to the 

same high temperatures as the surfaces of conventional heating units [126]. Energy demands in 

microwave irradiation processes include the necessary conversion efficiencies from “at-the-wall” 

power to applied heat and mixing energy. Working ranges are: 2,450 MHz, 400–1250 W, 0.03–025 

h [129].  

PTS Economic Analysis 

Bordelau and Droste [129] evaluated the costs of the different pretreatments processes using a 

model created with Microsoft excel and its Visual Basic Assistant. Net costs per influent flow for 

ultrasound, chemical, conventional heating, and microwave were 0.0166, 0.0217, 0.0124, 0.0119 

$/m3 and 0.0264, 0.0357, 0.0187, and 0.0162 $/m3 for average and high conditions, respectively. 
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The average cost increase from results excluding pretreatment use for all processes was 0.003 and 

0.0055 $/m3 for average and high conditions, respectively.  

 

1.7 Co-digestion  

An interesting option for optimizing biogas production yields was using co-digestion technique 

[134]. This technique can be defined as the combined anaerobic treatment of several substrates with 

complementary characteristics. The benefits of using co-digestion techniques including dilution of 

potential toxic compounds, improved balance nutrients, synergistic effect of microorganism, 

increased load of biodegradable organic matter, and higher biogas yield [135].  

According to Mata-Alvarez et al., digestion of more than one substrate in the same digester can 

establish positive synergism and the added nutrients can support microbial growth [136].  

Various co-digestion techniques had been done by mixing the substrate for biogas production with 

compound such as glycerol, agricultural wastes, and food wastes.  

The benefits of using mixing animal manure and glycerol were (1) the elevated content of water in 

manure acts as solvent for glycerol; (2) the high alkalinity of manure gives a buffering capacity for 

the temporary accumulation of volatile fatty acids; (3) the wide range of macro- and micronutrients 

present in the manure were essential for bacterial growth; and (4) glycerol supplies rapidly 

biodegradable matter [136]. Co-digestion with other wastes, whether industrial (glycerin), 

agricultural (fruit and vegetable wastes), or domestic (municipal solid waste) was also a suitable 

option for improving biogas production [115, 116].  

 

1.8 Reactors  

Anaerobic digestion for biogas production was commonly carried out in continuously stirred tank 

reactor (CSTR) [137, 138].  

Jeihanipour et al. [139] investigated a two-phase CSTR, modified as stirred batch reactor (SBR) and 

up-flow anaerobic sludge blanket bed (UASB) process in producing biogas from pretreated and 

untreated textiles substrates. However, although should enhance digestion performance, the biogas 

yield by two-phase system was nearly the same as the single CSTR, probably because the two-

phase system was sensitive to the substrate with high easily degradable organic load [140]. The 

main disadvantage of using two-phase system is the separation of acidogenic and methanogenic 

step can disrupt the synthrophic relationship between bacteria and methanogens, which can cause 

product inhibition in the acidogenic reactor [140, 141].  

An alternative approach to overcome the problems with one-step CSTR and two-phase system is to 

operate two methanogenic reactors connected in series (serial digestion system) [137]. Some 
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researches in biogas production using serial digestion have been done. Boe has demonstrated that 

serial digestion, with percent volume distributions of 90/10 or 80/20 between the two methanogenic 

reactors, improved biogas production by 11% compared to a traditional one-step CSTR process 

[142].  

 

 

Fig. 1-11 Example of one stage anaerobic digester 

 

Boe and Batstone [143] confirmed that the longer the retention time in the post-digester (second 

reactor of serial process), the higher the methane recovery of the overall serial digestion. Kaparaju 

et al. examined the possibility of optimizing biogas production from manure in a bench scale 

cascade of two methanogenic serial CSTR at termophilic conditions operated at 55 °C with 15 days 

hydraulic retention time (HRT) [137]. Some works showed that serial digestion improved biogas 

production from manure, as compared to one-step process, and that the best volume distribution was 

70/30 and 50/50%. Ge et al. [144] achieved 44 % volatile solid (VS) reduction in a bench scale 

system of working volume of 4.6 L, the dual mesophilic digestion of primary sludge with HRTs 2 

and 14 days for first and second stage, respectively. Thus, serial digestion can be considered a 

method to improve conversion efficiency. However, the extra installation costs and process 

complexity in executing serial digestion concept should be evaluated with the economic gain 

achieved due to extra biogas produced.  
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Fig. 1-12 Example of two stage anaerobic digester 

 

1.9 Fuel Cells: generality  

The current movement towards environmentally friendlier and more efficient power production has 

caused an increased interest in alternative fuels and power sources [3,145]. Fuel cells are one of the 

older energy conversion technologies, but only within the last decade they have been extensively 

studied for commercial use. The scenarios of environmental criticality, climate changes and energy 

supply required power sources with low pollutants emissions, high efficiency and unlimited supply 

fuel for a growing world population.  

Many other alternative energy technologies have been researched and developed [146]. These 

include solar, wind, hydroelectric power, bio-energy, geothermal energy, and many others. Each of 

these alternative energy sources have their advantages and disadvantages, and are in varying stages 

of development. In addition, most of these energy technologies cannot be used for transportation or 

portable electronics. Other portable power technologies, such as batteries and supercapacitors also 

are not suitable for transportation technologies, military applications, and the long-term needs of 

future electronics. The ideal option for a wide variety of applications is using a hydrogen fuel cell 

combined with solar or hydroelectric power. Compared to other fuels, hydrogen does not produce 

any carbon monoxide or other pollutants. When it is fed into a fuel cell, the only by-products are 

oxygen and heat. The oxygen is recombined with hydrogen to form water when power is needed 

[147,148].  

Fuel cells can utilize a variety of fuels to generate power from hydrogen, methane, methanol and 

fossil fuels to biomass-derived materials. Using fossil fuels to generate hydrogen is regarded as an 

intermediate method of producing hydrogen, methane, methanol, or ethanol for utilization in a fuel 

cell before the hydrogen infrastructure has been set up. Fuels can also be derived from many 
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sources of biomass, including methane from municipal wastes, sewage sludge, forestry residues, 

landfill sites, and agricultural and animal waste [149-151]. 

Fuel cells can also help provide electricity by working with large power plants to become more 

decentralized and increase efficiency [150]. Most electricity produced by large fossil-fuel burning 

power plants is distributed through high voltage transmission wires over long distances. These 

power plants seem to be highly efficient because of their large size; however, a 7 to 8% electric 

energy loss in Europe, and a 10% energy loss in the United States occurs during long distance 

transmission [152]. One of the main issues with these transmission lines is that they do not function 

properly all the time. It would be safer for the population if electricity generation did not occur in 

several large plants, but is generated where the energy is needed. Fuel cells can be used wherever 

energy is required without the use of large transmission lines.  

Fossil fuels are limited in supply, and are located in select regions throughout the world. This leads 

to regional conflicts and wars which threaten peace. The limited supply and large demand dries up 

the cost of fossil fuels tremendously.  

 

1.10 History of Fuel Cells  

Fuel cells have been known to science for about 150 years. They were minimally explored in the 

1800s and extensively researched in the second half of the twentieth century. Initial design concepts 

for fuel cells were explored in 1800, and William Grove is credited with inventing the first fuel cell 

in 1839 [3,153]. Various fuel cell theories were contemplated throughout the nineteenth century, 

and these concepts were studied for their practical uses during the twentieth century. Extensive fuel 

cell research was started by NASA in the 1960s, and much has been done since then [154]. During 

the last decade, fuel cells were extensively researched, and are finally nearing commercialization. A 

summary of fuel cell history is shown in Figure 1-13. 

In 1800, William Nicholson and Anthony Carlisle described the process of using electricity to break 

water into hydrogen and oxygen. William Grove is credited with the first known demonstration of 

the fuel cell in 1839. Grove saw notes from Nicholson and Carlisle and thought he might 

“recompose water” by combining electrodes in a series circuit, and soon accomplished this with a 

device called a “gas battery”. It operated with separate platinum electrodes in oxygen and hydrogen 

submerged in a dilute sulphuric acid electrolyte solution. The sealed containers contained water and 

gases, and it was observed that the water level rose in both tubes as the current flowed. The Grove 

cell, as it came to be called, used a platinum electrode immersed in nitric acid and a zinc electrode 

in zinc sulphate to generate about 12 amps of current at about 1.8 volts.  
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Fig. 1-13 Main milestones in the history of fuel cells. 

 

Friedrich Wilhelm Ostwald (1853–1932), one of the founders of physical chemistry, provided a 

large portion of the theoretical understanding of how fuel cells operate. In 1893, Ostwald 

experimentally determined the roles of many fuel cell components.  

Ludwig Mond (1839–1909) was a chemist that spent most of his career developing soda 

manufacturing and nickel refining. In 1889, Mond and his assistant Carl Langer performed 

numerous experiments using a coal-derived gas. They used electrodes made of thin, perforated 

platinum, and had many difficulties with liquid electrolytes. They achieved 6 amps per square foot 

(the area of the electrode) at 0.73 volts.  

Charles R. Alder Wright (1844–1894) and C. Thompson developed a similar fuel cell around the 

same time. They had difficulties in preventing gases from leaking from one chamber to another. 

This and other causes prevented the battery from reaching voltages as high as 1 volt. They felt that 

if they had more funding, they could create a better, robust cell that could provide adequate 

electricity for many applications.  

The French team of Louis Paul Cailleteton (1832–1913) and Louis Joseph Colardeau came to a 

similar conclusion, but thought the process was not practical due to needing precious metals. In 
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addition, many papers were published during this time saying that coal was so inexpensive that a 

new system with a higher efficiency would not decrease the prices of electricity drastically.  

William W. Jacques (1855–1932), an electrical engineer and chemist, did not pay attention to these 

critiques, and startled the scientific world by constructing a carbon battery in 1896. Air was injected 

into an alkali electrolyte to react with a carbon electrode. He thought he was achieving an efficiency 

of 82%, but actually obtained only an 8% efficiency.  

Emil Baur (1873–1944) of Switzerland and several of his students conducted many experiments on 

different types of fuel cells during the early 1900s. His work included high-temperature devices, 

and a unit that used a solid electrolyte of clay and metal oxides.  

O. K. Davtyan of the Soviet Union did many experiments to increase the conductivity and 

mechanical strength of the electrolyte in the 1940s. Many of the designs did not yield the desired 

results, but Davtyan’s and Baur’s work contributed to the necessary preliminary research for current 

molten carbonate and solid oxide fuel cell devices [3,154]. 

 

1.11 Fuel Cells systems 

Fuel cells are energy conversion devices that continuously transform the chemical energy of a fuel 

and an oxidant into electrical energy. The fuel and oxidant gases lick the anode and cathode and are 

continuously fed promoting the oxidation reaction of fuel and oxidant gas reduction. Fuel cells will 

continue to generate electricity as long as both fuel and oxidant are available [3,145-154].  

There are different types of fuel cells, showing a flexibility that could replace most of the devices 

for the production of electricity covering outputs ranging from a few W to several MW 

[149,153,154].  

A first classification distinguishes cells in high temperature (HT) up to 1100 °C, used in stationary 

systems for cogeneration processes, aerospace and marine applications, and low temperature (LT), 

from 60 to 120 °C, for low-cost portable devices and automotive.  

Power can be provided by fossil fuels, coal, biogas, and biomass (for PAFC, PEMFC, MCFC, 

SOFC), alcohol (DMFC), and hydrogen (PEMFC and AF).  

A further classification of FCs is based on the electrolyte. In PEMFC and DMFC the electrolyte is a 

polymeric material with cation exchange capacity; Alkaline FCs (AFCs) have a KOH solution as 

electrolyte; MCFCs have electrolyte based on molten carbonate of lithium and potassium; SOFC is 

based on phosphoric acid.  

FCs technology presents several advantages: low emissions, but depend on the fuel used, especially 

as regards the release of NOx, CO, and particulate; high energy efficiency, especially when 

compared to those of thermal machines; weak noise; different operating temperatures; modular 
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construction, so by putting in series or in parallel several elementary units you are covering the 

power range required; more simple construction, and thus greater reliability and easier maintenance 

[3,153,154].  

These advantages justify the strong interest, particularly from many automotive companies, to 

develop the technology based on fuel cells for automotive [155,156].  

Nevertheless, there are some problems to be solved in order that fuel cells can be competitive and 

penetrate the market: the cost, due to the high value components; the weight and volume, especially 

in the automotive; the length of life, still very low (a few thousand hours for cars, about 40,000 for 

stationary systems); thermal management, for the large amount of heat exchange with an operative 

cooling system [153-156]. 

 

1.11.1 Comparison with Batteries  

A fuel cell has many similar characteristics with batteries, but also differs in many respects. Both 

are electrochemical devices that produce energy directly from an electrochemical reaction between 

the fuel and the oxidant. The battery is an energy storage device with the maximum energy 

available determined by the amount of chemical reactant stored in the battery itself. A battery has 

the fuel and oxidant reactants built into itself (onboard storage), in addition to being an energy 

conversion device. In a secondary battery, recharging regenerates the reactants. This involves 

putting energy into the battery from an external source.  

The fuel cell is an energy conversion device that theoretically has the capability of producing 

electrical energy for as long as the fuel and oxidant are supplied to the electrodes [153,154]. Figure 

1-13 shows a comparison of a fuel cell and battery.  

 

 

Fig. 1-14 Comparison of a fuel cell and a battery 

 

The lifetime of a primary battery is limited because when the amount of chemical reactants stored in 

a battery runs out, the battery stops producing electricity. In addition, when a battery is not being 
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used, a very slow electrochemical reaction takes place that limits the lifetime of the battery. The 

electrode of a battery is also used in the process; therefore, the lifetime of the battery is dependent 

on the lifetime of the electrode. In comparison, a fuel cell is an energy conversion device where the 

reactants are supplied. The fuels are stored outside the fuel cell. A fuel cell can supply electrical 

energy as long as fuel and oxidant are supplied. The amount of energy that can be produced is 

theoretically unlimited as long as the fuel and oxidant are supplied. Also, no leakage occurs in a 

fuel cell, and no corrosion of cell components occurs when the system is not in use [3,150-156]  

 

1.11.2 Comparison with Heat Engine  

A heat engine converts chemical energy into electric energy likes fuel cells, but through 

intermediate steps. The chemical energy is first converted into thermal energy through combustion, 

then thermal energy is converted into mechanical energy by the heat engine, and finally the 

mechanical energy is converted into electric energy by an electric generator. 

This multistep energy process requires several devices in order to obtain electricity. The maximum 

efficiency is limited by Carnot’s law because the conversion process is based upon a heat engine, 

which operates between a low and high temperature [3,150-156]. The process also involves moving 

parts, which implies that they wear over time. Regular maintenance of moving components is 

required for proper operation of the mechanical components. Figure 1-14 shows a comparison 

between a fuel cell and a heat engine/electrical generator.  

 

 

Fig. 1-15 Comparison of a fuel cell with a heat generator 

 

Since fuel cells are free of moving parts during operation, they can work reliably and with less 

noise. This results in lower maintenance costs, which make them especially advantageous for space 

and underwater missions. Electrochemical processes in fuel cells are not governed by Carnot’s law, 

therefore high operating temperatures are not necessary for achieving high efficiency. In addition, 

the efficiency of fuel cells is not strongly dependent on operating power. It is their inherent high 
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efficiency that makes fuel cells an attractive option for a wide range of applications, including road 

vehicle power sources, distributed electricity and heat production, and portable systems [3,145-

156].  

 

1.12 Sectors of Applications  

Fuel cells provide electric power in applications that are currently energy limited as described in the 

following.  

Portable sector 

In coming years, portable devices, such as laptops, cell phones, video recorders, and others, will 

need greater amounts of power for longer periods of time. Fuel cells are very scalable and have easy 

recharging capabilities compared to batteries. Cell phone technology is advancing rapidly, but the 

limiting factor for the new technology is the power. More power is required to provide consumers 

with all of the functions in devices they require and want. The military also has a need for long-term 

portable power for new soldier’s equipment. In addition, fuel cells operate silently, and have low 

heat signatures, which are clear advantages for the military [157-161].  

Stationary sector 

Stationary fuel cells can produce enough electricity and heat to power an entire house or business, 

which can result in significant savings. These fuel cells may even make enough power to sell some 

of it back to the grid. Fuel cells can also power residences and businesses where no electricity is 

available. Sometimes it can be extremely expensive for a house not on the grid to have the grid 

connected to it. Fuel cells are also more reliable than other commercial generators used to power 

houses and businesses. This can benefit many companies; given how much money they can lose if 

the power goes down for even a short time [162-166]. 

Transportation sector  

Many factors are contributing to the fuel cell push in the automotive market. The availability of 

fossil fuels is limited, and due to this, an inevitable price increase will occur. In addition, legislation 

is becoming stricter about controlling environmental emissions in many countries all over the 

world. One of the new pieces of legislation that will help introduce the fuel cell automobile market 

in the United States is the Californian zero emission vehicle (ZEV) mandate, which requires that a 

certain number of vehicles be sold annually in California. Fuel cell vehicles also have the ability to 

be more fuel efficient than vehicles powered by other fuels. This power technology allows a new 

range of power use in small two-wheeled and four-wheeled vehicles, boats, scooters, unmanned 

vehicles, and other utility vehicles [167-171].  

 



33 

1.13 Fuel Cells Fundamentals 

To understand and quantify fuel cell performance, one must begin with the thermodynamic 

description of the fuel cell [3,154,157-171]. A fuel cell continuously produces electrical work and 

waste heat. The fuel cell can generate electricity continuously since it is an open system. The fuel 

cell is operated continuously for a given time period, ∆t, during which reactants (fuel and oxidant) 

are added and products removed to maintain an electrical potential. If current is allowed to flow, a 

difference in electrical potential (also known as electrochemical overpotential) is maintained at the 

electrode interface through which charge transfer can occur. Charge carriers migrate across the cell 

when there is not equilibrium between the electrical and chemical potentials across the cell. The 

movement occurs from a higher to lower potential energy. Thus, the chemical affinity or change in 

Gibbs free energy of reaction drives an electric current. The change in Gibbs free energy of reaction 

is available at any instant to perform electrical work.  

The Gibbs free energy, G, is defined to be [3,154] 

 

G = E + PV − TS           (1.6) 

where P = pressure, V = volume, T = temperature, E = energy, and S = entropy.  

 

At constant pressure and temperature (usual conditions of an electrochemical reaction), the change 

in the Gibbs free energy for a reaction, ∆G (J/mole) is  

 

G = E + P V−T ΔS          (1.7) 

 

From the first law of thermodynamics, assuming the fuel cell is operated reversibly,  

 

ΔE = q + w = q + welectrical P ΔV        (1.8) 

where q = heat and w = work (J/mole). Thus, equating terms and simplifying,  

 

 ΔG = q + welectrical−T ΔS          (1.9) 

 

Again, assuming reversible operation of the fuel cell,  

 

q = qreversible = TΔS           (1.10) 

 

Thus, 
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G = welectrical           (1.11) 

 

The change in Gibbs free energy of reaction (J/mole) is referenced to the amount of fuel. The 

electrical work (J) in an open system operated continuously over a given time period, ∆t, where 

reactants (mole/s) are added and products removed to maintain the electrical potential are given for 

hydrogen–oxygen reaction by  

 

mH2 ΔG Δt = mH2welectrical Δt = Welectrical       (1.12) 

where mH2 = flow rate of hydrogen for the H2/O2 reaction (mole/s) and ∆t = operation time (s).  

 

The average rate of work generation during the time interval, ∆t, is the power (J/s).  

One can mathematically demonstrate that for any direct anodic oxidation reaction for any fuel cell 

or hybrid system containing any fuel cell at any operating temperature and any pressure, the 

reversible work, welectrical, (J/mole) is equal to the change in Gibbs free energy of reaction at the 

standard state (STP), ∆G0 [172,173].  

This reversible work is regarded as the maximum work. For the case of direct oxidation of 

hydrogen, one has  

 

Wrev = mH2inletwrev =mH2inlet ΔG0 Δt         (1.13) 

where mH2inlet = flow rate of hydrogen fuel into system. 

 

 Inerts and/or water are added to or are present in a reformate with the hydrogen entering the 

system. Exergy is a measure of heat quality or capability to do work. Exergetic efficiency, ζ, is the 

ratio of actual electrical work and the reversible work: 

 

ζ = Welectrical/Wrev           (1.14) 

 

Using Eq. (1.13), the actual or observed electrical work for direct oxidation of hydrogen, a fuel cell 

is given by  

 

mH2utilized ΔGact Δt = Welectrical          (1.15) 

where ∆Gact = actual change in Gibbs free energy of reaction associated with the electrical work, 

J/mole, mH2utilized = flow rate of hydrogen utilized by fuel cell (moles/s) (mH2utilized equals the 
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amount in the fuel cell anode inlet; mH2anode inlet; minus the amount in the anode outlet; mH2anode 

outlet). 

  

For reforming done prior to the system, mH2inlet = mH2anode inlet. Thus, from Eqs. (1.13), (1.14), and 

(1.15)  

 

ζ = (mH2utilized ΔGact Δt) / mH2inlet ΔG0 Δt = mF ΔGact / ΔG0     (1.16)  

where fuel utilization (μF) is  

 

μF = μH2utilized/ mH2inlet          (1.17)  

 

Using Eq. (1.13) for the reversible work, one can calculate the maximum thermal efficiency 

(maximum work for given energy input) of a fuel cell or fuel cell hybrid (fuel cell and heat engine) 

system for the H2 oxidation reaction, where ∆H0 is the reaction enthalpy for hydrogen direct 

oxidation (J/mole) at STP and where the inlet hydrogen is completely utilized in the fuel cell:  

 

ηth max = ΔG0/ ΔH0           (1.18)  

 

For the H2 oxidation reaction, ηth max equals 0.83 (HHV) and 0.945 (LHV). One can also define a 

fuel cell intrinsic thermal efficiency at any temperature ηint(T) by ∆Gth(T)/∆H0. One can also define 

for the fuel cell an intrinsic exergetic efficiency at any temperature [172,173]:  

 

ζint(T) = ΔGth(T)/ ΔG0          (1.19)  

 

∆Gth(T) is defined as the free energy of the reaction, here the H2 oxidation reaction, at temperature, 

T, for unit concentrations of products and reactants. ∆Gth(T) is associated with E0(T). ∆G0 at STP 

with unit species concentrations is associated with E0.  

The actual thermal efficiency of the fuel cell is defined as the ratio of the work output to energy 

input, so we have  

 

η = mH2utilized ΔGact Δt/ (mH2inlet ΔH0 Δt) = μF ΔGact/ ΔH0      (1.20) 

 

It can be shown from Eqs. (1.16), (1.18), (1.19), and (1.20) that  
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η = μF ΔGact/ ΔH0 = ηint(T)ζ/ζint(T) = ζ ηth max       (1.21) 

 

If one knows the reversible work which is a function of fuel, system components, and system 

structure, one can separate thermal efficiency into an exergetic component and a fuel component.  

Exergetic performance is determined by fuel cell performance which ultimately means fuel cell 

voltage. The link between the macroscopic thermodynamic parameters and fuel cell voltage can be 

developed as follows: Welectrical is also defined electrically as  

 

Welectrical = −nFE           (1.22) 

where n = mole, F = Faraday’s constant (J/mole/volt), E = fuel cell voltage (volt).  

 

In general, from Eqs. (1.12), (1.15), and (1.22)  

 

mH2 ΔG Δt = Welectrical = −nFE         (1.23) 

 

Since for the H2 direct oxidation reaction,  

 

2 mH2 Δt = n           (1.24) 

 

then, in general  

 

ΔG = −2FE            (1.25) 

 

Specifically, using Eq. (1.25),  

 

ΔGact = −2FE,           (1.26) 

 

And 

 

ΔG0 = −2FE0            (1.27) 

 

So 

 

ζ = mH2utilized ΔGact Δt/ (mH2inlet ΔG0 Δt) = μF (-2FE Δt) / (-2FE0Δt) = μFE/E0   (1.28)  
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One of the central, steady-state fuel cell performance equations is thus given by 

 

ζ = μFE/E0            (1.29)  

 

and combining with Eq. (1.21), one has 

 

η = ζ ηth max = ηth maxμFE/E0          (1.30)  

 

Exergetic efficiency and thermal efficiency are actually time-dependent functions describing the 

performance of the fuel cell at any time t.  

 

These can be written as  

 

ζ(t) = μF(t)E(t)/E0           (1.31)  

 

and  

 

η(t) = ζ (t)ηth max = ηth maxμF(t)E(t)/E0        (1.32)  

 

DRζ (t), the exergetic efficiency rate of change, is a natural and instantaneous measure of the change 

in fuel cell performance occurring at any time t:  

 

∂ (ζ (t))/∂ t = DRζ (t)          (1.33)  

 

It can be seen from Eqs. (1.31) and (1.32) that the rate of change in exergetic efficiency and rate of 

change of thermal efficiency are directly proportional.  

Equation (1.33) is the second central equation for fuel cell performance since it is an equation that 

can be used in the assessment of degradation, generally defined as the change of area-specific 

resistance (ASR) with time [174].  

 

1.13.1 Fuel Cell Operations  

Fuel cells can be operated in a variety of modes, including constant fuel utilization, constant fuel 

flow rate, constant voltage, constant current, etc. For the case of constant mF and constant E, from 



38 

Eq. (1.33), DRz (t) = 0, in which case the fuel cell is operating at constant exergetic efficiency. This 

mode of operation is achieved by lowering the current by lowering the hydrogen flow rate as the 

fuel cell degrades. As can be seen from Eqs. (1.31) and (1.32), to operate at constant exergetic 

efficiency is to operate at constant thermal efficiency [3,160-174].  

However, efficiency is not the only important performance measure. As the current is lowered at 

constant voltage operation, the fuel cell power density is decreasing. Below a certain level of power 

or power density, given by  

 

P(t) = E(t) J(t)           (1.34)  

 

It is no longer economical to operate a fuel cell or fuel cell system. Power is the third central 

equation for fuel cell performance. General expressions can be derived for fuel cell performance 

involving the variables E, J, mF, pressure, and fuel flow rate to explore the full envelope of fuel cell 

operation.  

The actual fuel cell potential is decreased from its full potential, the Nernst potential, because of 

irreversible losses. Multiple phenomena contribute to irreversible losses in an actual fuel cell. For 

the hydrogen oxidation reaction, the functionality of fuel cell voltage, E, is typically given by [175-

177]  

 

E(T) = EN(T) − LJ/Aσ − RohmicJ − ηa
act − ηc

act − ηa
conc − ηc

conc    (1.35)  

 

EN(T) = E0
H2/O2rxn(T) + RT/2F ln (PH2(a)P

1/2
O2(c) /PH2O(a) = Nernst voltage   (1.36) 

where: F = Faraday’s constant, J = appropriate current (A/cm2), s = electrolyte charge carrier 

conductivity (S/cm), L = electrolyte thickness (cm), A = fuel cell active area (cm2), ηa
act = activation 

polarisation for the anode, ηc
act = activation polarisation for the cathode, ηa

conc = concentration 

polarisation for the anode, ηc
conc = concentration polarisation for the cathode, Rohmic = series ohmic 

resistance of all non-electrolyte fuel cell components, E0
H2/O2rxn(T) = voltage at unit concentrations 

for H2/O2 reaction at temperature T. 

 

The six negative terms on the RHS of Eq. (1.35) are the usual definition of ASR. The 

comprehensive functionality of E and the more general definition of ASR have recently been 

developed for solid-state fuel cells with dense, mixed, ionic–electronic conducting electrolytes 

using the Wagner mass transfer model (MTM) [3,170-177]:  
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E = EMTM (1-(J0
= - Jext)/J0

=) - L J0
=

 / A σ0
=

 - Rohmic J - ηa
act - η

c
act - η

a
conc - ηleakage   (1.37) 

 

where Rohmic = series ohmic resistance of all non-electrolyte fuel cell components, including 

interconnect, interlayers, and contact layers, which is multiplied by the appropriate current, J, for 

each type, J0 = Je and Jext are the current terms from the Wagner MTM, (J0 
= - Jext)/ J0

= = the shorting 

ratio, ηleakage = fuel leakage polarisation, EMTM (anode–electrolyte interface to cathode–electrolyte 

interface) is the reversible voltage in the Wagner MTM model. 

 

The comprehensive model for solid-state fuel cells incorporates not only the typical definition of 

ASR, but also electronic shorting, leakage, and other current loss mechanisms. The first term on the 

RHS of Eq. (1.37) is not an ASR term. A general ASR definition for solid-state fuel cells can be 

defined as follows:  

 

ASR = Rionic + Rohmic + (ηa
act + ηc

act + ηa
conc + ηc

conc)/J0 
= + Rleakage    (1.38) 

where Rionic = L/Aσo = ionic resistance of electrolyte and Rleakage = ηleakage/ Jleakage = resistance 

attributed to fuel leakage.  

 

This definition of ASR is very general. However, when generalized, ASR and rate of change of 

ASR are not broad enough concepts to describe all the phenomena affecting fuel cell performance, 

such as electronic shorting.  

 

 

Fig. 1-16 Typical current voltage performance  
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The goal of a fuel cell should be to maximize exergetic or thermal efficiency and to minimize 

degradation while producing as much power as possible. These three goals can be achieved by 

improving the fuel cell design (more conductive electrolyte, better electrocatalysts, improvement in 

electrode structures, thinner cell components, etc.) [3,153] and/or by adjusting the operating 

conditions (e.g., higher temperature, higher gas pressure, and change in gas composition to lower 

the contaminant concentration).  

As shown in Figure 1-16, the activation polarisation (reaction rate loss) is significant at lower 

current densities [3,153,158]. At this point, electronic barriers must be overcome prior to ion and 

current flow.  

Ohmic polarisation (resistance loss) changes directly with current, increasing over the entire range 

of current because cell resistance remains essentially constant. Concentration polarization (gas 

transport loss) occurs over the entire range of current density, but they become significant at high 

limiting currents where it becomes difficult to provide enough reactant flow to the cell reaction 

sites.  

Changing the cell operating parameters (pressure and temperature) can have an advantageous or a 

disadvantageous impact on fuel cell performance and compromises in the operating parameters are 

essential to meet the application requirements of lower system cost and acceptable cell life 

[3,158,170-177].  

 

1.14 Characteristics and Features  

Fuel cells have many inherent advantages over conventional combustion-based systems, making 

them one of the strongest candidates to be the energy conversion device of the future (Fig. 1-17). 

They also have some inherent disadvantages that require further research and development to 

overcome them.  

 

1.14.1 High Efficiency  

The amount of heat that could be converted to useful work in a heat engine is limited by the ideal 

reversible Carnot efficiency, given by the following equation:  

 

ηCarnot = (Ti − Te) / Ti          (1.39)  

where Ti is the absolute temperature at the engine inlet and Te is the absolute temperature at the 

engine exit.  

However, a fuel cell is not limited by the Carnot efficiency since a fuel cell is an electrochemical 

device that undergoes isothermal oxidation instead of combustion oxidation. The maximum 
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conversion efficiency of a fuel cell is bounded by the chemical energy content of the fuel and is 

found by  

 

ηrev = ΔGf/ ΔHf          (1.40) 

where ∆Gf is the change in Gibbs free energy of formation during the reactions and ∆Hf is the 

change in the enthalpy of formation (using lower heating value (LHV) or higher heating value 

(HHV)) [3,153,158-170].  

 

 

Fig.1-17 Efficiency comparison between fuel cells and other energy conversion devices with 

respect to system size  

 

Figure 1-18 illustrates the thermodynamic efficiency for fuel cells and Carnot efficiency for heat 

engines [3]. In light vehicles, for instance, the efficiency of a fuel cell-powered car is nearly twice 

the efficiency of an internal combustion engine-powered car. The fact that the number of energy 

transformations that occur within a fuel cell stack is less than that of any combustion-based device, 

when the required output is electricity, plays a significant role. This is because losses are associated 

with each energy transformation process; thus, the overall efficiency of a system generally 

decreases as the number of energy transformations increases.  
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Fig.1-18 Thermodynamic efficiency for H2/O2 fuel cells (a) and Carnot for heat engines (b) 

 

1.14.2 Reduced Harmful Emissions  

The only products from a fuel cell stack fuelled by hydrogen are water, heat, and DC electricity. 

And with the exception of controllable NOx emissions from high-temperature fuel cells, a hydrogen 

fuel cell stack is emission-free. However, the clean nature of a fuel cell depends on the production 

path of its fuel.  

For instance, the products of a complete fuel cell system that includes a fuel reformation stage 

include greenhouse emissions (e.g., CO and CO2). When the hydrogen supplied to the fuel cell is 

pure (i.e., not reformation-based hydrogen which is always contaminated with COx), the durability 

and reliability of the fuel cell significantly improve in comparison to when we run the fuel cell on 

reformation-based hydrogen. This is one of the most important advantages of fuel cells in 

comparison to heat engines, i.e., fuel cells are inherently clean energy converters that ideally run on 

pure hydrogen. This fact is actually pressingly driving researchers and the industry to develop 

efficient and renewable-based hydrogen generation technologies based on clean water electrolysis 

to replace the conventional reformation-based ones. Systems that integrate renewable-based 

hydrogen generation with fuel cells are genuinely clean energy generation and conversion systems 

that resemble what the energy industry is striving to achieve. It is worth mentioning that when we 

take into consideration the emissions from the fossil fuel reformation process, some heat engine 

systems appear to be less polluting than fuel cell systems [178,179]. For non-renewable energy-

based water electrolysis, the emissions and energy used for the electrolysis process make it more 

harmful to the environment than conventional combustion heat engines. Moreover, it is 

economically unfeasible since any fossil energy used for hydrogen production is going to be always 

more than the energy content of hydrogen. According to the studies by Argonne National 

Laboratory [180], 3,000,000–3,500,000 BTUs of fossil energy are used for the production of 

(a) 

(b) 
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1,000,000 BTUs of hydrogen through fossil energy-based water electrolysis. This only stresses the 

significance of the aforementioned conclusions regarding using renewable-based water electrolysis 

for hydrogen production [181].  

 

1.14.3 Modularity  

Fuel cells have excellent modularity. In principle, changing the number of cells-per-stack and/or 

stacks-per-system allows us to control the power output of any fuel cell system. Unlike combustion-

based devices, a fuel cell’s efficiency does not vary much with system size or load factor. In fact, as 

opposed to conventional power plants, fuel cells have higher efficiencies at part loads compared to 

full loads. This would prove advantageous in large-scale fuel cell systems that would normally run 

on part load instead of full load. Additionally, the high modularity of fuel cells means that smaller 

fuel cell systems have similar efficiencies to larger systems. This feature greatly facilitates the 

future integration of fuel cells (and hydrogen systems in general) in small-scale distributed 

generation systems, which hold a great potential in the power generation industry. It is worth 

noting, however, that reformation processors are not as modular as fuel cell stacks. This presents 

another reason to shift to renewable-based hydrogen production technology.  

 

1.14.4 Fuel Flexibility and Applications  

Fuel cells have diverse applications ranging from micro-fuel cells with less than 1 W power outputs 

to multi-MW prime power generation plants. This is attributed to their modularity, static nature, and 

variety of fuel cell types. This qualifies fuel cells to replace batteries used in consumer electronics 

and auxiliary vehicular power. These same properties also qualify a fuel cell to replace heat engines 

used in transportation and power generation. Fuel cells are also highly integrable to most renewable 

power generation technologies. Fuel cells that operate on low-temperature ranges require short 

warm-up times, which is important for portable and emergency power applications.  

While for fuel cells that operate on medium-to-high temperature ranges, utilization of waste heat 

both increases the overall efficiency of the system and provides an additional form of power output 

useful for domestic hot water and space heating residential applications or CHP industrial-level 

applications. Fuels for a reformation-based fuel cell system include methanol, methane, and 

hydrocarbons such as natural gas and propane. These fuels are converted into hydrogen through a 

fuel reformation process. Alternatively, direct alcohol fuel cells (e.g., direct methanol fuel cells) can 

run directly on an alcohol. And even though fuel cells run best on hydrogen generated from water 

electrolysis, a fuel cell system with natural gas reformation also possesses favorable features to 

conventional technologies [3,153,156].  
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Fuel cells have been rapidly developing during the past 20 years due to the revived interest in them 

that started during the 1990s. However, they are still not at the widespread-commercialization stage 

due to many technical and sociopolitical factors, with cost and durability being the main hurdles 

that prevent fuel cells from becoming economically competitive in the energy market. 

 

1.15 Fuel Cells Types 

Fuel cells can be designed in various ways including many geometries, planar, tubular, radial, etc., 

and using many fuels and electrolyte charge carriers. Distinction of fuel cell types begins with the 

type of electrolyte used in the cells, the charge carrier, and the operating temperature. Low-

temperature fuel cells (Proton Exchange Membrane FC, Alkaline FC, and Phosphoric Acid FC) 

require noble metal electrocatalysts to achieve practical reaction rates at the anode and cathode, and 

H2 is the only acceptable fuel for the PEMFC. With high-temperature fuel cells (Molten Carbonate 

FC and Solid Oxide FC), the requirements for catalysis are relaxed, and the number of potential 

fuels expands. Other types of fuel cells are not addressed here, such as biological and enzymatic 

fuel cells. For example, carbon monoxide “poisons” a noble metal anode catalyst such as platinum 

in low-temperature fuel cells, but it competes with H2 as a reactant in high-temperature fuel cells 

where non-noble metal catalysts such as nickel can be used. 

The operating temperature and required useful life of a fuel cell dictate the physicochemical and 

thermomechanical properties of materials used in the cell components (e.g., electrolyte, electrodes, 

and interconnect) [3,153]. 

 

Fuel cell Cell voltage Start up time 
Power density 

(W/m2) 

Temperature 

(°C) 

PEMFC 0.7-0.8 Seconds 3.8-6.5 60-100 

AFC 1.0 Seconds 1.0 100-250 

PAFC 1.0 Few minutes 0.8-1.9 150-250 

MCFC 0.7-1.0 Few minutes 1.5-2.6 500-700 

SOFC 0.8-1.0 Few minutes 0-0.15 700-1000 

DMFC 0.2-0.4 Few seconds 1.0-2.0 60-200 

Table 1-3 Comparison of FCs with their performance parameters 

 

Aqueous electrolytes are limited to temperatures of >200 °C because of their high water vapour 

pressure and/or rapid degradation at higher temperatures. The operating temperature also 

determines the type of fuel that can be used in a fuel cell. The low-temperature fuel cells with 

aqueous electrolytes are, in most practical applications, restricted to H2 as a fuel. In high 
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temperature fuel cells, CO and even CH4 can be used because of the inherently rapid electrode 

kinetics and the lesser need for high catalytic activity at high temperature. 

Table 1-3 summarizes the main differences between the most common fuel cell types [3]  

 

1.15.1 Proton Exchange Membrane Fuel Cell (PEMFC)  

Proton exchange membrane fuel cells (PEMFC) are believed to be the best type of fuel cell as the 

vehicular power source to eventually replace the gasoline and diesel internal combustion engines. 

PEMFCs are currently being developed and demonstrated for systems ranging from 1 W to 2 kW.  

PEM fuel cells use a solid polymer membrane (a thin plastic film) as the electrolyte. The standard 

electrolyte material currently used in PEM fuel cells is a fully fluorinated Teflon-based material 

produced by DuPont for space applications in the 1960s. The DuPont electrolytes have the generic 

brand name Nafion, and the types used most frequently are 113, 115, and 117 [182-189]. The 

Nafion membranes are fully fluorinated polymers that have very high chemical and thermal 

stability. This polymer is permeable to protons when it is saturated with water, but it does not 

conduct electrons.  

The fuel for the PEMFC is hydrogen and the charge carrier is the hydrogen ion (proton).  

The best catalyst for both the anode and cathode is platinum. This catalyst was used at a content of 

28 mg/cm2 of Pt. Due to the high cost of Pt in recent years the usage has been reduced to around 0.2 

mg/cm2, yet with power increasing [3,182]. Platinum is dispersed on porous and conductive 

material, such as carbon cloth or carbon paper. PTEF will often be added also, because it is 

hydrophobic and so will expel the product water to the surface from where it can evaporate [153, 

182-189].  

At the anode, the hydrogen molecule is split into hydrogen ions (protons) and electrons. The 

hydrogen ions permeate across the electrolyte to the cathode while the electrons flow through an 

external circuit and produce electric power. Oxygen, usually in the form of air, is supplied to the 

cathode and combines with the electrons and the hydrogen ions to produce water. The reactions at 

the electrodes are as follows:  

 

Anode : H2(g) 
→ 2H++ 2e-         (1.41) 

 

Cathode : ½ O2 + 2H+ + 2e-→H2O        (1.42) 

 

Overall : H2(g) + ½ O2(g) → H2O        (1.43)  
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Compared to other types of fuel cells, PEMFCs generate more power for a given volume or weight 

of fuel cell [183-188]. This high-power density characteristic makes them compact and lightweight. 

In addition, the operating temperature is less than 100 °C, which allows rapid start-up. These traits 

and the ability to rapidly change power output are some of the characteristics that make the PEMFC 

the top candidate for automotive power applications [183-188].  

 

 

Fig.1-19 Toyota Mirai equipped with PEMFC stack 

 

Other advantages result from the electrolyte being a solid material, compared to a liquid. The 

sealing of the anode and cathode gases is simpler with a solid electrolyte, and therefore, less 

expensive to manufacture. The solid electrolyte is also more immune to difficulties with orientation 

and has less problems with corrosion, compared to many of the other electrolytes, thus leading to a 

longer cell and stack life.  

One of the disadvantages of the PEMFC for some applications is that the operating temperature is 

low. Temperatures near 100 °C are not high enough to perform useful cogeneration. Also, since the 

electrolyte is required to be saturated with water to operate optimally, careful control of the 

moisture of the anode and cathode streams is important. 

 

1.15.2 Alkaline Fuel Cell (AFC)  

Alkaline fuel cells (AFCs) have been used by NASA on space missions and can achieve power-

generating efficiencies of up to 70 % [3,182,190-192]. The operating temperature of these cells 

range between room temperature to 250 °C. The electrolyte is aqueous solution of alkaline 

potassium hydroxide (30–75 wt %) soaked in a matrix [182]. (This is advantageous because the 

cathode reaction is faster in the alkaline electrolyte, which means higher performance).  
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Several companies are examining ways to reduce costs and improve operating flexibility. AFCs 

typically have a cell output from 300 W to 5 kW [191]. The chemical reactions that occur in this 

cell are as follows:  

 

Anode : 2H2 + 4 OH-→ 4 H2O + 4e-        (1.44) 

 

Cathode : O2 + 2 H2O + 4 e-→ 4 OH-       (1.45) 

 

Overall : 2 H2 + O2 → 2H2O         (1.46) 

 

Another advantage of AFCs are the materials such as the electrolyte and catalyst used are low cost 

[190,191]. The catalyst layer can use either platinum or non-precious metal catalysts such as nickel 

[193-195]. Successful achieving of very active and porous form of a metal which has been used for 

alkaline fuel cells from the 1960s to the present, is the use of Raney metals.  

 

 

Fig.1-20 Alkaline cell used by NASA in the Apollo mission 

 

These are prepared by mixing the active metal (Ni) with an inactive metal, usually aluminum. The 

mixture is then treated with a strong alkali that dissolves out the aluminum. This leads a porous 

material, with very high surface area [3,182]. A disadvantage of AFCs is that pure hydrogen and 

oxygen have to be fed into the fuel cell because it cannot tolerate the small amount of carbon 

dioxide from the atmosphere.  
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Over time, carbon dioxide degrades the KOH electrolyte which can lead to significant issues. Two 

commonly used solutions are refreshing the KOH electrolyte or carbon dioxide scrubbers. Due to 

these limitations, AFCs are not used for many power applications.  

