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Abstract 

 

The ascidian Ciona robusta is a powerful model system to approach in a “simple context” cellular, 

developmental, and behavioral strategies that have been adopted in the lineage of chordates. In 

particular, the simplicity of Ciona CNS (Central Nervous System) permits to follow the fate of each 

blastomere from neural plate up to the larval stage, thus representing	a huge advantage compared to 

the thousands of cells present in vertebrates. Furthermore, the lineage specific promoters collected by 

ascidian community in the last years, coupled with the technique of transgenesis through 

electroporation, permit to label unique or small groups of cells in the developing CNS and visualize 

them in their final differentiated state in swimming larvae. In the course of my thesis studies, I have 

exploited all these advantages to study early developmental mechanisms guiding the correct 

specification of blastomeres of a-lineage row III, the anterior part of neural plate that gives rise to 

most of the structures of the sensory vesicle of the larva. By transgenesis and chemical inhibition 

experiments, I have proved the involvement of three signaling pathways, Nodal, Delta-like/Notch and 

FGF, in the activation of three markers, Tyrp, Gsx and Meis, specific of each blastomere pairs of a-

lineage row III. As further step, I have demonstrated a direct transcriptional control of FGF signaling 

on one of these markers, the Para-Hox transcription factor Gsx. Interestingly, Gsx has been 

instrumental also for the continuation of my studies, since, at later stages of development, it revealed 

to be a useful marker also for photoreceptor cells differentiation up to the larval stage. The data on 

this part of work further support the evidences, previously collected by the former PhD student of the 

Lab, on the involvement of Ciona Gsx in the developmental programs leading to photoreceptor cells 

differentiation, which opens new perspectives about the function of this transcription factor in 

nervous system formation during evolution.  

In the last part of my PhD studies, I spent three months in Gaspar Jekely lab, at the Max Planck 

Institute for developmental biology, to explore the possibility of Ciona larva to sense hydrostatic 
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pressure changes. My experiments showed for the first time that Ciona is able to sense pressure 

increases by swimming faster upward during a precise developmental window after hatching. 

Furthermore, I have tested the potential involvement of coronet cells, a group of cells close to the 

group III photoreceptor cells present in the sensory vesicle, as candidate for pressure detection. These 

experiments indicated that coronet cells are not involved in pressure perception but, may be, could 

play a role in the modulation of photic response. 

  



 
9 

	

 

 

 

 

 

Chapter 1 

Introduction 

The model organism: the ascidian Ciona robusta 
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 Introduction  

	

1.1 Tunicates in the Chordate phylum 

The word “model” has many meanings but, in science, a model organism is a simplified system, 

either animal, plant or microbe, that can help to understand the basic operating principles governing 

biological processes. Thanks to model organisms, researchers have identified, for example, the 

fundamental properties of how cells grow and divide, how inheritance works, how organisms store 

and use energy and, more recently, a huge number of information are being gathered on the 

mechanisms by which gene regulatory networks (GRN) operate during development and how GRN 

have emerged during evolution.  

During my PhD I have conducted my studies on the ascidian model system Ciona robusta 

(previously named Ciona intestinalis) (Brunetti, 2015).  

Ascidians, or sea squirts, are sessile marine invertebrate chordates ubiquitous throughout the world; 

they have been recognized since the ancient Greeks and described firstly by Aristotle. In fact, the 

name “ascidian” originated from the Greek word askidion, meaning a small bag because of their soft 

bodies. They were initially included among the molluscs by Carl Linnaeus, based on their adult form 

(Linnè, 1767).		

Only in 1886, the great Russian embryologist Alexander Kowalevsky discovered that the ascidian 

larva has the general appearance of a simplified vertebrate tadpole, by possessing a notochord and a 

dorsal neural tube and this provided clear evidence that ascidians are, along with vertebrates and the 

cephalochordate amphioxus, members of the phylum Chordata. The adult ascidian also possesses 

recognizable chordate features, even though it is a sedentary filter-feeder animal and is more 

divergent than the larva. The feeding basket of the adult, indeed, contains gill slits that appear to 

share a common origin with the gill slits of other chordates (Aros and Viragh, 1969). Likewise, the 

endostyle of the adult ascidians is considered to be homologous of the vertebrate thyroid gland, 
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sequestering iodine and producing thyroid hormone (Eales, 1997) (Fig. 1.1).  

 

Fig. 1.1 The ascidian Ciona robusta. A. Tadpole larva. B. Adult.  
  

The chordata phylum comprises three subphyla: urochordata (or tunicata), cephalochordata and 

vertebrata. Studies based only on morphological observations initially stated that cephalochordates 

are the closest living relatives of vertebrates, whereas tunicates were placed in a more basal 

evolutionary position (Beaster-Jones et al., 2008; Schubert et al., 2006). More recently, accurate 

studies by Delsuc, involving phylogenomic data set of 146 nuclear genes from 14 deuterostomes and 

24 other slowly evolving species as an outgroup, demonstrated that “Tunicates and not 

Cephalochordates are the closest living relatives of Vertebrates” (Capellini et al., 2008; Delsuc et al., 

2006; Putnam et al., 2008; Vienne and Pontarotti, 2006) (Fig. 1.2).  
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The Urochordata or Tunicata subphylum comprises three classes: ascidians (sea squirts), thaliaceans 

(salps) and appendicularians (larvaceans). All animals from these different classes share the presence 

of a tunic that covers their entire body, from which the subphylum name, Tunicata, is derived. The 

major constituent of the tunic is a type of cellulose, the tunicin. Tunicates are the only animals that 

can synthesize cellulose independently (Brusca, 2003). 

1.2 Ascidian life cycle 

C. robusta life cycle is relatively rapid. In fact, eggs develop into adults with reproductive capacity 

within 2–3 months, or earlier in warm waters, suggesting that under optimal conditions Ciona can 

pass through several generations within a year. The fully developed, hatched Ciona larva actively 

swims, for one or two days, before settling on the substrate and initiating metamorphosis (Svane, 

1989). During this free-swimming period, the larva displays a characteristic pattern of behaviour, 

initially swimming upward (toward surface to help to be dispersed), then starts swimming downward 

(away from illuminated water surface) to find suitable substrates to attach and start metamorphosis 

(Svane, 1989). After metamorphosis, the swimming larva passes throughout a sessile juvenile stage 

before becoming adult. 

Fig. 1.2 Phylogenetic relationships of 
deuterostomes. Ascidians belong to 
Tunicates subphylum (blue circle). 
(Adapted from Sasakura et al., 2007). 
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1.3 Ascidians embryonic development 

The main reason why ascidians have long attracted embryologists is their relative embryonic 

simplicity compared to vertebrates. Ciona eggs are 130–150 µm in diameter and are enclosed by a 

non-cellular vitelline coat or chorion. On the outer surface of the vitelline coat are attached follicle 

cells, while many test cells are present within the space between the egg and the vitelline coat.  The 

existence of test cells within the space is a unique phenomenon in the animal kingdom. Test cells are 

likely to be involved in oogenesis and in the formation of the larval tunic (Satoh, 2003). After 

fertilization, the cleavage of ascidian eggs is invariant and bilaterally symmetrical. The first plane 

divides the right and left halves; the second cleavage plane, perpendicular to the first one, lead to the 

formation of four blastomeres usually of equal sizes. After the third cleavage, the four upper cells lie 

slightly anterior to the four lower cells. Thus, from the 8-cell stage onward, the A–P (anterior–

posterior), D–V (dorsal–ventral), and L–R (left–right) axes become evident. An outstanding feature 

of ascidian embryogenesis is that the developmental fates of embryonic cells are restricted at very 

early stages, since the 8-cell stage, when the embryo consists of the founder cells of four lineages, 

with the cells of the vegetal pole indicated by capital letters, A4.1 and B4.1, and animal cells named 

with small letters, a4.2 and b4.2 (Fig. 1.3) (Conklin, 1905).  

The embryo continues the cleavages in a bilaterally symmetrical manner and thus each blastomere 

name refers to a pair.  The timing of cell division becomes asynchronous after the 16-cell stage, 

temporarily resulting in 44-cell and 76-cell embryos. From the fourth to the seventh cleavage, the 

posterior-most vegetal cells divide unequally, producing smaller daughter cells positioned posteriorly. 

Divisions of the animal blastomeres are synchronous, reflecting the clonal organization of ectodermal 

cells. By contrast, the vegetal blastomeres have different temporal division patterns, and these cells 

give rise to various tissues of mesodermal and endodermal origin. 

 Fig. 1.3 Schematic representation of 
the ascidian embryo at 8-cell stage. 
Anl: Animal pole; Veg: Vegetal pole; 
Ant: Anterior; Pos: Posterior  
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As early as the 16-cell stage, a pair of epidermis-restricted cells (b5.4 pair) appears in the animal 

hemisphere. Then, at the 32-cell stage, two pairs of cells in the vegetal hemisphere (A6.1 and B6.1 

pairs) become restricted to endoderm. By the 64-cell stage, blastomeres appear restricted to their 

various individual fates: notochord, muscle, mesenchyme, and, by the 112-cell stage, fate restriction 

is accomplished in 102 over 112 blastomeres (Fig. 1.4) (Satoh, 2014). Gastrulation starts at 112-cells 

stage when endodermal and mesodermal cells of the vegetal hemisphere ingress into the interior 

while the ectodermal layer migrates toward the vegetal pole to envelope the embryo. The spatial 

relationships among cells derived from the vegetal hemisphere are basically retained during these 

morphogenetic cell movements. Neural plate formation initiates before the completion of blastopore 

closure. The neural plate consists of distinctly arranged rows of cells. As in vertebrates, Ciona CNS 

develops via neurulation, which begins with the formation of the neural plate and ends when the left 

and right epidermis overlying the neural tube fuse to close the neural fold. The formation of this tube-

like structure progresses from posterior to anterior. Once it is completely closed, the tail becomes 

elongated. 
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Upon tailbud formation, the embryo enters the tailbud stage, during which the tail continues to 

elongate until the embryo is ready to hatch. The metamorphosis of tadpole-like swimming larvae to 

sessile juveniles and adults involves dynamic and complex changes in the shape and physiology of 

tissues. It takes 2 or 3 months for the juvenile to become adult with reproductive capability, 

depending on the temperature of the environment (Marikawa et al., 1994). 

1.4 C. robusta as a model system in embryology and developmental biology 

C. robusta has represented, for over a century, a choice organism for experimental biology (Chabry, 

1887; Conklin, 1905; Morgan, 1923) and, more recently, it has emerged as a powerful popular 

organism in developmental biology, in particular to investigate the molecular mechanisms underlying 

cell-fate specification during chordate development.  The reason of this success is related to a number 

of advantages that Ciona offers for this type of studies. First of all Ciona embryo develops rapidly, 

with the tadpole larva completing development in 18 hr when reared at 18°C (Whittaker, 1977). 

Furthermore, the cleavage program of the embryo is invariant and accurate fate maps have been 

Fig. 1.4 Developmental fate restriction in ascidian embryos. A. Schematic representation of the 
ascidian embryo from 16-cell stage to tailbud stage. Blastomeres whose developmental fate is 
restricted to one tissue are in color: yellow (endoderm); orange (mesenchyme); light blue (muscle); 
dark blue (notochord); green (epidermis); light purple (nerve cord); red (nervous system). B. 
Schematic overview of the major tissue types in Ciona robusta tadpole larva. The color code is the 
same as in A. Light green: palps. SV: sensory vesicle; VG: visceral ganglion; NC: nerve cord; En: 
endoderm; Me: mesenchyme; No: notochord; Mu: muscle. (Adapted from Imai et al., 2004 and 
Munro et al., 2006). 
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drawn to trace the embryonic development (Conklin, 1905; Ortolani, 1964; Nishida, 1987). When 

fully developed, Ciona larva is relatively simple, being composed of only 2,500 cells (Satoh, 2001), 

and contains only six types of tissues/organs: the epidermis, the central nervous system (CNS), the 

endoderm and mesenchyme in the trunk, and the notochord and muscle in the tail (Fig.  1.4B) (MJ., 

1983).  

At the larval stage, the notochord is composed of only 40 cells; the muscle of 36 cells and the CNS of 

350 cells, of which 100 are neurons (Nicol and Meinertzhagen, 1991; Satoh, 2001). This small 

number of cells allows the investigation of the molecular mechanisms underlying cell differentiation 

and morphogenesis almost at the single-cell level. Ciona embryos and larvae are transparent, 

permitting a direct observation of tissues without need for sectioning.  

C. robusta genome, fully sequenced (Dehal et al., 2002) is around 117-Mb and the extimated 

presence of around16000 protein-coding genes means that one gene occupies 7.7 kb on average. 

Ciona is one of the animals for which the most through cDNA information has been accumulated 

(Satou and Satoh, 2005; Satou et al., 2002). A total of 1,205,674 expressed sequence tags (ESTs), at 

different developmental stages, has been registered in the National Center for Biotechnology 

Information (NCBI) database of expressed sequence tag (dbEST) database. Over 6700 full-length 

cDNA sequences are available in the DDBJ/GenBank/EMBL databases and 13,464 unique cDNA 

clones have been obtained. 

Ciona genes are organized in the genome more compactly than those of the protostomes (except 

Caenorhabditis elegans), deuterostomes, and vertebrates. As a consequence of that, most of the 

promoters are relatively short and usually located in close proximity, within the first 1.5 kb upstream, 

of the transcription start site of the genes (Alfano et al., 2007; Corbo et al., 1997; Fanelli et al., 2003; 

Squarzoni et al., 2011; Takahashi et al., 1999). In addition, the genome of Ciona savignyi, a closely 

related species of C. robusta, has also been sequenced and comparisons between complementary C. 

robusta and C. savignyi sequences have indicated that these two species are at sufficient evolutionary 
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distance to permit efficient identification of conserved regulatory sequence information (Bertrand et 

al., 2003; Johnson et al., 2004; Squarzoni et al., 2011). These peculiarities, combined with the method 

of transgenesis by electroporation, that permits the transformation of hundreds or even thousands of 

embryos simultaneously (Corbo et al., 1997) have made Ciona particularly useful for studies of 

transcriptional regulation. This technique allows also to create ‘‘knock-out’’ phenotypes by 

expressing dominant negative forms of genes of interest using lineage-specific enhancers (Christiaen 

et al., 2009; Squarzoni, 2011). Gene function can be tested also by microinjection of antisense 

morpholino oligonucleotides (MOs) and, owing to the fast pace of ascidian embryogenesis, results 

can be obtained within one or two days (Christiaen et al., 2009). Recently targeted knock-down 

methods such as TALEN (Treen et al., 2014) and CrispR-Cas9 (Sasaki et al., 2014; Stolfi et al., 2014) 

have been developed. 

Thus, all these features, coupled with a simplified chordate body plan that contains rudiments of most 

vertebrate tissues, make Ciona a very suitable model organism to explore the genetic circuitry 

responsible for the establishment of the typical basic chordate body plan, such as the development 

and compartmentalization of the nervous system. 

1.5 The larval ascidian nervous systems 

Morphologically the ascidian larval CNS is divided into five major parts along the A–P axis: the 

brain or sensory vesicle (SV), the neck, the visceral (motor) ganglion (VG), and the tail nerve cord 

(TNC) (Lemaire et al., 2002; Meinertzhagen et al., 2004; Meinertzhagen and Okamura, 2001) (Fig. 

1.5). These regions are thought to correspond to the vertebrate forebrain (SV), midbrain–hindbrain 

boundary (Capellini et al.), hindbrain (VG) and spinal cord (TNC), respectively (reviewed in 

Lemaire, 2002) (Dufour et al., 2006).  
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Fig. 1.5 Schematic representation of Ciona CNS. The section highlights the four rows of ependymal cells present in the 
tail nerve cord. 
 
