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Introduction 

Introduction  

Noise is recognized as having a significantly adverse effects on our everyday lives, including 

interference with communication, sleep disturbance, annoyance responses, performance effects as 

well as health through psycho-physiological effects. As an everyday example, noise induced 

annoyance is a very important problem occurring when people are constantly exposed to a noise 

source, regardless of its intensity. Such evidence has been recognized by product designers 

engineers within the world’s most innovative and successful companies, which try to incorporate 

effective noise mitigation measures into their product design process. Such new project aspect has 

become extremely important in the automotive industry too and it is possible to state that there is a 

strong competition among automotive manufacturers to generally reduce the radiated noise levels. 

In fact, nowadays, the concept of client perception quality of a vehicle, which represents the prior 

target behind the production strategies of cars manufacturers, is quite changed with respect to a 

dozen of years ago. In particular, among the factors identifying the quality of a vehicle, the concept 

of delivered sound represents a critical aspect that manufacturers are focusing on, in order to be 

more competitive on the global market. As matter of fact, poor sound quality can give the 

impression of poor vehicle build quality or, for a customer point of view, can give the idea that 

there is something wrong with the operations of the vehicle, as if something is not working properly 

and is going to break. More precisely, the term sound quality refers to whether sounds are pleasant 

or annoying. For example, if a properly tuned engine noise is something that may be appreciated by 

customers, on the other hand it may strongly reduce the global comfort. Consequently, every 

vehicle component is not only designed in order to ensure the achievements of its specific goal but 

also considering the impact on the vehicle’s overall sound quality. Such a new design philosophy is 

becoming more and more important as it is also testified by the increase in the noise emission 

standards (e.g. Regulation (EU) N° 540/2014). 

So, it may be stated that the acoustic project of a vehicle, considering all the components it is made 

of, must satisfy a trade-off between acoustic comfort and perceived sound. However, as 

schematically depicted in Figure 1, within a vehicle various noise sources are involved such as 

powertrain noise, aerodynamic noise, rolling noise etc.. 
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Figure 1 – Noise sources embedded within a modern vehicle. 

Among these, the most prominent noise source, with particular regard to the low vehicle speed, is 

certainly represented by the powertrain induced noise. Here, the various subcomponents may be 

distinguished such as engine block, transmission, drive shaft and so on. Each of the above 

mentioned subsystems must satisfy requirements related to engine performances, vehicle drivability 

together with another important mandatory target represented by attention to noise emissions. 

Focusing on the engine related noise, the most prominent is certainly represented by the gas-

dynamic noise emitted by both the intake and the exhaust systems, because they represent the direct 

transmission path of high amplitude acoustic waves to the external ambient. 

 

Figure 2 – Exhaust and intake noise transmission path schematization. 

However, while the exhaust system is not more a primary sound source, once a good muffler has 

been designed, the acoustic design of the intake system of modern internal combustion engines still 

represents a very critical aspect. In fact, in this case, the gas-dynamic noise due to the pressure 

waves created at each intake process is only attenuated by the throttle (when present). In addition, 

the main encountered difficulty is represented by the fact that the prior task of an air induction 

system is to maximize the cylinders filling and not to attenuate the sound transmission. For this 

reason, often it happens that the best acoustic aimed design solutions are in contrast with the engine 

performance requirements. In fact, as it will be described in the following, most of the noise 
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reduction performed by traditional devices, is achieved by wave reflections based components with 

which pressure losses are always associated, resulting in a decrease of volumetric efficiency. This is 

not a desirable condition as this latter parameter strongly affects the engine power output. 

Moreover, the global size of such systems must satisfies as much as possible some compactness 

requirements within the engine bay. It follows that the acoustic design of a breathing system, in 

terms of being made of several acoustic filters, must take into account the above mentioned 

restrictions, in a way such that the best trade-off among minimizing noise emission and maximizing 

engine output and fuel consumption efficiency must be achieved. 

In this regards, it is possible to state that the choice of the correct trade-off is usually guided by the 

requirements in terms of quality of the vehicle, which can be used to differentiate the brands or the 

models (cheapness, high comfort, sport attitude). In every case, as already mentioned, this design 

process is firstly defined by considering geometrical constraints, i.e. the available space for the 

system under investigation, whilst other constraints are represented by the unit cost, the reliability, 

the durability. The old design procedures were usually based on the empirical experience and 

background of designers, implying time consuming and very expensive prototypes building 

procedures. Nowadays, the design phase has been strongly improved thanks to the massive usage of 

computer aided numerical simulations. In fact, they allow to develop integrated, multi-physics 

design strategies, where conflicting requirements are simultaneously accounted during the 

development loop[1]. This results in a more cost effective product with a shorter “time to market”. 

The effectiveness of the use of CAE tools in acoustic engineering is simple to recognize as there are 

several effects which may affect an acoustic field such as the presence of both acoustic and 

structural natural modes, thermal effects, fluid flow etc.. In general, both 1D and 3D commercial 

CAE software are available for helping engineers to correctly design from an acoustic point of view 

components, such as intake and exhaust lines, in order to achieve the desired performances[2]. At 

the current state of art, in order to predict the response of an acoustic filter the classical 1D 

simulation tools are widely used because of the very good results within the low frequency range in 

which only plane waves can propagate. Nevertheless, the main limitation of a pure 1D approach is 

represented by the rigid-wall assumption which may not reproduce the actual system under real 

working conditions. Moreover, a one-dimensional analysis presents some additional limitations 

mainly due to a rather rough schematization of those systems which often present a complex 

geometry. Therefore, for a more detailed analysis, within the middle/high frequency range and/or 

when the presence of a flexible structure cannot be neglected, a 3D simulation code is the only tool 

truly useful for designing and optimizing more complex systems. In general, for low frequency 

analysis such that plane wave propagation is ensured, the two approaches give similar outcomes and 

therefore one-dimensional methods are to be preferred, at least in a pre-design phase, due to the 

simpler modelling procedure and the low computational efforts. 

In general, a complete design process usually considers two phases of the component’s project. The 

first, which is schematized in Figure 3, represents the stand alone study of the acoustic behavior of 

the system, generally in terms of its acoustic attenuation performances over a specified frequency 

range. Such preliminary analysis represents just a qualitative study, aimed to extract the frequency 

dependent attenuation curve of the system in particular conditions. 
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Figure 3 – Acoustic attenuation analysis process schematization. 

This is done by referring to a classic acoustic performance characterization parameter such as, for 

example, the Transmission Loss (TL)[3]. It is worth noting that, in spite of the fact that this step 

does not quantify the amount of noise emitted in various real operating conditions, it is very 

important in order to understand how the system under investigation behaves, identifying the 

frequency ranges in which the acoustic attenuation is low and where to apply changes in the 

geometry in case of necessity. After such first step, another one is necessary, which is represented 

by the quantitative analysis aimed to establish how much noise is emitted and its spectral 

components distributions. 

 
Figure 4 – Gas-dynamic noise analysis process schematization. 

As it is schematized in Figure 4, the workflow takes into account also a fluid dynamic analysis 

because it is necessary to evaluate the pressure waves generated by the periodic charging and 

discharging process occurring within the engine cylinders. This process is more complex and 

involves the simulation of the transfer of flow energy to wave energy generating noise, which is 

radiated at the open terminations, and give rise to two main contributions to the overall noise 

emitted. In fact, from a practical point of view, the main spectral characteristics of both intake and 

exhaust noise are dominated by a sequence of tonal components, which are harmonically related to 

the engine firing frequency. Furthermore, these components are generally related to the so-called 

engine orders, which simply represent multiples of the crankshaft revolutions, namely 

𝑓𝑛 =
 𝑟𝑝𝑚

60
 𝑛                                                                     (1) 
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where 𝑛 is the order number. Consequently, according with such nomenclature, the firing 

frequency1 of a two cylinder, four stroke, internal combustion engine correspond to the first engine 

order. In Figure 5 a typical experimentally measured exhaust noise spectrum, for a four stroke 

(𝜀 = 2), four cylinders spark ignition (SI) engine, running at 3750 𝑟𝑝𝑚, is reported. Here, the first 

four engine orders are clearly visible within the acoustic signature. 

 

Figure 5 – Example of exhaust noise spectrum at 3750 rpm. 

Besides to such tonal noise contributions, purely due to the periodic valves openings, another 

broadband sound must be considered which is visible at higher frequencies. This contribution is due 

to high velocity of the gas which generates, for example, vorticity at junction and expansion 

sections of elements in the transmission line, constituting an additional source of intake noise as 

well. In general, a comprehensive assessment of the overall noise emitted by such systems should 

be take into account both the above mentioned noise contributions. 

Within the whole above mentioned design process, when it is found that the desired targets are not 

achieved, several refinement design phases have to be pursued. As matter of fact, there is no unique 

methodology to be followed for the acoustic optimization of a duct system such as air intake or 

exhaust systems. Nevertheless, the two most intuitive ways of doing that rely on two different 

approaches. The first relies on a target to be achieved in terms of Transmission Loss, whilst the 

second one is based on a target curve in terms of sound pressure level at specifics engine running 

points or in terms of overall sound pressure levels in various rpm conditions. By the examination of 

the current literature, it is evident that a lot of efforts are nowadays spent in order to improve the 

acoustic attenuation characteristics in terms of Transmission Loss. This is mostly done by a design 

ex-novo of external resonators. In this regards, however, a sensitivity analysis has to be executed for 

each of the new design configurations in order to ensure that the desired goals in term of acoustic 

properties are effectively achieved. As an example, recently Y. Han et al. [4] created and validated a 

Boundary Element Model of a commercial intake system, in order to execute an acoustic geometric 

optimization by designing both Helmholtz and quarter-wave resonators. Vishal Vaidya et al.[5] also 

tried to optimize the Transmission Loss of an intake system by means of one-dimensional analysis. 

Even in this case the acoustic optimization has relied on the design of an external resonator with the 

                                                           
1 The firing frequency may be calculated as 𝑓 =

𝑧  𝑟𝑝𝑚

60 𝜀
, being 𝑧 the number of cylinders and 𝜀 the number of crankshaft 

revolutions necessary to complete an engine cycle. 
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final results of achieving higher TL and lower sound pressure levels. As it will be shown in chapter 

8, although this may represent a quite simple choice, it is not always pursuable because of the fact 

that, adding external resonators, may results in a significantly increase of the size of the considered 

system. Such condition may be not applicable due to some compactness requirements, especially 

for small size engines. 

More sophisticated procedures are also widespread used, which take advantage of automatic 

optimization loops for seeking the best design configuration, once some type of constraints are set 

up (e.g. geometrical, acoustical, engine performances etc.). In particular, such techniques generally 

rely on the use of numerical models whose geometries are modified accordingly with the 

information coming from the use of optimization algorithms, applied to some acoustic properties. 

As an example, Yeh et al. [6][7][8][9] presented an optimization method for various muffler starting 

configurations, using a Genetic Algorithm (GA) which is inspired on the idea of the natural 

biological evolution. As an example, in reference [7], the GA is applied in order to find the optimal 

size design of double-chamber muffler under space constraints and dealing with broadband noise. In 

particular, using the technique of four-pole matrix for sound transmission loss calculation, together 

with the GA technique, the optimization has been carried out considering maximum dimension 

related constraints. More recent studies have been executed by Chiu et al.[10] in order to determine 

the optimal shape design of a single expansion muffler with side inlet/outlet. More in detail, after an 

experimental validation of a Boundary Element Model of the studied system, the numerical 

optimizations by means of Genetic Algorithms have been applied together with three kinds of 

mathematic gradient method (interior penalty function method (IPFM), exterior penalty function 

method (EPFM) and feasible direction method (FDM)), in order to find the best design 

configuration which ensures the highest Transmission Loss, considering also constraint conditions. 

Although thanks to the use of such automatic optimization procedures there is no need to manually 

realize the desired modification and to investigate their impact on the acoustic properties by means 

of several sensitivity analyses, the main drawback is represented by the very high computational 

cost, especially when several targets have to be satisfied at the same time. This is generally the case 

when dealing with both intake and exhaust systems of internal combustion engine, for which a 

prescribed size must be respected together with an as high as possible acoustic performance, 

achieved without possibly decreasing the engine performances. 

In this study, the acoustic behavior of an air induction system for a four stroke, spark ignition 

engine has been deeply investigated, with the aim of various Computer Aided Engineering tools, in 

order to refine its original shape for enhancing its acoustic properties. The main technical and 

mechanical characteristics of the engine are reported in Table 1. In particular, it is a downsized SI 

engine whose design philosophy is based on the reduction of the engine displacement, while 

employing a turbocharging system in order to achieve a prescribed power/torque output. 

Model Type 2 cylinders, 8 valves (VVA), Turbocharged and Intercooled 

Displacement [cm3] 875 

Stroke/Bore [mm] 86/80.5 

Connection Rod Length [mm] 136.85 

Compression Ratio 9.9 

Max Brake Power [kW] 64.6 @ 5500 rpm 

Max Brake Torque [Nm] 146.1 @ 2500 rpm 
Table 1 – Main technical and mechanical data of the internal combustion engine under investigation. 
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Thus, the aspects covered in the present thesis may be divided into two parts describing a validation 

and an acoustic optimization procedure respectively, for a numerical model of the system under 

investigation. More precisely, the validation process of a 3D Finite Element (FE) model of the air 

induction system is presented in the first part, in which an acoustic performance and a gas-dynamic 

noise analysis are discussed. As regards the acoustic performance validation procedure, in order to 

obtained data useful for the purpose, an experimental campaign has been carried out at the 

University of Florence in order to measure the acoustic attenuation characteristics in terms of 

Transmission Loss, by means of the impedance tube technology, in several conditions. Thanks to 

the very good correlation between experimental and numerical outcomes, a further validation step 

has been executed aimed to validate the numerical model findings when simulating also the amount 

of noise emitted in real working conditions. Consequently, thanks to the availability of gas-dynamic 

noise measurements for the studied air induction system, it has been possible to compare both 

experimental and numerical outcomes in terms of sound pressure levels in several engine running 

points. Even in this case a good correlation has been found thanks to which it has been possible to 

assume that the three-dimensional model is able to reproduce the acoustic response of the actual 

system. For this reason, a shape optimization procedure on the original device has been carried out 

and will be presented. Hence, the effects of several geometric changes, properly realized in order to 

enhance the acoustic performance related to both Transmission Loss and emitted gas-dynamic 

noise, are investigated. It will be shown that the presented geometric modifications may effectively 

enhance the acoustic performance of the original device, without decreasing the engine 

performances. Besides, such modifications have been designed in a way such that, if actually 

realized, the overall size of the original system would not be modified. 

Before proceeding with the description of the main aspects related to the PhD course activity, it is 

very important to highlight that, as matter of fact, the in depth study of sound and vibrations is a 

very complicated task as, even focusing on the simplest problems, it may involve many related 

aspects such as structural mechanic, fluid-dynamic and acoustic. Consequently, in order to provide 

the necessary background for the understanding of the various topics covered in this thesis, basic 

definitions and other important aspects related to the physics of the investigated phenomena are 

briefly recalled each time when necessary, just before proceeding with the description of the 

analyses and corresponding outcomes. Thus, chapter 1 is devoted to the recalling of the basic 

equations governing the fluid flow which constitutes the very basis for the derivation of the wave 

equation governing acoustic phenomena, whilst chapter 2 is about the basic aspects of acoustic and 

sound propagation in ducts. In chapter 3, the basic concepts about the study of acoustic filters are 

briefly recalled together with a mention to the acoustic performance characterization parameters. 

Chapter 4 is devoted to an insight about how the finite element method is applied to acoustic 

problems. In Chapter 5 and 6 the validation procedures of the finite element model of the studied air 

induction system are described. Chapter 7 the theory of aerodynamic generation of sound will be 

recalled, making reference to the well-known aeroacoustics analogy formulated by Lighthill, 

together with an insight to the turbulence problem and modelling. Chapter 8 is devoted to the 

investigation about the effect that several geometric modifications have on the acoustic 

performances of the intake system. Finally, in Chapter 9 the conclusions and future developments 

are briefly discussed. 
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Chapter 1 

Basics of Fluid Flow 

Introduction 

In general, vibro-acoustics may be defined as the branch of science which studies the generation 

and propagation of mechanical waves2 in fluids and solids. Therefore, depending on the particular 

phenomenon to be dealt with, the subject may be very complicated as well as the theory to be 

studied. The purpose of this chapter is to recall some basic relationships which are the minimum 

mandatory for moving forward in the understanding of the topic investigated in this thesis. 

1.1 The divergence theorem 

The divergence theorem is probably one of the most important theorem in mathematics and 

engineering and, in general, relates the flow of a vector field through a closed surface to the 

behavior of the considered vector field inside the surface. Thus, considering a vector field 𝑹 =

𝑹(𝒓, 𝑡), the flow of 𝑹 over a closed surface may be expressed as 

∬ 𝑹 ∙ 𝒏 𝑑𝑆
𝑆

                                                                            (1.1) 

where 𝒏 is the outward normal from 𝑆. Since the goal is to find a relation for an arbitrary shaped 

surface, referring to Figure 1.1, let firstly consider for simplicity a closed surface enclosing a 

cubical volume. 

 

Figure 1.1 – Example of a closed surface enclosing a cubical volume. 

Hence, according to eq. (1.1), the contribution to the flow of 𝑹 out of 𝑆, in the 𝑥 direction, is 

                                                           
2 A mechanical wave is a wave which needs a medium in order to transport energy. 
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∬ 𝑅1 (𝑥 +
∆𝑥

2
, 𝑦, 𝑧) − 𝑅1 (𝑥 −

∆𝑥

2
, 𝑦, 𝑧)  𝑑𝑦𝑑𝑧

∆𝑦∆𝑧
=
𝜕𝑅1

𝜕𝑥
∆𝒱 + 𝑜(∆𝒱)                       (1.2) 

where the last term is an infinitesimal of higher order. It follows that the flow over the whole 

surface of the small volume may be rewritten as 

∬ 𝑹 ∙ 𝒏 𝑑𝑆
∆𝑆

= (
𝜕𝑅1

𝜕𝑥
+
𝜕𝑅2

𝜕𝑦
+
𝜕𝑅3

𝜕𝑧
)∆𝒱 + 𝑜(∆𝒱) ≅ (𝜵 ∙ 𝑹)∆𝒱                           (1.3) 

where the term within the brackets is the divergence of the considered vector field. Consequently, in 

the limit of volume being infinitesimal, it is possible to write 

(𝜵 ∙ 𝑹) = lim
∆𝒱→0

1

∆𝒱
∬ 𝑹 ∙ 𝒏 𝑑𝑆
∆𝑆

                                                   (1.4) 

Now, if an arbitrary shaped volume is divided into small cubical volumes, as schematically depicted 

in Figure 1.2, it is possible to add the contribution of each surfaces in order to obtain 

∑ ∬ 𝑹 ∙ 𝒏 𝑑𝑆
∆𝑆𝑖

𝑁
𝑖 ≅ ∑ (𝜵 ∙ 𝑹)𝑖∆𝒱𝑖

𝑁
𝑖                                                    (1.5) 

 

Figure 1.2 – Subdivision of an arbitrary shaped volume into a number of small cubical volumes. 

Since the outer flux from a volume coincide with that entering adjacent volumes, the contributions 

from two coincident surfaces are the same but with opposite signs. Consequently, in the limit of 

∆𝒱𝑖 → 0 the sum of the surface integral on the left-hand side of eq. (1.5) will approach the integral 

over the external surface whilst the sum on the right-hand side will approach the volume integral 

over 𝒱, namely 

∬ 𝑹 ∙ 𝒏 𝑑𝑆
𝑆

=∭ 𝜵 ∙ 𝑹 
𝑉

𝑑𝒱                                                           (1.6) 

which is the mathematical expression of the divergence theorem stating that the flow of a vector 

field over a control surface 𝑆 is equal to the change of 𝑹 within the volume enclosed by 𝑆, which 

represents the divergence of 𝑹 indeed. In such sense, the divergence of a vector field within a 

control volume  𝒱 represents an indication on if the considered quantity is flowing outside or inside 

𝒱. It is easy to demonstrate that the divergence theorem may be also applied to scalar fields, by 
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simply multiplying both side of eq. (1.6), applied to a scalar quantity, by an arbitrary constant 

vector, namely 

∬ A 𝐚 ∙ 𝒏 𝑑𝑆
𝑆

=∭ ∇ ∙ (A 𝐚)
𝑉

𝑑𝒱                                                        (1.7) 

or 

𝐚∬ A ∙ 𝒏 𝑑𝑆
𝑆

= 𝐚∭ ∇ ∙ A
𝑉

𝑑𝒱                                                            (1.8) 

where the vector may be eliminated since it is arbitrary[3]. 

1.2 Conservation equations 

The conservation equations should be merely seen as just some basic relations which govern the 

study of whatever physical/engineering problem. Basically, when talking about conservation 

equations for a thermodynamic system, implicit reference is done to conservation of extensive 

properties like mass, momentum and energy. Such equations mathematically reproduce the most 

simple concept of the nature, namely that “it is impossible to get something for nothing”. Before 

going through that, it is necessary to choose how to describe the thermodynamic system under 

investigation, meaning that the formulation of a conservation equations may be done once “a 

position” from which to describe the evolution of the system has been chosen. Two type of 

approaches may be used  to describe the evolution of a system and they are called eulerian and 

lagrangian formulation[1]. According to the first, the thermodynamic system under investigation is 

defined in terms of a fixed control volume bounded by real or fictitious surfaces. This is 

schematically depicted in Figure 1.3. 

 

Figure 1.3 – Eulerian description of a thermodynamic system. 

From a practical viewpoint, the volume of the studied system is fixed whilst the mass embedded 

within the it may, in general, change with respect to the flowing time. The contrary happens for the 

lagrangian description of a system, where it is assumed that the mass of the system is fixed, 

occupying a volume whose dimensions may change with respect to the flowing time. Therefore, in 
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this latter case, the system is studied in terms of the so-called control mass. This second case is 

schematized in Figure 1.4. 

 

Figure 1.4 – Lagrangian description of a thermodynamic system. 

Once the type of description has been chosen, the conservation equations are firstly referred to an 

elementary entity, in which the entire considered system may be divided, and then the relations are 

extended to the whole system’s extension. Such elementary entity are volumes (𝑑𝒱) or masses 

(𝑑ℳ), when referring to the eulerian and lagrangian descriptions respectively. The choice of 

description to use for analyzing a system depends on the type of system and on the output of the 

analysis. For example, if the thermodynamic system consists of a fluid whose motion evolves 

within a rigid-wall duct, a good choice would be represented by the use of the eulerian description. 

In fact, in this case the volume occupied by the fluid system is fixed and coinciding with the interior 

of the duct, whilst its mass may change during the flow. As an example, in this case the control 

volume could coincide with the dashed line schematically depicted in Figure 1.5. 

 

Figure 1.5 – Example of eulerian description of the motion for a fluid. 

Furthermore, a classical application is represented by the case in which there are temperature 

gradients where one may be interested in knowing the temperature within the flow at certain fixed 

points within the duct (control volume), rather than the temperature of each fluid particle (which 

would be also practically impossible). That would be an example of eulerian study of the flow 

system, where the observation point is fixed at some points in space. When, on the other hand, 

studying structural mechanic, it may be more obvious to use a lagrangian description due to the 
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physic of the problem. As an example, considering the structural analysis of a table under the action 

of a heavy weight acting on it, the mass of the table would not change, but its volume is not fixed as 

a consequence of its deflection (deformation). So, in this case, the control mass would be that of the 

table and the final goal of the analysis would consist in evaluating the deformation of the structure. 

 

Figure 1.6 – Example of lagrangian description of deformation of a structure. 

More precisely, imaging to being able to divide the table in a certain number of fixed little masses3, 

the focus would be on knowing the position of each points (masses) after the application of the 

weight, so that the displacement of all masses constitute the deflection of the system. There are 

other cases in which it is obvious to choose a lagrangian approach, e.g. when studying the dynamic 

of a closed bottle filled with a fluid, under the action of a force; the mass trapped within the bottle is 

always the same because it is a closed system whilst its form may vary under the action of the 

externally applied forces. However, in general, when dealing with fluid flow, the difference 

between the two descriptions may be even more easily understood. 

From what above, in order to be able to describe the flow, two descriptions may be used depending 

on the reference frame with respect to which the fluid is studied. In the following, it is assumed that 

the coordinate system, with respect to which the conservation equations are derived, is inertial4. 

Consider a continuous fluid where there are an infinity number of masses, each identifying a 

particle. Let’s suppose that the particles the fluid consists of all remain distinct during the motion. If 

the position of a particle (or material point) at a certain time instant, say 𝑡0, is 𝒓0 then the relation 

𝒓 = 𝒓(𝒓0, 𝑡)                                                                               (1.9) 

identifies, for a given initial position (which means for a given particle), the motion of the particle 

as function of the time, as depicted in Figure 1.7. 

                                                           
3 Which is what it is actually done in Finite Element structural analysis. 
4 A coordinate system is said to be inertial if a free (subjected to a zero resultant external force) and isolated 

(unconstrained) point is either still or moving with constant velocity. 
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Figure 1.7 – Example of lagrangian description of the motion for a fluid. 

Practically, according to this description, all the positions the particle occupies during its motion are 

observed starting from the initial one, namely the reference frame coincides with the center of mass 

of the particle. In other words, the observer follows the particle during the whole motion. As an 

analogy, such description of a fluid motion would be equivalent in sitting on a boat driving down a 

river. The  description of the motion in terms of material points represents a lagrangian description 

and the coordinates (𝑥0, 𝑦0, 𝑧0) of the particle are called material or lagrangian coordinates and 

together with the time represent the independent variables of the lagrangian description of the 

motion5. As an example of how to practically make such description, one could think to attach to a 

fluid particle a temperature sensor in order to follow the variation of the particle’s temperature 

during its motion. However, to the aim of describing the temperature field, it would be required to 

describe, in this way, the temperature of all the particles of the fluid during their motion. However, 

as already highlighted, such lagrangian measurements are impossible to reproduce in laboratory and 

therefore measurements are generally made at fixed point within the flow field. This lead to the 

second way of studying the phenomenon. In order to understand the eulerian description, consider 

the situation in which the field has to be studied from an experimental point of view. In this case, 

the simplest approach consists in recording the properties of interest at specified positions in the 

fluid, say probe positions. For one of this fixed position, the description of the motion is given by a 

relation of the type 

𝒓0 = 𝒓0(𝒓, 𝑡)                                                                   (1.10) 

As such, eq. (1.10) means that the motion of a particular particle (that occupying the position 𝒓0 at  

𝑡0) is observed when it reaches 𝒓 at the time instant 𝑡, as it is schematized in Figure 1.8. 

                                                           
5 Thus, the material coordinates (𝑥, 𝑦, 𝑧), describing the position of the particle during the motion, are dependent 

variable. 
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Figure 1.8 – Example of eulerian description of the motion for a fluid. 

In other words, the attention of the observer (the reference frame) is fixed at a certain point in space, 

waiting  for the fluid particles 𝒓0 to pass through it. As an analogy, such description of a fluid 

motion would be equivalent in sitting at a river side watching the fluid flowing.  The coordinates of 

the observed point (𝑥, 𝑦, 𝑧) are called spatial or eulerian coordinates and together with the time 

represent the independent variables of the eulerian description of the motion6. From what above, it 

is clear that in spite of the fact that the flow field is always the same, the two descriptions are quite 

different. To further understand the differences, let’s consider the velocity as the property of 

interest. In this case, the description of the field, according to both lagrangian and eulerian, is 

depicted in Figure 1.9. 

 

Figure 1.9 – Lagrangian and eulerian description of the velocity field in a fluid flow. The velocity is represented by a 

vector attached to the reference frames. 

The main difference, lies in the fact that the velocity at the spatial point (red circle), does not refer 

to the same particle at each time instant.  The two velocities coincide only at the time instant the 

particle (white circle) passes through point A. 

                                                           
6 Thus, the eulerian coordinates (𝑥, 𝑦, 𝑧) are, together with the time, the independent variables, meaning that all the 

other variables are expressed as function of them. 
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In general, when studying the motion of a fluid, the eulerian description is preferred. This happens 

not only because it better reproduce what can be done experimentally in laboratory, but also 

because the balance equations are more easily formulated for a system defined in terms of control 

volume[2]. In fact, in this case, for a given property the balance equation may be thought as simply 

reproducing the way in which the system interacts with the surrounding ambient, as depicted in 

Figure 1.10. 

 

Figure 1.10 – Interactions between an eulerian system and the surrounding ambient. 

Therefore, a formal balance equation for a fixed control volume simply obeys to the following 

simple thought 

 

where the variation may be an accumulation or a depletion. However, most laws in nature are stated 

in terms of material points and so the derivation of conservation equations is more intuitive when 

using a lagrangian description, as it will be clear in the next. Therefore, it is necessary to link the 

two descriptions in order to be able to go from one to another. From a qualitative point of view, 

consider Figure 1.11 in which a fluid dynamic problem is schematized. 

 

Figure 1.11 – Fluid flow in which there is the presence of both spatial gradient and temporal temperature variation. 
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In the above figure the two red points represent spatial coordinates. Considering both the temporal 

and spatial temperature variations as indicated, it is interesting to compare the decrease in the 

temperature according to both lagrangian and eulerian descriptions in the time interval [𝑡1; 𝑡2]. The 

temperature variation experienced by a temperature sensor attached to the fluid particle during its 

motion would be 

𝑇(𝑥1, 𝑡2) − 𝑇(𝑥1, 𝑡1) = 16° 𝐶   

where 𝑥1 indicates that the focus is on the particle whose initial position was 𝑥1. However, for a 

fixed observer, which is either at 𝑥1 or 𝑥2, the temperature variation is equal to only 1° 𝐶. It follows 

that the lagrangian time variation of the temperature is equal to the eulerian one plus something else 

accounting for the spatial gradient of the temperature. The additional term is represented by the 

convective effect which affects the fluid particle during its motion, namely 

𝐷𝑇

𝐷𝑡
=
𝜕𝑇

𝜕𝑡
+ 𝑈

𝜕𝑇

𝜕𝑥
= 1 + 15  

Such temperature drop is due to both a time and spatial variation of the scalar. From a more formal 

point of view, let’s consider the description of a generic property 𝐺 in lagrangian coordinates for a 

particle 𝑝, namely 

𝐺 = 𝐺(𝑟𝑝, 𝑡)                                                                           (1.11) 

Now, it is important to highlight that in a time interval ∆𝑡 a material point (and so the reference 

frame in the lagrangian description) will move forward of a certain amount, say ∆𝑟 = (∆𝑥, ∆𝑦, ∆𝑧). 

Therefore, the variation of 𝐺 experienced by the observer may be expressed as Taylor expansion 

series, namely 

∆𝐺𝑝 = 𝐺(𝑟𝑝 + ∆𝑟, 𝑡 + ∆𝑡) − 𝐺(𝑟𝑝, 𝑡) =
𝜕𝐺

𝜕𝑥
∆𝑥 +

𝜕𝐺

𝜕𝑦
∆𝑦 +

𝜕𝐺

𝜕𝑧
∆𝑧 +

𝜕𝐺

𝜕𝑡
∆𝑡                          (1.12) 

Dividing both sides of eq. (12) by ∆𝑡 → 0, it gives the variation of 𝐺 from a lagrangian point of 

view in eulerian coordinates, namely 

𝐷𝐺

𝐷𝑡
=
𝜕𝐺

𝜕𝑡
+ 𝑽 ∙ ∇𝐺                                                                     (1.13) 

In fact, eq. (1.13) expresses the variation of the properties 𝐺 experienced by the material point when 

moving from a spatial point (∆𝑡 → 0). Thus, the left-hand side of eq. (1.13) is called time material 

(or lagrangian) derivative (also known as convective time derivative) whilst the first term of the 

right-end side is called time spatial (or eulerian) derivative, both referred to a property 𝐺. 

Conceptually, the main difference lies in the convective effect that an observer, which moves with 

the material point, experiences during the motion. 

1.2.1 Reynolds Transport theorem 

Equation (1.13) expresses the rate of change of a generic property for an elementary entity (a 

generic particle) in the fluid having an infinitesimal control mass (𝑑ℳ), in terms of spatial 

coordinates. However, in order to formulate the conservation equation, it is more useful to express 

the rate of change for an extensive property related to a finite control mass[1]. This is given by the 
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so-called transport theorem. Let’s consider a control mass moving in a fluid as depicted in Figure 

1.12. 

 

Figure 1.12 – Lagrangian description of a finite control mass. 

Since a control mass has been chosen, the whole mass of the system is given by  

∫𝜌(𝒓, 𝑡0)𝑑𝒱0 = ∫𝜌(𝒓, 𝑡)𝑑𝒱 = ℳ = 𝑐𝑜𝑠𝑡.                                                (1.14) 

At the same time, the generic extensive property 𝐺 related to such control mass is given by 

𝐺 = ∫𝑔𝑑ℳ                                                                                     (1.15) 

where 𝑔 stands for the specific value of the properties 𝐺, which depends only upon the time 

variable. Therefore, the variation of 𝐺 within the time interval ∆𝑡 = 𝑡 − 𝑡0 may be expressed as 

(∆𝐺)ℳ = ∫ 𝜌(𝒓, 𝑡)𝑔(𝒓, 𝑡)𝑑𝒱
𝒱

− ∫ 𝜌(𝒓, 𝑡0)𝑔(𝒓, 𝑡0)𝑑𝒱0𝒱0
= [∫ 𝜌𝑔𝑑𝒱

𝒱
]
𝑡
− [∫ 𝜌𝑔𝑑𝒱

𝒱0
]
𝑡0
=

[∫ 𝜌𝑔𝑑𝒱
𝒱0∩𝒱

]
𝑡
− [∫ 𝜌𝑔𝑑𝒱

𝒱0∩𝒱
]
𝑡0
+ [∫ 𝜌𝑔𝑑𝒱

𝒱−𝒱0∩𝒱
]
𝑡
− [∫ 𝜌𝑔𝑑𝒱

𝒱0−𝒱0∩𝒱
]
𝑡0

                                                          

(1.16) 

By dividing eq. (1.16) by ∆𝑡 → 0, the expression for the lagrangian derivative of the property 𝐺 is 

found, namely 

𝐷𝐺

𝐷𝑡
= lim
∆𝑡→0

{
[∫ 𝜌𝑔𝑑𝒱𝒱0∩𝒱

]
𝑡
− [∫ 𝜌𝑔𝑑𝒱𝒱0∩𝒱

]
𝑡0

∆𝑡
+
[∫ 𝜌𝑔𝑑𝒱𝒱−𝒱0∩𝒱

]
𝑡
−[∫ 𝜌𝑔𝑑𝒱𝒱0−𝒱0∩𝒱

]
𝑡0

∆𝑡
}                        (1.17) 

However, for ∆𝑡 → 0, 𝒱0 ∩ 𝒱 → 𝒱 → 𝒱0  and the two quantities of first limit on the right-end side 

of eq. (1.17) are evaluated at the same point in space, so that it represents the time derivative of 𝐺. 

At the same time, according to Figure 1.13, the last two terms represent the inward (-) and outward 

(+) flux of 𝐺 from the boundary of 𝒱0. 



19 
 

 

Figure 1.13 – Inward and outward flux of the generic property 𝐺 from the control surface 𝑑𝑆. 

After such considerations, the lagrangian derivative of a generic extensive property 𝐺 related to a 

finite control mass ℳ, in eulerian coordinates, may be expressed as 

𝐷𝐺

𝐷𝑡
=

𝜕

𝜕𝑡
∫ 𝜌𝑔𝑑𝒱
𝒱0

+ ∫ 𝜌𝑔𝑽 ∙ 𝒏𝑑𝑆
𝑆0

                                                       (1.18) 

which represents the Reynolds transport theorem. This latter states that the lagrangian derivative 

equals the eulerian derivative plus another convection term due to the motion of the control mass. 

Therefore, eq. (1.18) may be referred to any time instant  𝑡 provided that, both volume and surface 

integral are eulerian, namely those the particle effectively occupies at considered time instant. 

Hence the subscript 0 will be omitted. Making use of the divergence theorem, the lagrangian 

derivative in eulerian coordinates may also be expressed as 

𝐷𝐺

𝐷𝑡
=

𝜕

𝜕𝑡
∫ 𝜌𝑔𝑑𝒱
𝒱

+ ∫ ∇ ∙ (𝜌𝑔𝑽)𝑑𝒱
𝒱

                                                   (1.19) 

1.2.2 Conservation of mass 

The mass conservation law states that, considering a system defined in terms of its control mass 

(lagrangian description), in absence of source mechanism (e.g. injections) the total mass of the 

system is trivially constant[1]. From what has been discussed before, the mathematical 

representation of that may be expressed as7 

𝐷ℳ

𝐷𝑡
=

𝐷

𝐷𝑡
∫ 𝑑ℳ
ℳ

= 0                                                                (1.20) 

For a system defined in terms of control volume (eulerian description), thanks to the Reynolds 

transport theorem, eq. (1.20) becomes 

𝐷ℳ

𝐷𝑡
=

𝜕

𝜕𝑡
∫ 𝜌𝑑𝒱
𝒱

+ ∫ 𝜌𝑽 ∙ 𝒏𝑑𝑆
𝑆

= 0                                                       (1.21) 

                                                           
7 𝑔 = 1. 
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which should not surprise since, given that the mass cannot be generated and destroyed, the only 

way to make the mass of a system change is because of convective flux across its boundaries. By 

means of the divergence theorem, eq. (1.21) may be rewritten as8 

∫
𝜕𝜌

𝜕𝑡
𝑑𝒱

𝒱
+ ∫ ∇ ∙ (𝜌𝑽)𝑑𝒱

𝒱
= 0                                                  (1.22) 

or 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝑽) = 0                                                            (1.23) 

which represents the mass conservation law in local form. According to this latter, in absence of 

source terms, within an elementary control volume 𝑑𝒱 rate of change of mass can be achieved only 

by means of mass transport (𝜌𝑽) from its boundaries. In fact, the divergence of the mass transport 

represents a measure of the amount of mass “escaping” from 𝑑𝒱. It follows that, a positive value of 

divergence implies, according to eq. (1.23), a negative rate of change of mass within 𝑑𝒱, namely 

there is a mass depletion. Vice versa, a negative value of the divergence implies a mass 

accumulation. Just for the sake of completeness, eq. (1.23) is generally expressed in Cartesian 

tensor notation as 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑉𝑖)

𝜕𝑥𝑖
= 0                                                             (1.24) 

1.2.3 Conservation of momentum 

The starting point for the momentum conservation law is represented by the Newton’s law which 

states that, considering an inertial coordinate system, the rate of change of the momentum 

corresponding to a material point (particle with constant mass) equals the resultant force acting on 

the considered particle[1]. Mathematically this leads to 

𝑭 =
𝐷(ℳ𝑽)

𝐷𝑡
                                                                   (1.25) 

where 𝑭 represents the total applied force. Such principle must be valid for any particles the 

thermodynamic system consists of. Thus, for a discrete thermodynamic system made of 𝑛 particles, 

eq. (1.25) yields 

∑ 𝑭𝑖 =
𝑛
𝑖=1 ∑

𝐷(ℳ𝑖𝑽𝒊)

𝐷𝑡

𝑛
𝑖=1 =

𝐷

𝐷𝑡
∑ (ℳ𝑖𝑽𝒊)
𝑛
𝑖=1                                           (1.26) 

The left-hand side of eq. (26) represents the resultant of both internal and external forces acting on 

all the particles. However, for the third law of dynamic, the internal reactions have a zero resultant. 

Therefore, the momentum conservation law in lagrangian coordinates for a continuous system is 

𝑭𝑒𝑠𝑡 =
𝐷

𝐷𝑡
∫ 𝑽𝑑ℳ
ℳ

                                                            (1.27) 

                                                           
8 Since the control volume is fixed, the order of the integral and the time derivative may be interchanges, namely 
𝜕

𝜕𝑡
∫ 𝜌𝑑𝒱
𝒱

= ∫
𝜕𝜌

𝜕𝑡
𝑑𝒱

𝒱
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The external forces acting on the system may be divided in body forces (acting on the elementary 

masses) and surface forces (acting on its surface), due to the interaction between the fluid element 

and the surrounding fluid. If only gravitational forces are considered as body forces, the left-hand 

side of eq. (1.27) may be rewritten as 

𝑭𝑒𝑠𝑡 = ∫ 𝒈𝑑ℳ
ℳ

− ∫ 𝒇𝒏𝑑𝑆𝑆
                                                       (1.28) 

where −𝒇𝒏 stands for the force per unit area acting on the elementary surface 𝑑𝑆, whose normal 

vector is  𝒏,  belonging to the whole control surface 𝑆, as depicted in Figure 1.14. 

 

Figure 1.14 – Stress vector acting on an elementary surface 𝑑𝑆. 

By making use of the Reynolds transport theorem, eq. (1.27) may be expressed in eulerian 

coordinates, namely 

𝜕

𝜕𝑡
∫ 𝜌𝑽𝑑𝒱
𝒱

+ ∫ 𝜌𝑽𝑽 ∙ 𝒏𝑑𝑆
𝑆

+ ∫ 𝒇𝒔𝑑𝑆𝑆
= ∫ 𝜌𝒈𝑑𝒱

𝒱
                                     (1.29) 

which is only valid for an inertial coordinate system. On the left-hand side of eq. (1.29), the first 

term represents the rate of change of momentum, the second term represents the convective flux of 

momentum and the third one represents the diffusive flux of momentum, whilst the right-hand side 

represents instead the generation of momentum. In order to obtain the local form of the momentum 

equation, it is necessary to model the stress vector 𝒇𝒔. This latter may be identified, thanks to 

definition of the Cauchy stress tensor9, as 

−𝒇𝒔 = 𝑻 ∙ 𝒏 = [

𝜎𝑥𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧

] × {

𝛼𝑥
𝛼𝑦
𝛼𝑧
} = {

𝜎𝑥𝑥𝛼𝑥 + 𝜏𝑥𝑦𝛼𝑦 + 𝜏𝑥𝑧𝛼𝑧
𝜏𝑦𝑥𝛼𝑥 + 𝜎𝑦𝑦𝛼𝑦 + 𝜏𝑦𝑧𝛼𝑧
𝜏𝑧𝑥𝛼𝑥 + 𝜏𝑧𝑦𝛼𝑦 + 𝜎𝑧𝑧𝛼𝑧

}                       (1.30) 

where 𝛼𝑥, 𝛼𝑦, 𝛼𝑧 are the directional cosines of the normal vector 𝒏, whilst 𝜎𝑖𝑗 and 𝜏𝑖𝑗 represent the 

normal and shear forces, acting in direction 𝑖, per unit of area having normal 𝑗, respectively. In 

general, the Cauchy tensor may be considered as consisting of an isotropic and reversible part and 

another anisotropic and irreversible (or dissipative), which in Cartesian tensor form may be 

expressed as10 

𝑇𝑖𝑗 = 𝜋𝛿𝑖𝑗 + 𝑠𝑖𝑗                                                           (1.31) 

                                                           
9 It can be demonstrated that such tensor is symmetric. 
10 Isotropic means equal in all directions as it happens for the first term on the right-hand side of eq. (1.31) thanks to the 

presence of the Kronecker delta 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗. 
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where the first term on the right-hand side of the above relation is the reversible part and it is 

conventionally equal to the average normal stresses, that is 

𝜋 =
𝜎𝑥𝑥+𝜎𝑦𝑦+𝜎𝑧𝑧

3
                                                              (1.32) 

Hence, the Cauchy stress tensor may be expressed in matrix form as 

𝑻 = [
𝜋 0 0
0 𝜋 0
0 0 𝜋

] + [

𝜎𝑥𝑥 − 𝜋 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦𝑦 − 𝜋 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧𝑧 − 𝜋

]                                     (1.33) 

It follows that the Cauchy stress tensor is generally said to be composed of a so-called hydrostatic 

part (isotropic and reversible) responsible for changes in volume (as it represents an equivalent 

normal stress system with equal normal stresses) and a deviatoric (anisotropic and dissipative) one 

responsible for changes in form, trying to distort the considered element. The genesis of such 

nomenclature may be understood by the examination of the stresses experienced by solids and 

fluids, both at rest. By definition, a solid is a material which can experience shear stresses and 

capable of deforming only by the amount useful for reaching the equilibrium position. On the other 

hand, a fluid is defined as a material which cannot resist to shear stresses, continuously deforming 

under the action of the applied normal stresses. Consequently, the stress systems acting on an 

infinitesimal volume of both solid and fluid material at rest may be represented as depicted in 

Figure 1.15. 

 

Figure 1.15 – Stress vectors acting on an elementary solid element 𝑑𝒱 (under the action of external forces) and on an 

elementary fluid element 𝑑𝒱. 

Therefore, the stress tensor acting on a fluid element at rest is composed only be the hydrostatic 

part11, whose components are linked to the pressure of the fluid. In particular, the pressure in the 

fluid is defined as the negative of hydrostatic stresses. However, focusing on fluid flow, both 

components are in general present, the first being associated with the thermodynamic pressure and 

the second one with the viscosity. Mathematically this leads to 

                                                           
11 The only stress tensor which is experienced by a fluid at rest and therefore hydro-static. 
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𝑻 = −𝑝𝑰 + 𝝉𝒅                                                               (1.34) 

where 𝑰 stands for the unity tensor. By substituting eq. (1.34) into eq. (1.30), yields to the following 

expression for the stress vector 

−𝒇𝒔 = −𝑝 𝒏 + 𝝉𝒅 ∙ 𝒏                                                       (1.35) 

Therefore, the resulting momentum conservation equation in eulerian coordinates is 

𝜕

𝜕𝑡
∫ 𝜌𝑽𝑑𝒱
𝒱

+ ∫ 𝜌𝑽𝑽𝒏𝑑𝑆𝑆
+ ∫ 𝑝 𝒏𝑑𝑆

𝑆
− ∫ 𝝉𝒅 ∙ 𝒏𝑑𝑆𝑆

= ∫ 𝜌𝒈𝑑𝒱
𝒱

                            (1.36) 

or12  

∫
𝜕(𝜌𝑽)

𝜕𝑡
𝑑𝒱

𝒱
+ ∫ ∇ ∙ (𝜌𝑽𝑽)𝑑𝒱

𝒱
+ ∫ ∇𝑝 𝑑𝒱

𝒱
− ∫ ∇ ∙ 𝝉𝒅𝑑𝒱𝒱

= ∫ 𝜌𝒈𝑑𝒱
𝒱

                         (1.37) 

just because the control volume is fixed. Since this latter may be whatever, the local form of eq. 

(1.37) is 

𝜕(𝜌𝑽)

𝜕𝑡
+ ∇ ∙ (𝜌𝑽𝑽) + ∇𝑝 − ∇ ∙ 𝝉𝒅 = 𝜌𝒈                                        (1.38) 

which, in Cartesian tensor form, becomes13 

𝜕(𝜌𝑉𝑖)

𝜕𝑡
+
𝜕(𝜌𝑉𝑖𝑉𝑗)

𝜕𝑥𝑗
−
𝜕(𝑇𝑖𝑗)

𝜕𝑥𝑗
= 0                                                      (1.39) 

where no body forces are taken into account. Hence, the variation (accumulation or depletion) of 

momentum within an elementary volume 𝑑𝒱, may be accomplished by both convective and 

diffusive momentum transport. For example, intuitively a momentum accumulation in an ideal fluid 

(no viscous stresses) may be accomplished by a negative value of the divergence of the convective 

momentum transport across the boundaries of 𝑑𝒱, or by a negative value of the pressure gradient. It 

is very important to highlight at this stage that, as it is possible to appreciate from the conservation 

of momentum, the fluid system is intrinsically non-linear. Such circumstance, as it will be clarified 

later in chapter 7, is the prior cause for the existence of turbulence. 

1.2.3.1 Stokes’ law 

In order to solve the system composed by both the equation of mass and momentum, there is the 

need to model the deviatoric part of the stress tensor. In fact, even assuming an incompressible 

flow14, there are ten unknowns (pressure, six stress components and three components of the 

velocity) for only four equations; the problem is said to be not closed. As it has already mentioned, 

the deviatoric part of the Cauchy tensor is generally associated with dissipation related with viscous 

effect, so that for an inviscid fluid no issues arise. When viscous effects have to be taken into 

account, there is the need to model 𝝉𝒅 and the most common adopted model is represented by the 

Newtonian fluid model, for which the relationship existing between shear stresses and velocity 

                                                           
12 Making use of the divergence theorem. 
13 𝑓𝑠,𝑖 = −𝑝𝑛𝑖 + 𝜏𝑖𝑗𝑛𝑗. 
14 The variations of density are perfectly balanced so that it does not change during the flow. 
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gradient is linear, the constant of proportionality being the dynamic viscosity.  In such sense, the 

Stokes’ law represent the generalization of the Newton fluid model, linking the Cauchy stress tensor 

to the strain rate in laminar Newtonian fluid flows[1]. In order to write the general expression for 

the Stokes’ law, it is necessary to consider the velocity vector and others two related tensors, 

namely 

𝑽 = (𝑢, 𝑣, 𝑤) ;        𝛁𝑽 = [

𝑢𝑥 𝑣𝑥 𝑤𝑥
𝑢𝑦 𝑣𝑦 𝑤𝑦
𝑢𝑧 𝑣𝑧 𝑤𝑧

] ;      (𝛁𝑽)
𝑇
= [

𝑢𝑥 𝑢𝑦 𝑢𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧
𝑤𝑥 𝑤𝑦 𝑤𝑧

]               (1.40) 

where the subscripts indicate spatial derivation. The first tensor of eq. (1.40) , which is called 

deformation-rate tensor, may be divided into a symmetric and antisymmetric part according to the 

tensor algebra[4] identities15, namely 

(𝛁𝑽)
𝑠𝑦𝑚

=

[
 
 
 
 𝑢𝑥

𝑣𝑥+𝑢𝑦

2

𝑤𝑥+𝑢𝑧

2
𝑢𝑦+𝑣𝑥

2
𝑣𝑦

𝑤𝑦+𝑣𝑧

2
𝑢𝑧+𝑤𝑥

2

𝑣𝑧+𝑤𝑦

2
𝑤𝑧 ]

 
 
 
 

                                                        (1.41) 

which represents the strain-rate tensor and 

(𝛁𝑽)
𝑎𝑛𝑡𝑖𝑠𝑦𝑚

=

[
 
 
 
 0

𝑣𝑥−𝑢𝑦

2

𝑤𝑥−𝑢𝑧

2
𝑢𝑦−𝑣𝑥

2
0

𝑤𝑦−𝑣𝑧

2
𝑢𝑧−𝑤𝑥

2

𝑣𝑧−𝑤𝑦

2
0 ]
 
 
 
 

                                                        (1.42) 

which represents the rotation-rate tensor. By defining dilatation term 𝜗 as the trace16 of (𝛁𝑽)
𝑠𝑦𝑚

 it 

is possible to express this latter as 

(𝛁𝑽)
𝑠𝑦𝑚

=
𝜗

3
𝑰 + (𝛁𝑽)

𝑠𝑦𝑚

0
                                                       (1.43) 

where the second term on the right-hand side indicated the version of (𝛁𝑽)
𝑠𝑦𝑚

 with zero trace, 

namely 

(𝛁𝑽)
𝑠𝑦𝑚

0
=

[
 
 
 
 𝑢𝑥 −

𝜗

3

𝑣𝑥+𝑢𝑦

2

𝑤𝑥+𝑢𝑧

2
𝑢𝑦+𝑣𝑥

2
𝑣𝑦 −

𝜗

3

𝑤𝑦+𝑣𝑧

2
𝑢𝑧+𝑤𝑥

2

𝑣𝑧+𝑤𝑦

2
𝑤𝑧 −

𝜗

3]
 
 
 
 

                                                      (1.44) 

Thus, according to the Stokes’ law, the deviatoric part of the stress tensor may be expressed as 

𝝉𝒅 = 𝐵(𝛁 ∙ 𝐕)𝑰 + 2𝜇(𝛁𝑽)𝑠𝑦𝑚
0

                                                   (1.45) 

                                                           
15 The generic tensor 𝐀 may be decomposed into symmetric and antisymmetric part thanks to the identity: 

 𝐀 =
1

2
(𝐀 + 𝐀𝑇) +

1

2
(𝐀 − 𝐀𝑇) 

16 𝜗 = 𝑢𝑥 + 𝑣𝑦 +𝑤𝑧 = ∇ ∙ 𝑽 and represents the rate of change of infinitesimal volume expressed in percentage. 
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where 𝐵 and 𝜇 stands for the volume and dynamic viscosity respectively. Thus, by substituting the 

above relation in eq. (1.34) the expression of the Cauchy stress tensor, acting within Newtonian 

fluids in laminar flow, becomes 

𝑻 = −𝑝𝑰 + 𝐵(𝛁 ∙ 𝐕)𝑰 + 2𝜇(𝛁𝑽)
𝑠𝑦𝑚

0
                                                (1.46) 

which reveals that, for such class of fluids flow, the isotropic part corresponds to the hydrostatic 

stress tensor and the volume viscosity term. Obviously, according with what has been previously 

mentioned, when the fluid is at rest the tensor state is uniquely described by a scalar quantity which 

is the static pressure, as the velocity is uniformly null. Moreover, by the examination of the model 

expressed by eq. (1.46), it is possible to point out that, in general, the average normal stress equal 

𝜋 = −𝑝 + 𝐵𝜗                                                                  (1.47) 

but it is a common choice to assume for Newtonian laminar fluid flow that the volume viscosity is 

negligible (𝐵 ≈ 0)17, so that the pressure is effectively defined as the average of the normal 

stresses. Anyway, for incompressible flows18, the expression for the stress tensor in the fluid 

reduces to 

𝑻 = −𝑝𝑰 + 2𝜇(𝛁𝑽)
𝑠𝑦𝑚

                                                        (1.48) 

or, in Cartesian tensor notation 

𝑇𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇 (
𝜕𝑉𝑖

𝜕𝑥𝑗
+
𝜕𝑉𝑗

𝜕𝑥𝑖
)                                                     (1.49) 

As an example, considering the very low viscosity of water, the Newtonian fluid model explains 

why it is so easy to slip on a water-wetted surface; due to the low value of the dynamic viscosity 

(1.002 × 10−3𝑘𝑔/𝑚𝑠 at 20°𝐶), it is almost incapable to resist to shear stresses when a step is 

made on it. This also explains why it is even more easy to slip on oil which has a lower dynamic 

viscosity. 

Anyway, with this fluid model the problem has been closed as the deviatoric part of the Cauchy 

tensor is related to pressure and velocity field. When the flow is instead assumed to be turbulent, an 

additional turbulence model is necessary for the problem closure. Such aspect will be investigated 

in chapter 7. 

 

 

 

                                                           
17 Such assumption implies that when dealing with fluids, the isotropic (or homogeneous) variation of volume does not 

influence the stress tensor. This is intuitively not true for elastic medium. 
18 Such definition has to not be confused with incompressible material for which the density does not vary. In fact, 

incompressible flow means that there are no variations of density which, thanks to the conservation of mass, implies 

that 
𝜕𝜌

𝜕𝑡
+ 𝑽 ∇ ∙ 𝜌 = 0. Hence the density is not supposed to be unconditionally constant, but its variations are balanced 

so that it does not change. 
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Chapter 2 

The Concept of Sound and its Propagation 

Introduction 

Noise is commonly defined as unwanted sound which is judged to be unpleasant, loud or disturbing 

to hearing. However, from a physic viewpoint, noise is indistinguishable from sound, as both are 

vibrations through a medium, such as air or water. The difference arises when the brain receives and 

perceives a particular sound as something pleasant or not. In the following, it will be first given an 

insight about some basic definition and aspects related to sound and then the basic concept related 

to the propagation of sound will be briefly recalled. 

2.1 The Sound 

Acoustic is defined as the branch of science which studies the sound propagation through a 

medium, thanks to its elastic and inertial properties. From this definition it follows that, in order to 

propagate, sound needs a medium and therefore a first important information is that in vacuum 

sound cannot propagate. Sound is generally identified as something that the human ears can detect 

and something we have good sensations with. Vice versa, noise is a type of sound which causes bad 

sensations. From an engineering point of view, sound is a little pressure disturbance around the 

static pressure, this latter being generally recognized as the ambient pressure (101300 𝑃𝑎) for most 

applications. As an example, when something like a thin bar is vibrating (for simplicity at one 

frequency), the air particles adjacent to the surface start to oscillate around their equilibrium 

position, as it is schematically depicted in Figure 2.1, making a pressure disturbance to propagate 

through the surrounding air. 

 

Figure 2.1 – Schematization of sound production and propagation in air due to a vibrating string, where C stands for 

compression and R for rarefaction. 
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Clearly, referring to the above figure, it is intuitively to state that the pressure variation is a function 

of both space and time. As it will be derived in the following, such propagation allows acoustic 

waves to travel at the so-called speed of sound (or phase speed), whose relation with the 

characteristics of the wave is 

𝑐 = 𝜆𝑓                                                                     (2.1) 

where 𝜆 is the wavelength and 𝑓 is the frequency of the sound wave. Thus, it is the oscillating part 

of the pressure which causes human ears to detect sound and, in general, it is very little. In fact, it is 

worth noting that the amplitudes of such little pressure disturbance, which can be detected by 

human ears, belong to the range [20 𝜇𝑃𝑎; 100 𝑘𝑃𝑎], which means that below 20 𝜇𝑃𝑎 no sound can 

be heard (threshold of audible) and above 100 𝑘𝑃𝑎 very painful sensations start to appear 

(threshold of pain). 

 

Figure 2.2 – Audible pressure disturbances. 

However, it is not only the amplitude of the particle displacement around their static position which 

influence human perception of sound, but also the frequency. In particular, it is widespread assumed 

that an average healthy, young adult can hear pressure disturbance within the frequency range 

[20 𝐻𝑧; 20 𝑘𝐻𝑧], which is generally referred as the range of audio frequencies[12]. Above the 

upper threshold limit there is the region of ultrasounds, whilst below the audible lower limit there is 

the infrasound region. Anyway, it should be clear that, because sound is related with vibration 

processes, no mass transport but only energy transport is related to sound propagation in a medium. 

It is important to know that there are three main acoustic quantities that characterize the study a 

sound source and the corresponding sound field. These three quantities are the sound pressure, the 

sound power and the sound intensity. The sound pressure is defined as the root mean square of the 

variable part of the pressure at a point within a sound field, namely 
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𝑝𝑠 = √
1

𝑇
∫ 𝑝𝑣(𝑡)2𝑑𝑡
𝑇

0
       [𝑃𝑎]                                                         (2.2) 

where 𝑇 represent the oscillation period. This parameter characterizes a sound field, but gives no 

information about the source strength. In fact, as it will be clarified more ahead, the sound pressure 

is only a parameter which characterize the effect of some acoustic production phenomenon in a 

certain ambient, but it is not something which may related to the cause of that phenomenon. In other 

words, considering two different acoustic domains, any particular sound source would produce two 

different sound fields, depending on the ambient in which it radiates. Consequently, in order to 

characterize a sound source, the sound power is needed, which is defined as the amount of sound 

energy radiated per unit of time. The sound power can be calculated by the knowledge of the sound 

intensity, which is defined as the flux of sound energy and may be expressed as follows 

𝐼�̅� = 𝑝𝑠�̅�          [𝑁 𝑚2𝑠⁄ ]                                                       (2.3) 

where �̅� is the vector of the particle velocity. Since the sound intensity is representative of a vector 

field, it allows to perform source identification and, thanks to the Gauss theorem, to calculate the 

sound power of the source as 

𝑊𝑠 = ∬𝐼𝑠 𝑑𝑆         [𝑊]                                                         (2.4) 

However, since acoustic quantities can assume values in a very wide range, as it is reported in 

Figure 2.2, they are commonly expressed in terms of non-dimensional quantities in the widely used 

Decibel scale. Therefore, instead of sound pressure, sound power and sound intensity it is generally 

preferred to deal with the corresponding Decibel levels defined as follows: 

𝐿𝑝 = 20𝐿𝑜𝑔 (
𝑝𝑠

𝑝0
)        [𝑑𝐵]                                                   (2.5) 

𝐿𝑊 = 10𝐿𝑜𝑔 (
𝑊𝑠

𝑊0
)        [𝑑𝐵]                                                   (2.6) 

𝐿𝐼 = 10𝐿𝑜𝑔 (
𝐼𝑠

𝐼0
)         [𝑑𝐵]                                                   (2.7) 

where  𝑝0 = 20µ𝑃𝑎, 𝑊0 = 10
−12𝑊 and 𝐼0 = 10

−12𝑊 𝑚2⁄ . This three logarithmic quantities, are 

always used to characterized a sound source and the effect on a certain sound field. 

2.1.1 Frequency domain study of sound 

From what has been presented in the previous section, it is clear that sound is always related to 

oscillatory phenomena. Always, when treating such phenomena, instead of looking only at the time 

domain representation, it is interesting and necessary to investigate what happens in the frequency 

domain. As an example of such evidence, it is possible to refer to the study of the structural 

vibrations, in which resonant phenomena has to be extremely avoided. Besides, once again, only 

sound in the frequency range [20 𝐻𝑧; 20 𝑘𝐻𝑧] can be detected by human ears. Moreover, the 

perception of sound (meaning the sensation related to a sound) is no constant with the frequency. In 

fact, human ears are more sensitive to high frequency sounds with respect to the low frequency 

sounds. This can been highlighted by looking at the so-called isophonic curves, also known as 
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equal-loudness19 contour. Those curves represent a measure of sound pressure level, over the 

frequency spectrum, for which a listener perceives a constant loudness when exposed to a pure 

steady tones. In other words, they represent the way in which the sound pressure level must change 

with frequency, in order to make human ears to hear the same sensation of a pure tone at 1 𝑘𝐻𝑧. 

Practically, these curves have been created by acquiring data on a statistical sample of normal 

hearing people. People were exposed, in an anechoic room (which simulate the free field sound 

field condition, which means with no sound reflections as it will be explained more ahead), to a 

pure tone at 1 𝑘𝐻𝑧 with different amplitude in dB. At each starting amplitude at 1 𝑘𝐻𝑧, they were 

asked to change the sound pressure level, as the frequency of the sound changed, in order to 

perceive the same acoustic sensation. The results of such experiments are depicted in Figure 2.3. 

Historically, this kind of research, on the topic of how the ear hears different frequencies at different 

levels, was firstly conducted by Fletcher and Munson in 1933[1]. In fact, equal-loudness contours 

are often referred to as "Fletcher-Munson" curves, but those studies have been superseded and 

incorporated into newer standards. The definitive curves are those defined in the international 

standard ISO 226:2003, which are based on a review of modern determinations made in various 

countries[2]. 

 

Figure 2.3 – Isophonic curves. 

The acoustic sensation is measured in the so-called 𝑝ℎ𝑜𝑛 unit and each values is represented by the 

values of the curve at 1 𝑘𝐻𝑧. So, for example, the sensation of 50 𝑝ℎ𝑜𝑛 may be experienced by 

changing the sound pressure level according to the curve which reach 50 𝑑𝐵 a 1 𝑘𝐻𝑧. By the 

examination of Figure 2.3, it is possible to point out that, in order to experience the same acoustic 

sensation, human ears need to increase “the volume” at low frequency and to decrease (or adjust) 

                                                           
19 The Loudness represents an attribute of auditory sensation in terms of which sounds can be ordered on a scale 

extending from quiet to loud. 
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“the volume” at high frequency. Hence, at this point, the reader should be able to understand that, 

when dealing with whatever sound signal, in order to simulate the actual way in which that sound is 

perceived by human ears, it is necessary to “weight” (or to filter) it in the frequency domain. This is 

made thanks to the weighting curves, which are depicted in Figure 2.4, that are generally applied to 

instrument-measured sound pressure levels, in order to account for the relative loudness perceived 

by the human ear, as the ear itself is less sensitive to low audio frequencies. 

 

Figure 2.4 – Weighting curves for reproducing the response of human ears. 

In other words, these curves describe how the sound pressure level of a sound signal must be 

filtered in order to reproduce how it is detected by human ears, and are defined in the International 

standard IEC 61672:2003 relating to the measurement of sound pressure level[3]. The most used 

weighting curve is the curve A, corresponding to the isophonic curve of 40 𝑝ℎ𝑜𝑛. 

