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ABBREVIATIONS:  

 

• T1D: type 1 diabetes  

• C-pep: C-peptide 

• DCs: dendritic cells  

• HLA: human leukocyte antigen  

• MHC: The major histocompatibility complex 

• HbA1c: glycated haemoglobin  

• IAAs: autoantibodies against insulin  

• GADA: autoantibodies against the 65-kDa isoform of GAD 

• IA-2A: autoantibodies against the protein tyrosine phosphatase-related 

molecule IA-2  

• ZnT8: autoantibodies against the pancreatic β-cell specific protein, zinc 

transporter 8 

• Treg: T-regulatory cells 

• NOD mice: non-obese diabetic mice 

• NK cells: Natural Killer cells  

• NKT cells: Natural Killer-T cells  

• APCs: antigen-presenting cells  

• CTLs: cytotoxic T lymphocytes 

• IFN-γ: Interferon gamma 

• TCR: T-cell receptor 

• LAMP-1: lysosomal-associated membrane protein-1. 

• PTPN22: protein tyrosine phosphatase no receptor type 22 

• CTLA-4: Cytotoxic T-Lymphocyte Antigen 4 

• IFIH1: Interferon Induced With Helicase C Domain 

• IL-2Ra: Interlukin 2 receptor 

• CCl1 -2 : CC-chemokine ligand-1 or ligand-2 

• PAMP : pathogen-associate molecular pattern 

• PRP: pattern recognition receptor 
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• TME: tumor microenviroment 

• ROS: reactive oxygen species 

• TNF-a: Tumor necrosis factor  

•  (TGF)-ß: transforming growth factor  

• CBV: coxsackie B viruses 

• NO: nitric oxide. 
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Abstract 

 

It has been reported that a growing and heterogeneous group of regulatory cell 

modulate immune response. In particular, regulation of CD8+ T lymphocyte 

effector functions is critical for tissue homeostasis and immune tolerance control. 

Here, we report that the co-expression of CD3 and CD56 molecules identify a novel 

human regulatory T cell population exerting suppressive activity on proliferation, 

cytotoxicity and IFN-γ production of TCR-activated human CD8+ T lymphocytes. 

Regulatory functions of human circulating CD3+CD56+ T lymphocytes require cell-

to-cell contact and are exerted in both autologous and allogeneic conditions. Of 

note, CD3+CD56+ T cells are reduced and functionally impaired in children 

affected by Type 1 Diabetes (T1D), at disease onset. Conversely the frequency of  

this cell subset is increased in patients with prostate cancer. 

Taken together, our findings reveal that freshly isolated human CD3+CD56+ cells 

specifically control activation of human CD8+ T lymphocytes. Perturbation of 

number and function of this cell subset may account for the deranged functions of 

CD8+ T lymphocytes observed in autoimmune conditions, including T1D. Thus, 

therapeutic manipulation of CD3+CD56+ cells may represent an innovative 

approach to restore immune function in T1D. 
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1. BACKGROUND 

 

1.1 Regulation of adaptive immune responses in immune mediated disease 

The immune response is a complex phenomenon aimed to confer protection against 

pathogens and simultaneously maintain tissue homeostasis. Immune response also 

includes the establishment of immunologic memory and clearance of transformed 

cells. All of these functions share many common interactive pathways responsible 

for early triggers of the host immune response as well as modulate immune 

functions. It has been reported that alterations in these pathways can lead to a 

variety of both organ specific and systemic autoimmune syndromes, including Type 

1 Diabetes (T1D). Aberrant regulatory activity also favors tumor escape from 

effector immune mechanisms. The key role of regulatory T lymphocytes in the 

prevention of autoimmunity and immune mediated diseases has been largely 

shown1-2. Fine-tuning of immune response is usually obtained by multiple 

regulatory processes, all belonging to the immune tolerance network, that are in 

place to prevent potentially deleterious immune responses against self tissues3-5. 

 Regulatory cells represent a heterogeneous group of differentiated T cell subsets 

including the interleukin (IL)-10 producing Tr1, the transforming growth factor 

(TGF)-ß producing T helper 3 (Th3) and the CD25+CD4+ regulatory T (Treg) cells, 

constitutively expressing the forkhead box P3 (Foxp3) transcription factor6-8. 

CD4+CD25+Foxp3+ Treg cells control the immune-effector response in terms of 

clonal expansion, differentiation, cytokine profile and tissue migration during 

immune response and are indispensable for the maintenance of immune self-

tolerance9. CD8+ T regulatory clones have been also described, but their role and 

phenotype features are still undefined10-11. It is not clear whether different CD8+ 

regulatory cells represent an independent T subset or if they reflect the dynamic 

plasticity of a single population. Human CD8+ Tregs have been implicated in 

various inflammatory disorders in association with autoimmunity, including T1D, 

infectious disease and cancer12-15. These CD8+ cells may exert their activity through 

different mechanisms. Literature indicates that CD8+CD28− T lymphocytes can 

suppress T helper (Th)-1 cells, induce CD4+ T-cell anergy and regulate reactivation 

of T cells11,16-17. Furthermore, antigen-induced CD8+CD103+ regulatory T cells 

have been shown to suppress T cell effector functions in models of transplantation 

tolerance18. Moreover, it has been also observed that CD8+ Treg cells modulate 
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immune response in vivo by suppressing activated CD4+ T cells via cell-cell contact 

dependent mechanisms requiring CD11a/CD18 (LFA-1) expression19. Recent 

studies suggest that CD8+ CD25hi (IL-2Rα chain) Foxp3+ Treg cells, like CD4+ 

CD25hi Foxp3+ cells, suppress immunity via cytokine production including IL-

1020-21. Conversely, CD8+ CD122hi (IL-2Rβ chain) Treg cells produce IL-10 to 

suppress CD8+ T cell effector functions22. CD8+ T lymphocytes are one of the 

mayor adaptive immune cells, and play important role in maintaining immune 

homeostasis. Some different clinical studies have established that CD8+ T cells can 

profoundly affect cancer progression. After stimulation, CD8+ T cells exert 

functional activity through the release of cytotoxic granules that lyse target cells, as 

well as by the production of interferon (IFN)-γ22-23. When hyper-activated these cell 

release large amounts of pro-inflammatory cytokines, which are directly involved 

in disease pathogenesis. Importantly, so far, targeting of CD8+ T cells by specific 

regulatory populations is unexplored. 

Several evidence indicate that alteration of molecular mechanisms at the basis of 

immune response accelerate the course of chronic diseases, including cancer5,24-25. 

In the tumor microenvironment (TME), T cells have an altered phenotype and 

aberrant functions. The role of CD4+ and CD8+ Treg cells have been extensively 

elucidated in many different types of cancer26-30.  Specifically, in tumor-infiltrating 

lymphocytes (TILs); the decreased ratios of intraepithelial CD8+ T cells to 

FOXP3+CD25+CD4+ Treg cells is associated with poor prognosis in ovarian, breast, 

and gastric cancers30. Furthermore, recent data indicate 

that CD8+Foxp3+Treg cells present in prostate cancer among TILs are able to 

suppress anti-cancer immune responses31. 

