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Introduction 
The spatial architecture of chromosomes in the cell nucleus is very complex, and it is 

intimately linked to important functional purposes (Misteli, 2007; Lieberman-Aiden et al., 

2009; Dekker et al., 2013, Tanay & Cavalli, 2013; Bickmore & van Steensel, 2013), such as 

regulation of gene transcription and expression. Yet, the structure and the folding mechanisms 

remain not fully understood. In the last decade new technologies, the Chromosome 

Conformation Capture (3C) based methods (Dekker et al., 2013), have been developed and 

allow to investigate the three-dimensional spatial folding of chromosomes in an innovative 

quantitative way. These methods, such as the Hi-C technique, have opened the way to 

mapping genome contacts at genomic scale and are revealing that the genome of mammalian 

cells is characterized by a complex 3D organization, with extensive long-range functional 

interactions (Lieberman-Aiden et al., 2009). In mammals, chromosomes occupy distinct 

territories (Cremer&Cremer, 2001) and have preferred positions depending on cell type and 

transcription activity (Misteli, 2007; Tanay & Cavalli 2013; Bickmore & van Steensel, 2013). 

Within chromosomes, the genome is folded into a sequence of domains, called ”topological 

associating domains” or briefly TADs (Dixon et al., 2012; Nora et al., 2012), in which 

segments of DNA interact frequently with each other. Such domains are approximately 0.5-

1Mb long, and result to be comparatively conserved between mice and humans. TADs are 

actually only one level of a more complex, hierarchical organization of higher-order domains 

(metaTADs) starting from the sub Mb and extending up to chromosomal scales (Sexton et al., 

2012; Philips-Cremins et al., 2013; Fraser et al., 2015). Furthermore, chromatin interaction 

have fundamental biological roles, as the control of the gene activity with the formation of 

loops between regulatory regions and genes. The disruption of this interaction network can 

alter the regular activity of the complex and produce effects directly on the fenotype 

(Spielmann & Mundlos, 2013; Lupianez et al., 2015). To better understand the genome-wide 

contact data produced with these new experimental techniques and to clarify the mechanisms 

shaping the chromatin spatial 3D organization, polymer physics models have been introduced 

(Chiariello et al., 2016; Fudenberg et al., 2016; Tiana et al. 2016; Sanborn et al., 2015; 

Nicodemi & Pombo, 2014; Giorgetti et al., 2014; Jost et al., 2014; Brackley et al., 2013; 

Barbieri et al., 2012; Rosa & Everaers, 2008; Marenduzzo et al., 2006; Sachs et al., 1995). 

Such models try to identify the key physical elements involved in these fundamental, still 
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largely not clarified biological processes, in a highly interesting and stimulating research field 

where Physics and Biology get in touch.  

This PhD thesis work has been conceived in this intellectual framework. It consists of a 

detailed description of results and conclusions from the projects that we have followed during 

our path in the Physics Department of University of Naples Federico II, under the supervision 

of Professor Mario Nicodemi, in the group of Complex Systems. Many results have been 

published in collaboration with the Epigenetic Regulation and Chromatin Architecture group 

directed by Prof. Ana Pombo, at Max Delbruck Centre For Molecular Medicine (Berlin), the 

Biochemistry group directed by Professor Josee Dostie at McGill University (Montreal), the 

Human Genetics group directed by Professor Colin Semple, University of Edinburgh. Other 

projects are currently work in progress in collaborations with the Development and Disease 

Group directed by Professor Stefan Mundlos, at Max Planck Institute for Molecular Genetics 

(Berlin), and the Genome Biology group directed by Professor Jim Hughes, at Oxford 

University. 

In Chapter 1, we try to highlight the importance of the genome spatial organization, and recall 

very briefly some concepts necessary to the comprehension of this research activity, as the 

Chromosome Conformation Capture (3C) techniques, the interpretation of the genome 

interaction data and the relationship between spatial organization and cell functionality. Then, 

we review the polymer models currently proposed to describe the genome three-dimensional 

architecture. In Chapter 2, we present some results about the genome spatial structure from 

the study of Hi-C data in a mouse cell differentiation system, and we show that the 

chromosomes are organized into complex structure of domains-within-domains (metaTADs) 

linked to the genome function regulation. Next, in Chapter 3 we focus on a more physical 

topic, that is the employment of polymer models as a tool to quantitatively explain the 

information contained in the Hi-C interaction data. In particular, we introduce a new 

thermodynamic phase to fit the long-range contact profile of chromosomes; then we try to 

schematically model the hierarchical structure of the DNA, and finally we present a 

theoretical study of the multiple co-localization contact landscape. In Chapter 4, we introduce 

a more sophisticated polymer model. We show how we are able to reconstruct the 3D genome 

structure with very high accuracy, and several real loci are studied in detail. We will show the 
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potentiality of these methods as tool to predict effects of genome alterations on the spatial 

structure and to capture the conformational rearrangements during cell differentiation. 
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Chapter 1 

The problem of the spatial organization of the 

genome 

The spatial organization of the genome is a very complex problem. Many studies and 

experimental techniques have been developed to better understand how DNA is spatially 

organized in the cell nucleus and how such organization affects the genome functions, as 

transcription and gene regulation. Now, we are able to explore in a deeper way this interesting 

and fascinating problem using recent molecular biology technologies and novel computational 

methods. In this chapter, far from being exhaustive and complete about this huge topic, we 

briefly review some recent, very important, results that are crucial in this research field and 

that will help the comprehension of our research activity described in the following chapters. 

In Section 1 we recall very elementary concepts of molecular biology (however, we do not 

enter into the biochemical details about the DNA molecular nature); in Section 2 we discuss 

the fundamental technologies that allow to quantitatively investigate the spatial architecture of 

the genome (in particular we focus on the Hi-C experimental technique); in Section 3 we 

report the recent results obtained by analyzing the interaction data provided by these 

experimental methods, and we describe the emerging scenario about how chromatin appears 

to be organized in the nucleus; finally, we review the most recent polymer physics models 

that aim to quantitatively describe and reconstruct the three-dimensional structure of the 

genome. The results described in this chapter have been introduced and mostly discussed in 

important papers from Lieberman-Aiden et al., 2009, Dekker et al., 2013, Fraser et al., 2015. 

 

1.1 Genome, chromosomes and chromatin 

Within the cell of eukaryotic organisms the filament of DNA is associated with a variety of 

proteins that pack DNA in a compact structure. In addition to these proteins, called histones, 

there are also many proteins that bind the DNA and are required for many biological 

purposes, as gene expression, DNA replication, DNA repair and DNA recombination. The 

complex of DNA and proteins is known as chromatin. Chromatin exhibits a complex spatial 

organization. Precisely, chromatin is organized in a set of different structural entities called 
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chromosomes, occupying distinct spatial regions that are indicated as chromosomal territories 

(CT) and are clearly visible with microscopy techniques (Figure 1, Cremer&Cremer, 2001). 

The genomic length (i.e. the number of base pairs composing the genome) and the number of 

chromosomes depends on the considered species. For instance, human genome consists of 

approximately 3.2 × 10
9
 base pairs (bp, in molecular biology notation) and it is distributed 

over 23 chromosomes. The majority of eukaryotic cells are diploid, i.e. they contain two 

copies of each chromosome. The complexity of chromatin folding problem results even more 

evident if we consider the linear length of the total human genome, that is about 2m, included 

in a nucleus having a diameter of approximately 10÷15μm. This compaction level is achieved 

through an efficient interaction between DNA and proteins. Histones are responsible for the 

first and most basic level of chromosome packing, called nucleosome, that is a protein-DNA 

complex. Each individual nucleosome consists of a structure of eight histone proteins (two 

molecules each of histone H2A, H2B, H3 and H4) around which a double-strand of DNA is 

wrapped. The length of DNA associated with each nucleosome is 147 base pairs. This 

structure is called nucleosome core particle. Each nucleosome core particle (which is about 

11nm) is separated from the next by a filament of linker DNA, which can vary in length from 

a few nucleotide pairs up to about 80. On average, nucleosomes repeat at intervals of about 

200 nucleotide pairs. So, since human genome has 6.4×10
9 

bp, it consists of about 30×10
6
 

nucleosomes. This structure is known as ”beads on a string” (where the ”bead” is the 

nucleosome and the ”string” is linker DNA) organization. Within a chromosome, it is possible 

to classify the chromosomal regions into two categories: euchromatin and heterochromatin. 

DNA in both types of chromatin is packaged into nucleosomes. Heterochromatic regions are 

composed by nucleosomal DNA that shows a high degree of compaction, while euchromatic 

nucleosomes are much less compacted. The high level of compaction reduces the accessibility 

of the DNA contained in these regions, which are therefore associated with a very low level 

of transcription.  
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Figure 1.1: Chromosomes territories in the cell nucleus 

In this microscopy image, chromosomes are represented by colored spots, and occupy distinct 

region in the nucleus, forming the chromosomal territories (CT). The image shows a mid-

plane section of chicken fibroblast cells (figure adapted from Cremer&Cremer, 2001). Within 

the chromosomes, at much lower length scales, chromatin exhibits a very complex 

organization, as shown by the polymer cartoon, and reconstructing its 3D structure is an open 

problem in molecular biology. 

 

1.2 The Chromosome Conformation Capture (3C) 

based techniques 

During the past decade, a series of molecular and genomic approaches been developed and 

can be used to study three-dimensional chromosome folding with unprecedented accuracy. 

These methods are all based on the chromosome conformation capture (3C). They allow the 

determination of the frequency with which any pair of loci in the genome is in close enough 

physical proximity (in the range of 10÷100nm) to become crosslinked (i.e. the pair can be 

bound by some molecule). It is schematically shown in Figure 1.2, Panel A. First, the cells in 

the population are crosslinked with formaldehyde to covalently link chromatin segments that 

are in close spatial proximity. Next, chromatin is fragmented by restriction digestion (as 

HindIII or NcoI). Crosslinked fragments are then ligated to form unique hybrid DNA 

molecules. Finally, the DNA is purified and analyzed. The experimental steps just described 

are common to all 3C methods. The difference among the specific methods is how the ligation 
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product is detected (Figure 1.2, Panel B). The most common methods are the 3C, 4C, 5C and 

HiC (see next subsections). 

 

Figure 1.2: The Chromosome Conformation Capture (3C) techniques 

Schematic representation of the 3C methods. First, the chromatin is crosslinked (step 1) with 

formaldehyde in order to capture pair of loci close in space, then they are fragmented (step 2), 

ligated (step 3) and purified (step 4). Panel B: (figure adapted from Dekker et al., 2013) 

 

The data generated from the 3C techniques 

The biochemical experimental details of the individual methods will not be described here, 

but we will just discuss about what kind of data they produce. For any information, please see 

the reference papers. The 3C (Dekker et al., 2002) and 4C (Simonis et al., 2006) methods 

generate single interaction signals for individual loci. The 3C method typically yields a long-

range interaction profile of a selected gene promoter or other genomic element of interest 

versus chromatin in genomic proximity (Figure 1.3, Panel A). The 4C method generates a 

genome-wide interaction profile for a single locus (anchor or point of view, Figure 1.3, Panel 

B). These data sets can be represented as single tracks that can be plotted along the genome. 

5C method (Dostie et al., 2006) is not anchored on a single locus of interest but instead 

generate matrices of interaction frequencies that can be represented as two-dimensional heat 

maps (i.e. the intensity is indicated by the color scheme) with the genomic positions along the 

two axes (Figure 1.3, Panel C). The Hi-C method will be discussed with some more detail in 

the next subsection. 

 

 

1 2 3 4 
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Figure 1.3: Examples of 3C, 4C and 5C data sets.  

Panel A: Example of chromosome conformation capture (3C) data. Panel B: Example of 4C 

data from the mouse genome. In 3C and 4C, on the x-axis is reported the distance from the 

anchor point, or point of view (p.o.v). Panel C: Example of a 5C interaction map for the 

ENCODE ENm009 region in K562 cells. The different rows contain an interaction profile of 

a transcription start site (TSS) in the 1 Mb region on human chromosome 11, that contains the 

β-globin locus. Figure adapted from Dekker et al., 2013. 

 

The Hi-C method 

The Hi-C method (Lieberman-Aiden et al., 2009) is the first genome-wide adaptation of 3C 

and include a further step in which, after restriction digestion, the staggered DNA ends are 

filled in with biotinylated nucleotides (Figure 1.4, Panel A). The resulting DNA sample is 

composed by ligation products of chromatin that were in spatial proximity in the nucleus, 

3C 

5C 

Genomic distance from the p.o.v 

Fragments 

TS
S 

4C 

A) B) 

C) 
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with biotin at the ligation junction. This facilitates selective purification of ligation junctions 

that are collected in a Hi-C library and then directly sequenced along the genome, producing a 

list of interacting fragments. Then, data are organized in a genome-wide contact matrix, 

obtained by dividing the genome into windows (indicated as loci) of fixed length (in the first 

version, this length was 1Mb=1000000bp long). This important parameter defines the Hi-C 

data resolution. Each bin of the matrix xij contains the number of ligation products between 

the locus i and locus j. So, the extracted information is the contact frequency of any pair of 

loci i and j in the chromosome, that is obviously directly related to the chromosome spatial 

architecture. In Figure 1.4, Panel B, is reported an example of interaction matrix for an entire 

chromosome, in different cell lines at 50Kb resolution. As the resolution increases, i.e. the 

size of the partitioning window is reduced, the matrix size increases. Since the Hi-C technique 

is able to detect interactions between any two loci in the genome, to each chromosome is 

associated its contact matrix (Cis data). Interactions between loci belonging to different 

chromosomes are also detected (with a much lower frequency), and are organized in Trans 

contact matrices. In all this work, we will focus only on Cis contact matrices. 

 

Interpretation of the data and the normalization problem 

It is important to consider what kind of information the Hi-C method (and all the 3C-based 

methods) produces. It gives the relative frequency in the cell population by which two loci i 

and j are in close spatial proximity. Anyway, the method does not give information about the 

nature of the contact, not distinguishing functional from non-functional associations and  it 

does not reveal the mechanisms producing their co-localization. Spatial proximity can be the 

results of contacts mediated by protein complexes that bind them or can be the result of 

indirect co-localization to the same subnuclear structure (as the nuclear lamina). Furthermore, 

co-localization can be due to random collisions between distant regions of chromatin in the 

nucleus, due to the chromosome flexibility. Also, the exact 3D structure of a specific region is 

highly variable from cell to cell, even if they are in the same differentiation stage. Each 

ligation product due to an interaction represents a contact involving a pair of loci in a single 

cell in the population. Thus, Hi-C (all 3C-based) interaction frequency data represent the 

fraction of cells in which pairs of loci i and j are in spatial proximity at the time the cells are 

fixed. The final value contained in the matrix bin xij represent the sum of interactions over a 
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large cell population, and in each cell chromosomes conformation is determined by many 

different factors that act on the chromatin polymer and make the structure highly variable. 

