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“This view [of the infinite],

which I consider to be the sole correct one,

is held by only a few.

While possibly I am the very first in history to take this position so explicitly,

with all of its logical consequences,

I know for sure that I shall not be the last!”

[G. Cantor]



Abstract

Berkeley Cardinals and the search for V

Raffaella Cutolo

This thesis is concerned with Berkeley cardinals, very large cardinal axioms

inconsistent with the Axiom of Choice. These notions have been recently in-

troduced by J. Bagaria, P. Koellner and W. H. Woodin; our aim is to provide

an introductory account of their features and of the motivations for investigat-

ing their consequences. As a noteworthy advance in the topic, we establish the

independence from ZF of the cofinality of the least Berkeley cardinal, which

is indeed the main point to focus on when dealing with the failure of Choice.

We then explore the structural properties of the inner model L(Vδ+1) under

the assumption that δ is a singular limit of Berkeley cardinals each of which

is a limit of extendible cardinals, lifting some of the theory of the axiom I0 to

the level of Berkeley cardinals. Finally, we discuss the role of Berkeley cardi-

nals within the ultimate project of attaining a “definitive” description of the

universe of set theory.

i



Contents

1 Introduction 1

1.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Choiceless Hierarchy 6

2.1 From Reinhardt Cardinals upward . . . . . . . . . . . . . . . . . 6

2.2 Reflection phenomena . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 The failure of Choice . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Cofinality of the least Berkeley Cardinal 20

3.1 Forcing the cofinality to be countable . . . . . . . . . . . . . . . 20

3.2 Independence from ZF . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Toward a very deep Inconsistency . . . . . . . . . . . . . . . . . 30

4 Berkeley Cardinals and the structure of L(Vδ+1) 33

4.1 The framework provided by a limit club Berkeley . . . . . . . . 33

4.2 The Coding Lemma and the size of Θ . . . . . . . . . . . . . . . 36

4.3 Regularity of δ+ . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Measurability of δ+ . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Measurable Cardinals up to Θ . . . . . . . . . . . . . . . . . . . 51

5 Conclusion 54

5.1 Two futures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography 59

ii



Acknowledgements

I would like to thank Peter Koellner and Hugh Woodin, for sharing with

me their research and their brilliant ideas, and for serving as advisors of this

thesis.

I would also like to thank Alessandro Andretta, for his precious suggestions

and teachings, and for giving me the opportunity of an outstanding experience,

which led to realize this work.

iii



Chapter 1

Introduction

Have you ever asked how far the mathematical infinite goes?

Providing the answer to this question is a primary challenge of set theory:

it involves, on the one hand, large cardinal axioms (positing the existence of

higher and higher infinities), and, on the other, set-theoretic principles limiting

the extent of infinity that can (consistently) be demanded to exist; remarkably,

on top of these principles we encounter the Axiom of Choice, for it readily

implies that Reinhardt cardinals are inconsistent, and this settles the above

question in the context of ZFC. But what if we work in just ZF? For all we

know, the large cardinal hierarchy could then extend far beyond . . .

It is indeed an open problem whether it is consistent with ZF that there exists

a Reinhardt cardinal, i.e., the statement that there is a non-trivial elementary

embedding of the universe V into itself. This assertion arises as the limit case

within a general template for the formulation of very large cardinal axioms

(namely, by the level of measurable cardinals onward), according to which the

large cardinal is just the critical point of a non-trivial elementary embedding

j : V → M , where M is a transitive class and the critical point of j is the

least ordinal moved (upwardly) by j, and the higher the degree of resemblance

required between M and V (i.e., the extent of closure satisfied by M), the
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stronger the large cardinal property holding at crit(j). The axiom demanding

full resemblance between M and V (that is, M = V ) was proposed by Rein-

hardt; shortly after its introduction, it was ruled out by Kunen, showing that

if j : V →M is a non-trivial elementary embedding and λ is the supremum of

the critical sequence of j then j“λ /∈ M , and hence M 6= V . In other words,

for any non-trivial j : V → M , the pointwise image of λ is not in M where

λ is the least ordinal above crit(j) such that j(λ) = λ. However, the proof of

Kunen’s theorem makes an essential use of the Axiom of Choice (the original

version as well as all subsequent proofs known so far), and so, it actually tells

us that “there are no Reinhardt cardinals as long as we work in ZFC”.

It is worth to mentioning the following corollary of Kunen’s proof, which is

indeed a stronger version of his theorem: for any ordinal δ there is no non-

trivial elementary embedding j : Vδ+2 → Vδ+2. Thus, the interest in studying

large cardinals lying just below the Kunen inconsistency invites us to consider

the following axiom, known as I0: we say that I0 holds at λ if there exists an

elementary embedding j : L(Vλ+1)→ L(Vλ+1) such that crit(j) < λ; it follows

immediately that λ equals the supremum of the critical sequence of j, call it λ′,

as if λ > λ′ then j � Vλ′+2 : Vλ′+2 → Vλ′+2 is non-trivial, contradicting the local

version of Kunen’s theorem. I0 was introduced by Woodin, and to assume that

I0 holds at λ provides the inner model L(Vλ+1) with a rich structure theory,

revealing deep analogies with the theory of L(R) (which is just L(Vω+1)) under

the assumption that the Axiom of Determinacy holds in L(R); as an example of

similarity with L(R), we have that under I0, L(Vλ+1) does not satisfy the Axiom

of Choice. Other remarkable similarities between L(Vλ+1) and L(R) (under

the respective cited axioms) concern the Coding Lemma and the existence

of measurable cardinals: in particular, the measurability of λ+ (respectively,
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1.1. PRELIMINARY REMARKS

ω1) and the properties of the ordinal Θ,1 such as the fact that Θ is limit of

measurables and for all α < Θ, P(α) ∈ LΘ(Vλ+1) (respectively, LΘ(R)).

Returning to our preliminary question: since the limitative result of Kunen

doesn’t apply to the context of ZF, if we put aside the Axiom of Choice then

it makes sense to look at the possibility that Reinhardt cardinals exist; and in

fact, we will examine the case that the large cardinal hierarchy encompasses

them and proceeds upward, through even stronger hypotheses (actually the

strongest formulated so far) that we will call “Berkeley cardinals”. Rather

surprisingly, these very large cardinal axioms will enable us to lift the main

results of the I0 theory to a higher level, offering a potential new candidate for

the comparison with models of determinacy. Does this provide evidence for

their consistency? At this stage, the real point turns out to be the following:

these strong axioms of infinity are probably inconsistent with ZF, in that they

seem to yield “too much power”, and establishing such an inconsistency would

be a first (and crucial) step toward a sharper indication on where the large

cardinal hierarchy definitely breaks down. Nevertheless, at the present time,

it still remains possible that Berkeley cardinals may legitimately exist in ZF.

Ultimately, as we shall see, the first of the two cases would bring us very close

to determining the final picture of the universe V .

1.1 Preliminary remarks

Our base theory is ZF (Zermelo-Fraenkel set theory).

We denote by V the universe of set theory, i.e.,
⋃
α Vα, where the sets Vα are

defined by transfinite recursion, starting by the empty set and iterating the

power set operation P :

1In the respective cases, Θ is equal to sup{α : ∃π : Vλ+1
onto−−−→ α (π ∈ L(Vλ+1))} and

sup{α : ∃π : R onto−−−→ α (π ∈ L(R))}.
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1.1. PRELIMINARY REMARKS

• V0 = ∅;

• for any ordinal α, Vα+1 = P(Vα);

• for λ limit, Vλ =
⋃
α<λ Vα.

Recall that for every ordinal α, Vα = {x : rank(x) < α}, where rank(x) is the

least ordinal β such that x ∈ Vβ+1.

A set a is ordinal definable if it is definable from some finite sequence of

ordinals, i.e., there exist a formula ϕ(x, y1, . . . , yn) of the language of set theory

and ordinals α1, . . . , αn such that {a} = {x : ϕ(x, α1, . . . , αn)}. OD is the class

of ordinal definable sets. A set a is hereditarily ordinal definable if a is

ordinal definable and its transitive closure is contained in OD (i.e., all members

of a, members of members of a, and etc., are in OD). HOD is the class of

hereditarily ordinal definable sets; it is provable in ZF that HOD satisfies ZFC

(Zermelo-Fraenkel set theory with the Axiom of Choice).

The constructible universe L =
⋃
α Lα is the smallest inner model of ZF;

the sets Lα are defined by transfinite recursion, starting by the empty set and

taking at any step α + 1 just the definable subsets of the set of level α:

• L0 = ∅;

• for any ordinal α, Lα+1 = def(Lα) is the set of all subsets of Lα which

are definable with parameters over (Lα,∈);

• for λ limit, Lλ =
⋃
α<λ Lα.

L was introduced by Gödel in his proof of consistency of the Axiom of Choice.

In fact, L |= ZFC.

For any set A, the constructible closure L(A) =
⋃
α Lα(A) is the smallest

inner model of ZF that contains A as a member, with Lα(A) defined as follows:
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1.1. PRELIMINARY REMARKS

• L0(A) = tr cl({A}) is the transitive closure of {A};

• for any ordinal α, Lα+1(A) = def(Lα(A)) is the set of all subsets of Lα(A)

which are definable with parameters over (Lα(A),∈);

• for λ limit, Lλ(A) =
⋃
α<λ Lα(A).

Unless tr cl({A}) has a well-ordering in L(A), L(A) does not satisfy the Axiom

of Choice.

For M and N transitive models of a fragment of ZF, j : M → N is an

elementary embedding iff for all formulas ϕ(x1, . . . , xn) of the language of

set theory and for all a1, . . . , an ∈M ,

M |= ϕ(a1, . . . , an) iff N |= ϕ(j(a1), . . . , j(an)).

If j is the identity map on M , then M is an elementary substructure of

N , denoted M ≺ N . We say that j is non-trivial if j is not the identity on

the ordinals; then, the critical point of j (abbreviated crit(j)) is the least

ordinal α such that j(α) > α.
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Chapter 2

The Choiceless Hierarchy

In this chapter we describe the hierarchy of large cardinals incompatible with

the Axiom of Choice. We define Berkeley cardinals, a notion introduced in

[1], and establish some relative consistency implications between them and the

other “choiceless” large cardinals presented. We conclude by providing the

proof that the failure of the Axiom of Choice is essentially related with the

cofinality of the least Berkeley cardinal, whose determination turns out to be

the key point of interest. The content of this chapter follows [1] very closely

and is included in order to make the thesis self-contained.

2.1 From Reinhardt Cardinals upward

We start by defining the hierarchy of Reinhardt cardinals and by mentioning

the fundamental result established by Kunen, showing they are inconsistent in

ZFC (for the proof of Kunen’s theorem see [3] ch. 5).

Definition 2.1.1 (NBG1). A cardinal κ is Reinhardt if there exists a non-

trivial elementary embedding j : V → V such that crit(j) = κ.

1Von Neumann-Bernays-Gödel set theory (without the Axiom of Choice), a conservative

extension of ZF.
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2.1. FROM REINHARDT CARDINALS UPWARD

Theorem 2.1.2 (ZFC). (Kunen’s Theorem) There is no non-trivial elemen-

tary embedding j : V → V , i.e., there are no Reinhardt cardinals.

Open Question. Is it consistent with ZF that there exists a Reinhardt car-

dinal? In other words, can there be a non-trivial elementary embedding

j : V → V in the context of ZF?

Throughout this dissertation we work in ZF; in this context, the notion of

being a strongly inaccessible cardinal is reformulated as follows:

Definition 2.1.3 (ZF). A cardinal κ is strongly inaccessible if for all α < κ

there is no cofinal map ρ : Vα → κ.

Remark 2.1.4. Recall that:

1. If κ is strongly inaccessible then Vκ |= ZF.

2. (Vκ, Vκ+1) |= ZF2
2 if and only if κ is strongly inaccessible.

3. If κ is Reinhardt then κ is strongly inaccessible; moreover, κ is a limit of

strongly inaccessible cardinals.

Definition 2.1.5 (NBG). A cardinal κ is super Reinhardt if for all ordi-

nals λ there exists a non-trivial elementary embedding j : V → V such that

crit(j) = κ and j(κ) > λ.

It is not known whether the assumption that κ is a super Reinhardt cardi-

nal implies that there exists a Reinhardt cardinal below κ; however, a super

Reinhardt rank-reflects a Reinhardt cardinal:

Theorem 2.1.6. Suppose κ is a super Reinhardt cardinal. Then there exists

γ < κ such that (Vγ, Vγ+1) |= ZF2 + “There exists a Reinhardt cardinal”.

2Second-order version of ZF in the context of full second-order logic, where the second-

order quantifiers range over P(Vκ) = Vκ+1.
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2.1. FROM REINHARDT CARDINALS UPWARD

Proof. Let j : V → V be a non-trivial elementary embedding with crit(j) = κ.

Let 〈κi : i < ω〉 be the critical sequence of j, defined by κ0 = κ, κi+1 =

j(κi) for all i < ω. Let λ = sup {κi : i < ω}. Notice that λ is fixed by j,

as j(λ) = j(sup {κi : i < ω}) = sup {j(κi) : i < ω} = sup {κi+1 : i < ω} =

sup {κi : i < ω} = λ. By assumption, there exists a non-trivial elementary

embedding j′ : V → V such that crit(j′) = κ and j′(κ) > λ. Since κ is a limit

of strongly inaccessible cardinals, by elementarity, j′(κ) is a limit of strongly

inaccessible cardinals. Let γ0 be the least strongly inaccessible cardinal greater

than λ. Since γ0 is definable from λ and j(λ) = λ, we have that j(γ0) = γ0;

therefore, j � Vγ0 : Vγ0 → Vγ0 is an elementary embedding with critical point

κ, witnessing that (Vγ0 , Vγ0+1) |= ZF2 + “κ is Reinhardt”. Thus, since γ0 <

j′(κ), by applying j′−1 we get that there exists γ = j′−1(γ0) < κ such that

(Vγ, Vγ+1) |= ZF2 + “There exists a Reinhardt cardinal”.

Definition 2.1.7 (NBG). Suppose A is a proper class. A cardinal κ is

A-Reinhardt if there exists a non-trivial elementary embedding j : V → V

such that crit(j) = κ and j(A) = A. A cardinal κ is A-super Reinhardt if

for all ordinals λ there exists a non-trivial elementary embedding j : V → V

such that crit(j) = κ, j(κ) > λ and j(A) = A (where j(A) =
⋃
α j(A ∩ Vα)).

Definition 2.1.8. Suppose κ is a strongly inaccessible cardinal. Then κ is

totally Reinhardt if for each A ∈ Vκ+1, (Vκ, Vκ+1) |= “There exists an

A-super Reinhardt cardinal”.

By definition, if κ is a totally Reinhardt cardinal then κ reflects a super Rein-

hardt cardinal (i.e., (Vκ, Vκ+1) |= ZF2 + “There exists a super Reinhardt

cardinal”); it is an open question whether a totally Reinhardt cardinal rank-

reflects a super Reinhardt.

We now introduce the Berkeley hierarchy.
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2.1. FROM REINHARDT CARDINALS UPWARD

Definition 2.1.9. For any transitive set M , let E(M) be the collection of all

non-trivial elementary embeddings j : M →M .

Definition 2.1.10. An ordinal δ is a proto-Berkeley cardinal if for all

transitive sets M such that δ ∈M there exists j ∈ E(M) with crit(j) < δ.

Remark 2.1.11. Notice that:

1. If δ is a proto-Berkeley cardinal then, in particular, for any λ > δ there

exists a non-trivial elementary embedding j : Vλ → Vλ with crit(j) < δ.

2. If δ0 is the least proto-Berkeley cardinal then every ordinal δ greater than

δ0 is also a proto-Berkeley cardinal.

It turns out that in the context of Berkeley cardinals we have elementary

embeddings fixing any given set; this very powerful feature is a consequence

of the following lemma.