 

1.15.3 Phosphoric Acid Fuel Cells (PAFC)  

PAFCs are very efficient fuel cells, generating electricity at more than 50 % efficiency [182]. About 

85 % of the steam produced by the PAFC is used for cogeneration. This efficiency may be 

compared to about 35 % for the utility power grid in the United States. As with the PEMFC Pt or Pt 

alloys are used as catalysts at both electrodes [196]. The electrolyte is inorganic acid, concentrated 

phosphoric acid (100 %) which will conduct protons [197-199]. Operating temperatures are in the 

range of 150–220 °C. At lower temperatures, PAFC is a poor ionic conductor, and carbon 

monoxide (CO) poisoning of the platinum catalyst in the anode can become severe [76, 80, 81]. 

Two main advantages of the phosphoric acid fuel cell include a cogeneration efficiency of nearly 85 

% and its ability to use impure hydrogen as fuel. PAFCs can tolerate a carbon monoxide 

concentration of about 1.5 % which increases the number of fuel types that can be used. 

 

 

Fig.1-21 PAFC stack developed in 1965 by U.S.A. army scientists 

 

Disadvantages of PAFCs include their use of platinum as a catalyst (like most other fuel cells) and 

their large size and weight. PAFCs also generate low current and power comparable to other types 

of fuel cells [3,182].  

Phosphoric acid fuel cells are the most mature fuel cell technology. The commercialization of these 

cells was brought about through the Department of Energy (DOE) and ONSI (which is now United 
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Technologies Company (UTC) Fuel Cells) and organizational linkages with Gas Research Institute 

(GRI), electronic utilities, energy service companies, and user groups.  

The chemical reactions for PAFCs are as follows: 

 

Anode : H2 → 2H+ + 2 e-         (1.47) 

 

Cathode : ½ O2 + 2 H+ + 2 e- → H2O       (1.48) 

 

Overall : H2 + ½ O2 + CO2 → H2O + CO2       (1.49) 

 

1.15.4 Direct Methanol Fuel Cells (DMFC)  

A Direct Methanol Fuel Cell (DMFC) works creating an electric potential by the reaction between 

methanol and oxygen, specifically it produces electricity through an electrochemical process 

without combustion and without the need for a reformer system for the fuel [200].  

The electric potential is created using a polymeric membrane that is selective to certain chemical 

molecules, in this case the membrane allows the passage of H+ ions (proton conductivity). On one 

side of the membrane, an aqueous solution of methanol with CH3OH concentration of around 1 M 

(3 wt%) is feed to the anode catalyst where the catalytic decomposition of methanol molecules 

producing CO2 and H2 is oxidized to H+ ions at the anode [182]. The protons produced can migrate 

to the cathode of the cell through the membrane where the electrons produced to the anode, passing 

through an external circuit, reduce the oxygen that is plugged in, allowing the formation of water.  

The reactions occurring in the DMFC are as follows: 

 

Anode : CH3OH + H2O → CO2 + 6 H++ 6 e-      (1.50) 

 

Cathode : 6 H+ + 3/2 O2 + 6 e- → 3 H2O       (1.51) 

 

Overall : CH3OH + 3/2 O2 → CO2 + 2 H2O       (1.52) 

 

Because none of the methanol oxidation reaction proceeds as readily as the oxidation of hydrogen, 

there are considerable activation overvoltages at the fuel anode, as well as at the cathode in the 

DMFC. This is the main cause for the lower performance. Much work has been done to develop 

suitable catalysts for the anode of the DMFC. It is usually used as mixture of Pt and Ru in equal 

proportions. Other bimetal catalysts have been tried but this 50:50 Pt/Ru combination seems to 
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guarantee the best performances [182, 200-202]. The cathode reaction in the DMFC is the same as 

that for the hydrogen fuel cells with acid electrolyte, so the same catalyst is used. There is no 

advantage in using the more expensive Pt/Ru bimetal catalyst used on the anode [182, 200-202].  

 

 

Fig.1-22 DMFC for smartphone recharge supplied by Toshiba (2009) 

 

The research and development of novel proton exchange membranes (PEMs) is known to be one of 

the most challenging issues regarding the direct methanol fuel cell technology [203-205]. The PEM 

is usually designated as the heart of the DMFC, and should ideally combine high proton 

conductivity (electrolyte proper- ties) with low permeability toward DMFC species. Additionally, it 

should have a very high chemical and thermal stability in order to enable the DMFC operation at up 

to 150 °C. For this reason, a variety of PEMs have been developed by various researchers using 

different preparation methods [203-206].  

The different companies producing polymer electrolyte membranes have their specific patents. 

However, a common theme is the use a sulphonated fluoropolymers, usually fluoroethylene. The 

most well known and well established of these is Nafion (®Dupont), which has been developed 

through several variants since 1960s.  

 

1.15.5 Molten Carbonate Fuel Cell (MCFC)  

The electrolyte in the molten carbonate fuel cell uses a liquid solution of lithium, sodium, and/or 

potassium carbonates, soaked in a matrix. MCFCs have high fuel-to-electricity efficiencies ranging 

from 60 to 85 % with cogeneration, and operate at about 620–660 °C [207-209]. The high operating 

temperature is an advantage because it enables a higher efficiency and the flexibility to use more 
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types of fuels and inexpensive catalysts. This high operating temperature is needed to achieve 

sufficient conductivity of the electrolyte [182,207,208].  

Molten carbonate fuel cells can use hydrogen, carbon monoxide, natural gas, propane, landfill gas, 

marine diesel, and coal gasification products as the fuel. MCFCs producing 10 kW to 2 MW 

MCFCs have been tested with a variety of fuels and are primarily targeted to electric utility 

applications. MCFCs for stationary applications have been successfully demonstrated in several 

locations through-out the world.  

 

 

Fig.1-23 MCFC stack DFC 300 for stationary energy production (Supplier: Fuel Cell Energy) 

 

The reactions at the anode, cathode, and the overall reaction for the MCFC are  

 

Anode : H2(g) + CO3
2- → H2O(g) + CO2 (g) + 2e-      (1.53) 

 

Cathode : 1/2 O2 (g) + CO2(g) + 2e-→ CO3
2-      (1.54) 

 

Overall : H2(g) + 1/2 O2 (g) + CO2 (g) → H2O(g) + CO2(g)     (1.55) 

 

The high operative temperatures and the electrolyte chemistry can be responsible of some issues. 

The high temperature requires significant time to reach operating conditions and responds slowly to 

changing power demands. These characteristics make MCFCs more suitable for constant power 

applications. The carbonate electrolyte can also cause electrode corrosion problems [210,211]. 

Furthermore, since CO2 is consumed at the anode and transferred to the cathode, introduction of 



52 

CO2 and its control in air stream becomes an issue for achieving optimum performance that is not 

present in any other fuel cell [182].  

The history of Molten Carbonate Fuel Cell (MCFC) can be traced back to the late nineteenth 

century when W.W. Jacques had produced his carbon–air fuel cell, a device for producing 

“electricity from coal.” This device used an electrolyte of molten potassium hydroxide at 400–500 

°C in an iron pot [212]. Jacques suggested to replace molten alkali electrolytes with molten salts 

such as carbonates, silicates, and borates.  

By the 1930s Davtyan proposed a baked mixture of 43 % calcined Na2CO3, 27 % monazite sand (a 

mixture of rare earth oxides), 20 % WO3, and 10 % soda glass [213]. By treatment at 850 °C a 

mixture containing Na3PO4, Na2CO3, Na2WO4, Na2SiO3, and oxides of CeO2, La2O3, and ThO2 was 

obtained [213]. The mixture was constituted by a porous framework of high-melting rare earth 

oxides in which was constrained a eutectic mixture of molten carbonates, phosphates, tungstates, 

and silicates. The eutectice mixture provided the means of ionic conduction.  

The works of Broers and Ketelaar [213] established that molten carbonates as the preferred 

electrolyte for carbon containing fuels, since other molten salts tested were decomposed by steam 

produced at the anode of the fuel cell. Broers and Ketelaar [213] proposed a mixture of lithium, 

sodium, and/or potassium carbonates impregnated into a porous disk of magnesium oxide. Using 

carbonates there was no problem in replacing CO2 at the cathode, which was effectively transferred 

through the molten electrolyte to the anode.  

There was a general decline in interest in MCFCs during the 1970s but by the mid-1980s R&D the 

interest for MCFC has growth mainly in Japan and Europe [182, 213].  

In recent years, MCFC development has been focused mainly on large-scale stationary and marine 

applications, where the relatively large size and weight of the MCFC and slow start-up time are not 

a problem. Molten carbonate fuel cells are under development for use with a wide range of 

conventional and renewable fuels.  

The modern MCFC system has a high efficiency typically above 50 % and very low emissions. 

Since it operates at high temperature (about 650 °C) it can be used for cogeneration, combined heat 

and power, and distributed electricity generation. Most applications have so far been for stationary 

plants in hospitals, hotels, and resorts where the fuel is natural gas. The MCFC has been 

demonstrated to run on propane, coal gas, and anaerobic digester gas [3,182]. Plants have been 

published for integrated coal gasifier/MCFC systems.  
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1.15.5.1 Components of the Molten Carbonate Fuel Cells  

Materials  

The heart of the molten carbonate fuel cell (MCFC) is the electrolyte, which is an ion-conducting 

molten salt [3,182,200-213]. This is typically a mixture of two or three alkali metal lithium, 

potassium, or sodium carbonates. The mixture is solid at room temperature but about 400 °C and 

above it becomes molten and is able to conduct carbonate (CO3
2-) ions. The molten carbonate in an 

MCFC is constrained within a porous solid material named electrolyte matrix. An important feature 

of the electrolyte matrix is the chemical stability toward the molten salt that penetrates in the matrix 

framework and many efforts have been done in the last 20–30 years for the development of new 

materials [207,212]. Alumina can be used as an MCFC matrix since it can be obtained by simple 

coprecipitation from an aqueous solution of aluminum nitrate, and can be made into a thin sheet. 

The so obtained γ-alumina, changes phase to more stable α-form at high temperatures (1200 °C). 

For this reason, the long-term stability of the matrix could be an issue and has been investigated 

[101–105]. In particular lithium from the electrolyte will react over time with the alumina to form 

lithium aluminate (LiAlO2), which also exists in two interchangeable α and γ phases: above 700 °C, 

γ-LiAlO2 appears to be the more stable form, at 600–650 °C, the α form is more stable. The 

industry is directed to the use of α -LiAlO2 for long-term stability [182].  

The powdered matrix material is mixed with a binder to obtain sheets of 100–300 mm thickness. 

The carbonate electrolyte is also manufactured as similar thin sheets: cells are usually made by a 

sandwich of electrolyte and matrix sheets. The stacks are assembled by building up layers of cells 

inserting current collectors and separator plates between one cell and the next. Once the cell or 

stack is assembled and mechanically clamped together, it is slowly heated up to above the melting 

temperature of the electrolyte. Once the electrolyte melts, it penetrates into the pores of the matrix.  

Materials of anode and cathode of the MCFC are typically porous nickel and nickel oxide, 

respectively, in form of thin sheets [213].  

Electrolyte  

State-of-the-art MCFC electrolytes contain typically 60 wt % carbonate constrained in a matrix of 

40 wt % Li–AlO2. The α form of Li–AlO2 is the most stable in the MCFC electrolyte at low 

temperatures and is used in the form of fibres of o1 mm diameter. Other materials (e.g., larger size 

particles of Li–AlO2) may be added and many details are proprietary [3,182].  

The ohmic resistance of the MCFC electrolyte has an important and large effect on the operating 

voltage compared with most other fuel cells. Under typical MCFC operating conditions, it has been 

established that the electrolyte matrix contributes some 70 % of the ohmic losses. There is a direct 

relationship between the thickness of the electrolyte layer and the ionic conductivity. The thinner 
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the electrolyte, the lower the ohmic resistance, and electrolyte matrices 0.2–0.5 mm in thickness can 

give better performances. However thicker materials are more stable, so low resistance and long-

term stability must be optimized. For the MCFCs the typical power density at 650 °C is 0.16 

Wcm2[3,182].  

It has been found that for the carbonates, a eutectic mixture of lithium and potassium carbonates 

Li2CO3-K2CO3 (62:38 mol %) is good for atmospheric pressure operation, whereas the lithium and 

sodium carbonate mixture Li2CO3-Na2CO3 (60:40 mol %) is better for improved cathode stability 

when the cell is operated at elevated pressure [3,182,214-216].  

An important difference between MCFC and other fuel cells is the conditioning of the electrolyte 

that is carried out once the stack is assembled. Layers of electrodes, electrolyte and matrix, and the 

various nonporous components are assembled together, and the stack is heated slowly. As the 

carbonate reaches its melt temperature (over 450 °C), it is absorbed into the ceramic matrix. This 

process can lead to some shrinkage of the components, and it is needed to pay attention to the 

mechanical design of the stack. An MCFC stack typically takes 14 h or more to reach the operating 

temperature. Another important aspect is that every time the MCFC stack is heated and cooled 

through the electrolyte melt temperature, stresses are set up, which can lead to cracking of the 

electrolyte matrix and permanent cell damage caused by fuel crossover. Thermal cycling of MCFC 

stacks is therefore best avoided and MCFC systems are ideally suited to applications that need a 

continuous power supply.  

Anode  

Because the anode reaction is relatively fast at MCFC temperatures, a high sur- face area anode 

catalyst is not required [3,182, 217-220]. State-of-the-art anodes are made of a sintered Ni–Cr/Ni–

Al alloy with a thickness of 0.4–0.8 mm and porosity of 55–75 %. Fabrication is carried out usually 

by tape casting a slurry of the powdered material, which is subsequently sintered. Chromium is 

added to the basic nickel component to reduce the nickel sintering that could give rise to a decay in 

the MCFC, performances. However, chromium can react with lithium of the electrolyte causing 

some loss of electrolyte. Addition of aluminum can improve both creep resistance in the anode and 

electrolyte loss due to the formation of LiAlO2 within the nickel particles. Ni–Cr/Ni–Al alloy are 

well established materials for the anodes, however nowadays the research is addressed to obtain 

new and less expensive materials. Moreover, many efforts are addressed toward sulphur resistance 

materials such as LiFeO2.  

Cathode  

One of the major problems with the MCFC is that the state-of-the-art nickel oxide cathode material 

shows a weak, but significant, solubility in molten carbonates [3,182]. Through dissolution, some 
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Ni2+ ions are formed in the electrolyte and diffuse toward the anode, leading to precipitation of 

metallic nickel dendrites. This precipitation can cause internal short circuits with subsequent loss of 

power. It has been reported [3,182] that solubility is reduced if the more basic, carbonates are used 

in the electrolyte. The addition of some alkaline earth oxides (CaO, SrO, and BaO) to the electrolyte 

has also been found to be beneficial [182].  

With state-of-the-art nickel oxide cathodes, nickel dissolution can be minimized by (1) using a basic 

carbonate, (2) operating at atmospheric pressure and keeping the CO2 partial pressure in the cathode 

compartment low, and (3) using a relatively thick electrolyte matrix to increase the Ni2+ diffusion 

path. By these means, cell lifetimes of 40,000 h have been demonstrated under atmospheric 

pressure conditions. For operation at higher pressure, alternative cathode materials such as LiCoO2 

have been investigated. This has a dissolution rate in molten carbonate an order of magnitude lower 

than that of NiO at atmospheric pressure. Dissolution of LiCoO2 also shows a lower dependency on 

the partial pressure of CO2 than NiO. 

 

1.15.5.2 Cell Configuration  

MCFC can have different configurations depending on the flows of fuel and oxidant streams. Fuel 

and oxidant that flow on opposite sides of each cell can be flowing in the same direction from inlet 

to outlet (coflow), in opposite directions (counterflow), or at 90° to each other (crossflow) 

[3,182,221-225].  

If the gases supplied to the cells are connected manifold externally to the stack, then the crossflow 

configuration is the only option and gas inlets and outlets for the fuel and oxidant can be located on 

the four sides of the stack. Figure 1.24 shows the cross-flow configuration adopted by CFC 

Solutions.  

Cross-flow has many advantages: it allows a homogeneous reactant distribution to the cell, a 

uniform fuel utilization over the cell, a low pressure drops through the gas channels. Moreover, 

simple and less expensive separator plates than other configurations can be employed.  

However, the significant disadvantages of large temperature profiles across the face of the 

electrodes and gas leakage and migration (ion pumping) of the electrolyte must be taken into 

account [224,225].  

If internal manifolding is applied, then co-flow or counterflow can be configured [182,224,225]. 

With co-flow, the concentrations of reactants on both sides of the cells are highest at the inlet and 

decrease toward the outlet. Concentrations of products increase toward each outlet. Co-flow 

produces a larger temperature gradient across the cell than counterflow, especially when internal 
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reforming is applied. With internal reforming, counterflow is normally the best option and results in 

the best distribution of current density and temperature throughout the cell.  

 

 

Fig. 1-25 Configuration of MCFC [13] 

 

The operating temperature of the MCFC of around 650 °C provides ideal opportunities from a 

system design perspective. At these temperatures with a suitable catalyst, internal reforming can be 

carried out. Most available fuels, such as natural gas, liquefied petroleum gas, and biogas, need to 

be reformed to a hydrogen-rich gas for the fuel cell. This can be done external to the cell or stack 

but by carrying out the endothermic reforming reactions inside the MCFC (internal reforming), 

advantage is taken of the reaction to provide cell or stack cooling [3,182].  

 

1.15.5.3 Steam Reforming  

Methane reforming Eq. (1.56) is the simplest example of steam reforming (SR). This reaction is 

endothermic at MCFC temperatures and over an active solid catalyst the product of the reaction in a 

conventional reforming reactor is dictated by the equilibrium of Eq. (1.56) and the water gas shift 

(WGS) reaction Eq. (1.57). This means that the product gas from a reformer depends only by the 

inlet steam/methane ratio (or more generally steam/carbon ratio) and the reaction temperature and 

pressure. Similar reaction can be written for other hydrocarbons such as natural gas, naphtha, 

purified gasoline, and diesel. In the case of reforming oxygenates such as ethanol [226,227], the 

situation is in some way more complex, as other side reactions can occur. With simple 

hydrocarbons, like as methane, the formation of carbon by pyrolysis of the hydrocarbon or 

decomposition of carbon monoxide via the Boudouard reaction Eq. (1.58) is the only unwanted 

product.  
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CH4 + H2O = CO + 3H2          (1.56) 

 

CO+H2O = H2 +CO2           (1.57)  

 

2CO = C + CO2           (1.58) 

 

In the MCFC carbon formation can be avoided by carrying out some degree of pre-reforming 

externally to the fuel cell stack. Pre-reforming consists of vaporizing the fuel and passing this with 

steam over a suitable catalyst. It converts high-molecular-weight hydrocarbons to methane, thereby 

reducing the risk that they pyrolyze or decompose to carbon in the MCFC stack [3,182]. Moreover, 

in this way some hydrogen is present at the inlet of the fuel cell. If excess steam is used carbon 

monoxide decomposition is avoided due the Boudouard equilibrium. A hydrocarbon fuel such as 

diesel may be represented by the empirical formula CH2 and pre-reforming of this fuel may be 

represented as  

 

3CH2 + 2H2O → 2CH4 + CO2 + H2 (prereforming)       (1.59)  

 

Pre-reforming is usually carried out at modest temperatures (i.e., 320 °C) over a supported nickel 

catalyst in an adiabatic reactor [182].  

Any fuel, including gases produced by the gasification of coal, wood waste, or other organic waste 

or biogas from digesters, that is fed to either the anode compartment directly or to an external 

reformer or pre-reformer must contain low sulphur to avoid poisoning of the reforming or pre-

reforming catalyst [3,182].  

 

1.15.5.4 MCFC Internal Reforming and Steam Reforming Catalyst  

One of the advantages of the MCFC over low-temperature fuel cells is the ability to internally 

convert fuels such as methane or natural gas directly into hydrogen via internal steam reforming 

[3,182]. The reforming reaction is endothermic, therefore by cooling the stack can reduce the heat 

that is removed out of the stack in the cathode exhaust stream. So the flow of air to the cathode 

(which normally provides the cooling for the stack) can be reduced. In this way the CO2 partial 

pressure through the cathode compartment is raised, leading to a higher cell voltage, moreover it 

reduces the parasitic electrical load on the system related the cathode air compressor. For these 
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reasons an internal reforming MCFC system has a higher efficiency than an external reforming 

system.  

There are two approaches to internal reforming. Indirect internal reforming (IIR): the reforming 

reaction takes place in channels or compartments within the stack that are adjacent to the anode 

compartments, the heat generated in the cell is transferred to the reforming channels, and the 

product from the reforming is fed to the anode channels.  

In direct internal reforming (DIR) the reforming reaction is carried out on the fuel cell anode itself 

(or as close to it as possible); in this way hydrogen produced by reforming is immediately 

consumed by the electrochemical cell reaction allowing to shift the equilibrium of the reforming 

and WGS reactions to the right as product is consumed by the electrochemical reaction [3,182]. The 

DIR approach is best carried out at low pressures with catalyst inside the anode compartment close 

to the anode of the cell.  

In the IIR configuration, commercial reforming catalyst (e.g., nickel/alumina) exhibits little 

deactivation because the cell temperature is generally much lower than in a conventional reforming 

plant (usually above 800 °C) [3,182]. The stability of a DIR catalyst, however, is strongly affected 

by the anode environment. Conventional catalysts decay usually via two mechanisms-sintering of 

the metal particles or support leading to a loss of catalytic surface area, or poisoning of catalyst 

active sites by sulphur [3,182].  

Carbonate retention has been the biggest issue for MCFC developers. There are two mechanisms 

for loss of carbonate from the cells, namely, creepage and loss by vapor phase transport [3,182].  

Steam reforming of ethanol has been demonstrated in the MCFC and proceeds rather differently to 

the reforming of hydrocarbons [3,182]. Rinaldi et al. [222] studied ethanol reforming over 

supported metal catalyst (nickel on doped magnesium oxide). They concluded that acetaldehyde is 

the main unwanted product. Further catalyst optimization may improve the selectivity in the MCFC.  

Some tests have been carried out recently with catalysts of titanium dioxide promoted with 

lanthanum or samarium oxides [182]. 

 

1.15.6 Solid Oxide Fuel Cell (SOFC)  

The SOFC is a complete solid-state device that uses an oxide ion-conducting ceramic material as 

the electrolyte. The electrolyte is a nonporous solid, such as Y2O3 stabilized ZrO2 with 

conductivity-based oxygen ions [3,182,223,224]. Yttria-stabilized zirconia (YSZ) is the most 

commonly used material for the electrolyte. It was first used as a fuel cell electrolyte by Baur and 

Preis in 1937 [145]. The anode is usually made of a Co-ZrO2 or Ni-ZrO2 cement [3,182], while the 

cathode is made of Sr-doped LaMnO3 (LSM) [228-230].  
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The anode, cathode, and overall cell reactions are  

 

Anode : H2(g) + O2− → H2O(g) + 2e−       (1.60) 

 

Cathode : 1/2 O2(g) + 2e− → O2−        (1.61)  

 

Overall : H2 (g) + 1/2O2 (g) → H2O(g)        (1.62) 

 

SOFCs efficiency is lower than MCMF although the operating temperature (850-1000 °C) is higher. 

The high operating temperatures imply that precious metal electro catalysts are not needed, hence 

reducing the cost of cell components; it is also possible to use carbon-based fuels directly, removing 

the need for external reformers, further reducing the cost [3,182]. The high operating temperature of 

SOFC enables relatively inexpensive electrode materials to be used. Moreover, SOFC has high 

tolerance to impurities due to the catalytic properties of the nickel anode catalyst unlike PEMFC. 

The conductivity of the fuel cell materials increases with temperature [231,232]. The dominant 

losses in SOFCs is mainly due to the ohmic resistance losses, thus increasing the temperature 

enhances the SOFC efficiency. Noticeable interest to develop electrolytes that are able to operate at 

lower temperatures is ongoing for several reasons: lowering the operating temperature would reduce 

the costs and improve cell lifetime [232].  

 

 

Fig. 1-26 SOFC stack developed by General Electric 

 

The main configurations of SOFC are tubular, bipolar, and a planar, this last being developed more 

recently [3,182]. SOFCs can operate at a high enough temperature to incorporate an internal fuel 



60 

reformer that uses heat from the fuel cell. The recycled steam and a catalyst can convert the natural 

gas directly into a hydrogen-rich fuel. The waste heat allows the development of cogenerative 

processes enhancing energy efficiency to very attractive levels.  

Power-generating efficiencies could reach 60 to 85 % with cogeneration [3,182]. Tubular SOFC 

technology has produced as much as 220 kW [233,234]. Japan has two 25-kW units online, and a 

100 kW plant is being tested in Europe [3,149,182]. SOFCs coupled with small gas turbines are 

high-efficiency systems that have a combined rating in the range of 250 kW to 25 MW, and are 

expected to fit into grid support or industrial onsite generation markets [3,149,182].  

 

1.15.6.1 Components of the Solid Oxide Fuel Cells  

Electrolyte  

In an SOFC the electrolyte is exposed to both oxidizing (air side) and reducing species (fuel side) at 

high temperatures. Several properties of the SOFC electrolyte are required: (1) Sufficient ionic 

conductivity (the electronic conductivity of the electrolyte must be sufficiently low in order to 

provide a high energy conversion efficiency); also the oxide ion conductivity must be high to 

minimize the ohmic loss. (2) Dense structure, in order to produce maximum electrochemical 

performance. (3) Stability since the electrolyte is exposed to the air and the fuel at elevated 

temperatures. This requires that the thermal expansion coefficients must match at the interfaces.  

Typical electrolyte materials for SOFCs are oxides with low valence element substitutions, 

sometimes named acceptor dopants [3,182] which create oxygen vacancies through charge 

compensation. For SOFC applications, there are various materials that have been explored as 

electrolyte, yttria-doped zirconia (YSZ) and gadolinium-doped ceria (GDC) are the most common 

materials used for the oxide-conducting electrolyte. Above 800 °C, YSZ becomes a conductor of 

oxygen ions (O2-); zirconia-based SOFC operates between 800 and 1100 °C. The ionic conductivity 

of YSZ is 0.02 S m-1 at 800 °C and 0.1 S cm-1 at 1000 °C. A thin electrolyte (25–50 μm) ensures 

that the contribution of electrolyte to the ohmic loss in the SOFC is kept to a minimum.  

Zirconium oxide-based electrolyte (YSZ)  

Yttria-doped zirconia (YSZ) is stable under reducing and oxidizing conditions. It is a pure ionic 

conductor, completely nonreactive with anode and cathode at operating and production 

temperatures. Above 800 °C, YSZ becomes a conductor of oxygen ions (O2-) and typically operates 

at 800–1100 °C. The ionic conductivity of YSZ is 0.02 S m-1 at 800 °C and 0.1 S cm-1 at 1000 °C. 

A thin electrolyte (25-50 μm) ensures that the contribution of electrolyte to the ohmic loss in the 

SOFC is kept to a minimum. Its thermal expansion has to be close to other fuel cell components and 
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it must be gas tight to prevent direct combination of fuel and oxidant. Pure zirconia is not used, as 

its ionic conductivity is too low for fuel cell use [235].  

Cerium oxide-based electrolyte  

Doped cerium dioxide materials are candidates for the electrolyte for cell operation at T ≤ 600 °C, 

because of their higher oxide ion conductivity (Ce0.9Gd - 0.1 O-1.95: 0.025 O−1 cm−1 at 600 °C) 

compared to YSZ (<0.005 Ω−1 cm−1). Gadolinium- or samarium-doped cerium dioxide provides the 

highest ionic conductivity in cerium dioxide-based materials owing to similar ionic radii of Gd3+/ 

Sm3+ and Ce4+. The main issue of doped cerium dioxide is the onset of electronic conduction in 

reducing conditions at T ≥ 650 °C owing to the reduction of Ce4+ to Ce3+ to compensate the 

formation of oxygen vacancies [3,182].  

Perovskite electrolytes  

The perovskite structure (ABO3) offers an opportunity for a material scientist to selectively 

substitute either the A or the B ion by introducing isovalent or aliovalent cations. The compound 

(La, Sr)(Mg, Ga)O3 (LSMG) has been developed as an oxide ion conductor. The use of LSMG is 

attractive because it has reasonable oxide ion conductivity and is compatible with a variety of 

cathodes, in particular the highly active ones. Other interesting materials, such as Bi4V2O11 

(BIMEVOX (bismuth metal vanadium oxide)), have also been mentioned in the literature.  

Cathode  

The cathode electrode operates in an oxidizing environment of air at 1000 °C. The cathode 

electrode is a porous structure that allows mass transport of reactants and products.  

Materials suitable for an SOFC cathode have to satisfy the following requirements: high electronic 

conductivity; stability in oxidizing atmospheres at high temperature; thermal expansion match with 

other cell components; compatibility and minimum reactivity with different cell components; 

sufficient porosity to allow transport of the fuel gas to the electrolyte/electrode interface [3,182].  

LSM, (La0.84Sr0.16) MnO3, a p-type semiconductor, is most commonly used for the cathode material. 

Although adequate for most SOFCs, other materials may be used, particularly attractive being p-

type conducting perovskite structures that exhibit mixed ionic and electronic conductivity [182]. 

The advantages of using mixed conducting oxides become apparent in cells operating at around 650 

°C. As well as the perovskites, lanthanum strontium ferrite, lanthanum strontium cobalite, are 

proposed in literature [3,182].  

LaMnO3 can react with the YSZ electrolyte at high temperature producing insulating phases of 

lanthanum zirconate [182].  
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Anode  

The key requirements for the anode are high conductivity, stability in reducing atmospheres, and 

sufficient porosity to allow good mass transport. The most common anode for SOFCs is the Ni/YSZ 

cermet. Ni is chosen among other components because of its high electronic conductivity and 

stability under reducing conditions. Moreover, Ni activates both direct oxidation and steam 

reforming. The use of YSZ has multiple purposes: to inhibit sintering of the nickel [3,182,235], to 

guarantee thermal expansion coefficient (TEC) comparable with other fuel cell components (mainly 

the electrolyte), and to increase the triple phase boundary (TPB) [236,237]. The anode porosity (20–

40 %) ensures good mass transport and improves the triple boundary by allowing O2− ion 

movement within the anode electrode [13, 160]. A small amount of ceria is added to the anode 

cermet to improve ohmic polarization loss at the interface between the anode and the electrolyte. 

This also improves the tolerance of the anodes to temperature cycling and redox changes within the 

anode gas [182,235].  

The TPB is a key area and it is important to increase this surface area since in this point the oxygen 

ions and the hydrogen gas are brought together to react at the surface of the nickel site [3,182,235-

237].  

 

1.15.6.2 Fuel Reforming  

The high operational temperature of SOFCs has two benefits: high efficiency and fuel flexibility. 

The high operating temperature allows the production of high-quality off-gases, which can be used 

for cogeneration processes [3,182], or to heat the reformer for endothermic steam reforming 

reactions, or even to fire a secondary gas turbine. Therefore, SOFCs have a high electrical 

efficiency, higher than other fuel cells [182]. Moreover, a variety of fuels can be reformed within 

the cell stack (internal reforming) or through a separate fuel reformer (external reforming). This 

flexibility allows use of fuels such as biogas [3], liquid hydrocarbon fuels, and landfill gas. These 

fuels can be reformed to a mixture of hydrogen and carbon monoxide.  

In the internal reforming arrangement, two configurations are employed: the direct internal 

reforming (DIR), and indirect internal reforming (IIR).  

In the DIR the fuel reforming occurs directly on the fuel cell anode where the fuel is converted into 

a hydrogen-rich mixture directly inside the anode compartment: electrochemical reaction and fuel 

reforming reactions simultaneously take place at the anode. This is a simple and very efficient 

design and involves low capital costs. However, some issue must be taken into account: the anode 

compartment must be equipped with a proper catalyst for the steam reforming; carbon deposition is 
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favored due to the larger content of fuel at the anode side; temperature distribution should not be 

homogeneous due to cooling caused by the endothermic reaction [3,182].  

The problems of DIR can be in some way overcame by the indirect internal reforming (IIR) 

configuration. IIR uses a separate fuel reforming catalyst that is integrated within the SOFC stack 

upstream of the anode side, and typically utilizes heat and water from the SOFC stack. Therefore, in 

this case only a thermal coupling between the reformer and the SOFC stack exists. Obviously, the 

IIR configuration results in a higher system complexity and in higher capital costs [3,182].  

IIR should not be as efficient as DIR, however t it allows a more stable cell performance. Since the 

external reformer is physically separated from the fuel cell stack it can be operated at different 

pressures and temperatures if necessary. This is of particular importance because in this way it is 

possible to eliminate the problem of carbon deposition via fuel decomposition that deactivates the 

anode [3,182].  

 

1.15.6.3 Solid Oxide Fuel Cell Configurations  

The most common SOFC designs are planar and tubular, and their many variants. In the planar 

SOFC, cell components are thin and flat plates electrically connected in series. A generic schematic 

of a planar SOFC design is shown in Figure 1.27 [238]. The planar cells can be electrolyte 

supported, electrode supported, or metal supported. For instance, the cell may be in the form of a 

circular disk fed with fuel from the central axis, or it may be in the form of a square plate fed from 

the edges. Planar designs offer several potential advantages, including simpler and less expensive 

manufacturing processes and higher power densities, than tubular cells.  

 

 

Fig. 1-27 Planar SOFC design 
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However, planar designs need high-temperature gas-tight seals between the components in the 

SOFC stack; but these still remain a challenging area for the successful commercialization of planar 

SOFCs [239,240]. The electrochemical performance is highly dependent on cell materials, electrode 

microstructures, and cell geometric parameters. The cell was optimized with an anode of thickness 

0.5 mm and porosity ~57 %. The anode interlayer was ~20 mm. The electrolyte was ~8 mm and 

cathode interlayer ~20 mm.  

The flow rates of humidified hydrogen and air were 300 and 550 mL min-1, respectively. The 

maximum power density obtained is about 1.8 Wcm2 at 800 °C [3,182]. In the tubular SOFC 

design, components are flat tubes and joined together to give higher power density and easily 

printable surfaces for depositing the electrode layers. It may be of a large diameter (>15 mm), or a 

microtubular cells with a smaller diameter (<5 mm) [3,182]. Figure 1.28 illustrates a tubular SOFC 

in which the oxidant (air or oxygen) is introduced through an alumina injector tube positioned 

inside the cell. The oxidant is discharged near the closed end of the cell and flows through the 

annular space formed by the cell and the coaxial injector tube. The fuel flows on the outside of the 

cell from the closed end and is electrochemically oxidized while flowing to the open end of the cell 

generating electricity. Part of the fuel is recirculated in the fuel stream and the rest combusted to 

preheat the incoming air and/or fuel. The exhaust gas from the fuel cell is at 600–900 °C depending 

on the operating conditions. The single biggest advantage of tubular cells over planar cells is that 

they do not require any high-temperature seals to isolate the oxidant from the fuel, and this leads to 

very stable performance of tubular cell stacks over long periods of time (several years). However, 

their areal power density is much lower (about 0.2 Wcm-2) compared to planar cells, and 

manufacturing costs are high [241-243].  

A single planar or tubular SOFC generally produces a low voltage and power and the connection 

into a stack is needed in order to give higher power. Electrochemical performance, structural and 

mechanical integrity gas manifold and ease of fabrication are important targets for the 

improvements of cell performances [3,182]. 
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Fig.1-28 Tubular SOFC design 
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Chapter 2: Biohydrogen Production Processes 

2.1 Introduction 

In chapter 1 has been discussed as the world energy consumption is steadily rising with 

industrialization processes and population growth from 1900 [1]. Nowadays, fossil fuels are the 

predominant energy sources, approximately 80% of greenhouse gas emissions (GHG) originate 

from energy production and numerous action (COP 21-22, see par 1.2 and 1.3) have been adopted 

by worldwide countries to overcome global worming effect [2]. 

The environmental problems together with the increasing demand for energy and the forecasted 

depletion of fossil fuels has stimulated exploration for alternative sources and high efficient energy 

technologies [1]. In this perspective, renewable energy sources and fuel cells can help mitigate 

climate change and reduce dependence on fossil fuels [3]. 

Among renewable energy sources biomass are assuming growing interest and are considered highly 

promising alternatives to fossil-derived energy due to several inherent and significant merits [4, 5]. 

Biomethane production is a well consolidated process and some plants are nowadays in operation 

operating in many countries [1,6] that could be integrated to traditional endothermic devices [1,6] or 

FCs [1,6] for energy production. Biomethane is generally produced by anaerobic digestion of 

simple and complex biodegradable feedstocks, such as sewage sludge, manure, organic fraction of 

municipal solid waste, etc., into biogas (see par. 1.5.1).  

Compared to other biofuels, biomethane has been shown to have a far better performance with 

regard to both agricultural land area efficiency and life cycle emissions [7] and has been used for 

energy production mainly by endothermal cycles engines.  

A new challenge in biofuels research is the biohydrogen production. In comparison to biomethane 

nowadays biohydrogen appears more attractive principally because can be used in fuel cells to 

produce electricity [8-12]. H2 has high energy capacity, with the largest amount of energy per mass 

unit than methane (H2: 121.000 kJ/kg, CH4: 5020 kJ/kg). The main advantages to the use of 

hydrogen as a biofuel are the absence of CO2 emission, its high energy content, and its combustion 

kinetics [7, 13,14]. 

An energetic economy fully based on biohydrogen/hydrogen appears still to be developed, but 

several countries are gearing to create the appropriate infrastructures. Approximately 1,500 miles of 

hydrogen pipelines are currently operating in the United States [1,2] while in Europe, Netherlands, 

Germany, Denmark, France and United Kingdom have been developed about 1000 km of pipelines 

for hydrogen transportation. [15-18]  

In total, about 25,000 km of early highways will be required to connect the European user centers 

and enhance the distribution of hydrogen and vehicles based on FCs technology. In the next 10-15 
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years (2025-2030) the European Union has planned the large-scale deployment of hydrogen 

distribution stations that promote the widespread dissemination of a technology based on hydrogen  

[15-18]. 

 

 

Fig. 2-1 Hydrogen stations in Germany and Denmark 

 

2.2 Hydrogen from Renewable Sources 

Biohydrogen can be produce from thermochemical or biological processes but differently from 

biomethane, biohydrogen production processes appears still a challenge that engages many 

researchers [19]. However, numerous benefits can be envisaged by the development of energy 

technologies based on biohydrogen (see par. 2.1).  

 

 

Fig. 2-2 Pathways of biomass based hydrogen production  
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In following paragraphs will be summarized the thermochemical and biological processes for 

biohydrogen production that represent the two main categories for hydrogen production from 

biomass. 

Figure 2-2 depicts the major pathways of biomass based hydrogen production [19]. Hydrogen can 

be produced from biomass feedstock via gasification (steam gasification, supercritical water 

gasification (SCWG)), steam reforming of bio-oils and pyrolysis as thermochemical conversion 

processes. Dark fermentation and hybrid reactor system are the most well known biological 

hydrogen production processes altrought other technologies have been proposed such as photo-

fermentation, biophotolysis of water using green algae and blue–green algae (cyanobacteria). 

 

2.2.1 Biohydrogen Production by Termochemical Processes  

2.2.1.1 Hydrogen from biomass pyrolysis  

Biomass pyrolysis is a route of gaseous, liquid (tar and other organics) and solid (char) production 

for generation of alternate sources of energy [20]. The required temperature range for pyrolysis in 

the absence of air is 273-500 °C at 0.1–0.5 MP [21]. With respect to the operating condition, the 

pyrolysis process is divided into fast pyrolysis and conventional (slow) pyrolysis. Low temperature 

tar and high temperature gas is generated in biomass fast pyrolysis, while slow pyrolysis is 

associated with high charcoal continent [22]. Fast or flash pyrolysis in high temperatures and very 

short residence times is preferred for hydrogen production [23]. Slow pyrolysis is normally not 

taken into consideration for hydrogen production because the major product of this process is 

charcoal. In the fast pyrolysis process, the biomass feedstock is heated quickly in the absence of air 

(Eq. 2.1) to form vapor and condense to a dark brown mobile bio-liquid. The products of fast 

pyrolysis include gaseous products (CH4, H2, CO, CO2 and other gases based on the organic nature 

of the biomass feedstock), liquid products (tar and oils such as acetic acid and acetone, which are 

liquid at room temperature), and solid products (composed of char and pure carbon plus other inert 

materials). Although pyrolysis processes are applied for biofuel production, biomass-based 

hydrogen can be generated directly through fast pyrolysis in high temperature circumstance and 

sufficient volatile phase residence time, according to Eq. (2.1) 

 

Biomass + Heat → CH4 + CO + H2 + Other products     (2.1) 

 

The typical composition of biogas obtained is N2 40- 50%, H2 = 15- 20%, CO = 10- 15%, CO2 10- 

15%, CH4 = 3- 5%. In order to increase the yield of hydrogen from fast pyrolysis mechanism, steam 

reforming of methane and other produced hydrocarbon vapors can be also performed followed by 
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water-gas shift reaction to enhance the rate of hydrogen production. Based on water solubility, the 

oily by-products of pyrolysis are separated into two fractions. The water-soluble by-products are 

applied for hydrogen production while the water-insoluble are used for adhesive production. Type 

of catalyst, temperature, heating rate and residence time are the most important parameters which 

control hydrogen yield from pyrolysis biomass process. The adjusting of these parameters is 

implemented by the selection of reactor types and heat transfer modes, such as solid–solid 

conductive heat transfers and gas–solid convective heat transfer [24]. In pyrolysis biomass 

hydrogen production, high temperature, high heating rate and long volatile phase residence time are 

crucial [25]. The yield of hydrogen from pyrolysis of biomass is augmented significantly when Ni-

based catalyst is employed.  

Due to difficulties of tar gasification, the influences of inexpensive catalytic dolomite and CaO [26] 

and some other catalysts such as Y-type zeolite [27], Ni-based catalysts [28], K2CO3, Na2CO3 and 

CaCO3 [19,28], on the breakup of hydrocarbon composition in tar were experimented. Furthermore, 

it was found that different oxides (Cr2O3 [19,28] and Al2O3, SiO2, ZrO2, TiO2 [1,19,28]) have 

excellent potential to decompose tar's hydrocarbon. Hydrogen production from pyrolysis of various 

biomass feedstock such as peanut shell [19-28], post-consumer wastes like plastics, trap grease, 

mixed biomass and synthetic polymers [21-29] rapeseed [21-29] and agricultural residue [21-29] 

was experimented by different researchers. 

 

2.2.1.2 Biomass gasification  

Biomass gasification is a thermal process that generates high gaseous products and small quantities 

of char. Generally gasification consists of combustion and pyrolysis processes to generate heat for 

the endothermic pyrolysis reactions. To enhance the rate of gas production, gasification is usually 

performed at high temperatures. A combination of hydrogen, methane, carbon monoxide, nitrogen 

and carbon dioxide is produced at the end of gasification process. In the biomass gasification 

systems, air or oxygen is employed in combustion or partial oxidation processes. Thermal 

decomposition of solid biomass takes place at temperatures around 600-1000 °C in which gas-phase 

products such as CH4, CO2, H2, H2O, CO and other gaseous hydrocarbons (CHs) are formed 

[19,29]. The combination of final produced gases in the gasification process is influenced by the 

composition of biomass feedstock, the gasifying agent and the gasification process. Equation 2.2 

shows the biomass gasification process [19,29]: 

 

Biomass + O2 (or H2O) → H2O, CO, CO2, CH4, H2 + Other CHs + char + tar + ash (2.2) 
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The first step of the biomass gasification is the thermochemical decomposition of the cellulose, 

hemicelluloses and lignin compounds with production of volatiles and char [19,29]. Furtherly the 

char gasification and some other equilibrium reactions take place. 