Over the past years, a number of observations indicate that normal peripheral blood 

of healthy individuals contains a small lymphocyte population co-expressing CD56 

and CD3 surface markers that characterize human natural killer (NK) and T (CD3) 

cells, respectively32.  

  Although the biological hallmarks and functional characteristics of 

CD3+CD56+ cells are not completely defined and experimental evidence associated 

these cells with different pathophysiological conditions. Indeed, significant 

decrease of hepatic recruitment of CD3+CD56+ cells has been found after liver 

transplant with high rejection activity, while high circulating number of 

CD3+CD56+CD16+ cells has been described to predict a better in vitro fertilization 
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(IVF) treatment outcome33-34. Moreover, a positive correlation between 

CD3+CD56+ lymphocyte frequency and the serum hepatitis B viral DNA level was 

observed during early antiviral therapy35-36. Also, it was described a 

Foxp3+CD3+CD56+ population with immunosuppressive function in human 

hepatocellular carcinoma37-38. Recently, it was been shown that the absolute number 

of circulating CD3+CD56+ T cells represent a valuable predictive marker of β-cell 

residual function up to one year after T1D diagnosis. Specifically, the high 

CD3+CD56+ T numbers, at disease onset, are associated with a higher β-cell 

activity in T1D one year later39. In addition, Hu et al. identified in human 

peripheral blood the CD3+CD56+CD8+CD161- population able to kill autologous 

CD4+ T cell upon T cell receptor (TCR) engagement40. However, the possible 

involvement of CD3+CD56+ cells in immune-tolerance control has been poorly 

investigated.  

 Here we describe that freshly isolated human CD3+CD56+ cells are an 

heterogeneous cell population, containing both CD4+ and CD8+ T cells, able to 

specifically modulate proliferation, cytotoxic function and cytokine production of T 

cell-receptor (TCR) activated CD8+ T cells. Moreover, T1D children at diagnosis 

display reduced circulating number and impaired suppressive activity of 

CD3+CD56+ T cells. In contrast in subjects with prostate cancer, we observed an 

increase of circulating CD3+CD56+ that correlates with prognosis score. 
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1.2 Natural course of type 1 diabetes: genetic and environmental factors 

contribute in the damage of pancreatic β cells 

 

  T1D is a severe chronic disease characterized by the progressive 

autoimmune destruction of the insulin-secreting β-cells in the pancreas of 

genetically susceptible individuals. Insulin is a hormone that helps move sugar, 

or glucose, into body's tissues. When pancreatic cells are damaged, they are not 

able to produce insulin, glucose cannot be moved out of bloodstream into cell, 

and the blood sugar levels become high. The etiology of the disease is unclear 

but genetic, immunological and environmental factors act together to participate 

the disease pathogenesis. (Fig. 1) 

 

Fig.1 Environmental triggers, immunological and genetic factors influence the development of 

islet autoimmunity and progression to clinical diabetes. Discov Med. 2010 

 

Genetic risk is largely conferred by strongest association between T1D and the 

human leukocyte antigen (HLA) class II haplotypes of HLA-DR and HLA-DQ 

located within the major histocompatibility complex (MHC) on chromosome 

6p2141-42. The most common combinations of HLA genes present in children in 

whom the disease develops very early in life are DR4-DQ8 and DR3-DQ2, 

commonly present in 90% of children with T1D. A third haplotype, DR15-DQ6, is 

found in less than 1% of children with T1D, compared with more than 20% of the 

   

 

 9 



general population, and is considered to be protective43. It has been reported that 

majority of genes associated to T1D risk encode proteins that are involved in 

immune function and regulation; for example, protein tyrosine phosphatase, non-

receptor type 22 (PTPN22), Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4), 

Interferon Induced With Helicase C Domain 1(IFIH1) and Interleukin 2 receptor a 

(IL-2Ra) which regulate lymphocytes signalling and T cell tolerance44-45. 

Interestingly, recent evidences suggest that HLA genes primarily contribute to 

development of autoantibodies, while non-HLA genes and environmental factors 

may be more important in the progression from autoantibodies to clinically overt 

disease46-47. In T1D the progressive destruction of pancreatic β -cells begins before 

the clinical manifestation. This phase is usually asymptomatic or characterized by 

metabolic disturbances. The natural course of T1D is characterized by transient 

restoration of β-cell function. This phase is common called “honeymoon period” 

and it is characterized by a reduction of the daily exogenous insulin requirement 

while good metabolic control is maintained. When most of the β-cell mass is lost, 

clinical signs of chronic hyperglycemia become evident and consequently patients 

need frequent blood glucose testing and daily insulin replacement therapy. 

Different metabolic and clinical factor, including age of presentation, degree of 

metabolic decompensation at diagnosis and the presence of autoantibodies, are able 

to influence frequency and the duration of “honeymoon period”.  

The natural history of T1D has improved through the combined use of genetic, 

autoantibody, and metabolic markers of the disease. Autoimmunity in T1D has 

typically been identified by the presence of autoantibodies to islet or β-cell 

antigens. The autoantibodies are not directly pathogenic but are biomarkers of the 

development of   autoimmunity46-49. (Fig. 2) 

The development of an autoimmune process against Langerhans islets is 

characterized by the appearance of islet autoantibodies, which can be measured in 

the serum of these subjects. (Fig. 2) Islet autoantibodies identified so far include 

those against insulin (IAAs), the 65-kDa isoform of GAD (GADA), the protein 

tyrosine phosphatase-related molecule IA-2 (IA-2A), and more recently 

autoantibodies against the pancreatic β-cell specific protein, zinc transporter 8 

(ZnT8) 50-51. The risk of developing diabetes is related to the number of detectable 

autoantibodies with different specificities, which suggests that spreading of the 

autoantigenic repertoire is part of the pathogenic process. Once islet autoantibodies 
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have developed, the progression to overt diabetes in autoantibody-positive 

individuals is determined by the age of antibody appearance and by the magnitude 

of the autoimmunity, in turn related to the age of the subject52. (Fig. 2)  
   
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Natural course of the immunopathogenesis of T1D. Physiol Rev. 2011 

 

Candidate risk factors operating during infancy include those related to exposure to 

infectious agents, improved hygiene and mucosal exposure to dietary constituents. 

Enteroviruses, particularly coxsackie B viruses (CBV), are currently considered as 

the prime candidate among infectious agents by nature of their tropism for β-cells 

56-56.  In addition, experiments using isolated human islets have shown that CBVs 

are able to infect and replicate in insulin-producing β-cells57. In contrast to the 

infectious hypotheses is the notion that improved hygiene is responsible for 

increased of T1D incidence58-61. 