Generally speaking, the frequency domain study of signals is accomplished by means of the Fourier 

analysis, thanks to which every time-domain signals can be decomposed in a certain number of 

sinusoidal signals having different amplitude, phase and frequency. 

 

Figure 2.5 – Time vs Frequency representation of signals: a) sine wave; b) square wave. 
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However, many random signals, as sound may be, are composed of many frequencies, which are 

not harmonically related to one another, their spectrum being quite complicated to understand. 

Therefore, often sound representation in the frequency domain is done referring to a narrow band 

(or constant bandwidth), 1/8 band (octave) or 1/3 octave band (third octave), in order to make the 

spectrum more easily understood. The main characteristic of octave bands is that each central band 

is equal to half of the subsequent one. Instead, the third octave bands have a bandwidth percentage 

constant and equal to 23% of the nominal central frequency. In table 2, all the above mentioned 

bands and the corresponding central band are listed. 

Nominal 

Central 

frequency 

Hz 

 

Third-Octave 

Band 

Hz 

 

Octave 

Band 

Hz 

Nominal 

Central 

frequency 

Hz 

 

Third-Octave 

Band 

Hz 

 

 Octave 

Band 

Hz 

Nominal 

Central 

frequency 

Hz 

 

Third-Octave 

Band 

Hz 

 

Octave 

Band 

Hz 

1,25 1,12 – 1,41  40 35,5 – 44,7  1250 1120 - 1410  

1,6 1,41 – 1,78  53 44,7 – 56,2  1600 1410 – 1780  

2 1,78 – 2,24 1,41 – 2,82 63 56,2 – 70,8 44,7 – 89,1 2000 1780 – 2240 1410 - 2820 

2,5 2,24 – 2,82  80 70,8 – 89,1  2500 2240 – 2820  

3,15 2,82 – 3,55  100 89,1 – 112  3150 2820 – 3550  

4 3,55 – 4,47 2,82 – 5,62 125 112 – 141 89,1 - 178 4000 3550 – 4470 2820 - 5620 

5 4,47 – 5,62  160 141 – 178  5000 4470 – 5620  

6,3 5,62 – 7,08  200 178 – 224  6300 5620 – 7080  

8 7,08 – 8,91 5,62 – 11,2 250 224 – 282 178 - 355 8000 7080 – 8910 5620 - 

11200 

10 8,91 – 11,2  315 282 – 355  10k 8910 – 11200  

12,5 11,2 – 14,1  400 355 – 447  12,5k 11,2k – 14,1k  

16 14,1 – 17,8 11,2 – 22,4 500 447 – 562 355 - 708 16k 14,1k – 17,8k 11,2k – 

22,4k 

20 17,8 – 22,4  630 562 – 708  20k 17,8k – 22,4k  

25 22,4 – 28,2  800 708 – 891     

31,5 28,2 – 35,5 22,4 – 44,7 1000 891 - 1120 708 - 1410    

Table 2 – Third octave and octave bands. 

Moreover, it is important to mention that there is typical noise, widely used in experimental 

activities, with a particular spectral content, which is called white noise as, in analogy with white 

light, it has a constant frequency spectrum when expressed as a linear function of frequency (e.g., in 

𝐻𝑧). In other words, a white noise is a random noise whose spectrum is flat on a narrow band 

frequency scale and with a slope of +3 𝑑𝐵/𝑜𝑐𝑡𝑎𝑣𝑒 on a logarithmic scale. In fact, since the width 

of an octave band is twice as large as the previous octave band, the level is increased by 6 𝑑𝐵 in 

each band. 

In general, since a noise signal is characterized by a certain number of spectral characteristics 

whose amplitudes may significantly differ from one another, it is quite difficult to establish the 

strongness of signals with different spectra. So, there is the practical need to quantify the amount of 

noise related to a sound signal by means of a uniquely determined number. In such sense, several 

indicators exist which aim to quantify the amount of a noise, based on the magnitude of its spectral 

components. Among them, the Overall Sound Pressure Level (OSPL) is widely used to provide one 

unique value based on the whole frequency content of the considered signal. In order to understand 

how it is calculated, it is necessary to make some considerations about the energy of a signal which, 

in general, may be considered as representative of its magnitude. Considering continuous signals, 

by analogy with the electrical signals, if 𝑥(𝑡) is a voltage across a resistance of 1 𝛺, then the 
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instantaneous power dissipated by the resistor would be equal to the square of the signal amplitude, 

while the associated energy within a time interval would be equal to 

𝐸 = ∫ 𝑥2(𝑡)𝑑𝑡
+∞

−∞
                                                              (2.8) 

In the frequency domain the energy of a signal is expressed as function of the Fourier transform 

thanks to the well-known Parseval’s theorem[7], namely 

𝐸 = ∫ 𝑥2(𝑡)𝑑𝑡 = ∫ |𝑋(𝑓)|2𝑑𝑓
+∞

−∞

+∞

−∞
                                             (2.9)                                

where, the square of the modulus of the Fourier transform is called energy spectral density (energy 

per unit of frequency bandwidth) of the signal, and represents a decomposition of the energy of the 

observed process as function of frequency. However, since real signals are not continuous function 

but discrete time series, the energy associated is not an integral anymore by a summation of the 

squared amplitudes. It follows that the energy associated with a discrete signal of 𝑁 samples, in 

both time and frequency domain, may be expressed as 

 𝐸 = ∑ 𝑥2(𝑛∆𝑡)𝑛 =
1

𝑁2
∑ |𝑋(𝑛∆𝑓)|2𝑛                                           (2.10) 

where the scaling value 𝑁−1 is due to both truncation (the discrete signal has finite length) and 

sampling processes[7]. Thus the energy associated with a discrete sound signal is represented by the 

summation over the squared amplitudes of its spectral components. It follows that, the energy of the 

signal represents the parameter for the overall sound pressure level calculation, namely 

𝑂𝑆𝑃𝐿 = 20𝐿𝑜𝑔 (
√𝐸

𝑝0
)                                                       (2.11) 

Such parameter is widespread used for comparing the intensity of different noises. 

2.2 Sound propagation 

Sound is generated thanks to various source mechanisms, the most popular of which is by means of 

mechanical vibrations of solid objects. Even in the simplest cases, the complete understanding of 

the way in which sound is generated is generally very complex. As an example, it is worth noting 

that if the acoustic medium is not at rest, the flow field may affect in different ways both sound 

generation and propagation[5][13]. Therefore, it is a common choice to study the propagation of 

sound separately from its generation; this is the case of the following paragraph in which no 

reference to source mechanism will be done. As already mentioned, sound propagates through a 

medium by means of waves. In fact, the corresponding governing equation of such physical 

phenomenon is a wave equation, which can be derived starting from two of the fundamental 

equations of mechanic which are the conservation of mass and momentum. In the next paragraphs, 

various aspect related to the propagation of sound will be discussed and the medium which allows 

sound to propagate will be assumed to be fluid, the reference coordinate system being, otherwise 

specified, rectangular. 
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2.2.1 1-D homogeneous classical wave equation 

The classical wave equation is valid in an ideal (no losses) homogenous quiescent fluid, where the 

average quantities such as pressure 𝑝0, the density 𝜌0 etc. are supposed to be constant and the 

velocity field is equal to zero everywhere[4]. In such hypothesis, and considering an ideal gas as 

acoustic medium (like air), the thermodynamic transformation which governs the sound propagation 

is the adiabatic20 isentropic expressed by the following state equation21 

𝑝

𝜌𝑘
= 𝑐𝑜𝑠𝑡.                                                              (2.12) 

in which 𝑘 represents the specific heats ratio for the considered gas. If this transformation is 

depicted on the thermodynamic plane (𝑝, 𝜌), the results, within the ideal gas zone, is obviously a 

parabola, as it is shown in Figure 2.6. 

 

Figure 2.6 – Representation of the adiabatic isoentropic transformation on the thermodynamic plane (𝑝, 𝜌). 

For most of the applications 𝑝0 is at least equal to 1 bar (which is equal to 101300 𝑃𝑎) and, as 

mentioned in the previous sections, the pressure fluctuations reach the maximum value at 100 𝑘𝑃a 

and the minimum at 20𝜇Pa. This means that, from a practical point of view, acoustic may be 

studied as a linear theory, namely linearizing the transformation in figure above. Therefore, the 

slope of the linearized transformation is equal to 

𝑑𝑝

𝑑𝜌
)
𝑠=𝑐𝑜𝑠𝑡

=
𝑝−𝑝0

𝜌−𝜌0
=
𝐵

𝜌
                                                        (2.13) 

where 𝐵 is defined as the bulk modulus, which represents a measure of the resistance of the 

medium to an uniform compression. The left hand side of eq. (2.13) is defined as the square 

adiabatic speed of sound (𝑎0
2). This quantity, which is also called phase speed[14], may be derived 

directly from eq. (2.12), namely 

𝑑 (
𝑝

𝜌𝑘
) = 𝑑𝑝𝜌−𝑘 + 𝑝(−𝑘𝜌−𝑘−1𝑑𝜌) = 0 

                                                           
20 If the transformation is not adiabatic the pressure fluctuations must account also for heat releases, i.e. p′ ≠ ρ′𝑎0

2 
21 This may be derived directly from the Gibbs equation 𝑇𝑑𝑠 = 𝑑𝑢 + 𝑝𝑑𝑣. 
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or 

𝑎0 = √
𝑑𝑝

𝑑𝜌
= √𝑘

𝑝

𝜌
= √𝑘𝑅𝑇                                                            (2.14) 

where 𝑅 is the constant of the gas. So, for an ideal gas, the speed of sound only depends on the 

temperature of the gas. For example, at 273 𝐾 the speed of sound in air is equal to 

√1,4 ∙ 287 ∙ 273 = 331𝑚 𝑠⁄ . 

Before proceeding with the study of sound propagation, it is necessary to highlight that differences 

exist, of course, between one-dimensional and three-dimensional propagation conditions. Hence, 

since there are common practical conditions for which one-dimensional propagation holds, it is 

better to firstly focus on such simpler theory. In order to obtain the 1D homogeneous classical wave 

equation, it is assumed that small disturbances perturb, in one direction, the fluid particles around 

their equilibrium state, and therefore pressure, density and particle velocity can be expressed as 

𝑝(𝑥, 𝑡) = 𝑝0 + 𝑝
′(𝑥, 𝑡)                                                                (2.15) 

𝜌(𝑥, 𝑡) = 𝜌0 + 𝜌
′(𝑥, 𝑡)                                                                (2.16) 

𝑢(𝑥, 𝑡) = 𝑢′(𝑥, 𝑡)                                                                         (2.17) 

being 𝑢 the particle velocity component in the 𝑥 direction, where the subscript 0 indicates the 

average quantities. At the same time, the homogeneous conservation of mass and momentum can be 

rewritten in the simplified one dimensional form as 

𝑑𝜌

𝑑𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢) = 0                                                                 (2.18) 

𝑑(𝜌𝑢)

𝑑𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢𝑢) +

𝜕𝑝

𝜕𝑥
= 0                                                     (2.19) 

Thus, by substituting expressions (2.15), (2.16) and (2.17) within the two balance equations, 

keeping only linear terms (namely, neglecting all products of primed quantities)22, yields the 

following equations 

𝑑𝜌′

𝑑𝑡
+

𝜕

𝜕𝑥
(𝜌0𝑢

′) = 0                                                                      (2.20) 

𝑑(𝜌0𝑢
′)

𝑑𝑡
+
𝜕𝑝′

𝜕𝑥
= 0                                                                      (2.21) 

Thus, substituting the expression for the density by using equation (2.13) and (2.14), and then 

performing23 
𝑑(2.16)

𝑑𝑡
−
𝜕(2.17)

𝜕𝑥
, yields to the classical wave equation 

[
1

𝑎0
2

𝑑2

𝑑𝑡2
−

𝜕2

𝜕𝑥2
] 𝑝′ = 0                                                                   (2.22) 

                                                           
22 Basically, acoustic is a linear theory because the fluctuations of any quantities represent very small variations around 

the mean value. In such hypothesis, the product of primed quantities (fluctuations) is negligible. 
23 Of course in 3-D it becomes 

𝜕(2.16)

𝜕𝑡
− ∇ ∙ (2.17). 
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which, of course, is linear (𝑝′ is power of one). Obviously, also the density satisfied the classical 

wave equation. However if equation (2.21) is first integrated along the spatial coordinate 𝑥 and then 

in time, it is possible to point out that 

𝜌0
𝑑

𝑑𝑡
(∫ 𝑢′𝑑𝑥
𝑥

𝑥0
) = 𝑝′(𝑥0, 𝑡) − 𝑝

′(𝑥, 𝑡)       

or  

∫ 𝑢′𝑑𝑥
𝑥

𝑥0
= 𝜑(𝑥, 𝑡) − 𝜑(𝑥0, 𝑡)  

or 

𝑢′ =
𝑑𝜑(𝑥,𝑡)

𝑑𝑥
                                                                    (2.23) 

which simply implies that a velocity potential exists, namely the spatial integral of the particle 

velocity depends only on the final and initial position. Of course the link between the pressure 

fluctuation and this velocity potential is expressed by equation (2.24) 

−𝑝′ = 𝜌0
𝑑𝜑(𝑥,𝑡)

𝑑𝑡
                                                               (2.24) 

From equation (2.24) it results that, beside pressure of density fluctuations, the dependent variable 

of the classical wave equation could be 𝑢′ or 𝜑 as well. In general, within many numerical 

commercial codes which are used in acoustic, the velocity potential based version is used, namely 

the equation to be solved is of the form 

[
1

𝑎0
2

𝑑2

𝑑𝑡2
−

𝜕2

𝜕𝑥2
] 𝜑 = 0                                                          (2.25) 

Such choice may be justified by the fact that, once the equation is solved for the velocity potential, 

it is very easy to obtain both particle velocity and acoustic pressure thanks to eq. (2.23) and (2.24). 

2.2.1.1 Solution of the 1-D homogeneous classical wave equation 

The first thing to note about the solution of the wave equation (2.22) is that, since the theory (and so 

the governing equation) is linear, the superposition principle is applicable[4]. This implies that if 𝑝1
′  

and 𝑝2
′  are solutions of the classical wave equation, 𝛼𝑝1

′ + 𝛽𝑝2
′ , with 𝛼 and 𝛽 constant, is also a 

solution. The 1-D homogeneous classical wave equation is a simplified version of the general 3D 

case, and its solution is the simplest one and is called plane wave solution. This latter, which was 

first discovered by D’Alambert[8],  is represented by a sound field which, in every point, is the sum 

of two wave, as it is shown by the following equation (2.26)[9]. 

𝑝′(𝑥, 𝑡) = 𝑝+
′ (𝑡 − 𝑥 𝑎0⁄ ) + 𝑝−

′ (𝑡 + 𝑥 𝑎0⁄ )                                                 (2.26) 

These two progressive waves propagate, with speed equal to 𝑎0 and without change of shape, in the 

positive and negative direction. The amplitudes of the two waves have to be determined from the 

initial conditions and from the boundary conditions (e.g. when there are no boundaries, i.e. free field 

propagation, only forward moving wave may exist). A very simple and intuitive proof of this 
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combined solution can be found if it is realized that the main character of the classical wave 

equation is represented by the differential operator[5] 

Ƚ ≡
𝑑2

𝑑𝑡2
− 𝑎0

2 𝜕2

𝜕𝑥2
≡ (

𝑑

𝑑𝑡
+ 𝑎0

2 𝜕

𝜕𝑥
) (

𝑑

𝑑𝑡
− 𝑎0

2 𝜕

𝜕𝑥
)                                             (2.27) 

Consequently, it is very intuitive to recognize that the forward moving wave is the solution of the 

first term of the wave operator, whilst the back moving wave represents the solution of its second 

term. 

Very often, practically always, in acoustic it is assumed that the pressure disturbances are harmonic 

time dependent and so the sound field is given, thanks to the Fourier analysis, on a form like below 

𝑝′(𝑥, 𝑡) = 𝔎(�̂�𝑒𝑖𝜔𝑡)                                                        (2.28) 

where 𝔎 means that the real part must be considered an �̂� is the complex valued amplitude of the 

wave at the angular frequency 𝜔 = 2𝜋𝑓. Now if this harmonic time dependent pressure fluctuation 

is inserted within the classical wave equation, it yields to the one-dimensional version of the so-

called Helmholtz equation, namely 

𝑑2𝑝′

𝑑𝑡2
= −𝜔2�̂�𝑒𝑖𝜔𝑡                   

𝜕2𝑝′

𝜕𝑥2
=
𝜕2𝑝

𝜕𝑥2
𝑒𝑖𝜔𝑡 

 

𝑑2𝑝

𝑑𝑥2
+ 𝑘0

2�̂� = 0                                                             (2.29) 

in which 𝑘0 =
𝜔

𝑎0
 is the so-called wave number (or propagation constant), representing the spatial 

frequency and, as such, it indicates how many times the waveform is repeated in one meter. Thus, 

the Helmholtz equation is the wave equation in the frequency domain and its solutions represents 

therefore monochromatic waves, or waves of some given frequency 𝜔. It is worth noting that, 

nowadays, methods for Fast Fourier Transform are widely available, and so conversion from time to 

frequency domain and vice versa are computationally very efficient. Therefore, according to many 

commercial codes[11], the problem of searching a solution for the wave equation is often reduced to 

the problem of finding the solution of the Helmholtz equation, which is an equation of lower 

dimensionality (3 instead of 4) than the wave equation itself. Thus, generally the Helmholtz 

equation is solved first, and then, thanks to the Inverse Fourier Transform, the solution to the wave 

equation may be obtained (if necessary). 

Anyway, in analogy to eq. (2.26), the solution of the wave equation in terms of forward and 

backward moving waves may be rewritten as24 

𝑝′(𝑥, 𝑡) = 𝑝+̂𝑒
𝑗𝜔(𝑡−𝑥 𝑎0⁄ ) + 𝑝−̂𝑒

𝑗𝜔(𝑡+𝑥 𝑎0⁄ ) = (𝑝+̂𝑒
−𝑗𝑘0𝑥 + 𝑝−̂𝑒

𝑗𝑘0𝑥)𝑒𝑗𝜔𝑡              (2.30) 

where both 𝑝+̂ and 𝑝−̂  are called standing wave components of 𝑝′ and represent the amplitudes of 

the waves frequency per frequency. At the same manner, since the particle velocity also satisfies the 

classical wave equation, it is possible to express the velocity components as 

                                                           
24 𝔎 has been omitted for clarity of the notation. 
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𝑢′(𝑥, 𝑡) = (𝑢+̂𝑒
−𝑗𝑘0𝑥 + 𝑢−̂𝑒

𝑗𝑘0𝑥)𝑒𝑗𝜔𝑡                                           (2.31) 

In order to obtain a more interesting representation for the values of the two complex valued 

particle velocity components, corresponding to the forward moving and back moving waves, it is 

necessary to substituting equations (2.30) and (2.31) within the momentum balance (2.21). In this 

way it is possible to write 

𝑗𝜔(𝑢+̂𝑒
−𝑗𝑘0𝑥 + 𝑢−̂𝑒

𝑗𝑘0𝑥) = −
1

𝜌0
(−𝑗𝑘0𝑝+̂𝑒

−𝑗𝑘0𝑥 + 𝑗𝑘0𝑝−̂𝑒
𝑗𝑘0𝑥)  

or 

(𝑢+̂𝑒
−𝑗𝑘0𝑥 + 𝑢−̂𝑒

𝑗𝑘0𝑥) =
1

𝜌0𝑎0
(𝑝+̂𝑒

−𝑗𝑘0𝑥 − 𝑝−̂𝑒
𝑗𝑘0𝑥)  

Therefore, the values of the complex amplitudes are found to be equal to 

𝑢+̂ =
𝑝+̂

𝜌0𝑎0
   ,   𝑢−̂ = −

𝑝−̂

𝜌0𝑎0
 

Therefore the particle velocity components are linked to the acoustic pressure components via the 

parameter 𝜌0𝑎0. More precisely, substituting these values in eq. (2.31) yields to the desired analytic 

expression of the particle velocity, namely 

𝑢′(𝑥, 𝑡) =
1

𝑍0
(𝑝+̂𝑒

−𝑗𝑘0𝑥 − 𝑝−̂𝑒
𝑗𝑘0𝑥)𝑒𝑗𝜔𝑡                                          (2.32) 

where 𝑍0 is defined as characteristic impedance of the medium and represents the ratio of the 

acoustic pressure and particle velocity of a plane progressive wave (e.g. 𝑝+̂ 𝑢+̂⁄   which coincides 

with �̂� �̂�⁄  in free field). Since acoustic is a linear theory, the characteristic impedance of the medium 

at a certain field point is independent from the source creating the sound field. The concept of 

acoustic impedance is very important in acoustic but, nevertheless, it founds some difficulties in 

being correctly understood. Substantially, as it name suggests25, it represents the acoustic resistance 

that a component holds to the sound transmission. In fact, it is possible to state that the acoustic 

pressure is responsible for the sound excitation whilst the particle velocity is responsible for the 

sound transmission (considering an elettro-acoustic analogy it is possible to state that the acoustic 

pressure corresponds to the electric voltage, whilst the particle velocity corresponds to the current). 

For example, the acoustic impedance is always defined as the ratio between acoustic pressure and 

particle velocity 

𝑍 =
𝑝′

𝑢′
 

Therefore when Z0 this means that no resistance is imposed to the sound transmission (as it 

happens for acoustic resonators) and the particle velocity is “infinitely” high, whilst when Z∞ the 

particle velocity goes to zero and no sound transmission is allowed (has it happens for some 

material which have very high surface impedance). 

                                                           
25 Impedance means something impeding the flow of energy and, in fact, may be electrical, mechanical or acoustical.  



39 
 

Anyway, by the examination of equation (2.32), it is possible to figure out that, if plane wave 

propagation holds, the magnitude of particle velocity corresponding to the two plane waves is equal 

to the acoustic pressure divided by the characteristic impedance of the medium. However, since the 

velocity is always a vector characterized by amplitude and direction, the pressure components of the 

two waves are considered with opposite signs. Such circumstance could be more easily understood 

by looking at Figure 2.7. 

 

Figure 2.7 – Representation of the forward moving and back moving wave. 

In fact, once the coordinate system has been fixed, considering the forward moving wave, a 

movement towards the positive direction implies a compression of the medium particles, whilst, 

considering the back moving wave, a movement towards the positive direction implies a 

rarefaction. 

Another important thing to note is that, for the special case of sound propagation in ducts, it is 

possible to define both a volume velocity and mass velocity, thanks to eq. (2.33) and (2.34) 

respectively, and the corresponding characteristic impedances, namely 

𝑉 = 𝑆𝑢            
𝑦𝑖𝑒𝑙𝑑𝑠
→              𝑍0 =

𝜌0𝑎0

𝑆
                                        (2.33) 

𝑣 = 𝜌0𝑆𝑢           
𝑦𝑖𝑒𝑙𝑑𝑠
→             𝑍0 =

𝑎0

𝑆
= 𝑌0                                    (2.34) 

In both cases, because of the fact that the impedance involves the cross section of the duct 

(indicated by 𝑆) it takes the name of characteristic impedance of the tube[5]. However, generally 

speaking, when treating hot exhaust gas systems, it is more correct to refer to the acoustic mass 

velocity because it involves the density, and so 

𝑣′(𝑥, 𝑡) =
1

𝑌0
(𝑝+̂𝑒

−𝑗𝑘0𝑥 − 𝑝−̂𝑒
𝑗𝑘0𝑥)𝑒𝑗𝜔𝑡                                        (2.35) 

Clearly, in analogy to what has been mentioned above, considering a generic duct element, the two 

amplitudes 𝑝+̂ and 𝑝−̂ have to be determined thanks to the boundary conditions imposed by the 

elements which precede and follows the duct element under investigation. 
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2.2.2 Homogeneous classical wave equation and solution 

One-dimensional sound propagation theory represents only a particular case of a more general 

situation in which the acoustic perturbations propagate differently in all directions. Consequently, in 

order to highlight the limitations of the plane wave theory, it is necessary to have a look at the 

general theory of the three-dimensional propagation in ducts[5]. For this purpose, let’s consider for 

example the rectangular duct depicted in Figure 8. 

 

Figure 2.8 – Infinite rectangular duct representation. 

Making use of the same hypothesis and following a similar derivation process, the homogenous 

wave equations in both domain (time and frequency) are obtained as well, namely 

[
1

𝑎0
2

𝜕2

𝜕𝑡2
− ∇2] 𝑝′ = 0                                                         (2.36) 

∇2�̂� + 𝑘2�̂� = 0                                                               (2.37) 

By means of the method of separation of the variable[10], the solution of eq. (2.36), which 

represents the acoustic  pressure at any point within the domain and at any time instant, may be 

expressed as follows 

𝑝′(𝑥, 𝑦, 𝑧, 𝑡) = (𝐶1𝑒
−𝑗𝑘𝑧𝑧 + 𝐶2𝑒

𝑗𝑘𝑧𝑧)(𝑒−𝑗𝑘𝑥𝑥 + 𝐶3𝑒
𝑗𝑘𝑥𝑥)(𝑒−𝑗𝑘𝑦𝑦 + 𝐶4𝑒

𝑗𝑘𝑦𝑦)𝑒𝑗𝜔𝑡               (2.38) 

𝑘0
2 = 𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2                                                       (2.39) 

where eq. (2.39) represents a compatibility propagation condition. As before, the values of the 

complex valued wave amplitudes must be determined thanks to the boundary conditions. 

Considering duct with infinitely rigid walls, the particle velocity has to be equal to zero at the wall 

and so, thanks to the momentum balance equation, the boundary conditions to be applied are: 

𝜕𝑝′

𝜕𝑥
= 0         𝑥 = 0, 𝑏 

𝜕𝑝′

𝜕𝑦
= 0         𝑦 = 0, ℎ  

From the first two BCs, it follows that 

𝐶3 = 1 

and 
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−𝑒−𝑗𝑘𝑥𝑏 + 𝑒𝑗𝑘𝑥𝑏 = 0 

or 

2𝑠𝑖𝑛(𝑘𝑥𝑏) = 0   
𝑦𝑖𝑒𝑙𝑑𝑠
→        𝑘𝑥 =

𝑚𝜋

𝑏
         𝑚 = 0,1,2…  

Similarly, from the BCs in the y direction 

𝐶4 = 1 

𝑘𝑦 =
𝑛𝜋

ℎ
         𝑛 = 0,1,2… 

Therefore, the solution of the wave equation can be rewritten as 

𝑝′(𝑥, 𝑦, 𝑧, 𝑡) = ∑ ∑ 𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝑏
)∞

𝑛=0
∞
𝑚=0 𝑐𝑜𝑠 (

𝑛𝜋𝑦

ℎ
) (𝐶1(𝑚,𝑛)𝑒

−𝑗𝑘𝑧,(𝑚,𝑛)𝑧 + 𝐶2(𝑚,𝑛)𝑒
𝑗𝑘𝑧,(𝑚,𝑛)𝑧)𝑒𝑗𝜔𝑡            

(2.40) 

in which the propagation constant for the (𝑚, 𝑛) mode is given by 

𝑘𝑧(𝑚,𝑛) = √𝑘0
2 − (

𝑚𝜋

𝑏
)
2

− (
𝑛𝜋

ℎ
)
2

                                            (2.41) 

Hence, it follows that the acoustic pressure distribution inside the duct may be expressed as a 

superposition of all the natural modes of the acoustic system. In analogy to the structural 

vibrations[14], an acoustic mode represents a particular acoustic pressure pattern within the cross 

section of the considered duct, which is characteristic of the dimensions of the cavity (or acoustic 

domain). In fact, when solving the homogeneous wave equation, the goal is to find every possible 

acoustic pressure distribution which satisfy the considered particular geometry. Every modes for 

which 𝑚 and/or 𝑛 are not equal to zero are called higher order modes; 𝑚 and 𝑛 represent the 

number of nodal lines in the pressure distribution within the cross section, as shown in Figure 2.9. 

 

Figure 2.9 – Representation of the first 9th higher order modes in a rectangular duct. 

In order to evaluate the axial particle velocity for the (𝑚, 𝑛) propagation mode, it is possible to 

make use of the momentum equation in the axial direction, namely 
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𝑢𝑧,(𝑚,𝑛)
′ = �̂�𝑒𝑗𝜔𝑡    

𝑦𝑖𝑒𝑙𝑑𝑠
→        

𝜕𝑢𝑧,(𝑚,𝑛)
′

𝜕𝑡
= 𝑗𝜔�̂�𝑒𝑗𝜔𝑡 = −

𝜕𝑝′(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

1

𝜌0
 

or 

𝑢𝑧,(𝑚,𝑛)
′ =

𝑘𝑧(𝑚,𝑛)

𝑘0𝑍0
𝑐𝑜𝑠 (

𝑚𝜋𝑥

𝑏
) 𝑐𝑜𝑠 (

𝑛𝜋𝑦

ℎ
) (𝐶1(𝑚,𝑛)𝑒

−𝑗𝑘𝑧𝑧 − 𝐶2(𝑚,𝑛)𝑒
𝑗𝑘𝑧𝑧)𝑒𝑗𝜔𝑡                (2.42) 

From what above, it follows that, for the same acoustic pressure, the amplitude of particle velocity 

for the (𝑚, 𝑛) propagation mode is less (𝑘𝑧(𝑚,𝑛) 𝑘0⁄  times) than the one corresponding to the plane 

wave solution (0,0). Now, thanks to eq. (2.42), it is possible to derive the acoustic mass velocity by 

the integration over the cross section of the duct: 

𝑣𝑧,(𝑚,𝑛)
′ = 𝜌0∬𝑢𝑧,(𝑚,𝑛)

′ 𝑑𝑆 = 𝜌0(𝐶1(𝑚,𝑛)𝑒
−𝑗𝑘𝑧𝑧 −

𝐶2(𝑚,𝑛)𝑒
𝑗𝑘𝑧𝑧)𝑒𝑗𝜔𝑡 ∫ 𝑐𝑜𝑠 (

𝑚𝜋𝑥

𝑏
)𝑑𝑥

𝑏

0
∫ 𝑐𝑜𝑠 (

𝑛𝜋𝑦

ℎ
)𝑑𝑦

ℎ

0
  

which yields 

𝑣𝑧,(𝑚,𝑛) = 0      𝑓𝑜𝑟   𝑚 ≠ 0; 𝑛 ≠ 0 

and 

𝑣𝑧,(𝑚,𝑛)
′ =

𝑏ℎ

𝑎0
(𝐶1(𝑚,𝑛)𝑒

−𝑗𝑘0𝑧 − 𝐶2(𝑚,𝑛)𝑒
𝑗𝑘0𝑧)𝑒𝑗𝜔𝑡     𝑓𝑜𝑟  𝑚 = 𝑛 = 0                   (2.43) 

So, the concept of acoustic mass velocity is meaningless for higher order modes. Moreover, any 

particular higher order mode will propagate unattenuated within the duct only if its propagation 

constant is a real number, namely 

𝑘0
2 − (

𝑚𝜋

𝑏
)
2

− (
𝑛𝜋

ℎ
)
2

> 0       

or 

4

𝜆2
− (

𝑚

𝑏
)
2

− (
𝑛

ℎ
)
2

> 0  

or 

𝜆 <
2

√(
𝑚

𝑏
)
2
+(
𝑛

ℎ
)
2
                                                               (2.44) 

Therefore, if for example  𝑏 > ℎ, then the first higher order mode will be (1,0) and it would start 

propagate (or would be cut-on) if 

𝜆 > 2𝑏    or      𝑓 >
𝑎0

2𝑏
 

Hence, summarizing, in a rectangular duct only plane waves would propagate if the frequency is 

small enough so that 

𝜆 < 2𝑏    or      𝑓 <
𝑎0

2𝑏
                                                     (2.45) 
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where 𝑏 is the larger of the two cross sectional dimensions; all higher order modes, even if present, 

will be cut-off, namely attenuated exponentially. 

Generalizing, such determination of the frequency of the problem may be also made by means of a 

dimensionless number called Helmholtz number which is defined as 

𝐻𝑒 =
2𝜋𝐿

𝜆
= 𝑘0𝐿                                                            (2.46) 

where 𝐿 is the characteristic length scale of the problem. If the Helmholtz number is much less than 

𝜋, then  the problem is said to be low frequency problem. Hence, by assuming 𝐿 = 𝑏, eq. (2.45) is 

confirmed for 𝐻𝑒 < 𝜋 (low frequency range). 

2.2.3 3-D propagation in tubes 

Probably, together with the rectangular duct, the most common shape for a duct is that of a tube, 

that is with a circular cross section. When a three-dimensional wave propagation phenomenon 

occurs within a tube, as the one which is schematically depicted in Figure 2.10, the governing wave 

equation is still represented by eq. (2.36). The only difference lies in the form of the Laplace 

operator which, if a cylindrical coordinate system is adopted[5], may be expressed as 

∇2=
𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2
𝜕2

𝜕𝜃2
+

𝜕2

𝜕𝑧2
                                                  (2.47) 

where 𝑟, 𝜃 and 𝑧 are the radial, polar and axial coordinates respectively. 

 

Figure 2.10 – Circular duct (or tube) representation. 

By assuming a time and theta dependence of the type 𝑒𝑗𝜔𝑡 and 𝑒𝑗𝑚𝜃respectively, and by making 

use of the method of separation of the variable[10], the acoustic pressure may be expressed as 

𝑝′(𝑟, 𝜃, 𝑧, 𝑡) = ∑ 𝑅𝑚(𝑟)(𝐶1𝑒
−𝑗𝑘𝑧𝑧 + 𝐶2𝑒

𝑗𝑘𝑧𝑧)𝑒𝑗𝜔𝑡𝑒𝑗𝑚𝜃𝑚                                 (2.48) 

which, once substituted into the wave equation, yields to the following Bessel equation[15] for 𝑅(𝑟) 

𝜕2𝑅𝑚(𝑟)

𝜕𝑟2
+
1

𝑟

𝜕𝑅𝑚

𝜕𝑟
+ (𝑘𝑟

2 −
𝑚

𝑟2
)𝑅𝑚 = 0                                           (2.49) 

where 𝑘𝑟
2 = 𝑘0

2 − 𝑘𝑧
2. In general, the Bessel equation has a solution which is a linear combination of 

two functions, namely 

𝑅𝑚 = 𝐴 𝐽𝑚(𝑘𝑟𝑟) + 𝐵 𝑁𝑚(𝑘𝑟𝑟)                                                 (2.50) 
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where 𝐽𝑚(𝑘𝑟𝑟) and 𝑁𝑚(𝑘𝑟𝑟) stand for the 𝑚𝑡ℎ order Bessel functions of the first and second kind 

respectively[6]. They are depicted in Figure 2.11, for three values of the coefficient 𝑚 (0,1,2) (note 

that 𝑚 is linked to the polar coordinate). 

 

Figure 2.11 – Bessel function of the first kind a) and second kind b). 

As usually, the values of the constants 𝐴 and 𝐵 should be found from the boundary conditions. The 

Bessel function of the second kind approaches minus infinity at the 𝑧 axis (𝑟 = 0), and, as the 

acoustic pressure must have a finite value everywhere, it follows that 𝐵 = 0. Moreover, since the 

focus is on tubes whose wall are extremely rigid, the radial particle velocity must equal zero at the 

wall (𝑟 = 𝑟0) which, thanks to the momentum balance equation, implies that 

𝜕𝑅𝑚

𝜕𝑟
=
𝜕𝐽𝑚(𝑘𝑟𝑟0)

𝜕𝑟
= 0                                                     (2.51) 

It follows that 𝑘𝑟 can only take values such that the first derivative of the Bessel function of the first 

type equals zero (𝐽𝑚
′ (𝑘𝑟𝑟0) = 0). If such 𝑛 values of the radial wave number are labeled as 𝑘𝑟,(𝑚,𝑛), 

the acoustic pressure distribution within the tube may be expressed as 

𝑝′(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑ 𝐴 𝐽𝑚(𝑘𝑟,(𝑚,𝑛)𝑟)(𝐶1,(𝑚,𝑛)𝑒
−𝑗𝑘𝑧,(𝑚,𝑛)𝑧 + 𝐶2,(𝑚,𝑛)𝑒

𝑗𝑘𝑧,(𝑚,𝑛)𝑧)𝑒𝑗𝜔𝑡𝑒𝑗𝑚𝜃∞
𝑛=1

∞
𝑚=0        

(2.52) 

where 
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𝑘𝑧,(𝑚,𝑛) = √𝑘0
2 − 𝑘𝑟,(𝑚,𝑛)

2                                                    (2.53) 

According to the above nomenclature, the mode (0,1) corresponds to a plane wave, which 

represents a discrepancy with respect to the nomenclature introduced for the rectangular duct. In 

fact, as it is possible to appreciate from Figure 2.11 a), the first zero (𝑛 = 1) of  𝐽0
′  is zero, namely 

𝑘𝑟,(0,1) = 0, which simply implies that the propagation constant equals the plane wave number. 

Thus, it would be more convenient if 𝑛, instead of indicating the 𝑛𝑡ℎ root of  𝐽𝑚
′ , would stand for 

the number of nodal circular line in the pressure distribution, representing the 𝑛 + 1𝑠𝑡 root of 𝐽𝑚
′ . It 

follows that eq. (2.52) becomes 

𝑝′(𝑟, 𝜃, 𝑧, 𝑡) = ∑ ∑ 𝐴 𝐽𝑚(𝑘𝑟,(𝑚,𝑛)𝑟)(𝐶1,(𝑚,𝑛)𝑒
−𝑗𝑘𝑧,(𝑚,𝑛)𝑧 + 𝐶2,(𝑚,𝑛)𝑒

𝑗𝑘𝑧,(𝑚,𝑛)𝑧)𝑒𝑗𝜔𝑡𝑒𝑗𝑚𝜃∞
𝑛=0

∞
𝑚=0               

(2.54) 

which perfectly agrees with the nomenclature introduced for the three-dimensional wave 

propagation in ducts. In Figure 2.12, the first nine acoustic modes of tubes are schematically 

depicted, with the indication of the corresponding values of the modal constants (𝑚, 𝑛). 

 

Figure 2.12 – First 9th acoustic modes propagating in tubes. 

As an example, the first two higher-order modes (0,1) and (1,0) would propagate along the axis if 

the corresponding axial wave number is real, namely if 𝑘0 > 𝑘𝑟,(0,1) and 𝑘𝑟,(1,0) respectively. By the 

examination of Figure 2.11 a), the second zero of 𝐽0
′  occurs at 𝑘𝑟,(0,1)𝑟0 = 3,83 whilst the first zero 

of 𝐽1
′  occurs at 𝑘𝑟,(1,0)𝑟0 = 1,84. Consequently, the condition according to which only plane waves 

can propagate in tubes is the following 

𝑘0𝑟0 < 1,84                                                            (2.55) 

or 

𝑓 <
1,84𝑎0

𝜋𝐷0
                                                               (2.56) 
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where 𝐷0 stands for the diameter of the cross section. In order to evaluate the axial particle velocity 

for the (𝑚, 𝑛) propagating acoustic mode, it is possible to make use of the momentum equation in 

the axial direction, namely 

𝑢𝑧,(𝑚,𝑛)
′ = −

𝜕𝑝′(𝑥, 𝑦, 𝑧, 𝑡)

𝜕𝑧

1

𝑗𝜔𝜌0
 

or 

𝑢𝑧,(𝑚,𝑛)
′ =

𝑘𝑧,(𝑚,𝑛)

𝑘0𝑍0
𝐽𝑚(𝑘𝑟,(𝑚,𝑛))(𝐶1,(𝑚,𝑛)𝑒

−𝑗𝑘𝑧,(𝑚,𝑛)𝑧 − 𝐶2,(𝑚,𝑛)𝑒
𝑗𝑘𝑧,(𝑚,𝑛)𝑧)𝑒𝑗𝜔𝑡𝑒𝑗𝑚𝜃           (2.57) 

So, even in the case of wave propagation in tubes, for the same acoustic pressure, the amplitude of 

particle velocity for the (𝑚, 𝑛) propagation mode is less (𝑘𝑧(𝑚,𝑛) 𝑘0⁄  times) than the one 

corresponding to the plane wave solution (0,0). 

2.3 Sound propagation in moving media 

In the above paragraphs, the propagation of sound in rigid-walled ducts, filled with a quiescent 

fluid, has been discussed. However, in many industrial applications, sound propagation is a 

phenomenon occurring within a moving medium. In general, as already mentioned, the presence of 

a velocity field may affect both sound generation and propagation. The effect of fluid flow on sound 

generation will be in depth discussed in chapter 7, where the basic concepts of the branch of physic 

so-called aeroacoustics will be given. In this paragraph the focus will be on the effect that a mean 

flow field has on the propagation of sound. The starting point of the study of such phenomenon is 

that, since the fluid is moving, the Lagrangian and the Eulerian description are not the same, the 

spatial time derivative being substituted by the material time derivative so that additional terms 

appears in the governing wave equation. Intuitively, if a sound wave propagates at the Laplacian 

speed of sound within a medium at rest, when sound propagates in a medium having mean velocity 

𝑈 the velocity relative to a fixed frame of reference would be 𝑈 + 𝑎0 for the forward moving wave 

and 𝑈 − 𝑎0 for the back moving wave. Both waves are said to be convected downstream by the 

flow indeed, as it will be clear in the following. All the foregoing analysis do not take into account 

dissipative effects of the medium. 

2.3.1 The convective wave equation and solution 

In order to appreciate the differences with the case of stationary acoustic medium, let’s firstly focus 

on the one-dimensional case. To this aim, consider for simplicity that the acoustic medium is 

moving with velocity 𝑈, constant and uniform along a duct[5]. At the same time, it is assumed that 

small disturbances perturb, in one direction, the fluid particles around their equilibrium state, and 

therefore pressure, density and particle velocity can be expressed as 

𝑝(𝑥, 𝑡) = 𝑝0 + 𝑝
′(𝑥, 𝑡)                                                              (2.58) 

𝜌(𝑥, 𝑡) = 𝜌0 + 𝜌
′(𝑥, 𝑡)                                                              (2.59) 

𝑢(𝑥, 𝑡) = 𝑈 + 𝑢′(𝑥, 𝑡)                                                               (2.60) 
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Thus, by substituting eq. (2.58), (2.59) and (2.60) within the equation of conservation of mass 

(2.18), keeping only linear terms (which means, again, neglecting all products of primed quantities), 

yields 

𝜕𝜌′

𝜕𝑡
+ 𝑈

𝜕𝜌′

𝜕𝑥
+ 𝜌0

𝜕𝑢′

𝜕𝑥
= 0  

or, recalling the definition of material time derivative26 

𝐷𝜌′

𝐷𝑡
+ 𝜌0

𝜕𝑢′

𝜕𝑥
= 0                                                               (2.61) 

By performing the same substitution within the momentum conservation equation (2.19), yields 

𝜌0
𝜕𝑢′

𝜕𝑡
+ 𝑈

𝜕𝜌′

𝜕𝑡
+ 2𝜌0𝑈

𝜕𝑢′

𝜕𝑥
+ 𝑈2

𝜕𝜌′

𝜕𝑥
+
𝜕𝑝′

𝜕𝑥
= 0                                         (2.62) 

or, making use of eq. (2.61) 

𝜌0
𝜕𝑢′

𝜕𝑡
+ 𝜌0𝑈

𝜕𝑢′

𝜕𝑥
+
𝜕𝑝′

𝜕𝑥
= 0  

or, recalling the definition of lagrangian time derivative 

𝜌0
𝐷𝑢′

𝐷𝑡
+
𝜕𝑝′

𝜕𝑥
= 0                                                                          (2.63) 

Thus, substituting the expression for the density by using equation (2.13) and (2.14), and then 

performing27 
𝐷(2.61)

𝐷𝑡
−
𝑑(2.63)

𝑑𝑥
, yields to the following convective wave equation 

[
𝐷2

𝐷𝑡2
− 𝑎0

2 𝜕2

𝜕𝑥2
] 𝑝′ = 0                                                                (2.64) 

or 

𝜕

𝜕𝑡
(
𝜕𝑝′

𝜕𝑡
+ 𝑈

𝜕𝑝′

𝜕𝑥
) + 𝑈

𝜕

𝜕𝑥
(
𝜕𝑝′

𝜕𝑡
+ 𝑈

𝜕𝑝′

𝜕𝑥
) − 𝑎0

2 𝜕
2𝑝′

𝜕𝑥2
= 0                                  (2.65) 

or 

𝜕2𝑝′

𝜕𝑡2
+ 2𝑈

𝜕2𝑝′

𝜕𝑡𝜕𝑥
+ (𝑈2 − 𝑎0

2)
𝜕2𝑝′

𝜕𝑥2
= 0                                                   (2.66) 

By means of the method of separation of the variable[10] and assuming a time dependence of the 

type 𝑒𝑗𝜔𝑡, the solution of eq. (2.66), which represents the acoustic  pressure at any point within the 

domain and at any time instant, may be expressed as follows 

𝑝′(𝑥, 𝑡) = 𝑝+̂𝑒
𝑗𝜔(𝑡−𝑥 𝑎0+𝑈⁄ ) + 𝑝−̂𝑒

𝑗𝜔(𝑡+𝑥 𝑎0−𝑈⁄ ) = (𝑝+̂𝑒
−𝑗𝑘+𝑥 + 𝑝−̂𝑒

𝑗𝑘−𝑥)𝑒𝑗𝜔𝑡         (2.67) 

                                                           
26 It is possible to reach the same result by considering, instead of the eulerian time derivative, the lagrangian time 

derivative in eq. (2.20). In fact, in this latter case the convection effect of the mean flow is already accounted in the time 

derivative, so that there is no need to use eq. (2.60) anymore. 
27 The Lagrangian and Eulerian time derivative are not the same anymore, due to the presence of flow. The substantial 

derivative is now equal to 
𝐷𝐺

𝐷𝑡
=
𝜕𝐺

𝜕𝑡
+ 𝑽 ∙ ∇𝐺. 
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The above equation is very similar to that of the stationary medium case apart from the fact that the 

expression for the wavenumber is changed, namely 

𝑘± =
𝑘0

1±𝑀
                                                                  (2.68) 

where 𝑀 = 𝑈 𝑎0⁄  is the Mach number. From eq. (2.68) the convective effect of the mean flow, on 

both the forward and backward moving wave components of the sound field, is highlighted. In fact, 

in case of the presence of mean flow velocity different from zero, the phase speed differs for the 

two standing wave components, namely 

𝑎𝑝ℎ =
𝜔

𝑘±
= 𝑎0(1 ± 𝑀)                                                (2.69) 

where the plus and minus sings refer to the forward and backward moving wave respectively. 

Following a similar process as the one previously outlined in order to obtain an expression for the 

particle velocity, this latter turns out to be equal to 

𝑢′(𝑥, 𝑡) =
1

𝑍0
(𝑝+̂𝑒

−𝑗𝑘0𝑥 1+𝑀⁄ + 𝑝−̂𝑒
𝑗𝑘0𝑥 1−𝑀⁄ )𝑒𝑗𝜔𝑡                           (2.70) 

in which 𝑍0 is again the characteristic impedance of the medium and is always equal to the product 

of the density and the speed of sound. By defining the acoustic mass velocity as 𝑣 = 𝜌0𝑆𝑢, one gets 

𝑣′(𝑥, 𝑡) =
1

𝑌0
(𝑝+̂𝑒

−𝑗𝑘0𝑥 1+𝑀⁄ + 𝑝−̂𝑒
𝑗𝑘0𝑥 1−𝑀⁄ )𝑒𝑗𝜔𝑡                            (2.71) 

where the characteristic impedance of the tube is the same as for the case of stationary medium. 

As regards the analysis of a three-dimensional sound field, the solution of the 3D convected wave 

equation, for the rectangular duct depicted in Figure 2.8, yields to the following expression for the 

pressure fluctuations 

𝑝′(𝑥, 𝑦, 𝑧, 𝑡) = ∑ ∑ 𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝑏
)∞

𝑛=0
∞
𝑚=0 𝑐𝑜𝑠 (

𝑛𝜋𝑦

ℎ
) (𝐶1(𝑚,𝑛)𝑒

−𝑗𝑘𝑧,(𝑚,𝑛)
+ 𝑧 + 𝐶2(𝑚,𝑛)𝑒

𝑗𝑘𝑧,(𝑚,𝑛)
− 𝑧) 𝑒𝑗𝜔𝑡         

(2.72) 

where the compatibility condition is 

𝑘𝑧,(𝑚,𝑛)
2 + 𝑘𝑥

2 + 𝑘𝑦
2 = (𝑘0 +𝑀𝑘𝑧,(𝑚,𝑛))

2
                                   (2.73) 

The solution of eq. (2.73) in terms of 𝑘𝑧,(𝑚,𝑛), yields to the following expression for the propagation 

constant for the (𝑚, 𝑛) acoustic mode 

𝑘𝑧,(𝑚,𝑛)
± =

∓𝑀𝑘0+[𝑘0
2−(1−𝑀2)(𝑘𝑥

2+𝑘𝑦
2)]

1
2

1−𝑀2
                                         (2.74) 

It follows that the condition for the (𝑚, 𝑛) mode to propagate unattenuated, coinciding with the case 

of a real propagation constant, is found when the argument of the square root is positive, namely 

𝑘0
2 − (1 −𝑀2)(𝑘𝑥

2 + 𝑘𝑦
2) ≥ 0                                             (2.75) 
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This, in terms of wavelength, simply implies that only plane waves will propagate if the following 

condition is satisfied 

𝜆 >
2𝑏

(1−𝑀2)1 2⁄
                                                                (2.76) 

or, in terms of frequency 

𝑓 <
𝑎0

2𝑏
(1 − 𝑀2)1 2⁄                                                             (2.77) 

Thus, if 𝑏 > ℎ, the cut-off frequency of the first higher order modes (1,0) is lower by a factor equal 

to (1 − 𝑀2)1 2⁄ , 𝑀 being the mean flow Mach number, with respect to the case of a stationary 

medium. The expression for the particle velocity may be determined by means of the momentum 

conservation equation in the axial direction, substituting in it the expression of the pressure 

fluctuation. This process yields to the following expression 

𝑢𝑧,(𝑚,𝑛)
′ =

1

𝑍0
𝑐𝑜𝑠 (

𝑚𝜋𝑥

𝑏
) 𝑐𝑜𝑠 (

𝑛𝜋𝑦

ℎ
) (

𝑘𝑧,(𝑚,𝑛)
+

𝑘0−𝑀𝑘𝑧,(𝑚,𝑛)
+ 𝐶1(𝑚,𝑛)𝑒

−𝑗𝑘𝑧,(𝑚,𝑛)
+ 𝑧 −

𝑘𝑧,(𝑚,𝑛)
−

𝑘0+𝑀𝑘𝑧,(𝑚,𝑛)
+ 𝐶2(𝑚,𝑛)𝑒

−𝑗𝑘𝑧,(𝑚,𝑛)
− 𝑧) 𝑒𝑗𝜔𝑡     (2.78) 

From what concerns the three-dimensional acoustic propagation in tubes with mean flow, similar 

expression may be derived. The important thing is that in that case the lowering effect on the cut-off 

frequency is practically the same as in the case of rectangular ducts. In fact, the cut-off frequency of 

the first high order mode would be 

𝑓 =
1,84𝑎0

𝜋𝐷0
(1 − 𝑀2)1 2⁄                                               (2.79) 

below which only plane wave can propagate. However, for low Mach number flow application (say 

𝑀 < 0.2) it is assumed that the influence of the flow convection effects on the acoustic propagation 

is negligible. 
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Chapter 3 

Basics of Sound Propagation in Duct 

Introduction 

As it has been already mentioned, the problem of attenuating noise is of primary concern, whose 

traditional solution generally relies on inserting something on the path between sound source and 

receiver. When the path through which sound propagates is constituted by ducts and pipes, the 

branch of acoustics concerned with sound propagation is called duct acoustics. Such particular 

theory is of practical relevance in many areas of acoustics and noise control. As an example, it is 

possible to refer to air-distributing systems for air-conditioning in which the challenge is 

represented by the attenuation of the fan noise. Also, the reduction of noise from both intake and 

exhaust systems of gasoline and Diesel internal combustion engines is a very important task to be 

accomplished, in order to respect the overall vehicle noise emissions standard. However, not always 

duct systems are located between source and receiver in order to attenuate noise. In particular, for 

sport/luxury cars, the acoustic design of such system is done so that they are properly tuned, in 

order to deliver the desired sound quality. In all these cases, the duct system is nothing else than a 

set of pipes and mufflers, this latter being classifiable as either dissipative or reflective. The basic 

principle of dissipative mufflers is that sound is attenuated by means of acoustic energy dissipation 

into heat. Such dissipation mechanism is achieved thanks to the use of absorption material. Vice 

versa, the sound attenuation accomplished by reflective mufflers relies on reflection of acoustic 

energy. More precisely, basic reflective mufflers are essentially constituted by combinations of 

pipes having different cross sections which causes impedance mismatch, thanks to which 

interference between incident and reflected acoustic waves is accomplished, resulting in a lower 

sound level transmitted downstream. In the following pages, the basic concepts about how 

reflective mufflers work will be recalled, making reference to the theory of the acoustic filters. 

An acoustic filter is nothing else than an acoustic element (or generally more than just one) located 

between the sound source and the receiver, e.g. the atmosphere. Thus, an exhaust muffler is an 

acoustic filter in which, according to what has been previously highlighted, the acoustic waves are 

convected downstream by the moving medium, which is constituted by the exhaust gases. However, 

for simplicity, the acoustic filter’s theory will be recalled considering a stationary medium and 

plane waves propagation, as the common used diameters are such that the condition expressed by 

eq. (2.56) is satisfied in the range of interest. Therefore, the governing equation is the classical 1-D 

wave equation, namely 

[
1

𝑎0
2

𝑑2

𝑑𝑡2
−

𝑑2

𝑑𝑥2
] 𝑝′ = 0                                                      (3.1) 

assuming x as the direction of propagation. The two state variables which characterize acoustic 

waves and the acoustic state at each section of an acoustic filter are the acoustic pressure 𝑝′(𝑡) and 

particle velocity 𝑢′(𝑡). As already mentioned, these two quantities characterize the flux of acoustic 

energy per unit of area across a surface (real or hypothetical) which is termed acoustic intensity. 
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More precisely, the sound intensity related to a surface equals the time average product of sound 

pressure and the normal component (to the surface) of the particle velocity, namely 

𝐼𝑠 = 𝑝′(𝑡) 𝑢𝑛′ (𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                             (3.2) 

Therefore, the total acoustic power radiated by a sound source may be evaluated by the surface 

integral of the sound intensity over a real or hypothetical surface enclosing the source, that is 

𝑊𝑠 = ∬𝐼𝑠 𝑑𝑆                                                                   (3.3) 

Considering an acoustic wave, the so-called wave front is defined as the locus of points indicating 

the particles having the same phase. So, the total acoustic power associated with a plane wave, in a 

duct of cross section S, would be given by 

𝑊 = 𝑆  𝑝′ · 𝑢′̅̅ ̅̅ ̅̅ ̅̅ =
1

𝜌0
𝑝𝑟𝑚𝑠
′ 𝑣𝑟𝑚𝑠

′                                             (3.4) 

where v’ is the acoustic mass velocity and is equal to 𝑆𝜌0𝑢
′. Such velocity is preferred in hot gases 

system since, as it has been shown in the previous chapter, it allows to refer to the characteristic 

impedance of the tube 𝑌0 = 𝑎0 𝑆⁄ . If both acoustic pressure and acoustic mass velocity are assumed 

to vary with sinusoidal law, that is 

𝑝′ = 𝑃𝑒𝑗𝜔𝑡  𝑝𝑟𝑚𝑠
′ =

𝑃

√2
                                                       (3.5) 

𝑣′ = 𝑉𝑒𝑗𝜔𝑡  𝑣𝑟𝑚𝑠
′ =

𝑉

√2
                                                        (3.6) 

then the total acoustic power associated with a plane wave inside a duct would be equal to 

𝑊 =
1

2𝜌0
(𝑃𝑉)𝑐𝑜𝑠𝜗                                                                     (3.7) 

where 𝜗 is the phase difference between P and V. As every signal may be expressed in terms of its 

spectral components, thanks to the Fourier analysis, in the following, all formulation will refer to 

the frequency representation of acoustic variables. Therefore, the symbols p and v stand for the 

complex amplitudes of the two state variables. 

3.1 Basic theory of acoustic filters 

Generally speaking, a silencer is a very complex system in which several reactive and dissipative 

effects may occur, in order to lower the gas-dynamic noise (due to the exhaust valve opening) 

which is emitted at the end of the so-called tail pipe and radiated outside. However, it is possible to 

recognize a few types of elementary acoustic filters and then it is possible to focus on the study of 

complex mufflers as composed of such basic elements. It follows that, in the next paragraphs the 

fundamental aspects of such elementary elements will be reported. In doing so, each acoustic filter 

will be characterized by its acoustic impedance which characterizes the resistance exerted by the 

element to sound transmission. Such circumstance is generally presented in analogy to what 

happens in electric circuits theory. In fact, according to this theory, the impedance is nothing else 

than the resistance when dealing with alternate current circuits, which represent a complex number 

whose real and imaginary part are termed electric resistance and reactance respectively. The same 
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concepts apply to acoustic propagation theory, considering the acoustic impedance as a measure of 

the opposition that a system presents to the acoustic transmission, resulting from an acoustic 

pressure applied to the system. Consequently, as already mentioned, acoustic pressure and particle 

velocity are equivalent to voltage and current respectively within electric theory. 

3.1.1 Specific acoustic impedance of an uniform tube 

As it has been learned before from the solution of the classical wave equation, the acoustic pressure 

and the acoustic mass velocity may be expressed in terms of forward moving and back moving 

wave components as follows28 

𝑝′(𝑥, 𝑡) = 𝐴𝑒−𝑗𝑘0𝑥 + 𝐵𝑒𝑗𝑘0𝑥                                                    (3.8) 

𝑣′(𝑥, 𝑡) =
1

𝑌0
(𝐴𝑒−𝑗𝑘0𝑥 − 𝐵𝑒𝑗𝑘0𝑥)                                              (3.9) 

where the exponential time factor has been embedded within the complex amplitudes A and B. It is 

important to note that conventionally the characteristic impedance is denoted by Z0 but, in the 

theory of acoustic filters, the subscripts denote the 𝑛𝑡ℎ elements of the considered filter whilst Z0 is 

called the radiation impedance of the atmosphere. Therefore, in eq. (3.9) the characteristic 

impedance (defined as the ratio of sound pressure and particle velocity, both associated with a plane 

progressive wave) has been indicated with Y0 (actually since the acoustic mass velocity has been 

adopted, it indicates the characteristic impedance of the tube). It also represents the ratio between 

sound pressure and acoustic mass velocity in free field, where there are only forward moving wave. 

However, in duct propagation problem the sound field is expressed by eq. (3.8) and so, considering 

a uniform tube as depicted in Figure 3.1, the specific acoustic impedance at any point in the 

standing wave field is defined as 

𝛤(𝑥) =
𝑝′(𝑥,𝑡)

𝑣′(𝑥,𝑡)
= 𝑌0

𝐴𝑒−𝑗𝑘0𝑥+𝐵𝑒𝑗𝑘0𝑥

𝐴𝑒−𝑗𝑘0𝑥−𝐵𝑒𝑗𝑘0𝑥
                                                     (3.10) 

and represents the equivalent impedance of the complete passive subsystem downstream of the 

considered point. 

 

Figure 3.1 – Uniform tube schematization. 

Once, the origin of the coordinate system has been chosen, at the beginning of a tube such specific 

acoustic impedance is equal to 

                                                           
28 It is implicit that the real part has to be considered. 
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𝛤(0) = 𝑌0
𝐴+𝐵

𝐴−𝐵
                                                              (3.11) 

whilst its value at the end of the tube is 

𝛤(𝐿) = 𝑌0
𝐴𝑒−𝑗𝑘0𝐿 + 𝐵𝑒𝑗𝑘0𝐿

𝐴𝑒−𝑗𝑘0𝐿 − 𝐵𝑒𝑗𝑘0𝐿
 

= 𝑌0
(𝐴 + 𝐵)𝑐𝑜𝑠(𝑘0𝐿) − 𝑗(𝐴 − 𝐵)𝑠𝑖𝑛(𝑘0𝐿)

(𝐴 − 𝐵)𝑐𝑜𝑠(𝑘0𝐿) − 𝑗(𝐴 + 𝐵)𝑠𝑖𝑛(𝑘0𝐿)
 

= 𝑌0
(𝐴+𝐵)/(𝐴−𝐵)−𝑗 𝑡𝑎𝑛(𝑘0𝐿)

1−𝑗(𝐴+𝐵)/(𝐴−𝐵)𝑡𝑎𝑛(𝑘0𝐿)
                                                          (3.12) 

or 

𝛤(𝐿) =
𝛤(0)cos (𝑘0𝐿)−𝑗 𝑌0sin (𝑘0𝐿)

cos (𝑘0𝐿)−𝑗 𝛤(0) 𝑌0⁄ sin (𝑘0𝐿)
                                                      (3.13) 

Of course, by simply rearranging eq. (3.13), it is possible to obtain the specific acoustic impedance 

at the beginning of the tube as function of that at the end 

𝛤(0) =
𝛤(𝐿) cos(𝑘0𝐿)+𝑗 𝑌0sin (𝑘0𝐿)

cos(𝑘0𝐿)+𝑗𝛤(𝐿) 𝑌0⁄ sin (𝑘0𝐿)
                                                      (3.14) 

Both eq. (3.13) and (3.14) express the so called the impedance translation theorem. Hence, if the 

end of the tube at x=L is rigidly closed, that is the acoustic mass velocity equals zero, then the 

acoustic impedance goes to infinity and so the impedance at x=0 may be approximated as 

𝛤(0)𝑟𝑖𝑔𝑖𝑑 𝑒𝑛𝑑 = −𝑗𝑌0cot (𝑘0𝐿)                                                   (3.15) 

Generally speaking, as it has already mentioned, an acoustic filter consists of a series of uniform 

duct, with different cross-sectional area, connected at the discontinuities. There, it happens that part 

of the incident energy is reflected, another part is dissipated (generally a very small part) whilst the 

remainder is transmitted downstream. Moreover, as it will be recalled later, at the junctions of area 

changes three-dimensional waves arise that simple one-dimensional theory cannot take into 

account. Thus, instead of referring to the acoustic impedance, a termination is often described in 

terms of its reflection coefficient, by the knowledge of which the evaluation of the reflected wave 

may be simply achieved. In fact, the reflection coefficient is defined as the ratio between the 

reflected wave and the incident wave, namely 

𝑅 = |𝑅|𝑒𝑗𝜃                                                           (3.16) 

where |𝑅| and 𝜗 are the modulus and the phase29 of the reflection coefficient. Thus, in terms of 

incident and reflected wave components, the reflection coefficient at the beginning and at the end of 

the tube may be expressed respectively as 

𝑅(0) =
𝐵

𝐴
                                                                (3.17) 

                                                           
29 The phase information takes into account the presence of the above mentioned 3D effect which cannot be taken into 

account in a one-dimensional theory. 
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and 

𝑅(𝐿) =
𝐵𝑒𝑗𝑘0𝐿

𝐴𝑒−𝑗𝑘0𝐿
                                                            (3.18) 

Of course, it is easy to see, by the examination of eq. (3.10), that the relation between the acoustic 

impedance and the reflection coefficient at 𝑥 = 0 are the following 

𝛤 = 𝑌0
1+𝑅

1−𝑅
                                                                 (3.19) 

and 

𝑅 =
𝛤−𝑌0

𝛤+𝑌0
                                                                    (3.20) 

Therefore, as expected, at a rigid termination 𝛤 goes to infinity and so the incoming wave is 

completed reflected (with the same amplitude and phase) 

𝑅𝑟𝑖𝑔𝑖𝑑 𝑒𝑛𝑑 → 1                                                                (3.21) 

It is important to mention the existence of another specific termination, which is often used in both 

experimental and numerical acoustic, and it is the so-called anechoic termination, for which no 

reflections are possible. More precisely, during experiments, this is a very important type of 

termination as it tries to reproduce the acoustic response in free field conditions. In fact, as it should 

be intuitively clear enough at this point, acoustic measurements are not as “simple” as others types 

of measurement. This is because, in acoustic, the general focus is on the evaluation of the effect of 

an acoustic source in terms of, for example, acoustic pressure. However, the acoustic field is highly 

dependent on the environment in which the measure is made as, at certain point in space, the 

resulting acoustic pressure is affected by the source emission and by reflection, diffraction, 

scattering effects due to the boundaries of the measurement environment and to the eventual 

presence of obstacles to the sound propagation. This is not the case, for example, of structural 

vibration measurements, during which the response of a structure is not dependent on the 

measurement environment. So, there is the need of performing acoustic measurements in very 

particular environments trying to reproduce standard conditions, as those of free field propagation. 

