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Abstract	

The	aim	of	the	PhD	thesis	was	to	look	for	a	relationship	between	the	landslide-induced	damage	recorded	

on	 structures	 and	 facilities	 based	 on	 the	 results	 of	 several	 field	 campaigns	 and	 kinematic	 parameters	

quantitatively	estimated	by	remote	sensing	techniques.	Investigations	were	developed	on	two	test	sites:	a	

deep-seated	landslide	in	Colle	Lapponi-Piano	Ovetta	in	municipality	of	Agnone	(Molise	region,	southern	Italy)	

and	the	landslides	affecting	the	southwestern	sector	of	Volterra	(Tuscany	region,	central	Italy).	

First	 of	 all,	 a	 re-enactment	 of	 the	 evolution	 of	 both	 landslides	 were	 conducted,	 by	 means	 of	 3D	

reconstructions	based	on	historical	aerial	series	of	images	and	the	analysis	of	Persistent	Scatterers	of	ERS1/2,	

ENVISAT	and	COSMO-SkyMed	satellites.	The	3D	Points	Clouds	and	models	were	developed	on	several	sets	of	

aerial	historical	 images	dating	from	different	years	starting	from	1945	and	1954	for	Agnone	and	Volterra,	

respectively.	To	better	understand	the	morpho-evolutionary	stages,	a	qualitative	assessment	of	changes	of	

volume	were	made	combining	the	oldest	and	the	latest	3D	reconstructed	Points	Clouds.	This	interpretation,	

even	 if	 qualitative	 and	 not	 quantitative,	 can	 be	 helpful	 for	 understanding	 possible	 effects	 of	 future	

reactivations	and	as	a	support	to	realize	mitigation	plans,	susceptibility	maps	and	other	useful	for	the	local	

administrators.	The	Persistent	Scatterers	were	used	to	monitor	the	evolution	in	recent	years,	up	to	2015.	

Then,	for	both	case	studies,	the	damage	was	revealed	on	structures	and	facilities	by	several	field	surveys	

and	classified	by	means	of	five	literature	damage	categorizations.	During	their	application,	some	drawbacks	

and	benefits	of	the	methodologies	were	carried	out	and	a	new	approach	to	improve	the	categorization	of	

the	 damage	 on	 structures,	 facilities	 and	 ground	 surfaces	 was	 developed.	 This	 was	 conceived	 in	 two	

subsequent	phases:	i)	a	classification	to	use	during	the	field	campaign	to	quantify	the	severity	of	cracks	and	

fractures	 on	 structures,	 facilities	 and	 ground	 surfaces;	 ii)	 an	 a	 posteriori	 ranking	 to	 apply	 on	 the	 entire	

structure,	involving	the	extension	of	damage	classes,	performed	by	a	cell-grid	matrix.	Furthermore,	a	damage	

recording	scheme,	useful	for	the	recognition	of	cracks	and	fractures	during	the	field	surveys,	was	proposed.	

A	 critical	 comparison	between	 the	 results	obtained	applying	 the	different	 classification	approaches,	 then	

followed.	Buildings	and	facilities,	for	both	sites,	were	categorized	using	also	kinematic	parameters	such	as	

velocity	 and	maximum	 displacement	measured	 along	 the	 Line	 Of	 Sight,	 derived	 by	 A-DInSAR,	 and	 their	

absolute	values	re-projected	along	the	steepest	local	slope.	Once	characterized	and	categorized	all	structures	

and	facilities	of	both	sites	of	interest,	a	correlation	between	the	surveyed	damage	classes	and	the	deriving	

parameters	by	satellite	were	looked	for.	The	investigation	was	carried	to	understand	the	behaviour	of	entire	

structures,	 subject	 to	displacements.	 The	 first	 analysis	was	 conducted	on	 the	Agnone	 test	 site	where	 for	

several	constructions	an	upper	regression	line	between	damage	categories	and	velocity	reprojected	along	
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the	 slope	was	 recognized.	 Some	outlayers	were	 identified,	mainly	 for	 low	damage	 levels,	 then	 singularly	

investigated.	To	assess	the	reliability	of	all	the	structures,	a	matrix	involving	damage	and	velocity	along	the	

slope	 parameter	 acquired	 by	 ENVISAT	 and	 COSMO-SkyMed	 sensors	was	 developed	 in	 order	 to	 obtain	 a	

classification.	To	validate	the	correlation	and	the	reliability	matrix	the	same	procedure	was	applied	to	the	

Volterra	site.	Once	asserted	the	validity	of	the	relation	between	the	velocity	reprojected	along	the	steepest	

slope	and	the	classes	of	damage	also	for	this	area,	the	reliability	matrix	was	applied	on	the	constructions	of	

the	Volterra	site.	In	this	way,	the	relation	between	the	displacement	occurred	during	the	period	covered	by	

ENVISAT	 and	 COSMO-SkyMed	 shows	 how	 the	 surveyed	 damage	 construction	 are	 related	 to	 the	

displacement.	Some	areas	where	damage	occurred	in	the	2000	shows	high	reliability	with	ENVISAT	recorded	

velocity,	while	others	structures	exhibits	high	reliability	with	COSMO-SkyMed	data.	

The	results	were	interesting	because	they	highlight	the	fact	that	for	some	construction	there	is	correlation	

between	velocity	of	displacement	of	the	entire	structure	and	affecting	damage;	for	others,	instead,	the	high	

damage	is	related	to	the	differential	settlement	and	not	necessarily	to	a	high	rate	of	displacement	velocity.	
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1 Introduction	

Landslides	 are	 among	 the	most	 important,	 natural	 or	man-induced,	 gravity-controlled	 processes	 that	

worldwide	represent	one	of	 the	most	widespread	geological	hazards.	After	earthquakes,	 landslides	cause	

catastrophic	effects	with	 consequent	 fatalities	 and	high	 socio-economic	damages	 to	man-built	 structures	

(e.g.	replacement,	repair	or	maintenance	of	damaged	structures)	with	direct	and	indirect	costs	(and	many	

others,	difficult	to	evaluate,	e.g.	losses	of	service)	(Schuster	and	Fleming,	1986;	Schuster,	1996;	Godt	et	al.,	

2000).	 Dimension	 and	 velocity	 of	 mass-movements,	 magnitude	 and	 typology	 of	 landslide	 mechanisms,	

involved	lithologies,	morphological	features	and	consequences	of	anthropic	activity	are	the	main	factors	that	

determine	the	amount	of	total	costs.	Several	predisposing	and	driving	factors	both	natural	and,	sometimes	

worse,	anthropic,	e.g.	deforestation	or	unsuitable	urban	planning	(Wu	and	Qiao,	2009;	Di	Martire	et	al.,	2012;	

Tofani	et	al.,	2013b;	Wu	et	al.,	2015),	can	trigger	mass-movements	and	determine	their	evolution.	

The	investigation	of	slope	instability,	mainly	in	urban	areas	affected	by	landslides,	is	an	important	issue	

for	mitigation	planning	and	landslide	risk	management.	Physical	vulnerability,	defining	the	level	of	damage	

of	 lifelines	and	buildings,	 is	a	key	parameter	 in	risk	estimation.	Usually	great	attention	 is	paid	 in	planning	

strategies	in	order	to	prevent	or	reduce	landslide	disasters,	to	assess	their	impact	and	damage	to	understand	

the	 possible	 evolution.	 The	 assessment	 of	 damaging	 grade	 affecting	 buildings	 is	 useful	 to	 set	

countermeasures	for	avoiding	future	losses	(Del	Soldato	et	al.,	2016a;	Del	Soldato	et	al.,	under	review_a).	

Alexander	 (1986)	 demonstrated	 that	 the	 analysis	 of	 landslide-induced	 damage	 could	 help	 under	 several	

perspectives:	administrative,	planning,	scientific	and	engineering	design.	Unfortunately	it	is	common,	in	Italy	

as	in	other	countries,	that	facilities,	i.e.	buildings,	roads	and	infrastructures,	are	built	on	unstable	areas	where	

historically	landslides	have	already	occurred	(Mansour	et	al.,	2011),	but	at	present	the	awareness	of	these	

events	 is	 lost.	 The	 continuous	 expansion	of	 the	urban	 fabrics,	 as	 a	 natural	 consequence	of	 demographic	

growth	 (Rybár,	 1997),	 induces	 people	 to	 occupy	 territories	 where	 dormant	 or	 old	 and	 forgotten	 active	

landslides	caused	ruinous	events	in	the	past.	Moreover,	the	disregard	of	Italian	laws	and	subsequent	several	

amnesties	 for	 their	 infringement	 have	 facilitated	 the	 realization	 of	 structures	 and	 infrastructures	 in	

hazardous	regions,	such	as	volcanic	or	landslide-prone	areas.	Furthermore,	the	urban	fabric	expansion	could	

cause	modifications	to	hillslope	morphology,	inducing	terrain	remobilization	and	reactivation	of	previously	

dormant	old	slope	instabilities,	completely	ignoring	millennial	knowledge	of	negative	experiences	(Chiocchio	

et	al.,	1997).	

Among	 the	 methods	 applicable	 for	 the	 recognition	 of	 landslides	 state	 of	 activity,	 remote	 sensing	

encompasses	a	series	of	techniques	that	usefully	helps	the	field	monitoring	of	ground	displacements	(e.g.	

Colesanti	et	al.,	2003;	Colesanti	and	Wasowski,	2006;	Dewitte	et	al.,	2008;	Bianchini	et	al.,	2012;	Bianchini	et	
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al.,	2013;	Tofani	et	al.,	2013b;	Bianchini	et	al.,	2015a;	Hsieh	et	al.,	2016).	Such	methodologies	have	become	

increasingly	 significant	 in	 the	 last	 two	 decades	 thanks	 to	 the	 technological	 progress	 that	 allowed	 the	

investigation,	at	regional	or	local	scale,	of	the	Earth’s	surface	dynamics.	To	study	“young”	movements	and	

their	recent	evolution,	since	the	early	nineties,	radar	satellite	 images,	appropriately	elaborated,	allow	the	

estimating	of	displacements	and	ground	movements	by	means	of	interferometry	and	Persistent	Scatterers	

(e.g.	Metternicht	et	al.,	2005;	Tralli	et	al.,	2005;	Cigna	et	al.,	2010;	Del	Ventisette	et	al.,	2014).	Concerning	

ground	deformations	that	occurred	prior	to	1992,	year	in	which	the	first	radar	sensor	was	launched,	aerial	

photos	still	play	a	key	role	in	the	geomorphological	and	environmental	analysis	of	natural	processes	(Carrara	

et	al.,	2003;	Hapke,	2005).	