Lemma 2.1.12. For any set a there exists a transitive set M such that a ∈M

and a is definable (without parameters) in M .

Proof. Let λ be a limit ordinal such that a ∈ Vλ, and let M =

Vλ ∪ {{〈a, x〉 : x ∈ Vλ}}. Then, M is a transitive set and a is definable (with-

out parameters) in M as the first element in the pairs belonging to the set of

highest rank.

Corollary 2.1.13. Suppose δ is a proto-Berkeley cardinal. Then for every set

a there exists a transitive set M and a j ∈ E(M) such that crit(j) < δ and

j(a) = a.

Proof. By Lemma 2.1.12, there exists a transitive set M such that a ∈M and

a is definable (without parameters) in M . We can choose M such that δ ∈M

(by considering a limit ordinal λ > δ such that a ∈ Vλ in the definition of

9



2.1. FROM REINHARDT CARDINALS UPWARD

M), and so there exists a j ∈ E(M) such that crit(j) < δ; finally, since a is

definable in M and j“M ⊆M, j(a) = a.

The following theorem provides the motivation for generalizing the notion of

being a proto-Berkeley cardinal.

Theorem 2.1.14. Let δ0 be the least proto-Berkeley cardinal. Then the crit-

ical points of the witnessing embeddings are cofinal in δ0, i.e., for all transitive

sets M such that δ0 ∈ M and for all η < δ0 there exists j ∈ E(M) with

η < crit(j) < δ0.

Proof. For contradiction, suppose that η0 < δ0 is the least ordinal for which

the claim is false, i.e., there exists a transitive set M0 such that δ0 ∈ M0 and

there does not exist a j ∈ E(M0) with η0 < crit(j) < δ0. Let M be any

transitive set such that η0 ∈ M . By Lemma 2.1.12, there exists a transitive

set M ′ such that 〈M0,M, η0〉 is definable in M ′. Since δ0 ∈ M ′, there exists

j′ ∈ E(M ′) with crit(j′) < δ0. Since j′“M ′ ⊆ M ′, by definability we have

that j′(〈M0,M, η0〉) = 〈M0,M, η0〉, and so, j′ fixes M0, M and η0; therefore,

j′ � M0 ∈ E(M0) (because notice that j′“M0 ⊆ j′(M0) = M0) and, by the

definition of η0, crit(j′ � M0) ≤ η0. But j′(η0) = η0, hence crit(j′ � M0) < η0.

Similarly, j′ � M ∈ E(M) and crit(j′ � M) < η0. It follows that η0 is a

proto-Berkeley cardinal, which is a contradiction.

Definition 2.1.15. Suppose α is an ordinal. An ordinal δ is an α-proto-

Berkeley cardinal if for all transitive sets M such that δ ∈ M there exists

j ∈ E(M) with α < crit(j) < δ.

The proof of Theorem 2.1.14 adapts to show the following more general result,

motivating the definition of Berkeley cardinals:

Theorem 2.1.16. Suppose α is an ordinal. Let δα be the least α-proto-

Berkeley cardinal. Then for all transitive sets M such that δα ∈M and for all

10



2.1. FROM REINHARDT CARDINALS UPWARD

η < δα there exists j ∈ E(M) with η < crit(j) < δα.

Definition 2.1.17. A cardinal δ is a Berkeley cardinal if for every transitive

set M such that δ ∈M and for every ordinal η < δ there exists j ∈ E(M) with

η < crit(j) < δ.

Remark 2.1.18. Notice that:

1. For each ordinal α, the least α-proto-Berkeley cardinal is a Berkeley

cardinal. So, the least Berkeley cardinal is also characterized as the least

α-proto-Berkeley cardinal, for every ordinal α.

2. If δ is a limit of Berkeley cardinals then δ is a Berkeley cardinal, i.e., the

class of Berkeley cardinals is closed.

3. The property of being a Berkeley cardinal is a Π2 property.

4. If δ is a Berkeley cardinal then for all limit ordinals λ > δ, Vλ thinks

that δ is a Berkeley cardinal.

We focus on the least Berkeley cardinal, call it δ0. The next lemma will enable

us to show some reflection phenomena occurring at δ0. Also, we prove that δ0

is not extendible.

Lemma 2.1.19. Let δ0 be the least Berkeley cardinal. Then for a tail of limit

ordinals β, if j ∈ E(Vβ) is such that crit(j) < δ0 then j(δ0) = δ0 and the set

{η < δ0 : j(η) = η} is cofinal in δ0 (i.e., δ0 is a limit of j-fixed points).

Proof. By assumption, every δ < δ0 is not a proto-Berkeley cardinal, so there

exists a transitive set Mδ such that δ ∈Mδ and there does not exist j ∈ E(Mδ)

with crit(j) < δ; for each δ < δ0, let βδ be least such that Vβδ contains such a

witness Mδ. If β > δ0 is a limit ordinal such that β > βδ for all δ < δ0, then

Vβ thinks that δ0 is a Berkeley cardinal and that any δ < δ0 is not a proto-

Berkeley cardinal (since Vβ contains all of the witnesses), so Vβ recognizes
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2.1. FROM REINHARDT CARDINALS UPWARD

that δ0 is the least proto-Berkeley cardinal; therefore, for any such β, δ0 is

definable in Vβ, and so, for any j ∈ E(Vβ), we have that j(δ0) = δ0. Let β

be in the above tail and suppose that j ∈ E(Vβ) is such that crit(j) < δ0.

Assume, for contradiction, that the set {η < δ0 : j(η) = η} is not cofinal in δ0;

let η0 = sup {η < δ0 : j(η) = η} and, for i < ω, let ηi+1 = j(ηi). It follows

that δ0 = sup {ηi : i < ω}, since the latter is a j-fixed point greater than η0

and less than or equal to δ0 (as ηi < δ0 for all i < ω). Let M0 be a witness

in Vβ to the fact that η0 is not a proto-Berkeley cardinal, i.e., a transitive

set containing η0 such that there is no j ∈ E(M0) with crit(j) < η0. For

i < ω, define Mi+1 = j(Mi); notice that Mi+1 turns to be a witness that

ηi+1 is not a proto-Berkeley cardinal. For a tail of limit ordinals β, we have

j, M0 ∈ Vβ, and since the sequence 〈Mi : i < ω〉 is definable from these two

elements, it is also 〈Mi : i < ω〉 ∈ Vβ; moreover, by Lemma 2.1.12, there

exists a transitive set M such that Vβ and 〈Mi : i < ω〉 are both definable

in M , so that they are fixed by any j ∈ E(M). Since δ0 ∈ M , we can let

j′ ∈ E(M) be such that crit(j′) < δ0. Then, we have that j′′ = j′ � Vβ ∈ E(Vβ)

is such that j′′(〈Mi : i < ω〉) = 〈Mi : i < ω〉 (as the sequence is definable

in M and is in the domain of j′′) and crit(j′′) < δ0; moreover, notice that

j′′(〈Mi : i < ω〉) = 〈Mi : i < ω〉 implies j′′(Mi) = Mi for all i < ω. Since

δ0 = sup {ηi : i < ω}, crit(j′′) < ηi for some i < ω; for such an i, j′′(Mi) = Mi

and j′′ � Mi ∈ E(Mi) is such that crit(j′′ � Mi) < ηi, contradicting that Mi is

a witness to the fact that ηi is not a proto-Berkeley cardinal.

Definition 2.1.20 (ZF). A cardinal κ is extendible if for all ordinals α there

exist α′ and an elementary embedding j : Vκ+α → Vj(κ)+α′ such that crit(j) = κ

and j(κ) > α.

Theorem 2.1.21. Suppose that δ0 is the least Berkeley cardinal. Then, δ0 is

not extendible.
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2.2. REFLECTION PHENOMENA

Proof. Let λ > δ0 be such that Vλ ≺Σ2 V . Since the property of being a Berke-

ley cardinal is a Π2 property, Vλ correctly recognizes Berkeley cardinals; in par-

ticular, Vλ thinks that δ0 is a Berkeley cardinal. Suppose, for contradiction,

that δ0 is extendible. Let j : Vλ → Vλ′ be an elementary embedding such that

crit(j) = δ0 and j(δ0) > λ. Since Vλ′ recognizes that δ0 is a Berkeley cardinal,

Vλ′ |= “There exists a Berkeley cardinal below j(δ0)”; it follows that Vλ |=

“δ0 is a limit of Berkeley cardinals”: in fact, for any fixed α < δ0, since Vλ′ |=

“There exists a Berkeley cardinal between j(α) = α and j(δ0)”, by elemen-

tarity we have that Vλ |= “There exists a Berkeley cardinal between α and δ0”.

But Vλ correctly recognizes Berkeley cardinals, and so, in V , δ0 is a limit of

Berkeley cardinals, a contradiction.

Although δ0 is not itself extendible, the hypothesis that there exists a Berkeley

cardinal which is also super Reinhardt (and, therefore, extendible) turns to be

consistent relative to a stronger version of a Berkeley cardinal, which will be

called a limit club Berkeley cardinal; before introducing it, we have to define

the notion of being a club Berkeley cardinal.

Definition 2.1.22. A cardinal δ is a club Berkeley cardinal if δ is regular

and for all clubs C ⊆ δ and for all transitive sets M such that δ ∈ M , there

exists j ∈ E(M) with crit(j) ∈ C.

Definition 2.1.23. A cardinal δ is a limit club Berkeley cardinal if δ is a

club Berkeley cardinal which is a limit of Berkeley cardinals.

2.2 Reflection phenomena

We are now able to show the following relative consistency implications:

1. The least Berkeley cardinal rank-reflects an extendible cardinal and a

Reinhardt cardinal.

13



2.2. REFLECTION PHENOMENA

2. A club Berkeley cardinal rank-reflects a super Reinhardt cardinal.

3. A limit club Berkeley cardinal rank-reflects a Berkeley cardinal which is

also super Reinhardt.

Theorem 2.2.1. Suppose that δ0 is the least Berkeley cardinal. Then there ex-

ists γ < δ0 such that (Vγ, Vγ+1) |= ZF2 +“There exists an extendible cardinal

and there exists a Reinhardt cardinal”.

Proof. By Lemma 2.1.19, for a tail of limit ordinals β, if j ∈ E(Vβ) is such that

crit(j) < δ0 then j(δ0) = δ0 and the set {η < δ0 : j(η) = η} is cofinal in δ0. Fix

such a β and j ∈ E(Vβ). Let λ = sup {κi : i < ω}, where κ0 = crit(j) and, for

i < ω, κi+1 = j(κi); we have that j(λ) = λ and λ < δ0 (because λ is the least

j-fixed point greater than κ0, while δ0 is a limit of j-fixed points). Since δ0

is a Berkeley cardinal, there exists j′ ∈ E(Vδ0+1) such that λ < crit(j′) < δ0.

Let λ′ = sup {κ′i : i < ω}, where κ′0 = crit(j′) and, for i < ω, κ′i+1 = j′(κ′i).

The key point is that Vλ′ |= ZF + “There exists an extendible cardinal”,

and this is witnessed by κ′0. In fact, suppose for contradiction that Vλ′ |=

“κ′0 is not extendible”, and let α < λ′ be least such that in Vλ′ there do

not exist α′ and an elementary embedding j : Vκ′0+α → Vj(κ′0)+α′ such that

crit(j) = κ′0 and j(κ′0) > α. Now, if we let j0 = j′ � Vλ′ ∈ E(Vλ′) and,

for i < ω, ji+1 = j0(ji), we have that for some i < ω, ji(κ
′
0) > α; for

such an i, the map ji � Vκ′0+α : Vκ′0+α → Vji(κ′0)+ji(α) is an elementary em-

bedding such that crit(ji � Vκ′0+α) = κ′0 and (ji � Vκ′0+α)(κ′0) > α, contra-

dicting the choice of α. Thus, κ′0 is indeed extendible in Vλ′ . Since Vκ′0 ≺

Vλ′ (as witnessed by j′) and κ′0 > λ, it follows that (Vκ′0 , Vκ′0+1) |= ZF2 +

“There exists an extendible cardinal greater than λ”. Let γ ≤ κ′0 be least

such that (Vγ, Vγ+1) |= ZF2 + “There exists an extendible cardinal greater

than λ”, and let δ be the least extendible cardinal greater than λ in Vγ+1;

since γ and δ are both definable from λ and j(λ) = λ, j fixes both γ and δ,
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so j � Vγ+1 : Vγ+1 → Vγ+1 is an elementary embedding with crit(j � Vγ+1) =

crit(j) = κ0 (as κ0 < λ < δ ∈ Vγ+1), witnessing that κ0 is a Reinhardt cardinal

in Vγ+1. In summary, we have shown that there exist γ < δ0 and κ0 < δ < γ

such that (Vγ, Vγ+1) |= ZF2 + “δ is extendible and κ0 is Reinhardt”, so, the

proof is complete.

Theorem 2.2.2. Suppose that δ is a club Berkeley cardinal. Then, (Vδ, Vδ+1) |=

ZF2 + “There exists a super Reinhardt cardinal”.

Proof. We begin by showing that for all transitive sets M such that Vδ+1 ∈M

there exists κ < δ such that for all α < δ there exists jα ∈ E(M) with crit(jα) =

κ and jα(κ) > α. Suppose the claim fails and let M be a counterexample, i.e.,

a transitive set such that Vδ+1 ∈ M and for all κ < δ there exists α < δ such

that there does not exist j ∈ E(M) with crit(j) = κ and j(κ) > α; for each

κ < δ, let ακ be the least such α. Let C = {γ < δ : ∀κ < γ (ακ < γ)}. Since δ

is regular, C is club in δ. Moreover, since C ⊆ δ ∈ Vδ+1 and Vδ+1 ∈M, C ∈M .

Finally, since δ is a club Berkeley cardinal and δ ∈ M , there exists j ∈ E(M)

such that crit(j) ∈ C and j(C) = C: in fact, if we let M ′ be a transitive

set such that both C and M are definable in M ′, then, since δ ∈ M ′, we

get that there exists j′ ∈ E(M ′) such that crit(j′) ∈ C, j′(C) = C and

j′(M) = M , and so j = j′ � M ∈ E(M) is such that crit(j) = crit(j′) ∈ C

and j(C) = C. Let crit(j) = κ̄. By elementarity, j(κ̄) ∈ j(C) = C; so, by

the definition of C, κ̄ < j(κ̄) implies ακ̄ < j(κ̄), contradicting the definition

of ακ̄. Thus, we have shown that for all transitive sets M such that Vδ+1 ∈M

there exists κ < δ such that for all α < δ there exists jα ∈ E(M) with

crit(jα) = κ and jα(κ) > α. Now, let M be any transitive set such that

Vδ+1 ∈ M , and let κ < δ be as above; then, for each α < δ, jα � Vδ+1

is such that crit(jα � Vδ+1) = κ and (jα � Vδ+1)(κ) > α, witnessing that

(Vδ, Vδ+1) |= ZF2 + “κ is super Reinhardt”.
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Theorem 2.2.3. Suppose that δ is a limit club Berkeley cardinal. Then,

(Vδ, Vδ+1) |= ZF2 + “There exists a Berkeley cardinal that is super

Reinhardt”.