Consequently, in case of anechoic termination, the reflection coefficient is equal to zero and 

therefore the acoustic impedance equals the characteristic impedance of the tube, namely 

𝛤𝑎𝑛𝑒𝑐ℎ𝑜𝑖𝑐 𝑒𝑛𝑑 → 𝑌0                                                         (3.22) 

 

3.1.2 Radiation impedance 

So far, the concept of impedance has been recalled and several examples have been discussed. 

However, apart from the characteristic impedance of the medium, characteristic impedance of the 

tube and the above discussed specific acoustic impedance relative to a point in the standing waves 

field, before considering other elemental acoustic elements, it is necessary to mention another type 

of impedance, namely the radiation impedance. In acoustics, radiation impedance is the impedance 

exerted by the surrounding medium on any vibrating solid or fluid which radiates sound. It is 
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generally defined as the ratio, at the interface, of the force a radiator exerts on a medium (equal and 

opposite to the force that the medium exerts on the radiator), to the velocity of the radiator. It is 

associated with the acoustic load from the surrounding medium. Consequently, when sound 

propagation occurs in a tube terminating within an external ambient, the radiation impedance must 

be taken into account before being able to estimate the corresponding sound field. In this case, it is 

defined as the impedance that the atmosphere imposes at the end of a tube, and, as already 

mentioned, it is commonly indicated by Z0. It follows that, from an electro-acoustic analogy, the 

radiation impedance represents the final load of the equivalent electric circuit. 

 

Figure 3.2 – Equivalent acoustic circuit representations. 

The availability of a model which makes easy to quantify the radiation impedance is very important 

because, as already highlighted, an acoustic filter has the main task of attenuating the noise 

transmission between a sound source and a receiver which is generally located in the atmosphere. 

Consequently, the “resistance” to the sound transmission imposed by the external medium plays an 

important role in such sense. A situation in which it is possible to analytically determine the 

radiation impedance is represented by the particular case of a tube terminating in an infinite flange 

(or hemispherical space), as schematically depicted in Figure 3.3. 

 

Figure 3.3 – Schematization of an end pipe terminating in an infinite flange. 

The goal is to evaluate the acoustic pressure and particle velocity on the interface which is 

represented by the outlet mouth of the pipe and, from their ratio, the radiation impedance. Before 

being able of doing this, it is necessary to make use of the expression for the pressure field due to a 

simple source located in an unlimited medium[2]. Since it is easier to deal with velocity-potential as 

independent variable, let’s firstly recall the wave equation in terms of velocity-potential involving 

simple sources30  distribution, namely 

                                                           
30 A simple source is represented by pulsating volume flow (or pulsating injection of mass). 
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[
1

𝑎0
2

𝜕2

𝜕𝑡2
− ∇2]𝜑 = ∅                                                    (3.23) 

where ∅ stands for a source strength per unit of volume. The first thing to note is that, assuming the 

nature of the source as vanishing outside a small volume, the integration of eq. (3.23) through such 

a small space including the source distribution yields 

0 −∬
𝜕𝜑

𝜕𝑛
𝑑𝑆 =∭∅𝑑𝒱                                                 (3.24) 

since the wave propagation is assumed to occur outside the volume occupied by the source31 and 

use has been done of the divergence theorem for the second term on the left hand side. Equation 

(3.24) shows how the effect of the simple source ∅ could be seen as introduction or abstraction of 

fluid through the boundary of 𝒱 (such circumstance will be clarified in the chapter dealing with the 

aerodynamic generation of sound). For what it will be explained in chapter 7, in which an insight on 

the theory of aeroacoustic will be given, eq. (3.23) has a solution of the type32 

𝜑 =∭
∅ (𝑡−

𝑟

𝑎0
)

4𝜋𝑟
𝑑𝒱                                                       (3.25) 

By assuming an harmonic nature for the sound source, it is possible to make use of the Fourier 

transform of ∅ (𝑡 −
𝑟

𝑎0
), namely 

𝜑 =∭
∅ 𝑒−𝑗𝑘0𝑟

4𝜋𝑟
𝑑𝒱                                                         (3.26) 

where the exponential time factor has been embedded within the complex amplitude. If the source, 

say  ∅′, is distributed over an infinite surface splitting the unbounded acoustic medium in two parts, 

the new solution may be thought as particular case of eq. (3.26). In fact, it is possible to rewrite the 

velocity-potential as 

𝜑 =∭
∅′ 𝑒−𝑗𝑘0𝑟

4𝜋𝑟
𝑑𝑆                                                           (3.27) 

where ∅′ = 𝑏∅, being 𝑏 the thickness of the surface such that 𝑑𝒱 = 𝑏𝑑𝑆. Moreover, thanks to eq.( 

3.24), the velocity-potential expressed by eq. (3.27) may be rewritten in terms of normal particle 

velocity of fluid in contact with the infinite plane surface. In fact, since the surface is supposed to be 

plane, then the integral expressed by eq. (3.27) is symmetrical with respect to it, and therefore 

𝜕𝜑

𝜕𝑛1
=

𝜕𝜑

𝜕𝑛2
                                                                    (3.28) 

being 𝑛1 and 𝑛2 the outward normal on both side of 𝑆. It follows that, by substituting eq. (3.28) 

within eq. (3.24),  𝜑 may be expressed as 

𝜑 = −
1

2𝜋
∭

𝜕𝜑

𝜕𝑛

𝑒−𝑗𝑘0𝑟

𝑟
𝑑𝑆                                                         (3.29) 

                                                           
31 
𝜕2

𝜕𝑡2
∭𝜑𝑑𝒱 = 0 since 𝜑 ≠ 0 outside the source region. 

32 It naturally follows from the theory of the free field Green’s function. 
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which gives the velocity-potential field at any point, on both side of the unbounded space, whose 

distance from the infinite plate (in normal periodic motion) is  𝑟. The next step is to evaluate such 

velocity-potential in the special case in which the vibrating surface (the source distribution may be 

seen like that) is circular. More precisely, it is possible to state that if the normal particle velocity 
𝜕𝜑

𝜕𝑛
 

has a constant non-zero value only on an circular area belonging to the infinite plane 𝑆, the force 

corresponding to the whole pressure variation acting on one side of the plate is given by33 

∬𝑝′ 𝑑𝑆′ = −𝜌∬�̇� 𝑑𝑆′ = −𝑗𝑘0𝑎0𝜌∬𝜑𝑑𝑆
′                                         (3.30) 

or by means of eq.(3.29) 

∬𝑝′ 𝑑𝑆′ =
𝑗𝑘0𝑎0𝜌

𝜋

𝜕𝜑

𝜕𝑛
∑∑

𝑒−𝑗𝑘0𝑟

𝑟
𝑑𝑆 𝑑𝑆′                                                 (3.31) 

After some complicated algebra[2], the double summation in eq. (3.31) turns out to be equal to 

∑∑
𝑒−𝑗𝑘𝑟

𝑟
𝑑𝑆 𝑑𝑆′ =

𝜋2

2𝑘0
3𝐾1(2𝑘0𝑟0) − 𝑗

𝜋2𝑟0
2

𝑘0
(1 −

𝐽1(2𝑘0𝑟0)

𝑘0𝑟0
)                            (3.32) 

where 𝑟0 stands for the radius of the circular area, 𝐽1(2𝑘0𝑟0) and 𝐾1(2𝑘0𝑟0) are given by 

(1 −
𝐽1(2𝑘0𝑟0)

𝑘0𝑟0
) =

(𝑘0𝑟0)
2

1∙2
−
(𝑘0𝑟0)

4

1∙22∙3
+

(𝑘0𝑟0)
6

1∙22∙32∙4
−

(𝑘0𝑟0)
8

1∙22∙32∙42∙5
+⋯                            (3.33) 

and 

𝐾1(2𝑘0𝑟0) =
2

𝜋
[
(2𝑘0𝑟0)

3

12∙3
−
(2𝑘0𝑟0)

5

12∙32∙5
+

(2𝑘0𝑟0)
7

12∙32∙52∙7
−⋯]                                         (3.34) 

Thus, the total force exerted of the circular plate is finally given by 

∬𝑝′ 𝑑𝑆′ = 𝑎0𝜌 𝜋𝑟0
2 𝜕𝜑

𝜕𝑛
(1 −

𝐽1(2𝑘0𝑟0)

𝑘0𝑟0
) + 𝑗

𝑎0𝜌 𝜋

2𝑘0
2

𝜕𝜑

𝜕𝑛
𝐾1(2𝑘0𝑟0)                          (3.35) 

From what above, an expression for the reacting force of the air, within an hemispherical space, due 

to the normal harmonic motion of a circular area belonging to the infinite flange has been given. By 

the examination of eq. (3.35), such reaction force consists of two terms: one proportional to the 

velocity of the circular plate and another inertial one, which is proportional to its acceleration34.  

If the circular area is assumed to be the outlet mouth of a tube, terminating in an infinite flange with 

particle velocity 𝑢 = 𝜕𝜑 𝜕𝑛⁄ , as in Figure 3.3, then the radiation impedance at the outlet would be 

given by the ratio 

𝑍0 =
𝑝

𝑣
= 𝑌0  (1 −

𝐽1(2𝑘0𝑟0)

𝑘0𝑟0
) + 𝑗

𝑌0 

2(𝑘0𝑟0)2
𝐾1(2𝑘0𝑟0)                                (3.36) 

or 

𝑍0 = 𝑅0 + 𝑗𝑋0                                                                 (3.37) 

                                                           
33 If the velocity-potential is supposed to be an harmonic function of the type 𝜑 = �̂�𝑒𝑗𝜔𝑡, then �̇� = 𝑗𝜔�̂�𝑒𝑗𝜔𝑡 . 
34 If the harmonic velocity of the plate is 

𝜕𝜑

𝜕𝑛
𝑒𝑗𝜔𝑡 , then the acceleration would be  𝑗𝑘𝑎0

𝜕𝜑

𝜕𝑛
𝑒𝑗𝜔𝑡 . 
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For sufficiently low frequencies such that 𝑘0𝑟0 ≪ 1, only the first terms of eq. (3.33) and (3.34) 

must be taken into account and the expression of radiation impedance reduces to 

𝑍0|ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 = 𝑅0 + 𝑗𝑋0 = 𝑌0  (
𝑘0
2𝑟0
2

2
) + 𝑗𝑌0(0.85𝑘0𝑟0)                              (3.38) 

R0 is termed radiation resistance and, since it is proportional to the particle velocity, it is responsible 

for the acoustic radiation from the tail-pipe, whilst X0 is called radiation reactance and, since it is 

proportional to the inertia of the air, it results in a phase difference between pressure and velocity. 

In case where the considered tube termination ends  in an external ambient without any flange, the 

derivation of an analytic expression for the radiation impedance is even more complex and so not 

discussed for brevity’ sake. Nevertheless, in such a case it may be approximated by[3] 

𝑍0|𝑜𝑝𝑒𝑛 𝑒𝑛𝑑 = 𝑌0  (
𝑘0
2𝑟0
2

4
) + 𝑗𝑌0(0.6133𝑘0𝑟0),               𝑘0𝑟0 ≪ 1                        (3.39)                              

Rather than making consideration on such radiation impedance in order to understand how the 

external ambient affects the propagation of sound from a pipe, it is more intuitively to deal with the 

reflection coefficient. In fact, thanks to the definition of the radiation impedance, it is possible to 

evaluate the reflection coefficient at an open end of a tube, which is related to the specific acoustic 

impedance at that point by means of eq. (3.20). It follows that, by inserting eq.( 3.39) within eq.( 

3.20), the reflection coefficient at an open end is found to be equal to 

|𝑅|𝑒𝑗𝜗 =
𝑅0+𝑗𝑋0−𝑌0

𝑅0+𝑗𝑋0+𝑌0
=
(0.25𝑘0

2𝑟0
2−1)+𝑗(0.6133𝑘0𝑟0)

(0.25𝑘0
2𝑟0
2+1)+𝑗(0.6133𝑘0𝑟0)

                                              (3.40) 

After some algebra, the modulus and phase of the reflection coefficient are given below 

|𝑅| =
√(0.0625𝑘0

4𝑟0
4+0.36𝑘0

2𝑟0
2−1)

2
+(1.2𝑘0𝑟0)2

0.0625𝑘0
4𝑟0
4+0.36𝑘0

2𝑟0
2+1

≅ 1 − 0.14𝑘0
2𝑟0
2                                 (3.41) 

𝜗 = 𝑡𝑎𝑛−1 (
1.2𝑘0𝑟0

0.0625𝑘0
4𝑟0
4+0.36𝑘0

2𝑟0
2−1
) ≅ 𝑡𝑎𝑛−1(−1.2𝑘0𝑟0)          

≅ 𝜋 − 𝑡𝑎𝑛−1(1.2𝑘0𝑟0)                                (3.42) 

Therefore, at an open termination, the amplitude of the reflection coefficient is almost equal to one, 

whilst its phase is slightly less than π. Hence, from an engineering point of view, it is possible to 

point out that, at low frequencies, the incoming wave is reflected almost completely with an 

opposite phase, whilst only a little fraction is radiated out. This is especially true for very low 

frequencies, whilst at higher frequency the modulus and phase of the reflection coefficient follows 

(𝑘0𝑟0 ≪ 1) eq. (3.41) and (3.42), as it is depicted in Figure 3.4. 
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Figure 3.4 – Modulus of the reflection coefficient at an open end (r0 = 0.03m). 

In the following, an insight to the lumped element representation will be presented, introducing 

three quantities which are called lumper inertance, end correction and lumped compliance. As it 

will be clear more ahead, these concepts are very useful for the description of a very important 

acoustic element represented by the so-called Helmholtz resonator and the concentric hole-cavity 

resonator. Vice versa, the previously introduced concept of specific acoustic impedance is very 

useful for explaining and understanding the behavior of another important acoustic element which 

is called quarter-wavelength resonator. 

3.1.3 A lumped inertance 

The lumped element modelling approach is very useful for simplifying the task of studying acoustic 

elements which turn out to be acoustically compact. Such condition is satisfied when their 

characteristic dimension is much less than the wavelength of the problem. In this way, the spatial 

variation of acoustic quantities across such kind of element may be neglected, meaning that the 

phase is roughly constant throughout the considered lumped element. Let the focus be, for example, 

on a wave propagation phenomenon along an acoustically small length (𝑘0𝑙 ≪ 1), as that depicted 

in Figure 3.5. 

 

Figure 3.5 – Acoustically small tube schematization. 

Since the small aperture within the plate is acoustically compact, as a consequence of an applied 

acoustic perturbation at one end, all the mass trapped into the tube, which is equal to 𝜌0𝑆𝑙, would be 

rigidly displaced  by the same amount. Thus, a very little time delay will exist between the 
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responses of the two ends such that all the medium particles would move with the same particle 

velocity. Thus, by the application of the Newton’ second law, it follows that 

𝑝𝑆 = 𝜌0𝑆𝑙
𝑑𝑢

𝑑𝑡
                                                            (3.43) 

But, recalling that the particle velocity varies with sinusoidal law 

𝑢′ = 𝑢𝑒𝑗𝜔𝑡   
𝑑𝑢′

𝑑𝑡
= 𝑢𝑗𝜔 

the corresponding impedance equals 

𝑍 =
𝑝

𝑣
=
𝜌0𝑙𝑗𝜔𝑢

𝜌0𝑆𝑢
 

or 

𝑍𝑙𝑢𝑚𝑝𝑒𝑑 𝑖𝑛𝑒𝑟𝑡𝑎𝑛𝑐𝑒 = 𝑗𝜔
𝑙

𝑆
                                                   (3.44) 

Thanks to electro-acoustic analogies, 𝑙 𝑆⁄ , which is the analogous of the lumped inductance, is 

called lumped inertance. 

3.1.4 End correction 

As already mentioned above, in general every time that a wave comes across a discontinuity part of 

the incident energy is reflected back with a phase change. This latter aspect occurs not only because 

of the impedance of the discontinuities, but also because of localized three-dimensional effects 

which arise at the discontinuities and that cannot be modeled in one-dimensional theory. These 

three-dimensional effects may be thought as evanescent higher-order modes. At the location where 

such 3D effects vanish, the plane wave propagation holds again. Therefore, in order to overcome 

this modelling issue, an extra length is to be added to the considered duct, in order to reproduce the 

phase shift corresponding to such three-dimensional effects arising at the discontinuity. Such 

additional length is called end correction and it is the extra length which must be added to the real 

length of a tube when it terminates into a different atmosphere (see Figure 3.6), having in this way 

an equivalent longer acoustic element.  

 

Figure 3.6 – Schematization of the concept of end correction. 

As an example of application of the end correction, which may be understood at this point, if an 

acoustically small tube is exposed to the atmosphere, the radiation reactance can be added to the 

lumped inertance in order to obtain a reactance of an equivalent larger tube, namely 
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𝑗𝜔𝑙ℎ𝑦𝑝𝑜

𝑆
=
𝑗𝜔𝑙𝑟𝑒𝑎𝑙
𝑆

+ 𝑗
𝑎0
𝑆
(0.6𝑘0𝑟0) 

or 

𝛿𝑜𝑝𝑒𝑛 𝑒𝑛𝑑 = 𝑙ℎ𝑦𝑝𝑜 − 𝑙𝑟𝑒𝑎𝑙 = 0.6𝑟0                                                 (3.45) 

where 𝛿 is termed end correction. It follows that, the end correction of a small hole in a plate would 

be twice of the length expressed by the analogous case of eq. (3.38) (that is if a small tube is 

exposed to a hemispherical space), namely 

𝛿ℎ𝑜𝑙𝑒 = 𝑙ℎ𝑦𝑝𝑜 − 𝑙𝑟𝑒𝑎𝑙 = 2 ∙  0.85𝑟0                                                (3.46) 

 

Figure 3.7 – End correction of an hole in a plate. 

Nevertheless, in general, if a small tube is acoustically long, the radiation reactance cannot be 

considered as end correction and so, the atmosphere and the tube must be considered as two distinct 

acoustic elements. 

3.1.5 A lumped compliance 

In Figure 3.8 a cavity of volume V with a neck of cross-sectional area S is shown. Considering a 

pressure p’ to be applied at the neck of cross-sectional area, it is possible to assume that the volume 

decreases adiabatically. 

 

Figure 3.8 – A neck-cavity schematization. 

In this hypothesis, the two versions of Gibbs’s equations yield 

𝑇𝑑𝑆 = 𝑑𝐻 − 𝑉𝑑𝑝 = 0 

𝑑𝑇

𝑇
=
𝑅𝑑𝑝

𝑐𝑝𝑝
                                                                 (3.47) 
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or 

𝑇𝑑𝑆 = 𝑑𝑈 + 𝑝𝑑𝑉 = 0 

𝑑𝑇

𝑇
= −

𝑅𝑑𝑉

𝑐𝑣𝑉
                                                                 (3.48) 

Combining Eq. (3.47) and (3.48) yields, 

𝑝

𝑝0
+ 𝛾

∆𝑉

𝑉
= 0                                                                    (3.49) 

or 

𝑝′ =
𝛾𝑝0∆𝑉

𝑉
                                                                       (3.50) 

where 𝛾 is the ratio between the specific heats. However, the displacement at the neck and the 

corresponding volume contraction may be expressed as 

𝛿 = ∫𝑢 𝑑𝑡 =
𝑢

𝑗𝜔
                                                               (3.51) 

and 

∆𝑉 = −𝑆𝛿 = −
𝑆𝑢

𝑗𝜔
                                                             (3.52) 

Therefore, the expression of the impedance of a lumped compliance is 

𝑍𝑐𝑎𝑣𝑖𝑡𝑦 =
𝑝

𝑣
=

1

𝑗𝜔(𝑉 𝑎0
2⁄ )

                                                     (3.53) 

Even in this case, by electro-acoustic analogy, 𝑉 𝑎0
2⁄ , which is the analogous of the lumped 

capacitance, is called lumped compliance. 

3.1.6 Acoustic resonators 

An acoustic resonator is a very common element for an acoustic filter, whose impedance goes to 

zero at certain frequencies not allowing acoustic transmission. From the easiest point of view, an 

acoustic resonator may be thought as an acoustic medium (air) within a pipe closed at one end 

whilst open at the other. Such mass of air may be seen as a simple mass-spring system vibrating, in 

more or less complete independence from the external atmosphere, at certain frequency which 

depends on the geometry. Actually, the inertia of the air outside the resonator has a damping effect, 

since the acoustic energy of the resonator is radiated (dissipated) through it. In presence of an 

external sound source, the air within the resonator start to vibrate, the magnitude depending on the 

closeness between the forcing frequency and the natural frequency of the resonator itself. In the 

next sections, the three main types of acoustic resonator will be described, which are quarter-

wavelength, Helmholtz and concentric hole-cavity resonators. 
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3.1.6.1 Extended-tube (quarter-wave) resonator 

The simplest example of extended-tube resonator is represented by an uniform tube rigidly closed35 

at one end, whilst opened at the other. Others classical examples of extended-tube resonators are 

schematized in figure below, where they are inserted in ducts systems. Three interfaces have been 

highlighted, which have been numbered by 1,2 and 3, corresponding to the inlet of the outlet tube, 

resonator inlet and outlet of the inlet tube respectively. From what above, each element is 

characterized by its own impedance and thus, according to the plane wave propagation hypothesis, 

this resonator would be equivalent to a branch element within an equivalent acoustic circuit, as the 

following boundary conditions are satisfied 

𝑝1 = 𝑝2 = 𝑝3                                                           (3.54) 

and 

𝑣3 = 𝑣1 + 𝑣2                                                           (3.55) 

where the last condition represents the continuity of the acoustic mass flux. 

 

Figure 3.9 – Extended tube resonators: a) extended outlet, b) extended inlet, c) reversal expansion, d) reversal 

contraction. 

By combining eq. (3.54) and (3.55), it is possible to obtain the relationship among the impedance of 

the tubes, namely 

                                                           
35 Actually, infinity rigid end plates do not exist. 
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1

𝛤3
=
1

𝛤1
+
1

𝑍2
 

where Z2 is the equivalent impedance of the resonant cavity, at the junction with the other tubes, 

and can be expressed making use of eq. (3.14) as 

𝑍2 =
𝑝2
𝑣2
= 𝑌2

𝛤(𝐿2) cos(𝑘0𝐿2) + 𝑗 𝑌2sin (𝑘0𝐿2)

𝑌2cos(𝑘0𝐿2) + 𝑗𝛤(𝐿2)sin (𝑘0𝐿2)
 

The equivalent acoustic circuit representation is depicted in Figure 3.10, where the resonator is 

indeed represented as a shunt element. At certain frequencies, it happens that impedance at section 

2 goes to zero (which means that the cavity resonates) and the resonator will be equivalent to a short 

circuit. Consequently,  no acoustic power is transmitted to the downstream tube 1. All the incoming 

power flux will be useful for resonating the closed-end cavity. 

 

Figure 3.10 – Circuit representation of an extended tube resonator. 

A common assumption is that the closed-end is perfectly rigid, that is the specific impedance 𝛤(𝐿2) 

goes to infinity. Then, as it has already been shown for the uniform tube, the specific impedance at 

the interface 2 will be equal to 

𝑍2 = −𝑗𝑌2cot (𝑘0𝐿2) 

Consequently, the resonance of the cavity would occur when cot (𝑘0𝐿2) goes to zero, that is when 

the following relation is satisfied 

𝑘0𝐿2 = (2𝑛 + 1)
𝜋

2
     𝑛 = 0,1,2… 

or 

𝐿2 = (2𝑛 + 1)
𝜆

4
          𝑛 = 0,1,2… 

This also means that, for a given length of the resonator, the resonance would occur at odd 

multiples of the fundamental frequency 𝑓𝑟 = 𝑎0 4 𝐿2⁄ . By the examination of the last relation, it 

should be clear why extended-tube resonators are also called quarter-wave resonators. In order to 

clarify this, consider, for example, a source of continuous vibration like a piston at the inlet of a 

tube having a side branch terminating with a closed end. In the frequency range for which only 
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plane waves appear, the propagation of the disturbance generated by the source may be schematized 

as Figure 3.11 shows. 

 

Figure 3.11 – Behavior of quarter-wave resonator. 

When the source start to vibrate from the left to the right, a pressure disturbance (consider for 

simplicity the compression) start travelling along the tube, entering the side branch where it is 

reflected at the closed termination. If the length of the side tube is equal to 𝜆 4⁄ , the peak of the 

reflected wave will reach back the open end when the pressure in the main duct is minimum 

(rarefaction) and so: 

1 The sum of compression and rarefaction nullifies the pressure disturbance going 

downstream 

2 the compression is reflected as rarefaction (in order to maintain the low pressure at the open 

end) and is reflected again as a rarefaction at the rigid end of the resonator. 

Then, when such rarefaction reaches again the open end, the pressure in the main duct will be 

maxima (compression). Such process holds until the source vibrates, not allowing acoustic energy 

to escape after the junction. Consequently, from the coupling with the source, standing wave are set 

up into the main pipe with a nodal point (zero pressure fluctuations) at the open end, as the two 

contributions (the main wave and the reflected one into the side tube) cancel out each other. It 

follows that no noise will be transmitted at such frequency. 

Actually it is important to mention that in real world applications, the end plate of the cavity is not 

rigid because the reflection coefficient is not unity (see eq. 3.19) but, in general, it may be taken 

close to 0,95[4]. Moreover, there is another more important thing to note, which is represented by 

the fact that, in reality, the acoustic length of the resonator is slightly larger than the physical length 

with which the resonator has been designed[6]. In fact, as it has already been mentioned, even if the 

frequency is low enough to ensure plane wave propagation, evanescent higher-order modes rise up 

at the discontinuities. At the location in which such higher-order modes vanish, the plane wave 



67 
 

propagation holds again. Thus, when using the above relationships, the length 𝐿2 of the resonator 

must take into account the end correction for the evanescent modes at the junction, namely 𝐿2 =

𝐿𝑔𝑒𝑜 + 𝛿𝑒𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛. 

3.1.6.2 Helmholtz resonator 

Another very common type of resonator is represented by the so-called Helmholtz resonator, which 

owns is name to the scientist Hermann Ludwig Ferdinand von Helmholtz. An Helmholtz resonator 

is an acoustic element which may be schematized as consisting of a very small tube linked with a 

closed cavity, as schematically depicted in Figure 3.12. Here again, three interfaces have been 

highlighted which have been numbered by 1,2 and 3 corresponding to the inlet of the outlet tube, 

resonator inlet and outlet of the inlet tube respectively. The cavity is characterized by its volume 

whilst the small tube, which is called cavity’s neck, is characterized by both its length and cross-

sectional area. From the above concluding remark, in figure below the neck’s end correction has 

been schematically depicted. 

 

Figure 3.12 – Schematization of an Helmholtz resonator. 

Even in this case, the continuity of the acoustic mass flux yields to the same condition as eq. (3.55) 

and, therefore, the equivalent circuit representation of an Helmholtz resonator is also a shunt 

element. However, such shunt element is nothing else than a series of lumped inertance and lumped 

compliance36. In other words, the total shunt impedance is the sum of both neck and cavity 

impedances. Hence, adding the radiation impedance at either side of the neck (in this case it is 

possible to assume that the neck comes out in two hemispherical spaces) 

𝑍2 =
𝑗𝜔𝑙ℎ𝑦𝑝𝑜

𝑆𝑛𝑒𝑐𝑘
+

1

𝑗𝜔(𝑉 𝑎0
2⁄ )
+ 2𝑌0  (

𝑘0
2𝑟0
2

2
) 

or 

𝑍𝐻𝑒𝑙𝑚ℎ𝑜𝑙𝑡𝑧 = 𝑗 (𝜔
𝑙ℎ𝑦𝑝𝑜

𝑆𝑛𝑒𝑐𝑘
−
𝑎0
2

𝜔𝑉
) +

𝜔2

𝜋𝑎0
                                            (3.62) 

where the hypothetical equivalent neck’s length is given by eq.( 3.46). If the radiation resistance 

terms are neglected, the shunt element would resonate when the corresponding impedance equals 

zero, namely when 

                                                           
36 In the limit of the Helmholtz number being less than unity, that is 𝑘0𝐿 ≪ 1 where L stands for both characteristic 

lengths of cavity and resonator’s neck. 
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𝜔 = 𝑎0√
𝑆𝑛𝑒𝑐𝑘

𝑙ℎ𝑦𝑝𝑜𝑉
                                                                     (3.63) 

By dividing eq. (3.63) by the quantity 2𝜋 an expression for the resonant frequency at which the 

Helmholtz resonator blocks the acoustic transmission to the downstream tube 1 is found. Actually, 

the acoustic propagation is almost fully blocked, being limited only by the radiation resistance 

terms. In fact, the acoustic mass velocity in the downstream tube 1 is linked to those in the upstream 

tube and resonator interface by eq. (3.55). So, the value of v1 is connected also by the value of v2, 

and this latter, when ω satisfies eq. (3.63), is only limited by the radiation resistance in eq. (3.62). 

3.1.6.3 Concentric hole-cavity resonator 

A resonator which combines all the above mentioned aspect is represented by the concentric hole-

cavity resonator. In principle, it mainly consists of an annular cavity communicating with the main 

tube through several little holes, arranged in circle within the wall of the propagation tube. This 

layout is schematized in Figure 3.13. 

 

Figure 3.13 – Schematization of a concentric hole-cavity resonator. 

As it happens for both the quarter-wave and the Helmholtz resonator, even in this case, within the 

equivalent circuit representation, such resonator is a shunt element. More precisely, by the 

examination of Figure 3.13, it can be noted that resonant cavity could be seen as two extended-tube 

resonator in parallel. Besides, all the little holes in a row, are several shunt lumped inertances too. 

Therefore, the expression of the impedance at the junction, if rigid end plates hypothesis holds, is 

𝑍2 =
1

𝑛ℎ
(
𝑗𝜔𝑙ℎ𝑦𝑝𝑜−ℎ𝑜𝑙𝑒

𝑆ℎ𝑜𝑙𝑒
+

𝜔2

𝜋𝑎0
) +

[−𝑗𝑌𝑐𝑎𝑣𝑐𝑜𝑡(𝑘0𝐿𝑎)][−𝑗𝑌𝑐𝑎𝑣𝑐𝑜𝑡(𝑘0𝐿𝑏)]

−𝑗𝑌𝑐𝑎𝑣𝑐𝑜𝑡(𝑘0𝐿𝑎)−𝑗𝑌𝑐𝑎𝑣𝑐𝑜𝑡(𝑘0𝐿𝑏)
   

=
1

𝑛ℎ
(
𝑗𝜔𝑙ℎ𝑦𝑝𝑜−ℎ𝑜𝑙𝑒

𝑆ℎ𝑜𝑙𝑒
+

𝜔2

𝜋𝑎0
) −

𝑗𝑌𝑐𝑎𝑣

𝑡𝑎𝑛(𝑘0𝐿𝑏)+𝑡𝑎𝑛(𝑘0𝐿𝑎)
                                           (3.64) 

where nh is the number of holes in one circular row in the propagation tube. It can be easily seen 

that, in the low frequency range where tan(k0L)≅ k0L, eq. (3.64) reduces to eq. (3.62). Therefore, 

the Helmholtz resonator is only a lumped-element approximation of the concentric hole-cavity 

resonator. The resonant frequency of this latter turns out to be that at which the impedance due to 

the inertance of the holes in the circular row equals the impedance due to the compliance of the 

cavity, namely when 

1

𝑛ℎ

𝜔𝑙ℎ𝑦𝑝𝑜−ℎ𝑜𝑙𝑒

𝑆ℎ𝑜𝑙𝑒
=

𝑌𝑐𝑎𝑣

𝑡𝑎𝑛(𝑘0𝐿𝑏)+𝑡𝑎𝑛(𝑘0𝐿𝑎)
                                           (3.65) 

where the contribution of the radiation reactance has been neglected. 
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3.2 Acoustic filter performance parameters 

From what above, it has been shown how the basic behavior of some elementary elements, 

constituting acoustic filters, can be represented and easily understood referring to an electro-

acoustic analogy. In fact, the whole transmission path from the acoustic source to the receiver may 

by represented as an equivalent acoustic circuit. As an example, such equivalent circuit 

representation is shown in Figure 3.14. Of course, as already mentioned, the pressure disturbance 

replaces the voltage whilst the particle velocity replaces the electric current. 

 

Figure 3.14 – Pressure based equivalent acoustic circuit representation. 

Thus, in an equivalent acoustic circuit representation, the sound source is characterized by the 

fluctuating pressure pn+1 and the source impedance Zn+1, whilst Z0 represents the load impedance of 

the acoustic network (radiation impedance). Then, an acoustic filter composed by 𝑛 elements 

separates the source from the load and, as it is depicted in Figure 3.14, considering a point 𝑛 the 

complete passive subsystem downstream this point can be represented by an equivalent load, 

characterized by an equivalent impedance 𝛤𝑛. Such equivalent impedance consists of filter 

impedance and radiation impedance. Therefore, following the Kirchhoff law, for a fixed source and 

load, the particle velocity at point n may be expressed as 

𝑣𝑛 =
𝑝𝑛+1

𝑍𝑛+1 + 𝛤𝑛
 

This source representation (analogous to the voltage generator convention in electric theory) is not 

the only possible. In fact, thanks to the Thévenin and Norton theorems[5], the voltage-pressure 

source representation of Figure 3.14 may be replaced by a current-velocity source representation of 

Figure 3.15, where the new generator provides a particle velocity to the network which is equal to 

𝑣𝑛+1 =
𝑝𝑛+1
𝑍𝑛+1
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Figure 3.15 – Velocity based equivalent acoustic circuit representation. 

Now, considering an internal combustion engine, the primary source of acoustic disturbances is 

represented by the periodic flow triggered by the inlet/exhaust valve openings. Figure 3.16 shows a 

schematization of the acoustic transmission path between an internal combustion engine and the 

atmosphere (exhaust side). 

 

Figure 3.16 – Example of acoustic transmission path between an internal combustion engine and the atmosphere. 

Immediately after the internal combustion engine,  there is always a small diameter pipe (with one 

or more bifurcation depending on the number of cylinders) called exhaust manifold followed by a 

greater diameter pipe, which generally represents the proper muffler (actually, before the silencer 

there is always the after treatment system for the reduction of pollution emissions). Finally, the 

muffler is linked to the atmosphere thanks to another  small diameter pipe called tail pipe. 

Generally, for a n-element system, the tail pipe is numbered as first whilst the exhaust pipe as the 

nth. The acoustic performance characterization of an acoustic filter (or, more in general, an acoustic 

transmission path) is often evaluated in terms of three particular parameters which are called 

 Insertion Loss (IL) 

 Transmission Loss (TL) 

 Noise reduction (NR) 

 

3.2.1 Insertion Loss 

The insertion loss is defined as the difference between the sound power level radiated by the sound 

source in two conditions, namely without and with an acoustic filter located in the transmission 

path. Mathematically this may be expressed as 



71 
 

𝐼𝐿 = 10𝐿𝑜𝑔 (
𝑊1

𝑊2
)                                                           (3.68) 

where the subscripts 1 and 2 stand for the without and with filter configuration respectively. 

Intuitively, the radiation impedances in the two cases differ and may be indicated as Z0,1 and Z0,2 

which represent the radiation impedance without and with the acoustic filter. Thus, the equivalent 

acoustic circuit is depicted in Figure 3.17. 

 

Figure 3.17– Acoustic system without filter. 

By referring to an electric nomenclature, considering Figure 3.17, the power output dissipated at the 

radiation impedance (which means radiated to the atmosphere), is 

𝑊1 =
1

2𝜌0,1
𝑃𝑉𝑐𝑜𝑠(𝜗) =

1

2𝜌0,1
𝑅0,1𝑉

2 =
1

2𝜌0,1
|

𝑝𝑛+1
𝑍𝑛+1 + 𝑍0,1

|

2

𝑅0,1 

where only the radiation resistance term 𝑅0,1 appears because it is the only responsible for the 

acoustic radiation. Similarly, the power output when the acoustic filter is located between the sound 

source and the atmosphere equals 

𝑊2 =
1

2𝜌0,1
|𝑉0|

2𝑅0,2                                                       (3.70) 

By substituting the expression of W1 and W2 in eq. (3.68) yields 

𝐼𝐿 = 10𝐿𝑜𝑔 [
𝜌0,2𝑅0,1
𝜌0,1𝑅0,2

|
𝑝𝑛+1

(𝑍𝑛+1 + 𝑍0,1)𝑉0
|

2

] 

= 20𝐿𝑜𝑔 [(
𝜌0,2𝑅0,1
𝜌0,1𝑅0,2

)

1
2

|
𝑍𝑛+1

𝑍𝑛+1 + 𝑍0,1
| |
𝑉𝑛+1
𝑉0
|] 

Defining the velocity ratio for a passive subsystem with 𝑟 elements as 

𝑉𝑅𝑟 =
𝑣𝑟

𝑣0
            for            𝑣0 ≠ 0    and    𝑝0 = 0 

The expression for the insertion loss becomes 

𝐼𝐿 = 20𝐿𝑜𝑔 [(
𝜌0,2𝑅0,1

𝜌0,1𝑅0,2
)

1

2
|

𝑍𝑛+1

𝑍𝑛+1+𝑍0,1
| |𝑉𝑅𝑛+1|]                                               (3.73) 
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Now, considering Figure 3.14, the acoustic power flux entering the filter may be expressed as 

𝑊𝑒 =
1

2𝜌0,𝑒
|𝑣𝑛|

2𝑅𝑛 =
1

2𝜌0,𝑒
|
𝑍𝑛+1𝑣𝑛+1
𝑍𝑛+1 + 𝛤𝑛

|
2

𝑅𝑛 

whilst the acoustic power living the filter is given by eq. (3.70). If the filter is a non-dissipative one, 

the energy conservation requires that 

1

2𝜌0,𝑒
|𝑣𝑛|

2𝑅𝑛 =
1

2𝜌0,𝑒
|
𝑍𝑛+1𝑣𝑛+1
𝑍𝑛+1 + 𝛤𝑛

|
2

𝑅𝑛 =
1

2𝜌0,2
|𝑣0|

2𝑅0,2 

Rearranging 

|𝑉𝑅𝑛|
2 = |

𝑍𝑛+1
𝑍𝑛+1 + 𝛤𝑛

|
2

|𝑉𝑅𝑛+1|
2 =

𝜌0,𝑒
𝜌0,2

𝑅0,2
𝑅𝑛

≅
𝜌0,1
𝜌0,2

𝑅0,2
𝑅𝑛

 

By obtaining the velocity ratio for the source from the above equation and substituting it in eq. 

(3.73), holds 

𝐼𝐿 = 20𝐿𝑜𝑔 [(
𝑅0,1

𝑅𝑛
)

1

2
|
𝑍𝑛+1+𝛤𝑛

𝑍𝑛+1+𝑍0,1
|]~10𝐿𝑜𝑔 (

𝑅0,1

𝑅𝑛
)                                             (3.77) 

since generally (unless 𝑍𝑛+1 is much less than the radiation impedance) 

|
𝑍𝑛+1 + 𝛤𝑛
𝑍𝑛+1 + 𝑍0,1

| ~1 

Therefore, the above equation turns out to be very important for understanding conceptually how 

non-dissipative mufflers work. In fact, as indicated by eq. (3.77), the real action of a non-dissipative 

muffler consists in reducing the acoustic resistance seen by the source. In fact, the acoustic 

resistance equals R0,1 without muffler and Rn with muffler. 

3.2.2 Transmission Loss 

Referring to Figure 3.18, the Transmission Loss is defined as the difference between sound power 

level incident on the muffler proper and the sound power level transmitted downstream, into an 

anechoic termination. As already mentioned, an anechoic termination is such that no wave 

reflections are allowed. 

𝑇𝐿 = 𝐿𝑊𝑖 − 𝐿𝑊𝑡 

 

Figure 3.18 – Transmission Loss definition. 
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Such parameter is independent from both the source impedance and radiation impedance and so it 

describes the acoustic performance of the proper muffler. Thus, an analysis in terms of 

Transmission Loss, represent the stand-alone study of the component, without taking into account 

its coupling with a specific acoustic source. In terms of progressive wave components, the two 

sound powers may be expressed as 

𝑊𝑖 =
1

2𝜌0
𝐴𝑛 (

𝐴𝑛

𝑌𝑛
) =

𝐴𝑛
2

2𝜌0𝑌𝑛
   ,    𝐵𝑛 ≠ 0 

𝑊𝑡 =
1

2𝜌0
𝐴1 (

𝐴1

𝑌1
) =

𝐴1
2

2𝜌0𝑌1
    ,     𝐵1 = 0 

Therefore, if the exhaust pipe (representing the last part of the exhaust manifold) and the tail pipe 

have the same diameter (as it generally happens), the expression for the Transmission Loss is 

𝑇𝐿 = 20𝐿𝑜𝑔 |
𝐴𝑛

𝐴1
|   ,     𝐵1 = 0                                                 (3.82) 

The direct measurement of the TL is not as easy as its numerical calculation inasmuch the 

amplitude of the incident wave An cannot be directly measured, because of the presence of the 

reflected wave Bn. Besides, perfect anechoic terminations are difficult to reproduce in laboratories.  

Nevertheless, the direct Transmission Loss calculation is still possible in some cases. For example, 

if both the exhaust and tail pipe have diameters which ensure plane waves for a wide frequency 

range, measurement of acoustic pressure and particle velocity may be executed so that the 

amplitude of the  waves may be expressed as 

𝐴1 = 𝑌1𝑣1 

𝐴𝑛 =
𝑝𝑛 + 𝑌𝑛𝑣𝑛

2
 

Therefore eq. (3.82) becomes 

𝑇𝐿 = 20𝐿𝑜𝑔 |
𝑝𝑛+𝑌𝑛𝑣𝑛

2𝑌1𝑣1
|                                                         (3.85) 

Actually, from an experimental point of view, the Transmission Loss measurement is generally 

achieved in a smarter way, relying on the Transfer Matrix theory. This, as it will be explained more 

ahead in chapter 5, is done by making use of the so-called impedance tube technology for which it 

is only necessary to measure the acoustic pressure. 

3.2.3 Noise Reduction 

The Noise Reduction (which is also known as Level Difference) is defined as the difference in 

sound pressure level between two arbitrary points in the exhaust and tail pipe, as it is schematically 

depicted in Figure 3.19. Unlike the Transmission Loss, the Noise reduction makes use of the 

acoustic pressure and does not require an anechoic termination. 

𝑁𝑅 = 20𝐿𝑜𝑔 |
𝑝𝑛
𝑝1
| 
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Figure 3.19 – Noise reduction definition. 

Since p1 may be not directly known, the Noise Reduction may be evaluated as 

𝑁𝑅 = 20𝐿𝑜𝑔 |
𝑝𝑛
𝑝0

𝑝0
𝑝1
| 

and the ratio 
𝑝0

𝑝1
 may be evaluated by means of the wave components in  an extra pipe of length 𝑙1

′ . 

In fact 

𝑝1 = 𝐴1 + 𝐵1 

then 

𝑝0 = 𝐴1𝑒
−𝑗𝑘0𝑙1

′
+ 𝐵1𝑒

+𝑗𝑘0𝑙1
′
 

𝑣0 =
1

𝑌1
(𝐴1𝑒

−𝑗𝑘0𝑙1
′
− 𝐵1𝑒

+𝑗𝑘0𝑙1
′
) 

Hence 

𝐴1 =
𝑝0 + 𝑌1𝑣0

2
𝑒+𝑗𝑘0𝑙1

′
 

𝐵1 =
𝑝0 − 𝑌1𝑣0

2
𝑒−𝑗𝑘0𝑙1

′
 

Therefore, after explicating the complex exponential, p1 may be calculated as 

𝑝1 = 𝑝0𝑐𝑜𝑠(𝑘0𝑙1
′ ) + 𝑗𝑌1𝑣0𝑠𝑖𝑛(𝑘0𝑙1

′ ) 

and 

𝑁𝑅 = 20𝐿𝑜𝑔 |
𝑝𝑛 𝑝0⁄

𝑐𝑜𝑠(𝑘0𝑙1
′ ) + 𝑗 𝑌1 𝑍0⁄ 𝑠𝑖𝑛(𝑘0𝑙1

′ )
| 

If the acoustic pressure is evaluated at the end of the tail pipe (𝑙1
′ → 0), then 

𝑁𝑅 = 20𝐿𝑜𝑔 |
𝑝𝑛
𝑝0
| 

Among the above introduced acoustic performance parameters, the Insertion Loss is the only one 

which truly characterizes the acoustic performance of a filter in real operating conditions, because it 
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represents the loss in the radiated sound power due to the insertion of the filter between the sound 

source and the receiver. However, its measurement may be laborious because it requires the 

knowledge of the source impedance Zn+1 and radiation impedance Z0. On the other hand, the 

Transmission Loss is independent from the sound source and it is only affected by the geometry of 

the filter. Nevertheless, its measurement would rely on the use of an anechoic termination, which is 

very difficult to experimentally reproduce, as well as specific instrumentation for the measurement 

of the incident wave in a standing wave acoustic field (e.g. impedance tube technology)[10]. The 

Noise Reduction represents instead a simple measure of the sound pressure level drop when the 

acoustic filter is inserted between source and atmosphere, without any boundary condition imposed 

at the termination of the tail pipe. It follows that the NR is the most easily adopted parameter, in 

order to have a first idea on the acoustic behavior of the acoustic filter. 

Just as an example and in order to further clarify how a resonator works, the Transmission Loss of 

both a quarter-wavelength and an Helmholtz resonator have been numerically calculated for the 

geometries depicted in figure below. Thanks to the characteristics dimensions, which have been 

reported in Figure 3.20, it is easy to find that the analytical values of the resonant frequency would 

be equal to37 500 and 451 𝐻𝑧 for the quarter-wave and Helmholtz resonator respectively. However, 

for what has been previously highlighted, the resonance should not occur at such frequencies due to 

the end correction which makes the acoustical lengths slightly different with respect to the 

geometrical ones, lowering the frequency at which resonance would occur. 

 

Figure 3.20 – Example of resonator geometry: a) quarter-wave and b) Helmholtz. 

The corresponding results in terms of Transmission Loss are depicted in figure below. Here it is 

possible to appreciate the characteristic acoustic behavior of these basic resonators, together with 

the end correction effect. In fact, the resonances occur at slightly lower frequencies with respect to 

those calculated by means of eq.(3.60) and (3.63) due to a greater acoustical lengths. 

                                                           
37 Considering 𝑎0 = 340 𝑚 𝑠⁄ . 
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Figure 3.21 – Transmission Loss: a) quarter-wave and b) Helmholtz resonator. 

Thus, it is possible to point out that the main difference in the effect produced by these two types of 

resonator lies in the fact that the quarter-wave resonator is characterized by several resonant 

frequencies in correspondence of which a decreasing high Transmission Loss peaks occur. For this 

reason, it is generally adopted in expansion chamber in a way such that a very widespread 

attenuation spectrum is achieved[6][7]. Vice versa, Helmholtz resonators, allowing very sharp TL 

peaks, are generally used to cancel out specific frequencies within duct systems. 

3.2.4 Simple area discontinuities 

The very basic elements of reflective silencers are represented by area discontinuities. This is 

because, when pressure waves travel on a transmission line, every discontinuities is thereby 

encountered causes a reflection to arise. The magnitude of such reflections is strongly affected by 

the entity of the discontinuity. Two types of simple are discontinuities exist, which are sudden 

expansion and sudden contraction; both are schematically reported in Figure 3.22. Here two 

interfaces have been highlighted and indicated with 1 and 2, representing the outlet of the inlet tube 

and the inlet of the outlet tube respectively. 

 

Figure 3.22 – Simple area discontinuities: a) sudden contraction, b) sudden expansion. 

If the diameters of both tubes are such that plane wave propagation is ensured, the acoustic pressure 

and acoustic mass velocity stay uniform across the discontinuity, namely 

𝑝1 = 𝑝2 

𝑣1 = 𝑣2 
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It follows that also the specific impedance stays the same across the discontinuity, that is 

𝛤1 =
𝑝1
𝑣1
=
𝑝2
𝑣2
= 𝛤2 

So, since acoustic quantities remain unchanged across a simple are discontinuity, such element is 

not represented at all within the equivalent acoustic circuit. However, it represents the real basis for 

the operation of low-pass filters. In fact, as already seen many times previously, both the acoustic 

pressure and the acoustic mass velocity may be expressed in terms of complex amplitudes of the 

two progressive wave components in the standing wave field, namely 

𝐴1 + 𝐵1 = 𝐴2 + 𝐵2                                                       (3.99) 

𝐴1−𝐵1

𝑌1
=
𝐴2−𝐵2

𝑌2
                                                          (3.100) 

If an anechoic termination is present, that is 𝐵2 = 0, then 

𝛤1 = 𝛤2 = 𝑌2 

and the reflection coefficient is given by 

𝑅1 =
𝐵1

𝐴1
=
𝛤1−𝑌1

𝛤1+𝑌1
=
𝑌2−𝑌1

𝑌2+𝑌1
=
𝑆1−𝑆2

𝑆1+𝑆2
                                           (3.102) 

So, from eq. (3.102), it is clear that for a sudden are contraction S1>S2  0<R<1 and for a sudden 

expansion S1>S2  -1<R<0. Moreover, similarly to what has been done for the Transmission Loss 

calculation, the incident, transmitted and reflected acoustic power may be expressed in terms of 

standing wave components as 

𝑊𝑖 =
𝐴1
2

2𝜌0𝑌1
    

𝑊𝑡 =
𝐴2
2

2𝜌0𝑌2
     ,     𝐵2 = 0    

𝑊𝑟 =
𝐵1
2

2𝜌0𝑌1
  

The net energy flux in the upstream tube can now be written as 

𝑊1 = 𝑊𝑖 −𝑊𝑟 =
𝐴1
2 − 𝐵1

2

2𝜌0𝑌1
 

At the same time the power in the downstream tube may be expressed as 

𝑊2 =
𝐴2
2

2𝜌0𝑌2
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But by combining eq. (3.99) and (3.100)38, it can be easily seen that no loss of power happens in a 

sudden area change, namely 

𝑊1 = 𝑊2 

Such components just reflect part of the incident power (related to the magnitude of the reflection 

coefficient) back to the source, simply creating a mismatch of the characteristic impedance of the 

tube (Y1≠Y2). As such, it is justified that they are the basic element for non-dissipative or reflective 

mufflers. The Transmission Loss for a sudden area change may be obtained as follows 

𝑇𝐿 = 10𝐿𝑜𝑔 (
𝐴1
2

𝐴2
2

𝑌2
𝑌1
) 

= 10𝐿𝑜𝑔 (
1

1 − 𝑅1
2) 

= 10𝐿𝑜𝑔 [
(𝑆1 + 𝑆2)

4𝑆1𝑆2
] 

3.3 Introduction to the study of porous materials 

Previously, the basic concepts of reflective mufflers have been highlighted and it has already been 

mentioned that other devices exist whose acoustic attenuation characteristics do not rely on 

successive sound reflections thanks to impedance mismatching. The other mechanism through 

which sound may be attenuated is by means of energy dissipation, namely from kinetic to heat, and 

occurs when porous materials are present. The devices which are based on such energy conversion 

are generally referred as silencers rather than dissipative mufflers and they are capable of providing 

a wide broadband sound attenuation. This is realized thanks to the high absorption property of 

lining materials such as porous materials. On the contrary, at low frequencies far worse acoustic 

performances are achieved. This is due to the dissipation mechanism which relies on friction forces, 

generated among air particles in motion, which take place more efficiently at high frequency. 

When referring to porous  material the word "porous" refers to a material that has pores, or holes in 

its surface. As such, porous absorbers consist usually of thin mineral, metal or glass wool fibers 

(with a diameter of 2 − 30𝜇𝑚), arranged in layers and with random fiber orientations in planes 

parallel to the material surface. When the sound propagates, the air is forced to pass thorough the 

small voids included in the material, which generates frictions converting the acoustic energy into 

heat. Another phenomenon which occurs is the fluid structure interaction between the vibrating 

particles and the material fiber, which implies kinetic energy losses of the particles. 

In acoustics, the main purpose of analytic models of porous materials is being able to predict the 

acoustic behavior in terms of absorption coefficient. From a very simple viewpoint, when a sound 

wave encounters an obstacle, part of the energy it carries is reflected at the interface, part is 

dissipated (or absorbed) and the remainder is transmitted. This is schematically depicted in Figure 

3.23. 

                                                           
38 𝐴2

2 = (𝐴1 + 𝐵1)(𝐴1 − 𝐵1) = 𝐴1
2 − 𝐵1

2. 
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Figure 3.23- Energy balance schematization 

Thus, thanks to a simple energy balance, it is possible to write 

𝐸𝑖 = 𝐸𝑎 + 𝐸𝑡 + 𝐸𝑟                                                        (3.110) 

or 

1 = 𝛼 + 𝜏 + 𝛾                                                            (3.111) 

where 𝛼 , 𝜏  and 𝛾 are the absorption, transmission and reflection coefficient respectively. The way 

in which fibrous materials reduce noise is by means of a high absorption coefficient, which 

characterizes the capacity of dissipating sound energy into heat. Such mechanism of energy 

conversion is achieved thanks to the air particle vibrating within the material itself. 

The goodness of a model is generally measured in terms of correlation between experimental data 

and predicted ones. In order to understand the usefulness of very simple models, like that of 

Delaney and Bazley or Miki, it is important to understand how the absorption coefficient is 

calculated. Recalling eq.(3.10), the specific acoustic impedance at any point in a standing wave field 

is defined as 

𝛤(𝑥) =
𝑝′(𝑥,𝑡)

𝑣′(𝑥,𝑡)
= 𝑌0

𝐴𝑒−𝑗𝑘0𝑥+𝐵𝑒𝑗𝑘0𝑥

𝐴𝑒−𝑗𝑘0𝑥−𝐵𝑒𝑗𝑘0𝑥
                                                      (3.112)        

Considering Figure 3.24, the impedance at two points may be rewritten as 

                 𝛤(𝑃) =
𝑝′(𝑥𝑝,𝑡)

𝑣′(𝑥𝑝,𝑡)
= 𝑌0

𝐴𝑒−𝑗𝑘0𝑥𝑝+𝐵𝑒𝑗𝑘0𝑥𝑝

𝐴𝑒−𝑗𝑘0𝑥𝑝−𝐵𝑒𝑗𝑘0𝑥𝑝
                                                   (3.113) 

                 𝛤(𝑄) =
𝑝′(𝑥𝑞,𝑡)

𝑣′(𝑥𝑞,𝑡)
= 𝑌0

𝐴𝑒−𝑗𝑘0𝑥𝑞+𝐵𝑒𝑗𝑘0𝑥𝑞

𝐴𝑒−𝑗𝑘0𝑥𝑞−𝐵𝑒𝑗𝑘0𝑥𝑞
                                                   (3.114) 

 

Figure 3.24 – Schematization of a standing waves field. 
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At the same time, thanks to its definition and the use of eq. (3.113), the reflection coefficient may 

be expressed as 

𝑅 =
𝐵

𝐴
=
𝛤(𝑃)−𝑌0

𝛤(𝑃)+𝑌0
𝑒−2𝑗𝑘𝑥𝑝                                                   (3.115) 

Now, by means of the impedance translation theorem, it is possible to express the impedance at 

point P as function of that at point Q, namely 

𝛤(𝑃) =
𝛤(𝑄)cos(𝑘0𝐿)+𝑗 𝑌0sin (𝑘0𝐿)

cos(𝑘0𝐿)+𝑗𝛤(𝑄) 𝑌0⁄ sin (𝑘0𝐿)
                                             (3.116) 

Suppose that a layer of fluid 1 is bounded by a rigid termination on one side and by another fluid on 

the other side, as schematically depicted in Figure 3.25. 

 

Figure 3.25- Multy-layered fluid system schematization 

As it has already pointed out, since the impedance at the rigid termination goes to infinity, the 

impedance at Q equals 

𝛤(𝑥𝑃)𝑟𝑖𝑔𝑖𝑑 𝑒𝑛𝑑 = −𝑗𝑍𝑓1cot (𝑘𝑓1𝐿)                                           (3.117) 

where 𝑍𝑓1 and 𝑘𝑓1 are the characteristic impedance and wavenumber in fluid 1. Obviously, because 

of the continuity of both pressure and particle velocity at the interface between the two fluids, it 

follows that 

𝛤(𝑃) = 𝛤(𝑀)                                                           (3.118) 

Therefore, according to this layout, if 𝑍𝑓1 and 𝑘𝑓1 are known, it would be possible to calculate the 

reflection coefficient at the interface by means of eq. (3.115). Then the absorption coefficient may 

be calculated as39 

𝛼 = 1 − |𝑅|2                                                             (3.119) 

Hence, assuming a layer of porous material as an equivalent fluid, if it would be possible to know 

an analytic expression characterizing both the characteristic impedance and the wavenumber of  

such porous material it would be possible to calculate the absorption coefficient. 

 

 

 

                                                           
39 𝑅 is expressed in terms of amplitude of pressure and energy is proportional to the square of pressure. 
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3.3.1 Equivalent fluid models 

Porous materials may be thought as made of an elastic frame in which closed or open cavities are 

embedded. With such a description, it is possible to define the total volume of the porous material 

as the summation of the frame volume and cavities volume, namely 

𝑉𝑇 = 𝑉𝐶 + 𝑉𝐹                                                          (3.120) 

Generally, the material is surrounded by air such that the cavities volume is termed air volume. 

Fibrous materials are often characterized by means of the so called porosity, which defines how 

much of the total volume is occupied by cavities. Consequently, the porosity is defined as the ratio 

of the cavities volume to the total volume of the porous material, namely 

∅ =
𝑉𝐶

𝑉𝑇
                                                                (3.121) 

and it is generally very high being for most porous materials very close to unity. As it should be 

clear, from a sound absorption point of view, only the so called open porosity materials are of 

interest, since only in such mediums the air is not locked into the frame and sound waves may 

propagate through the cavities, causing kinetic energy to be dissipated into heat by friction during 

air particles motion. 

Another very important parameters governing the sound absorption of porous materials is the so 

called flow resistivity. If a constant differential pressure is imposed across a layer of porous 

material having a certain degree of open porosity, then a steady flow will be induced through the 

material. Then, the flow resistivity is defined as the ratio of the pressure differential across a sample 

of porous material to the normal flow velocity through it. According to Figure 3.26, it may be 

expressed as 

𝜎 =
(𝑝1−𝑝2)

𝑣ℎ
                                                                (3.122) 

which is generally within the range [1000, 100000] 𝑁𝑚−4𝑠.  

 

Figure 3.26- Flow resistivity measurement layout schematization 

Based only on such parameter, the most utilized model for absorbent material is the semi-empirical 

equivalent fluid model developed by Delany and Bazley [8]. They have proposed analytical 

expressions for both complex wave number and characteristic impedance of porous materials. From 

a large number of measurements on fibrous materials with open porosities close to unity, they found 

the following empirical expressions in order to fit the experimental data[8] 
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{
𝑍𝑓,𝑒𝑞 = 𝜌0𝑎0(1 + 0.057𝑋

−0.754 − 𝑗0.087𝑋−0.732)

𝑘𝑓,𝑒𝑞 =
𝜔

𝑎0
(1 + 0.0978𝑋−0.7 − 𝑗0.189𝑋−0.595)

                                 (3.123) 

where 𝑋 = 𝜌0 𝑓 𝜎⁄  and the following range of validity has been suggested  

0.01 < 𝑋 < 1.0                                                            (3.124) 

Another analytical expression for both impedance and wavenumber has been proposed by Miki 

which is supposed to better match experimental data when multi layers are present[9]. The proposed 

corrections are reported below 

{
𝑍𝑓,𝑒𝑞 = 𝜌0𝑎0 [1 + 5.5 (10

3 𝑓

𝜎
)
−0.632

− 𝑗8.43 (103
𝑓

𝜎
)
−0.632

]

𝑘𝑓,𝑒𝑞 =
𝜔

𝑎0
[1 + 7.81 (103

𝑓

𝜎
)
−0.618

− 𝑗11.41 (103
𝑓

𝜎
)
−0.618

]
                              (3.125) 

where 𝑋 = 103 𝑓 𝜎⁄ . The range of validity of the Miki’s formulation has been suggested by the 

author himself as follows 

0.01 < 𝑓 𝜎⁄ < 1.0                                                           (3.126) 

It should not be expected that such simple expressions succeed in modelling the acoustic behavior 

of all the porous material. Nevertheless, thanks to the fact that only on input parameter is required, 

they are widely used providing reasonable values of both 𝑍𝑓,𝑒𝑞 and 𝑘𝑓,𝑒𝑞. 
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Chapter 4 

Finite Element Method in Acoustics 

Introduction 

The finite element method is probably the most useful and efficient tool which engineers have 

available for solving almost all real life problems[1][3]. In fact, without such a powerful method, it 

would not be possible to solve such problems for which an analytical solution does not exists so far. 

For what concerns the topic of sound related phenomena, acoustic problems span between two main 

categories, which are interior and exterior radiation problems. All those acoustic phenomena 

involving physical boundaries of the domain to be analyzed are grouped within the first category. 

Vice versa, when there are no boundaries and the sound field has to be evaluated in free field 

condition, the problem to be dealt with is an exterior acoustic problem. In principle, the traditional 

finite element approach may be used for solving interior acoustic problems only, since the 

computational domain must be of finite extension. Nevertheless, alternative formulations exist, 

which allows the use of FE method to solve also exterior acoustic problems, as it will be mentioned 

at the end of this paragraph. The basic idea is, once the equation of the physical phenomenon has 

been established together with the proper set of boundary conditions, to reduce the issue of finding 

the distribution of one or several field variables within a continuum domain, through the solution of 

a complicated partial different equation problem (which is in general not possible), to the issue of 

solving a linear system composed by a huge amount (but a finite number) of linear equations. Such 

a beautiful trick is made real by a discretization process of the continuum domain, which is divided 

in a lot of elements connected together by nodes, as depicted, for example, in Figure 4.1. The 

discretized domain is commonly called mesh. 

 

Figure 4.1 – Example of discretization of a plate. 

Thus, the finite element approach relies on two fundamental steps. During the first, the original 

partial differential equation, governing the physic of the problem, is transformed into an equivalent 

integral formulation which is also known as weighted residual or variational form of the original 

problem. Then, the integral equation is transformed in a set of linear algebraic equations, for which 

numerical solution procedures are readily available, thanks to discretization of the domain and 

approximation of the field variable[1][2][3][4]. This latter is approximated by means of an 

expansion in terms of so called shape-function, which are locally defined within small subdomains 
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('finite elements') of the discretized domain. Such steps are mandatory for whatever FE formulation, 

for each physical problem, the differences laying in the governing equation to be discretize as well. 