Several	methods	to	investigate	historical	aerial	 images,	for	instance	software	allowing	the	3D	vision	by	

anaglyph	glasses,	3D	computer	vision	algorithm	(Snavely	et	al.,	2008;	Westoby	et	al.,	2012)	or	image-based	

modelling	and	reconstruction	(Aliaga	et	al.,	2002;	Pollefeys	et	al.,	2004)	were	developed	surpassing	the	use	

of	the	obsolete	stereoscopy	technique.	Furthermore,	 in	the	last	decades	the	Structure	from	Motion	(SfM)	

technique	was	developed	to	reconstruct	buildings,	monuments	and	archaeological	sites	in	3D	(Furukawa	and	

Ponce,	2010;	Doneus	et	al.,	2011;	Verhoeven	et	al.,	2012)	as	well	 as	 for	unmanned	aerial	 vehicles	 (UAV)	

applications	(Turner	et	al.,	2012;	Lucieer	et	al.,	2013;	James	and	Robson,	2014)	in	order	to	produce	Digital	

Elevation	Models	(DEMs).	SfM	technique	can	be	applied	on	old	aerial	 images	to	reconstruct	3D	models	in	

order	to	analyse	the	evolution	in	time	of	ground	deformations	and	infrastructures	(Riquelme	et	al.,	under	

review).	Recently,	further	remote	sensing	techniques,	like	many	different	multi-temporal	InSAR	(Synthetic	

Aperture	 Radar	 Interferometry)	 techniques,	 e.g.	 Persistent	 Scatterer	 Interferometry	 (PSI)	 or	 SqueeSARTM	

(Ferretti	et	al.,	2011),	have	been	successfully	and	diffusely	applied	to	assess	ground	deformations	in	order	to	

support	landslide	studies	over	wide	areas	(e.g.	Farina	et	al.,	2006;	Bianchini	et	al.,	2012;	Cascini	et	al.,	2013)	

as	well	as	to	 investigate	building	deformations	and	settlements	at	 local	scale	by	means	(Ciampalini	et	al.,	

2014;	Di	Martire	et	al.,	2014;	Sanabria	et	al.,	2014;	Bianchini	et	al.,	2015a).	The	correction	to	the	regional	

trend,	the	reliability	of	the	time	series	of	Persistent	Scatterers	and	an	estimation	of	the	date	with	abrupt	

changes	 were	 made	 by	 means	 of	 the	 PS	 Time	 approach	 (Berti	 et	 al.,	 2013)	 and	 the	 Notti	 et	 al.	 (2015)	

methodology.	

Finally,	spatial	and	kinematic	characterization	of	landslides	as	well	as	the	recognition	and	classification	of	

landslide-induced	damage	effects	on	structures	and	infrastructures	(Goetz	et	al.,	2011;	Guzzetti	et	al.,	2012;	

Van	Westen,	 2013;	Gullà	 et	 al.,	 2016),	 are	 fundamental	 to	better	delineate	mass-movement	boundaries.	

Furthermore,	the	same	parameters	allow	to	investigate	the	evolution	of	slope	instability	in	time,	in	order	to	

avoid	repeated	occurrences	and	to	better	plan	mitigation	measures	(Del	Soldato	et	al.,	under	review_b).	

The	PhD	thesis	was	developed	on	two	sample	areas	affected	by	landslides	where	their	geomorphological	

evolution	was	analysed	and	landslide-induced	damage	on	buildings	and	facilities	classified.	Furthermore,	the	

relationship	 between	 displacements	 affecting	 the	 structures	 and	 the	 related	 damage	 was	 analysed.	 A	
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comprehensive	investigation	of	the	two	studied	areas	was	conducted	to	analyse	the	evolution	of	occurred	

ground	deformations,	by	means	of	remote	sensing	techniques.		

The	 first	 investigated	 deep-seated	 landslide	 is	 located	 in	 the	 territory	 of	 the	municipality	 of	 Agnone	

(Molise	region,	southern	Italy)	and	it	is	an	active	landslide	known	since	the	beginning	of	last	century	(Almagià,	

1910).	The	aerial	images	investigation	allowed	the	interpretation	of	the	evolution	of	the	landslide	starting	

from	 the	 1940s	 to	 the	 present	 day,	 by	 means	 of	 the	 SfM	 technique	 and	 the	 analysis	 of	 the	 Persistent	

Scatterers	 (PS).	 The	 description	 and	 classification	 of	 damage	 occurred	 on	 buildings	 and	 facilities,	mainly	

caused	 by	 the	 2003	 reactivation	 and	 the	 subsequent	 evolution,	 were	 conducted.	 Damage	 occurred	 on	

facilities	and	infrastructures	in	the	landslide	surroundings	were	surveyed	during	several	field	campaigns	and	

classified	with	different	methods	existing	in	scientific	literature	(Skempton	and	MacDonald,	1956;	Burland,	

1977;	Lee	and	Moore,	1991;	Chiocchio	et	al.,	1997;	Cooper,	2008;	Mansour	et	al.,	2011).	Since	each	work	

presents	 some	 benefits	 and	 constraints	 (Del	 Soldato	 et	 al.,	 under	 review_a),	 a	 new	 ranking	 for	 a	 quick	

landslide-induced	damage	evaluation	(Del	Soldato	et	al.,	under	review_b)	was	developed	and	applied.	From	

2003	 to	 2015,	 the	 facilities	 were	 classified	 using	 several	 parameters	 elaborated	 by	 the	 remote	 sensing	

techniques.	 By	means	 of	 velocity	 and	displacement	measured	 along	 each	 Line	Of	 Sight	 geometry	 by	 the	

satellite	and	their	reprojection	along	the	slope,	the	structures	were	categorized.	Furthermore,	a	relationship	

between	these	factors	and	the	ranking	of	the	damage	affecting	the	structures	was	analysed	and	critically	

discussed.	Finally,	a	matrix	to	investigate	and	validate	the	reliability	of	the	relationship	was	developed	and	

applied	to	each	construction.	

The	 second	 case	 of	 study	 is	 the	 southwestern	 sector	 of	 the	municipality	 of	 Volterra	 (Tuscany	 region,	

central	Italy),	a	partially	urbanized	area	and	affected	by	slope	instabilities	that	threatens	the	urban	fabric	and	

its	historical	heritage.	Here,	several	field	surveys	were	conducted	to	recognize,	describe	and	classify	damage	

on	each	construction.	Furthermore,	as	for	the	other	investigated	site,	an	analysis	based	on	the	reconstruction	

of	 multitemporal	 3D	models,	 by	 means	 of	 the	 SfM	 technique,	 and	 PS	 displacements	 was	 developed	 to	

understand	the	evolutionary	stages	of	the	phenomena.	Moreover,	classifications	of	damage	on	structures	in	

the	landslide-prone	area	by	a	method	known	in	the	scientific	literature	(Cooper,	2008)	and	the	application	of	

a	new	ranking	approach	were	performed	(Del	Soldato	et	al.,	under	review_b).	As	for	the	Agnone	site,	from	

2003	to	2015	velocity	and	displacement	measured	by	the	PS	derived	from	ENVISAT	and	COSMO-SkyMed	for	

each	orbit,	as	well	as	the	velocity	and	the	maximum	displacement	projected	along	the	slope	were	used	to	

classify	structures	kinematically.	Finally,	on	the	basis	of	the	relationship	found	between	the	surveyed	damage	

levels	 and	 kinematic	 characterization	 of	 structures	 by	 PS	 technique,	 as	 for	 the	 Agnone	 case	 study,	

investigations	were	carried	out	on	structures	and	critically	analysed	and	discussed	by	means	of	the	matrix	

adopted	for	the	reliability	categorization.	
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1.1 Structure	of	the	thesis	

The	thesis	is	divided	in	seven	chapters.	

The	first	chapter	briefly	depicts	landslides	related	problems	and	provides	the	description	of	the	purpose	

of	the	research	project	and	the	introduction	to	the	PhD	thesis.	

The	second	chapter	explains	the	basic	knowledge	on	the	landslides	and	them	several	typologies.	

The	third	chapter	illustrates	the	two	investigated	sites	and	the	available	data	for	each	one.	

The	fourth	chapter	provides	a	general	introduction	to	the	SAR	remote	sensing	techniques	and	a	detailed	

description	of	the	methodologies	applied,	both	remote	sensing	applications	and	field	investigations.	

The	fifth	chapter	shows	the	results	of	the	evolution	studies,	the	application	of	DInSAR	and	the	relationship	

between	the	damage	and	the	parameters	of	movement	investigated	for	the	two	studied	sites	(Agnone	and	

Volterra).	

The	 sixth	 chapter	 contain	 the	 discussion	 on	 the	 results	 obtained	 providing	 a	 critical	 analysis	 of	 these	

results.	

The	seventh	chapter	illustrates	some	conclusions	and	identifies	possible	future	studies	to	apply	in	order	

to	improve	the	knowledge	on	the	developed	issues.	

Finally,	 in	 the	 Appendix	 the	 contributions	 in	 congresses	 and	 the	 papers,	 accepted	 and	 under	 review,	

produced	during	the	PhD	period.	
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1.2 Objectives	

The	 continuous	 expansion	 of	 the	 urban	 fabric,	 as	 natural	 consequences	 of	 the	 demographic	 growth	

(Rybár,	1997),	induces	people	to	occupy	territory	of	which	the	evolution	is	unknown.	For	this	reason	and	for	

the	 spread	 of	 slope-movements	 affecting	 territories	 of	 several	 countries,	 it	 is	 necessary	 advancing	 the	

knowledge	on	reconstruction	of	landslide	evolutionary	stages.	

The	final	objective	of	this	PhD	thesis	was	to	develop	an	integrated	procedure	between	remote	sensing	

techniques,	ancillary	data	and	field	surveys	to	help	land	management	authorities	to	best	focus	and	perform	

mitigation	works	to	avoid	further	landslide	occurrences	in	the	future.	To	this	purpose	the	reconstruction	of	

evolutionary	stages,	by	multi-temporal	aerial	images,	and	movements	of	Persistent	Scatterers,	detected	by	

DInSAR,	of	two	landslides	were	investigated	allowing	to	produce	geomorphological	map,	velocity	maps	and	

deformation	time	series.	Such	results	permitted	evaluating	extension	and	state	activity	of	both	landslides.	