 

The tadpole larva has a fairly simple brain distantly related to our own but made up of only about 330 

cells, of which about 100 cells are presumed to be neurons and the others ependymal glia cells, on the 

basis on their cytological appearance (Cole and Meinertzhagen, 2004; Nicol and Meinertzhagen, 

1991). 

More recently, a deep study conducted by Ryan (Ryan et al., 2016) using	 serial-section at electron 

microscopy, revealed that the larval brain contains more than 100 neuron, precisely 177. These can be 

split into at least 25 types and each neuron has a simple, mostly unbranched shape with, on average, 

49 synapses with other cells. Thus, even though it has such a small number of neurons, the neuron 

network is still relatively complex. 

Ciona SV contains two conspicuous pigmented sensory organs (Fig. 1.6).  

 

Fig. 1.6 Sensory organs in C. robusta sensory vesicle. A. Larval trunk. Anterior is on the left. B. Schematic 
representation of the pigment sensory organs in the sensory vesicle. The pigment cells of the otolith (ot) and of the ocellus 
(oc) are represented in black. lc: lens cells; ph: photoreceptor cells.  
 

The pigmented sensory organ located anterior is the otolith, used for the perception of gravity, and 

the posterior one is the ocellus, used for light reception (Sakurai et al., 2004; Tsuda et al., 2003b) 

(Fig. 1.6). The otolith is a spherical mass of pigment granules connected to the midline of the floor of 

SV by a narrow stalk (Eakin and Kuda, 1971; PN., 1969; Sakurai et al., 2004). The otolith-associated 
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neurons extend their axon to the posterior brain (Horie et al., 2008b). 

Ciona ocellus is composed of three lens cells, one pigmented cell, and about 30 photoreceptor cells 

(PRCs) (Eakin and Kuda, 1971; Horie et al., 2005, Horie, 2008 ; Nicol and Meinertzhagen, 1991; 

PN., 1969). 

Sensory neurons in the SV, including the ocellus photoreceptor cells and the otolith cell, project to 

the PB (Horie et al., 2005; Horie et al., 2008b). Epidermal sensory neurons also project to the PB 

(Horie et al., 2008b). Thus, many axon terminals of sensory neurons arrive in the PB. Some 

interneurons in the PB form synaptic connections within the PB, and others send axons posteriorly to 

the VG (Horie et al., 2008b; Imai and Meinertzhagen, 2007; Yoshida et al., 2004). Collectively, it 

appears that the PB may be a processing center able to integrate sensory inputs and control the motor 

system (Horie et al., 2008b).  

The visceral ganglion contains motor neurons that innervate the tail (Imai and Meinertzhagen, 2007; 

Meinertzhagen and Okamura, 2001; Okada et al., 1997; Okada et al., 2002; Q., 1992). The tail nerve 

cord (Fig. 1.5) consists of four rows of ependymal cells: right and left lateral cells, and dorsal and 

ventral cells (Crowther and Whittaker, 1992). 

1.6 Generation of cell diversity in Ciona CNS: the neural plate stage.  

The CNS derives from three of the four blastomere types present at the eight-cell stage, the a-, b and 

A-blastomeres (Fig. 1.3) that cleave in a bilaterally symmetrical manner so that each blastomere 

name refers to a pair. Patterning of CNS starts during gastrulation when it is arranged as a neural 

plate showing a grid-like organization. The neural plate is made of 44 cells in total, 24 coming from 

a-line, 14 from A-line and 6 from b-line, arranged in six rows of cells along the A-P axis, and three 

bilateral pair of columns in which the medial identified as columns 1, the intermediate as column 2 

and the lateral as column 3. The posterior rows I and II derive from A-lineage while the anterior rows 

III-VI are from the a-lineage (Fig. 1.7 A, B). Despite its simple organization, the neural plate is 
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highly compartmentalized. Posterior A-line row I and II, indeed, give rise to the more posterior 

regions of the CNS (posterior sensory vesicle, visceral ganglion, lateral and ventral rows of 

ependymal cells in the tail). The anterior a-line rows III e VI generate parts of the sensory vesicle and 

contribute to the oral siphon primordium (Christiaen et al., 2007; Cole and Meinertzhagen, 2004; 

Nishida, 1987), while the most anterior a-line rows V and VI form a specialized region of the anterior 

epidermis (Fig. 1.7), including a placode-like territory and the palps (Abitua et al., 2015; Nishida, 

1987).  

 

Fig. 1.7 Cell lineages of the ascidian larval CNS. Schematic representation of Ciona neural plate stage (A), neural plate 
(B), larval stage (C) and section of the tail nerve cord to show the four rows of ependymal cells (D). Cell lineages are 
indicated as follows: the a-line is coloured red (anterior sensory vesicle precursors) or pink (anterior epidermis and 
pharynx/neurohypothesis precursors); b-line is green and A-line light yellow (medial cells) or tan (lateral cells). Light 
blue rectangle in B indicates the former lineage of photoreceptor cells (right a9.33, a9.37 cells), yellow rectangle in B 
indicates the revised lineage of photoreceptor cells (right A9.14, those of the pigmented ocellus, right A9.16 those of the 
non- pigmented ocellus). Supposed precursors of coronet cells (left a9.33 and a9.37 blastomeres) are indicated in white. 
 

The fate of each pair of cell in the neural plate is accomplished by a unique combination of 

transcription factors and signaling pathways, as Nodal, Delta-Notch and FGF, that act on them. Nodal 

pathway involves binding of Nodal protein (a subset of the transforming growth factor beta (TGFβ) 
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superfamily) to activin and activin-like receptors. This interaction leads to phosphorylation of Smad 

proteins and their translocation into the nucleus where Smads interact with specific transcription 

factors, such as FoxH1, p53, Mixer, leading to the formation of active transcription complexes on 

target promoters (Germain et al., 2000; Randall et al., 2004). 

In the Notch-Delta signaling, Notch is a cell-surface receptor that transduces short-range signals by 

interacting with transmembrane ligands such as Delta on neighboring cells. Ligand binding leads to 

cleavage and release of the Notch intracellular domain (NICD), which then travels to the nucleus and 

cooperates with DNA-binding protein, as CBF1, Su(H), LAG-1 and its coactivator Mastermind 

(Treen et al.) to promote transcription (reviewed by Bray, 2006).  

FGFs are secreted ligands that through the binding to a class of receptor tyrosine kinases, the FGF 

receptors (FGFRs), predominantly activate the Ras/MEK/ERK cascade (reviewed by Szebenyi, 1999) 

that leads to phosphorylation of FGF downstream effectors, as the well-known Ets family members 

of transcription factors (Wasylyk et al., 1998).   

In a previous study, using a combination of morpholino gene knockdown, dominant-negative forms 

and pharmacological inhibitors, Yasuo group (Hudson et al., 2007) demonstrated that Nodal signaling 

is required, at around 64- to 76-cell stage, for the formation of all lateral A-line (rows I and II) neural 

plate fates of columns 3 and 4. This effect is accomplished through the activation of Delta2 and Snail, 

two early transcriptional targets of Nodal signaling both expressed at early gastrula stages in the 

precursors of columns 3 and 4 (Corbo, 1997; Hudson, 2005; Wada, 1999). In this scenario, Delta2, 

acting as activator through interaction with Notch receptor, is responsible for the formation of lateral 

A-line in rows 1 and 2 (column 4 versus 3 and column 2 versus 1). On the other hand, Snail, acting as 

repressor, is largely responsible for the repressive function of Nodal signals, being required and 

sufficient to repress A-line medial fates (Hudson et al., 2015).  

Simultaneously, FGF signalling establishes antero-posterior identities in A-line lineages, through a 
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differential activation of ERK1/2 between rows I-II, in a way that activated ERK1/2 promotes row I 

fates and represses row II fate.  

Thus, collectively, each A-line cell, present on both sides of the bilaterally symmetrical embryo, 

receives a unique combination of these three signalling pathways (Fig. 1.8), which determines the 

eight distinct cell types (Hudson et al., 2007).  

 

 
Fig. 1.8. Summary of the overlapping requirements of Nodal, Delta2 and FGF/MEK/ERK signalling pathways in the A-
line neural plate. A-line lineages are shown in yellow for medial precursors and tan for lateral precursors, with the 
secondary muscle precursor colored in blue (From Hudson et al. 2007). 
 

Like in the A-lineage derived neural plate, differential FGF/ERK signalling also patterns the a-

lineage derived neural plate along its anterior-posterior axis. Specifically, FGF/ERK signalling is 

required to promote row III over row IV cell identities (Haupaix et al., 2014; Racioppi et al., 2014; 

Squarzoni et al., 2011). 

Similarly, like in the A-lineage neural plate, Nodal signalling is implicated in specification of the 

lateral part of the a-lineage neural plate, as lateral gene expression is lost in the a-lineage cells when 

Nodal signalling is inhibited (Hudson and Yasuo, 2005; Imai et al., 2006; Ohtsuka et al., 2014). 
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1.7 First aim of the thesis 

At the time I started my PhD  in the BEOM Laboratory at the SZN, the research group I joined, led 

by Antonietta Spagnuolo, was just studying, in collaboration with Dr. Clare Hudson and Dr. 

Hitoyoshi Yasuo (Obstervatoire Océanologique in Villefranche sur mer), the molecular mechanisms 

involved in the patterning of row III a-lineage.  

This study was conducted by using a number of interference approaches, as morpholino injection, 

expression of dominant-negative forms and pharmacological inhibitors, in combination with the 

analysis of the expression of a set of three marker-genes, Trp, Gsx and Meis, which label row III cells 

in columns 3 (lateral), 2 (intermediate), and 1 (medial) respectively, at neurula stages. As first aim of 

my PhD thesis, I thus contributed to this study by analysing the expression pattern of the three 

marker genes in “interfered” Ciona embryos. In a next step, I devoted my efforts to the demonstration 

of a direct relation between early activation of one of these markers, Gsx, and the inputs generated by 

FGF signalling in Ciona row III neural plate. To this end, I conducted a series of systematic mutation 

analyses, by exploiting the Gsx minimal promoter, previously isolated in the Laboratory. 

1.8 The “eye” in  Ciona 

The eye, in vertebrates is a complex optical system which collects light from the surrounding 

environment, focuses it through an adjustable assembly of lenses to form an image, converts this 

image into a set of electrical signals, that are transmitted to the brain through intricate  neural 

pathways. Despite its complex function and structure, the main building blocks of vertebrate eye are 

two: the neural retina and the RPE (Retinal Pigmented Epithelium; Fig 1.9). The retina contains the 

photoreceptor cells devoted to perceive light and convert it into signals; the RPE is a monolayer of 

pigmented cells that closely interacts with photoreceptors and, among a number of roles, is involved 

in the maintenance of visual function and in protecting photoreceptors from excess incoming light.   
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In comparison with vertebrate eye, the simplest "eye", such as Ciona ocellus, is only able to detect 

whether the surroundings are light or dark; nevertheless, its building blocks are two, as in vertebrates: 

the photoreceptor cells and the dark shielding pigment cell (Fig 1.9 B).  

 

 

 

 

 

 

 

 

 

 

 

A relatively recent study (Horie et al., 2008a) showed that Ciona larva has three morphologically 

distinct types of photoreceptor cells in the SV, defined as group I, group II, and group III 

photoreceptor cells (Fig. 1.10).  

 

 

 
Fig. 1.10 Schematic representation of Ciona larval trunk to show location of photoreceptor cell types and coronet cells. 
Ot and Oc:  Otolith and Ocellus pigment cells. 
 
 

Fig 1.9 Schematic comparison between the main building blocks of vertebrate eye (A) 
and ascidian ocellus (B). Retinal Pigmented Epithelium of the eye (A) and pigment cell of 
the ocellus (B) are depicted in red. Retina of vertebrate eye (A) and photoreceptor cells of 
the ocellus (B) are depicted in green.  
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The group I photoreceptor cells (18-23 cells) are those traditionally recognized as the ocellus 

photoreceptor cells in ascidian larvae. The group II and group III photoreceptor cells represent 

instead two novel types of photoreceptor cells, never reported before in any ascidian species. The 

group II photoreceptor cells (8-11 cells) are associated, as the group I, to the ocellus pigment cell. 

However, while the group I have outer segments arranged in rows inside the pigment cup of the 

ocellus, the group II are located outside of the pigment cup, directly exposed to the lumen of the 

sensory vesicle. The group III photoreceptor cells constitute a novel ocellus lacking a pigment cell 

and consisting of a little group of photoreceptor cells (6 or 7), located in the left ventral part of the 

sensory vesicle, in proximity to the otolith and apart from the ocellus pigment cell. In this case, the 

outer segments exposed into the lumen of the sensory vesicle present a peculiar circular shape. 

Accordingly, the ascidian larva has two ocelli: a ‘conventional’ pigmented ocellus containing the 

group I and group II photoreceptor cells and a novel non-pigmented ocellus consisting of the group 

III photoreceptor cells. In close relationship with the group III of photoreceptors, a cluster of 

dopamine (DA)-synthesizing putative sensory neurons, the so-called coronet cells (Fig. 1.7), is 

present (Eakin`and Kuda, 1971; Nicol`, 1991; Moret, 2005a). The function of these cells is not clear 

yet. Several authors (Eakin and Kuda, 1971; PN., 1969) speculated roles in pressure detection (hence 

the name of pressure organ), but these hypotheses seem not supported by experimental data (Tsuda et 

al., 2003b). On the other hand, more recently, a role of these cells in the modulation of the photic 

response has been suggested by Razy-Krajka and colleagues (Razy-Krajka et al., 2012).  

It is intriguing to note that some aspects of photo-transduction and developmental mechanisms of 

Ciona ocellus appear to be shared with vertebrate eyes, thus indicating that these two structures could  

have been derived from a common archetypal “visual organ” (Kusakabe et al., 2001; Sato and 

Yamamoto, 2001; Lamb et al., 2007). 

In particular, the light-response of Ciona photoreceptors is hyperpolarizing and ciliary, as for 

vertebrates (Gorman et al., 1971). Furthermore, the photo-transduction process in vertebrates requires 
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the visual opsins, which are G-protein coupled receptors, and visual arrestins, small proteins needed 

to regulate opsin signal transduction (Arshavsky, 2002; Blomhoff and Blomhoff, 2006). Similarly, 

photo-transduction in Ciona uses opsins, precisely  Ci-opsin1 (three opsin homologs are present in 

Ciona genome)  and Ci-arrestin (one arrestin homolog is present in Ciona genome), both expressed in 

ocellus photoreceptor cells as well as in the group III of photoreceptor cells (Kusakabe et al., 2001; 

Nakagawa et al., 2002; Nakashima et al., 2003; Horie et al., 2008b).  

The “visual systems” of Ciona share with vertebrates also some similarities at molecular-

developmental level. 

As an example, it is known that in vertebrates Pax6 is involved in eye formation. Mutations in 

vertebrate and invertebrate Pax6 gene result in defects or absence of the eye (Callaerts et al., 1997). 

In tunicates Pax6 is expressed in the nervous system territories, including pigment organ precursors, 

but its role has not been clarified yet (Mazet et al., 2003). However, it has been demonstrated that the 

ectopic expression, in Drosophila imaginal discs, of Pax6 homologous genes, from either the ascidian 

Phallusia mamillata, mouse or Drosophila, causes the formation of supernumerary eye structures, 

indicating a functional conservation among different species (Halder et al., 1995; Glardon et al. 

1997). In addition, Ciona Ci-Rx, as its vertebrate homologous gene RX, are both required for 

ocellus/eye formation and function (Bailey et al., 2004) (D’Aniello et al., 2006). As a further link 

between ocellus and eye, in Ciona ocellus are expressed homologs of three vertebrate proteins that 

are involved in the retinoid cycle of vision: RPE65, CRALB P and BCO (Takimoto et al., 2006). 