4.1 Problem statement 

Since the focus is on acoustics, let’s start from the basic governing equations. As mentioned before, 

sound propagation is an oscillatory phenomenon, which causes an energy propagation through a 

medium by means of waves. Focusing on a bounded fluid domain 𝒱 enclosed by a closed surface 𝑆, 

in which a time-harmonic external source distribution is present, considering the air as propagation 

medium, the acoustic pressure distribution (if the medium is at rest) is mathematically described by 

the classical wave equation in which source term is kept, namely 

[
1

𝑎0
2

𝑑2

𝑑𝑡2
− ∇2] 𝑝′ = �̇�                                                         (4.1) 

where 𝑎0 is the so-called phase speed of the small perturbation and �̇� is the source term. Practically 

always in acoustics, the focus is on the frequency domain rather than the time domain, and so the 

frequency domain version of eq. (4.1) is represented by the so called Helmholtz equation, namely40 

∇2𝑝 + 𝑘2𝑝 = −𝑗𝜔𝑞                                                        (4.2) 

where 𝑝 is the complex valued amplitude of the wave at the angular frequency 𝜔 = 2𝜋𝑓 and 𝑘 is 

the spatial frequency, or the wave number, which is equal to 
𝜔

𝑎0
. Equation (4.2) is called the strong 

form of the Partial Differential Equations (PDE) problem because of the fact that is the only one 

which, if solved together with the boundary conditions, would give the exact solution. In fact, in 

order to uniquely define the acoustic pressure field within the domain 𝒱, one or a set of boundary 

conditions must be specified on the closed boundary surface. Traditionally, the most simple and 

commonly used boundary conditions are: 

1) Imposed pressure, namely 

𝑝 = 𝑝𝑏                                                                 (4.3) 

2) Imposed normal velocity41 which, making use of the momentum balance equation, may be 

expressed as 

𝑉𝑛 = −
1

𝑗𝜔𝜌0

𝜕𝑝

𝜕𝑛
= 𝑉𝑛,𝑏                                                      (4.4) 

3) Imposed normal impedance, namely 

𝑝 = 𝑍𝑏𝑉𝑛 = 𝑍𝑏
𝑗

𝜔𝜌0

𝜕𝑝

𝜕𝑛
                                                     (4.5) 

It follows that the entire closed surface, bounding the acoustic domain, may be expressed as sum of 

the surfaces on which the above mentioned boundary conditions are applied, namely 

𝑆 = 𝑆𝑝 + 𝑆𝑣 + 𝑆𝑍                                                          (4.6) 

                                                           
40 If the time dependence of the source term is of the type 𝑞 = �̂�𝑒𝑗(𝜔𝑡−𝑘𝑥)then �̇� = 𝑗𝜔𝑞. 
41 Also known as Neumann boundary condition[6]. 
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Unfortunately, the Helmholtz equation cannot be solved as it is and there is the need of finding a 

more easily solvable form, which leads to an approximate solution. One available option is 

represented by the use of the so-called weighted residuals method, which is described in the 

following, and represents a very smart way to make eq. (4.2), together with the boundary 

conditions, more suitable for being handled (and solved) by a computer. 

Inserting within the Helmholtz equation a trial unknown solution 𝑝, instead of the exact solution 𝑝, 

the right hand side would be different from zero and, more precisely, a residual would appear. 

∇2𝑝  + 𝑘2𝑝 + 𝑗𝜔𝑞 = 𝑅 ≠ 0                                                      (4.7) 

Therefore, it is intuitively that, in order to find the best trial solution which approximates the exact 

one, the residual must tend to zero. In other words, by integrating the residual over the domain, the 

trial solution has to satisfy the following condition 

∫ (∇2�̃�  + 𝑘2𝑝 + 𝑗𝜔𝑞)𝑤 𝑑𝒱
𝒱

= 0                                                  (4.8) 

or 

∫ 𝑤∇2𝑝 𝑑𝒱
𝒱

+ ∫ 𝑤𝑘2𝑝 𝑑𝒱
𝒱

+ ∫ 𝑤𝑗𝜔𝑞 𝑑𝒱
𝒱

= 0                                        (4.9) 

where 𝑤 is an arbitrary weighting function and it is the analogue of the virtual displacement used in 

the virtual work principle[1]. Since the volume integral in eq. (4.9) is extended to the whole 

domain, it is referred as global form useful for finding the approximate solution 𝑝. The first 

integrant in eq. (4.9) may be rewritten as 

𝑤∇2𝑝 = ∇(𝑤∇�̃�) − ∇𝑤∇𝑝                                                   (4.10) 

so that the global form may be rewritten as 

∫ ∇(𝑤∇𝑝) 𝑑𝒱
𝒱

− ∫ ∇𝑤∇�̃� 𝑑𝒱
𝒱

+ ∫ 𝑤𝑘2𝑝 𝑑𝒱
𝒱

+ ∫ 𝑤𝑗𝜔𝑞 𝑑𝒱
𝒱

= 0                   (4.11) 

However, making use of the divergence theorem yields 

∫ 𝑤
𝜕�̃�

𝜕𝑛
 𝑑𝑆

𝑆
− ∫ ∇𝑤∇�̃� 𝑑𝒱

𝒱
+ ∫ 𝑤𝑘2𝑝 𝑑𝒱

𝒱
+ ∫ 𝑤𝑗𝜔𝑞 𝑑𝒱

𝒱
= 0                    (4.12) 

or rearranging for the approximate unknown function 𝑝 

∫ ∇𝑤∇�̃� 𝑑𝒱
𝒱

− ∫ 𝑤𝑘2𝑝 𝑑𝒱
𝒱

= ∫ 𝑤𝑗𝜔𝑞 𝑑𝒱
𝒱

+ ∫ 𝑤
𝜕�̃�

𝜕𝑛
 𝑑𝑆

𝑆
                               (4.13) 

or, making use of the momentum balance equation, 

∫ ∇𝑤∇�̃� 𝑑𝒱
𝒱

− ∫ 𝑤𝑘2𝑝 𝑑𝒱
𝒱

= ∫ 𝑤𝑗𝜔𝑞 𝑑𝒱
𝒱

− ∫ 𝑤𝑗𝜔𝜌0𝑉𝑛 𝑑𝑆𝑆
                            (4.14) 

Equation (4.14) represents the so called weak formulation of the PDE problem because of the fact 

that, once solved, it gives an approximated solution. At this point, it is necessary to define the 

“form” of the trial and weighting function, in order to be able to solve the above derived weak form. 
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4.2 Galerkin procedure 

The above described procedure is part of the finite element process named method of the weighted 

residuals (also known as Galerkin method[1][2][3]). As it has already mentioned, in the finite 

element approach, the fluid domain 𝒱 is discretized into a number of small subdomains 𝒱𝑒 (finite 

elements) and a number of nodes which are defined at some particular locations in each element42. 

The approximation of the field variable (acoustic pressure) in each finite element, which is the trial 

solution 𝑝, is expressed as a weighted summation, namely 

𝑝𝑒(𝑥, 𝑦, 𝑧) ≈ 𝑝𝑒(𝑥, 𝑦, 𝑧) = ∑ 𝑁𝑖
𝑒(𝑥, 𝑦, 𝑧) 𝑎𝑖

𝑛
𝑖                                                (4.15) 

which represents a linear combination of the 𝑁𝑖 field functions, known as shape or interpolation 

functions, prescribed in terms of independent coordinates (𝑥, 𝑦, 𝑧) and 𝑎𝑖 are the weights of the 

summation. The shape functions are chosen so that they equal unity at the location of the node they 

correspond to, namely 

𝑁𝑖
𝑒(𝑥𝑖 , 𝑦𝑖, 𝑧𝑖) = 1                                                                (4.16) 

while 

𝑁𝑖
𝑒(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) = 0                                                                (4.17) 

In this way, the weighting coefficients 𝑎𝑖 represents the approximated acoustic pressures nodal 

values, that is 

𝑝𝑖
𝑒 = 𝑁1

𝑒(𝑥1, 𝑦1, 𝑧1) 𝑎𝑖 + 0 𝑎𝑖 +⋯+ 0 𝑎𝑛                                         (4.18) 

It follows that the trial solution �̃�, within each element of the discretization, may be expressed as 

𝑝𝑒 = ∑ 𝑁𝑖
𝑒(𝑥, 𝑦, 𝑧) �̃�𝑖

𝑛
𝑖                                                               (4.19) 

 𝑝𝑖 being the unknown nodal values. As an example, in Figure 4.2 the shape functions of three 

nodes corresponding to two linear elements are shown. 

 

Figure 4.2 – Example of linear shape functions for two linear elements. 

                                                           
42 Generally, the nodes are defined at each corner point of the finite element they belong. 
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Besides the definition of such local shape function 𝑁𝑖
𝑒, it is very useful to define a global shape 

function 𝑁𝐼 with the same constraint as the 𝑁𝑖
𝑒.43 Consequently, the global pressure expansion may 

be expressed as 

𝑝(𝑥, 𝑦, 𝑧)  = ∑ 𝑁𝑖(𝑥, 𝑦, 𝑧) �̃�𝑖
𝑛𝑇
𝑖=𝐼 = [𝑁]{𝑝}                                          (4.20) 

where 𝑛𝑇 stands for the total number of nodes within the finite element discretization, [𝑁] is a 

(1 𝑥 𝑛𝑇) global shape function vector and {𝑝} is a (𝑛𝑇 𝑥 1) of approximated unknown nodal 

pressures vector. The difference between local and global shape function is schematically depicted 

in Figure 4.3, for a two-dimensional grid made of several rectangular elements. 

 

Figure 4.3 – Shape function definitions: a) local and b) global. 

At the same time, the acoustic pressure gradient approximation may be expressed as 

∇𝑝(𝑥, 𝑦, 𝑧)  = [

𝜕𝑝 𝜕𝑥⁄

𝜕𝑝 𝜕𝑦⁄

𝜕𝑝 𝜕𝑧⁄
] = [𝜕][𝑁]{�̃�} = [𝐵]{�̃�}                                         (4.21) 

where [𝜕] is a (3 𝑥 1) gradient operator vector and [𝐵] is a (3 𝑥 𝑛𝑇) matrix of the gradient 

components of the global shape functions. 

From what concern the definition of the arbitrary weighting function, according to the Galerkin 

procedure, the same expansion is assumed, namely 

𝑤(𝑥, 𝑦, 𝑧)  = ∑ 𝑁𝑖(𝑥, 𝑦, 𝑧) 𝑤𝑖
𝑛𝑇
𝑖=𝐼 = [𝑁]{𝑤}                                       (4.22) 

and 

∇𝑤(𝑥, 𝑦, 𝑧)  = [
𝜕𝑤 𝜕𝑥⁄

𝜕𝑤 𝜕𝑦⁄

𝜕𝑤 𝜕𝑧⁄
] = [𝜕][𝑁]{𝑤} = [𝐵]{𝑤}                                (4.23) 

Thus, by inserting the above introduced expansion in terms of shape functions within the weak 

formulation, yields to the following integral equation 

                                                           
43 𝑁𝐼(𝑥𝐼 , 𝑦𝐼 , 𝑧𝐼) = 1 and 𝑁𝐼(𝑥𝐽 , 𝑦𝐽 , 𝑧𝐽) = 0. 
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∫ ([𝐵]{𝑤})𝑇([𝐵]{�̃�}) 𝑑𝒱
𝒱

− ∫ ([𝑁]{𝑤})𝑇𝑘2([𝑁]{�̃�}) 𝑑𝒱
𝒱

= ∫ ([𝑁]{𝑤})𝑇𝑗𝜔𝑞 𝑑𝒱
𝒱

−

∫ ([𝑁]{𝑤})𝑇𝑗𝜔𝜌0𝑉𝑛 𝑑𝑆𝑆
 (4.24) 

which, as it will be shown in the following, enables the definition of  acoustic stiffness, mass and 

damping matrices, together with an acoustic excitation vector. 

Acoustic stiffness matrix 

The first integral within eq. (4.24) may be rewritten as 

∫ ([𝐵]{𝑤})𝑇([𝐵]{�̃�}) 𝑑𝒱
𝒱

= {𝑤}𝑇 ∫ [𝐵]𝑇[𝐵] 𝑑𝒱
𝒱

 {𝑝} = {𝑤}𝑇[𝐾] {�̃�}                         (4.25) 

where the (𝑛𝑇  𝑥 𝑛𝑇) square matrix [𝐾] is termed, by analogy with structural mechanic[7], acoustic 

stiffness matrix. The generic 𝑖𝑗 element of such matrix has the following expression 

𝐾𝑖𝑗 = ∫ (
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑁𝑗

𝜕𝑥
+
𝜕𝑁𝑖

𝜕𝑦

𝜕𝑁𝑗

𝜕𝑦
+
𝜕𝑁𝑖

𝜕𝑧

𝜕𝑁𝑗

𝜕𝑧
)  𝑑𝒱

𝒱
                                           (4.26) 

Obviously, thanks to the way in which the shape functions have been defined (see Figure 4.3), 𝑁𝑖 

and 𝑁𝑗 are non-zero only for the elements to which node 𝑖 and 𝑗 belong. It follows that the global 

integral expressed by eq. (4.26) may be calculated as summation of integrals over the elements to 

which both node 𝑖 and 𝑗 belong (so that both 𝑁𝑖 and 𝑁𝑗 are non-zero), namely 

𝐾𝑖𝑗 = ∑ ∫ (
𝜕𝑁𝑖

𝑒

𝜕𝑥

𝜕𝑁𝑗
𝑒

𝜕𝑥
+
𝜕𝑁𝑖

𝑒

𝜕𝑦

𝜕𝑁𝑗
𝑒

𝜕𝑦
+
𝜕𝑁𝑖

𝑒

𝜕𝑧

𝜕𝑁𝑗
𝑒

𝜕𝑧
)  𝑑𝒱

𝒱𝑒

𝑝𝑖𝑗
𝑒=1 = ∑ 𝐾𝑖𝑗

𝑒𝑝𝑖𝑗
𝑒=1                                   (4.27) 

where 𝑝𝑖𝑗 is the number of elements to which both node 𝑖 and 𝑗 belong and 𝐾𝑖𝑗
𝑒  is the element 

acoustic stiffness matrix. According to the general calculation procedure, the stiffness matrix for 

each element is firstly calculated and then each element of the global stiffness matrix is calculated 

thanks to eq. (4.27). Considering that each node 𝑖 share elements with only few adjacent nodes 𝑗 the 

global acoustic stiffness matrix turns out to be sparse populated. Besides, if the elements numbering 

is done in a proper way within the finite element discretization, the few populated elements of the 

matrix [𝐾] are arranged around the diagonal. 

Acoustic mass matrix 

To the aim of rewriting eq. (4.24) in a more convenient form, the second integral may be rewritten 

as 

∫ ([𝑁]{𝑤})𝑇𝑘2([𝑁]{𝑝}) 𝑑𝒱
𝒱

= 𝜔2{𝑤}𝑇 ∫
1

𝑎0
2 [𝑁]

𝑇[𝑁] 𝑑𝒱
𝒱

{𝑝} = 𝜔2{𝑤}𝑇[𝑀] {𝑝}               (4.28) 

where the (𝑛𝑇  𝑥 𝑛𝑇) square matrix [𝑀] is termed, by analogy with structural mechanic[7], acoustic 

mass matrix and its generic  𝑖𝑗 element has the following expression 

𝑀𝑖𝑗 = ∫
1

𝑎0
2 (𝑁𝑖𝑁𝑗) 𝑑𝒱𝒱

= ∑ ∫
1

𝑎0
2 (𝑁𝑖

𝑒𝑁𝑗
𝑒) 𝑑𝒱

𝒱𝑒

𝑝𝑖𝑗
𝑒=1 = ∑ 𝑀𝑖𝑗

𝑒𝑝𝑖𝑗
𝑒=1                              (4.29) 

So, by the examination of the above expression, it is easy to find out that, even in this case, the 

acoustic mass matrix turns out to be sparse populated since the shape functions 𝑁𝑖
𝑒 and 𝑁𝑗

𝑒 are 
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contemporarily non-zero only for few elements to which both the generic nodes 𝑖 and 𝑗 belong. 

Even in this case, the acoustic mass matrix for each element is firstly calculated and then the global 

mass matrix is assembled by the calculation of each element thanks to eq. (4.29). 

Acoustic excitation vector 

The first integral on the right-hand side of eq. (4.24) may be expressed as 

∫ ([𝑁]{𝑤})𝑇𝑗𝜔𝑞 𝑑𝒱
𝒱

= {𝑤}𝑇 ∫ [𝑁]𝑇𝑗𝜔𝑞 𝑑𝒱
𝒱

= {𝑤}𝑇{𝑄}                                (4.30) 

where {𝑄} is a (𝑛𝑇  𝑥 1) vector defining the strength of eventual acoustic source located at some 

node of the finite element discretization. For this reason, {𝑄} is also called acoustic excitation 

vector. 

Boundary conditions 

As it has been previously introduced, in order to uniquely define the acoustic pressure field within 

the domain 𝒱, one or a set of boundary conditions must be specified on the closed bounding 

surface. To this scope, the second integral on the right-hand side of eq. (4.24) is very useful, as it is 

intuitively clear by considering the fact that it is the only surface integral in the whole expression. In 

fact, considering that the surface enclosing the acoustic domain 𝒱 may be divided into the surfaces 

on which different boundary condition are applied (see eq. (4.6)), the surface integral in eq. (4.14) 

may be expressed as 

−∫ 𝑤𝑗𝜔𝜌0𝑉𝑛 𝑑𝑆𝑆
= −∫ 𝑤𝑗𝜔𝜌0𝑉 ∙ 𝑛 𝑑𝑆𝑆𝑝

− ∫ 𝑤𝑗𝜔𝜌0𝑉𝑛 𝑑𝑆𝑆𝑣
− ∫ 𝑤𝑗𝜔𝜌0𝐴 𝑝 𝑑𝑆𝑆𝑍

                      

(4.31) 

where 𝐴 is called acoustic admittance, representing the inverse of the acoustic impedance. Making 

use of eq. (4.22), the first surface integral may be rewritten as 

−∫ 𝑤𝑗𝜔𝜌0𝑉 ∙ 𝑛 𝑑𝑆𝑆𝑝
= {𝑤}𝑇 (−∫ [𝑁]𝑇𝑗𝜔𝜌0𝑉 ∙ 𝑛 𝑑𝑆𝑆𝑝

) = {𝑤}𝑇{𝑃}             (4.32) 

where {𝑃} is called input pressure vector, defining the pressure boundary condition in each node 

where it is defined. 

As regards the normal velocity boundary condition, by substituting the expansion in terms of shape 

function for weighting function, the second integral becomes 

−∫ 𝑤𝑗𝜔𝜌0𝑉𝑛 𝑑𝑆𝑆𝑣
= {𝑤}𝑇 (−∫ [𝑁]𝑇𝑗𝜔𝜌0𝑉𝑛 𝑑𝑆𝑆𝑣

) = {𝑤}𝑇{𝑉𝑛}                           (4.33) 

where {𝑉𝑛} is a (𝑛𝑇 𝑥 1) vector, also known as input velocity vector, defining the nodes at which 

the imposed Neumann boundary condition is applied. Therefore, the generic imposed nodal normal 

velocity may be expressed as 

𝑉𝑛𝑖 = −∫ 𝑁𝑖𝑗𝜔𝜌0𝑉𝑛 𝑑𝑆𝑆𝑣
                                                            (4.34) 

The value of a global shape function 𝑁𝑖 at the boundary surface is non-zero only for those nodes 

that are located on the boundary surface 𝑆𝑣. Besides, within the finite element discretization, 𝑆𝑣 is 
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the sum of only some elements surfaces. Consequently, the calculation of the generic component of 

the input velocity vector is accomplished thanks to the following expression 

𝑉𝑛𝑖 = ∑ ∑ −∫ 𝑁𝑖
𝑒𝑗𝜔𝜌0𝑉𝑛 𝑑𝑆𝑆𝑣

𝑒
𝑛𝑖
𝑆𝑣
𝑒=1

𝑝𝑖
𝑒=1                                              (4.35) 

where 𝑝𝑖 is the number of elements which share node 𝑖 whilst 𝑛𝑖 is the number of surfaces on the 

boundary  𝑆𝑣, belonging to one element, sharing node 𝑖. 

In a similar way, the third integral on the right-hand side of eq. (4.31) may be expressed as 

−∫ 𝑤𝑗𝜔𝜌0𝐴 𝑝 𝑑𝑆𝑆𝑍
= −𝑗𝜔{𝑤}𝑇 (∫ [𝑁]𝑇[𝑁]𝜌0𝐴 𝑑𝑆𝑆𝑍

) {𝑝} = −𝑗𝜔{𝑤}𝑇[𝐶]{�̃�}                      (4.36) 

where the matrix indicated by [𝐶] is a (𝑛𝑇 𝑥 𝑛𝑇) matrix which is called acoustic damping matrix. 

The generic 𝑖𝑗 element of such matrix has the following expression 

𝐶𝑖𝑗 = ∫ 𝜌0𝐴(𝑁𝑖𝑁𝑗) 𝑑𝑆𝑆𝑍
                                                     (4.37) 

However, the boundary surface 𝑆𝑍 is, after the finite element discretization, equal to the sum of 

some  elements surfaces, so that the generic element of the element acoustic damping matrix may 

be expressed in the following form 

𝐶𝑖𝑗 = ∑ ∫ 𝜌0𝐴(𝑁𝑖
𝑒𝑁𝑗

𝑒) 𝑑𝑆
𝑆𝑣
𝑒

𝑛𝑖
𝑆𝑣
𝑒=1

                                             (4.38) 

from which it is possible to point out that, as per the definition of shape function, 𝑁𝑖 and 𝑁𝑗 are 

contemporarily non-zero (and so 𝐶𝑖𝑗) only if node 𝑖 and node 𝑗 are located on at least one common 

element face that is part of the boundary surface 𝑆𝑍. This results in a matrix [𝐶] which is also sparse 

populated. 

After introducing the above mentioned matrices and vectors, the way in which the finite element 

model is assembled and solved, for the wanted approximated solution, may be more easily 

understood. In fact, by substituting expressions (4.25), (4.28), (4.30), (4.32), (4.33) and (4.36) into 

Eq. (4.24), the weak form of the weighted residual formulation of the Helmholtz equation, including 

the boundary conditions (4.4) and (4.5), becomes 

{𝑤}𝑇[𝐾] {�̃�} − 𝜔2{𝑤}𝑇[𝑀] {𝑝} + 𝑗𝜔{𝑤}𝑇[𝐶]{�̃�} = {𝑤}𝑇{𝑄} + {𝑤}𝑇{𝑃} + {𝑤}𝑇{𝑉𝑛} 

or 

([𝐾]  − 𝜔2[𝑀]  + 𝑗𝜔[𝐶]){�̃�} = {𝑄} + {𝑃} + {𝑉𝑛}                               (4.40) 

as the weighted residuals formulation must hold for any weighted function. Thus, a set of 𝑛𝑇 linear 

equations in the 𝑛𝑇 nodal acoustic pressure unknowns 𝑝𝑖 is obtained. These latter are commonly 

denoted by degrees of freedom of the Finite Element model. 

Actually, the imposed pressure boundary condition, which is represented by the vector {𝑃} within 

the above equation, is not applied making use of eq. (4.32). In fact, the application of such type of 

boundary condition is usually done by directly assigning the imposed pressure value at each node 

located on the boundary surface 𝑆𝑝. When this is done, the system of eq. (4.40) becomes 
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overdetermined, meaning that the number of equations is greater than the number of unknowns. 

When this assignment is done for the 𝑛𝑝 nodes on the boundary surface, only 𝑛𝑇 − 𝑛𝑝 

approximated acoustic pressure values are still unknown. Consequently, in order to have again a 

well-determined set of equations, the equations related to the nodes on which the pressure is 

assigned must be eliminated. Then, by moving on the right-hand side the terms involving the 

imposed pressure values within the equations where they appear, the assembled finite element 

model becomes 

([𝐾]𝑅  − 𝜔
2[𝑀]𝑅  + 𝑗𝜔[𝐶]𝑅){�̃�}𝑅 = {𝐹𝑎}𝑅                                      (4.41) 

where the subscript 𝑅 indicates that the number of equations has been reduced. In fact, the acoustic 

stiffness, mass and damping matrices are now (𝑛𝑅 𝑥 𝑛𝑅) matrices for which 𝑛𝑅 = 𝑛𝑇 − 𝑛𝑝, whilst 

{𝐹𝑎}𝑅 is the new (𝑛𝑅 𝑥 1) acoustic force vector, grouping the first and the third “reduced” vector on 

the right hand side of eq. (4.40). 

From what above, it is possible to identify the various steps in which the Finite Element Method is 

composed, as it is schematically depicted in figure below. 

 

Figure 4.4 – The main phases of the Finite Element Method. 

The starting point is of course represented by the availability of the CAD (Computer Aided Design) 

model of the acoustic domain under investigation. Then, such originally supposed continuous 

system has to be discretized into a finite number of elements constituting the acoustic mesh. This 

latter, together with the loads and boundary conditions represents the Finite Element Model to be 

assembled44 and solved. In general, nowadays various CAE software are available for solving 

engineering problems with FE approach and all of them consist in two parts which are a graphic 

user interface and a dedicated solver. The pre /post processing interface is used to create the 

discretization and for the application of the boundary conditions and loads, whilst the assembling 

procedure of the various matrices and the solution of eq. (4.41) is accomplished by the solver. Once 

the solution has been found for each of the nodes the mesh consists of, it is possible to view the 

results in the graphic interface. 

 

 

                                                           
44 The assembling procedure is generally devoted to the evaluation of the acoustic mass, stiffness and damping matrices.  
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4.3 Convergence of the model 

From what has been showed before, the problem of solving the complicated partial differential 

equation problem expressed by eq. (4.2) and the related boundary conditions (4.3), (4.4) and (4.5) 

has been transformed into the problem of solving the system of linear equations (4.41), with 

unknowns represented by the acoustic pressure at some discrete point within the computational 

domain 𝒱. However, the convergence of the approximate solution to the exact one is ensured 

considering some constraints, which are related to both the “form” of the shape functions expansion 

and the geometric discretization[4]. This leads to the definition of two types of errors when using 

the finite element method, which are defined as approximation and discretization error. 

From what concerns the approximation error, this is due to the fact that the exact solution of the 

Helmholtz equation is an approximated one, as it is explicitly expressed by eq. (4.15). Since the 

spatial functions in such expansion are represented by the shape functions, the approximation error 

is related to the way in which they are defined. Generally, the shape functions are polynomial 

functions as they are very easy to differentiate and integrate. Thus, the convergence of the 

approximated solution is ensured if two conditions are satisfied which are: 

 Completeness, meaning that, being 𝑚 the highest derivative order in the weak formulation 

(4.14) of the trial and weighting functions, the element shape functions must represent at 

least all polynomial terms of order ≤  𝑚, otherwise the formulation cannot hold. A set of 

shape functions that satisfies this condition is called m-complete. 

 Compatibility, meaning that the element shape function must be chosen so that the integrals 

are always finite. To achieve this, the first order derivative of the shape function of the 

acoustic element must exist and the approximate acoustic pressure must be continuous 

between interconnected elements. 

Thus, from the above convergence conditions, a polynomial shape functions for an acoustic finite 

element discretization must be such that, the functions are complete up to at least the first order 

derivative and that the whole pressure expansion is continuous between elements. Therefore, a very 

common choice is represented by linear rectangular for two-dimensional problems and linear 

tetrahedral elements for three-dimensional problems. 

 

Figure 4.5 – Linear rectangular and linear tetrahedral elements. 

As an example, the element shape function for linear rectangular elements are defined as 

𝑁𝑖
𝑒 =

1

4
(1 + 𝜂𝑖𝜂)(1 + 𝜉𝑖𝜉)                    𝑖 = 1,2,3,4                                             (4.42) 

where the two local coordinates (𝜂, 𝜉) are depicted in Figure 4.5. As it is possible to appreciate by 

the above expression, such polynomial shape function perfectly agrees with the first constraint 

represented by the fact that 𝑁𝑖
𝑒 must equal unity at node 𝑖 and zero at the others nodes. Also it is 
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easy to find out that the pressure expansion is continuous between elements. In fact, the pressure 

approximation along the boundary 𝜂 = 1 and −1 ≤ 𝜉 ≤ 1 may be expressed as45 

𝑝 =
�̃�1+�̃�2

2
+ (

�̃�1−�̃�2

2
) 𝜉                                                              (4.43) 

which is uniquely defined by the nodal pressure at node 1 and 2. The same thing happens for the 

adjacent element which ensure the continuity of the pressure expansion across the inter-element 

boundary. 

As regards the discretization error, it is necessary to point out that, for most real-life acoustic 

problems, the computational domain 𝒱 may have a very complex, arbitrary, geometrical shape, 

which cannot be discretized exactly into a set of simple geometrical entities, such as rectangular and 

tetrahedral elements. In these cases, the finite element discretization induces not only an 

approximation error, due to the shape function expansion, but also a discretization one due to the 

more or less poor geometrical description of the actual geometry. In other words, the discretization 

error is due to the fact that the finite element discretization may not fit the exact geometry. This is 

schematically depicted in Figure 4.6. 

 

Figure 4.6 – Example of poor description of circular geometry using rectangular elements. 

Thus, in order to lower as much as possible the discretization error, there is the need to use more 

complex elementary entities. Such very important circumstance leads to the concept of parametric 

mapping, which “simply” allows the use of distorted version of ideal elements, allowing the better 

handling of complex geometries. More precisely, the starting point is represented by the “ideal” 

element shape, corresponding to the so-called parent element (e.g. rectangular in two-dimensional 

symmetry). By distorting such a parent element, together with its local element coordinate system, a 

new element is created together with its local curvilinear coordinate system, as schematically 

indicated in Figure 4.7. Note that, thanks to the simple geometry of the parent rectangular element, 

the edges of the distorted elements are characterized by constant values of the curvilinear local 

coordinate system. 

                                                           
45 𝑝 =

1

4
[(𝑝1 + 𝑝2 + 𝑝3 + 𝑝4) + (𝑝1 + 𝑝2 − 𝑝3 − 𝑝4)𝜂 + (𝑝1 − 𝑝2 − 𝑝3 + 𝑝4)𝜉 + (𝑝1 − 𝑝2 + 𝑝3 − 𝑝4) 𝜂𝜉 ]. 
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Figure 4.7 – Schematization of the element distortion procedure. 

The relationship between the global Cartesian and the local curvilinear coordinates, for each point 

in the distorted element domain, is described in terms of shape functions expansion, namely 

{
𝑥(𝜉, 𝜂) = ∑ 𝑁𝑖(𝜉, 𝜂) 𝑥𝑖

4
𝑖=1  

𝑦(𝜉, 𝜂) = ∑ 𝑁𝑖(𝜉, 𝜂) 𝑦𝑖
4
𝑖=1

                                                          (4.44) 

Considering the corners of the distorted element, in a similar way to what happens for the expansion 

of the acoustic pressure approximation, in this case the shape function for a node is defined to be 

equal unity at the node and zero at the others. In this way, the global coordinates of each point of 

the distorted element are expressed as weighted summation of such “geometric” shape function, the 

global coordinates of the corners being the weights. The case in which the same shape functions, 

describing the approximate acoustic pressure, are used for describing the change of geometrical 

coordinates is common and the corresponding elements are denoted as isoparametric acoustic 

elements. By means of relations of the type (4.44) it is possible to express the integration functions 

of eq. (4.14) in local coordinates, simplifying the integration limits which are constant (−1 ≤

𝜉, 𝜂 ≤ 1) due to the very simple geometry of the parent element. Besides, according to the rules of 

partial differentiation, the spatial derivatives with respect to the local element co-ordinates 𝜉 and η 

may be expressed in terms of those with respect to the global Cartesian coordinates, namely 

{

𝜕𝑁𝑖
𝑒

𝜕ξ

𝜕𝑁𝑖
𝑒

𝜕η

} = [

𝜕𝑥

𝜕ξ

𝜕𝑦

𝜕ξ

𝜕𝑥

𝜕η

𝜕𝑦

𝜕η

] {

𝜕𝑁𝑖
𝑒

𝜕x

𝜕𝑁𝑖
𝑒

𝜕y

} = [𝐽(𝜉, 𝜂 )] {

𝜕𝑁𝑖
𝑒

𝜕x

𝜕𝑁𝑖
𝑒

𝜕y

}                                            (4.45) 

where the matrix [𝐽] is the Jacobian of the coordinates transformation. Hence, thanks to relations 

such as (4.44) and (4.45), the calculation of the integrals for the distorted elements in the FE model 

may be accomplished in the element local coordinates, which makes the procedure simpler. The 

above description holds also for three-dimensional discretizations and, as an example, the distorted 

element acoustic stiffness matrix may be calculated as 

[𝐾𝑒] = ∫ ([𝜕][𝑁])𝑇([𝜕][𝑁]) 𝑑𝑥𝑑𝑦𝑑𝑧
𝒱𝑒

= ∫ ([𝜕][𝑁])𝑇([𝜕][𝑁]) |𝐽|𝑑𝜉𝑑𝜂𝑑𝜓
𝒱𝑒

                (4.46) 

where |𝐽| is the determinant of the Jacobian and the integration limits on the right-hand side reduce 

to three integration in the range [−1; 1] in the three local variables 𝜉, 𝜂 and 𝜓. 
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As already pointed out, practically always in real engineering problems, the geometries to deal with 

may be quite complex and cannot be discretized as constituted by simple or ideal element type so 

that the distortion process has to be accomplished. Intuitively, from what has been described above, 

the discretization error is highly dependent on the quality of the acoustic mesh, meaning how much 

the elements of the discretization differ from their ideal shape. In this framework, some geometrical 

checks have to been verified on the element quality and, of course, a lot of mesh quality parameters 

have been, during the years, defined. Just as an insight, one of them is the Jacobian which, as per its 

definition, measures how much the element is distorted. In other words, the determinant of the 

Jacobian indicates the local stretching of an element whose excessive extent must be avoided, in 

order to not lead to wrong matrices calculation. 

Another important aspect which has to be taken into account, when solving acoustic problems by 

means of finite element approach, is that, as acoustic is a wave propagation phenomenon, the spatial 

variation of acoustic pressure is mainly affected by the distribution of sources and the considered 

frequency. This latter circumstance derives, of course, by the fact that the acoustic wavelength is 

related with the considered frequency via the speed of sound. Considering a low order polynomial 

function used as shape functions, it can only faithfully reproduce very little spatial variations. This 

is schematically indicated in Figure 4.8, where a linear shape function has been considered. 

 

Figure 4.8 – 1D element linear interpolation versus sinusoidal spatial variation. 

It follows that a large amount of elements is required in order to well approximate the oscillatory 

response within the computational domain, particularly at a high frequency. In this framework, a 

very common guideline states that, in order to achieve a suitable level of accuracy, the mesh should 

be fine enough so that at least 6 elements per acoustic wavelength are ensured. As a consequence, 

the element size to be used in an acoustic FE analysis should be choose based on the highest 

frequency to be examined, no matter if a coarser resolution would be sufficient at low frequencies. 

4.4 Modelling exterior acoustic problems 

In the introduction to the practical implementation of the finite element method in acoustics, it has 

been explicitly considered that the computational domain 𝒱 is bounded by an external surface 𝑆. 

Intuitively, it must be like that because the computational effort may be only spent to solve a finite 

number of degrees of freedom. In other words, the finite element method could not be used to solve 

unbounded acoustic problems, where the computational domain has an infinite extent. Nevertheless, 

there exist several modelling approaches which allow the use of the FE method to solve exterior 

acoustic problems. Basically, the finite element discretization has to be modified and divided in 

several acoustic domains. 
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Figure 4.9 – Schematization of the finite element discretization for solving exterior acoustic problem. 

As schematically indicated by Figure 4.9, considering the boundary surface 𝑆 of the original interior 

problem, a fictitious surface 𝑆𝑒𝑥𝑡  is created, increasing the extent of the mesh. Then, the 

computational domain consists of three domains identified as the original bounded domain  𝒱, one 

discretized part of the unbounded space enclosed between 𝑆 and 𝑆𝑒𝑥𝑡 (�̅�) and another part of the 

unbounded space which spread out toward the infinity. Hence, the model is assembled in a way 

such that a non-reflecting boundary condition is ensured at the physical limit of the domain, which 

coincides with the surface 𝑆𝑒𝑥𝑡, and somehow the propagation in the real, not discretized,  

unbounded space must be handled.  

At the surface 𝑆𝑒𝑥𝑡, the so-called Sommerfeld radiation boundary condition is generally imposed[6]. 

This is the simplest non-reflecting boundary condition modelling the free (without reflections) 

propagation of acoustic waves towards the infinity and, mathematically, it arises from the sound 

field of a monopole source in free field conditions, when the distance from the source is great. In 

fact, considering the sound field produced by a simple monopole source in free field, the pressure 

gradient in the radial direction, at large distance from the source, may be expressed as46 

𝜕𝑝

𝜕𝑟
= −𝑗𝑘𝑝                                                               (4.47) 

Among the various approaches which may be used to approximate such radiation condition the 

most simple is certain represented by the imposition of the characteristic impedance of the medium 

as impedance condition on the surface 𝑆𝑒𝑥𝑡. This would lay to an acoustic pressure-particle velocity 

relation of the type 

𝑝(𝒓) = 𝑍0𝑣(𝒓) = 𝜌0𝑎0 𝑣(𝒓)          ,            𝒓 ∈ 𝑆𝑒𝑥𝑡                            (4.48) 

The main drawback of this simple implementation is that, in order to be valid, the fictitious surface 

𝑆𝑒𝑥𝑡 must be located far away from the boundary 𝑆, in order to approximate free plane wave 

propagation. This may result in a very large computational domain, to which high computational 

efforts corresponds. 

More sophisticated approaches rely on the use of the so-called infinite elements (IE). These latter 

allow to model the sound field in unbounded domains, insuring a free-field condition. They are 

                                                           
46 As it is derived in chapter 7, the frequency domain expression of the monopole field is 𝑝(𝜔, 𝒓) =

𝑝

4𝜋𝑟
𝑒𝑗(𝜔𝑡−𝑘𝑟). 
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defined starting from the surface 𝑆𝑒𝑥𝑡, which is generally referred as the finite-infinite interface, 

extending toward the infinity. 

 

Figure 4.10 – Schematization of the infinite element discretization. 

The sound field within the exterior domain is approximated thanks to a multipole expansion of the 

sound field on the finite-infinite interface[5]. Thanks to such modelling approach, the size of the 

computational domain may be significantly smaller with respect to the whole exterior domain to be 

modelled, depending on the position of the fictitious surface defining the finite-infinite interface. 
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Chapter 5 

Acoustic Performance Analysis 

Introduction 

In the present chapter the acoustic performance analyses of the intake system under investigation 

are described. These analyses have been aimed to predict the noise attenuation characteristics in 

terms of Transmission Loss. Thus, the outcomes of both experiments and simulations will be 

compared in order to achieve a first validation step of the modelling procedure for the studied 

system. The results which will be shown below partly refer to the following journal article: 

Siano, D., Ferrara, G., Lenzi, G., D'Agostino, D. et al., "Experimental and Numerical Comparison 

of the Acoustic Performance of the Air Filter Box of a SI-ICE," SAE International Journal of 

Engines 8(5):2015, doi:10.4271/2015-24-2527. 

As it has been mentioned in the introduction, the object of the present thesis is represented by the 

numerical modelling of an intake system for a commercial spark ignition engine. In particular, this 

chapter is dedicated to the description of the acoustic performance analysis of the studied system. 

As it has been already mentioned in chapter 3, the most common used parameter for characterizing 

the acoustic attenuation properties of a system is the so called Transmission Loss. It is calculated 

according to eq. (3.79) and represents the sound power attenuation which is achieved within a 

transmission path, thanks to an acoustic filter located between sound source and receiver, 

considering an anechoic filter’s termination. This common choice directly follows from the fact that 

such parameter only depends upon system’s geometry and material (this latter dependence being 

particularly true when accounting for structural participation). Besides, as it will be clear from the 

next sections, it is very simple to measure thanks to the well-known Transfer Matrix theory and by 

means of the impedance tube method. 

The knowledge of the Transmission Loss of a system, by means of either measurements or 

calculations, is indeed a very important step during the design or optimization phases. As matter of 

fact, many real systems have a very complex geometry and therefore they cannot be thought as an 

elementary acoustic filter, as those briefly examined in chapter 3. A prelaminar Transmission Loss 

study reveals which part of the studied geometry is responsible for high acoustic attenuation, e.g. a 

resonator, and, in general more important, which part has to be modified because of high acoustic 

transparency. 

In this chapter, the results coming from the Transmission Loss assessment of the system under 

investigation will be presented. In particular, the analysis schematized as flowchart in Figure 5.1 

will be discussed. Both simulations and experiments have been executed in no-flow conditions, 

which means without taking into account the convective effect of a mean velocity field on the 

acoustic wave propagation, according to what has been mentioned at the end of chapter 2. 
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Figure 5.1 - Flow chart schematization of the Transmission Loss analyses. 

Firstly, the experimental analysis and related background theory are briefly described together with 

the corresponding results. Here, two main analyses have been carried out: the first considering the 

structure of the system as infinitely rigid and the second accounting for the structural participation. 

Besides, in the first configuration, the influence of the presence of the air filter on the sound 

attenuation characteristic is also assessed. Then, following the layout of the above figure, the 

numerical analyses and related results will be described, starting from the availability of the 

structural CAD model which is mandatory for the finite element model creation. Finally, from the 

discussion of the comparison between experimental and numerical data in terms of Transmission 

Loss, the first step in the validation procedure of the numerical model is successfully achieved. 

Before proceeding with the description of the above mentioned activities, an acknowledgement has 

to be done to the Research Group “Reciprocating Engines and Advanced Systems for Energy”, of 

the University of Florence, and in particular to Prof. Giovanni Ferrara, PhD Giulio Lenzi and the 

PhD student Andrea Fioravanti, for the efforts which have been spent during the experimental 

Transmission Loss analyses which will be briefly described in this chapter. 

5.1 Transfer Matrix Method 

Generally speaking, duct elements have only two openings with enough small diameters which 

allow the plane wave propagation to be satisfied within a wide frequency range (see eq. (2.45) and 

(2.56)). Systems like that may be thought as acoustic two ports systems[1][2], as schematically 

depicted in Figure 5.2. 
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Figure 5.2  – a) acoustic  system schematization and b) equivalent circuit representation. 

In this framework, the so-called Transfer Matrix is the matrix which links the state variables at the 

upstream position of a filter and those at the downstream position. Considering an element of an 

acoustic filter and adopting the acoustic pressure and the acoustic mass velocity as state variables, 

the following matrix expression holds 
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where [pu; vu] and [pd; vd] are the state vectors at the upstream and downstream position respectively, 

whilst the parameters of the square matrix appearing on the right-hand side are called four pole 
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Therefore, each of the four-pole parameters represent a physical situation, e.g. A11 represents the 

theoretical case in which the downstream position is rigidly fixed (infinite specific acoustic 

impedance) whilst A12 represents the theoretical case of a totally free downstream (zero specific 

acoustic impedance). From the knowledge of the transfer matrix of an acoustic element, it is 

possible to calculate for example the acoustic intensity (or the acoustic power when the inlet and 

outlet section have different area), hence the transmission loss. The above expressions of the four-

pole parameters allow the numerical evaluation of each by means of finite element models of 

complex geometries, when an exact solution is not available[3][4]. From what has been introduced 

in the chapter 3, all the basic elements of a straight-through low-pass filter may be represented by 

one of the three types of element depicted in Figure 5.3. 
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Figure 5.3  – Basic element equivalent representation: a) distributed element, b) shunt lumped element, c) in-line 

lumped element. 

Thanks to the transfer matrix relation, it is possible to uniquely represent one of these elements by 

means of its Transfer Matrix. For example, by using the standing wave relations, the Transfer 

Matrix for the uniform tube may be evaluated. In fact, for the upstream position the standing wave 

relations yield 

𝑝𝑢 = 𝐴𝑢 + 𝐵𝑢                                                                    (5.6) 

𝑣𝑢 =
(𝐴𝑢−𝐵𝑢)

𝑌𝑢
                                                                      (5.7) 

and for the downstream position 

𝑝𝑑 = 𝐴𝑢𝑒
−𝑗𝑘0𝑙𝑢 + 𝐵𝑢𝑒

+𝑗𝑘0𝑙𝑢 

= (𝐴𝑢 + 𝐵𝑢)𝑐𝑜𝑠(𝑘0𝑙𝑢) − 𝑗(𝐴𝑢 − 𝐵𝑢)𝑠𝑖𝑛(𝑘0𝑙𝑢) 

= 𝑝𝑢𝑐𝑜𝑠(𝑘0𝑙𝑢) − 𝑗𝑌𝑢𝑣𝑢𝑠𝑖𝑛(𝑘0𝑙𝑢)                                                 (5.8) 

𝑣𝑑 =
1

𝑌𝑢
(𝐴𝑢𝑒

−𝑗𝑘0𝑙𝑢 − 𝐵𝑢𝑒
+𝑗𝑘0𝑙𝑢) 

=
(𝐴𝑢 − 𝐵𝑢)

𝑌𝑢
𝑐𝑜𝑠(𝑘0𝑙𝑢) − 𝑗

(𝐴𝑢 + 𝐵𝑢)

𝑌𝑢
𝑠𝑖𝑛(𝑘0𝑙𝑢) 

= 𝑣𝑢𝑐𝑜𝑠(𝑘0𝑙𝑢) − 𝑗
𝑝𝑢

𝑌𝑢
𝑠𝑖𝑛(𝑘0𝑙𝑢)                                                    (5.9) 
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𝑙𝑢 being the length of the uniform tube. In this way, the downstream state vector may be expressed in a 

matrix form, namely 

[𝑝𝑑
𝑣𝑑
] = [

𝑐𝑜𝑠(𝑘0𝑙𝑢) −𝑗𝑌𝑢𝑠𝑖𝑛(𝑘0𝑙𝑢)

−
𝑗

𝑌𝑢
𝑠𝑖𝑛(𝑘0𝑙𝑢) 𝑐𝑜𝑠(𝑘0𝑙𝑢)

] [𝑝𝑢
𝑣𝑢
]                                          (5.10) 

or, by inverting the above matrix relation 

[𝑝𝑢
𝑣𝑢
] = [

𝑐𝑜𝑠(𝑘0𝑙𝑢) 𝑗𝑌𝑢𝑠𝑖𝑛(𝑘0𝑙𝑢)
𝑗

𝑌𝑢
𝑠𝑖𝑛(𝑘0𝑙𝑢) 𝑐𝑜𝑠(𝑘0𝑙𝑢)

] [𝑝𝑑
𝑣𝑑
]                                             (5.11) 

For the in-line lumped element of Figure 5.3 c), it is possible to write for the upstream and 

downstream position 

𝑝𝑢 − 𝑝𝑑 = 𝑍𝑢𝑣𝑢                                                                 (5.12) 

𝑣𝑢 = 𝑣𝑑                                                                     (5.11) 

and therefore the desired matrix form is 

[𝑝𝑢
𝑣𝑢
] = [

1 𝑍𝑢
0 1

] [𝑝𝑑
𝑣𝑑
]                                                            (5.13) 

Similarly, for the shunt lumped element of Figure 5.3 b), it is possible to write for the upstream and 

downstream position 

𝑝𝑢 = 𝑝𝑑                                                                         (5.14) 

𝑣𝑢 =
𝑝𝑢

𝑍𝑢
+ 𝑣𝑑                                                                  (5.15) 

and therefore the desired matrix form is 

[𝑝𝑢
𝑣𝑢
] = [

1 0
1
𝑍𝑢
⁄ 1] [

𝑝𝑑
𝑣𝑑
]                                                               (5.16) 

For what concerns the sudden area changes, because, as it has been demonstrated in the chapter 3, 

all the state variables remain unchanged across the discontinuity, the transfer matrix is the unity 

matrix[1]. 

However, these are just simple examples and in general, an acoustic filter composed of n elements 

is represented by the equivalent acoustic circuit depicted in Figure 3.15. The transfer matrix 

representation still holds for the whole filter and the matrix relation may be expresses as 

[
𝑝𝑛+1
𝑣𝑛+1

] = [𝑇𝑛+1][𝑇𝑛]… [𝑇1] [
𝑝0
𝑣0
]                                                  (5.17) 

where the state vector at the termination may be rewritten, considering Figure 5.3 (c, as 

[
𝑝0
𝑣0
] = [

1 𝑍0
0 1

] [
0
𝑣0
]                                                               (5.18) 

while the [Tn+1] matrix is the analogous of eq. (5.16). 
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As already mentioned, the Transmission Loss of an acoustic filter may also be evaluated thanks to 

the knowledge of its the overall transfer matrix. In fact, considering Figure 3.18, the Transfer 

Matrix relation between the upstream and downstream position is47 

[𝑝𝑛
𝑣𝑛
] = [

𝑇11 𝑇12
𝑇21 𝑇22

] [𝑝1
𝑣1
]                                                           (5.19) 

and, once again, recalling the standing wave relations 

𝑝𝑛 = 𝐴𝑛 + 𝐵𝑛                                                                     (5.20) 

𝑣𝑛 =
(𝐴𝑛−𝐵𝑛)

𝑌𝑛
                                                                       (5.21) 

𝑝1 = 𝐴1     ,       𝐵1 = 0 

𝑣1 =
𝐴1

𝑌1
                                                                         (5.22) 

Therefore 

𝐴𝑛 =
𝑝𝑛 + 𝑌𝑛𝑣𝑛

2
 

=
[(𝑇11𝐴1+𝑇12

𝐴1
𝑌1
)+𝑌𝑛(𝑇21𝐴1+𝑇22

𝐴1
𝑌1
)]

2
                               (5.23) 

Hence the expression for the Transmission Loss reduces to[1] 

𝑇𝐿 = 20𝐿𝑜𝑔 {(
𝑌1

𝑌𝑛
)

1

2
[𝑇11+

𝑇12
𝑌1
+𝑌𝑛(𝑇21+

𝑇22
𝑌1
)]

2
}                                           (5.24) 

where the same diameter is sometime supposed for both the inlet and outlet pipe. The above 

expression is the basis of the probably most used experimental technique for the Transmission Loss 

measurement, through the use of the so-called Kundt’s tube, which is briefly described in the 

following. 

5.1.1 Experimental evaluation of the TL: the impedance tube technology 

The impedance tube technology, which makes use of the so-called standing wave tube, is a 

particular experimental technique, thanks to which it is possible to measure the Transmission Loss 

and other acoustical quantities of materials (and more in general acoustic filters) placed inside 

it[10][1]. The measurement layout is depicted in Figure 5.4. 

                                                           
47 The four pole parameters have been labelled with 𝑇, in order to not be confused with the amplitude of the forward 

moving wave in the standing wave field. 
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Figure 5.4  – Schematization of the measurement layout related to the standing wave tube. 

As schematically described in the above figure, on the left-hand side of the tube, a loudspeaker is 

placed which generate the sound field whilst, in the middle of the tube the test sample is placed. At 

the end of the tube there is a rigid or another type of termination, depending on what is the goal of 

the measure. Besides, two couples of microphones are wall-placed at opposite locations with 

respect to the test sample. This wall-location represents the main limitation of such instrument. In 

fact, because of that, the measurements are valid only in the plane wave region for which the sound 

pressure is uniform with respect to the cross section of the tube. So, the highest frequency of the 

analysis depends on the diameter on the tube whilst, the lowest frequency depends upon the sound 

source. In order to understand how the measurements are made, it is necessary to recall that, from 

the solution of the classical wave equation, the sound field at any point upstream and downstream 

the test sample may be expressed in terms of forward and back moving waves as 

𝑝𝑢
′ (𝑥, 𝑡) = 𝐴𝑒−𝑗𝑘0𝑥 + 𝐵𝑒𝑗𝑘0𝑥                                                       (5.25) 

𝑝𝑑
′ (𝑥, 𝑡) = 𝐶𝑒−𝑗𝑘0𝑥 + 𝐷𝑒𝑗𝑘0𝑥                                                       (5.26) 

where the exponential time factor has been embedded within the complex amplitudes A, B, C and 

D. Thus, the four sound pressures, which are measured at the four microphone locations, may be 

expressed as 

𝑝1
′ (𝑥1, 𝑡) = 𝐴𝑒

−𝑗𝑘0𝑥1 + 𝐵𝑒𝑗𝑘0𝑥1                                                     (5.27) 

𝑝2
′ (𝑥2, 𝑡) = 𝐴𝑒

−𝑗𝑘0𝑥2 + 𝐵𝑒𝑗𝑘0𝑥2                                                     (5.28) 

𝑝3
′ (𝑥3, 𝑡) = 𝐶𝑒

−𝑗𝑘0𝑥3 + 𝐷𝑒𝑗𝑘0𝑥3                                                     (5.29) 

𝑝4
′ (𝑥4, 𝑡) = 𝐶𝑒

−𝑗𝑘0𝑥4 + 𝐷𝑒𝑗𝑘0𝑥4                                                     (5.30) 

Therefore, after some algebra, it is possible to express the four constants in terms of the measured 

sound pressures as follows 

𝐴 =
𝑗(𝑝1

′𝑒𝑗𝑘0𝑥2−𝑝2
′𝑒𝑗𝑘0𝑥1)

2𝑠𝑖𝑛[𝑘(𝑥1−𝑥2)]
                                                                (5.31) 

𝐵 =
𝑗(𝑝2

′𝑒−𝑗𝑘0𝑥1−𝑝1
′𝑒−𝑗𝑘0𝑥2)

2𝑠𝑖𝑛[𝑘(𝑥1−𝑥2)]
                                                             (5.32) 
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𝐶 =
𝑗(𝑝3

′𝑒𝑗𝑘0𝑥4−𝑝4
′𝑒𝑗𝑘0𝑥3)

2𝑠𝑖𝑛[𝑘(𝑥3−𝑥4)]
                                                                (5.33) 

𝐷 =
𝑗(𝑝4

′𝑒−𝑗𝑘0𝑥3−𝑝3
′𝑒−𝑗𝑘0𝑥4)

2𝑠𝑖𝑛[𝑘(𝑥3−𝑥4)]
                                                            (5.34) 

Once the complex coefficients have been calculated, they could be used to determine directly the 

Transmission Loss based on eq. (3.82),  providing that 𝐷 = 0 (namely 𝑍1 is such that the 

termination is anechoic). However, experimentally it is not possible to realize a perfect anechoic 

termination, so that even small reflections may alter the ratio 𝐴/𝐶. Therefore, the more correct way 

to proceed is to calculate the TL based on the knowledge of Transfer Matrix of the test sample, 

which is its intrinsic characteristic and not of the measurement environment. When the Transfer 

Matrix is known, it is possible to calculate the TL, whatever the termination of the tube is, 

following the procedure described below. 

5.1.1.1 Transfer Matrix formulation: the two-load method 

The complex coefficients A, B, C and D may be calculated once the sound pressures at the four 

microphone locations are measured, as shown by eq. (5.31) to (5.34). This allows the possibility of 

measure also the sound pressure and the particle velocity at the two faces of the test sample, as 

shown by Figure 5.4. In fact, these may be expressed in terms of standing wave components as 

𝑝′(0, 𝑡) = 𝐴 + 𝐵                                                                 (5.35) 

𝑢′(0, 𝑡) =
𝐴−𝐵

𝜌0𝑐
                                                                     (5.36) 

𝑝′(𝑠, 𝑡) = 𝐶𝑒−𝑗𝑘0𝑠 + 𝐷𝑒𝑗𝑘0𝑠                                              (5.37) 

𝑢′(𝑠, 𝑡) =
𝐶𝑒−𝑗𝑘0𝑠−𝐷𝑒𝑗𝑘0𝑠

𝜌0𝑐
                                                     (5.38) 

where 𝜌0𝑐 is the characteristic impedance of the air inside the standing wave tube. Of course, as 

already explained above, these four quantities are linked together by the Transfer Matrix of the test 

sample by the well-known matrix relation 

[𝑝
𝑢
]
𝑥=0

= [
𝑇11 𝑇12
𝑇21 𝑇22

] [𝑝
𝑢
]
𝑥=𝑠

                                                        (5.39) 

where reference has been done again to Figure 5.4. However, in order to calculate the four pole 

parameters, the only measurement of the sound pressure at the four microphone locations is not 

sufficient. In fact, eq. (5.39) represents a system of two linear equations in the four unknowns 𝑇11, 

𝑇12, 𝑇21 and 𝑇22. Thus, the other two equations, necessary to solve the system (5.39), may be found 

by making another measurement with another impedance terminating the measurement tube. In this 

way, after the two measurements, the four-pole parameters may be expressed, after some simple 

algebra, as 

[
𝑇11 𝑇12
𝑇21 𝑇22

] =
1

𝐺
   [
(𝑝1|𝑥=0 𝑢2|𝑥=𝑠  − 𝑝2|𝑥=0 𝑢1|𝑥=𝑠) (𝑝2|𝑥=0 𝑝1|𝑥=𝑠  −  𝑝1|𝑥=0 𝑝2|𝑥=𝑠)

(𝑢1|𝑥=0 𝑢2|𝑥=𝑠  − 𝑢2|𝑥=0 𝑢1|𝑥=𝑠) ( 𝑝1|𝑥=𝑠 𝑢2|𝑥=0  −  𝑝2|𝑥=𝑠 𝑢1|𝑥=0)
]      (5.40) 

where 
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𝐺 = 𝑝1|𝑥=𝑠 𝑢2|𝑥=𝑠  − 𝑝2|𝑥=𝑠 𝑢1|𝑥=𝑠                                             (5.41) 

In the above equations, 𝑝𝑖|𝑥=𝑗 and 𝑢𝑖|𝑥=𝑗 represents sound pressure and particle velocity during the 

experiment 𝑖 at location 𝑗. Once the elements of the Transfer Matrix are known, considering an 

anechoic termination, the Transmission Loss of the test sample may be found by using the 

following expression 

𝑇𝐿 = 20𝐿𝑜𝑔 {
[𝑇11+

𝑇12
𝜌0𝑐
+𝜌0𝑐(𝑇21+

𝑇22
𝜌0𝑐
)]

2𝑒𝑗𝑘0𝑠
}                                                  (5.42) 

In the following paragraph, the experimental Transmission Loss analyses, which have relied on the 

use of the above described Transfer Matrix method, will be described. 

5.2 Experimental procedure 

As already mentioned before, the system under investigation is an intake system of a commercial 

VVA internal combustion engine, and it is reported in Figure 5.5, where it is within the laboratory 

at the Istituto Motori-CNR of Naples. 

 

Figure 5.5 - Intake system of the considered internal combustion engine at the Istituto Motori-CNR. 

The experimental tests have relied on the above described transfer matrix theory and on the use of 

the standing wave tube. More precisely, at the University of Florence an acoustic custom test rig for 

Transmission Loss analysis has been realized. Such test rig is designed with two measurement 

sections, upstream and downstream the system under investigation, as it is depicted in Figure 5.6. 

Each section is made up of a straight duct, having length and diameter equal to 0.700 𝑚 and 0.04 𝑚 

respectively. Along the duct, four microphones are placed at specific relative distance between each 

other. At the inlet of the first measurement section, an acoustic source, constituted of four speakers 

(Monacor ® SPH-135C), generates an acoustic pressure field at the minimum frequency of 40 𝐻𝑧, 

this lower limit being imposed by the adopted speakers. As regards the upper limit for which plane 

wave propagation is ensured, it depends from the geometry of the duct and its first cut-off 

frequency, as it has been previously highlighted in chapter 2. So, according to eq. (2.56) the upper 

limit is 

𝑓𝑐𝑢𝑡−𝑜𝑓𝑓 =
1,84 𝑎0

𝜋 𝐷0
≅ 4978 𝐻𝑧                                                             (5.43) 

It is important to highlight that the main necessity for plane wave propagation is due to the fact that 

the acoustic measurements are made at the duct wall. The intensity of incident wave on the test case 
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has been set to 120 𝑑𝐵 using a wave form generator (Agilent ® 33210A) and an amplifier 

(Monacor ® PA180). Downstream to the second measurement section, an acoustic termination, 

designed following the ISO 5136:2003[10] guidelines, sets the acoustic boundary condition. Using 

the multi microphones technique[7], it is possible to evaluate the incident and reflect wave on each 

port of the intake system. The wave decomposition algorithm makes use the pressure signals 

measured by the four wall-mounted microphones (GRAS ¼”), at each measurement section. For 

sake of brevity, a deep description of the test rig and of its software is omitted, since it may be 

found in reference[6]. 

 

 

Figure 5.6 - Custom test bench (top) for Transmission Loss analysis and its schematization (down). 

Before proceeding with the description of the experimental outcomes, it is necessary to highlight 

the complexity of the air induction system assembling procedure on the test rig. In fact, as it is 

highlighted in Figure 5.7, both the outlet and inlet duct have not a straight constant cross section 

shape, but both are complex curved and with a variable diameter. Then, considering that the inlet 

and outlet diameters are different with respect to those of the measurement sections of the test rig, it 

has been necessary to make two short custom connections which are visible in the figures below. 

Such additional ducts are made of steel and have been located inside the modified inlet and outlet 

duct, as it is highlighted in red within the above mentioned figure.  
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Figure 5.7 - Outlet tube (engine side) a) and inlet tube (ambient side) b) of the air induction system. 

The experimental tests allow the evaluation of the TL of the whole system under investigation. 

More in detail, the acoustic properties of the intake have been evaluated between the inlet section 

and the outlet section both highlighted in yellow in Figure 5.7. 

Thus, the Transmission Loss analysis has been carried out within the range [40;  2000] 𝐻𝑧 with a 

frequency step equal to 20 𝐻𝑧. All the tests are performed at ambient condition without mean flow, 

as reported in table 3. 

Ambient Temperature [K] 288 

Ambient Pressure [Pa] 101000 

Relative Humidity [-] 50% 

Table 3- operating conditions during the Transmission Loss experiments. 

Basically, the acoustic performance of the test case has been investigated in three conditions. The 

first two tests have been executed with and without the presence of the air filter respectively. The 

third analysis has been made in order to assess the influence of the structure flexibility on the 

Transmission Loss. In this regards, in order to not enable acoustic induced structural vibrations, the 

system has been made infinitely rigid by putting it in a box fully filled with sand, as depicted in 

Figure 5.8. 

 
Figure 5.8 - The intake system is placed in a box filled with sand in order to ensure no structural vibration. 
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In fact, with this particular experimental layout the structure of the system should not be allowed to 

vibrate under the action of the acoustic field inside it. In Figure 5.9, the effects on the TL profile of 

the structural participation are depicted. Here, the black line refers to the rigid wall configuration, 

while the red one refers to the flexible wall configuration. 

 

Figure 5.9 - Experimental Transmission Loss comparison, with and without structural participation. 

The first comment which has to be done is that the Transmission Loss of the intake system has a 

quite smooth profile except for the presence of some peaks. However, it is impossible to understand 

why the TL profile appears in such a trend as that depicted above, meaning that it is not possible to 

know, for example, if a peak is due to a cavity mode or a resonator. Such information may only be 

available with the aim of a numerical model, as it will be shown in the next section. Secondly, from 

the comparison of the two tests the effect of the structural participation on the acoustic attenuation 

characteristic is evident. More precisely, the fluid-structure interaction seems to take place only in 

correspondence of the peak of the TL at 380 𝐻𝑧, while at the other frequencies it does not have a 

substantial effect. However, it is important to highlight that even if an experimental analysis of this 

type is able to reveal any particular difference in the Transmission Loss profile due to structural 

modes, it is impossible to point out which of the structural resonances is responsible for that peak in 

the TL profile. 

As regards the third experiment, the air filter inside the intake system is reported in Figure 5.10. As 

it is possible to appreciate in figure below, it is a rectangular shaped geometry made of a support 

(orange) and the air filter itself. This latter consists of several paper sheets arranged in a way such 

that 94 plies are present along the longest dimension. 
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Figure 5.10 – Air filter inside the air induction system. 

The Transmission Loss assessment test has been executed without taking into account the structural 

participation, obviously in the same way of the no-filter condition (see Figure 5.8), and the results 

are depicted in Figure 5.11. Here the red curve refers to the presence of the air filter during the 

experiment, whilst the black one refers to the no-filter condition. 

 

Figure 5.11 – Experimental Transmission Loss comparison, with and without the air filter inside the system. 

As it is possible to point out from the comparison within the above picture, the maximum benefit on 

the Transmission Loss is achieved at high frequencies. This is not surprising because of  the sound 

attenuation mechanism the air filter relies on. In fact, such further component is made of porous 

material which has an high absorption coefficient whose effect is due to the dissipation of acoustic 
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energy into heat. The higher the frequency the higher the friction effect between air particles within 

the porous material. Another effect to appreciate, due to the sound attenuation achieved when the 

filter is located inside the air induction system, is the smoothening effect achieved by the presence 

of the filter. 