Finally,	 the	obtained	 results	were	 compared	with	 ancillary	 data,	where	 available,	 to	 validate	 the	 remote	

sensing	results	and	to	allow	a	better	interpretation	of	the	phenomenon.	The	landslide-induced	damage	on	

buildings	 were	 categorized	 and	 some	 correlations	 between	 displacements	 affecting	 structures,	 namely	

measured	 velocity	 and	 damage,	 were	 researched	 and	 critically	 discussed.	 In	 order	 to	 prevent	 future	

important	damage	the	reliability	of	a	found	relationship	between	the	displacement	and	the	cracks,	affecting	

some	sample	buildings	in	the	two	studied	sites,	were	investigated.	Furthermore,	to	better	develop	the	issue	

of	 the	 PhD	 dissemination,	 a	 new	 approach	 to	 assess	 the	 landslide-induced	 damage	 on	 facilities	 was	

developed	as	well	as	a	methodology	to	reconstruct	3D	models	of	areas	starting	from	physical	historical	aerial	

images	was	tested.	

	

Two	test	sites	were	chosen	as	cases	of	study:	

Ø a	deep-seated	dormant	complex	landslide	occurring	in	the	Agnone	municipality	(Molise	region,	southern	

Italy)	 with	 an	 important	 reactivation	 in	 2003	 and	 other	 intermittent	movements	 in	 the	 subsequent	

period,	which	affects	facilities	staying	in	its	surroundings	with	relevant	damage;	

Ø a	landslide	area	affecting	some	constructions	and	the	historical	heritage	of	a	partially	urbanized	area	in	

the	southwestern	sector	of	Volterra	(Tuscany	region,	central	Italy).	
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2 Landslide	definition	and	classification	

2.1 Landslides	

The	term	 ‘landslide’,	as	simply	denoted	by	Cruden	(1991),	 refers	 to	 ‘the	movement	of	a	mass	of	 rock,	

debris	or	earth	down	a	slope’.	

Every	 year	 the	 Centre	 for	 Research	 on	 the	 Epidemiology	 of	 Disasters	 (CRED)	 published	 the	 “Annual	

Disaster	 Statistical	 Review”	 regarding	 the	 situation	 of	 emergencies	 causing	 relevant	 impacts	 on	 human	

health.	Worldwide,	in	2015,	376	reported	natural	disasters	provoked	22765	death,	more	than	100	millions	

of	victims	with	a	consequent	amount	of	direct	and	indirect	cost	of	damage.	The	number	of	reported	natural	

disasters	in	2015	(376)	showed	an	increase	of	13.9%	compared	to	2014’s	number	(330).	It	is	worthy	noticing	

that	 causes	 of	 the	 events	 are	 divided	 in	 “hydrological”,	 namely	 floods,	 landslides	 and	 wave	 actions,	

“meteorological”,	represented	by	storm	and	extreme	temperatures,	“climatological”,	includes	drought	and	

wildfires,	and	“geophysical”	considers	earthquakes	and	volcanic	activities.		

In	2015,	the	number	of	climatological	events	(45)	was	the	highest	since	2005,	42%	above	its	2005-2014	

annual	 average	 (31.5)	 and	 the	one	of	hydrological	disasters	 (127)	 is	near	 its	 annual	 average	 (124.5).	 The	

growth	of	the	urbanized	areas,	with	consequent	increase	of	damage	and	relates	direct	and	indirect	costs,	has	

intensified	the	impact	of	landslide	events	representing	the	most	influential	events	affecting	human	activities.	

In	this	way,	the	exposure	to	this	type	of	geohazard	results	significantly	relevant.	

The	 global	 spatial	 distribution	 of	 fatal	 landslide,	 i.e.	 events	 reporting	 loss	 of	 lives,	 exhibits	 a	 strongly	

heterogeneity	 (Fig.	 2.1),	 even	 if	 some	 clusters	 are	 recognizable	 (e.g.	 along	 the	 Himalayan	 Arc	 and	 the	

southwestern	Indian	coast,	Sri	Lank	and	China,	in	central	China,	etc).	

	

	
Fig.	2.1	-	Spatial	distribution	of	fatal	single	or	grouped	landslides	(Petley,	2012)	
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The	stability	of	a	slope	 is	controlled	by	the	relationship	between	the	driving	forces	and	shear	strength	

acting	along	the	slope	at	the	base	of	the	unstable	mass	of	geological	material.	Terzaghi	(1950)	divided	the	

main	causes	of	a	landslide:	external	factors,	due	to	an	increase	of	the	shearing	stress	caused	by,	for	instance,	

geometrical	changes,	unloading	of	the	slide	toe,	loading	of	the	slope	crest,	shocks	and	vibrations,	drawdown,	

changes	in	water	regime;	internal	factors,	decreasing	the	shearing	resistance	due	to,	for	example,	progressive	

failure,	weathering	or	seepage	erosion.	Furthermore,	the	causal	factors	of	landslides	can	be	ranked	according	

to	their	effect	(preparatory	or	triggering)	and	their	origin	(ground	conditions	and	geomorphological,	physical	

or	man-made	processes).	

Taking	into	account	the	significant	numbers	of	devastating	landslide	events,	the	UNESCO	Working	Party	

on	 World	 Landslide	 Inventory	 (1993)	 claimed	 for	 establishment	 of	 details	 for	 classifying	 the	 rates	 of	

movements,	their	causes,	the	geology,	the	activity	and	the	distribution	of	movement	within	the	 landslide	

merging	the	categorizations	developed	by	several	Authors.	

In	Fig.	2.2	an	ideal	complex	earth-slide	flow	is	designed	(Varnes,	1978)	defining	several	components	of	a	

landslide.	The	ideal	mass-movement	consists	of	the	crown	area,	defined	by	the	undisplaced	material	in	the	

upper	part,	two	main	lateral	scarps	and	the	toe,	the	lower	part,	usually	characterised	by	a	curved	margin	of	

displaced	material	 farther	 than	 the	main	 scarp.	 The	main	 body	 of	 a	mass	movement	 is	 featured	 by	 two	

distinct	regions:	a	portion	where	the	elevation	of	the	ground	surface	sinks	due	to	landsliding;	an	accumulation	

area,	where	the	elevation	of	the	ground	surface	increases	due	to	the	deposition	of	displaced	mass	of	material.	

	

	
Fig.	2.2	-	Block	diagram	of	ideal	complex	slide-earth	flow	(Varnes,	1978).	
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An	important	parameter	to	categorize	mass-movements	and	the	related	hazard	is	the	velocity,	generally	

representing	a	proxy	 for	 landslide	 intensity,	 the	 caused	damage	and	 the	economic	 and	human	 losses.	 In	

literature,	 it	 is	 known	 that	 small	 rapid	debris	 avalanches	or	extremely	 rapid	 landslides	 can	 cause	greater	

damage	and	casualties	than	larger	slope	movements	with	moderate	or	low	velocities.	

Cruden	and	Varnes	(1996)	ranked	the	velocity	of	mass-movement	in	seven	classes	from	extremely	slow	

to	extremely	rapid	(Table.	2.1).	

	

Table.	2.1	-	Velocity	landslide	scale	(Cruden	and	Varnes,	1996).	

Velocity	
class	

Description	 Velocity	
(mm/sec)	

Typical	
velocity	

	

7	 Extremely	
rapid	 	

5	*	103	
	

5	m/sec	

Catastrophe	of	major	violence;	buildings	destroyed	by	
impacted	displaced	material;	many	deaths;	no	escape	

6	 Very	rapid	 Some	lives	lost;	velocity	too	great	to	permit	persons	to	
escape	

5	*	101	 3	m/min	
5	 Rapid	 Escape	evacuation	possible;	structures,	possessions	and	

equipment	destroyed	
5	*	10-1	 1.8	m/h	

4	 Moderate	 Some	temporary	ad	insensitive	structures	can	be	
temporarily	maintained	

5	*	10-3	 13	m/month	
3	 Slow	

Remedial	construction	can	be	undertaken	during	
movement;	insensitive	structures	can	be	maintained	with	
frequent	maintenance	work	if	total	movement	is	not	large	
during	a	particular	acceleration	phase	

5	*	10-5	 1.6	m/year	

2	 Very	slow	 Some	permanent	structures	undamaged	by	movement	

5	*	10-7	 16	mm/year	

1	 Extremely	
slow	

Imperceptible	without	instrument;	construction	possible	
with	precautions	

	 	 	
	

The	velocity	of	a	slope	movement,	depending	on	landslide	typology	and	characteristics	can	be	measured	

by	 means	 of	 both	 several	 direct	 in	 situ	 investigations	 and	 remote	 sensing	 techniques.	 Some	 examples	

available	to	estimate	and	monitor	the	mass-movement	velocities	are	stereo-photogrammetry	(Jebara	et	al.,	

1999;	 Snavely	 et	 al.,	 2008;	Maybank,	 2012),	 GBInSAR	 (Ground-based	 Interferometric	 SAR)	 method	 (e.g.	

Tarchi	et	al.,	2003;	Antonello	et	al.,	2004),	several	A-DInSAR	(Advanced	Differential	Interferometric	Synthetic	

Aperture	Radar)	techniques	(e.g.	Massonnet	and	Feigl,	1998;	Ferretti	et	al.,	2001;	Farina	et	al.,	2006;	Hooper	

et	al.,	2012),	the	application	of	Structure	from	Motion	(SfM)	method	(e.g.	Pollefeys	et	al.,	1999;	Westoby	et	

al.,	2012;	Lucieer	et	al.,	2013)	by	means	of	the	comparison	of	different	reconstructed	three-dimensional	(3D)	

models,	or	 the	newly	 survey	methods	by	means	of	unmanned	aerial	 vehicles	 (UAVs)	 (Niethammer	et	al.,	



Integration	of	field	investigations	and	remote	sensing	techniques	for	the	assessment	of	landslide	activity	and	damage	
	

M.	Del	Soldato	

	

11	

		

2012).	Instances	of	direct	investigation	methodologies	useful	to	estimate	the	displacement	in	time	of	slope	

movements	are	the	extensometers,	inclinometers,	GPS	surveys	(Brasington	et	al.,	2000;	Brückl	et	al.,	2006)	

and	terrestrial	laser	scanning	(Razak	et	al.,	2011).	