 

 

 

 

 

 

 

 

 

Figure 1.4: The Hi-C method 

Panel A: Schematic representation of the Hi-C experimental procedure. The labeling with 

biotin allow to efficiently detect the ligated fragments (figure adapted from Lieberman-Aiden 

et al., 2009). Panel B: Example of Hi-C data output. Data are collected in a 2 dimensional 

heat map (as in the 5C case). Hi-C data from the entire mouse chromosome 1, at 50Kb 

resolution. Data from Fraser et al., 2015 (used in Chapter 2). 
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1.3 Genome structure from chromatin interaction 

data  

A/B compartments in the genome 

Based on the analysis of the pattern contained in the Hi-C matrices (through a principal 

component analysis, Figure 1.5, Panel A), each chromosome can be partitioned in two classes, 

named A and B compartments (Lieberman-Aiden et al., 2009, Rao et al., 2014). Two regions 

in the same compartment are enriched in interaction while two regions belonging to different 

compartments are depleted in interaction. (as confirmed also by FISH experiments). 

Compartments are considerably large regions of chromatin, having a characteristic size of 

5÷10 Mb, and alternate along the chromosomes. A compartment is typically associated with 

euchromatin, since it is less compact and correlates with gene presence, higher expression and 

accessible chromatin, while B compartment  has higher interaction values (Lieberman-Aiden 

et al., 2009). This is in agreement with the known presence of open and closed chromatin in 

the nucleus (Figure 1.5, Panel B) 
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Figure 1.5: A and B compartments 

Panel A: Pearson correlation map of chromosome 14 and the principal component (PC) 

associated . The PC correlates with the plaid pattern in the correlation matrix, defining the 

compartment A (positive PC values) and B (negative PC values). Panel B: Schematic 

representation of chromatin organization at nuclear scale, where chromosome territories 

(hundreds of Mb) occupy distinct regions, and at chromosome scale, where open and closed 

chromatin regions (5÷10 Mb) alternate. Figure adapted from Lieberman-Aiden et al., 2009. 

 

The discovery of Topological Associating Domains (TADs) 

Since the 5C and Hi-C methods were introduced, interaction data have been analyzed to 

identify structural properties of chromatin. In the previous subsection, the A and B 

compartment have been discussed and they allow to classify the genomic regions according to 

their Hi-C interaction profile. Nevertheless, other levels of organization and structural units 

have been discovered. In particular, a common feature among several organisms (from 

drosophila melanogaster to mouse and human) is the existence of discrete regions, much 

smaller than compartments (previous subsection), where chromatin is marked by a high level 

of interaction. To indicate such domains, various names have been used in literature, as 

topological domains (Dixon et al., 2012) and topological associating domains or, briefly, 

TADs (Nora et al., 2012). As standardly used  in literature now, we will use the latter in the 

following. On a 5C or Hi-C matrix, TADs appear to be as squares of high intensity along the 

diagonal (Figure 1.6, Panel A). From the structural point of view, this correspond to the fact 

that distinct loci located in the same TAD tend to interact with higher intensity than two loci 

located in two different TADs (Figure 1.6, Panel B), and FISH experiment confirm such 

scenario (Dixon et al., 2012). TADs are found to be a universal building blocks of 

chromosomes, as both mouse and human are composed by more than 2000 domains, covering 

almost all the genome. Furthermore, they are conserved between different species (Dixon et 

al., 2012). Their typical size (approximately 0.5÷1 Mb) is much smaller than the A and B 

compartment, and they can be active or inactive. To identify TADs several computational 

algorithms exist (Dixon et al., 2012, Rao et al., 2014, Fraser et al., 2015). The mechanism 

that regulates the formation of TADs is still not clearly understood, and polymer models have 

been proposed to quantitatively describe it (Barbieri et al., 2012, Brackley et al., 2013, 

Sanborn et al., 2015, Fudenberg et al., 2016, Chiariello et al., 2016). 
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Figure 1.6: Topological Associating Domains  

Panel A: Hi-C interaction frequencies for a region of chromosome 6 in mouse embryonic 

stem (ES) cells  (Figure from Dixon et al., 2012). The domains appear as squares along the 

diagonal of Hi-C matrix (here represented as a triangular matrix). Panel B: Schematic 

representation of chromatin spatial organization in TADs. Each TAD correspond to a high 

intensity square block in the Hi-C matrix.. Loci belonging to the same TAD interact more 

frequently than loci in different TADs. See Chapter 3 for a possible (polymer physics based 

model) mechanism of TAD formation.  

 

Further research developments 

The results reviewed in this chapter represent only a limited part, yet fundamental, of the key 

points in the recent history of this research field. As the technology quickly evolves, more 

sophisticated and refined experiments have been performed, producing better and higher 

quality data. In this way, very complex and more complete Hi-C datasets are available, with 

higher resolutions (up to 1Kb, Rao et al., 2014, Dixon et al., 2015) and for an increasing 

number of tissues and cell lines. In parallel, other experimental technologies have been 

developed to detect chromatin contacts (Khalor et al. 2011; Rao et al., 2014; Beagrie et al., 

A) 

B) 

TAD I 

TAD II 

boundary 
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2017). Furthermore, experiments have been performed to evaluate the impact of chromatin 

structure alterations on health (as TADs disruption, described in Lupianez et al., 2015, or 

neoTAD formation, described in Franke et al., 2016), whether or not pathogenic spatial 

rearrangements occur. These notable works demonstrate the deep relationship between 

chromatin organization and individual fenotype, and confirm once more the importance of 

investigating the genome architecture in space. Overall, these more recent results allow to 

improve our knowledge (far anyway from being complete) about the chromatin organization, 

contributing to further enrich the scientific landscape about this interesting topic. 

 

Polymer models 

Together with the improvements of the experimental techniques, also the theoretical 

technologies improve so to develop models that describe genome architecture. Many models 

have been proposed to explain quantitatively the behavior of chromatin in the nucleus, and in 

this subsection we will list very briefly some of them, for sake of completeness. We start 

considering the fundamental String and Binders Switch (SBS) model (Barbieri et al., 2012), 

where a chromatin fiber is modeled as a bead chain, where some of those (binding sites) can 

interact with floating particles (binders), and the polymer folds from the interaction between 

binding sites and binders. In the following chapters, we will use this model as starting point 

for our considerations about chromatin architecture. The idea of chromatin interacting with 

floating particles has been used also in other studies (Brackeley et al., 2013, Chiariello et al., 

2016). After the developments of the Hi-C technology, the first proposed model as possible 

genome structure was the fractal globule (Lieberman-Aiden et al., 2009), which emerges as 

result of polymer condensation during which topological constraints prevent knotting and 

slow down equilibration of the polymer (Dekker et al., 2013). Another important model is the 

Dynamic Loop model (Bohn&Heerman, 2010), where chromatin moves under diffusional 

motion and when two sites co-localize, they form a loop with a certain probability for a 

certain lifetime. Another model consider chromatin as a sequence of region characterized by 

an epigenetic state (Jost et al. 2014) and region in the same state  have specific interactions. 

Other models consider chromatin folding the result of interaction of TAD boundary elements  

through dynamic mechanisms of loop extrusion (Sanborn et al., 2015, Fudenberg et al., 

2016). In this process, cis-acting loop-extruding factors (as cohesin) form progressively larger 
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loops but stop at TAD boundaries due to interactions with boundary proteins, like CTCF 

(Fudenberg et al., 2016). 

 

References 

Watson JD, Baker TA, Bell SP, Gann A, Levine M and Losick R (2008) Molecular biology of 

the gene. Pearson Benjamin Cummings, San Francisco. 

Barbieri M, Chotalia M, Fraser J, Lavitas LM, Dostie J, Pombo A, Nicodemi M (2012) 

Complexity of chromatin folding is captured by the strings and binders switch model. Proc 

Natl Acad Sci U S A 109: 16173-16178 

Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organisation 

of genomes: interpreting chromatin interaction data. Nat. Rev. Gen. 14(6): 390-403. 

Bickmore W, van Steensel B (2013) Genome architecture: domain organization of interphase 

chromosomes. Cell 152: 1270-1284 

Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests 

role in translocations and transcription-dependent associations. PLoS Biol 4: e138 

Brookes E, de Santiago I, Hebenstreit D, Morris KJ, Carroll T, Xie SQ, Stock JK, Heidemann 

M, Eick D, Nozaki N, Kimura H, Ragoussis J, Teichmann SA, Pombo A (2012) Polycomb 

associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic 

genes in ESCs. Cell Stem Cell 10: 157-170 

Simonis, M. et al. (2006) Nuclear organization of active and inactive chromatin domains 

uncovered by chromosome conformation capture-on-chip (4C). Nature Genet. 38, 1348–

1354. 

Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. & Chen, L. (2011) Genome architectures 

revealed by tethered chromosome conformation capture and population-based modeling. 

Nature Biotech. 30, 90–98 

Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, Ye Z, Kim A, 

Rajagopal N, Xie W, Diao Y, Liang J, Zhao H, Lobanenkov VV, Ecker JR, Thomson JA, Ren 



Chapter 1: The problem of the spatial organization of the genome 

 

16 
 

B (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518: 

331-336 

Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological 

domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 

376-380 

Encode Project Consortium (2011) A user's guide to the encyclopedia of DNA elements 

(ENCODE). PLoS Biol 9: e1001046 

Jost D, Carrivain P. Cavalli G, Vaillant C (2014) Modeling epigenome folding: formation and 

dynamics of topologically associated chromatin domains. Nucleic Acids Res. 42: 9553-61. 

Franke M et al., (2016) Formation of new chromatin domains determines pathogenicity of 

genomic duplications, Nature 538: 265-269 

Rosa A, Everaers R (2008) Structure and dynamics of interphase chromosomes. PLoS 

Comput Biol 4:e1000153. 

Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, Dekker J, 

Mirny LA (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome 

organization. Nat Methods 9: 999-1003 

Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N and  Mirny L.A. (2016) 

Formation of Chromosomal Domains by Loop Extrusion. Cell Rep 15: 2038-2049 

 

Chiariello, A. M., Annunziatella, C., Bianco, S., Esposito, A. & Nicodemi, M. (2016) 

Polymer physics of chromosome large-scale 3D organisation. Sci Rep 6: 29775. 

 

Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture 

in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8: 

104-115 

 

Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, 

Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, 

Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive 

mapping of long-range interactions reveals folding principles of the human genome. Science 

326: 289-293 



Chapter 1: The problem of the spatial organization of the genome 

17 

 

Misteli T (2007) Beyond the sequence: cellular organization of genome function. Cell 128: 

787-800 

Beagrie RA, Scialdone A, Schueler M, Kraemer DCA, Chotalia M, Xie SQ., Barbieri M, de 

Santiago I, Lavitas  LM, Branco MR, Fraser J, Dostie J, Game L, Dillon N, Edwards PAW, 

Nicodemi M & Pombo A (2017) Complex multi-enhancer contacts  captured by genome 

architecture mapping, Nature 543: 519-524 

 

Nicodemi M, Pombo A (2014) Models of chromosome structure. Curr Opin Cell Biol 28C: 

90-95 
 

Nicodemi M, Prisco A (2009) Thermodynamic pathways to genome spatial organization in 

the cell nucleus. Biophys J 96: 2168-2177 

Fraser, J, Ferrai C, Chiariello AM, Schueler M, Rito T, Laudanno G, Barbieri M, Moore BL, 

Kraemer DCA, Aitken S, Xie SQ, Morris KJ, Itoh M, Kawaji H, Jaeger I, Hayashizaki Y, 

Carninci P, Forrest ARR, FANTOM, Semple CA, Dostie J, Pombo A, and Nicodemi M. 

(2015) Hierarchical folding and reorganisation of chromosomes are linked to transcriptional 

changes during cellular differentiation. Mol. Sys. Bio. 11: 852. 

Bohn, M. & Heermann, D. W. (2010) Diffusion-driven looping provides a consistent 

framework for chromatin organization. PLoS ONE 5: e12218. 

Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum 

NL, Meisig J, Sedat J, Gribnau J, Barillot E, Bluthgen N, Dekker J, Heard E (2012) Spatial 

partitioning of the regulatory landscape of the X-inactivation centre. Nature 485: 381-385 

Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS, Ong CT, 

Hookway TA, Guo C, Sun Y, Bland MJ, Wagstaff W, Dalton S, McDevitt TC, Sen R, Dekker 

J, Taylor J, Corces VG (2013) Architectural protein subclasses shape 3D organization of 

genomes during lineage commitment. Cell 153: 1281-1295 

Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, Vera DL, Wang Y, Hansen RS, 

Canfield TK, Thurman RE, Cheng Y, Gulsoy G, Dennis JH, Snyder MP, Stamatoyannopoulos 

JA, Taylor J, Hardison RC, Kahveci T, Ren B et al. (2014) Topologically associating domains 

are stable units of replication-timing regulation. Nature 515: 402-405 



Chapter 1: The problem of the spatial organization of the genome 

 

18 
 

Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, 

Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at 

kilobase resolution reveals principles of chromatin looping. Cell 159: 1665-1680 

Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, 

Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke A, Melnikov A, McKenna D, 

Stamenova EK, Lander ES, Aiden EL. (2015) Chromatin extrusion explains key features of 

loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U.S. A. 

112: E6456-65. 

Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay 

A, Cavalli G (2012) Three-dimensional folding and functional organization principles of the 

Drosophila genome. Cell 148: 458-472 

Spielmann M, Mundlos S (2013) Structural variations, the regulatory landscape of the 

genome and their alteration in human disease. Bioessays 35: 533-543 

Tanay A, Cavalli G (2013) Chromosomal domains: epigenetic contexts and functional 

implications of genomic compartmentalization. Current Opinion in Genetics & Development 

23: 197-203 

Cremer T. and Cremer C (2001) Chromosome territories, nuclear architecture and agene 

regulation in mammalian cells. Nat. Rev. Gen.2: 292 

Williamson I, Berlivet S, Eskeland R, Boyle S, Illingworth RS, Paquette D, Dostie J, 

Bickmore WA (2014) Spatial genome organization: contrasting views from chromosome 

conformation capture and fluorescence in situ hybridization. Genes & Development 28: 2778-

2791



 

19 

 

Chapter 2  

The hierarchical organization of mammalian 

genomes 

In this chapter, we will investigate the 3D spatial architecture of the mammalian genome by 

analyzing the Hi-C data in a neuronal differentiation model from mouse embryonic stem cells 

(ESC) via neural progenitor cells (NPC) to neurons (Section 1). In particular we find that the 

genome is organized in a hierarchical structure of domains (that we name ‘metaTADs’), well 

described by tree diagrams (Section 2.2) and statistically robust (Section 2.3), up to large 

genomic length scales. Furthermore, the metaTAD organization is correlated with a variety of 

epigenetic features, indicating a functional role in this particular structure (Section 2.4) and its 

reorganization is linked to cell differentiation (Section 2.5). Finally we show with a simple 

polymer physics model how hierarchical folding increases the chromatin packaging efficiency 

(Section 2.6). All the results contained in this chapter  have  been published in the paper 

‘Hierarchical folding of chromosomes and its reorganization underlies transcriptional 

changes in cellular differentiation’  (Fraser et al., 2015). 