Finally, the melanogenic enzymes Tyrosinase and TRPs are expressed in vertebrate RPE as well as in 

tunicate pigment cells and their precursors (del Marmol and Beermann, 1996; Caracciolo et al., 1997; 

Sato et al., 1997; Esposito et al., 2012). 

Collectively, all these data strongly support Ciona as a valuable model system to study, in a relatively 

simple way, the "basic" mechanism underlying the development of complex structures, such as the 

eyes, much more difficult to be approached in vertebrates. Ciona model system, indeed, permits in 



 
27 

	

most cases to depict precisely the lineage of the tissue/structure of interest and, at the same time, 

identify a gene, or group of genes, that specifically labels these territories since early stages of 

development. 

1.8.1 What about photoreceptor cell lineage in Ciona? 

As previously mentioned, in Ciona extensive information are available on the cell lineage of most of 

the main tissues and organs, so that it is possible to follow many developmental processes. 

Concerning the lineage of photoreceptor cells, a detailed analysis of the mitotic history of CNS 

precursor cells led to infer that, since neural plate stage, the right a9.33 and a9.37 cells most probably 

represent the photoreceptor cell progenitors (Cole and Meinertzhagen, 2004; Nicol and 

Meinertzhagen, 1991) (Fig. 1.7 B light blue rectangle). 

In the same study Cole and Meinertzhagen (2004) inferred that some of the progeny from left a9.33 

and a9.37 blastomeres (Fig. 1.7 B white characters) likely forms the almost 20 coronet cells, which 

lie in proximity to the otolith and close to the group III of photoreceptors (Cole and Meinertzhagen, 

2004). Interestingly, the fate map of photoreceptor cells has been revised in 2015 (Gainous et al., 

2015), when the authors provided evidence that photoreceptor cells may be derived from more 

posterior regions of the neural plate, most likely medial regions of row II. This data has been further 

confirmed by a very recent and detailed study, in which the authors traced the developmental fates of 

neural plate cells from the late gastrula through larval stages by labelling particular cells of "non 

dechorionated" embryos at single-cell resolution using Kaede photoactivable reporter. Their results 

indicated that the photoreceptor cells of both ‘conventional’ pigmented ocellus, containing the group 

I and group II, and of non-pigmented ocellus, consisting of the group III photoreceptor cells, develop 

from the right anterior vegetal hemisphere (A-lineage). Specifically those of the pigmented ocellus 

are from the right A9.14 cell and those of the non-pigmented ocellus are from the right A9.16 cell 

(Fig. 1.7 B yellow rectangle). 
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1.8.2 Second aim of the thesis:  Gsx as a potential marker of photoreceptor cells 

Gsx, together with Xlox and Cdx, belongs to the ParaHox family of transcription factors, considered 

the paralogue of the Hox genes (Brooke et al., 1998). As the name suggests, both ParaHox belong to 

the homeobox family, an ancient group of genes characterized by the presence of a DNA sequence, 

the homeobox, which codes for the homeodomain. The homeodomain is the peptide motif that 

actively binds the DNA and it is constituted by 60 amino acids arranged into a recognizable helix-

turn-helix structure (McGinnis et al., 1984; Scott and Weiner, 1984; Lewin, 2000). Most 

homeodomain proteins bind to short DNA sequences of only 6 bp, often with a common TAAT core 

followed immediately by two bases that confer specificity (Treisman et al., 1989, 1992). 

Among the Hox/ParaHox gene families, Gsx is one of the most conserved throughout the animal 

kingdom, with orthologues found from placozoans up to vertebrates. Studies aimed at the 

reconstruction of its function and diversification during evolution are facilitated by the relatively 

conservative history of Gsx, without intensive duplication events (Finnerty et al., 2003). The sole 

duplication event occurred in the vertebrate lineage, before the divergence of bony fishes and 

tetrapods, giving rise to two paralogs, gsh-1 and gsh-2 (Hsieh-Li et al. 1995; Valerius et al. 1995; 

Deschet et al. 1998). Phylogenetic studies revealed the presence of a Gsx ortholog, trox2, even in the 

placozoan Trichoplax adherens. 

In Cnidaria phylum, the first phylum provided with a well differentiated nervous system, one Gsx 

ortholog, called cnox2, has been characterized (Finnerty et al., 2003).The role of cnox2 was 

elucidated, thanks both to expression and functional studies, and the results showed that gsx/cnox2 

function is related to neurogenesis and oral patterning. Referring to this, in Hydra it has been clearly 

demonstrated that cnox2, marking specifically the nervous system, promotes apical neurogenesis and 

head patterning during head regeneration after amputation (Miljkovic-Licina et al., 2007). 

Analogously in Nematostella anthox2 seems to be involved in apical neurogenesis (Galliot and 

Quiquand, 2011). 
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Concerning Gsx in protostomes, one of the first works in these organisms is about the polychaete 

annelid worm, Capitella teleta, in which CapI-Gsx transcript is transiently expressed during early 

stages of brain formation, in a subset of anterior neuroectodermal cells (Fröbius and Seaver, 2006). In 

another annelid worm, the best studied Platynereis dumerilii, it was found that the expression of Pdu-

Gsx is very dynamic. The gene is present, since the pre-larval stage (24hpf), in the prospective neural 

tissue and later its expression is kept during the differentiation of the trunk CNS. Furthermore, Pdu-

Gsx is not only restricted to neural regions, being also expressed at larval stage in two bilateral cell 

clusters in the stomodeum (mouth precursor) and later on in small cell clusters in the midgut and 

posterior foregut (Hui et al., 2009). 

Gsx ortholog in insects is called ind and it has been proved that during Drosophila embryonic 

development ind, expressed in the ventral neuroectoderm into two symmetrical columns along the 

dorsoventral (DV) axis, is one of the key players in patterning DV axis of nervous system (Weiss et 

al., 1998). 

Moving to non-chordate deuterostomes, in Ambulacraria, and in particular in the echinoderm S. 

purpuratus, a role of Gsx in the developing nervous system can be presumed, given its presence from 

gastrula through pluteus stages in a small ectodermal domain, probably neural (Arnone et al., 2006). 

In Vertebrates, after whole genome duplication, two Gsx paralogs, named Gsh1 and Gsh2 (or Gsx1 

and Gsx2 too) are present. In Xenopus tropicalis Gsh1 and Gsh2 exhibit an expression pattern within 

the developing nervous system since early neural plate stage and throughout development, in the 

forebrain, midbrain, hindbrain and spinal cord, with a nice bilaterally symmetrical distribution across 

the mid-line. In particular, among the territories in which Gsh1 transcript can be detected, it is worth 

mentioning pretectum and tectum (two structures involved in processing visual and auditory stimuli), 

thalamus and hypothalamus, olfactory bulb and a cell population, which gives rise to interneurons. 

Gsh2 is more or less expressed in the same territories, even if regions of perfect co-localization with 
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Gsh1 are quite rare. Of particular relevance is the presence of Gsh2 also in the endoderm, as occurs in 

more basal organisms, probably providing a further evidence about the ancestral role of Gsx (Illes et 

al., 2009). 

In mouse, the two genes specifically mark the CNS, with a bilateral distribution similar to the one 

described for Xenopus and Drosophila. Interestingly, Gsh1 is also expressed in the optic stalk (optic 

nerve primordium. Hsieh-Li et al., 1995; Valerius et al., 1995). 

Few expression data are also available for Gsh1 in medaka fish and zebrafish. In both cases the gene 

is expressed with a dynamic pattern during development, in many regions of the central nervous 

system, among which is worth mentioning again hypothalamus primordium, spinal cord (in a region 

that in zebrafish will generate interneurons) and optic tectum of medaka fish (Deschet et al., 1998; 

Cheesman and Eisen, 2004).  

Given this complex picture, it comes out that Gsx is widely distributed along animal phylogeny, 

probably exerting its function mainly in the nervous system, through the specification of several cell 

types and/or the control of their differentiation state. Similarities can be recognized in the width of 

the expression territories between protostomes (such as annelid and insects) and vertebrates, passing 

through some cases (echinoderms, urochordates, cephalochordates) in which the gene is restricted in 

a smaller domain. Based on this observation, one can suppose that the function of Gsx in the 

Protostome-Deuterostome Ancestor (PDA) was complex and related to a variety of roles in eyes, 

neurosecretory cells and patterning of the neural tube and then secondarily simplified in the lineages 

in which it is restricted to smaller patches (Hui et al., 2009). 

Obviously, molecular data from as many species as possible are necessary, to outline a clear picture 

of the functions of this ancient gene during evolution. Our model system Ciona robusta exhibits all 

the required properties to represent a useful joining link for this story. 

With regard to Gsx, previous studies, done by the former PhD student of my lab, Dr. Rosaria 

Esposito, revealed a very interesting expression pattern of this gene during Ciona development. At 
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the neural plate stage, Gsx is expressed in the a9.33 blastomeres and slightly later it appears also in 

the a9.37 cells (Fig. 1.11 A, B, C). As development proceeds a further signal appears more 

posteriorly (green arrow in D, E, F) in a region that is likely to be part of A-lineage descendant, thus 

indicating that Gsx could represent a good marker for the “old” but also for the “revised” 

photoreceptor cells lineage.  

 

 
Fig. 1.11 Ci-gsx expression pattern during Ciona robusta development. WMISH with Ci-gsx probe on embryos at 
different developmental stages. A. Gastrula, dorsal view. B. Schematic representation of the gastrula stage; a9.33 cell 
pair is depicted in dark green and a9.37 couple in light green. C. Neurula, dorsal view. D. Middle tailbud, dorsal view. E. 
Middle tailbud, lateral view. F. Late tailbud, anterior region, dorsal view. In D, E, F: Red arrow indicate the anterior 
expression, green arrow the posterior expression. 
 

A further development of my thesis studies thus included a refinement of Gsx expression pattern 

during late Ciona robusta development. To this end, I carried out detailed double in situ hybridization 

experiments, using Gsx in combination with FoxB as marker of A-lineage (A9.14, A9.16 cell pairs), 

from the neural plate stage, in order to confirm Gsx expression also in the “revised” lineage of 

photoreceptor cell precursors.  However, the endogenous Gsx gene disappear at the larval stage, so I 

could not check the localization of Gsx in the photoreceptor lineage at the larval stage by double in 

situ hybridization experiments, using Arrestin probe as marker for terminal differentiation of these 

territories. For this aspect of my work, double electroporation experiments, using lineage specific cis-

regulatory elements fused to fluorescent reporters, come in handy.  In particular I exploited the 

pGsx>mCherry construct, available in the laboratory, in which the 2,8kb Gsx cis-regulatory region 

was fused to mCherry reporter gene. pGsx>mCherry construct, that is able to recapitulate 



 
32 

	

endogenous gene expression up the larval stage thanks to the stability of the fluorescent protein 

product, was used in  combination with: 

• Arrestin promoter (pArr) which labels fully differentiated photoreceptor cells (Yoshida et al., 

2004) in the larva. 

• Doublesex/mab-3-related promoter (pDMRT-1) which labels all the progeny of a-lineage from 

neural plate to larval stage. 

• FoxB promoter (pFoxB) which labels all the progeny of A-lineage progeny from neural plate 

to larval stage. 

 

 
Fig. 1.12 In vivo analysis of pGsx>mCherry construct. Merged bright-field/fluorescent images are reported. In pictures 
A-E dorsal view, anterior is on the top; F-H lateral view, anterior is on the left.   
A. Late neurula stage, B. Middle tailbud stage, C,D. Late tailbud stages, anterior part of the embryo. Note the different 
expression of the reporter, due to the mosaic incorporation of the transgene. E. Late tailbud II stage, anterior part of the 
embryo. F. Late tailbud III stage, anterior part of the embryo, dorso-lateral view. G, H. Trunk of transgenic larvae; blue 
arrows indicate the photoreceptor cells region. 
 
 
These enhancers were used in different combinations to label specific lineages and visualize them in 

their final differentiated state in swimming larvae, in order to explore co-localization in larvae of 

Gsx/Arrestin, Gsx/a-lineage, Gsx/A-lineage, Arrestin/A-lineage, Arrestin/a-lineage.   

1.9 Behavioural tests on Ciona larvae  

During the free-swimming life, Ciona larva is exposed to a wide range of environmental stimuli. The 
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capability to respond in a correct way to environment can make difference between survival and 

death. Despite the relative simplicity of its CNS, Ciona larvae have to perceive and process correctly 

all external stimuli, in order to be placed at the right place in the right time. In particular in the first 

part of their life, in the time interval from hatching to 2h post hatching, they start to swim upward to 

reach surface and this help them to spread. To exert this behaviour, larvae should detect gravity and 

respond in a negative manner. Slightly later, during free-swimming period, larvae start to display a 

so-called “light off” response in which they perceive light intensity changes and start to swim faster 

when brightness decreases. This response starts to be evident since 3h post hatching, because PRCs 

complete their differentiation and reaches the maximum at 8h post hatching (Kajiwara, 1985). The 

reason behind this behaviour is to find a suitable substrate, a darker zone underwater, to attach and 

undergo metamorphosis. As previously mentioned, the swimming behaviour of Ciona larvae is under 

the control of the two pigmented structures present in the sensory vesicle:  the ocellus, a light sensing 

organ, and the otolith, presumably involved in gravity perception (Jiang et al., 2005; Tsuda et al., 

2003b). The functions of these organs have been discovered mainly by interfering with the pigmented 

cells they contain, either through laser ablation, by blocking melanin biosynthesis (Using PTU), or by 

using mutant lines that specifically disrupt the pigmentation programs. In particular, Tsuda and 

colleagues (Tsuda et al., 2003b) have been the first to demonstrate that the anterior pigment cell 

(otolith) is linked to the upward swimming behaviour, while the posterior pigment cell (ocellus) is 

responsible for the photo-responsive component of swimming behaviour. Furthermore, their studies 

suggested that the swimming behaviour of Ciona larvae is not affected by the pressure, and this 

represents the only study on this topic in Ciona.  

1.9.1 Third aim of the thesis 

In the attempt to better and deeper explore if the behaviour of Ciona larvae is influenced by changes 

of pressure in the surrounding environment, I spent last months of my Phd in the Laboratory head by 
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Dr. Gáspar Jékely, at the Max Planck Institute for developmental biology. There, in collaboration 

with Dr. Luis Bezares, my studies were devoted to 1) a detailed investigation of the behavior of free-

swimming larvae exposed to different pressure levels and to 2) the identification of Ciona larval 

structure involved in the detection of hydrostatic pressure. 

Hydrostatic pressure is the force per unit area exerted by a liquid on an object. Hydrostatic pressure 

increases in proportion to depth (1 bar each 10 meters) measured from the surface, due to the 

increasing weight of the fluid that exerts downward force. In addition, if the liquid is in contact with a 

gas, the total pressure is the sum of the pressure of the gas plus the pressure of the liquid (Ptotal = 

Patmosphere + Pfluid). 

To detect and characterize the behavior of larvae exposed to increased pressure levels, I used the 

chamber designed by Dr. Bezares and the recording setup available in the hosting laboratory. At the 

same time, I devoted my attention on the dopamine (DA)-synthesizing putative sensory neurons, the 

so-called coronet cells (Fig. 1.7), present in the sensory vesicle (Eakin and Kuda, 1971; Moret et al., 

2005a; Nicol and Meinertzhagen, 1991) as potential organs involved in pressure detection. To this 

end, I prepared the construct pTH/GCaMP in which the TH (tyrosine hydroxylase) promoter, 

available in the Laboratory, which specifically labels dopamine cells (Moret et al., 2005b), was 

cloned upstream of the GCaMP (genetically encoded calcium indicator), a reporter that represents a 

powerful tool to identify activated neurons, by monitoring calcium influx (see Material and methods).  

