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INTRODUCTION
Chronic Kidney Disease (CKD) is defined as the progressive reduction of kidney function that occurs as a result of primary or secondary kidney diseases.  CKD is characterized by several extra-renal complications. The cardiovascular complications are the most feared because they are the most common cause of mortality and morbidity in patients with end-stage renal disease (ESRD) undergoing either hemodialysis  (HD) or peritoneal dialysis (PD) (1). Indeed, atherosclerosis, endothelial dysfunction, extraosseous calcification (coronary artery calcifications, vascular  and cardiac valves calcification) and left ventricular hypertrophy are the  commonest  factors responsible for fatal and not fatal  cardiovascular events in ESRD patients (2-5). The presence of extra-osseous calcification reflects the severity of atherosclerotic vascular disease and predicts cardiovascular events in uremic patients. The clinical relevance of extra-osseous calcification is highlighted by the fact that guidelines have included their research as essential for the diagnosis of disorders of mineral metabolism in the CKD (part of the so-called syndrome "CHRONIC KIDNEY DISEASE-MINERAL AND BONE DISEASE” ) (6). Relevant characteristic of extra-osseous calcification is their progression over time. This is a constant phenomenon that is present even in patients without CKD or in the general population. However in patients with CKD  the progression is  faster. 
In epidemiological studies of patients with CKD, abdominal visceral fat levels have repeatedly been associated with increased levels of markers of infiammation (7-8), insulin resistance (9), hyperlipidaemia (10), oxidative stress (11) and vascular calciﬁcation (12-13), as well as a higher risk of cardiovascular (CV) events and death (12, 14-16). The metabolically active white adipose tissue, the largest endocrine organ in the body, is a source of cytokine and adipokine production linked to endothelial dysfunction and atherosclerosis. White adipose tissue may accumulate ectopically around organs. Epicardial Adipose Tissue (EAT), the visceral adipose tissue (VAT) surrounding the heart, is particularly active. This fat depot surrounds 80% of the mid-cardiac circumference and is situated predominantly on the right ventricular free wall and at the left ventricular apex, and accounts for approximately 20% of the total heart weight (17-19). EAT is a source of several pro-inflammatory and pro-atherogenic cytokines that influence cardiac function. EAT is a biologically active organ that may play a role in the association between obesity and coronary artery disease (CAD).
PATHOPHYSIOLOGY OF VASCULAR CALCIFICATION
The phosphorus seems to plays a major pathogenic role in the formation of vascular calcifications.

There are several lines of evidence that may delineate the role of phosphorus in triggering a biochemical process; this is a cascade, which transforms the smooth muscle cells of the vascular tunic in cells similar to osteoblasts, able to deposit mineral matrix, increasing the risk of calcification.

The acquired data, in fact, dissolve the consolidated view of vascular calcification as passive disease process, showing that the calcification is an active and regulated  process, like bone mineralization.

Giachelli (20) examined the response of cultured smooth muscle cell (from human aorta) exposed to increasing concentrations of phosphorus. It has been observed a dose-dependent increase of the intracellular calcium deposition in those cells cultured in the presence of high concentration of phosphorus (up to 2 mmol / l), similar to that observed in patients on hemodialysis (Figure 1) (21).
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Figure 1
The extracellular phosphorus is stored in intracellular compartments by the membrane-Na-dependent phosphate cotransporter-pump (NPC). In uremic patients, the hyperactivity of the  NPC pump determines the intracellular accumulation of phosphorus. This stimulates the activity of CBFA-1 factor that, in turn, induces transcription of specific genes, stimulating vascular calcification (Figure 2 - 3)
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   Figure 2
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Figure 3
Under physiological conditions, the CBFA-1 transcription factor, controls the synthesis of various proteins and specific enzymes of the bone as osteocalcin, alkaline phosphatase and different types of collagen.