Overall, several environmental factors seem to modify the risk of islet 

autoimmunity and T1D and have been considered to trigger autoimmune responses 

against pancreatic β-cells, eventually leading to β-cell destruction. The 

heterogeneity of T1D progression and clinical manifestations is likely a reflection 

of this complex multifactorial pathogenesis. Among environmental factors, several 

evidences point to infectious agents, components of early childhood diet and gut 
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microbioma. Fianlly, besides the “classical” triggers (infections, diet, gut), growing 

evidence points at inflammation and metabolic changes as significant cofactors in 

T1D pathogenesis62.  
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1.3 Immunopathogenesis of type 1 diabetes: immune mechanisms underlying 

the selective destruction of pancreatic β-cells 

 

  Dysregulation of the immune system contributes to the breakdown 

of immune tolerance, leading to T1D. It is well known that initiation of T1D 

requires both CD4+ and CD8+ T cells, where autoreactive T cells differentiate into 

effectors by engaging β-cell antigens presented by antigen-presenting cells 

(APCs)63. In early onset diabetes, CD8+ T cells are the most abundant pancreas-

infiltrating cells during insulitis64-66. It has been reported that β-cell failure is caused 

by lymphocytic infiltration of the isle by dendritic cells (DCs), T lymphocytes, 

macrophages, B cells and natural killer cells67-69. Published evidences have been 

described a pathogenic additional role of macrophages in both the initiation and 

destruction phases of T1D. Recruitment of macrophages to islets is mediated 

chemokines produced mainly by CD4+ T cells and pancreatic β-cells. Macrophages 

recruited to the pancreas produce IL-1β and Tumor Necrosis Factor (TNF)-α and 

reactive oxygen species (ROS) that can promote β-cell death. In particular, the 

TNF- α and IL-1β produced by macrophages and DCs have been observed in 

pancreatic islet infiltrates from patients with recent-onset T1D70. Finally, 

macrophages have been shown to produce IL-12 and to promote efficient 

differentiation of diabetogenic CD8+ cytotoxic T lymphocytes (CTLs)71-72. Also, 

recruitment of macrophages to islets is mediated by the secretion of CC-chemokine 

ligand 1 (CCL1) by CD4+ T and CCL2 produced by pancreatic β-cells73. 

Furthermore, insulin-autoreactive CD4+ T cells have also been described in T1D 

patients and some studies indicated that high-avidity insulin-reactive thymocytes 

may evade central tolerance in patients74. CD4+ T lymphocytes play an important 

role in the activation and proliferation of CD8+ T lymphocytes and B cells75-77. B 

cells present MHC class I–peptide complexes to self-reactive CD8+ T cells, that 

resulted in the proliferative expansion of self-reactive CTL in the pancreatic lymph 

nodes (PLNs) and the acquisition of a cytotoxic phenotype with a capacity to 

destroy β-cells78-79. NK cells are also involved in T1D pathogenesis; indeed, these 

cells are cytotoxic and produce cytokines, particularly IFN-γ, that could contribute 

to the destruction of β-cells53,80-81. Insulin-producing cells are sensitive to the action 

of this cytokine and IFN-γ can also promote cell death through NO synthesis and 
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induce cell-surface Fas receptor (Fas) expression on β-cells, favoring cell apoptosis. 

In addition, TNF-α can promote β-cell apoptosis through the Fas/Fas-Ligand (FasL) 

pathway, in addition it influences the production of the cytotoxic molecules by 

CD8+ lymphocytes82-85. Normally, CD8+ T cells effector function protect against 

viruses and contribute to eliminate tumor cells. In particular, in T1D this is 

achieved through TCR/CD8 recognition of peptide complex presented by major 

histocompatibility complex (MHC) class I molecules express on pancreatic β cells, 

resulting in the cytotoxic targeting of abnormal or infected cells. Upon recognition 

of antigen, naïve CD8+ T cells were activated to proliferate and differentiate into 

cytokine producing effectors or CTL and undergo clonal expansion and respond to 

infection86-89. In addition, effective CTL immunity is associated with long-term 

protection against chronic or subsequent exposure to the virus or tumor, through the 

stable induction of antigen-specific CD8+ T cell memory90-91. Activated effector 

cells then migrate to peripheral tissues and after recognition of antigen target the 

cells for destruction. Killing of target cells by CTLs is mediated through two major 

pathways, release of cytolytic granules containing granzyme B and perforin 

resulting in direct lysis of target cells, and induction of Fas signaling, leading to 

cytolysis via the activation of a death domain and a caspase apoptosis cascade.  In 

patients with autoimmune hepatitis, FasL and granzyme B levels are elevated in the 

liver, suggesting a role for CTLs in hepatocyte apoptosis and liver damage92-95. 

Alterations of these pathways are observed in different autoimmune conditions 

(Fig. 3). 
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Fig. 3 Immunological mechanisms involved in the pathogenesis of T1D. Nat Rev Immunol. 2010  
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2. AIM  
 

 T1D results from autoimmune damage of insulin producing ß-cells in the 

islets of Langerhans, in the pancreas. The development of the T1D is determined  

by alteration of mechanisms that mediate immune tolerance, resulting in the 

expansion of islet-reactive CD4+and CD8+T effector (Teff) cells and subsequent β-

cell destruction. In particular, autoreactive CD8+ T cells play a central role in the 

destruction of pancreatic islet ß cells that leads to T1D.  

T cells with regulatory properties have been shown to be invoved in the 

pathogenesis of immune mediated disorder3-5. However, to date, specific regulation 

of CD8+ T cell function is still largely unexplored. Over the past years, a number of 

observations indicate that normal peripheral blood contains a small population of 

cells that express both CD56 and CD3 phenotypic markers (here defined as 

CD3+CD56+ cells) that characterize human natural killer (NK) and T (CD3) cells, 

respectively. Experimental evidence associated this subset with different 

pathophysiological conditions36. Indeed, significant decrease of hepatic recruitment 

of cells has been found after liver transplant with high rejection activity32. Recent 

data have shown that the absolute number of circulating CD3+CD56+ T cells 

represents a valuable predictive marker of β-cell residual function up to one year 

after T1D diagnosis39. Importantly, no study so far has examined the biological 

hallmarks and functional characteristics of CD3+CD56+ cells. In this study, we aim 

at  analysing the possible immune regulatory role of CD3+CD56+ cells in healthy 

controls and in  pathological conditions such as  T1D. Possible results of our study 

may unveil an additional regulatory subset involved in the control of immune 

tolerance. 

We hypothesized that CD3+CD56+ cells represent a novel regulatory population 

that control specifically the effector functions of CD8+ cells, the main effectors for 

the destruction of ß-cells during T1D65. 

Perturbation of the number and function of CD3+CD56+ cells may account for the 

deranged functions of lymphocytes CD8+ T observed in T1D. Therapeutic 

manipulation of CD3+CD56+cells may represent an innovative approach to restore 

immune tolerance in immune mediated disorders.  
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3. MATERIAL AND METHODS 

 

3.1 Cell sorting, immune fluorescence and monoclonal antibodies 

 