A	further	fundamental	parameter	to	well-define	a	 landslide	 is	 the	thickness	of	the	 implicated	material	

(Segoni	et	al.,	2012;	Del	Soldato	et	al.,	2016b).	If	only	the	first	3	-	5	m	of	depth	of	the	material	are	involved	

by	mass-movements,	they	are	considered	shallow	landsides	with	the	possibility,	depending	on	the	involved	

material,	 to	 be	 transformed	 into	 rapidly	moving	 debris	 flows	 (e.g.	 Campbell,	 1975).	Most	 of	 the	 shallow	

failures	affect	mostly	colluvial	material	rather	than	bedrock	formations.	Statistically	shallow	landslides	mainly	

occur	on	slopes	showing	steep	angles,	 large	unforested	watersheds	and	 in	areas	with	concave	transverse	

sections	filled	by	colluvium	deposits.	The	occurrences	are	not	related	to	particular	periods	during	the	year,	

but	the	possibilities	of	triggering	increase	when	the	ground	is	nearly	water-saturated.	

Landslides	with	mechanical	deformation	occurring	at	considerable	depth	called	deep-seated	gravitational	

deformations	are	relatively	rare	phenomena	(Petley	and	Allison,	1997),	even	if	this	typology	was	identified	

in	many	 parts	 of	 the	world.	 The	 geomechanical	 behaviour	 of	 a	 deep-seated	 landslide,	 particularly	when	

exceeding	 thicknesses	 of	 100	 m,	 plays	 a	 key	 role.	 Despite	 mechanical	 characteristics	 and	 deformations	

affecting	surficial	deposits	at	 the	top	of	deep-seated	mass	movements	can	be	significantly	different	 from	

those	of	shallow	landslides,	no	geomorphologist	consider	these	differences	during	the	investigations	of	large	

failures	 (Petley	 and	 Allison,	 1997).	 Movement	 patterns	 in	 deep-seated	 landslides	 were	 extensively	

documented	 (e.g.	 Radbruch-Hall,	 1978;	 Pasuto	 and	 Soldati,	 1990)	 and	 two	 distinct	 main	 forms	 resulted	

evident.	The	‘creep’,	commonly	indicating	the	long-term	displacement	at	low	strain	rate	that	may	be	subject	

to	variations	due	to	seasonal	changes,	is	the	first	one.	Some	deep-seated	landslides	creep	for	long	periods	

under	normal	gravitational	forces,	showing	relatively	constant	rate.	Minor	fluctuations	may	be	the	result	of	

small	changes	in	the	water-table	altering	the	effective	normal	stress.	The	short	period	of	creep	is	commonly	

linked	to	an	increasing	in	displacement	rate	immediately	prior	to	the	rapid	strain	event.	The	second	pattern	

appears	when	a	short-term	movement	at	very	high	rates	of	displacement	causes	a	sudden	failure.	

Moreover,	the	state	of	activity,	which	describes	what	is	known	about	the	timing	of	movements	and	the	

temporal	 evolution	 characteristics	 (WP/WPI,	 1993),	 are	 categorized	 in	 in	 eight	 different	 types	 through	

geomorphological	information	(Fig.	2.3).		
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Fig.	2.3-	Topple	profile	section	with	the	modified	state	of	activity	of	landslide	by	WP/WPI	(1993):	a)	active	landslide;	

b)	suspended	landslide;	c)	reactivated	landslide;	d)	dormant	landslide;	e)	abandoned	landslide;	f)	stabilized	landslide;	

g)	relict	landslide.	The	state	comprehended	between	d	and	g	are	considered	inactive	(WP/IWP,	1993).	

Active	landslides	are	those	where	the	movement	is	currently	active,	including	first-time	movements	and	

reactivations	due	to	erosion	at	the	toe	of	the	slope	that	causes	blocks	toppling.	Landslides	not	moving	at	the	

present	but	that	have	shown	movements	within	the	last	annual	cycle	of	season	are	classified	as	suspended.	

Landslides	that	not	exhibit	movements	since	more	than	one	annual	seasonal	cycle	are	described	as	inactive	

and	they	are	subdivided	in:	dormant	when	reactivation	are	possible	and	tree	cover	and	scarps	modified	by	

weathering	 take	 place	 on	 old	 displaced	 materials;	 abandoned	 in	 case	 of	 the	 displaced	 material	 is	 not	

influenced	by	its	original	triggers;	stabilized	if	natural	or	anthropic	protective	measurements	are	adopted	to	

protect	the	toe	of	the	slope;	relict	for	movements	occurred	in	morpho-climatic	settings	actually	extinct,	i.e.	

masked	by	tree	covers	over	slope.	

Another	 important	 issue	 homogenized	 and	 delineated	 by	 the	WP/WPI	 (1993)	 is	 the	 definition	 of	 the	

distribution	of	activity,	referred	to	the	localization	and	the	typology	of	the	movement	affecting	the	landslide	

(Fig.	2.4).	
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Fig.	 2.4	 -	 Profile	 section	 showing	 different	 distribution	 of	 activity	 of	 a	 landslide,	modified	 by	WP/WPI	 (1993):	 a)	

advancing	landslide;	b)	retrogressive	landslide;	c)	enlarging	landslide;	d)	diminishing	landslide;	e)	confined	landslide;	

f)	moving	landslide;	g)	widening	landslide	(WP/IWP,	1993).	

An	 advancing	 landslide	 shows	 the	 rupture	 surface	 aligned	 in	 the	 same	 direction	 of	 movement.	 The	

contrary	happens	for	the	retrogressive	landslide	where	the	movements	is	extending	in	the	opposite	direction	

respect	to	the	displaced	material.	In	case	of	expansion	of	the	rupture	surfaces	in	two	or	more	directions,	the	

landslide	is	defined	as	enlarging.	Instead,	if	the	volume	of	the	mobilized	material	decreases	the	landslide	is	

denominated	 as	 diminishing.	 In	 a	 confined	 landslide,	 scarps	 are	 visible,	 while	 no	 rupture	 surfaces	 are	

recognizable	in	the	displaced	mass.	If	the	mobilized	material	continues	to	move	without	any	visible	changes	

in	rupture	surface	and	volume,	the	landslide	is	defined	in	moving.	Landslide	showing	continue	extension	in	

rupture	surfaces	in	one	or	both	flanks	the	mass-movement	is	called	widening	landslide.	

Finally,	 also	 the	 landslide	 activity	 style	 is	 defined	 and	 described.	 These	 parameters	 consist	 in	 the	

contribution	of	different	movements	within	a	single	landslide	and	their	relationship	(Fig.	2.5).	
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Fig.	2.5	-	Scheme	showing	different	landslide	style	activity:	a)	complex	landslide;	b)	composite	landslide;	c)	successive	

landslide;	d)	single	landslide;	e)	multiple	landslide	(WP/IWP,	1993).	

If	a	landslide	exhibits	at	least	two	types	of	movement	in	temporal	sequence,	e.g.	falling,	toppling,	sliding,	

spreading	 or	 flowing,	 is	 defined	 a	 complex	 landslide.	 While	 if	 at	 least	 two	 movements	 occurred	

simultaneously	 in	 different	 sector	 of	 the	 same	 mass-movement	 the	 landslide	 is	 named	 composite.	 A	

successive	landslide	is	a	similar	type	as	a	nearby,	earlier	landslide,	but	does	not	share	displaced	material	or	

rupture	surface	with	in.	A	single	landslide	is	characterized	by	a	single	movement	of	displaced	material	and,	if	

the	same	type	movement	is	repeatedly	shown,	the	landslide	is	defined	multiple.	

2.2 Landslide	classification	

The	earliest	landslide	classification	systems	were	developed	in	the	Alpine	countries	(Baltzer,	1875)	by	the	

analysis	conducted	on	the	Swiss	territory	where	the	first	categorization	to	distinguish	different	typologies	of	

mass-movements	in	falls,	slides	and	flows	was	carried	out.	In	the	following	years,	this	ranking	was	increased	

with	 toppling	 and	 spreading	 classes.	 Subsequently,	 Almagià	 (1910),	 working	 on	 the	 Apennine	 territories	

severally	affected	by	landslides,	Heim	(1932)	and	Zaruba	and	Méncl	(1969)	focusing	the	attention	on	landslide	

types	 related	 with	 material	 facies	 described	 in	 geological	 terms,	 allowed	 to	 develop	 several	 landslide	
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typologies	classifications.	Stini	(1910)	and	Bull	(1964),	instead,	concentrated	the	investigation	on	debris	flows	

and	 mud	 flows	 movements,	 respectively.	 In	 1938,	 Sharpe	 introduced	 a	 three-dimensional	 classification	

system	distinguishing	type	of	movement,	material	and	velocity	of	displacement.	Varnes	(1978)	improved	the	

knowledge	and	expanded	the	Sharpe’s	categorization.	Hutchinson	(1969,	1989)	focused	the	attention	on	the	

propagation	mechanism	 and	 based	 it	 on	multiple	 elements	 such	 as	material,	water	 content,	 kinematics,	

morphology	and	displacement	 rate.	 In	1996,	Cruden	and	Varnes	proposed	supplementary	 terms,	 such	as	

advancing,	enlarging,	retrogressive,	multiple	or	successive	deformation,	related	to	the	typology	of	movement	

of	 failure.	 Furthermore,	 the	 classification	 was	 implemented	 with	 the	 post-failure	 activity	 of	 the	 mass-

movement	by	means	of	dormant,	abandoned,	relict	and	re-activated.	

Also	 the	 geotechnical	material	 terminology	plays	 a	 key-role	 in	 the	description	of	 the	 landslide	 and	 to	

improve	 the	 characterization	 of	 the	mechanical	 behaviour	 (Hungr	 et	 al.,	 2014).	 Varnes	 (1978)	 takes	 into	

consideration	“rock”,	“debris”	and	“earth”.	In	case	of	transition	between	different	textural	classes	the	most	

significant	term	of	the	class	influencing	the	physical	behaviour	has	to	be	used.	The	term	“earth”,	that	not	

have	a	 geological	or	 geotechnical	definition,	 is	used,	 for	 instance,	 for	names	as	 “earthflow”	or	 similar	 to	

describe	a	cohesive,	plastic,	clayey	soil	often	mixed	and	remoulded.	