Several metabolic stimuli, such as uremic toxins present in high concentration in the serum of dialysis patients, may enhance the activity of the CBFA -1 factor, promoting the calcification of the extra-bone tissues such as vascular bed.
Attention was paid to the uremic patient’s vascular calcification process because there are simultaneously present a process of atherosclerosis and a process of early atherosclerosis. Atherosclerosis is the result of a vessel wall remodeling with a premature aging determined by thickening of intima, calcification of the extracellular matrix of the inner foil and the breakdown of elastic fibers (Figure 4). The second one, known as Amyotrophic Medial of Monckeberg, depends on a process of calcification, which affect the tunica media of the arterial wall
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Figura 4
Intimal calcification is at greater risk of rupture and fragmentation, which can lead to thrombosis and distal embolism, resulting in acute coronary syndrome (Figure 5).
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Figure 5
The calcification of the tunica media, however, involves the rigidity of the artery wall. In case of coronary bed, reduction of myocardial perfusion occurs; this process is strongly correlated with age, diabetes and chronic renal insufficiency ( in terminal stage) . Calcification of the media as well as that of the intima, is present both in coronary and at the level of peripheral arteries; the rigidity of the peripheral arteries reduces the wall elasticity and increase the afterload infarction with left ventricular hypertrophy and heart failure (Figure 6). 
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Figure 6
Therefore, the vascular calcification and, in particular, the calcification of the coronary arteries (CAC), are considered indicators of severe atherosclerosis (22-23-24-25) and strong predictors of cardiovascular events (26-27-28-29-30).
PROGRESSION OF VASCULAR CALCIFICATIONS 

A relevant characteristic of vascular calcifications is their progression over time. This is a constant phenomenon present even in subjects without cronic kidney disease and in general population. However, in patients with CKD progression is faster (31-32). 

At first observational study, designed to test the progression over time of the CAC both in patients with CKD and in patients without CKD, the progression of  CAC,  was significantly faster in patients with CKD (Figure 7) (33). 
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Figure 7
In a subsequent intervention study, designated to verify the effects of different phosphorus chelating agents, the CAC progressed by 37% in patients with MRC not treated, after a 24-month observation period (Figure 8) (34). 


[image: image9.emf]THE PROGRESSION OF CORONARY ARTERY CALCIFICATION IN

PREDIALYSIS PATIENTS ON CALCIUM CARBONATE OR

SEVELAMER

Russo D: Kidney Int; 2007


Figure 8
It was estimated that the progression over two years of coronary calcification is of the 30-36% in the general population, while in patients with CKD reaches 50-62%. In the latter population calcification progression is not dependent on age.
The evaluation of the progression of calcification has an important clinical relevance, since the progression of CAC held an additional independent factor responsible for cardiovascular events (35).  

In a study of Russo D. et al., has been demonstrated that coronary artery calcification progression is associated with arterial stiffness and cardiac repolarization deterioration in CKD–5 patients (33). They speculate that CAC predisposes to tissue ischemia and cardiac arrhythmia, independently of the presence of an arterial stenosis. Indeed, aortic stiffness that results from CAC predisposes to left ventricular remodeling and low diastolic arterial pressure leading to increase oxygen demand, reduced coronary perfusion and cardiac repolarization abnormalities.
METHODS OF EVALUATION OF CALCIFICATIONS
Initial studies on vascular calcification have been performed on the coronary tree and later on the peripheral arteries and the heart valves.

The evaluation of the CAC was initially performed by Electron Beam Computed Tomography (EBCT). EBCT allows faster imaging with higher temporal resolution.
This technique is extremely accurate and has also been validated with coronary angiography (Figure 9).
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Figure 9

The method has important limitations such as the high initial costs of purchase and subsequent maintenance, and poor ductility since it is only used for the determination of the coronary artery calcium score (total calcium score, TCS, measured in Agatston Unit, AU) (36-37-38). 
To overcome the limitation of the EBCT, the spiral CT represents an important method in the screening of coronary calcification (Figure 10). 
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Figure 10
A good correlation was observed between spiral CT and EBCT. Therefore the data offered by spiral CT are as reliable as those obtained with the EBCT , and make spiral CT a screening tool for coronary calcification (39-40-41). Indeed, the advantage of spiral CT compared to  EBCT is that it is present in almost all hospitals; in addition it has a lower initial cost and reasonable costs for maintenance. However, the TC has two disadvantages: exposes the subject to a higher risk of radiation (the radiation absorbed dose is 3-4 times higher than the EBCT) and it  is influenced by artifacts caused by motion.