  CD3+CD56+, CD3−CD56+, CD3+CD8+ and CD3+CD4+ cells were isolated, 

after Ficoll hypaque–gradient centrifugation (GE-Healthcare), from PBMCs of 

human healthy donors and T1D subjects by high-performance cell sorting (BD 

FACS-Jazz, BD Bioscience) in the IEOS-CNR Sorting Facility in Napoli, after 

staining with the following antibodies: FITC anti-human CD3 (BD PharMingen, 

clone UCHT1), PE-Cy7 anti-human CD56 (BD PharMingen, clone B159), FITC 

anti-human CD4 (BD PharMingen, clone RPA-T4), APC anti-human CD8 (BD 

PharMingen, clone RPA-T8) or by magnetic cell separation with microbeads 

CD3+CD56+ isolation  Kit (Miltenyi Biotec). Sorted cells were 95%–98% pure by 

FACS analysis. Buffy coats from control healthy subjects were obtained after they 

signed an IRB-approved written informed consent. Samples were analyzed by 

immunofluorescence and Flow Cytometry by using a two laser equipped 

FACSCanto II (BD PharMingen). FITC, PE, PE-Cy7, PE-Cy5, APC-H7 and APC-

labeled mAbs against CD3 (BD Pharmingen, clone UCHT1); CD4 (BD 

PharMingen, clone RPA-T4), CD8 (BD PharMingen, clone RPA-T8), CD16, (BD 

PharMingen, clone CLB/FcGran1), CD45 (BD Pharmingen, clone 2D1), CD25 

(BD Pharmingen, clone M-A215), CD39 (BD Pharmingen, clone TU66), CD49d 

(BD Pharmingen, clone 9F10), CD45RA (BD Pharmingen, clone L48) CD45RO 

(BD Pharmingen, clone UCHL1), CD54 (BD Pharmingen, clone HA58), CD56 

(BD Pharmingen, clone B159), CD57 (BD Pharmingen, clone HNK-1), CD62L 

(BD Pharmingen, clone SK11), CD69 (BD Pharmingen, clone L78), 

CD107/LAMP-1 (BD Pharmingen, clone H4A3), CD94 (BD Pharmingen, clone 

HP-3D9), CCR7 (BD Pharmingen, clone 15503), CTLA-4 (BD Pharmingen, clone 

BNI3) CXCR4 (BD Pharmingen, clone 12G5) Foxp3 (ebioscience, clone 

259D/C7), GITR (Myltenyi, clone DTA-1), DNAM-1 (BD Pharmingen, clone 

DX11), PD-1 (BD Pharmingen, clone EH12.1), IFN-γ (BD Pharmingen, clone 

B27), NKG2A (Beckman Coulter, clone Z199), NKp30 (Beckman Coulter, clone 

Z25), NKp46 (Beckman Coulter, clone BAB281), CD1d:Ig fusion protein (BD 

Pharmingen), Vα24 (Beckman Coulter, clone C15) and isotype-matched controls 
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all from BD Pharmingen. FITC and PE labeled mAbs against TCR Vβ epitopes, 

namely anti-Vβ1, Vβ2, Vβ3, Vβ4, Vβ5.1, Vβ5.2, Vβ5.3, Vβ7.1, Vβ8 Vβ9, Vβ11, 

Vβ13.1, Vβ13.2, Vβ13.6, Vβ14, Vβ16, Vβ17, Vβ20, Vβ21.3 Vβ22, Vβ23. To 

analyze the production of Interferon (IFN)-γ purified cells intracellular staining 

with the specific mAb was performed by using the fixing/permeabilization (Caltag 

554722), following the manufacturer’s instructions. To avoid extracellular cytokine 

export, the cultures were performed in the presence of 5 µg/ml of Brefeldin-A 

(Sigma-Aldrich), as described50. Analysis was performed by using FlowJo Software 

(Tree Star). The control 345.134 IgG2a mAb, recognizing a glycoprotein widely 

expressed on human leucocytes51 was a kind gift of Dr. S. Ferrone; recombinant 

human soluble NCAM-1/CD56 molecule was purchased from R&D Systems, Inc. 

 

 

3.2 Cell culture, CD107/LAMP-1 expression and cytokine production  

 

 To obtain IL-2PBMC or IL-2CD8+ cells, PBMC or flow sorted CD8+ T 

cells were cultured for 48 hours in RPMI-1640 (Life Technologies) supplemented 

with 5% AB human serum in the presence of recombinant human IL-2 (Sigma) at 

100UI/ml. IL-2PBMC or IL-2CD8+ cells were incubated for 4 hours with anti-CD3 

plus anti-CD28 mAb-coupled microbeads (Life Technologies) at the cell/bead ratio 

of 1:1 or with the K562 cell line (ATCC) at 1:1 ratio. CD107/LAMP-1 expression 

and IFN-γ production were evaluated in flow cytometry gated CD3+CD56-, 

CD3+CD56+, CD3-CD56+ (NK cells), CD4+ and CD8+ T cells, as indicated. When 

indicated IL-2PBMC or IL-2CD8+ cells were co-cultured with fresh isolated with 

CD3+CD56+, CD3-CD56+ (NK cells) and CD3+CD8+ lymphocytes at different 

ratio. Brefeldin-A (BFA) at 5 µg/ml (Sigma) was added in the last three hours of 

culture for CD107/LAMP-1 staining or for the whole culture period for IFN-

γ production30,50. Short term-cell lines were obtained culturing flow sorted 

CD3+CD56+ or CD3+CD56-, in the presence of anti-CD3 plus anti-CD28 mAb-

coupled microbeads (0.2 beads/cell) with regular supplementation of hrIL-2 (20 

UI/ml) for 10 days. To avoid cell-cell contact, coculture of CD3+CD56+ with IL-

2CD8+ lymphocytes was performed by using transwell inserts (Corning Life 

Sciences). 
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3.3 Proliferation assay 

  For the assessment of cell proliferation, cells were cultured in the presence 

of microbeads coated with anti-CD3 plus anti-CD28 (Life Technologies) at the 

cell/bead ratio of 0.1:1, as previously indicated96. Cultures were incubated for 72 

hours at 37°C in a humidified atmosphere containing 5% CO2 and pulsed with 0.5 

µCi/well [3H] thymidine for the final 16 hours. The incorporation of the labeled 

nucleotide was determined by scintillation counting after automatic cell harvesting. 

All tests were performed in the presence of RPMI 1640 Medium supplemented with 

5% heat inactivated 5% AB human serum (Invitrogen).  

 

 

3.4 Seahorse experiments 

 

 Metabolic profile was evaluated in CD3+CD56+, CD3-CD56+ and 

CD3+CD4+, in the absence or in the presence of anti-CD3 plus anti-CD28 

microbeads (0.1 beads/cell) (Invitrogen). Real time measurements of oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) were made by 

an XF-96 Extracellular Flux Analyzer (Seahorse Bioscience). Specifically, cells 

were plated in XF-96 plates (Seahorse Bioscience) at the concentration of 2 x 105 

cells/well and cultured with RPMI-1640 medium supplemented with 5% AB human 

serum. OCR was measured in XF media (non-buffered DMEM medium containing 

10 mM glucose, 2 mM L-glutamin, and 1 mM sodium pyruvate), under basal 

conditions and in response to 5 μM oligomycin, 1.5 μM of carbonylcyanide-4-

(trifluoromethoxy)-phenylhydrazone (FCCP) and 1 μM of antimycin and rotenone 

(Sigma Aldrich). ECAR was measured in XF media in basal condition and in 

response to 10 mM glucose, 5 μM oligomycin and 100 mM of 2DG (all from 

Sigma Aldrich). Experiments with the Seahorse were done with the following assay 

conditions: 3 minutes mixture; 3 minutes wait; and 3 minutes measurement.  
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3.5 Statistical analysis 

         Statistical evaluation of data, by InStat 3.0 software (GraphPad Software Inc., 

San Diego, California, USA), was performed by Mann-Whitney test, as indicated. 