Hungr	et	al.	(2014)	modified	the	Varnes’	ranking	system	improving	it	by	means	of	the	recent	development	

of	landslide	sciences.	The	increased	categorization	has	thirty-two	landslide	types	with	a	formal	definition	as	

much	 as	 possible	 compatible	 with	 the	 previously	 described	 Varnes’	 classification	 (1978).	 For	 complex	

landslides,	not	included	as	specific	category	in	the	ranking,	the	user	can	combine	the	type	names	to	describe	

in	the	best	way	his	case	of	study.	

The	following	definitions	are	based	on	the	classifications	of	Varnes	(1978),	Hutchinson	(1989),	Cruden	and	

Varnes	(1996)	and	Hungr	et	al.	(2014).	

2.2.1 Falls	and	topples	

Falls	(Fig.	2.6)	are	due	to	the	detachment	of	soil	or	rock	from	steep	slopes	along	surfaces	characterized	

by	 little	 or	 no	 shear	 displacement.	 This	 movement	mainly	 occurs	 by	 falling,	 bouncing	 or	 rolling	 of	 rock	

fragments	or	ice,	and	it	may	be	also	caused	by	tensile	and	buckling	failures,	sometimes	preceded	by	small	

sliding	 or	 toppling	 that	 separate	 the	 displacing	 material	 from	 the	 undisturbed	 mass.	 The	 typologies	 of	

detachment	are	distinguished	by	the	slope	angle	of	the	involved	slope:	above	76°,	falling	occurs;	between	

76°	and	45°,	bouncing	arises;	with	slope	angle	values	less	than	45°,	the	mass	movement	is	characterized	by	

rolling.	Usually	the	falls	are	movements	involving	a	limited	volume	of	rock	occurring	along	steep	slopes.	The	

main	triggers	are	differential	weathering,	excavations,	stream	erosions,	vibrations	or	undercutting.	
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Fig.	2.6	-Example	of	evolution	of	a	rock	fall	(Lynn	Highland,	http://blogs.agu.org/landslideblog/2011/10/13/a-gallery-

of-landslide-images/)	with	explaining	scheme	of	the	phenomenon	(b)	(Hungr	et	al.,	2014).	

Topples	occur	by	the	forward	rotation	or	overturning	of	soil	masses,	rock	columns	or	plates	respect	to	the	

point	 of	 the	 centre	 of	 gravity.	 This	 type	 of	movement	may	 conduct	 to	 falls	 or	 slides	 depending	 on	 the	

geometry	of	the	dislocating	material,	on	the	geometry	of	the	surface	of	separation	and	on	the	orientation	

and	extension	of	the	kinematic	active	discontinuities.	The	main	trigger	factors	are	similar	to	falls	in	addition	

to	the	contribution	of	gravity,	the	probable	water	pressure	and	the	possible	ice	filling	cracks	present	in	the	

rock-mass.	 The	 failure	 can	 involve	 little	 or	 important	 volumes	 on	 well-defined	 basal	 discontinuities	

characterized	by	slow	initial	displacement	that	can	reach	extremely	rapid	velocity	during	the	event.	

	

	
Fig.	 2.7	 -	 Example	 of	 rock	 topple	 (http://forums.hardwarezone.com.sg/japan-271/time-trip-report-16-oct-28-oct-

tokyo-matsumoto-osaka-hiroshima-2550242.html)	(a)	with	explanation	of	the	possible	Single	and	Multiple	Topples	

evolution	(b)	(Hungr	et	al.,	2014).	
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2.2.2 Slides	

Slides	are	featured	by	a	downslope	movement	affecting	soil	and	rock	masses	along	one	or	more	planar	or	

curved	rupture	surfaces.	The	movement	cannot	be	simultaneous	for	the	entire	involved	mass	but	the	volume	

of	displacing	material	enlarges	as	it	moves	down	from	the	area	of	local	failure.	Varnes	(1978)	distinguished	

two	types	of	movement:	rotational	and	translational	slides.	The	first	one	moves	along	a	curve	and	concave	

surface	of	rupture	after	a	little,	almost	vertical,	downward	in	head.	The	translation	slide	is	characterized	by	

a	movement	occurring	along	a	planar	or	corrugate	surface	of	rupture.	The	second	type,	if	caused	by	a	single	

discontinuity	into	a	rock	mass,	is	called	block	slide	(Panet	et	al.,	1969)	or	planar	slide	(Hoek	and	Bray,	1981).	

The	velocity	of	these	events	depends	on	the	type	of	material	involved:	slow	or	moderate	velocity	is	usual	for	

cases	affecting;	from	slow	to	rapid	for	phenomena	occurring	in	soils	(Hungr	et	al.,	2014).	

	

	
Fig.	2.8	-	Rock	slide	occurred	on	the	Highway	41	in	Madera	County	on,	Jan.	19,	2016	

(http://www.fresnobee.com/news/local/article55419970.html).	

2.2.3 Spreads	

Spread	 is	 a	 term	 introduced	 in	 the	 geotechnical	 engineering	 field	 by	 Terzaghi	 and	 Peck	 (1948)	 for	

describing	an	extension	of	rock	mass	or	cohesive	soil	subsiding	and	subdivided	in	distinct	and	kinematically	

independent	blocks	due	deformation	of	 softer	and	ductile	underlying	strata.	The	movement	 is	caused	by	

liquefaction	 or	 flow	 of	 softer	 materials	 with	 consequent	 possible	 subsidence,	 translation,	 rotation,	

disgregation,	liquefaction	or	flowing	of	the	overhead	cohesive	material.	The	dominant	mode	of	movement	

of	spread	phenomena	is	the	lateral	expansion	accommodated	by	tensile	or	shear	fractures	(Varnes,	1978).	
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Fig.	2.9	-	Example	of	lateral	spread	(http://www.teara.govt.nz/en/photograph/8793/lateral-spread)	at	the	locality	

known	as	Earthquakes,	in	the	Waitaki	Valley,	North	Otago(a)	and	scheme	of	the	phenomenon	(Hungr	et	al.,	2014).	

2.2.4 Flows	

Flow	is	a	spatial	continuous	movement	describable	by	short-lived	shear	surfaces,	closely	spaced	usually	

not	 preserved.	 The	 active	 surface	 is	 recognizable	 by	 differential	 movements	 and	 distributed	 velocities	

propagation	within	the	moving	mass	similar	to	a	viscous	liquid.	The	huge	deformation	of	the	entire	sliding-

mass	 mainly	 allows	 differentiating	 flows	 from	 the	 other	 types	 of	 landslides	 in	 which	 the	 body	 mass-

movement	usually	moves	rigidly	along	the	slip	surface.	

Different	types	of	flows	can	be	distinguished	by	means	of	the	 involved	material,	different	velocity	and		

triggering	 factors.	Varnes	 (1978)	used,	 for	 the	 first	 time,	different	 terms	 to	 indicate	 several	 typologies	of	

flows,	subsequently	increased	by	Hungr	et	al.	(2014).	Furthermore,	Authors	grouped	them	in	two	principal	

categories:	flows	in	rock	and	flows	in	soil.	

The	different	flows	in	rock	are	divided	in:	

ü Rock	 flow:	 movement	 in	 bedrock	 including	 deformations	 distributed	 among	 large	 or	 small	

fractures,	 or	 even	 microfractures,	 with	 no	 concentration	 of	 displacement	 along	 fractures.	

Vibration,	undercutting,	differential	weathering,	 excavation	or	 stream	erosion,	 as	 for	 falls	 and	

topples,	are	the	triggering	factors.	

ü Rock	 avalanche:	 large	 rock	 disintegrates	 phenomena	 rapidly	moving	 down	 forming	 a	massive	

extremely	rapid	flow-like	motion	of	fragment	rock.	These	movements,	named	also	“stürzstrom”	

(Heim,	 1932),	 are	 characterized	 by	 an	 extremely	 rapid	 velocity	mainly	 triggered	 by	 the	 pore-

pressure	until	 the	 fragmentation	of	 the	rock	mass	 that	provoke	the	generation	of	a	very	 large	

space	that	drains	the	avalanche	mass	during	motion.	
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Fig.	2.10	-	a)	Rock	flow	of	obsidian	lava	at	Rock	Mesa	in	Three	Sisters	Area,	protected	area	Three	Sisters	Wilderness,	

Oregon,	 USA	 (https://commons.wikimedia.org/wiki/File:Rock_Mesa_obsidian_flow_in_Oregon_in_2011_(9));	 b)	

Rock	 Avalanche	 occurred	 in	 Val	 Pola,	 upper	 Valtellina	 (Lombardy	 region,	 Italy)	 on	 July	 28,	 1987	

(http://www.mergili.at/worldimages/picture.php?/7534).	

Flows	involving	soils	are	mainly	triggered	under	saturation	or	near-saturation	conditions	affecting	soils	

along	slopes	(i.e.	from	5°	until	45°).	They	are	classifiable	as	follows:	

ü Earth	flows:	intermittent	flow-like	phenomena	occurring	in	plastic,	disturbed	and	mixed	soils,	with	

consistency	 close	 to	 their	Plastic	 Limit1.	 This	 typology	of	 flow	 is	 favoured	by	a	 combination	of	

multiple	discrete	shear	surfaces	and	internal	shear	strains	on	which	it	slides.	Furthermore,	it	may	

have	more	rapid	“surges”	alternated	with	long	periods	of	relative	dormancy.	Earth	flows	develop	

where	water-rich	unconsolidated	materials	move	by	slumping	and	plastic	flow.	

	

	
Fig.	 2.11	 -	 Earthflow	 in	 Alaj,	 Kirghizistan	 (a)	 (http://www.panoramio.com/photo/12660372)	 and	

explanation	of	the	ideal	earth	flow	(b)	(Hungr	et	al.,	2014).	