Biomass gasification is a form of pyrolysis implemented in higher temperatures resulting in a 

mixture of gases with hydrogen content ranging from 6–6.5% [19-29]. Biomass gasification has 

been known as a possible process for renewable hydrogen production, which is beneficial to 

develop environmentally friendly as well as highly efficient process for large-scale hydrogen 

production. Despite this high capacity, all process equipment required for biomass-based hydrogen 

production has been well established commercially, except gasifier equipment [19-29]. 

 

2.2.2 Biohydrogen Production by Biological Processes 

2.2.2.1 Biophotolysis 

The biological production of hydrogen (biohydrogen) is the microbiological conversion of organic 

substrates in H2 using metabolic enzymes such as hydrogenase (Hasi) and nitrogenase (Nasi). The 

biological production of H2 can be photobiological, using algae, photosynthetic bacteria or 

cyanobacteria, or it can take place by fermentation in the absence of light (Dark Fermentation), 

using heterotrophic bacteria [19,29]. 

Algae and cyanobacteria, known as blue-green algae are microscopic organisms that float in the 

water and performing the same type of plant photosynthesis, in which water is separated from the 

sunlight into O2 and a strong reducing agent, usually ferredoxin, normally used to reduce CO2 

carbohydrate. However, under certain conditions, some microalgae produce H2 following the 

complete dissociation of the water, a process said biophotolysis (Fig. 2-3).  

 

 

Fig. 2-3 Photo-fermentation process 
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Direct Biophotolysis  

If ferredoxin, produced by photosynthesis during the water splitting, is used to directly reduce 

manufacturers enzymes of H2, hydrogenase or nitrogenase, without the intermediate CO2 fixation, 

the process is called direct biophotolysis. In theory, the direct biophotolysis is a very attractive 

process, but in practice is severely limited, among other factors, by the strong inhibition operated by 

O2 that simultaneously develops. One method to overcome this limitation is to remove the O2 

product, for example by means of a breathing process using endogenous or exogenous substrates 

[19,29]. 

Indirect Biophotolysis  

The H2 can be also obtained from carbohydrates produced by microalgae during normal 

photosynthesis, a process called indirect biophotolysis. A mechanism for indirect biophotolysis is 

based on heterocystous cyanobacteria, filamentous species which exclude O2, and reduce the 

nitrogen with the enzyme nitrogenase and subsequently produce H2, coming to a complete water 

splitting. However, the Nasi is not an efficient enzyme and thus for practical purposes it would be 

necessary to replace it with hydrogenases. Another approach to the indirect biophotolysis consists in 

carrying out two reactions, sequentially and in separate stages: the first one is the production of O2 

(with CO2 fixation) and then H2 production (with CO2 liberation). The second stage may be 

activated by light or conducted in the absence of light. 

The photosynthetic bacteria, by using the light energy, are able to convert the organic acids and 

other organic substrates in H2 and CO2, in the course of a photo-fermentation mediated by 

nitrogenase. On the contrary, the bacteria which carry out fermentation in the absence of light, the 

Dark Fermentation (DF), transform sugars, starches and other carbohydrates and easily fermentable 

organic substrates into H2 and CO2, together with organic acids, alcohols and other by-products 

[19,29,30] (Fig. 2-4). 

DF offers several advantages over other thermochemical and biochemical processes. Since the 

process does not depend on a light source, it is not affected by weather condition nor is land and 

cost demanding, there is no O2 limitation [19,29-36], residues or wastes can be used making H2 

production advantageous either in economic and environmental aspects [29-36], produces valuable 

metabolites such as butyric, lactic and acetic acids as by products [19,29-36]. Moreover, 

biohydrogen production should contribute to the biorefinery concept since the wastes generated 

from biofuel production such as crude glycerol [19,29-36], deoiled algal cake [19,29-36] or cotton 

seed cake [19,29-36] can be utilized as a substrate. 
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Fig. 2-4 Dark fermentation process 

 

Most of studies on DF are addressed on investigating the role of hydrogen to the thermodynamic 

conversion of volatile fatty acids (VFAs) for the production of methane only [1,19,29]. The 

research for anaerobic bio-hydrogen production appears still lacking and reserves further efforts. 

 

2.3 Dark Fermentation 

The research applied in the field of biological production of H2, at least until recently, it was 

concentrated mainly to the photo-biological process, forgetting almost completely the fermentation 

process in the absence of light. This is probably due in part to historical reasons: the first conference 

on this topic was directed by photosynthesis experts, determining the direction of this research 

[19,29,37]. The other reason has been the recognition that the anaerobic fermentations to H2, in the 

absence of light, have a rather poor yield. Thauer et al. [37] pointed out that the conversion of 

glucose to H2 by anaerobic bacteria theoretically could produce up to four moles of H2 (Eq. 2.3), 

compared to the 12 theoretically possible moles (Eq. 2.4).  

This value is called “Thauer’s limit” [37]:  

 

C6H12O6 + 4H2O → 2CO2 + 2CH3COOH + 4 H2      (2.3) 

 

C6H12O6 + 6H2O → 6CO2 + 12 H2        (2.4) 

 

Thauer’s limit is due to the thermodynamic of process: a yields of 4 moles of H2 and 2 moles of 

acetic acid per mole of glucose provides the higher variation of Gibbs’ free energy (215 kJ/mole at 
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25 °C and 1 bar of H2) [37]. This energy can be used form bacteria to produce 4 moles of ATP per 

mole of glucose and so used for anabolic metabolism [37].  

The production of a stoichiometric quantity of 12 moles of hydrogen (Eq. (2.4)) is not 

thermodynamically favored and practically in DF process only the Eq. (2.3) occurs. In addition, 

Thauer et al. [37] showed that the yield in real DF process is about 2 moles of hydrogen per mole of 

glucose. 

 

2.3.1 Dark Fermentation: Operating Conditions 

The production of hydrogen by Dark Fermentation is strongly dependent on the following 

parameters: pH, partial pressure of hydrogen, temperature and type of biomass used as substrates. 

 

2.3.1 pH 

Several studies were concerned the effect of pH on biohydrogen production by DF. Literature data 

indicate that the value of the optimum pH for DF process depends on the type of substrate used and 

in general, falls in the range 5-6.5, in which is favored the activity of hydrogenase [19,29,38]. 

A highly important aspect is related to the fact that the production of volatile organic acids during 

the process is different under different pH conditions. In particular, the routes that lead to the 

formation of hydrogen as low as butyrate and acetate are favored at pH comprised between 4.5 and 

6 while at higher pH, also correspondending to the neutral pH value, there is an accumulation of 

ethanol and propionate. Several authors [19,29,38] studied the impact of pH on the activity and on 

the microbial metabolic diversity in the process of fermentation with glucose, xylose, glycerol at 30 

°C. They also showed that for pH values lower than 6 the VOC products in larger quantities were 

butyrate and acetate while at higher pH values had yet acetate and ethanol. Furthermore, both in 

high pH conditions and low, the brewing process generally is dominated by Clostridia bacteria 

while at neutral pH is greater microbial diversity in [38] system. This suggests that the effects of pH 

involve not only a change of the metabolic sequences but also in large changes in the development 

of microbial communities. 

 

2.3.2 Temperature 

The temperature is one of the most important parameters that affect the yield in the production of 

biohydrogen and the microbial metabolism in mixed cultures [38]. Due to the breadth of the types 

of substrates to be used in the DF, in the literature are not provided optimal temperature range for 

the process [19,29,38]. However, it is known by many literature studies that crop residues, food 

waste and cattle manure have higher yields hydrogen if the process is carried out in thermophilic 
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temperatures (50-70 °C) [7,19,29,38]. However the main disadvantage of the thermophilic 

anaerobic fermentation, is the energy cost for heating the reagent system. So, from industrial points 

of you, the mesophilic regime (30-40 °C), used in this PhD thesis, is the most attractive [38]. 

 

2.3.3 Hydrogen Partial Pressure  

Hydrogen partial pressure has a significant influence since the increase of H2 concentration causes a 

decrease of yields do to occurrence of the degradation reactions of volatile fatty acids through the 

oxidative beta-pathway (Eq. (2.5), (2.6)): 

 

n- LCFA→(n-2)-LCFA+ 2Acetate + 2 H2  ∆G= +48 kJ/mol    (2.5) 

CH3COOH+ 2H2O→4H2 +CO2   ∆G= +104.6 kJ/mol    (2.6) 

 

Eq. (2.5), (2.6) are characterized by positive values for the Gibbs free energy which are 

thermodynamically not favored [38]. Moreover it is noted that the reverse reaction to (2.6) is 

thermodynamically favored in fermentation processes and therefore reduces the performance of 

bioreactors due to the accumulation of acetate. 

The growth of the hydrogen concentration due to microbial metabolism has effects not only on the 

production of hydrogen, but also on the metabolic pathway that shifts towards the solventogenesis 

or the production of lactate, ethanol, acetone and butanol. However some recent studies showed 

that, rather than an increase in the hydrogen partial pressure, it is the accumulation of volatile fatty 

acids which favors the solventogenesis [38]. Partial pressure of hydrogen during the DF can be 

reduced by properly stirring the digester, while ensuring a final production of greater biohydrogen. 

There are also alternatives to improve the extraction of gas as stripping of biohydrogen from the 

head of the reactor by means of an absorption membrane [38] or the bubbling of an inert gas such as 

N2 within the [38] system. However, the above described techniques have disadvantages: the first 

technique develops a biofilm on the membrane which promotes the growth of methanogenic 

bacteria, while the second technique, regardless of the significant removal of biohydrogen. 

Despite the various techniques available for reducing the hydrogen partial pressure, they required 

further research studies to develop the gas purification systems in order to maintain a low partial 

pressure of hydrogen in the reactant system. 

 

2.3.4 Substrates and Inoculum 

The substrate plays an important role in the H2 yield, production rate and the overall economy of the 

process of biohydrogen production [39,40]. Characterisitcs of substrate are mainly dependent on the 



84 

carbohydrate content, bioavailability and biodegradation rate [39-44]. Carbohydrate rich substrates 

have been extensively used in DF studies, in particular pure glucose, sucrose and starch mixtures 

[38-44]. Monlau et al. [7] and Guo et al. [45] reported that the soluble and readily accessible sugars 

represent the main fraction of biomass that can be converted into hydrogen. In more recent dark 

fermentative studies, complex substrates have been considered, such as energy crops [38-44], 

organic fraction of municipal solid waste (OFMSW) [38,46-49], agro-industrial wastes like those 

from food processing industries (e.g. olive mill wastewater and cheese whey) [38-44], effluents 

from livestock farms and aquatic plants [38,40,42], the agricultural residues like lignocellulosic 

biomasses (e.g. rice straw, wheat straw and corn stalks) [19,29,38,45-48].  

Various pretreatment steps have been employed prior DF digestion to facilitate bacterial access to 

the complex substrate and enhance hydrogen production: thermal [38] or microwave-assisted 

pretreatment [19,29,38], acid [19,29,38], alkaline [19,29,38] or enzymatic [19,29,38] hydrolysis 

[19,29,38]. 

Table 2-1 shows the biohydrogen production potential of different organic biomasses tipically used 

by DF process and the pre-treatment methods of substrates and inoculum [45,50]. Several authors 

[19,29,38] have been used an acid hydrolysis of different types of biomass such as activate sludge, 

grass, beer, poplar leaves, food waste, cornstalk, obtaining a H2 yields up to 100 mL H2*g -1 VS 

[19,29,38]. Other authors used the alkaline hydrolysis (with NaOH) on tofu residue, beet-pulp, 

milled corncob, rice straw, maze straw, organic wastes obtaining H2 yields up to 96 mL H2*g-1 VS. 

Furtherly different types of treatment like Aqueous ammonia soaking (AAS), Ozone dosage (0.16 g 

O3/g TS) and high pressure (9bar) [19,38] have been recently reported.  

Summarizing, the constructed microbial consortia for digestion of complex substrates require 

pretreatment to increase nutrient and seed formulation and enhance H2 production [38,51].  

Biological pre-treatment of biomass is recently proposed. It consists of in enzymatic degradation of 

substrate to obtain easily fermentable sugars [52]. Compared to current thermal or chemical 

pretreatments, the biological offers the advantage of an environmental-friendly and energy-efficient 

process [52] although the substrate degradation occurs slowly and long pretreatment time is 

required. 
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Substrates Pre-treatment H2 yields 

Activated sludge 
Acid: 0.5% (w/v) HCl; 

24 hr, room T 

Control: 9 mL g -1 VS 24 h: 

41 mL g -1 VS ΔY: +355.6% 

Grass 
Acid: 0.5-8% (w/v) HCl; 

30 min boiling 

Control: 4.39 mL 4.0% HCl: 

72.21 mL ΔY: +1544.9% 

Grass 
Alkali: 0.5-8.0% (w/v) NaOH, 

30 min boiling 

Control: 4.39 mL 0.5% 

NaOH: 19.25 mL  

ΔY: +338.5% 

Beer lees 
Acid: 0.5-4% (w/v) HCl; 

30 min boiling 

Control: 3.16 mL g -1 dry 

substrates 4.0% HCl: 53.03 

mL g -1 dry substrates 

ΔY: +1578.2%  

Poplar leaves 
Acid: 0.5-8% (w/v) HCl; 

30 min boiling 

Control: 15.04 mL 

4.0% HCl: 33.45 mL ΔY: 

+122.4%  

Food waste 
Acid: 1.0 N HCl pH: 3.0, 

24 h, 4 °C 

Control: 42 mL g -1 VS 

Treated: 55 mL g -1 VS 

ΔY: +31.0% 

Food waste 
Alkali: 1.0 N NaOH pH: 11.0, 

24 h, 4 °C 

Control: 42 mL g -1 VS 

Treated: 46 mL g -1 VS 

ΔY: +9.5%  

Food waste 
Acid: pH 1.0, 1 day 

 

Control: 4.4 mL g -1 VS 

Treated: 89.5 mL g -1 VS 

ΔY: +1934.1% 

Food waste 
Alkali: pH 13.0, 1 day 

 

Control: 4.4 mL g -1 VS 

Treated: 50.9 mL g -1 VS  

ΔY: +1056.8%  

Tofu residue 
Acid: 0-2.0% (v/v) HCl, 30 min 

 

Control: 0.3 mol mol -1 

hexose 1% HC1: 1.25 mol 

mol -1 hexose 

ΔY: +316.7% 

Tofu residue 
Alkali: 0-2.0% (v/v) NaOH, 

30 min 

Control: 0.3 mol mol -1 

hexose 1% NaOH: 1.09 mol 

mol -1 hexose 

ΔY: +263.3%  

Beet-pulp 
Alkali: 2 M NaOH pH: 12, 

30 min 

Control: 90.1 mL g -1 COD 

Treated: 115.6 mL g -1 COD  

ΔY: +28.3% 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Milled corncob 
Acid: 0.1-2.0% (w/w) HCl, 

heating at 100 °C for 30 mins 

Control: 13.1 mL g -1 VS  

1% HCl: 67.9 mL g -1 VS  

ΔY: +418.3%  

Milled corncob 

Alkali: 0.1-2.4% (w/w) NaOH, 

0.5% H2O2 (w/w), heating 

at 100 °C for 30 min 

Control: 13.1 mL g -1 VS 2% 

NaOH: 14.3 mL g -1 VS  

ΔY: +9.2%  

Cornstalk 
Acid: 0.1-4.0% (w/w) H2SO4, 

heating at 121 °C, 60 min 

Control: 22.1 mL g -1 VS 
1.5% H2SO4: 103.3 mL g -1 

VS  

ΔY: +367.4%  

Organic wastes Acid: 1 N HCl pH: 2.0, 24 h 

Control: 6.99 mL g -1 VS  

Treated: 86.00 mL g -1 VS  

ΔY: +1130.3%  

Organic wastes 
Alkali: 1 N NaOH pH: 12.5, 24 

h 

Control: 6.99 mL g -1 VS 

Treated: 95.93 mL g -1 VS  

ΔY: +1272.4%  

Sludge 
Acid: 6.0 M HCl pH: 2.0, 5 min, 

Initial pH: 7.0 

Control: 1.21 mL g -1 VS 

Treated: 3.25 mL g -1 VS  

ΔY: +168.6%  

Sludge 
Alkali: 6.0 M NaOH pH: 12.0, 5 

min, Initial pH: 7.0 

Control: 1.21 mL g -1 VS 

Treated: 1.46 mL g -1 VS  

ΔY: +20.7%  

Sludge 
Alkali: 6.0 M NaOH pH: 12.0, 5 

min, Initial pH: 11.5 

Control: 7.57 mL g -1 VS 

Treated: 11.68 mL g -1 VS  

ΔY: +54.3% 

Cattle dung slurry 
1 mg/L Co, 2 mg/L Ni, 20 mg/L 

Fe and 20 mg/L Fe3O4 
/ 

Rice straw 3% (w/v) NaOH, 35 °C, 48 h / 

Maize straw 

NaOH (4% and 6%) (w/v) 

pretreatment, Fe dosage (50, 

200, 1000 and 2000 mg/L)  

/ 

Swine manure fibers 
Aqueous ammonia soaking 

(AAS)  
/ 

Organic solid waste Ozone dosage (0.16 g O3/g TS) / 

A mixture of grass 

and maize silage 
High pressure (9 Bar) / 

Tab 2-1 Substrates and pre-treatment used for biohydrogen production by DF 
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Biological pretreatment could be employed prior to physical or thermo-chemical pretreatment to 

effectively shorten the enzymatic pretreatment time and reduce the severity of thermo-chemical 

pretreatment. Other advantages could be the absence of the generation of toxic substances and the 

decrease of energy requirement. The enzymatic pre-treatment could be used essentially for the 

lignocellulosic materials that represent an enormous potential for biohydrogen production by dark 

fermentation. However up to now low hydrogen yields are obtained and various technologies 

belonging to inoculum or substrates pre-treatment have been investigated for enhancing 

biohydrogen production. Heat, acid and alkali pre-treatments are the most commonly studied 

technologies for both substrates and inoculum pre-treatment. Nevertheless, other techniques, like as 

ionic liquid, steam explosion, ammonia fiber-explosion, fungal and enzymatic, freezing and 

thawing, microwave irradiation, ultrasound irradiation have yielded positive findings [53]. 

The major obstacle for conversion of lignocellulosic material into fermentable sugar is the complex 

structure and the presence of inhibitor hemicellulose [53]. Mild alkali pretreatment has advantages 

in removing lignin with more effectiveness for agriculture residues and herbaceous crops [54]. 

Cheng and Zhu [55] proposed for sugarcane bagasse an optimized pretreatment at 80°C with 3% 

NaOH leading to hydrolysate containing pentose (xylose) and hexoses (glucose), xylose content 

influencing cell growth, substrate utilization, and product yield.  

A culture of Clostridium thermocellum and Thermoanaerobacterium aotearoense have been used as 

inoculum due to the double benefit of low cost and the synergistic effect favouring the degradation 

of cellulose into H2. A yield of 50.05±1.51mmol H2/L was reported using a liquid-to-solid ratio of 

25:1. Cellobiose, cellodextrins, and xylose were detected as by-products [54,55].  

Hypothermal pretreatment of lignocellulosic biomass at dilute acid conditions generates inhibitors, 

such as phenolic compounds and aliphatic acids, but Clostridium beijerinckii exhibited resistance to 

these types of inhibitors.  

Fermentation of the xylose-rich lignocellulosic hydrolysate with C. beijerinckii resulted into H2 

production of 2.72 mol H2/mol xylose [38,54,55]. The culture helped xylose utilization with 

improved metabolism and lowered acetate accumulation. 

Li et al. [56] studied the digestion of Cornstalk, with a large lignocellulosic component and 

proposed a novel dynamic microwave-assisted alkali pretreatment (DMAP) to facilitate biomass 

digestion. It consists in supplying direct energy into the lignocellulosic material with an 

electromagnetic to achieve the removal of lignin and the increase of the soluble compounds release 

for easy access by microorganisms. Given amounts of cornstalk along with 2 L NaOH were mixed 

homogenously and circulated with periodic irradiation The hydrogen yield (105.61mL/g of 
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cornstalk) was 54.8 % higher, with increased hemicellulose (41–79%) and cellulose (71%) 

degradation rate in comparison with untreated cornstalk [38,53,54]. 

The biological treatment could be a promising methodology for fermentative conversion of 

lignocellulosic biomass to H2. [38,57]. 

The hydrogen producing seed inoculum or culture is crucial for hydrogen production [19,29,38,52-

54,57]. Literature reports on the employment of pure [19,29,38,52-54,57] or mixed cultures [38]. 

Several pure cultures have been studied for digestion of different substrates and it appears that 

various strains species of Clostridia and Enterobacter are the mainly used pure cultures [38,57]. In 

Table 2-2 some some recently literature results are summarized. 

 

Culture Substrates T (°C) pH 

Optimum H2 

yield (mol H2/ 

mol glucose)a 

Enterobacter 

cloacae IIT-BT08 
Glucose  36 6 2.2 

Clostridium 

thermolacticum 

DSM 2910 

Lactose  58 7 1.5 

Enterobacter 

cloacae DM 11 

Malt, yeast 

extract & 

glucose 

37 6 3.9 

Thermotoga 

neapolitana DSM 

4349 

Hydrolyzed 

potato steam 

peels  

80 6.9 3.3 

C. thermocellum 

DSM 1237 and C. 

thermopalmarium 

DSM 5974 

Cellulose 55 7 1.36 

Clostridium 

thermocellum 7072 
Corn stalk 55 7.2 1.2 

Clostridium 

pasteurianum  

HCl-pretreated 

grass 
35 / / 

Clostridium 

sartagoforme FZ11 
Corn stalk  35 / / 

Caldicellulosiruptor 

saccharolyticus 

DSM 8903 

Switchgrass  65 / 
11.2 mmol H2/g 

substrate 

Tab 2-2 Biohydrogen production by DF with different substrates and cultures 
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The most commonly used are pure cultures of the Clostridium family in mesophilic or thermophilic 

conditions. However, H2 synthesizing bacteria exist commonly in environments such as soil, 

wastewater sludge, manure and compost. All these materials thus can be used as mixed cultures 

sources for fermentative H2 production [19,38,57]. 

Mixed cultures are generally preferred over pure ones for several advantages: practicability for 

engineering applications, economic benefits due to asepsis costs reduction, easiness in controlling 

microbial subgroups, broader feedstock choice [19,38,57]. 

The enrichment treatment of mixed cultures is however a necessary step to enhance biohydrogen 

production by inhibiting hydrogen consumer bacteria such as methanogens and homoacetogens, 

often present in mixed inocula [19,38,57]. Several authors (literature data) used different kinds of 

biomass inoculated with sewage sludge pretreated with different methods to enhance the growth of 

H2-producer bacteria: heat-treatment (about 65-100 °C), immobilization of anaerobic microflora 

bacteria, ultrasonic pre-treatment at 100 KHz, DC (direct current) voltage application and alkaline 

pre-treatment [19,29,38,52-54,57].  

The use of sewage sludge leads higher cumulative H2 production in comparison to other mixed 

culture sources, like as cow dung compost, chicken manure compost and river sludge [58].  

The pretreatments of the inoculum proposed to this purpose often relies on the properties of the 

spore of H2 producing bacteria, such as Clostridium, which are ubiquitous in anaerobic sludge and 

sediments [19,29,38,58]. These organisms have a better chance to survive the harsh pretreatment 

conditions than the non-spore forming bacteria such as methanogens, as the spores can germinate 

again under favorable conditions [58]. Heat treatment of mixed cultures is largely used since it is a 

simple, inexpensive and effective method [38,58], although the effect might be different depending 

on the inoculum source [58]. Some studies reported a lower hydrogen yield by a heat shock treated 

seed inoculum than obtained by other pretreatment methods probably because the inhibition of 

other non-spore forming hydrogen producing bacteria might destabilize the main hydrogen 

production pathways [19,29,38,58]. Similarly, acid or base treatments of inoculum are widely 

employed. Generally, the activity of methanogens drops sharply at a pH below 6.3 or above 7.8 

[58], whilst that of Clostridium spore and other hydrogen producers is not affected by mild acid 

conditions.  

Other pretreatments, such as chemical or aeration pretreatment [19,29,38,58], are addressed aimed 

to obtain the selective inhibition of methanogens present in anaerobic sludge, which are strictly 

anaerobes [19,29,38,58] and sensitive to many chemicals [19,29,38,58]. Likewise, chemical 

inhibitors like sodium 2-bromoethasulfonic acid (BESA), iodopropane, chloroform and acetylene 

are reported to inhibit H2 consumer methanogens growth [19,29,38,58]. In [19,29,38,58] is reported 
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that BESA inhibits the activity of co-enzyme M. reductase, which is a key co-enzyme of 

methanogenesis.  

The selection of the best inoculum pretreatment for scaled-up systems must consider several 

parameters, such as operational costs, feasibility or complexity of the methods, time for the 

enrichment of the hydrogen producing seed, use of the DF residues in the post treatment processes. 

For example, BESA is not environmental friendly, expensive and is inadvisable when the DF 

residues are to be used in AD [38]. Likewise, heat shock treatment requires large energy inputs and 

is expensive for large scale applications. Conversely acid or shock load pre-treatment can be 

applied at large scale without net energy concerns [19,38,58].  

Dark fermentation of wastes can be carried out by using the microorganisms spore contained in the 

waste itself [38,58] although. The fermentative hydrogen production took longer than supplying 

inoculum. The process start-up should be sped up by properly pretreating the inoculum or by 

applying appropriate reactor conditions [38,58] that enhance increase the growth rate of hydrogen 

producing microbial community. 

 

2.3.5 Kinetics and Kinetic Models of Hydrogen Production  

Different factors such as substrate and inhibitor concentrations, temperature, pH and reactor type 

affect H2 production rate by DF. Modeling of the H2 production is very important to improve, 

analyze and predict H2 production during fermentation. Mathematical models include the kinetic of 

cell growth and product(s) formation, substrate utilization and inhibition. In addition some models 

are developed to describe the effect of pH, temperature and dilution rate on H2 production. The 

obtained model kinetic constants can be used in the design, operation and optimization of the 

fermentative H2 production process. Different kinetic models have been proposed to describe 

growth of H2 producing bacteria, substrate degradation and H2 production.  

Monod (or Michaelis–Menten equation) (Eq. (2.7)) [7,19,28,38] is an unstructured, non-segregated 

model of microbial growth, fits a wide range of data. The kinetic constants of this equation, Ks and 

µmax, can be obtained by linear regression.  

 

μ = (1/X)*(dX/dt) = μmax (S /(Ks + S)        (2.7) 

where μ is the specific growth rate, X is the biomass concentration, S is the substrate concentration, 

Ks is the saturation constant, μmax is the maximum specific growth rate.  

 

Wang and Wan reported on previous studies using a Monod model to describe H2 production with 

time in bio-H2 fermentation [7,19,28,38]. 
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Recently, the logistic model (Eq. (2.8)) became the most popular in describing cell growth because 

gives more detailed information on DF kinetic parameters. This equation has a sigmoidal shape that 

includes the lag phase, exponential and stationary phase of the batch growth: 

 

μ = (1/X)*(dX/dt) = μmax (1-(X/Xm))        (2.8) 

where Xm is the maximum biomass concentration. 

 

At high substrate concentration, the cell growth is inhibited and production of H2 is reduced.  

Michaels-Menten and logistic models cannot describe the inhibition phenomena, this drawback are 

overcome by more recent models. Different substrate inhibition models have been proposed. The 

Haldane-Andrew model (Eq. (2.9)) is widely used to describe the substrate dependence of the 

specific growth rate of H2 fermentations.  

 

μ = (1/X)*(dX/dt) = μmax (S/(Ks+S+(S2/Ki)))       (2.9) 

where Ki is the inhibition constant.  

 

Some models have been proposed to describe the effect of inhibitors such as the modified Han-

Levenspiel model (Equation (2.10)):  

 

μ = (1/X)*(dX/dt) = μmax (1 - (C/Cm))       (2.10) 

where C is the inhibitor concentration, Cm is the maximum inhibitor concentration or the 

concentration of inhibitor above which there is no biomass growth  

 

The modified Gompertz model (Equation (2.11)) is widely used to describe the progress of 

cumulative H2 production in batch fermentations:  

 

H = P exp [- exp [(λ-t)/B]]          (2.11) 

where H is the cumulative production of H2 (L) in the range time t, B is the final volume of 

hydrogen product (L) and λ is the lag phase (hr or day) and B is a parameter connected with the rate 

of H2-production. 

 

The Luedeking-Piret model (Equation (2.12)) has been widely used to describe the relation between 

cell growth rate and H2 production:  
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dP/dt = YP/X (dX/dt) + βX         (2.12) 

where P is the product, YP/X is the growth associated yield coefficient; β is the non-growth 

associated product yield coefficient.  

Wang and Wan reported that previous studies used the Luedeking-Piret model to relate cell growth 

rate and H2 production rate. The effect of temperature on the fermentative H2 production has been 

widely described using the Arrhenius model, while the effect of pH on the substrate consumption 

rate is described by an Andrew model using the concentration of H+ as the limiting substrate 

concentration. According to this model the rate of substrate consumption passes through maximum 

with increasing H+ concentration [7,19,28,38]. 

 

2.4 Content of Chapter 

In this chapter have been studied different types of biomass for the H2 production by DF: 

1) Arundo donax (AD) (Fig. 2-5) was studied as an example of lignocellulosic biomass. AD giant 

reed, also called domestic cane, is an herbaceous multiannual plant with long stem, robust and 

cable. It grows mainly in height reaching up to 8 meters. 

It is very widespread in all the Mediterranean countries. Presents a very high growth rate and large 

amounts of fertilizers and pesticides are not necessary for the crop (so it return satisfactory values in 

terms of environmental sustainability). It also grows in marginal soils and with extreme conditions 

(high salinity, water scarcity). All these factors make this an excellent candidate for the cultivation 

of energy production from lignocellulosic biomass. 

2) Organic Fraction of Municipal Solid Waste is another source of biomass with great potential. In 

fact in Italy it produces about 4411330 tons/a of waste per day. The energy recovery of such 

biomass would allow either to reduce the costs of disposal, both encouraging the recycling and then 

limit the environmental impact of landfills and low efficient disposal systems. 

3) Litter: the disposal of soiled litter is a very important cost for the center and for this reason it is 

interesting to find an innovative methodology for the reutilization of this waste for energy purposes 

and reduce disposal costs. 

4) Manure from cattle is widely available in Italy and more generally in Europe and worldwide. In 

Italy the number of cattle is about 6 million, disposal of manure is a significant cost and energy 

revaluation for this waste is a considerable plus for companies. 

A synthetic medium based essentially on glucose was also considered as reference. Each substrate 

has been inoculated with a sewage sludge collected from wastewater treatment plant in Nola 

(Naples) that offers the benefit of higher potential H2 yields in comparison to other mixed cultures. 

All the tests have been carried out in mesophilic conditions (38 °C). For biohydrogen production 
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has been developed a different methodology to enhance the proliferation of hydrogen-producer 

bacteria to detriment of the methanogenic ones, the inoculum has been pre-treated with a medium of 

salt and nutrients at the same temperature of DF. This procedure is not commonly used in literature 

[19,29,38] but from an industrial applicative point of view, it is more convenient and less expensive 

than traditional pre-treatment methods and can be advantageous for the development of integrated 

plant anaerobic digester (biohydrogen Production)/Fuel Cells. 

 

2.5 Materials  

2.5.1 Arundo Donax 

Arundo donax was collected from Torre Lama (Campania, Italy) agro-land. Leaves were separated 

from stems, washed, dried overnight at 80°C and minced with a chopper (Fig.2-6).  

 

 

Fig. 2-5 Arundo donax 

 

The tests were carried out with Arundo donax not treated (AD), and with Arundo donax treated by 

steam explosion at 210 °C for 6 min (ADexp, Fig 2-7) (supplied by ENEA in Trisaia (Matera, 

Italy)). 

This treatment is aimed to separate the complex polymers (lignin, hemicellulose and cellulose) that 

characterize the biomass. The matrix of the biomass, then, is unstructured and more easily digested 

by the microorganisms for the biogas production. 

This type of technique, however, also leads to the formation of by-products such as acetic acid, 

furfural, phenols, so these by-products may be toxic to the microorganisms and consequently for the 

process of anaerobic digestion. 
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Fig. 2-6 Arundo donax not treated used in DF tests 

 

 

Fig. 2-7 Arundo donax treated by steam explosion used in DF tests 

 

2.5.2 Organic Fraction of Municipal Solid Waste (OFMSW) 

OFMSW has been prepared in laboratory (Fig. 2-8, Tab. 2-3) using food leftovers. Before being 

added to a bioreactor, it was grossly chopped, finely shredded with a home blender and finally 

pressed manually in a mortar to make a puree. 
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Fig. 2-8 OFMSW prepared in laboratory and used in DF tests 

 

Component % wt 

Fruits 30 

Cooked meat 5 

Vegetable 30 

Bread 35 

Tab. 2-3 Laboratory OFMSW composition 

 

2.5.3 Litter 

Litter used in DF tests comes from an enclosure for mice. It consists mainly of beech wood chips 

mixed with mouse droppings. The litter (Fig. 2-9) has been collected from the research center 

BIOGEM s.c.a.r.l. in Ariano Irpino (AV). The center is equipped with one of the larger enclosures 

in Europe with a potential of 40,000 mice and 1,500 rats. Currently is present a population of about 

7,000 mice and 200 rats.  
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Fig. 2-8 Litter used in DF tests 

 

2.5.4 Manure 

The last used biomass is represented by a manure coming from the cattle breeding “Cocca” located 

in San Marco de’ Cavoti (BN). The biomass is composed essentially from manure and some 

percentage of litter for cows. The farm has 8 heads (Cows “Marchigiane”), the average weight of 

single cow is about 400 kg. The cattle are located in a closed, stable free stall that involves the use 

of plentiful straw as bedding to ensure the comfort of the livestock. The barn cleaning is carried out 

by delivering the wastewater in the dung heap where it is stored for a period ranging between 4-6 

months.  

 

2.5.5 Synthetic medium  

Synthetic medium has been prepared in a Pyrex glass vial (125 mL). The volume of liquid phase in 

the vial is 100mL. Synthetic medium was prepared with 19.6 mL of distilled water, 0.4 mL of 

resazurin solution 0.025% w/v; 10 mL of mineral solution (Na2HPO4 7 g/L, KH2PO4 3 g/L, NaCl 

0.5 g/L, NH4Cl 1 g/L and trace elements). Resazurin is used as an indicator of anaerobiosis. After 

sterilization in autoclave (SMEG HV-85L) at 121°C for 20 minutes, 50 mL of solution 5 g/L of 

glucose (autoclaved separately); 250 μL of saline solution 400x; 20 mL of inoculum were added to 

the medium.  

 

2.6 Methods 

2.6.1 Biomass Analysis 

Biomass composition, including the proximate (ASTM D5142), ultimate analysis (ASTM D3176), 

were analyzed using the TGA701-LECO Europe instrument (Table 2-4). For each biomass the 

moisture has been evaluated from 25°C to 107 °C in nitrogen flow until the constant weight; the 
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volatile in a ramp 107 °C to 950 °C in nitrogen flow for 7 min and ash in temperature range 600 to 

750 °C in O2 flow until the constant weight of the sample. 

 

Biomass 
C H N Moisture  Volatile  Ash  

Fixed 

carbon  

% dry ash free basis % wt 

AD 47,32 5,92 0,33 8,39 72,6 14,85 4,14 

ADexp 49,61 5,73 0,88 8,41 73,1 14,5 4 

OFMSW 37,2 5,24 1,13 86,71 11,8 1,02 1,4 

Manure 35,85 4,89 2,11 77,16 19,37 0,85 2,9 

Litter 33,2 7 2,4 6,59 69,83 19,21 4,37 

Tab. 2-4 Substrates analysis 

 

2.6.2 Anaerobic Mixed Culture  

Sewage sludge used as inoculum in DF tests was obtained from a primary wastewater digester of 

Nola (Naples). In the first fermentation the sludge was not subjected to treatments and used directly 

as inoculum, with a filtration to remove coarse particles, to obtain biomethane.  

For the production of biohydrogen, the sludge was treated with a nutrient medium to support the 

growth of bacteria hydrogen producer (such as Clostridium) and to eliminate the methanogenic 

bacteria.  

 

 

Fig. 2-9 Sewage sludge used as inoculum 

 

2.6.3 Preparation of Nutrient Medium  

The sludge has been treated with a nutrient medium to support the growth of hydrogen producer 

bacteria (such as Clostridium) and to eliminate the methanogenic ones. Nutrient medium was 
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prepared by dissolution in water (1L) of NH4Cl (1 g), K2HPO4 (0.3 g), KH2PO4 (0.3 g), MgCl2*6 

H2O (0.2 g), CaCl2*2 H2O (0.1 g), NaCl (10 g), KCl (0.1 g), cysteine (0.5 g), CH3COONa (0.5 g), 

yeast extract (2 g), tripeptone (2 g), NaOH solution at pH 11 (10 mL), resazurin (0.1 g).  

Before the fermentation tests, the inoculum has been pre-treated at 38 °C for 48 h with nutrient 

medium, in anaerobic conditions, with a ratio sewage sludge/medium of 1:1 v/v.  

 

2.6.4 Biomass Hydrolysis  

The pre-treatment of biomass is essential to obtain reducing sugars easily fermentable by microbial 

consortium to increase the biomethane and biohydrogen yields, as discussed in par. 2.3.4. The 

biomass utilized in this PhD thesis have been subjected to enzymatic hydrolysis by the action of 

cellulase (Celluclast 1.5L, from Novozymes) and cellobiase (Novozyme 188, from Novozymes). 

Hydrolysis has been performed at 50°C for 72 h by contacting 20 g of biomass with 200 mL of 

deionized water, 2.48 mL of cellulase and 0.625 mL of cellobiase. The hydrolyzate has been filtered 

and the pH adjusted to 5.5-6 with 1M NaOH solution before the inoculation. For each substrate the 

concentration of reducing sugars has been evaluated. The only exception is the organic fraction of 

municipal solid waste. This type of biomass has not been subjected to hydrolysis because it already 

has monomers digestible by the microbial pool and because the enzymatic hydrolysis step is not is 

not very efficient on OFMSW. 

Table 2-5 summarizes the results obtained. 

 

Biomass 
Reducing sugars  

(g/l) 

AD 5 

ADexp 5 

Litter 2,59 

Manure 2,14 

Tab. 2-5 Reducing sugars content of different substrates after hydrolysis  

 

2.6.5 Fermentation Tests 

Fermentation tests on, AD, ADHexp, litter and manure were carried out, in a vial of 125 mL (Fig. 

2-10), with a composition of each batch reactor of 70 mL of hydrolysate supplemented with 0.4 mL 

of 0.025% w/v resazurin solution (indicator of anaerobiosis), 10 mL of mineral solution (Na2HPO4 

7 g/L, KH2PO4 3 g/L, NaCl 0.5 g/L, NH4Cl 1 g/L), 20 mL of inoculum (see Par 2.6.2). 

For the OFMSW fermentation tests the following conditions have been adopted: 20 g of biomass 

(not hydrolysate) mixed in 80 mL of H2O deionized, 20 mL of inoculum. 
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The vial is clamped with butyl rubber stopper pierced equipped with an aperture ring and the 

anaerobic conditions were obtained keeping the vial under stream of nitrogen for 30 min. A 

synthetic medium (see Par. 2.7.5), essentially based on glucose, has been used as comparison.  

 

 

Fig. 2-10 Vials used in DF tests 

 

2.6.6 Analytical Techniques  

In all tests Microbial Biomass (MB) growth, reducing sugars, pH, volatile acids, ethanol and 

composition of the biogas have been monitored according to standard anaerobic procedures [59]. 

The biomass concentration was monitored by measuring the optical absorbance of liquid samples at 

600 nm. After centrifugation at 3000 rpm for 5 minutes and filtration with 0.2 μm cut-off filters, the 

liquid sample was analyzed for residual substrate content (glucose or total reducing sugars) and 

soluble fermentation products (organic acids, alcohols).  

The concentration of glucose was measured following a modified Nelson-Somogyi method for 

reducing sugars [59]. Concentration of acetic, butyric, propionic acids and ethanol was measured by 

GC technique, using a Shimadzu instrument GC-17A equipped with FID detector and a capillary 

column containing a PEG stationary phase (BP20, 30 m by 0.32 mm i.d., 0.25 μm film thickness, 

from SGE).  

CH4, H2 and CO2 concentrations were mesured by GC tecnique, using a HP 5890 series II equipped 

with a TCD detector and a double packed molecular sieves-porapack column.  

 

2.6.7 Nelson-Somogyi method 

The analysis of the reducing sugars was carried out with the colorimetric method of Nelson-

Somogy [59]. For the calibration of the method, a glucose standard solution was prepared (1 mg / 

ml) by dissolving 100 mg glucose in 100 ml of distilled water. Later they were taken from the 
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solution 10 ml and so added 90 ml of water (so as to have a concentration of 0.1 mg/ml). 

Subsequently, 0.1, 0.2, 0.3, 0.4 and 0.5 ml of this solution were taken and placed in test tubes of 10 

ml, and in each was added distilled water to obtain a final volume of 2 ml. Subsequently, after 

adding 1 ml of alkaline copper tartrate solution, the tubes were placed in a boiling water bath for 10 

min. After cooling down it was added 1 ml of Arseno-molybdate reagent and then distilled water so 

as to obtain a final volume of 10 ml. Finally, for each sample was measured the absorbance (Abs) at 

620 nm. 

Following has been reported the experimental procedure used for the analysis of samples: 200 

microliter of sample; 1 mL of reactant A&B; 1.8 mL of H2O deionized;  

After heating up to 100 °C and cooled the tube has been added 1 mL of reactant C and H2O distilled 

up to a final volume of 10 mL. 

In following lines has been reported the composition of reactants A, B and C: 

Reactant A: In a 100 mL flask has been mixed 80 mL of deionized water, 2.5 g of Na2CO3, 2.5 g of 

Rochelle Salt (KNaC4H4O6·4H2O), 20 g of Na2SO4. After the complete mixing has been added 

deionized water up to a final volume of 100 mL. 

Reactant B: In a 100 mL flask has been mixed 80 mL of deionized water, 15 g of CuSO4*5 H2O, 

mixed and added H2O up to a final volume of 100 mL and after the completely dissolution of the 

salt added 2 drops of H2SO4 (97 % wt). 

Reactant C: this reactant is the sum of 2 solutions; the first one is prepared added 45 mL of H2O, 2.5 

g of (NH4)6Mo7O24*4H2O and 2.1 of H2SO4 (97%wt); the second solution is prepared dissolved in 

25 mL of H2O 0.3 g of Na2HAsO4*7H2O. After the preparation the two solution has been mixed 

and so added H2O up to final volume of 100 mL. Before use the final solution has been heat at 37 

°C for 48 h in a continuous stirred mixed. 