This construct was electroporated in Ciona fertilized eggs and the resulting larvae were then 

subjected to an in-vivo imaging scan, under the confocal microscope, in a particular holding chamber 

in which it was possible to increase the pressure during the observation.  
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Materials and Methods 

2.1 Ciona robusta eggs and embryos collection 

Ciona robusta adults were collected in the bay of Naples or Taranto, and maintained at the 

Aquaculture Service of Stazione Zoologica A. Dohrn (Naples) under constant illumination, in sea 

water tanks equipped with appropriate water circulation and filtering system. Ripe oocytes and sperm 

were collected surgically and kept separately until in vitro fertilization. Fertilized eggs were used for 

behavioral test, transgenesis, drug treatment, and in situ hybridization experiments. Embryos were 

raised in Millipore-filtered sea water (MFSW) at 18-20°C.  

2.2 Wild-type embryos for behavioral tests 

To perform behavioral tests wild-type embryos were generated by in vitro fertilization. Oocytes and 

sperm were collected surgically from at least two different animals. The gametes were incubated for 

10 minutes in a Petri dish coated with 1% agarose to perform an in vitro fertilization in MFSW. After 

10 minutes fertilized eggs were washed several time and transferred in a bigger Petri dish of 10 cm of 

diameter with a thin layer of 1% agarose. The animals have been grown in MFSW at 18°C. 

2.3 Chemical dechorionation and in vitro fertilization 

Before to perform electroporation of the fertilized eggs, it is necessary to deprive the eggs of the 

chorion. The chemical dechorionation has been effectuated in a glass tube in MFSW, putting the eggs 

for 5-6 minutes in a pH 10 solution of Thioglycolic acid (1%) and Proteinase E (0.05%) in MFSW. 

During this time, the eggs have been shaken continuously in this solution, using a glass pipette, to 

remove the chorion and the follicular cells surrounding the eggs. After this step the eggs have been 

washed several times to remove the residual solution and then fertilized in vitro, in a small Petri dish 

coated with a thin layer of 1% agarose, with sperm collected from two or more individuals to avoid 

self-sterility problems. After 10 minutes, fertilized eggs have been washed 2-4 times to eliminate the 
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exceeding sperm and then have been used for transgenesis experiments. Alternatively, the embryos 

have been grown in MFSW at 18-20°C, and fixed at the suitable stages to perform whole-mount in 

situ hybridization (WMISH) or fixed for reporter signal analysis. 

2.4 Transgenesis via electroporation 

The fertilized eggs have been immediately transferred in a solution containing 0.77 M Mannitol and 

50-100 µg of DNA. The electroporation has been carried out in Bio-Rad Gene Pulser 0.4 cm cuvettes, 

using a Bio-Rad Gene Pulser II electroporator, at constant 50 V and 500-800 µF, in order to have a 

time constant of 14-20 m/seconds. The embryos have been allowed to develop until the desired stage 

on 1% agarose coated Petri dishes, at 18-20°C. Depending on the electroporated constructs and on the 

purposes of the experiment, the embryos have been fixed for Whole Mount in situ Hybridization or 

analyzed at the microscope. 

In order to be sure of the electroporation success, only the experiments in which at least 60% of the 

embryos developed normally were selected for analyses. All the constructs have been tested in at 

least three different batch of animals; percentages reported in the results have been calculated taking 

in to consideration at least 100 embryos for each construct.  

2.5 Embryos observation and imaging analyses 

For the observation at the microscope of fluorescence and phenotypes, embryos and larvae have been 

observed in vivo. To avoid embryos movement, late tailbud and larvae have been sedated using 

menthol crystals in the sea water.  The embryos have been then placed on a microscope slide; a cover 

slide with some plasticine at the corners have been positioned on the top of a sea water drop, 

containing the embryos, and pressed until the volume resulted uniformly distributed. DIC and 

fluorescent images have been taken with a Zeiss Axio Imager M1 microscope equipped with an 

Axiocam digital camera.  
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For confocal images, embryos have been analyzed with a Zeiss confocal laser scanning microscope 

LSM 510 and more recently with a Leica SP8-x. 

2.6 PCR amplification from genomic or plasmid DNA 

The PCR reactions have been performed in a total volume of 50 µl, using about 100 ng of DNA as 

template, 0.2 mM of dNTP mix (dATP, dTTP, dCTP, dGTP), 1x PCR buffer (Roche), 0.05U/µl of 

Taq DNA polymerase (Roche) and 2 pmol/µl of each forward and reverse suitable oligonucleotides. 

The PCR amplification program has been set as follows. 

Ø First step (1 cycle). DNA denaturation: 5' at 95°C. 

Ø Second step (repeated for 35 cycles). 

DNA denaturation: 1' at 95°C. 

Oligonucleotides annealing: 2' at the suitable temperature for plasmid DNA, 4' at suitable 

temperature for genomic DNA (the temperature used in this step has been set at least 5-8°C 

below the melting temperature of the oligonucleotides). 

Polymerization: 72°C for a suitable time, calculated considering the desired amplified 

fragment length and the Taq DNA Polymerase processivity, that is around 1 Kb/minute. 

Ø Final elongation step: 10' at 72°C. 

The amplified fragments have been separated from the template DNA and from dNTPs and 

oligonucleotide excess by gel electrophoresis using, as fragment length marker, 1x GeneRuler™ 1Kb 

DNA Ladder (Fermentas), 1x GeneRuler™ 100 bp DNA Ladder (Fermentas) or 1x Lambda 

DNA/HindIII, 2 (Fermentas), according to the expected length of the fragment. 

The fragments have been isolated and purified by gel extraction (GenElute™Gel Extraction Kit, 

Sigma). The concentration have been evaluated by gel electrophoresis using as marker 1x Lambda 

DNA/HindIII, 2 (Fermentas).  
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2.7 DNA gel electrophoresis 

Preparative and analytic DNA gel electrophoreses have been performed on 0.8%, 1% or 1.5% of 

agarose gel in 1x TAE buffer (Stock solution 50x: 252 g of Tris base; 57.1 ml glacial acetic acid; 100 

ml 0.5 M EDTA; H20 to 1 liter), considering the length of the DNA to be run and adding 0.5 µg/ml 

Ethidium Bromide (EtBr).  

2.8 DNA gel extraction 

Digested and PCR amplified fragments have been extracted from gel cutting them with a sterile 

sharpen blade, using the GenElute™ Gel Extraction Kit (Sigma-Aldrich), following the 

manufacturer’s instructions. After the extraction, the concentration has been estimated by gel 

electrophoresis. 

2.9 DNA digestions with restriction endonucleases 

Analytic and preparative plasmid DNA digestions have been performed with the appropriate 

restriction endonucleases in total volumes of at least 20 times more than the enzyme volume used. 

The digestion reaction has been prepared as follows: the solution contained the desired amount of 

DNA, suitable restriction enzyme buffer (1/10 Roche; New England Biolabs; Amersham), restriction 

enzyme/s (5 units enzyme per 1 µg of DNA) and BSA (1/100, if required). Reaction specific 

temperatures have been used as suggested by manufacturer’s instructions. 

2.10 DNA dephosphorylation  

In order to prevent self-ligation, a convenient amount of double strand linearized DNA has been 

incubated with 1U of Calf Intestinalis Alkaline Phosphatase enzyme (CIAP; Roche) per 1 pmol 5' 

ends of linearized DNA, in 1x CIP dephosphorylation buffer (Roche), at 37°C for 30'. After this time, 

a second aliquot of CIAP has been added, and the reaction has been carried on for another 30', at 

37°C. Subsequently, the dephosphorylated DNA has been purified by gel extraction. 
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2.11 DNA ligation 

Each ligation reaction has been carried out in a final volume of 20 µl mixture containing 1x T4 

Ligase buffer (50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 10 mM dithiothreitol, 1 mM ATP, pH 7.5) and 

1 µl of T4 DNA Ligase (New England Biolabs) at 1U/ µl. The proportion of plasmid vector and insert 

DNA was usually kept 1:4, and the total amount of DNA was kept within 50-100 ng. The reaction 

mix has been incubated at 16 °C overnight or 1,5 hour at R.T., and used to transform competent 

bacteria.  

2.12 Bacterial cells electroporation 

By this approach it is possible to transform bacterial cells with plasmids containing DNA of interest. 

Briefly, the circular plasmid DNA and competent E. coli bacterial cells (prepared by the Molecular 

Biology Service of the Stazione Zoologica A. Dohrn in Naples), were placed in a 0.2 cm 

electrocuvette. The electrocuvette was subjected to an electric pulse at constant 1.7 V using a Bio-

Rad Gene Pulser™ electroporation apparatus.  

The transformed E. coli cells were allowed to recover for one hour at 37ºC in 1ml LB medium (NaCl 

10g/l, bactotryptone 10g/l, yeast extract 5g/l,). An aliquot was spread on a pre-warmed LB solid  

medium (NaCl 10g/l, bactotryptone 10g/l, yeast extract 5g/l, agar 15g/l) in the presence of specific 

selective antibiotic and grown at the same temperature overnight. 

2.13 PCR screening 

It is possible to carry out a PCR reaction using as template a single bacterial colony and in the same 

time grow the colony. Half of each single colony was placed in a PCR mixture described below, and 

half grown in 3 ml of LB liquid medium in the presence of the suitable antibiotic (50µg/ml), 8-12 

hours shaking at 270 rpm, at 37 ºC.  

The PCR reactions have been set in a total volume of 20 µl, with the following composition: 1x PCR 

buffer (Roche); 0.2 mM dNTP mix (dATP, dTTP, dCTP, dGTP); 1 pmol/µl of each forward and 
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reverse suitable oligonucleotides; and 0.025 U/µl Taq DNA polymerase (Roche; Biogem). PCRs have 

been carried out with the following protocol:  

Ø First step (1 cycle). DNA denaturation: 5' at 95°C. 

Ø Second step (repeated for 30 cycles). 

DNA denaturation:  1' at 94°C. 

Oligonucleotides annealing: 1' at the suitable temperature (according to the melting 

temperature of oligonucleotides) 

Polymerization: 72°C for a suitable time (1 min/kb). 

By gel electrophoresis analysis, the samples presenting a band of expected sixe have been identified 

and plasmid DNA has been purified from the corresponding bacterial colonies.  

2.14 Plasmid DNA Mini- and Maxi-preparation 

A single bacterial colony containing the plasmid DNA of interest was grown in a suitable volume of 

LB (4-5 ml for Mini-preparation, 200-400 ml for Maxi-preparation) in the presence of the appropriate 

antibiotic shaking at 37°C overnight. The Sigma-Aldrich Plasmid Purification kit, based on alkaline 

lyses method, was used to isolate the plasmid DNA from the cells according to the manufacture‘s 

instruction. 

2.15 Sequencing 

The DNA sequences have been obtained using the Automated Capillary Electrophoresis Sequencer 

3730 DNA Analyzer (Applied Biosystems, Foster City, CA) by the Molecular Biology Service of the 

Stazione Zoologica A. Dohrn in Naples. 

2.16 Oligonucleotides synthesis 

All used synthetic oligonucleotides were prepared with a Beckman SM-DNA Synthesizer at the 

Molecular Biology Service of the Stazione Zoologica A. Dohrn in Naples. 
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2.17 Digested plasmids purification 

To eliminate protein contaminations, the plasmid DNA linearized in order to obtain the template for 

riboprobes synthesis has been purified with 1 volume of phenol:chloroform:isoamylic alcohol 

(25:24:1), vortexed vigorously and centrifuged at 13000 rpm for 5’ at 4°C. The soluble phase has 

been recovered and 1 volume of chloroform : isoamylic alcohol (24:1) has been added; the sample 

has been vortexed vigorously and centrifuged at 13000 rpm for 5', at 4°C. The aqueous phase has 

been recovered and the DNA has been precipitated adding 3 volumes of ethanol 100% and 1/10 

volumes of Sodium acetate 3M pH 5.2. The sample has been mixed and stored over night at -20°C or 

1 hour at -80°C. Then, it has been centrifuged at 13000 rpm for 15', at 4°C. The precipitated DNA has 

been washed with ethanol 70% (sterile or DEPC-treated), centrifuging at 13000 rpm for 15' at 4°C. 

The ethanol has been removed and the sample has been air-dried at R.T. At the end, the DNA has 

been diluted in a suitable volume of H2O (sterile or DEPC-treated), and its concentration has been 

evaluated by gel electrophoresis, using 1X Lambda DNA/Hind III Marker 2 (Fermentas), and using a 

spectrophotometer (Nanodrop 1000, Thermo SCIENTIFIC), reading the values at the wavelengths of 

230, 260 and 280 nm and calculating the ratio between 260/230 nm and 260/280 nm to ascertain 

respectively the absence of chemical (phenol, ethanol) and protein contamination.  

2.18 Ribonucleic probes preparation 

2.18.1 RNA labelling 

The plasmid, containing the template to be transcribed, has been conveniently digested and purified, 

as described above. 1 µg of purified, linearized DNA has been used as template for the ribonucleic 

probe synthesis. This template has been added to the following reaction mix: transcription buffer 

(1/10; Roche); Digoxigenin or Fluorescein labeling mix, containing 1 mM of ATP, CTP and GTP, 

0.65 mM UTP and 0.35 mM DIG-11-UTP or 0.35 mM fluorescein-12-UTP (Roche); Sp6 or T7 RNA 

polymerase (2U/µl; Roche); Protector RNase inhibitor (1U/ µl).  
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The reaction has been performed in a total volume of 20 µl (in H2O DEPC-treated). The mix has been 

briefly centrifuged and incubated for 2 hours at 37°C. Then, DNaseI RNase free (0.9U/µl) has been 

added in order to remove the DNA template. The sample has been incubated for 20' at 37°C. Finally, 

the reaction has been stopped adding EDTA pH 8.0 (16 mM). The synthesized ribonucleic probes 

have been purified using the mini RNeasy mini kit (QIAGEN), following manufacturer instructions. 

The ribonucleic probe quality has been checked by gel electrophoresis and the concentration 

quantification has been evaluated by Dot Blot analysis (see the next paragraph). One volume of 

deionized formamide has been added to the recovered samples, immediately stored at -80°C till the 

use.  

The ribonucleic probes listed (Table 2.1) have been synthesized starting from cDNA clones present 

in N. Satoh C. intestinalis gene collection 1, available in the laboratory. 

 

 

 

 

 

2.18.2 Ribonucleic probes quantification by Dot Blot analysis 

The concentration evaluation of the DIG-11-UTP or fluorescein-12-UTP incorporated in the 

ribonucleic probes has been estimated making serial dilutions of the sample ribonucleic probes and of 

a Control RNA of reference (Roche), in a buffer containing DEPC-treated H2O, 20x SSC, 

formaldehyde (5:3:2). 1 µl of each dilution has been blotted on a membrane Hybond-N (Amersham) 

and air-dried at R.T. The RNA has been UV-crosslinked on the membrane with a Stratalinker for 30''. 

The membrane, with the UV-cross-linked RNA on it, has been washed in blocking solution (5% BSA 

Table2.1  Genes of which ribonucleic probes have been synthesized 

Gene name Corresponding clone in N. Satoh gene collection 1 Probe lenght 

Ci-gsx citb029c24 (plate: R1CiGC31m18) 1250 bp 

Ci-Meis citb035l22 (plate: R1CiGC32a16) 1995 bp 

Ci-Foxb          cilv039e20(plate: R1CiGC28o19) 1509bp 
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in 0.1 M maleic acid pH 7.5), for 30', shaking at R.T. Subsequently, the membrane has been 

incubated with anti-DIG or anti-Fluo phosphate alkaline antibody (0.15 U/ml; Roche) in blocking 

solution for 1 hour, shaking at R.T. To remove unbound antibodies, the membrane has been washed 

twice in a solution containing 0.1 M maleic acid pH 7.5 and 0.15 M NaCl for 15', at R.T. The 

membrane has been equilibrated in the detection solution (100 mM NaCl; 100 mM Tris pH 9.5; 50 

mM MgCl2, in H2O) for 5', at R.T., and then incubated in the dark in the same solution in which 

Nitro-Blue Tetrazolium Chloride (NBT; 35 µg/ml) and 5-Bromo-4-Chloro-3'-Indolylphosphate p-

Toluidine (BCIP; 175 µg/ml) have been added. The reaction has been monitored every 4-5' and 

blocked at the suitable moment, putting the membrane under running water. The membrane has been 

dried on 3MM paper and the concentration of the DIG-11-UTP or fluorescein-12-UTP incorporated 

in the ribonucleic probes has been calculated from the comparison with the control RNA spots. 