Two-sided p values less than 0.05 were considered significant.  

 

 

3.6 T1D subjects  

 

 The study was approved by the Institutional Review Board (IRB) of the 

Università degli Studi di Napoli “Federico II”. Prot N. 200/16.  

Recruitment of T1D patients (8 ± 7 years age, in a females:males ratio of 1:1), with 

glucose values between 80-180 mg/dl, after glycemic stabilization on exogenous 

insulin, achieved in 5 days. Diagnosis of T1D was defined according to the Global 

International Diabetes Federation/International Society for Pediatric and 

Adolescent Diabetes Guidelines for Diabetes in Childhood and Adolescence97and 

included symptoms of diabetes in addition to casual plasma glucose concentration ≥ 

11.1 mmol/L (200 mg/dl), or fasting plasma glucose ≥ 7.0 mmol/l (≥ 126 mg/dl), or 

2 hours postload glucose ≥ 11.1 mmol/l (≥ 200 mg/dl) during an oral glucose 

tolerance test, and glycated hemoglobin (HbA1c) ≥ 6.5.97 The criteria used to select 

healthy control subjects for T1D studies were the following: fasting blood glucose 

of < 5.5 mmol/L (< 100 mg/dl), negative personal and familial history of 

autoimmune disorders, and negativity for islet autoantibodies at the 99th percentile. 

The T1D children and control subjects (matched for age, sex and BMI) were 

recruited at the Dipartimento di Scienze Mediche Traslazionali, Sezione di 

Pediatria Università di Napoli ‘‘Federico II’’, after the IRB of the Università degli 

Studi di Napoli “Federico II” approved the study and parents gave their written 

informed consent. 
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3.7 Subjects with prostate cancer  

  

      In this study, we analysed the frequency of human of CD3+CD56+ T 

lymphocytes, isolated from peripheral blood of subjects with prostatic cancer are 

higher (n=10) compared to normal blood collected from healthy individuals as the 

control group, (n=12). PBMC were isolated using Ficoll-Paque density gradient 

centrifugation, from subjects with prostatic cancer. The cell suspension were then 

used for flow cytometry analysis. PBMc were stained with anti-CD3 BV510, anti-

CD56 PE-CY7 and anti CD45 APC-H7. All antibodies were purchased from BD 

eBiosciences, (BD eBioesciences, USa). Samples were analyzed on BD FACS 

Canto II and the frequency of CD3+CD56+ T lymphocytes were calculated and 

compared with healthy controls. Actually, the Gleason grading system for prostatic 

carcinoma is the dominant method around the world in research and in daily 

practice. Here we correlate the frequency of CD3+CD56+ T lymphocytes with 

Gleason grade prostate cancer.  
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4. RESULTS 

 

4.1 Phenotype of CD3+CD56+ T lymphocytes 

 

  In order to evaluate the phenotype of human CD3+CD56+ T cells, we 

analyzed the expression of several T and NK cell-associated markers in 

CD3+CD56+, CD3+CD56- and CD3-CD56+ (NK) cells. As shown, CD3+CD56+ 

cells expressed, at different levels, T cell markers and the analysis of CD45 

isoforms shows that CD3+CD56+ subset preferentially expressed CD45RA 

molecule, while they not showed surface molecules usually associated with NK, 

including NKG2A, CD94, Nkp46, DNAM-1 and TCR-Vα24 chain. (Fig. 1). The 

absence of TCR-Vα24/Vβ11 chains indicate that CD3+CD56+ T lymphocytes did 

not belong to the NKT cell subset (Fig. 1). In addition, CD3+CD56+ cells expressed 

the TCR α and  β chains, with a heterogeneous repertoire of Vβ gene families, 

similar to that observed in CD3+CD56- T cell population (data not shown). 

Moreover, CD3+CD56+ cells did not express the common Treg cell-specific 

markers, including CD25, Foxp3, GITR, CTLA-4, CD39 and PD-1 (data not 

shown). The expression of CD54, CD57, CD62L CD16, CD49d, HLA-DR, and of 

the chemokine receptors CCR7 and CXCR4 were also analyzed in CD3+CD56+ 

cells (data not shown). 
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Fig. 1 Phenotype of CD3+CD56+ human lymphocytes. (a) Flow cytometry of peripheral 

blood from one representative healthy control. Upper panel indicates the gating strategy to 

define NK, CD3+CD56+ and CD3+CD56- cell subsets, showing the characteristic phenotype 

of these cell subsets. Expression of several molecules usually associated with NK, T and 

(i)NKT cells are reported.  
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4.2. Functional properties of CD3+CD56+ T lymphocytes 

   

      To investigate the functional properties of CD3+CD56+ cells, we evaluated their 

proliferation, IFN-γ production and cytotoxic ability through the expression of 

Lysosomal-Associated Membrane Protein-1 (LAMP-1/CD107a), after stimulation 

with either TCR or NK-dependent stimuli. To determine the proliferative response 

of this cell subset, flow cytometry sorted CD3+CD56+ cells were stimulated for 72 

hours with anti-CD3 plus anti-CD28 mAbs. We found that these cells had reduced 

proliferative ability compared with CD4+ and CD8+ conventional T (Tconv) cells. 

(Fig. 2a) To evaluate the functions of CD3+CD56+ subset, we cultured PBMCs for 

48 hours in the presence of human recombinant IL-2 (hrIL-2) to obtain IL-2PBMC. 

This condition has been described to optimize both cytotoxic activity and IFN-γ 

production98. We observed that, co-culture for 4 hours of IL-2PBMC with K562 

cell line, that represents a prototypic NK-target, was unable to induce 

CD107a/LAMP-1 expression and IFN-γ production in both CD3+CD56+ and 

CD3+CD56- cells (Fig. 2b). As expected, CD107a/LAMP-1 expression and IFN-

γ production were observed in NK lymphocytes. In contrast, after TCR activation 

of IL-2PBMC with microbeads coated with anti-CD3 plus anti-CD28 mAbs, 

cytotoxicity and IFN-γ production were detected in both CD3+CD56+ and 

CD3+CD56- cells99 (Fig. 2c). As expected, NK cells did not respond to TCR 

stimulation.  

Together, these results indicated that human CD3+CD56+ cells showed phenotypic 

and functional profile similar to that observed in CD3+ T lymphocytes.  
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Fig. 2 (a) Thymidine incorporation (cpm) of CD3+CD56+ cells compared with CD4+ (orange line), 

CD8+ (green line) T cells, and NK (magenta line). Data are from seven independent experiments 

(mean ± S.E.M) (b) Upper panels show results of CD107a/LAMP-1 and IFN-γ staining profiles of 

CD3+CD56- (black line), CD3+CD56+ (blue line), NK (magenta line), after four hours of culture in 

the presence of K562 cell line (plain line). (c) Lower panels indicate CD107a/LAMP-1 and IFN-

γ staining profile of CD3+CD56- (black line), CD3+CD56+ (blue line), NK (magenta line), after a 

four hour culture in the presence anti-CD3 plus anti-CD28 microbeads (plain line); * P <0.05; **** 

P <0.0001; (two-tailed t-test). 
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4.3 Metabolic programs of freshly isolated CD3+CD56+ T cells 
 

  To define the metabolic profile of CD3+CD56+ subset, flow cytometry 

sorted human CD3+CD56+ T, NK and CD3+ T cells were cultured for 1 hour alone 

or in the presence of anti-CD3 plus anti-CD28 microbeads. Glycolysis and 

mitochondrial respiration were evaluated by measuring the extra cellular 

acidification rate (ECAR) and oxygen-consumption rate (OCR), respectively. 