Reactant A&B: 24 mL of reactant A and 1 mL of reactant B. 

 

2.6.8 Microbial biomass measurement 

The biomass concentration has been monitored by turbidimeter measures, through the use of a 

Shimadzu double beam spectrophotometer, with a tungsten and a deuterium lamps. For not too high 

concentration of microbial biomass suspended (corresponding to values of Abs> 1.2), it is possible 

to apply the Lambert-Beer equation [59]: 

 

Abs = Ɛ * c * l           (2.13) 
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where: Abs is optical density (or absorbance); Ɛ extinction coefficient; c concentration; l: the optical 

path length (usually uniform). 

Therefore, it was possible to assess the growth of the microbial biomass measuring the absorbance 

of each sample at 600 nm at regular time intervals. 

 

2.6.9 Biogas Volume Mesurement 

The crimped vial is a standard technique in anaerobic studies, even though it does not allow an easy 

evaluation of biogas volumes. The culture medium contained in the vial is placed in continuously 

stirring (800 rpm), inside an electrical oven at a constant temperature of 38 °C.  

 

 

Fig. 2-11 Experimental apparatus for the evaluation of biogas obtained 

 

A capillary tube connects the vial to an overturned vial which contains 100 mL of distilled water 

(Figure 2). The tubular connection allows the flow of the biogas produced from the first to the 

second vial where it accumulates in the top of the vial, thus allowing the dripping of the liquid 

phase through a bullet hole. The volume of liquid that is collected corresponds to the volume of 

biogas produced according to the Mariotte’s law (volume of liquid dripped =volume of gas 

produced) [60,61].  

 

2.6.10 Selection of H2-Producers Bacteria 

The inoculum used for DF tests is a mixed culture containing H2-producer and CH4-producer 

bacteria. For the production of CH4 the inoculum is not treated (it is only filtered to remove coarse 

particles) and used directly in anaerobic digestion tests following the standard procedure described 

in several literature papers [1-8,19,38]. The novelty of this work is the procedure based on the 

selection of hydrogen producer bacteria to enhance H2 yields in biogas. For this purpose, the 

incolum has been treated for a specific medium of salt and nutrient (see par. 2.6.3). Figure 2-12 
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summarizes the procedure adopted in DF tests for biohydrogen production. For simplicity, in the 

figure, are indicated only the AD, ADexp and SM (not subject to hydrolysis). Obviously, this 

procedure has been followed also for other biomass examined in this work (OFMSW, manure and 

litter). 

The adapted inoculum (AI) has been used in the first fermentation tests on hydrolysate biomass, SM 

or OFMSW (ADH I, ADHexp I and SM I) under the conditions previously described. 

Subsequently 20 mL of ADH I, ADHexp I and SM I digestate has been taken and treated with the 

same medium of nutrient used in step 1 with the ratio digestate: nutrient medium of 1:1 v/v to 

achieve a further adaptation. The new adapted inoculum has been used for second fermentation tests 

(ADH II, ADHexp II, SM II) (step 2).  

Finally, the fermentation on ADH III, ADHexp III, SM III was carried out following the same 

procedure employed in the second one.  

 

 

Fig. 2-12: Tests carried out to enhance the H2-producer bacteria 
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This procedure has been adopted in optical of industrial application, in fact, after the third adaption 

the microbial consortium is composed essentially of H2 producer bacteria. During the experimental 

procedure has been noted that after 3 adaptations the results not change significantly, so it is 

possible hypothesize that the procedure is stabilized and the yields of H2 is constant. 

 

2.7 Results and Discussion 

2.7.1 Biomethane Production 

Preliminary tests were carried out on all substrates in order to verify the presence of methanogenic 

bacteria inside the inoculum from sewage sludge. These tests were carried out only as a check, since 

the scope of the experimental activity is the biohydrogen production. 

 

 

Fig. 2-13 Cumulative Biomethane production vs Time (days) 

 

The experimental apparatus used for anaerobic digestions tests have been described in par. 2.8.9. 

The tests have been carried out in the following conditions: T=38°C, inoculum/Biomass hydrolysate 

ratio: 1:4 v/v, 16 days of retention time. Each 2 days CH4 has been analyzed until its complete 

disappearance. 

Figure 2-13 shows the results obtained in terms of cumulative volume of CH4 produced vs time. It 

can be noted that the higher volume of CH4 has been obtained with OFMSW (360 mL) while the 

lower amount of CH4 has been obtained with the litter (about 200 mL). These results are not 

surprising because the OFMSW has more available nutrients for microbial consortia, especially the 

methanogenic ones, while the litter, being essentially composed of lignin, possess lower amount of 
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easily digestible reducing sugars (see par. 2.6.4). Interesting case is represented by Arundo donax 

that shows relevant production of CH4. This confirms the potential of this lignocellulosic biomass 

for the utilization in anaerobic digestion and Dark Fermentation tests [19,29,38]. The comparison of 

ADH and ADHexp data indicates that steam explosion treatment disadvantages CH4 production. 

This could be explained by the presence of inhibitory compounds, such as phenols and furfurals, 

which are produced during the steam explosion treatment. As regards the synthetic medium, a 

methane production of 330 mL has been obtained. This value is slightly lower than that obtained 

with the OFMSW and with the ADH, probably because in the synthetic medium is present only 

glucose, while in the hydrolysate of Arundo donax and in the OFMSW other types of sugars (i.e. 

pentose) that may be more easily digested by the microbial consortium are present. Ultimately, the 

anaerobic digestion of manure, leads to CH4 production of 290 mL. This result may be surprising, 

given that the initial concentration of reducing sugars is the lowest (2,14 g/L, see tab. 2-5) among 

the biomass used. This can be justified by the fact that in the manure is already an amount of 

methanogenic bacteria. In several works the use of manure co-digestion with other substrates is 

reported to significantly enhance CH4 yields. Table 2-6 summarizes CH4 production on the different 

substrates. 

 

Sample 
CH4 Volume 

(mL /g biomass )* 

ADH 17 

ADHexp 15 

Manure 14,5 

Litter 10 

OFMSW 18 

Tab. 2-6 Biomethane production on different substrates 

*For each anaerobic digestion test have been used 20 g of biomass 

 

2.7.2 Biohydrogen Production 

The biohydrogen production using ADH, ADHexp, manure, litter and OFMSW as substrate has 

been investigated and compared to a synthetic medium as reference. In the first adaptation the 

microbial consortium contains both methanogenic and hydrogen-forming bacteria. The focus of this 

work is to enhance the growth of the latter bacteria to the detriment of the methanogenic ones. To 

this purpose successive adaptations of the substrates and inoculum were required. In particular, 

every fresh substrate (see paragraph 2.6.10) was inoculated with a microbial consortium deriving 

from the previous adaptation. Each new inoculum from a previous adaptation has been subjected to 
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treatment with a nutrient medium (see paragraph 2.6.3) to promote the growth of H2-producer 

bacteria. Fermentation tests have shown that this procedure gives an improvement and stabilization 

of dark fermentation after three adaptations for each substrates with the stabilization of H2 yields.  

In each DF test it has been monitored the pH, the microbial biomass, reducing sugars, volatile fatty 

acids and bioethanol for the liquid phase and for the gas phase the biogas production and 

composition. 

In subsequent figures it will report the trends for each substrate highlighting the increase in the 

hydrogen yields while in table 2-13 will be summarized the results pointing out the ml of hydrogen 

obtained per gram of reducing sugars and biomass utilized. 

 

2.7.2.1 Synthetic Medium (SM) 

Figures 2-14 and 2-15 show the trend of liquid phase analysis for SM. The glucose concentration 

(Figure 2-14) decreases to zero reaching negligible contents after 48 h. Consequently, the biogas 

production is essentially limited to the first two days of fermentation as showed in Fig. 2-16. This 

can be due to the depletion of glucose and to the acidification of the solution since dark 

fermentation takes place optimally with a pH of about 5.5-6 [19,29,38]. In fact, as shown in the 

Figure 2-15, the concentration of VFA (in particular acetic acid and butyric acid) in the culture 

medium increases with time leading to the acidification of the solution, that inhibits the H2 

production. This is confirmed by the microbial biomass trend reported in Figure 2-14, showing that 

the microorganisms growth increases in the first 24 h (value of microbial biomass equal to 5,59) 

reaching a maximum, after which slowly decrease (value of 4 after 72 h). 
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Fig. 2-14 Concentration of glucose, biomass and pH for SM as function of time 

 

 

Fig. 2-15 Concentration of VFA and ethanol for SM as function of time 
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Fig. 2-16 Cumulative biogas production for SM as function of time 

 

The analysis of the liquid phase (Fig. 2-15) showed the presence of acetic acid (CH3COOH), 

butyric acid (CH3(CH2)2COOH), propionic acid (CH3CH2COOH) and ethanol (C2H5OH), the main 

product for all substrates being butyric acid (3,2 mg/mL at 72h). The total concentration of VFA 

and ethanol in SM dark fermentation, is 4,28 mg/mL. 

On the basis of liquid phase analysis data, the following reactions can be hypothesizing occur 

during DF process [38]: 

 

C6H12O6 → 2CO2 + CH3(CH2)2COOH + 2H2      (2.14) 

C6H12O6 + 2H2O → 2CH3COOH + 2CO2 + 4H2      (2.15) 

C6H12O6 + 2H2 → 2CH3CH2COOH + 2H2O       (2.16) 

C6H12O6 → 2C2H5OH + 2CO2        (2.17) 

 

Reactions (2.14) and (2.15), producing butyric and acetic acid respectively, lead both to the 

formation of hydrogen; altrought, reaction (2.15) occurs with a higher H2 yield (4 moles per mole of 

glucose). Moreover, reactions (2.16) and (2.17), producing propionic acid and ethanol respectively, 

indicate that degradation of sugar occurs without H2 formation. Therefore, the best reaction network 

for biohydrogen production should exclude the formation of ethanol and propionic acid, and should 

favour reaction (2.15) in comparison to reaction (2.14).  
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Fig. 2-17 Daily biogas production for SM as function of time 

 

Figures 2-16 and 2-17 show the daily and cumulative biogas production, respectively. It can be 

noted, as previously said, that the production of biogas is limited in firstly 2 days of fermentation 

and the total volume of biogas is 350 mL with 125,4 mL of H2 (36% vol). After 72 h the biogas 

production goes to zero, because the nutrients of microbial consortium are depleted and so the 

microorganism are coming to phase death (Fig. 2-14), according to several literature data 

[38,39,40]. 

 

Sample 
Microbial Biomass 

(ABS at 600 nm) 

VFA-Ethanol 

(mg/mL) 

H2 Volume 

(mL) 

SM I 2,98 8,8 53,4 

SM III  5,59 4,28 125,4 

Tab. 2-7 MB, VFA-Ethanol and H2 production for SMI and SMIII tests  

 

Tab 2-7 shows the results from SMI and SM III (experimental conditions are reported in par. 

2.8.10). It is possible noted that the values of microbial biomass and the production of H2 strongly 

increase from the first to third adaption. In particular, the production of hydrogen goes from 53,4 

mL to 125,4 with an increase of 70%. These results parallel to liquid phase analysis data showing a 

strong reduction (about 50%) of VFA and ethanol concentration. 

These values confirm the success of the experimental procedure adopted and described in par. 

2.7.13. 
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2.7.2.2 Arundo Donax not treated (ADH) 

Figures 2-18 and 2-19 show the trend of liquid phase analysis for ADH. Also for this biomass the 

reducing sugars concentrations goes to zero after 72 h and the microbial biomass has firstly the 

initial phase of exponential growth (maximum value of 8,45 at 24 h) followed by a strong decrease 

up to a value of 5,83, after 72 h. Compared to SM the values of microbial biomass and consequently 

hydrogen yields are increased. The VFA and ethanol concentrations amount to 5,15 mg/mL, a value 

slightly higher than SM, due to lignocellulosic carachteristics of the arundo donax. The trends of 

VFA and ethanol confirm the occurrence of reactions (2.14-2.17) described above.  

Figures 2-20 and 2-21 show the trend of biogas production for ADH. It is possible note that the 

biogas production is higher in the first day of DF and decrease in the following 2 days of test. The 

cumulative volume of biogas corresponds to 285 mL and it is remarkable the high amount of H2 

produced, equal to 190,1 mL (67% vol). This value is in agreement with to the microbial biomass 

trend and confirm that the procedure adopted is suitable for this type of biomass. 

 

 

Fig. 2-18 Concentration of glucose, biomass and pH for ADH as function of time 
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Fig. 2-19 Concentration of VFA and ethanol for ADH as function of time 

 

 

Fig. 2-20 Cumulative biogas production for ADH as function of time 
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Fig. 2-21 Daily biogas production for ADH as function of time 

 

Table 2-8 reports the differences between the first and the third ADH fermentations tests. It is 

possible noted that the increase of microbial biomass (from 5,98 to 8,45) and H2 (from 127,1 mL to 

190,1) is less marked than in SM, with an increase of H2 production of 33% and in both cases the 

amount of H2 is higher than SM. This is due to the hydrolysis pretreatment of ADH that leads to the 

formation of monomers and reducing sugars that can be separated and digested more easily than the 

glucose present in synthetic medium does enhancing the fermentation.  

 

Sample 
Microbial Biomass 

(ABS at 600 nm) 

VFA-Ethanol 

(mg/mL) 

H2 Volume 

(mL) 

ADH I 5,98 10,65 127,1 

ADH III  8,45 5,15 190,1 

Tab. 2-8 MB, VFA-Ethanol and H2 production for ADHI and ADHIII tests  

 

2.7.2.3 Arundo donax treated with Steam Explosion (ADHexp) 

Figures 2-22 and 2-23 show the trend of liquid phase analysis for ADHexp. The trends are similar 

to those obtained for ADH: in fact, the reducing sugars concentration goes to zero after 72 h and the 

microbial biomass has firstly the initial phase of exponential growth (maximum value = 5,77 at 24 

h) followed by the death phase of microorganism with a value after 72 h of 4,77. The values of 

microbial biomass are lower than ADH, suggesting a lower production of biogas. The VFA and 

ethanol concentration amount to 6,7 mg/mL and this value is slightly higher than ADH and SM. 
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Also for ADHexp, the trends of VFA and ethanol confirm the occurrence of reactions (2.14-2.17) 

reported above.  

 

 

Fig. 2-22 Concentration of glucose, biomass and pH for ADHexp as function of time 

 

 

Fig. 2-23 Concentration of VFA and ethanol for ADHexp as function of time 
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Fig. 2-24 Cumulative biogas production for ADHexp as function of time 

 

 

Fig. 2-25 Daily biogas production for ADHexp as function of time 
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inhibitory substances (i.e. phenols) as previously discussed: probably during the process of steam 

explosion there is an accumulation of this substances that can inhibit the DF process. 

 

Sample 
Microbial Biomass 

(ABS at 600 nm) 

VFA-Ethanol 

(mg/mL) 

H2 Volume 

(mL) 

ADHexp I 3,53 13,33 71,8 

ADHexp III  5,77 6,70 160,8 

Tab. 2-9 MB, VFA-Ethanol and H2 production for ADHexpI and ADHexpIII tests  

 

Table 2-9 reports the values of microbial biomass (MB), VFA, ethanol and H2 production. Also in 

this case the production is considerable enhances with the inoculum treated by salts and nutrient 

medium, increasing from 71,8 to 160,8 mL. In addition, it is possible noted that The MB increase 

from 3,53 to 5,77 and the VFA and ethanol concentration is halved, in agreement with biogas 

production. 

 

2.7.2.4 Manure 

Figures 2-26 and 2-27 show the trend of liquid phase analysis for manure. These data appear quite 

different compared to other biomass examined until now (SM, ADH and ADHexp). In fact, the 

concentration of reducing sugars starts from a lower value (equal to 2,14 g/l), suggesting that the 

enzymatic hydrolysis has had a worse effect for this type of biomass (see par. 2.6.4). Moreover, the 

reducing sugars concentrations goes to zero more rapidly (after 48 h) since they are in lower amount 

in manure. As aspected the microbial biomass trends has firstly the initial phase of exponential 

growth (maximum value equal to 1,47) with a subsequent decrease to 0,34 after 72 h.  
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Fig. 2-26 Concentration of glucose, biomass and pH for manure as function of time 

 

 

Fig. 2-27 Concentration of VFA and ethanol for manure as function of time 

 

The VFA and ethanol concentration is 7,3 mg/mL: this value is comparable to that observed with 

other biomass, confirming the occurrence of reactions (2.14-2.17) described above and a 

consequently increase of the solution acidification can explain the lower biogas production. It must 

be remembered that the manure is a more complex biomass compared to the lignocellulosic ones 
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due to the presence of a more dilute phase and methanogenic bacteria derived from cow digestion 

process that lead more difficult the growth of H2 producer bacteria. 

Figures 2-28 and 2-29 show the daily and cumulative biogas production. It is possible observed that 

for this biomass, the production of biogas and H2 is lower in comparison to ADH, ADHexp and 

SM. The total volume of biogas is equal to 106 mL with 64% vol of H2 (68 mL). 

 

 

Fig. 2-28 Cumulative biogas production for manure as function of time 

 

 

Fig. 2-29 Daily biogas production for manure as function of time 
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This behavior can be explained by the lower growth of the microbial biomass and appreciable 

production of VFA and ethanol. 

The volume of H2 is significantly increased from 15 mL to 68 (table 2-10) pointing the efficiency of 

the procedure used to promote the growth of bacteria hydrogen producers This is confirmed by the 

growth of microbial biomass from first and third tests. VFA and ethanol amount do not change 

significantly, suggesting that this parameter has lower effect on H2 production. 

 

Sample 
Microbial Biomass 

(ABS at 600 nm) 

VFA-Ethanol 

(mg/mL) 

H2 Volume 

(mL) 

Manure I 0,31 8 15 

Manure III  1,47 7,3 68 

Tab. 2-10 MB, VFA-Ethanol and H2 production for Manure I and Manure III tests  

 

2.7.2.5 Litter 

Figures 2-30 and 2-31 show the trend of liquid phase analysis for litter. The value of initial reducing 

sugars value is similar to that of manure (2,59 g/L) but concentration goes to zero more rapidly, 

after 24 h. Microbial biomass trend is similar to other biomass, with the initial phase of exponential 

growth with a maximum value equal to 1,93 and the death phase (up to 0,65 after72 h). The VFA 

and ethanol concentration is 9,12 mg/mL. These values are slightly higher than those obtained for 

the manure. It is important noted the presence of urine and feces of mice in the litter which 

represent a limit for the dark fermentation process because represents a fraction not digestible for 

H2-producer microbial consortium. 

Figures 2-32 and 2-33 show the cumulative and daily biogas production. The biogas production is 

essentially concentrated in the first day of fermentation because the reducing sugars goes to zero 

after 24 h while the values of the acids maintains high values (6,37 g/L). 
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Fig. 2-30 Concentration of glucose, biomass and pH for litter as function of time 

 

 

Fig. 2-31 Concentration of VFA and ethanol for litter as function of time 
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Fig. 2-32 Cumulative biogas production for litter as function of time 

 

The cumulative volume of biogas is 112 mL with 76,16 mL of H2 corresponding to 68% vol. This 

behavior could be to the lower reducing sugars content and the presence of compounds hardly 

digestible as observed for the manure. 

 

 

Fig. 2-33 Daily biogas production for litter as function of time 
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Sample 
Microbial Biomass 

(ABS at 600 nm) 

VFA-Ethanol 

(mg/mL) 

H2 Volume 

(mL) 

Litter I 0,33 13,9 19 

Litter III  1,93 9,12 76,16 

Tab. 2-11 MB, VFA-Ethanol and H2 production for Litter I and Litter III tests 

 

Table 2-11 shows the differences between the first and the third adaption of culture: it can be noted 

the increase of H2 production (from 19 to 76,16 mL) with an increase of the production of 

biohydrogen of 75%. 

 

2.7.2.6 OFMSW 

Figures 2-34 and 2-35 show the trends of liquid phase for OFMSW. It is important noted that the 

concentration of sugars, although is practically the same in comparison to ADH, ADHexp and SM 

(5 g/L), but goes to zero less rapidly. This is due to the fact that the OFMSW is a more 

heterogeneous biomass compared to the others, and contains substances that are digested more 

slowly by H2-producer bacteria. Also for OFMSW the higher value of microbial biomass is at 24 h 

with a value of 7,83 and 5,41 at 72 h.  

The VFA and ethanol concentration is about 7 mg/mL, value comparable with the results obtained 

for the other biomass analyzed. 

 

 

Fig. 2-34 Concentration of glucose, biomass and pH for OFMSW as function of time 
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Fig. 2-35 Concentration of VFA and ethanol for OFMSW as function of time 

 

Figures 2-36 and 2-37 show the cumulative and daily biogas production. The total volume of biogas 

product is 264 mL, with 176,4 mL of H2 (67 % vol). It is must be remarked that for the OFMSW, 

unlike the other biomasses analyzed, the production of a significant amount of biohydrogen up to 

the third day of fermentation (88 mL). This result is in agreement with the trend of reducing sugars 

and microbial biomass. 

 

 

Fig. 2-36 Cumulative biogas production for OFMSW as function of time 
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Fig. 2-37 Daily biogas production for OFMSW as function of time 

 

Sample 
Microbial Biomass 

(ABS at 600 nm) 

VFA-Ethanol 

(mg/mL) 

H2 Volume 

(mL) 

OFMSW I 5,10 12,6 98 

OFMSW III  7,83 7 176,4 

Tab. 2-12 MB, VFA-Ethanol and H2 production for OFMSW I and OFMSW III tests 

 

Table 2-12 report compares the results obtained in the first and third adaptions. It is possible noted 

the large increase of H2 volume produced (from 98 mL to 176,4) with an increment of 44%. The 

percentage increase is lower than manure and litter being comparable to ADH and ADHexp. This 

could be due to the presence of a wide variety of compounds present in OFMSW, making more 

difficult the microbial consortium to adapt to the substrate does hindering in some extent the H2 

production. 

 

2.8 Conclusions 

Figures 2-38 shows the cumulative biohydrogen production obtained with the biomass utilized in 

this PhD thesis. The best result has been obtained with ADH with 190 mL of H2. Manure gives the 

lower volume of H2 (68,4 mL). Table 2-13 summarize the results obtained. The comparison among 

the biomass is done by normalizing the production of hydrogen per unit mass and reducing sugars 

(colums 1,2,4,6 table 2-13). 
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Fig. 2-38 Cumulative Biohydrogen production vs Time (h) for biomass utilized 

 

Sample 
Reducing 

Sugars (g/L)  

H2 Volume  

(mL) 

mL H2/g 

Red.Sugars 

Biomass 

 (g) 

mL H2/g 

Biomass 

SM 5,0 125,4 25,08 / / 

ADH 5,0 190,1 38,02 20 9,50 

ADHexp 5,0 160,8 32,16 20 8,04 

Manure 2,14 68,04 31,79 20 3,40 

Litter 2,59 76,16 29,40 20 3,81 

OFMSW 5,0 176,4 35,28 20 8,82 

Tab. 2-13 Results obtained by DF of biomass utilized 

 

For each biomass can be observed a significative production of hydrogen per gram of reducing 

sugars, the range is 25,08 (SM)-38,02 (ADH), and for the volume of H2 per gram of biomass the 

data are in the range of 3,4 (Manure)-9,50 (ADH).  

The following conclusion can be drone from the results of DF tests: 

- the production of hydrogen via DF is concentrated mainly in the first 24 h of fermentation, 

while in the subsequent 48 h decreases up to run out to 96 h, according to several literature 

data [19,29,38]. The only exception is represented by the organic fraction, but this was to be 

expected, because as explained in section 2.7.15.6, the organic fraction presents more 

complex monomers to digest; 
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- the best results have been obtained with ADH, this type of biomass is very promising 

because it allows to obtain good yields of hydrogen, but also because it can be used in 

marginal lands, as well as having a lower cost compared to other lignocellulosic biomass;  

- the manure and the litter showed a lower production of biohydrogen. This could be due to 

the presence in the manure of a larger amount of methanogenic bacteria which inevitably 

lower the yield and in the litter of rat droppings that go to inhibit the DF process; 

- it has been successfully developed an experimental procedure able to enhance the growth of 

H2-producer bacteria to the detriment of methanogenic ones, and all the substrates utilized 

have been showed good results getting considerable increase in the production of hydrogen 

in the dark fermentation process. 
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Chapter 3: The Use of Biogas in Fuel Cells Technology: Adsorption Processes and Adsorbent 

Materials for Removal of Noxious Compounds 

3.1 Introduction 

Fuel cells are highly efficient, cost effective, and ultra-low emission power generation systems. The 

major application for FCs are stationary electric power plants, including cogeneration units, as 

motive power for vehicles and as on-board electric power for space vehicles or other closed 

environments [1]. The most promising progress on which European or worldwide programs [2–8] 

have concentrated concerns mainly polymer membranes fuel cells (PEMFCs). Nevertheless the 

molten carbonate (MCFCs) and solid oxide fuel cells (SOFCs) are competitors for the development 

of high power units due to the possibility of heat and electricity cogeneration. They can be fed with 

different kinds of fuels: natural gas, LPG, gaseous carbon, and liquid fuels (such as gasoline and 

diesel) and biogas [9, 10]. European environment agency (EEA) identified and prioritized five 

environmental and sectorial areas for energy production which the European Union has included in 

its Sixth Environment Action Programme as well as in its sustainable development strategy. 

Regarding climate change, there is a great interest to reduce greenhouse gases as well as to enhance 

the rational use of fossil fuels (energy efficiency and renewable and sustainable energy sources) 

[11]. 

One of the main guide lines for renewable energy in the European Union is the Renewable Energy 

Roadmap [12] which has the goal of raising the share of renewable energy in total energy 

consumption to 20 % by 2020. In 2004 that share amounted to 109 million tons oil equivalent 

(MTOE), or 6.25 % of the 1747 MTOE of energy consumed in the 25 EU member states, about two 

thirds of that, or 72 MTOE caming from biomass mainly the agricultural ones. 

Biomethane may play an important role in an integrated strategy to achieve ambitious targets for 

biofuels within Europe (25 % of total road transport in 2030) and worldwide. European market of 

the biomethane production is essentially developed in Germany where the first plants were started 

in 2007 and there were more efforts for regulatory the technical standard for its grid injection, 

furthermore other countries, as Austria, Switzerland, Sweden and the Netherland, have developed 

several plants for biomethane production [13]. Biomethane can be obtained from anaerobic 

decomposition of organic matter, and the most important sources are digestors (manure and agro-

forest matter) and landfills (municipal solid waste). Biogas composition is strongly dependent on 

the source and is within (50–75) % CH4, where the main contaminants are CO2 (up to 50 %) which 

lowers the calorific value of the gas and sulphuric acid (H2S) which could cause several problems 

on the plants and for human health: on the plants it causes corrosion (compressors, gas storage tank 
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and engines), while it is toxic after its inhalation [14–19]. Feedstocks used for biogas production 

and the corresponding composition and type of contaminants are reported in Table 3-1. 

 

Plant size Installed power Biogas Substrate 

Small size 10−100 kWel 

livestock effluents 

energy crops 

agricultural waste 

organic waste 

Medium size <1 MWel 

livestock effluents + energy 

crops + agricultural waste 

agro-industrial waste 

small wastewater treatment 

units 

Large size 1−10 MWel 

large-scale wastewater 

treatment units 

landfills 

Tab. 3-1 Classification of Biogas Substrate According to Power Plant Capacity [20] 

 

3.2 Substrates for bioga s production and impurities  

Three different plant categories are identified and classified as a function of installed power 

capacity of the biogas user. Connected to each category substrates considered for biogas production 

varied: the larger the power rating, the larger the biogas resources which have to be harvested. 

In the following, the different substrates are specified in more details: 

• Livestock effluents: manure from farm animals is used in most agricultural biogas plants; in 

practice manure is mixed with straw, bedding material fodder, and other residues from animal 

husbandry; 

• Energy crops; such crops are grown to be specifically used for energetic valorization whereas 

anaerobic digestion is one option; energy crops include (among others) cereals, corn, and grasses; 

• Agricultural waste: any kind of biological residue and green waste generated on a farm is 

considered in this substrate group; more precisely it includes plant residues, side products of 

agricultural production processes, sawdust, and other wastes; 

• Organic waste: small municipalities gather and separate waste from restaurants, abattoirs, other 

small-scale businesses, and households in order to utilize the organic waste fraction. 

Depending on the substrate used for biogas production the type and amount of impurities vary 

largely, according to Tables 3-2 and 3-3. 

The main contaminants in biogas produced from agricultural wastes and biological substrates are 

sulphur compounds among which hydrogen sulphide (H2S) is the most dominant one [22–24]. 
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In biogas stemming from food and animal waste as well as waste water halogenated compounds are 

present in very small trace amounts. Organic silicon compounds are only detected in landfill gas 

and from WWTU [24, 25]. Sulphur is present in nearly all biological compounds as part of amino 

acids such as methionine and cysteine [26]. In addition, biomass itself is made by up to <2 % (on 

weight basis of dry and ash-free biomass) of sulphur taken up through soil and air [27]. During 

digestion sulphur is converted into gaseous compounds including H2S, carbonyl sulpfde (COS), 

mercaptans, and disulphides among which H2S is the most common one [24]. 

Concentration levels of H2S in biogas along with the overall chemical buildup of biogas vary 

significantly depending not only on substrate but also on operating conditions. Sklorz et al. [28] 

observed the H2S concentration fluctuations in a 45 kWe biogas plant using a gas engine for power 

generation due to microorganism or chemical reactions of H2S in coordination with galvanized steel 

tubing, mechanical stirring, to the injection of new batch of fresh sulphur-containing matter. 

Not only H2S is present in biogas but other sulphur compounds [29] such as methanethiol (CH3SH) 

propanethiol (C3H7SH), butanethiol (C4H9SH), and dimethylsulphide (DMS), with levels that at 

time even surpass those of H2S. As a consequence, at least two gas-cleaning steps are needed for 

effective biogas cleaning: one step to remove bulk H2S concentration and a second step to remove 

remaining sulphur compounds because H2S removal should be not enough to remove other sulphur 

compounds [24]. Halogens are contained in waste in the form of kitchen salts and polymers 

(polytetrafluoroethylene PTFE polyvinyl chloride PVC) As such these compounds are mostly found 

in biogas from landfills [24,25, 30]. The presence of halogens in biological substances is due to the 

uptake by the plants through salts which are washed out of the soils. On average chlorine build up 

in plants amounts to < 1% wt. The quantities of halogens reported in literature are below 1 ppm 

[18,29,31,32]. 

 

Composition Natural Gas Waste Water Food Waste 
Animal 

Waste 
Landfill 

CH4 (vol %) 80−100 50−60 50−70 45−60 40−55 

CO2 (vol %) <3 30-40 25-45 35-50 35-50 

N2 (vol %) <3 <4 <4 <4 <20 

O2 (vol %) <0.2 <1 <1 <1 <2 

H2S (ppm) <0.1 <400 <10000 <100 <200 

Non H2S 

sulphur (ppm) 
<10 <1 <1000 <30 <30 

Halogens 

(ppm) 
<0.1 <0.2 <0.2 <0.2 <100 

Moisture (%) <0.02 ~ 3 ~ 3 ~ 3 ~ 3 

Tab. 3-2 Biogas Composition for Different Biogas Plant Types [21] 
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Species Contaminants 
Average value  

(ppm) 

Maximum value 

(ppm) 

Sulphur compounds H2S 400 2987 

Siloxanes 
D4 

D5 

0.825 

1.689 

20.144 

18.129 

Halogens 

Dichloromethane 

Chlorobenzene 

Dichlorobenzene 

0.082 

0.255 

0.254 

0.052 

0.693 

0.610 

Tab. 3-3 Average and Maximum Values of the main contaminants in biogas from WWTU [20] 

 

3.3 Biogas to biomethane 

The biogas has different applications, such as a source for heat, steam, and electricity, household 

fuel for cooking, fuel cell, and can be further upgraded to vehicle fuel, or for production of 

chemicals and is a very promising technology for generating bioenergy [17,33,34]. 

The presence of CO2 is a major problem in the biogas and its removal is needed to mprove the 

calorific value and the relative density according to the specifications of the Wobbe index [35]. 

However, it is well assessed that the removal of H2S (that can be performed both during digestion 

(in situ) or after digestion) [36] can be of crucial point to the technological and economic feasibility 

of upgrading process of the gas. 

The removal of CO2 from biogas to obtain biomethane with purity above 98% is the most expensive 

step in the upgrading. Depending on the extraction method employed in landfills, nitrogen can also 

be found as a contaminant with contents up to 10%. Water washing, amine scrubbing, pressure 

swing adsorption (PSA), and membranes are commercial technologies already available to remove 

CO2 from biogas, although it is recognized that the energy consumption of actual technologies can 

be improved.  

In order to convert biogas into biomethane two major steps are performed: (1) a cleaning process to 

remove the trace components and (2) an upgrading process to adjust the calorific value. Upgrading 

is generally performed in order to meet the standards for use as vehicle fuel or for injection in the 

natural gas grid [18]. 

The basic gas upgrading steps include: water vapor removal, H2S removal, CO2 removal, and 

siloxane and trace gas removal.  

A number of techniques have been developed to remove H2S from biogas. Air dosing to the biogas 

and addition of iron chloride into the digester tank are two procedures that remove H2S during 

digestion. Techniques such as adsorption on probe materials or absorption in liquids remove H2S 

after digestion. Subsequently, trace components like siloxanes, hydrocarbons, ammonia, oxygen, 
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carbon monoxide and nitrogen can require extra removal steps, if not sufficiently removed by other 

treatment steps. Finally, CH4 must be separated from CO2 using pressure swing adsorption, 

membrane separation, physical or chemical CO2-absorption [18]  

 

3.4 Biogas Upgrading 

3.4.1 Removal of oxygen/air 

Oxygen and in part also nitrogen indicate that air has intruded the digester or landfill gas collector. 

This occurs quite often in landfills where the gas is collected through permeable tubes by providing 

a slight vacuum. Small concentrations (0-4%) of oxygen are harmless. Biogas in air with a methane 

content of 60% is explosive between 6 and 12%, depending on the temperature [18]. 

 

3.4.2 Removal of water 

Physical drying methods (condensation) 

The simplest way of removing excess water vapor is the refrigeration. This method can only lower 

the dewpoint to 0.5 °C due to problems with freezing on the surface of the heat exchanger. To 

achieve lower dewpoints the gas has to be compressed before cooling and then later expanded to the 

desired pressure. The lower the dew point, the higher pressure is needed to be applied [35].  

The condensed water droplets are entrapped and removed. The physical drying methods prevent 

water contact with downstream equipment like compressors, pipes, activated carbon beds and other 

parts of the process, thus avoiding the problem of corrosion. 

Techniques using physical separation of condensed water include: demisters in which liquid 

particles are separated with a wired mesh (0.5-2 nm). A dewpoint of 2-20 °C (atmospheric pressure) 

can be reached; cyclone separators in which water droplets are separated using centrifugal forces; 

moisture traps in which the condensation takes place by expansion, causing a low temperature that 

condenses the water; water taps in the biogas pipe from which condensed water can be removed 

[18,37].  

Chemical drying methods (adsorption or absorption) 

These techniques are usually applied at elevated pressures. At atmospheric pressure only a small 

amount of water is removed by the absorption and adsorption techniques. 

Adsorption using alumina or zeolites/molecular sieves is the most common technique [38-42]   

Methods based on gas drying include: adsorption of water vapour on silica [43] or alumina [44, 45] 

or equal chemical components that can bind water molecules (adsorption dryer). 
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The gas is pressurized and led through a column filled with silica. Usually two columns are used in 

parallel: one column adsorbs water, while the other is being regenerated. Regeneration is achieved 

by evaporating the water through decompression and heating. 

Absorption of water in triethylene glycol  

Drying takes place by using the water binding component triethylene glycol. Used glycol is pumped 

into a regeneration unit, where a temperature of 200° C is used to regenerate the glycol. Dew points 

from -5 to -15°C (atmospheric pressure) can be reached [37]. 

Absorption of water with hygroscopic salts  

The salt is dissolved as it absorbs water from the biogas. The saturated salt solution is withdrawn 

from the bottom of the vessel. The salt is not regenerated and new salt granules have to be added to 

replace the dissolved salt [35]. 

 

3.4.3 Removal of CO2 

Upgrading biogas to natural gas quality needs the removal of CO2 in order to obtain the quality that 

meets the Wobbe Index [18,35]. 

Depending on its use (pipeline or vehicle fuel), biomethane consists typically of 97-99% methane 

and 1-3% CO2. Typical pipeline specifications require a CO2 content of less than 3% whereas 

vehicle fuel specifications require a combined CO2N2 content of 1.5-4.5% [37]. One of the 

following techniques can be used to remove CO2 from the biogas: (1) physical and chemical CO2-

absorption, (2) Pressure Swing Adsorption (PSA) and Vacuum Swing Adsorption (VSA), (3) 

membrane separation, (4) cryogenic separation and (5) biological methane enrichment (Table 3-4) 

[17, 35,37,46-57]. 

Physical and chemical CO2-absorption 

This technique is based on the separation of CO2 and CH4 by using an absorbent. One of the 

methods is the use of water as physical absorbent: CO2 is separated from the biogas by washing 

with water at high pressure. Alternatively, biogas can be upgraded by chemical absorption with 

amines. CO2 is absorbed in the liquid and reacts at quasi atmospheric pressure with the chemical 

substance in the absorption column [58,59]. 

 

Method Advantages Disadvantages 

Absorption with water 

High efficiency (>97% CH4) 

Simultaneous removal of H2S 

When H2S < 300 cm3 m-3 

Easy in operation 

Capacity is adjustable by changing 

pressure 

or temperature 

Expensive investment 

Expensive operation 

Clogging due to bacterial growth 

Foaming possible 

Low flexibility toward variation of 

input gas 
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Regeneration possible 

Low CH4 losses (<2%) 

Tolerant for impurities 

Absorption with 

polyethylene glycol 

 

High efficiency (>97% CH4) 

Simultaneous removal of organic S 

components, 

H2S, NH3, HCN and H2O 

Energetic more favorable than water 

Regenerative 

Low CH4 losses 

Expensive investment 

Expensive operation 

Difficult in operation Incomplete 

regeneration 

when stripping/vacuum (boiling 

required) 

Reduced operation when dilution of 

glycol 

with water 

Chemical absorption 

with amines 

 

High efficiency (>99% CH4) 

Cheap operation 

Regenerative 

More CO2 dissolved per unit of 

volume 

(compared to water) 

Very low CH4 losses (<0.1%) 

Expensive investment 

Heat required for regeneration 

Corrosion 

Decomposition and poisoning of the 

amines by O2 

or other chemicals 

Precipitation of salts 

Foaming possible 

PSA/VSA 

Carbon molecular sieves 

Molecular sieves (zeolites) 

Alumina silicates 

 

Highly efficient (95-98% CH4) 

H2S is removed 

Low energy use: high pressure, but 

regenerative 

Compact technique 

Also for small capacities 

Tolerant to impurities 

Expensive investment 

Expensive operation 

Extensive process control needed 

CH4 losses when malfunctioning of 

valves 

Membrane technology 

Gas/gas 

Gas/liquid 

 

H2S and H2O are removed 

Simple construction 

Simple operation 

High reliability 

Small gas flows treated without 

proportional 

increase of costs 

Gas/gas 

Removal efficiency: 

<92% CH4 (1 step) or > 96% CH4 

H2O is removed 

Gas/liquid 

Removal efficiency: > 96% CH4 

Cheap investment and operation 

Pure CO2 can be obtained 

Low membrane selectivity: 

compromise between 

purity of CH4 and amount of 

upgraded biogas 

Multiple steps required (modular 

system) to reach 

high purity 

CH4 losses 

Little operational experience 

Cryogenic separation 

 

90-98% CH4 can be reached 

CO2 and CH4 in high purity 

Low extra energy cost to reach liquid 

biomethane (LBM) 

Expensive investment and operation 

CO2 can remain in the CH4 

Biological removal 

 

Removal of H2S and CO2 

Enrichment of CH4 

No unwanted end products 

Addition of H2 

Experimental e not at large scale 

Tab. 3-4 Advantages and disadvantages of techniques for removal of CO2 [18] 
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Pressure swing adsorption (PSA), vacuum swing adsorption (VSA) 

PSA and VSA use a column filled with a molecular sieve, typically activated carbon, silicagel, 

alumina or zeolite, for differential adsorption of the gases CO2 and H2O, allowing CH4 pass through 

[47,49]. The molecules are adsorbed loosely in the cavities of the molecular sieve and not 

irreversible bound [46]. It is a cyclic batch process where adsorption is performed on a relatively 

higher pressure (around 800 kPa) and desorption (regeneration) at lower pressure [51]. H2S, 

adsorbing irreversibly, must be removed before the PSA or VSA unit to prevent poisoning of the 

molecular sieve. PSA and VSA are similar systems, but VSA has a supplementary vacuum pump: 

the differential pressure is situated at lower absolute pressure. Adsorption takes place on a gas under 

pressure, desorption at vacuum [50]. 

 

3.5 Membrane separation 

Membrane separation is based on the selective permeability property of membranes. Two systems 

are proposed: (1) gas-gas separation with a gas phase at both sides of the membrane and (2) gas-

liquid absorption separation with a liquid absorbing the diffused molecules. Due to imperfect 

separation, multiple stages may be required [46]. Because of this, an increase in methane loss is 

obtained. This can be partly prevented by recirculation [60]. 

A demonstration plant that use membranes for biogas upgrading through has been installed at 

Bruck/Leitha in the south of Austria [61]; the membranes used are hollow fiber type and the 

operative pressure is of about 8–9 bar. The process is carried out in two stages and biomethane 

concentration was of about 98% in volume that is injected into the local gas grid. This technology is 

capable of removing also small concentrations of H2S. 

Several literature studies show the industrial applicability of the processes in polymeric membranes 

for the separation of carbon dioxide from biogas [62-79]. At the actual state polymeric membranes 

show a good level of competitiveness with conventional technologies for CO2 and H2S separation 

from biogas. Biogas upgrading plant and other equipment used are located at the ENEA Trisaia 

(Italy) research centre [80]. The polymer membranes are PEEK and works up to 48 bar, with a 

differential pressure 41 bar in a range of temperature 5–70 °C in line with the operational regimes 

of the biogas plants. The H2S presence in the biogas do not represents a problem in term of 

separation stage using PEEK polymeric membrane, but its selectivity was of about 50%. Best 

performing could be carried out using multiple stage separation processes where is possible to work 

with low operative pressure in the feed stream.  
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3.6 Cryogenic separation 

Taking into account that CH4, CO2 and other impurities liquefy in different temperature/pressure 

areas, it is possible to produce biomethane by cooling and compressing the biogas. The liquid CO2 

should also dissolve and thus separate the remaining impurities from the gas. The raw biogas is 

compressed till 8000 kPa. Compression is done in different stadia with interim refrigeration. The 

compressed gas needs to be dried in advance, to prevent freezing in the following cooling steps. The 

dried and compressed biogas is eventually cooled till -45 °C. The condensed CO2 is removed and 

treated in a next step to recover the remaining CH4. The biogas is cooled further to -55 °C and 

afterward expanded to 800 1000 kPa in an expansion tank, reaching a temperature of about -110 °C. 

In these conditions, there is a gas-solid phase balance, with the solid phase being CO2 and the 

gaseous phase containing more than 97% CH4. The CH4 gas stream is collected and heated before 

leaving the plant [35,81]. 