2.19 Fluorescent report assays 

Transgenic embryos, electroporated with constructs containing fluorescent reporters downstream of 

specific lineage promoters, were fixed at the desired developmental stage. Embryos were collected in 

1,5 ml eppendorf tube pretreated with 2%BSA in MFSW and then washed to prevent them to stick to 

the walls. Embryos were prefixed in a solution containing in a 1:1 ratio of 4% paraformaldehyde, 0.1 

M MOPS pH7.5, 0.5 NaCl and MFSW. Once the embryos settled completely the superrnatant was 

removed and replaced with a mixture containing 4% paraformaldehyde, 0.1 M MOPS pH7.5, 0.5 

NaCl. Embryos were fixed for 30’ at R.T., then washed 3/5 times with PBS and stored at 4°C until 

confocal observations. 
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2.20 Whole Mount In situ Hybridization (WMISH) assays 

2.20.1 Embryos preparation  

Wild type or transgenic embryos at suitable embryonic stages have been fixed at R.T. for 90' or at 

4°C over night, in a mixture containing 4% paraformaldehyde, 0.1 M MOPS pH7.5, 0.5 NaCl. 

Subsequently they have been washed three times in PBS 1x and dehydrated in graduated scale of 

ethanol (30% - 50% - 70% ethanol in distilled water DEPC-treated). They have been stored at -20°C 

until used. 

 

2.20.2 WMISH protocol for single and double in situ 

Day 1. The dehydrated stored embryos have been firstly re-hydrated in a graduate scale of 100% - 

70% - 50% - 30% methanol in PBT (that is PBS + 0.1% tween 20), one wash of 20' for each 

methanol solution.  

After that, the samples have been washed 3x15' in 1 ml PBT at R.T. and incubated 30' at 37°C in 1 ml 

PBT containing 2 µg/ml protease K for dechorionated embryos or 4 µg/ml for non dechorionated 

embryos, to increase the permeability to the cells and accessibility to mRNA target. The reaction has 

been stopped by a wash in 2mg/ml glycine in PBT. After digestion, samples have been post-fixed 1 

hour at R.T. in 4% PFA+0.05% tween-20 in PBS 1x and then washed 3x15' in PBT. Embryos have 

been placed 10' in the pre-hybridization solution (50% formamide, 6x SSC, 0.05% tween 20) and 

finally 2 hour at 55°C in hybridization solution (50% formamide, 1x Denhardt‘s solution, 6xSSC, 

0.05% tween 20, 100 µg/ml Yeast tRNA, 0,005% Heparine). Riboprobe (or Riboprobes for the 

double in situ hybridization) has been added up to a final concentration of 0.5 ng/µl and the 

hybridization occurred over night at the same temperature.  

Day 2. A series of washes have been carried out by varying the temperature and salinity conditions; 

embryos have been, in fact, washed at 55°C in the following solutions: two times for 20' in Washing 
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Buffer 1 (WB1: 50% formamide, 5x SSC, 0,1% SDS), two times for 20' in WB1:WB2 and two times 

for 20' in WB2 (50% formamide, 2x SSC, 0,1% Tween 20). Subsequently they have been treated with 

a 1 ml Solution A (10mM Tris-Cl, pH8.0, 0.5M NaCl, 5mM EDTA, 0.1% tween), two times for 5' at 

R.T. To remove aspecific RNA, not bound to the corresponding endogenous mRNA, the embryos 

have been treated with RNase A (20 µg/ml) for 20' at 37 °C in solution A, then washed one time in 

WB3 (2x SSC, 0.1% Tween20) for 5' at R.T. and 2 times in WB3 at a temperature of 55°C. 

Following they have been incubated three times for 5' in TNT (0.1M Tris, pH 7.5, 150mM NaCl, 

0.1% tween) at R.T.  

At this point a slight difference in protocol for single or double in situ occurs. 

For single in situ hybridizations, embryos have been incubated in Blocking TNB buffer  (100mM Tris 

pH7, 150mM NaCl, 1% Blocking Reagent, 0.2% Triton-100x) for 2 hours at R.T. At this point 

embryos have been incubated, all night at 4°C, with the antibody anti-DIG in the ratio 1:2000 in 

Blocking TNB Buffer.  

For double in situ hybridizations, embryos have been first incubated in TNB blocking buffer for 2 

hours at R.T.  too. At this point samples have been incubated over night at 4°C, with anti-DIG Fab 

Fragments POD HRP diluted 1:400 in Blocking Buffer TNB.  

Day 3. For single in situ hybridizations, the samples have been washed at R.T. in TNT with the 

following modalities: one time for 5', four times for 20', one time for 40' and three times for 10' in 

TMN (100mM NaCl, 50mM MgCl2, 100mM Tris-Cl, pH9.5, 0.1% Tween20). To identify the 

localization of the RNA of interest, labeled with DIG and recognized by anti-DIG alkaline 

phosphatase conjugated, are provided the appropriate substrates that will be converted by the 

phosphatase in a precipitate of blue.  

The embryos are incubated, therefore, in 1 ml of TMN containing 4.5 µl of nitroblue tetrazolium 

(NBT) and 3.5 µl of 5-bromo-4-chloro-3-indolyl-phosphate (BCIP). The time of formation of the 

precipitate are conditioned by the amount of antibody bound and, therefore, indirectly on the type of 
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probe used. For this reason, at intervals of 30' a few embryos are taken and observed, after being 

placed on a microscope slide, with a phase contrast microscope. When some signal was shown, the 

color reaction is stopped using 1x PBT.  

Also for double in situ hybridizations series of washes were carried out: four times for 15' and two 

times for 5' in TNT at R.T. To identify the localization of the RNA of interest marked with 

Digoxigenin and recognized by anti-DIG conjugated to alkaline peroxidase (HRP) a substrate is 

converted by HRP in fluorescent product. The embryos have been incubated, therefore, in the 1x Plus 

Amplification Diluent (Perkin-Elmer) for 1' at R.T. and subsequently 1:400 Cy3 diluted in the same 

solution for 1.5 hours at R.T.  

After the reaction, embryos were washed nine times for 5' in TNT at R.T. In order to stop the first 

antibody reaction an incubation in 50% formammide, 2x SSC, 0,1% tween-20 for 10’ at 55°C has 

been performed. The next step consisted in a series of three washes of 10' in TNT and incubates, 

overnight at 4°C, with anti-Fluorescein HRP diluted 1:400 in Blocking Buffer TNB.  

Day 4.  (only for double in situ). The embryos have been washed two times for 5' in TNT at R.T., 

incubated in the 1x Plus Amplification Diluent (Perkin-Elmer) for 15' and subsequently treated with 

1:400 Cy5 diluted in the same solution for 1.5 hours. Then the reaction has been blocked by carrying 

out the following washings: 1 time for 5' and 7 times for 10' in TNT at R.T.  

Embryos were treated three times for 5 minutes and then over night with 1:10000 DAPI in TNT, in 

order to highlight the nuclei of the cells. 

Single or double in situ hybridization experiments have been conducted at least three times 

independently, using a minimum of 25 embryos in each case. WMISH conducted on electroporated 

embryos were considered reliable when consistent in at least 60% of the analyzed embryos. 

2.21 Preparation of constructs 

Different constructs were already available in the Laboratory or prepared during this study, by 

cloning strategies illustrated below. 
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• pGsx>GFP (Fig. 2.1)  was already available in Laboratory and it contains a Gsx cis-

regulatory region (pGsx>GFP) of about 2.8 Kb cloned upstream from GFP. To prepare this 

construct Ci-gsx regulatory region, pGsx, was previously obtained by PCR amplification on 

genomic DNA and the amplified product, digested with HindIII/NotI, was inserted upstream 

of GFP in the pTyrp1/2a>GFP vector, available in laboratory, previously digested with 

HindIII/NotI to eliminate pTyrp1/2a. 

 

  

 

 

 

 

 

 

 

 

Fig. 2.1 Map of pGsx>>GFP vector  

• pGsx-0,39>LacZ was available in the laboratory and it contains a minimal regulatory 

element of Gsx (pGsx-0,39) responsible for its expression since the neural plate stage cloned 

upstream of Nuclear Localization Signal (NLS)/LacZ. 
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For photoreceptor analyses we exploited or modified a number of constructs, pZicL/H2B/mCherry, 

pDMRT/H2B/YFP, pFoxB/UNC76/GFP (Fig. 2.2) kindly provided by Albero Stolfi, a postdoctoral 

researcher in the laboratory of Dr. Lionel Christiaen at New York University.  
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Fig. 2.2 Map of 

pZicL/H2B/mCherry, 

pDMRT/H2B/YFP, 

pFoxB/UNC76/GFP 

vectors. 
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• pDMRT>H2B>mCherry and pFoxb>H2B>mCherry. To prepare these constructs, we 

excised the DMRT and FoxB promoters, by AscI/NotI digestion, respectively from 

pDMRT/H2B/YFP and pFoxB/UNC76/GFP constructs, and inserted pDMRT and pFoxB 

upstream of H2B>mCherry in the pZicL/H2B/mCherry vector, previously digested with 

AscI/NotI to eliminate ZicL.  

• pFoxb>H2B>YFP.  To prepare this construct, we removed pFoxB promoter, by AscI/NotI 

digestion, from pFoxB/UNC76/GFP and inserted pFoxb upstream of H2B>YFP in the 

pDMRT/H2B/YFP vector, previously digested with AscI/NotI to eliminate pDMRT.  

• pGsx>H2B>mCherry. To prepare this construct, we removed GFP from pGsx>GFP 

construct, by NotI/BglII digestion, and replaced it with H2B/MCherry removed from 

pZicl>H2B>mCherry by NotI/BglII digestion.  

• pTH>GCaMP. pGP-CMV-GCaMP6s (ID 40753) plasmid was purchased from Addgene 

(www.addgene.org) and the region containing GCaMP was amplified by PCR using primers 

AMP6- AMPR (see Table 2.4) bringing restriction sites for SpeI (actagt) and EcoRI (gaatcc), 

respectively at the 5’ and 3’ ends. 5 µl of PCR product were run on a agarose 1% gel to test 

amplification efficiency and then the resultant 45 µl were purified using The QIAquick PCR 

Purification Kit (Quiagen). The purified PCR product was double digested with SpeI/EcoRI 

and then extracted from 1% agarose gel. In parallel the pTH promoter was amplified by PCR, 

from the contruct pTH>Kaede (kindly provided by Florian Razy-Krajka), using primers that 

include the restriction sites for AscI (pTHa) at the 5’ end and SpeI (pTHs) at the 3’ end (see 

Table 2.4). The backbone for the final construct was provided by pZicl>H2B>mCherry which 

was digested AscI/EcoRI to remove pZicl>H2B>mCherry and to insert pTH (AscI/SpeI) and 

GCaMP (SpeI/EcoRI) in a triple ligation reaction.  The resultant colonies were screened by 

PCR using internal oligos  (AmpRC-pTHfc, see Table 2.4). Miniprep of positive clones were 
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prepared and sequenced with the same oligos used for the PCR screening. Clones were 

selected from the positive sequences to produce maxiprep. 

   

• pTh>H2B>mCherry. TH promoter was amplified from pTH-Kaede with primers designed to 

add restriction sites for AscI (pTHa) and NotI (pTHNR) at the 5’ and 3’ ends respectively (see 

Table 2.5). The pPCR purified product, after being checked on 1% agarose gel, was double 

digested AscI/NotI and inserted in the pZicl>H2B>mCherry construct, previously digested 

with AscI/NotI to remove the Zicl promoter.  

 

  Table 2.3: oligonucleotides used for pTH>H2B>mCherry cloning 

pTHa 5’-CTTGGCGCGCCTTTGTTGCAGAGCAGCTCATGAT-3’ 

pTHNR 5’-CTTGCGGCCGCTTCAGTGCTTAGACTTAGC-3’  

 

• Other constructs (pZicl>Ets>WRPW, pZicl>Ets>VP64 pZicl>Elk>WRPW, pZicl>Ets>VP64, 

pFog>Nodal, pFog>Delta-like), used in this study, were kindly provided by Drs. Clare 

Hudson and Hitoyoshy Yasuo. pARR-eGFP was kindly provided by Dr. Kusakabe 

(Department of Life Science, Graduate School of Science, Himeji Institute of Technology). 

Table 2.2: list of oligonucleotides used for pTH>GCaMP cloning 

Amp6 5’-GCCATGACTAGTCGCCACCATGGGTTCTCA-3’ 

Ampr 5’-CTGAATTCTCACTTCGCTGTCATCATT-3’ 

pTHa 5’-CTTGGCGCGCCTTTGTTGCAGAGCAGCTCATGAT-3’ 

pTHs 5’-TGACTAGTTCAGTGCTTAGACTTAGCTGG-3’ 

AmpRC 5’-GTCGGCCTTGATATAGACG-3’ 

 pTHfc 5’-ACGATGTTGTAAGAATTTGCGA-3’ 
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2.22 In silico analysis of putative trans-acting factors 

The pGsx-0.39 sequence was submitted to JASPAR database (http://jaspar.genereg.net/) and the 

Genomatix Database (http://www.genomatix.de/cgi-bin/eldorado.main.pl), using in both cases the 

default parameters. These are databases of transcription factor from many organisms, their genomic 

binding sites and DNA-binding profiles. The analysis revealed the the presence of several potential 

binding sites for Ets TFs family, scattered along the pgsx-0.39 sequence (Fig. 3.7). Three of them 

were classified as Elk1/3/4 binding sites (El1,El2,El3 in yellow) and the other three were classified as 

general Ets binding sites (E1,E2,E3 in pink). The exhaustive analysis permitted to identify two 

fundamental sites for the activation of pGsx-039 promoter, namely El2 and E2. Constructs in which 

each Ets/Elk binding sites were mutated have been prepared using the QuikChange® Site-Directed 

Mutagenesis Kit “Stratagene” from pGsx-0.39>LacZ construct. The oligo used for the mutation of 

the putative Elk (El2) and Ets (E2) binding site involved in Gsx activation have been replaced by a 

sequence that reduced the binding affinity, by using mutagenic oligonucleotides of about 50 bp, listed 

in Table 2.6. According to the manufacturer's instruction, these mutated oligonucleotides have been 

used for a PCR reaction using as template pGsx-0.39>LacZ.  

The PCR reaction has been carried out using PFU DNA polymerase, and these cycling parameters:  

Ø First step (1 cycle). DNA denaturation: 30'' at 95°C. 

Ø Second step (repeated for 18 cycles). 

DNA denaturation: 30'' at 94°C. 

Oligonucleotides annealing: 1' at 55°C 

Polymerization: 68°C for 7'. 

The presence of amplified product has been checked on 1% agarose gel. At this point, to eliminate 

the wild type plasmid, used as template, the mixture has been digested at 37°C for 1.5 hour, with 1 µl 

of the DpnI  restriction enzyme (10 U/µl). This enzyme digests only the methylated supercoiled 
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dsDNA used as template, but not the newly synthesized mutated and unmethylated DNA. After the 

digestion, an aliquot of the reaction has been transformed and grown as previously described. Ten 

clones have been selected after growth; the isolated plasmids have been sequenced to check the 

presence of mutations. 