With either EBCT and CT, it is also possible to obtain a quantitative assessment of calcification and progression over the  time. 
Unfortunately neither EBCT or CT are able to discriminate whether the calcification is present in intimal or in media arterial wall.
EPICARDIAL ADIPOSE TISSUE
Epicardial adipose tissue (EAT) refers to the fat depot that exists on the surface of the myocardium and is contained entirely beneath the pericardium, thus surrounding and in direct contact with the major coronary arteries and their branches. EAT is a biologically active organ that may play a role in the association between obesity and coronary artery disease (CAD). Given recent advances in non-invasive imaging modalities such a multidetector computed tomography (MDCT), EAT can be accurately measured and quantified. Computed tomography (CT) or magnetic resonance imaging allows regional (below and above the diaphragm) and whole-body estimates of subcutaneous and visceral fat. Studies focusing on fat deposits in the thorax using these techniques or echocardiography have revealed that adipose tissue in close proximity to the heart (i.e. epicardial fat) provides prognostic information comparable to that of intra-abdominal visceral fat (42). Epicardial adipose tissue is encased by the visceral pericardium, surrounds the coronary arteries and is in direct contact with the myocardium; in addition, like mesenteric and omental fat, it is derived from the splanchnopleuric mesoderm. It is interesting that epicardial fat and the pericardial fat that envelop the heart have features common to both white and brown adipose tissue. The fact that there is direct contact between epicardial fat and the myocardium may be relevant with regard to myocardial steatosis (43). It should be noted that there is no fascia or similar tissue separating epicardial fat from the myocardium or even form coronary vessels (Figure 11-12), which means that a marked interaction exists between these structures.  Like visceral abdominal fat, perivascular fat (a fat depot associated with epicardial fat) has a reduced potential to make up adiponectin, a vasculoprotective adipokine, in obese individuals. This effect is fully reversible after weight loss. Epicardial fat attracts increasing attention in current cardiovascular literature. The cohort study by Antonio Carlos Cordeiro et al. (44) in a large cohort (n = 277) of pre-dialysis stage G3–5 patients with CKD, studied the relationships between both epicardial (as assessed by CT) and abdominal visceral adipose tissue and cardiovascular disease risk. Epicardial fat was associated with an increased risk of cardiovascular events independently of visceral (abdominal) fat and other potential confounders. In etiological terms, this association supports the notion that, due to its proximity to the heart and to its direct contact with the myocardium, epicardial fat may be more relevant for the pathogenesis of cardiac events than distant visceral abdominal tissue. EAT also correlates with several cardiac comorbidities, including coronary artery disease (CAD) and left ventricular dysfunction. In addition, a case–control study comparing the gene expression of cytokines in adipose tissue in pre-dialysis patients with CKD and in age- and sex-matched individuals, demonstrated a threefold increase in interleukin 6 gene expression in patients with CKD (45), supporting the idea that the risk of inﬂammation driven by adipose tissue may be of greater relevance in patients with CKD than in the general population. If a similar up-regulation of IL-6 and other pro-inﬂammatory cytokines exists in the epicardial fat of patients with CKD, this depot may be regarded as a potential therapeutic target. Dietary interventions, exercise programmes and bariatric surgery all reduce visceral and epicardial fat mass along with metabolic risk in obese individuals. 

This ﬁnding in patients with CKD is in contrast to the lack of an independent association between epicardial fat and the incidence of cardiovascular events in the general population of the Framingham Heart Study. This discrepancy may imply that the risk associated with epicardial fat is more relevant in patients with CKD than in the general population



Figure 11 : Location of epicardial adipose tissue. (A) The close anatomical relation between epicardial fat and the myocardium is seen. (B) Epicardial adipose tissue around one coronary artery. Note the absence of fascia or similar tissues separating epicardial adipose tissue from these structures.
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Figure 12
PARACRINE SECRETION MECHANISM
Histologically, EAT consists of adipocytes, nervous and nodal tissue, and inflammatory, stromal, and immune cells (46). Adipocytes in EAT are smaller than subcutaneous adipocytes and than those in other VAT deposits, with size being a particularly important determinant of adipocytokine expression by EAT (47-48). 