	

																																																													
1	Plastic	Limit	is	the	water	content	inducing	the	loss	of	the	plastic	behaviour	of	the	soil	
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ü Debris	 flows:	 typology	 characterized	by	 very	 rapid	 to	 extremely	 rapid	 flows	of	 saturated	non-

plastic	debris	having	low	plasticity	index2	(lower	than	5)	and	sliding	mass	with	sandy	to	gravelly	

grain-size.	Along	the	main	track	of	the	flow,	it	follows	the	direction	of	the	channels	which	greatly	

allow	the	passage	of	the	material.	The	runoff	water	that	reaches	the	channels	can	increase	the	

sliding	mass	speed	and	it	can	change	the	typology	of	the	flow.	The	lateral	confinement	can	affect	

the	sliding	body	depth	and	the	vertical	velocity	gradient,	thus	the	vertical	and	longitudinal	sorting	

of	 the	material.	 The	 term	debris	 flow	was	 coined	 as	 a	 general	 form	 to	describe	 rapid	 gravity-

controlled	mass	movements	of	a	mixture	of	granular,	solid,	water	and	air	material	(Costa,	1984).	

Subsequently,	it	was	broadly	used	as	a	general	term	to	describe	many	other	types	of	flows	like	

wet	grain	flows,	lahars3,	tillflows4,	wet	rock	avalanches,	and	debris	torrents.	

ü Mud	flows:	very	rapid	or	extremely	rapid	flows	road	to	steep	channel.	Saturated	plastic	debris	

and	soils	with	significantly	water	contents	related	to	the	source	material.	These	materials	have	a	

plasticity	index	higher	than	5%	and	the	rich	plastic	content	of	clay	that	allows	the	differentiation	

between	this	type	of	flow	and	a	debris	flow.	Clay	generates	longer	runout	due	to	the	dilution	delay	

by	water	and	drainage	(Scott	et	al.,	1992).	

	

	
Fig.	 2.12	 -	 a)	 Debris	 flow	 occurred	 in	 the	 town	 of	 La	 Conchita,	 California,	 USA	 on	 January	 2005.		

(http://www.geotimes.org/nov05/feature_landslides.html).	 b)	 Mudflow	 in	 2014	 in	 Mesa	 County,	 Colorado	

(http://blogs.agu.org/landslideblog/2014/05/28/grand-mesa-1/).	

																																																													
2	The	plasticity	index	is	a	measure	of	the	plasticity	of	a	soil.	The	plasticity	index	is	the	size	of	the	range	of	water	contents	where	the	soil	exhibits	plastic	
properties.	
3	A	lahar	is	a	volcanic	mudflow	similar	to	a	pyroclastic	flow,	thus	a	fluidized	masses	of	mixture	of	gases,	water	and	rock	fragments,	downmoving	rapidly	
caused	by	the	high	water	contents	and	the	gravity.	Its	consistency	is	viscous	and	the	density	is	fluid	when	moving,	solid	at	rest.	
4	Tillflows	are	debriflow	originate	in	sediments	deposited	above	the	glacier	that	flows	laterally	into	lower	surfaces	melted	with	glacier.	
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ü Debris	floods:	very	rapid	important	flows	of	mixtures	of	water	and	sediment,	charged	with	debris	

and	developed	during	extreme	flooding	in	a	steep	channel.	These	flows	are	distinguishable	from	

debris	flows	by	means	of	the	amount	of	solid	concentration.	The	distinction	of	a	mass-movement	

between	 debris-flow	 and	 debris	 flood	 is	 based	 on	 the	 threshold	 of	 80%	 of	 soil	 concentration	

(Costa,	1984).	

ü Debris	avalanches:	shallow	flows	characterized	by	a	very	rapid	to	extremely	rapid	velocity	with	

morphology	comparable	to	snow	avalanches.	The	material	involved	is	partially	or	fully	saturated	

debris	 down-moving	 on	 a	 steep	 slope,	 without	 confinement	 in	 an	 established	 channel.	 This	

typology	of	 landslide	 can	occur	at	all	 scales,	 starting	as	debris	 slide,	 associated	with	 failure	of	

residual,	colluvial,	pyroclastic	or	organic	soil.	The	process	of	draining	caused	from	the	rock	fall	or	

rock	slide	can	be	a	trigger	factor	of	debris	avalanches	(Lacerda,	2007).	

2.3 Landslide	in	Structurally	Complex	Formations	of	southern	Apennine	

The	southern	Apennine	chain	 represents	an	African-vergent	 fold	and	 thrust	belt	generated	during	 the	

tectogenesis	of	the	Neogene	characterised	by	a	deformation	front	direction	of	NW-SE	subsequently	migrated	

toward	NE.	The	progressive	thrusting	and	piling	up	of	different	tectonic	units	of	different	paleogeographic	

domains	was	due	to	several	compressional	tectonic	phases	(Patacca	et	al.,	1990)	associated	with	the	collision	

between	 Africa	 and	 Europe	 occurred	 from	 the	middle	Miocene	 until	 the	 upper	 Pliocene.	 The	 important	

extensional	 tectonic	 phase,	with	 a	NE-SW	extensional	 trend,	 caused	 a	 fragmentation	of	 tectonic	 units	 in	

distinct	 blocks	 piled	 up	 in	 the	 Apennine	 chain	 and	 the	 development	 of	 counter-Appenninic	 regional	

transcurrent	faults	during	the	Quaternary.	

The	“Structurally	Complex	Formations”	term	describes	geological	materials	that	had	suffered	the	above-

mentioned	geological	evolution	and	 it	 is	characterized	by	 large	and	scale-dependent	heterogeneity	 in	the	

lithological	and	structural	features	(Esu,	1977).	Heterogeneity	led	to	the	development	of	a	scaly-fabric	with	

the	 alternation	 of	 “hard”	 (rock-like	 material)	 and	 “weak”	 horizons	 (soil-like	 material)	 featuring	 the	

geotechnical	parameters	(Picarelli	et	al.,	2005).	

Several	 landslides	 affecting	 the	 southern	 Italian	 Apennine	 were	 developed	 due	 to	 their	 particular	

geological,	geotechnical	and	geomorphological	features.	These	aspects	and	the	mechanism	of	the	occurring	

landslides	 result	 to	be	very	 complex	and	 several	 studies	analysed	 the	general	 characters	 (Almagià,	1910;	

Cotecchia	and	Melidoro,	1974;	Guida	and	Iaccarino,	1991;	Di	Maio	et	al.,	2010).	The	stability	conditions	are	

conditioned	by	 the	morphological,	 geological	 and	 geotechnical	 characteristics	 that	 are	depending	on	 the	

genesis	and	the	typology	of	involved	material	and	on	the	geological	process	suffered	by	the	succession	that	
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modelled	the	landforms,	mainly	for	Structurally	Complex	Formations	(Esu,	1977).	

Esu	(1977)	proposed	a	distinction	of	Structurally	Complex	Formations	in	three	main	categories,	in	turn,	

subdivided	on	the	basis	of	the	progressive	chaotic	structure	(Fig.	2.13):	

ü A	-	fine-grained	materials,	lithologically	homogeneous,	with	presence	of	structural	discontinuities.	

This	 is	subdivided	 in	two	classes	based	on	the	discontinuities	represented	by	stratification	and	

joints,	or	by	tectonic	stresses,	respectively;	

ü B	-	heterogeneous	material,	as	flysch,	featured	by	the	presence	of	two	kind	of	soils	with	different	

mechanical	features.	It	includes	three	subclasses	based	on	the	level	of	chaos	of	the	structures.	

ü C	-	heterogeneous	materials	like	rock	or	less	weathered	rocks	in	a	clayey	matrix	with	a	completely	

disarranged	fabric	describing	a	typical	of	alteration	blankets	or	landslide	products.	

	

Among	the	most	famous	landslides	in	SCFs	studied	during	the	last	twenty	years,	are	(Fig.	2.13b):	Senerchia	

(Santaloia	et	al.,	2001),	Agnone	(Calcaterra	et	al.,	2008),	Santo	Stefano	d’Aveto	(Tofani	et	al.,	2013a),	San	

Fratello	(Ciampalini	et	al.,	2014),	Montaguto	(Giordan	et	al.,	2013),	and	Cirò	(Confuorto	et	al.,	2014).	

	

	
Fig.	2.13	 -	Categories	of	Structurally	Complex	Formations	 (Esu,	1977)	 (a);	 Italian	Structurally	Complex	Formations	

outcrops	and	location	of	famous	studied	landslide	in	the	geotechnical	literature	(D’Elia,	1991)	(b).	
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3 Test	areas	

3.1 Geological	and	geomorphological	features	of	Agnone	(southern	Italy)	

The	first	analysed	area	is	located	in	the	western	part	of	the	Agnone	municipality,	Molise	region	(southern	

Italy),	which	is	extended	up	to	about	97	km2.	The	climate	of	the	region	is	temperate	with	alternation	of	rainy,	

sometimes	snowy,	and	arid	periods,	in	autumn-winter	and	spring-summer,	respectively.	The	territory	of	this	

municipality,	as	the	major	part	of	this	region,	is	strongly	affected	by	landslides	and	erosional	processes.	 In	

the	western	zone	of	the	municipality,	the	Colle	Lapponi-Piano	Ovetta	area	(Fig.	3.1)	in	the	catchment	of	San	

Nicola	Valley,	a	tributary	in	the	hydrographic	right	side	of	the	Verrino	Torrent,	is	affected	by	a	large	landslide.	

The	 continue	 evolution	 of	 the	mass-movement,	 causing	 reshaping	 of	 the	 earth	 surface	 of	 the	 landslide,	

modify	constantly	the	morphology	of	the	area	of	interest.	

	

	
Fig.	3.1	-	Location	of	the	Colle-Lapponi	-	Piano	Ovetta	landslide	in	the	Agnone	municipality.	

Geologically	the	area	is	characterized	by	the	M.	Pizzi-Agnone	and	Colle	Albero-Tufillo	unit	showing	the	

Agnone	Flysch	formation	and	a	lower	marly	formation	(Fig.	3.2).	The	geological	setting	of	the	Colle	Lapponi	-	
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Piano	Ovetta	landslide	(CL-PO	landslide	hereafter)	is	characterized	by	the	presence	of	two	members	of	the	

Agnone	Flysch,	the	Sannitico-Molisane	Formation	dated	Upper	Miocene	(Vezzani	et	al.,	2004),	which	can	be	

considered	a	Structurally	Complex	Formation.	

	

	
Fig.	3.2	-	Geological	sketch	map	(Vezzani	et	al.,	2004)	of	the	area	of	interest	in	Agnone	with	the	current	contour	of	

the	landslide	reported	in	red.	