 

2.1 Dataset, normalization approach and domain 

definition 

Hi-C experiments 

This study has been developed in collaboration with the group of Professor Ana Pombo at 

Max Delbruck Center for Molecular Medicine in Berlin and with the group of Professor Josee 

Dostie at McGill University in Montreal, which performed the Hi-C experiment and produced 

the datasets that we analyzed. To explore the long-range chromatin folding during 

differentiation, three time points were considered: mouse embryonic stem cells (ESC), 

intermediate neuronal precursor cells (NPC) and post-mitotic neurons (Neurons). For each 

time point, Hi-C libraries were produced, and then standard normalization process was 

performed (see next subsection). For each time point, two Hi-C replicates were generated, 

with NcoI and HindIII restriction enzyme. The results presented here are based on the NcoI 
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Hi-C dataset. Since we did not work directly to the experimental stage, all the biological and 

chemical details of the Hi-C experiment, cell culture, neuronal differentiation, preparation of 

the libraries and sequencing, will not be discussed here. For any further information, please 

see the reference paper. 

 

Normalization approach 

Once the Hi-C libraries are prepared (see previous chapter), data from different sequencing 

lanes are combined and binned using 50Kb windows so to be converted in raw Hi-C contact 

matrices. The normalization approach used is the ICE Iterative Correction (Imakaev et al., 

2012), to correct the systematic biases in the Hi-C matrices based on equal DNA visibility 

principle. To compare data between different Hi-C datasets from different cell lines, an 

additional normalization step was applied. This consists of a background subtraction that 

takes into account for the biological noise due to random generated Hi-C ligation products. 

The subtracted part is calculated from Trans data distribution (see previous chapter), and it is 

the average read count plus one standard deviation. This quantity is then subtracted from all 

interactions, both Cis and Trans. Finally, the data are divided by factor that accounts for the 

differences in library depth between samples. This factor is just the total number of reads (Cis 

and Trans) left after the background subtraction step. 

The matrices show the usual structure of chromosomes into domains of high interactions, 

reflecting the presence of A/B compartments and TADs. In Fig.2.1, we observe changes 

during differentiation in the long-range contacts of each chromosome.  
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Figure 2.1: Changes in long range interactions Chr1 and Chr16 

Complex changes in long-range chromatin interactions of many chromosomes are prominent 

when plotted during the differentiation time series. To better appreciate the long range 

contacts, Hi-C interaction data is plotted in log-scale.  

 

TADs identification strategy 

To study the higher-order chromosome organization, we first identified the elementary TADs 

coordinates in the chromosomes for all the three time points, using the Directionality Index 

(Dixon et al., 2012). This quantity is defined by the relation DI[i]=(B-A)/E, where i is the bin 

index, B and A are the read counts upstream and downstream within a window of size L, and 

E is their average. Since the DI signal becomes approximately independent of L for L>2Mb, 

we set L=2Mb. We then consider a threshold, α, and we identify the boundaries of TADs 

where the signal DI is above the given threshold (DI[i]>ασ, left boundary) and where DI is 

below the threshold (DI[i]<ασ, right boundary). In previous relations, σ is the standard 

deviation of the DI signal computed genome wide. For any considered value of the threshold,  
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Figure 2.2: TAD identification 

Panel A: Distribution of the signal DI genome wide for ESC cell line. Panel B: TAD 

identification with threshold α  = 0.0 (black dashed squares) and α = 0.2 (red dashed squares). 

Panel C: Mean TAD size d as function of the threshold α. 

 

the average TAD size d0 is much larger than the random control case (as illustrated in Figure 

2.2, Panel C), even for small α values, where the size is weakly dependent on this parameter. 

The random control case is an average TAD size where the TAD coordinates are identified on 

a random control matrix, obtained by bootstrapping the original Hi-C matrix along all the 

possible sub-diagonals. In this way, we preserve the genomic distance contact profile. This 

randomization method has been used also in other analysis, that will be presented in following 

sections. 
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Figure 2.3: TADs size distribution 

Panel A: The average TAD size, d0 (for α = 0 and L = 2Mb), is measured for the three 

datasets produced in this study (ESC, NPC, Neurons) and for the ESC-J1 published data 

(Dixon et al., 2012). The random case corresponds to TADs identified in a randomized Hi-C 

matrix. Panel B: The distribution of TAD sizes is roughly exponential in all our datasets.  

 

Effect of the threshold α 

To quantify the effect of the threshold α, we consider two values: α=0.0 and α=0.2, and 

identify the corresponding TADs in our ESC data. Analogously, we apply the same to ESC-J1 

published data (Dixon et al. 2012), so to compare the results with the original TADs 

identified  with the original HMM approach (Dixon et al. 2012, see also Chapter 1). The 
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TADs obtained from ESC with α=0 have an average size of ~500Kb, which is about half the 

average size (~1Mb) of the original TADs defined in Dixon et al., 2012, while the TADs with 

α=0.2 have the same average size. As expected, we find that on average 2 TADs with α=0 

threshold overlap with one TAD with α=0.2 or identified by the original HMM. Furthermore, 

the TADs obtained with α=0.2 overlap almost exactly with the TADs found with the HMM 

method. These results validate the method that we use here to identify the basic unit (TADs) 

of the hierarchy. 

In the following analysis, we consider the TADs with α=0 as the fundamental domain where 

we start to investigate the hierarchical structure of the genome. We make this choice so we 

can explore the hierarchy from the lowest possible level of genomic lengths. Anyway, as we 

will show, the results are confirmed for other choices of the discussed parameters. The 

distribution of the basic TAD size is reported in Figure 2.3 for the three time points studied. 

 

2.2 Clustering method 

The clustering algorithm 

Most chromatin contacts in the Hi-C matrices are found within TADs, but interactions are 

also detected between specific TADs and they extend up to large genomic scales, as is 

visually evident from Figure 2.4, Panel A. To quantitatively highlight the higher-order 

domain organization of chromosomes, we use a simple clustering procedure applied on the 

Hi-C contact data. For each chromosome, we iteratively select the two most interacting 

domains and we join them in a new, larger, domain that we name metaTAD. This new 

domain is then added back to the set of fundamental TADs, and this procedure is repeated up 

to the whole chromosome length. More precisely, after we identify the fundamental TADs, 

which is the first level of the hierarchy, we calculate the mean interaction Ik,k+1 between all the 

neighbouring domain pairs: 

 

(1)                                           Ik,k+1 =∑ij xij/(bk – ak)(bk+1 – ak+1) 
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where k is the TAD index, xij are the entries of the Hi-C matrix between the two TADs,  bk  

and ak (resp. ak+1 and bk+1) are the left and the right boundary coordinates of the TAD with 

index k (k+1). The sum over i runs from ak to bk and j from ak+1 to bk+1 (see Figure 2.4 Panel 

D, for a schematic representation of this quantity). If the number of domains is n, there are n-1 

neighbouring TAD pairs (and n-1 values for I). We then select the pair with the highest value 

of the interaction Imax, and this pair is joined into one new domain that we call a metaTAD, 

encompassing both TADs. The list of domains is then updated with the new metaTAD (while 

its composing subdomains are taken out) and the procedure is repeated iteratively until 

remains only one metaTAD having the size of the whole chromosome. In this way, we build 

the entire hierarchy of domains, for all the chromosomes. In Figure 2.4, Panel B, it is shown a 

pictorial description of the clustering procedure, and in Panel C the result on a real locus 

having a genomic extension of 5Mb long (ESC cell line, chr2:53000000-58000000). 
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Figure 2.4: Chromosomes are organized in a hierarchy of higher-order domains 

Panel A: ESC Hi-C map of chromosome 2, 53-58Mb. The Directionality Index (see previous 

section) is used to identify the elementary TADs, in this matrix numbered from 1 to 6. Panel 

B: schematic representation of the single-linkage clustering used to identify the hierarchy. 

Panel C: examples of metaTADs (I-V) in the region showed in Panel A. Panel D:  ratio of 

the average interaction I and the background control value Ic calculated for the three time 
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point ESC, NPC and Neurons, as a function of the total number of elementary domains 

included in the metaTAD. In all cases, the curve remains 20% above the random control 

curve (blue) up to scale of 50Mb (the details about the calculation of I and Ic are given in the 

next section). Panel E: the size of metaTAD size d as a function of the elementary domains 

that they contain. It is shown that hundred TADs correspond to an average length of about 

50Mb. 

 

The tree representation 

Once we obtain the hierarchy of domains-within-domains from the procedure above 

described, the most intuitive representation of this organization is a tree diagram. Indeed, 

overlaying the hierarchy structure onto the experimental Hi-C contact matrices, as shown in 

Figure 2.5, gives a visual confirmation that the metaTAD structure matches the patterns 

contained in the data.  

 

 

Figure 2.5: The tree representation of chromosome 19 (ESC cell line) 

Left panel: full chromosome, right panel: zoomed region. Interaction between elementary 

domains are not uniform, but occur between specific TADs through specific contacts. It is 

evident the visual matching between the pattern contained in the data and the metaTAD 

structure. The interactions are plotted in log-scale. 
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2.3 Statistical robustness of the tree structure 

The I/Ic and J/Jc control 

To give a quantitative measure of the statistical reliability of the identified metaTAD tree, we 

consider different approaches. First, we test if interactions between metaTADs (fundamental 

and higher-order domains) are higher than background interactions. In particular, we calculate 

the average interaction between the domains containing n elementary TADs, I(n). As control, 

we computed the same average  interaction between two neighbouring regions of size equal to 

the original domains, but randomly located at any other inter-TAD boundary existing at that 

level of the tree. Mathematically, this correspond to calculate the quantity defined in equation 

(1) where bk and ak+1 are shifted into new boundary coordinates bk’ and ak’+1 for two new 

neighbouring metaTADs, so that bk’ – ak’ = bk – ak and bk+1’ – ak+1’ = bk+1 – ak+1. Then, we 

compute the average IC(n) over the metaTADs composed by n elementary basic TADs. In this 

way, we obtain a curve I/IC(n) to be compared with the random control case. This is achieved 

by fully repeating the procedure described above (calculation of the metaTAD tree, I(n) and 

IC(n)) on random control Hi-C matrices obtained by bootstrapping the diagonals (see section 

2.1). In this way, we can compare the significance level of the metaTAD hierarchy from the 

real Hi-C matrices with the hierarchy found on randomized matrices without any higher-order 

structure. In Figure 2.4, Panel D, we report the results for the three time points. See next 

subsection for a detailed discussion. 

The second quantity that we consider is slightly easier to calculate, and it is based on the inner 

interaction of a metaTAD containing n fundamental TADs Jk(n): 

 

(2)                                                     Jk(n) =∑ij xij/(bk – ak)
2
 

 

where xij are the values of interaction in the metaTAD k, ak  and bk are the left and right 

boundary coordinates in the matrix, the sum over i and j runs from ak  to bk (see Figure 2.6 

Panel E, for a schematic representation of this quantity). Then, by averaging over k, we obtain 

J(n). Analogously, we calculate the same quantity JC(n), using the real metaTAD boundaries, 

from the random control Hi-c matrix defined as usual (bootstrapping approach). 
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Results for murine ESC, NPC and Neurons datasets. 

In Figure 2.6 the resulting I/IC(n) and J/JC(n) curves are shown, for the hierarchies found on 

the mouse ESC, NPC and Neurons cell lines (reported also in Figure 2.4, panel D, with 

smoothed curves). We find that, in all three time points, the curves remain well above the 

random control case up to n~80, that corresponds to domains of approximately 40-50Mb. This 

analysis is a further confirm of a scenario where the genome is organized in a hierarchical 

structure of domains-within-domains. The error bars reported represent the error extracted 

from the distribution of the chromosomes, and propagated on the ratio I/IC(n) and J/JC(n). We 

also use a logarithmic binning for n>10, since we span more than two order of magnitude. To 

give a sense of scale for the interaction scores, in Figure 2.7 is also reported the behavior of 

I(n) and J(n) as a function of the basic TAD number contained (i.e. n). 
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Figure 2.6: I/Ic and J/Jc controls 

Panel A-E: Definition of I and J. Panel B, C, D: The I/Ic curves for the three time point. 

(ESC, NPC and Neurons respectively). In all cases, the light blue curves are well above the 

random control case (green curves) up to n~80-100, that corresponds to genome length 

approximately 40-50Mb. Panel F, G, H: The J/Jc curves for the three time points. As in the 

case of the I/Ic, we observe significant differences with the random case (the constant value 1, 

by definition) up to large length scales. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Average interaction at each tree level 

In the plot is shown the average metaTAD inter-domain I (blue curves) and intra-domain J 

(magenta-purple curves) interactions, as a function of the number of elementary domains n, in 

all three time points. Essentially, it is analogous to the curves represented in Figure 2.6, 

without background normalization. As expected, intra-domain interaction J are always above 

inter-domain interaction I. 

 

Results for murine ESC-J1 datasets 

To enforce the results discussed above, we repeat the calculation of the I/Ic and J/Jc control 

curves using different fundamental TADs and different murine dataset (ESC-J1 from Dixon et 

al., 2012). In Figure 2.8, we show the curves obtained from trees built starting from TADs 
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identified with α=0.2 in our ESC dataset (Panel A-B) and in the ESC-J1 dataset (Panel C-D). 

Furthermore, we use also the original fundamental TADs as defined by Dixon with the 

Hidden Markov Model (HMM) approach, on ESC-J1 dataset. In all cases, both measures are 

significantly higher than the random control curves (represented in green) up to domains 

containing about 50 TADs. Since in both cases the average size for TADs is about 1Mb (see 

previous section), this corresponds to length scales of approximately 50Mb. We can therefore 

conclude that our findings are independent on the specific method used to identify the basic 

TADs and independent on the dataset considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: General features of metaTAD trees are significant and independent of the 

algorithm and dataset used.  

Panel A-B: I/Ic (blue, A) and J/Jc (purple, B) curves, and the corresponding control cases (in 

green), using TADs identified with our method for α = 0.2. Panel C-D:  I/Ic  and J/Jc  in the 

original ESC-J1 data from Dixon et al. (2012), using TADs identified with our method at α = 
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0.2. Panel E-F: I/Ic and J/Jc in the original ESC-J1 data from Dixon et al. (2012), using the 

original HMM TAD classification published in Dixon et al. (2012). 