 

3.7 Biological methane enrichment 

Biological methane enrichment was recently studied [57,82, 83]. 

Strevett et al. [57] investigated the mechanism and kinetics of chemo-autotrophic biogas upgrading. 

Different methanogens using only CO2 as a carbon source and H2 as an energy source were 

examined. The selection between mesophilic and thermophilic operation temperatures must be 

properly chosen. Thermophilic methanogens exhibit rapid methanogenesis, while mesophilic 

bacteria give more complete conversion of the available CO2 [57]. The authors selected 

Methanobacterium thermoautotrophicum that works optimally at temperatures of 65-70 °C and has 

a specific requirement for H2S, so leading to the removal of further unwanted compounds. 

 

3.8 Removal of H2S 

Due to the damage that H2S can cause in several parts of the plants, it is typically removed in an 

early state of the biogas upgrading process. Several techniques are applied: (1) removal of H2S  

during digestion and (2) removal of H2S after digestion (Table 3-5) [35,46-50,81]. 
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Method Advantages Disadvantages 

Biological with O2/air (in filter/ 

scrubber/digester) 

Cheap investment and exploitation: 

low electricity 

and heat requirements, no extra 

chemicals or equipment required 

Simple operation and maintenance 

Concentration H2S still high (100-300 

cm3 m-3) 

Excess O2/N2 in biogas implies 

difficult upgrading 

or additional cleaning. Overdosing air 

results in explosive mixture 

FeCl3/FeCl2/FeSO4 (in digester) 

Cheap investment: storage tank and 

dosing pump 

Low electricity and heat requirements 

Simple operation and maintenance 

Compact technique 

H2S not in biogas wire 

No air in biogas 

Low efficiency (100-150 cm3 m-3) 

Expensive operation (iron salt) 

Changes in pH/temp not beneficial 

for the digestion process 

Correct dosing is difficult 

Fe2O3/Fe(OH)3-bed High removal efficiency: >99% Sensitive for water 

Rust steel wool 

impregnated wood chips 

or pellets 

Mercaptanes are also captured 

Cheap investment 

Simple 

Expensive operation costs, 

Regeneration is exothermic: risk of 

ignition of chips 

Reaction surface reduced each cycle 

Released dust can be toxic 

Absorption in water 

H2S <15 cm3 m-3 

Cheap when water is available (not 

regenerative) 

CO2 is also removed 

Expensive operation: high pressure, 

low temperature 

Difficult technique 

Clogging of the absorption column 

possible 

Chemical absorption 

NaOH 

FeCl3 

Low electricity requirement 

Smaller volume, less pumping, 

smaller vessels 

(compared to absorption in H2O) 

Low CH4 losses 

Expensive investment & operation 

More difficult technique 

Not regenerative 

Chemical absorption 

Fe(OH)3 

Fe-EDTA 

Cooab 

High removal efficiency: 95-100 % 

Cheap operation 

Small volume required 

Regenerative 

Low CH4 losses 

Difficult technique 

Regeneration through oxygenation 

CO2  H2CO3 (using EDTA) leads 

to precipitation 

Build up of thiosulfates from chelates 

+ H2S 

(using EDTA) 

Membranes 
Removal of >98 % is possible 

CO2 is also removed 

Expensive operation and maintenance 

Complex 

Biological filter 
High removal possible: >97 % 

Low operational cost 

Extra H2S-treatment to reach pipeline 

quality; O2/N2 in biogas implies 

difficult and additional upgrading 

steps 

Adsorption on activated carbon 

(Impregnated with KI 1-5 %) 

High efficiency (H2S <3 cm3 m-3) 

High purification rate 

Low operation temperature 

Compact technique 

High loading capacity 

Expensive investment and operation 

CH4 losses 

H2O and O2 needed to remove H2S 

H2O can occupy the binding places of 

H2S; Regeneration at 450 °C 

Residue present till 850 °C 

Tab. 3-5 Advantages and disadvantages of techniques for removal of H2S [18] 
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3.9 Removal of H2S during digestion 

To choose an appropriate technique for H2S removal, the technique to remove CO2 should be 

considered first. A technique such as absorption in water or selexol, membranes or PSA/VSA that 

removes H2S as well as CO2, will make an additional technique for the removal of H2S unnecessary, 

unless H2S is present in high concentrations (>300 cm3m-3). A CO2 removal technique such as 

absorption with amines, that does not explicitly eliminate H2S, will necessitate an additional 

removal step such as absorption in a NaOH-solution, absorption on hygroscopic salt and reaction in 

a Fe2O3-bed. H2S can be treated directly in the digester vessel. The sulphide either reacts with a 

metal ion to form an insoluble metal sulphide or is oxidized to elementary sulphur [35,81]. 

Air/oxygen dosing to the biogas system  

This technique is based on the biological aerobic oxidation of H2S to elemental sulphur by a group 

of specific bacteria [18]. 

Most of sulphide oxidizing micro-organisms (Thiobacillus) are autotrophic [84-87] and use CO2 

from the biogas as source of carbon. They grow on the surface of the digestate or on the framework 

of the digester and do not require inoculation. The following reaction occurs in the 

biogas: 

 

2H2S + O2 →2S + 2H2O          (3.1) 

 

not only elemental sulphur, but also sulfate is formed, which can cause corrosion in solutions. A 

certain amount (2-6%) of O2 required for the reaction, is introduced in the biogas. A reduction of 

H2S concentrations down to 20-100 cm3m-3 and a removal efficiency of 80-99% can be achieved 

[46,47] but the remaining concentrations may still be too large [37]. Safety measures have to be 

taken to avoid overdosing of air since biogas in air (6-12%) is an explosive mixture. Moreover, care 

has to be taken to guarantee anaerobic conditions.  

Addition of iron chloride into the digester 

Commonly FeCl2/FeCl3 is added during digestion to reduce the concentration of H2S to a few 

hundred cm3m-3. Precautions should be taken to prevent O2 and N2 from entering the biogas, rather 

than to remove them [35,46,47,81].  

Iron chloride can be dosed directly into the digester or through the influent mixing tank. It reacts 

with the H2S present in the biogas to form FeS (particles) according to Eqs (3.2) and (3.3). The 

precipitation reaction of the iron salt can be written as follows: 

 

2Fe3+ + 3S2- → 2FeS + S          (3.2) 
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Fe2+ + S2- → FeS           (3.3) 

 

This method is very efficient in reducing high concentrations of H2S, since a reduction of H2S 

concentration down to 100 cm3 m-3 can be achieved [37], but does not allow the attainment of a low 

and stable level of hydrogen sulphide [47].  

 

3.10 Removal of H2S after digestion 

Adsorption using iron oxide or hydroxide 

Hydrogen sulphide reacts easily with iron oxide, iron hydroxide and zinc oxide and forms iron 

sulphide or zinc sulphide respectively [18]. This process is often referred to as “iron sponge” 

because rust-covered steel wool may be used to form the reaction bed. 

Iron oxide and iron hydroxide react with H2S in the biogas according to following reactions 

 

Fe2O3 + 3H2S → Fe2S3 + 3H2O         (3.4) 

2Fe(OH)3 + 3H2S →Fe2S3 + 6H2O         (3.5) 

 

The reaction is slightly endothermic: a temperature minimum of about 12°C is required, but the 

optimal conditions are between 25 and 50°C. Condensation of water on the iron oxide should be 

avoided since the iron oxide material will link together with water which reducing the surface [3]. 

The iron oxide can be regenerated with oxygen according to the following reaction: 

 

2Fe2S3 + 3O2 → 2Fe2O3 + 6S         (3.6) 

 

Physical and chemical absorption with liquids 

Physical absorption removes H2S by absorption in water or an organic solvent [18,37,88-90]. The 

most common solvent is water although operational problems due to the growth of micro-organisms 

on the packing occur. 

Two types of water absorption processes are commonly used for the upgrading of biogas: single 

pass absorption and regenerative absorption [48]. A high consumption of water is needed in the case 

of absence of regeneration steps. 

Chemical absorption liquids that can be used are diluted NaOH-solution: NaOH reacts with H2S to 

form Na2S or NaHS which precipitates. The formed sodium salts are not regenerative and have to 

be disposed of FeCl2-solution: FeCl2 f reacts with H2S to form insoluble FeS that needs to be 
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removed; Fe(OH)3-solution: H2S is removed using Fe(OH)3 resulting in the formation of Fe2S3. 

Regeneration is done with oxygen or air (closed system) [18,37,91,92]. 

Horikawa et al. [93] investigated chemical absorption of H2S in an Fe(III)-EDTA catalyst solution. 

In this process, H2S is dissolved in an aqueous solution and catalytically removed by a chelated iron 

according to the following reaction: 

 

S2- + 2Fe3+ = S + 2Fe2+         (3.7) 

 

The sulphur produced is easily separated by sedimentation or filtration from the Fe-EDTA-solution. 

Regeneration of the aqueous Fe-EDTA-solution is done by oxygenation according to Eq. (3.8): 

 

½O2(aq) + 2Fe2+ = 2Fe3+ + 2OH-         (3.8) 

 

The regeneration the Fe-EDTA-solution allows a large consumption of chemicals. The process can 

be carried out at ambient temperature and is highly selective in removing H2S: the volumes CH4 and 

CO2 present in biogas remain nearly constant. A removal of 90-100% can be obtained for biogas 

containing 2.2% H2S at a gas flow of 1 dm3 min-1, and at a solution flow of 83.6 cm3 min-1 and an 

inlet biogas pressure of 220 kPa [93]. At lower catalytic solution flow, lower absorption efficiency 

is obtained. At lower inlet H2S concentration higher absorption efficiency is obtained. Therefore, 

the total removal of H2S depends on the use of the adequate ratio of gas to liquid flow rates [93]. 

 

3.11 Separation of H2S with Membrane 

H2S can be separated from the gas by the use of semi-permeable membranes. H2S (and CO2) can 

pass the membrane whereas CH4 cannot [18,37]. In addition, gas-liquid absorption membranes can 

be used. The membranes are micro porous and have hydrophobic properties: the molecules in the 

gas stream, flowing in one direction, diffuse through the membrane and are absorbed on the other 

side by the liquid, flowing in counter current. At a temperature of 25-35°C the H2S concentration of 

the raw gas of 2% could be reduced to less than 250 cm3m-3 thus yielding an efficiency of more 

than 98%. NaOH is used as the absorb in liquid [18,46].  

 

3.12 Biological filter  

This method is similar to the technique where air/O2 was added to the digestion tank. It is based on 

the use of specific bacteria that are able to oxidize H2S. Air (4-6%) is added to the biogas the filter 

bed; H2S is absorbed in the liquid phase, that is gas condensate and liquid from effluent slurry 
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separation. After absorption, H2S is oxidized by the bacteria, growing on the filter bed. The 

temperature is about 35°C that the promotes the biological process. Sulphur is retained in the liquid 

of the filter [18,35,37,79]. Biological filtration is required in several plants for removing odors 

(oxygen rich situation) [47] and in some cases to remove H2S from biogas. This technique has the 

advantage of low costs in comparison to chemical cleaning. The method is also able to remove 

ammonia from the biogas. With addition of air to the biological filters, the H2S content can be 

decreased from 2000-3000 to 50-100 cm3 m-3. Some works reported H2S reduction from 800 to 10 

cm3 m-3 [35,79]. 

Among the several gas purification processes proposed to eliminate H2S, such as chemical 

scrubbing, physical adsorption [92], electrochemical treatment [93], and biofiltration [94,95] the 

physical and chemical treatments suffer the disadvantages of high costs and secondary pollutants 

production although are rapid and efficient. On the contrary biological treatment that directly 

metabolize H2S into sulfate has receiving increasing attention. It is reported that the drop in pH 

caused by sulfate accumulation has negative effects [96-101], therefore, studies on biological 

processes have focused on removing low H2S concentrations (10–50 ppm) to prevent rapid pH drop 

[102-106]. 

Other studies that combined chemical and biological processes for both H2S elimination and ferric 

iron regeneration by Acidithiobacillus ferrooxidans have been reported [107-109]. These processes 

are based on two reactions as follows: the inlet H2S is first oxidized with a ferric iron solution and 

yields elemental sulphur, and the reduced ferrous iron is then reoxidized by A. ferrooxidans in the 

biological process. 

Separate studies that focused on chemical absorption [110,111] and biological oxidation [109,112] 

were proposed. For instance, when the inlet H2S concentration is lower than 300 ppm, the rate-

limiting step for the chemical absorption process is the mass-transfer limitation, as revealed by 

model validation [113]. When the system has a high inlet H2S concentration (e.g., above 1500 

ppm), the H2S removal efficiency is significantly maintained via long GRT (gas retention time) and 

stable ferric iron concentration in the chemical reactor [114]. In the biological reaction, Mesa et al. 

[115] investigated the continuous oxidation efficiency of ferrous iron by using immobilized A. 

ferrooxidans. However, studies that focused on the combined and continuous operation are limited. 

In the present study, the chemical absorption reactor and the biological oxidation reactor with 

immobilized A. ferrooxidans CP9 were connected and then examined in both laboratory and pilot 

scales to evaluate the performance of H2S elimination. In the laboratory-scale study, optimal 

operating parameters such as GRT, temperature, and H2S inlet loading were examined. In the pilot-

scale study, the biogas with an average H2S concentration of 1645 ppm was introduced into the 
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chemical–biological system. The long-term performance was examined, and the results demonstrate 

that the chemical–biological process effectively removed H2S from the biogas. 

Biotrickling filters work by passing a stream of contamined air through a chemically inert packing 

material over which an aqueous phase is continuously trickled. Microorganisms grow as biofilms on 

the surface of the packing material by using pollutants transferred from the gas to the biofilm as 

energy and/or carbon sources. The effect of CH3SH in the removal of H2S in biogas in biotrickling 

filters has not been explored yet although there are few references in the co-treatment of low loads 

of CH3SH and H2S for odour removal [106,116]. 

The biological oxidation of H2S in aerobic (Eqs. 3.9 and 3.10) and anoxic (Eq. 3.11) biotrickling 

filters occurs according the following scheme [100,117] 

 

H2S + ½ O2 → S° + H2O         (3.9) 

H2S + 2O2 → SO4
-2 + 2H+         (3.10) 

15NO3
- + 12H2S → 9H2O + 6S° + 6SO4

-2 + 5NO2
- + 5N2 + 2OH- + 4H+   (3.11) 

 

Eq. (3.3) involves both complete and partial denitrification coupled to complete and partial H2S 

oxidation [118]. In both cases the principal products are sulphate and elemental sulphur. The risk of 

clogging by elemental sulphur formation is the most important bottleneck for stable, long-term 

operation in biotrickling filters. 

The ratio between the available electron acceptor and H2S i.e. O2/H2S and NO3-/H2S in aerobic and 

anoxic biotrockling filter are the key parameters to end up with a certain SO4
-2/S° produced ratio 

[100,119]. 

The biological oxidation of CH3SH under aerobic conditions produces formaldehyde and H2S 

intermediate product [120]. The overall reaction can be expressed by Eq. (3.12) [121] 

 

2CH3SH + 7O2 → 2CO2 + 2H2SO4 + H2O       (3.12) 

 

Chemical oxidation of CH3SH to DMDS in an aerobic reactor has been reported according to Eq. 

(3.13) [122] 

 

2CH3SH + 1/2O2 → CH3SSCH3 + H2O       (3.13) 

 

Recently van Leerdam [122,123] have found that CH3SH also reacts chemically with biosulphur 

particles at pH 8.7 to form DMDS and other polysulphided according to  
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2CH3S
- + H+ + 1/8S8 = HS- + CH3SSCH3       (3.14) 

2CH3S
- + S8 = Sy

2- + CH3SxCH3 (with x+y=10)      (3.15) 

 

The main product of these reactions are dimehyl polisulphides (DMDS and dimethyl trisulphide 

(DMTS)) and some longer-chain dimethyl polysulphides. 

DMDS and DMTS are less inhibitory than CH3SH on biological (poly)sulphide oxidation [124]. 

H2S and methylmercaptan (CH3SH) are the most common sulphur compounds found in biogas.  

Montebello et al [99] studied the simultaneous removal of H2S and CH3SH was tested at neutral pH 

in two biotrackling filters one operated under aerobic conditions and the other one under anoxic 

conditions. Both reactors were run for several months treating H2S concentration of around 2000 

ppm and CH3SH in the range 10-75 ppm. Maximum removal capacities of around 1.8 g S-CH3SH 

m-3h-1 were observed by stepwise increasing CH3SH concentrations from 0 to 75-90 ppm(v) at a 

constant H2S loading rate of 53-63 gS-H2S m-3h-1. Maximum H2S elimination capacities for both 

reactors were between 100 and 140 gS-H2S m-3h-1. 

A negative influence was found in the elimination capacities of CH3S by the presence of high H2S 

in both biotrckling filters. CH3SH chemically reacts with elemental sulphur at neutral pH enhancing 

the overall reactors performance by reducing the impact of sulphur accumulation. Both reactors 

were also able to treat CH3S without prior inoculation because of the already existing sulphide-

oxidazing microorganisms grown in the reactors during H2S treatment. Co-treatment of H2S and 

CH3SH under aerobic and anoxic conditions was considered as a feasible operation for 

concentrations commonly found in biogas (2000 ppm of H2S and below 20 ppm of CH3SH).  

A chemical–biological process has been proposed by Ho et al. [107] to remove a high concentration 

of H2S in biogas. The high iron concentration tolerance (20 g L-1) of Acidithiobacillus ferrooxidans 

CP9 provided sufficient ferric iron level for stable and efficient H2S removal. The results showed 

that the H2S removal efficiency reached 98% for 1500 ppm H2S. The optimal ferric iron 

concentration was kept between 9 and 11 g L-1 with a cell density of 108 CFU g-1 granular activated 

carbon and a loading of 15 g S m-3 h-1. In pilot-scale studies for biogas purification, the average 

inlet H2S concentration was 1645 ppm with a removal efficiency of up to 97% for a 311 operation 

days and an inlet loading 40.8 g S m-3 h-1. 

Removal of H2S up to <100 ppm by in situ precipitation was reported by several authors 

[20,125,126].  The remaining content of H2S which is not removed by bacterial activity is cleaned 

by adsorption on ZnO ideally reaching concentrations levels of <1 ppm [127]. 
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Trace impurities are removed in a final step by an adsorption bed of activated carbon aiming for 

concentration levels <1 ppm [128]. 

 

3.13 Adsorption on activated carbon 

H2S can also be removed by using activated carbon, which is often dosed with KI or sulphuric acid 

(H2SO4) to increase the reaction rate. Before entering the carbon bed 4-6% air is added to the biogas 

and H2S is catalytically converted to elemental sulphur and water in biological filters, according to 

Eq. (3.16):  

2H2S + O2 → 2S + 2H2O         (3.16) 

 

The elementary sulphur is adsorbed by the activated carbon. Best efficiency is obtained at pressures 

of 700-800 kPa and temperatures of 50-70°C that can be achieved through heat generation during 

compression. In continuous process the system consists of two vessels [35,46,79]: one vessel for 

adsorption and the other for regeneration. Regeneration can be performed with hot nitrogen (inert 

gas) or steam. The sulphur is vaporized and, after cooling, liquefied at approximately 130°C. 

Typically, the activated carbon is replaced rather than regenerated [18,35,46,79]. 

 

3.14 Ammonia stripping 

Anaerobic digestion effluent typically contains high amounts of ammonium, phosphate, suspended 

solid (SS), and persistent organic substrate, which has been generally applied as a fertilizer for 

recycling the nutrients in agricultural field [129]. However, the excessive application of digested 

effluent in agricultural areas is the probable cause of nitrogen pollution in farming areas [130]. The 

high ammonia, phosphate and SS contents of anaerobic digestion effluent are generally difficult of 

access to conventional biological treatment processes such as activated sludge process [131,132], 

soil trench system, etc. [133]. In addition, the relatively low chemical oxygen demand/total nitrogen 

(COD/TN) ratio [129-131] is insufficient to facilitate efficient TN removal. Meinhold et al. [134] 

suggested that the COD/TN ratio for efficient TN removal by nitrification and denitrification in an 

activated sludge process should be between 4 and 5. Hence, physico-chemical pre-treatments such 

as ammonia stripping, ion exchange, membrane processes, and chemical precipitation are required 

to lower the concentration of ammonia, phosphate, and SS prior to application to biological 

treatment processes. Ammonia stripping has been successfully applied in pretreating pig slurry 

[135,136], landfill leachate [137], urea fertilizer plant wastes [138], etc. However, researches on the 

application of ammonia stripping to anaerobic digested effluent are limited. Further, the optimal 
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Ca(OH)2 dosage must also be studied because of the different C, N, and P concentrations and pH 

buffer capacity of anaerobic digested effluent.  

Lei et al. [139] showed that an overdose of calcium hydroxide, i.e., 27.5 g/L wastewater, achieved 

higher ammonia, phosphorus, chemical oxygen demand, suspended solids, and turbidity removal 

efficiency. The pH of the anaerobic digestion effluent can be increased from about 7 to about 9 by 

CO2 stripping. It was roughly estimated that 43 m3 of biogas (CH4:CO2 ≈60%:40%) produced daily 

could be purified to CH4:CO2 ≈74%:26% by neutralizing the pH of the 5m3 anaerobic digestion 

effluent pretreated by ammonia stripping. 

 

3.15 Materials for Sulphur Removal: Activate carbons and Zeolites 

At present adsorption technology is recognised to be the most common technology applied to reach 

ultra-low sulphur levels for fuel cells applications. Activated carbon is one of the most versatile 

adsorbents known with high removal efficiency, low costs reusability and possible product recovery 

[16,140-155]. However there are many other commercial adsorbents used for fuels desulphurization 

at ambient temperature and pressure such as silica, alumina, zeolites and some metal oxides [156-

166].  

Aslam et al. [147] reported the study of activated carbon (AC) made from waste oil fly ash (OFA) 

which is produced in large quantities from power generation plants through combustion of heavy 

fuel oil. OFA contains ∼80 % C that makes it suitable for producing AC by physicochemical 

treatments using a mixture of HNO3, H2SO4, and H3PO4 acids to remove non-carbonaceous 

impurities. The physicochemical treatments of OFA increased the surface area from 4 to 375 m2/g. 

The materials are characterized by combined SEM and EDX techniques. The AC is further treated 

with HNO3 and NH4OH solutions in order to attach the carboxylic and amine groups on the surface, 

respectively. FTIR characterization is used to confirm the presence of the functional groups on the 

surface of AC at different stages of its development. The performance of functionalized AC 

samples is tested for the removal of H2S from a synthetic natural gas by carrying out breakthrough 

curves. The results showed maximum adsorption capacity of 0.3001 mg/g for NH4OH 

functionalized AC with 86.43% regeneration efficiency. The NH4OH-treated AC is more effective 

for H2S removal than acid-treated AC.  

Phooratsamee et al. [146] reported the preparation of activated carbon from palm oil shells by 

chemical activation using ZnCl2 impregnated with NaOH, KI and K2CO3 for H2S absorption from 

biogas. The production of activated carbon involved three stages; (1) carbonization of raw material 

at 600°C; (2) activation of char product from the first stages; (3) alkali impregnation of activated 

carbon NaOH, KI and K2CO3 solutions. The result showed that the highest surface area and the pore 
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volume (741.71 m2/g and 0.4210 cc g-1) was obtained on K2CO3-AC activated carbon.  The best 

performances were obtained with K2CO3-AC in comparison to KI-AC and NaOH. Therefore, 

K2CO3-AC impregnated activated carbon has a high surface area and showed be an efficient 

adsorbent for removal of H2S from biogas product.   

The influence of modification conditions and operation conditions on the H2S adsorption 

performance on AC samples was also study by Liang et al. [150]. The authors reported that a 

combinatory method of high-pressure hydrothermal treatment followed by alkaline solution 

impregnation could promote the H2S adsorption performance remarkably. 

Monteleone et al. [153] studied anaerobic H2S adsorption on activated carbons, with particular 

attention to the influence of thermal treatment on adsorption capacity, to feasibility of regeneration 

and the competitive adsorption of H2S and CO2. The selected materials were characterized before 

and after adsorption tests, using sorption of N, XRPD, TGA-DTA, SEM and EDX. All tested 

carbons showed a better adsorption capacity before thermal treatment, confirming the crucial role of 

H2O in absorption mechanism. Activated C impregnated with metal salts, revealed the highest 

adsorption capacity due to the combination of microporosity and oxidative properties. 

Osorio et al. [167] reported a study dealing with biogas purification coming from the anaerobic 

digestion of sludge in a wastewater treatment plant. The purification apparatus contains scrubbing 

towers and filters of activated carbon at the end of the line. The H2S inflow concentrations were 

quite high (up tp 2000ppm). The effluent biogas from the scrubbing towers presented an H2S 

concentration less than 1 ppm and zero or undetectable values after adsorption of active carbons 

filters. 

An et al. [151] investigate the performance of activated carbon fiber (ACF) modified by 

impregnation with transition metals. The differences of the performance between original and 

modified ACF and the effects of type and concentration of impregnants were studied. It was 

observed that the adsorption capaciy of ACF was significantly improved by modification and that 

sulphur capacity increased with the concentration of impregnant initially, and then decreased. The 

adsorption of H2S was in the order: 5% Cu(NO3)2-ACF>5%, Co(NO3)2-ACF>5%, Mn(NO3)2-ACF. 

The modified ACF by 5% Cu(NO3)2-3% Co(NO3)2 solutions has the best performance with the 

sulphur capacity of 166.7 mg/g. The modified ACF by 5% Cu(NO3)2-3% Co(NO3)2-1% Mn(NO3)2 

solution has the worst performance with a sulphur capacity of 83.3 mg/g 

Huang and Chen [152] propose a dynamic adsorption model to simulate removal of H2S by a fixed-

bed packed with copper impregnated activated carbon (IAC). After diffusion into the interior of a 

pellet, H2S species either may be physical adsorbed on carbon surface or may react with the copper 

impregnated on the IAC. 
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Hernandez et al [141] studied a system for both the desulphurization and dehalogenation of landfill 

biogas at ambient temperature. The principal aim of the work was to identify a multifunctional 

adsorption bed that would be able to purify the landfill biogas to sulphur and chlorine 

concentrations of below 1 ppmv, with a high removal efficiency (> 99%). Two commercial 

activated carbons were studied. Moreover, activated carbon, functionalized by ZnO nanoparticles, 

was tested at ambient temperature for the simultaneous removal of H2S and organochlorinated mols. 

The biogas desulphurization results have shown that the ZnO (10%) modified commercial active 

carbon has a higher adsorption capacity than the commercial material due to the presence of well 

dispersed ZnO nanoparticles on the surface. Moreover, the biogas dehalogenation results confirm 

that the use of two adsorbent beds in series improves the performance of the abatement of high 

molecula weight halogenated.  

Riberio et al. [14] reported a study of adsorption of carbon dioxide, methane, and nitrogen on an 

activated carbon honeycomb monolith supplied by Mast Carbon (United Kingdom). A very 

interesting property of honeycomb monoliths is that the pressure drop is almost negligible [168]. 

Kinetics of adsorption (diffusion rates) of pure gases was measured by diluted breakthrough curves 

of the pure gases diluted in helium. A mathematical model using one lumped resistance was 

employed to determine diffusivity coefficients from experimental data. The results were correlated 

with the Langmuir and multisite Langmuir models.  

Chang [142] reported the study of high silica/alumina ratio (>10) zeolite including MCM-4 and Y-

type zeolite or high-silica zeolite and Mg2+ or Cu2+ modified activated carbons.  

Yazdanbakhsh et al. [158] reported the H2S breakthrough capacity of copper-exchanged Engelhard 

Titanosilicate-2 (ETS-2). The adsorbent efficiency remains unchanged up to 950°C. Below 750°C, 

the adsorption capacity at breakthrough is 0.7 mol of H2S per mol of copper while >750° the 

capacity of the adsorbent is halved. The change in H2S capacity is due to Cu2+ reduction by the H2 

which is formed through the thermal dissociation of H2S. 

Liu et al. [157] studied an efficient hybrid adsorbent/photocatalytic composite (TiO2/zeolite) for the 

H2S removal and SO2 capture by coating TiO2 on the surface of cheap natural zeolite with an 

ultrasonic-calcination way. The TiO2/zeolite showed the highest H2S removal capacity and lowest 

SO2 emission, compared with the single zeolite adsorption and TiO2 photocatalysis. H2S removal 

capacity and SO2 capture capacity of TiO2/zeolite were enhanced in the presence of moisture in the 

biogas. 

Papurello et al [29] reported the use of with Na-X zeolites combined with a ZnO guard bed (heated 

at 300 °C) before feeding the reformer unit in order to guarantee a durable and stable operation.  
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Tomadakis et al. [162] proposed pressure swing adsorption method using as adsorbent materials 

4A, 5A, and 13X molecular sieves. It was found that 13X and 5A materials give high purity 

methane (98% or more) of zero or nearly zero H2S concentration for short periods of time. High 

methane recovery rates were obtained in most adsorption experiments, averaging at 60-70% for all 

sieves, and topped by 100% in certain 13X runs. Similarly, high H2S recovery rates were typically 

achieved in desorption tests averaging at 72% with sieve 4A, and reaching 100% in some 13X and 

4A runs. 

A theoretical approach to describe the adsorption fenomena of H2S on zeolites was reported in 

literature. Shah et al. [156] studied the adsorption behavior of binary mixtures of H2S and CH4 on 

different all-silica zeolite frameworks using Gibbs ensemble Monte Carlo simulations at 25 and 

70°C and pressures in the range 1-50 bar. The simulations demonstrate high selectivities that 

increase with increasing H2S concentration due to favourable sorbate-sorbate interactions. The 

simulations indicate significant inaccuracies using unary adsorption data and ideal adsorbed theory. 

Cosoli et al. [160] used Coupled Grand Canonical-Canonical Monte Carlo and mol. dynamics (MD) 

simulation techniques to investigate in details the adsorption of low-pressure hydrogen sulphide 

(H2S) in zeolites, and the selective adsorption behavior towards carbon dioxide and methane, the 

main biogas constituents. Results from Monte Carlo (MC) simulations indicated, among many 

others, zeolite NaY as the best option for H2S removal. Thermodynamic evaluations confirm the 

results obtained from Monte Carlo simulations, evidencing the greater affinity for H2S to NaY 

zeolite framework. 

A theoretical approach was also reported by Qiu et al. [161] to investigate the interactions between 

H2S and HZSM-5 zeolites.   The results showed that the nature of interactions lead to the formation 

of the zeolite cluster-H2S and silanol-H2S complexes was van der Waals force confirmed by a little 

change of geometric structures and properties. 

Recently the removal of sulphur and chlorinated compounds has received more and more attention 

but only few reports are focused on the selectivity of different adsorbent materials respect to these 

different molecules [15]. 

Ryckebosch et al [18] described the removal of halogenated carbon hydrates that are mainly found 

in landfill gas. These compounds cause the corrosion in engines and can be removed with activated 

carbon. Generally, are used two tubes in parallel for the treatment and for the regeneration 

respectively. Regeneration is done by heating the activated carbon to 200 °C, thus evaporating the 

adsorbed components which are thereafter removed by an inert gas flow [46]. 

Hernandez et al. [141] report a study on the removal of sulphur and halogenated compounds from a 

model landfill biogas through adsorption. SCL3 Recently Papapdias et al. [30] performed a detailed 
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analysis of impurities contained in digester and landfill gas combined with a sensitivity analysis of 

electricity costs of a fuel cell system focusing on establishing a fitting gas-cleaning unit SC L3. 

The landfill was in Pianezza (Turin) performed with the company Asja Ambiente Italia S.p.A.  

The authors [141] reported the results obtained on six commercial adsorbents (Table 3-6) to 

compare their selectivity and their uptake capacity towards nine different sulphur compounds 

(including mercaptans). In Table 3-7 the analysis of the biogas is reported. 

 

Use Active component Supplier Product name 

Desulphurisation 

 

Activated carbon 

with Cr and 

Cu salts 

Zeolite 13X 

Molecular sieve 

Molecular sieve 

Metal oxides 

Metal oxides 

Norit 

 

 

Grace Davison 

Grace Davison 

Grace Davison 

Non disclosable 

ECN 

RGM-3 

 

 

554HP 

Sylobead 522 

Sylobead 534 

ST 

SulfCath 

Dehalogenation 
Activated carbon 

Activated carbon 

Norit 

Norit 

R1540W 

RB4W 

Tab. 3-6 Adsorbents tested [145]. 

 

Norit activated carbon presented the highest adsorption capacities for COS MM, EM tBM and 

sBM. Conversely zeolite 13X had the highest uptake capacity for DMS and iPM and the ST 

material showed the highest capability to adsorbe MES and THT; almost the same performance was 

observed for MES adsorption on zeolite 13X.  

Moisture and other sulphur-free hydrocarbons (C2 to C5) are indeed present in the real biogas and 

may influence the adsorption process. Since activated carbons and zeolites can adsorbe water this 

capability can significantly reduce their selectivity and uptake capacity towards sulphur compounds 

[169-172]. When RGM3 was tested in the presence of moisture its uptake capacity towards some 

sulphur compounds was greatly reduced (from 58.892 to 22.164%). Reduction of up to 100% for 

COS, 57% for DMS-iPM, 89% for MES and 60% for THT were observed. 

It was found that each halogenated compound is adsorbed on the activated carbon in a different 

manner: Norit R1540W and Norit RB4W could remove the majority of the chlorinated species but 

with different breakthrough times.  

The adsorptive capacity for the smaller molecular weight species (chloromethane and chloroethane) 

is practically zero but it is the highest for the 1,1,2,2-tetrachloroethane (6.79 and 7.76 wt%, for the 

R1540W and RB4W respectively). Hence, these activated carbons have an uptake capacity that 

increase with the molecular weight (MW) of the halogenated molecules, although this trend is not 
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absolute: the adsorption capacity can be explained as a function of the adsorbate molecular weight, 

degree of unsaturation, polarisation and symmetry as well. 

 

Parameter Measure unit Minimum value Maximum value 

Temperature °C 9 26 

Humidity % v 0.6 1.1 

O2 % v t.q. 1.5 2.8 

CO2 % v t.q. 34 40.9 

CO % v t.q . < 0.001 0.003 

N2 % v t.q. 11.4 16.0 

H2 % v t.q. < 0.1 < 0.1 

CH4 % v t.q. 42.8 50.2 

Hydrocarbons > C5 

(as hexane) 
mg/m3 337.3 1178.0 

Aromatic 

hydrocarbons 
mg/m3 101.4 128.0 

Total organic carbon 

(as C) 
mg/m3 306 790.1 

Siloxanes mg/m3 < 0.05 < 0.2 

NH3 mg/m3 < 0.5 15.7 

HCl mg/m3 < 0.6 2.0 

Organochlorurated 

compounds 
mgCl/m3 20 30.6 

Total chlorine mgCl/m3 17.4 32.0 

HF mg/m3 < 0.5 0.8 

Organofluorinated 

compounds 
mgF/m3 1.2 6 

Total fluorine mgF/m3 1.2 < 6,6 

H2S p.p.m. 114.3 205 

H2SO4 p.p.m. < 0.3 1.0 

Mercaptanes 

(C2H5SH) 
p.p.m. 0.7 27.7 

Tab. 3-7 Analysis of the Pianezza MSW landfill biogas [175] 
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The authors concluded that none the tested adsorbents could remove the wide variety of sulphur 

compounds and the chlorinated compounds with low molecular weight that could be present into 

the landfill biogas such as chloromethane and chloroethane. 

The authors [141] proposed a multistep desulphurization process with two adsorption beds so that 

the species not adsorbed in the first bed could be trapped in the secod one. The first bed is based on 

molecular sieves; the second one contains activated carbons that are able to remove all the S-

compounds present in the biogas. Tests that have been performed on the SOFC Power Generation 

System at the Turbocare site in Turin [171]. A two component arrangement of 130 kg Zeolite-X 

followed by 90 kg activated carbon provided an acceptable solution for large scale SOFC unit. After 

four months of operation no sulphur breakthrough was observed.  

 

3.16 Removal of sulphur compounds in fuels by adsorption processes 

Organic sulphurs in natural gas and liquid fuels are poison to both the reforming catalyst and fuel 

cell’s electrocatalysts. Many zeolites adsorb organic sulphurs and can efficiently remove these 

impurities from fuels. Sulphur removal by adsorption has obvious advantages over 

hydrodesulphurization. The process can be carried out at room temperature and does not require 

hydrogen, which is an important advantage. Table 3-8 lists some zeolites and mesoporous materials 

used for the removal of sulphur compounds. Yang and co-workers [173,174] prepared Ag and Cu 

ion-exchanged NaY zeolites that selectively adsorbed sulphur compounds via π-complexation 

between thiophene and the ion-exchanged metals. Other researchers reported high degree of 

desulphurization using Ni/KY [175], AgNO3/Beta [176] and CuZn/Y [177] adsorbents. These 

adsorbents were regenerated by washing with solvents at room temperature without loss of capacity. 

Feng and coworkers [178] used Ce(IV)Y zeolite to produce diesels with unprecedented low S (i.e., 

<0.01 ppm S). Mesoporous materials with their extremely high surface area and highly accessible 

pores are also efficient adsorbents [179-188]. Metal oxides and salts supported on mesoporous 

materials [189-196] had been used to remove sulphur from fuels, but were less able to attain the 

same level of ultra-deep desulphurization seen in the zeolite counterparts. Metal cations in zeolite 

appear to be the key in achieving ultra-deep desulphurization and it might be possible to replicate 

the same zeolite environment in mesoporous silica by incorporating zeolite framework structure on 

the pore wall, which has been demonstrated by several researchers [197-210]. 
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Material 
Sulphur compounds 

or fuel 

Temperat

ure (K) 

Results 

Sulphur 

content 

(ppm) 

Results 

Adsorption 

capacity (mg 

S g−1) 

Regeneration 

method 

Cu(I)Y, AgY Commercial diesel RT 430 → <0.2 N 

Air-

calcination at 

623 K and at 

723 K, 

washing with 

dimethylform

amide or 

carbon 

tetrachloride 

Cu(I)Y Commercial gasoline RT 
335 → 

<0.28 
12.5 N 

Ni/KY 

Benzothiophene, 2-

methylbenzothiophene, 

5-

methylbenzothiophene 

RT and 

353 
510 → <1 5 

Air-

calcination at 

573 K 

AgNO3/BEA, 

AgNO3/MCM-41, 

AgNO3/SBA-15 

Tetrahydrothiophene, 

tert-butylmercaptane 
RT-353 80 → 0.1 

41.1 

(AgNO3/BE

A) 

N 

AgY CuZnY 

Thiophene, 

dibenzothiophene, 4,6-

dimethyldibenzothiophe

ne 

293–353 

700 → 22 

(Ag-Y) 700 

→ 36 

(CuZn-Y) 

44.9 (at 1500 

ppm) 17.5 (at 

500 ppm) 

Air-

calcination at 

723 K 

Ce(IV)Y HDS-treated diesel 353 
1.87 → 

<0.01 
N N 

Ga/AlY 

Thiophene, 

tetrahydrothiophene, 

4,6-

dimethyldibenzothiophe

ne 

293–333 500 → 15 
7.0, 17.4, 

14.5 

Air-

calcination at 

573 K N2- 

calcination at 

623 K 

CuY, NiY, NaY, 

and USY 
Benzothiophene 303 N 

54.1(NaY), 

53.8(USY), 

57.6(NiY), 

63(CuY) 

N 

Cu(I)Y 

Thiophene, 

benzothiophene, 

dibenzothiophene, 

RT 300 → <0.1 3.1 N 
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Cu(I)Y Commercial jet fuel RT 
364 → 

0.071 
25.5 

Air-

calcination at 

623 K 

calcination in 

5 vol. % 

H2/He at 504 

K 

Cu(I)Y 

Cu(I)/ZSM-5 
Commercial diesel RT 

297 → 0.06 

AC/Cu(I)Y 

12.2 (Cu(I)Y) 

2.6 

(Cu(I)/ZSM-

5) 

Air-

calcination at 

700–923 K 

Ni(II)X, Ni(II)Y Commercial diesel 
RT and 

353 
297 → 0.22 10.6 

Air-

calcination at 

623 K 

AgBeta CuBeta Dimethyl disulphide 333 20 → 1 7.1 8.7 N 

Cu(I)/ETS-10 
Tert-butylmercaptan 

tetrahydrothiophene 
303 N 80 N 

Cu2O/MCM-41 JP-5 light fraction RTa 841 → 50 12.8 

Air-

calcination at 

723 K He-

calcination at 

973 K 

Ni/SBA-15 Commercial diesel RT-473 
240 → 10 

11.7 → 0.1 

1.7 (at 240 

ppm) 0.47 (at 

11.7 ppm) 

Nb 

CuCl(PdCl2)/MC

M-41(SBA-15) 
JP-5 light fraction RT 

841 → 50 

(PdCl2/SBA

-15) 

38.4 

(PdCl2/SBA-

15) 

Purge with 

benzene at 

343 K 

Cu(I)/Mesoporous 

aluminosilicate 
Diesel 303 315 → 54 N N 

AgNO3/mesoporo

us silica 

Benzothiophene, 

dibenzothiophene, 4,6-

dimethyldibenzothiophe

ne 

RT N 20.5 
Purge with 

diethyl ether 

CuO/SBA-15 Thiophene RT N 6.4 N 
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Ni/MCM-41 4-Methyldibenzothiophene RT N 1.5 
H2 calcination 

at 773 K 

Fe3O4/MAS 

Fe3O4/MCM-41 
Hydrotreated diesel 303 37 → 6 N N 

Table 3-8: Zeolites and mesoporous materials used for the removal of sulphur compounds [214]. 

 

3.16 The effect of sulphur compounds on MCFC 

3.16.1 Sulphur poisoning on the MCFC components 

Molten carbonate fuel cells (MCFC) are composed of a porous nickel based anode, a porous nickel 

oxide-based cathode and molten carbonate salts as electrolyte within a porous lithium aluminate 

matrix. Molten carbonate fuel cells with internal reforming can be fed directly with light 

hydrocarbons rich gas such as biogas. 

Though MCFCs have the advantage of not requiring noble metal catalysts for the electrochemical 

reactions, some species have a poisoning effect on the catalytic properties of the electrodes. 

The harmful effect of impurities may depend on the partial pressure of other species in the gas (e.g. 

hydrogen, water, carbon dioxide), the current density at which the fuel cell is operated, the 

temperature and the fuel utilization. 

Hydrogen sulphide is the most important contaminant and even few parts-per-million 

concentrations the fuel gas at the anode side strongly affect cell performance. H2S has an immediate 

effect on cell performance, also at 1 ppm [211]. The effect of sulphur poisoning was observed at the 

initial H2S addition, even though the concentration was very low. 

The limit of H2S concentration accepted for fuel gas is less than 1 ppm. Sulphur poisoning of the 

electrode is irreversible upon long-term exposure to concentrations of more than about 10 ppm 

since surface structure changes take place and cause permanent damage and deactivation of the 

anode [212-221]. At low concentrations the effects of H2S are generally reversible by passing over 

H2S-free hydrogen and water vapour. 

Poisoning mechanisms depend on many factors, such as applied current density, inlet anodic gas 

composition, operating temperature and pressure.  

In many studies various causes have been identified for the immediate decrease in MCFC 

performance upon introduction of H2S [221-226]. This problem has been widely studied but no 

assessment on the mechanisms of the poisoning by H2S has been reached. 