EAT is a metabolically active organ that secretes a number of cytokines, collectively called adipocytokines, which are able to substantially modulate cardiovascular morphology and function (49). Because of its anatomical proximity to the heart and the absence of fascia or similar tissues, EAT may interact locally with coronary arteries through paracrine secretion mechanisms. Paracrine secretion of cytokines from periadventitial EAT may possibly pass through the coronary wall by diffusion from the outside to the inside and interact with cells in each of its layers. Atherosclerosis by “diffusion from outside to inside” has been proposed since 1989 based on the observation of leukocyte migration from outside the vessel wall (50). In addition, in vivo studies in pigs have shown that the external application of inflammatory cytokines such as interleukin-1β (IL-1β) and monocyte chemoattractant factor type 1 (MCP-1) to the coronary arteries induces increased intimal thickness and arterial remodeling.31,32 Another potential mechanism may be the vasocrine secretion by which there is the direct release of adipocytokines and free fatty acids from the EAT to the vasa vasorum of arterial wall (51) (Figure 13).
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Figure 13 : Proposed mechanisms in which epicardial adipokines may access underlying atheroma to play a role in coronary atherogenesis. (I) Paracrine signalling: adipokines directly diffuse through layers of the arterial wall; (II) vasocrine signalling: adipokines…
DUAL MECHANISM OF ACTION
The metabolic profile of EAT is clearly different depending on the metabolic context of the patient. Under physiological conditions, EAT synthesizes and secretes adiponectin, which has antiatherogenic and anti-inflammatory properties, that are mediated by AMP-activated protein kinase (AMPK) (52). Adiponectin is inversely associated to risk of acute myocardial infarction (53). Indeed, consistent with the above finding, decreased adiponectin expression by EAT, has been reported in patients with coronary artery disease. EAT also expresses adrenomedullin, a peptide hormone with pleiotropic effects at vascular level (54); adrenomedullin is increased in diseases such as atherosclerosis, high blood pressure, heart failure, diabetes mellitus, and chronic renal disease, possibly as a compensatory mechanism for the endothelial dysfunction process occurring in these conditions. It has been reported in patients with metabolic syndrome a significant association between EAT thickness measured by echocardiography and plasma adrenomedullin levels (55). However, conflicting evidence is available in patients with coronary artery disease, as Iacobellis et al. (56) reported decreased adrenomedullin expression in the EAT of patients with coronary artery disease, while Silaghi et al.(57) found increased adrenomedullin expression in this tissue in the same clinical condition. The reason for such differences could be the fact that the patients studied by Iacobellis et al. were older and thinner as compared to those studied by Silaghi et al., it is likely that age and fat mass interfere with the expression of this adipocytokine by EAT.

On the other hand, under pathological conditions such as obesity, EAT expands, becomes hypoxic and dysfunctional, and is invaded by phagocytic cells (58-59). Size changes in epicardial adipocytes and an increased number of macrophages and T lymphocytes increase the secretion of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), MCP-1, IL-1β, IL-6, resistin, and many others which contribute to the inflammatory environment characteristic of atherogenesis (60). Similarly, pericoronary EAT is able to secrete leptin and induce endothelial dysfunction by inhibiting nitric oxide synthetase through pathways dependent on protein kinase C (PKC) (61). These findings confirm that EAT may play a determinant role in the start of the atherosclerotic process by virtue of the close anatomic relationship between these structures. It is postulated that a mechanism dependent on EAT mass regulates the metabolic profile of this tissue (Figure 14). However, other factors may also influence this balance. It has recently been reported that in animal models, vitamin D deficiency is associated with an increased expression of the inflammatory markers in EAT (62). It is unknown whether this mechanism also operates in humans.
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Figure 14: (A) The heart of a 48-year-old obese patient with type 2 diabetes who died from acute myocardial infarction. (B) The heart of a 45-year-old patient with no risk factors who died from violent causes. Note the great thickness of epicardial adipose tissue in patient A as compared to patient B.
EPICARDIAL ADIPOSE TISSUE  AND CARDIOVASCULAR DISEASE
A significant amount of research has investigated the link between increased Epicardial fat volume (EFV) and CAD (TABLE 1). The presence of coronary artery calcification is intimately associated with vascular injury and atherosclerotic plaque and is considered diagnostic of the presence of coronary atherosclerosis (63).  Rosito et al. (64) investigated 155 patients free of cardiovascular disease from the Framingham Heart Study that underwent MSCT for quantification of paracardial fat volume, EFV and coronary artery calcium (CAC). They found that epicardial fat, but not paracardial fat was associated with coronary artery calcification even after adjustment for cardiovascular risk factors [odds ratio (OR): 1.21; 95% CI, 1.005-1.46; P=0.04]. In a study of 159 patients without known CAD, selected from the Multi-Ethnic Study of Atherosclerosis (MESA), Ding et al. (65) measured CAC and the adipose tissue volume located around the proximal coronary arteries. They found that the volume of adipose tissue was greater in those with a calcified coronary artery plaque than those with no evidence of calcified coronary plaque, as assessed by MSCT. They showed that peri-coronary adipose tissue volume (defined as a region of fat surrounding the left main coronary artery) was positively associated with both the presence and amount of calcified coronary artery plaque, even after adjustments for other cardiovascular risk factors. In addition, they demonstrated that BMI and height-adjusted waist circumference in their cohort were not associated with the presence of coronary artery plaque. While it must be noted that this group did not measure total EFV, they demonstrated that their method of measuring peri-coronary fat correlated highly with total EFV quantification on CT (Pearsons correlation coefficient: 0.93; P<0.001). Many other studies have also demonstrated a link between EAT volume and CAD using coronary calcification as a marker for CAD (66 - 67). Additionally, in a cohort of 330 asymptomatic diabetic patients with no prior history of CAD, Yerramasu et al. (68) investigated the association of EAT with progression of CAC defined as >2.5 mm3 increase in square root transformed volumetric CAC scores. They found that EAT showed significant association with CAC progression (OR: 1.12; 95% CI, 1.05-1.19; P<0.001), finding that for each 10 cm3 increase in the EAT volume, the probability of CAC progression went up by 12% (95% CI, 5-9%; P<0.001) . Overall, this demonstrated that local fat depots surrounding coronary arteries were more related to coronary artery calcification than total body fat, and may suggest that EAT plays a role in exerting a toxic effect on the adjacent vasculature.