5.3 Numerical procedure 

In this section, the numerical analyses will be in depth discussed. In particular, the procedures 

aimed to the finite elements model creation, and the corresponding results are presented, following 

the schematization on the right-hand side of the flow chart depicted in Figure 5.1. 

5.3.1 CAD preparation and FE models creation 

In general, and as Figure 5.1 suggests, the starting point of whatever numerical analysis is 

represented by the availability of the CAD model of the system under investigation, since it is a 

mandatory crucial information for the preparation of the finite element discretization. In Figure 

5.12, the structural CAD model corresponding to the studied system (see Figure 5.5) is reported. 

Here, it is possible to recognize both the original inlet and the outlet sections with their original 

dimensions, together with the components the system consists of. 

 

Figure 5.12 - Structural CAD model of the studied system: a) top and b) down view. 

In particular, by the examination of the above figures, it is evident that the global system is 

composed by five subsystems: inlet (yellow), filter box (white), airbox (red), outlet (orange), cover 

(black). Moreover, as it is possible to appreciate be the examination of Figure 5.5 b), behind the 

original device some foam material (green, white and blue reported in Figure 5.12 b)) is attached, 

which is likely useful in order to damp the mechanical vibrations transmitted by the engine head 

and to prevent extremely high heating of the intake system. In fact, excessive heating of the intake 

system must be avoided as the higher the temperature of the air the lower the volumetric efficiency 

of the engine. In figure below, a particular view of the air induction system is shown, in which it is 

possible to appreciate the CAD model of the air filter. 
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Figure 5.13 - Structural CAD model of the studied system: a) top and b) down view. 

As it has been already mentioned, it consists of a paper sheet arranged in a way such that several 

plies are formed in the direction orthogonal to the flow propagation within the filter box. Additional 

views are reported in figure below. 

 

Figure 5.14 - Detailed view of the structural CAD model of the studied system: a) down and b) top. 

As it is possible to appreciate from Figure 5.14, the assembly is quite complex as there are a lot of 

geometrical details. In particular, considering the detailed view of the filter box depicted in Figure 

5.15, there are a plenty of small features which need to be removed in order to proceed with the 

creation of the finite element mesh. As matter of fact, most of the times, the preparation of the CAD 

model for FE simulations represents a complex, time consuming task but necessary for the sake of 

successful ending of the simulation.  

 

Figure 5.15 - Example of small surfaces which are present on the CAD representation of the filter box. 

In fact, a CAD representation is often composed of a large number of small faces, some of which 

may be narrow (also called slivers) or short edges that are much smaller than the desired FE 
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element size (to be set up for following mesh generation). Consequently, these faces and edges 

represent only topological information which in principle are redundant for the meshing process. 

Such inconsistencies often cause either poorly-shaped elements and zones in which the mesh is 

locally over-densified. As consequence, these inconsistencies not only slow down the solver 

(because of a useless, large amount of elements) but also produce poor or erroneous simulation 

results, generally because of failing in the geometry checks of the solver, for some highly distorted 

element. For these reasons, the first step on the way of the finite element creation has been 

represented by the elimination of all such geometrical features that do not influence the acoustic 

response of the whole system, but only the computational time and, in some cases, the goodness of 

the results. 

Once the structural CAD model has been cleaned, it has been necessary to reproduce the acoustic 

interior domain represented by the air volume embedded inside the structure. The results of this 

further step is represented by the additional acoustic CAD model depicted in Figure 5.16. 

 

Figure 5.16 - Original acoustic CAD model. 

However, before proceeding with the finite element model creation, both inlet and outlet tubes have 

been modified in order to reproduce the experimental layout. These modification, applied on both 

structural and acoustic CAD model, are depicted in Figure 5.17.  
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Figure 5.17 - Modified structural CAD model a) and the corresponding acoustic one b). 

A brief summary about the building-up procedures for the numerical model is below reported, with 

regards to three different FE analyses which have been conducted by using the commercial software 

Actran release 15.1, powered by Free Field Technology. More precisely, in order to reproduce the 

experimental Transmission Loss assessment, the following models have been created: 

 Rigid wall assumption without the presence of the air intake filter 

 Rigid wall assumption with the presence of the air intake filter 

 Flexible wall assumption without the presence of the air intake filter 

 

5.3.1.1 Numeric purely acoustic models 

Once the CAD model of the acoustic domain has been realized, the discretization process takes 

place. In particular, the mesh generation phase has relied on the use of a commercial software. As 

already mentioned above, finite element codes, which are used for solving acoustic problems, 

generally solve the frequency domain version of the wave equation. In this regards, for acoustic FE 

analyses, according to the rule of thumb mentioned in chapter 4, it is generally recommended that 

the maximum element size does not exceed the lowest wavelength (highest frequency) of interest 

divided by six, namely 

𝐸𝑠𝑖𝑧𝑒 =
𝜆

6
                                                                  (5.44) 

Such need is required by the fact that otherwise there would be a poor spatial resolution for 

obtaining reliable results at the maximum frequency of interest. This is schematically depicted in 

Figure 5.18, where two types of finite element discretizations have been schematized in 2D 

symmetry. 
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Figure 5.18 - Schematization of a) fine and b) coarse finite element model discretization. 

More precisely, discretization ensuring almost 8 elements per wavelength and almost 3 elements per 

wavelength are shown in Figure 5.18 a) and b) respectively. Thus, as it is possible to appreciate by 

the examination of the above figures, considering a fixed frequency, the higher the element size the 

lower the accuracy in catching the wave propagation in the horizontal direction. Following such 

fundamental guideline, the cavity mesh has been created and it is reported in Figure 5.19. 

 

Figure 5.19 - Acoustic mesh of the modified acoustic CAD model. 

It is constituted by 84286 nodes and 51844 of solid elements (Tetra 10-noded), allowing acoustic 

analyses until 5000 𝐻𝑧 considering a spatial resolution of six points per wavelength. From a 

modelling point of view, in order to simulate the presence of an arbitrary acoustic source at the 

outlet section, a white noise signal, represented by a constant unit amplitude of sound pressure, has 

been imposed, whilst a non-reflecting boundary condition has been imposed at the inlet section. 

More precisely, among the available boundary conditions for simulating incident pressure fields, in 

order to be able to evaluate the Transmission Loss, a semi-infinite duct has been used in which unit 

amplitude (equally spread in the frequency domain) plane waves propagating towards the system 

has been imposed (waves eventually travelling in the opposite direction are damped)[5]. In this way 

the computed power entering the system is only due to the contribution of the imposed wave. Such 

modelling procedure is schematized in figure below. 
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Fig. 5.20 - Schematization of the imposed boundary conditions for Transmission Loss. 

The node at which such boundary conditions have been applied are depicted in red (acoustic source) 

and green (anechoic termination) in Figure 5.21.  

 

Fig. 5.21 - Boundary condition for the purely acoustic model. 

Besides, this simulation does not take into account the structural-acoustic coupling, meaning that 

the structure is supposed to be infinitely rigid. From a practical point of view, this means that the 

particle velocity, and so (thanks to the momentum balance) the normal pressure gradient, at the wall 

is zero. Thus, apart from the above mentioned boundary conditions, the further following condition 

has been implicitly imposed  

 

0












walln

p
                                                                     (5.45) 

 

which is known as Neumann BC[3]. The numerical analysis has been carried out within the range 

[20;  2000] 𝐻𝑧 with a frequency step equal to 20 𝐻𝑧. The corresponding output in terms of 

Transmission Loss is depicted in Figure 5.22. 
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Figure 5.22 - Transmission Loss results in rigid wall configuration. 

As it is possible to appreciate from Figure 5.22, the Transmission Loss is quite smooth apart from 

the presence of some sharp peaks at distinct frequency location. As it has been already pointed out, 

for very complex geometries as the air induction system, such trend cannot be explained with an 

experimental analysis. Such circumstance highlights the importance of building up and validating a 

3D finite element model, like the one descried above, by means of which it is quite easy to identify 

why the system acoustically acts the way it is depicted above. In particular, a detailed explanation 

of the TL trend depicted in Figure 5.22 will be given in chapter 8. 

Almost the same model has been realized when accounting for the presence of the air filter, except 

from the need of modelling the sound propagation through porous media. The air intake filter is 

represented by a series of paper sheets arranged as indicated by Figure 5.23 a). It is effectively a 

porous medium with strongly anisotropic characteristics. 

 

Fig. 5.23 - Air intake filter a) and corresponding CAD model b). 

As depicted within the above figure, the filter is placed inside the system with a gummy-like 

support which has been not modelled in this thesis, on the assumption that its influence on sound 

propagation is negligible. Thus, from the merely finite element discretization point of view, the 

further step is represented by the splitting of the acoustic volume according with the propagation in 

the various acoustic domains. In particular, in this case the propagation of sound takes place in a 

fluid domain and in a porous medium, as depicted in Figure 5.24. 
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Fig. 5.24 – Acoustic CAD model accounting for the presence of the air filter. 

From a numerical point of view, a further complication exists which is represented by the necessity 

of modelling the sound propagation through such a new medium. A lot of work has been done 

during the recent history on the way of acoustically modelling porous materials. The available 

models are divided into micro-models and fluid equivalent models. To the first category belong all 

that models, e.g. Biot, Allard-Johnson etc.[15], which need as input parameters some characteristics 

of the pore itself like, tortuosity, viscous and thermal lengths etc.. However, due to the 

unavailability of such information corresponding to the air filter, the Delaney-Bazley model has 

been used. In fact, as it has been briefly explained at the end of chapter 3, it only needs one input 

parameter, namely the flow resistivity, to model the sound propagation considering the filter as an 

equivalent fluid system (and isotropic as such). The corresponding Actran model with the imposed 

boundary conditions is depicted in Figure 5.25. The acoustic mesh consists of 54440 elements 

(Tetra 10-noded) and 93882 nodes, allowing acoustic analyses until 5000 𝐻𝑧, considering a spatial 

resolution of six points per wavelength. 

 

Fig. 5.25 - Boundary condition for the purely acoustic model with the air filter modelled. 

Again, in the above picture, the elements on which the non-reflecting boundary condition has been 

applied are depicted in green whilst those simulating the presence of a sound source are depicted in 

red; the elements on which the Delaney-Bazley model has been used are depicted in purple. 

Unfortunately, no flow resistivity measurements have been done so that various analyses have been 

executed by changing the value of the flow resistivity in the porous region, in order to find the best 

match with the experimental data. In table 4, the tested values are reported with the corresponding 

suggested range of validity, according to eq. (3.126). 

Flow Resistivity [𝑁𝑠 𝑚4⁄ ] Suggested range of validity [𝐻𝑧] 
1000 [10; 1000] 
2000 [20; 2000] 
3500 [35; 3000] 

Table 4 - input parameter for the Delaney-Bazley model. 
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However, even in this case, to the aim of comparing both experimental and numerical outputs, the 

numerical analysis has been carried out within the range [20;  2000] 𝐻𝑧, with a frequency step 

equal to 20 𝐻𝑧. The outcomes in terms of Transmission Loss are below depicted in Figure 5.26, for 

the three flow resistivity values of above table. 

 

Fig. 5.26 - Transmission Loss results in rigid wall configuration and with the air filter modelled. 

Thanks to the comparison of Figure 5.26, it is confirmed the fact that the higher the flow resistivity, 

imposed in the porous region, the higher the sound attenuation which is achieved by the whole 

system[11]. The final comparison of experimental and numerical data for model validation purpose, 

is reported at the end of this chapter. 

5.3.1.2 Numeric structural-acoustic model 

Although a rigid-wall analysis is able to correctly give some important information about the 

acoustic behavior of the system under investigation, sometimes the presence of a flexible structure 

may play an important role in determining the acoustic response as well. Considering for example a 

flexible structure filled with an acoustic medium in which acoustic waves propagate, it might 

happen that the acoustic field turns out to be as a not negligible load on the solid boundaries, 

possibly resulting in quite strong structural vibrations. This happens especially when the spectral 

components of the acoustic phenomenon excite the natural frequencies of the structure. Similarly, if 

an acoustic fluid is in contact with a vibrating thin-walled structure, the vibrations of the wall may 

significantly modify the sound field inside and outside the system. Thus, when it is necessary to 

take into account the coupling between acoustic medium and surrounding structure, a Fluid-

Structure Interaction (FSI) Analysis must be performed and the whole system must be analyzed as a 

coupled structural-acoustic problem[14][13][14]. For Fluid-Structure Interaction problems related 

to an arbitrarily shaped structure, a numerical solution technique must be used. Typically, in a 

coupled acoustic-structural analysis, two different FE models are needed, one for each subsystem 

such as the acoustic domain and structural one. It follows that the further step, with respect to the 

analysis described in the previous section, has been represented by the modal analysis of the intake 

system’s envelope, aimed to extract the dynamic characteristics of the structure such as natural 

frequencies and corresponding mode shapes. From an algebraic point of view, once the FE model 

has been assembled specifying material properties and constraint conditions (as per experimental 
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layout), the modal analysis for slightly damped structure is carried out by solving the set of 

equations representing the free vibrations of the system[16][7] 

         0






 

XKXM                                                                     (5.46) 

where [M] is the assembled mass matrix and [K] is the assembled stiffness matrix of the system. This 

is equivalent to solve the following eigenvalue problem 

                02  MK                                                                      (5.47) 

 

which allows to first extract the eigenvalues   (natural frequencies) and then  the eigenvectors 

(natural modes). Such information represents an additional boundary condition in order to perform a 

fluid-structure interaction analysis, as it is schematically indicated by the flow chart of Figure 5.27. 

 

Figure 5.27 - Flow chart schematization of fluid-structure interaction analysis. 

Consequently, the same procedure, useful for the purely acoustic finite element model creation, has 

been used to build up the structural model. In this case however, the correct element size has to be 

chosen on the basis of consideration about the nature of waves propagating in solid structures. 

These are transverse shear and bending waves for which different speeds of propagation (and so 

wavelength) have to be considered. More precisely, considering the wave propagation speeds in 

bars, they may be expressed as[14] 

𝑎𝑠 = √
𝐸

2𝜌(1+𝜈)
                                                                   (5.48) 

𝑎𝑏 = √𝜔 (
𝐸𝐼

𝑚
)
1 4⁄

                                                               (5.49) 

where 𝐸 is the young modulus, 𝐼 is the moment of inertia of the cross section with respect to the 

neutral axis of the considered solid, 𝜌 is the mass density, 𝜈 is the Poisson coefficient and 𝑚 is the 

mass per unit of length of the solid (e.g. a bar). It is easy to see that the smaller between the two 

speeds of propagation is that related to flexural waves and consequently, by the examination of eq. 

(2.1), the shorter wavelength is the flexural one. It follows that this latter must be taken into account 
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when calculating the element size for the structural mesh. This latter is depicted in figure below, 

being constituted by about 1080337 nodes and of 584722 elements (CTETRA-10), considering a 

spatial resolution of eight elements per wavelength. Here, the various components such as inlet, 

filter box, airbox, cover and outlet have been indicated in blue, grey, red, green and yellow 

respectively. 

 

Figure 5.28 - Structural mesh of all the components the intake system is made of. 

Then, as already mentioned, the preliminary step in the preparation of the coupled structural-

acoustic model is represented by the structural modal analysis of the assembly. Such intermediate 

analysis has been performed with the help of dedicated software used for structural FE analyses. 

Here, as schematically depicted in the flow chart of Figure 5.27, the boundary conditions are 

essentially represented by material properties, constraint conditions and, as the system under 

investigation is made of several parts, coupling conditions among each components. 

Young Modulus [𝐺𝑃𝑎] Poisson ratio Density [𝐾𝑔 𝑚3⁄ ] 
1,5E+9 0,43 900 

Table 5 - Material properties for the structural model. 

Hence, the model has been realize by using a glass-fibre reinforced polyamide material48 (see table 

5  for the properties) with the proper fixed constraints, in order to reproduce the same experimental 

layout, as it is possible to appreciate from the figure below. 

                                                           
48 Nylon PA 6.6. 
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Fig. 5.29 - Constraint conditions for the structural model. 

The structural modal analysis has been conducted in the range [0; 4000] Hz49, in order to account 

for the influence of modes outside the range of interest[14][14], and 768 normal modes have been 

found. However, most of them affect local areas of the cover, rather than the actual structure 

bounding the fluid system. As an example, consider the displacement of the system corresponding 

to the natural modes depicted in Figure 5.30. Here, within the color map, the purple indicates no 

motion, whilst the red indicates high amplitudes. 

 

Figure 5.30 – Structural natural modes at 287 Hz a) and 1894 Hz b). 

Consequently, it is expected that the flexibility of the structure should not significantly influence the 

acoustic behavior of the system under investigation. Once the results of the purely structural model, 

in terms of natural frequencies and corresponding mode shapes, are available, it is possible to feed 

such information as additional boundary condition for the coupled model, which is depicted in 

Figure 5.31. 

                                                           
49 A rule of thumb states that, in order to capture the dynamic behavior of a system within a certain frequency range, all 

the natural modes having natural frequency below twice the maximum frequency of interest must be considered[13]. 
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Figure 5.31 - Boundary condition for the coupled structural-acoustic model. 

More precisely, in the above picture, the elements on which both the non-reflecting and sound 

source boundary condition have been applied are again depicted in green and red respectively, 

whilst the acoustic and structural elements have been indicated in yellow and blue respectively. 

Even in this case, the Transmission Loss analysis has been carried out within the range 

[20;  2000] 𝐻𝑧, with a frequency step equal to 20 𝐻z. The corresponding results are depicted in 

Figure 5.32, where a comparison with the rigid wall analysis (without the air filter) has been made. 

Here, the black and red line refer to rigid and flexible structure configuration respectively. 

 

Figure 5.32 - Comparison of the Transmission Loss analysis in both rigid and flexible wall configuration. 

As it is possible to appreciate by the examination of the above figure, the Transmission Loss profile 

remains almost unchanged when accounting for the flexibility of the intake system’ structure. The 

only difference between the two curves relies in the two peaks occurring at 380 and 920 𝐻𝑧. This is 

probably due to the presence of two structural modes at such frequencies which are reported in 

figure below. 
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Figure 5.33 – Structural natural modes at 380 Hz a) and 920 Hz b). 

Although it is possible to conclude that, in this particular case, the structure does not affect the 

acoustic response of the system, the possibility of identifying structural modes causing deviation 

from the rigid wall assumption represents a very important information available thanks to 

numerical simulations. In fact, with the aim of only experimental Transmission Loss analysis, it 

would have not been possible to identify the structural modes affecting the response of the system at 

the two above mentioned frequencies. 

5.4 Experimental vs Numerical comparison: model validation 

Once data from both experimental and numerical analyses have been produced, it has been possible 

to proceed with various comparisons in order to establish the goodness of the above described 

Finite Element models. In general, the model validation phase is very crucial within an optimization 

procedure. In fact, once the FE model has been validated, it is reasonable to assume that the effect 

of whatever change, which is realized on the model, would be the same if such change is actually 

realized on the real system. On this idea, in this study a first model validation phase in terms of 

Transmission Loss has been made. The first comparison is reported in Figure 5.34, where the 

outputs of the rigid wall configurations, in no filter condition, are reported. More precisely, the red 

and the black curves stand for the experimental and numerical outcomes respectively. 

 

Fig. 5.34 - Experimental vs Numerical comparison in rigid wall configuration. 

As it is possible to appreciate from the above figure, a very good comparison has been found 

between the two Transmission Loss trends. In particular, the numerical solution seems to 
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underestimates the experimental result, except in correspondence of the first three peaks located at 

680 𝐻𝑧, 1120𝐻𝑧 and 1400 𝐻𝑧, where the black curve overestimates the red one. However, thanks 

to the global satisfactory agreement, it is possible to explain, for example, the presence of this three 

peaks. In fact, at the end of the FE simulation, when the acoustic pressure has been evaluated at 

each mesh point, it is quite easy to know what the pressure distribution inside the system looks like, 

at each resolved frequency. As an example, in Figure 5.35 the acoustic pressure distribution at 

680 𝐻𝑧 is depicted. 

 

Figure 3.35 - Pressure distribution at 680 Hz. 

The important thing that the above figure reveals is that the peak of sound attenuation achieved by 

the intake system at 680 𝐻𝑧 is due to the cavity highlighted in red which, evidently, acts as an 

Helmholtz resonator. The same kind of explanation holds for the peak located at 1120 𝐻𝑧, for 

which the pressure distribution is depicted in Figure 5.36. Here the resonant cavity is highlighted in 

blue. 

 

Fig. 5.36 - Pressure distribution at 1120 Hz. 

Moreover, as it is possible to appreciate by the examination of Figure 5.34, the above mentioned 

peak occurs slightly shifted with respect to the corresponding peak in the experimental curve. This 

is probably due to a small difference in the volume of the cavity, between the CAD model and the 

actual one, which changes the resonant frequency. Another and more complicated explanation holds 

for the high value of the Transmission Loss reached at 1400 𝐻𝑧. Such behavior could be probably 

explained from the examination of the acoustic modes of the system. In fact, it is well known that, 

as it happens for the structural modal theory, thanks to the modal expansion theorem each pressure 
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distribution inside the system may be represented as a weighted summation of all the acoustic 

modes. As an example, the general expression of the sound field in a duct is obtained by the 

superposition of the modes as expressed by eq. (5.50)[2] 
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where 
np̂  are complex valued amplitudes, 𝑥1 is the direction of propagation, n

k
,1  is the wave 

number in the direction of propagation and n  is the nth natural mode. Consequently, in this case it 

has been necessary to perform a modal analysis of the acoustic volume, in order to evaluate its 

resonant frequencies and the corresponding mode shapes. The modal analysis has been executed 

until 1600 𝐻𝑧 and the resonant frequencies are summarized in Table 6. 

Mode number Resonant frequency [Hz] 

1 300 

2 510 

3 652 

4 715 

5 859 

6 1079 

7 1101 

8 1348 

9 1393 

10 1425 

11 1551 
Table 6- First 11 natural frequency of the acoustic cavity depicted in Figure 5.18. 

With these information available, it has been found that the ninth acoustic mode, occurring at 

1393 𝐻𝑧, is responsible for the peak in sound attenuation at 1400 𝐻𝑧. To the aim of strengthen 

such evidence, the pressure distribution at 1400 𝐻𝑧 and that corresponding to the above mentioned 

acoustic mode are depicted in Figure 5.37. 

 

Figure 5.37 - Acoustic pressure distribution a) acoustic mode at 1393 Hz; (b) system response at 1400 Hz. 

By the examination of the above figure it is clear that the acoustic response of the system is 

dominated by the presence of the cavity mode. Such brief analysis highlights, once again, the 
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importance of a finite element model which perfectly represents the actual system. A more detailed 

analysis of the acoustic behavior of the intake system will be given in chapter 8. 

As regards the comparison in flexible wall condition, both the experimental and numerical 

outcomes are reported in Figure 5.38, where the same color legend of Figure 5.34 has been used. 

 

Figure 5.38 - Experimental vs Numerical comparison in flexible wall configuration. 

Even in this case, the comparison between numerical and experimental data is globally very good 

and quite accurate, meaning that the numerical modelling of the acoustic-structural coupling well 

approximates the real behavior of the whole real system. As already discussed above, the peak at 

380 𝐻𝑧 represents the effect of the structural participation as well as the peak located at 920 𝐻𝑧, 

both mainly involving the filter box area. However, as it follows by the examination of both Figure 

5.10 and 5.32, it can be state that the structural model is very stiff and it, in any way, does not 

substantially alter the acoustic behavior of the system itself. 

In Figure 5.39, the last comparison in rigid wall configuration with the presence of the air filter 

inside the system is reported. Here, the red and black curve represents, again, the experimental and 

numerical outcomes respectively. 

 

Figure 5.39 - Experimental vs Numerical comparison in rigid wall configuration with the presence of the air filter. 
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As already mentioned, the Delaney-Bazley law has been used to model the sound propagation 

through the porous medium constituting the air filter. Among the values of flow resistivity reported 

in table 2, the second one has proved to better match the experimental results. In fact, by the 

examination of Figure 5.39, a good agreement is found between the two curves. More precisely, a 

very good quantitative agreement is found at low frequencies (say until 800 𝐻𝑧), whilst a good 

trend agreement is found at higher frequencies. Such circumstance is not surprising, as the main 

effect of the acoustic absorption takes place at high frequencies and the simplest model available 

has been used, due to lack of information regarding the characteristics of the pores within the paper 

sheet. Nevertheless, it must be highlighted that the quality of the comparison may be certainly 

enhanced once a more sophisticated porous model is used for simulating the air filter. 

In conclusion to this chapter, a very good agreement has been found between experimental and 

numerical results, for all the investigated conditions. Such circumstance allows to consider the finite 

element model of the air induction system as well representing the acoustic behavior, in terms of 

Transmission Loss, of the actual geometry. However, this represents just a preliminary step for 

building up a trustworthy numerical model. In fact, what has been discussed in this chapter is just 

the acoustic characterization study of the stand-alone system. Therefore, further analyses have been 

conducted in order to confirm such good findings when modelling the noise emitted in real working 

conditions, namely when the system is coupled with the engine and the other components. 

However, before proceeding in such further validation process, it has to be taken into account that 

the system has proved to be quite rigid, at least in the investigated constraint conditions (see Figure 

5.29). Consequently, according to the rigid behavior of the structural sub-system which has been 

observed in the TL analysis and considering the fact that, as it is shown in figure below, the system 

is even more constrained when located on the engine block, in the subsequent analyses the structure 

has been assumed as infinitely rigid. 

 

Figure 5.40 – constraint conditions of the air induction system when located on the engine block. 
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Therefore, further analyses have been conducted taking into account only the propagation of sound 

in the acoustic domain by means of the purely acoustic model, thus sensibly decreasing the 

computational time efforts. 
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Chapter 6 

Gas-dynamic Noise Analysis 

Introduction 

In the present chapter the 1D CFD (Computational Fluid Dynamic) and 3D acoustic analyses of the 

intake system under investigation are described. These analyses are aimed to predict the gas-

dynamic noise emissions, in terms of sound pressure level at the intake mouth, in various engine 

running points. Such predicted spectra are then compared with the available experimental data, in 

order to achieve the second validation step for the created FE model. 

In the previous chapter, a comprehensive analysis of the acoustic attenuation characteristics of the 

system under investigation has been in depth presented, describing the creation of a 3D FE model 

which has been validated comparing both experimental and numerical data in terms of 

Transmission Loss. However, as it has been already outlined, a Transmission Loss analysis 

represents just the stand-alone study of the system, which makes available only a qualitative 

indication about its acoustic frequency response. In fact, no information about noise emissions 

when it is coupled with the engine are available at the end of the calculation/measurement 

procedure. Thus, in order to quantify the amount of noise which is emitted in various real operating 

conditions, a more complicated modelling procedure is needed. However, before proceeding with 

the description of the procedure aimed to simulate the gas-dynamic noise of the breathing system 

under investigation, a few comments must be done. 

As already mentioned in the introduction of this thesis, the gas-dynamic noise radiated by the intake 

mouth of a breathing system of an internal combustion engine represents a prominent noise source, 

at least in low vehicle speed condition. In particular, for the studied system, the only sound 

attenuation of acoustic waves created at the IVO crank angle positions is achieved by both the 

throttle and the compressor of the turbocharger group. Moreover, in general, from a modelling point 

of view, in order to simulate the gas-dynamic noise emitted by both intake and exhaust systems it is 

important to separate each contribution to the overall emission. 

Intuitively, the main source of sound is represented by the pulsating mass flow triggered by the 

periodic valves opening. However, duct systems connected to an internal combustion engine, e.g. 

intake and exhaust, host sound propagation in flow condition. This former circumstance, apart from 

introducing a convection effect on sound waves, as it has been briefly mentioned in chapter 2, 

allows an additional sound source mechanism to exist. Consequently, it is possible to state that there 

are two main sources of noise associated with the operation of breathing system of an internal 

combustion engine, for which noise propagates and, at the same time is generated within the 

connected duct systems. Hence, the first sound source is represented by the pressure waves, 

generated by the periodic valves opening, which travel downstream, reaching the external ambient 

in correspondence of the outlet mouth. Such contribution may be generally called as engine pulses. 

The second contribution is represented by the turbulence induced noise which is generated inside 
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the system during the fluid flow50. In fact, aerodynamic processes associated with the periodic flow 

through the valves, together with vortex generation at junction of sudden section changes, constitute 

an additional source of intake and exhaust noise as well. Such contribution constitutes the so called 

flow noise. 

Nowadays, 1D and 3D fluid-dynamic simulation codes represent very useful tools for the design 

and optimization phase of systems such as intake and exhaust. In fact, they are commonly used to 

predict the gas-dynamic noise emissions in various operating conditions[1]. However, for the object 

of this thesis, a pure 1D approach would present some limitations due to a rather rough 

schematization of the intake system which, as already highlighted, presents a very complex 

geometry. Nevertheless, a 1D schematization of the intake system and the whole engine, can be 

successfully employed to get a first estimation of acoustic performance and boundary conditions for 

the 3D models. 

On the other hand, a purely 3D CFD approach represents a powerful tool, suitable to investigate the 

flow field developed within complex geometries, allowing for a more or less accurate prediction of 

the emitted noise (even if some intrinsic limitations exist which will be mentioned in chapter 8). 

Anyway, problems arise from the setting up of the correct acoustic boundary conditions, which 

differ from the classical fluid dynamic ones. Consequently, a complete analysis which takes into 

account the two previous mentioned noise contributions would involve a coupled 1D-3D CFD and 

3D acoustic modelling procedure, as it is schematically depicted in Figure 6.1. 

 

Figure 6.1 – Flow chart of hybrid procedure useful for the gas-dynamic noise analysis. 

According to the flow chart above, the output of the 1D analysis is used as boundary condition for 

modelling the first kind of noise source within the acoustic model (engine pulses). At the same time, 

such boundary conditions in terms of pressure and temperature fluctuations are used to feed the 3D 

CFD solver in order to compute the flow field inside the system. This latter represent the additional 

boundary condition in order to model the flow noise contribution51 within the purely acoustic 

model, where the additional proper boundary conditions are easily to set up. In this way, a very 

                                                           
50 The details of the theory behind the aerodynamic generation of sound are given in chapter 7. 
51 See chapter 7 for the details. 
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accurate estimation of the sound emission may be made. However, due to the lack of information 

about the air filter modelling parameters for a 3D CFD simulation, in this chapter the flow noise 

contribution has not been modelled. In fact, it would be erroneous to feed the acoustic model, which 

takes into account the presence of the air filter in order to fit the experimental layout, with CFD data 

coming from a simulation which does not take into account it. Nevertheless, the study of the 

importance of the flow noise contribution to the overall noise emitted by the intake system is 

reminded to the last but one chapter of this thesis. 

In this chapter, a simpler modelling procedure is described and the results coming from the gas-

dynamic noise analysis of the system under investigation will be presented. In particular, the 

procedures schematized as flowchart in Figure 6.2 will be discussed. 

 

Figure 6.2 – Flow chart of the gas-dynamic noise analysis. 

Initially, an experimental campaign, useful for obtaining data for the validation of the 3D acoustic 

model, will be briefly described. Then, following the schematization of the above figure, the 1D 

analysis is in depth discussed, highlighting its intrinsic limitations by comparing the outcomes in 

terms of sound pressure level with the experimental findings. Finally, the 3D acoustic model will be 

briefly described and the results will be presented in comparison with the experimental ones, in 

order to confirm the goodness of the model, in analogy to what has been found in the previous 

chapter. 

6.1 Experimental analysis 

The experimental activity has relied on a comprehensive characterization of the engine behavior in 

terms of radiated noise, being carried out at different operating conditions. Thus, a proper 

experimental campaign has been performed, in each tested engine point, to measure the gas-

dynamic noise at the intake mouth of the air induction system under investigation. In particular, a 

schematization of the experimental layout is reported in Figure 6.3. According to the standard ISO 

(e.g. ISO 15619:2013), measurements have been carried out by using a microphone placed at 1 cm 

far away from the intake mouth. Thus, the gas-dynamic noise measurements have taken place 
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during an engine run-up test at full load, by varying the engine speed from 1500 𝑟𝑝𝑚 to 

5500 𝑟𝑝𝑚, according to the engine speeds reported in table 7. 

Engine rpm Engine rpm 

1500 3600 

1800 4000 

2100 4400 

2500 4800 

2700 5100 

3000 5500 

3300  
Table 7 – engine rpm tested point. 

 

Figure 6.3 - Schematization of the experimental layout. 

The microphone signal has been acquired by a multichannel system synchronized with the 

rotational speed, in order to perform a tracking acoustic analysis. The raw acoustic output is 

represented by the time domain acoustic pressure signal expressed in [𝑃𝑎]. In a post-processing 

phase, such data have been then expressed within the frequency domain by performing a discrete 

Fourier transform in force of the well-known Fast Fourier Transform algorithm. Thus, the sound 

pressure levels spectra, consisting of only the first fifteen engine orders (defined according to eq. 

(1)), have been made available in A-weighted 𝑑𝐵 scale. As an example of available data for 

subsequent comparisons, the sound pressure level at 3000 𝑟𝑝𝑚 WOT (Wide Open Throttle) is 

shown in Figure 6.4, in 𝑑𝐵𝐴 scale. 
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Figure 6.4 - Example of data available from the experimental campaign. 

At the same time, the A-weighted overall sound pressure levels in each of the tested engine 

condition has been calculated, based on the available information about the first fifteen engine 

orders. Such additional information is reported in Figure 6.5. 

 

Figure 6.5 - Experimental overall levels expressed in dBA scale. 

In the following, such experimental data will be used for the further validation of the 3D acoustic 

model. In particular, they will be firstly used in comparison with the output of a simple one-

dimensional analysis, in order to highlights the limitation of such simplified approach. Then, the 

goodness of the three-dimensional acoustic model will be discussed, based on the correlation 

between experiments and simulations. 

6.2 Numerical analysis 

6.2.1 One-dimensional analysis 

The numerical analyses following a pure 1D approach have been performed according with the flow 

chart schematization of Figure 6.2. The available 1D engine model has been previously developed 

within the commercial GT-Power™ software, powered by Gamma Technologies[2]. Such code is 
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based on a one-dimensional description of flow inside the intake and the exhaust pipes52, solving 

the mass, momentum and energy equations. At the same time, the gas mixture inside each cylinder 

is indeed treated as a zero-dimensional thermodynamic system, in which all thermo-fluid dynamic 

variables are uniformly distributed. Hence, the virtual engine is constituted by a network of 0D and 

1D components. 

For what concerns the modelling of the VVA (Variable Valve Actuator) system, an ‘user routine’ 

has been specified, according to the engine control parameters and operating conditions. A database 

of predefined lift profiles is preliminary computed for different engine speeds, starting from 

1000 𝑟𝑝𝑚 up to 6000 𝑟𝑝𝑚, with step of 500 𝑟𝑝𝑚. The valve profiles have been previously 

derived by a valve actuation system model developed thanks to the commercial software 

Amesim™[3], as a function of various parameters, such as the cam profile, inertial data (valve 

mass, etc.), spring preload, engine speed, electro-valve opening and closure angles etc.. 

As regards the modelling of both combustion process and turbulence, this is achieved by means of 

sub-models which have been introduced in GT-power environment as ‘user routines’. In particular, 

the fractal combustion model[4][5] has been employed. This latter is a phenomenological model 

sensing both combustion system geometry (head and piston shape, spark plug position, etc.) and 

operating variables such as engine speed, spark advance, air-to-fuel ratio, valve phasing, etc. 

Regarding the turbulence modelling, it is described by a proper sub-model accounting for 

turbulence “production” during the intake stroke[5][6] and its subsequent “destruction”. In this way, 

it is possible to take into account variations in burning speed related to different engine operating 

conditions. In previous works, the goodness of such 1D model has been investigated. More 

precisely, by means of a comparison between numerical and available experimental data, the model 

has been validated at full load condition, showing a very good correlation with the experimental 

findings[7]. It follows that, it is possible to accurately predict the main overall engine performance 

and the in-cylinder pressure cycles. However, from an acoustic point of view, it is very important to 

have a one-dimensional schematization of the intake system as much as possible refined. In fact, as 

depicted in Figure 6.2, the main excitation to the 3D acoustic model is directly derived by the 

pressure fluctuations just before the compressor inlet, which are quite sensitive to the 1D 

schematization of the breathing system. 

A typical air induction system is made of a central body with a cross dimension which is 

significantly larger than both the inlet and outlet tubes, with a more or less complex three-

dimensional shape. Besides, in order to prevent unwanted particle such as dust to enter the engine, 

the air box also typically contains an air filter (or cleaner), which is generally constituted by a 

crooked piece of paper. Thus, as many times mentioned above, the entire assembly has a significant 

effect on engine performance, as it directly affects the pressure drop and so the volumetric 

efficiency, but also on the emitted sound since it represents the direct transmission path to the 

external ambient. Consequently, its modeling procedure represents a crucial step to perform, if 

realizable results are desired. Nevertheless, depending on the simulation target, two options are 

available. For models that will not be used to capture intake acoustic behavior, it is appropriate to 

use a relatively simple representation of the air box[2], whilst when it is important to simulate the 

intake noise emissions, it is necessary to perform a more detailed description in the air box model. 

                                                           
52 The pipes are connected together by so-called orifices, which are 0D elements. 
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Therefore, to the aim of obtaining an as much as possible suitable one-dimensional representation 

of the intake system, the useful tool GEM 3D has been used. In this software environment the 

starting point for the model preparation is represented by the imported CAD model. Thanks to such 

utility, the CAD model has been firstly divided into parts, depicted in Figure 6.6, which could better 

represent one dimensional flow components such as straight and bent pipe, flow split etc.. As an 

example, by the examination of the figure below, it is possible to appreciate that the filter box has 

been divided in three parts which are depicted in blue, green and brown.  

 

Figure 6.6 - CAD preparation for the 1D schematization process. 

Once the 3D model preparation has been completed, it has been possible to carry out the 

corresponding 1D discretization process. As already mentioned, this latter is constituted by one-

dimensional elements for modelling pipes which are used to model flow through tubes, with either 

constant or tapered cross section, and by zero-dimensional elements which are used for joining 

different physical components together. These connections, also known as orifices, are nothing else 

than interfaces (or planes) at which only momentum equation is solved to compute the mass flow 

and velocity[2]. An orifice can be also used to specify a flow restriction by setting the orifice 

diameter to be smaller than the diameter of the two mating components. 

The result of the discretization process is depicted in Figure 6.7, where the system is made of 14 

one-dimensional flow components and three zero-dimensional ones in order to model the air filter. 

Here it is possible to recognize the entire intake system within the dashed red rectangle and other 

components such as the external ambient and the engine (not displayed for protecting the innocent). 
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Figure 6.7 – One-dimensional schematization of the intake system. 

It must be noted that the pressure drop across the air filter is usually small corresponding to the 

expansion/contraction related pressure losses and therefore the filter is generally not modelled. 

However, after carrying out a sensitivity analysis, in order to assess the influence of the presence of 

the air filter within the one-dimensional schematization on the acoustic simulation capabilities, it 

has been decided to model such element as schematized in the figure above. Besides, it is also 

possible to recognize the presence of a virtual microphone useful to compute the overall sound 

pressure level at 1 cm far away from the intake mouth, according to the experimental layout of 

Figure 6.3. This object allows to compute the acoustic pressure fluctuations at the experimental 

microphone location by treating the intake orifice as a simple pulsating monopole. More precisely, 

the gas-dynamic noise is calculated starting from the results of the unsteady 1D CFD simulation, 

where the computational domain ends at the intake mouth (ambient side). Obviously, since one 

dimensional symmetry has been assumed, no turbulence is modelled and the noise at the virtual  

microphone location involves only the engine pulses contribution on the overall sound emission and 

it is calculated based on the assumption that the sound field is a pure  monopole field, following an 

inverse-square law for the sound  intensity. In particular, the 1-D code makes use of the free field 

Green’s function53, assuming the intake mouth (ambient side) as monopole source term, namely 

according to eq. (6.1) 

𝑝′(𝑡, 𝒓) =
𝜌𝐴

4𝜋𝒓

𝜕𝑢(𝑡−𝑟 𝑎0⁄ )

𝜕𝑡
                                                               (6.1) 

where 𝜌 is density of the free field medium, 𝐴 is cross sectional area of the orifice, 𝑢 is the velocity of 

the gas and 𝒓 stands for the distance from the intake mouth. Hence, it merely calculates the time 

derivative of mass out flow from the pipe, starting from the velocity at the boundary, according to 

the schematization of Figure 6.8. 

                                                           
53 The detailed theory is reported in chapter 7. 
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Figure 6.8 – Schematization of the virtual microphone location during the one-dimensional analysis. 

The sound pressure levels, calculated in each of the experimentally tested conditions, are reported in 

the figures below, where the red curves represent the experimental trend whilst the blue ones stand 

for the 1D simulation output. Obviously, in agreement with the available experimental data, only 

the first fifteen engine orders have been plotted for the blue curve. 
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Figure 6.9 - Experimental/1D numerical sound pressure level comparison at 1 cm from the intake mouth: a) 1500rpm, 

b) 1800rpm, c) 2100rpm, d) 2500 rpm, e) 2700 rpm, f) 3000 rpm, g) 3300 rpm, h) 3600rpm, i) 4000 rpm, l)4400rpm, m) 

4800rpm, n) 5100 rpm, o) 5500rpm. 

As it is possible to appreciate from the above figures, a quite satisfactory correlation has been found 

between measured and simulated sound pressure levels, considering the limitation of the pure a one-

dimensional approach. Moreover, there are conditions in which the overall degree of match between 

the two set of data under comparison is higher than the others. As an example, it is useful to focus 

on the experimental/numerical comparison corresponding to the 3300 and 3600 𝑟𝑝𝑚 where the 

first 15 engine order occur within the same frequency range. By the examination of Figure 6.9 g) 

and h) it is possible to point out that the comparison at 3600 𝑟𝑝𝑚 is quite better than that at 

3300 𝑟𝑝𝑚, suggesting that the one-dimensional solver is not able to correctly reproduce the 

pressure fluctuations, occurring at the outlet mouth of the intake system under investigation (engine 

side), with the same accuracy in each condition. This is probably due to the tuning of the VVA 

system “user routine”, which is not able to reproduce the valve lift profile with the same accuracy in 

each 𝑟𝑝𝑚 condition. 

It is also important to note that, for each simulation, there are frequency ranges in which the 

numerical output underestimates the experimental results and other zones in which the match is 

more accurate. In particular, the main disagreement between the two set of results has been found 
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within the range [200; 400] 𝐻𝑧 where the 1D outcomes of each analysis suffer of a global 

underestimation of the SPL. Vice versa, within the range [400; 600] 𝐻𝑧 there is a very good 

correlation between both the experimental and numerical findings. This may be due to intrinsic 

limitations of the 1D approach corresponding to the difficulties which are encountered when 

schematizing a complex three-dimensional geometry as one-dimensional. In order to strengthen 

this, in Figure 6.10 the experimental/numerical comparison in terms of Transmission Loss has been 

reported in the range [40; 700] 𝐻𝑧. Here the red line refers to the experimental TL whilst the black 

one to the 1D results. 

 

Figure 6.10 - Experimental vs 1D numerical Transmission Loss results. 

As it is possible to appreciate by the examination of Figure 6.10, the one-dimensional code clearly 

overestimates the noise attenuation characteristic until 400 𝐻𝑧. Such circumstance clarifies why the 

sound pressure level calculated with the aim of the 1D solver is always lower than the actual result 

below 400 𝐻𝑧. On the other hand, the Transmission Loss curves are very close at higher frequency 

(until 600 𝐻𝑧), explaining why the comparison within experimental and numerical data is always 

very good within the range [400; 600] 𝐻𝑧. 

In conclusion, from the above discussed comparisons it is possible to point out that the limitations 

in acoustic-response modelling of the pure 1D analysis are mainly due to the rough schematization 

of complex geometries, as that of the air induction system under investigation, together with the 

modelling issues of the VVA system. Such limitation affects both the estimation of the pressure 

fluctuation at the outlet of the system (engine side) and its propagation towards the external 

ambient. Another important aspect to consider is represented by the acoustic limited modelling 

capabilities of the air filter which of course affect the sound propagation too. Consequently, in order 

to obtain a more accurate results, the use of a 3D acoustic code is mandatory. In the following, the 

three-dimensional acoustic analysis and the corresponding results will be deeply discussed. 

6.2.2 Three-dimensional acoustic analysis 

The three-dimensional analyses have been carried out in order to estimate the gas-dynamic noise of 

the air induction system in its original configuration, with the target of achieving a better match 

with the experimental findings with respect to the above described one-dimensional analysis. Even 

in this case, the analyses have been conducted by using the commercial software Actran release 
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15.1, powered by Free Field Technology. Several 3D simulations have been performed at full load 

operation and for the entire engine speed range.  However, it is worth noting that the model 

building-up procedure has been slightly different with respect to the Transmission Loss analysis 

described in the previous chapter. More precisely, apart from the fact that both inlet and outlet tubes 

have not been modified according to Figure 5.17, another drawing feature has been added, as it is 

represented in Figure 6.11. 

 

Figure 6.11 - CAD model of the intake system useful for subsequent for the gas-dynamic noise analysis. 

Such new feature, which is represented by half a sphere colored in grey within the above figure, is 

located at the inlet mouth and it is necessary in order to simulate the sound propagation in free field 

conditions. Thus, the application of a non-reflecting boundary condition automatically means that 

the reflection coefficient at the intake mouth is not equal to zero. In other words, there is no 

anechoic termination anymore, which simply implies that the impedance at the inlet section equals 

the radiation impedance, which has been mentioned in chapter 3. The acoustic mesh corresponding 

to the CAD model depicted in Figure 6.11, is reported below. Here, it is possible to recognize that 

four different meshes have been actually created. 

 

Figure 6.12 - Acoustic mesh for the gas-dynamic noise analysis. 

In particular, the intake system itself has been divided in two parts, namely those before and after 

the air filter (the element of which are depicted in yellow) which have been depicted in red and blue 

respectively, in addition to the elements depicted in white which are necessary for simulating the 

free field propagation condition. The whole mesh consists of 49544 elements (TETRA 10-noded) 

and 86414 nodes allowing acoustic analysis until 2800 𝐻𝑧, considering a spatial resolution of six 
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elements per wavelength. From a modelling point of view, in order to simulate the presence of the 

engine as acoustic source at the inlet section (engine side), the output of the 1D simulation has been 

used. In particular, as Actran directly solves the Helmholtz equation[5], the spectrum of the 

pressure profile, derived from the 1D model in the section located just upstream the turbocharger 

compressor, has been used as a boundary condition (engine pulses) within the acoustic model, in the 

same way as per the Transmission Loss analysis, that is by means of the semi-infinite duct. More 

precisely, recalling that for sound propagation in ducts the sound field may be decomposed in 

forward and backward moving waves, both pressure and velocity information, available from the 

1D simulation in a section just before the compressor, has been used to calculate the incident 

pressure wave into the intake system. Thus, the excitation for the three-dimensional acoustic model  

has been calculated as 

𝐴 =
𝑝+𝑍0𝑢

2
                                                                             (6.2) 

being 𝑍0 the characteristic impedance of the medium. However, since such excitation has been imposed 

by means of a semi-infinite duct, the acoustic influence of the upstream system (engine and 

turbocharger group) has been only partly modelled. In fact, as explained in the previous chapter, 

when modelling a semi-infinite duct the eventually reflected wave from the intake system is 

damped whilst, in reality, it is actually reflected back by the complete system located upstream. In 

other words, the main excitation in terms of incident pressure wave (eq. (6.2)) represents the 

equivalent sound source (engine pulses), whilst the information about the source impedance is 

absent. At the same time, a non-reflecting boundary condition has been imposed on the 2D shell of 

the half sphere depicted in white in Figure 6.12, by means of an infinite element approach[5], as 

briefly mentioned at the end of chapter 4. The elements at which such boundary conditions have 

been applied are depicted in red (acoustic source) and light blue (non-reflecting condition) in figure 

below. 

 

Figure 6.13 - Actran model and corresponding boundary conditions. 

Obviously, even in this case the air filter has been modelled as a porous medium, namely as an 

equivalent fluid by means of the Delaney-Bazley formulation[8], specifying a flow resistivity equal 

to 2000 [𝑁𝑠 𝑚4⁄ ]. In analogy with the model for the Transmission Loss analysis, described in the 

previous chapter, the elements on which the Delaney-Bazley model has been used are depicted in 
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purple. Besides, a virtual microphone has been placed at 1 𝑐𝑚 away from the inlet mouth according 

to the experimental layout schematized in Figure 6.3. The location of such microphone within the 

acoustic model is highlighted by a red point in Figure 6.13. It follows that, in each simulation, the 

output of the acoustic analysis is represented by the gas-dynamic noise emitted in terms of sound 

pressure level spectrum and the corresponding overall level at such virtual microphone location. At 

the same time the frequency step has been changed in a way such that it is equal to half the firing 

frequency, namely half the first engine order, in the particular engine speed condition. Finally, the 

sound pressure levels calculated in each of the experimentally tested conditions are reported in the 

figures below. Here, the red curves represent the experimental trend whilst the blue ones stand for 

the 3D simulation output, for which only the first fifteen engine orders have been reported. 
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Figure 6.14 - Experimental/3D numerical sound pressure level comparison at 1 cm from the intake mouth: a) 1500rpm, 

b) 1800rpm, c) 2100rpm, d) 2500 rpm, e) 2700 rpm, f) 3000 rpm, g) 3300 rpm, h) 3600rpm, i) 4000 rpm, l) 4400rpm, 

m) 4800rpm, n) 5100 rpm, o) 5500rpm. 

By the examination of the above figures, it is possible to point out that a substantial good agreement 

has been found between the two set of data, with a particularly good match which is achieved at 

low/medium engine speeds. Such circumstance is even more evident if the error percentage between 

the two set of data is calculated in each investigated conditions. For each engine speed, this latter 

has been calculated as an average among the errors corresponding to each engine order, namely 

(𝑒)𝑟𝑝𝑚 =
∑ 𝑒𝑖
15
𝑖=1

15
                                                                     (6.3) 

where 𝑒𝑖 stands for the relative error corresponding to the 𝑖𝑡ℎ engine order. The error index defined 

by eq. (6.3) is reported as bar chart in Figure 6.15. 
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Figure 6.15 - Error between experimental and numerical sound pressure levels in the investigated engine conditions. 

As it is possible to appreciate by the examination of the above figure, the error between experiments 

and simulations is never above 11%, reaching the minimum values within the low/medium engine 

rpm range. However, some relevant errors are present whose likely nature need to be more in depth 

discussed. First of all, it is important to separate the nature of the errors from those due to the one-

dimensional modelling issue and those imputable to the 3D acoustic model’s inaccuracies. 

As regards the limit due to inaccuracies in the 1D analysis, it is important to highlight that the only 

thing which changes from one 3D simulation to another is represented by the noise source, namely 

the frequency spectrum of the data coming from the 1D flow simulation. Therefore, by the 

examination of Figure 6.14, this implies that the one-dimensional model is able to accurately 

estimate the pressure fluctuations on the engine side of the intake system only in some conditions54. 

As an example, when comparing the results depicted in both Figure 6.14 f) and g), it is clear that the 

input given when modelling the 3000 𝑟𝑝𝑚 condition is more accurate that the other. Consequently, 

it is appropriate to state that the erroneous evaluation of the pressure fluctuations engine side is the 

primary cause of the error between three-dimensional simulations and experiments. Besides, with a 

closer look at Figure 6.14, it is possible to appreciate that there is a systematic error in the noise 

prediction capabilities of the numerical model, corresponding to an overestimation of the sound 

pressure level within the range [400; 600] 𝐻𝑧.  Such overestimation occurs in all the simulated 

engine conditions and its effect is even more evident when comparing the overall sound pressure  

levels, which are depicted in the figure below, where the same color legend of Figure 6.14 has been 

used. 

                                                           
54 Due to the already mentioned limited capabilities of the “user routine” modelling the VVA system. 
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Figure 6.16 - Experimental/3D numerical comparison of the overall sound pressure levels. 

Even in this case, the numerical overall in the above figure has been calculated, on the basis of the 

sound pressure levels corresponding to the first fifteen engine orders, by means of eq. (2.11). By the 

examination of the Figure 6.16, the existence of a very good qualitatively agreement is confirmed, 

even if amplitude shifts are present as expected. This may be partly due to the standard “map-

based” description of compressor behavior within the one-dimensional schematization of the 

engine. In fact, according to such 1D approach, the compressor has been represented within the 

engine map by a volume-less interface where the steady-state compressor map data are involved[8]. 

The compressor map is obtained from steady-state flow tests and therefore it does not account for 

the attenuation exerted by the compressor itself on the pressure waves coming from the engine. In 

other words, this modelling approach does not allow to take into account the internal geometry of 

the compressor and its noise attenuation characteristics[11]. It follows that the compressor related 

1D modeling inaccuracies also affect the three-dimensional results. Such effect is not present within 

the one-dimensional simulation output since in that case the overestimation of the noise attenuation 

characteristic represents a prominent effect (see the Transmission Loss comparison of Figure 6.10). 

As regards the limit due to inaccuracies in the 3D modelling procedure, the primary limitation is 

certain due to the difficulties in modelling the air filter. In fact, as it has already mentioned in the 

previous chapter, due to the lack of information about micro parameters, such as viscous and 

thermal lengths, it has been necessary to use the simplest model for sound propagation in porous 

medium, namely the Delaney-Bazley model. This is just a very simple model which assumes the air 

filter as an equivalent fluid, in which isotropy is assumed. However, as it is possible to appreciate 

from Figure 5.23 a), the way in which the paper sheets are arranged makes the air filter strongly 

anisotropic, with the characteristic parameters varying along the three directions. Moreover, since 

for the air filter no measurements of flow resistivity have been available, the used value of  2000 

[𝑁𝑠 𝑚4⁄ ] has been chosen, as uniformly distributed, based on a sensitive analysis for determining 

the best match in term of Transmission Loss with the available experimental data. 

Another important aspect which has not been taken into account is the flow induced noise within 

the air intake system. In fact, due to lack of information about the three-dimensional CFD 

modelling of the air filter, the presence of turbulence induced additional acoustic sources has not 

been taken into account within the 3D acoustic model. However, a properly set up CFD simulation 
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would probably improve the correlation between experiments and simulations, especially at 

relatively high frequencies where the flow noise is expected to be prominent. Last but not the least, 

the acoustic influence of the entire upstream system (engine, turbocharger group etc.) has been 

modelled only in terms of incident pressure wave within the air induction system, without 

modelling the acoustic impedance which represents an additional lack of information. In spite of all 

the above mentioned modelling difficulties, the overall comparison between experimental and 

three-dimensional results has certainly being improved. 

At this point, it is important to highlight an important aspect which explains one more aspect about 

the importance of an accurate three-dimensional model. Many times above it has been stated that 

the Transmission Loss fully characterizes the acoustic attenuation properties of the stand-alone 

component. This is essentially due to the assumption on which it is defined, namely the anechoic 

termination. However, when the intake system is working in real conditions, the termination 

represented by the intake mouth does not end in an anechoic way, as the system radiates noise in the 

external ambient. This latter represents a further acoustic load (see Figure 3.2) characterized by the 

so called radiation impedance and the corresponding reflection coefficient. This latter, as it has been 

recalled in chapter 3, for the ideal case of an unflanged pipe has a unit amplitude decreasing as the 

frequency increases[12]. Consequently, the sound attenuation characteristic at low frequencies are 

in general strongly influenced by the energy reflection imposed by the external ambient, and are 

very different by those in agreement with a Transmission Loss analysis. Such circumstance is 

depicted in Figure 6.17, where two power ratios are showed as function of the dimensionless 

parameter 𝑘𝑟0. Both curves have been calculated making use of the TL formula, namely 

𝑇𝐿 = 10𝐿𝑜𝑔 (
𝑊𝑖𝑛

𝑊𝑟𝑎𝑑
)                                                              (4.4) 

where 𝑊𝑟𝑎𝑑 stands for radiated power. In case of Transmission Loss analysis (black curve), it 

represents the power radiated into an anechoic termination (that is the power radiated by the 

elements depicted in green in Figure 5.21). Vice versa, when the system radiates in external 

atmosphere (red curve) 𝑊𝑟𝑎𝑑 is the power radiated at the non-reflecting boundary conditions (the 

elements depicted in blue in Figure 6.13). 

 

Figure 6.17 - Sound power ratio comparison. 
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As it is possible to appreciate from the above figure, the presence of the non-anechoic termination, 

when the intake system radiates in the atmosphere, deeply modify the sound attenuation, especially 

at low frequencies. In particular, the sound attenuation is higher with respect to that foresees with a 

simple Transmission Loss analysis. Consequently, it is justified that the TL only represents a 

qualitative indication about the sound attenuation characteristics of a system, which may 

considerably differ in actual working conditions. 

In conclusion of this chapter, it is important to highlight that, once the experimental\numerical 

comparison in terms of gas-dynamic noise emissions has also given a quite satisfactory agreement, 

the 3D model may be considered as fully validated. Furthermore, a reliable virtual air induction 

system is available on which the effect of several geometric changes may be investigated, without 

the needs of creating expensive prototypes. To this aim, chapter 8 is devoted to the optimization of 

the acoustic performances of the studied system. Firstly, several geometric changes, realized in 

order to enhance the Transmission Loss, will be presented. Then, a gas-dynamic noise analysis will 

be presented and discussed, in order to assess the impact of the modifications on the noise level 

emissions in various engine conditions. In this regards, both engine pulses and flow noise 

contributions have been taken into account. So, in order to be able to understand how the turbulence 

induced noise has been modeled, in the next chapter an insight to the theory of the aerodynamic 

generation of sound will be reported. 
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Chapter 7 

Aerodynamic Generation of Sound  

Introduction 

In chapter 2 and 3, a quite deep glance at the propagation and transmission of sound in bounded 

atmospheres, such as tubes and ducts, has been given with focus on both one-dimensional and 

three-dimensional cases. Also, an insight about the effect of a mean flow field on sound propagation 

has been done. Practically, no mention about the way in which sound is generated has been made. 

Thus, this chapter mainly deals with the generation and propagation of sound in unbounded fluids. 

In fact, intuitively, the generation of sound may be due to two primary mechanisms which lead to 

definition of structure borne and airborne sound55. The first mechanism generates sound because of 

vibrating solid boundaries in the acoustic medium, which causes, due to continuity of the velocity at 

the solid-acoustic interface, acoustic fluctuations at some point in space. Historically, the structure 

borne noise has been the only method of sound generation under deep investigation, until the rise of 

jet propulsion aircraft during the second half of the XX century. In fact, after world war II, jet 

engine, first only used for military purposes, began to be used for commercial aircraft. However, 

although such propulsion mechanism generates a more powerful trust for a given weight, the noise 

emission is much more intense. The need to reduce jet noise, stimulated James Lighthill to study the 

problem of aerodynamic generation of sound[13][2], which laid to the foundation of the field of 

research which today is called aeroacoustics, representing the branch of acoustics which studies 

how (and how much) kinetic energy of a flow is converted into acoustic energy. The basic idea of 

Lighthill’s theory (published in 1951) is “just” to formulate a mathematical description for the 

airborne noise in order to model what every person experiences daily. Air induced sound is not only 

associated with periodic phenomena, as charging and discharging the cylinder of an internal 

combustion engine. For instance, a steady stream of air can produce sound, as it happens when 

using a flute. As matter of fact, sound is just a pressure fluctuation around an average value. Such 

evidence gives rise to two questions[3]: 

1) How do more or less intense pressure fluctuations arise as a steady jet emerges into the 

atmosphere?  

2) Which fraction of the energy is radiated away as sound? 

The answer to the first question lies in two words which are “flow instability”, which may generate 

an unstable vortex layer between the core jet and the external atmosphere[4]. A schematic 

representation of the grow rate of the vortices, as they travel downstream, versus the frequency is 

depicted in Figure 7.1. 

                                                           
55 Sometimes, in the automotive sector, reference is generally made to airborne noise, as the noise contribution which 

propagates in air path as orifices of the passenger cabin. 
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Figure 7.1 – Schematization of the grow rate within the vortex layer as function of frequency. 

So, at some frequencies, the pressure disturbances quickly become very big. At high Reynolds 

number, disturbances in a wide range of frequency grow very fast, interacting with one another, 

making a so called turbulent jet. However, as the velocity of the jet decreases, the viscous forces 

start to become predominant and the grow rate decreases accordingly, so that only a small 

frequency range vortex grow as they travel downstream. Consequently, at low Reynolds numbers, 

the disturbances which appear are quite regular and do not radiate away as sound. Such evidence 

leads to the answer of the second question, that is, apart from the pressure fluctuations which 

successfully radiate away as sound, there are other pressure fluctuations (actually more intense) 

which balance the local fluid accelerations near the jet outside. These latter do not propagate at all 

and therefore they are called pseudo-sound (only pseudo because they do not propagate as sound). 

A very simple example of such phenomenon may be highlighted when a person is blowing, as 

schematically depicted in Figure 7.2. 

 

Figure 7.2 – Schematization of a blowing person. 

Near the orifice (the mouth) human ears can detect a kind of noise but, far away no audible sound 

may be detected. As it will be clear in the following, far away from the orifice, this happens because 

the sound intensity decays following an inverse-square low. However, before being able to 

understand such behavior of sound generated aerodynamically, it is necessary to make some 

backward steps in order to recall some basic definitions and relationships. 

In chapter 2 it has been shown the solution of the classical wave equation within a rectangular 

coordinate system. However, another important case refers to the situation in which a spherical 

coordinate system is used. Assuming a pure spherical symmetry, that is neglecting both polar and 

azimuthal dependence, the Laplace operator may be rewritten as 
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∇2=
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕

𝜕𝑟
)                                                                      (7.1) 

If eq. (7.1) is inserted in the one dimensional homogeneous classical wave equation (2.22), the 

following expression is obtained56. 

1

𝑎0
2

𝜕2(𝑟𝑝′)

𝜕𝑡2
−
𝜕2(𝑟𝑝′)

𝜕𝑟2
= 0                                                              (7.2) 

Therefore, in analogy with the plane wave solution in rectangular coordinates (see eq. (2.26)), the 

spherical sound field may be expressed as 

𝑝′(𝑟, 𝑡) =
1

𝑟
[𝑝+
′ (𝑡 − 𝑟 𝑎0⁄ ) + 𝑝−

′ (𝑡 + 𝑟 𝑎0⁄ )]                                            (7.3) 

which leads, again, to the superposition of two waves, one travelling out from the origin and one 

travelling through the origin. As it is possible to appreciate from eq. (7.3), both the amplitudes of 

the two waves go to infinity as the radial position approaches the origin (𝑟 → 0), namely a 

singularity exists. Such singularity may be due to a sound source located at the origin, as it will be 

described soon. The conservation of momentum in the radial dimension allows to derive the 

expression for the particle velocity, namely 

𝜌0
𝑑𝑢′

𝑑𝑡
= −

𝑑𝑝′

𝑑𝑟
                                                                (7.4) 

𝜌0
𝑑𝑢′

𝑑𝑡
= +

1

𝑟2
𝑝+
′ (𝑡 − 𝑟 𝑎0⁄ ) +

1

𝑎0𝑟

𝜕𝑝+
′ (𝑡−𝑟 𝑎0⁄ )

𝜕𝑡
+

1

𝑟2
𝑝−
′ (𝑡 + 𝑟 𝑎0⁄ ) −

1

𝑎0𝑟

𝜕𝑝−
′ (𝑡+𝑟 𝑎0⁄ )

𝜕𝑡
                 (7.5) 

After an integration with respect to time, it is possible to express the final result in terms of particle 

velocity as 

𝑢′(𝑟, 𝑡) =
1

𝜌0𝑎0𝑟
𝑝+
′ (𝑡 − 𝑟 𝑎0⁄ ) −

1

𝜌0𝑎0𝑟
𝑝−
′ (𝑡 + 𝑟 𝑎0⁄ ) +

1

𝜌0𝑟2
𝑃− +

1

𝜌0𝑟2
𝑃+                          (7.6) 

where 𝑃± = ∫𝑝±
′ (𝑡 ∓ 𝑟 𝑎0⁄ ) 𝑑𝑡 and represent the so called near field terms (and are related to 

pseudo-sound) as they do not contribute to the acoustic radiation far from the source because 

pressure and velocity are out of phase (the particle velocity being out of phase of −𝜋 2⁄  due to the 

time integral of the acoustic pressure)[5]. Besides, as it is possible to appreciate by the examination 

of eq. (7.6), the first two terms are in phase with the acoustic pressure and so they are called far 

field terms, as they contribute to the acoustic power radiation away from the source. These aspects 

will be examined more ahead in the next sections, because it is of primary importance to study the 

elementary sound generation mechanisms. 