Proof. The first claim we are going to prove is that for all transitive sets M

such that Vδ+1 ∈M , and for all D ⊆ δ which are club in δ, there exists κ ∈ D

such that for all α < δ there exists jα ∈ E(M) such that crit(jα) = κ and

jα(κ) > α. For contradiction, let 〈M,D〉 be a counterexample, i.e., let M be

a transitive set such that Vδ+1 ∈ M and let D ⊆ δ be a club in δ such that

for all κ ∈ D there exists α < δ such that there does not exist j ∈ E(M) with

crit(j) = κ and j(κ) > α; for each κ ∈ D, let ακ be the least such α. Let C =

{γ < δ : ∀κ ∈ D ∩ γ (ακ < γ)}. Since δ is regular, C is club in δ; thus, C∩D is

club in δ. Since δ is a club Berkeley cardinal and δ ∈M , there exists j ∈ E(M)

such that crit(j) = κ̄ ∈ C ∩D, j(C) = C and j(D) = D (notice that C and D

are both in M). By elementarity, j(κ̄) ∈ j(C∩D) = j(C)∩j(D) = C∩D, and

so, since κ̄ ∈ D ∩ j(κ̄), by the definition of C we have that ακ̄ < j(κ̄), which

contradicts the definition of ακ̄. Therefore, we have shown that for all transitive

sets M such that Vδ+1 ∈M , and for all D ⊆ δ which are club in δ, there exists

κ ∈ D such that for all α < δ there exists jα ∈ E(M) such that crit(jα) = κ and

jα(κ) > α. Now, let M be any transitive set such that Vδ+1 ∈M , let D ⊆ δ be

club in δ, and take κ ∈ D as above; again, for each α < δ, jα � Vδ+1 is such that

crit(jα � Vδ+1) = κ and (jα � Vδ+1)(κ) > α, witnessing that (Vδ, Vδ+1) |= ZF2 +

“There exists a super Reinhardt cardinal κ ∈ D”. Since D was any club in

δ, it follows that (Vδ, Vδ+1) |= ZF2 + “There exist stationarily many super

Reinhardt cardinals”. Since the class of Berkeley cardinals is closed and δ is

a limit of Berkeley cardinals, the Berkeley cardinals below δ are club in δ, and

so finally, (Vδ, Vδ+1) |= ZF2 +“There exists a Berkeley cardinal that is super

Reinhardt”.
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Chart of Choiceless Large Cardinals3

limit club Berkeley totally Reinhardt club Berkeley

↓ ↘ ↓ ↙

Berkeley super Reinhardt

↘ ↓

Reinhardt

2.3 The failure of Choice

The large cardinal axioms we are concerned with are in conflict with the Axiom

of Choice: we are now going to illustrate the point at which the contradiction

arises. We shall need a preliminary lemma.

Definition 2.3.1. Let δ0 be the least Berkeley cardinal. For any transitive

set M such that δ0 ∈M , let κM = min{crit(j) : j ∈ E(M)}.

Remark 2.3.2. Notice that:

1. κM is well-defined, since δ0 ∈M and so there exists j ∈ E(M).

2. κM < δ0.

Lemma 2.3.3. Let δ0 be the least Berkeley cardinal. Then for all η < δ0 there

exists a transitive set Mη such that δ0 ∈Mη and κMη > η (i.e., crit(j) > η for

all j ∈ E(Mη)).

Proof. For contradiction, let η0 < δ0 be least such that for all transitive sets

M such that δ0 ∈M, κM ≤ η0. Let M be any transitive set such that η0 ∈M .

Let M̂ be a transitive set such that δ0 ∈ M̂ and M and η0 are definable in M̂ ;

3The arrows indicate relative consistency implications.
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let j ∈ E(M̂) be such that crit(j) = κM̂ . By the definition of η0, crit(j) =

κM̂ ≤ η0; but j(η0) = η0, so crit(j) < η0. Since j(M) = M, j � M ∈ E(M);

moreover, crit(j � M) < η0. Since M was an arbitrary set containing η0, it

follows that η0 is a proto-Berkeley cardinal, which is a contradiction (recall

that the least proto-Berkeley cardinal is δ0 itself).

Definition 2.3.4. For any cardinal γ ≥ ω and for any set X 6= ∅, γ-DC(X)

(γ-Dependent Choice on X) is the statement that for every function

F : <γX → P(X) \ {∅} there exists a sequence f : γ → X such that for

all α < γ, f(α) ∈ F (f � α). γ-DC (γ-Dependent Choice) is the statement

that γ-DC(X) holds for all non-empty sets X.

Remark 2.3.5. Recall that:

1. The Axiom of Choice (AC) is equivalent to the statement that γ-DC

holds for all cardinals γ ≥ ω.

2. γ-DC implies that every family F of non-empty sets such that |F| = γ

has a choice function.

3. If ω ≤ κ < γ, then γ-DC implies κ-DC.

4. If γ is an infinite singular cardinal and κ-DC holds for all cardinals κ

such that ω ≤ κ < γ, then γ-DC holds.4

Theorem 2.3.6. Suppose δ0 is the least Berkeley cardinal. Let γ = cof(δ0).

Then, γ-DC fails.

Proof. Let π : γ → δ0 be cofinal. For each ξ < γ, let βξ be least such that

Vβξ contains a transitive set M such that δ0 ∈M and κM > π(ξ) (notice that,

for every ξ < γ, such an M does exist by Lemma 2.3.3). For each ξ < γ,

let M̂ξ = {M ∈ Vβξ : “M is transitive” ∧ δ0 ∈ M ∧ κM > π(ξ)}; by the

4See [2] ch. 8 for the proof.
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definition of βξ, we have that for every ξ < γ, M̂ξ 6= ∅. For contradiction,

assume that γ-DC holds. Then, there exists a sequence 〈Mξ : ξ < γ〉 such

that Mξ ∈ M̂ξ for all ξ < γ; in fact: if S =
⋃
ξ<γ M̂ξ and F : <γS →

P(S) \ {∅} is such that F (s) = M̂ξ whenever ξ < γ and s is a ξ-sequence

in S, then, by γ-DC, there exists a γ-sequence f : γ → S such that for all

ξ < γ, f(ξ) ∈ F (f � ξ) = M̂ξ. LetM ′ be a transitive set such that the sequence

〈Mξ : ξ < γ〉 is definable in M ′. Let j′ ∈ E(M ′) be such that crit(j′) < δ0.

Since j′(〈Mξ : ξ < γ〉) = 〈Mξ : ξ < γ〉, we have that j′(γ) = γ and for all ξ < γ,

if j′(ξ) = ξ then j′(Mξ) = Mξ; so, for every such ξ, j′ � Mξ ∈ E(Mξ), which

implies κM ′ ≥ κMξ
> π(ξ). Therefore, there cannot exist cofinally many ξ < γ

such that j′(ξ) = ξ (otherwise, we would have κM ′ ≥ δ0 = sup{π(ξ) : ξ < γ}).

It follows that there exist η0 = sup{ξ < γ : j′(ξ) = ξ} < γ and 〈ηi : i < ω〉 such

that ηi+1 = j′(ηi) and sup{ηi : i < ω} = γ. So, since δ0 = sup{π(ξ) : ξ < γ},

we have that for every α < δ0 there exists i < ω such that π(ηi) ≥ α, that is,

δ0 = sup{π(ηi) : i < ω}. Now, let M ′′ be a transitive set such that the sequence

〈Mηi : i < ω〉 is definable in M ′′ and let j′′ ∈ E(M ′′) be such that crit(j′′) < δ0.

Then, j′′(〈Mηi : i < ω〉) = 〈Mηi : i < ω〉. But now j′′(Mηi) = Mηi for all i < ω,

hence j′′ � Mηi ∈ E(Mηi) for all i < ω; it follows that κM ′′ ≥ κMηi
> π(ηi) for

all i < ω, and so, κM ′′ ≥ δ0, a contradiction.

At this point, the following key question arises:

Key Question. Which is the cofinality of the least Berkeley cardinal?
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Chapter 3

Cofinality of the least Berkeley

Cardinal

The aim of this chapter is to show that the fundamental question of the cofi-

nality of the least Berkeley cardinal is undecidable. This leaves open a range

of possibilities for the exact amount of choice that it makes sense to assume

in the context of Berkeley cardinals in order to demand the consistency of the

resulting theory. We briefly analyze these possibilities. In the end, we outline

the motivation for our further investigation, developed in the next chapter:

uncover the mathematical structure revealed by choiceless large cardinals. We

assume the reader is familiar with the technique of forcing (a complete account

of forcing can be found in [4]).

3.1 Forcing the cofinality to be countable

First, we prove that there exists a forcing extension in which the least Berke-

ley cardinal has countable cofinality. To begin, recall the following “lifting

criterion” for elementary embeddings:

Lemma 3.1.1 (Lifting Criterion). Suppose j : M → N is an elementary
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embedding of two transitive models of (a sufficiently large fragment of) ZF.

Let P ∈M and suppose G ⊆ P is M -generic and H ⊆ j(P) is N -generic. Then,

j lifts to an elementary embedding j∗ : M [G] → N [H] (with j∗(G) = H) iff

j“G ⊆ H.

Theorem 3.1.2. Assume ZF + BC.1 Then there exists a forcing extension

V [G] of V such that V [G] |= ZF + BC + “cof(δ0) = ω, where δ0 is the least

Berkeley cardinal (as computed in V [G])”.

Proof. Let γ0 = (δ0)V denote the least Berkeley cardinal in V . Suppose

(cof(γ0))V > ω. Let 〈Pγ0 ,≤Pγ0 〉 be the forcing whose conditions are of the

form 〈σ,C〉 where σ ∈ [Sγ0ω ]<ω = {σ ⊆ Sγ0ω : |σ| < ω} is a finite subset of

Sγ0ω = {α < γ0 : cof(α) = ω} and C is an ω-club in γ0, i.e., C is an unbounded

subset of γ0 and C contains all its limit points less than γ0 of cofinality ω.

Let ≤Pγ0=≤ be defined as follows: for all 〈σ1, C1〉, 〈σ2, C2〉 ∈ Pγ0 , 〈σ2, C2〉 ≤

〈σ1, C1〉 iff

1. C2 ⊆ C1,

2. σ1 ⊆ σ2,

3. σ2 ∩ sup(σ1) = σ1 (i.e., σ2 end-extends σ1) and

4. σ2 \ σ1 ⊆ C1.

Notice that ≤ is transitive. Let G ⊆ Pγ0 be V -generic, and let σG =
⋃
{σ :

∃C (〈σ,C〉 ∈ G)}. We claim that (cof(γ0))V [G] = ω. In fact, we have the

following:

Claim 1. In V [G]:

1. The order type of σG is ω.

1We use BC as a shorthand for “There exists a Berkeley Cardinal”.
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2. For all C ∈ V such that C is ω-club in γ0, C \ σG is bounded.

Proof. Work in V [G].

1. Since each σ is finite, it is clearly ot(σG) ≤ ω. But for all n ∈ ω, there

exists a condition 〈σ,C〉 ∈ G with ot(σ) = n: in fact, for n ∈ ω, since

any condition in Pγ0 can be extended to a condition 〈σ,C〉 such that

ot(σ) = n, the set {〈σ,C〉 ∈ Pγ0 : ot(σ) = n} is dense, and so, it hits G.

Therefore, ot(σG) = ω.

2. First, notice that for all C ∈ V such that C is ω-club in γ0, there exists

a condition 〈σ,D〉 ∈ G such that D ⊆ C: in fact, if C ∈ V is an ω-club

in γ0 and 〈σ′, C ′〉 ∈ Pγ0 , then C ∩ C ′ is an ω-club in γ0, and we have

that 〈σ′, C ∩ C ′〉 ≤ 〈σ′, C ′〉, so the set DC = {〈σ,D〉 : D ⊆ C} is dense

in Pγ0 , and, therefore, G ∩ DC 6= ∅. Now, let C ∈ V be an ω-club in

γ0. Then, there exists a condition 〈σ,D〉 ∈ G with D ⊆ C; it follows

that 〈σ,C〉 ∈ G (as 〈σ,D〉 ≤ 〈σ,C〉), and for all further extensions

〈σ′′, C ′′〉, σ′′ \ σ ⊆ C, hence C \ σG is bounded.

It follows that in V [G], σG is a club in γ0 of order type ω. So, (cof(γ0))V [G] =

ω. It remains to prove that V [G] |= “γ0 is a Berkeley cardinal”. We prelim-

inarily show the following:

Claim 2. Either

1. 1Pγ0 
Pγ0 “γ0 is a Berkeley cardinal”

or

2. 1Pγ0 
Pγ0 “γ0 is not a Berkeley cardinal”.
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Proof. Either there exists a condition 〈σ0, C0〉 such that 〈σ0, C0〉 
Pγ0 “γ0 is a

Berkeley cardinal” or there exists a condition 〈σ1, C1〉 such that 〈σ1, C1〉 
Pγ0

“γ0 is not a Berkeley cardinal”. Suppose 〈σ0, C0〉 
Pγ0 “γ0 is a Berkeley

cardinal”; then, 〈∅, C0〉 
Pγ0 “γ0 is a Berkeley cardinal”: in fact, since σ0 is

in V (and hence in all generic extensions), for every G ⊆ Pγ0 generic through

〈σ0, C0〉, G \ σ0 is generic through 〈∅, C0〉 and V [G] = V [G \ σ0], and, con-

versely, for every G ⊆ Pγ0 generic through 〈∅, C0〉, G ∪ σ0 is generic through

〈σ0, C0〉 and V [G] = V [G ∪ σ0] (therefore, we actually have that 〈σ0, C0〉 
Pγ0

“γ0 is a Berkeley cardinal” iff 〈∅, C0〉 
Pγ0 “γ0 is a Berkeley cardinal”).

Similarly, if 〈σ1, C1〉 
Pγ0 “γ0 is not a Berkeley cardinal”, then 〈∅, C1〉 
Pγ0

“γ0 is not a Berkeley cardinal”. Thus, there cannot exist 〈σ0, C0〉, 〈σ1, C1〉 ∈

Pγ0 such that 〈σ0, C0〉 
Pγ0 “γ0 is a Berkeley cardinal” and 〈σ1, C1〉 
Pγ0

“γ0 is not a Berkeley cardinal”, otherwise we would have that 〈∅, C0〉 
Pγ0

“γ0 is a Berkeley cardinal” and 〈∅, C1〉 
Pγ0 “γ0 is not a Berkeley cardinal”,

which is a contradiction because 〈∅, C0〉 and 〈∅, C1〉 are compatible condi-

tions (in fact, 〈∅, C0 ∩ C1〉 extends both). So, the conditions in Pγ0 that

decide the statement ϕBC =df “γ0 is a Berkeley cardinal” must decide it

in the same way. Since for all formulas ϕ of the forcing language the set

Dϕ = {p ∈ Pγ0 : p 
Pγ0 ϕ ∨ p 
Pγ0 ¬ϕ} is dense, we have that either

D+
ϕBC

= {p ∈ Pγ0 : p 
Pγ0 ϕBC} is dense or D−ϕBC
= {p ∈ Pγ0 : p 
Pγ0 ¬ϕBC}

is dense, and so, either 1Pγ0 
Pγ0 ϕBC or 1Pγ0 
Pγ0 ¬ϕBC (as for all formulas

ϕ, p 
Pγ0 ϕ iff {q ≤ p : q 
Pγ0 ϕ} is dense).

Claim 3. 1Pγ0 
Pγ0 ϕBC.

Proof. For contradiction, assume not. Then, 1Pγ0 
Pγ0 ¬ϕBC. So, let 〈σ0, C0〉 ∈

Pγ0 and τ ∈ NamePγ0 be such that 〈σ0, C0〉 
Pγ0 “τ is a transitive set such

that γ0 ∈ τ and there exists ξ < γ0 such that there does not exist a

non-trivial elementary embedding j : τ → τ with ξ < crit(j) < γ0”. Fix
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such a ξ. Let η >> γ0 be a limit ordinal such that τ ∈ Vη and Vη |= ZF∗,

where ZF∗ indicates a big fragment of ZF which suffices to implement the

proof that j lifts. Since γ0 is a Berkeley cardinal in V , there exists an el-

ementary embedding j : Vη → Vη such that ξ < crit(j) < γ0, j(γ0) =

γ0, j(τ) = τ, j([Sγ0ω ]<ω) = [Sγ0ω ]<ω, j(Pγ0) = Pγ0 , j(〈σ0, C0〉) = 〈σ0, C0〉.