While the absence of calcified plaque in asymptomatic patients is reassuring and often a good prognosis, there is no doubt that CAD caused by non-calcified plaques do occur and can result in fatal cardiovascular events (69). Ito et al. showed that EFV was a significant predictor of obstructive coronary disease after multivariate adjustment in patients with a zero calcium score (70), demonstrating the utility of EFV as a useful marker of CAD in symptomatic patients with non-calcified plaques. Additionally, the aforementioned studies indicate that EAT is correlated with CAD independent of traditional risk factors and anthropometric measures of obesity (BMI and waist circumference), and that the accumulation of EAT, rather than abdominal obesity, could be implicated in the early development of CAD.
	Author
	CT
	N
	Cohort
	Exposure
	Clinical variables/outcome
	Measure of association

	Ding et al. 2008 
	4-slice
	398
	Participants of MESA study
	1 SD increment in EAT
	Calcified coronary plaque
	OR: 1.92 (95% CI, 1.27-2.90)†

	Rosito et al. 2008 
	8-slice
	1,155
	Participants of the Framingham offspring study of free CVD
	1 SD increment in EAT
	CAC score
	OR: 1.21 (95% CI, 1.005-1.46)†

	Sarin et al. 2008 
	64-slice
	151
	Suspected CAD
	EAT volume >100 mL
	CAC score
	CAC score—EAT volume: <100 mLs: 67±155; >100 mLs: 216±39 (P=0.03)

	Ding et al. 2009
	4-slice
	998
	Participants of MESA study
	1 SD increment in EAT
	Incident CAD
	HR: 1.26 (95% CI, 1.01-1.59)†

	Mahabadi et al. 2009 
	8-slice
	1,267
	Participants of the Framingham Offspring study of free CVD
	1 SD increment in EAT
	Presence of CVD
	OR: 1.32 (95% CI, 1.11-1.57)†

	Alexopoulos et al. 2010 
	64-Slice
	214
	Suspected CAD
	EAT volume <71 cm3
	Presence of coronary plaque
	OR: 3.9 (95% CI, 1.1-13.8)†

	Cheng et al. 2010 
	4-slice
	232
	Suspected CAD
	EAT volume >125 cm3
	MACE—4 year follow up
	OR: 1.74 (95% CI, 1.03-2.95)†

	Konishi et al. 2010 
	64-slice
	171
	Suspected CAD
	1 SD increment in EAT
	Any plaque; non stenotic plaque; non calcified plaque
	OR: 2.876 (95% CI, 1.614-5.125)†; OR: 3.423 (95% CI, 1.764-6.642)†; OR: 3.316 (95% CI, 1.435-7.661)†