7.1 The inhomogeneous wave equation and the Green’s function 

If the source terms are considered within the mass and momentum conservation equations, the 

following inhomogeneous wave equation is obtained[5] 

1

𝑎0
2

𝜕2𝑝′

𝜕𝑡2
− ∇2𝑝′ = 𝑠(𝒙, 𝑡)                                                             (7.7) 

                                                           
56 Note that 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑝′

𝜕𝑟
) =
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𝑟

𝜕2(𝑟𝑝′)
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where 𝑠(𝒙, 𝑡) represents the source contribution at point 𝒙 and time instant 𝑡. As it will be shown, 

the source terms involved at the right-hand side of the above equation may be related to unsteady 

injection of mass and/or fluctuating external force field acting of the fluid. Before being able to 

understand how such general source terms are related to a turbulent flow field, it is necessary to 

proceed step by step by studying the simplest possible source, namely a point source which is 

mathematically defined by means of the delta-function, namely 

∭𝛿(𝒙 − 𝒙0)𝑑𝑉 = {
1 𝑓𝑜𝑟 𝒙0 ∈ 𝒱 
0 𝑓𝑜𝑟 𝒙0 ∉ 𝒱

                                                        (7.8) 

where 3-D symmetry has been assumed and 𝒙0 represents the location of the point source. The 

study of the solution of the classical wave equation with a point source excitation, which is called 

Green’s function, is very important as it represents the basis for more complex solutions. Since, in 

general, the focus is on the frequency domain study of sound, it will be assumed that the Green’s 

function �̂� is related to an harmonic point source (with unit amplitude), in a 3-D infinite space, as 

acoustic excitation. Therefore, such Green’s function must satisfy the wave equation in both time 

and frequency domain, namely 

{

1

𝑎0
2

𝜕2𝐺

𝜕𝑡2
− ∇2𝐺 = 𝛿(𝑡)𝛿(𝒙 − 𝒙0)

∇2�̂� + 𝑘2�̂� = −𝛿(𝒙 − 𝒙0)
                                                            (7.9) 

A point source defined by the delta function, as it happens in eq. (7.9), is called monopole source 

and the corresponding sound field is called monopole field. Since a 3-D unbounded space is 

considered, the Green’s function must exhibit a spherical symmetry, namely the sound field depend 

only on the radial distance from the source and should be equal to the superposition of two waves. 

However, the wave travelling from infinity towards the source has no physical meaning as, again, 

free field radiation is supposed. Consequently, in analogy to eq. (7.3), the frequency domain 

representation of the Green’s function may be expressed as 

�̂�(𝜔, 𝒙, 𝒙0) =
�̂�+𝑒

−𝑗𝑘𝑟

𝑟
                                                                (7.10) 

where the time dependence (𝑒𝑗𝜔𝑡) has been omitted for simplicity, �̂�+ is the amplitude and r  is the 

distance from the monopole source located at 𝒙0, namely 𝑟 = |𝒙 − 𝒙0|. In order to find �̂�+, it is 

important to note that eq. (7.10) must satisfy both eq. (7.9)2 and (7.8). Besides, since eq. (7.10) 

satisfies the wave equation everywhere except at 𝒙0, where a singularity exists, a spherical 

integration small volume centered at 𝒙0 is chosen, as depicted in Figure 7.3. 

 

Figure 7.3 – Integration volume useful for calculate the amplitude of the Green’s function. 

Thus, from what above it follows that 
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∭(∇2�̂� + 𝑘2�̂�)𝑑𝒱 = −1                                                           (7.11) 

By applying the divergence theorem to the first term in eq. (11) yields 

∬∇�̂� · 𝑒𝑟𝑑𝑆 +∭𝑘2�̂�𝑑𝒱 = −1                                                    (7.12) 

where 𝑒𝑟 is the unit vector representing the normal to the infinitesimal surface 𝑑𝑆 in the radial 

direction. Of course, ∇�̂� · 𝑒𝑟 = 𝜕�̂� 𝜕𝑟⁄  and so, in the limit as 𝑟 → 0, eq. (7.12) yields to the 

following expression57 for �̂�+. 

4𝜋�̂�+ = 1                                                                        (7.13) 

Therefore, the free 3-D field harmonic Green’s function is given by 

�̂�(𝜔, 𝒙, 𝒙0) =
𝑒−𝑗𝑘𝑟

4𝜋𝑟
                                                                (7.14) 

where again the time dependence (𝑒𝑗𝜔𝑡) has been omitted for simplicity of the notation. Thus, in 

order to obtain an expression for the Green’s function in the time domain, the inverse Fourier 

transform of eq. (7.14) must be taken, leading to the following inhomogeneous wave equation 

[
1

𝑎0
2

𝜕2

𝜕𝑡2
− ∇2] 𝐺 = 𝛿(𝑡)𝛿(𝒙 − 𝒙0)                                                     (7.15) 

where the solution is of the form 

𝐺(𝑡, 𝒙, 𝒙0) =
𝛿(𝑡−𝑟 𝑎0⁄ )

4𝜋𝑟
                                                               (7.16) 

which correspond to an acoustic pulse propagating towards infinity after a sudden volume change at 

𝒙 = 𝒙0 occurring at 𝑡 = 0; for 𝑡 < 0 the fluid is at rest. In fact, the right end side of eq. (7.15) 

represents a point source located at 𝒙0 which pulses at 𝑡 = 0. It is very important noting that the 

pressure fluctuation reaching point 𝒙 at time 𝑡 is due to the ray of sound emitted at 𝒙0 and time 

instant  𝑡 − 𝑟 𝑎0⁄ , as it is confirmed by the form of eq. (7.16). 

More in general, there may be a distribution of sources 𝑠(𝒙, 𝑡) and also boundaries to taken into 

account when solving the wave equation for the corresponding sound field. In this cases, the 

Green’s function is still very useful for obtaining an integral expression for the sound field 

corresponding to more general situations. The starting point is the frequency domain representation 

of the physical situations, namely 

{
(∇2 + 𝑘2)�̂�(𝜔, 𝒙) = −�̂�(𝜔, 𝒙)

(∇2 + 𝑘2)�̂�(𝜔, 𝒙, 𝒚) = −𝛿(𝒙 − 𝒚)
                                                  (7.17) 

where 𝒚 represents the location of the point source 𝛿(𝒙 − 𝒚) and x stands for a generic sound field 

point. Equation (7.17)1 represents the general situation in which there is a distribution of sources, 

whilst eq. (7.17)2 represents the situation in which only a point source is present and for which the 

                                                           
57 By definition of solid angle, it follows that 𝑑𝑆 = 𝑑𝛺 𝑟2 whilst 𝑑𝒱 = 4𝜋𝑟2𝑑𝑟. Thus, ∬∇�̂� · 𝑒𝑟𝑑𝑆 +∭𝑘2�̂�𝑑𝒱 =

−4𝜋�̂�+𝑒
−𝑗𝑘𝑟(1 + 𝑗𝑘𝑟) + 4𝜋�̂�+𝑘

2 [−
𝑟𝑒−𝑗𝑘𝑟

𝑗𝑘
+

1

(𝑗𝑘)2
(𝑒−𝑗𝑘𝑟 − 1)] 
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solution (in a 3-D unbounded space) is represented by the Green’s function expressed by eq. (7.14), 

or equivalently by eq. (7.16) in the time domain. Consider the general three-dimensional space 

depicted in Figure 7.4, in which a volume 𝒱 is bounded by an external and internal surfaces, Se and 

Si. 

 

Figure 7.4 – Schematization of a generic 3-D space.  

By multiplying eq. (7.17)1 by �̂�(𝜔, 𝒙, 𝒚) and eq. (17)2 by �̂�(𝜔, 𝒙) and then performing (7.17)1-

(7.17)2 , yields 

�̂�∇𝑥
2�̂� − �̂�∇𝑥

2�̂� = �̂�(𝒙)𝛿(𝒙 − 𝒚) − �̂��̂�                                          (7.18) 

where the subscript x denotes a derivation with respect to x, and the frequency dependence has been 

suppressed for clarity of the notation. By integrating eq. (7.18) over the volume depicted in Figure 4 

yields58 

∭(�̂�∇𝑥
2�̂� − �̂�∇𝑥

2�̂�) 𝑑𝑉𝑥 = �̂�(𝒚) −∭�̂��̂� 𝑑𝒱𝑥                                      (7.19) 

At the same time, by applying the divergence theorem to the volume integrals of the left hand side 

of the above equation yields 

∬(�̂�∇𝑥�̂� − �̂�∇𝑥�̂�) · 𝒏 𝑑𝑆𝑥
𝑒 +∬(�̂�∇𝑥�̂� − �̂�∇𝑥�̂�) · 𝒏 𝑑𝑆𝑥

𝑖 = �̂�(𝒚) −∭�̂��̂� 𝑑𝒱𝑥                (7.20) 

In general, Si is chosen so that it coincides with solid body boundaries (if present) and if the domain 

is not externally bounded Se may be moved to infinity. In this latter case, for 𝑟 → ∞ the contribution 

of the first surface integral goes to zero (as �̂� does), normally referring to this condition as 

Summerfeld radiation (non-reflecting boundary condition)[6]. After this hypothesis, by 

interchanging x and 𝒚 for convenience (they are just space coordinates) and by introducing the 

outward normal of Si (𝒏 = −𝒏𝑜𝑢𝑡), pointing within the fluid domain, the expression for the sound 

field takes the form of the so-called Kirchhoff-Helmholtz equation59, namely 

�̂�(𝒙) = ∬(�̂�(𝒚)∇𝑦�̂�(𝒚, 𝒙) − �̂�(𝒚, 𝒙)∇𝑦�̂�(𝒚)) · 𝒏𝑜𝑢𝑡 𝑑𝑆𝑦
𝑖 +∭�̂�(𝒚)�̂�(𝒚, 𝒙) 𝑑𝒱𝑦            (7.21) 

where 𝒙 refers to a field coordinate whilst 𝒚 refers to the source coordinate. In addition, if the 

Green’s function is exact, namely it satisfies the boundary condition on Si[5], then the surface 

                                                           
58 Where use has been done of the integration rule for the delta function:  ∭𝑓(𝒙)𝛿(𝒙 − 𝒙0) 𝑑𝒱 = 𝑓(𝒙0). 
59 The Kirchhoff-Helmholtz equation is one of the most important in acoustic, not only because it represents the basic 

relation for the theory of sound propagation but also for numerical solution methods like the Boundary Element 

Method. 



161 
 

integral in eq. (7.21) gives no contribution and the final expression of the sound field is given by the 

following relation 

�̂�(𝒙) = ∭�̂�(𝒚)�̂�(𝒚, 𝒙) 𝑑𝒱𝑦                                                          (7.22) 

which expresses the sound field of a generic distribution of source as superposition of point source 

solutions or monopole fields, as schematized in Figure 7.5. 

 

Figure 7.5 – Superposition of monopole contributions to build up the total sound field due to a source distribution. 

Equation (7.22) is very important and generally valid, however the analytic (and so exact) 

expression of the Green’s function is known only for few cases, e.g. the free field case. Therefore, if 

eq. (7.14) is inserted in eq. (7.22) the frequency domain representation of pressure field resulting 

from a source distribution in a free field without solid boundary is obtained, namely 

�̂�(𝜔, 𝒙) = ∭
�̂�(𝜔,𝒚) 𝑒−𝑗𝑘𝑟

4𝜋𝑟
𝑑𝒱𝑦                                                          (7.23) 

where r represents the distance from the single monopole source, i.e. 𝑟 = |𝒙 − 𝒚|. Obviously, the 

time domain representation of the sound field expressed by eq. (7.23) is simply 

𝑝′(𝒙, t) =∭
𝑠(𝒚,𝑡𝑒)

4𝜋𝑟
𝑑𝒱𝑦                                                               (7.24) 

where 𝑡𝑒 = 𝑡 − 𝑟 𝑎0⁄  and it is called emission time. As it is possible to appreciate from eq. (7.24), it 

is the time instant at which the sound wave, reaching point 𝒙 at t, was emitted. In fact, the time lag 

𝑟 𝑎0⁄  represents the time taken for sound wave to travel a distance 𝑟 at the sound speed 𝑎0. 

7.2 Multipole expansion of sound fields 

From what above, it has been shown that the sound field due to a whatever complicated source 

distribution may be seen, thanks to the Green’s function, as a superposition of monopole fields. 

However, another simplification is possible, especially useful when, within the source terms of the 

inhomogeneous wave equation (7.7), some spatial derivatives appear. It will be shown that 

particular arrangement of monopole sources may be thought as equivalent to others characteristic 

sound sources thanks to the concept of multipole expansion of a sound field. However, before 

introducing the concept of multipole expansion, one further observation about the nature of the 

solution of the wave equation is necessary. From what it has been described at the beginning of the 
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previous paragraph, the Green’s function, expressed by eq. (7.14), satisfies the Helmholtz equation 

for all points except at the origin of the disturbance, namely 

∇2�̂� + 𝑘2�̂� = 0          , 𝑟 ≠ 0                                                      (7.25) 

By applying a spatial derivative to eq. (7.25), it follows that 

(∇2 + 𝑘2)
𝜕�̂�

𝜕𝑥𝑖
= 0          , 𝑟 ≠ 0                                                     (7.26) 

where it has been possible to exchange the order between the wave operator Ƚ and the differential 

operator since Ƚ has a constant coefficient and �̂� is also sufficiently regular for  𝑟 ≠ 0[5]. From eq. 

(7.26), it is possible to point out that 𝜕�̂� 𝜕𝑥𝑖⁄  is also a possible solution for the free space wave 

equation. Thus, by means of spatial derivatives, it is possible to generate a whole family of new 

solutions for the wave equation. These solutions are called multipoles and may be expressed as 

�̂�𝑛 =
𝜕𝑛

𝜕𝑥1
𝑖 𝜕𝑥2

𝑙𝜕𝑥3
𝑘 (
𝑒−𝑗𝑘𝑟

4𝜋𝑟
)                                                      (7.27) 

where 𝑛 = 𝑖 + 𝑙 + 𝑘 and �̂�𝑛 is called multipole of order 2n. As it will be clear in the next paragraph, 

when dealing with the Lighthill’s theory for the aeroacoustic generation of sound, the multipole 

expansion is very useful for better understanding the nature of aerodynamic sources. Anyway, the 

first three multipoles are the monopole (𝑛 = 0), which corresponds to solutions of the type of eq. 

(7.24), dipole (𝑛 = 1) and quadrupole (𝑛 = 2). The order of the multipole is the number of 

elementary sources (monopoles) needed to generate the sound field �̂�𝑛. For example, let focus on 

the physical situation described in Figure 7.6. Here, by examining the source term (𝜕�̂� 𝜕𝑥𝑖⁄ ) in the 

wave equation, the nature of the sound source is such that the corresponding sound field is a dipole 

field (refer to Figure 7.6 (a ). 

 

Figure 7.6 – Dipole sound field a) and associated multipole expansion b). 

From what above, the dipole field is of the form 

�̂� =
𝜕

𝜕𝑥𝑖
(
𝑒−𝑗𝑘𝑟

4𝜋𝑟
) =

𝜕�̂�

𝜕𝑥𝑖
                                                               (7.28) 

However, a general function at a particular point in space may be expressed by means of its Taylor 

expansion series, namely 
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𝑓(𝑥 + 𝑥0) = 𝑓(𝑥) +
𝑑𝑓(𝑥)

𝑑𝑥
(∆𝑥) +

1

2!

𝑑2𝑓(𝑥)

𝑑𝑥2
(∆𝑥)2 +⋯+

1

𝑛!

𝑑𝑛𝑓(𝑥)

𝑑𝑥𝑛
(∆𝑥)𝑛 + 𝑜(∆𝑥)𝑛            (7.29) 

which is an exact formulation for ∆𝑥 → 0. Hence, the right end side of eq. (7.28) may be rewritten 

as 

𝜕�̂�

𝜕𝑥𝑖
=
�̂�(𝑟)−�̂�(𝑟−ℎ)

ℎ
                                                                 (7.30) 

namely, the dipole field �̂� is obtained by the superposition of two equal monopole fields, �̂�(𝑟) and 

�̂�(𝑟 − ℎ) (in antiphase as suggested by the minus sign), spaced one another by a small quantity h. 

Moreover, thanks to the Taylor expansion series, it is possible to express a whatever complicated 

sound field generated by a set of monopole around the origin (see eq. (7.23)), as superposition of 

multipoles. As it will be clear in the next paragraphs, at low frequency, which means for low values 

of the Helmholtz number (compact source region), the first non-zero term will dominate the sound 

field and the radiated power. 

Thanks to eq. (7.23), the frequency domain representation of a sound field corresponding to the 

contribution of one single monopole m may be expressed as 

�̂�𝑚(𝜔, 𝒙) =
�̂�𝑚(𝜔,𝒚𝒎) 𝑒

−𝑗𝑘𝑟𝑚

𝑟𝑚
                                                            (7.31) 

where again the time factor 𝑒𝑗𝜔𝑡 has been omitted for clarity of the notation, whilst the 4𝜋 factor 

has been embedded in the source amplitude �̂�𝑚 and 𝑟𝑚 = |𝒙 − 𝒚𝒎| stand for the distance vector 

between point 𝒙 and the position of the monopole source. As already seen, the total sound field is 

obtained by the superposition of all the source contributions, namely 

�̂�(𝜔, 𝒙) = ∑
�̂�𝑚(𝜔,𝒚𝒎) 𝑒

−𝑗𝑘𝑟𝑚

𝑟𝑚
𝑚                                                          (7.32) 

Hence, by applying the “3-D” version of eq. (7.29) with 𝒙𝟎 = −𝒚𝒎 and 𝑓(𝑥) =
 𝑒−𝑗𝑘𝑥

𝑥
, yields 

�̂�(𝜔, 𝒙) = ∑ �̂�𝑚(𝜔, 𝒚𝒎) [1 − (𝒚𝒎∇𝑥) +
1

2!
(𝒚𝒎∇𝑥)

𝟐 +⋯+
(−1)𝑛

𝑛!
(𝒚𝒎∇𝑥)

𝑛 + 𝑜(𝒚𝒎)
𝑛]
 𝑒−𝑗𝑘𝑥

𝑥𝑚            

(7.33) 

where 𝑥 = |𝒙|. Eq. (7.33) is exact for a compact source for which the variation of the emission time 

may be neglected60, being 𝑟 ≅ |𝒙|. The same procedure may be applied to the time domain 

representation of a sound field, by imposing 𝑓(𝑥) =
𝑠𝑚(𝒚𝒎,𝑡𝑒)

4𝜋𝑥
, resulting in 

𝑝′(𝒙, t) = ∑ {1 − 𝒚𝒎∇𝑥 +⋯+
(−1)𝑛

𝑛!
(𝒚𝒎∇𝑥)

𝒏 + 𝑜(𝒚𝒎)
𝑛}𝑚
𝑠𝑚(𝒚𝒎,𝑡𝑒)

4𝜋𝑥
                     (7.34) 

However, focusing on the frequency domain may results in a simpler analysis, because the 

derivatives are applied to the exponential factor. So, by introducing the Cartesian tensor notation 

                                                           
60 A source region is said to be compact when its characteristic dimension 𝐿 is much smaller than the wavelength, which 

simply implies that 𝐻𝑒 = 𝑘𝐿 ≪ 1. For a point 𝑟 within the sound field, the emission time is responsible for the phase 

shift given by 𝑒𝑗(𝜔𝑡−𝑘𝑟). Such phase shift 𝑘𝑟 = 𝑘(𝑥 − 𝐿), coincides with 𝑘𝑥 for a compact source. 
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and changing the order of the summations yields to the desired expansion of the total sound field in 

terms of multipoles, namely 

�̂�(𝜔, 𝒙) = [�̂� − �̂�𝑖
𝜕

𝜕𝑥𝑖
+ �̂�𝑖𝑘

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑘
+⋯]

 𝑒−𝑗𝑘𝑥

𝑥
                                (7.35) 

where the versors of the i-th and k-th directions have been suppressed for clarity of the notation, 

whilst  �̂�, �̂�𝑖 and �̂�𝑖𝑘 stand for 

�̂� = ∑ �̂�𝑚(𝜔, 𝒚𝒎)𝑚                                                                 (7.36) 

�̂�𝑖 = ∑ �̂�𝑚(𝜔, 𝒚𝒎)𝑚 𝒚𝒎𝒊                                                         (7.37) 

�̂�𝑖𝑘 =
1

2
∑ �̂�𝑚(𝜔, 𝒚𝒎)𝑚 𝒚𝒎𝒊𝒚𝒎𝒌                                                (7.38) 

In general, only the first three multipoles are important in sound field characterization and the 

results of the summations in eq. (7.36), (7.37) and (7.38) are called source strength. Thanks to the 

multipole expansion, the sound field due to a whatever complicated simple sources arrangement 

may be seen as made up by the superposition of fields due to monopole, dipole and quadrupole. 

This is schematically depicted in Figure 7.7. 

 

Figure 7.7 – Multipole expansion of sound field. 

Another important consequence of eq. (7.24) is that, for source terms involving spatial derivatives 

of order 𝑛, it is possible to rewrite the resulting sound field as superposition of multipole of order 

2𝑛. In fact, by performing a spatial derivative on the wave equation, yields 

𝜕𝑛

𝜕𝑥1
𝑖 𝜕𝑥2

𝑙𝜕𝑥3
𝑘 [

1

𝑎0
2

𝜕2

𝜕𝑡2
− ∇2] 𝑝′ =

𝜕𝑛𝑠(𝒙,𝑡)

𝜕𝑥1
𝑖 𝜕𝑥2

𝑗
𝜕𝑥3
𝑘
                                            (7.39) 

where 𝑝′ satisfies eq. (7.17)1. If 𝑝′ is assumed sufficiently regular, the order between the spatial 

derivative and the wave operator may be interchanged, giving 

𝑝𝑛
′ (𝒙, t) =∭

𝜕𝑛

𝜕𝑥1
𝑖 𝜕𝑥2

𝑗
𝜕𝑥3
𝑘
[
𝑠(𝒚,𝑡𝑒)

4𝜋𝑟
] 𝑑𝑉𝑦                                             (7.40) 

where 𝑝𝑛
′ (𝒙, t) stands for the total multipole field of order 2𝑛. Equation (7.40) represents the free 

field solution of the inhomogeneous wave equation as superposition of multipoles instead of 

monopoles. This is a very convenient form of rewriting the sound field due to aeroacoustics 

sources, as it will be clear later. 



165 
 

Before going through the theory of how sound is generated aerodynamically, it is important to 

characterize the monopole, dipole and quadrupole sound field. Firstly, in order to be able to 

understand the basic differences among these particular sound fields, it is advisable to get 

comfortable with the concepts of near and far field. Such subdivision is very useful when 

approaching to sound propagation problems because, as it will be clear in the following, only the far 

field term is responsible for the acoustic power radiation. The transition from near field and far field 

is regulated by a dimensionless number, namely 

{
𝑘𝑟 ≫ 1 → 𝑓𝑎𝑟𝑓𝑖𝑒𝑙𝑑
𝑘𝑟 ≪ 1 → 𝑛𝑒𝑎𝑟𝑓𝑖𝑒𝑙𝑑

                                                               (7.41) 

which means that, conventionally, for distances from the source greater than the wavelength the 

sound field is called radiation field and for distances smaller than the wavelength it is called near 

field. The reason why radiated sound is much less than the pseudo-sound should be clear after the 

understanding of the characteristic monopole, dipole and quadrupole sound field. 

7.2.1 Monopole source 

As already mentioned above, the type of source that generates a sound field of the form of eq. 

(7.16) is called monopole source and the corresponding sound field is called monopole field. As the 

Green’s function suggests, the free field monopole field corresponds to an inverse square low of 

sound intensity at all distances from the source. This is because for spherical waves, as it happens 

for plane waves, the sound intensity is proportional to the square of the pressure disturbance (the 

constant of proportionality being the inverse of the characteristic impedance of the medium). An 

example of such mechanism of sound generation in fluid is represented by unsteady injection of 

mass[3]. When such source is located at the origin, the resulting sound field is a pure monopole 

field as depicted in Figure 7.8. 

 

Figure 7.8 -  Point source placed at the origin a) and corresponding sound field at 500Hz b). 
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The color map of Figure 7.8 b) indicates the intensity of the pressure fluctuations in the sound field. 

More precisely the red and blue color indicates compression and rarefaction respectively. A classic 

example of unsteady mass injection process is a radially oscillating sphere (fluid or solid). Of 

course, the produced sound is independent of the density of the sphere, but depends only upon the 

unsteady mass (and so volume produced and the density) produced in the surrounding medium. For 

example, any foreign body in a fluid whose volume pulsates, acts as a sound source and the mass 

outflow from the body is 

�̇� = 𝜌0�̇�                                                                       (7.42) 

 

Figure 7.9 – Isotropic volume pulsation of a foreign body within a fluid. 

Actually, it is intuitive to find out that only the rate of change of the mass outflow produces sound61 

and, thanks to eq. (7.34), the pressure fluctuations in a three-dimensional infinite space are given by 

𝑝𝑀
′ (𝑡, 𝒙) =

1

4𝜋𝑥

𝜕�̇�(𝑡−𝑥 𝑎0⁄ )

𝜕𝑡
                                                        (7.43) 

that is a pure monopole field, since both the dipole and quadrupole terms are zero (the source is 

located at the origin and so 𝑦𝑚 = 0). As possible to point out from eq. (7.43), the pressure 

fluctuation at a generic point 𝑥 faithfully follows those of the source except for the emission time 

necessary to reach that point. The rate of change of the mass injection �̇�(𝑡) = 𝜕�̇� 𝜕𝑡⁄  is called 

source strength, indicated as 𝑆0 in Figure 7.8. Of course, as eq. (7.43) suggests, a monopole source 

is omnidirectional, as it is possible to appreciate from the directivity plot in Figure 7.10. 

                                                           
61 It is the only term appearing in the inhomogeneous wave equation when mass injection is considered in the 

conservation of mass. 
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Figure 7.10 – Directivity plot at 10 Hz of a monopole source having a unit amplitude. The line refer to a 1𝑚 of radius 

from the source. 

Another very important thing which characterizes a simple source is that the sound field cannot be 

divided in near field and far field. This is because the expression of the sound field do not change as 

the non-dimensional number 𝑘𝑥 changes (see eq. (7.44)). Therefore, the sound power radiated by a 

monopole source may be calculated thanks to the pressure fluctuations expressed by eq. (7.43). 

However, in order to highlight the frequency dependence of the radiated power, let’s use the 

frequency domain representation of the sound field, namely 

�̂�(𝜔, 𝒙) = 𝑗
1

4𝜋𝑥
𝜔�̂�𝑒𝑗(𝜔𝑡−𝑘𝑥)                                                       (7.44) 

where the time dependence of the mass injection has be assumed of the type 𝑞(𝜔) = �̂�𝑒𝑗(𝜔𝑡−𝑘𝑥). 

Hence the power radiated may be expressed as 

𝑊𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒 =
|𝑝|2

𝜌𝑎0
𝑆 =

�̂�2

4𝜋𝜌𝑎0
𝜔2 ≅ 𝑘2                                                      (7.45) 

which means that, for a given source strength (rate of change of mass flow), the radiated power 

varies as the square of the wavenumber. This is a very important aspect which has to be taken into 

account when comparing the low frequency sound radiation of other type of sources. 

One important example of monopole source modelling is represented by the openings of both intake 

and exhaust systems in internal combustion engines. The volume flow injected into the surrounding 

medium, may be calculated thanks to the surface integral of the flow velocity over the intake or 

exhaust mouth. 

 

Figure 7.11 – Pulsating volume flow from a pipe opening. 
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In fact, thanks to the flow velocity it is possible to easily calculate the time derivative of the mass 

flow. Another example is represented by a loudspeaker when mounted in a box, as depicted in 

Figure 7.12. 

 

Figure 7.12 – Volume flow produced when a loudspeaker mounted in a box. 

In fact, in this case, because of the box a net volume flow is produced in the surrounding medium 

giving rise to a monopole field. This is especially truth for low frequencies, for which the 

wavelength is greater than the box size. Furthermore, the collapsing cavitation bubbles in liquid are 

another important example of simple source. The bubbles arise when the local static pressure is 

below the vapor pressure. Due to their instability, the bubbles may suddenly implode and thanks to 

the rapid change of volume, the high time derivative �̇�(𝑡) may generate high sound levels. 

7.2.2 Dipole source 

Another elementary mechanism of sound generation is represented by a dipole source and the 

corresponding sound field is called dipole field[3]. As suggested by eq. (7.30), a pure dipole field is, 

for example, generated when two equal and opposite monopole sources are very close to one 

another. Let consider for example the source distribution 𝑠(𝒚, 𝑡) as it is schematically shown in 

Figure 7.13. 

 

Figure 7.13 -  Dipole source a) and corresponding dipole field at 500 Hz b). 
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Again, in Figure 7.13 b), the red and blue color indicates compression and rarefaction respectively. 

First thing to note is that, of course, the expression of the sound field is changed with respect to the 

simple monopole source, being a pure dipole field62. In fact, according to the multipole expansion of 

the sound field, the distribution of sources is such that both monopole and quadrupole terms (�̂� =

�̂� − �̂� and �̂�11 =
1

2
[�̂�(0,5𝑙)2 + (−�̂�)(0,5𝑙)2]) vanish63. Consequently, in order to obtain a more 

suitable expression for pressure fluctuations, consider a particular 𝑖𝑡ℎ direction, connecting a field 

point 𝑝 and the middle of the distance between the two sources, on which apply the multipole 

expansion formula. Thus, eq. (7.34) yields 

𝑝′(𝑡, 𝒙) = − {−0,5𝑙 𝑐𝑜𝑠𝜗 [
(−�̇�)

4𝜋𝑥
(−

1

𝑥
) +

(−�̈�)

4𝜋𝑥
(−

1

𝑎0
)]} − {0,5𝑙 𝑐𝑜𝑠𝜗 [

�̇�

4𝜋𝑥
(−

1

𝑥
) +

�̈�

4𝜋𝑥
(−

1

𝑎0
)]}   

= −(−
�̇�

4𝜋𝑥

1

𝑥
0,5𝑙 𝑐𝑜𝑠𝜗 −

�̈�

4𝜋𝑥

1

𝑎0
0,5𝑙 𝑐𝑜𝑠𝜗) − (−

�̇�

4𝜋𝑥

1

𝑥
0,5𝑙 𝑐𝑜𝑠𝜗 −

�̈�

4𝜋𝑥

1

𝑎0
0,5𝑙 𝑐𝑜𝑠𝜗)                   

(7.46) 

or 

𝑝𝐷
′ (𝑡, 𝒙) =

�̇�(𝑡−𝑥 𝑎0⁄ )

4𝜋𝑥

𝑙 𝑐𝑜𝑠𝜃

𝑥
+
�̈�(𝑡−𝑥 𝑎0⁄ )

4𝜋𝑥𝑎0
𝑙 𝑐𝑜𝑠𝜃                                       (7.47) 

where the term 𝑙 𝑐𝑜𝑠𝜃 is due to the product of the source positions and the versor of the i-th 

direction, namely |𝒚𝒎𝒊|, and it represents the difference between the distance of point 𝑥 and the two 

source positions 𝑟+ and 𝑟−, both along the chosen i-th direction. This is schematically depicted in 

Figure 7.14. 

 

Figure 7.14 -  Distances of a point from the source positions along the i-th direction. 

                                                           
62 The expression of the total sound field would be 𝑝𝐷

′ (𝑡, 𝒙) =
1

4𝜋𝑥1

𝜕�̇�(𝑡−𝑥1 𝑎0⁄ )

𝜕𝑡
−

1

4𝜋𝑥2

𝜕�̇�(𝑡−𝑥2 𝑎0⁄ )

𝜕𝑡
, being 𝑥1 and  𝑥2 the 

distance from the two sources respectively. 

63 �̂�1 = �̂� 0,5𝑙 + (−�̂�)(−0,5𝑙) = �̂�𝑙 and the sound field may be rewritten as  �̂�(𝜔, 𝒙) = �̂�𝑙
𝜕

𝜕𝑥1
(
 𝑒−𝑗𝑘𝑥

𝑥
). 
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It is that difference in distances from the sources that makes the dipole field not omnidirectional 

anymore. In fact, as it is possible to appreciate from Figure 7.13 b), there are some directions, say 

north and south, along which the contributions of the two sources cancel out. In order to understand 

such behavior, let’s look at Figure 7.15, where point 𝑥 has been chosen on the north direction. 

 

Figure 7.15 -  Location of point x along the north direction, with respect to the dipole axis. 

In this case, point 𝑥 has been chosen so that |𝒚+
𝒊 | = |𝒚−

𝒊 | = 0 (𝜃 = 𝜋 2⁄ ) and so the distances from 

the two sources along the north direction are equal; the considered point is equally spaced with 

respect to the two sources. This implies that the two sound waves (opposite in phase) travel the 

same distance in order to reach 𝑥 and so cancelling out. Consequently, within the left-half plane all 

the points along each direction are closer to −𝑆0 and so it is its contribution (phase) which 

dominates the sound field, as shown by Figure 7.16. 

 

Figure 7.16 -  Sound field at a point located in the half-left plane. 

Obviously, the contrary happens for the right-half plane (see the differences in Figure 7.13 b)). So, 

the wavefronts moving to the left and to the right are 180° out of phase with respect to each other. 

The far field directivity plot of a dipole source is depicted in Figure 7.17. 
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Figure 7.17 – Directivity plot at 500 Hz of a dipole source having a unit amplitude. The line refer to a 2𝑚 of radius 

from the source (𝑘𝑟 ≫ 1). 

Another important thing to note is that, according to eq. (7.37), the source strength equals64 �̂̇�𝑙 and 

so the same pressure fluctuations would occur if the sources were half as strong but twice as closer 

to each other. Furthermore, with reference to the dipole field expressed by eq. (7.47), the first term 

(due to the derivative with respect to the 𝑥−1) represents the near field term, whilst the second term 

(due to the derivative of the time lag 𝑥 𝑎0⁄ ) represents the radiation, or far field, term. This 

subdivision of the sound field in two parts is very useful in understanding the nature of the pressure 

fluctuations. In fact, by comparing the dipole field with the simple (monopole) source field, it is 

easy to find out that the near field term scales like 𝑙 𝑥⁄ , whilst the far field term scales like the 

Helmholtz number, namely 

𝑝𝑑𝑖𝑝𝑜𝑙𝑒
′

𝑝𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒
′ =

𝑙 𝑐𝑜𝑠𝜃

𝑥
+
𝜔𝑙 𝑐𝑜𝑠𝜃

𝑎0
=
𝑙 𝑐𝑜𝑠𝜃

𝑥
+
2𝜋𝑙 𝑐𝑜𝑠𝜃

𝜆
≅
𝑙 

𝑥
+ 𝐻𝑒                                      (7.48) 

When the Helmholtz number is small, the source region is said to be compact with respect to the 

wavelength and aerodynamic sources are generally compact (for the characteristic involved 

frequency scale). Hence, at distances 𝑥 large compared with the wavelength (𝑘𝑥 ≫ 1), the first 

term in eq. (7.48) is smaller than the second one which is therefore the only responsible for the 

acoustic radiation. Here the pressure fluctuations fall off  like 1 𝑟⁄ , like the monopole field. Closer 

to the source region than the wavelength (𝑘𝑥 ≪ 1), the near field term is predominant and the 

sound field is quite intense, being induced mainly by the nearest monopole source. Therefore, an 

important result from the above analysis is that although the near field is somehow characterized by 

more intense fluctuations with respect to the monopole radiation (at least for distances smaller than 

source region characteristic length), far less energy is radiated in the far field. In other words, the 

radiation efficiency is reduced, when passing from a monopole to a dipole radiation, by a factor 

                                                           
64 In the frequency domain �̇� = �̂̇�𝑒𝑗𝜔𝑡𝑒=>�̈� =

𝜕�̇�

𝜕𝑡
= 𝑗𝜔�̂̇�𝑒𝑗𝜔𝑡𝑒 . Therefore in eq. (7.35) it is justified the definition of the 

source strength as �̂�𝑖 = ∑ �̂̇�𝑚(𝜔, 𝒚𝒎)𝑚 𝒚𝒎𝒊 = �̂̇�𝑙𝑐𝑜𝑠𝜃. 
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equal to the Helmholtz number. In fact, a possible way to prove that is by means of eq. (7.48), for 

which the square of the far field pressure fluctuations are given by 

(𝑝𝑑𝑖𝑝𝑜𝑙𝑒
′ )

2
= (𝑝𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒

′ )
2
(𝐻𝑒)2                                                       (7.49) 

This means that the power radiated by a dipole field may be expressed as 

𝑊𝑑𝑖𝑝𝑜𝑙𝑒 =
�̂�2

4𝜋𝜌𝑎0
𝜔2(𝑘𝑙)2 ≅ 𝑘4                                                   (7.50) 

which means that for a given source strength (rate of change of mass flow), the radiated power 

varies as the fourth power of the wavenumber. Thus, it follows that a dipole is less efficient in 

radiation low frequency sound with respect to a monopole source. In Figure 7.18, a qualitative 

comparison between the radiated power by a monopole and by a dipole source is depicted, for a 

given source strength, as function of the frequency. 

 

Figure 7.18 – Comparison of the radiated power from both a monopole and a dipole source at low frequencies. 

From the above figure, it is clear that a dipole source is less efficient in radiating especially the low 

frequency sound. 

From what has been described in the previous section, a monopole field may be generally associated 

to an unsteady mass injection process. Another process is instead associated with a dipole field. To 

the aim of understanding which process is involved, it is necessary to analyze what happens within 

the source region. Embedded within this out of phase pulsations there is a fluctuation of the 

momentum, whose qualitative quantification is possible by considering the mass flow across a disk 

orthogonal to the distance between the sources[3]. The intuitive trend of such mass flow is depicted 

in Figure 7.19. 
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Figure 7.19 – Mass flow trend near the dipole source. 

Firstly, outside the source region, the mass flow always points outside. Thus, even if the exact trend 

is unknown, it must suddenly drop by an amount equal to 𝑞(𝑡) when approaching  −𝑞(𝑡) and it 

must suddenly rise of the same quantity at the location of 𝑞(𝑡). In fact, within the source region, 

when −𝑞(𝑡) pulses the mass at 𝑞(𝑡) flows to the left, which means that it drops by an amount  𝑞(𝑡). 

The contrary happens near −𝑞(𝑡) when 𝑞(𝑡) pulses. It follows that the total momentum inside the 

source region equals the area under the curve mass flow versus position, namely −𝑞(𝑡)𝑙. However, 

no net momentum can be produced by simple sources and so in the external dipole field there must 

be an opposite momentum equal to 𝑞(𝑡)𝑙. The rate of change of such momentum equals a force 

which, in this case, acts on the surrounding fluid, namely 

�̇�(𝑡)𝑙 = 𝐹                                                                       (7.51) 

Therefore, according to eq. (7.47), it is possible to point out that a pure dipole field is given by the 

first order spatial derivative of the field associated with a simple source, namely 

𝑝𝐷
′ (𝑡, 𝒙) =

𝜕

𝜕𝑥
(
�̇�𝑙

4𝜋𝑥
)                                                                (7.52) 

Consequently, by combining eq. (7.51) and (7.52), it is clear how the dipole radiation is due to a 

force with which the dipole acts on the external fluid. The force’s direction is represented by the 

dipole axis and its orientation (and magnitude) oscillates from the negative to the positive source. In 

general, there could be also other external forces acting on the fluid, e.g. in case where there is a 

moving body. In this case the sound field may be seen as composed by a single dipole, whose 

strength is given by the total force acting on the fluid. This latter must take into account the 

presence of the moving body, namely 

𝐹𝑡𝑜𝑡 = 𝐹𝑑𝑖𝑝𝑜𝑙𝑒 + 𝜌𝑓𝑙𝑢𝑖𝑑𝑉𝑏𝑜𝑑𝑦�̇�                                                     (7.53) 
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The second term on the right-end side of eq. (7.53) represents the rate of change of momentum of 

the fluid being displaced by the solid body. Due to the low air density, this term is often not 

important but it is considered in propeller-noise theory[5]. 

An important example of pure dipole radiation is represented by a loudspeaker in a fluid. 

 

Figure 7.20 – Loudspeaker with no box. 

As depicted in Figure 7.20, when the membrane of the loudspeaker vibrates, no net volume flow is 

produced since when one side of the surrounding fluid in compressed the others is rarefied at the 

same time. More precisely, while the front is pushing outwards the back is sucking in. This 

produces an oscillating force on the fluid, whose axis is orthogonal to the membrane. Another very 

common example of unsteady forces acting of fluid is represented by the periodic flow separation 

(vortex shedding) when a non-moving solid object appears within a flow as an obstacle. In this 

flow, vortices are created at the back of the body and detach periodically from either side of it. 

Thus, the fluid flow past the object creates alternating low-pressure vortices on the downstream side 

of the object, as schematized in Figure 7.21. 

 

Figure 7.21 – Vortex shedding constituting an acoustic dipole. 

Of course, the obstacle will tend to move toward the low-pressure zone. Such fluctuating pressure 

produces tonal noise with a characteristic frequency corresponding the Strouhal frequency (𝑆𝑡 =

𝑓𝑙 𝑣⁄ ). In addition, if the body’ structure is not mounted rigidly and the frequency of vortex 

shedding matches the resonance frequency of the structure, the structure can begin to resonate, 

vibrating with harmonic oscillations driven by the energy of the flow. This vibration is the cause for 
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overhead power line wires "singing in the wind", and for the fluttering of automobile whip radio 

antennas at some speeds. 

7.2.3 Quadrupole source 

As suggested by the word itself, a quadrupole source corresponds to two equal and opposite dipole 

sources, divided by a small distance[3], as depicted in Figure 7.22. 

 

Figure 7.22 – Quadrupole sound field a) and associated multipole expansion  in terms of dipoles b). 

In fact, in the limit as 𝜀𝑖 → 0, it is possible to mathematically rewrite a pure quadrupole field as two 

equal and opposite dipoles separated by a small distances, namely 

𝜕2�̂�

𝜕𝑥𝑖
2 =

𝜕�̂�(𝑟)

𝜕𝑥

1

𝜀𝑖
−
𝜕�̂�(𝑟−𝜀𝑖)

𝜕𝑥

1

𝜀𝑖
                                                               (7.54) 

and, obviously, each dipole may be seen as superposition of two monopoles. For example, let 

consider the sources arrangement which is shown in Figure 7.23. As it will be clear later, this is 

called longitudinal quadrupole because all the sources are arranged in line. 

 

Figure 7.23 – Longitudinal quadrupole a) and corresponding acoustic field at 500 Hz b). 
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According to the multipole expansion formula, the first non-zero term is the quadrupole term, and 

the time domain expression of the sound field becomes 

𝑝′(𝑡, 𝒙) =
1

2
{(−𝑏)𝑐𝑜𝑠𝜃(−𝑏)𝑐𝑜𝑠𝜃 [2

𝑆−𝑏

4𝜋𝑥3
+

�̇�−𝑏

4𝜋𝑥2
1

𝑎0
+

�̇�−𝑏

4𝜋𝑥2
1

𝑎0
+
�̈�−𝑏

4𝜋𝑥

1

𝑎0
2] +

(−𝑎)𝑐𝑜𝑠𝜃(−𝑎)𝑐𝑜𝑠𝜃 [−2
𝑆−𝑎

4𝜋𝑥3
−

�̇�−𝑎

4𝜋𝑥2
1

𝑎0
−

�̇�−𝑎

4𝜋𝑥2
1

𝑎0
−
�̈�−𝑎

4𝜋𝑥

1

𝑎0
2] + (𝑎)𝑐𝑜𝑠𝜃(𝑎)𝑐𝑜𝑠𝜃 [−2

𝑆𝑎

4𝜋𝑥3
−

�̇�𝑎

4𝜋𝑥2
1

𝑎0
−

�̇�𝑎

4𝜋𝑥2
1

𝑎0
−

�̈�𝑎

4𝜋𝑥

1

𝑎0
2] + (𝑏)𝑐𝑜𝑠𝜃(𝑏)𝑐𝑜𝑠𝜃 [2

𝑆𝑏

4𝜋𝑥3
+

�̇�𝑏

4𝜋𝑥2
1

𝑎0
+

�̇�𝑏

4𝜋𝑥2
1

𝑎0
+

�̈�𝑏

4𝜋𝑥

1

𝑎0
2]}                                               

(7.55) 

or65 

𝑝′(𝑡, 𝒙) = 𝑐𝑜𝑠2𝜃 (
𝑆

2𝜋𝑥3
𝑙𝐿 +

�̇�

4𝜋𝑥2
1

𝑎0
𝑙𝐿 +

�̈�

4𝜋𝑥

1

𝑎0
2 𝑙𝐿)                                       (7.56) 

where 𝑙 stands for the distance between two opposite monopoles (which make a dipole) and 𝐿 is the 

distance between the two dipoles. By comparing the quadrupole field with the simple source field, it 

comes out that66 

𝑝𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑜𝑙𝑒
′

𝑝𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒
′ ≅ (

𝐿

𝑥
)
2

+
𝐿

𝑥
 
2𝜋𝐿

𝜆
+ (

2𝜋𝐿

𝜆
)
2

                                                    (7.57) 

From eq. (7.57) it is easy to find out that the far field term scales as the square of the Helmholtz 

number with respect to the monopole field, namely 

(
𝑝𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑜𝑙𝑒
′

𝑝𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒
′ )

𝑓𝑎𝑟 𝑓𝑖𝑒𝑙𝑑

= (
2𝜋𝑙

𝜆
)
2

                                                           (7.58) 

This means that the radiated power by a quadrupole field may be expressed as 

𝑊𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑜𝑙𝑒 =
�̂�2

4𝜋𝜌𝑎0
𝜔2(𝑘𝑙)4 ≅ 𝑘6                                                   (7.59) 

which means that for a given source strength (rate of change of mass flow), the radiated power 

varies as the inverse sixth power of the wavelength. This means that a quadrupole radiation should 

be even less efficient than a dipole field in radiating low frequency sound. A very interesting 

experiment about that may be found in reference[7]. When the distance between the center of the 

dipoles is orthogonal to the dipole axes, the quadrupole is said to be lateral. In figure below, the far 

field directivity plots of both longitudinal and lateral quadrupole are shown. 

                                                           
65 𝑏2 − 𝑎2 = (𝑏 − 𝑎)(𝑏 + 𝑎) = 𝑙𝐿. 
66 In the limit of  𝐿 → 𝑙. 
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Figure 7.24 – Far field directivity plots of: a) longitudinal and b) lateral quadrupole. 

An example of longitudinal quadrupole sound source is represented by a tuning fork. In fact, when 

the two tines vibrate in antiphase, they induce two equal and opposite forces acting on the 

surrounding medium as schematically depicted in Figure 7.25. 

 

Figure 7.25 – Antiphase oscillating tines of a tuning fork making two equal and opposite dipoles. 

Another important example of quadrupole radiation is represented by a turbulent jet. In fact, in this 

case there is no time variable rate of introduction of new fluid (there is no rate of change at all), so 

the monopole term equals zero. There are no solid obstacles which can cause unsteady forces on the 

fluid, so the total dipole strength is zero and therefore, neglecting the fact that the jet is hot67, the 

radiation is of quadrupole type. In order to find out which is the mechanism which generates a 

quadrupole,  let’s focus on a 2-D turbulent jet, as it is schematically depicted in Figure 7.26. 

 

Figure 7.26 – 2-D turbulent jet representation. 

As the above figure suggests, the momentum transport across a fluid element is not only 

accomplished by pressure gradients but, for example, also by fluctuations of the velocity component 

                                                           
67 This is equivalent in considering pressure fluctuations due to only adiabatic transformation p′ = ρ′𝑎0

2. 
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orthogonal to the jet direction. Such fluctuations result in two equal and opposite forces (𝜌𝑢𝑣𝑆), as 

it is schematically depicted in Figure 7.27. 

 

Figure 7.27 – Momentum transport across a fluid element in e turbulent jet. 

Such equal and opposite fluctuating forces constitute a quadrupole whose strength per unit of 

volume equals 𝜌𝑢𝑣. In the next section, the way in which the above mentioned monopole, dipole 

and quadrupole radiation are very useful for understanding the aerodynamic generation of sound 

will be explained based on the well-known aeroacoustics analogy. 

7.3 Lighthill’s Aeroacoustic Analogy  

As briefly mentioned in the introduction, the driving phenomenon which stimulated James Lighthill 

to formulate an aeroacoustic analogy has been represented by the noise reduction from a propulsion 

jet[13][2][5]. The basic idea behind the theory is that, in order to approach a sound propagation 

problem in which source terms are present, the inhomogeneous wave equation is only valid in a 

limited zone of the acoustic domain, where sound is produced, whilst the propagation obeys to the 

homogeneous wave equation elsewhere. Such observation led to the subdivision of the acoustic 

domain in two parts which are called source field and sound field. Within the source field the 

inhomogeneous wave equation is valid, whilst in the sound field the pressure fluctuations satisfy the 

homogeneous wave equation. Consequently, the main problem was to formulate a model for the 

source field, meaning how to model sound generation due to fluid flow. To this aim, he formulated 

a so-called aeroacoustic analogy considering the jet noise case, i.e. sound production and 

propagation due to a stationary, turbulent fluid flow. To the aim of understanding such analogy, let 

consider a steady fluid flow occupying a limited region of a larger volume of fluid at rest, as 

schematically depicted in Figure 7.28. 
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Figure 7.28 – Fluid flow embedded in a very large volume of fluid at rest. 

The basic idea of the analogy is ingenious and consists in simply considering the source field as an 

acoustic medium at rest (as the real fluid outside the source region), on which an external force field 

is acting, known as some quantities in the real flow are known. Therefore, it is necessary to 

extrapolate from the flow field such equivalent external force field. The main advantage in 

considering the whole acoustic medium at rest relies on the fact that otherwise, after the sound has 

been estimated, it would be necessary to consider modification due to turbulence and propagation at 

variable speed, before the propagation in the surrounding medium may be handled. In this 

approach, such effects are incorporated within the hypothetical external force field. To the aim of 

qualitative identify such external force field, let recall the local form of momentum balance 

equation in Cartesian tensor notation, namely 

𝜕(𝜌𝑉𝑖)

𝜕𝑡
+
𝜕(𝜌𝑉𝑖𝑉𝑗)

𝜕𝑥𝑗
−
𝜕(𝑇𝑖𝑗)

𝜕𝑥𝑗
= 0                                                  (7.60) 

where generation of momentum due to external volume forces as been neglected. Such equation 

expresses that, during a fluid flow, the momentum in the 𝑖𝑡ℎ direction, contained in a small confined 

region of space, changes at a rate due to the combined effect of stresses acting on the boundaries 

(diffusive transport) and momentum flux across them (convective transport). This latter part 

(𝜌𝑉𝑖𝑉𝑗), being a divergence term, may be seen as an additional stress system, which is named either 

momentum flux tensor or instantaneous Reynolds stresses68. Consequently, the rate of change of 

momentum would be the same if the fluid is considered at rest, under the combined action of the 

real stresses and the instantaneous Reynolds stresses. However, it is not such total stress tensor 

which must be considered when acoustically modelling the source region (or better when modelling 

the acoustic source term), because it accounts also for the pressure field proportional to density 

variations through the square of the speed of sound (𝜌𝑎0
2), which is already accounted in the wave 

equation. Therefore, the equivalent external stress system acting on the fluid at rest in the source 

region would be given by 

                                                           
68  In order to not be confused with the Reynolds stresses used in turbulence modelling, which are based on the average 

of the fluctuating turbulent velocity components. 
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𝛾𝑖𝑗 = 𝜌𝑉𝑖𝑉𝑗 − 𝑇𝑖𝑗 − 𝜌𝑎0
2𝛿𝑖𝑗                                                       (7.61) 

which accounts not only for the sound generation, but also for its convection with the flow (𝜌𝑉𝑖𝑉𝑗), 

its propagation with variable speed and gradual dissipation by conduction (in part of deviations 

from adiabatic state of change69) and its gradual dissipation by viscosity. In other words, as already 

seen in chapter 1, the stresses experienced by a fluid at rest are isotropic and given by the following 

relation 

𝑇𝑖𝑗 = −𝑝𝑖𝑗𝛿𝑖𝑗                                                                (7.62) 

where within the right-hand side are involved pressure variations due to both adiabatic state of 

changes (acoustic ones proportional to density variations through the square of the speed of sound) 

and non-adiabatic state of changes (e.g. heat releases). On the other hand, when the fluid moves, the 

stresses experienced by the fluid account also for the presence of viscosity, resulting in a stress 

tensor equal to 

𝑇𝑖𝑗 = −𝑝𝑖𝑗𝛿𝑖𝑗 + 𝜏𝑖𝑗                                                            (7.63) 

Consequently, the stresses experienced by the fluid due only to its motion and eventually non-

adiabatic state of change are given by 

−𝑇𝑖𝑗 − 𝜌𝑎0
2𝛿𝑖𝑗 = 𝑝𝑖𝑗𝛿𝑖𝑗 − 𝜏𝑖𝑗 − 𝜌𝑎0

2𝛿𝑖𝑗                                             (7.64) 

which together with the momentum flux tensor represents the equivalent external stress system 

acting on the acoustic medium at rest, within the source region. In fact, once again, pressure 

variations due to adiabatic state of change are already accounted in the wave equation itself 

representing the “internal stress field” experienced when there is sound propagation. The stress 

system indicated by 𝛾𝑖𝑗 is called Lighthill tensor. 

Lighthill’s efforts have focused on estimating, from both qualitative and quantitative points of 

view[13], the acoustic power output related to the stress system 𝛾𝑖𝑗70. In this regards, he only took 

into account the source term due to steady fluid flow embedded in an unbounded acoustic medium. 

However, in the following a more general theory, which involves all the basic aerodynamic sound 

production mechanisms, will be given. 

7.3.1 Modelling approach 

To the aim of deriving the general inhomogeneous wave equation (valid not only for jet noise) 

governing the sound generation within the source region, let’s start from the local form of the 

conservation equations with the source terms kept, namely 

                                                           
69 If (p′ − ρ′𝑎0

2) ≠ 0 means that pressure variation occurs not only for acoustic phenomena but also for non-adiabatic 

phenomena like heat release. 
70 The Lighithill’s theory for the aerodynamic generation of sound is based on the assumption that the source field is 

independent from the sound field. Consequently, feedback mechanisms in which the propagation of sound modifies the 

source region (flow field) cannot be handled. 
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𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑉𝑖)

𝜕𝑥𝑖
= ℳ̇                                                               (7.65) 

𝜕(𝜌𝑉𝑖)

𝜕𝑡
+
𝜕(𝜌𝑉𝑖𝑉𝑗)

𝜕𝑥𝑗
= 𝑓𝑣,𝑖 +

𝜕(𝑇𝑖𝑗)

𝜕𝑥𝑗
                                                   (7.66) 

In particular, eq. (7.66) states that in a moving medium, the rate of change of momentum within an 

elementary control volume is due to momentum flux across the boundary and the combined action 

of an external stress system (𝑇𝑖𝑗) and the volume forces (𝑓𝑣,𝑖). However, the same elementary 

control volume would experience the same rate of change of momentum if it was at rest under the 

combined action of the same force field plus another stress term (𝛼𝑖𝑗 = 𝜌𝑉𝑖𝑉𝑗), namely  

𝜕(𝜌𝑉𝑖)

𝜕𝑡
= 𝑓𝑣,𝑖 +

𝜕(𝑇𝑖𝑗−𝛼𝑖𝑗)

𝜕𝑥𝑗
                                                                  (7.67) 

 

Figure 7.29 – Equivalent (to a flow case) stress system acting on a fluid element at rest. 

So, considering the source region as an acoustic medium at rest, the pressure, density and velocity 

may be expressed as 

{

𝑝(𝒓, 𝑡) = 𝑝0 + 𝑝𝐻
′ (𝒓, 𝑡) + 𝜌′(𝒓, 𝑡)𝑎0

2

𝜌(𝒓, 𝑡) = 𝜌0 + 𝜌
′(𝒓, 𝑡)

𝑉(𝒓, 𝑡) = 𝑉′(𝒓, 𝑡)

                                                             (7.68) 

where both pressure variations due to adiabatic and non-adiabatic state of change have been taken 

into account71. By substituting the relations (7.68) into both eq. (7.65) and (7.67), keeping only 

linear terms, yields 

                                                           
71 The heat release effect affects both pressure and density of the acoustic medium. However, despite the effect is the 

same, it may be seen as a change of stresses (pressure) or, which is the same, change of density. Therefore, when 

writing the wave equation in density based version, the effect must be taken into account as additional pressure 

variation. Vice versa, when writing the pressure based version, the effect must be taken into account as additional 

density variation. It would be erroneous to consider twice the same effect. 
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{

𝜕𝜌′

𝜕𝑡
+
𝜕(𝜌0𝑉𝑖

′)

𝜕𝑥𝑖
= ℳ̇

𝜕(𝜌0𝑉𝑖
′)

𝜕𝑡
= 𝑓𝑣,𝑖 −

𝜕(𝑝𝐻
′ +𝜌′𝑎0

2−𝜏𝑖𝑗+𝛼𝑖𝑗)

𝜕𝑥𝑗

                                                    (7.69) 

Then, by performing 𝜕(7.69)1 𝜕𝑡⁄ − 𝜕(7.69)2 𝜕𝑥𝑖⁄ , the following density based wave equation is 

obtained  

𝜕2𝜌′

𝜕𝑡2
− 𝑎0

2∇2𝜌′ =
𝜕ℳ̇

𝜕𝑡
− ∇ ∙ 𝑓𝑣 + ∇

2 (𝑝𝐻
′ − 𝜏𝑑 + 𝛼)                                      (7.70) 

which expresses the complete version of the aeroacoustic analogy first derived by J. Lighthill 

(density based version) and represents the inhomogeneous wave equation governing the sound 

production in the source region. The right end side represents the source terms acting on the 

equivalent acoustic medium at rest. They are known as the flow properties are known. Hence, the 

main advantage lies in the decoupling of the fluid dynamic problem from the acoustic one, as 

schematically depicted in Figure 7.30. 

 

Figure 7.30 – Aeroacoustic analogy. 

The pressure based version of the aeroacoustic analogy may be found if, instead of relations (7.68), 

the following relations are used 

{

𝑝(𝒓, 𝑡) = 𝑝0 + 𝑝
′(𝒓, 𝑡)

𝜌(𝒓, 𝑡) = 𝜌0 +
𝑝′(𝒓,𝑡)

𝑎0
2

𝑉(𝒓, 𝑡) = 𝑉′(𝒓, 𝑡)

+ 𝜌𝐻
′                                                    (7.71) 

In fact, in this case, non-adiabatic state of changes are taken into account as density variations, 

leaving the unknown variable 𝑝′(𝒓, 𝑡) be linked to acoustic phenomena only. The result is 

represented by the following inhomogeneous wave equation 

1

𝑎0
2

𝜕2𝑝′

𝜕𝑡2
− ∇2𝑝′ =

𝜕

𝜕𝑡
(ℳ̇ −

𝜕𝜌𝐻
′

𝜕𝑡
) − ∇ ∙ 𝑓𝑣 + ∇

2 (−𝝉𝑑 + 𝜶)                                    (7.72) 
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in which the heat release represents additional mass source term. If there are no deviations from 

adiabatic state of change the two formulations are equivalent. In Cartesian tensor form, eq. (7.72) 

becomes 

[
1

𝑎0
2

𝜕2

𝜕𝑡2
−

𝜕2

𝜕𝑥𝑖
2] 𝑝

′ =
𝜕

𝜕𝑡
(ℳ̇ −

𝜕𝜌𝐻
′

𝜕𝑡
) −

𝜕𝑓𝑣,𝑖

𝜕𝑥𝑖
+

𝜕2𝛾𝑖𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
                                    (7.73) 

Considering a situation in which there are not deviations from adiabatic state of change, according 

to the two formulations, the Lighthill tensor accounts for the instantaneous Reynolds stresses (due 

to momentum transport) and viscous stresses. However, the viscous stresses are mainly important 

for the damping of sound waves, whilst their contribution for sound production is negligible as the 

ratio between inertia forces and viscous ones is of the order of the Reynolds number, which is 

generally very high. 

Hence, summarizing, by the examination of the analytic expression of the three source terms, it is 

found that sound may be produced aerodynamically be means of three elementary mechanisms 

which are72: 

i. Monopole: unsteady flow process which lead to a fluctuation of the mass in a fixed region of 

space (or to variation of the rate of change of mass, namely 
𝜕ℳ̇

𝜕𝑡
≠ 0), as it happens for the 

pipe openings of internal combustion engines or for a loudspeaker embedded in a very large 

baffle. From what has been discussed before, this is the simplest and most efficient way of 

producing sound in fluid flows. 

ii. Dipole: by forcing the momentum in a fixed region of space to fluctuate (or similarly to 

force to rate of change of mass flux to vary, namely 
𝜕𝑓𝑣,𝑖

𝜕𝑥𝑖
≠ 0), as it happens for a loud 

speaker. Such mechanism corresponds to a fluctuating external force acting on the fluid. 

iii. Quadrupole: by forcing the net momentum flux across a fixed surface, namely 
𝜕(𝜌𝑉𝑖𝑉𝑗)

𝜕𝑥𝑗
, to 

fluctuate, as it happens when sound is generate aerodynamically with no presence of solid 

boundaries. 

This last source term is also known as Lighthill volume source as it has been first proposed by 

Lighthill in his aeroacoustic analogy[13]. In the following, the three sound generation mechanisms 

will be discussed, highlighting the relative importance of each for the sound production. 

7.3.1.1 Monopole source term 

If a source of mass is present at some point of space, a generation term appear within the mass 

conservation law (at the right-end side) and, if the mass production fluctuate, that’s equivalent to a 

sound source whose strength per unit of volume equal the rate of change of mass production itself, 

namely �̇�(𝒙, t). It therefore corresponds to the first source term in eq. (7.72), namely 

(
1

𝑎0
2

𝜕2

𝜕𝑡2
− ∇2) 𝑝′(𝒙, t) =

𝜕𝑚

𝜕𝑡
= �̇�(𝒙, t)                                                        (7.74) 

                                                           
72 A fluctuation of a quantity implies a non-constant value of its second order derivative. 
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where 𝑚 = (ℳ̇ − 𝜌𝐻
′ ) is the mass production term (rate of mass introduction), due to mass 

injection and non-adiabatic state of changes, namely mass per unit volume per unit of time 

introduced at 𝒙 and time instant  𝑡. According to the nomenclature introduced above, such source is 

the simplest acoustic source (monopole source) and, from a mathematical point of view, it does not 

involve spatial derivatives. As it is possible to appreciate from the above equation, it is also 

confirmed the previously mentioned statement according to which only the rate of change of mass 

introduction produces sound. 