 

Results for human IMR90 and ESC-H1 datasets 

To assess if metaTAD hierarchies exist also in other organisms, we analyse human IMR90 

and ESC-H1 (human embryonic stem cell) Hi-C data from (Dixon et al., 2012), building the 

metaTAD trees starting from our fundamental TADs identified with α=0.0. The average TAD 

size is d0 = 0.44Mb in human ESC-H1 and d0 = 0.55Mb in IMR90 cells. As the human Hi-C 

matrices are lacking the data corresponding to the centromere regions of the chromosomes, 

we consider separately the two chromosome arms. Accordingly, the random matrices used for 

the control curves are obtained by excluding the centromeres in the bootstrapping procedure 

(see previous section). We perform again the robustness analysis computing the I/Ic and the 

J/Jc curves, and we find a significant hierarchy up to domains of tens of megabases for both 

the considered cell lines (Figure 2.9, ESC-H1 in Panel A-B and IMR90 in Panel C-D). 
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Figure 2.9: MetaTAD trees can be found in human cells. 

Panel A-B: I/Ic (blue) and J/Jc (purple) curves, and the corresponding control cases (in green), 

in human ESC-H1 Hi-C data from Dixon et al. (2012). Panel C-D: I/Ic (blue) and J/Jc 

(purple) curves in human ESC-H1 Hi-C data from Dixon et al. (2012). In both cases, TADs 

are identified with our detection method using α=0. 

 

Single cell validation by cryoFISH 

To test the existence of long-range interactions across many TADs, with a completely 

independent method, we present results obtained with cryoFISH experiment (performed in the 

lab of Ana Pombo in Berlin), that is a fluorescence in situ hybridization approach combining 

the use of thin section and high-resolution imaging with confocal microscopy 

(Branco&Pombo, 2006). In this way, cellular architecture is efficiently preserved. We use 

three probes (a, b and c) covering genomic regions in the mouse genome, located in different 

TADs on chromosome 2, as shown in Figure 2.10 , Panel A and Panel B. Their genomic 

separation is 1.5Mb (for a-b) and 2Mb (for b-c). We choose these probes since the Hi-C 

interaction score is much higher between a and b than b and c, so we can easily test if it 

reflects the closer spatial proximity at a single cell level. The results, summarized in Panel C, 

show that a and b are significantly closer (average distance 350nm) than the b-c pair (average 

distance 587nm). So we can conclude that strong Hi-C interaction between distant TADs 

translate in a spatial proximity, supporting once more the view that they are organized in a 

higher-order structure.  
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Figure 2.10: Long-range contact are confirmed by cryoFISH 

Panel A: To confirm the extent long-range interactions between TADs at the single cell level,  

cryoFISH experiment was performed with three probes, which cover genomic regions a (red),  

b (green) and c (blue), separated by 1.5 (a-b) or 2 (b-c) Mb, and which belong to different 

TADs (red line). Hi-C data shows stronger long-range interaction frequency between a and b 

than b and c. Panel B: Probes a, b and c in an image on a confocal microscope. Inset on the 

right shows a magnified region of the same image. Dashed line indicates the nuclear outline. 

Region b often co-localizes with region a, but not region c. Panel C: Distances between 

regions a and b, or b and c were measured and data was collected from two independent 

cryoFISH experiments (red and green dots); number of distances in each replicate are 

indicated above the graph. The average distance between the center of the fluorescent signals 

corresponding to probes a and b is 350, in contrast with probes b and c, which are on average 

separated by 587nm. The ratio of the genomic separation for the two pairs of probes (b-c/a-b) 

is ~1.3, compared with their physical distance ratio of 1.7. 
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2.4 Correlation of hierarchical organization with 

epigenetic features 

The distances on tree topology 

To investigate if the hierarchical structure of metaTAD that we detect has a functional 

biological role, we study the relationship between the tree organization and several epigenetic 

features, using our CAGE data and other published datasets. First, we have to define a 

distance d(i,j) between two loci i and j of the genome that takes into account the hierarchical 

organization. Since the leaves of our tree are TADs, i and j are TAD indexes. We consider 

two possible distances: the total height of the smallest branch including i and j, and the 

smallest number of edges along the tree that connect TAD i with TAD j. Since both distance 

definitions give similar results, we use the second in the following analysis. 

 

Correlation with the tree topology  

Once we have the tree distances between all the possible TAD pairs, we collect the subset of 

pairs Ud having the same distance d. Then, we compute the Pearson correlation (more 

precisely, it is the autocorrelation) coefficient C(d) over Ud for a certain biological feature: 

 

(3)                                    C(d) = ∑i(s1i – E[s1])( s2i – E[s2])/(Var[s1]Var[s2])
1/2

 

 

where the sum is over the Nd TAD pairs in the set Ud, s1i and s2i are the epigenetic signals of 

the first and second TAD in the pair number i, E[s1] and E[s2] are the mean of s1i and s2i, and 

finally Var[s1] and Var[s2] are the variance of s1i and s2i. So, we get the correlation 

coefficients for a fixed tree distance d.  

 



Chapter 2: The hierarchical organization of mammalian genomes 

 

36 
 

 

Figure 2.11: metaTAD tree organization correlates with genomic, epigenomic and 

expression features 

Panel A: the diagram represents the difference between linear and metaTAD tree distance 

(number of edges along the tree minus one) for a given TAD (yellow) relative to other TADs 

(blue) in the same tree. Panel B: correlations over the tree extend up to genomic scales of tens 

of Mb (filled circles) and are significantly stronger than those observed in linear genomic 

sequence (filled triangles). The horizontal dashed line indicates a 20% correlation coefficient. 

Panel C: statistically significant differences are observed in the correlations measured across 

the metaTAD tree and across random neighbour trees constructed from the same linear array 

of TADs (horizontal line P-value = 0.05). Heterochromatin marks H4K20me3 and H3K9me3 

levels do not correlate with the tree structure above what is expected from linear genomic 

distance. Panel D: CAGE data, different epigenomic features and pluripotency transcription 

factors binding sites (TFBS) have different average correlation lengths. 

 

 

 

Relation between tree structure and linear genomic distance: the correlation length L0 

In order to compare the correlation curve C(d) along the tree with the equivalent correlation 

curve that we obtain simply considering the linear genomic distance between two generic 

A) B) 

C) D) 
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TADs (i.e. without considering the hierarchical structure), we need to convert the tree 

distance d into genomic length s(d). This is achieved by the following relation: 

 

(4)                                                    s(d) = ∑i(c2i - c1i) / Nd 

 

where c1i and c2i are the genomic coordinates in the middle of the TAD in pair i contained in 

the set Ud (see Figure 2.14, genomic distance s as a function of the tree distance d). In this 

way, we are able to convert the function C(d) in the function C(s). Generally, we find that this 

function decays as a stretched exponential law, shown in the plots as a dashed line: 

 

(5)                                                     C(s) ~ exp - ( s / s0 )
β
  

 

The parameters of the fit depends on the epigenetic feature considered. In Figure 2.11, Panel 

B, we report the correlation curves C(s) for the some epigenetic signals in ESC. To give an 

estimate of the length scale involved in the correlation pattern, we also define a correlation 

length L0 as the genomic distance where the stretched exponential equals 0.2 (represented as a 

horizontal dashed line in all the correlation plots). In Figure 2.11, Panel D, we show the 

barplot with all the correlation lengths for the epigenetic tracks analyzed (ESC cell line), and 

compare them with equivalent quantities calculated on the curves . In Figure 2.12, we report 

the correlation curves for all the epigenetic tracks studied in the three time points ESC, NPC 

and Neurons.  
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Figure 2.12: Correlation of genomic, epigenomic and TF features along metaTAD trees 

is much stronger than along linear genomic distances. 

Pearson correlations of epigenetic and CAGE data, and transcription factor (TF) binding sites 

over the metaTAD hierarchy (filled circles, upper lines; transformed to average genomic 

distance; both axes are logarithmic) is much larger than the same correlation measured over 
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the linear genomic distance of TADs (filled triangles, lower lines). Superimposed lines are 

stretched exponential fits. 

 

Statistical significance of the tree correlations coefficients 

To quantify the significance of the correlations that we find between the metaTAD tree and 

the epigenetic features, we repeat the procedure above described, for random neighbor trees. 

Such trees are built according to this procedure: we start from the real linear sequence of 

elementary TADs, then we randomly join TAD pairs without considering their interaction. 

So, we obtain a tree where each TAD has the 50% probability to be joined with his left 

neighbour or his right neighbour. Note that the random trees have a high degree of similarity 

with the original tree when we consider the TAD distance distribution. Once we produce the 

random trees, we proceed with the calculation of the correlation curve, and , as before, we 

convert the tree distances into genomic distances in order to compare with the real correlation 

curves. The statistical significance is given by the p-values (Figure 2.13, one-sided Wilcoxon 

rank sum test) between the real and the random neighbour trees. 

 

 

 

 

 

 

 

 

Figure 2.13: Correlation of features along the metaTAD hierarchy in comparison with 

random neighbor trees 

To measure significance, we computed one-sided Wilcoxon tests of difference in median 

between the real and random neighbor tree correlations and found the former to be 

significantly stronger up to large distances, approximately 10 Mb, for a number of features; 

genomic distance 
[log(Mb)] 
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horizontal line, p-value=0.05. Average gene length and exon count per TAD were used as 

controls. 

 

 

 

 

 

 

 

 

 

Figure 2.14: Relation between the genomic distance and the metaTAD distance 

The plot shows the average genomic distance corresponding to a given metaTAD tree 

distance over the tree. Data are averaged over the three cell types of this study.  

 

Analysis of epigenetic features association with TAD and metaTAD boundaries 

The boundaries of TADs are enriched for specific genomic features (Dixon et al., 2012; Nora 

et al., 2012; Phillips-Cremins et al., 2013; Moore et al., 2015). The hierarchy of metaTADs 

identifies different types of domain boundary, comprising boundaries that connect two TADs 

at the lowest metaTAD levels up to boundaries that separate higher-order metaTADs 

containing large blocks of TADs. We measured the enrichment of chromatin features across 

TAD and metaTAD boundaries genome-wide, such as RNAPII and CTCF occupancy, and 

promoter activity measured by CAGE in ESC, NPC and Neurons. Interestingly, we found that 

features previously observed as significantly enriched at TAD boundaries are even more 

strongly enriched at higher-order metaTAD boundaries (corresponding to genomic lengths of 

10–40 Mb, Figure 2.15), consistent with important functional roles of the metaTAD 

organization. In this analysis, we focus only on metaTADs with size between 10Mb and 
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40Mb. We consider a genomic region centered in the TAD or metaTAD boundary and 

extended 450Kb in each direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Comparison of enriched features at TAD and metaTAD boundaries. 

Genome-wide profiles of epigenomic features and gene densities averaged over all TAD and 

over only large metaTAD (10 – 40 Mb) boundaries (ribbons show 95% confidence intervals 

of the mean). The enrichment of most features is significantly increased at metaTAD 

boundaries when compared to TAD boundaries. ‘CAGE’ represents CAGE-defined active 

TSS. 
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2.5 The evolution of the tree during cell 

differentiation 

In this section we analyze the structural rearrangements in the metaTAD organization 

occurring during the differentiation process, and we try to understand whether a relationship 

exists between cell functionality and topological spatial reorganization.  

 

The global similarity measure 

The structural reorganization of the metaTAD hierarchy during the differentiation is evident if 

we compare the trees of single chromosomes in the different time points. The tree topologies 

are compared by using measures of structural changes. Precisely, we use the cophenetic 

correlation (Sokal & Rolhf, 1962), a global and general measure of tree similarity. This is 

obtained by calculating the Pearson correlation coefficient between the cophenetic matrices 

associated to each chromosome, for two specific time points. The cophenetic matrix consists 

simply of the distances between all the leaves of the tree. For simplicity, we take all the tree 

length branches equal to 1. In Figure 2.16, Panel A, it is shown the comparisons for the 

cophenetic coefficients, and it emerges that Hi-C based trees are more similar among each 

other than to random trees. We consider two types of random control trees: the first type is the 

random neighbour tree, already described in the previous section, and the second type is the 

totally random tree, without any constraint in the joining procedure (i.e. the nearest 

neighbours constraint). The coefficient between two sets of total random trees is practically 

zero, while it is 0.49 between two sets of random neighbour trees. In the latter case this is 

expected since at each level the probability to be joint with the left or right nearest neighbour 

is ½, and the resulting overall conservation level is about 50%. Analogous results are obtained 

if other similarity measures (Robinson-Foulds distance measure) are used, but we will not 

discuss here the details. 

 

 Results 

The comparison between Hi-C based trees for the three time points is implemented in the 

following way. First, we consider only elementary TADs having conserved boundaries, then 
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we calculate the cophenetic matrices and coefficients as described in previous subsection. We 

consider only the conserved TADs since in this way we use the same number of domains 

(leaves) and we compare the same genomic regions across different time points. TADs are 

defined conserved if the left and right boundaries coincide within a given tolerance (here we 

set 200Kb) in the cell lines being compared. As shown in Figure 2.16, Panel A, we obtain that 

the cophenetic coefficient is around 81-84%, which is well above the random level (see 

previous subsection). In Figure 2.16, Panel B, the coefficient for all the chromosomes in the 

three transitions is reported, and it is evident that the degree of reorganization is highly 

dependent on the time point and on the chromosome considered. So, for instance, we find that 

chromosomes 4, 6 and 19 have a low similarity between ESC-NPC but are highly conserved 

between NPC-Neurons. Overall, we can summarize that the metaTAD structure has a degree 

of structural reorganization (about 20%) against a general background of conservation.  

 

The local similarity measure 

In order to quantify the degree of local structural change of a conserved elementary TAD 

during differentiation we developed a measure reflecting the level of reorganization at a 

particular transition. Precisely, for a fixed conserved TAD, we consider the other nearest 

conserved TADs according to the tree distance in the considered time point. The nearest 

conserved TADs are those having a distance less than the conserved TAD with the third 

shortest distance. If we identify n neighbour conserved TADs, we evaluate the tree change 

using the following quantity: 

 

(6)                                          Degree of change (i) = √∑
(𝑥𝐴,𝑗−𝑥𝐵,𝑗)

2

𝑛
𝑛
𝑗  

 

where 𝑥𝐴,𝑗 and 𝑥𝐵,𝑗 are the distances along the tree between the conserved TAD i and 

conserved TAD j in the time point A and B. A conserved TAD is in a region of tree 

conservation if the associated z-score is > 0, and analogously it is in a region of tree changes 

if the z-score is < 0. In Figure 2.17, Panel A, it is shown an example of tree topology change 

for chromosome 6, in the transition ESC-NPC, where the regions conserved are highlighted in 



Chapter 2: The hierarchical organization of mammalian genomes 

 

44 
 

green and the region not conserved are highlighted in red, with an intensity depending on the 

level of change degree. Overall, the most local tree changes occur in the transition ESC-NPC 

than in the transition NPC-Neurons, as showed in Figure 2.17, Panel B.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.16:  Reorganization of metaTAD trees across differentiation (global measure) 

Panel A: Cophenetic correlation between conserved metaTAD trees. Comparisons with two 

different sets of 100 random tree models are also shown: the random neighbour tree and the 
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fully random tree models. Shown are genome-wide averages over all chromosomes. 