	Harada et al. 2011 
	64-slice
	170
	ACS
	EAT volume >100 mL
	Presence of ACS
	OR: 2.84 (95% CI, 1.17-6.87)†

	Iwasaki et al. 2011 
	64-slice
	197
	Suspected CAD
	EAT volume >100 vs. <100 mLs
	CAC score; CAD (>50% stenosis)
	384.0±782.0 vs. 174.8±395.6, P=0.016; 40.2% vs. 22.7%; P=0.008

	Schlett et al. 2012 
	64-slice
	358
	Admitted to ED with chest pain
	EAT volume
	Presence of high risk lesions vs. without high risk lesions and no CAD
	151.9 (109.0-179.0) vs. 110.0 (81.0-137.0) cm3 (P=0.04); and 74.8 (58.0-112.0) cm3 (P<0.0001)

	Yerramasu et al. 2012 
	EBCT
	333
	Type II diabetic patients
	Median EAT volume
	CAC progression vs. no CAC progression
	93.1 vs. 68.8 cm3 (P<0.001)†; OR: 1.12 (95% CI, 1.05-1.19)†

	Ito et al. 2013 
	64-slice
	1,308
	Symptomatic patients with a zero calcium score
	EAT volume per 10 cm3
	Obstructive plaque; vulnerable plaque
	OR: 1.10 (95% CI, 1.04-1.16)†; OR: 1.19 (95% CI, 1.12-1.27)†

	Mahabadi et al. 2013 
	EBCT
	4,093
	Participants of the Heinz Nixdorf Recall study
	Doubling of EAT volume
	Increased risk of coronary events
	HR: 1.54 (95% CI, 1.09-2.19)†

	Rajani et al. 2013 
	Dual source CT
	402
	Suspected CAD
	EAT Volume
	>70% stenosis; high risk plaque features
	OR: 3.0 (95% CI, 1.3-6.6) †; OR: 1.7 (95% CI, 0.9-3.4) †

	Iwayama et al. 2014 
	64-slice
	69
	Non-obese patients with and without severe CAD
	1 SD increment in EAT
	Incident CAD in non-obese patients
	OR: 8.27 (95% CI, 1.12-61.60)†

	den Dekker et al. 2014 
	Dual source CT
	65
	Asymptomatic patients with a history of extra-cardiac arterial disease
	10 cm3 increments of EAT
	CAD
	OR: 1.21 (95% CI, 1.04-1.39)†

	Kim et al. 2014 
	16-slice
	209
	Suspected CAD
	1 SD increment in EAT
	Any CAD; significant CAD; CAC score
	OR: 1.67 (95% CI, 1.17-2.37)†; OR: 1.55 (95% CI, 1.10-2.17)†; OR: 1.85 (95% CI, 1.15-3.04)†


TABLE 1  Association between epicardial adipose tissue and coronary artery disease assessed by cardiac computer tomography

CHRONIC KIDNEY DISEASE AND PERITONEAL DIALYSIS PATIENTS: OUR OBSERVATIONS

The CACS in ESRD patients reflects the severity of the atherosclerotic vascular disease and predicts cardiovascular events (71). In the literature, there are few data regarding EAT in ESRD patients. Therefore, in the present discussion we aimed to investigate the relationship between EAT and CACS in CKD but especially in PD patients.
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It must be remembered that patients undergoing PD encounter complex nutritional problems. One of the most undesirable effect  of PD is an increase in body fat mass (72-73). The distribution of body fat, plays an important role in the development and progression of both diastolic and systolic heart failure (74). 

This is a study involving our 18 patients with ESRD receiving PD for at least 12 months in the outpatient Peritoneal Dialysis Unit of University of Federico II (18 patients;11 M ; 7 F) and 18 patients with CKD ( 13 M ; 5 F). Exclusion criteria were: congestive heart failure; active infection; past or recent neoplasia ; arrhythmia.

Written informed consent for radiological exam was obtained from all subjects included in the study.