If the acoustic medium is unbounded and sources of mass are distributed around some point of the 

space, thanks to eq. (7.24), it is possible to express the total monopole field as superposition of 

monopoles, namely 

𝑝′(𝒙, t) = ∫
�̇�(𝒚,𝑡𝑒)

4𝜋|𝒙−𝒚|
𝑑𝒱𝑦𝒱𝑦

                                                             (7.75) 

where 𝒚 stands for the location of a single monopole source and 𝑟 represent the distance from that 

source. The quantity �̇� is called source strength per unit of volume. If the source region is compact, 

the variation of the emission time over the sources is negligible (𝑟 = 𝑥) and the total monopole 

fields becomes 

𝑝′(𝒙, t) =
�̇�(𝒚,𝑡𝑒)

4𝜋𝑥
                                                                     (7.76) 

where �̇�(𝒚, t𝑒) = ∫ �̇�(𝒚, t𝑒) 𝑑𝒱𝑦 𝒱𝑦
  is called instantaneous source strength of the compact source 

region. This may be the case of most exhaust/intake mouths of internal combustion engines, whose 

characteristic dimension is generally about 2 𝑐𝑚. In fact, the monopole spectral components 

contribution of such systems is prominent a multiple of the engine orders, with a quite rapid 

decaying. Therefore, it is generally safe to assume that the prominent noise signal spreads until 

2 𝑘𝐻𝑧. Thus, it is easy to prove that the intake/exhaust mouth generally satisfies the compactness 

condition fairly enough. Considering the pulsating jet from a pipe opening[5], since the free field 

propagation has been assumed, the sound power radiated may be expressed as 

𝑊𝑀 =
𝑝′
2

𝜌𝑎0
4𝜋𝑥2 =

�̇�2

4𝜋𝜌𝑎0
                                                          (7.77) 

being 𝑥 the radius of the wave front. It is important to highlight that the mass flow 𝑚 scales as 

𝜌𝑈𝐷2 (being 𝑈 the mean flow speed) and its time derivative �̇� differ by an additional factor 2𝜋𝑓 as 

already seen by eq. (7.44). Consequently, it is possible to state that the acoustic power output from a 

monopole source scales as indicated by eq. (7.78) 

𝑊𝑀 ∝
𝜌𝑈2𝐷4𝑓2

𝑎0
                                                                        (7.78) 

which links the power output to typical velocity, frequency, dimension of the source and constants 

of the medium. Equation (7.78) also shows that the acoustic power output from a monopole source 

scales as the Mach number. It is also confirmed that, for a given source strength, the radiated power 

scales as the square of the wavenumber. 
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7.3.1.2 Dipole source term 

If a fluctuating external force is present at some point of space, a force per unit of volume term 

appears on the right-end side of the momentum conservation equation for an acoustic medium at 

rest. Such term correspond to an acoustic source per unit of volume, equal to the flux of force 

inwards −
𝜕𝑓𝑣,𝑖

𝜕𝑥𝑖

73. It therefore corresponds to the second source term in eq. (7.72), namely 

[
1

𝑎0
2

𝜕2

𝜕𝑡2
−

𝜕2

𝜕𝑥𝑖
2] 𝑝

′(𝒙, t) = −
𝜕𝑓𝑣,𝑖

𝜕𝑥𝑖
                                                           (7.79) 

where 𝑓𝑣,𝑖 is the fluctuating external force per unit of volume acting on the fluid in the 𝑖𝑡ℎ direction 

and −
𝜕𝑓𝑣,𝑖

𝜕𝑥𝑖
 represents the source strength per unit of volume. According with the nomenclature 

introduced above, the corresponding sound field is a dipole field, since the source term involves 

spatial derivative of first order. In fact, in the limit as 𝑙𝑖 → 0, it corresponds to two equal and 

opposite simple sources of strength 
𝑓𝑣,𝑖

𝑙𝑖
, being 𝑙𝑖 the distance between them. For example, the term 

−
𝜕𝑓𝑣,1

𝜕𝑥1
 in the source distribution corresponds to a simple source 

𝑓𝑣,1

𝑙1
 located at (�̅�, 𝑦, 𝑧) and another 

one −
𝑓𝑣,1

𝑙1
 located at (�̅� − 𝑙1, 𝑦, 𝑧), both constituting a dipole of strength equal to 𝑓𝑣,1 along the 𝑥 

axis. So, the entire force field 𝒇𝑣 correspond to a volume distribution of dipole sources, each having 

strength equal to 𝑓𝑣,𝑖. Then, it is possible to state that a force field 𝒇𝑣 produces sound as a volume 

distribution of dipoles, whose strength vector per unit of volume is 𝒇𝑣, as schematically depicted in 

Figure 7.31. 

 

Figure 7.31 – Volume distribution of dipoles corresponding to a force field acting on the elementary volume 𝑑𝒱𝑦. 

If the acoustic medium is unbounded and the dipole sources are distributed around some point of 

the space, thanks to eq. (7.40), it is possible to express the total dipole field as superposition of 

dipoles, namely 

                                                           
73In order to derive the wave equation, a divergence has been applied to the momentum conservation, resulting in a 

right-end side equal to ∫ ∇ ∙ 𝒇𝑣𝒱
𝑑𝒱 = ∫ 𝒇𝑣 ∙ 𝒏𝑆

𝑑𝑆. 
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𝑝′(𝒙, t) = −∫
𝜕

𝜕𝑥𝑖
[
𝑓𝑣,𝑖(𝒚,𝑡𝑒)

4𝜋|𝒙−𝒚|
] 𝑑𝒱𝑦𝒱𝑦

                                                    (7.80) 

where 𝒚 stands for the location of a single dipole source which is identified by its center. Equation 

(7.80) shows explicitly that, although at any time instant the total source strength is zero 

(𝑓𝑣,𝑖 𝑙𝑖⁄ − 𝑓𝑣,𝑖 𝑙𝑖⁄ ), at any point in space the sound field is not zero because the rays of sound, 

reaching such point at time 𝑡, were not emitted simultaneously by the simple sources (see 

Figure7.16). This is taken into account by the emission time appearing into the expression of the 

sound field. As it has already been described, the dipole field consists of two terms: one due to the 

derivative with respect to 𝑟, which falls off like the inverse square of the distance from the source 

(near field term), and another due to derivative of 𝑓𝑣,𝑖 which falls off like the inverse first power of 

this distance (far field term). Therefore, at large distances from the source the far field term 

dominates the sound radiation, namely74 

𝑝𝑓𝑎𝑟 𝑓𝑖𝑒𝑙𝑑
′ (𝒙, t) = ∫

(𝑥𝑖−𝑦𝑖)

4𝜋|𝒙−𝒚|2

𝜕𝑓𝑣,𝑖(𝒚,𝑡𝑒)

𝜕𝑡

1

𝑎0
𝑑𝒱𝑦𝒱𝑦

                                                  (7.81) 

For what it has been described when presenting a pure dipole field, since 
𝜕𝑓𝑣,𝑖(𝒚,𝑡𝑒)

𝜕𝑡
 differs from 

𝑓𝑣,𝑖(𝒚, 𝑡𝑒) by a factor equal to 2𝜋 times the considered frequency, the near field term is truly 

negligible if the distance from the source |𝒙 − 𝒚| is greater than (2𝜋)−1 times the considered 

wavelength. If the source region is compact, then the variation of the emission time over it can be 

neglected and the term 𝑥 |𝒙|2⁄  may be placed out of the integral which is with respect to 𝑦. Since 

the free field propagation has been assumed, the sound power radiated may be expressed as75 

𝑊𝐷 =
�̇�𝑣,𝑖

2

𝜌𝑎0
4𝜋𝑥2 =

�̇�𝑣,𝑖
2

4𝜋𝜌𝑎0
3                                                             (7.82) 

being 𝑥 the radius of the wave front. Considering the pulsating jet from a pipe opening[5], the 

external force 𝑓𝑣 is represented by the thrust that the flow exercises on the surrounding fluid, and it 

scales as 𝜌𝑈2𝐷2 (being 𝑈 the mean flow speed) and its time derivative 𝑓�̇� differ by an additional 

factor 2𝜋𝑓. Consequently, the acoustic power output scales as 

𝑊𝐷 ∝
𝜌𝑈4𝐷4𝑓2

𝑎0
3                                                                      (7.83) 

which links the power output to typical velocity, frequency and dimension of the source, apart from 

constants of the medium. Equation (7.83) also shows that the acoustic power output from a dipole 

source scales as the third power of the Mach number. By comparing eq. (7.78) and eq. (7.83), it is 

possible to obtain the following scaling law, that is 

𝑊𝑀

𝑊𝐷
=

1

𝑀2
                                                                        (7.84) 

                                                           
74 
𝜕𝑓(𝒚,𝑡𝑒)

𝜕𝑥
= −

1

𝑎0

𝜕𝑓(𝒚,𝑡𝑒)

𝜕𝑡

𝜕|𝒙−𝒚|

𝜕𝑥
= −

1

𝑎0

𝜕𝑓(𝒚,𝑡𝑒)

𝜕𝑡

(𝑥−𝑦)

|𝒙−𝒚|
. 

75 Even if it has been shown the directivity of the dipole field of Figure 7.17, consider the wave front as spherical for 

simplicity. 
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according to which, for subsonic flow, a monopole radiation is prominent with respect to a dipole 

radiation. 

7.3.1.3 Quadrupole source term 

When a fluctuating external stress system acts on some point in space, on the right-end side of the 

momentum conservation equation an additional fluctuating force per unit of volume appear and it is 

equal to the flux of stresses inwards, namely 𝐹𝛾𝑖𝑗
𝑒𝑥𝑡 = −

𝜕(𝛾𝑖𝑗)

𝜕𝑥𝑗
. Thus, in total analogy to what has 

been found for the dipole source, such stress system would produce sound as a dipole whose 

strength per unit of volume is equal to 𝐹𝛾𝑖𝑗
𝑒𝑥𝑡. In fact, such force per unit of volume corresponds to 

the third acoustic source term in eq. (7.72), which may be expressed as 

[
1

𝑎0
2

𝜕2

𝜕𝑡2
−

𝜕2

𝜕𝑥𝑖
2] 𝑝

′(𝒙, t) =
𝜕2𝛾𝑖𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
                                                         (7.85) 

where 𝛾𝑖𝑗 is the Lighthill tensor acting on the equivalent acoustic medium at rest. However, 

according with the nomenclature introduced above, the corresponding sound field is a quadrupole 

field since the source term involves spatial derivative of second order. This is because, for example, 

the term −
𝜕(𝛾𝑖1)

𝜕𝑥1
, actually corresponds to a dipole source 

𝛾𝑖1

𝑙1
 located at (�̅�, 𝑦, 𝑧) and another one 

−
𝛾𝑖1

𝑙1
 located at (�̅� − 𝑙1, 𝑦, 𝑧), both constituting a quadrupole source. From another point of view, 

the divergence of the Lighthill tensor  
𝜕(𝛾𝑖𝑗)

𝜕𝑥𝑗
 represents the resultant force in the 𝑖𝑡ℎ direction per 

unit of volume acting on the elementary control volume 𝑑𝒱. However this resulting force is due to 

the combined action of two stresses in the 𝑖𝑡ℎ direction acting on the surfaces whose normal is 𝑛𝑗  

and −𝑛𝑗 respectively, as schematized in Figure 7.32. 

 

Figure 7.32 – Representation of the force per unit of volume due to the stress system 𝛾12. 

The two forces per unit of volume ±
𝛾𝑖𝑗

𝜀𝑗
 constitute two acoustic dipoles. If such dipoles are equal 

and opposite, when 𝑖 ≡ 𝑗 the quadrupole is called longitudinal, otherwise it is called lateral. It 

follows that each of the nine elements of the Lighthill tensor is a quadrupole whose strength is the 

scalar quantity 𝛾𝑖𝑗 with axes 𝑖 and 𝑗. Hence, there are three longitudinal quadrupoles, e.g. 𝛾11 
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having both axis along 𝑥1, and three lateral quadrupoles, e.g. 2𝛾21 having the axes along 𝑥1 and 𝑥2 

directions. 

If the acoustic medium is unbounded and the quadrupoles are distributed around some point in 

space, thanks to eq. (7.40), it is possible to express the total quadrupole field as superposition of 

quadrupoles, namely 

𝑝′(𝒙, t) = ∫
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
[
𝛾𝑖𝑗(𝒚,𝑡𝑒)

4𝜋|𝒙−𝒚|
] 𝑑𝒱𝑦𝒱𝑦

                                                       (7.86) 

where 𝒚 stands for the location of the single source. It must be noted that, the order between the 

spatial derivate and the integration can be interchanged because this latter is with respect with 𝒚. 

Again, eq. (7.85) shows explicitly that, although at any time instant the total dipole strength is zero 

(
𝛾𝑖𝑗

𝜀𝑗
−
𝛾𝑖𝑗

𝜀𝑗
), at any point in space 𝒙 the sound field is not zero because the rays of sound, reaching 

such point at time 𝑡, were not emitted simultaneously by the dipoles. 

Now, as it has been already seen, at distances far enough from the flow, such that |𝒙 − 𝒚| ≫

(2𝜋)−1𝜆, the radiation of sound is only due to the far field term, namely 

𝑝𝑓𝑎𝑟 𝑓𝑖𝑒𝑙𝑑
′ (𝒙, t) = ∫

(𝑥𝑖−𝑦𝑖)(𝑥𝑗−𝑦𝑗)

4𝜋|𝒙−𝒚|3
1

𝑎0
2

𝜕2[𝛾𝑖𝑗(𝒚,𝑡𝑒)]

𝜕𝑡2
𝑑𝒱𝑦𝒱𝑦

                                                (7.87) 

Equation (7.87) is the basic result of the Lighthill’s aeroacoustic analogy. Again, if the source 

region is compact, then the variation of the emission time over it can be neglected and the term 

𝑥𝑖𝑥𝑗 |𝒙|
3⁄  may be placed out of the integral which is with respect to 𝒚. 

From what above, the amplitude of the Lighthill tensor’s fluctuations mainly scales as 𝜌𝑈2 (being 

𝑈 the mean flow speed). However, since the free field propagation has been assumed, the acoustic 

power output is equal to76 

𝑊𝑄 =
𝜀𝑖
2𝜀𝑗
2�̈�𝑖𝑗
2

16𝜋2𝑥2𝜌𝑎0
5 4𝜋𝑥

2                                                                   (7.88) 

and so it is necessary to relate the amplitude of 𝛾𝑖𝑗 to its second order time derivative. This latter 

differs by an additional factor equal to (2𝜋𝑓)2. Since only fluctuations due to flow instability are 

taken into account, for a given frequency, the following relation holds77 for 200 ≤ 𝑅𝑒 ≤ 40000 

𝑆𝑡 =
𝑓𝐿

𝑈
= 0,2                                                                      (7.89) 

It follows that, the second order time derivative of the Lighthill tensor scales as 𝜌𝑈4 𝐿2⁄  and 

therefore, the whole pressure fluctuations expressed by eq. (7.87) are proportional to 

                                                           
76 𝜀𝑖 = 𝑥𝑖 𝑥⁄ . 
77 Actually, for the particular case of flow around a long cylinder, the Strouhal number is equal to 0,198 − 3,9𝑅𝑒

−1 for 

250 ≤ 𝑅𝑒 ≤ 200000[14]. 



189 
 

1

𝑥𝑎0
2

𝜌𝑈4

𝐿2
𝐿3 =

𝜌𝑈4𝐿

𝑥𝑎0
2                                                                    (7.90) 

Hence, the acoustic power output scales as indicated by the following relation 

𝑊𝑄 ∝
𝜌𝑈8𝐿2

𝑎0
5                                                                          (7.91) 

which links the power output and  typical velocity and dimension of the source, apart from 

constants of the medium. It is worth noting that the same result is found by means of the already 

discussed quadrupole power output expressed by eq. (7.59), namely 

𝑊𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑜𝑙𝑒 ∝
𝜌2𝑈2𝐿4

𝜌𝑎0
𝜔2 (

2𝜋𝑙

𝜆
)
4

∝
𝜌𝑈8𝐿2

𝑎0
5                                                        (7.92) 

Equation (7.91)  is known as 𝑈8 law[13][3] and it also shows that the acoustic power output from a 

quadrupole source scales as the fifth power of the Mach numbers, which corresponds also to the 

efficiency of the aerodynamic sound generation. In fact, a steady flow has a kinetic energy roughly 

proportional to 𝜌𝑈2[𝐽 𝑚3⁄ ], so that the total rate of energy supply is  𝜌𝑈2(𝑈𝐿2). So the acoustic 

efficiency, which is a measure of the kinetic energy’s fraction converted in acoustic energy, would 

be 

𝜂𝑄 =
𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝑝𝑜𝑤𝑒𝑟

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦
∝ 𝑀5                                                          (7.93) 

The 𝑈8 law gives a very good agreement with experimental measurement of the acoustic power 

output for jet speed whose Mach number is low[3]. At higher Mach number, two phenomena must 

be taken into account which are a lower turbulence and the Doppler effect. The reduced turbulence 

level at high Mach number would make the acoustic power output following a 𝑈6 law around 𝑀 =

1. However, it is generally recognized that turbulent eddies move at half the jet speed within the 

atmosphere where they radiate so that, thanks to the Doppler effect, the wavelength of the forward 

emitted sound is reduced by a factor equal to (1 − 𝑈𝑒 𝑎0⁄ ), as schematically depicted in figure 

below. 

 

Figure 7.33 – Schematization of Doppler effect of moving eddies. 
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In particular, since the eddy is moving with velocity 𝑈𝑒, after one period of the considered 

frequency it will move of an amount equal to 𝑑 = 𝑈𝑒𝑇 = 𝜆𝑈𝑒 𝑎0⁄ , with a consequence decreasing 

of the wavelength in the forward direction. Consequently, the Helmholtz number (or compactness 

ratio) increases restoring the 𝑈8 law until about 𝑀 = 2. Around this limit and at higher jet speeds, 

when the factor 𝑈𝑒 𝑎0⁄  approaches unity78, the wavelength of the emitted sound reduces without 

limitation, breaking down the compactness condition of the aerodynamic sources. As a 

consequence, it is like each eddy carries away its own wave front and the sound field is similar to 

that of a monopole source. Experimental observations have shown that the power output scales as 

𝑈3, as it is indicated by Figure 7.34. 

 

Figure 7.34 – Schematization of the 𝑈8 law range of validity (both axis are intended in logarithmic scale). 

In conclusion, by comparing eq. (7.78), eq. (7.83) and eq. (7.91) the following scaling law is 

obtained for the aerodynamic sound generation[5] 

𝑊𝑀:𝑊𝐷:𝑊𝑄 = 1:𝑀
2:𝑀4                                                            (7.95) 

which confirms the fact that for low Mach numbers, the monopole source is the most efficient 

sound generation mechanism. 

From the above recalled theory of the aerodynamic generation of sound, it should be clear that, 

especially for the quadrupole radiation, the complete three-dimensional flow field must be resolved, 

in order to model the source region as an equivalent acoustic medium at rest. Consequently, it is 

necessary to take into account the effect of turbulence on the fluid flow and, therefore, the following 

pages are devoted to give an insight about turbulence modelling. 

7.4 Introduction to turbulence modelling 

In physics, a non-linear system is generally defined as a system in which the output is not directly 

proportional to the input, so that they may appear chaotic and unpredictable, in opposition to the 

much simpler linear systems. Mathematically, the evolution of a non-linear system is described by a 

set of equations in which the unknowns variables appear as a polynomial of degree higher than one. 

Non-linear problems are of great interest for engineers because most systems are inherently 

nonlinear in nature. However, sometimes a non-linear system may be considered as linear and the 

corresponding mathematical description may be linearized, meaning that the governing set of 

                                                           
78 As just mentioned 𝑈𝑒 ≅ 𝑈 2⁄ . 
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equations may be approximated by a polynomial of first order in the unknown variable. This 

happens for example in linear structural dynamics, where the restoring forces (elastic and damping), 

due to external excitation, perturbing the equilibrium condition, are linearly dependent on 

displacement and velocity (at least in the limit of small perturbations)[8]. Fluid flow is an important 

example of non-linear system where small disturbances may grow rapidly, becoming unstable. 

However, when the disturbances are assumed to be very small, the system may still be assumed 

linear, as it happens in linear acoustic theory. As it will be clear in the following, the genesis of the 

turbulence is the intrinsic non-linearity of fluid flow system. 

In spite of the fact that it is a very common phenomenon, there is no rigorous definition for 

turbulence although it is widespread recognized as a time-dependent chaotic behavior which is seen 

in many fluid flows. In fact, almost all fluid flows encountered in daily life are turbulent like, for 

example, the smoke rising from a cigarette, most of the terrestrial atmospheric circulation, flow 

conditions in many industrial equipment etc.. All these examples are characterized by the fact that, 

within the flow, many eddies of different size are easily recognizable during the motion. However, 

from a more rigorous point of view, in fluid dynamics a turbulent flow is a flow regime 

characterized by chaotic changes in fluid dynamic variables. In this framework, the first thing to 

mention is that, in contrast to laminar flow, turbulence is associated with high Reynolds numbers79, 

where inertial forces dominate over the viscous ones. Moreover, despite there is no general 

definition for turbulent flow, it has a number of commonly encountered characteristics such as[9]: 

 Turbulent flow is irregular, random and chaotic. The flow consists of a spectrum (as 

function of the turbulence wavenumber)80 of different scales (eddy sizes), where largest 

eddies are of the order of the flow geometry (i.e. boundary layer thickness, jet width, etc.). 

 Turbulent flow is dissipative, which means that kinetic energy of the flow is passed down 

from large eddies to smaller ones until the smallest (dissipative) eddies, in which it is 

converted into internal energy. This process, which leads to the energy dissipation, is called 

cascade process. The largest eddies extract their energy from the mean flow. The slightly 

smaller eddies receive the kinetic energy from the largest eddies and so on. 

 Turbulent flow is high diffusive meaning that the spreading rate of boundary layers and jets 

increases. When flow is turbulent, particles exhibit additional transverse motion which 

enhances the rate of energy and momentum exchange between them. 

 Turbulent flow occurs at high Reynolds number. For example, the transition from laminar to 

turbulent flow in pipes occurs at 𝑅𝑒𝐷 ≅ 2300 whilst in boundary layers at 𝑅𝑒𝑥 ≅ 10
5 

 Turbulent flow is always three-dimensional. 

Thus, the chaotic fluctuations of the velocity and other properties of the fluid are the main 

characteristic of turbulence, representing also the main difficulties encountered in the study of 

turbulent flows. In fully developed turbulent flows, the field properties become random functions of 

space and time and, in order to analyze them, it is commonly assumed that each property may be 

divided into a mean value and a fluctuating one. 

                                                           
79 The Reynolds number is defined as the ratio of  inertial to viscous forces during a fluid flow, namely 𝑅𝑒 =

𝜌𝐿𝑉

𝜇
. 

80 In the study of turbulence, the wavenumber is defined as 𝑘 = 2𝜋 𝑙⁄  where 𝑙 indicates the length scale of the 

considered vortex. 
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Figure 7.35 – Decomposition of a flow variable into its mean and fluctuating part in case of stationary flow. 

Mathematically, when dealing with fully developed incompressible flow, for which the Newtonian 

fluid model is applicable, such condition may be expressed as 

{
𝑉𝑖 = 𝑉�̅� + 𝑣�̃�
𝑝 = �̅� + 𝑝
𝜌 = �̅�

                                                                    (7.96)                          

where the overbar indicates the average value and the fluctuating parts are defined such as their 

average value is zero81. This technique for decomposing the instantaneous motion in its average and 

fluctuating part is commonly referred as the so-called Reynolds decomposition[10]. It is important 

to highlight that when dealing with unsteady process the “average” means an ensemble average. 

Anyway, by substituting the result of the Reynolds decomposition in both the continuity and 

momentum equation (1.24) and (1.39), yields 

𝜕(𝑉�̅�+𝑣�̃�)

𝜕𝑥𝑖
= 0                                                                  (7.97) 

𝜌 [
𝜕(𝑉�̅�+𝑣�̃�)

𝜕𝑡
+ (𝑉�̅� + 𝑣�̃�)

𝜕(𝑉�̅�+𝑣�̃�)

𝜕𝑥𝑗
] +

𝜕(�̅�+�̃�)

𝜕𝑥𝑖
−
𝜕(𝜏𝑖𝑗̅̅ ̅̅ +𝜏𝑖�̃�)

𝜕𝑥𝑗
= 0                                       (7.98) 

In order to obtain the equations for the averaged motion, an averaging82 operation is required which 

yields 

𝜕𝑉�̅�

𝜕𝑥𝑖
= 0                                                                      (7.99) 

𝜌 [
𝜕𝑉�̅�

𝜕𝑡
+ 𝑉�̅�

𝜕𝑉�̅�

𝜕𝑥𝑗
] + 𝜌 〈𝑣�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉 +

𝜕�̅�

𝜕𝑥𝑖
−
𝜕𝜏𝑖𝑗̅̅ ̅̅

𝜕𝑥𝑗
= 0                                             (7.100) 

where the brackets 〈⋯ 〉 in the third term indicates averaging operation. Equation (7.100) may be 

rewritten in order to better understand the interpretation of the third term on the left-hand side. In 

particular by adding the term 𝜌 〈𝑣�̃�
𝜕𝑣�̃�

𝜕𝑥𝑗
〉 which is equal to zero (as it may be seen by combining eq. 

(7.99) and (7.97)), yields 

                                                           
81 If the considered field variable is 𝑔, then the fluctuating part is defined as �̅̃� =

1

𝑇
∫ �̃�
𝑇

0
 𝑑𝑡 = 0, being 𝑇 sufficiently 

higher than the duration of the fluctuation. 
82 Note that the operations of averaging and differentiation commute, i.e. the average of a derivative is the same as the 

derivative of the average. 
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𝜌 [
𝜕𝑉�̅�

𝜕𝑡
+ 𝑉�̅�

𝜕𝑉�̅�

𝜕𝑥𝑗
] +

𝜕�̅�

𝜕𝑥𝑖
−

𝜕

𝜕𝑥𝑗
(𝜏𝑖𝑗̅̅ ̅ − 𝜌〈𝑣�̃�𝑣�̃�〉) = 0                                               (7.101) 

First thing to note by the examination of the above equations is that the averaged motion satisfies 

the same form of the mass conservation equation for the instantaneous motion, as well as the 

fluctuating motion (consider the new added term in order to found eq. (7.101)), at least for the 

considered case of incompressible flows. On the other hand, the momentum equation for the 

average motion is different from the instantaneous one, since an additional fluctuating not-

vanishing term appears, which is due, as it has already mentioned, to the intrinsic non-linearity of 

the system in force of the convective momentum transport. This term has the dimensions of a stress 

even it is not a stress at all, but simply a re-worked version of the fluctuating contribution to the 

non-linear acceleration terms. Consequently, it is generally assumed as an additional stress term due 

to turbulence (fluctuating velocities) and it is called the Reynolds stress tensor (or Reynold 

stresses), which is symmetric and represents the correlations between fluctuating velocities. So, 

from such brief discussion, it is clear that the turbulence problem arises from the non-linearity of 

the fluid system. In the limit as the amplitude of the disturbance would be infinitesmal, the 

additional stresses would vanish (involving products of infinitesimals), and the system of equations 

would be linearized, as it happens in the standard linear acoustic theory. However, in case of 

turbulence, the fluctuations continuously extract energy from the mean flow, making small 

disturbances to grow very quickly. When the amplitudes of the fluctuations can no longer be 

assumed infinitesimal, the Reynolds stresses cannot be neglected and, as a result, the base flow 

equations begin to be modified so that the solution to them can no longer be identical to the laminar 

flow from which it arose[10]. 

From a modelling point of view, the averaged equations are not closed as there are ten unknowns 

(three velocity components, pressure, six Reynolds stresses) and only four equations. The simplest 

idea useful to close the problem would be to write down a set of equations relating the Reynolds 

stress system to the mean flow field. Although an exact set of such equations has been find (which 

is called the Reynolds stress equation), unfortunately many new unknowns appear which makes the 

solution of the problem impossible. Therefore, in order to achieve the closure of the problem, a 

turbulence model is generally employed[9]. Thanks to the efforts spent during the recent years, a lot 

of alternatives are available but, however, the most adopted models for achieving industrial goals 

are represented by the two-equation models, thanks to which two further equations are derived 

which describe the transport of two scalar quantities related to turbulence. The very basis of such 

models is represented by a relation linking the Reynolds stress tensor to both the velocity gradients 

of the average motion and another parameter which is called eddy viscosity. Such relation is 

generally referred as Boussinesq assumption and may be expressed as83 

∑ ∑ 𝜌〈𝑣�̃�𝑣�̃�〉𝑗𝑖 = ∑ ∑ −𝜇𝑇 (
𝜕𝑉�̅�

𝜕𝑥𝑗
+
𝜕𝑉�̅�

𝜕𝑥𝑖
) +

2

3
𝛿𝑖𝑗𝜌𝑗 �̃�𝑖                                (7.102) 

where 𝜇𝑇 stands for the so-called turbulent viscosity (or eddy viscosity). It is important to note that 

when the suffix 𝑖 and 𝑗 are equal, thanks to the conservation of mass, expression (7.102) gives 

                                                           
83 Actually the general version of the Boussinesq assumption is 𝜌〈𝑣�̃�𝑣�̃�〉 = −𝜇𝑇 (

𝜕𝑉�̅�

𝜕𝑥𝑗
+
𝜕𝑉𝑗̅̅ ̅

𝜕𝑥𝑖
) +

2

3
(𝜌�̃� + 𝜇𝑇

𝜕𝑉𝑘̅̅ ̅̅

𝜕𝑥𝑘
) 𝛿𝑖𝑗, which 

coincides with eq. (7.102) in case of incompressible flow[13]. 



194 
 

𝜌𝑣1̃𝑣1̃̅̅ ̅̅ ̅̅ + 𝜌𝑣2̃𝑣2̃̅̅ ̅̅ ̅̅ + 𝜌𝑣3̃𝑣3̃̅̅ ̅̅ ̅̅ = 2𝜌�̃� 

where �̃� is consequently defined as average turbulent kinetic energy84. Hence, thanks to the 

Boussinesq assumption, the Reynolds stress tensor is related to two new variables which are eddy 

viscosity and turbulent kinetic energy. This latter scalar quantity is one parameter on which a 

further transport equation is generally derived, in order to close the turbulence problem. As an 

example, in the following paragraph the most used transport equation will be derived which 

constitutes the basis of the well-known 𝑘 − 𝜀 turbulence model. 

7.4.1 Reynolds Stress Equation 

The starting point in the derivation of a transport equation for the turbulent kinetic energy is 

represented by the already mentioned Reynolds stress equation, which historically has been the 

primary focus for much of the turbulence modelling efforts[10]. It represents the momentum 

conservation equation for the fluctuating velocity, which may be obtained by subtracting the 

equation for the instantaneous velocity (7.98) and that of the average motion (7.100), namely 

𝜌 [
𝜕𝑣�̃�

𝜕𝑡
+ 𝑉�̅�

𝜕𝑣�̃�

𝜕𝑥𝑗
] = −

𝜕�̃�

𝜕𝑥𝑖
+
𝜕𝜏𝑖�̃�

𝜕𝑥𝑗
− 𝜌𝑣�̃�

𝜕𝑉�̅�

𝜕𝑥𝑗
− 𝜌 (𝑣�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
− 〈𝑣�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉)                               (7.103) 

where the brackets 〈. . 〉 indicates again average quantities. Multiplying the above equation by 𝑣�̃�  

and averaging yields85: 

𝜌 [〈𝑣�̃�
𝜕𝑣�̃�

𝜕𝑡
〉 + 𝑉�̅� 〈𝑣�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉] = − 〈𝑣�̃�

𝜕�̃�

𝜕𝑥𝑖
〉 + 〈𝑣�̃�

𝜕𝜏𝑖�̃�

𝜕𝑥𝑗
〉 − 𝜌〈𝑣�̃�𝑣�̃�〉

𝜕𝑉�̅�

𝜕𝑥𝑗
− 𝜌 〈𝑣�̃�𝑣�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉         (7.104) 

Both indices 𝑖 and 𝑘 are free indices (which means that they are fixed in the equation) and therefore 

they can be interchanged to yield a second equation, namely 

𝜌 [〈𝑣�̃�
𝜕𝑣�̃�

𝜕𝑡
〉 + 𝑉�̅� 〈𝑣�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉] = − 〈𝑣�̃�

𝜕�̃�

𝜕𝑥𝑘
〉 + 〈𝑣�̃�

𝜕𝜏𝑘�̃�

𝜕𝑥𝑗
〉 − 𝜌〈𝑣�̃�𝑣�̃�〉

𝜕𝑉𝑘̅̅ ̅̅

𝜕𝑥𝑗
− 𝜌 〈𝑣�̃�𝑣�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉             (7.105) 

Thus, equations (7.104) and (7.105) can be added together to yield an equation for the Reynolds 

stress, that is 

𝜌 [
𝜕〈𝑣�̃�𝑣�̃�〉

𝜕𝑡
+ 𝑉�̅�

𝜕〈𝑣�̃�𝑣�̃�〉

𝜕𝑥𝑗
] = − [〈𝑣�̃�

𝜕�̃�

𝜕𝑥𝑖
〉 + 〈𝑣�̃�

𝜕�̃�

𝜕𝑥𝑘
〉] + [〈𝑣�̃�

𝜕𝜏𝑖�̃�

𝜕𝑥𝑗
〉 + 〈𝑣�̃�

𝜕𝜏𝑘�̃�

𝜕𝑥𝑗
〉] − 𝜌 [〈𝑣�̃�𝑣�̃�〉

𝜕𝑉�̅�

𝜕𝑥𝑗
+

〈𝑣�̃�𝑣�̃�〉
𝜕𝑉𝑘̅̅ ̅̅

𝜕𝑥𝑗
] − 𝜌 [〈𝑣�̃�𝑣�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉 + 〈𝑣�̃�𝑣�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉]                                                                          (7.106) 

To the aim of better understand the nature of the various term involved in eq. (7.106), a little 

manipulation has to be done. More precisely it is possible to express the first term on the right-hand 

side as 

[〈𝑣�̃�
𝜕�̃�

𝜕𝑥𝑖
〉 + 〈𝑣�̃�

𝜕�̃�

𝜕𝑥𝑘
〉] = − 〈𝑝 [

𝜕𝑣�̃�

𝜕𝑥𝑘
+
𝜕𝑣�̃�

𝜕𝑥𝑖
]〉 +

𝜕[〈�̃�𝑣�̃�〉𝛿𝑘𝑗+〈�̃�𝑣�̃�〉𝛿𝑖𝑗]

𝜕𝑥𝑗
                              (7.107) 

                                                           
84 �̃� =

1

2
𝑣1̃𝑣1̃̅̅ ̅̅ ̅̅ +

1

2
𝑣2̃𝑣2̃̅̅ ̅̅ ̅̅ +

1

2
𝑣3̃𝑣3̃̅̅ ̅̅ ̅̅  also called turbulent kinetic energy. 

85 The last term equals zero as the fluctuating components are per definition a zero average ones. 
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where the first term is generally labeled as pressure strain-rate term whilst the second one, which is 

a divergence term, is generally called pressure diffusion term. In the same way it is possible to 

express the second term on the right-hand side of eq. (7.106) as 

[〈𝑣�̃�
𝜕𝜏𝑖�̃�

𝜕𝑥𝑗
〉 + 〈𝑣�̃�

𝜕𝜏𝑘�̃�

𝜕𝑥𝑗
〉] = − [〈𝜏𝑖�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉 + 〈𝜏𝑘�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉] +

𝜕[〈𝜏𝑘�̃�𝑣�̃�〉+〈𝜏𝑖�̃�𝑣�̃�〉]

𝜕𝑥𝑗
                        (7.108) 

The last term on the right-hand side of eq. (7.106) may be expressed by means of the following 

relation 

𝜕〈𝑣�̃�𝑣�̃�𝑣�̃�〉

𝜕𝑥𝑗
= 〈𝑣�̃�𝑣�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉 + 〈𝑣�̃�𝑣�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉 + 〈𝑣�̃�𝑣�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉                                    (7.109) 

the last term being equal to zero since incompressible flow has been assumed. The final form of the 

Reynolds stress equation is 

𝜌 [
𝜕〈𝑣�̃�𝑣�̃�〉

𝜕𝑡
+ 𝑉�̅�

𝜕〈𝑣�̃�𝑣�̃�〉

𝜕𝑥𝑗
] = 〈𝑝 [

𝜕𝑣�̃�

𝜕𝑥𝑘
+
𝜕𝑣�̃�

𝜕𝑥𝑖
]〉 +

𝜕

𝜕𝑥𝑗
{−[〈�̃�𝑣�̃�〉𝛿𝑘𝑗 + 〈𝑝𝑣�̃�〉𝛿𝑖𝑗] + [〈𝜏𝑘�̃�𝑣�̃�〉 + 〈𝜏𝑖�̃�𝑣�̃�〉] −

𝜌〈𝑣�̃�𝑣�̃�𝑣�̃�〉} − 𝜌 [〈𝑣�̃�𝑣�̃�〉
𝜕𝑉�̅�

𝜕𝑥𝑗
+ 〈𝑣�̃�𝑣�̃�〉

𝜕𝑉𝑘̅̅ ̅̅

𝜕𝑥𝑗
] − [〈𝜏𝑖�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉 + 〈𝜏𝑘�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉]                                            (7.110) 

where the first term is easy recognizable as the rate of change of the Reynolds stress following the 

mean motion. On the right-hand side the terms appearing are the pressure-strain rate, the turbulence 

transport (or divergence), the "production" and the "dissipation" respectively, as it will be clear in 

the following. 

However, the prior goal was to find an equation for the kinetic energy and it can be done starting 

from the Reynolds stress equation. In fact, by contracting the subscripts 𝑖 and 𝑘 (which means 

equaling the indices and so considering the equation for the term 
1

2
𝑣�̃�𝑣�̃� = 𝑒𝑞. ( 

1

2
〈𝑣1̃𝑣1̃〉) +

𝑒𝑞. ( 
1

2
〈𝑣2̃𝑣2̃〉) + 𝑒𝑞. (

1

2
〈𝑣3̃𝑣3̃〉)), yields 

[
𝜕

𝜕𝑡
+ 𝑉�̅�

𝜕

𝜕𝑥𝑗
] �̃� =

𝜕

𝜕𝑥𝑗
{−

1

𝜌
〈𝑝𝑣�̃�〉𝛿𝑖𝑗 +

1

𝜌
〈𝜏𝑖�̃�𝑣�̃�〉 −

1

2
〈𝑞2𝑣�̃�〉} − 〈𝑣�̃�𝑣�̃�〉

𝜕𝑉�̅�

𝜕𝑥𝑗
−
1

𝜌
〈𝜏𝑖�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉             (7.111) 

where 𝑞2 = 𝑣1̃𝑣1̃ + 𝑣2̃𝑣2̃ + 𝑣2̃𝑣2̃.  Equation (7.111) may be further simplified by firstly noting that, 

for an incompressible Newtonian fluid, the fluctuating part of the deviatoric Cauchy stress tensor 

may be expressed as 

𝜏𝑖�̃� = 2𝜇 𝑠𝑖�̃� = 𝜇 (
𝜕𝑣�̃�

𝜕𝑥𝑗
+
𝜕𝑣�̃�

𝜕𝑥𝑖
)                                                 (7.112) 

It follows that the equation of transport of the turbulent kinetic energy may be rewritten as 

[
𝜕

𝜕𝑡
+ 𝑉�̅�

𝜕

𝜕𝑥𝑗
] �̃� =

𝜕

𝜕𝑥𝑗
{−

1

𝜌
〈𝑝𝑣�̃�〉𝛿𝑖𝑗 + 2𝜐〈𝑠𝑖�̃�𝑣�̃�〉 −

1

2
〈𝑞2𝑣�̃�〉} − 〈𝑣�̃�𝑣�̃�〉

𝜕𝑉�̅�

𝜕𝑥𝑗
− 2𝜐 〈𝑠𝑖�̃�

𝜕𝑣�̃�

𝜕𝑥𝑗
〉               (7.113) 

where 𝜐 is the kinematic viscosity of the fluid. Moreover, it has already be seen that the 

deformation-rate tensor (see eq. (1.40)) may be decomposed in symmetric and antisymmetric part 

and so it is possible to rewrite the last term of eq. (7.113) as 
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〈𝑠𝑖�̃�
𝜕𝑣�̃�
𝜕𝑥𝑗
〉 = 〈𝑠𝑖�̃�𝑠𝑖𝑗∗̃ 〉 + 〈𝑠𝑖�̃�𝑠𝑖�̃�〉 = 〈𝑠𝑖�̃�𝑠𝑖�̃�〉 

since the product of a symmetric and an antisymmetric part of a tensor is equal to zero. Hence, the 

final form of the turbulent kinetic energy transport equation is 

[
𝜕

𝜕𝑡
+ 𝑉�̅�

𝜕

𝜕𝑥𝑗
] �̃� =

𝜕

𝜕𝑥𝑗
{−

1

𝜌
〈𝑝𝑣�̃�〉𝛿𝑖𝑗 + 2𝜐〈𝑠𝑖�̃�𝑣�̃�〉 −

1

2
〈𝑞2𝑣�̃�〉} − 〈𝑣�̃�𝑣�̃�〉

𝜕𝑉�̅�

𝜕𝑥𝑗
− 2𝜐〈𝑠𝑖�̃�𝑠𝑖�̃�〉             (7.114) 

thanks to which it is easier to explain the role of the various term which therein appear. In 

particular, the first term on the right-hand side, being a divergence term, represents the transport of 

kinetic energy in an inhomogeneous field due respectively to the pressure fluctuations, the 

turbulence itself, and fluctuations of the viscous stresses. The second term represents the primary 

means by which fluctuations extract energy from the mean flow and it is the “generation” of �̃�. This 

may be readily seen by comparing eq. (7.114) with the transport equation for the kinetic energy of 

the average motion. Following the same procedure described above, starting from the equation for 

the average motion (7.101), the desired transport equation is obtained, namely 

[
𝜕

𝜕𝑡
+ 𝑉�̅�

𝜕

𝜕𝑥𝑗
] �̅� =

𝜕

𝜕𝑥𝑗
{−

1

𝜌
〈𝑃𝑉𝑖〉𝛿𝑖𝑗 + 2𝜐〈𝑆𝑖𝑗𝑉�̅�〉 −

1

2
〈𝑣�̃�𝑣�̃�〉𝑉�̅�} + 〈𝑣�̃�𝑣�̃�〉

𝜕𝑉�̅�

𝜕𝑥𝑗
− 2𝜐〈𝑆𝑖𝑗𝑆𝑖𝑗〉           (7.115) 

where �̅� =
1

2
𝑉�̅�𝑉�̅�. The first thing to note is that each term has its counterpart in the equation for the 

average fluctuating kinetic energy. Moreover, the term 〈𝑣�̃�𝑣�̃�〉
𝜕𝑉�̅�

𝜕𝑥𝑗
 appears in the equations for the 

kinetic energy of both the mean motion and the fluctuations. It follows that, whatever is the effect of 

such term on the kinetic energy of the mean motion, the corresponding effect on the kinetic energy 

of the fluctuations will be the opposite. Therefore, it represents the mechanism through which 

energy is exchanged between average motion and turbulence.  

Finally, the last term in the equation for the turbulent kinetic energy has been already identified as 

dissipation term, or the rate of dissipation of the turbulence energy per unit mass. This may be 

explained by the fact that it is always positive, being the sum of the average of squared quantities86, 

and therefore it causes a negative rate of change of kinetic energy. Physically, energy is dissipated 

because of the work done by the fluctuating viscous stresses in resisting deformation of the fluid 

material by the fluctuating strain rates (see the last term of the right-hand side of eq.(7.111)). In the 

following paragraph an insight on the 𝑘 − 𝜀 turbulence model, which is based on the transport 

equation of the turbulent kinetic energy, will be given. 

7.4.2 𝒌 − 𝜺 turbulence model 

Once the physical interpretation of each term appearing in the transport equation of the turbulent 

kinetic energy has been introduced, it is necessary to formulate some assumption in order to achieve 

the closure of the turbulence problem. In fact, as it is possible to appreciate by the examination of 

the exact eq. (7.114), the turbulent kinetic energy is still related to turbulent quantities when instead, 

in order to be able to solve the average flow field, it should be dependent only on the average 

                                                           

86 𝜀 = 2𝜐〈𝑠𝑖�̃�𝑠𝑖�̃�〉 = 2𝜐 [〈
𝜕𝑣�̃�

𝜕𝑥𝑗
+
𝜕𝑣�̃�

𝜕𝑥𝑖
〉 〈
𝜕𝑣�̃�

𝜕𝑥𝑗
+
𝜕𝑣�̃�

𝜕𝑥𝑖
〉]. 
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motion. Consequently, the various term appearing in eq. (7.114) have to be related to average 

quantities. This circumstance is the basis of the most used approach for modelling turbulent flows in 

the industry, that is the 𝑘 − 𝜀 turbulence model[9][10]. Thus, it is necessary to relate each term of 

the right-hand side (divergence, production and dissipation term) to known quantities. However, to 

this aim it is necessary to make and argue on some assumption about the physics of turbulence. As a 

consequence, the goal is to find another version of the �̃� equation which is not exact anymore but 

modelled instead, where all the terms are related to average quantities. 

Firstly, as indicated by the divergence term in the exact equation (7.114), the diffusive transport of 

fluctuating kinetic energy is accomplished thanks to the most intuitively physical transport related 

to the turbulence itself (and its three-dimensional peculiar behavior) and also by the acceleration of 

adjacent fluid particles due to both pressure and viscous stresses. In order to model such transport 

terms, the easiest idea is that these terms allow energy transport only from regions of higher to 

lower kinetic energy, which means to group all in one term proportional to the gradient of the 

turbulent kinetic energy, namely 

−
1

𝜌
〈𝑝𝑣�̃�〉𝛿𝑖𝑗 + 2𝜐〈𝑠𝑖�̃�𝑣�̃�〉 −

1

2
〈𝑞2𝑣�̃�〉 =

𝜐𝑇

𝜎𝑘

𝜕�̃�

𝜕𝑥𝑗
                                             (7.116) 

where 𝜎𝑘 is a constant which is termed turbulent Prandtl number. Moreover, within the production 

term, the Reynolds stress tensor is unknown and therefore it is modelled making use of the 

Boussinesq assumption, namely it is calculated as 

−〈𝑣�̃�𝑣�̃�〉
𝜕𝑉�̅�

𝜕𝑥𝑗
= 𝜐𝑇 (

𝜕𝑉�̅�

𝜕𝑥𝑗
+
𝜕𝑉�̅�

𝜕𝑥𝑖
)
𝜕𝑉�̅�

𝜕𝑥𝑗
−
2

3
𝛿𝑖𝑗�̃�

𝜕𝑉�̅�

𝜕𝑥𝑗
= 𝑃�̃�                                        (7.117) 

At the same time an expression for the turbulent viscosity 𝜐𝑇 = 𝜇𝑇 𝜌⁄  has to be found, otherwise the 

introduction of such assumption would be useless. As per its definition, the dimension of the 

kinematic turbulent viscosity is [𝑚2 𝑠⁄ ]. The same dimension is found by multiplying both a 

turbulent length and velocity scale, that is87 

𝜐𝑇 ∝ 𝑈𝑙                                                                    (7.118) 

The general turbulent velocity scale 𝑈 may be expressed as √�̃� so that 

𝜐𝑇 = 𝑐𝜐√�̃� 𝑙                                                                (7.119) 

where another quantity has been introduced which is still unknown, namely the turbulent length 

scale, and 𝑐𝜐 is an unknown constant. Obviously, there is a wide range of scales in turbulent flow 

and they are related to one another thanks to the so-called cascade process. This represent a 

phenomenological explanation of the process thanks to which the energy of the flow is dissipated 

by turbulence. As it has been already mentioned, the larger scales are of the order of the flow 

geometry, for example the boundary layer thickness. The kinetic energy of these eddies is passed 

down, by direct interaction, to slightly smaller scales. In this way, an energy transfer exists from the 

                                                           
87 Within the algebraic models, in which the Reynolds stress tensor is calculated using only the first two terms 

appearing in the Boussinesq assumption, the relation for the turbulent kinematic viscosity is 𝜐𝑇 = 𝑙
2∇𝑉, where 𝑙 is a 

characteristic length. 
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large scales of the motion to the smaller ones until a sufficiently small length scale is reached, 

where there are too large frictional forces due to viscous stresses such that the kinetic energy is 

dissipated into internal energy88. Hence, a first rough approximation of the dissipated energy may 

be done referring to the larger velocity and length scales, i.e. 𝑈 and 𝑙. In fact, according to the 

cascade process hypothesis, the non-dissipative scales lose their energy during a time proportional 

to 𝑙 𝑈⁄ , which is commonly referred as large eddy turn over time. It follows that the dissipation term 

may be thought as 

 𝜀 ∝
𝑈3

𝑙
=
�̃�3 2⁄

𝑙
                                                                (7.120) 

Thus the turbulent kinematic viscosity may be finally expressed as 

𝜐𝑇 = 𝑐𝜐
�̃�2

𝜀
                                                                  (7.121) 

Consequently, the final form of the modelled equation for the transport of turbulent kinetic energy 

is the following 

[
𝜕

𝜕𝑡
+ 𝑉�̅�

𝜕

𝜕𝑥𝑗
] �̃� =

𝜕

𝜕𝑥𝑗
[
𝜐𝑇

𝜎�̃�

𝜕�̃�

𝜕𝑥𝑗
] + 𝑃�̃� − 𝜀                                               (7.122) 

in which two constants have been defined (and has to be found) and there is still the need to model 

the dissipation term. Well, in one equation models eq.(7.122) is the only one solved together with 

the conservation of mass and momentum, and the dissipation term is modelled as suggested by eq. 

(7.120). Then an algebraic expression is used to calculate the turbulent length scale, e.g. assuming it 

as proportional to some characteristic length of the flow under investigation. Intuitively, the main 

disadvantage of such modelling approach lies in the fact that there is not a unique valid expression 

for the turbulent length scale, which indeed depends on the type of flow itself. Consequently, an 

equation for the dissipation rate 𝜀 is necessary and, although an exact equation may be derived 

(introducing many news unknowns), the following modelled equation is commonly adopted 

[
𝜕

𝜕𝑡
+ 𝑉�̅�

𝜕

𝜕𝑥𝑗
] 𝜀 =

𝜕

𝜕𝑥𝑗
[
𝜐𝑇

𝜎𝜀

𝜕𝜀

𝜕𝑥𝑗
] + 𝑃𝜀 − 𝑐2𝜀

𝜀2

�̃�
                                                (7.123) 

which historically has been obtained using physical reasoning in analogy with eq. (7.122). In fact, 

again the last two terms on the right-hand side represent the production and dissipation term 

respectively. The production term is expressed as 

𝑃𝜀 = 𝑐1𝜀
𝜀

�̃�
𝑃�̃�                                                                     (7.124) 

which leads to the final form of the modelled equation for the dissipation rate, namely 

[
𝜕

𝜕𝑡
+ 𝑉�̅�

𝜕

𝜕𝑥𝑗
] 𝜀 =

𝜕

𝜕𝑥𝑗
[
𝜐𝑇

𝜎𝜀

𝜕𝜀

𝜕𝑥𝑗
] +

𝜀

�̃�
(𝑐1𝜀𝑃�̃� − 𝑐2𝜀𝜀)                                      (7.125) 

                                                           
88 Of course, the friction forces exist at all scales but they are larger as the dimension of the eddies decreases due to the 

increase of the velocity gradient. Thus a very small fraction of energy is dissipated at each level and it is assumed that 

most of the energy is dissipated at the smallest scales. 
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where other three constants 𝜎𝜀, 𝑐1𝜀 and 𝑐2𝜀 have to be determined. Thus, eq. (7.122) and eq. (7.125) 

are the equations used for achieving the closure of the turbulence model in presence of 

incompressible flow. The values of the five unknowns constants are reported in table below. 

𝑐𝜐 𝜎�̃� 𝜎𝜀 𝑐1𝜀 𝑐2𝜀 
0.09 1.0 1.3 1.44 1.92 

Table 8 – Values of the constants for the 𝑘 − 𝜀 turbulence model. 

These default values have been determined from experiments and they have been found to work 

quite well for a wide range of wall-bounded and free shear flows. The above described turbulence 

model has been firstly proposed by Launder and Spalding[13] and it is also known as standard k − ε 

turbulence model[11]. It has become the workhorse for many practical engineering flow 

calculations but, nevertheless, it has some limited predicting capabilities mainly due to the 

modelling of the transport of the dissipation rate. For these reasons, other two versions have been 

developed which are the RNG and realizable model.  

The first has been developed using a statistical technique called re-normalization group (RNG) 

theory[12], in order to account for the effects of smaller scales of motion. In fact, in the standard 

k − ε model the eddy viscosity is determined from a single turbulence length scale (see eq.( 7.118)) 

and so the calculated turbulent diffusion is that which would occur only at the specified scale. 

However, in reality all scales of motion will contribute to the diffusive transport. Thus, the RNG 

approach results in a differential equation for turbulent viscosity and a modified form of the epsilon 

equation, in order to take into account how the effective turbulent diffusive transport varies with the 

effective Reynolds number (or eddy scale), thanks to changes in the production term[12]. It follows 

that, the RNG model allows to better handle low-Reynolds-number and near-wall flows. On the 

other hand, the realizable model contains an alternative formulation for both the turbulent viscosity 

and transport equation for the dissipation rate. The name realizable derives from the fact that this 

latter equation is based on the dynamic equation of the mean-square vorticity fluctuation, so that the 

model respects certain mathematical constraints on the Reynolds stresses, consistent with the 

physics of turbulent flows. The equation for the eddy viscosity is the same as eq. (7.121) apart from 

the fact that 𝑐𝜐 is not constant. The deeper study of the peculiarity of each model is left to more 

specific books. 

 

 

 

 

 

 

 

 



200 
 

Bibliography 

[1] Lighthill, M. J. (1952). "On sound generated aerodynamically. I. General theory". Proceedings of the 

Royal Society A. 211 (1107): 564–587, doi:10.1098/rspa.1952.0060. 

[2] Lighthill, M. J. (1954). "On sound generated aerodynamically. II. Turbulence as a source of sound". 

Proceedings of the Royal Society A. 222 (1148): 1–32, doi:10.1098/rspa.1954.0049. 

[3] J. L. Lumley, “Aerodynamic Generation of Sound”,  reference materials for the National Committee 

for Fluid Mechanics Films movie series, available at http://web.mit.edu/hml/notes.html . 

[4] S. Sami, T. Carmody, and H. Rouse, “Jet diffusion in the region of flow establishment,” Journal of 

Fluid Mechanics, vol. 27, pp. 231–252, 1967. 

[5] M. Abom, “An Introduction to Flow Acoustics”, Publisher: KTH-The Royal Institute of Technology, 

ISBN: ISRN/KTH/AVE/N-06/04-SE. 

[6] Fine Acoustics Theoretical Manual, Release 5.2.3, July 2014. 

[7] Russell DA, Titlow JP, Bemmen YJ. Acoustic monopoles, dipoles, and quadrupoles: An experiment 

revisited. Am J Phys. 1999;67:660–664. 

[8] Krodkiewski, J. M. (2008), “Mechanical vibration”, Melbourne: The University of Melbourne. 

[9] L. Davidson, “An Introduction to Turbulence Models”, Chalmers University of Technology, January 

2003. 

[10] William K. George, “Lectures in Turbulence for the 21st Century”, Chalmers University of 

Technology. 

[11] Bardina, J.E., Huang, P.G., Coakley, T.J. (1997), "Turbulence Modeling Validation, Testing, and 

Development", NASA Technical Memorandum 110446. 

[12] Notes about turbulence modelling available at https://www.cfd-online.com/Wiki/K-epsilon_models . 

[13] Ansys Fluent V. 14, Theory Guide, Ansys Inc., 2011. 

[14] A. K. Ghosh, “INTRODUCTION TO MEASUREMENTS AND INSTRUMENTATION”, 

Publisher: Prentice-Hall of India Pvt.Ltd, ISBN10: 8120346254. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://web.mit.edu/hml/notes.html
https://www.cfd-online.com/Wiki/K-epsilon_models


201 
 

Chapter 8 

Geometric Optimization 

Introduction 

In the present chapter several comprehensive analyses of the intake system under investigation are 

described. These are aimed to the enhancement of the acoustic attenuation properties in order to 

lower the gas-dynamic noise emissions. Some of the presented results derive from the preliminary 

studies corresponding to the following articles: 

Siano D., D’Agostino D., “Optimization of an intake acoustic behavior by geometry CAD 

modifications”, presented at ATI 2015 Meeting “Internal Combustion Engines”, Rome (Italy), 

September 9-11, 2015 

Siano D., Aiello R., D’Agostino D., “Transmission loss assessment and optimization of an intake 

system for automotive application”, International Journal of Mathematics and Computers in 

Simulation, Vol. 10, 2016, Pages 82-89, ISSN: 1998-0159 

In chapter 6, a gas-dynamic noise analysis of the air induction system under investigation has been 

presented. Both experimental and numerical outcomes have been compared, in order to achieve a 

second validation step of the three-dimensional purely acoustic model. Such aspect is particularly 

important within the design and optimization cycle of a system. In fact, once a realizable model 

exists which is capable of reproducing the response of the actual system, it is possible to 

numerically study the effect of whatever new geometric configuration on the acoustic properties. 

On this idea, the acoustic performance of the studied system has been enhanced by means of 

geometrical modifications, and the results will be shown in the present chapter. In fact, on the basis 

of the previous performed Transmission Loss analysis, some new design configurations have been 

realized, to the aim of improving the noise attenuation characteristic. As it is schematized in Figure 

8.1, the preliminary step in the above mentioned process is represented by the availability of an 

experimentally validated numerical model. Once such target is achieved, it is possible to execute a 

loop procedure in which it is possible to investigate the effect that several geometric changes have 

on the noise attenuation characteristics. 
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Figure 8.1 - Flow chart of the Transmission Loss enhancement analysis. 

In general, at the current state of art, three ways exist for improving the sound attenuation within 

duct systems which rely on dissipative mechanisms, reflective mechanisms or noise cancelling 

mechanisms respectively. This latter is the most expensive one, as it directly relies on the use of an 

external sound source. Roughly speaking, the sound attenuation is realized by means of the 

installation, at certain point in the system, of internal speakers which produce a noise with a phase 

shift of π radians with respect to the noise component to be deleted. This results in a sound 

attenuation, as schematically depicted in Figure 8.2. 

 

Figure 8.2 - Schematization of the noise active control methodology. 

On the other hand, the use of sound dissipative mechanisms, such as insulation with porous 

material, is forbidden in intake systems as a considerable pressure loss may occur with a decrease in 

the volumetric efficiency. Hence, the choice is generally based on reflective related noise 

attenuation mechanisms. In this regards, the simplest way to improve the Transmission Loss of a 

system is represented by the project (ex novo) of external chambers which may act as acoustic 

resonators. In this framework, the most common choice is represented by both Helmholtz 

resonators and Quarter wavelength resonators. As already mentioned, an acoustic resonator is a 

very common element for duct systems which does not allow sound transmission downstream at 
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certain frequencies. In particular, when the excitation frequency equals the resonant frequency of 

the resonator, the acoustic impedance at the inlet section of the resonator equals zero, being the air 

inside the resonator comparable to a mass of a single degree of freedom system, vibrating and 

injecting acoustic energy into the duct system. This choice, despite the fact that is quite cheap and 

simple to realize, may result in a significant change of the original size of the system[1]. As an 

example, two air induction systems, for commercial vehicles, having acoustic resonators are 

reported in Figures 8.3 and 8.4. 

 

Figure 8.3 - Engine bay a) and air induction system b) of the Toyota FT8. 

 

Figure 8.4 - Engine bay a) and air induction system b) of a Hyundai vehicle. 

As it is possible to appreciate from the above pictures, solutions which rely on the project of 

external resonators certainly do not save space in the engine bay. Consequently, alternatives of this 

type cannot be always pursued, especially for small size engines, due to some compactness 

requirements which must be respected. This is the case of the studied system, for which the engine 

bay is depicted in Figure 8.5. 
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Figure 8.5 - Engine bay hosting the studied system. 

As it is possible to appreciate from the above photo, the available space for eventually realized 

modifications is close to zero. In such cases, the alternative is represented by a rearrangement of the 

available volumes, where and if possible. However, once several modifications have been tested, in 

terms of acoustic attenuation characteristics enhancement, another step must be taken before 

proceeding with the prototype creation and related experimental testing, since important aspects 

must be carefully considered. 

Firstly, it is necessary to confirm that the eventually achieved goals in terms of Transmission Loss 

optimization are confirmed when dealing with the actual noise emissions. As already mentioned, 

the Transmission Loss analysis represents the stand-alone study of the system and, as such, it 

represents just a qualitatively assessment of its noise attenuation performances. To the aim of 

establishing the amount of noise, namely the “quantum”, it is required a completely different 

approach which takes into account also the component of noise due to the turbulence inside the 

system, when this latter is coupled with the engine. Hypothetically, it could happen that the 

geometric change under consideration, although resulting in an increase of the Transmission Loss, 

may as well result in an increment of noise emissions due to an increase of turbulence inside the 

new system. 

Secondly, but not less important, it is mandatory to take into account the effect of new 

configurations on the engine performances. In fact, a re-design of the air induction system may 

directly affects the power output and engine efficiency, as its prior task is to maximize the cylinders 

filling. As an example, it could happen that a new configuration resulting in a decrease of noise 

emission may result in significant increase of the pressure drop across the boundary of the system, 

with related decrease of the volumetric efficiency. Therefore, sometimes a trade-off between 

acoustic emissions and engine performances must be achieved and each of the new design 

configurations must be carefully investigated from many points of view. 

In the following pages, the focus will be on the in depth investigation of three geometric changes, 

which have been realized on the previously validate acoustic model. The guidelines for the 

realization of such geometric modifications have been based on the well understood Transmission 

Loss trend, which has been very useful for understanding the influence of each parts the system 

consists of (expansion chambers, resonators etc.) on the frequency dependent noise attenuation 

characteristic. So, the focus will be on firstly improve the Transmission Loss within the low 

frequency range, where the noise signature is expected to be prominent. Then, subsequent gas-dynamic 

noise analyses, accounting for both noise contributions (namely  engine pulses and flow noise) to 
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the overall acoustic emissions, will be presented in order to assess the effectiveness of the supposed 

modifications with respect to the amount of noise emitted in an engine condition, namely 

2100 𝑟𝑝𝑚 WOT, which has been judged to be critic. In fact, treating the intake system of a small 

size engine which is equipped on a city car, such rotational speed is the most commonly 

encountered in road-traffic conditions89, whilst other rpm conditions are only representative of 

higher vehicle speeds when other, more prominent, noise sources are present such as road noise, 

aerodynamic noise etc.. Besides, the impact on the engine performances will be also evaluated. In 

the whole simulation process, namely CFD (1D\3D) and 3D FE acoustic model, the presence of the 

air filter has been neglected, on the basic idea that its influence is the same for each of the 

investigated system configurations. In this way it has been possible to overcome the 3D CFD 

modelling difficulties described in chapter 6. 

8.1 Transmission Loss enhancement 

In this paragraph it will be shown how the acoustic performance of the intake system depicted in 

Figure 5.5 has been optimized, in terms of its Transmission Loss, by means of several geometrical 

changes applied on the validated 3D FE model. It is worth noting that such model does not take into 

account the structural participation since, in chapter 5, it has been found that the system seems to be 

quite rigid in the investigated constraint conditions, which are even less constraining than those the 

air intake is subjected when mounted on the engine block (see Figure 5.40). This model has been 

validated by means of a comparison with available experimental data and therefore it is safe to 

assume that the effects of geometric changes (applied on the model) on the TL would be unaltered, 

if the system is actually modified. More precisely, the results of the numerical simulations have 

showed a fully satisfactory agreement with the experimental findings, demonstrating the potentiality 

of the numerical 3D acoustic model eventually to be used in optimization procedures. 

The optimization loop merely follows the flow chart depicted in Figure 8.1, consisting of different 

modifications, applied to the original CAD model of the acoustic cavity (see Figure 5.16), with the 

aim of improving its acoustic performances within the investigated frequency range. In order to 

explain the logic behind the different CAD modifications, it is necessary to recall and understand 

how the original system acoustically works. To this aim, in the figure below the Transmission Loss 

in rigid wall configuration is depicted. The analysis has been executed within the range 

[20;  2000] 𝐻𝑧, with a frequency step equal to 10 𝐻𝑧. 

                                                           
89 Actually, road-traffic conditions correspond to low engine load. However, dealing with a VVA engine, the throttle is 

almost always completely open, the load control being regulated by the VVA system itself. 
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Figure 8.6 - Transmission Loss results in rigid wall configuration. 

Such particular profile may be explained by the examination of the original geometry. As an 

example, the basic shape is similar to the Transmission Loss profile of two expansion chambers in 

series. This is particularly true in the low frequency region, say below 600 𝐻𝑧, where there are no 

other influences on the TL profile, such as resonators. To prove that, in the figure below the 

Transmission Loss of two consecutive expansion chambers is depicted. 