Let Cj = {α ∈ Sγ0ω : j(α) = α} = {α < γ0 : cof(α) = ω and j(α) = α}.

By Lemma 2.1.19, Cj is cofinal in γ0; moreover, Cj is ω-club in γ0 (in fact, if

λ < γ0 is a limit point of Cj such that cof(λ) = ω, then j(λ) = λ ∈ Cj), and we

have that 〈σ0, C0∩Cj〉 ≤ 〈σ0, C0〉. Now, let G ⊆ Pγ0 be a V -generic filter such

that 〈σ0, C0∩Cj〉 ∈ G. Then, 〈σ0, C0〉 ∈ G. Let σG =
⋃
{σ : ∃C (〈σ,C〉 ∈ G)}.

Look at j−1“G = {p ∈ Pγ0 : j(p) ∈ G}. Let us show the following:

Subclaim. G ⊆ j−1“G.

Proof. First, notice that for all 〈σ,C〉 ∈ Pγ0 such that 〈σ,C〉 ≤ 〈σ0, C0 ∩

Cj〉, j(σ) = σ: in fact, j(σ0) = σ0 (as j(〈σ0, C0〉) = 〈j(σ0), j(C0)〉 = 〈σ0, C0〉)

and σ = σ_0 σ̄, where σ \ σ0 = σ̄ ⊆ C0 ∩ Cj ⊆ Cj, but j(σ̄) = σ̄ (as σ̄ ∈

[Cj]
<ω and j is the identity on [Cj]

<ω), so j(σ) = j(σ_0 σ̄) = j(σ0)_j(σ̄) =

σ_0 σ̄ = σ. Moreover, for all C ⊆ Cj, C = j“C ⊆ j(C). It follows that

for all 〈σ,C〉 ∈ Pγ0 such that 〈σ,C〉 ≤ 〈σ0, C0 ∩ Cj〉, 〈σ,C〉 ≤ j(〈σ,C〉): in

fact, if 〈σ,C〉 ≤ 〈σ0, C0 ∩ Cj〉, then C ⊆ C0 ∩ Cj ⊆ Cj, and so C ⊆ j(C),

which implies 〈σ,C〉 ≤ 〈σ, j(C)〉 = 〈j(σ), j(C)〉 = j(〈σ,C〉). Now, take any

〈σ,C〉 ∈ G. Then, there exists a condition 〈σ′, C ′〉 ∈ G which extends both

〈σ,C〉 and 〈σ0, C0∩Cj〉. Since 〈σ′, C ′〉 ≤ 〈σ0, C0∩Cj〉, we have that 〈σ′, C ′〉 ≤

j(〈σ′, C ′〉), hence j(〈σ′, C ′〉) ∈ G; but by elementarity, j(〈σ′, C ′〉) ≤ j(〈σ,C〉),

so j(〈σ,C〉) ∈ G, which implies 〈σ,C〉 ∈ j−1“G. Therefore, G ⊆ j−1“G.

It follows that j“G = {j(p) : p ∈ G} ⊆ G. So, by the “lifting criterion”

we have that j : Vη → Vη lifts to an elementary embedding j∗ : Vη[G] →

Vη[G]. Since j∗(G) = G and j∗(τ) = j(τ) = τ , we have that j∗(τG) = τG;
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moreover, ξ < crit(j∗) = crit(j) < γ0. Therefore, j∗ � τG : τG → τG is an

elementary embedding such that ξ < crit(j∗ � τG) < γ0, contradicting the

choice of 〈σ0, C0〉 and τ as a counterexample to γ0 being a Berkeley cardinal

in V [G]. This completes the proof that 1Pγ0 
Pγ0 ϕBC, i.e., for all V -generic

G ⊆ Pγ0 , V [G] |= “γ0 is a Berkeley cardinal”.

In summary, we have shown that if G ⊆ Pγ0 is V -generic, then V [G] |=

“γ0 is a Berkeley cardinal”+“cof(γ0) = ω”. It remains to handle a final issue:

although γ0 is a Berkeley cardinal in V [G], it could be that γ0 is not the least

Berkeley cardinal in V [G]. So, suppose γ1 < γ0 is the least Berkeley cardinal

in V [G] and (cof(γ1))V [G] = ν1 > ω. Let p0 ∈ G0 = G be a condition that

forces this, and consider the product forcing Pγ0×Pγ1 ; if G0×G1 is V -generic,

then V [G0 × G1] = V [G0][G1] |= “γ1 is a Berkeley cardinal” + “cof(γ1) =

ω”. However, again, it could be that γ1 is not the least Berkeley cardinal in

V [G0][G1], in which case, we continue. If the theorem continues to fail in the

ith-generic extension of V , then we let pi ∈ Gi, γi+1 and νi+1 be as above and we

force with Pγ0×· · ·×Pγi+1
; since γ0, . . . , γi+1 are decreasing, this procedure must

terminate at some finite stage i + 1, at which point V [G0] . . . [Gi+1] satisfies

that the least Berkeley cardinal has countable cofinality.

3.2 Independence from ZF

The following theorem shows that it is consistent for the cofinality of the least

Berkeley cardinal to be ω1, establishing the announced undecidability result.

Theorem 3.2.1. Assume ZF + BC + DC.2 Then there exists a forcing

extension V [G] of V such that V [G] |= ZF + BC + DC + “cof(δ0) = ω1,

where δ0 is the least Berkeley cardinal (as computed in V [G])”.

2DC is ω-DC.
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3.2. INDEPENDENCE FROM ZF

Proof. Let γ0 = (δ0)V denote the least Berkeley cardinal in V . By Theorem

2.3.6, we have (cof(γ0))V ≥ ω1. If (cof(γ0))V = ω1 then we are done. So,

assume (cof(γ0))V > ω1. Let 〈Pγ0 ,≤Pγ0 〉 be the forcing whose conditions are of

the form 〈σ,C〉 where σ ∈ [Sγ0ω ]ω = {σ ⊆ Sγ0ω : |σ| = ω} is a countable subset

of Sγ0ω = {α < γ0 : cof(α) = ω} and C is an ω-club in γ0. Let ≤Pγ0=≤ be

defined by putting for all 〈σ1, C1〉, 〈σ2, C2〉 ∈ Pγ0 , 〈σ2, C2〉 ≤ 〈σ1, C1〉 iff

1. C2 ⊆ C1,

2. σ1 ⊆ σ2,

3. σ2 ∩ sup(σ1) = σ1 (i.e., σ2 end-extends σ1) and

4. σ2 \ σ1 ⊆ C1.

It is immediate that ≤ is transitive. Moreover, since we are assuming DC, we

have the following:

Claim 1. 〈Pγ0 ,≤Pγ0 〉 is ω-closed, i.e., for every decreasing ω-sequence 〈pn :

n ∈ ω〉 of elements of Pγ0 (i.e., such that m < n → pn ≤Pγ0 pm) there exists

q ∈ Pγ0 such that q ≤Pγ0 pn for all n ∈ ω.

Proof. Suppose 〈〈σn, Cn〉 : n ∈ ω〉 is a decreasing ω-sequence in Pγ0 . Then,

〈
⋃
n∈ω σn,

⋂
n∈ω Cn〉 ∈ Pγ0 : in fact, by DC,

⋃
n∈ω σn ∈ [Sγ0ω ]ω and

⋂
n∈ω Cn is

an ω-club in γ0. Moreover, 〈
⋃
n∈ω σn,

⋂
n∈ω Cn〉 ≤ 〈σn, Cn〉 for all n ∈ ω.

Let G ⊆ Pγ0 be V -generic, and let σG =
⋃
{σ : ∃C (〈σ,C〉 ∈ G)}. Since Pγ0

is ω-closed, we have that (ω1)V [G] = (ω1)V . We show that (cof(γ0))V [G] ≤ ω1.

In fact, the following holds:

Claim 2. In V [G]:

1. The order type of σG is ω1.

2. For all C ∈ V such that C is ω-club in γ0, C \ σG is bounded.
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3.2. INDEPENDENCE FROM ZF

Proof. Work in V [G].

1. Since each σ is countable, it is clearly ot(σG) ≤ ω1. But for any α < ω1,

since every condition in Pγ0 can be extended to a condition 〈σ,C〉 such

that ot(σ) = α, the set {〈σ,C〉 ∈ Pγ0 : ot(σ) = α} is dense, and so, there

exists a condition 〈σ,C〉 ∈ G with ot(σ) = α. Therefore, ot(σG) = ω1.

2. Let C ∈ V be an ω-club in γ0. If 〈σ′, C ′〉 ∈ Pγ0 , then C ∩ C ′ is an

ω-club in γ0 and 〈σ′, C ∩ C ′〉 ≤ 〈σ′, C ′〉; so, the set {〈σ,D〉 : D ⊆ C}

is dense in Pγ0 . Therefore, there exists a condition 〈σ,D〉 ∈ G such

that D ⊆ C; it follows that 〈σ,C〉 ∈ G, and for all further extensions

〈σ′′, C ′′〉, σ′′ \ σ ⊆ C.

It follows that in V [G], σG is a club in γ0 of order type ω1. So, (cof(γ0))V [G] ≤

ω1. In order to prove that γ0 is still a Berkeley cardinal in V [G], we prelimi-

narily show the following:

Claim 3. Either

1. 1Pγ0 
Pγ0 “γ0 is a Berkeley cardinal”

or

2. 1Pγ0 
Pγ0 “γ0 is not a Berkeley cardinal”.

Proof. Either there exists a condition 〈σ0, C0〉 such that 〈σ0, C0〉 
Pγ0 “γ0 is a

Berkeley cardinal” or there exists a condition 〈σ1, C1〉 such that 〈σ1, C1〉 
Pγ0

“γ0 is not a Berkeley cardinal”. Notice that if 〈σ0, C0〉 
Pγ0 “γ0 is a Berkeley

cardinal”, then 〈∅, C0〉 
Pγ0 “γ0 is a Berkeley cardinal” (in fact, since σ0

is in V , for every generic through 〈σ0, C0〉 there is an equivalent generic

through 〈∅, C0〉, in the sense of yielding the same generic extension, and con-

versely). Likewise, if 〈σ1, C1〉 
Pγ0 “γ0 is not a Berkeley cardinal” then

27



3.2. INDEPENDENCE FROM ZF

〈∅, C1〉 
Pγ0 “γ0 is not a Berkeley cardinal”. But 〈∅, C0〉 and 〈∅, C1〉 are com-

patible conditions, and so, every condition in Pγ0 that decides the statement

ϕBC =df “γ0 is a Berkeley cardinal” must decide it in the same way. Since for

all formulas ϕ of the forcing language the set Dϕ = {p ∈ Pγ0 : p 
Pγ0 ϕ∨p 
Pγ0

¬ϕ} is dense, we have that either D+
ϕBC

= {p ∈ Pγ0 : p 
Pγ0 ϕBC} is dense or

D−ϕBC
= {p ∈ Pγ0 : p 
Pγ0 ¬ϕBC} is dense, namely, either 1Pγ0 
Pγ0 ϕBC or

1Pγ0 
Pγ0 ¬ϕBC.

Claim 4. 1Pγ0 
Pγ0 ϕBC.

Proof. For contradiction, assume not. Then, 1Pγ0 
Pγ0 ¬ϕBC. So, let 〈σ0, C0〉 ∈

Pγ0 and τ ∈ NamePγ0 be such that 〈σ0, C0〉 
Pγ0 “τ is a transitive set such

that γ0 ∈ τ and there exists ξ < γ0 such that there does not exist a

non-trivial elementary embedding j : τ → τ with ξ < crit(j) < γ0”. Fix

such a ξ. Let η >> γ0 be a limit ordinal such that τ ∈ Vη and Vη |= ZF∗,

where ZF∗ indicates a big fragment of ZF which suffices to implement the

proof that j lifts. Since γ0 is a Berkeley cardinal in V , there exists an el-

ementary embedding j : Vη → Vη such that ξ < crit(j) < γ0, j(γ0) =

γ0, j(τ) = τ, j([Sγ0ω ]ω) = [Sγ0ω ]ω, j(Pγ0) = Pγ0 , j(〈σ0, C0〉) = 〈σ0, C0〉. Let

Cj = {α ∈ Sγ0ω : j(α) = α} = {α < γ0 : cof(α) = ω and j(α) = α}. By

Lemma 2.1.19, Cj is cofinal in γ0; moreover, Cj is ω-club in γ0, and we have

that 〈σ0, C0 ∩ Cj〉 ≤ 〈σ0, C0〉. Now, let G ⊆ Pγ0 be a V -generic filter such

that 〈σ0, C0 ∩ Cj〉 ∈ G, and let σG =
⋃
{σ : ∃C (〈σ,C〉 ∈ G)}. It follows that

〈σ0, C0〉 ∈ G. Moreover:

Subclaim. G ⊆ j−1“G.

Proof. First, notice that for all 〈σ,C〉 ∈ Pγ0 such that 〈σ,C〉 ≤ 〈σ0, C0 ∩

Cj〉, j(σ) = σ: in fact, j(σ0) = σ0 (as j(〈σ0, C0〉) = 〈j(σ0), j(C0)〉 = 〈σ0, C0〉)

and σ = σ_0 σ̄, where σ \ σ0 = σ̄ ⊆ C0 ∩ Cj ⊆ Cj, but j(σ̄) = σ̄ (as σ̄ ∈

[Cj]
ω and j is the identity on [Cj]

ω), so j(σ) = j(σ_0 σ̄) = j(σ0)_j(σ̄) =
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σ_0 σ̄ = σ. Moreover, for all C ⊆ Cj, C = j“C ⊆ j(C). It follows that

for all 〈σ,C〉 ∈ Pγ0 such that 〈σ,C〉 ≤ 〈σ0, C0 ∩ Cj〉, 〈σ,C〉 ≤ j(〈σ,C〉):

in fact, if 〈σ,C〉 ≤ 〈σ0, C0 ∩ Cj〉, then C ⊆ C0 ∩ Cj ⊆ Cj, so C ⊆ j(C),

which implies 〈σ,C〉 ≤ 〈σ, j(C)〉 = 〈j(σ), j(C)〉 = j(〈σ,C〉). Now, take any

〈σ,C〉 ∈ G. Then, there exists a condition 〈σ′, C ′〉 ∈ G which extends both

〈σ,C〉 and 〈σ0, C0∩Cj〉. Since 〈σ′, C ′〉 ≤ 〈σ0, C0∩Cj〉, we have that 〈σ′, C ′〉 ≤

j(〈σ′, C ′〉), hence j(〈σ′, C ′〉) ∈ G; but by elementarity, j(〈σ′, C ′〉) ≤ j(〈σ,C〉),

so j(〈σ,C〉) ∈ G, which implies 〈σ,C〉 ∈ j−1“G. Therefore, G ⊆ j−1“G.

It follows that j“G ⊆ G. So, by the “lifting criterion” we have that

j : Vη → Vη lifts to an elementary embedding j∗ : Vη[G] → Vη[G]. Since

j∗(G) = G and j∗(τ) = j(τ) = τ , we have that j∗(τG) = τG; moreover,

ξ < crit(j∗) = crit(j) < γ0. Therefore, j∗ � τG : τG → τG is an elemen-

tary embedding such that ξ < crit(j∗ � τG) < γ0, contradicting the choice

of 〈σ0, C0〉 and τ as a counterexample to γ0 being a Berkeley cardinal in

V [G]. This completes the proof that 1Pγ0 
Pγ0 ϕBC, i.e., for all V -generic

G ⊆ Pγ0 , V [G] |= “γ0 is a Berkeley cardinal”.