Statistical analyses were carried out by the Statistical Package for Social Sciences for Windows ver. 15.0 (SPSS Inc., Chicago, Ill., USA).
CACS AND EAT MEASUREMENT  

Unenhanced coronary CT was quantified on retrospectively electrocardiography-gated cardiac CT scans using 64-slice MDCT (Sensation 64; Siemens Medical Solutions, Erlangen, Germany). In this study, the coronary CT protocol was applied as follows: slice collimation 64  x  0.6 mm; gantry rotation time 0.33 s; pitch 0.2; tube voltage 120 kV, and tube current 600 mAs. Multiplanar data reconstructions were obtained in the standardized ventricular short-axis planes at the basal, midcavity, and apical as well as the horizontal long-axis plane with 3-mm slice thickness and 2-mm slice interval. To quantify CAC, all reconstructions were transferred to a PC-based workstation (Syngo CaScoring Wizard; Siemens Medical Solutions). CACS was defined as the presence of more than two contiguous pixels with Hounsfield units greater than 130, which was designed by Agatston et al.  The score is calculated using a weighted value assigned to the highest density of calcification in a given coronary artery. The density is measured in Hounsfield units and score in calculated by multiplying the lesion area (mm2) by a density factor (between 1 and 4). 

To quantify the epicardial fat volume, all reconstructions were transferred to a PC-based workstation (Syngo Volume Wizard; Siemens Medical Solutions). A CT attenuation threshold between –200 and –20 Hounsfield units was used to isolate the epicardial fat. Both EAT and CACS measurements were evaluated by 2 blinded radiologists with an interobserver variability lower than 10.
RESULTS 
Clinical data and basal chemistry are reported in table 2.

Patients on peritoneal dialysis had significant higher serum levels of PTH, phosphorus, calcium.

In univariate analysis EAT was significantly associated to: Age (figure 15); vintage of diabetes (figure 16); BMI (figure 17); Agatstone score and volume of CAC (figure 18); C-reactive protein (figure 19); serum fibrinogen (figure 20); calcium (figure 21); vintage of hypertension (figure 22);

No association was found with either serum levels of PTH or phosphorus.

In multivariate analysis no variable was associated to EAT.
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Figure 22
Despite no significant association was evident in multivariable analysis, the associations in univariate analysis deserve some comments.
The most interesting association was between Agatston score and EAT in PD patients. Furthermore the EAT also correlates with the volume of atherosclerotic coronary plaque. 

Only in patients on peritoneal dialysis, EAT associated with age, duration of diabetes, duration of hypertension, BMI, and levels of PCR, fibrinogen, homocysteine.
No association was evidenced with the values ​​of parathyroid hormone (PTH) and phosphorus (P), while a correlation with serum calcium levels was noted.

DISCUSSION
The risk of cardiovascular disease in patients with chronic renal disease appears to be far greater than in the general population. For example, among patients treated by hemodialysis or peritoneal dialysis, the prevalence of coronary artery disease is approximately 40% and the prevalence of left ventricular hypertrophy is approximately 75%. Cardiovascular mortality has been estimated to be approximately 9% per year. Even after stratification by age, gender, race and diabetes, cardiovascular mortality in dialysis patients is 10 to 20 times higher than in the general population. Therefore, patients with chronic renal disease should be considered in the highest risk group for subsequent cardiovascular events. 

Cardiac failure is more common in chronic renal disease patients than in the general population, and it is an independent predictor of death. Among hemodialysis and peritoneal dialysis patients, the prevalence of cardiac failure is approximately 40%. Both coronary artery disease and left ventricular hypertrophy are risk factors for the development of cardiac failure.

Coronary artery calcification (CAC) is a widely used imaging modality for cardiovascular risk assessment in moderate risk patients. It has been shown to have a superior role predicting future cardiac events and survival rates when combined with other traditional risk factor scoring systems as Framingham risk score. 

Epicardial adipose tissue is a modulator of cardiovascular function, owing to its immediate anatomic proximity to the coronary vasculature and myocardium. It has been suggested that EAT represents the visceral fat depot of the heart, displaying high metabolic activity and capacity for production of several mediators with paracrine effects that may regulate cardiovascular homeostasis. Several lines of evidence suggest that EAT could play a role in the pathogenesis of cardiovascular disease and atherosclerosis 

EAT and intra-abdominal visceral fat depots originate from the splanchnopleuric mesoderm (75).  Mazurek et al. (76) concluded that like abdominal visceral adipose tissue, EAT is also metabolically active by secreting pro-inflammatory cytokines and utilizing free fatty acids (FFAs). Under ischemic conditions, EAT provides FFAs for the increased metabolism of the myocardium (77).  However, in normal conditions EAT acts as a buffering system by scavenging excess FFAs that are toxic to the myocardium  In ESRD patients, pro-inflammatory cytokines, such as TNF- , IL-1 , IL-6, etc., are generally increased and have been found to be associated with both atherosclerosis and CACS (78-79-80). In the present study, increased EAT volume was related to CACS, and this association might be attributed to increased pro-inflammatory cytokines secreted by EAT. PCR levels, homocysteine ​​and fibrinogen, were correlated with CACS and EAT in the present study.