MetaTAD trees are more similar to each other than to random trees. On average, the topology 

of the NPC metaTAD trees is close to that of Neurons, both of which are approximately 

different to the ESC metaTAD trees. Panel B: Cophenetic correlation coefficients comparing 

metaTAD trees per chromosome show different levels of tree restructuring in each 

differentiation time-point transition. Dashed horizontal lines represent the average value for 

all autosomal chromosomes 

 

 

 

 

 

Figure 2.17:  Reorganization of metaTAD trees across differentiation (local measure) 

Panel A: Tree topology of chromosome 6. The central heatmap reflects the degree of 

reorganization during the transition ESC-NPC. In green are highlighted the conserved region, 

A) 

B) 
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in red the not conserved regions. Panel B: Percentage of TADs undergoing a local tree 

change (threshold = 1). In the transition ESC-NPC there are the most tree changes. 

 

2.6 A polymer physics model for hierarchical 

organization 

In this last section we will present a simple, possible mechanism that regulates the 

hierarchical folding of the genome and the formation of metaTADs using a polymer physics 

model. The model used is the strings and binders switch (SBS) model (Barbieri et al., 2012), 

already introduced in Chapter 1. In the next chapter, we will introduce another possible 

mechanism, based on the same model, for hierarchical folding. 

 

The red-green-blue model 

To model the formation of a higher order domain, we consider a polymer with three types of 

binding sites, which can be visualized with three different colors (red, green and blue). The 

red and the green sites are positioned along the first and the second half of the polymer 

respectively (Figure 2.18, Panel A), while the blue sites are interspersed with them (Figure 

2.18, Panel B). Floating binders interact with the binding sites and the polymer folds (as for 

the binding sites, three types of binder exist in system, each interacting with its cognate type). 

When equilibrium is reached, the blue binding sites induce the higher-order interaction 

between the two distinct red and green domains (which can be seen as elementary domains or 

TADs). From the biological point of view, the blue binding sites are expected to contribute to 

the correlations between epigenetic features observed at metaTAD scales.  

 

Packaging efficiency 

To measure the effect on the polymer packing resulting from the mechanisms just proposed, 

the volume of the whole system is compared with the volume of its subparts (red, green and 

blue separately). In particular, the interaction mediated by the blue binders reduces the 

distance between the red and green domain and the polymer volume decreases, resulting in an 
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increase of the packaging efficiency of 50% (Figure 2.18, Panel C). Of course, other 

mechanisms can be considered to promote higher-order domain folding, as we  will show in 

the next chapter. 

 

                          

 

             

 

Figure 2.18: Mechanisms of higher-order domain formation 

Panel A: The red and green binding sites interact with their binders and form two distinct 

domains. Panel B: The blue binding sites mediate the interaction between the red and green 

domains and  form a higher-order domain. Panel C: The packaging efficiency is increased of 

50% when compared to the non-hierarchical model (metaTAD/TAD model). 
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Chapter 3 

Understanding the mechanisms of chromosomes 

folding: polymer physics models 

In this chapter, we will show how polymer physics can explain some aspects of the spatial 

structure of chromosomes in the cell nucleus. First, we will briefly discuss the Strings and 

Binders Switch Model (SBS, Section 3.1), originally presented in the work by Barbieri et al. 

(2012), then we will discuss its Molecular Dynamics (MD) implementation and the resulting 

phase diagram, which shows a novel thermodynamic stable state (Section 3.2). We will show 

how, with few parameters, we are able to recapitulate the average behavior of the contact 

probability in a very large range of genomic lengths (Section 3.3). Also, we will describe the 

theoretical multiple contact profile, which recently have been discovered to be very important 

(Olivares-Chauvet et al., 2016, Beagrie et al., 2017) for genome architecture and regulation 

(Section 3.4). The results presented in the present chapter have been published in Chiariello et 

al. 2016, and Annunziatella et al., 2016. 

 

3.1 The Strings and Binders Switch (SBS) model in 

MD 

The model 

In the SBS model (Nicodemi&Prisco, 2009, Barbieri et al., 2012), a chromatin filament is 

modeled at a coarse-grained level as a classical Self-Avoiding-Walk (SAW) of beads, that can 

interact with binders floating in the surrounding environment. The beads interact with the 

diffusing molecular binders though an attractive potential with interaction energy Eint. The 

binders have a concentration c, and can bridge the beads of the chain and fold spontaneously 

the polymer (Figure 3.1). 
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Figure 3.1: The SBS model 

The Strings&Binders (SBS) model is a Self-Avoiding (SAW) chain of beads interacting with 

molecular binders having a concentration, c, and a binding affinity Eint. 

 

The MD implementation: Dynamics  

In our simulation, we use the open source software LAMMPS (Large Atomic Molecular 

Massive Parallel Simulator (Plimpton, 1995)). The chromatin filament is represented as a 

polymer composed by N beads. The binders are single particles that move randomly in the 

environment. Both beads and binders are subject to Brownian motion, which is 

mathematically described by the well-known Langevin equation (Kremer&Grest, 1990): 

 

(2)                                            𝑚
𝑑𝑣⃗  (𝑡)

𝑑𝑡
= −𝜁𝑣  (𝑡) +  𝑓 (𝑡) − 𝛻V 

 

where m is the mass of the generic particle, v(t) the particle velocity, V is the potential acting 

on the particles (see next subsection) and f(t) stochastic random force that takes into account 

the thermic fluctuation of the environment. The friction coefficient  ζ is related to the 

viscosity of the solvent η from the Stokes relation ζ=3πησ. As usual in MD simulations, we 

work in dimensionless units (Kremer&Grest, 1990). So, we set the diameter of the polymer 

bead σ equal to 1 (for simplicity, we do the same for the binder diameter). The diameter fixes 

our length unit. Analogously, we set the mass of the particle m equal to 1. The energy scales 

String 

Binders 

binding sites loop 
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are measured in kBT, where the Boltzmann constant kB is 1 and the temperature T is 1. For the 

dynamics, we set 𝜁=0.5 (Kremer&Grest, 1990; Rosa&Everaers, 2008; Brackley et al., 2013). 

The Langevin equation  is integrated using the Verlet algorithm (Plimpton, 1995). All these 

settings are standard choices and are well described in Kremer&Grest, 1990. The simulation 

box, having boundary periodic conditions, has a linear size D, that is as large as the gyration 

radius of a SAW with the same number of beads (D ∝ N0.588
) . Physical units will be obtained 

once we fix the length scale and other parameters of the system (see next section). 

 

The MD implementation: Potentials 

The SBS model in MD is implemented through the potentials definition. The potential energy 

V(x), of a particle having a position x, has three components. Between two consecutive beads 

of the chain there is a potential that models a finitely extensible non-linear elastic (FENE, 

Kremer&Grest, 1990) spring: 

 

(3)                                                   𝑉𝐹𝐸𝑁𝐸
 = −0.5𝐾𝑅0

2 ln [1 − (
𝑟

𝑅0
)
2
] 

 

where R0 is the maximum extension of the spring (otherwise the argument of the logarithm 

becomes negative), K is the strength of the spring. We set R0=1.6sigma and K=30kBT/σ
2  

(Kremer&Grest, 1990; Brackley et al., 2013). To take into account for excluded volume 

effect between any two particles, there is an hard-core repulsive force 𝑉ℎ𝑎𝑟𝑑
 (𝑟), modeled by a 

shifted Lennard-Jones (LJ) potential: 

 

(8)                   𝑉ℎ𝑎𝑟𝑑
 (𝑟) =  

{
 
 

 
 4 [(

σb−b

𝑟
)
12

− (
σb−b

𝑟
)
6

− (
σb−b

1.12
)
12

+ (
σb−b

1.12
)
6

]       𝑟 < 1.12

                    

 0                                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The third contribution to the total potential in the system, is represented by the bead-binder 

interaction. A bead of the polymer can interact with its cognate binder through an attractive 

cut Lennard-Jones 𝑉𝑖𝑛𝑡
 (𝑟): 

 

(9)                 𝑉𝑖𝑛𝑡
 (𝑟) =  

{
 
 

 
 4 𝜖𝑖𝑛𝑡 [(

σb−b

𝑟
)
12

− (
σb−b

𝑟
)
6

− (
σb−b

𝑟 𝑖𝑛𝑡

)

12

+ (
σb−b

𝑟 𝑖𝑛𝑡

)

6

]       𝑟 < 𝑟 𝑖𝑛𝑡

                    

 0                                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where  𝜖𝑖𝑛𝑡 is the parameter, in kBT units, that controls the strength of the interaction, 𝑟 𝑖𝑛𝑡 is 

the cut-off distance that regulates the interaction range and σb−b is the distance between bead 

and binder when they are close in space (i.e. the sum of their radii, therefore in our case is 

1σ). In our simulations, we set 𝑟 𝑖𝑛𝑡 = 1.3σ, unless otherwise stated. The energy of the 

interaction between beads and binders is given by the minimum of the interaction potential 

𝑉𝑖𝑛𝑡
 (𝑟): 

 

(10) 

 

 

 

 

 

 

Figure 3.2: Schematic representation of the three potentials 

Panel A: Between any two particles, there is a purely repulsive LJ potential, defined in 

equation (8), necessary to model the excluded volume effects. Panel B: Between two 

consecutive polymer beads, the bond is a finite extensible non-linear elastic (FENE) potential, 
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defined in equation (7). Panel C: Between bead and binders the interaction is modeled with 

an attractive, shifted Lennard-Jones potential, defined in equation (9). 

 

Initial states 

As in all MD simulations, the initial state is very important (Rosa&Everears, 2008). In all our 

simulations the polymer is initially prepared in a random SAW configuration, while the 

binders are randomly located in the simulation box. To produce an initial random SAW 

configuration we use the following standard approach
 
(Kremer&Grest, 1990): we generate a 

random walk chain, with a customary script written in Python, where the distance between 

two consecutive beads is equal to the average length of an equilibrium SAW chain under the 

FENE potential above described (i.e., 0.97σ). Then, to remove overlaps between beads and 

binders, we let the system equilibrate, for some timesteps, where the hard-core LJ repulsion is 

replaced by a soft potential 𝑉𝑠𝑜𝑓𝑡(𝑟) (Kremer&Grest, 1990; Brackley et al., 2013):  

 

𝑉𝑠𝑜𝑓𝑡(𝑟) =  {
 𝐴 [1 + cos (

𝜋𝑟

2
1
6⁄ σ
)]          𝑟 <  2

1
6⁄ σ

                    
 0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

where the factor A increases linearly in time. The scaling properties of the polymer are then 

measured to check that the stationary SAW state is attained. Finally, the chain is simulated 

under the FENE potential. and its scaling properties checked again. MD techniques are very 

powerful and standard methods to investigate molecular structures, and are broadly used to 

study the folding processes and conformational properties of other completely different, yet 

very important, molecules like proteins (Di Carlo, Minicozzi et al., 2015). 
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3.2 The Phase Diagram  

In this section, we will apply the model just discussed in the previous section to a generic 

region of the genome (i.e. a chromosome) and will extract quantitative information about its 

structure. Given the genomic length L of the region to be modeled, the corresponding 

genomic content (i.e. the number of bases) per bead is s0=L/N, where N is the number of 

beads forming the chain. Here, we consider polymer made of N=1000 beads. Since a typical 

chromosome have a genomic length of approximately L=100Mb, each bead contains 

s0=L/N=100Kb. To model the average chromosome behavior, we use the simplest SBS 

polymer, where each bead can interact equally with all the binders in the environment. In the 

following chapter, we will increase the complexity of the model by introducing a specificity 

(‘colors’) in the interaction between beads and binders.  

 

Thermodynamic conformational classes:  the coil-globule transition 

In this  model, the control parameters are the interaction energy Eint  between bead and binders 

and the binders concentration c. As known from polymer physics, there is a coil-globule 

folding transition, highlighted by a sharp drop of the gyration radius (that is the order 

parameter of this transition) when crossing the theta point in the phase diagram. The coil state 

is characterized by small values of Eint and c, i.e. when the binders do not succeed in forming 

stable loops, and the polymer remains open (as in a SAW, Figure 3.5, Panel B, light blue 

box). On the contrary, in the globular state the polymer is in a closed configuration, 

occupying a very small fraction of the open state volume (Figure 3.5, Panel B, red box).  

 

Thermodynamic conformational classes:  the order-disorder transition 

We identify also a new phase transition, occurring in the polymer globular phase, where the 

binders undergo an order-disorder transition, despite that they do not interact directly with 

each other. Two states exist: at low energies or concentrations, the binders form a disordered 

aggregate attached to the chain, while at high energies, with a sufficiently high concentration, 

they form an ordered aggregate. The phase diagram is summarized in Figure 3.3. Such 

thermodynamic stable states are expected to play an important role in the chromatin 
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organization. The different nature of these configurations is visually evident in Figure 3.5, 

Panel D, and will be discussed in detail in the next subsection. 

 

 

 

 

 

 

 

Figure 3.3: The Phase Diagram 

Polymer physics dictates that the model stable architectural classes correspond to the different 

phases of its phase diagram: the polymer is open and randomly folded or, above its Θ-point 

transition, closed in more compact conformations; in the closed state, its binders can have a 

transition from a disordered to an ordered arrangement. Conformational changes can be 

sharply controlled (switch-like) by phase transitions driven by increasing c above threshold, 

e.g., by up up-regulation of the binder genes, or by chemical modifications of their binding 

sites, acting on EInt. The values reported in the axes are those used in the simulations (see 

“Mapping MD units into physical units” subsection). 

 

Order parameters of the transitions 

To identify the values of and c which give the transitions discussed above, we proceed as 

follows. The coil-globule transition is identified (Barbieri et al., 2012) by studying the 

gyration radius Rg associated to the polymer, defined by the following relation: 
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(11)                                           𝑅𝑔
2 =

1

𝑀
   ∑𝑖=1

𝑁  𝑚𝑖(𝑟𝑖 − 𝑟𝐶𝑀)
2 

 

where mi and ri are the mass and the position of the i-esim bead respectively, M is the total 

mass of the polymer and rCM is the position of the center of mass of the polymer. Essentially, 

this is a measure of the average linear size of polymer. The order-disorder transition is 

highlighted by two quantities associated to the configuration of the binders: the pair 

distribution function g(r) and the structure factor function S(k). They are defined as follows 

(Allen&Tildesley, 1987): 

 

(12)                                              𝑔(𝑟) =
1

𝜌𝑁𝑏
〈∑ ∑ 𝛿(𝑟 − 𝑟𝑖𝑗)𝑖≠𝑗𝑖 〉 

 

(13)                                   𝑆(𝑘) = 1 + 4πρ ∫ 𝑟2 sin(𝑘𝑟)/(𝑘𝑟)
∞

0
𝑔(𝑟)𝑑𝑟 

 

where ρ=Nb/V is the concentration of the binders attached to the polymer, δ is the Dirac delta 

function. The structure factor S(k) is basically the Fourier transform of the pair distribution 

function. It is almost flat when the binders are in a disordered configuration, while it is 

characterized by sharp peaks when the binders are in a ordered configuration (Figure 3.4). In 

our study, we consider as order parameter the ratio S(k
*
)/SMAX , where k

*
 is the position of the 

second peak in the S(k) function and SMAX is a normalization constant equal to the maximum 

value of S(k
*
) among the different studied cases, so to have a quantity normalized between 0 

and 1. Such order parameter have a sharp jump at the order-disorder transition (Figure 3.5). 