In Table (2.6) the mutagenic oligonucleotide sequences are reported. The wild type sequence for each 

putative binding site is indicated as wt (wild type); putative Ets/Elk binding sites are highlighted in 

green and and the corresponding mutated sequences are indicated in red. 

The double mutant for El1/E2 binding sites, was obtained by mutating E2 on the single mutant 

Mut/E11>LacZ. 

 

  Table 2.4: Mutagenic oligonucleotides 

Wt El2 5’-CAAGTGGAACGCGCTGCTGATTTCACTTCCCTGGTCTCCAACTG-3’ 

MutEl2F 5’-CAAGTGGAACGCGCTGCCCAGGGCACTTCCCTGGTCTCCAACTG-3’ 

MutEl2R 5’-CAGTTGGAGACCAGGGAAGTCCCTGGGCAGCGCGTTCCACTTG-3’ 

Wt E2 5’-GGCGATCCGGGGTTCGATATTTCCCATGGTCGGCGCTGCTAGATCGCGA-3’ 

MutE2F 5’-GGCGATCCGGGGTTCGATATAGCGCGACCCCGGCGCTGCTAGATCGCGA-3’ 

MutE2R 5’-TCGCGATCTAGCAGCGCCGGGGTCGCGCTATATCGAACCCCGGATCGCC-3’ 

2.23 Chemical inhibition 

The strategies adopted to interfere with the signaling patwhays active on neural plate included also 

the chemical inhibition. Embryos at different developmental stage were treated with specific drugs 

able to inhibit each considered pathway. 

In particular for Nodal, the embryos were treated with SB431542 (Tocris), a pharmacological 

inhibitor of the TGFβ type I receptors ALK4/5/7 (Inman et al., 2002). This inhibitor blocks the 

receptors, for Activin and Nodal ligands, without inhibiting other ALK family members binding other 

ligands (Inman et al., 2002). SB431542 was added to dechorionated embryos at the developmental 

stage of 16-cells, in a final concentration of 5 µM starting from a stock solution of 25 mM. 
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To interfere with delta/notch signaling the embryos were treated with  DAPT (Calbiochem), inhibitor 

of  gamma-secretase, an enzime necessary for the Notch receptor processing. DAPT was dispensed to 

dechorionated embryos at the 110 cells stage. The working solution was 100 µM starting from a stock 

solution of 100 mM.  

The chemical inhibition of FGF was performed using the molecule U0126 that specifically blocks 

MEK/ERK (Duncia et al., 1998). U0126 was added to dechorionated embryos at the 110 cells stage. 

The stock solution was 100mM while the working concentration was 4 µM. 

The embryos treated were washed in MFSW several times at gastrula stage then were fixed for  

WMISH at late gastrula and neurula stages. 

2.24 Pressure test  

To characterize animal behaviour, wild type animals were put in a recording chamber designed by 

Dr  Bezares-Calderón LA. The chamber consists of a box of the following dimensions 

(width×depth×length=25·mm×100·mm×70·mm). The main frame is made of steel. On front and 

lateral sides there are glass screen, while the other sides are made of dark plastic material. To increase 

pressure air was directly inflated into the chamber by a sealed hole on the lid. The lid was placed on 

the rest of the chamber and tightly screwed to prevent air dispersal. The air was provided by a 

pressurized air system directly connected to two valves (an increase valve to pressurize the chamber 

and a release valve to restore normal pressure levels) and a manometer to measure exactly the added 

pressure. The chamber is filled until 80% of the volume with MFSW containing larvae and the 

remainig with air. The illumination was provided by both lateral sides by nonactinic far-red 

photodiodes  (wavelength 640·nm). 

2.24.1 Hydrostatic pressure changes 

The Hydrostatic pressure inside the chamber was increased providing pressurized air. The pressure 

changes were finely controlled by the manometer outside the chamber. The experimental conditions 
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were: 30seconds before stimulation, 90 seconds of pressure increase of 1bar and 30 seconds of 

pressure release. The normal pressure level was rapidly reached simply opening the restore valve. 

2.24.2 Define Interval of response 

The first step of this analysis was to define the developmental window in which the hydrostatic 

pressure response is considerable. Then three different wild type batches were analyzed indipendently 

in the pressure chamber designed by Dr. Bezares. Starting from 30’ after hatching animals were 

placed at 1h interval in the chamber, their swimming behavior was recorded and then placed back in a 

glass beaker at 18°C. 

2.24.3 Characterize the pressure behaviour 

Six indipendent experiments were conducted to define the hydrostatic pressure response. The 

behavior of wild type larve was recorded at 1,5h post-hatching. The recording schedule is divided in 

30s no pressure, 90 seconds pressure increase of 1 bar and then 30 seconds pressure release. 

2.24.4 Recording   

The animal movements were recorded, for the above mentioned time interval, in the chamber by a 

camera from Imagin Source (DMK 42BUC03) recording in 8 bit at a resolution of 1280x 960 pixel 

(1.2MP) up to 25fps  and sensible to IR illumination. To the camera is attached a 1/3” lens from 

Computar (HG1214FCS-L) the focal lenght is 4mm and the aperture is f1,2. Thanks to the nonactinic 

far-red illumination from both sides animals appear as white spots on the dark background. The focus 

was tuned each time manually, while the exposure and the gain was determined before recordings and 

fixed as default to reduce video variability. All the recording were performed in a dark room at 18 °C. 

The recording software is IC Capture from imaging source. 
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2.24.5 Tracking 

The resultant movie from each recording was analysed by image j to track the animal movements and 

extrapolate spatial parameters. The raw videos were analyzed according to the script develped by Dr. 

Martin Gühmann. The raw video is splitted in smaller fragments of 30 frames (2 seconds) to facilitate 

the analysis. Then the background is calculated and subtracted to each frame. The video is than 

inverted so the animals now appear as black dots in a white background, this is useful to speed up the 

tracking because the software has to consider less moving objects. The resultant video is then 

tresholded. The last step is to subject the videos to the mTrack2 plugin. The plugin analyze the videos 

and gives back a list of spatial parameters from wich the larvae movements were extrapolated and 

plotted. 

2.24.6 In vivo imaging 

To test in vivo calcium imaging animals were put in another device developed by Dr Bezares-

Calderón LA. It consisted in a chamber that fits into the holding tray of the confocal microscope. 

That device has a cavity in the middle connected by two openings through wich is possible to 

increase pressure inflating pressurized air. The animals are attached on a round cover slip by gluing 

their tail in a drop of glue dispersed in a small volume of MFSW. The cover slip is then reversed to 

the chamber enabling the glued animal to face the cavity and tightly screwed. The animals undergo 

confocal microscopy analysis. The GCaMPs consist of a circularly permuted enhanced green 

fluorescent protein (EGFP), which is flanked on one side by the calcium binding protein calmodulin 

and on the other side by the calmodulin binding peptide M13 (Nakai et al., 2001). In the presence of 

calcium, calmodulin-M13 interactions elicit conformational changes in the fluorophore environment 

that lead to an increase in the emitted fluorescence (Nakai et al., 2001; Tian et al., 2009). To detect 

the fluoresce increase the animals were subjected to a z-scan analysis in three conditions: prior to 

pressure stimulation, 1bar pressure increase and pressure release.Since the signal coming from 

GCaMP fusion protein was not always detectable to focus on coronet cells the animals were 
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coelectroporated also with pTH>H2B>mCherry. The resultant images were processed by image j to 

generate a z-projection with maximum intensity. The imagese were presented as 16 colors heatmap 

that reflected the fluorescence intensity. The resulting intensities of each condition were then 

compared to test whether there is an appreciable change in GFP signal among them subsequently to a 

calcium increase reflecting  neuronal activity. 
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Results and Discussion 

3.1 Generation of cell diversity in Ciona CNS: Neural Plate a-Lineage Row III Patterning 

To study the molecular mechanisms involved in the patterning of a-lineage row III blastomeres, we 

interfered with the Nodal and Delta/Notch signaling pathways in different ways, as chemical 

inhibition, injection of anti-sense morpholino oligonucletides (MO) and transgene overexpression. To 

follow the patterning of each blastomere, I carried out in situ hybridization experiments by using a set 

of three genes, Trp, Gsx and Meis, which label row III cells in columns 3 (lateral), 2 (intermediate), 

and 1 (medial), respectively, at neurula stages. The expression of Trp and Meis was checked at 

neurula stage (8h of development at 18°C) when neural plate blastomeres have divided along A-P 

axis. Gsx expression was analyzed in embryos at slightly earlier neurula stage (7,5h of development 

at18°C) because later Gsx starts to be expressed also in column 1. The MO injection experiments 

were carried out by Yasuo group in Villefrance, whereas chemical inhibition, transgene 

overexpression and in situ hybridization experiments were shared between Yasuo and our laboratory.  

This part of my thesis work has been recently published (Esposito et al., 2017). 

3.1.1 Nodal signalling and lateral patterning 

Nodal is expressed in the b-lineage cells adjacent to the most lateral a-lineage precursors since 32-cell 

stage (Fig. 3.1).  

To inhibit Nodal activity, embryos were treated with the pharmacological inhibitor SB431542 

(inhibitor of TGFβ type I receptors ALK4,5,6) or injected with Nodal antisense morpholino 

oligonucleotide (Nodal-MO). Both treatments resulted in loss of Trp expression from column 3. Gsx 

expression in column 2 was also strongly reduced following Nodal signal inhibition. 
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Results and Discussion 

 

Fig. 3.1. Expression patterns of Nodal. Schematic drawings showing sequential activation of Nodal during the 32-cell 
stage to 6-row neural plate stage. Gene expression is indicated by black dots, with weaker expression represented by grey 
dots. The a-lineage neural plate cells that generate the CNS are colored in red.   

However, in many embryos endogenous Gsx expression was lost from column 2 and was ectopically 

present in column 3. This data indicate that Nodal is involved in activation of Gsx in column 2 and, at 

the same time, in Gsx inhibition in column 3.  Meis was ectopically expanded in column 2 (88% of 

nodal MO; 96 % of SB treated embryos) and in column 3 (18% of nodal MO; 27 % of SB treated 

embryos) (Fig. 3.2). Hence, the data indicates that Nodal is required for the correct specification of 

row III since it promotes column 3 identity (by activating Trp and repressing Gsx), column 2 identity 

(by activating Gsx) and represses medial column gene expression (by repressing Meis) in lateral cells.  

On the other hand, overexpression of Nodal, using the upstream regulatory sequences of FOG 

(pFOG>Nodal) to drive its expression throughout the animal hemisphere from the 16-cell stage of 

development (Hudson et al., 2015; Pasini et al., 2006; Rothbacher et al., 2007) resulted in opposite 

effects. Indeed, an ectopic expression of Trp and a loss of both Gsx and Meis expression was detected 

throughout the row III daughters (Fig. 3.2). This data indicate that Nodal is able to induce column 3 

identity and repress column 1 and 2 identity.  

Collectively, these experiments point to an important role played by Nodal in specifying columns 2 

and 3 and in repressing column 1 identity. 
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Fig. 3.2 Nodal pattern the a-lineage CNS precursors. Markers analyzed are indicated to the left, embryo treatment 
indicated above the columns. All embryos are at neurula stage in dorsal view. Red arrowheads or brackets indicate 
ectopic expression. Some embryos are stained with DAPI to confirm cell identification. n= total number of embryos 
analyzed. 

3.1.2 Delta/Notch signaling in column 1 and 2 fates  

Delta-like (previously Delta2) is one of the known target of Nodal signaling in Ciona. It is expressed 

in b-lineage neural precursors as well as in vegetal A-lineage cell at the 64-cell stage (Fig. 3.3) At the 

early gastrula stage, Delta-like is expressed in the lateral A-lineage neural precursors and b-line cells 

and later, at neural plate stage, it is expressed in the lateral borders of the neural plate (Fig. 3.3). 

 

Fig. 3.3. Expression patterns of Delta-like. Schematic drawings showing sequential activation of Delta-like during the 
32-cell stage to 6-row neural plate stage. Gene expression is indicated by black dots, with weaker expression represented 
by grey dots. The a-lineage neural plate cells that generate the CNS are colored in red.   
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Notch receptor transcripts are instead present ubiquitously during early cleavage stages with 

expression detected from the late gastrula stage in the developing nervous system (Imai et al., 2004). 

To inhibit Delta-like/Notch signaling, I treated the embryos from the 76-cell stage with DAPT, an 

inhibitor of gamma-secretase, an enzyme required for Notch receptor processing. A further way to 

interfere with the signaling involved the injection of mRNA coding for a dominant negative form of 

Suppressor of Hairless, a transcription factor known to mediate Notch signaling. In both cases, I 

observed a strong reduction in Gsx expression and concomitantly, an ectopic expression of Meis in 

column 2 (Fig. 3.4). On the other hand, overexpression of Delta-like, by electroporation of the 

construct pFOG>Delta-like, induced an opposite effect, means that the expression of Meis was 

completely lost and Gsx was ectopically expressed in column 1 (Fig. 3.4).  

 

 

Fig. 3.4 Delta/Notch pattern the a-lineage CNS precursors. The markers are indicated to the left, embryo treatments 
above the columns. All embryos are at neurula stage in dorsal view. Red arrowheads or brackets indicate ectopic 
expression. n= total number of embryos analysed. 

 

Thus, it appears that Delta-like/Notch signals promote column 2 fates at the expense of column 1 

fates in the a-lineage neural plate. 
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3.1.3 FGF and anterior-posterior patterning of a-lineage row III 

One of the signaling molecule playing a fundamental role in Ciona CNS development is the 

Fibroblast growth factor (FGF) signaling, which is responsible for early neural induction of a-line 

neural lineages since the 32-cell stage (Bertrand et al., 2003). The requirement for FGF signaling 

persists at the neural plate stage, when it acts to promote A-line row I fates and repress row II fates 

(Hudson et al., 2007), through a differential activation of Erk1/2 between row I (active) and row II 

(inactive). The same differential activation of Erk1/2 occurs also in a-line III/IV sister rows, where 

Erk1/2 is activated in row III and is inactive in row IV. Thanks to this mechanism, the most lateral a-

cells row III, the a9.49 pairs (Fig. 1.8) are directed to the fate of otolith and ocellus pigmented cells, 

via the well known FGF downstream effector, Ets1/2 (Haupaix et al., 2014; Hudson et al., 2007; 

Racioppi et al., 2014; Squarzoni et al., 2011). Furthermore, more recently, it has been suggested that 

FGF signaling is involved also in specifying medial lineages of row III (a9.33 and a9.37), through 

two different Ets family transcription factors, Ets1/2 and Elk 1/3/4 (Gainous et al., 2015).   

On these grounds, my next efforts were devoted to finding a direct relation between FGF and Gsx, the 

marker for the intermediate column of row III (a9.33 blastomere pair). As first approach, I used the 

pharmacological agent U0126, a known inhibitor of the MAP kinase kinase, MEK1/2.  The results 

revealed that U0126 treatment almost completely abolishes Gsx expression in the neurulae (Fig. 3.5), 

compared to the controls. As already reported, previous studies in the Laboratory, done by the former 

PhD student Rosaria Esposito, permitted the identification of the minimal regulatory element of Gsx 

(pGsx-0,39) responsible for its expression since the neural plate stage. I thus treated with U0126 the 

transgenic pGsx-0,39>LacZ Ciona embryos, in order to analyse its effects on the regulation of Gsx 

expression. As for the endogenous Gsx, U0126 treatment resulted in block of LacZ expression in 

pGsx-0,39>LacZ transgenic embryos (Fig. 3.5), indicating FGF/MEK1/2 involvement in Gsx 

transcriptional regulation. 
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Fig. 3.5 Effects of U0126 on Gsx endogenous transcript and its regulatory region. 