There are two main interactions of H2S with cell components, with the electrolyte and with the 

anode and catode [221].  
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H2S can react chemically with carbonates of the electrolyte to form either sulphide or sulphate ions 

(Eqs. 3.17 and 3.18) reducing electrochemically active charge carriers which would otherwise be 

available for the hydrogen oxidation mechanism [215,223,227], The cell performances decay, even 

if the ion conductivity of the electrolyte does not appreciably change because carbonate ions are 

replaced by the same equivalent number of sulphur-based anions.  

 

H2S + CO3
2- H2O + CO2 + S2-        (3.17) 

 

H2S + CO3
2-+ 3H2O  SO4

2-+ CO2 + 4H2       (3.18) 

 

H2S can react with carbonates also via electrochemical processes [215,224,228], (Eqs.3.19 and 

3.20) yielding harmful, ionised sulphate compounds forming either sulphide S2- or sulphate SO4
2- 

ions. 

 

5CO32- +4H2 +H2S → S2- +5CO2 +5H2O + 8e−      (3.19) 

5CO32- +H2S →SO4
2- +5CO2 +H2O + 8e−       (3.20) 

 

Standard potentials of above reactions are respectively−1.037V and −0.986V with respect to 

O2:CO2 = 33:67 vol% reference electrode. 

When the above reactions occur instead of the hydrogen oxidation, the overall cell reactions are 

respectively as follows: 

 

H2S + M2CO3→ M2S + H2O + CO2        (3.21) 

H2S + M2CO3 +3 H2O → M2SO4 +CO2 +4H2      (3.22) 

where M is a metal such as lithium or potassium. 

 

Hydrogen sulphide is a poison for the nickel catalyst and the negative effect on fuel cell 

performance is well documented [213,218,219,223,228]. 

H2S reacting with nickel can block electrochemically active sites for the hydrogen oxidation, can 

change the wettability of the anode toward carbonates, can modify the anode surface and its porous 

structure, can alter the anode conductivity, can change the carbonate conversion to sulphate and can 

poison catalytic sites for the water gas shift reaction. 
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The affected sites give rise to morphological changes in the anode structure, and can thereby cause 

further deterioration of cell performance through secondary effects like impeded gas diffusion, 

volume change or reduced wetting by the electrolyte [230].  

Possible reactions of hydrogen sulphide with nickel can have different natures: formation of bulk 

nickel sulphides via chemical reactions, reaction (3.23); surface sulphuration either via physical 

adsorptions of hydrogen sulphide molecules, reaction (3.24), or via chemisorptions of sulphur 

atoms, reaction (3.25) [228]. 

 

xNi+yH2S → NixSy +yH2          (3.23) 

Ni(s) +H2S(g)→ Ni–H2S(ads)         (3.24) 

2Ni(s) +H2S(g)→ Ni–HS(ads) +Ni–H(ads)→ Ni–S(ads) +Ni–H2(ads)→ Ni–S(ads) +Ni + H2(g) 

            (3.25) 

 

With the anode, H2S can be chemisorbed on nickel surfaces or can react chemically with nickel to 

form nickel sulphide. Nickel sulphides can be formed also electrochemically by oxidation of 

sulphide ions in the electrolyte. 

 

Ni +H2S →NiS + H2          (3.26) 

Ni + S2- → NiS + 2e-          (3.27) 

 

Electrochemical poisoning reactions occur when the anodic potential reach electrode potentials for 

nickel sulphides formation: the standard electrode potential for the half-reaction forming NiS and 

Ni3S2 are respectively −0.756V and −0.829V [223,228]. At open circuit voltage conditions, the 

anodic potential is more negative than electrode potentials necessary for either NiS or Ni3S2 

formation. 

At lowH2S levels just two poisoning reaction types occur: physical and chemical absorptions on 

nickel surface by reactions (3.23) and (3.24); replacement of carbonate ions with sulphide and 

sulfate ions. In fact, formations of bulk nickel sulphides by reaction (3.27) are thermodynamically 

forbidden.  

Devianto et al. [231] investigated the poisoning effect of H2S on Ni-based anodes in MCFC at low 

H2S concentrations, simulating biogas impurity. A conventional Ni-Cr anode was coated with ceria 

using dip coating to form a rare earth metal oxide thin layer on the surface of the anode. 

Electrochemical studies of the Ni-based samples were performed in symmetric cells under anode 
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atmosphere (H2, CO2, H2O and N2 as balance) with 2, 6, 12, and 24 ppm of H2S by means of 

electrochemical impedance spectroscopy. 

The results showed that the poisoning resistance was enhanced at low coating percentages of ceria; 

the effects depend on H2S concentration and the applied load. These results were confirmed by 

electrochemical impedance tests where the cerium oxide addition appears through stable 

polarization behaviour up to 6 ppm of H2S, particularly in the mass transfer region. The protection 

is explained by the depression of poisoned Ni active sites and formation of a layer to the metal 

surface. The ceria coating layer is a potential solution to reduce H2S poisoning of MCFCs fuelled 

with biogas. 

Higher water content accelerated the effect of corrosion and the poisoning resistance was enhanced 

at low coating percentages of ceria; effects depend on H2S concentration and the applied load. The 

ceria coating layer is a potential solution to reduce H2S poisoning of MCFCs fuelled with biogas. 

The research to obtain new advanced anode materials with high sulphur tolerance and effective 

recovery capability is largely discussed in literature [217,227,232] the Zaza et al. [228] studied the 

H2S poisoning mechanisms of conventional nickel-based anode MCFCs in order to determine 

sulphur tolerant advanced anodes for MCFC fed with biogas Proposed anode materials include two 

different categories: anodes made of an electrocatalyst and a hydrogen sulphide trap such as NiCr 

covered with either CeO2 or CeO2–ZrO2; anodes made of a hydrogen sulphide resistance 

electrocatalyst such as NiAl. 

 

3.16.2 Effect of SO2 on cathode and H2S on anode 

Recently Rexed et al. [233] studied the effect of contamination of MCFC with low concentrations 

of both SO2 at the cathode and H2S at the anode. The poisoning mechanism of SO2 is due to sulphur 

transfer through the electrolyte and formation of H2S at the anode. Measurements were performed 

with SO2 in the oxidant gas at concentrations up to 24 ppm, for short-term (90 min) and long-term 

(100 h) contaminant exposure. The poisoning effect of H2S (up to 12 ppm) was studied for gas 

compositions with high- and low concentration of H2 in fuel gas. Sulphur poisoning by SO2 of 

MCFC has been considered as a result of anode exhaust gas recirculation to the anode. Any H2S 

present in the exhaust gas will be oxidized to SO2 together with residual fuel in a catalytic burner 

before entering the cathode. 

 

H2S + 3/2 O2 → H2O + SO2         (3.28) 

CO3
2- + SO2 + ½ O2 → CO2 + SO4

2-        (3.29) 
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H2S causes poisoning of the Ni-anode surface by formation of NiS which kinetically hinders the 

oxidation of hydrogen [213,217,228]. It may react chemically to form NiS (reaction 3.30), or 

electrochemically as sulphide in the electrolyte (reaction 3.31), with the nickel anode to form nickel 

sulphide. 

 

xNi + yH2S NixSy + yH2         (3.30) 

xNi + yS2- 
 NixSy +2xe         (3.31) 

 

SO2 added to the cathode immediately affects also the anode, indicating a transfer mechanism of 

sulphur from anode to cathode. It can be hypothesized that SO2 dissolves into the electrolyte as 

sulfate ions which migrate to the cathode where are released as H2S, causing the poisoning of the 

anode catalyst by interactions with nickel H2S. Increased polarization of both anode and cathode 

was observe alfter longterm exposure to 8 ppm SO2 at the cathode increasing at high current 

density. The short-term tests show anode polarization for concentrations higher than 12 ppm SO2 

suggesting that the transfer mechanism of sulphur from the cathode to the anode is fast, although no 

detailed data on transfer kinetics are reported. The anode poisoning effects were largely reversible 

by regeneration with clean gas. However the cathode evidenced irreversible polarization. The 

increase in cell resistance after long-term exposure was attributed to the cathode. This could be due 

to carbonate being replaced by sulfate by reaction with SO2 dissolved in the electrolyte, or the 

formation of a layer at the electrode-current collector interface.  

Ciccoli et al. [215] discuss the possibility of regeneration of the fuel cell. 

In fact in the case of nickel transformation to nickel sulphide (reaction 3.31), passing pure gas over 

the poisoned anode can regenerate the electrochemically inert metal sulphide to the original, active 

catalyst: 

The conditions and limits for the above reaction to be reversible are under investigation in and 

could provide a crucial, added operating parameter to guarantee long-term reliability of the MCFC 

stack. In this study [215], it is observed that, at different currents and concentrations of H2S, the cell 

voltage drops can be partially recuperated.  At higher degrees of poisoning and current load, the 

performance degradation is permanent.  

Zaza et al. [228] reported that cell performances recovery levels depend on water vapor amounts in 

inlet anode gas. Irreversible poisoning effects are due to stable nickel sulphide formations, Ni3S2. 
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3.17 The effect of biogas impurities on SOFC 

Biogas contains several substances (Table 3-9) that have negative impact on the process converting 

the biogas into energy. So the biogas should be converted into biomethane stream having proper 

characteristics.  

The treatment of biogas generally aims at: (1) a cleaning process, in which the trace components 

harmful to the natural gas grid, appliances or end-users are removed, (2) an upgrading process, in 

which CO2 is removed to adjust the calorific value and relative density in order to meet the 

specifications of the Wobbe Index. This latter parameter is dependent on both the calorific value 

and the relative density [234,235]. 

After transformation, the final product is referred to as ‘biomethane’, typically containing 95-97% 

CH4 and 1-3% CO2. Biomethane can be used as an alternative for natural gas. In general, the type of 

end use of the biogas sets its quality demands [236]. 

 

Impurity Possible Impact 

Water 

Corrosion in compressors, gas storage tanks and 

engines due to reaction with H2S, NH3 and CO2 to 

form acids 

Accumulation of water in pipes 

Condensation and/or freezing due to high pressure 

Dust 

Clogging due to deposition in compressors, gas 

storage tanks 

 

H2S 

Corrosion in compressors, gas storage tanks and 

engines 

Toxic concentrations of H2S (>5cm3m-3) remain in 

the biogas 

SO2 and SO3 are formed due to combustion, which 

are more toxic than H2S and cause corrosion with 

water 

CO2 Low calorific value 

Siloxanes 

Formation of SiO2 and microcrystalline quartz due 

to combustion; deposition at spark plugs, valves and 

cylinder heads abrading the surface 

Hydrocarbons Corrosion in engines due to combustion 

NH3 Corrosion when dissolved in water 

O2/air 
Explosive mixtures due to high concentrations of O2 

in biogas 

Cl- Corrosion in combustion engines 

F- Corrosion in combustion engines 

Tab.3-9 Biogas impurities and their consequences [237]. 
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An interesting alternative to conventional technology can be based on SOFC due to their high 

biogas to electricity conversion efficiency (around 50-60%).  Conversely to thermal engines, SOFC 

can operate with diluted biogas, differently from while internal combustion engines (ICE) that 

cannot operate if the CH4 content in biogas falls below 40-45%. Essentially two main concerns 

come from direct biogas feeding in an SOFC: carbon deposition and the detrimental effects of 

contaminants on the Ni anode electrode [238-242]. Carbon deposition can be easily managed 

provided that a proper steam-to-carbon or oxygen ratio in guaranteed at the SOFC inlet so that C 

build up is thermodynamically unfeasible. Carbon deposition has been investigated by several 

authors [237,243-246]. Memelstein et al [243] reported that thermodinamyc calculations do not 

indicate C deposition from a typical biomass gasification syngas at SOFCs operating temperatures 

>750 °C. However, intermediate temperatures <650° C require threshold current densities well 

above what is achievable to inhibit the effects of C deposition. Zheng et al. [244] observed that C 

deposition depends on temperature, gas composition, (CO or CH4), and presence of Ce0.8Gd0.2O1.9 

electrolytes in the composite-type electrode. Stable fuel cell performance, without C deposition, 

was obtained for SrFe0.75Mo0.25O3-δ-based SOFC in 10 vol.% of CO in CO2. Also for SOFC 

operating with CH4 at temperatures ≤700 °C no coking was obtained. Singh et al [245] reported 

thermodynamic analysis of the carbon deposition in a SOFC fuelled by a biomass gasifier. The 

carbon deposition is shown to decrease with steam in the feed stream, whilst the amount of carbon 

first decreases and then increases with temperature. Gunji et al. [246] studied a SOFC using 

Ni/scandia-stabilized zirconia (Ni-ScSZ) anodes under internal reforming conditions.  A single cell 

achieved a maximum power density of 0.64 W/cm2 at 900° with a 97% CH4/3% H2O fuel.  With 

this fuel composition the cell voltage during power generation at 0.5 A/cm2 was stable at 900°C for 

≥150 h. However, under the same conditions degradation of anode performance and C deposition 

occurred at 800°C.  

The as produced biogas from AD contained several contaminants like as sulphur, aromatic, siloxane 

and halogenated compounds that can in principle affect the SOFC performance and the electrode 

stability. Sulphur compounds are present in the range from tens to thousands of ppm(v) (sulphur) 

while halogens and siloxanes vary from 0.1 to 10 ppm(v). Sulphur compounds are generally the 

most abundant in biogas and decompose to H2S at the SOFC operating temperature. Moreover, H2S 

is a poison for Ni-based ceramic cells [239,247]. Sulphur compounds decompose to H2S at the 

SOFC operating temperature as shown from equilibrium thermodynamic calculation [238]. H2S 

adsorbs on the Ni active sites preventing H2 and CO oxidation as well as also methane reforming 

[248]. The effect of chlorine compounds, generally decomposed to HCl in the H2 rich anode 

environment, is less understood than sulphur compounds. However a deactivation mechanism 
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similar to that of sulphur (dissociative chemisorption on the Ni surface) but less severe was 

generally observed [249]. Aromatic compounds are probably the less dangerous ones as they are 

catalytically converted to H2 and CO within the SOFC.  Siloxanes are instead the most critical ones 

for durability of the fuel cell. For instance, a study by Ruokomaki et al.  [250] showed how the 

siloxane compounds already affect the SOFC performance at 10 ppb(v) whereas chlorine 

compounds concentration above 5000 ppb(v) are required. Haga et al. [251] also showed how an 

amount of 10 ppm(v) of D5 in the H2 feed quickly leaded to a cell failure. 

 

3.18 Effect of halogenated compounds 

Halogenated compounds lead to corrosion in delicate power plant components and measures have 

to be taken in order to keep low the concentrations [237]. In connection to SOFC the effect of 

chlorine gas has been analyzed in several articles: experiments show that fuel gas containing 5 ppm 

of Cl does not cause cell degradation or voltage drop in the SOFC [252-254]. Blesznowski et al. 

[254] investigated the effect of HCl-contamined fuel gas and concluded that at 10 ppm a 

recoverable voltage drop is identified. When increasing concentration levels to 1000 ppm the cell 

voltage starts to decrease continuously at a rate 0f 9.4% over 100 h.  

Recently Trembly et al. [255] have investigated the effect of HCl on the SOFC at 800 and 900°C. 

The study has indicated that introduction of 20–160ppm HCl leads to a performance loss of about 

13–52%. It was also shown that the cell performance loss at 800°C is mostly associated with the 

increase in charge-transfer resistance whereas at 900°C the performance losses are affected by 

increases in the ohmic resistance and charge-transfer resistance across the SOFC [255,256]. 

In the chlorine poisoning, the reaction of Ni with chlorine is crucial to understand the poisoning 

mechanism. According to Haga et al. [251] the formation of NiCl2 may be described by Eq. (3.32): 

 

Cl2(g) + Ni(s) = NiCl2 (s or g)        (3.32) 

 

Haga et al. [251] observed low but still measurable degradation in cell voltage for H2-based fuels 

containing 5 ppm Cl2, whereas fuels containing 100 ppm and 1000 ppm Cl2 caused continuous 

degradation of cell voltage with an almost constant degradation rate. The degradation rates were 

1.7% and 13% per 100h for H2-based fuels containing 100 ppm and 1000 ppm Cl2, respectively. In 

addition, significant microstructural change of cermet anode surfaces was confirmed by the FESEM 

observations.  

Haga et al [251] suggested that contrary to sulphur, chlorine can easily react with Ni: nickel 

chloride (NiCl2) is stable even when only ca. 100 ppb and 10 ppm Cl2 are contained in fuel gases at 
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800°C and 1000°C, respectively. Furthermore the formation of NiCl2 should be paid careful 

attention in durability of SOFC anodes, as the sublimation temperature of NiCl2 is 985°C, near the 

typical SOFC operational temperatures [251].  

The interaction of Cl2 with Ni was also proposed by Tjaden et al. [257] that suggested the subliming 

of NiCl2 at Cl concentration >100 ppm.  Low levels of halogens compound typically observed in 

biogas are not dangerous for the SOFC system. However halogen compounds have to be considered 

when applying adsorptive gas-cleaning methods: adsorption efficiency of active carbon decrease in 

the presence of halogenated and aromatic co-vapours. Absolute breakthrough times of various 

sulphur compounds decrease by up to 14% when halogen containing co-vapours are added to the 

gas stream [258].  

Poisoning effects by various fuel impurities, including H2S, CH3SH, COS, Cl2, and siloxane, to Ni–

ScSZ cermet anodes have been analyzed and compared by Haga et al. [251] with the aim to study 

the poisoning mechanisms for typical SOFC fuel impurities (sulphur compounds, chlorine, and 

siloxane). 

Haga et al. [251] studied degradation of cell performance by measuring cell voltage and anode 

polarization at a constant current density of 0.2 A cm−2 for humidified H2 and CH4 fuels. Cell 

voltage was measured at a constant current density of 0.2 A cm−2, at temperatures 800-1000°C and, 

by changing the carrier gas from pure N2 to impurity-containing N2. Gradual and continous 

degradation was verified in Cl2 poisoning, associated with a microstrucutural change to form Ni 

precipitates in the Ni-Sc-SZ cermet anodes. Poisoning for hydrogen-based fuels containing 5 ppm 

sulphur compounds, H2S, CH3SH, and COS, caused an initial cell voltage drop of about 15 mV at 

1000°C. The initial voltage drop was independent of the kind of sulphur compounds, whereas in the 

case of poisoning by CH3SH, an additional gradual decrease in cell voltage was clearly detected 

after the initial voltage drop. It is known that a few ppm levels of H2S as well as sulphide based 

odorants are typically contained in commercial natural gas [259], and thus the major impurity in 

SOFC anode poisoning may be H2S so far [252,260-265]. 

 

3.19 Effect of sulphur compounds on SOFC 

Depending on its production source and the stage of the up-grading process biogas can contain a 

number of sulphur compounds that have the capability to corrode processing equipment and gas 

pipeline, to inhibit the performance of vehicle catalysts and to damage fuel cells. 

It is widely recognized that sulphur compounds are the major poisons for fuel cell systems [266-

272] Most common reduced sulphur compounds found in biogas are H2S and methylmercaptan 

(CH3SH) Also ethylmercaptan, dimethyl sulphide (DMS) and dimethyldisulphide (DMDS) are 
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found [273-275]. Brown et al. [273] reported as an example a study measuring sulphur-containing 

compounds in biogas from a plant in Linkoping, Sweden [275]: the biogas before upgrading 

contained hydrogen sulphide (at a volume fraction of up to 32.4 µmL L-1) carbonyl sulphide (1.2 

µmL L-1) methanethiol (up to 0.75 µmL L-1) dimethyl sulphide (up to 9.2 µmL L-1 ) carbon 

disulphide (up to 0.02 µmL L-1),  2-propanethiol (up to 0.05 µmL L-1 ) ethylmethyl sulphide (up to 

1.2 µmL L-1) diethyl sulphide (up to 0.58 µmL L-1) and dimethyl disulphide (up to 1.0 µmL L-1 ).  

Tipically H2S content in biogas ranges 1000 to 20000 ppm, while CH3SH is normally present in 

trace levels of around 1-20 ppm, with maximum values reported around 100 ppm [277-279]. 

In terms of process performance impact Van de Bosch et al. [276] reported that CH3SH severely 

inhibits biological sulphideoxidation (50% reduction of the biological oxidation rate) at 

concentrations above 0.05 mM under natron-alkaline-aerobic conditions. Complete inhibition was 

found at CH3SH of concentration of 0.65 nM. Thus potential accumulation of CH3SH in aerobic 

and anoxic biotrickling filetrs may hinder H2S removal. 

 

3.20 Levels of sulphur containing compounds in biogas 

The accurate quantification of low concentration of sulphur containing compounds in gases is 

essential to ensure compliance with legislation in a number of industrial and environmental sectors. 

These measurements are very arduous due to the reactivity of such compounds [274]. The actual 

European Directives of promote the diversification gas supply [280-281] and European 

Commission targets specify that 20% of EC energy consumption should come from renewable 

sources by 2020 [282]. As a direct result of these drivers the European biogas industry has strongly 

increased starting from 2012, more than 20 Mtoe of biogas was produced in the European Union 

[283]. The key uses for biogas (as biomethane) are for the injection into natural gas network and for 

vehicle fuel [274]. 

CEN (The European Committee for Standardization) Technical Committe 408 (Natural gas and 

biomethane for injection in the natural gas grid) is currently working in response to the ECs 

Mandate M/475 [284] to develop specifications for the permissible levels of a range of compounds. 

The concentrations of sulphur containing compounds in biogas can vary substantially depending on 

the source of the gas, but mass concentrations of hydrogen sulphide as high as 7000 mg m-3 are 

possible [285]. However typically hydrogen mass concentrations are <600 mg m-3 for biogas 

produced by anaerobic digestion and <100 mg m-3 for biogas from landfill [286]. Biogas is usually 

desolphurized whilst still in the bioreactor in order to avoid damage to downstream processing 

equipment [274]. 
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The maximum gas concentrations of sulphur-containing compounds permissible in European 

countries [287] are shown in Table 3-10. 

 

Country 

Maximum mass concentration  

[mg m-3] 

Total sulphur 

containing 

compounds 

Hydrogen sulphide Thiols 

Austria 100 5 15 

Belgium 150 5* 15 

France 30 5* 6 

Germany 30 5 6 

Italy 150 6.6 15.5 

Netherland 45 5 - 

Poland 40 7 16 

Spain 50 15* 17 

Sweden 23 10 - 

Switzerland 10 5 - 

United Kingdom 50 5 - 

Tab. 3-10 Maximum mass concentrations of sulphur containing compounds specified in European 

gas transmission network. An Asterix (*) indicates the specification is for the sum of hydrogen 

sulphide and carbonyl sulphide; a dash (-) indicates that no specification exists [274]. 

 

H2S is the most stable sulphur compound under SOFC operational conditions and the equilibrium 

concentration of other sulphur compounds such as COS is relatively low [251]. 

Tjaden et al. [257] reported chemical equilibrium calculations showing that H2S is the most stable 

sulphur compound at the operating temperature of SOFC [257,266]. 

Sasaki et al. [266] reported equilibrium concentration of minor sulphur based impurities in the fuel 

cell fuels in the temperature range 400-1000°C. As sulphur-based impurities in the fuel cell gases, 

H2S, elementary sulphur, inorganic sulphur compounds, mercaptans alkyl (di-)sulphides, 

thiophenes, and related compounds have been taken into account.  

The authors considered various types of fuels including H2, H2-CO, CO, CH4, biogas, LPG, 

gasoline kerosene and diesel fuel. COS can also coexist, but even in CO riche gases and in 

hydrocarbon based fuels COS concentration in equilibrium is one order of magnitude lower than 

H2S concentration. Other sulphur compounds such as CH4S at intermediate temperatures and HS(g) 

and SO2 at high temperature are also expected to coexist but their concentrations are less that 1 ppb 

assuming thermochemical equilibrium. As a solid carbon, only the graphite was taken into account 

for simplicity. Thermochemical calculations at 400-1000°C clearly indicates that H2S is the 
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predominant sulphur species at the elevated temperatures the typical operational temperatures of 

fuel processors for low temperature fuel cells PEFC as well as of high temperature fuel cell such as 

SOFCs. 

As the poisoning by H2S with a concentration less than approximatively 100 ppm, a typical sulphur 

concentration of practical fuel, is associated with an increase in anodic overvoltage: the tolerance 

concentration of sulphur can be determined by the tolerant cell voltage drop. Concentration of 

sulphur will also be limited by irreversible poisoning process such as oxidation of Ni to NiO and Ni 

sulphide in SOFC [259].  

Initial cell voltage drop due to sulphur contamination is temperature dependent and decrease with 

increasing temperature [257,288]. The extent and nature of cell degradation is dependent on applied 

cell materials and microstructural characteristics and thus the phenomenon of degradation cannot be 

generalized. It is assumed that any kind of sulphur compound has to be removed to a level < 1 ppm 

to ensure long term performance of the SOFC.  

Haga et al. [251] studied the poisoning by sulphur compounds and observed that it occurs generally 

in the following way: cell voltage decreases rapidly after adding each impurity to fuel gas, followed 

by a steady-state with a constant cell voltage [252,261]. In this study, the initial voltage drops by 

three types of sulphur impurities were compared under various conditions. Similar results are 

reported by Tjaden et al. [257] that concluded that long term exposure to mercapatanes can be 

however more critical than H2S or COS contamination.  

The initial voltage drops by CH3SH and COS were almost identical to the initial voltage drop by 

H2S. Initial voltage drops at a constant current density of 0.2 Acm−2 were approximately 80, 35, and 

15 mV at 800 °C, 900 °C, and 1000 °C. 

Degradation behavior by CH3SH was different from that by H2S, as cell voltage gradually 

decreased with time after operation beyond ca. 2 h.  

Ni particles with the size of 50–70 nmΦ were deposited on ScSZ surfaces in the anodes. 

In a recent paper [288] SOFC cells with YSZ electrolyte and anodes of LaSrCrMn oxide (LSCrM 

perovskite) or LSCrM impregnated with Ni/CeO2 are tested with H2 fuel containing 50 ppm H2S. 

Ni and CeO2 particles with diameter of about 100 nm are distributed on the surface of LSCrM. 

XRD, XPS measurements showed that the anode poisoned with H2S is covered by adsorbed 

sulphur, metal sulphides and sulphate radical. Sulphides are produced by the reaction of sulphur 

with the anode rather than the direct reaction between H2S gas and anode. This seems to contradict 

previous studies on Ni/YSZ anodes [290], where absorbed sulphur is the sole poisoning product. 

According to thermodynamic analysis [291], the sulphide Ni3S2 can be formed only when H2S 

concentration (in H2) is higher than 3600 and 4700 ppm at 750 and 800°C, respectively. Formation 



166 

of other sulphides such as NiS and Ni3S4 need a higher equilibrium pressure of H2S. However Ni3S2 

is detected on the anode with a low H2S concentration of 50 ppm. The formation of sulphides can 

take place at a lower H2S concentration through the reaction of absorbed sulphur with nickel 

considering the higher adsorption energy of S compared to H2S on the anode surface, as confirmed 

by DFT calculations. 

Thermodynamic calculations [292-294] were reported on the stability of nickel sulphides as a 

function of temperature, PO2 (or P(H2)/P(H2O)), and H2S content. At low H2S conc. (~10 ppm), 

sulphides were not observed [295-297]. For higher (100 ppm) H2S concentrations, nickel sulphides 

were generally observed [298-300]. Ni sulphide formed in H2 containing 100 ppm H2S at 727°C 

[298] although it is not thermodynamically stable. Haga et al. [251] reported no formation of Ni 

sulphide under the condition with 5 ppm sulphur compounds.  

These results outline the importance of in situ techniques to study the sulfidation process.  

Thi et al. [290] studied the kinetics of the reactions between H2S and Ni or Ni-CGO (ceria doped 

with gadolinium) by using Raman spectra in situ. Ni3S2 is formed at low temperature (200–500°C) 

and remains stable at 800°C while no Ni3S2 is formed on clean nickel at 800 °C. It is important to 

avoid contact of a working SOFC with H2S during heating and cooling. Probably the first step of 

Ni3S2 formation is adsorption of sulphur onto Ni, that is fast at low temperature, but much more 

difficult at high temperature [301-302]. At high temperature, a Ni3S2 film is formed at the surface of 

the Ni-CGO pellet, due to a diffusion of nickel toward the H2S atmosphere. Moreover H2S reacts 

with the support CGO to produce Ce4O5S2. 

SOFC anodes Ni-gadolinium doped ceria (Ni/GDC) are studied for sulphur poisoning under 

operando conditions by Nurk et al. [295]. The molecular structure of sulphur species formed on the 

anodes in the temperature range 250-550°C is studied by XANES (K shell).  With H2 fuel 

containing 5 ppm H2S, several sulphur species in different oxidation states (6+, 4+, 0, -2) are 

detected: the species could either relate to ‒SO4
2- or SO3 (g), ‒SO3

2-  or SO2 (g), S2 (g) or surface-

adsorbed S atoms, and Ni or Ce sulphides. These results don’t agree with thermodynamic phase 

calculations, in particular the formation of sulphate species is not expected at the highest 

temperatures: this can be related to the difference between equilibrium conditions and the steady 

state conditions in the fuel cell that are determined by kinetic-controlled processes. 

Ni anodes exposed to H2S undergo a reversible or partially reversible degradation for few minutes, 

followed by a slow non-reversible degradation [273,295,303]. It is generally accepted that the initial 

rapid decrease of performance is due to adsorption of sulphur species with inhibition of the three-

phase-boundary (TPB) for hydrogen oxidation [273,303]. On the other hand, different hypotheses 

have been proposed to explain the following slow degradation: 1) the formation of a volatile NixSy 
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phase, leading to degradation of the electrode structure [290,294,304]; 2) adsorption of sulphur on 

nickel particles that are in less accessible sites, such as pores with bottlenecks [304]; 3) surface 

reconstruction of Ni that leads to catalytically less active form [304]; 4) bulk phase diffusion of 

sulphur into Ni grains [304]. 

Nickel sulphide formation is reported with H2S>2500 ppm at 850°C with 50% H2 fuel and therefore 

cannot explain the generally observed power degradation of SOFCs with few ppm H2S: the sulphur 

poisoning of nickel based anodes is generally explained by dissociative adsorption of H2S on nickel 

[297]. Two stage poisoning of Ni/8YSZ (8 mol % Y2O3 doped ZrO2) anodes was reported 

[273,294,306]. Singhal [304] found that at 1000°C with constant current density, adding H2S to the 

fuel, the cell voltage decreased rapidly (11.5% with 10 ppm H2S). A slow decrease of cell voltage 

(3.5%) occurred in the following 100 h. The effect of H2S was reversible. Sasaki et al. [272] also 

found a two phase poisoning with 5 ppm H2S in 5% H2O/95% H2 fuel at 1000°C. The cell voltage 

was almost recovered after removing H2S. The poisoning was more severe and not reversible when 

the temperature was lowered to 850°C. It was hypothesized that the chemisorption of sulphur 

caused a decrease of electrochemical sites thus increasing the anodic polarization.  Increasing pH2S 

to 20 ppm led to increased chemisorption of sulphur on nickel and thus further increase in anodic 

polarization and cell voltage loss. However no sulphur but NiO traces were found in the poisoned 

anode. Wang et al. [292] studied the effect of adding 2-50 ppm H2S to a fuel containing 50% 

H2/1.5%H2O in N2. The cell voltage dropped rapidly in the first minutes and slowly in the next 120 

h. After removing H2S, the cell voltage was recovered to 96% in 50 h. The irreversible poisoning 

was explained with a microstructural change of the nickel surface. Fewer studies are reported on the 

poisoning of Ni/CGO (Gd2O3 doped CeO2) anodes. Tests with syngas (34.8% H2/35.7% N2/40% 

CO) containing 207 ppm H2S at 850°C showed a rapid drop of power of 6-8% then a slow 

degradation up to 10-12.5% (Trembly et al. [263]). The power recovered to 97% after H2S removal. 

After the tests the amount of nickel decreased and morphological change was observed. NiS 

formation was the proposed mechanism. Lohsoontorn et al. [294] reported that the performance of a 

Ni-CGO/YSZ/Ni-CGO symmetrical cell decreases with decreasing pH2 (9.7% - 97%), decreasing 

temperature (600 – 557°C) and increasing pH2S (1 - 3 ppm). The recovery of the cell after removal 

of H2S increased with increasing pH2. The performance loss was due to the increase of the 

resistance due to charge transfer. Zhang et al. [305] compared Ni/YSZ and Ni/10CGO anodes in the 

presence of H2S (5- 00 ppm in H2) at 800°C. The drop of cell voltage was much higher with 

Ni/YSZ than with Ni/CGO anode. The positive effect of CGO was attributed to its mixed ionic 

electronic conductivity. Ni surface of both anodes appeared rougher after contamination with H2S 

but no sulphur was found with EDX. Smaller CGO particles were observed after the experiment. 
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In the work of Schubert et al. [303] Ni/YSZ and Ni/10CGO anodes are compared for the effect of 

H2S, using an H2/H2O/N2 fuel mixture at 850°C. The degradation of cell voltage is noticeable even 

with 2 ppm H2S. The cell with Ni/8YSZ anode showed two poisoning stages: the first stage 

occurred in few minutes while the following degradation was slower and lasted more than 10 h. The 

degradation of cell with Ni/10CGO occurred in one step and was slighter. The drop of performance 

cannot be explained by sulphide formation because it is not thermodynamically possible under these 

conditions. Dissociative H2S adsorption on Ni is assumed on the base of DFT calculations (Eq. 

3.33) [306]: 

 

Ni(s) + H2S(g) → Ni-S(s) + 2H(s)         (3.33) 

 

where the subscript (s) indicates species on the surface of metallic Ni. The heat of adsorption of H2S 

on different forms of metallic Ni was found more favourable than the heat of formation of Ni 

sulphides [307,308]. The authors propose a Temkin like equation to describe the adsorption of H2S 

and a mechanism of poisoning that explains the time progress of sulphur contamination of the Ni 

anode. On the basis of this mechanism, it is possible to calculate the nickel anode surface area from 

the duration of the first step of decrease of the cell voltage. The higher sulphur resistance of 

Ni/10CGO compared to Ni/YSZ is explained with the high mixed ionic electronic conductivity of 

the CGO phase and its ability to adsorb H2. 

SOFC degradation due to H2S is studied by a mathematical modelling approach by Vahc et al [309]. 

Electrolyte-supported and anode-supported SOFC are considered. Both contain five layers: anode 

gas diffusion layer (AGDL), anode active layer (ACL), electrolyte (ELEC), cathode active layer 

(CCL), and cathode gas diffusion layer (CGDL). The electrochemical reaction occurs at each active 

layers and the internal reforming reaction occurs only at AGDL. The model is based on a Temkin-

like isotherm of sulphur adsorption. The sulphur coverage and cell polarization are related to the 

cell temperature, H2S concentration and electrochemical performance. Vahc et al. [309] concluded 

that the effect of sulphur poisoning on the internal reforming reaction is dominant over its impact on 

the electrochemical reaction. 

 

3.21 Materials and Methodology 

Microporous materials used for HCl and H2S adsorption tests, supplied by Norit, Calgon Carbon 

and Union Carbide are summarized in Table 3-11. They consist of commercial activated carbons 

and 13X zeolites. In the same table the morphological characteristics are also reported. 
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 Filtrasorb RGM3 RBAA1 Zeolite 13X 

Supplier Calgon Carbon Norit® Norit® Union Carbide 

Geometry Pellet, d = 2 mm Pellet, d = 3 mm Pellet, d = 2 mm 
Sphere, d = 1.6 

mm 

Tab. 3-11 Adsorbent materials used in experimental tests 

 

3.21.1 Preparation of Activated Carbon 

The adsorbing capacity of the materials can be improved by physical/chemical treatments that allow 

the introduction of more functional groups reactive towards HCl and H2S, in comparison to those 

initially present as discussed in par. 3.15. 

For this reason, the activated carbons have been treated with basic solutions of NaOH, KOH and 

Na2CO3, widely used in the literature for this purpose [310,311]. 

The vacuum impregnation technique is used to functionalize the active carbon. 

The procedure involves three steps: sample degassing in He stream; vacuum impregnation with 

solutions of NaOH (10% w/w), KOH (10% w/w) and Na2CO3 (10% w/w); heat treatment at 250 °C 

of the impregnated activated carbons [310,311]. 

 

3.21.2 Degassing 

Before the impregnation process, the sample is subjected to a degassing treatment by vacuum pump. 

The sample is placed inside a burette, externally covered with a heating jacket that allows to adjust 

the temperature at the following conditions: 

 

Pressure: 5 μmHg 

Temperature: 250 ° C 

Time of treatment: 2 h 

Sample mass : 300 mg 

Such treatment is carried out to remove all the impurities present in the pores, so that the entire 

volume is provided for the impregnating solution. 

 

3.21.3. Impregnation 

The activated carbon samples, previously degassed, are placed inside a flask to create the vacuum 

conditions, less stringent than the previous (about 50/100 mmHg), which allows a better contact 

between the impregnating solution and the pores of the activated carbon. 
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The impregnation is carried out with 10% by weight, NaOH, KOH, Na2CO3 solutions. The 

experimental apparatus for materials impregnation (Figure 3-1), consists of a 100 cm3 flask 

connected via a non-return valve to a Venturi tube which realizes the vacuum exploiting the passage 

of water to the its inside. 

 

 

Fig. 3-1 Plant used for impregnation of activated carbons 

 

A sample mass of 300 mg was placed in the flask the solution is fed through a burette connected to 

the flask with a fitting silicone to prevent air infiltration. The vacuum is maintained for about 15 

min before the introduction of solution (2 cm3) by dripping. After introducing the alkaline solution, 

the mixture is stirred for about 30 minutes to ensure that all of the test solution to penetrate into the 

pores of activated carbon. It must avoid stirring too strong not to damage the support. 

Finally, by means of a valve it is restored the atmospheric pressure in the flask and the activated 

carbons are subsequently filtered to remove the excess solution. 

 

3.21.4 Heat treatment 

Heat treatment is carried out in an electric oven Heraeus (Figure 3-2) under air flow of 6 l/h. The 

sample is heated from room temperature up to 250 °C, with a heating rate of 10 °C/min, for 2 hours. 

The treatment allows to remove water from the sample and to improve the precipitation of NaOH, 

KOH and Na2CO3 (in excess). 
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Fig. 3-2 Oven used for heat treatment of activated carbons 

 

3.21.5 Preparation of Zeolites 

Zeolites are important ion exchanger materials. In the presence of electrolytic solutions are able to 

exchange the ions present in their framework with those present in the aqueous phase. This property 

is determined by the fact that the cations, present in the channels to balance the negative charge of 

the framework resulting from the presence of aluminum in tetrahedral coordination, are bound 

rather weakly to anionic scaffolding of the zeolite. The ionic bonds existing between the zeolite and 

the cations, in fact, are being undermined by the action dielectric exerted by water molecules; this 

makes possible the replacement of such cations with other present in the solution phase. The 

maximum amount of such substitution represents the cation exchange capacity that is the number of 

milliequivalents of cations that can be exchanged for gram of zeolite. This quantity is a function of 

the Si/Al ratio, being greatest when this ratio assumes a unit value. 

It should be noted that the actual exchange capacity of a zeolite towards a given cation depends, 

firstly, on the concentration of competing ions in solution, but also and especially by the affinity of 

the zeolite towards each of them. Such affinity is definable only in relation to that shown for 

another cation, which acts as antagonist in the exchange. The measure of the preference that one 

performs for an ion exchanger with respect to another is called selectivity. 

Modified zeolites were prepared by ion exchange or impregnation methods. Ion exchange was 

obtained by treating 3 g zeolite with 250 mL of 0.1 M solution of Cu(NO3)2*2.5H2O or 

Zn(NO3)2*6H2O under stirring at 80 °C for 2 h (Figure 3-3).  
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Fig. 3-3 System used for ion exchange of zeolites 

 

Afterwards the sample was separated from the solution and dried at 120°C for 2 h, then thermally 

treated in air flow at 250 °C for 2 h. The impregnation of the zeolite was carried out under vacuum 

conditions obtained with a Venturi tube to enhance the penetration of the solution into the material 

pores. The sample (3 g) was impregnated to incipient wetness with 3 mL of 0.1 M solution of 

Cu(NO3)2*2.5H2O or Zn(NO3)2*6H2O at 40 °C under stirring conditions. The sample was dried at 

120 °C for 2 h and thermally treated in air flow at 250 °C for 2 h. The thermal treatment leads to the 

decomposition of the nitrates and the formation of zinc or copper oxide, as follows: 

 

Zn(NO3)2 → Zn O + 2NO2 + 1/2 O2       (3.34) 

Cu(NO3)2 → CuO + 2NO2 + 1/2 O2       (3.35) 

 

 

Fig 3-4 Zeolite 13X not modified (white) and modified with Cu(NO3)2*2.5H2O 
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3.21.6 Chemical-physical characterization 

3.21.6.1 Surface area measurements 

It defines the total surface area of particles of material contained in the unit of mass or volume area. 

Generally, the data is supplied in m2/g. The evaluation of this area is not direct, but is done 

experimentally by measuring the adsorption capacity of the surface for each sample. 

The chemical-physical adsorption is the mechanism by which molecules, atoms or ions form a 

chemical bond or establish an interaction of physical chemical type, through Van der Waals forces, 

on the surface of the interphase. The interphase involved, in the separation surface between two 

different phases, it is often solid-liquid or solid-gas type. 

The most widely used technique for surface area measurements is N2 adsorption at 77 K, the B.E.T. 

(Brunauer, Emmett and Teller) method [311]. 

A Micromeritics ASAP 2020 (Fig. 3-5) apparatus was used. It is based on technique of adsorption 

of gases based on the principle of static-volumetric operation to generate experimental data of high 

value, usable both in research applications and in those of quality control. 

The instrument uses the physical adsorption and desorption of nitrogen at liquid nitrogen 

temperature. The specific volume of adsorbed nitrogen allows the determination of the specific 

surface area, the specific volumes of mesopores and micropores. At this temperature, it creates a 

vacuum and with a N2 gas stream that begins to adsorb until equilibrium is reached. While nitrogen 

is adsorbed, the partial pressure decreases: therefore, it is possible to evaluate a pressure difference 

between the initial and the equilibrium pressure conditions. In this way the adsorption isotherm is 

obtained. 

 

Fig. 3-5 Micromeritics ASAP 2020  

 

3.21.6.2 BET model 

The BET theory is a model describing the physical adsorption of gas molecules on a solid surface 

and can be used for the measurement of the specific surface area of a material. This model is due to 
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Stephen Brunauer, Paul Hugh Emmett and Edward Teller that in 1938 published the results of the 

modeling of physical adsorption isotherms. The B.E.T. theory, that takes its name from their initials 

hypothesizes a multilayer adsorption involving two possible fundamental interactions: surface-

adsorbate and adsorbate-adsorbate "vertical" (attraction interaction). The vertical adsorbate-

adsorbate interaction is independent of the considered layer, while the adsorbate-adsorbate 

interaction in the same monolayer (horizontal) is considered negligible compared to the interaction 

adsorbate-surface. The system is composed then by endless monolayers that follow the Langmuir 

model. 