Analogous results are obtained if other peaks of S(k) (for instance the first peak or the third 

peak) are taken. 
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Figure 3.4: The pair function distribution g(r) and the structure function S(k) 

Panel A: An example of pair distribution function g(r) defined by equation (12), in the closed 

state. In the disordered state (blue curve, interaction energy Eint=3.1kBT) it is characterized by 

a smooth behavior, while in the ordered state (light blue curve, interaction energy Eint=4.1kBT) 

it has several sharp peaks. Panel B: The structure factor S(k) , i.e. the Fourier transform of the 

g(r) function (eq. (13)), is practically flat for the disordered state, while it has sharp peaks in 

the ordered state.  
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Figure 3.5: The order parameters of the transitions 

Panel A: The gyration radius of the SBS polymer, Rg, signals its coil-globule transition point 

as a function of the concentration of binders. Panel B: Three different configurations at 

different concentration. Panel C: The structure factor S(k) peak marks the order-disorder 

transition in the arrangement of the binders around the folded polymer. Panel D: The binders 

in disordered configuration (Eint=3.1kBT, green box) and in an ordered configuration 

(Eint=4.1kBT, red box). 
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Polymer folding dynamics 

The stable conformational classes discussed in the previous subsections are equilibrium states. 

Starting from a completely SAW configuration, for each choice of the system parameters (i.e. 

concentrations c and interaction energy Eint), we consider the evolution of the polymer 

gyration radius and the total potential energy (FENE and LJ potentials) as a function of time 

(Figure 3.6, Panel A and Panel B). The values of the order parameters are calculated only for 

configurations taken from the last part of the dynamics, when the polymer is completely 

folded and no more (or in a negligible amount) binding events occur. The finer details of the 

dynamics depends on the particular values of c and Eint, as shown in Figure 3.6, Panel B, 

when comparing the green curve (disordered state) with the orange curve (ordered state).  

 

 

 

 

 

 

 

 

Figure 3.6: Polymer folding dynamics 

Panel A: The system dynamics is monitored by the gyration radius (relative to its initial 

value) as function of time. When the energy is sufficiently high (Eint=3.09kBT, disordered 

state, green curve), the polymer folds and the coil-globule transition occur after a transition 

time of 5÷10s. Panel B: Potential energy (FENE and LJ) as function of time. In the 

disordered state (green curve) the transition time is 5÷10s (as for the gyration radius). In the 

ordered state case (Eint=4.1kBT, orange curve) there is the first transition after 5÷10s (coil-

globule), then the second transition occur at ~100s (order-disorder transition). In all cases, the 

concentration c is above the transition threshold. 
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3.3 The mixture model fits large scale chromatin 

contact profile 

To characterize the folding state of our polymer model, we calculated the pairwise contact 

probability Pc(s) of beads separated by a given genomic distance s. Its behavior depends on 

the state of the system (Figure 3.7, Panel A). In the open state the probability decreases as a 

power law with s, i.e. Pc(s) ~ s
−α

, where the exponent α is about 2.1, as predicted by polymer 

physics (de Gennes, 1979).  At the theta point, the exponent becomes 1.5, while in the 

globular state the probability has different shapes depending on whether the system is in the 

disordered or in the ordered state. In the former, it has an asymptotic plateau, with the power 

law exponent equal to 0, in the latter it decreases with an observed exponent 1.0. 

Analogously, the mean square distance between bead pairs R
2
(s) has a complementary 

behavior to the Pc(s) function, as shown in Figure 3.7, Panel B, so it depends on the 

thermodynamic state of the system. The properties just discussed are general features of this 

kind of systems. The finer details of the polymer configurations depend anyway on other 

aspects, like the position of the binding sites on the chain, the presence of ‘inert’ neutral sites 

and confinement. Different distributions of binding sites would produce, for instance, 

different types of ‘rosette-like’ globular conformations. In the following we will present 

polymer models which by use of appropriate binding sites positioning can describe very 

accurately the three-dimensional structure of real loci. Furthermore,  off-equilibrium, unstable 

conformations are also expected to be encountered in real chromosomal regions, in particular 

during changes in the folding state. 

 

The mixture model   
 

To compare our very simple model with the Hi-C data, we suppose that the chromosome is a 

mixture of differently folded regions, where some loci can be more compact than others, like 

eu- and heterochromatin (see Chapter 1). The regions can change their conformation from cell 

to cell following functional purposes (Nagano et al., 2013). At a first approximation, the 

conformation of each region must belong to the stable thermodynamic states (Nidocemi et al., 

2009; Barbieri et al., 2012) previously identified, as schematically represented in Figure 3.8, 
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Panel A. So, we consider a linear combination of the different contact probability profiles 

represented in Figure 3.7, Panel A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Contact probability Pc(s) and mean square distance R
2
(s)  

Panel A: The contact probability as a function of the contour distance s (i.e. genomic 

distance), in the thermodynamic phases. Panel B: The mean square distance of two generic 

sites having a contour distance s along the polymer.  

 

This combination depends on the relative abundances of the states in the mixture and on a 

scale factor necessary to map the bead size into genomic distances. Interestingly, we find that 

the model is able to fit the experimental contact probability data over very large length scales, 

from the sub-mega base scale up to the whole chromosome length. This results is valid for 

genome wide averaged data (Figure 3.8, Panel B) and for single chromosomes data (Figure 

3.8, Panel C). Furthermore, we use data obtained from different experimental techniques  (Hi-

C, TCC and in-situ Hi-C), and the results are similar. By fitting the data experimental data we 

obtain the percentages of open and closed state that best describe the chromatin certain cell 

line (averaged over all the chromosomes), or the percentage that best describe the chromatin 

for a fixed chromosome. We find different results depending on the cell type: in the human 

embryonic stem cells (hESC, from Dixon et al., 2012), the open state is approximately 75%, 

while in the differentiated cells as IMR90 fibroblast (data from Dixon et al., 2012), this value 
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is approximately 50%, as expected. If we consider contact probabilities extracted from data 

obtained from different experimental techniques (Hi-C vs TCC, data from Dekker and from 

Kalhor et al. respectively), the fit gives similar results, with a closed ordered state of 40%, but 

a slightly different balance between the other states. For a fixed cell type, we register a quite 

wide variability of these fractions among the different chromosomes, as shown in Figure 3.8, 

Panel E, for IMR90 cell type. For instance, chromosome X is very compact with a 75% of 

closed ordered state, while chromosome 1 has a 50% of open state. Generally, the percentage 

of open state decreases with the chromosome size, while the closed disordered phase 

increases, even though it represents a very small fraction (always less than 20%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8:  Chromatin is a mixture of regions folded in different thermodynamic states.  
 

Panel A: We model a chromatin filament as a mixture of differently folded regions, each 

belonging to one of the stable conformational classes. In this view, the average pairwise 

contact probability is only determined by the relative abundances of the states in the mixture, 
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as each state has a fixed, specific pairwise contact probability. Panel B: Genome-wide 

average contact frequencies across human cell types, obtained from various experimental 

techniques, can be fitted from the sub-Mb to chromosomal scales by such a mixture model. 

Panel C: Single chromosome data (here from IMR90 cells) can be similarly explained. Panel 

D: Different cell types have a different chromatin composition, with hESC (orange circle) 

more open than differentiated cells, such as IMR90 (blue circle). Panel E: Within a given cell 

type (here IMR90, as in Panel C) distinct chromosomes have also a different compositions, 

with chromosome X formed mostly of closed regions, whereas gene rich chromosomes, e.g., 

chr.19, are up to 70% open. 

 

Method to fit the experimental data 

The fit of genome-wide Hi-C average pairwise contact data as a function of the pairwise 

genomic separation is done by use of the Least Square Method (LSM). We compute the 

model predicted contact probability of a mixture of open and closed states by using the 

independently derived corresponding contact probabilities from the MD simulations of the 

homopolymer chain. Then, by LSM we find the composition of the mixture of open and 

closed states that minimize the distance between the predicted PC(s) and the one derived from 

Hi-C data. 

 

Mapping MD units into physical units 

To map the dimensionless units used in the MD simulation, we proceed in the following way: 

given the genomic length L to model, the genomic content in each bead is s0=L/N. The 

physical bead diameter is estimated by equalizing the average nuclear chromatin density with 

the local chromatin density. In this way we obtain the relation σ=(s0/G)
1/3

D0 (Barbieri et al., 

2012), where D0 is the nucleus diameter and G the total genome length (in base pairs). We 

consider mouse embryonic stem cells, so we suppose D0=3.5μm and G=6.5Gb. In the 

previous case, we set L=100Mb, so it results σ=87nm. The concentrations are estimated by 

using the relation c=P/VNA, where P is the absolute number of binders in solution, V is the 

box volume and NA is the Avogadro number. Analogously, the time scale τ is estimated by 

fixing the viscosity η and energy scale ε through the relation τ=η (6πσ
3
/ε). So, by considering 

η=0.1P at room temperature T=300K, we obtain τ=0.03s. In all the following polymer models, 

all the physical will be calculated in this way. 
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The two colors model 

The model just discussed have one kind of bead that can interact with all the binders floating 

in the surrounding environment. Despite its simplicity, it is able to recapitulate the average 

long-range contact properties of chromosomes. Nevertheless, the real Hi-C matrices have a 

very complex structure (see previous Chapter 1 and 2), and it is necessary to complicate the 

model to further investigate the patterns of the experimental data beyond the average long-

range contact probability. To this aim, we now consider a block-copolymer, with two types of 

beads (visually represented by two colors, red and green), that can interact only with a 

specific kind of binder (red and green, as shown in Figure 3.9, Panel A). We consider as first 

case a 2-block co-polymer where each block is made of 500 beads, one red and one green, and 

the entire polymer is made of 1000 beads in total. To give a sense of length scales, we 

consider scales one order of magnitude lower than the chromosome modeling, which are 

typical genomic lengths where chromatin is known to be subjected to compartmentalization 

(Lieberman-Aiden et al., 2009). Thus, we suppose that the region is 10Mb long. To estimate 

the length scale, we proceed as before and we find that the bead has a diameter σ=64nm. The 

time step results to be 0.003s, assuming a viscosity of 2.5cP. The concentrations and 

interaction energies are sampled so to cover the three thermodynamic stable states identified 

in the homopolymer study. When equilibrium is reached, each block folds in the 

configurations discussed in the previous subsection, and two stable globular domains are 

formed. The contact probability Pc(s) and the average square distance R
2
(s) associated to this 

conformation are reported in Figure 3.9, Panel C. It is apparent the crossover at the domain 

boundary, where the Pc(s) has a sharp drop at s=N/2, and complementary, R
2
(s) reaches the 

maximum value as a plateau. In the second block co-polymer, the distribution of the colors 

along the polymer consists of four consecutive blocks (red-green-red-green, Figure 3.9, Panel 

B), each block 250 beads long (as before, the total polymer is composed by 1000 beads). As 

before, each block can fold in the stable configuration and it forms, at the beginning of the 

dynamic process, a lower level structure (that can be interpreted as a TAD sequence). These 

objects correspond to enriched interaction squares along the diagonal of the contact matrix 

(Figure 3.9, Panel B, central matrix). When equilibrium is completely reached, the blocks of 

the same color interact, and the result is a hierarchical organization of higher-order structures, 

which is known to be a feature of the mammalian genome (Fraser et al., 2015). In the contact 

matrix (Figure 3.9, Panel B, right matrix), such organization is represented by a  
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Figure 3.9: hierarchical self-assembly of domains 

Panel A: Block co-polymer model made of two types of beads (red and green) interacting 

with two types of binders. There are four consecutive blocks along the polymer, alternating 

their color. Panel B: the dynamics of the systems is marked by a decrease of the gyration 

radius, and a hierarchical self-assembly of domains spontaneously occur, as in the 

corresponding contact matrices (here Eint=4.1kBT). Panel C: Contact probability (left plot) 

and quadratic distance (right plot) in the 2-block co-polymer, for the three thermodynamic 

stable phases. Panel D: Contact probability (left plot) and quadratic distance (right plot) in 

the 4-block co-polymer (the corresponding contact matrices are in Panel B).  

 

 

chessboard-like pattern. Pc(s) and R
2
(s) are reported in Figure 3.9, Panel D, and they reflect 

the information contained in the matrix. In fact, we register a sharp drop at s=N/4, then it 

increases since there are higher order interactions, and then it sharply drops again at s=3N/4. 

In the framework of our model, such structural features naturally emerge by specialization of 

the involved molecular factors under the laws of polymer physics.  

 

The symmetry-breaking mechanism in the co-polymer models 

An interesting consequence of the self-assembly of domains, that probably can have 

functional roles, is a symmetry-breaking  mechanism occurring in the spatial organization of 

the loci. In particular, since TAD boundaries have been associated to an insulating role in the 

cell functionality, we consider the effect of the domains on the physical distance between 

pairs of sites differently located with respect to the domain itself. Specifically, we consider 

two pairs of loci having the same genomic distance (i.e. the same contour distance along the 

polymer). We focus on two cases where the sites can be symmetrically or asymmetrically 

located with respect to the boundary of the domains. We find that the symmetrical pair have 

on average a larger spatial distance than the asymmetrical one, while in the open state (i.e. the 

SAW) no difference is observed. This is found for both closed states (ordered and disordered), 

as shown in Figure 3.10. The details of the distances and contact matrices computation are 

given in the next subsection. 
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Figure 3.10: Simmetry-breaking mechanism in the physical distances 

Panel A: The physical distance distribution r (in dimensionless σ units) of a pair of sites 

having the same contour distance (here 125σ), differently located with respect to the TAD 

boundary position. In the open phase, as expected no difference is observed (blue 

distributions). Yet, in the closed phases (ordered, in yellow, and disordered, in purple) the 

symmetry is broken, and the loci with an asymmetric positions (dashed line distributions) are 

closer in space than the symmetric pair (solid line distributions). 