To summarize, we have shown that if G ⊆ Pγ0 is V -generic, then V [G] |=

“γ0 is a Berkeley cardinal” + “cof(γ0) ≤ ω1”. Notice that, since DC is

preserved, if γ0 is still the least Berkeley cardinal in V [G], then it is also

cof(γ0)V [G] ≥ ω1, and so, we are done. Therefore, it remains to handle the case

that (δ0)V [G] < γ0. So, suppose γ1 < γ0 is the least Berkeley cardinal in V [G].

Since V [G] |= DC, (cof(γ1))V [G] = ν1 ≥ ω1. If ν1 = ω1 then we are done. So,

assume ν1 > ω1. Let p0 ∈ G0 = G be a condition that forces this, and consider

the product forcing Pγ0 × Pγ1 ; if G0 × G1 is V -generic, then V [G0 × G1] =

V [G0][G1] |= “γ1 is a Berkeley cardinal”+“cof(γ1) ≤ ω1”. However, again, it

could be that γ1 is not the least Berkeley cardinal in V [G0][G1], in which case,

we continue. If the theorem continues to fail in the ith-generic extension of V ,
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then we let pi ∈ Gi, γi+1 and νi+1 be as above and we force with Pγ0×· · ·×Pγi+1
;

since γ0, . . . , γi+1 are decreasing, this procedure must terminate at some finite

stage i + 1, at which point V [G0] . . . [Gi+1] satisfies that the least Berkeley

cardinal has cofinality less than or equal to ω1, which implies, by DC, that the

cofinality is equal to ω1.

3.3 Toward a very deep Inconsistency

From the results achieved so far, we know that:

1. the cofinality of the least Berkeley cardinal is connected with the failure

of AC (the lower the cofinality, the greater the failure)

and

2. the cofinality of the least Berkeley cardinal is independent of ZF.

The natural question arises as to whether the statement “cof(δ0) = ω” is

weaker in consistency strength than the statement “cof(δ0) = ω1” (where δ0 is

the least Berkeley cardinal), and so on. If so, then we would have a hierarchy

of increasingly strong hypotheses, enclosing increasingly big fragments of AC:

• ZF + BC + “cof(δ0) = ω”

• ZF + BC + DC + “cof(δ0) = ω1”

• ZF + BC + ω1-DC + “cof(δ0) = ω2”

. . .

• ZF + BC+<δ0-DC + “cof(δ0) = δ0”3

3<δ0-DC is γ-DC for all γ < δ0.
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3.3. TOWARD A VERY DEEP INCONSISTENCY

Notice that if ZF + BC + “cof(δ0) > ω” proves that there exists γ < δ0 such

that Vγ |= ZF + BC + “cof(δ0) = ω”, then it would follow that ZF + BC + DC

is inconsistent.

The more appealing motivation to investigate choiceless large cardinals is in-

deed that of finding an even deeper inconsistency result. This search for “deep

inconsistency” points toward a new proof of inconsistency of a large cardinal

axiom in just ZF (after Kunen’s proof that Reinhardt cardinals are inconsistent

with AC). And in fact, it follows from results of Woodin in [6] that

If the HOD Conjecture holds then there are no Berkeley cardinals.

Recall that the HOD Conjecture is the following statement:

HOD Conjecture. There exists a proper class of uncountable regular car-

dinals κ such that for all γ < κ, if γ is an infinite cardinal in HOD and

(2γ)HOD < κ then there exists a partition 〈Sα : α < γ〉 of {ξ < κ : cof(ξ) = ω}

into stationary sets such that 〈Sα : α < γ〉 ∈ HOD.

In particular, a consequence of the assumption that the HOD Conjecture is

provable contradicts Theorem 2.2.1. Therefore, a proof of the HOD Conjecture

would actually lead to a new very deep inconsistency result.

But what if choiceless large cardinals enable us to developing a remarkable

mathematical theory?

The rest of this dissertation is aimed to show that this could indeed be the case.

In fact, we will be concerned with the structural properties of L(Vδ+1) under

the assumption that δ is a singular limit of Berkeley cardinals which are limit

of extendibles. Of course, it could be that this pattern leads to inconsistency

(and anyhow, this would be very interesting, in the spirit traced above); on the

other side, it could also be that this investigation provides us with motivations
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for arguing in favour of the consistency (with ZF) of choiceless large cardinal

axioms (which would be really interesting as well) . . .
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Chapter 4

Berkeley Cardinals and the

structure of L(Vδ+1)

In the present chapter we look at the structure theory of L(Vδ+1) when δ

satisfies a certain large cardinal property which is proved to be consistent by a

limit club Berkeley cardinal: it turns out that, in the resulting framework, we

are able to get several remarkable I0-like results. First, we provide a proof of

the Coding Lemma, and the subsequent “strong-limitness” of Θ. We are then

interested in showing the regularity of δ+. Finally, we are concerned with the

existence of measurable cardinals in L(Vδ+1) (recall that I0 is the statement

that there exists an elementary embedding j : L(Vλ+1)→ L(Vλ+1) with critical

point below λ; for a sample of the I0 case see [7]).

4.1 The framework provided by a limit club

Berkeley

Before starting our analysis of L(Vδ+1), we preliminarily need to justify the

large cardinal axiom we will require to hold at δ. Precisely, we will assume that
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δ is a singular limit of Berkeley cardinals each of which is a limit of extendibles.

And our first task is to show that this hypothesis is in fact consistent by a limit

club Berkeley cardinal.

Remark 4.1.1. Notice that if δ∗ is a limit club Berkeley cardinal then

(Vδ∗ , Vδ∗+1) |= ZF2 + “There exists a proper class of Berkeley cardinals” +

“There exists a proper class of extendible cardinals”.

The next lemma is just a consequence of the fact that extendible cardinals are

Σ3 reflecting.

Lemma 4.1.2. Suppose κ is extendible, and there exists a Berkeley cardinal

above κ. Then, κ is a limit of Berkeley cardinals.

Corollary 4.1.3. Suppose κ is extendible, and there exists a Berkeley cardinal

above κ. Then, κ is a Berkeley cardinal.

Proof. Immediate, since the class of Berkeley cardinals is closed.

Corollary 4.1.4. Suppose κ is a limit of extendibles. Then, κ is a Berkeley

cardinal iff κ is a limit of Berkeley cardinals.

Corollary 4.1.5. Suppose κ is a limit of extendibles, and there exists a Berke-

ley cardinal above κ. Then, κ is a Berkeley cardinal (in fact, κ is a limit of

Berkeley cardinals).

By Remark 4.1.1 and Corollary 4.1.5, we immediately have the following:

Corollary 4.1.6. Suppose that δ∗ is a limit club Berkeley cardinal. Then,

(Vδ∗ , Vδ∗+1) |= ZF2 + “There exists δ such that δ is a limit of Berkeley

cardinals which are limit of extendibles”.

There is an important feature of extendible cardinals we have to point out here:

as showed by Woodin in [6], extendibles enable to force choice. Moreover, the

forcing in question preserves extendibles and Berkeley cardinals. In particular,
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in our case, assuming δ is a limit of Berkeley cardinals each of which is a limit

of extendible cardinals and cof(δ) < δ, we can force DC past the cofinality

of δ and preserve that δ is a limit of Berkeley cardinals which are limit of

extendibles. And in fact, in carrying out the study of L(Vδ+1) we will assume

(cof(δ))+-DC.

The following theorem synthesizes the results we will establish in the rest of

the chapter. We first recall the definition of Θ.

Definition 4.1.7. Θ = ΘL(Vδ+1) =df sup{α : ∃ π : Vδ+1
onto−−→ α (π ∈ L(Vδ+1))}.

Theorem 4.1.8. Suppose δ is a limit of Berkeley cardinals which are limit of

extendibles. Suppose cof(δ) < δ. Assume (cof(δ))+-DC.1 Then:

1. L(Vδ+1) |= “The Coding Lemma”.

2. L(Vδ+1) |= “For all α < Θ there exists a surjection ρ : Vδ+1
onto−−→

P(α)”.

3. L(Vδ+1) |= “δ+ is regular”.

4. L(Vδ+1) |= “δ+ is measurable”.

5. L(Vδ+1) |= “Θ is limit of measurable cardinals”.

Throughout this chapter we will refer to the assumption of Theorem 4.1.8 as

the theory T∗:

Definition 4.1.9. T∗ =df “δ is a limit of Berkeley cardinals which are

limit of extendibles” + “cof(δ) < δ” + (cof(δ))+-DC.

1Notice that the assumption of (cof(δ))+-DC implies L(Vδ+1) |= (cof(δ))+-DC.
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4.2. THE CODING LEMMA AND THE SIZE OF Θ

4.2 The Coding Lemma and the size of Θ

As observed after introducing the Berkeley hierarchy, the distinctive feature of

the work environment provided by Berkeley cardinals lies in the fact that we

can arrange elementary embeddings fixing any given set. This will also be used

in showing that the weaker version of the Coding Lemma holds in L(Vδ+1); the

Coding Lemma will follow (notice that in the I0 case the proof of the Coding

Lemma employs λ-DC, while we don’t have δ-DC here).

Lemma 4.2.1 (Weak Coding Lemma). Assume T∗. Suppose α < Θ. Then

there exists Γ ⊆ P(Vδ+1 × Vδ+1) such that:

1. “Γ is small”, i.e., there exists π : Vδ+1
onto−−→ Γ;

2. if Z ⊆ Vδ+1, ≤ is a pre-well-ordering of Z of length α and W ⊆ Z×Vδ+1,

then there exists W ∗ ⊆ W such that:

(a) W ∗ ∈ Γ;

(b) for cofinally many η < α, if Zη is the η-component and W ∩ Zη ×

Vδ+1 6= ∅, then W ∗ ∩ Zη × Vδ+1 6= ∅.

Proof. Fix α < Θ. Let β0 < Θ. Start with Γ = Lβ0(Vδ+1). If Lβ0(Vδ+1) doesn’t

witness the Weak Coding Lemma at α, then there exists a counterexample

〈Z, ρ,W 〉 with Z ⊆ Vδ+1, ρ : Z
onto−−→ α (the norm associated to the pre-

well-ordering serving as a counterexample) and W ⊆ Z × Vδ+1, and we try

Lβ1(Vδ+1); if Lβ1(Vδ+1) doesn’t witness the Weak Coding Lemma at α, then

we try Lβ2(Vδ+1), and so forth (notice that, although we cannot choose at any

step a counterexample, we can certainly choose successively ordinals βi < Θ

for which Lβi(Vδ+1) doesn’t witness the Weak Coding Lemma at α). For

i limit, we let βi =df sup{βj : j < i}. We claim that the sequence 〈βi :

i < δ〉 is not defined, i.e., there exists i < δ such that Lβi(Vδ+1) witnesses
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the Weak Coding Lemma at α. For contradiction, suppose 〈βi : i < δ〉 is

defined. Since δ is a Berkeley cardinal, there exists a non-trivial elementary

embedding j : L(Vδ+1) → L(Vδ+1) such that cof(δ) < crit(j) < δ, j(δ) =

δ, j(α) = α and j(〈βi : i < δ〉) = 〈βi : i < δ〉. Let crit(j) = κ; we have that

j(βκ) = βj(κ). Since Lβκ(Vδ+1) doesn’t witness the Weak Coding Lemma at α,

there exists a counterexample 〈Z, ρ,W 〉; by elementarity, 〈j(Z), j(ρ), j(W )〉 is

a counterexample for Lβj(κ)(Vδ+1) to be witness of the Weak Coding Lemma at

j(α) = α. Now, notice thatW ∈ Lβκ+1(Vδ+1) and βκ+1 << βj(κ). Look at j“W .

To compute j“W , we only need j � Vδ (as W ⊆ Z × Vδ+1 ⊆ Vδ+1 × Vδ+1 and

j � Vδ+1 is defined by j � Vδ); but j � Vδ ∈ Vδ+1, so j“W ∈ Lβκ+1+1(Vδ+1) ⊆

Lβj(κ)(Vδ+1) (in fact, j“W is definable from the parameters j � Vδ ∈ Vδ+1

and W ∈ Lβκ+1(Vδ+1)). Moreover, j“W ⊆ j(W ) and j“α is cofinal in j(α)

(as j(α) = α). It follows that for cofinally many η < j(α) = α, if there

exists 〈a, b〉 ∈ j(W ) such that j(ρ)(a) = η then there exists 〈a, b〉 ∈ j“W

such that j(ρ)(a) = η. Therefore, j“W satisfies the Weak Coding Lemma

at α, contradicting the fact that 〈j(Z), j(ρ), j(W )〉 was a counterexample for

Lβj(κ)(Vδ+1) to be witness of the Weak Coding Lemma at α.

Theorem 4.2.2 (Coding Lemma). Assume T∗. Suppose α < Θ. Then

there exists Γ ⊆ P(Vδ+1 × Vδ+1) such that:

1. “Γ is small”, i.e., there exists π : Vδ+1
onto−−→ Γ;

2. if Z ⊆ Vδ+1, ≤ is a pre-well-ordering of Z of length α and W ⊆ Z×Vδ+1,

then there exists W ∗ ⊆ W such that:

(a) W ∗ ∈ Γ;

(b) for all η < α, if Zη is the η-component and W ∩Zη×Vδ+1 6= ∅, then

W ∗ ∩ Zη × Vδ+1 6= ∅.
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Proof. For contradiction, assume that the Coding Lemma is false. Let α0 be

the least such that the Coding Lemma fails in L(Vδ+1). Notice that if the

Coding Lemma holds for α, then the Coding Lemma holds for α + 1 (in fact,

if W ∩Zα× Vδ+1 6= ∅, then we just choose an element in this set and add it to

the set W ∗ which satisfies the Coding Lemma at α). So, α0 must be limit. For

every α < α0, let βα < Θ be such that Lβα(Vδ+1) witnesses the Coding Lemma

at α. Then, choose β < Θ large enough so that Γ = Lβ(Vδ+1) witnesses the

Coding Lemma for all α < α0 and the Weak Coding Lemma at α0. Now, let

β0 > β be such that in Lβ0(Vδ+1) there exists a map π0 : Vδ+1
onto−−→ Lβ(Vδ+1).

We claim that Lβ0+1(Vδ+1) witnesses the Coding Lemma at α0. Let Z ⊆ Vδ+1,

ρ : Z
onto−−→ α0 and W ⊆ Z × Vδ+1; for all α < α0, let Wα = W ∩ Zα × Vδ+1.

Let Z∗ = {x ∈ Vδ+1 : π0(x) ⊆ W}, and define ρ∗ : Z∗ → α0 such that

ρ∗(x) is the least α < α0 such that π0(x) is not good at α, i.e., Wα 6= ∅ but

π0(x) ∩ Zα × Vδ+1 = ∅. First, notice that ρ∗ is well-defined: in fact, for every

x ∈ Z∗, either π0(x) satisfies the Coding Lemma at α0 (in which case, we are

done) or there exists α < α0 such that π0(x) is not good at α. Moreover, ρ∗ is

onto: in fact, for any α < α0, since Lβ(Vδ+1) witnesses the Coding Lemma at

α, there exists W ∗ ∈ Lβ(Vδ+1) as in the statement of the Coding Lemma, but

π0 is onto, so W ∗ = π0(x) for some x ∈ Vδ+1, and since W ∗ ⊆ W , we actually

have that W ∗ = π0(x) for some x ∈ Z∗ and π0(x) is good at η for all η < α.

Now, let W ∗ = Z∗×Vδ+1. By the Weak Coding Lemma, there exists Y ∗ ⊆ Z∗

such that Y ∗ ∈ Lβ(Vδ+1) and ρ∗“Y ∗ is cofinal in ρ∗“Z∗ = α0. Finally, let

Y =
⋃
x∈Y ∗ π0(x). Then, Y ⊆ W and Y ∈ Lβ0+1(Vδ+1). Moreover, let us show

that if Wα 6= ∅, it is also Y ∩ Zα × Vδ+1 6= ∅. The point is that for all α < α0

there exists x ∈ Y ∗ such that π0(x) is good at α: in fact, for every α < α0

there exists x ∈ Y ∗ such that ρ∗(x) > α, and since ρ∗(x) is the least such

that π0(x) is not good, π0(x) is good at α. It follows that Y =
⋃
x∈Y ∗ π0(x)

is good at α for all α < α0. Therefore, Y satisfies the Coding Lemma at
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α0, and so, Lβ0+1(Vδ+1) witnesses the Coding Lemma at α0, contradicting our

assumption.