The	 lower	 member	 of	 this	 formation	 is	 composed	 by	 alternations	 of	 marl	 limestones,	 marls	 and	

calcarenites	in	addition	to	turbidite	silico-clastic	deposits	made	of	alternated	thin	layers	of	clayey	sandstones,	

sandstones	and	arenites.	The	upper	member	of	the	Agnone	flysch,	involved	in	the	CL-PO	landslide	as	visible	

in	the	geological	section	A-A’	traced	along	the	landslide	(Fig.	3.3),	is	constituted	by	an	alternation	of	marly,	

semi-coherence	 clayey	 and	 subordinate	 greyish	 sandy	 levels	 with	 low	 mechanical	 resistance,	 diffuse	

alteration	traces,	and	 lithoid	sandstones	or	calcareous	 intercalations	with	highly	variable	 thickness.	Some	

olistoliths	of	conglomeratic	old	material	are	present	inside	the	Agnone	formation	(ISPRA,	1971;	Vezzani	et	

al.,	 2004;	 Filocamo	et	al.,	 2015).	 The	 territory	 characterized	by	 this	 formation	 is	mantled	by	a	 superficial	

regolith	horizon	composed	of	clays,	silty	clays	and	subordinate	sand	with	diffuse	alteration	traces,	abundant	

organic	material	and	several	clasts.	
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Fig.	3.3	-	Geological	section	A-A’	traced	along	the	area	of	interest	of	the	CL-PO	landslide	(ISPRA,	1971;	Vezzani	et	al.,	

2004).	

The	 ground	 morphology	 of	 the	 area	 surrounding	 the	 landslide	 is	 strongly	 controlled	 by	 the	 mass	

movement	 and	 by	 different	 lithotypes.	 Slopes	 showing	 higher	 topographical	 gradients,	 from	 30°	 to	 35°,	

corresponds	to	outcrops	of	the	calcareous	formations,	while	lower	ones,	from	5°	to	10°,	correspond	to	areas	

where	 the	 argillaceous	 Flysch	 units	 crop	 out.	 Areas	 affected	 by	more	 significant	 erosional	 processes	 are	

characterized	by	slope	angle	values	greater	than	15°	-	20°.	

A	geotechnical	characterization	of	the	landslide	through	several	geological	and	geotechnical	campaigns	

including	 the	 execution	 of	 four	 boreholes	 (Fig.	 3.4)	 were	 conducted	 allowing	 the	 identification	 of	 four	

homogeneous	layers	described	in	the	following,	from	the	bottom	to	the	top	(Calcaterra	et	al.,	2008):	

Level	D	 -	marly	clays,	marls	and	clayey	marls	with	silty	and	clay	 fractions.	 Soil	 fraction	with	a	medium	

plasticity,	effective	peak	friction	of	about	22°	and	effective	cohesion	of	about	60	kPa.	

Level	C	-	calcareous	levels	with	thickness	variable	from	decimetres	to	meters.	

Level	B	-	grey	clays,	silty	clays,	sandy	clay	and	silty	sands	with	a	medium	plasticity,	with	effective	peak	

friction	angle	of	about	23°	and	effective	cohesion	of	about	28	kPa.	

Level	A	-	resistant	rock	and	mudstone	fragments	dispersed	into	a	chaotic	and	plastic	clayey	matrix;	this	

level	was	directly	involved	in	the	2003	reactivation	of	the	CL-PO	landslide.	Values	of	effective	peak	friction	

angle	of	about	19°	and	of	effective	cohesion	of	about	20	kPa	were	estimated	by	direct	shear	tests	conducted	

on	soil	matrix	samples.	

The	 hard	 rock	 horizon	 is	 affected	 by	 weathering	 that	 causes	 consequences	 as	 discoloration,	

decomposition	and	weakening	as	well	as	the	typical	scaly	structures.	
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Fig.	3.4	-	Engineering-geological	interpretation	of	the	data	acquired	in	the	boreholes	S1,	S2,	S3	and	S4,	modified	from	

Calcaterra	et	al.	(2008)	and	Del	Soldato	et	al.,	under	review_a.	A	-	hard	rock	fragments	and	clays;	B	-	clays	and	sands;	

C	-	limestone	level;	D	-	marls	and	clays.	

3.1.1 Available	data	

The	 available	 data	 for	 this	 area	 are	 ancillary,	 derived	 from	 remote	 sensing,	 direct	 investigations	 and	

instrumental	monitoring.	To	characterize	quantitatively	the	morphology	of	the	investigated	area,	a	series	of	

maps	derived	from	the	10-m	cell	size	Digital	Terrain	Model	TINITALY/	01	DEM	Project	(Tarquini	et	al.,	2012)	

were	reconstructed,	as	for	the	Aspect	and	the	Slope	maps,	using	geographical	tools	of	ArcGIS®.	Furthermore,	

for	the	same	area	a	DTM	of	the	Molise	Region	with	5-m	cell	resolution	was	taken	into	account.	

To	monitor	and	analyse	kinematically	the	landslide	after	the	main	reactivation,	several	instruments,	both	

conventional,	as	inclinometers	and	piezometers,	and	remote	sensing	techniques,	were	used	in	addition	to	

several	field	surveys	and	campaigns	of	GPS	measurement.	

Besides	the	four	boreholes,	to	understand	the	local	geology	of	the	landslide,	in	2006	five	inclinometers	

where	installed	(Fig.	3.5)	to	monitor	the	movements	occurring	across	the	rupture	surfaces	of	the	landslide.	

	



Integration	of	field	investigations	and	remote	sensing	techniques	for	the	assessment	of	landslide	activity	and	damage	
	

M.	Del	Soldato	

	

27	

		

	
Fig.	3.5	-Picture	and	scheme	of	the	inclinometer	installed	to	monitor	the	displacement	affecting	the	CL-PO	landslide.	

By	means	of	the	inclinometers,	subsurface	movements	of	a	landslide	can	be	determined	with	an	accuracy	

of	the	measurement	in	the	order	of	±	0.02	mm	each	3	m	of	depth	(Borgatti	et	al.,	2006;	Bressani	et	al.,	2008;	

Jongmans	 et	 al.,	 2008;	Mihalinec	 and	Ortolan,	 2008;	 Yin	 et	 al.,	 2008).	 Despite	 the	 limitation	 due	 to	 the	

geometrical	features	of	the	inclinometer,	which	allow	only	the	estimation	of	the	displacement	in	a	vertical	

plane	 (2D),	 the	orientation	of	 the	displacement	 (respect	 to	 the	North)	 is	determined	by	 two	vertical	 logs	

carried	out	in	the	same	borehole	with	a	relative	angular	difference	of	90°.	From	the	visual	analysis	of	both	

inclinometric	logs	the	depth	of	the	rupture	surface(s)	is	determined.	

As	abovementioned,	for	the	Agnone	test	sites,	four	inclinometers	were	installed	within	the	landslide	body	

(S1,	S2/5,	S3	and	S4)	and	one	beyond	the	2006	crown	zone,	in	an	apparently	stable	area	(S6)	(Fig.	3.6).	

	

	
Fig.	3.6	-	CL-PO	landslide	and	location	of	the	inclinometers.	
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Field	data	were	integrated	by	the	remote	sensing	techniques	to	investigate	the	evolution	of	the	landslide	

by	 means	 of	 historical	 aerial	 photos	 and	 by	 the	 more	 recent	 A-DInSAR	 methodologies.	 To	 perform	 an	

investigation	of	 the	evolution	of	 the	 landslide,	 a	digital	photogrammetric	 analysis	was	 conducted.	At	 the	

scope,	six	series	of	historical	aerial	photos	of	the	landslide	area,	dated	back	from	1945	to	2003,	in	grey	scale,	

were	obtained	by	the	Italian	Istituto	Geografico	Militare	(IGM)	(Table	3.1).	Furthermore,	one	set	of	colored	

pictures	dated	2005	was	provided	by	the	municipal	administrator	of	Agnone.	

	

Table	3.1	-	Characteristics	of	the	used	aerial	photographs.	

Acquisition	year	 Number	of	
photos	

Approximate	
scale	

Time	span	
(year)	

Flying	height	
(m)	

Focal	length	
(mm)	

1945	 4	 1:55000	 -	 7500	 137	

1954	 8	 1:33000	 9	 6000	 153.01	

1981	 5	 1:30000	 27	 5200	 152.55	

1986	 4	 1:28000	 5	 5100	 152.55	

1991	 6	 1:36000	 5	 6070	 153.22	

2003	 4	 1:35000	 12	 5300	 153.31	

	

ERS1/2	and	ENVISAT	satellite	images	from	1992	to	2010	elaborated	through	the	PSInSARTM	technique	by	

TRE	(Telerilevamento	Europa	Company)	were	used.	They	were	available	from	Portale	Cartografico	Nazionale	

(PCN)	 of	 the	 Italian	 Environmental	 Minister	 (http://www.pcn.minambiente.it/)	 thanks	 to	 a	 specific	

agreement	with	the	Italian	Ministry	for	the	Environment,	Territory	and	Sea	(MATTM).	

Furthermore,	 a	 study	 conducted	 using	 COSMO-SkyMed	 images	 from	 April	 2010	 to	 February	 2012	 by	

means	of	the	Announcement	of	Opportunity	Project	(ID	n°	1460)	-	COSMO-SkyMed	entitled	“Application	of	

DInSAR	 technique	 for	 the	 slow	moving	 landslides	monitoring”,	 allowed	 to	 verify	 the	 suitability	 of	DInSAR	

technique	using	SAR	COSMO-SkyMed	images	for	the	Agnone	site.		

Given	 the	 low	 back	 scattering	 of	 the	 Persistent	 Scatterers	 due	 to	 vegetation,	 to	 investigate	 landslide	

movements	in	2010,	eight	Corner	Reflectors	(Fig.	3.7)	were	installed	with	an	arrangement	consisting	in	two	

groups	of	four:	the	first	placed	for	the	ascending	orbit	and	the	second	for	descending	ones.	Furthermore,	

several	 campaigns	 of	 differential	 GPS	 measurements,	 starting	 from	 2010,	 were	 carried	 out	 to	 monitor	

displacement	of	 some	specific	points	of	 the	 landslide	body	 (CR1,	CR2,	CR3,	CR4,	CR5,	CR6,	CR7	and	CR8)	

coinciding	with	the	Corner	Reflectors.	The	measurements	were	based	on	three	stable	points	with	coordinates	

known	by	the	geodetic	Italian	network,	located	outside	of	the	landslide	area.	
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Fig.	3.7	-	CL-PO	landslide	and	location	of	the	Corner	Reflectors.	