 

 

Computational approach for distance distributions 

To measure the physical distances between two sites in the block co-polymer model, we 

consider two loci A and B, belonging to different blocks (A in the red block and B in the 

green block). In both cases, their contour distance is d=125σ. In the symmetric case, they are 

equally distant from the boundary of the domain,  while in the asymmetric case the site A is 

located at a distance of 5σ from the domain boundary, and consequently the site B is 120σ 

from the boundary (so it is well inside the domain). To increase the statistics, we consider also 

the case where B is located at 5σ from the boundary and A at 120σ. The asymmetric 

distribution plotted in Figure 3.10 is an average of the two cases. The result is valid also if the 

distance from the boundary is higher (we checked the case 25σ from the boundary and similar 

results are found).   
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Computational approach for contact matrices  

The polymer average pairwise contact frequency matrices for all polymer models discussed 

above are obtained in the following way. We fix a contact threshold distance λσ, where σ is 

the length unit, and λ a dimensionless constant threshold, which we set to λ=3.5. For a given 

3D conformation of the polymer chain, we consider the distance rij between each bead pair i 

and j, (i≠j, where i and j are bead indices along the chain). If rij < λσ, then we count a contact 

between the beads i and j. We then compute the average of these matrices across the different 

configurations in the considered polymer state. 

The mean contact probability, 𝑃𝑐(𝑠), of a pair of polymer beads having a contour separation, s 

(genomic distance) is recorded in an analogous way by averaging also over all the bead pairs 

with the same given contour distance. 

 

 

3.4 Multiple contacts interaction landscape 

In this section we discuss the many-body contacts, that is the possibility of co-localization 

events of multiple sites. This is essentially a generalization of the pairwise contact interaction 

profile described in the previous section, where the dimension and the complexity of the 

interaction event is increased. To investigate this aspect of the polymer architecture, we first 

explore in details the probability of triple contact events Pc(s1,s2) (i.e. triplets probability), 

where the three beads are separated by different genomic separations s1 and s2. Then we 

compute the frequency of observing n (n>3) sites in physical contact, and we do this in the 

three thermodynamic states identified previously. In particular, in the closed states many-

body contacts are exponentially more frequent than in the open state.  

 

Computational approach for the many-body contact 

To estimate the average number of many-body contacts involving simultaneous interactions 

of k beads occurring in a given polymer conformation, we count the number of beads 𝑛𝑖 that 

are in contact with the i-esim bead within the fixed threshold λ (for this computation, we use 

as above λ=3.5), and the number of possible combinations of k simultaneous contacts that 

contain the i-esim bead, ( 𝑛𝑖
𝑘−1

). We average that number over all the beads in the polymer. As 
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normalization factor, we consider the number of total possible many-body contacts of k 

particles with the i-esim bead, ( N
𝑘−1

). In Figure 3.11, Panel A, we show the value of this 

frequency as a function of the multiplet complexity n, computed in the homopolymer case 

discussed in the Section 3.2. 

 

The triplet surface 

The calculation described in the previous subsection gives an estimate of the many-body 

contact average probability. A more accurate calculation is made for the computation of the 

multiple contact profile when the complexity n of the multiplet is 3 (i.e. the triplets). As in the 

pairwise contacts probability the mathematical object is a 1-dimensional curve (Figure 3.3) 

and the parameter is the genomic distance s, here we need a 2-dimensional surface and the 

parameters are the two genomic separations s1 and s2 that separates the first bead and the 

second bead, and the second with the third bead, as schematically represented in Figure 3.11, 

Panel B, bottom part. As expected, the surface is symmetric, and in the particular case where 

s1 or s2 equal to zero (i.e. two beads coincides) we recover the pairwise contact profile. 

 

 

A) B) 
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Figure 3.11: The theoretical multiple contact interaction profile 

Panel A: The plot shows the frequency, of observing n sites in simultaneous physical contact 

(normalized by the number of possible combinations of n sites) along the SBS homopolymer 

discussed previously. The top-left inset shows the ratio in the compact-disordered and open 

states. Panel B: The plot shows the contact probability of bead triplets at different contour 

separations, Pc(s1 ,s2), along the SBS homopolymer in its different thermodynamics phases. 

 

Importance of multiple contacts 

Multiple interactions are currently not detected by Hi-C methods, yet our model highlights 

that they are likely to be an abundant structural component of chromatin, as is emerging from 

new researches in the field (Olivares-Chauvet et al., 2016, Beagrie et al., 2017). That hints 

towards an important functional role of closed chromatin domains where multiple regulatory 

regions (like enhancers) can loop simultaneously onto a given target (gene promoter) with a 

much higher probability than in open regions. Taken together our results support a view 

whereby basic mechanism of polymer folding could play key functional roles in the 

regulation of the genome by controlling the spatial organization of chromatin. 
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Chapter 4 

3D reconstruction of the real genome 

In this chapter, we will show how the model discussed above can be used to describe and 

reconstruct the 3D architecture of real loci in the DNA. In the first part of the previous chapter 

we showed how with a very simple model (homopolymer model), polymer physics is able to 

recapitulate with a good degree of accuracy the average behavior of the chromosome structure 

in a wide range of genomic lengths (from the sub-Mb scale up to the whole chromosome 

scale). Next, we introduced an extended model, and this was done with the introduction of 

just a second bead type (the red-green polymer models), in order to explain other aspects of 

the chromatin architecture and to highlight mechanisms that could possibly have important 

functional roles: the existence of domains, the symmetry-breaking in the distance distribution, 

and the hierarchical structure contained in the experimental Hi-C contact matrices, occurring 

in a spontaneous self-assembly process. Now, we try to capture the finer spatial structure, in 

the deepest possible way, of specific region of real genomes. To do this, we generalize the 

model by introducing a multicolor polymer, where each color can interact only with its 

cognate type of binder. The number of required colors and their positions along the sequence 

depends only on the structural features of the considered locus, which are assumed to be 

entirely contained in the experimental Hi-C matrix. The method used to obtain these 

information will be briefly discussed in Section 4.1 (anyway, the details of the procedure is 

object of another publication and will not be discussed here). Next, we will show how from 

real experimental data we will be able to reconstruct with high accuracy the 3D structure of 

real loci.  As first application, in Section 4.2 we will presents the results about the modeling 

of the Sox9 and Bmp7 loci, containing very important genes for the cell functionality (Franke 

et al., 2016); then, in Section 4.3 we will model the Xist locus, which is another very 

important region (Nora et al., 2012, Giorgetti et al., 2014), and we will apply the model to 

predict the effect of a structural variant (precisely, a deletion, Giorgetti et al., 2014). Finally, 

in Section 4.4, we will present the results about the modeling of HoxB and HoxD loci. In 

particular, in the case of HoxD locus we will study, as further application of our method, the 

same region in two different time points during the cell differentiation (mouse 

undifferentiated ESC-J1 and differentiated Cortex), and try to visually understand how the 

differentiation process affect and change the spatial structure of the locus in order to allow its 
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functions. The results presented in the first three sections have been published in the papers 

Chiariello et al., 2016, Annunziatella et al., 2016 and Bianco et al., 2017. The results 

presented in the last section have not been published yet and represent one of the current 

research projects of the group. 

 

4.1 The generalized SBS model 

Method used to obtain the binding site position 

To identify the binding domains for the models of the studied loci, we use a Simulated 

Annealing Monte Carlo procedure to locate the minimal arrangement of binding sites and 

types (colors) that, based only on polymer physics, best explains the experimental contact 

matrix. Our method employs a standard Simulated Annealing scheme and uses a cost function 

that includes the distance between the input Hi-C and the model predicted contact matrix, and 

a Bayesian term (a chemical potential) to penalize overfitting. The output of the procedure is 

the number of colors required and the position along the polymer. So, the experimental Hi-C 

matrix is the starting point of the method, and it is used to extract information that cannot be 

directly obtained from them, as the 3D structure and physical distances. The size of the 

investigated regions in this chapter is order of magnitude smaller than the whole chromosome 

scale. Further details of the procedure will not be discussed here.  

 

4.2 The Sox9 and Bmp7 loci 

The Sox9 locus 

As first application of the model we consider a 6Mb sequence around the Sox9 gene 

(chr11:109000000-115000000, mm9), that is a very important locus  linked to congenital 

diseases (Franke et al., 2016), including gene rich regions and gene desert regions, as shown 

in Figure 4.1, Panel A, upper part. The Hi-C datsets used to infer the polymer are published 

from Dixon et al., 2012, mouse ESC-J1 cell line, at 40kb resolution, and are shown in Figure 

4.1, Panel B. The experimental data used have been normalized following standard 

precedures (Yaffe&Tanay, 2011). The distribution of binding sites is made of 15 different 
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colors, and it is represented in Panel A of Figure 4.1. As expected, the binding domains tend 

to overlap with the different TADs existing in the locus, but they also overlap with each other 

and produce interactions between TADs, giving the hierarchical structure (metaTADs) visible 

in the  original experimental matrix (Figure 4.1, Panel B, top matrix). Once we obtain the 

optimum arrangement of the binding sites along the polymer, we perform MD simulations to 

recostruct the 3D structure of Sox9. To test the accuracy of our structures, we compute from 

the ensemble of configurations formed in the dinamics process the contact maps and compare 

it with the experimental data. In the framework of the SBS model, we consider separately the 

open phase (i.e. the SAW conformational class) and the closed phase (i.e. the equilibrium 

phase after the complete folding of the polymer). Then, we seek the open-closed mixture that 

maximizes the Pearson correlation coefficient between model inferred and Hi-C data.  

 

 

 

Figure 4.1: The Sox9 locus is captured by polymer physics  

Panel A: In the top, the Sox9 locus in mouse ESC-J1 cells, with some genes represented; in 

the bottom, the SBS polymer that best reproduces the experimental Hi-C contact matrix is 

made of 15 different binding domains distributed as shown, and highlighted in the zoom. 

Each histogram is the abundance of a certain color over the genomic sequence. The schematic 

color scheme reported (linear green-thistle-orange bar) reflects the relative abundance of that 

color in each region. Panel B: The model pairwise contact frequency matrix (bottom) 

compared to the experimental Hi-C data (top). The Pearson correlation coefficient r is 0.95. 

 

A) 
B) 
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Features of the Sox9 locus 

Here, we find that the Sox9 locus is made of 64% of open and 36% of closed state. The result 

of the whole process returns a simulated contact matix very similar to experimental data, and 

it is represented in Figure 4.1, Panel B, bottom matrix. The Pearson correlation coefficient 

between Hi-C data and simulated contact frequency matrix is 0.95, proving that our model 

captures relevant features of the mechanisms deteremining the folding of Sox9. We consider 

the transcription starting sites (TSS) of three fundamental genes of the locus, Sox9, Kcnj2 and 

Slc39a11 and compute the physical distances. Interestingly, we find that the Sox9 and Kcnj2 

TSS, having a genomic separation s=1.72Mb, have an average physical distance d=1190 nm, 

while the Sox9 and Slc39a11, having a genomic separation of s=0.46Mb (four times smaller) 

have an spatial distance d=590nm, so the two pairs  are proportionally closer, as they belong 

to consecutive regional areas. As shown in Figure 4.2, Panel A, the self-assembly of the locus 

spatial structure starts from a totally random SAW initial state (open confromational class) 

and proceeds hierarchically, passing through early local domains folding into larger and larger 

domains that cover the whole locus. In Figure 4.2, Panel B, is shown a snapshot of a single 

typical 3D configuration, obtained from the dinamics, when the polymer is fully equilibrated, 

i.e. when it is in the closed state. Here, we represent the relative positioning of Sox9, Kcnj2 

and Slc39a11 across its different higher-order domain organization. 

 

Simulation details of the Sox9 polymer model 

To model at higher-resolution the 3D structure of the Sox9 locus in mESC-J1, we use a chain 

made of N=2250 beads. Since the region to model is L=6Mb long, the elementary bead of the 

polymer has a genomic content of L/N=2.67Kb. The size of the bead is thus 26nm, as follows 

from the calculation described in the previous chapter. In this case, the MC procedure returns 

a polymer with 15 different interacting bead types. Each type interact only with its specific 

binder. This interaction is modeled by an attractive Lennard-Jones potential, with an 

interaction distance between bead and binders σbead-binder=1σ and the cutoff range rint=1.5σ (as 

before, σ is the diameter of beads and binders). The time unit is 0.0002s, obtained by 

assuming an enviromental viscosity of 2.5 cP. The binder concentration is sampled in the 

range that allow to explore the main thermodynamic stable states (open and closed 
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disordered). In particular, in Figure 4.3 the simulations were performed with c=194nmol/l. 

The interaction energy regulating parameter is 𝜖𝑖𝑛𝑡=12kBT, in the same notation of equation 

(9) and (10)  reported in Chapter 3. The 3D structure presented in Figure 4.2, Panel B, is 

obtained from the polymer dynamics, in the equilibrium closed phase. Mathematically, it is a 

smooth curve described by a third order polynomial spline passing through the centers of each 

polymer bead. The color scheme used (green-thistle-orange) in Figure 4.2 is chosen to reflect 

the pattern contained in the experimental Hi-C matrix, where three main domains 

(interestingly not coincident with the TADs identified in Dixon et al., 2012) are visually 

evident.  

 

 

 

 

 

 

 

Figure 4.2: 3D reconstruction of the Sox9 locus 

Panel A: The Sox9 folding dynamics from a completely random SAW configuration, passing 

through intermediate states with local domains formation. The dynamics state is monitored by 

measuring the gyration radius Rg(t) at a genetic time step t relatively to its initial value Rg(0). 

Kcnj2 

Sox9 

Slc39a11 

A) 

B) 
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Panel B: A snapshot of the 3D structure in the closed state, with the position of TSSs of the 

relevant genes, (Sox9, Kcnj2 and Slc39a11) highlighted. The color scheme used is the same 

pictorially reported in Figure 4.1, and reflects the abundance of the color in each region. 

 

An alternative color scheme for Sox9 

Importantly, our polymer models can be used to derive any information on the folding of  

interesting loci genome-wide, beyond Hi-C pairwise contact data. For instance, the same 

snapshot of the full 3D structure of the Sox9 locus in Figure 4.2, along with a comparison 

with its average contact matrix and TADs, is shown in Figure 4.3 with an alternative color 

scheme that follows the coordinates of the original TADs identified in Dixon et al. 2012. For 

example, it is visible that TAD D (red) has a complex internal 3D structure, with a large part 

of it mostly associated to TAD E. Additionally, the dynamics of the interactions between the 

genes within the locus and their regulators can be derived. 

 

Contact maps 

The contact maps presented in this chapter, are computed following the approach described in 

the previous chapter, with a variant where only contacts between beads of the same type are 

considered. In the case of Sox9, the parameter for the interaction threshold is set to λ=10 (in 

the same notation of Chapter 3), since the resolution in this case is much higher than in 

chromosome wide simulations. The same approach is used for the models presented in the 

following sections, with similar values for the λ parameter. 
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Figure 4.3: 3D reconstruction of the Sox9 locus, alternative color scheme 

The same configuration of the full 3D structure of the Sox9 locus in mESC-J1 represented in 

Figure 4.2, with a color scheme reflecting the TADs position (from Dixon et al. 2012). It 

allows to visually interpret the patterns seen in its Hi-C map and the relative organization and 

interactions of TADs. 