Unstimulated CD3+CD56+ cells showed similar rate of basal and maximal 

glycolysis compared with CD3+ T and NK cells. In addition, CD3+CD56+ 

evidenced a significant higher glycolytic capacity than NK cells (Fig. 3a, upper 

left panels). TCR stimulation of CD3+CD56+ cells, similarly to NK, did not 

increase their basal and maximal glycolysis (Fig. 3a, upper right panels). 

Conversely, the analysis of OCR revealed that unstimulated CD3+CD56+ T subset 

had higher basal, ATP-linked and maximal respiration compared to CD3+ T cells; 

maximal respiration was similar to that observed in NK cells (Fig. 3b, lower left 

panels). Upon TCR stimulation CD3+CD56+ cells showed higher basal, ATP-

linked and maximal respiration compared to CD3+ T lymphocytes and NK cells 

(Fig. 3b, lower right panels).  

These data suggested that CD3+CD56+ T cells preferentially engage mitochondrial 

respiration as cellular bio-energetic pathway after TCR triggering.  
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Fig. 3 Metabolic profiles of CD3+, CD3+CD56+ and NK cell subsets in the presence or absence of 

stimulation with anti-CD3 plus anti-CD28 microbeads. (a) Upper left panels indicate glycolytic 

profile of flow sorted CD3+ (black squares), CD3+CD56+ (blue squares) and NK (magenta 

squares) subsets cultured in the presence of Medium or with anti-CD3 plus anti-CD28 microbeads, 

while the upper right panels show basal, maximal glycolysis and the glycolytic capacity. Mean ± 

S.E.M. (b) Lower left panels indicate oxygen-consumption rate (OCR) profile of flow sorted CD3+ 

(black squares), CD3+CD56+ (blue squares) and CD56+CD3- (magenta squares) subsets cultured in 

the presence of Medium or with anti-CD3 plus anti-CD28 microbeads, lower right panels show 

basal, ATP-linked and maximal respiration. (two-tailed t-test) Mean ± S.E.M.   
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4.4 CD3+CD56+ cells modulate TCR-dependent cytotoxicity and the 

production of IFN-γ in CD8+ T cells  

 

  To explore the possibility that human CD3+CD56+ cells contribute to 

immune regulatory networks, we investigated the capability of this subset to 

modulate the cytotoxic activity and the IFN-γ production of TCR triggered IL-

2PBMC. As shown, IL-2PBMC were stimulated for 4 hours with anti-CD3 plus 

anti-CD28 microbeads in the presence of autologous freshly isolated CD3+CD56+, 

NK or CD3+CD8+ T cells. To specifically analyze IL-2PBMC, these cells were 

labeled before co-culture with anti-CD45 mAb. We observed that CD3+CD56+ 

lymphocytes significantly impaired both the expression of CD107a/LAMP-1 and 

IFN-γ production of CD45-labelled CD8+CD3+ cells gated on IL-2PBMC (Fig. 4a). 

These effects were maintained up to a 0.2:1 CD3+CD56+/IL-2PBMCs ratio (data 

not shown). As control, the NK or CD3+CD8+ T cells were not able to modulate 

CD107a/LAMP-1 expression and IFN-γ production (Fig. 4a). In addition, 

CD3+CD56+ T cells were unable to significantly modulate CD107a/LAMP-1 

expression and IFN-γ production in TCR activated CD3+CD4+ cells (data not 

shown). We next, investigated whether CD3+CD56+ lymphocytes exert their 

regulatory activity also in allogeneic condition. We found that CD3+CD56+ subset 

modulated CD107a/LAMP-1 expression and IFN-γ production also when co-

cultured with allogeneic CD8+CD3+ IL-2PBMC stimulated for four hours with anti 

CD3 plus anti CD28 microbeads (Fig. 4b). Conversely, no significant effects on 

CD107a/LAMP expression and IFN-γ production were observed when allogeneic 

NK effectors were co-cultured with TCR triggered CD8+CD3+ IL-2PBMc cells 

(data not shown). 

To confirm the regulatory activity of human CD3+CD56+ cells on isolated CD8+ T 

cells, we cultured flow cytometry sorted CD8+CD3+ lymphocytes with rhIL-2 

(100UI/ml), for 48 hours to obtain purified and sorted IL-2CD8+ cells. We found 

that, also in these experimental conditions, freshly isolated human CD3+CD56+ 

cells strongly suppress TCR dependent CD107a/LAMP-1 expression and IFN-

γ production of purified IL-2CD8+ compared to CD3-CD56+ (NK) and CD3+CD8+ 

T cells as controls (Fig. 5). Together these data indicated that human CD3+CD56+ 

cells exert regulatory activity on TCR-dependent cytotoxic activity of CD8+ T cells.  
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Then, we evaluated the ability of CD3+CD56+ cells to affect the proliferation of 

CD4+ and CD8+ T lymphocytes stimulated with anti-CD3 plus anti-CD28 

microbeads in vitro. We observed that flow cytometry sorted CD3+CD56+ cells 

reduced [3H] thymidine incorporation CD3+CD8+ purified cells and have not 

significant effect on proliferation of cytometry sorted CD3+CD4+ (Fig. 6). In 

addition, cell division was assessed by CFSE staining, confirming an inhibition on 

the CD3+CD8+ cells as compared with the CD3+CD4+ counterpart (data not 

shown). 

Finally, to investigate whether CD3+CD56+ cells maintain their phenotype and 

regulatory properties overtime, we generated short-term cell lines culturing freshly 

isolated CD3+CD56+ cells in the presence of anti-CD3 plus anti-CD28 microbeads 

for 10 days with regular supplementation of hrIL-2. We observed that from 8 to 

10% of cultured CD3+CD56- cells acquired CD56 molecule expression. 

Intriguingly, such induced CD3+CD56+ maintain their ability to suppress 

CD107a/LAMP-1 expression of IL-2CD8+ (Fig. 7).  