In the next step, I tried to address this question: which Ets family member, Ets1/2, Elk1/3/4 or both, 

translates FGF signalling and induces Gsx expression? To reach this goal, I exploited the constructs, 

available in the Laboratory, in which constitutively inactive and active forms of Ci-Ets1/2 

(Ets:WRPW and Ets:VP64, respectively) or Elk1/3/4 (Elk:WRPW and Elk:VP64, respectively) 

transcripts are under the ZicL promoter (Shimai et al., 2010) (pZicL/Ets:WRPW, pZicL/Ets:VP64, 

pZicL/Elk:WRPW, pZicL/Elk:VP64). ZicL promoter is active in the neural lineage since the neural 

plate stage (Shimai et al., 2010). 

The analysis showed that both constructs pZicL/Ets:WRPW and pZicL/Elk:WRPW behave almost 

similarly, in the sense that both led to a reduction of endogenous Gsx expression, while the use of 

pZicL/Ets:VP64 and pZicL/Elk:VP64 constructs did not result in any significant difference in the 

pattern of Gsx (Fig. 3.6). 
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Fig. 3.6 Effects of interference with Ets/Elk factors on Gsx endogenous transcript. The graphs indicate the percentage 
of embryos showing Gsx expression in each category. Two experiments (shown in two different colors) were done for 
each group (Ets and Elk) of transgenes.  

 

These results clearly show that both, Ets and Elk family members, are involved in the activation of 

Gsx in the neural plate.   

The entire pGsx-0.39 region was thus subjected to bioinformatic analyses, in order to identify 

putative consensus binding sites for Ets family transcription factors. The bioinformatic analysis of 

Gsx promoter revealed the presence of several potential binding sites for Ets TFs family, scattered 

along the pGsx-0.39 sequence (Fig. 3.7). Three of them were classified as Elk1/3/4 binding sites 

(El1,El2,El3 in yellow) and the other three were classified as general Ets binding sites (E1,E2,E3 in 

pink). 

 

Fig. 3.7 Ets/Elk binding sites on pGsx-0.39 promoter fragment. In yellow Elk and in pink Ets putative recognition 
sequences. The sites involved in Gsx activation are underlined. 

 

Taking into considerations the results obtained from different round of mutagenesis, in which I 
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mutated each binding site alone or in combination with others, this exhaustive analysis permitted to 

identify two fundamental sites for the activation of pGsx-039 promoter, namely El2 and E2 (Fig. 3.7, 

underlined). Indeed, as emerged from three experiments, in the double mutant El2+/E2 electroporated 

embryos only around 10% of them showed a conspicuous activation of the promoter, as revealed by 

LacZ staining, in the endogenous Gsx regions compared to around 70% of control embryos (+++ in 

Fig. 3.8A). Thus, it appears that Ets and Elk consensus binding sites are involved in the minimal 

promoter expression.  

 

Fig. 3.8 Identification of Ets/Elk binding sites on Gsx promoter. A) Representatives of Ciona neurula embryos showing 

strong (+++), low (+) and no (-) transgene expression after electroporation of the constructs of interest. B) Diagram 

illustrating the percentage of embryos, from three different experiments (color code), showing Gsx expression in each 

category	

3.1.4 Concluding Remarks 

Collectively my data further confirm Ciona as a very useful model system to understand 

developmental strategies adopted in the lineage of chordates to shape the different body structures. In 
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particular, the neural plate shows a grid-like organization with only six rows and eight columns of 

aligned cells, in which each cell express specific markers at precise developmental times and can be 

easily identified, thus permitting to study cell fate diversification at the level of individual cells. This 

is a huge advantage, compared to the thousands of cells present in vertebrates, for studies aimed at 

investigating both the precise role played by each signalling pathway and transcription factor and, at 

the same time, their complex interplay in shaping the CNS.   

My studies contributed to add a further stone to the neural plate mosaic, since Idemonstrated that, 

despite the distinct embryonic lineage origins within Ciona larval CNS, the mechanisms that pattern 

the posterior A-lineage and the anterior a-lineage neural precursor are remarkably similar. In this 

scenario, Nodal signalling is required for lateral neural plate fates and Delta/Notch refines the initial 

pattern established by Nodal and subdivide each of the lateral and medial domains to generate four 

columns. Superimposed on this mediolateral pattern is the FGF signaling, which induces differences 

in antero-posterior identities through the differential activation of Erk1/2 between rows I and II (A-

lineage) and between rows III and IV (a-lineage). My data permitted also to collect further evidences 

on the mechanisms by which signalling pathways are integrated at the level of transcriptional control 

of cell-type-specific gene markers. Previous studies from my laboratory assigned a fundamental role 

to FGF signaling in pigment cell specification by directly activating Ci-TCF in the a9.49 cells (the 

most lateral a-lineage row III cells) through FGF downstream effector Ets1/2. In the course of my 

thesis work, by performing chemical and transgene-mediated inhibition, I collected evidences that 

FGF signaling pathway directly activates Gsx expression in the a9.33 cells (the intermediate a-lineage 

row III cells) through Ets1/2 and Elk1/3/4 factors. This is in line with recent data from Levine Lab 

(Gainous et al., 2015) which indicate that both Ets1/2 and Elk1/3/4 shows partially redundant 

activities in intermediate and medial lineages (a9.33 and a9.37) of row III.  

Thus, FGF signaling is involved in Gsx activation. However, it is not hard to imagine that further 

mechanisms, besides FGF, are responsible for a so precise and definite expression, including 
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repressive mechanisms that block Gsx expansion in the lateral and anterior blastomeres. And indeed, 

data from Yasuo and my laboratory indicate that Snail and Msxb transcription factors are both 

required to repress Gsx expression in lateral column 3 (Esposito et al., 2017). Further studies are 

currently ongoing in the lab to reveal the molecule(s) responsible for blocking anterior expansion of 

Gsx and the related regulatory mechanisms.   

3.2 Photoreceptor cells (PCRs) lineage 

As previously mentioned, the developmental story of PRCs lineage is still debated. Initially it was 

suggested that PRCs originate from the right blastomeres a9.33 and a9.37 of the neural plate stage 

(Cole and Meinertzhagen, 2004). This was confirmed by later studies using Arrestin antibody (Horie 

et al., 2005). However, these data have been recently challenged, since it has been suggested that 

photoreceptor cells derive from more posterior regions of the neural plate, most likely medial regions 

of row II (Gainous et al., 2015). A further refinement of these studies indicated that the photoreceptor 

cells of the pigmented ocellus develop from the right A9.14 cell, while those of the non-pigmented 

ocellus develop from the right A9.16 cell (Oonuma et al., 2016).  

As previously described, Gsx is firstly detected at the neural plate stage in the a9.33 blastomeres (Fig. 

3.9 A,B yellow arrow) and, as development proceeds, a further signal appears more posteriorly ((Fig. 

3.9 C,D green arrow) in a region that is likely to be part of A-lineage descendant.   

To unveal if the Gsx later posterior emerging territories could mark the A-lineage progeny, double in 

situ hybridization experiments were carried out using Gsx in combination with Ci-FoxB probe at 

different developmental stages. 

At neural plate stage Gsx expression is detectable in the a9.33 pair, while FoxB in the more posterior 

A-lineage row II, specifically in the A9.14 and A9.13 pairs (Fig. 3.10A). At the neurula stage, Gsx 

expands medially, in the a9-37 lineage, while FoxB elongates posteriorly (Fig. 3.10 B). As 

development proceeds a further Gsx signal appears more posteriorly in a region that is likely to be 
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part of A-lineage descendants and that overlaps with the anterior FoxB expression domains (turquoise 

arrow in Fig. 3.10 C, D, D’, D’’).  Thus, it appears that Gsx in the early developmental stage is 

present in a-lineage territories and from late-neurula/early-tailbud stage it marks also the anterior A-

lineage blastomeres, coinciding with anterior FoxB expression in the nervous tissues. This indicates 

that Gsx could represent a good marker for the “old” but also for the “revised” lineage of 

photoreceptor cells. 

 

Fig. 3.9 Gsx in situ analysys. Merged images, all in dorsal view, of Gsx WMISH, plus DAPI nuclear staining (in blue), at 
different embryonic stages, reported on the bottom of each picture row. Yellow arrow indicates the anterior (a-lineage) 
expression of Gsx while turquoise arrow indicates the posterior (A-lineage) domain of Gsx, 

 

Fig. 3.10 Positional relationship of Gsx and FoxB gene expression. Merged images, all in dorsal view, of double 
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WMISH, plus DAPI nuclear staining (in blue), at different embryonic stages, reported on the bottom of each picture row. 
D’ and D’’ are enlarged and more dorsal images of D. Yellow arrow, in C, D, D’, D’’, indicates the anterior (a-lineage) 
expression of Gsx while turquoise arrow indicates the posterior (A-lineage) domain of Gsx, which overlaps with the 
anterior domain of FoxB, 

3.2.1 pGsx reporter genes to label derivatives of Gsx expressing blastomeres at the larval stage  

	
As previously reported, the signal from Gsx endogenous transcript is not detectable at the larval 

stage. To clarify if Gsx expression labels the precursors of larval photoreceptor cells, my research 

strategy involved the detection of fluorescent reporters downstream of the 2.8Kb cis-regulatory 

region of pGsx (pGsx>mCherry) previously identified in the Lab. Indeed, pGsx>mCherry construct 

(as the other pGsx constructs used in this study), thanks to the stability of the fluorescent protein 

product, is able to recapitulate endogenous gene expression up the larval stage, when a strong signal 

is clearly detectable in the presumed photoreceptor cells territory. A further signal is often visible also 

in the ventral part of the sensory vesicle (Fig. 1.11, G, H).  

It is important to remark that the slight variations in the territories expressing mCherry among 

different embryos are in agreement with the mosaic incorporation of transgenes in ascidians, in the 

sense that after a variable number of  cell  divisions,  the exogenous plasmid might segregate into 

both or only one of the 2 daughter cells originating from  a  single precursor.  Depending on  the 

number  of  cell  divisions,  a  variable  number  of  cells within  a  tissue  will  come  to  lack  the  

transgene. 

For double electroporation experiments I exploited also pGsx>GFP and pGsx>H2BmCherry 

constructs, the last labelling specifically the nuclei of the transgenic cells thanks to the presence of 

the Histone 2B domain.  

3.2.2 pGsx labels PRCs territories at the larval stage 

To test if pGsx could effectively drive the expression of the reporter gene in photoreceptor territories 

at the larval stage, double electroporation experiments were performed using pGsxH2B>mCherry in 
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combination with pArr>eGFP, which labels specifically larval photoreceptor cells (Yoshida et al., 

2004). The results were comparable between several independent experiments and the percentage of 

larvae showing both signals was more than 90%. The expression of the reporters was checked at 

different developmental stages and only from late tailbud/initial larval stage the pArr>eGFP driven 

signal became evident (Fig. 3.3 A, B) and was detected in a subpopulation of pGsxH2B>mChe 

fluorescent cells (yellow areas).  The co-expression persisted and, in most cases, become even 

stronger at the larval stage, showing that pGsx labels a population of neural cells, which includes the 

pArr expressing cells.  

 

Fig. 3.11 Confocal imaging of pGsx>H2BmCherry + pArr>eGFP constructs. Merged images, in dorsal (A, B) and 
lateral (C, D) view.  Overlapping territories result in yellow areas. 

3.2.3 Photoreceptor territories: A-lineage or a-lineage? 

My data indicates that pGsx is able to guide the expression of the reporter gene in some areas of the 

CNS, including photoreceptor territories. On the other hand, Gsx transcript labels both A-lineage and 

a-lineage during embryogenesis. In the attempt to gather further information on the contribution of 

a/A-lineages to photoreceptor cells formation, I performed a number of double electroporation 

experiments, exploiting pArr>eGFP in combination with: pDMRT>H2BmCherry (or 

pDMRT>H2BYFP), which drive reporter expression in a-lineage neural plate derivatives (Wagner 

and Levine, 2012) or pFoxb>H2BmCherry (pFoxB>H2BYFP), which drives reporter expression in 

A-lineage neural plate derivatives (Imai et al., 2004).  

Electroporation of pArr>eGFP + pFoxb>H2BmCherry constructs resulted in tailbud embryos and 

larvae showing overlapping fluorescent signals in a wide area that in some cases did not include the 
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most anterior Arrestin positive territory (Fig. 3.4). 

	

Fig. 3.12 Confocal imaging of pFoxb>H2BmChe + pArr>eGFP constructs. Merged images, in dorsal (A, B) and lateral 
(C, D) view.  Overlapping territories result in yellow areas. 

	
Electroporation of pArr>eGFP + pDMRT>H2BmCherry constructs resulted in tailbud embryos and 

larvae with the overlapping signal present in a small area often localized at the level of anterior 

Arrestin positive cells (Fig. 3.5).  

 

Fig. 3.13 Confocal imaging of pArr>eGFP + pDMRT>H2BmChe constructs. Merged images, in dorsal (A, B) and 
lateral (C, D) view.  Overlapping territories result in yellow areas 

 

Thus, my double electroporation experiments, while confirming that the bulk of photoreceptor cells 

of the ocellus are A-lineage derived, as recently inferred (Oonuma et al., 2016), suggest that also a-

lineage, with a small number of cells, could participate in the organization of this structure.  

In parallel, the same approach was used to explore the localization, in photoreceptor territories at the 

larval stage, of the progeny of a- and A-lineage blastomeres expressing Gsx. To this end, I performed 

double electroporation experiments, exploiting pGsx>GFP (or pGsx>H2BmChe) in combination 

with: pDMRT>H2BmCherry (or pDMRT>H2BYFP), or pFoxb>H2BmCherry (or pFoxB>H2BYFP). 
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In a series of experiments I tested the probable contribution of a-lineage Gsx expressing blastomeres 

to the formation of PRCs by co-electroporating pGsx>eGFP plus pDMRT>H2BmCherry and 

analyzed the embryos from the late-taibud stage. In most of the specimens analyzed in this study, I 

observed that the signals of mCherry and GFP overlap in the Gsx anterior domain of “photoreceptor 

territories” which corresponds to the more-posterior area of DMRT positive region.  This co-

localization persisted up to the larval stage (Fig. 3.6).  

 

Fig. 3.14 Confocal imaging of pGsx>GFP + pDMRT>H2BmChe constructs. Merged images, in dorsal (A, B) and 
lateral (C, D) view.  Overlapping territories result in yellow areas.  

 

Co-electroporation of pGsx>H2BmCherry plus pFoxB>H2BYFP transgenes resulted instead in 

tailbud embryos showing a co-localization of fluorescent signals in the posterior region of Gsx 

“photoreceptor territories” (Fig. 3.7). The overlap of the two signals persisted up to the larval stage.  

 

Fig. 3.15 Confocal imaging of pGsx>H2BmChe + pFoxB>H2BYFP constructs. Merged images, in dorsal (A, B) and 
lateral (C, D) view.  Overlapping territories result in yellow areas. 

This part of my work permitted to get insights on the contribution of a/A-lineage to Gsx expression in 

the “presumed photoreceptor territories” from late-tailbud up to the larval stage.  
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3.2.4 Concluding Remarks 

The revised lineage of larval photoreceptor cells in Ciona, by Oonuma et al. (Oonuma et al., 2016), is 

consistent with the photoreceptor cell lineage reported in another ascidian species, Halocynthia 

roretzi (Taniguchi and Nishida, 2004). It is interesting to note that in Halocynthia the authors claim 

that the Hrarr-positive region almost precisely match the region derived from A8.7R (right) (the 

progenitor of A9.14) blastomeres. However, they also highlight that “descendant cells of a8.17R 

(Right), which are progenitor of a9.33, were mixed with those of A8.7R, and the position of each 

descendant cell varied among specimens. This indicates that precise positions of the descendant cells 

are not deterministic at the clonal boundary between a8.17R and A8.7R, and that intercalation occurs 

between a8.17R and A8.7R derivatives “to some extent”.  In line with this, in my experiments I just 

noticed that the few a-lineage/Arrestin overlapping cells were undoubtedly mixed with other cells 

and, although preferentially positioned in the most anterior “photoreceptor territories”, showed 

variable location in this region.  