Obesity, an important cardiovascular risk factor, is commonly seen in PD patients especially secondary to high-glucose ingredients of peritoneal dialysates. In the present study, Increased BMI was also found to be associated with increased EAT.

The growing interest in EAT is not only due to its significance as a marker of cardiometabolic risk, but also to its potential use as a therapeutic target. Weight loss is associated with a substantial decrease in VAT, which improves the cardiometabolic profile of obese patients. This weight reduction may be achieved through nutritional programs based on low-calorie diets, aerobic exercise, bariatric surgery and, to a lesser extent, by drug treatment.  Besides, considering that EAT may precede the development of a mature atherosclerotic plaque, and may contribute to early stages of coronary atherogenesis, it may have a role as a risk stratification tool. Also, given that EAT may be the factor triggering atherosclerotic development, its utility may be in screening for subclinical atherosclerosis before the development of coronary calcification. 

In conclusion, we found a relationship between the anatomic assessment of coronary artery lesions by MDCT and EAT in PD patients. This relationship might be attributed to increased inflammation and pro-inflammatory cytokines in uremic patients. Further studies are needed to determine the relationship between VC and EAT. 
These considerations, although  are still to be explored,  are important because currently there are very few studies involving patients on peritoneal dialysis.
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Vascular Calcification Mechanisms
CECILIA M. GIACHELLI
J Am Soc Nephrol 15: 2959–2964, 2004
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Proposed model for the effects of elevated Ca and P on vascular smooth muscle cell (SMC) matrix mineralization. Elevated Ca and

P are proposed to stimulate vascular matrix mineralization in two ways. First, both Ca and P increase the activity of Pit-1: elevated P stimulates

P uptake via Pit-1, and elevated Ca induces expression of Pit-1 mRNA. Both mechanisms are proposed to enhance P uptake into SMC as well

as matrix vesicles. Elevated intracellular P than leads to SMC phenotypic modulation, which includes upregulation of osteogenic genes (Runx2,

osteocalcin, and alkaline phosphatase), and generation of a mineralization-competent extracellular matrix. In addition, increased Pit-1 in matrix

vesicles promotes P loading of matrix vesicles, promoting nucleation of mineral within the extracellular matrix. Second, elevated Ca and/or P

lead to increased Ca  P ion product, thereby promoting growth of apatite crystals in the matrix via thermodynamic mechanisms.
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Atherosclerosis + arteriosclerosis in dialysis patients



Calcified atherosclerotic plaque in a

dialysis patient

Media calcification 

(Moenckeberg sclerosis)
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Fig. 1. Coronary artery plaque of uraemic patient with moderate calcification. Kossa stain; magnification: 1:100 

Fig. 2. Representative coronary arteries of a non-renal control patient (A) and a patient with end stage renal disease (B). Please note thickening of the media and intima in renal disease. Elastica-van-Gieson stain; magnification: 1:200. 
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Pathophysiologic alterations induced 
by vascular calcifications

MEDIAL CALCIFICATION

 Arterial stiffness



 DBP



 SBP



 Coronary perfusion



 LV afterload



 Pulse-wave   velocity





LVH



DBP = diastolic blood pressure 

LV = left ventricular

LVH = LV hypertension 

SBP = systolic blood pressure
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THE PROGRESSION OF CORONARY ARTERY CALCIFICATION IN
PREDIALYSIS PATIENTS ON CALCIUM CARBONATE OR
SEVELAMER


Russo D: Kidney Int; 2007
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Electron Beam Computed Tomograhy
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Russo et al. Am J Nephrol  27:152-158,2007

PROGRESSION OF CALCIFICATION IN PATIENTS (N.113) ON STAGE 2-5 CKD
(Follow-up of 24 months)
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INTIMAL CALCIFICATION

 Plaque fragility



 Vulnerability to shear stresses



Acute plaque rupture and thrombosis



Acute ischaemic episodes



Pathophysiologic alterations induced 
by vascular calcifications
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