A remarkable consequence of the Coding Lemma is the following result con-

cerning the size of Θ.

Corollary 4.2.3. Assume T∗. Then in L(Vδ+1), for all α < Θ there exists

ρ : Vδ+1
onto−−→ P(α).

Proof. Let α < Θ and π : Vδ+1
onto−−→ α. Let β < Θ be the least such that

π ∈ Lβ(Vδ+1). Let Lβ∗(Vδ+1) witness the Coding Lemma at α, and let γ =

max{β, β∗}. For every X ⊆ α, let X∗ =df {〈a, ∅〉 ∈ Vδ+1 × Vδ+1 : π(a) ∈ X}.

Then, by the Coding Lemma, there exists W ∗ ⊆ X∗ such that W ∗ ∈ Lγ(Vδ+1)

and for all η < α, if there exists 〈a, b〉 ∈ X∗ such that π(a) = η then there exists

〈a, b〉 ∈ W ∗ such that π(a) = η. Since π is a surjection, for every η ∈ X there

exists 〈a, b〉 ∈ X∗ such that π(a) = η; so, we have that {π(a) : ∃ b (〈a, b〉 ∈

W ∗)} = X. It follows that X ∈ Lγ+1(Vδ+1). But X was an arbitrary subset of

α, hence P(α) ⊆ Lγ+1(Vδ+1), and since there exists ρ : Vδ+1
onto−−→ Lγ+1(Vδ+1),

the proof is complete.

4.3 Regularity of δ+

We are now going to show that δ+ is a regular cardinal in L(Vδ+1). It will

follow that Vδ cannot be mapped cofinally into δ+. In fact, by the following

lemma the existence of such a cofinal map would imply that δ can be mapped

cofinally into δ+.

Lemma 4.3.1. Assume T∗. Suppose δ < κ < Θ and there exists π : Vδ → κ

cofinal. Then there exists π∗ : δ → κ cofinal.

Proof. By assumption, supπ“Vδ = κ. Since sup π“Vδ = supα<δ{sup π“Vα}, we

can reduce to the case that there exists π : Vα → κ cofinal with α < δ. Look
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at HOD
L(Vδ+1)

{π,Vα} , containing all the sets which are hereditarily ordinal definable

with parameters π and Vα in L(Vδ+1). Notice that HOD
L(Vδ+1)

{π,Vα} |= ZFC. Let

G ⊆ Coll((cof(δ))+, Vα) be V -generic. Then, HOD
L(Vδ+1)[G]

{π,Vα} |= ZFC. Since

the forcing Coll((cof(δ))+, Vα) is homogeneous, we have that HOD
L(Vδ+1)[G]

{π,Vα} =

HOD
L(Vδ+1)

{π,Vα} (in fact, each of the two models can be defined into the other).

Let B = P(P(α)) ∩ OD
L(Vδ+1)[G]

{π,Vα} = {A ⊆ P(α) : A ∈ OD
L(Vδ+1)[G]

{π,Vα} }. Then, B

is ordinal definable from π and Vα, and there exist B∗ ∈ HOD
L(Vδ+1)[G]

{π,Vα} and an

isomorphism ρ : B∗ ∼= B such that ρ is ordinal definable from π and Vα. For

every X ⊆ α, let GX = {A ∈ B : X ∈ A} and G∗X = ρ−1“GX = {B ∈ B∗ :

ρ(B) ∈ GX}. By Vopěnka’s basic argument, G∗X is HOD
L(Vδ+1)[G]

{π,Vα} -generic for

B∗ and HOD
L(Vδ+1)[G]

{π,Vα} [G∗X ] = HOD
L(Vδ+1)[G]

{π,Vα,X} . Let us show the following:

Claim. There exists π∗ : B∗ → κ cofinal such that π∗ ∈ OD
L(Vδ+1)

{π,Vα} .

Proof. First, notice that in HOD
L(Vδ+1)[G]

{π,Vα} , every a ∈ Vα is coded by some

X ⊆ α. For every ξ ∈ π“Vα, let Aξ = {X ⊆ α : “X codes some a ∈

Vα” ∧ π(a) = ξ} ∈ P(P(α)); then, for every ξ ∈ π“Vα, Aξ is ordinal definable

with parameters π and Vα, i.e., Aξ ∈ OD
L(Vδ+1)[G]

{π,Vα} , and so, Aξ ∈ B. Therefore,

there exists e : B onto−−→ π“Vα such that e ∈ OD
L(Vδ+1)[G]

{π,Vα} . It follows that e ◦ ρ :

B∗ onto−−→ π“Vα and e ◦ ρ ∈ OD
L(Vδ+1)[G]

{π,Vα} , which implies e ◦ ρ ∈ HOD
L(Vδ+1)[G]

{π,Vα} =

HOD
L(Vδ+1)

{π,Vα} . Thus, there exists π∗ : B∗ → κ cofinal such that π∗ ∈ OD
L(Vδ+1)

{π,Vα} .

Since |B∗| < δ, we are done.

Lemma 4.3.2. Assume T∗. Then, cof(δ+) > δ, i.e., δ+ is regular (in V , and

so, in L(Vδ+1)).

Proof. For contradiction, suppose cof(δ+) < δ. Then, there exist κ < δ and

π : κ→ δ+ cofinal. Since δ is limit of extendibles, we can choose an extendible

γ such that κ < γ < δ. Now, pick η >> δ such that Vη ≺suff. V (sufficiently

40



4.4. MEASURABILITY OF δ+

elementary). Then, there exists j : Vη → Vj(η) such that crit(j) = γ and

j(γ) > η. So, we have that j“Vη ≺ Vj(η). Moreover, since cof(δ+) < crit(j) =

γ, δ+ is a continuity point of j, i.e., sup j“δ+ = j(δ+) = (j(δ))+; in fact:

by elementarity, j(π) : j(κ) = κ → j(δ+) is cofinal in j(δ+), and for all

β < κ, j(π)(β) = j(π)(j(β)) = j(π(β)), so j(δ+) = sup{j(π)(β) : β < κ} =

sup{j(π(β)) : β < κ} ≤ sup j“δ+; but for all α < δ+ there exists β < κ

such that π(β) ≥ α, and so, it is also sup j“δ+ = sup{j(α) : α < δ+} ≤

sup{j(π(β)) : β < κ} = j(δ+). It follows that if G ⊆ Coll((cof(δ))+, Vη) is

V -generic, then in V [G], (j(δ))+ is collapsed to j(δ) (i.e., |(j(δ))+|V [G] = j(δ)).

So, in V [G], there exists e : Vη × j(δ)
onto−−→ (j(δ))+. By Vopěnka, it follows

that in V , there exist κ∗ < j(δ) and e∗ : κ∗ × j(δ)
onto−−→ (j(δ))+, which is a

contradiction (as (j(δ))+ would have cardinality j(δ)).

Corollary 4.3.3. Assume T∗. Then for every map π : Vδ → δ+, the range of

π is bounded.

4.4 Measurability of δ+

In showing that δ+ is measurable (i.e., there exists a δ+-complete ultrafilter

on δ+), we will repeatedly employ the following result from [6]:

AC-Lemma. Suppose γ is an extendible cardinal. Then for all α < γ, there

exists a partial order P ∈ Vγ such that P is cof(δ)-closed and there exists

a strongly inaccessible cardinal ε such that α < ε < γ and V P |= ε-DC +

“ε is strongly inaccessible”.

Theorem 4.4.1. Assume T∗. Then:

1. V |= “δ+ is measurable”.

2. L(Vδ+1) |= “δ+ is measurable”.
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Proof. Fix δ0 < δ such that δ0 > cof(δ) is a Berkeley cardinal and a limit

of extendibles. Let λ < δ+ be an infinite regular cardinal such that λ is

regular in L(Vδ+1). Let Sδ
+

λ = S =df {α < δ+ : (cof(α))L(Vδ+1) = λ}. Let

E = {j : Vδ → Vδ : cof(δ) < crit(j) < δ0 ∧ j(δ0) = δ0 ∧ j(λ) = λ ∧ “j extends

canonically to ̂ : Vδ+1 → Vδ+1”}. Notice that, for all j ∈ E , the canonical

extension ̂ is unique, as ̂(A) =
⋃
α<δ j(A ∩ Vα) for all A ⊆ Vδ. For any

X ⊆ E such that there exists π : Vδ
onto−−→ X (i.e., such that “X is small”),

let IX = {α < δ+ : (cof(α))L(Vδ+1) = λ ∧ (j(α) = α ∀ j ∈ X )}. Now, let

FE be the filter generated by {IX : X ⊆ E ∧ ∃ π : Vδ
onto−−→ X}, that is, let

FE = {X ⊆ δ+ : ∃X ⊆ E (“X is small” ∧ IX ⊆ X)}. Notice that S ∈ FE
and FE � S is a filter on S; moreover, FE is correctly computed by L(Vδ+1),

i.e., (FE)V ∩ L(Vδ+1) = (FE)L(Vδ+1) (in fact, L(Vδ+1) has all the embeddings

j : Vδ → Vδ and FE is generated by sets which are in L(Vδ+1)). Let us show

that the filter FE is Vδ-complete (in fact, Vδ+-complete) and there exists a

partition of S into <δ0-many FE -positive sets on each of which the filter FE is

an ultrafilter.

Claim 1. In V :

1. FE is Vδ-complete, i.e., for all α < δ, for all ρ : Vα → FE ,
⋂
ρ“Vα ∈ FE .

2. FE is Vδ+-complete.

Proof. Work in V .

1. Fix α < δ and choose an extendible γ such that α < γ < δ. By the

AC-Lemma, there exists a pair 〈P, ε〉 ∈ Vγ such that P is cof(δ)-closed,

α < ε < γ, ε is strongly inaccessible and V P |= ε-DC + “ε is strongly

inaccessible”. Fix ρ : Vα → FE , and let G ⊆ P be V -generic. Then,

in V [G], there exists a function F : Vα → V such that for all a ∈

Vα, F (a) = 〈Xa, πa〉 ∈ V where Xa ⊆ E , πa : Vδ
onto−−→ Xa and IXa ⊆ ρ(a)
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(by ε-DC). So, let τ ∈ V be a term for F and choose p ∈ G such

that p 
 “τ is a function, dom(τ) = Vα and for all a ∈ Vα, τ(a) =

〈Xa, πa〉 ∈ V, Xa ⊆ E , πa : Vδ
onto−−→ Xa and IXa ⊆ ρ(a)”. Now, let

Y =
⋃
{X ⊆ E : ∃ q < p ∃ a ∈ Vα ∃π ∈ V (q 
 τ(a) = 〈X , π〉)}. Define a

map e : P× Vα × Vδ → Y such that e(〈q, a, b〉) = j iff q 
 τ(a) = 〈X , π〉

and π(b) = j. Since e is a surjection and since we can map Vδ onto its

domain, we get that there exists a surjection from Vδ onto Y ; it follows

that IY ∈ FE , but IY = {α < δ+ : (cof(α))L(Vδ+1) = λ ∧ (j(α) = α ∀ j ∈

Y)} =
⋂
{IX : X ⊆ E ∧ ∃ q < p ∃ a ∈ Vα ∃ π ∈ V (q 
 τ(a) = 〈X , π〉)} ⊆⋂

ρ“Vα, hence
⋂
ρ“Vα ∈ FE . Therefore, FE is Vδ-complete.

2. In order to show that FE is Vδ+-complete, let π : Vδ → FE . We have that

for all α < δ,
⋂
π“Vα ∈ FE ; we need to prove that

⋂
π“Vδ ∈ FE . Let e :

cof(δ)→ δ be cofinal. Since
⋂
π“Ve(α) ∈ FE for all α < cof(δ), cof(δ) < δ

and FE is Vδ-complete, we have that
⋂
α<cof(δ)(

⋂
π“Ve(α)) ∈ FE ; but⋂

π“Vδ =
⋂
α<cof(δ)(

⋂
π“Ve(α)) (in fact, by Vδ =

⋃
α<cof(δ) Ve(α),

⋂
π“Vδ =⋂

π“(
⋃
α<cof(δ) Ve(α)) =

⋂
(
⋃
α<cof(δ) π“Ve(α)) =

⋂
α<cof(δ)(

⋂
π“Ve(α))), and

so, we are done.

Claim 2. There exists a partition of S, 〈Tα : α < Ω〉, into FE -positive sets

such that Ω < δ0 and FE � Tα is an ultrafilter for all α < Ω.2

Proof. Pick η >> δ such that Vη ≺suff. V . Let γ be an extendible cardinal such

that δ0 < γ < δ. Then, there exists π : Vη+1 → Vπ(η)+1 such that crit(π) = γ

and π(γ) > η. Since FE is Vδ-complete and S ∈ FE , by elementarity, it follows

that π(FE) is π(Vδ) = Vπ(δ)-complete and π(S) ∈ π(FE); so, since FE ∈ Vη and

π(δ) > π(γ) > η, we have that
⋂
π“FE ∈ π(FE). Therefore,

⋂
π“FE ∩ π(S) 6=

∅. For each α ∈
⋂
π“FE ∩ π(S), let Uα = {X ⊆ δ+ : α ∈ π(X)}. It follows

2Recall that a set T ⊆ δ+ is FE -positive iff the complement of T is not in FE .
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that for each α ∈
⋂
π“FE ∩ π(S), Uα is an ultrafilter on δ+ extending FE ; in

fact:

1. Since α ∈
⋂
π“FE ∩ π(S) ⊆ π(δ+), δ+ ∈ Uα.

2. Since α /∈ π(∅) = ∅, ∅ /∈ Uα.

3. If X1, X2 ∈ Uα, then α ∈ π(X1)∩π(X2) = π(X1∩X2), so X1∩X2 ∈ Uα.

4. If X1 ∈ Uα and X2 ⊆ δ+ is such that X1 ⊆ X2, then α ∈ π(X1) ⊆ π(X2),

so X2 ∈ Uα.

5. For any X ⊆ δ+ such that α /∈ π(X), α ∈ π(δ+) \ π(X) = π(δ+ \X), so

δ+ \X ∈ Uα.

6. Since α ∈ π(X) for all X ∈ FE , Uα ⊃ FE .

Moreover, each Uα is Vγ-complete, i.e., for all β < γ and ρ : Vβ → Uα,
⋂
ρ“Vβ ∈

Uα; in fact: if β < γ and ρ : Vβ → Uα, then π(ρ) : Vπ(β) = Vβ → π(Uα)

is such that for all x ∈ Vβ, π(ρ)(x) = π(ρ)(π(x)) = π(ρ(x)); but for all

x ∈ Vβ, ρ(x) ∈ Uα, so for all x ∈ Vβ, α ∈ π(ρ(x)) = π(ρ)(x), which means

that α ∈
⋂
π(ρ)“Vβ = π(

⋂
ρ“Vβ), hence

⋂
ρ“Vβ ∈ Uα. Furthermore, if U ⊃ FE

is a Vγ-complete ultrafilter on δ+, then π(U) ⊃ π(FE) is Vπ(γ)-complete, so⋂
π“U ∈ π(U), and if α ∈

⋂
π“U 6= ∅, then we have that U ⊆ Uα, which

implies U = Uα: in other words, W = {Uα : α ∈
⋂
π“FE ∩ π(S)} contains

all the Vγ-complete ultrafilters on δ+ extending FE . In order to establish an

upper bound on the size of W , we preliminarily need to show the following:

Subclaim 1. W can be well-ordered.