BET model is used to calculate the volume of the monolayer from which you can derive the number 

of particles that make it up and consequently the surface area through the Eq. (3.34): 

 

1

𝑣[(𝑃0 𝑃⁄ )−1]
=  

𝑐−1

𝑣𝑚𝑐
(

𝑃

𝑃0
) +

1

𝑣𝑚𝑐
         (3.34) 

 

where P and P0 are the pressures at dynamic equilibrium and at saturation pressure of the adsorbate 

at the adsorption temperature, V is the amount of gas adsorbed, Vm is the amount adsorbed in a 

monolayer and c is the B.E.T. constant: 

 

𝑐 = 𝑒𝑥𝑝 (
𝐸1−𝐸𝐿

𝑅𝑇
)          (3.35) 

in which: E1 is the enthalpy of adsorption of the first layer, EL is the enthalpy for all other layers and 

is equivalent to the enthalpy of liquefaction. 

 

The B.E.T. equation can be approximated to the equation of a straight line of the type y = ax + b 

and then represented, whereas, on the x axis the ratio P/P0 (partial pressure of nitrogen and its vapor 

pressure at the liquid nitrogen temperature) and on the y axis the ratio 1/V [(P0/P) - 1]. 

In particular, it is proved that the relation is linear in the range 0.05 < P/P0 <0.35. 

Since the slope of the straight line and the intercept value on the ordinate it is possible to estimate 

the amount of vapor adsorbed for monolayer Vm and constant c of B.E.T. theory. 

From the value of the monolayer volume, it is possible obtain the number of particles in the 

monolayer nm and surface area value can be evaluated using the following equation: 

 

A.s. = Nm Na AN2          (3.36) 

where: nm is the number of moles of the monolayer, Na is Avogadro's number, AN2 is the area of 

single particle of nitrogen. 
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3.21.6.3 Electron Microscopy (SEM) and Elementary Analysis (EDS)  

Scanning Electron Microscopy (SEM) allows to meet a collection of high-definition images, Energy 

Dispersive X-ray Spectrometry (EDS) allows to obtain an estimation of the chemical composition 

of the species present on the surface going up, therefore, the amount of substance deposited on the 

support in phase segregated, during the preparation. 

SEM-EDS were performed using Philips XL30 instrument. 

Scanning electron microscopy 

In the SEM analysis, a very fine probe of electrons with energy up to 30 keV is focused on the 

surface of the sample inside of the microscope and it is induced to exert a scan in the form of a 

succession of parallel lines. Some phenomena occurring on the surface subjected to the impact of 

the electrons; the most important are: the emission of secondary electrons with energies of about 

10-20 eV; remission or reflection of high-energy electrons or backscattered belonging to the 

primary radius. 

The configuration and the arrangement of the detectors of the two types of emitted electrons are 

able to use the peculiarities of the emission mechanism. In particular, the secondary electrons are 

used for the construction of magnified images and resolved up to 5 nm due to the fact that the low 

energy of which they are provided, these electrons come from the superficial layers of the sample. 

Instead, the primary electrons are used to identify the presence of different compounds in a 

heterogeneous sample being the intensity with which they occur, a direct function of the average 

atomic number of the substance invested by the primary ray. 

The emitted electron current is collected by the detectors and amplified simultaneously with the 

scanning of the electron beam on the sample, the variations in the strength of the resultant signal are 

used to vary the brilliance of the trace of the electron beam which makes a scan on a fluorescent 

screen synchronic with the electron beam on the sample. 

Elementary analysis 

The microanalysis or chemical analysis, in the electron microscope (SEM) is performed by 

measuring the energy and distribution of the intensity of X-rays generated by the electron beam on 

the sample using a scatter detector energy of EDS (energy dispersive spectrometry). The analysis 

produced can be either the area that is enlarged at that time, or, stopping the scan of the electron 

beam, of a point of interest on the sample surface (microanalysis). 

Since the portion of space excited by the electron beam, which produces the spectrum X is a 

neighborhood of a few microns, the SEM-EDS is a powerful means of investigation of solids 

chemically inhomogeneous at a microscopic scale. 
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3.21.7 Experimental Apparatus for Adsorption tests 

3.21.7.1 H2S adsorption tests  

H2S adsorption tests were carried out in a laboratory scale plant, showed in Fig. 3-6.  

 

 

Fig. 3-6 Plant used for H2S adsorption tests 

 

This is an innovative apparatus that permit very fast, reproducible and accurate measurements 

properly designed to the purpose. In this apparatus, a stream (0.1 L min -1) of a gaseous mixture 

containing 8 ppm of H2S in He is flowed through a fixed bed of the sample (20 mg) immersed in a 

water bath at 40 °C. The samples are treated at 250 °C for 2 h in air flow (0.1 L min-1) before the 

tests. H2S effluent from the adsorption cell (Fig.3-7) is analyzed using a procedure based on 

potentiometric measurement.  
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Fig.3-7 Detail of the adsorption cell used in H2S clean up plant  

 

The stream effluent from the adsorption cell is bubbled through a 0.01 M AgNO3 solution in H2O 

(volume = 40 cm3). H2S is absorbed in the solution and dissociates according to Eqs. (3.37) and 

(3.38): 

 

H2S = H+ + HS-  K1 = 9.6*10-8        (3.37) 

HS- = H+ + S=   K2 = 1.3*10-14       (3.38) 

 

where K1 and K2 are the first and second ionization constants of H2S respectively. The S2- ions 

react with Ag+ forming the highly insoluble Ag2S precipitate according to Eq. (3.39):  

 

S= + 2 Ag+ = Ag2S  K3 = 2.3*1049        (3.39) 

 

where K3 is the solubility product of Ag2S. Due to the high value of K3, the formation of Ag2S(s) 

shifts the equilibrium of (3.37) and (3.38) towards right, therefore the H2S dissociation can be 

considered complete and the amount of H+ produced corresponds to twice that of H2S dissolved into 

the solution. The tube containing the AgNO3 solution was designed to obtain the quantitative 

dissolution of H2S, as ascertained by analyzing the exhausted gas in preliminary tests.  

The amount of H+ produced, and thus the amount of H2S dissolved in the AgNO3 solution at a given 

time, was determined by a pH measurement. using a Hanna HI3220 pH meter. The amount of H2S 

dissolved at a given time corresponds to the amount not adsorbed by the material. In this way, the 
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H2S concentration exiting from the adsorption cell was obtained as a function of time (breakthrough 

curve) for each sample. In this way the breakthrough curves have been obtained. 

The accuracy of the method was checked by blank tests with the adsorption cell filled with inert 

glass powder. The method allowed to achieve a remarkable sensitivity of 0.1 ppm H2S in the 

gaseous phase (by the way, with a simple, low cost set-up).  

 

3.21.7.2 HCl adsorption tests  

HCl adsorption tests were carried out in an original experimental apparatus based on potentiometric 

analysis procedure similary to H2S adsorptions tests (Fig. 3-8).  

 

 

Fig. 3-8 Plant used for HCl adsorption tests 

 

The apparatus operates at atmospheric pressure under flow conditions. It consists of three main 

sections: the feeding system, the adsorption cell containing the material under test and the analysis 

system. The gaseous feed containing 100 ppm HCl was obtained by bubbling pure N2 (100 cm3 

min-1) through a 22% w/w HCl solution at constant temperature of 0 °C. Water vapour was 

removed from the gaseous stream by a P2O5 trap (Sicapent, Merck). The saturation of the gaseous 

mixture was ascertained by titration after HCl dissolution in a Na2CO3 solution. The adsorption cell 

containing the material under test (200 mg) consisted in a U glass tube (i.d. = 0.4 cm, Fig. 3-9)) 

maintained at 40 °C by a water bath equipped with a PID thermal controller.  
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Fig. 3-9 Detail of the adsorption cell used in H2S clean up plant 

 

The samples were treated at 250 °C for 2 h in air flow (100 cm3min-1) before the tests. HCl effluent 

from the adsorption cell, was analyzed using potentiometric measurement. The stream effluent from 

the cell was bubbled through a test tube containing distilled water (40 cm3) in which HCl dissolved. 

The test tube was properly designed to guarantee the complete HCl dissolution in the water. 

Preliminary tests with different amounts of water and depth of the bubbling point allowed to 

optimize the operating conditions for the complete HCl dissolution. A pH probe HI1131B 

connected to a Hanna HI3220 pH meter was immersed in the solution. The pH value measured at a 

given time allowed to determine the amount of HCl dissolved in water until that time, that 

corresponds to the amount not adsorbed by the material: from these data, by a derivative procedure, 

the HCl concentration in the effluent from the cell was obtained as a function of time. In this way 

the breakthrough curve was obtained. Preliminary blank tests with the cell filled with an inert 

material were carried out to check the accuracy of the method. The sensitivity was as low as 1 ppm 

HCl. 

  

3.21.7.3 Analytical procedure 

The adsorption measurements associated to those of pH represent an experimental innovation that 

deserves a thorough discussion. Figure 3-10 shows a typical pH curve obtained in the adsorption 

tests for HCl and H2S removal. 
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Fig.3-10 Example of pH vs Time curves obtained with experimental procedure 

The pH trend on time presents an initial peak due to the presence of dissolved CO2 in distilled water 

and subsequent stripping that leading to the initial pH increase which ends after about 30 min. In 

fact, H2S/He or HCl/He flow in the absorption cell generates a turbulent flow and a strong mixing 

with consequent separation of dissolved CO2, resulting in an increase of pH. Subsequently, the pH 

starts to decrease due to absorption of H2S or HCl in solution. 

The concentration of H+ ions can be calculated from pH value according to: 

𝑝𝐻 = −𝐿𝑜𝑔[ 𝐻+]          (3.40) 

 

It is possible to obtain: 

[ 𝐻+] = 10−(𝑝𝐻)          (3.41) 

 

From the volume of the test solution it is possible to obtain the number of moles of H +: 

 

𝑚𝑜𝑙 = [ 𝐻+] ∗ 𝑉          (3.42) 
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Since during the test part of the solvent is inevitably entrained from the gas stream, according to the 

balance due to Raoult’s law, it must be considered the change in the volume (V) in order to obtain a 

more accurate value of the number of moles. 

For this reason, a measurement is taken of the downstream volume of the test, approximating the 

reduction from the initial volume, 40 cc, according to a linear law over time. Now a small 

distinction must be made for the adsorption of H2S and HCl. 

For H2S, note the volume and the initial concentration of H+ ions (by pH measurement of the initial 

Ag nitrate solution), can be evaluate the number of moles present in the initial solution. This value 

will be subtracted from the calculated during the experimental measurements, in fact, the 

assessment of the number of moles of H2S absorbed by the solution is evaluated on the basis of the 

variation of pH from the initial value. 

In the solution occur respectively the dissociation reactions of H2S, reactions (3.37) and (3.38), and 

the reaction (3.39) of formation of silver sulphide Ag2S, which is deposited on the bottom, 

extremely favored, which moves the balances (3.37) and (3.38) towards the formation of products 

ensuring the full absorption of H2S in solution. From the stoichiometry, the ratio between the H2S 

moles sent and H+ ions released (Eq. (3.37) and (3.38)) is 1: 2, and the number of initial moles 

calculated can be traced back to H2S moles absorbed by the solution: 

 

𝑚𝑜𝑙𝐻2𝑆 𝑎𝑑𝑠 =
(𝑉∗[ 𝐻+]−𝑚𝑜𝑙

𝐻𝑡=0
+ )

2
        (3.43) 

 

For HCl adsorption tests the measuring cell was designed with the purpose that the acid present in 

the gas stream (if present), is completely dissolved in water: this is possible because HCl has a high 

solubility in H2O (720 g / l). 

The output current from the measuring cell will contain N2 and a small percentage of water due to 

phenomena of dragging and evaporation. The volume of liquid, on which are made the 

measurements of pH, is reduced, and then, progressively about 1 ml every 2 hours, then the 

calculation of the moles of H+ present considers the actual volume (V) at time t of measurement: 

 

V = Vin – Vevaporated          (3.44) 

 



182 

From the variation of the pH of the solution contained in the measuring cell, it is possible obtain the 

moles of HCl absorbed in the water and the moles of HCl adsorbed by the material analyzed: 

 

mol H+ = V * 10 –pH           (3.45) 

mol H+ ~ mol HCl ads          (3.46) 

 

Figures 3-11 and 3-12 shows a typical curve (mol ads vs t) obtained by both of the experimental 

procedures. 

 

 

Fig. 3-11 Example of mol of H2S vs Time curves obtained with experimental procedure 
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Fig. 3-12 Example of mol of HCl vs Time curves obtained with experimental procedure 

 

Finally, to obtain the curve of breakthrough of the material expressed in terms of ppm of H2S or 

HCl in the output against time must be considered the following equation: 

 

𝐻2𝑆 𝑝𝑝𝑚 = 106 ∙ (
𝑚𝑜𝑙 𝐻2𝑆 𝑎𝑑𝑠

𝑚𝑖𝑛
𝑚𝑜𝑙 𝑡𝑜𝑡 𝑖𝑛

𝑚𝑖𝑛

)        (3.47) 

𝐻𝐶𝑙 𝑝𝑝𝑚 = 100 ∗ (1 − 1 ∗
𝑚𝑜𝑙 𝐻𝐶𝑙 𝑖𝑛−𝑚𝑜𝑙 𝐻𝐶𝑙 𝑎𝑑𝑠

𝑚𝑜𝑙 𝐻𝐶𝑙 𝑖𝑛
)      (3.48) 

 

Figure 3-13 shows an example of breakthrough curves obtained with the experimental procedure 

previously described. 
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Fig. 3-13 Example of breakthrough curves obtained with experimental procedure 

 

3.22 Results and Discussion  

3.22.1 SEM-EDS measurements 

The EDS analysis results provide information on surface elementary composition of the samples, 

while SEM show materials morphology on microns scale. 

The following table 3-12 shows the results of EDS analysis for untreated activate carbons and 

zeolite 13X. 

13 X zeolite contains mainly Si, Al, Na, since the zeolite is the Na form, with traces of magnesium 

ions, potassium, chlorine, calcium and iron resulting from the production process of the zeolite 

itself. Si/Al ratio (about 1.65 mol mol-1) measured is close to theoretical value of 13X Zeolites 

suggesting the accurance of such measurement. Na content is in agreement with charge neutrality of 

the zeolite. 

The main component of all activated carbons is C of course. Norit RGM3 also contains chromium 

and copper oxides deriving from the treatment used by the supplier to promote the 

adsorption/oxidation mechanism according to the reaction: 

 

CuO+ 2HCl → CuCl2 + H2O         (3.49) 

 

RBAA1 contains K with an amount of 24% due to the treatment with a KOH solution of effected by 

the supplier. Traces of other compounds, such as Al and Si, are present in all the activated carbons, 
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while other compounds, such as Fe, Ca, etc. are more frequently present in activated carbons 

treated, probably as a residue of the treatment of the precursor materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-12 Chemical composition of Zeolite 13X and Activated Carbons 

 

SEM micrographs are able to provide detailed images of the sample surface. In the following 

images the SEM obtained for the samples used in the adsorption tests have been reported. 

 

 Fig. 3-14 Zeolite 13X SEM  

 

Element (wt%) 
Samples 

13X Norit RGM3 RBAA1 Filtrasorb 

Si 25.24 0.33 2.17 0.82 

Al 14.7 0.20 - 0.88 

O 46.93 6.25 9.87 6.48 

Cu - 3.65 - - 

Na 8.39 - 0.32 - 

Mg 1.82 0.44 0.62 - 

Cl 0.33 0.25 - - 

K 0.87 0.12 23.91 - 

Ca 0.5 0.43 9.49 - 

Fe 1.22 0.20 1.03 - 

C - 86.48 52.59 91.81 

S - 0.57 - - 

Cr - 1.01 - - 

Mn - 0.06 - - 
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In the micrograph (Fig. 3-14) on the zeolite 13 X can be detect the presence of regular crystalline 

particles, characteristics of the morphology of the zeolites. 

As regards the active carbon, the SEM images are shown in figures 3-15:3-17 

 

 

Fig. 3-15 RGM3 SEM  

 

 

Fig. 3-16 RBAA1 SEM  
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Fig. 3-17 Filtrasorb SEM 

 

The images of activated carbons show the classic "creased" area and a morphology clearly less 

crystalline in comparison to zeolite 13X. 

 

3.22.2 Surface area measurements 

The surface area is a critical feature for a sorbent, since it affects the adsorbent capacity. Through 

the technique of nitrogen adsorption at 77 K, illustrated previously, the surface areas, the 

porosimetric distribution and the pore volume have been obtained. The results are summarized in 

the following table 3-13: 

 

Sample 13X RGM 3 RBAA1 Filtrasorb 

Surface Area (m²/g) 581.2 1110 815.8  1050 

Pore Volume (cm³/g) 0.325 0.409 0.450  0.593 

Average pore size 

(Å) 
22.41 19.55 22.10  27.22 

Tab. 3-13 Surface Area and Pore volume of Zeolite 13X and Activated Carbons not treated 

 

Active carbons have specific surface areas in the range 815-1110 m2/g as expected from literature 

data (ref libro, clark, sing) that are significantly higher than 13 X zeolite (580 m2/g). 

The following figures (3-18:3-21) shows the N2 adsorption isotherms obtained for the samples not 

functionalized. 
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Fig. 3-18 Isotherm of N2 adsorption at 77K for Zeolite 13X 

 

 
Fig. 3-19 Isotherm of N2 adsorption at 77K for Norit RGM3 
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Fig. 3-20 Isotherm of N2 adsorption at 77K for Filtrasorb 

 

All isotherms are of type I according to the IUPAC classification [310,311] and are typical of 

microporous materials. Adsorption occurring in microporous materials is essentially a pore-filling 

process, possible for the molecules whose dimensions are compatible with those of the pores 

themselves. The most distinctive feature of a type I isotherm is a fast increase of adsorbate volume 

at low p/p0 values up to an almost constant value which extends across most, if not all, of the 

multilayer range up to p/p0 → 1. 

 

 
Fig. 3-21 Isotherm of N2 adsorption at 77K for RBAA1 
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That micropores are filled reversibly in the p/p0 range below the normal onset of capillary 

condensation is now indisputable, but the mechanism involved in micropore filling are still under 

discussion-as they have been for over 40 years. However, it is now apparent that the micropore 

filling process is dependent on both the ratio of the pore width to the molecular diameter (w/d) and 

the pore shape. 

This mechanism was studied by Dubinin who developed a model based on the above considerations 

[311]. B.E.T. model can be approximated without problems to microporous materials (2-3% error), 

especially when the surface areas involved are high (>200 m2/g). 

In the case of mesopores and macropores the specific surface area also plays an important role, 

since the solute-sorbent interaction occurs only at a certain distance between them and not in any 

part of the pore void volume. It is also possible to have a multi-layer adsorption, but while for the 

mesopores is conceivable an adsorption mechanism due to capillary condensation, the small 

specific surface area of the macropores limits its influence on the adsorption capacity, relegating the 

macropores to the role of transportation of adsorbate in the micropores [312]. 

Furthermore, a hysteresis should be observed in the isotherms but his contribution is irrelevant and 

the presence of mesoporosity should be excluded. Definitively, pore volume and pore size 

distribution has a profound influence on the adsorbing characteristics of active carbons and zeolites 

because they have an influence in the solute-sorbent interactions. 

Table 3-14 shows the surface areas for the modified samples, and the corresponding percentage 

change, compared to the material not treated. 

 

Sample 
Surface Area 

(m²/g) 

FT NaOH 1009 

FT KOH 1133 

FT Na2CO3 1049 

RGM3 NaOH 1039 

RGM3 KOH 1322 

RGM3 Na2CO3 1106 

13X_Ex_Cu 370 

13X_Ex_Zn 356 

13X_Im_Cu 575 

13X_Im_Zn 585 

Tab. 3-14 Surface Area for Zeolite 13X and Activated Carbons modified 

 

The treatment of the activated carbons with the impregnation method causes an increase in the 

surface area of the sample modified by alkaline solution of KOH, while a surface area decreases are 
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found for the sample impregnated with NaOH solution. Finally, no change was detectable for the 

sample functionalized with Na2CO3 solution. This results are in agreement with several literature 

data [310]. 

For the zeolite 13X, ion exchange, but not impregnation, causes a decrease of surface area, that 

however is still high (356-370 m2/g). Such a reduction of surface area generally occurs when 

zeolites are modified with metal ions and is probably due to the formation of clusters of metal 

oxides that partially occlude micropores [310]. 

 

Sample 
Metal Content (mmoleq g-1) 

Cu2+ Zn2+ Na+ Others (K+, Ca2+, Mg2+) 

13X - - 3.65 1.92 

13X_Ex_Cu 4.66 - 0.22 1.48 

13X_Ex_Zn - 5.46 0.16 1.10 

13X_Im_Cu 1.80 - 3.44 1.90 

13X_Im_Zn - 0.50 3.60 1.89 

Tab. 3-15 Metal Content in Zeolite 13X and 13X modified samples 

 

Table 3-15 shows the metal content for 13X not modified and modified samples. It can be observed 

that 13X zeolites modified by ion exchange show higher metal contents compared to those modified 

by impregnation suggesting the presence of the metals in zeolites framework. This can be related to 

the large excess of solution employed in the exchange method. The metal content of exchanged 

samples is close to the amount corresponding to total exchange (5.8 mmol eq g-1). It must be noted 

that besides Na+ other cations are exchanged (such as K+, Ca2+ and Mg2+). A similar value can be 

assumed for exchanged zeolites, where Na+ is substituted by equivalent amount of Cu2+ or Zn2+, 

while for the impregnated zeolites a higher value is expected due to the presence of the basic oxides 

CuO or ZnO. 

 

Samples 
FT 

NaOH 

FT 

KOH 

FT 

Na2CO3 

RGM3 

NaOH 

RGM3 

KOH 

RGM3 

Na2CO3 
RBAA1 

Active 

Phase 
Na+ K+ Na+ Na+ K+ Na+ K+ 

(mmol eq/g) 2.10 2.10 5.5 7.98 2.60 5.01 1.92 

Tab. 3-16 Active phase Content in modified Active Carbons 
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Table 3-16 shows the results obtained, regarding the active phase, for modified active carbons. For 

all the samples the impregnation with Na2CO3 involves a content approximately double of active 

phase compared to the other samples, with a values of approximately 5-5.5 mmol eq/g. The only 

exception is given by Norit RGM3 impregnated with NaOH solution that showing a higher active 

phase content equal to 7.98 mmol eq/g. Recall, also, that for RBAA1 the active phase has been 

introduced by the supplier, such content is comparable (1.92 mmol eq/g for RBAA1, 2.1-2.6 for 

other samples) to the modified carbons impregnated with KOH. 

 

3.22.3 Tests of HCl Adsorption capacity  

The adsorption tests have been carried out with the experimental apparatus previously described in 

the paragraph 3.21.7.2. 

Figure 3-22 shows the breakthrough curves for the active carbons not modified. HCl concentration 

range of interest is limited taking into account that 1 ppm is the maximum limit tolerated by SOFCs 

and MCFCs. Figure 3-22 shows that the best performance is obtained with the Norit RGM3 that 

shows the slowest increase of HCl concentration, compared to the other samples leading to the 

highest breakthrough time at 1 ppm. The higher affinity with HCl due to the presence of Cu in the 

sample not treated. In Table 3-17 are summarized the adsorbed moles and the breakthrough time at 

1 ppm and 10 ppm for each samples used in HCl adsorption tests (treated and not treated). 

 

 
Fig. 3-22 HCl Breakthrough curve of activated carbon not modified 
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Figure 3-23 HCl Breakthrough curve for Filtrasorb not treated and modified 

 

From the analysis of breakthrough curves it can be observed that functionalization by impregnation 

improves at all the performance of the coal itself. In particularly the best results are obtained with 

Filtrasorb treated with KOH that shows a breakthrough time of 212 min at 1 ppm and an adsorption 

capacity of 0.45 mmol HCl/g. This result can be justified by the higher surface area of the sample, 

since the other parameters do not play a decisive role. In fact, the amount of active phase is the 

same for the samples modified with KOH and NaOH (2.1 mmol/g) while the sample treated with 

Na2CO3 has a higher active phase, but lower performance probably due to the higher steric 

hindrance of Na2CO3 molecule that obstructing partially the pores of activated carbons. 

Figure 3-24 shows the curves obtained for the samples Norit RGM3 not treated (nt) and treated with 

NaOH, KOH and Na2CO3, similarly to filtrasorb sample. 
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Fig. 3-24 HCl Breakthrough curve for Norit RGM3 not treated and modified 

 

It should be noted that sample treated with NaOH initially shows lower performance compared to 

the sample not treated, but after about 200 min performance become better. This result is not 

satisfactory for our purposes, since the range of interest is for low values of adsorbed HCl ppm, up 

to 10. 

For RGM3 samples impregnated with Na2CO3 and KOH the adsorbent capacity increase with a 

values of 0.52 mmol HCl/g adsorbed at 1 ppm (t = 252 min) for Norit Na2CO3 and with values of 

0.18 mmol HCl/g adsorbed at 1 ppm (t = 84 min) for Norit KOH.  

The activated carbons impregnated with NaOH, which have the highest content of active phase, 

show a very low adsorption capacity, which is also lower than not modified sample. 

This unexpected behavior could be related to an excessive content of Na, which leads to occlusion 

of micropores with the consequent reduction of the surface, and which therefore reduces the amount 

of HCl adsorbed. 
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Fig. 3-25 HCl Breakthrough curve for Zeolite 13X not treated and modified 

 

Breakthrough curves of the zeolite 13X and modified samples are reported in Fig. 3-25. The shapes 

of the breakthrough curves of the materials appear quite different from activated carbons. This 

suggests different kinetics of HCl adsorption. [310-312]. 

The curve of not modified 13X, shows a steady increase of HCl concentration with time up to about 

120 min, then the slope reduces. The breakthrough curves of Cu modified zeolites, 13X_Ex_Cu and 

13X_Im_Cu, are quite similar, showing a delay time of about 55 min, after which HCl 

concentration increases steadily. 

As regards the zeolites modified with Zn, a noticeable difference can be observed between the 

samples prepared by impregnation and by ion exchange. The former gives a breakthrough curve 

with a delay of about 40 min before the appearance of HCl, after which HCl concentration increases 

rapidly to values higher than 10 ppm. The latter shows a much longer delay of about 110 min before 

HCl detection, then HCl concentration increases steadily and approaches the values of the other 

samples at the end of the test. 

The shape of the curves suggests that the rate of adsorption is gradually reduced with time: this 

behaviour is probably related to diffusive resistance in the narrow pores of the zeolite (d = 8 Å). 

Obviously this resistance increases with time due the increase of the amount of adsorbate in the 

pores. For the not modified zeolite it can be hypothesize that HCl is chemisorbed according to Eq. 

(3.50) 

 

HCl + NaZ → HZ + NaCl          (3.50) 
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As showed in Fig. 3-25 for the zeolites the best results are obtained with samples modified by ion 

exchange and this is in according to the higher active phase content (see Tab. 3-15). 

Table 3-17 summarize the adsorption properties as derived from breakthrough curves for all 

samples studied. 

The results show that, with the exception of Norit NaOH sample, treatment with basic solutions, 

improves the adsorption properties of activated carbons. 

In the case of Filtrasorb, all treatments lead to an increase of the performance compared to sample 

not treated. The best results are obtained for the sample Filtrasorb KOH, which presents a 

breakthrough time at 1 ppm of 212 minutes with a total amount of HCl adsorbed approximately 

0.45 mmol/g, almost double value than the other two treated samples and about 7 times greater 

compared to not treated Filtrasorb. 

For the activated carbons Norit RGM3, it can be noted that the impregnation with KOH and 

Na2CO3 improves the HCl adsorption properties due to the increase of basic sites. 

The sample with Na2CO3, at 1 ppm, shown a breakthrough curve with an about triple adsorption 

value in comparison to RGM3 impregnated with KOH (0.52 vs 0.18 mmol/g). However, the 

activated carbons impregnated with NaOH, which have the highest content of active phase, show a 

very low adsorption capacity, which is also lower than not modified sample. 

Ultimately for Norit RGM3 samples, the best performances have been obtained with Na2CO3 

treatment, which leads to a breakthrough time at 1 ppm of about 5 times higher than the untreated 

Norit and an HCl adsorption uptake of 0.52 mmol/g. 

As regards the other sample considered as a comparison sample, the RBAA1 (modified by supplier 

with a KOH solution at 15% wt), it presents a breakthrough time at 1 ppm equal to 44 min with   

HCl adsorbing capacity of 0.08 mmol/g.  

For Zeolite 13X the results have shown improved performances of modified 13X zeolites compared 

to the untreated zeolite: the best results have been obtained with the zeolite ion exchanged with 

Zn2+, that gives a breakthrough time of 110 min at 1 ppm (0.23 mmol HCl/g) compared to a 

breakthrough time of 28 min of the not treated zeolite (0.08 mmol HCl/g). 

This confirms the efficiency of the procedure developed in this PhD thesis. 
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Sample t @ 1 ppm (min) t @ 10 ppm (min) 
mmol HCl ads  

@ 1 ppm (mmol g-1) 

FT tq 27 55 0.06 

FT NaOH 102 236 0.22 

FT KOH 212 498 0.45 

FT Na2CO3 122 282 0.26 

RGM3 tq 48 123 0.10 

RGM3 NaOH 23 50 0.05 

RGM3 KOH 84 186 0.18 

RGM3 Na2CO3 252 480 0.52 

RBAA1 44 57 0.08 

13X 28 188 0.06 

13X Ex Cu 56 306 0.12 

13X Ex Zn 110 287 0.23 

13X Im Cu 54 242 0.11 

13X Im Zn 46 62 0.10 

Tab. 3-17 Breakthrough times and adsorbed moles at 1 ppm for 13X zeolites and active carbons not 

treated and modified 
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3.22.4 Tests of H2S Adsorption  

The same materials used for HCl removal have been also studied for H2S adsorption in order to 

ascertain their ability to obtain the purification of biohydrogen stream up to the tolerance limits of 

the fuel cell and to check the possible utilization of a unique adsorbing bed in the clean-up system. 

In this paragraph results of H2S adsorption tests are reported. It must be taken into account that the 

MCFCs and SOFCs tolerance limit for H2S is lower than 0.5 ppm [310,313] and more stringent 

removal properties are required for H2S purification sorbent materials, so in this PhD thesis will be 

investigated the limit of 0.5 ppm. 

Firstly, have been reported the performances of commercial activated carbons: Filtrasorb, Norit 

RGM3 and RBAA1, which will be taken as a reference for the results of the functionalized carbon. 

Figure 3-26:3-28 show, time trends of H2S concentration, outgoing from the adsorption cell.  

RBAA1 sample, (figure 3-28) gives the best results among the commercial materials since it 

presents highest breakthrough time at 0.5 ppm (1070 min), suggesting that, it is able to adsorb H2S 

for a longer time, before saturation, than Norit RGM3 (t at 0.5 ppm equal to 725 min) and even 

more than the Filtrasorb (t at 0.5 ppm equal to 33 min). 

 

 

Fig. 3-26 H2S Breakthrough curve of Filtrasorb not modified 
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Fig. 3-27 H2S Breakthrough curve of Norit RGM3 not modified 

 

 

Fig. 3-28 H2S Breakthrough curve of RBAA1 not modified 

 

These results point to the beneficial effects of the basic alkaline treatments: Filtrasorb has the lower 

adsorption capacity because it is an activated carbon free of additives and so with lower basic 

properties which favor the adsorption of H2S (see Tab 3-1). 

In fact, the presence of metal ions, such as copper and chromium, in the sample Norit RGM3 

enhance H2S adsorption capacity promoting the adsorption/oxidation mechanism. Moreover the 
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CuO + H2S → CuS + H2O          (3.51) 

 

Furthermore, copper ions eventually also present, can contribute to the improvement by the 

equation: 

 

Cu2+ + H2S → CuS + 2H+         (3.52) 

 

The best performance is obtained with the sample RBAA1 modified with 15% wt of KOH solution, 

because the basic sites favor the chemical adsorption of H2S according to the equation: 

2 KOH + H2S → K2S + 2 H2O         (3.53) 

 

Figure 3-29 shows the breakthrough curves of the samples Filtrasorb not treated and treated with a 

Na2CO3, NaOH and KOH solutions. 

The best performances, in terms of breakthrough time at 0.5 ppm (101 min) and moles of H2S 

adsorption capacity (0.2 mmol/g), are obtained for the Filtrasorb treated with KOH. 

However, it appears that the functionalization with alkaline solutions, significantly improves the 

adsorbing capacity. Performance improvement through the impregnation with the sodium hydroxide 

can be explained by assuming its catalytic action in the formation of the intermediate HS-. Bagreev 

and Bandosz [314] have proposed the following mechanism: 

 

NaOH + H2S → NaHS + H2O        (3.54) 

2 NaOH + H2S → Na2S + H2O        (3.55) 

NaHS + ½ O2 → S + NaOH         (3.56) 

Na2S + ½ O2 + H2O → S + 2NaOH        (3.57) 

 

Similar considerations can be made for the sample Filtrasorb impregnated with KOH solution. 
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Fig. 3-29 H2S Breakthrough curve for Filtrasorb not treated and modified 

 

For the category Filtrasorb, the higher breakthrough times are found for the sample functionalized 

with KOH. The previously described kinetic mechanism explains the increase of the adsorbing 

capacity for this sample. The best performance of the modified sample with KOH can probably also 

due to the higher surface area compared to the other activated carbons. For this type of activated 

carbons, it is evident that the surface area plays a decisive role on adsorbent capacity (as also 

happened in the case of HCl). 

Figure 3-30 shows the breakthrough curves for the samples Norit RGM3 not treated and treated. 

Also for Norit samples can be considered the same kinetics reaction used for samples Filtrasorb. 

The curve of untreated Norit shows a delay time of about 520 min, after which the H2S 

concentration increases gradually with time. Curves of all modified carbons show high delay time. 

The breakthrough curves of Norit NaOH and Norit KOH are similar, showing the same 

breakthrough time of 795 min, followed by a steep increase of H2S concentration. The best 

performance is exhibited by Norit Na2CO3 that gives the longest operating time (840 min), followed 

by a slow rise of H2S concentration.  

Considering the very complex surface of activated carbons, the H2S adsorption can be related to 

several types of adsorbing sites: for example, a dipole-dipole interaction can be established between 

H2S and phenolic or chinonic groups [310-313].  

The increased performances of modified Norit can be related to an increase of basic groups 

concentration at the surface of the materials compared to raw sample. This leads to a stronger 

interaction with the acid H2S. 
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The similar performances of the samples treated with NaOH and KOH appear unexpected because 

the sample Norit NaOH, containing a higher amount of the basic compound, is expected to adsorb a 

higher amount of H2S. An explanation of this behavior could be that the high content of Na in Norit 

NaOH causes some occlusion of the micropores, leading to a reduction of surface area (Table 3.6) 

and thus reducing the amount of H2S adsorbed. A similar effect was found in the adsorption of HCl 

(see par. 3.22.3).  

 

 

Fig.3-30 H2S Breakthrough curve for Norit RGM3 not treated and modified 

 

Figure 3-31 shows the breakthrough curves of the samples Zeolite13X not treated and treated. 

In view of the discussion of the H2S adsorption data, it is worth noting here that the cations initially 

present in the zeolite (Na+, K+, Ca2+, Mg2+) are replaced in large amount by Cu2+ or Zn2+ in the 

samples prepared by ion exchange, while they are scarcely or not at all replaced in the samples 

prepared by impregnation. It cannot be excluded that this can affect in same extent H2S adsorption. 

It is probable that Cu and Zn are present as the oxides CuO and ZnO in the impregnated zeolites.  

The breakthrough times are longer for all modified zeolites compared to the parent zeolite. The 

impregnated samples 13X_Im_Zn and 13X_Im_Cu show similar breakthrough times (63 and 70 

min) and also similar curves with the presence of inflection points. The breakthrough times (when 

H2S concentration start to increase) of the exchanged samples are longer (85 and 200 min). It is 

worth noting the peculiar behavior of the sample 13X_Ex_Cu: this material shows a much longer 

breakthrough time and a very slow increase of H2S concentration after the breakthrough.  

Several effects can be supposed. It can be assumed that H2S is chemisorbed on 13X zeolite by an 
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H2S + NaZ = HZ + NaHS         (3.58) 

 

where only Na+ cation is considered for simplicity, but other cations present in the zeolite, that is 

K+, Ca2+, Mg2+, can give similar reactions. Moreover, similar acid/base reactions can occur in 

exchanged zeolites where Na+ is substituted by Cu2+ or Zn2+: in this case a stronger interaction is 

expected considering the high stability of CuS and ZnS compounds.  

As regards the impregnated zeolites, H2S adsorption is due both to the cations present in the zeolite 

cavities and to the basic oxides CuO or ZnO, that can react with H2S according to Eqs. (3.59) and 

(3.60) [310]: 

 

CuO + H2S  H2O + CuS         (3.59) 

ZnO + H2S  H2O + ZnS         (3.60) 

 

It was observed that the substitution of Na+ in the parent material with divalent cations such as Cu2+ 

or Zn2+ leaves more free space in the zeolitic cages and increases the polarity of the material, thus 

favouring the adsorption of a polar molecule. However, this effect, that could be important for 

adsorption of HCl, seems to play a minor role for H2S adsorption: in fact, Fig. 3-31 shows that the 

sample 13X_Ex_Zn, that has the highest degree of exchange, is not the most effective adsorbent: 

the adsorption performance of this material is definitely lower compared to 13X_Ex_Cu and not 

very different from that of the impregnated samples. It appears clearly from Fig. 3-31 that the most 

effective H2S adsorbent among the studied zeolites is 13X_Ex_Cu. This can be related to the known 

affinity of Cu2+ for S2- ions and suggests that the main factor determining the H2S adsorption 

properties of these materials is the specific interaction between S2- and the metal cation [310].  
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Fig. 3-31 H2S Breakthrough curve for Zeolite 13X not treated and modified 

 

Table 3-18 summarize the breakthrough times at 0.5 ppm for 13X zeolites and active carbons not 

treated and modified. The results show that, treatment with basic solutions, improves the adsorption 

properties of activated carbons not treated. 

In the case of Filtrasorb, all treatments lead to an increase of the performance compared to not 

treated sample. The best results are obtained for the sample Filtrasorb KOH, which presents a 

breakthrough time at 0.5 ppm of 101 minutes with a total amount of H2S adsorbed approximately 

0.2 mmol/g, almost 1.5 higher than the other two treated samples and about 3 times greater 

compared to not treated Filtrasorb. 

Treatments with basic solutions improve the performance of Norit RGM3: the effect is limited with 

Norit NaOH and Norit KOH, but appears larger with Norit Na2CO3, that exhibits a much longer 

delay time and a much larger amount of H2S adsorbed (1222 min at 0.5 ppm with 2.46 mmol/g 

adsorbed), which presents a breakthrough time to 0.5 ppm of about 2 times higher than the 

untreated Norit. 

As regards the other sample considered as a reference material, the RBAA1 (modified by supplier 

with a KOH solution at 15% wt), it presents a breakthrough time at 0.5 ppm equal to 1070 min with   

H2S adsorbing capacity of 2.05 mmol/g.  
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Sample t @ 0.5 ppm (min) 
mmol H2S ads @ 0.5 

ppm (mmol g-1) 

FT tq 33 0.063 

FT NaOH 63 0.12 

FT KOH 101 0.20 

FT Na2CO3 68.5 0.13 

RGM3 tq 725 1.46 

RGM3 NaOH 841 1.69 

RGM3 KOH 830 1.67 

RGM3 Na2CO3 1222 2.46 

RBAA1 1070 2.05 

13X 47 0.09 

13X Ex Cu 580 1.17 

13X Ex Zn 111 0.22 

13X Im Cu 99 0.20 

13X Im Zn 76 0.15 

 

Tab. 3-18 Breakthrough times and adsorbed moles at 0.5 ppm for 13X zeolites and active carbons 

not treated and modified 

 

For Zeolite 13X the results have shown improved performances of modified 13X zeolites compared 

to the untreated zeolite: the best results have been obtained with the zeolite ion exchanged with Cu 

that gives a breakthrough time of 580 min at 0.5 ppm (1.17 mmol H2S/g) compared to a 

breakthrough time of 47 min of the not treated zeolite (0.09 mmol H2S/g). 

Also for H2S adsorption tests, this results confirm the efficiency of the procedure developed in this 

PhD thesis. 

 

3.22.5 Mathematic models of experimental data 

Adsorption data can be modeled in order to obtain information of adsorption kinetics.  

From the experimental results, which reproduce the initial trend of the breakthrough curves, the 

complete function can be obtained by curve fitting of the same using some models able to reproduce 

the adsorption of HCl and H2S on activated carbons and zeolites 13X.  
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In this PhD thesis have been considered two mathematical models: Weibull with 4 parameters and 

Logistics with 5 parameters. 

Among the models that return curves with sigmoid pattern, commonly used, such as Gompertz, 

Logistics, Hill, Chapman-Richards, Morgan-Mercer-Flodin, Lomolino, the Weibull parameters 4 is 

the most suitable to approximate the experimental data obtained leading to breakthrough curve of 

sigmoidal shape.  

Some sigmoidal functions are symmetrical respect to the inflection point, while others, including 

the Weibull are not symmetrical, and effectively approximate the type of breakthrough curves 

obtained in this thesis (not symmetrical with respect to the inflection point). 

Adding the number of parameters in these models, they increase the possibility of regress the shape 

of the curve, the inflection point, the intersection of the axes and the asymptotes. In particular, the 

Weibull function, introduced by the physical Swedish Waloddi Weibull is the most versatile 

because it returns a good approximation since version with only 2 parameters and is used in the 

modeling of large classes of data in various fields, including the engineering and medical research 

[315-318]. 

The Weibull model equation with 4 parameters is the following: 

𝑦 =  𝑎 ∗  [1 −  𝑒(−(
𝑥−𝑥0+𝑏∗𝑙𝑛2

1
𝑐

𝑏
)𝑐)]       (3.61) 

 

where  

y = c/c0 is the ratio between the concentration of compounds (H2S or HCl) in the effluent stream 

and the initial concentration; 

x = time; 

a = upper asymptote; 

b = scale parameter; 

c = shape parameter: slope; 

x0 = inflection point. 

 

The second equation used for curve fitting is the Logistics with 5 parameters (5PL). 

The use of this model allows to process experimental data affected by asymmetry. 

The commonly used symmetrical pattern, a 4-Parameter Logistic (4PL, g = 1) are not able to fitting 

asymmetric curves and so involves a certain error percentage. For this reason, the 5PL, is able to 

return a higher accuracy [319]. 

The equation of the logistics to 5 parameters is the following: 
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𝑦 = 𝑑 +
(𝑎−𝑑)

(1+(
𝑥

𝑐
)𝑏)𝑔

          (3.62) 

where 

y = c/c0 is the ratio between the concentration of compounds (H2S or HCl) in the effluent stream 

and the initial concentration; 

x = time; 

a = upper asymptote; 

b = hill slope; 

c = inflection point; 

d = lower asymptote; 

g = asymmetry factor. 

 

Table 3-19 shows the effect of the parameters a, b and d on the slope of the logistic function: 

 

Case a,d b Slope 

1 a>d >0 negative 

2 a>d <0 positive 

3 a<d >0 positive 

4 a<d <0 negative 

Tab. 3-19 Correlation between 5PL parameters 

 

The cases 1 and 4 of Table 3-19 are able to model data with decreasing trend, the cases 2 and 3 are 

suitable for data with increasing trend. 