Thus, even if the majority of photoreceptor cells derive from A-lineage I cannot exclude that, based 

on my data, a small contribution is also provided by a-lineage cells. In this regard, as previously 

reported, Ciona photoreceptor cells fall into three main classes I, II and III, with the first two of these 

constituting the 30 known ocellus pigment cup associated photoreceptors, 18-23 in group I and 7-11 

in group II. The outer segments of group I are arranged in rows inside the pigment cup while outer 

segments of group II photoreceptors occur anterior to the pigment cup, within the lumen of the brain 

vesicle (Horie et al., 2008b). Recently Ryan et al. have studied, by means electron microscopy, thin 

sections from the brains of Ciona larvae to analyze their connectome (Ryan et al., 2016). This study 

revealed that the group II comprises seven most anterior PRCs that project outer segments directly 

into the lumen of the SV. They are in contact with lens cells and extend axons toward the posterior 

brain vesicle along the main photoreceptor axon tract, on the right ventral border of the CNS. There 

are two rows of these type II photoreceptors, one row of three photoreceptors (Type II-i) anterior to 
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the pigmented portion of the ocellus pigment, and another row of four (Type II-ii) photoreceptors 

located more posteriorly. Type I photoreceptors lie adjacent to the Type II photoreceptors on the 

dorsal right side, but extend their outer segments into the ocellus pigment cup. These Type I 

photoreceptors are grouped in five rows (I-i to I-v) of 5, 5, 4, 4, and 5 cells respectively and it seems 

that most of them (I-i, I-ii, I-iii, I-iv) express reporters for glutamate, whereas II-i, II-ii, and possibly 

I-v express reporters for GABA (Horie et al., 2010; Horie et al., 2008b; Ryan, 2016). This 

ultrastructural analysis revealed also the connections between the photoreceptors (Ryan, 2016; Ryan 

et al., 2016). All layers appear to be fully connected. Anatomically strongest interactions amongst 

rows of photoreceptors are bidirectional between Type I-i and I-iv, I-i and I-iii, and I-i and I-v. In 

contrast, Type II photoreceptors receive input from both Types I-iv and I-v. At the level of light 

perception and neurotransmitter action, when light is off, the glutamatergic photoreceptors reinforce 

each other’s release of glutamate, whereas a “light on” response prevent the release of glutamate by 

all photoreceptors. If Type I-v and Type II photoreceptors are GABAergic, and still hyperpolarize to 

light, then they should inhibit their photoreceptor targets, which express GABA receptors according 

to Zega et al. (Zega et al., 2010). Thus the new scenario, emerged from this exhaustive study, 

indicates that not all the PRCs have the same role in perceiving and transmitting light inputs. 

Furthermore, even considering the simplicity of Ciona ocellus, the signals generated from light 

perception are integrated thanks to the cross talk between the different types of PRCs, before being 

transmitted to the posterior brain and to the visceral ganglion, in order to generate the proper muscle 

contraction.  

It is interesting to note that the type II PRCs, about 7 in number and the anterior-most PRCs, are 

GABAergic, while type I PRCs about 23, and located more posteriorly are most Glutamatergic.   

It is tempting to speculate that these different characteristics could be related to different lineage 

origins, with type II generated by a-lineage and type I originated by A-lineage. On these grounds, we 

have just planned to check this hypothesis by doing double immuno experiments on transgenic 
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pDMRT>H2BmChe, pFoxB>H2BmChe or pGsx>H2BmChe larvae using mCherry and either GABA 

or Glutamate antibody.   

Concerning Gsx, the data collected in this part of my study indicate that Gsx, in spite of the recent 

lineage revision, remains a good marker of photoreceptor cells given its expression from neural plate 

stage in a-lineage, which labels the “old” photoreceptor precursors, and its next activation, at the 

neurula stage, in the A-lineage, which includes the “new” photoreceptor precursors. Based on these 

new findings, we have planned to further refining the previous studies, done by the former PhD 

student Rosaria Esposito, on Gsx activity in photoreceptor formation. Our analysis will include the 

effects exerted by targeted perturbation of the endogenous Gsx function, obtained by expressing 

constitutively active and repressive forms of Gsx, on endogenous Arrestin expression and on the 

activity of Arrestin promoter at the larval stage. The aim is to further supporting previously collected 

evidences on the involvement of Ciona Gsx in the developmental programs leading to photoreceptor 

cells differentiation, which opens new perspectives about the function of this transcription factor in 

nervous system formation during evolution. 

3.3 Behavioural tests on Ciona larvae 

Even simpler organisms are able to respond to diverse environmental stimuli, including the 

hydrostatic pressure that increases with dept. For a free-swimming animal, it is essential to be 

spatially placed at the correct depth. As regard to Ciona, still little is known about a “pressure 

response” and the sole study on this subject (Tsuda et al., 2003b) suggests that pressure increase does 

not affect larval swimming. However, this issue needs to be further investigated, since it is difficult to 

imagine that a free-swimming animal, even if evolutionary simple, is unable to detect a force acting 

on its body. In the last part of my PhD studies, my efforts were thus devoted to setting a series of 

texts in order to detect any behavioral modification of Ciona specimens, at different developmental 

larval stages, subjected to the increase of one bar of hydrostatic pressure. To this end, I spent 3 
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months in Gáspar Jékely lab, at the Max Planck Institute for developmental biology, working in 

collaboration with Dr. Luis Bezares.  

3.3.1 Does Ciona larva respond to pressure variations?  

In a first series of tests, Ciona larvae were analyzed 30’ after hatching in three independent 

experiments.  Larvae were moved to the pressure chamber 6 times at 1h-intervals (5 hours total). For 

each test, their swimming behavior was analyzed and recorded for a time window of 4 minutes, after 

which the larvae were placed back in the glass beaker at 18°C.  This analysis indicated that the 

animals seem to respond to 1 bar hydrostatic pressure increase by swimming quickly upwards, in the 

time window of 1,5h post hatching (Fig. 3.8). At later stages of larval development, this response was 

not more appreciable.  

	

Fig. 3.16  Response of Ciona larvae to pressure increase. The plot shows speed of animal recorded from 30’ after 
hatching at 1h interval. The recording schedule is divided in 30s no pressure, 90 seconds pressure increase of 1 bar and 
then 30 seconds pressure release. The maximum speed is 0,58mm/s at the 1,5h time point. Then the response rapidly 
decreases. 

3.3.2 Pressure behavior characterization 

The results of six independent experiments, aimed at further and better defining the hydrostatic 

pressure response, showed that a consistent subset of larvae, 1,5h post-hatching, swim faster upward 

at 1 bar pressure increase into the chamber. The speed extrapolated from the video recording reaches 
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an average maximum around 0,6mm/sec (Fig. 3.9). The observed behavior thus indicates that Ciona 

larvae are able to perceive and respond to hydrostatic pressure changes. Moreover, larvae stop 

swimming and start to sink as soon as the stimulus is finished. 

	

Fig. 3.17 Pressure behavior characterization. The plot describes the speeds recorded from six independent w.t. batches 
exposed to 1 bar pressure increase. The recording schedule is divided in 30 seconds no pressure, 90 seconds pressure 
increase of 1 bar and then 30 seconds pressure release. The larvae were exposed to pressure increase at time 0. The 
animals started to swim faster toward surface soon after the stimulation.  

 

3.3.3 Looking for structures involved into hydrostatic pressure response 

	
In the attempt to identify which structure could be involved in the detection of pressure increase, my 

attention was focused on the coronet/dopaminergic cells. To this end I prepared the pTH>GCaMP 

construct, in which the coronet/dopaminergic cells specific Tyrosine Hydroxylase (TH) promoter 

(Moret et al., 2005a), available in the Laboratory, was cloned upstream of the GCaMP reporter 

(genetically encoded calcium indicator).  

GCaMPs are engineered proteins that contain Ca2+ binding motifs within a circularly permuted 

enhanced green fluorescent protein (eGFP) and are used to monitor intracellular Ca2+ rising by 

detecting any increase in fluorescent emission from eGFP. The calcium influx is considered the key 
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marker of a neuronal activation, since calcium is necessary to receive and transmit the signal toward 

other neurons. In a first set of experiments I simply observed under confocal microscope double 

transgenic pTH>GCaMP/pTH>H2BmCherry larvae, 1,5h post-hatching. In these and in the next 

experiments pTH>H2BmCherry transgene was used in combination with pTH>GCaMP in order to 

better identify and focus the region to be analyzed, given that the fluorescent signal emitted by 

mCherry protein is more stable compared to the fluctuating signal emitted by GCaMP protein.  

Unexpectedly, during the observation of pTH>GCaMP transgenic larvae under confocal microscope, 

I detected and recorded an increase and decrease of the fluorescent signal, thus indicating a potential 

activity in these cells, induced by…. which stimulus? (Fig. 3.10).  

 

 

	
	
	
	
	
	
	
	
	
	
	
	
	

	
Fig. 3.18 GCaMP activity in transgenic larvae. The figures are extrapolated from the in-vivo recording of a double 
electroporated (pTH>GCaMP/pTH>H2BmCherry) larva. In (A, E and H) the green fluorescence is at basal level, while 
in (B,C,D,F and G) is evident an increase of fluorescent signal. This indicates that GCaMP fusion protein is detecting 
neuronal spykes triggered by calcium influx induced by a stimulus. The animal in this experiment was not exposed to 
pressure increase. 

3.3.4 GCaMP as tool to monitor neuronal activity in Ciona larvae 

I then tested if the pressure stimulation could further affect neuronal activity of coronet cells. To this 

end, I carried out in vivo experiments, by exposing double transgenic pTH>GCaMP + 

pTH>H2BmCherry larvae, 1,5h post-hatching, to 1 bar hydrostatic pressure increase.  



 
90 

	

Transgenic pTH>GCaMP/pTH>H2BmCherry larvae were first selected at 18hpf looking for 

mCherry signal positivity (the mCherry+ embryo percentage was around 95%) and then singularly 

checked under confocal microscopy. Positive larvae were glued singularly by the tail on a cover slip 

and then placed in a special chamber in which it is possible to apply increased pressure. This chamber 

has been designed by dr. Bezares and fits under the confocal microscope. The in vivo recordings were 

done in the time window of 1,5h post hatching under the confocal microscopy, by a Z-stack scan of 

the GCaMP positive area. Three independent experiments were performed. The experimental design 

consisted in two subsequent rounds of Z-stack recording: 30 seconds prior, 30 seconds 1 bar pressure 

increase and 30 seconds post increase pressure removal. 

 The analysis of about 10 larvae, from three rounds of experiments, indicated that GCaMP intensity 

does not change in response to pressure (Fig. 3.11, 3.12, 3.13). The only noticeable change was 

present in the third experiment during the “second round of pressure increase” (Fig. 3.13 D,E), but 

this is unlikely to consider it as a “pressure response” since it lasted also in the “post increase” period. 

Maybe this intensity change was triggered by other stimuli, probably light stimuli, since the animal 

was subjected to laser illumination.  
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Fig. 3.19 In the images are displayed the fluoresce intensities of pTH>GCaMP electroporated animals. In vivo z-scan 
analysis of larvae in three conditions: prior to pressure stimulation (A), 1bar pressure increase (B and D) and pressure 
release (C and E). The intensities do not change among different experimental condition. 

	

Fig. 3.20 In the images are displayed the fluoresce intensities of second indipendent pTH>GCaMP experiment. In vivo z-
scan analysis of larvae in three conditions: prior to pressure stimulation (A), 1bar pressure increase (B and D) and 
pressure release (C and E). The intensities do not change among different experimental condition. 

	

	
 

Fig. 3.21 In the images are displayed the fluoresce intensities of third electroporation pTH>GCaMP experiment. In vivo 
z-scan analysis of larvae: prior to pressure stimulation (A), 1bar pressure increase (B and D) and pressure release (C and 
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E). An increase of fluorescence can be observed in second pressure stimulation (D), but the signal is unlikely to be related 
to pressure perception because, in (E) the intensity of fluorescent signal appear even stronger. 

 

3.3.5 Concluding Remarks 

My results, even if preliminary and to be further investigated, indicate the presence of a “pressure-

behavior” in Ciona larvae, thus contradicting, for some aspects, the previous findings by Tsuda 

(Tsuda et al., 2003b). Actually, I conducted a detailed analysis within a wide time window, by 

screening larval behavior at different developmental times after hatching.  This approach permitted to 

verify that animals display a pressure-related behaviour within a maximum of 1,5 h post hatching. 

Then the response becomes weaker soon after this developmental window. In Tsuda’s study, the 

larvae were instead examined from 3h post hatching. Thus, the absence of a pressure response in their 

experiments could be related just to the developmental stage they choose to analyze this behavior, 3 h 

post-hatching, while my data clearly indicate that the pressure response occurs a maximum of 1,5 h 

post hatching. Moreover, they used a different recording chamber. The chamber used in my 

experiments, developed by Dr Bezares, is bigger (width×depth×length=25·mm×100·mm×70·mm) 

than the optical quartz cell (width×depth×length=10·mm×40·mm× 10·mm) used by Tsuda. Probably 

the recording in a bigger chamber permitted a more accurate tracking of larval movement. Moreover, 

in the pressure chamber I used, the air increase apparatus is included in the lid, which is tightly 

screwed to the rest of the chamber. This design provide a uniform pressure increase and prevent 

pressurized air to be dispersed. This latter expedient could cooperate to increase the overall reliability 

of the results. 

Another interesting outcome of the work is that the in vivo calcium imaging reporter, GCaMP, 

functionally active in Ciona, can be added to the myriad of tools yet available for this model system 

and will be very useful in future analyses. Indeed, thanks to the outstanding work done by Ryan et al. 

(Ryan et al., 2016), aimed at unveiling Ciona connectome, a lot of neuronal circuits have been 

revealed. One can suppose that, by expressing GCaMP in specific neuronal lineages, it will be 
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possible to carry out anatomical and, at the same time, functional analyses of individual neuronal 

circuits.  

Concerning coronet cells, even if still preliminary, the result tend to exclude their involvement in 

hydrostatic pressure perception, in line with the results proposed by Tsuda et al. (Tsuda et al., 2003b). 

About this subset of cells, Moret (Moret et al., 2005a) proposed that they could be functionally active 

from the late larval stages up to the beginning of metamorphosis. Indeed, the onset of DA 

biosynthesis and the growth of the DA-positive axons occur few hours after hatching, and DA 

immunoreactivity is no longer detected in metamorphosing specimens. On these grounds, it has been 

postulated (Moret et al., 2005a) that the late DA synthesis onset could contribute to the age-

dependent changes in the swimming behavior of larvae (Tsuda et al., 2003a; Tsuda et al., 2003b). 

This role is supported by the evidence that dopaminergic neurons send projections to the posterior 

region of the sensory vesicle controlling locomotion. Indeed, this region contains cholinergic and 

GABAergic cells, which send axons to the visceral ganglion, where motoneurons are localized 

(Yoshida et al., 2004).  

Coronet/dopaminergic cells, as previously reported, are located near the type III photoreceptor cells, 

supporting a role in the modulation of photic response (Razy-Krajka et al., 2012). Thus the function 

of coronet/dopaminergic cells could be integrated in the visual circuit, and in line with this one can 

suppose that the activation I detected during the observation of pTH>GCaMP transgenic larvae under 

confocal microscope (Fig. 3.10) may have been triggered by laser illumination. 

As future perspective of this work, we have already planned the preparation of a number of constructs 

in which GCaMP will be placed under pan neuronal promoter and lineage specific promoters, in 

order to identify which subset of neuronal cell is able to detect the hydrostatic pressure changes and 

guide the behavioral response that I revealed in my tests.  
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