Proof. Clearly, we can assume W ∈ Vη. Let U ∈ W . Then, by elementarity,

π(U) is a π(Vγ)-complete ultrafilter on π(δ+), i.e., π(U) is Vπ(γ)-complete; so,

since U ∈ Vη and π(γ) > η, we have that
⋂
π“U ∈ π(U). Since

⋂
π“U ⊆ π(δ+),
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there exists the minimum of
⋂
π“U ; let νU = min(

⋂
π“U). Let us show that

for Uα, Uβ ∈ W such that Uα 6= Uβ, νUα 6= νUβ . Since Uα 6= Uβ, there exists

X ⊆ δ+ such that X ∈ Uα and δ+ \ X ∈ Uβ, so π(X) ⊆ π(δ+) is such

that π(X) ∈ π(Uα) and π(δ+ \ X) ∈ π(Uβ).
⋂
π“Uα ∈ π(Uα) and

⋂
π“Uα =⋂

{π(Y ) : Y ∈ Uα} ⊆ π(Y ) for all Y ∈ Uα, hence
⋂
π“Uα ⊆ π(X); similarly,⋂

π“Uβ ∈ π(Uβ) and
⋂
π“Uβ ⊆ π(δ+ \X). So, since π(X)∩π(δ+ \X) = ∅, we

have that (
⋂
π“Uα) ∩ (

⋂
π“Uβ) = ∅. Therefore, νUα 6= νUβ , and so, W can be

well-ordered.

Since W is a well-ordered family of ultrafilters, W has a cardinality. Our

next goal is to show the following:

Subclaim 2. |W| < δ0.

Proof. For contradiction, suppose that there exists a sequence 〈Wα : α < δ0〉

of distinct elements of W . By the AC-Lemma, there exists a pair 〈P, ε〉 ∈

Vγ such that P is cof(δ)-closed, δ0 < ε < γ, ε is strongly inaccessible and

V P |= ε-DC + “ε is strongly inaccessible”. Let G ⊆ P be V -generic. Work

in V [G]. First, let us show that in V [G], each ultrafilter Wα generates a Vγ-

complete ultrafilter. Let T ⊆ δ+, T ∈ V [G], and fix a term τ ∈ NameP for

T ; let p ∈ G be such that p 
 τ ⊆ δ+. For all q < p, let Tq = {ξ ∈ δ+ :

q 
 ξ ∈ τ}. It follows that T =
⋃
{Tq : q < p ∧ q ∈ G}. Now, define

F : {q ∈ P : q < p} → Wα such that F (q) = Tq if Tq ∈ Wα and F (q) = δ+ \ Tq
otherwise. Since the domain of F is in Vβ for some β < γ and Wα is Vγ-

complete (in V ), we have that T ∗ =
⋂
F“dom(F ) ∈ Wα; moreover, notice

that either T ∗ ⊆ T or T ∗ ⊆ δ+ \ T , and so, either T ∈ Wα or δ+ \ T ∈ Wα.

Analogously, we can prove that the forcing doesn’t kill completeness. Let

β < γ, ρ : Vβ → Wα, ρ ∈ V [G], and fix a term τ ∈ NameP for ρ; let p ∈ G

be such that p 
 “τ is a function, dom(τ) = Vβ and for all x ∈ Vβ, τ(x) ∈

Wα”. For all q < p, let Tq = {X ∈ Wα : ∃x ∈ Vβ (q 
 τ(x) = X)}. It
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follows that ρ“Vβ =
⋃
{Tq : q < p ∧ q ∈ G} = {X ∈ Wα : ∃ q < p (q ∈

G ∧ X ∈ Tq)} = {X ∈ Wα : ∃ q < p (q ∈ G ∧ ∃x ∈ Vβ (q 
 τ(x) = X))}.

Now, define F : {q ∈ P : q < p} × Vβ → Wα such that F (〈q, x〉) = X iff

q 
 τ(x) = X. Since the domain of F is in Vµ for some µ < γ and Wα is

Vγ-complete (in V ), we have that T ∗ =
⋂
F“dom(F ) ∈ Wα; but T ∗ =

⋂
{X ∈

Wα : ∃ q < p ∃x ∈ Vβ (q 
 τ(x) = X)} ⊆
⋂
ρ“Vβ, hence

⋂
ρ“Vβ ∈ Wα.

Therefore, in V [G], for all α < δ0, Wα generates a Vγ-complete ultrafilter.

By ε-DC, in V [G], there exists a sequence 〈Tα : α < δ0〉 such that Tα ∈ Wα

for all α < δ0 and Tα ∩ Tβ = ∅ for all α, β < δ0 such that α 6= β (i.e.,

there exists a separating family for 〈Wα : α < δ0〉). It follows that there

exists a sequence 〈T̂α : α < δ0〉 ∈ V such that T̂α ∈ Wα for all α < δ0 and

T̂α ∩ T̂β = ∅ for all α, β < δ0 such that α 6= β. Let us see why. In V [G],

let F : δ0 →
⋃
α<δ0
Wα be such that F (α) = Tα ∈ Wα for all α < δ0 and

F (α) ∩ F (β) = ∅ whenever α 6= β. Let τ ∈ NameP be a term for F and

choose p ∈ G such that p 
 “τ is a function from δ0 into
⋃
α<δ0
Wα, τ(α) ∈

Wα for all α < δ0 and τ(α) ∩ τ(β) = ∅ for all α, β < δ0 such that α 6= β”.

Now, for every α < δ0, let T̂α =
⋂
{X ∈ Wα : ∃ q < p (q 
 τ(α) = X)}.

Then, for each α < δ0, by the completeness of Wα we have that T̂α ∈ Wα;

moreover, since T̂α ⊆ Tα for all α < δ0, it is T̂α ∩ T̂β = ∅ for all α, β < δ0 such

that α 6= β. Therefore, in V , there exists a separating sequence 〈T̂α : α < δ0〉

for the sequence of ultrafilters 〈Wα : α < δ0〉, where the separating sets T̂α

are FE -positive. Since δ0 is a Berkeley cardinal, there exists j : Vη → Vη

such that cof(δ) < crit(j) < δ0, j(δ) = δ, j(δ0) = δ0, j(λ) = λ and j(〈T̂α :

α < δ0〉) = 〈T̂α : α < δ0〉. It follows that j � Vδ : Vδ → Vj(δ) = Vδ is in

E , so T = I{j�Vδ} = {α < δ+ : (cof(α))L(Vδ+1) = λ ∧ j(α) = α} ∈ FE . Now,

let κ0 = crit(j) < δ0. Since T ∈ FE and T̂κ0 is FE -positive, we have that

T ∩ T̂κ0 6= ∅ (otherwise, T ⊆ δ+ \ T̂κ0 , hence δ+ \ T̂κ0 would be in FE); so,

choose α0 ∈ T ∩ T̂κ0 . Then, by elementarity, j(α0) ∈ T̂j(κ0); but j(α0) = α0, so
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T̂κ0 ∩ T̂j(κ0) 6= ∅, a contradiction.

Now we know that the size ofW is less than δ0; so, letW = 〈Wα : α < κW〉

where κW = |W| < δ0. Let 〈Tα : α < κW〉 be a separating family of FE -positive

sets forW (we proved that there exists such a separating family). Notice that,

for all α < κW , Tα cannot be split into FE -positive sets. In fact: fix α0 < κW

and suppose for contradiction that Tα0 can be split into FE -positive sets, A, B

(i.e., A∪B = Tα0 and A∩B = ∅), and let αA ∈
⋂
π“FE ∩ π(S)∩ π(A), αB ∈⋂

π“FE∩π(S)∩π(B) (these sets are non-empty because
⋂
π“FE , π(S) ∈ π(FE)

and π(A), π(B) are π(FE)-positive); then, UαA = {X ⊆ δ+ : αA ∈ π(X)} ∈

W , UαB = {X ⊆ δ+ : αB ∈ π(X)} ∈ W , A ∈ UαA and B ∈ UαB , but

A, B ⊆ Tα0 , so Tα0 ∈ UαA ∩ UαB , whence UαA = UαB = Wα0 , a contradiction.

It follows that for all α < κW , FE � Tα is an ultrafilter: in fact, if Y ⊆ Tα is such

that Y /∈ FE � Tα and Tα\Y /∈ FE � Tα, then Y and Tα\Y are both FE -positive,

and so, Tα = Y ∪(Tα\Y ) can be split into FE -positive sets, a contradiction. But

FE � Tα ⊆ Wα � Tα, and so, for all α < κW , FE � Tα = Wα � Tα. Moreover,⋃
α<κW

Tα ∈ FE ; in fact: every FE -positive set is in some Wα (because for any

FE -positive set T , since
⋂
π“FE , π(S) ∈ π(FE) and π(T ) is π(FE)-positive,

there exists α ∈
⋂
π“FE ∩π(S)∩π(T ), and so, T ∈ Wα), so,

⋂
α<κW

Wα = FE .

Finally, we have shown that there exists a partition of S, 〈Tα : α < κW〉,

into <δ0-many FE -positive sets such that for all α < κW , FE � Tα is an

ultrafilter.

We now turn to L(Vδ+1). Recall that the filter FE is correctly computed

by L(Vδ+1). Since δ0 is a limit of extendibles, we can choose an extendible

γ such that κW < γ < δ0. By the AC-Lemma, there exists a pair 〈P, ε〉 ∈

Vγ such that P is cof(δ)-closed, κW < ε < γ, ε is strongly inaccessible and

V P |= ε-DC + “ε is strongly inaccessible”. Let G ⊆ P be V -generic. Since

V [G] |= ε-DC, we have that L(Vδ+1[G]) = L(Vδ+1)[G] |= ε-DC (notice that
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L(Vδ+1[G]) = L(Vδ+1)[G] follows from the fact that P is cof(δ)-closed). Let us

show the following:

Claim 3. 1. If T ⊆ S is FE -positive in L(Vδ+1)[G], then T contains an

FE -positive subset in L(Vδ+1).

2. In L(Vδ+1)[G], there is no partition of S into ε-many FE -positive sets.

Proof. 1. Let τ ∈ NameP be a term for T , τ ∈ L(Vδ+1). Choose p ∈ G

such that p 
 “τ is an FE -positive subset of S”. For all q < p, let

Tq = {ξ ∈ S : q 
 ξ ∈ τ}. Then, T =
⋃
{Tq : q < p ∧ q ∈ G}. So, in

L(Vδ+1)[G], T ⊆ S is FE -positive and T is the union of sets of the ground

model; it follows that some set Tq has to be FE -positive: in fact, if not,

S\Tq ∈ FE for each q, but then, since FE is Vδ[G]-complete in L(Vδ+1)[G],⋂
{S \ Tq : q < p ∧ q ∈ G} = S \

⋃
{Tq : q < p ∧ q ∈ G} = S \ T ∈ FE , a

contradiction.

2. Suppose for contradiction that 〈Sβ : β < ε〉 ∈ L(Vδ+1)[G] is a partition

of S into ε-many FE -positive sets. We have that each set Sβ contains an

FE -positive subset Ŝβ in the ground model. Then, each set Ŝβ has to be

in some Wα (in fact, every FE -positive set of V is in some Wα). Thus,

in V [G], each set Sβ is in some Wα (recall that each Wα generates a Vγ-

complete ultrafilter in V [G]); but each Wα can contain a unique Sβ (as

the sets Sβ are pairwise disjoint), and so, it follows that |κW |V [G] ≥ |ε|V [G]

(i.e., in V [G], there exists ρ : κW
onto−−→ ε), contradicting |κW |V [G] ≤ κW <

ε = |ε|V [G].

Since δ+ is regular, we have that the filter FE is δ+-complete. It follows

that in L(Vδ+1)[G], there exist a cardinal σ < ε and a partition 〈Sα : α < σ〉 of
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S into FE -positive sets on each of which FE is an ultrafilter; in fact: by ε-DC

and since FE is δ+-complete, we have that in L(Vδ+1)[G], either

1. there exists a partition of S into <ε-many FE -positive sets on each of

which FE is an ultrafilter

or

2. there exists a partition of S into ε-many FE -positive sets;

but we have shown that the second case cannot happen. Since for each α < σ,

Sα contains an FE -positive subset Ŝα in the ground model and Sα cannot be

split into FE -positive sets, we have that for each α < σ, Ŝα cannot be split

into FE -positive sets in the ground model. Therefore, we can assume that

Sα ∈ L(Vδ+1) for all α < σ. So, in L(Vδ+1), FE � Sα is an ultrafilter for

all α < σ. Now we need a well-ordering of these ultrafilters. Let us define,

in V , an equivalence relation on W = {Uα : α ∈
⋂
π“FE ∩ π(S)} = 〈Wα :

α < κW〉 (where κW = |W|V < δ0) as follows: for U1, U2 ∈ W , U1 ∼ U2 iff

U1∩L(Vδ+1) = U2∩L(Vδ+1). First, we show that for all U ∈ W , U ∩L(Vδ+1) ∈

L(Vδ+1). Let 〈Tα : α < κW〉 be a separating family of FE -positive sets for

W (so, Tα ∈ Wα for all α < κW , Tα ∩ Tβ = ∅ for all α 6= β,
⋃
α<κW

Tα =

S and each Tα cannot be split into FE -positive sets), and let ᾱ < σ; since

Sᾱ =
⋃
{Sᾱ ∩ Tα : α < κW} is FE -positive, there must exist α∗ < κW such

that Sᾱ ∩ Tα∗ is FE -positive, but Tα∗ cannot be split into FE -positive sets, so

Wα∗∩L(Vδ+1) = (FE � Sᾱ)L(Vδ+1) ∈ L(Vδ+1). Now, letW∗ = {U∩L(Vδ+1) : U ∈

W}. Then,W∗ ∈ L(Vδ+1), asW∗ = {(FE � T )L(Vδ+1) : T ∈ L(Vδ+1)∧“T is FE -

positive and cannot be split”} = {(FE � Sα)L(Vδ+1) : α < σ}. Moreover:

Claim 4. In L(Vδ+1), W∗ can be well-ordered.

Proof. First, notice that W∗ can be well-ordered in V , as there exists ρ∗ :

W onto−−→ W∗ and W can be well-ordered. Thus, |W∗|V ≤ |W|V = κW . Fix
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a bijection ρ : |W∗|V ↔ W∗. Let us show that ρ ∈ L(Vδ+1). Since |W∗|V ≤

κW , |W∗|V [G] ≤ κW < ε; since W∗ ∈ L(Vδ+1)[G] and L(Vδ+1)[G] |= ε-DC, it

follows that W∗ can be well-ordered in L(Vδ+1)[G] and |W∗|L(Vδ+1)[G] < ε. So,

(P(W∗ ×W∗))V [G] = (P(W∗ ×W∗))L(Vδ+1)[G] and, thus, ρ ∈ L(Vδ+1)[G]; but

G is V -generic, hence ρ ∈ L(Vδ+1). Therefore, W∗ is well-ordered in L(Vδ+1)

and |W∗|L(Vδ+1) = |W∗|V .

Finally, since W∗ is well-ordered in L(Vδ+1) and |W∗|L(Vδ+1) = |W∗|V ≤

κW < δ0, we can get a separating family for W∗ and conclude that in L(Vδ+1)

there exists a partition of S into <δ0-many FE -positive sets on each of which

the filter FE is an ultrafilter. Since FE is δ+-complete, we are done.

The following theorem generalizes the splitting result achieved in the proof

of Theorem 4.4.1 by considering in place of δ+ any cardinal κ > δ such that

κ < Θ and cof(κ) > δ: it turns out that, unlike the I0 case, here we get a

uniform bound (δ0, that can be the least Berkeley cardinal which is limit of

extendibles) independent of the cofinality.