It is possible to summarize the effect of the parameters a, b, c, d and g on 5PL curve in the 

following way:  

 

a = Check the upper asymptote position. With b and d controls the slope of the curve.  The curve 

approaches the asymptote a at small concentrations for b> 0 and at large concentrations for b <0; 

b = Check the speed of the transition between the asymptotes of the curve. Its mark, with a and d 

orders, controls the slope of the curve. Alone controls the speed to asymptote a and with g controls 

the asymptote approaching d; 

c = Control position of the transition region; 

d = Check the lower asymptote position. With b and a controls the slope of the curve. The curve 

approaching asymptote d at small concentrations for b<0 and at large concentrations for b>0; 

g = With b controls the speed of approach to asymptote d. 
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Fitting of experimental data using the 5PL could be more not so easy as for 4PL model. However, 

recent improvements in numerical methods and greater accuracy in data acquisition, have made it 

easier to use this model in comparison to the 4PL model. 

As an example figures 3-32:3-35 show the data obtained for each type of activated carbon 

(Filtrasorb, Norit RGM3, RBAA1) and zeolite (13X) used in this thesis. The graphs obtained show 

that both models are able to reproduce the experimental data. 

 

 
Fig. 3-32 Breakthrough curve for Filtrasorb  

 

 
Fig. 3-33 Breakthrough curve for Norit RGM3 
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Fig. 3-34 Breakthrough curve for RBAA1 

 

 
Fig. 3-35 Breakthrough curve for Zeolite 13X 

 

Samples a b c x0 
Number of 

Iterations 
R2 

FT 1 1041 0.9274 1000 4780 0.9953 

RGM3 1 735.6 0.9767 848 4515 0.9997 

RBAA1 1 574 1.5364 1031.5 4515 0.9989 

13X 1 1225 1.2488 1457 4893 0.9997 

Tab. 3-20 Regression results for the model Weibull with 4 parameters  
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Samples a b c d g 
Number of 

Iterations 
R2 

FT 1 -14.22 2093.9 -0.5885 0.0348 1722 0.9849 

RGM3 1 -1.81 2.88 -0.0042 18775 1042 0.9842 

RBAA1 1 -3.16 51.37 -0.0092 9053 1497 0.9875 

13X 1 -1.89 6.37 -0.0049 18935 1420 0.9839 

Tab. 3-21 Regression results for the model 5-Parameter Logistic (5PL) 

 

In addition to the value of the parameters, Tables 3-20 and 3-21 also give the value of the 

coefficient of determination R2. This last parameter is an index of the accuracy of the numerical 

model used: if the R2 is close to 1 means that the regression predicts the dependent variable and the 

experimental data, if it is close to 0 means that the results are not reliable. 

In the case of Weibull with 4 parameters have been obtained a coefficient of determination never 

less than 0.9935, while, in the case of Logistics with 5 parameters, R2 is never less than 0.9839. 

From Tables 3-20 and 3-21 it can be seen that the model Logistic 5 parameters require a less 

number of iterations; however, the Weibull model to 4 parameters returns a value of the highest 

coefficient of determination and, therefore, greater fairness in the approximation of the 

experimental data. 
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Chapter 4: Integrated System Anaerobic Digester/Fuel Cell 

4.1 Introduction 

Fuel Cells can be integrated to biogas producing plants. The first applications of fuel cells (FCs) of 

industrial size fed with biogas from anaerobic digesters downstream of the water treatment plants 

date back to the ninety years [1]. The US EPA (Environement Protection Agency), along with 

ONSI, has made a series of tests on different plants equipped with Phosphoric acid fuel cells 

(PAFC) with a power of 200 kWe (ONSI PC unit 25). 

Figure 4-1 shows one unit ONSI PC25 installed at the Columbia Boulevard Wastewater Treatment 

Plant in Portland (Oregon) [2]. 

 

 

Fig. 4-1 PAFC system ONSI (200 kWe) fueled with biogas produced from anaerobic digester 

Columbia Boulevard Wastewater Treatment Plant in Portland (Oregon) 

 

The typical composition of the biogas produced in these digesters is the following: CH4 (57-66% 

vol), CO2 (33-39% vol), N2 (1-10% vol) and O2 (<0.5% vol). The gas is typically saturated with 

water vapor at 35 °C. The concentration of sulphur, mainly hydrogen sulphide, is in a range 6-200 

ppmv, while the chlorinated compounds concentration is less than 4 ppmv. The calorific value of 

the biogas produced by the digester is 5,34-6,23 kcal / L (dry basis) [3]. 

Concentrations of sulphur compounds present in the biogas up to 200 ppmv are clearly 

incompatible with FCs plant. Thus clean-up system is needed to obtain purity levels required by 

FCs. 

The biogas treatment system tested in this test campaign of PAFC cell is based on the hydrogen 

sulphide absorption on non-regenerative beds [4]. This pre-treatment of the biogas system has given 

satisfactory results with an efficiency of abatement of 98% approximately and the concentrations of 
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hydrogen sulphide in output is lower the limit of detection of 10 ppbv. The residue of sulphur, 

present in the form of organic compounds (about 0.5 ppmv), is eliminated by desulphurizer present 

in the power system PAFC PC25. The residual levels were compatible with the expected life of the 

catalyst (5 years and 40,000 hours of operation). The PAFC plant Yonkers [2] has worked mostly at 

a power of 150 kWe, with peaks at 200 kWe. 

“Fuel Cell Energy” and the German partners of MTU Onsite Energy, leading companies in the 

production of molten carbonate FCs technology (MCFC), installed in Europe, U.S.A., Japan and 

Korea many sized plants between 200 kWe and 1 MWe fueled with gas from anaerobic digesters of 

industrial waste and wastewater treatment plants. Also Ansaldo Fuel Cells has been studied 

application of FCs fueled with biogas. In view of this type of application, in the context of national 

and international projects involving ENEA, ERSE (Energy Services Regulatory Authority) have 

been studied the effects of sulphur compounds on MCFC and the fuel pre-treatment systems. 

The MCFCs and SOFCs has been considered, in recent years, the most promising for applications 

with biogas, (especially for plants exceeding a few hundred kWe) since they are able to tolerate 

several compounds present in the biogas which are harmful to the low temperature FCs (PEMFC 

and PAFC). Furthermore, the MCFC has the advantage of using CO2 as a reactant to the cathode, a 

prerogative that allows to gain a few percentage points of efficiency compared to the other FCs [5]. 

For the last decade the attention of the scientific community has focused on reducing greenhouse 

gas emissions with initiatives and regulations to promote the reduction of greenhouse gas emissions 

(see chapter 1). In this context fits perfectly the integrated plant Biomass / Digester / FC. 

Fuel Cell Energy (Germany company) has been installed more than 50 worldwide plants in power 

range 100 kWe-2 MWe. About 30% of this plants are powered by gas produced from renewable 

sources, including the product gas from anaerobic digesters in systems for Water Treatment. [5]. 

The Tulare plant (California) consists of three DFC300 ™ Unit, for a total of 900 kWe. The thermal 

energy produced by the FCs system is used to preheat the sludge in the digester. 

The Oxnard facility (California) consists in two units for a total of 600 kWe. It has been developed 

at the Gills Onions, the largest US company in the field of onion processing. Gills Onions disposing 

of about 30000 tons per year of processing waste and the composting, besides being expensive, 

generates significant emissions of CH4 in the atmosphere, much more GHG than CO2. The organic 

compounds are sent to a digester and the biogas is used to power the fuel cells after appropriate 

treatments. 

In cooperation with the Korean company POSCO, Fuel Cell Energy has installed and has planned to 

install several plants also in South Korea, some of which fed with biogas. 
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In Europe, the first installation of a system of MCFC fueled by biogas was produced by RWE Fuel 

Cells GmbH in Germany (Ahlen) [6]. The MCFC unit is an “Hot Module 250 kWe” supplied by 

MTU Onsite Energy. The biogas is produced from an anaerobic digester installed in a wastewater 

treatment plant. The plant is able to produce between 1500-2000 m3 of gas per day with an average 

methane content of 60 % vol. The Hot Module is a compact unit designed to run with natural gas 

grid and its use with biogas unit requires some additional external modules. The concentration of 

carbon dioxide in the biogas produced by the digester in Ahlen is 38 % vol and the low calorific 

value of the biogas due to methane dilution, requires an increase of about 50% of the fuel gas flow 

rate at full power. To this purpose, on the system of Ahlen, a compressor is needed to maintaining 

the pressure required at the entrance of Hot Module. Some technical solutions have also been 

required to protect the fuel cell from the non-negligible concentrations of oxygen present in the 

biogas. An analysis system of continuous gas, at the entrance of the Hot Module, allows to control 

both the oxygen content than the hydrogen sulphide remaining in the clean biogas. 

At European level, the “EFFECTIVE” project, concluded in 2004, and partially funded by the 

European Commission, has provided interesting results on the integration of MCFs with biogas 

production from renewable sources (biomass) [7]. The project consortium was led by Profactor, an 

Austrian company active in the field of nanotechnologies and innovative solutions for the 

exploitation of renewable energy sources (biomass, biogas treatment). The project leds to the 

creation of two separate biogas treatment systems integrated in two test stations for laboratory 

MCFC stack (300 We), which were located in different Europeans biogas plants and tested for 

2000-5000 hours. 

As previously discussed the use of biogas in fuel cells requires the almost complete removal of 

hydrogen sulphide. In EFFECTIVE project have been developed two distinct systems able to obtain 

concentration of hydrogen sulphide in the biogas lower than 10 ppmv: a chemical system, realized 

by Seaborne, and a biological system developed by Profactor. A second subsequent stage of 

purification with activated carbon then allowed in both cases to obtain sufficiently pure gases to 

feed the MCFC stack (MTU / FCE with internal reforming technology). During the project, 

between 2002 and 2004 has been tested biogas obtained from landfill, water treatment, agricultural 

waste and co-fermentation, respectively, in Spain, Germany, Austria and Slovakia, for a total of 

15000 operating hours [7]. 

Table 4-1 shows the installations to FC fueled by biogas with the respective power range. 
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Location and FCs type 
Power 

[kWe] 

Portland (USA)/PAFC 200 

Yonkers (USA)/PAFC 150 

Tulare (USA)/MCFC 900 

Oxnord (USA)/MCFC 600 

San Diego (USA)/MCFC 1000 

Fontana (USA)/MCFC 2000 

Ahlen (Germany)/MCFC 250 

Consortium FCs South 

Korea/MCFC 
100-900 

Consortium FCs Japan/MCFC 100-900 

Tab. 4-1 Location, type and power of the FCs plants fueled by biogas 

 

4.2 Content of Chapter 

In this chapter will be designed an integrated plant anaerobic digester/fuel cells. Part of the research 

during the PhD has been carried out at the Paul Scherrer Institut (PSI) (Villigen, Switzerland). 

During this period was developed the project "Manure to Electricity" in the field “Biosweet 

(Biomass for Swiss Energy Future). This project was done in collaboration with other Swiss 

universities (Ecole Polytechinique Federale de Lausanne, Zurich University of Applied Sciences) 

and research centers (WSL, Federal Institute for Forest, Snow and Landscape Research). This plan 

provides for the development of small systems (up to 100 kWe) based on fuel cells, in particular the 

SOFCs fed by renewable sources. The coordinator of the project is Dr. Serge Biollaz (Head of 

Termochemical Group at PSI). 

Solid oxide fuel cells have been preferred because more flexible and adaptable than the MCFCs and 

therefore more suitable for low power plant. Moreover, many companies are beginning to develop 

industrially Small systems for sale on a large scale. 

The biomass choice is the manure since Switzerland has a large availability of such biomass, mainly 

concentrated in small farms. This project is also interesting for Italy due to the large availability of 

manure derived by agro livestock activities. As seen in Chapter 2, there are more than 6 million of 

cattle on our territory (about 350000 in Campania region) [8]. 

The feasibility study of an integrated plant anaerobic digester/SOFCs for electricity production 

(power range 2-100 kWe) is carried out with focus on CH4 production taking into account the 

productivity of the different farms insisting in the different area of the country, clean up system, 
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chose of SOFCs and flow-sheet of the global plant. The use of biohydrogen produced by ADH, 

ADHexp, litter, OFMSW, that are studied in this PhD thesis has been considered. 

 

4.3 Manure to Electricity using Fuel Cells 

Switzerland has a considerable but under-utilized bioenergy potential in the form of manure. This 

manure originates primarily from cattle. It is distributed across many small farms. In 2015 the 

average animal density was 24 animals (GVE) per farm. The small size and decentralized nature of 

these manure sources result in challenging questions: how do we make best use of Swiss manure for 

energy use at a scale of 2-100 kWe; what limiting conditions prevent the use of this energy source; 

by which means farmers can be encouraged to implement energetic use of manure; what technology 

chains are most promising. These questions are addressed by a SCCER BIOSWEET team 

consisting of several independent research groups and external partners. 

At this early stage of the study, the scope of the Manure-to-Electricity project is focused on 

developing concepts for value chains that make such technologies attractive for Swiss agriculture. 

The development of such technology involves several technical features and an adequate 

“technology supply chain” to the market. 

The Manure-to-Electricity team in SCCER BIOSWEET was assembled from research groups with 

an expertise in each of the key areas needed to develop this value chain. A detailed assessment of 

Swiss manure resources is provided by Vanessa Burg from the WSL.  

On a technical level, several process steps are necessary to generate electricity from manure. 

Manure can be easily converted to biogas by anaerobic digestion processes, which is the research 

area of Prof. Urs Baier’s group at ZHAW. At the current state of the project the operating 

conditions of a small size digester have been selected and several companies have been identified in 

the international market, which can supply such small scale digesters. 

The quality of biogas is a key point since several harmful compounds, even in trace amounts, can 

irreversibly damage the electricity generation unit (fuel cell, internal combustion engine). With 

support from the group of Dr. Serge Biollaz at PSI, a clean-up system was evaluated and several 

adsorbing materials have been identified to remove such compounds up to the concentration limits 

defined by fuel cells. The final step is to convert this biogas to electricity. The use of solid oxide 

fuel cell (SOFC) technology for the production of electricity (2-5 kWe) from agro-biogas was 

assessed by a research group at EPFL, led by Dr. Jan Van herle. Several fuel cell companies was 

identified in the European market as potential suppliers. 

An ongoing difficulty concerns the economics and cost structure of such a system. This is an issue 

which can only be resolved by close collaboration between technology experts, Swiss farmers, and 
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research groups. A review of the cost structure and possible revenues is the focus of the next stage 

of analysis. 

The SCCER BIOSWEET-team is perfectly positioned to initiate this dialog. In the end, the project 

“Manure to Electricity” should lead to better “waste to energy” processes that allow to reduce the 

use of fossil fuels and greenhouse gas emissions by the use of renewable sources that exist already 

today in Switzerland. In the short term this joint effort should lead to a smart pilot and 

demonstration project, which validates the outcome of the ongoing study. Ultimately, electricity 

generation from biowaste in this way could raise its contribution to the Swiss electricity supply 

from currently 0.5% to 5%, additionally recovering some useful heat [9]. 

 

4.3.1 Concept Development and Feasibility Study 

Technical scope of the ongoing project is developing a value chain “energy & money”. For a 

successful implementation of such technology, a “technology supply chain” is needed [9]. 

Main tasks to be treated deal with power scale, costs, technological readiness, and dynamic 

response. For example, it is relevant to define the type of manure resource size/type characterizing 

the chemical/physical properties (humidity, C/H/N ratio, the organic fraction); the anaerobic 

digester techno-economic feasibility at small scale; the gas cleaning materials; the SOFC stack; the 

storage or transportation issue for manure/digestate/biogas. 

The power range of 2-5 kWe (and in future up to 100 kWe) has been defined taking into account 

that in Switzerland there are many small farms that have a gross average potential of 1-10 kWe. The 

aim of the project is the development of 1000-5000 units in the next years for the production of 

renewable energy for local use. 

It is important to know the regulations for the development of a plant and the possible incentives to 

make attractive the project for the users. 

This involves at least two scenarios for the realization of the project: the first (Fig. 4-2) is to use the 

biomass available in the farm to produce energy, the second option (Fig. 4-3) is to concentrate the 

biomass from two or more farms and produce electricity in a plant which is located near the farms. 
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Fig. 4-2 Scenario n. 1: Centralized energy use  

 

 

Fig. 4-3 Scenario n. 2: local energy use 

 

Feasibility Study 

The feasibility study has been performed considering the different aspects related to the integrated 

plant taking into account the socio economic context to which it is addressed. Thus this study 

considered the following steps: resources assessments; AD process; biogas clean-up; SOFCs stack 

and commercial availability, economic analysis. 
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At First it is important to evaluate the project, wondering if it makes sense or not by studying and 

analyzing the different components needed to realize the plant. General approach is needed to 

evaluate the theoretical and sustainable potential of biomass for biogas production (animal number, 

farms, stabling system). In Switzerland are available 2000000 tons of dry matter from cattle, with 

36 PJ of primary energy content [9]. 

After the resource assessment, is possible to analyze the single farms in details. Most single farms 

show a gross biogas potential of 10-20 kWe (this data is crucial to choice the power of integrated 

plant). There are almost no decentralized off-grid solutions, so it is necessary develop a technology 

for local use of the electricity produced. 

The primary goal of the project is to define operational limits for AD process, gas cleaning and 

SOFC stack. To this purpose is necessary the evaluation of critical biogas parameters for biogas 

cleaning, SOFC and identify operational AD parameters to positively influence them. 

On the other hands the identification limits of load and flow variation and on/off operation for 

biogas cleaning and SOFC operation are also be considered. 

The biogas clean-up deserves thorough investigation because no dominant “off-the-shelf” design 

exists for biogas cleaning for sensitive end use like a SOFC operated on biogas from manure. This 

is due to possible variability of contaminant amounts, novelty of the integration with fuel cells and 

difficulty of laboratory testing with representative gas mixture. The primary goal is to determine 

cost-effective gas cleaning sequence for manure digestion to the electricity conversion unit at small 

scale. 

Finally, the integration of digester plant with SOFCs stack must be investigated defining how to 

start-up of a SOFC system with small scale agro-biogas production and operate it with low 

(thermal) cycling needed. Moreover, it is important to assess how to make the whole small-scale 

conversion chain cheap and simple in order to compete with ICE, and define the appropriate power 

size(s)., The study also involves the determination of the heat needs and how they can be optimally 

covered, the threshold level of contaminants present in biogas stream. The expected building up of 

the plant requires a market investigation aimed to identify a possible supplier for SOFCs stack. 

 

4.3.2 Plant Design and Development 

Now, it is important define the main devices and parameters of the global plant. In table 1 has been 

reported the calorific value of manure, methane and hydrogen which will be useful for the 

characterization of the plant. 
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Compound 
Calorific Value 

kJ/m3 kWh/m3 kcal/m3 kJ/kg kcal/kg 

Manure* 24000 6,67 5732 24,30 8,19 

Methane 31650 8,79 7564 50000 11940 

Hydrogen 10760 2,99 2572 120000 28680 

Table 4-2: Calorific value of Manure, CH4 and H2 

*For the calorific value of manure an average value was considered.  

 

Typical production availability for the anaerobic digestion process using manure from cattle is the 

following: 

The amount of manure produced per day is 61.5 kg per head. The manure is composed from 

different fraction, only 20% is available for the anaerobic digestion process (12.3 kg, total solid), 

consequently the amount of volatile solid (80%) is 9.7 kg per head. 

The production of biogas expected from manure correspond to: 0.2-0.4 m3 biogas/kg v.s. [10]. 

Figure 4-4 shows the global flow-sheet of the plant with the devices and necessary auxiliary 

equipment. For the scenario n.1 the method for the accumulation of biomass before the digester will 

be studied to reduce environmental impact due to the transportation of biomass. For this reasons, 

the scenario n.1 is interesting for farms not very far (within 30 km from the plant). For the scenario 

n. 2, differently from scenario n.1, the distribution of energy to different farms (for local use) must 

be designed.  
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Figure 4-4: Flow-sheet of global integrate plant Anaerobic Digester/SOFC 

 

The integrated plant anaerobic digester/FCs consists of different section:  

1) Biomass storage and pre-treatment  

2) Anaerobic Digester and digestate tank 

3) Upgrade and clean-up systems 

4) Storage tank for biogas and SOFC 

 

Section 1 

The first step is the sizing of the storage tank for the manure. Storage tank allows the accumulation 

of biomass to garanting the reserve necessary for the plant. Typically, it is preferred to obtain a 

biomass reserve necessary for 1-6 months of operation of the plant. The storage tank is sized taking 

into account the power required (2-100 kWe) and corresponding to different biomethane flows and 

consequently the amount of biomass needed. Biomethane flows are calculated by Eq. (4.1)  

 



235 

ƞ =  
𝑃𝑒𝑙

𝑄∗𝐻𝑖
           (4.1) 

where: η is the efficiency of SOFC, equal to 0.6, Q is the amount of biomethane needed to obtain 

the power required (Pel) and Hi is the calorific value of methane (31650 kJ/m3). 

 

Table 4-3 summarizes the biomethane flows calculated: 

 

Power 

[kWe] 

CH4 Flow Rate 

[m3/h] [m3/d] 

2 0.39 9.36 

10 1.896 45.504 

75 14.218 341.232 

100 18.957 454.968 

Table 4-3: Methane needed for a power required 

 

It is important to make some considerations about the biogas obtained from manure.  

The typical composition of biogas from manure is CH4 50% vol, CO2 45% vol, other compounds 

5% vol. The other compounds can be divided in: H2O up to 50000 ppm, H2S up to 3000 ppm, 

siloxanes up to 0.6 ppm, halogens up to 0.2 ppm and other traces. 

From the biomethane flow rate the amount of manure should be calculated. As previously 

mentioned, the manure is typically composed of 20% wt (total solid) of organic matter able for the 

anaerobic digestion process and the remaining 80% is not able for the biogas production and the 

yields to biogas is 0.2-0.4 m3/kg v.s. 

For the calculation it has been considered a concentration of methane in biogas of 50% and a 

productivity of 0.4 m3/kg v.s. From this data the volume of manure can be evaluated with an 

average density of manure is 700 kg /m3. In Table 4-4: the amount of biomass per day, the 

corresponding number of animals and the volume of storage tank (V S.T.) needed to obtain the 

power required are summarized.  
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P 

[kWe] 

Manure 

[kg/d] 

Vmanure 

[m3/d] 

Head 

Number 

V S.T. 

[m3] 

30 d 90 d 180 d 

2 260 0.38 5 12 34 67 

10 1296 1.86 26 56 167 334 

75 9719 14 194 417 1250 2499 

100 12958 19 260 556 1666 3332 

Tab. 4-4: Amount of biomass, number of head and the volume of storage tank (S.T.) 

 

The design of storage tank must be considering different points. The first one is that depending on 

the type and the size of manure (diluted, not diluted, or in a slurry). It can be expected before the 

inlet to the digester a pump (for the liquid manure) or a grinder to homogenize the biomass inside 

the digester. For the optimization of anaerobic digestion process, it is important that the final size of 

biomass particles is about 10-15 mm. Other important parameter is the temperature. To reduce the 

lag phase in the digester, some plants use a pre-heating system to bring the inlet temperature of 

biomass near to the operating temperature of digester [11]. 

 

Section 2 

The digester considered is CSTR type. It consists of a stirred tank for the biomass digestion process 

and of a gas holder that has the function of collecting the biogas up to a fixed pressure (about 2-3 

bar). For the calculation the volume of digester is calculated by the following equation: 

 

Vdig = (Qbiomass + Qdigestate recycled) *HRT*SF       (4.2) 

where: Qbiomass is the amount per day of biomass [m3/d], Qdigestate is the amount of digestate per day 

[m3/d], HRT (hydraulic retention time) [d], SF: safety factor.  

 

For the calculation of digester volume HRT is in a range 15-30 days; while for the SF a value of 

1.10-1.15. The volume of digester is calculated taking into account that the digestate recycled in the 

digester is about 20% of total. The volume of digester is calculated from the manure density (700 kg 

/m3) and are reported in Table 4-5. 
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P  

[kWe] 

Vdigester  

[m3] 

2 15 

10 74 

75 550 

100 740 

Tab. 4-5: Volumes of digester need for a power of 2,10, 75, 100 kWe 

 

The volume of digestate tank can be calculated considering the volume of biomass that is residual 

from the process of digestion leading to biogas. This can be calculated by Eq. (4.3). 

 

Vdigestate = (Qbiomass in - Qbiogas) * D         (4.3) 

where Qbiomass in is the amount per day of biomass [m3/d], Qbiogas is the volume of biomass needed to 

produce biogas [m3/d] and D is the storing time of digestate [d]. 

 

Table 4-6 summarizes the volume of digestate tank for the different power considered. 

 

P 

[kWe] 

V S.T. 

[m3] 

30 d 90 d 180 d 

2 10.4 32.6 66 

10 52 162 330 

75 388 1222 2471 

100 520 1620 3300 

Tab. 4-6 Volume of the tank for digestate storage 

 

Section 3 

Before moving to the sizing of the absorbent bed it is important to establish the composition of the 

biogas output from the digester. The composition of biogas from manure, considering that the 

amount of methane and of the other compound may change depending of the type of manure is the 

following (Tab. 4-7): 
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Compound Concentration 

CH4 50-55 % 

CO2 40-50 % 

NH3 up to 500 ppm 

H2S up to 3000 ppm 

Siloxanes up to 0.6 ppm 

Halogens up to 0.2 ppm 

H2O up to 5 % 

Tab. 4-7 Biogas composition after the anaerobic digestion phase 

 

The upgrading is a step necessary to increase the calorific value of biogas stream by removal 

compounds such us CO2 and H2O that are present in concentration reported in table 4-7. Upgrading 

is typically carried out by condensing water in a temperature range of 10-25 °C. Considering that 

the H2O partial pressure at 10 °C is 9.5 mmHg and at 25 °C is 24 mmHg it is possible considerer 

that the concentration of water after the condenser is lower than 2% vol. It must be remarked that 

during the concentration some H2S can be adsorbed in liquid H2O leading to a reduction of the 

content in gas phase. 

The composition of biogas out coming from the condenser are reported in table 4-8 

 

Compound Concentration 

CH4 50-55% 

CO2 45-50% 

NH3 traces 

H2S 100-300 ppm 

Siloxanes 0.6 ppm 

Halogens 0.2 ppm 

H2O < 2% 

Tab. 4-8 Biogas composition before the clean-up step 

 

Clean-up is required for purification of biogas stream from harmful compounds (mainly H2S and 

HCl) that can poison SOFCs stack. Clean up is generally carried out by adsorption on microporous 

materials (see chapter 3) in fixed bed devices. 

Particular attention needs to be done to sulphur compounds. Production of sulphur compounds by 

anaerobic bacteria involves sulfate reduction and metabolism of sulphur-containing amino acids. 
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Sulfate reduction proceeds via assimilatory or dissimilatory pathways. In the assimilatory process, 

bacteria produce enough reduced sulphur for cell biosynthesis of cysteine and methionine by 

transporting sulfate into the cell and activation to adenosine-5′-phosphosulfate [10]. This is in 

contrast to the dissimilatory process in which sulfate is used as terminal electron acceptor and 

copious amounts of malodorous, toxic sulphide are produced as follows: 

 

4H2 + SO4
2- + H+ → HS- + 4 H2O         (4.4) 

 

Sulfate can be supplied by dietary means or by depolymerization and desulfation of endogenously 

produced, sulfated glycoproteins such as mucins. Also, H2 availability in the medium may influence 

competition between sulfate reducers and methanogens with non-limiting concentrations of H2 

allowing both processes to occur concomitantly. In the gut, the major hydrogenotrophic sulfate 

reducer is the genus Desulfovibrio, which is numerically dominant in feces. Assimulatory sulfate 

reducing bacteria are probably ubiquitous but include the genera Veillonella, Megasphaera, and the 

enterobacteria [10]. 

Metabolism of S-containing amino acids also gives rise to sulphide and mercaptans as follows: 

 

Cysteine → Pyruvate + NH3 + H2S         (4.5) 

Methionine → Pyruvate + NH3 + CH3SH        (4.6)  

 

So the origin of the manure is not absolutely neglected because it can lead to important differences 

in the biogas produced. For example, biogas obtained from cattle or pigs manure will have a 

concentration of H2S very different from that from poultry manure. This is because the food of 

chickens is based on proteins (for increase the growth) and then the manure will have a higher 

concentration of protein and thus biogas with a higher concentration of H2S. 

H2S can be partially removed in the some instant in upgrading step or during digestion by adding a 

small amount of oxygen (2-6%) or iron salts [10]. 

The addition of oxygen in the digester allows the life of some aerobic microorganisms capable of 

oxidizing the sulphides to elemental sulphur, but unfortunately this step alone does not allow to 

sufficiently reduce the level of sulphides in the biogas. The addition of iron salts in the digester 

leads to the precipitation of the sulphides in the digester itself, but it is a less efficient process. 

Furthermore, this process does not allow to recover the iron at the end of the process. So, for the 

first step of H2S removal during the digester it can be profitable the addition of oxygen to reduce the 

H2S concentration to 100-300 ppm. 
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It is important to estimate the amount of activated carbons (AC) and Zeolites 13 X (13X) needed to 

reduce the concentration of H2S and other harmful compounds up to the tolerance limit of SOFC. 

The adsorbent capacity of modified AC and 13X are respectively 0.14 g H2S/g AC and 0.08 g 

H2S/g 13 X and the siloxanes can be completely removed in the same adsorbent bed (see Chapter 

3). 

The quantity of AC and 13X depends from the electricity power that to be obtained. Table 4-9 

summarize the amount of AC and 13X necessary to obtain a complete removal of harmful 

compounds. It was considered a concentration of H2S in the biogas equal to 300 ppm after reduction 

using 2-6% vol of O2 in digester [10]:  

 

Power 

[kWe] 

Material Amount 

[kg/y] 

13X AC 

2 38 22 

10 190 108 

75 1418 810 

100 1890 1080 

Tab. 4-9 Amount of 13X and AC necessary for biogas clean-up 

 

After the clean-up system, there are two options: directly feed the biogas to the stack of SOFC, or to 

have a storage tank for biogas. 

To get a constant feed of biogas to the stack of SOFC, it is preferable, before the SOFC stack, a 

storage tank. 

 

4.3.2 Economic Analysis  

After the technical analysis, it is possible to evaluate the economic aspect of the project considering 

the ancillary, the investment costs. The total investment costs including thus the ancillary devices 

consider the realization of the plant, the maintenance costs and any extra costs. 
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4.3.2.1 Investment costs 

AD Plant 

The plant costs include the costs necessary for the realization of the digester, the storage tanks for 

manure and digestate, the ancillary devices, the cost for the clean-up system and the cost necessary 

to the implementation of SOFC stack. Firstly, the costs of units necessary for AD process are 

calculated. This evaluation is performed for Switzerland but lower investment costs are expected for 

UE market. 

It can be assumed that the costs for a digestion plant, that include all ancillary devices (pumps, 

heating digester, grinder, storage tank for manure and digestate), is about 10000 CHF/kWel to 

which are added installation costs that are approximately 500 CHF/m3 Vdigester. 

For the total costs of AD steps have been used the following equation: 

 

CAD = (10000 [CHF/kWe] * Pel [kWe]) + (Vdigester [m
3] * 500 [CHF/m3])   (4.7) 

 

This cost must be increased by 10% for incidental charges. Table 4-10 summarize the costs for 

different plant size. 

 

P 

[kWe] 

AD plant costs 

[CHF] [€] 

2 27500 25785 

10 137000 128460 

75 1025000 961100 

100 1370000 1284593 

Tab. 4-10 Total costs for AD process 

 

Clean-up step  

The biogas clean-up is carried out in an absorbent bed of zeolites and/or activated carbons. The 

amount of 13X and AC needed have been calculated previously (see Table 4-9). 

For the 13X the range costs are about 1-3 CHF/kg while for the AC is about 12-15 CHF/kg. 

Therefore the average value of 2 CHF/kg for 13X and 13 CHF/kg for AC was considered for the 

economic analysis. About 25% of the costs must be added for the accessory devices. 
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P 

[kWe] 

Adsorbents Mass 

[kg/y] 

Costs 

[CHF/y] 

Costs 

[€/y] 

13X AC 13X AC 13X AC 

2 38 22 95 358 89 335 

10 190 108 475 1755 445 1646 

75 1418 810 3545 13163 3325 12347 

100 1890 1080 4725 17550 4432 16462 

Tab. 4-11 Average costs for clean-up 

 

SOFC stack  

The global cost of SOFC stack apparatus is not proportional with the power and it’s not possible a 

precise estimation of the costs since this largely vary depends on the supplier. For example, the 

BluGen stack (1.5-2 kWe) collected by SolidPower has a price of about 20000 CHF, with an 

average cost of 10000 CHF/kW. 

Practically the range of costs for the SOFC is very large, several and market prices vary in the range 

costs from 3000-7000 [CHF/kW] [12]. It was decided to consider the higher price (7000 CHF/kW) 

for a conservative estimate of the costs. Table 4-12 summarize the total costs for the SOFC stack. 

 

P 

[kWe] 

SOFC Cost 

[CHF] [€] 

2 20000* 18756 

10 70000 65646 

75 525000 492343 

100 700000 656457 

Tab. 4-12 Average costs for SOFC stack 

*(BluGen) 

 

Investment costs are reported in the following Table 4-13: the global plant is the sum of 4 amount, 

the anaerobic digester part, the clean-up, the SOFC and other costs that include the operating costs 

of the various devices (pump, compressor, condenser etc.) and can be considered about the 10% of 

the global costs. 
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P  

[kWe] 

Costs  

[CHF] 

Costs  

[€] 

AD Plant 
Clean up per 

year 
SOFC Other costs Total Total 

2 27500 360 20000 4786 52646 49383 

10 137000 1760 70000 20876 229636 215405 

75 1025000 13170 525000 156317 1719487 1612928 

100 1370000 17600 700000 208760 2296360 2154052 

Tab. 4-13 Initial investments costs 

 

4.3.3 Future Scenarios 

It is important to consider that in the next years the costs of devices are expected to decrease due to 

advancement of scientific and technological research and the opening of new markets. Just think 

about the many research projects that are being developed on these issues: in particular, the EU 

project, “Horizon 2020” with the specific topic “Fuel Cells and Hydrogen Joint Undertaking”, in 

US, the energy department continues to allocate considerable funds for the development of FCs and 

hydrogen technologies. Moreover, there are other two emerging excellences in Asia, South Korea 

and Japan which provide different investments to develop FCs for the production of domestic 

energy and for road transport with the construction of about 1000 hydrogen distributors (see 

Chapter 1 and 2). 

On this basis the economic analysis is taken into account an accurate market survey and numerous 

companies have been contacted to comprehend how the cost of all devices will evolve in the future. 

Such survey points to a costs reduction in the medium/short period.  

The following companies that can supplier anaerobic digesters have been selected: Biolectric, Qube, 

Aspireco, EnertecBiogas, Hera Group, AB Cogeneration World, Agrikomp, BTS Italia, BTA 

International. All industries expect a cost of 350-700 €/m3 at 2018. 

In table 4-14 are indicated the possible suppliers for SOFCs stack. It is possible noted that for a 

small scale application the predict cost (2018-2020) is lower than 5000 €/kWe that should be 

considered as competitive price [12]. 

 

 

 

 

 

 



244 

Companies 

SOFC stack 

Up to 50 kWe Up to 250 kWe 

2016 2018/2020 2016 2018/2020 

 

5000 €/kWe 

(AVL) 

to 

19000 €/kWe 

(Sunfire) 

< 5000 €/kWe 1500 €/kWe < 500€/kWe 

 

 

 

 

 

 

Tab. 4-14 Market survey and prediction costs of SOFC stacks  

 

 

Fig. 4-5 Costs estimate for integrated system Anaerobic Digester / SOFCs in 2018 
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Device 

Prediction Costs Reduction 

 (@ 2018)* 

(%) 

AD Plant - 30 

Clean-up System / 

SOFCs Stack -50 

Other Costs -15 

Total  -36 

Tab. 4-15 Investments costs reduction @ 2018 

*refered to 2016 (see Tab. 4-13) 

 

Figure 4-5 and Table 4-15 provide a cost estimate for 2018. It is important to note the strong total 

cost reduction (36%) and that this is only a conservative estimate because, with the large-scale 

development of FCs technology, these costs may be subject to a further decrease resulting in the 

growth of the competitiveness for this facility [12] 

 

4.4 Evaluation of Biomass for Fueling Biohydrogen 

As mentioned in chapter 1, the SOFCs have the remarkable advantage of being fueled with both 

biomethane and biohydrogen. 

The feeding with biohydrogen is interesting because it does not use the pre-reformer in the stack of 

SOFCs (see Chapter 1). A power size of 10 kWe has been considered because it represents the 

optimal size of such integrated plant in dependence on the biomass availability for local use of 

energy in the context of economic and productive realty in Italy and in particular in Southern Italy. 

The volume of H2 corresponding to 10 kWe is calculated by equation (4.1) considering the calorific 

value of H2 (10760 kJ/m3) and corresponds to 5580 L. The amounts of different biomass needed to 

obtain the required biohydrogen flows have been calculated from data of Chapter 2 (Tab 4-16). 

It is possible noted that the lower amount of biomass is for ADH (587 kg) while the higher amount 

is with manure (1641 kg). 

For all the biomass this results are very interesting taking into account the wide availability on our 

territory and in the world of biomass used in this thesis. 
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Sample mL H2/g Biomass kg biomass 

ADH 9,50 587 

ADHexp 8,04 689 

Manure 3,40 1641 

Litter 3,81 1468 

OFMSW 8,82 634 

Tab. 4-16 Amount of biomass needed for AD/SOFC integrated plant of 10 kWe 
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Conclusions 

This PhD thesis concerns the study of an integrate system Anaerobic Digester/SOFC stack using 

biogas produced by anaerobic digestion (AD) of waste biomass.  

The main topics treated are: the study of AD process, aimed to evaluate the potential of different 

waste biomass for energy recovery; the clean-up of biogas streams for removal of harmful 

compounds that can irreversibly damage SOFCs stack; the feasibility study of the integrated plant 

and economic analysis. 

AD process 

This study has the main purpose to obtain CH4 and/or H2 rich biogas streams. Biomethane 

production is an established process, even although with room for improvement, but the production 

of biohydrogen by AD represents still a challenge and the present study has some novel features. 

The AD process studied is the Dark Fermentation (DF), the digestion in absence of sunlight, under 

mesophilic conditions (T=38°C). Different biomasses are studied: Arundo donax, litter for mice, 

manure from cattle and the organic fraction of municipal solid waste. An innovative experimental 

procedure for biomass digestion has been developed to promote H2 production. This is based on 

successive adaptations of microbial consortia and on the use of an appropriate medium of salts and 

nutrients enabling to enhance the growth of bacteria hydrogen producers to the detriment of 

methanogenic ones. The results obtained are very interesting because high biogas volumes with H2 

concentrations, up to 70%, have been stably obtained. Experimental data indicate that after the third 

adaption the microbial consortium is composed essentially of H2 producer bacteria and H2 yields are 

constant for long reaction times. Such procedure, that has been successfully employed in laboratory 

scale, could be also of interest for industrial applications because the successive adaptations occur 

at the same temperature of AD and do not require additional equipment nor additional energy 

supply.  

All biomass studied have given high biogas production rate and H2 yields, but in different extent; 

best performances are obtained with Arundo donax and organic fraction of municipals solid wastes, 

due to the higher availability of reducing sugars in comparison to other substrates.  

Clean-up 

This part concerns the study of H2S and HCl removal by adsorption on microporous materials to 

obtain very pushed purity levels (concentrations lower than 1 ppm). 

A thorough literature review is effected in which the state of art of purification processes of biogas 

for feeding high temperature FCs is reported. The effects of harmful compounds on the MCFCs and 

SOFCs components are described and the more recent works on adsorption materials enabling to 

achieve purity levels compatible with the feeding of FCs are widely discussed. 
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The adsorbing materials studied were activated carbons and 13X-zeolites. These materials were 

studied as such or properly modified by treatment with basic solutions of KOH, NaOH and Na2CO3 

in order to improve the adsorption capacity towards H2S and HCl.  

H2S and HCl adsorption tests were carried out in innovative laboratory plants that permit the 

continuous monitoring of the H2S and HCl concentrations with high accuracy of analysis. 

Breakthrough curves of the different materials have been obtained, from which the saturation times 

and adsorption capacity was calculated. These data allowed to compare the performance of the 

different materials and to identify the optimal ones. The results obtained have shown the 

effectiveness of the materials studied in obtaining high purity levels. The functionalization with 

basic solutions is effective in improving the adsorption properties of activated carbons and 13 X-

zeolites: breakthrough times increase up to 5 for activated carbons (Norit RGM3 impregnated with -

Na2CO3) and up to 12 times for zeolites (13X zeolite exchanged with Cu). Two kinetic models were 

studied for the regression of adsorption data: 4 parameters Weibull and 5 parameters Logistic 

models equations. Both models well fit the experimental data giving determination coefficient (R2) 

close to1 for all materials. Logistic model however, although the slightly lower R2 values, was 

preferred because of the lower computing times  

Integrated Plant Anaerobic Digester/SOFCs 

The last part concerns the study of the integrated plant anaerobic digester/Fuel Cell fed by biogas. 

The biomass considered is manure from cattle. This study has been placed in the project "Manure to 

electricity" that is in the frame of BIOSWEET (Biomass for Swiss Energy Future, supported by 

government of Swiss). This project has been developed at Paul Scherrer Institute (Villigen) where 

part of research activity has spent. 

The integrated plant consists of different sections: biomass storage and pre-treatment; anaerobic 

digester and digestate tank; upgrade and clean-up systems; storage tank for biogas; SOFCs stack. 

SOFC was preferred with respect to MCFC because of the higher flexibility.  

The feasibility study takes into account the several solutions to be found for the realization of the 

plant: resources assessment; optimization of AD process; designing of biogas clean-up device; 

SOFCs stack and commercial availability; economic analysis and prediction of future scenarios.  

The first approach was to evaluate the theoretical and sustainable potential of biomass for biogas 

production (animal number, farms, stabling system). This addressed the choice of the biomass, the 

power range and the plant flow sheet. 

After, the socio-economic context was examined to ascertain the usefulness of this technology for 

local use of the electricity. Most single farms operate in areas where there are almost no 

decentralized off-grid solutions, by contrast have a gross biogas potential (10-20 kWe). The power 



250 

range of 2-5 kWe (and in future perspective up to 100 kWe) has been defined. Two different 

scenarios have been considered: centralized power generation, collecting the manure from different 

farms, or local power generation, using the manure produced by the farm itself. They were 

compared taking into account different productivity contexts.  

The operational limits for AD process, gas cleaning and SOFC stack were defined evaluating the 

critical biogas parameters that influence the cleaning step and SOFC stack performance.  

The different devices, biomass storage tank, digester, digestate tank, clean-up system, SOFC stack 

were designed for different power sizes (in the range 2-100kWe).  

The plant costs were calculated considering the costs of the different devices: digester, storage tanks 

for manure and digestate, ancillary devices, clean-up system, implementation of SOFC stack. The 

whole cost appears nowadays not competitive with traditional ICE. However, a significative cost 

reduction (36%) can be forecasted considering the commercial trend and the deeper market 

penetration of FCs technology in medium-short period. 

The development of a technology based on the integration of SOFC with biogas production process 

deserves indubitable interest for practical applications: it allows the energy upgrading of waste 

biomass with consequent reducing in disposal costs and at the same time ensures higher efficiency 

and lower environmental impact in comparison to conventional thermal engines. Further steps are 

needed to complete the engineering of the system but as shown in this PhD thesis the time is ready 

for large-scale development of FCs technology. 

 