 

Figure 8.7 - Transmission Loss of consecutive expansion chambers. 

From the above figure it is also important to note that there is a clear trend of the basic shape to be 

repeated with higher amplitudes, as the frequency is increased. The same kind of tendency is 

observable in the Transmission Loss profile of Figure 8.6. Such similarity is due to the fact that the 

system may be schematized as made of two main volumes which constitute, from an acoustic point 

of view, two expansion chambers with different cross section ratios and characteristics lengths. 

More precisely, the various elementary acoustic elements, which may be recognized within the air 

induction system, may be schematized as reported in figure below. All together form the total 

volume of the system which is equal to 4,636 𝐿. 
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Figure 8.8 – Acoustic CAD model of the original system. 

The frequency at which the two resonators work are easily recognizable from Figure 8.6. Here, as 

already pointed out, the two peaks located at 680 𝐻𝑧 and 1120 𝐻𝑧 are due to two cavities which 

indeed act as an Helmholtz resonators. To confirm that, in figure below the pressure distributions 

inside the system, at the two above mentioned frequencies, are depicted. Here the red and blue 

colors represent compression and rarefaction of the acoustic medium respectively, whilst the green 

color indicates the nodal points. Thus, thanks to the color map, it is possible to appreciate how the 

sound transmission is blocked in correspondence of the resonators. 

 

Figure 8.9 - Pressure distribution of the forced response analysis (TL) at a) 680 and b) 1120 Hz. 

Moreover, it has also already been shown that the ninth acoustic mode at 1394 𝐻𝑧 (see table 690) is 

responsible for the peak in sound attenuation at 1400 𝐻𝑧. Such evidence has been confirmed by the 

comparison of the pressure distribution at 1400 𝐻𝑧 and that corresponding to the above mentioned 

acoustic mode (see Figure 5.37, chapter 5). The same explanation holds for the Transmission Loss 

peak located at 1960 𝐻𝑧, where the response of the system is dominated by the nineteenth acoustic 

mode which occurs at 1954 𝐻𝑧, as depicted in Figure 8.10. Here the color map is expressed in 𝑑𝐵 

scale, in order to highlight the nodal lines. So, red points correspond to maximum pressure 

oscillation, whilst green-like one indicates poor fluctuations. 

                                                           
90 The resonant frequency of the ninth acoustic mode is slightly shifted because of the fact that table 6 makes reference 

to the modified cavity depicted in Figure 5.17 b). 
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Figure 8.10 - Acoustic pressure distribution a) acoustic mode at 1954 Hz; (b) system response at 1960 Hz. 

As it is possible to appreciate from the above picture, the pressure distribution at 1960 𝐻𝑧 is such 

that almost the same magnitude of pressure oscillation occurs at the excitation port (on the top) with 

respect to the anechoic termination (at the bottom), justifying the low value of the Transmission 

Loss. 

Once the acoustic behavior of the system has been fully investigated and understood, it has been  

possible to proceed with the realization of several CAD modifications, aimed to improve the sound 

attenuation properties. To this purpose, the focus is on the low frequency range, say below 

1000 𝐻𝑧, where the system seems to exhibit the lowest Transmission Loss. In fact, as it is evident 

from Figure 8.6, within the frequency range [20;  1000] 𝐻𝑧, the system seems to not ensure an high 

sound attenuation, being the average attenuation equal to 3,6 𝑑𝐵. This in principle may represent a 

critical conditions for systems like that, since it is expected that the most prominent noise sources 

radiate at multiple of the engine firing frequency which is, for example, equal to 92 𝐻𝑧 at 

5500 𝑟𝑝𝑚 (see eq. (1)). However, it is important to recall that the actual attenuation is higher, 

especially at very low frequencies, since, when the air induction system is working, the energy 

associated with sound waves travelling toward the external ambient are partly reflected at the inlet 

mouth thanks to the external acoustic load represented by the radiation impedance. This latter, as it 

is already mentioned at the end of chapter 6, is responsible for a non-zero reflection coefficient with 

amplitude decreasing as the frequency increases. Nevertheless, the focus is on the low frequencies 

range as it is the most difficult to control. 

Thus, the basic intent on the realization of the modifications has been to not modify the size of the 

original system. Consequently, the only possible guidelines for the modifications to be realized 

have to rely on parts of the foam material which is attached behind the system, as it is depicted in 

figure below. More precisely, such foam material is supposed to primarily act as a damper for the 

vibrations related to the engine block-intake system interaction, in order to lower the plastic-to-

plastic impact related noise. However, if a more performant isolator could be used, which means 

more thin, part of the new volume available could be used to appropriately modify the air volume, 

in order to reach the desired acoustic performance enhancement. In particular, as it is highlighted in 

Figure 8.11, a lot a space could serve the purpose. However, it is very important to note that each of 
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the new design configurations of the intake system must be carefully examined, as every change in 

the volume available for travelling sound waves, directly affects the cavity modes and the 

corresponding resonant frequencies. 

 

Figure 8.11 – CAD model comparison: a) structural and b) acoustic. 

In this framework, as it is possible to appreciate from Figure 8.11 a), both white and blue colored 

foam material may be used in order to realize the desired CAD modifications. Thus the first CAD 

modification has relied on a re-design of the volume available within the filter box, considering part 

of the foam (colored in white within Figure 8.11 a)) there attached, as embedded in the acoustic 

medium. According to the schematization of the system, as mainly composed by two expansion 

chambers in series, such geometrical change would be equivalent in increasing the area ratio of the 

first chamber (refer to Figure 8.8). The resulting available volume within the air induction system is 

depicted in figure below, where it is compared with that of the original device. 

 

Figure 8.12 – CAD model comparison: a) Original device and b) first modification. 

As it is possible to appreciate from the above figures, the applied modification to the filter box 

results in a slight increment of the total volume. In fact, by simply incrementing the height of the 

filter box of an amount equal to 1,5 𝑐𝑚, the total volume of the system changes from 4,636 to 

5,134 𝐿, namely an increase of the 10,7%. Besides, the modification has been realized in a way 

such that the resulting volume is almost completely embedded within the foam, which is attached 

behind the filter box in its original configuration. Such circumstance is highlighted in figure below, 

where it is possible to appreciate that the CAD model of the foam material, which has been colored 

in white, is almost completely outside the new volume corresponding to the higher filter box. 
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Figure 8.13 – CAD model comparison between the volume occupied by the foam (white) and the volume occupied by 

the first modification. 

The corresponding acoustic mesh is depicted in figure below and it consists of 58797 solid elements 

(Tetra 10-noded) and 95499 nodes, allowing acoustic analysis until 5000 𝐻𝑧 considering a spatial 

resolution of six points per wavelength. 

 

Figure 8.14 - Acoustic mesh corresponding to the first CAD modification. 

By executing a Transmission Loss analysis of the system depicted in Figure 8.12 b), corresponding 

to the first geometrical modification, it is obviously expected that the position of the first two peaks 

occurring at 680 and 1120 𝐻𝑧 will not change as they are due to resonators, whilst the position of 

the peaks located at 1400 and 1960 𝐻𝑧 will probably change. This is reasonable since, as already 

proved above, the sharp values of the Transmission Loss achieved at these two frequencies are due 

to system’s resonances. In fact, a change in the volume of the cavity will also probably change the 

acoustic natural modes and the corresponding natural frequencies. In Fig. 8.15, both the original and 

the new TL trends have been reported as function of frequency, where the black continuous and red 

dashed lines refer to the original and modified configuration of the system respectively. The 

analysis has been carried out within the range [20;  2000] 𝐻𝑧, with a frequency step equal to 

10 𝐻𝑧. 
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 Figure 8.15 - Effect of the first CAD modification on the Transmission Loss. 

As it has been expected, the sound attenuation of the new system is increased within the entire 

considered frequency range, as it is highlighted by the blue circles in Figure 8.15. This effect could 

be easily understood by recalling the analytic expression of the Transmission Loss for a single 

expansion chamber[3], namely: 
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where 𝑆𝑐 and 𝑆𝑖 are the cross sections of the chamber and inlet/outlet pipes, whilst 𝑘 is the wave 

number and 𝑙𝑐 in the chamber’s length. Even if eq. (8.1) represents the analytic expression of the 

TL in the case of plane wave propagation, it is conceptually clear that increasing the area of the 

expansion chamber, the TL increases as well. From a purely acoustic point of view, this is justified 

by the fact that, increasing the cross section ratio will result in a stronger impedance mismatch and 

so stronger acoustic reflections at the chamber’s interfaces. Moreover, as it is previously 

anticipated, the location of the first two peaks has not changed, whilst that of the second two peaks 

has changes. To confirm the above explanation, according to which such shift is due to a change in 

the natural frequencies, table 9 reports the natural frequencies of the first 19th acoustic modes for 

both original and modified device. It is worth noting the different natural frequencies for the 

original device with respect to those indicate in table 6 of chapter 5. This is due to the fact that, 

during the analyses of this chapter, the inlet and outlet tubes have not been modified as it has been 

done during the Transmission Loss analysis in chapter 5. 

Mode 

number 
Resonant frequency [𝐻𝑧] 

Original device 

Resonant frequency [𝐻𝑧] 
Firstly modified device 

1 233 239 

2 326 319 

3 474 477 

4 642 645 

5 675 675 

6 781 781 

7 879 864 

8 1072 1078 
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9 1124 1128 

10 1159 1157 

11 1351 1349 

12 1394 1384 

13 1439 1415 

14 1533 1514 

15 1625 1621 

16 1723 1718 

17 1783 1779 

18 1908 1894 

19 1954 1939 

Table 9 - First 19th natural frequency of the acoustic cavities depicted in Figure 8.12. 

As it is possible to appreciate from the table above, starting from the tenth natural mode, a clear 

negative frequency shift exists when the geometry is modified according to Figure 8.12 b), which 

confirm the explanation above. This in particular explains why the Transmission Loss curve 

depicted in red in Figure 8.15 has a small negative shift with respect to the black one starting from 

about 1300 𝐻𝑧.  

 

Figure 8.16 – 19th Acoustic mode comparison: a) Original device and b) first modification. 

However, still a Transmission Loss value below 5 𝑑𝐵 within the range [300;  600] 𝐻𝑧 is achieved. 

This is not the best situation from an acoustic performance point of view, since within this range 

multiple of prominent engine orders may still appear in the noise signature (see Figure 6.14 in 

chapter 6). It follows that, another modification aimed to improve the acoustic attenuation in such 

frequency range would be necessary. Thus, it is possible to take into account another part of the 

foam attached to the original system (part of that depicted in blue within Figure 8.11 (a), in order to 

increase the volume of the cavity which is responsible for the peak around 680 𝐻𝑧. This would 

certainly lower the critical frequency of the Helmholtz resonator, for which the greater the volume 

the lower the resonant frequency according to eq. (3.63)[3]. Thus, after this further geometry 

modification, the air volume embedded within the system should look as depicted in Figure 8.17. 
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 Figure 8.17 - Second CAD modification: increased volume of the resonator. 

As it is possible to appreciate by the examination of the above figure, the volume of the new 

Helmholtz resonator is almost completely embedded within the foam which is attached behind the 

air box in its original configuration. The total volume of the system would reach 5,71 𝐿, which 

corresponds to an increase of the 23% with respect to the original size. The corresponding acoustic 

mesh is depicted in figure below and it consists of 64954 solid elements (Tetra 10-noded) and 

105479 nodes, allowing acoustic analysis until 5000 𝐻𝑧 considering a spatial resolution of six 

points per wavelength. 

 

Figure 8.18 - Acoustic mesh corresponding to the second CAD modification. 

The corresponding effect on the Transmission Loss profile is depicted in Figure 8.19, in which the 

black continuous and the red dashed lines refer to the original and modified geometry respectively. 

Even in this case the analysis has been carried out within the range [20;  2000] 𝐻𝑧, with a 

frequency step equal to 10 𝐻𝑧. 
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Figure 8.19 - Effect of the second CAD modification on the Transmission Loss. 

As expected, the combined effect of the two CAD modifications has improved the TL in the low 

frequency range, e.g. 40,5 𝑑𝐵 at 440 𝐻𝑧. More precisely, as highlighted in Figure 8.19, the peak 

due to the resonant cavity has moved from 680 to 440 𝐻𝑧. Such behavior perfectly agrees with the 

analytic expression of the resonant frequency of an Helmholtz resonator, considering the different 

volumes highlighted in Figure 8.20. In fact, even if it is extremely difficult to exactly individuate 

the length and cross section of the resonator neck, as the whole three-dimensional geometry is very 

complex, the resonant frequency corresponding to the modification may be found by means of the 

knowledge of the volume of the cavity. Such information is reported in Figure 8.20, where it has 

been highlighted that the volume of the resonator has been increased from 0,383 to 0,957 𝐿. 

 

Figure 8.20 - Comparison between the volumes of the resonator: a) before and b) after the second CAD modification. 
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Thus, in the hypothesis that the acoustic length of the resonator’s neck does not change when 

modifying the geometry, according to the analytic expression of the resonant frequency for an 

Helmholtz resonator, the new resonance would occur at 

𝑓2 =
𝑎0

2𝜋
√
𝑆

𝐿𝑉1
√
𝑉1

𝑉2
= 𝑓1√

𝑉1

𝑉2
≅ 430 𝐻𝑧                                             (8.2)                                                                                             

where 𝑎0 is the speed of sound, 𝑉 is the volume of the cavity whilst 𝑆, 𝐿 are the neck’s cross section 

and length respectively. Obviously, the analytical result does not coincide exactly with the 

simulation finding, as a change in the shape would also affect the acoustical length of the cavity’s 

neck. Moreover, as it has been expected, new peaks appear in the TL profile, since new cavity 

modes characterize the new configuration. As an example confirming such statement, in Figure 8.19 

three peaks have been highlighted at 750, 1040 and 1360 𝐻𝑧. The acoustic response at these 

frequencies are clearly influenced by the presence of cavity modes occurring at 747, 1045 and 

1360 𝐻𝑧 respectively, as indicated within the Figures below. 

 

Figure 8.21 - Pressure distribution of a) the acoustic modes at 747 Hz and b) system response at 750 Hz. 

 

Figure 8.22 - Pressure distribution of a) the acoustic modes at 1045 Hz and b) system response at 1040 Hz. 

 

Figure 8.23 - Pressure distribution of a) the acoustic modes at 1360 Hz and b) system response at 1360 Hz. 

In spite of the fact that the lowering of the resonant frequency of the main resonator ensure a better 

acoustic performance at low frequencies, a very poor attenuation holds so far in the frequency range 

[600;  900] 𝐻𝑧. In fact, within this range, only the very sharp peak occurring at 750 𝐻𝑧 ensures 

sound attenuation. Therefore, a further geometrical modification might be necessary, which is 
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highlighted in Figure 8.24 a). Even in this case, the foam has still been used as the previous 

modifications to improve the volume of the air cavity. More precisely, such modification would 

increase the cross section ratio of the second volume indicated in Figure 8.8. 

 

Figure 8.24 - Third CAD modification: Added volume to the outlet (engine side) chamber. 

As it is possible to appreciate from the examination of the above figure, the foam has been attached 

to the air volume in a way such that the cavity, highlighted in Figure 8.24 a) by a yellow circle, 

would represent an additional resonator (see the separation within the yellow circle in Figure 8.24 

b)). In figure below, the original CAD model of the foam has been compared with the volume of the 

acoustic system after the three modifications. 

 

Figure 8.25 - Third CAD modification: Added volume to the outlet chamber. 

As it is possible to appreciate by the examination of the above figure, even in this case the volume 

of the new air induction system is almost completely embedded within the foam which is attached 

behind the air box in its original configuration (depicted in yellow in the above figure). The total 

volume of the system reaches 7,079 𝐿, which corresponds to an increase of the 52,7% with respect 

to the original size. The corresponding acoustic mesh is depicted in figure below and it consists of 

88143 solid elements (Tetra 10-noded) and 142207 nodes, allowing acoustic analysis until 5000 𝐻𝑧 

considering a spatial resolution of six points per wavelength. 
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Figure 8.26 - Acoustic mesh corresponding to the third CAD modification. 

The corresponding effect on the Transmission Loss is shown in Figure 8.27, where the black 

continuous line refers to the original device whilst the red dashed line to the modified system 

according to Figure 8.24. Even in this case the analysis has been carried out within the range 

[20;  2000] 𝐻𝑧, with a frequency step equal to 10 𝐻𝑧. 

 

Figure 8.27 - Effect of the third CAD modification on the Transmission Loss. 

As it is possible to point out from the above depicted curves, the last geometry change ensures a 

great increase in the acoustic performance of the intake system within the whole investigated 

frequency range. In particular, the main gain has been obtained within the range [400;  1000] 𝐻𝑧. 

In particular, the peak at 700 𝐻𝑧 is due to the resonance of the new cavity, as it is possible to 

appreciate by the pressure distribution depicted in Figure 8.28. 
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 Figure 8.28 - Sound pressure distribution at 700 Hz. 

Furthermore, as expected, the effect of the previously modified resonator is not changed, apart from 

a little frequency shift which makes the resonance occurring at 430 𝐻𝑧 instead of 440 𝐻𝑧. This 

may be probably due to a change radiation condition outside the resonator for which a different 

acoustical length characterizes the resonator’s neck. 

 

Figure 8.29 - Sound pressure distribution at 430 Hz. 

However, there are still some frequencies at which the system does not work very well, e.g. at 390 

and 740 𝐻𝑧, as it has been highlighted in Figure 8.27. Such behavior is easily explainable from the 

examination of the acoustic modes of the system in this new configuration. More precisely, after 

performing an acoustic modal analysis aimed to extract all the mode shapes until 2000 𝐻𝑧, it has 

been found that the response of the system at the two mentioned frequencies is mainly influenced 

by the presence of two mode shapes, occurring at 394 and 761 𝐻𝑧 respectively. This is evident by 

the examination of Figures 8.30 and 8.31, where the pressure distributions of both acoustic mode 

and forced response, in the two cases, are depicted. The color map is expressed in 𝑑𝐵 scale in order 

to highlight as much as possible the nodal lines. 
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Figure 8.30 - Pressure distribution of a) the acoustic modes at 394 Hz and b) system response at 390 Hz. 

 

Figure 8.31 - Pressure distribution of a) the acoustic modes at 761 Hz and b) system response at 740 Hz. 

As it is possible to appreciate from the contour plot of the above figures, both sound pressure 

distributions in correspondence of the two acoustic modes, clearly highlight almost the same 

magnitude at the inlet and outlet sections.  Therefore, the low TL values at both 390 and 740 𝐻𝑧 

are justified by the prominent influence of the two above depicted modes on the system’s response. 

Thus, in spite of the fact that, at some frequency, the presence of new cavity modes lowers the 

sound attenuation characteristic, the Transmission Loss has been globally highly improved. Besides, 

as it is possible to appreciate by Figure 8.27, a lot of new peaks are present in the new TL profile, 

all occurring in correspondence of new natural modes. As an example, the response of the system at 

1090 𝐻𝑧 is due to the presence of a cavity mode occurring at 1091 𝐻𝑧, as it is possible to 

appreciate from the figure below. 

 

Figure 8.32 - Pressure distribution of a) the acoustic modes at 1091 Hz and b) system response at 1090 Hz. 
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Moreover, the same thing happens for the system’s response at 1040 𝐻𝑧 which is drastically 

influenced by the presence of an acoustic mode occurring at 1040 𝐻𝑧, as it is shown in figure 

below. 

 

Figure 8.33 - Pressure distribution of a) the acoustic modes at 1040 Hz and b) system response at 1040 Hz. 

Actually, it is important to note that the mode depicted in Figure 8.33 a) is not a new natural mode, 

whose presence is due to a change in the volume of the system. In fact, the same mode shape exists 

for the second version of the intake system depicted in Figure 8.17 a), as it is possible to appreciate 

by comparing the color maps of both Figure 8.22 a) and 8.33 a). 

In conclusion of this paragraph, it has been shown how the acoustic performance of the investigated 

intake system may be significantly improved by means of geometric modifications, without 

changing the overall size of the system, which represents a very important restriction for the 

considered engine. More precisely, starting from previously discussed studies, in which a numerical 

model has been validated by means of experimental investigations, the Transmission Loss in rigid 

wall condition has been numerically evaluated, in order to assess the improvements coming from 

various geometric changes. Thus, it has been demonstrated that opportunely realized modifications 

in the volume distribution may considerably increase the TL profile, within the investigated 

frequency range. Of course, further analyses have to be executed, in order to verify that the amount 

of noise emitted in real working conditions is effectively diminished, when considering the three 

proposed versions of the modified system. Besides, the effects of such modifications on the engine 

performance must be evaluated as well. Consequently, in the following paragraph, the gas-dynamic 

analyses of the new configurations of the air induction system will be in depth discussed. 

8.2 Gas-dynamic noise Analysis 

8.2.1 Problem statement 

Once it has been found that the realized geometric modifications have a positive impact on the 

acoustic Transmission Loss of the original device, another analysis has to be carried out in order to 

assess the real effectiveness of the new design configurations. In fact, it is necessary to verify that 

the amount of noise emitted when the new configurations of the air induction system are working 

will be reduced and, at the same time, that no decrease in the engine performances would occur. To 

this aim, a more complicated gas-dynamic analysis has to be performed which takes into account all 

the involved acoustic contributions. Such circumstance arises from the fact that, as already 

highlighted, when the engine is running the overall noise emission (intake side) is mainly due to 
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two contributions. In fact, for systems like that, two major sources of sound exist, as it is 

schematically depicted in Figure 8.34[8]. 

 

Figure 8.34 -  Sound source of the intake and exhaust gas-dynamic noise. 

As it has been already mentioned, the major contribution to the engine gas-dynamic noise is 

represented by the so-called engine pulses and it is due to pressure fluctuations induced by periodic 

valves opening at the IVO crank angle positions. Thus, the periodic air flow through the valves 

represents a monopole source term. The main spectral components are concentrated within the low 

frequency range, corresponding to the first engine orders. Such circumstances make the primary 

source of noise to be modelled starting from information available from a one-dimensional fluid 

dynamic code (according to the flow chart of Figure 6.2 in chapter 6) which, as it has already been 

shown, could also give a first approximate estimation of the noise emitted in various engine running 

conditions. 

 

Figure 8.35 -  Pulsating flow due to periodic valve opening as primary source of sound. 

However, another quite important contribution to the overall noise emitted by the intake mouth is 

represented by the flow instabilities induced noise (flow noise), which represents a broad band 

noise due to turbulence inside the system. In fact, aerodynamic processes associated with the cyclic 

flow through the valves, fluid separation and vortex generation at junction of expansion sections, 

constitute an additional source of intake and exhaust noise as well. Such contribution, which 

corresponds to a quadrupole source term, is generally associated with almost every aerodynamic 

process and it is present even in stationary fluid flow, as it is schematically depicted in figure 

below. 
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Figure 8.36 -  Fluid flow and corresponding turbulence as secondary source of sound. 

Obviously, treating turbulence induced sources of sound, the full three-dimensional flow field 

developed inside the air induction system must be resolved with the help of a 3D CFD code. Thus, 

the problem to be dealt with is a computational aero-acoustics one, for which several solving 

strategies may be used. They rely on the use of direct methods, hybrid methods and semi-empirical 

methods. 

As regards the direct methods, both the fluid dynamic and the acoustic part of the problem are 

solved by the 3D CFD code. However, some drawbacks are encountered such as for example that 

the CFD solvers work in time domain whilst acoustic is a frequency dependent phenomena dealing 

with natural frequencies (acoustic and structural), frequency dependent material properties (e.g. 

damping) etc.. Besides, the CFD boundary conditions are not appropriate for acoustic simulations. 

As an example, it is possible to consider that a zero pressure[5] boundary condition does not 

reproduce an acoustic free field condition in acoustics. Moreover, the finite volume CFD spatial 

schemes is highly dissipative and the acoustic perturbations, which are infinitely small with respect 

to the flow perturbations, are generally numerically damped for the sake of convergence.  

Consequently, the accurate prediction of an acoustic field with a direct approach is a difficult 

objective to be reached, which makes the CFD analysis more complex, very time-consuming and so 

not appropriate for industrial goals. 

Concerning the hybrid methods, they are based on the decoupling, as it is described in the 

Lighthill’s theory[13], between aerodynamically generated sound and its propagation. Such 

assumption implies that there is no feedback mechanism between acoustic field and propagation 

field. The acoustic sources are related to the turbulence within the flow but the corresponding 

acoustic field does not modify the flow. Consequently, such hybrid solutions rely on two basic steps 

in which the acoustic problem is decoupled from the fluid dynamic one, by letting the flow field to 

be solved by a 3D CFD solver, whilst the equivalent acoustic sources calculation and their 

propagation is left to the 3D acoustic solver. The equivalent source terms are reconstructed starting 

from the resolved flow field, thanks to aeroacoustic analogies such as the aerodynamic generation 

of sound by Lighthill or Möhring’s analogy[5]. 

As regards the semi-empirical methods, they also rely on a two steps procedure. As an example, a 

SNGR (stochastic noise generation and radiation) technique may be used to reconstruct a synthetic 

unsteady velocity field, starting from steady 3D CFD RANS data and isotropic turbulence 

theory[6][10]. Then, similarly to what happens for hybrid methods, the source terms are computed 

using aeroacoustic analogies applied to the unsteady synthetic velocity field. However, this method 

may lead to a not accurate approximation of the acoustic sources and their corresponding frequency 

spectrum, as the process starts from steady CFD results. 
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In this thesis it has been chosen to model the turbulence induced acoustic sources by means of an 

hybrid method, modelling the additional contribution on the basis of the Lighthill equivalent source 

term. The whole gas-dynamic analysis process merely follows the flowchart of Figure 6.1 and it is 

reported below. 

 

Figure 8.37 – Flow chart of hybrid procedure useful for the gas-dynamic noise analysis. 

More precisely, besides what has been described in chapter 6, three-dimensional CFD analyses have 

been executed in order to resolve the flow field inside the various investigated versions of the 

system (original and new configurations respectively). To the aim of obtaining suitable boundary 

conditions for the 3D CFD analysis, the previously discussed one-dimensional engine map has been 

used. The only difference lies in the fact that the one-dimensional schematization process of the air 

induction system has been obviously repeated, for each of the new configurations. Then, in 

correspondence of the engine running point at WOT 2100 𝑟𝑝𝑚91, the pressure and temperature 

fluctuations, calculated in a section of the 1D map just after the compressor (referring to Figure 6.7 

of chapter 6), represent the main excitation of the 3D CFD solver. Once the flow field is completely 

resolved, it is given to the acoustic solver which reconstructs the equivalent additional acoustic 

source term, consisting of the spectrum of the Lighthill stress tensor. 

However, within the whole above described process, the presence of the paper sheets composing the 

air filter inside the air induction system has not been taken into account, for each of the new 

investigated device’s configurations, due to the already mentioned lack of information necessary to 

model the fluid dynamic of porous material within the 3D CFD software. Despite of this modelling 

issue, it is expected that the validity of the results is not affected by such defection, as the air filter 

would be the same for each of the new designed devices. 

                                                           
91 As already mentioned in the introduction of this chapter, the 2100 𝑟𝑝𝑚 has been chosen because it is representative 

of  the most common 𝑟𝑝𝑚 condition encountered at low vehicle speeds, where the intake noise represents a prominent 

noise source. Besides, it is reasonable to assume that if good results are found at WOT condition, even lower noise 

emission would be found at lower engine loads. At higher rpm, which corresponds to high vehicle speeds, there are 

other more prominent noise contributions, e.g.  aerodynamic noise. 
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In the following, the setting up process, for the analyses which are schematized in Figure 8.37, will 

be presented with particular focus on the discussion of the results. Firstly, the one-dimensional 

analysis will be briefly described, giving a first insight about the impact of the air system 

modifications on the engine overall performances. In particular, a comparison among information 

about power, fuel consumption and volumetric efficiency will be presented, for each of the new 

configurations. Then, the building-up procedure for the three-dimensional CFD models will be 

presented and two analyses will be discussed. The first is an unsteady analysis useful for resolving 

the three-dimensional flow field, developed at 2100 𝑟𝑝𝑚 WOT, whilst the second is a steady flow 

analysis useful for examining the pressure drop trend, as function of the mass flow rate, which 

would be realized across the inlet and outlet section of each system’ configurations. Finally, a 

comparison will be made about the noise emissions, simulated with the aim of the 3D acoustic 

model, in terms of frequency spectrum and overall levels, in order to establish the effectiveness of 

the presented new versions of the studied system. 

8.2.2 Analysis process 

8.2.2.1 One-dimensional CFD analysis 

According to the schematization of Figure 8.37, when evaluating the gas-dynamic noise within the 

whole shape-optimization process, the first step to be made has been the one-dimensional 

schematization of the modified systems, followed by a 1D analysis aimed to obtain the proper set of 

boundary conditions for both 3D CFD and 3D acoustic model. Once again, in order to obtain an as 

much as possible suitable one-dimensional representations of the various versions of the intake 

system, the useful tool GEM 3D has been used. As it has already outlined, the starting point for the 

model preparation is represented by the available topological information in terms of CAD models. 

Thus, all the three new CAD models have been firstly divided into parts which could better 

represent one dimensional flow components. The first analysis has been about the original device, 

because that described in chapter 6 has taken into account the presence of the air filter which has 

been modelled as a simple orifice connection (see Figure 6.7). However, in order to respect the 

coherence with three-dimensional CFD analysis, the presence of the air filter has to be neglected. 

Hence, the new one-dimensional discretization is depicted in Figure 8.38. 
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Figure 8.38 - 1D schematization of the original device (without the air filter). 

By comparing the above picture with Figure 6.7 of chapter 6, it is possible to appreciate that the 

only difference is represented by the absence of the air filter. The same process has been executed 

for the three investigated versions of the original device and, as an example, the corresponding 1D 

representation of the first CAD modification is depicted in Figure 8.39. 

 

Figure 8.39 - 1D schematization of the first CAD modification. 

As it is possible to appreciate from the above figure, a more detailed description of the air induction 

system has been realized. As an example, it is possible to note the presence of a flow component 

schematizing the main Helmholtz resonator. Such increase of details has been realized in order to 

easily reproduce the geometric changes, leaving unaltered the 1D representation of the other parts. 

As an example of the effectiveness of such modelling strategy, in the figure below the one-

dimensional representation of the second CAD modification is shown. 
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Figure 8.40 - 1D schematization of the second CAD modification. 

As it is schematically indicated by the blue circle in the figure above, the only change occurring in 

the 1D scheme is represented by the flow component describing the Helmholtz resonator, which is 

the only change realized between first and second geometric modification. It is also possible to 

appreciate that the other flow components are exactly the same. This should ensure that the output 

of the 1D simulations are affected only by the effective modification in the CAD models and not by 

different modelling strategies. In Figure 8.41, the one-dimensional representation of the CAD 

model corresponding to the third investigated version of the studied system is shown. 

 

Figure 8.41 - 1D schematization of the third CAD modification. 

As regards the analysis output, the main information is represented by the pressure and temperature 

fluctuations at the outlet of the system (engine side), which are mandatory for the further three-

dimensional analyses. However, it is important, before proceedings with further investigations,  to 

compare the effects that the various modified versions of the air induction system have on the 

engine performances. From such a viewpoint, an indication may be obtained by comparing power, 

fuel consumption and volumetric efficiency accomplished during each 1D simulations of the 

coupled system (engine-intake). Such information have been reported in the figures below. 
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Figure 8.42 - Engine performance comparison. 

As it is possible to appreciate from the above figures, the curves corresponding to each of the 

investigated system’s configuration are practically indistinguishable. It follows that the main engine 

performance parameters should remain unchanged when each of the investigated new versions of 

the intake system is coupled to the engine. Nevertheless, a more accurate analysis would also take 

into account the pressure drops occurring across the inlet and outlet sections of the systems. Such 

aspect has been further investigated with the aim of a three-dimensional CFD code, as it will be 

described in the following. However, before deepening the investigations, it is interesting to assess 

the influence of the various changes in the 1-D discretization on the pressure fluctuations, in a 

section just before the inlet of the compressor, which will be useful for the successive analyses. To 

this aim, in figure below, the incident pressure fluctuations, calculated by means of eq. (6.2), 

occurring in 720 crank angle degrees and corresponding to each of the new investigated 

configurations of the air induction system are shown. 
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Figure 8.43 - Incident pressure waves into the various version of the air induction system. 

As it is possible to appreciate from the above figure, there are not significant changes in the incident 

pressure wave, when the modifications are applied to the one-dimensional representation of the air 

induction system. More precisely, it is possible to point out that, as the basic waveform does not 

change, it is expected that the spectrum information at low frequency would be practically 

unaltered. Some change in the spectrum would certainly occur at high frequency where, however,  

small amplitudes components are present whose contribution to the overall sound emission is 

negligible. 

8.2.2.2 Three-dimensional CFD analysis 

As it has been already mentioned, the main result of the one-dimensional analysis is represented by 

the fluid dynamic state at the outlet of the air induction system (engine side), just before the inlet of 

the turbocharger group. In fact, once such information is available, it is possible to set up the proper 

boundary conditions in order to perform a 3D CFD unsteady analysis, aimed to resolve the entire 

flow field which is developed inside the system, in various engine running points. Thus, the 3D 

CFD analyses have been executed with the aim of a commercial software for fluid dynamic 

simulations. It is very important to underline that, especially in the case of a CFD analysis, the 

crucial step for the model preparation has been represented by the mesh creation. In order to ease 

the discretization process, the CAD models have been opportunely divided in at least four parts. As 

an example, Figure 8.44 shows the various parts composing the intake system in its original 

configuration, which are inlet (grey), filter box (light blue), airbox (green), outlet (light orange). 

 

Figure 8.44 - Input CAD model for the 3D CFD analysis. 
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In the above figure, both the inlet and outlet section have been highlighted, as the boundary 

conditions have been applied on the elements corresponding to them. It is important to note that 

particular attention has been spent for the meshes generation processes since the quality of the grid 

drastically affects the convergence of the incompressible flow simulation. In the figure below, the 

CFD mesh for the original system configuration is shown. Here, it is possible to recognize the four 

different meshes of the parts composing the assembly depicted in Figure 8.44. For simplicity, a 

TET-based discretization process has been executed, such that the final mesh consists of 1135896 

elements (Tetra 4-noded) and 224534 nodes. 

 

Figure 8.45 - 3D CFD mesh for the original device configuration. 

As already mentioned, on the elements constituting the system’s termination at the engine side, a 

fluctuating pressure and temperature profile have been imposed, which have been extracted from 

the engine map depicted in Figure 8.38, after the 1D simulation. As an example, in the figure below, 

the pressure and temperature profile imposed when simulating the 2100 𝑟𝑝𝑚 wide-open throttle 

condition are depicted. 

  

Figure 8.46 - Boundary conditions in terms of pressure and temperature fluctuations for the 3D CFD model. 

At the same time, a constant static pressure and temperature have been imposed at the intake mouth, 

in order to reproduce the thermodynamic conditions within the external ambient. From a modelling 

point of view, apart from the above mentioned boundary conditions, a turbulence model had to be 

specified, which is necessary in order to express the Reynolds stress tensor as function of the 

average flow field, allowing the closure of the fluid dynamic problem to be reached, as it has been  

already mentioned at the end of chapter 7. 
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A two equation model has been employed, corresponding to the standard k-epsilon, which has been 

used for all the simulations. Then, the time step has been fixed corresponding to the information 

given by the 1D solver, namely every crank angle degree. To the aim of determining the minimum 

number of cycles to be simulated, necessary for considering the solution as fully converged, a 

sensitivity analysis have been executed. Hence, five consecutive cycles (corresponding to 3600 

time step) have been simulated, in correspondence of the engine running point at 2100 𝑟𝑝𝑚 WOT. 

The main output of such unsteady CFD simulation is represented by the three-dimensional flow 

field developed inside the system, which has been used as additional input in the acoustic model. As 

an example, the velocity field within the original device at 2100 𝑟𝑝𝑚 is reported in figure below. 

 

Figure 8.47 - Velocity streamline at the last time step of the simulation at 2100 rpm WOT. 

In the figure above, the higher the velocity magnitude the more red-like the color map. Such output 

information is necessary to model the turbulence induced additional acoustic sources according to 

the aeroacoustics analogy, as described in chapter 7. For completeness, the CFD discretizations 

corresponding to each of the investigated versions of the air induction system have been reported in 

Figure 8.48. 
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Figure 8.48 - 3D CFD mesh corresponding to a) first, b) second and c) third modification respectively. 

Even in those cases, a TET-based mesh creation process has been executed, due to its simplicity in 

representing very complex geometries and the results, in terms of number of elements and nodes, 

are reported in the table below. 

Geometry Number of elements (Tetra 4-noded) Number of nodes 

First modification 1176859 229917 

Second modification 1488162 288359 

Third modification 1532437 298620 

Table 10 - Mesh characteristic for the modified versions of the intake system under investigation. 

Obviously, by the examination of the data within table 10, it is clear that the number of elements is 

increased as the volume of the considered geometry increases. Such aspect directly affects the 

computational time of each simulation. 

Another important aspect, which highlights the importance of a three-dimensional fluid dynamic 

code, is represented by the fact that it allows the accurate calculation of the pressure drop which is 

realized across the boundaries of the computational domain. Thus, the above described models have 

been used also for steady state flow simulations, aimed to calculated the pressure drop of each 

systems as function of the mass flow rate. In particular, the mass flow rates, corresponding to each 

engine points, have been extracted from the 1D maps after the simulations and have been used as 

boundary conditions for such steady state analyses. The results are summarized in Figure 8.49, 

where the red, black, blue and green line refer to the pressure drop realized across the boundary of 

the original device, first, second and third modification respectively. 
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Figure 8.49 - Static Pressure drops computed with the aim of the 3D CFD code as function of the mass flow rate. 

Firstly, it is important to note that, as expected, the static pressure drop has a quadratic trend as 

function of the mass flow rate[7]. Secondly, by the examination of the curves depicted in the above 

figure, it is possible to point out that all the investigated geometric modifications would not increase 

the static pressure drop, which would result in a decrease of both the air density and consequently 

the volumetric efficiency. On the contrary, the pressure drop would decrease if the various 

geometric changes would be applied to the original device. 

Once the flow field inside the air induction system has been resolved, it is possible to feed the 

acoustic model with the additional boundary condition, which is necessary to model the flow noise 

contribution to the overall noise emission. Thus, in the following, the three-dimensional acoustic 

model and the corresponding outcomes will be presented and discussed. 

8.2.2.3 Three-dimensional acoustic analysis 

Even in this case, the analyses have been conducted by using the commercial software Actran 

release 15.1, powered by Free Field Technology. Following the flow chart of Figure 8.37, the three-

dimensional acoustic analyses have been executed in order to estimate the gas-dynamic noise 

related to the various new configurations of the air induction system, with the target of evaluating 

the effectiveness of the proposed modifications in terms of emitted noise. To this aim, both engine 

pulses and flow noise contributions have to be taken into account and, consequently, the acoustic 

model building-up procedure has been slightly different with respect to that described in chapter 6. 

Apart from the absence of the air filter model, the main difference relies of course in an additional 

boundary condition, necessary to model the flow noise contribution within the air induction 

systems, which has been imposed by means of aeroacoustics analogy.  As it should be clear from 

the theory reported in chapter 7, the basic idea for formulating such analogy is to start from the 

basic equations of the fluid dynamics, make as few assumptions as possible and manipulate the 

equations to reveal the wave propagation operator and the right source term. This has been done 

referring to the aeroacoustics analogy formulated by Lighthill, according to which the source region 

may be considered as an equivalent acoustic medium at rest, on which the Lighthill stress system 

acts, this latter being known once some properties in the flow region are known. 



233 
 

 

Figure 8.50 - Aeroacoustics analogy applied to the air induction system. 

This means that, apart from the element at the outlet of the system (engine side) where an incident 

plane wave field has been specified, in order to simulate the acoustic presence of the valve 

openings, inside the acoustic cavity the equations to be solve is 

[
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                                                                    (8.3) 

where the term on the right-hand side represents the additional sound source contribution to be 

added to the model. According to the nomenclature introduced in chapter 7, such term is the so-

called Lighthill stress tensor and in general it is expressed in Cartesian tensor form as 

𝛾𝑖𝑗 = 𝜌𝑉𝑖𝑉𝑗 − 𝑇𝑖𝑗 − 𝜌𝑎0
2𝛿𝑖𝑗                                                                 (8.4) 

As it is possible to appreciate by eq. (8.4), it is important to recall that, in general, the stresses 

embedded within the Lighthill tensor are due to the momentum convective flux, pressure 

fluctuations due to non-adiabatic state of change and viscous stresses. However, considering that 

within the fluid dynamic of intake systems no relevant entropy variations are present as well as 

those arising in heat release processes and, neglecting the effect of the viscous stresses on the 

generation of sound92, only the first term on the right-hand side of eq. (8.4) has to be considered. As 

a consequence, once the developed flow field inside the system has been resolved by the three-

dimensional CFD analysis, it is possible to evaluate the flow noise related source term to be added 

as additional boundary condition within the 3D acoustic model according to eq. (8.3). Actually, the 

acoustic code solves the wave equation within the frequency domain, which implies that for the 

propagation of the additional flow noise source term the equation to be solved in the flow region 

(the air induction system) is the Helmholtz equation with the right-hand side equal to the Fourier 

transform of the Lighthill tensor, namely 

(∇2 + 𝑘2)�̂�(𝜔, 𝒙) = −𝛾(𝜔, 𝒙)                                                     (5.5) 

where �̂� is the complex valued amplitude of the sound wave whilst 𝛾 is the amplitude of the 

additional source, both at the angular frequency 𝜔 = 2𝜋𝑓. 

Thus, several aeroacoustics simulations have been performed at full load operation and for the  

engine speed 2100 𝑟𝑝𝑚, based on the coupled information coming from both the 1D (useful for 

                                                           
92 The identification of the relative magnitude between momentum convective and diffusive (due to viscous stresses) 

fluxes may be accomplished thanks to the Reynolds number (representing the ratio of inertial forces to viscous ones) 

which in general is far greater than unity. 
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characterizing the engine pulses contribution) and 3D CFD analysis (useful for characterizing the 

flow noise contribution). The way in which the data, imported from the 1D analysis, is used has 

been already described in chapter 6, whilst that coming from the 3D CFD solution, since the flow 

has been assumed incompressible, it is represented by the velocity field in each CFD cell. Such 

information has been exported every two time steps, that is every two crank angle degrees. This has 

been necessary in order to equal the frequency domain information of each of the two noise 

contributions[5], which means having two spectra spreading in the same frequency range with the 

same frequency step equal to half the first engine order. Finally, the 3D acoustic model 

corresponding to the original device is reported in figure below, where it is possible to distinguish 

among the different applied boundary conditions. 

 

Figure 8.51 - 3D acoustic model of the original device. 

In particular, different colors are recognizable in Figure 8.51 indicating various model 

“components”. The elements simulating the presence of the primary sound source are depicted in 

red whilst the whole cavity mesh, on which the flow noise sources belong, is depicted in yellow. 

Moreover, similarly to what has been described in chapter 6, the two-dimensional mesh supporting 

the infinite elements, simulating the non-reflecting boundary condition, is depicted light blue. A 

virtual microphone has been placed at 1 cm away from the inlet mouth, whose location within the 

acoustic model is highlighted by a red point in the above figure. As previously mentioned, the 

frequency step of the simulated engine running point has been fixed accordingly with the spectral 

content of the two modelled sound sources, so that the frequency range of each analyses extends 

from ∆𝑓 up to 2 𝑘𝐻𝑧, with a frequency step equal to 17,5 𝐻𝑧. In the figure below, the three-

dimensional acoustic models, corresponding to each of the modified versions of the air induction 

system, are shown. 
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Figure 8.52 - 3D acoustic model corresponding to: a) first, b) second and c) third modification. 

The output of each acoustic analysis is represented by the gas-dynamic noise emitted, in terms of 

sound pressure level spectrum, and the corresponding overall level at the virtual microphone 

location. In particular, since linear theory holds, it has been possible to examine the contribution to 

the total sound pressure level of each of the imposed noise sources (engine pulses and flow noise). 

As an example, in figure below the sound pressure level spectrum corresponding to the primary and 

secondary noise sources at 2100 𝑟𝑝𝑚 is shown for the original device. Here, the black and blue 

curves represent the engine pulses and flow noise contribution respectively, whilst the red curve 

represents the total sound pressure level. 
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Figure 8.53 - Engine pulses vs Flow noise contribution for the original device @ 2100rpm WOT. 

By the examination of the above figure, it is very interesting to appreciate how, as expected, the 

flow noise contribution represents the main source of noise at high frequency. As it has been 

already mentioned, such contribution mainly consists of a broad-band noise, due to various 

turbulent scales indeed. Consequently, the total sound pressure level which would be perceived at 

the microphone location is dominated at low frequency by the engine pulses contribution whilst, at 

high frequency, by the flow noise contribution. In Figure 8.54, the comparison between the total 

sound pressure levels, at 2100 𝑟𝑝𝑚, corresponding to the original device and first modification is 

shown as function of the frequency. 

 

Figure 8.54 - Total A-weighted SPL comparison at 2100rpm: original device and first modification. 

In the figure above, the red and blue curves represent the analysis output corresponding to the 

original device and modified (first) device respectively. As it is qualitatively possible to appreciate 

by the examination of the two trends, the noise emission corresponding to the first geometric 

modification of the air induction system would decrease. This is also confirmed by the calculation 

of the overall A-weighted sound pressure levels (OASPL) (see eq. (2.11)), which highlights a 

decrease in the noise level of 2,74 𝑑𝐵𝐴, up to 2 𝑘𝐻𝑧. However, in order to deeply understand such 

result, it is necessary to examine the single components of each of the total SPL of the above figure. 
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To this aim, in Figure 8.55 the noise emissions due to only the primary sound sources are shown as 

function of the frequency, where the same color legend of Figure 8.54 has been used. 

 

Figure 8.55 - A-weighted SPL comparison at 2100rpm WOT (engine pulses contribution): original device and first 

modification. 

By the examination of the above figure, it is possible to point out that the two contributions are 

almost equivalent in terms of energy content, as it is testified by the same values of the OASPL. 

This is due to the fact that, changes in the pressure fluctuations, calculated during the one-

dimensional analysis in a section just before the entrance of the compressor, do not affect the low 

frequency content of the signals, which are the most prominent. In particular, as it has already 

mentioned, the basic waveform of the pressure fluctuation is unaltered, indicating that the low 

frequency content is not significantly changed. To prove that, the spectrums of the incident waves, 

which have been applied as excitation (engine pulses) for the models depicted in Figure 8.51 and 

Figure 8.52 a), are shown below. 

 

Figure 8.56 - Frequency domain representation of the engine pulses excitation. 

As it is possible to appreciate, the two spectra are almost equivalent, at least at low frequencies. In 

fact, important differences between the two trends are only observable after 800 𝐻𝑧 where, 

however, the sound pressure levels (SPL) are lower and do not represent a prominent contribution 

to the overall levels. Such circumstance is also observable in Figure 8.55. It follows that, in spite of 
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the fact that the high frequency noise attenuation characteristic increases with the aim of the first 

CAD modification, as it is indicated by the TL comparison of Figure 8.15,  the benefits in terms of 

overall sound pressure levels due to the primary sound source are not evident, as there are no 

significant low frequency changes in the excitation spectrum coming from the one-dimensional 

analysis. In the figure below, the comparison between the flow noise contribution has been reported 

where, again, the same color legend has been adopted. 

 

Figure 8.57 - A-weighted SPL comparison at 2100rpm WOT (flow noise contribution): original device and first 

modification. 

By the examination of the above figure, it is clear that the reduction of 2,74 𝑑𝐵𝐴 on the total sound 

pressure level, between the original device and the first modification, is mainly due to a decrease in 

the flow noise contribution, as it is also testified by the reported overall A-weighted SPL. In fact, 

within the whole investigated frequency range, the blue curve is fair below the red one, apart from 

some isolated frequency, e.g. at 1442 𝐻𝑧. Here, the higher SPL related to the first modification is 

due to different attenuation characteristic at such frequency. To prove that, in Figure 8.58, the noise 

attenuation curve in real engine working condition has been reported as function of the frequency, 

where the red and blue curves refer to original device and first modification respectively. 

 

Figure 8.58 - Sound power ratio comparison. 
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As it has been highlighted in the above figure, at 1442 𝐻𝑧, the noise attenuation of the original 

device is higher with respect to that of the first modification, which results in a lower sound 

pressure level at such frequency. 

However, the fact that the two spectra of Figure 8.57 are very similar in shape, but with quite 

different amplitudes in some frequency range, suggests that the turbulent characteristics of the flow 

field inside the two devices are similar, but with different turbulence intensity levels. As an 

example, it is possible to compare the response of the systems around 840 𝐻𝑧. Around such 

frequency, Figure 8.57 indicates a prominent noise level corresponding to the original device 

(which is about 10 𝑑𝐵𝐴 higher than the other one). This is easily explainable by the examination of 

the intensity of the flow noise related source term, namely the laplacian of the Lighthill tensor, 

which is depicted in figure below. Here, the color scales have been standardized in a way such that, 

for each figure, the more red-like the color the higher the intensity. 

 

Figure 8.59 - Intensity plot of the Lighthill tensor’s divergence at 841 Hz: a) original device and b) first modification. 

As it is possible to appreciate from the above color plot, the intensity level of the Lighthill source 

term at 841 𝐻𝑧 is globally higher for the original device, especially in zones of the acoustic mesh 

near and inside the inlet tube of the air induction system. Moreover, the fact according to which 

lower levels of flow instabilities are related to the first geometric modification is confirmed by the 

lower level of velocity magnitude and turbulent kinetic energy, as it is reported in Figure 8.60 and 

8.61 respectively. 

 

Figure 8.60 - Intensity plot of the velocity streamline at 2100 rpm WOT: a) original device and b) first modification. 
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Figure 8.61 - Intensity plot of the turbulent kinetic energy at 2100 rpm WOT: a) original device and b) first 

modification. 

Regarding the second version of the air induction system, in Figure 8.62 the total sound pressure 

level comparison is shown. The red and green curves represent the response of the original device 

and second modification respectively.  

 

Figure 8.62 - Total A-weighted SPL comparison at 2100 rpm WOT: original device and second modification. 

Even in this case, the noise emission corresponding to the second geometric modification of the air 

induction system would further decrease. In fact, the OASPL comparison shows a decrease of 

3,5 𝑑𝐵𝐴, up to 2 𝑘𝐻𝑧, with respect to the original device. In figure below, the noise emissions due 

to only the primary sound sources are shown as function of the frequency, where the same color 

legend of Figure 8.62 has been used. 
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Figure 8.63 - A-weighted SPL comparison at 2100rpm (engine pulses contribution): original device and second 

modification. 

So, as it is possible to appreciate from the two above depicted spectra, the engine pulses 

contribution to the total sound pressure level is quite lower for the second modification. In fact, the 

difference in the OASPL is equal to 4,57 𝑑𝐵𝐴 up to 2 𝑘𝐻𝑧. Such result is mainly due to the fact 

that, as it happens for the case of the first modification, the pressure excitation coming from the 

one-dimensional analysis is practically unaltered at low frequencies with respect to that 

corresponding to the original device. This is highlighted in figure below, where it is possible to 

appreciate how the two signals are almost equivalent up to 500 𝐻𝑧. 

 

Figure 8.64 - Frequency domain representation of the engine pulses excitation. 

Nevertheless, as it is indicated by Figure 8.19, the noise attenuation characteristics at low 

frequencies are highly increased with respect to the first modification, thanks to the increase of the 

main resonator’s volume, allowing a lower OASPL to be achieved (see also the SPL drop achieved 

at 440 𝐻𝑧 in Figure 8.61). Thus, even if the prominent frequency content (at low frequency) in not 

changed, the resulting sound pressure level is decreased due to the higher noise attenuation 

characteristic. As regards the flow noise contributions, these are reported in figure below, where the 

same color legend of Figure 8.62 has been used. 
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Figure 8.65 - A-weighted SPL comparison at 2100 rpm WOT (flow noise contribution): original device and second 

modification. 

By the examination of the above figure, it is clear that even in this case there is a significant 

reduction in the noise emissions, as it is also testified by the reported overall A-weighted SPLs. So, 

since the two spectra are very similar in shape but with different amplitudes, the same kind of 

already discussed considerations may be spent for this case. Besides, the peak response achieved at 

492 𝐻𝑧, is certainly due do the fact that, as the volume of the resonator has been increased, the 

sound attenuation in the range immediately after the new resonant frequency is very low, as it has 

been described in the previous paragraph. To strengthen such evidence, in Figure 8.66 the sound 

power ratios are shown with the same color legend of Figure 8.65. 

 

Figure 8.66 - Sound power ratio comparison. 

As it is possible to appreciate by the examination of the above figure, the lowering of the resonant 

frequency, discussed in the previous paragraph, leaves a very low sound attenuation around 

500 𝐻𝑧. In spite of such high peak response, the flow noise contribution is globally below that 

corresponding to the original device as it is testified by the lower overall A-weighted sound 

pressure level which is 3,4 𝑑𝐵𝐴 lower than that corresponding to the original device. 
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Regarding the results corresponding to the last geometric modification, the total SPL has been 

depicted in figure below. Here, the red and black curves represent the response of the original 

device and second modification respectively. 

 

Figure 8.67 - Total A-weighted SPL comparison at 2100 rpm WOT: original device and second modification. 

As it is possible to appreciate from the above figure, the noise emissions at the virtual microphone 

location would decrease with respect to the original device. However, by comparing the overall 

sound pressure levels, it follows that such reduction is the lowest among those examined so far 

(2,61 𝑑𝐵𝐴). In order to understand why, it is necessary to examine the contribution from primary 

and secondary noise sources. To this aim, in Figure 8.68 the engine pulses related noise emissions 

are compared making use of the same color legend of the above figure. 

 

Figure 8.68 - A-weighted SPL comparison at 2100 rpm WOT (engine pulses contribution): original device and third 

modification. 

As it is possible to appreciate from the above figure, the OASPL of the engine pulses contribution is 

higher in case of the third modification (0,58 𝑑𝐵𝐴 with respect to the original device). In spite of 

the globally lower amplitudes, this is mainly due to the peak responses occurring at the four 

highlighted frequencies, namely 386, 738, 1038 and 1090 𝐻𝑧, which are not due to changes in the 

excitation. In fact, as regards the information about the pressure fluctuations from the one-



244 
 

dimensional analysis, event in this case the spectra are almost the same up to 500 𝐻𝑧, as it is 

possible to appreciate from the figure below. 

 

Figure 8.69 - Frequency domain representation of the engine pulses excitation. 

Besides, it is important to note that the amplitudes of the incident waves at 386, 738, 1038 and 

1090 𝐻𝑧 are practically the same for the two devices. However, as it has already mentioned in the 

previous paragraph, the third modification is such that new cavity modes are present which mainly 

influence the response of the system in terms of Transmission Loss at the above mentioned 

frequencies. The same behavior is observable when the system radiates into free field, as it is 

indicated in figure below, where the so-called sound power ratios are shown. 

 

Figure 8.70 - Sound power ratio comparison. 

Consequently, it is possible to state that the higher SPL due to primary sound source is mainly due 

to the poor sound attenuation which is achieved in correspondence of the new cavity modes 

occurring at the above mentioned frequencies. For what concerns the flow noise contribution, the 

comparison in terms of A-weighted sound pressure level is depicted in figure below, where the 

same color legend of Figure 8.67 has been used. 
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Figure 8.71 - A-weighted SPL comparison at 2100 rpm WOT (flow noise contribution): original device and second 

modification. 

Thanks to the comparison in the above figure, it is possible to point out that the contribution from 

the aeroacoustics sources is effectively lower in comparison to that corresponding to the original 

device. In fact, the comparison of the OASPL shows a decrease of 2,57 𝑑𝐵𝐴. Even in this case, in 

spite of the fact that the black curve is globally lower that the red one, the effect of the above 

mentioned new cavity resonances is present and evident thanks to some localized peak response. In 

fact, at such frequency locations, the sound pressure level emitted by the third version of the 

modified system is higher with respect to that of the original device. 

In conclusion to this chapter, it has been demonstrated that opportunely realized modifications on 

the original design configuration of the studied air induction system may effectively enhance its 

acoustic performances. Such statement relies on the fact that it has been shown that all the three 

investigated versions of the intake system allow an higher level of Transmission Loss to be reached 

and, at the same time, a lower level of emitted gas-dynamic noise to be achieved, without 

decreasing the engine performances. In particular, thanks to a one-dimensional fluid dynamic 

analyses, it has been shown that the main engine performance parameters remain unchanged, whilst 

more accurate 3D CFD analyses have shown that all the investigated new geometries are such that a 

lower value of the pressure drop across inlet and outlet is achieved. Such aspect is particularly 

positive, as it would directly imply an higher value of the volumetric efficiency. 

From an acoustic point of view, it has been shown that the acoustic attenuation characteristics are 

always globally improved, even if, as expected, the results in terms of Transmission Loss are locally 

affected by the presence of new cavity modes which characterize the various new investigated 

configurations. The same tendency is found when dealing with the emitted gas-dynamic noise, 

which makes the third investigated modification to be not considered for future developments, as 

the lowest improvement is reached together with the maximum increase of the volume of the 

system. In this framework, the presented second version of the air induction system is probably the 

best as it ensures the maximum benefit in term of emitted gas-dynamic noise, with a decrease of 

3,5 𝑑𝐵 on the A-weighted overall sound pressure level up to 2 𝑘𝐻𝑧, in the investigated engine 

condition. Thus, it is possible to state that the second modification depicted in Figure 8.17 a) is such 

that the best trade-off between acoustic performance and entity of the modification (the increase of 
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volume being equal to the 23% with respect to the volume of the original device) is achieved. Such 

circumstance makes it more suitable for further developments and improvements. 
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Chapter 9 

Conclusions and Future Developments 

The main practical objective of this thesis has been the development and optimization, from an 

acoustic point of view, of a Finite Element numerical model of an air induction system for a 

commercial spark ignition engine. During the entire duration of the PhD course, in order to achieve 

such a goal, a lot of efforts have been spent for trying to first understand the basic principles which 

are involved in such huge analysis process and then approaching the very fascinating world of the 

Computer Aided Engineering, in order to achieve the above mentioned target. In fact, as already 

mentioned, acoustic related phenomena may be extremely complex, as various different physics are 

involved. For this reason, after studying the necessary subjects from many different references, a lot 

of patient has been spent for grouping all the necessary background in the theoretical chapters of 

this thesis. Such an understanding is indeed the minimum fundamental to ensure that simulations 

are correctly set up and to be able to properly analyze the corresponding outcomes. 

In order to achieve the prescribed final goal, various steps have been addressed one after another. 

Firstly, a Finite Element Model of the studied system has been created and a comprehensive 

acoustic characterization analysis, aimed to calculate its acoustic attenuation properties in terms of  

Transmission Loss, has been performed and described in chapter 5. The same analysis has been also 

experimentally executed, thanks to a collaboration with the University of Florence. Thus, the 

Transmission Loss of the intake system has been calculated and measured in different operating 

conditions, accounting for both structural participation and the presence of the air filter. From the 

comparison between the whole numerical and experimental set of results, a very good correlation 

has been found, thanks to which the model has been considered as fully representative of the 

qualitative acoustic behavior of the real system. In fact, as it has been mentioned many times above, 

a Transmission Loss analysis represents just a qualitative information about the acoustic response of 

the system under investigation, giving no information about real working conditions to which it is 

subjected when coupled with the internal combustion engine. 

For this reason, before thinking to proceed with an acoustic optimization, another validation step 

has been pursued and described in chapter 6, aimed to confirm the goodness of the numerical 

modelling procedure when dealing also with amount of noise emitted in various engine running 

points. This in turn requires a completely different kind of approach, which involves also one-

dimensional and three-dimensional fluid dynamic analyses useful for setting up the right boundary 

conditions for the 3D acoustic model. Nevertheless, due to lack of information necessary for 

modelling the air filter during the 3D CFD analyses, only information coming from the 1D CFD 

analysis has been considered in the acoustic model. Moreover, despite the modelling difficulties due 

to intrinsic errors related to the one-dimensional analysis and absence of information about the 

engine acoustic impedance, the comparison between numerical results and available experimental 

data has given a quite satisfactory level of agreement. Consequently, the whole acoustic modelling 

procedure has been considered as fully validated, being able to reproduce both the qualitative and 
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the quantitative acoustic behavior of the actual system, representing a very important tool, 

eventually to be used for optimization procedures. 

In fact, thanks to the availability of a validated numerical model of the studied system, it has been 

possible to deeply investigate its acoustic behavior, in order to choose the best strategy useful for 

achieving the desired improvements. Consequently, a refinement process of the air induction 

system’s design has been investigated, and three modified versions have been designed and studied. 

The guidelines, which have been followed for the realization of the CAD modifications, have relied 

on an improvement of the acoustic attenuation curve, together with the geometrical constraint 

represented by the necessity of not changing the overall size of the system in its original 

configuration. In order to respect such geometrical constraint, all the modifications have relied on 

the partial use of foam material which is attached behind the original system, in direct contact with 

the engine block, in order to probably lower the impact related noise (plastic-engine head). 

Thus, it has been firstly shown in chapter 8 that the opportunely realized geometric modifications 

may highly enhance the Transmission Loss, so that subsequent gas-dynamic noise analyses have 

been executed in order to verify that the amount of noise, which would be emitted if the 

modifications are actually realized, would effectively decrease. Among all the available engine 

running points, it has been decided to focus on the 2100 𝑟𝑝𝑚 WOT condition for several reasons. 

Firstly, for the studied engine, the condition of wide open throttle is almost always encountered, 

being the control of the load mainly achieved thanks to the VVA system. Secondly, 2100 𝑟𝑝𝑚 is a 

frequent engine regime encountered in road traffic conditions, when the vehicle speed is low 

enough such that the intake noise represents a prominent noise source. In fact, considering the class 

of the vehicle on which the intake system is installed, higher regimes are reasonably encountered 

only at higher vehicle speeds when, however, more prominent noise sources exist such as road 

noise, aerodynamic noise etc.. Then, it is reasonable safe to assume that if lower noise levels are 

found at such regime and high engine load, similar results would be found at lower 𝑟𝑝𝑚 and lower 

loads. At the same time, the analysis at high load operation gives the possibility to verify the effects 

of the modification on the engine performance. 

In fact, before proceeding with the acoustic analyses, CFD studies have been carried out on all the 

versions of the air induction system, to the aim of firstly evaluating the corresponding effects on the 

engine performances. Therefore, it has been found that, according to the results coming from 1D 

CFD analyses, all the three new design configurations are such that the main engine performance 

parameters all remain unchanged (brake power, brake specific fuel consumption). Besides, thanks 

to more detailed 3D CFD steady state analyses, it has been possible to evaluate the pressure drops 

realized across the inlet and outlet of each system. As a result, the pressure drop, which would be 

realized across the fluid dynamic boundaries of each of the three new intake systems, is always 

lower than that corresponding to the original device. This is a particular positive result, as the 

pressure drop is directly related to the engine power by means of the volumetric efficiency. 

From what concerns the gas-dynamic noise analyses, the information coming from both 1D and 3D 

CFD unsteady analyses have been used as boundary conditions for the acoustic models, in order to 

model both engine pulses and flow noise contribution to the overall sound emission. This has been 

possible because the presence of the air filter has been neglected on the hypothesis that its influence 

is the same for each system’s configuration. As results, it has been found that all the three 
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investigated modified versions of the air induction system allow lower level of noise to be emitted. 

More precisely, the lowest overall sound pressure level corresponds to the second modification, to 

which a decrease in the OASPL equal to 3,5 𝑑𝐵𝐴 corresponds. Consequently, such second 

geometric change has been judged as representative of the best trade-off among lower acoustic 

transparency, lower pressure drop and lower volume change of the air induction system (this latter 

corresponding to an increase of the 23% with respect to the volume of the original size). Therefore, 

according to the author, such design configuration should be considered for further studies and, 

eventually, the development of a prototype. 

 