Theorem 4.4.2. Assume T∗. Let δ0 be a Berkeley cardinal and a limit of

extendibles such that cof(δ) < δ0 < δ. Then in L(Vδ+1), for any cardinal

κ < Θ such that cof(κ) > δ and for any infinite regular cardinal λ < κ, there

exists a partition of Sκλ =df {α < κ : (cof(α))L(Vδ+1) = λ} into <δ0-many FE -

positive sets on each of which the filter FE is an ultrafilter, where FE is the

“fixed points filter”.

Proof. We just need to define the general setting in which performing the proof

of Theorem 4.4.1. So, let κ < Θ be such that cof(κ) > δ and let λ < κ be such

that λ is regular in L(Vδ+1). Let β < Θ be such that (P(κ))L(Vδ+1) ⊆ Lβ(Vδ+1).

Then, let Eδ0κ,λ,β = E = {j : Lβ(Vδ+1) → Lβ(Vδ+1) : cof(δ) < crit(j) < δ0 ∧

j(δ) = δ ∧ j(δ0) = δ0 ∧ j(κ) = κ ∧ j(λ) = λ ∧ j(β) = β}. Notice that, for all

j ∈ E , j is uniquely determined by j � Vδ. For any X ⊆ E such that there exists
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π : Vδ
onto−−→ X , let IX = {α < κ : (cof(α))L(Vδ+1) = λ ∧ (j(α) = α ∀ j ∈ X )}.

Finally, let FE be the filter generated by {IX : X ⊆ E ∧ ∃ π : Vδ
onto−−→ X}, that

is, let FE = {X ⊆ κ : ∃X ⊆ E (∃π : Vδ
onto−−→ X ∧ IX ⊆ X)}. Now the proof

proceeds exactly as the proof of Theorem 4.4.1.

4.5 Measurable Cardinals up to Θ

We finally prove that in L(Vδ+1), Θ is a limit of measurable cardinals. We

preliminarily note that the proof of the Coding Lemma works locally in any

Lγ(Vδ+1) with γ < Θ such that cof(γ) > δ. Therefore, we have the following

local version of the Coding Lemma.

Lemma 4.5.1 (Local version of the Coding Lemma). Assume T∗. Let γ < Θ

be such that cof(γ) > δ. Then, the Coding Lemma holds in Lγ(Vδ+1).

Theorem 4.5.2. Assume T∗. Then in L(Vδ+1), Θ is limit of measurable

cardinals.

Proof. Work in L(Vδ+1). Let us show the following:

Claim. Let γ < Θ be the least such that Lγ(Vδ+1) ≺Σ1 LΘ(Vδ+1). Then in

L(Vδ+1), γ is measurable.

Proof. Let δ0 < δ be such that δ0 > cof(δ) is a Berkeley cardinal and a

limit of extendibles. Let λ < γ be an infinite regular cardinal such that λ

is regular in L(Vδ+1). Let Sγλ = S =df {α < γ : (cof(α))L(Vδ+1) = λ}. Let

E = {j : Lγ(Vδ+1) → Lγ(Vδ+1) : cof(δ) < crit(j) < δ0 ∧ j(δ) = δ ∧ j(δ0) =

δ0∧ j(γ) = γ∧ j(λ) = λ}. For any X ⊆ E such that there exists π : Vδ
onto−−→ X ,

let IX = {α < γ : (cof(α))L(Vδ+1) = λ ∧ (j(α) = α ∀ j ∈ X )}. Let FE be the

filter generated by {IX : X ⊆ E ∧ ∃π : Vδ
onto−−→ X}, that is, let FE = {X ⊆

γ : ∃X ⊆ E (∃π : Vδ
onto−−→ X ∧ IX ⊆ X)}. We claim that FE is γ-complete.

Fix a surjection π : dom(π)
onto−−→ Lγ(Vδ+1) such that dom(π) ⊆ Vδ+1, π is
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Σ1-definable from {Vδ+1} in Lγ(Vδ+1) and for all Z ⊆ dom(π), if Z ∈ Lγ(Vδ+1)

then π � Z ∈ Lγ(Vδ+1) (such a surjection does exist: in fact, there exists

π∗ : Vδ+1
onto−−→ Lγ(Vδ+1) such that π∗ is Σ1-definable from {Vδ+1} in LΘ(Vδ+1)).

Then, for all j ∈ E , j(π) = π. Let E∗ = {j � Vδ : j ∈ E}. So, E∗ ⊆ Vδ+1.

Notice that, for all j ∈ E , j is uniquely determined by its action on Vδ (i.e., for

all j1, j2 ∈ E , if j1 � Vδ = j2 � Vδ then j1 = j2), and so there exists a canonical

bijection between E and E∗. Let α < γ and f : α → FE ; we have to show

that
⋂
f“α ∈ FE . Since cof(γ) > δ, the Coding Lemma holds in Lγ(Vδ+1);

so, we can let β < γ be such that Lβ(Vδ+1) witnesses the Coding Lemma at

α in Lγ(Vδ+1) (notice that, since Lγ(Vδ+1) ≺Σ1 LΘ(Vδ+1), Lβ(Vδ+1) turns to

be witness of the Coding Lemma at α in LΘ(Vδ+1)). Choose ρ : Vδ+1
onto−−→

α, ρ ∈ Lγ(Vδ+1). Let W = {〈x, y〉 : y : Vδ → E∗ ∧ “y gives a set X̂ ⊆

E such that IX̂ ⊆ f(ρ(x))”} ⊆ Vδ+1 × Vδ+1, where we mean that X̂ contains

the extension to Lγ(Vδ+1) of every element of y“Vδ (recall that every element

of E∗ extends uniquely to an element of E). By the Coding Lemma, there

exists W ∗ ∈ Lβ(Vδ+1) such that W ∗ ⊆ W and for all ξ < α, if there exists

〈x, y〉 ∈ W such that ρ(x) = ξ then there exists 〈x, y〉 ∈ W ∗ such that ρ(x) = ξ.

Now, let E∗0 =
⋃
{y“Vδ : ∃x ∈ Vδ+1 (〈x, y〉 ∈ W ∗)}. Since for all 〈x, y〉 ∈

W ∗, y“Vδ ⊆ E∗, we have that E∗0 ⊆ E∗; moreover, since E∗0 is definable from

W ∗ and W ∗ ∈ Lβ(Vδ+1), E∗0 ∈ Lβ+1(Vδ+1) ⊆ Lγ(Vδ+1). In order to prove that

FE is γ-complete, it suffices to show that
⋂
f“α 6= ∅. We preliminarily show

the following:

Subclaim. Suppose Z ⊆ E∗, Z ∈ Lγ(Vδ+1). Then, {η < γ : ∀ j ∈ E (j � Vδ ∈

Z → j(η) = η)} is cofinal in γ.

Proof. Let η < γ and let a ∈ dom(π) be such that π(a) = η. Let Y = {j(a) :

j ∈ E ∧ j � Vδ ∈ Z}. Then, Y ⊆ dom(π) (as for all j ∈ E , j(π) = π, so

j(a) ∈ j(dom(π)) = dom(j(π)) = dom(π)) and Y ∈ Lγ(Vδ+1). It follows
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that π � Y ∈ Lγ(Vδ+1); thus, sup{j(η) : j ∈ E ∧ j � Vδ ∈ Z} < γ: in fact,

sup{j(η) : j ∈ E ∧ j � Vδ ∈ Z} = sup{j(π(a)) : j ∈ E ∧ j � Vδ ∈ Z} =

sup{j(π)(j(a)) : j ∈ E ∧ j � Vδ ∈ Z} = sup{π(j(a)) : j ∈ E ∧ j � Vδ ∈ Z} =

sup π“Y . So, since sup{j(η) : j ∈ E ∧ j � Vδ ∈ Z} < γ for any η < γ, the set

{η < γ : ∀ j ∈ E (j � Vδ ∈ Z → j(η) = η)} must be cofinal in γ.

So, we have that the set {η < γ : ∀ j ∈ E (j � Vδ ∈ E∗0 → j(η) =

η)} is cofinal in γ. It follows that there exists η < γ such that η ∈ S and

j(η) = η for all j ∈ E such that j � Vδ ∈ E∗0 (since S is stationary and

{η < γ : ∀ j ∈ E (j � Vδ ∈ E∗0 → j(η) = η)} is club in γ). Then, for

all 〈x, y〉 ∈ W ∗, η ∈ f(ρ(x)): in fact, η is fixed by any embedding in y“Vδ,

each of which extends to an embedding in X̂ ⊆ E such that IX̂ = {α < γ :

(cof(α))L(Vδ+1) = λ ∧ (j(α) = α ∀ j ∈ X̂ )} ⊆ f(ρ(x)). Now, notice that for all

ξ < α there exists 〈x, y〉 ∈ W such that ρ(x) = ξ; in fact: for every ξ < α there

exists x ∈ Vδ+1 such that ρ(x) = ξ, so f(ρ(x)) = f(ξ) ∈ FE , that is, there

exists a “small” X̂ ⊆ E such that IX̂ ⊆ f(ρ(x)), and so, if we let y : Vδ → E∗

be such that y“Vδ = {j � Vδ : j ∈ X̂} ⊆ E∗, then 〈x, y〉 ∈ W . Therefore, for

all ξ < α there exists 〈x, y〉 ∈ W ∗ such that ρ(x) = ξ. It follows that for all

ξ < α, η ∈ f(ξ), i.e., η ∈
⋂
f“α, and so,

⋂
f“α 6= ∅ and FE is γ-complete.

Finally, by Theorem 4.4.2, we have that in L(Vδ+1) there exists a partition of

S into <δ0-many FE -positive sets on each of which FE is an ultrafilter. Since

FE is γ-complete, we are done.

The same argument applies to show that if we fix β < Θ and let γβ be the

least such that γβ > β and Lγβ(Vδ+1) ≺Σ1 LΘ(Vδ+1), then in L(Vδ+1), γβ is

measurable. So, the proof is complete.
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Conclusion

The large cardinal axioms investigated in this dissertation have been intro-

duced in [1] with two major purposes:

1. that of finding a deep inconsistency

and

2. that of showing they can provide a rich mathematical structure.

In the first aim we noted that the inconsistency of Berkeley cardinals with ZF

would actually follow by the HOD Conjecture; in the second aim we explored

how choiceless large cardinals affect the structure theory of a remarkable model

of ZF. Moreover, we proved that the cofinality of the least Berkeley cardinal is

undecidable, and this is concerned with the main feature of Berkeley cardinals:

they contradict AC. In this regard, one may observe that the evidence for AC

is so compelling, that it would seem somewhat unlikely to drop AC (or even

just part of AC) by the motivation that the large cardinal hierarchy can be

extended beyond the “upper bound” established by Kunen’s theorem in the

context of ZFC. But the question here is more subtle . . .
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There is a really basic issue involved in the conflict between very large cardinals

and AC: it is the search for “V ”, i.e., the ultimate purpose of discovering the

“right” axiom for a definitive description of the universe of set theory. Of

course, this would also settle the fundamental question of which strong axioms

of infinity must be regarded as true. Our final comments are devoted to outline

the recent progress made in this direction, as choiceless large cardinals could

actually play a crucial role in the resulting scenario.

5.1 Two futures

The justification of the consistency of a large cardinal axiom in set theory

is arguably provided through the determination of the smallest inner model

satisfying it; this investigation is the object of inner model theory and results

in the construction of enlargements of the constructible universe L. The real

question in seeking the proper axiom for V turns in fact to be the following:

Could there be an ultimate version of Gödel’s L?

Woodin’s Ultimate-L Conjecture surmises a positive answer to this question;

even a candidate for the final axiom for V , “V = Ultimate-L”, has been formu-

lated by Woodin. A suitable understanding of the axiom “V = Ultimate-L”

requires much additional material from [6] and [7]; however, some preliminary

remarks will allow us to give the statement of the Ultimate-L Conjecture and

display its implications.

The following results established by Woodin in [6] are exposed here as revisited

in [5].

Theorem 5.1.1 (HOD Dichotomy). Suppose δ is an extendible cardinal.

Then exactly one of the following holds.
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1. For every singular cardinal γ > δ, γ is singular in HOD and (γ+)HOD =

γ+ (i.e., HOD is close to V ).

2. Every regular cardinal greater than δ is measurable in HOD (i.e., HOD

is far from V ).

Theorem 5.1.2. The following statement is absolute between V and its generic

extensions by partial orders in Vδ: “δ is an extendible cardinal and for every

singular cardinal γ > δ, γ is singular in HOD and (γ+)HOD = γ+”.

Definition 5.1.3. A transitive class model N of ZFC is a weak extender

model for δ supercompact iff for every γ > δ there exists a normal fine

measure U on Pδ(γ) = {X ⊆ γ : |X| < δ} such that

1. N ∩ Pδ(γ) ∈ U (i.e., U concentrates on N) and

2. U ∩N ∈ N (i.e., U is amenable to N).

Theorem 5.1.4. Suppose δ is an extendible cardinal. Then the following are

equivalent.

1. The HOD Conjecture.

2. HOD is a weak extender model for δ supercompact.

3. For every singular cardinal γ > δ, γ is singular in HOD and (γ+)HOD =

γ+.

Theorem 5.1.5 (Universality). Suppose δ is an extendible cardinal, N is

a weak extender model for δ supercompact and γ > δ. Let j : N ∩ Vγ+1 →

N ∩ Vj(γ)+1 be a non-trivial elementary embedding with crit(j) ≥ δ. Then,

j ∈ N .

Theorem 5.1.5 says that if δ is an extendible cardinal and N is a weak extender

model for δ supercompact, then N sees all elementary embeddings between its

levels; this implies a sort of analogue of Kunen’s theorem for N :
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Theorem 5.1.6. Suppose δ is an extendible cardinal and N is a weak extender

model for δ supercompact. Then there is no non-trivial elementary embedding

j : N → N with crit(j) ≥ δ.

Proof. Suppose for contradiction that there exists a non-trivial elementary

embedding j : N → N with crit(j) ≥ δ. Let κ > crit(j) ≥ δ be a fixed point

of j. Then, i = j � (Vκ+2)N : (Vκ+2)N → (Vκ+2)N is a non-trivial elementary

embedding with crit(i) = crit(j) ≥ δ; by Theorem 5.1.5, i ∈ N , contradicting

the local version of Kunen’s Theorem within N .1

Corollary 5.1.7. Assume the HOD Conjecture. If δ is an extendible cardinal,

then there is no non-trivial elementary embedding j : HOD → HOD with

crit(j) ≥ δ.

Notice that by “universality”, a weak extender model is capable to recognize

all large cardinals (below the Kunen inconsistency), accomplishing this way

the idea of being “close to V ”; under the HOD Conjecture, this property is

satisfied by HOD itself. We now state the Ultimate-L Conjecture, which will

complete the picture.

Ultimate-L Conjecture. Suppose δ is an extendible cardinal. Then there

exists a weak extender model for δ supercompact N such that:

1. N ⊆ HOD.

2. N |= “V = Ultimate-L”.

Theorem 5.1.8. Assume ZF + “V = Ultimate-L”. Then the following hold.

1. V = HOD.

2. AC.

1Recall that the local version of Kunen’s theorem states that for any κ, there is no

non-trivial elementary embedding j : Vκ+2 → Vκ+2.
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3. CH.2

At this point, the perspective emerges clearly: there are two plausible futures

for the development of set theory, each of which leading to a real turning point

in the subject.

The case for Ultimate-L The Choiceless Hierarchy

Ultimate-L Conjecture Ultimate-L Conjecture fails

V = HOD HOD is far from V

HOD Conjecture HOD Conjecture fails

AC ¬AC

Choiceless large cardinals are Choiceless large cardinals are

inconsistent consistent

The prospect displayed above is significative in bringing together the search

for deep inconsistency and the search for V : so finally, the study of choiceless

large cardinal axioms is possibly the key for a further, and maybe decisive,

understanding of V .

2The Continuum Hypothesis (CH) is the statement that 2ℵ0 = ℵ1.
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