 Taken together, these data indicate that CD3+ CD56+ co-expression identifies a 

plastic human T cell subset regulating the effector functions of TCR activated CD8+ 

T cells.  
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Fig. 4 Upper and lower panels show CD107a/LAMP-1 and IFN-γ staining profiles of flow 

cytometry gated CD8+ IL2-PBMC T cells after a 4 hours culture with anti-CD3 plus anti-CD28 

microbeads; (a) Upper panels show CD107a/LAMP-1 and IFN-γ staining of flow cytometry gated 

CD8+ T cells after a 4 hour culture of IL2-PBMC stimulated with anti-CD3 plus anti-CD28 

microbeads; IL2-PBMC (black line) and co-cultures with CD3+CD56+ (blue line), CD3-CD56+ 

(magenta line), CD3+CD8+ cells (green line) are shown; dotted lines indicate medium culture. (b) 

Lover panels indicate that CD3+CD56+ lymphocytes exert their regulatory activity both in 

autologous or allogeneic conditions. IL2PBMC (black line) and co-cultures with CD3+CD56+ (blue 

line) are shown. 
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Fig. 5 Regulatory activity of CD3+CD56+ cells on sorted purified IL2-CD8+CD3+ cells. This panels 

show CD107a/LAMP-1 and IFN-γ staining profiles of IL2-CD8+ sorted cells after a 4 hour 

stimulation with anti-CD3 plus anti-CD28 microbeads; data are from one of three independent 

experiments; IL2-CD8 (black line) and co-cultures with CD3+CD56+ (blue line), CD3-CD56+ 

(magenta line) and CD3+CD8+ cells (green line) are shown; dotted lines indicate medium culture. 
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 Fig. 6 CD3+CD56+ lymphocytes suppress proliferation of TCR activated CD8+ T cells. (a) Left 

panels show thymidine incorporation of flow cytometry sorted CD8+ T lymphocytes cultured for 72 

hours with anti-CD3 plus anti-CD28 microbeads, alone (green column) or in the presence of 

CD3+CD56+ cells at the indicated different ratios (blue columns) Mean ± S.E.M. (b) Right panels 

show thymidine incorporation of flow cytometry sorted CD4+ T lymphocytes cultured for 72 hours 

with anti-CD3 plus anti-CD28 microbeads alone (orange column) or in the presence of CD3+CD56+ 

cells at the indicated ratios (blue columns). Cell proliferation was evaluated as 3H thymidine 

incorporation in the last 6 hours Left and Right panels indicate results obtained in eight independent 

experiments (n=8). Mean ± S.E.M. * P <0.05; (two-tailed Mann Whitney test).  
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Fig. 7 Freshly isolated, sorted CD3+CD56- cells (purity >99%) were cultured for 10 days in the 

presence of anti-CD3 plus anti-CD28 microbeads and regular rhIL-2 supplementation (upper left and 

right panels respectively). As shown, after 10 days culture; these “induced” CD3+CD56+ cells were 

isolated and co-cultured with TCR activated IL2-CD8+. Low panels show CD107a/LAMP-1 

expression by IL2-CD8+ stimulated for 4 hours with anti-CD3 plus anti-CD28 microbeads alone (left 

lower panel) or in the presence of “induced” CD3+CD56+ (right lower panel). Data are from one 

representative experiment.  
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4.5 CD3+CD56+ regulatory activity requires cell to cell contact and is 

independent on CD56-mediated interactions  

 

  In order to investigate on the mechanisms underlying CD3+CD56+ 

regulatory properties, we first evaluated whether suppressive activity of 

CD3+CD56+ cells relied on direct cell-cell contact with TCR target cells or depends 

on soluble molecules. As shown CD3+CD56+ cells lost their suppressive capacity 

when physical separated from CD8+ cells in a transwell assay.  This results were 

obtained when anti-CD3 plus anti-CD28 microbeads were added to IL-2CD8+ cells 

(low chamber) or to both IL-2CD8+ and CD3+CD56+ cells (low and upper 

chambers) (Fig. 8). To investigate the direct involvement of CD56 in delivering 

contact-dependent suppressive signals, either CD3+CD56+ and IL-2CD8+ cells were 

cultured with saturating concentration of soluble human recombinant neural cell 

adhesion molecule (hrNCAM/CD56) or anti-CD56 mAb, (30min) and successively 

they were tested for their ability to suppress activity of TCR stimulated Il-2CD8+ T. 

We found that in these experimental conditions, CD3+CD56+ lymphocytes retained 

their capability to modulate effector functions of TCR activated CD8+ IL-2PBMc in 

term of CD107a/LAMP-1 expression and IFN-γ production by TCR activated IL-

2CD8 cells. Some results were obtained when CD3+CD56+ lymphocytes were pre-

treated with hrNCAM/CD56 or anti-CD56 mAbs before culture. Thus, CD56 

dependent contact was not relevant for CD3+CD56+ regulatory activity (Fig. 9). 
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Fig. 8 CD3+CD56+ regulatory functions require cell to cell contact. This panel indicates 

CD107a/LAMP-1 and IFN-γ staining of IL-2CD8+ after a 4 hour culture with anti-CD3 plus 

anti-CD28 microbeads; IL-2CD8+ (black line) or co-cultures with CD3+CD56+ cells (blue line) 

are shown; as indicated, CD3+CD56+ co-cultures were performed using transwell device in 

order to prevent cell to cell contact. These results were obtained when anti-CD3 plus anti-

CD28 microbeads were added to IL-2CD8+ cells (low chamber) or to both IL-2CD8+ and 

CD3+CD56+ cells (low and upper chambers).  
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Fig. 9 CD3+CD56+ regulatory functions do not involve CD56-dependent interactions. 

CD107a/LAMP-1 staining of IL2-CD8+ after a 4hour culture with anti-CD3 plus anti-CD28 

microbeads; IL2-CD8+ (black line) or co-cultures with CD3+CD56+ cells (blue line) are shown; as 

indicated, CD3+CD56+ co-cultures were performed in the presence of anti-CD56 mAb, 

NCAM/CD56 recombinant molecule and the control 345.134 IgG2a mAb; data are from one 

representative experiment out of three.    
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4.6 T1D subjects show a reduced number and impaired suppressive activity of 

CD3+CD56+ cells 

 

      Previously data from our laboratory have showed that circulating CD3+CD56+ 

cell number correlate with β-cell residual function up to one year after diabetes 

diagnosis. In fact, high number of CD3+CD56+ cells directly correlated with 

pancreatic β-cell activity one year after diagnosis39. In this study we analyzed both 

number and suppressive capability of CD3+CD56+ cells in a large cohort of T1D 

affected children at disease onset, in comparison with age- and sex-matched healthy 

subjects. We found that, at diagnosis, both percentage and absolute number of this 

cell subset were significantly lower in T1D children (n=100) than healthy subjects 

(n=70) (Fig. 10 a, b). To better understanding the role of CD3+CD56+ cells in the 

pathogenesis of T1D, we tested the ability of flow sorted CD3+CD56+ lymphocytes 

from T1D individuals to modulate TCR dependent CD107a of autologous CD8+ 

cells gate on IL-2PBMC.  

As shown, CD3+CD56+ cells from T1D subjects (n=13) had impaired suppressive 

ability to modulate CD107a expression when co-cultured with TCR engaged CD8+ 

IL-2PBMc, cells compared with age and sex-matched healthy individuals (n=17) 

(Fig. 10c). Moreover, to discriminate whether impaired suppression observed in 

CD3+CD56+ from T1D subjects may be ascribed to resistance of their CD8+ T cells, 

we co-cultured healthy donor CD3+CD56+ cells with T1D-derived IL-2PBMC 

lymphocytes. CD3+CD56+ cells from healthy subjects suppressed cytotoxic activity 

of IL-2PBMC cells from T1D subjects; however, autologous CD3+CD56+ cells 

showed impaired suppressive capability (data not shown).  