 

The Bmp7 locus 

In this subsection we apply the method just described above to another locus, to test the 

general validity of our approach and consider it as a powerful tool to reconstruct and visualize 

the 3D architecture of real loci in the genome. In particular, we focus on the Bmp7 locus 

(chr2: 171090000-173430000), a region approximately 2Mb long around the Bmp7 gene, 

which is very important in tissue development. We use Hi-C data published in Fraser et al., 

2015, in mouse ESC-46C cell line. The experimental data resolution is 30Kb, and the 

normalization procedure used is described Chapter 2 (ICE iterative correction and background 

subtraction). Our method returns a contact matrix very similar to the experimental data, with a 

Pearson correlation coefficient r=0.95 between model and data, as shown in Figure 4.4. This 

results is even more important if we consider that in the Sox9 case we used experimental data 

normalized in a completely different way (see the Sox9 subsections). In this way, we enforce 

the validity of the method, that results to be unaffected by the underlying experimental data 
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treatments. Actually, in the next section we will also use data produced with a different 

technique (5C), so the approach results valid even in case we use data derived from different 

experimental method. 

 

Simulation details of the Bmp7 polymer model 

We consider a region 2.34Mb long around the Bmp7 gene. The MC procedure returns a 

polymer composed by 11 colors and made of N=858 beads. The parameter used in the MD 

simulations (potentials, interaction energies and concentrations) are the same used for the 

modeling of the Sox9 locus. The 3D structures are produced as previously described. 

 

Figure 4.4: The Bmp7 locus 

Panel A: In the top, the Bmp7 locus in mouse ESC-46C cells, with some genes represented; 

in the bottom, the SBS polymer that best reproduces the experimental Hi-C contact matrix is 

made of 10 different binding domains distributed as shown. Each histogram is the abundance 

of a certain color over the genomic sequence. The color scheme used reflects the abundance 

of the color in the considered region. Panel B: the model pairwise contact frequency matrix 

(bottom) compared to the experimental Hi-C data (top). The Pearson correlation coefficient r 

is 0.95. Panel C: a snapshot of the 3D structure in the closed state, at equilibrium after a 

dynamical process starting as usual from a completely random SAW configuration. The color 

sequence is the same of Panel A, bottom part. 

 

C A) B) C) 
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4.3 The Xist locus: predictive power of the model 

The Xist locus and the dataset analyzed 

In this section, we will show how with our model is possible to predict the effect on the 

spatial organization of a locus generated by a mutation on the real genomic sequence. In 

particular, we consider the Xist locus, an important region containing the Xist gene (chrX: 

100298000-101373000), schematically represented in Figure 4.5, Panel A, top part. We make 

this choice because experimental data are available (Nora et al., 2012) for the wild type (WT) 

and also for a deletion variant (indicated as ΔXTX deletion), so we can test directly  the results 

of our simulated predictions with a totally independent dataset. In the wild type case, we use 

data produced with the 5C technique in male undifferentiated WT mouse ESC-E14 cell line. 

The fragment based 5C interaction maps have been binned in a 20Kb resolution map using 

the online tool my5C (Lajole et al., 2009). The corresponding map is represented in Figure 

4.5, Panel B, top matrix.  In the deletion ΔXTX, we also use 5C data from the XO mouse ES 

cell line (Panel D, top matrix).  

 

Results 

Starting from the 5C map at 20Kb resolution, we first obtain the polymer model describing 

the WT locus, and we find a good agreement between the contact map extracted from the 

simulations and the experimental data (Pearson r=0.96), as shown is Figure 4.5 Panel B. Next, 

we implement in silico the ΔXTX deletion in the same WT polymer, produce new initial and 

completely independent configurations, and perform again MD simulations, in the exactly 

same conditions of the WT case. We find that the predicted matrix has a pattern of ectopic 

interactions compared to the WT case (magenta box in Figure 4.5, panel D, bottom matrix). 

Interestingly, the predicted pattern is similar to the one reported in the experimental data 

(magenta box in Figure 4.5, top matrix), with a correlation coefficient r=0.91. After the 

deletion, in the structures obtained from MD simulation, the yellow regions, close to the 

deleted part represented in cyan in Figure 4.5, Panels C-E, are spatially repositioned with 

respect to each other, and contribute to form the ectopic contact between regions sharing the 

same binding sites. 
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Figure 4.5: The Xist locus and its ΔXTX  deletion 

Panel A: In the top, the Xist locus in mouse ESC-E14 cells, with some genes represented; in 

the bottm, the SBS polymer that best reproduces the experimental Hi-C contact matrix is 

made of 10 different binding domains distributed as shown, and highlighted in the zoom. As 

usual, each histogram is the abundance of a certain color over the genomic sequence. To help 

3D visualization, the color scheme used, reflecting the abundance of the color in the 

considered region, highlights in cyan the region deleted in ΔXTX cells and in yellow the 

sequences involved in the ectopic interaction. Panel B: The model inferred contact matrix 

(bottom) has a Pearson correlation 0.96 with 5C experimental data (top). Panel C: A snapshot 

of the Xist locus in its closed state. Panel D: The contact matrix predicted by the same 

polymer in Panel A after the ΔXTX deletion (bottom) reproduces with a high degree of 

similarity (top, correlation 91%) the ectopic interactions (full line magenta box) compared to 

the WT data in Panel B. Panel E: Visual representation of the ectopic interactions, where the 

yellow regions come closer in space after the ΔXTX deletion, as visible in the 3D structure of 

the deleted locus (cyan segment in Panel C). 

 

Simulation details of the Xist WT and ΔXTX  polymer models 

We consider a region 1.3Mb long around the Xist gene. The MC procedure returns a polymer 

composed by 10 colors and made of N=540 beads. The polymer modeling the ΔXTX deletion, 

is made of N=510, since the deleted part, at 20kb resolution, is 3 bin long on the matrix. Note 

C B) C 
A) D) 

C) E) 
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that from the modeling point of view this is a very small modification. Nevertheless, is 

produces effects analogous to what happens in the experiment. The parameters used in the 

MD simulations (interaction energy and interaction range) are the same used for the modeling 

of the Sox9  and Bmp7 loci.  

 

4.4 The HoxB and HoxD loci: capturing the spatial 

reorganization during the differentiation 

In this section, we will discuss the modeling of the Hox loci, which are other fundamental 

regions of the genome, very important in the embryo development (Andrey et al., 2013). In 

particular, we focus on the HoxB locus (chr11:95280000–97200000) in the mouse ESC-J1 

cell line and on the HoxD locus (chr2:71000000-78000000). In the latter case, we will study 

the spatial architecture of the region during the cell differentiation. In particular, we will 

consider two time points: the mouse ESC cells (not differentiated) and brain cortex cells (fully 

differentiated, indicated as Cortex in the following). We make this choice since these data are 

publicly accessible. Using the approach developed and discussed in the previous sections, we 

will show how it is possible to extract information about the structural rearrangements 

occurring during the differentiation.  

 

The HoxB locus 

We consider a region 1.92Mb long around the Hoxb gene. The procedure that finds the best 

polymer is applied to data binned at 40Kb (from Dixon et al., 2012), and the result is showed 

in the diagram in Figure 4.6, Panel A. The experimental data are reported in Figure 4.6, Panel 

B, top matrix, with a color scheme different from the previous cases. The simulated  contact 

matrix is showed in the bottom part. Once again, the agreement with experimental data is 

good, with a Pearson correlation coefficient r=0.95. As the procedure return 12 different type 

of binding domains, the polymer we use is made of N=576 beads, and the elementary bead 

contains 3.3Kb. the parameters used for the simulations (σbead-binder=1σ, rint=1.5σ, 𝜖𝑖𝑛𝑡=12kBT). 
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The HoxD locus and its differentiation 

As in the case of the HoxB locus, we use data binned at 40Kb resolution, from Dixon et al., 

2012. The considered genomic region is centred around the HoxD gene cluster and it is 7Mb 

long. The corresponding contact matrices are reported in (Figure 4.7, Panel B). As visually 

clear, the two contact matrices have some discrepancies. In particular, it is possible to observe 

in the Cortex Hi-C contact map the presence of long range interactions, in the region 

sourrounding the HoxD cluster. Very dstinct domains along the diagonal in mESC cells are, 

after differentiation, less evident, and tend to interact outside their region, forming a larger 

square in the central part of the matrix (Figure 4.7, Panel B). The contact matrices obtained 

from MD simulations, reported in Figure 3.7, Panel A, reproduce with a good accuracy the 

same behaviour observed in the data. By analyzing the 3D structure from the simulations 

(Figure 3.8) it is possible to give a structural interpretation of the differences between the cell 

lines. To this aim, we choose a color scheme reflecting the boundaries of the main domains 

(highlighted by dashed lines on the matrices in Figure 4.8), clearly visible in the experimental 

mESC Hi-C matrix, where they appear as red squares on the diagonal. Naturally, to compare 

the different polymers structures, we use the same color scheme in both cell lines. 

Interestingly, it emerges that in the polymer describing the mESC cell line the domains are 

positioned in an approxiamtely linear sequence, without any special interaction between 

differently colored region, reflecting their particularly high inner interaction. On the contrary, 

in the Cortex it is possible to observe that the regions located in the central part of the matrix 

(colored in blue, cyan and thistle respectively) are closer in space, and the overall result is a 

more globular structure, having probably a signficant functional role related to the different 

activity of the HoxD gene cluster in the two differentiation phases (note that the HoxD cluster 

is placed exactly at the boundary between the blue and cyan domains).  All this this 

observation depict a scenario where the differentiation acts on the structure of the locus in 

such a way to reshape it from a linear sequence of domains to a “U-like” shaped structure for 

the HoxD locus. Interestingly, this result is consistent with recent findings about the spatial 

structure and shape of the HoxD locus (Fabre et al., 2015). 
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Figure 4.6: the HoxB locus and its folding mechanism  

Panel A: In the top, the HoxB locus in mouse ESC-46C cells, with some genes represented; in 

the bottm, the SBS polymer that best reproduces the experimental Hi-C contact matrix is 

made of 12 different binding domains distributed as shown, and highlighted in the zoom. 

Each histogram is the abundance of a certain color over the genomic sequence. Panel B: The 

model pairwise contact frequency matrix (bottom) compared to the experimental Hi-C data 

(top). The Pearson correlation coefficient r is 0.95. Panel C: The folding dynamics of the 

HoxB locus proceeds gradually passing through an intermediate transient state to a completely 

folded polymer. Panel D: Magnification of the folded state in Panel C. The HoxB gene is 

located in the central part of the matrix. It emerges also an organization in three blocks, 

reflected in the coloration of the polymer (green-ligh blue-orange). In this case, the binders 

are showed in the 3D structure. 

A) 

HoxB genes  

C) 

B) D) 
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Figure 4.7: The HoxD locus in mESC and Cortex cell line 

Panel A: MD simulated contact matrices for mESC (undifferentiated cells) and Cortex 

(differentiated cells). As for the experimental data, passing from mESC to Cortex we observe 

a decrease of the enrichment in the diagonal domains and an increase of long range contacts 

between such domains. Panel B: experimental Hi-C contact maps for mESC (left) and Cortex 

(right). Panel C: the inferred polymers best describing the locus in mESC and Cortex. In 

mESC, the differently colored binding sites are more localized then in Cortex. Furthermore, to 

capture the pattern contained in there, the MC procedure gives more binding types in the 

Cortex case. The color scheme shown in the bottom reflects the binding site distribution along 

the polymer and allow a comparison between mESC and Cortex. 

 

Simulation details of the HoxD polymer models 

As the pattern in Hi-C matrices between the mESC data and Cortex data have some evident 

differences (Figure 4.7, Panel B), we have to use different polymers to take into account such 

deviations and accurately describe both the cases. So, the MC procedure finds in Cortex cell 

line (Figure 4.7, Panel C, right diagram) binding domains less localized than in mESC (left 

diagram), and also extra binding domains necessary for the much more complex contact 

pattern (Figure 4.7, Panel C). Preciseley, it returns 12 types of binding sites for mESC and 20 

types for Cortex. The resulting polymers consist of 2100 beads and 3500 beads respectively. 

The values used for the set of parameters are analogous to the previous models.  
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Figure 4.8: 3D structures for the HoxD locus in mESC and Cortex cell line 

Panel A: 3D structure of the HoxD locus obtained from simulations performed from mESC 

data (undifferentiated cells). To help the visualization, we report also the simulated contact 

map and the colored domains highlighted by dashed lines. The organization is in compact and 

localized domains arranged in an approximately linear sequence. Panel B: 3D structure of the 

HoxD locus from Cortex data (differentiated cells). In this case we observe a more globular, 

U-shaped organization resulting from the interaction of the blue-cyan-thistle domains. 

Interestingly, the HoxD cluster is located exactly at the boundary between the blue and cyan 

domains, suggesting a functional purpose behind such structural rearrangement. Highlighted 

in green are the Cns39 and Cns65 regions, while in red the Hoxd13 and Hoxd1 genes.  

 

 

 

 

A) B) mESC Cortex 
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Conclusions and perspectives 

In this work we discussed some relevant aspects of chromatin organization in mammalian 

genome. First, we studied in detail Hi-C contact maps for three time points during mouse cell 

neuronal differentiation, and we showed that the spatial architecture of the DNA seems to be 

described by a complex, hierarchical organization starting from the sub-Mb scale up to the 

entire chromosome length. This conformational behavior is well captured and visualized by 

tree diagrams. These tree structures are correlated  with most of the epigenetic features 

analyzed, suggesting that such organization has functional purposes for the genome 

regulation. Furthermore, the tree rearrangements occurring during the cell differentiation are 

linked to transcriptional state modifications. Next, we used polymer models to investigate 

quantitatively the properties of genome. At the beginning, we recapitulated with a very simple 

and essential model some important aspects as, for instance, the long range average behavior 

of the experimental contact probability and the spontaneous hierarchical folding mechanism. 

Then, by generalizing the model, we showed some examples of highly accurate 3D 

reconstruction of real genomic loci. Furthermore, we showed that the model is able to predict 

with a good degree of accuracy the effect of a variation in the genomic sequence on the 3D 

architecture, and  it is also able to capture the structural differences of a certain genomic 

region in two different cell lines. 

Without any doubt, this last aspect of the work is to us the most promising and exciting 

because of its potential future developments. New researches lines, not described in this 

thesis, we are following in order to improve the predictive power of these methods. The goal 

is to realize a reliable tool, able to investigate at a deeper level the numerous, still unknown, 

mechanisms involved in the genome organization, and to predict the effects due to variations 

in the spatial organization of DNA and their impact on the cell functionality. 
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