These findings indicated a specific defect in numbers and function of human 

CD3+CD56+ cell compartment in autoimmune diabetes.  
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Fig. 10 T1D children at diagnosis show a reduced percentage and absolute number and impaired 

suppressive activity of CD3+CD56+ cells. (a and b). Left and right upper panels indicate 

respectively the percentage and absolute number of peripheral CD3+CD56+ lymphocytes in T1D 

children (n=100) at disease onset, as compared with age/sex matched healthy controls (n=70); (c) 

Cumulative data of CD107a/LAMP-1 inhibition by CD3+CD56+ cells, staining of CD8+ gated 

IL2-PBMC, from T1D compared (n=13), to healthy donors, (n=17); * P <0.0005; **P <0.0001; 

(two-tailed Mann Whitney test).   
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4.7 Subjects with prostate cancer show a higher number of CD3+CD56+ cells in 

peripheral blood. 

 

          Subjects with prostate cancer show a higher number of CD3+CD56+ cells in 

peripheral blood (n=10) compared to normal blood collected from healthy 

individuals (n=12). PBMCs were isolated using Ficoll-Paque density gradient 

centrifugation, from subjects with prostate cancer. The cell suspension was then 

used for flow cytometry analysis (Fig. 11a). Furthermore, the percentage of 

CD3+CD56+ T lymphocytes in the peripheral blood of patients with prostate cancer 

positive correlation with the Gleason grades (Fig. 11b). 

 

 Fig. 11. a) frequency of CD3+CD56+ lymphocytes in peripheral blood of prostate 

cancer patients (n=10), compared with age/sex matched healthy controls (n=12); b) 

CD3+CD56+ T lymphocytes in the peripheral blood of patients with prostate cancer 

positively correlates with the Gleason grades, (GS). Mean ± S.E.M. * P <0.05; ** P 

<0.01 (two-tailed Mann Whitney test).  
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5. DISCUSSION AND CONCLUSION 
 

      This study reveals that CD3+CD56+ co-expression identifies a T cell subset with 

previously unexplored regulatory properties able to modulate TCR-dependent 

effector functions of human CD8+ T cells. Here we found that human freshly 

isolated CD3+CD56+ cells suppress cytotoxicity and IFN-γ production of in vitro 

activated CD8+ T lymphocytes in both autologous and allogeneic conditions. 

Decreased number and impairment of suppressive activity of CD3+CD56+ cells 

were observed in a large cohort of children affected by autoimmune diabetes. This 

strongly suggests the involvement of CD3+CD56+ cells in control of immune 

tolerance and in the development of autoimmune condition.  

 Human CD3+CD56+ cells represent a distinct T cell subset preferentially 

expressing CD8 co-receptor with a heterogeneous αβ−TCR repertoire, clearly 

divergent from NKT, as testified by the lack of binding with CD1d tetramer and the 

absence of TCR-Vα24/Vβ11 chains. CD3+CD56+ cells up-regulate cytotoxic 

molecules, produce IFN-γ and display a low proliferative rate upon TCR 

stimulation in vitro; they are unresponsive to NK-dependent stimuli, in terms of 

cytotoxicity and cytokine production. A specific metabolic signature, engaging the 

mitochondrial respiration rather than glycolysis upon TCR activation, characterizes 

this cell subset.  

 Freshly isolated human CD3+CD56+ cells specifically suppress cytotoxicity and 

IFN-y production of co-cultured human CD8+ T cells in vitro. These modulating 

effects are exerted in both autologous and allogeneic conditions. We also show that 

CD3+CD56+ cells affect TCR-dependent proliferation of CD8+ but have not 

significant effect on proliferation CD4+ subsets. Overall this data suggest that 

CD3+CD56+ cells represent a T cell subset with specific phenotypic profile, 

functional properties and metabolic requirements. These data are in line with 

previous evidences suggesting a possible regulatory role of this population34-36,100. 

These findings are also in agreement with observations found by our laboratory 

showing that absolute numbers of CD3+CD56+ circulating cells associate with 

higher residual β-cell function in subjects affected by T1D39. 

CD3+CD56+ cells represent a plastic regulatory T cell subset. Indeed, in our 

experimental system TCR stimulation (in the presence of low doses of hrIL-2) of 

CD3+CD56- cells gave rise to a fraction of "induced" CD3+CD56+ cells able to 
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suppress effector functions of CD8+ T cells activated via TCR. These reflect the 

behavior of well-characterized induced Foxp3+ Treg (iTreg) cells101-102. However, 

suppressive capability of CD3+CD56+ cells is not related to the expression of 

common regulatory cell lineage markers, such as Foxp3, CTLA-4, GITR and 

CD49d.  

Furthermore, regulatory ability of CD3+CD56+ cells strictly relied on cell-to-cell 

contact and is independent on CD56-mediated interactions8,103-105. However, the 

precise mechanism and surface molecules mediating this suppressive function 

remain to be explored.  

Apoptosis induction has been reported to represent a key regulatory mechanism 

required to maintain immune homeostasis106-107. In our experimental conditions, we 

found that apoptosis was dispensable for regulatory activity of human CD3+CD56+ 

subset. Indeed, CD3+CD56+ lymphocytes significantly suppress CD107a/LAMP-1 

expression and IFN-γ production of TCR activated non apoptotic (Annexin V 

negative) CD8+ T cells. 

 There is growing evidence showing the key role of CD8+ T cells in the 

pathogenesis of several autoimmune disorders including multiple sclerosis (MS) 

and T1D108-111. Here we report that in a large cohort T1D child, at diagnosis, 

CD3+CD56+ cells were reduced in comparison with healthy individuals and that fail 

to suppress CD8+ effector functions in vitro. These data extend our previous 

observation showing that CD3+CD56+ cell number at diagnosis predicts residual β-

cell function in T1D one year later39. Remarkably, our results are conceivable with 

the hypothesis that altered CD3+CD56+ number and function may account for the 

deranged effector function of CD8+ T lymphocytes, typical of T1D109-111.  

The study of the role of host immune system in the tumour microenvironment is 

crucial for understanding how they affect the development and course of human 

tumors112-113. In the present study, we investigated the involvement of CD3+CD56+ 

cells in the pathogenesis of prostate cancer. Here we observed that CD3+CD56+ 

cells were higher in prostate cancer patients and directly correlated with Gleason 

grade, indicating that activity of CD3+ CD56+ cells could be involved in prostatic 

tumours progression.  

In summary, human CD3+CD56+ cells represent a plastic T cell subset, involved in 

the control of CD8+mediated immune response. Dysregulation in regulatory 
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functions of this cell subset could determine an altered immune response, that lead 

to disorder such as T1D and cancer. Obtained result may pave the way to new 

experimental approaches aimed to expand CD3+CD56+ cells in vitro that may 

reshape CD8+ T cell hyper-activation in autoimmunity. Conversely, targeting of 

this regulatory cell subset in human cancer could help improve anti-cancer immune 

response during tumor progression. In perspective, the therapeutic manipulation of 

CD3+CD56+ and their monitoring may represent a novel target for immune 

interventions upon alteration of immune response.  
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