For	the	same	area,	after	the	analysis	of	the	C-band	products	(ERS	and	ENVISAT	sensors)	and	of	2010	-	2012	

COSMO-SkyMed,	a	new	application	to	a	scientific	call	of	the	Italian	Space	Agency	(ASI)	(ASI	ID	Science	359	-	

P.I.	 Del	 Soldato	Matteo)	 entitled	 “Ground	 deformation	 monitoring	 of	 slow-moving	 landslides	 in	 Agnone	

(Molise	 region,	 Italy)	 for	 building	 damage	 assessment”	 was	 made	 to	 obtain	 COSMO-SkyMed	 images.	

Accordingly,	88	 images	 from	2012	to	2015,	41	 in	ascending	and	47	 in	descending	orbit,	were	obtained	 in	

order	to	monitor	the	landslide	displacement	for	a	longer	period	(Table	3.2).	

	
Table	3.2	-	Main	features	of	the	PSI	dataset	used	to	study	the	CL-PO	landslide.	CSK	indicates	the	COSMO-SkyMed	

sensor.	

Features	 ERS	 ERS	 ENVISAT	 ENVISAT	 CSK	 CSK	

Wavelength	 C	(		5̴.6	cm)	 C	(		5̴.6	cm)	 C	(		5̴.6	cm)	 C	(		5̴.6	cm)	 X	(		̴3.1	cm)	 X	(		̴3.1	cm)	

Incident	Angle	θ	 		̴23°	 		̴23°	 		̴23°	 		̴23°	 26.6°	 26.6°	

Geometry	 Ascending	 Descending	 Ascending	 Descending	 Ascending	 Descending	

PS	cell	resolution	

(m	x	m)	
4	x	20	 4	x	20	 4	x	20	 4	x	20	 3	x	3	 3	x	3	

Revisit	time	 35	days	 35	days	 35	days	 35	days	 16	days	 16	days	

Temporal	span	

(day/month/year)	

25/04/1993	

13/12/2000	

08/06/1992	

07/12/2000	

29/11/2002	

30/07/2010	

07/11/2002	

03/06/2010	

15/10/2012	

01/05/2015	

13/02/2012	

15/01/2014	

Processing	method	 PSInSARTM	 PSInSARTM	 PSInSARTM	 PSInSARTM	 CPT	 CPT	

N°	of	images	used	 54	 78	 50	 45	 41	 26	
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3.2 Geological	and	geomorphological	features	of	Volterra	(central	Italy)	
The	municipality	of	Volterra,	located	in	Pisa	province	(Tuscany	region,	central	Italy),	at	an	altitude	from	

460	to	500	m	a.s.l.,	is	extended	over	about	250	km2	and	delimited	by	the	Era	and	Cecina	river	valleys	(Fig.	

3.8).	The	most	relevant	urbanized	zones	of	the	municipality	are	the	Volterra	urban	area	and	Saline	di	Volterra,	

in	 the	 south-western	 sector.	 The	 local	 climate	 of	 the	 area	 is	 characterized	 by	 dry	 summer	 and	 rainfall	

concentrated	 in	 spring	 and	 autumn	with	 a	mesothermic,	 humid,	Mediterranean	 features	 (Bazzoffi	 et	 al.,	

1997).	 According	 to	 the	most	 recent	 available	 data	 (AMI	 2011),	 the	 average	 annual	 precipitation	 ranges	

approximately	between	760	and	800	mm	per	year.	

The	 urban	 area	 of	 Volterra	 is	 located	 in	 a	 tectonic	 depression	 generated	 during	 the	 post-orogenic	

extensional	stage	(Neogene).	The	wide	Pliocene	graben-basin,	known	as	Volterra	basin,	is	NW-SE	oriented	

and	bordered	by	normal	faults	(Giannini	et	al.,	1971).	The	formation	cropping	out	in	the	northern	area	of	

Volterra	municipality	is	mainly	characterized	by	Miocene-Pliocene	diffused	clayey	(“Argille	Azzurre”	-	“Blue	

Clays”)	and,	in	southern	region,	by	a	sandy	marine	formation	(‘‘Sabbie	di	Villamagna”	-	‘‘Villamagna	sands’’).	

The	 top	 of	 the	 sequences	 is	 composed	 of	 Calcarenites	 and	 Limestones	 closing	 the	 marine	 sedimentary	

succession,	 overlapping	 the	marine	 clays	 and	 sands,	 constituting	 the	 tableland	 on	which	 Volterra	 city	 is	

located	(Bianchini	et	al.,	2015b)	(Fig.	3.8b).	

In	the	southern	sector	of	the	municipal	territory	chemical	sedimentary	deposits,	such	as	travertine	and	

gypsum	 levels	 (Miocenic	 evaporitic	 episodes)	 are	 present	 (Bazzoffi	 et	 al.,	 1997;	 Pascucci	 et	 al.,	 1999).	

Furthermore,	 fine	 and	 detrital	 coarse	 sediments	 developed	 in	 lacustrine/lagoonal	 or	 continental	 fluvial-

deltaic	environments,	e.g.	“Fosci	Clays”	and	conglomerates	and	breccias,	respectively,	mantle	the	territory	

of	 the	Volterra	municipality.	Sporadically,	 in	 the	SE	basin,	 some	underlying	 Jurassic–Cretaceous	ophiolitic	

rocks	outcrops	(i.e.	serpentinites,	basalts	and	gabbros)	and	marls	and	sandstones	were	formed	by	several	

sedimentary	cycles.	Finally,	recent	colluvial	and	alluvial	deposits	fill	the	valleys	which	are	incised	by	rivers	and	

streams	over	the	whole	area	(Pascucci	et	al.,	1999).	
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Fig.	3.8	-	Location	of	the	municipality	of	Volterra	(a)	with	the	investigated	area	highlighted	by	the	red	box.	b)	The	

geological	map	of	the	whole	municipality.	

The	 chosen	 test	 site	 in	 the	 municipality	 of	 Volterra,	 affected	 by	 slope	 instability,	 is	 located	 in	 the	

southwestern	sector	of	the	town	(identified	by	the	red	colour	in	Fig.	3.9),	characterized	by	a	semi-urban	and	

rural	 landscape	 and	 enclosed	 between	 the	 watersheds	 of	 Cecina,	 Arno,	 Botro	 and	 Pagliaro	 rivers.	 The	

buildings	in	the	studies	area	are	both	masonry	and	concrete	structures	with	different	foundation	types	(e.g.	

direct	foundations,	bearing	piles	or	continuous	one),	all	realized	after	the	19th	century.	
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Fig.	3.9	-	Sectors	of	Volterra	town.	In	red	the	two	investigated	sectors	involved	by	a	landslide	are	highlighted.	

The	 morphology	 of	 the	 studied	 area	 is	 typically	 hilly,	 with	 moderate	 relief	 and	 gentle	 slopes.	 The	

outcropping	formations	in	this	area	retrace	the	main	stratigraphic	sequences	present	in	the	municipality	with	

a	 level	 of	 marine	 “Blue	 Clays”	 overlapped	 by	 cemented	 “Villamagna	 sands”	 and	 the	 upper	 calcarenitic	

tableland,	named	also	“Volterra	limestone”	(Fig.	3.10a).	Moreover,	in	the	area	of	interest	they	are	mantled	

by	shallow	colluvial	deposits,	reaching	locally	thickness	of	20	m,	contributing	to	the	ground	instability	whit	

diffuse	 superficial	 landsliding	 (Bianchini	 et	 al.,	 2015b;	 Pratesi	 et	 al.,	 2015).	 Sedimentary	 lithological	 units	

outcropping	in	the	area	of	interest	show	a	bedding	with	dip	north-eastward	between	2°	and	10°	(Terrenato,	

1998;	 Sabelli	 et	 al.,	 2012)	 (Fig.	 3.10b).	 The	 characteristic	 very	 steep,	 quite	 sub-vertical,	 cliffs	 around	 the	

Volterra	tableland	were	caused	by	the	different	geotechnical	properties	between	the	upper	well-cemented	

Volterra	calcarenites,	the	overlapping	erodible	Villamagna	sands	and	the	lower	impermeable	clays.	
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Fig.	 3.10	 -	 Geology	 of	 the	 SW	 area	 of	 the	 municipality	 of	 Volterra	 with	 the	 overlapped	 landslide	 and	 badland	

inventories	(a)	and	two	geological	cross-sections	(b).	1	-	sandy	detritus;	2	-	clay	detritus	3	-	“Volterra	limestone”;	4	-	

“Villamagna	sand”;	5	-	“Blue	clay”;	6	-	clay;	7	-	sliding	surface	(GEOSER	s.c.r.l.	&	GEOPROGETTI	company).	

The	combination	of	hydrogeological	features	and	setting	of	these	formations	caused	the	undermining	of	

the	basal	clays	of	the	Volterra	hills	with	consequent	retrogressive	slope	failures	(Bianchini	et	al.,	2016).	In	the	

entire	municipal	territory,	more	than	one	thousand	of	mass	movements,	categorized	for	their	state	of	activity	

and	typology	of	movement,	were	mapped	(Fig.	3.11a)	The	main	landslide	typologies	affecting	this	territory	

are	represented	by	shallow	transitional	slides	and	soil	erosion,	according	to	the	available	landslide	inventory	

map	 provided	 by	 the	 Tuscany	 region	 referred	 to	 2012.	 Furthermore,	 the	 topography	 and	 the	 geological	

structure	of	the	tableland	influenced	the	spatial	distribution	and	the	typology	of	landslide	involving	the	area	

(Bianchini	et	al.,	2015b).	Typical	gullies	 in	clayey	soils	 characterize	 the	southern	slope	of	 the	Volterra	hill	

where	 the	 “Blue	 Clays”	 mainly	 crop	 out	 (Fig.	 3.11b),	 The	 two	 main	 types	 of	 calanchi	 are:	 “Type	 A”,	

characterized	by	incised	landforms	with	unvegetated	and	“knife-edged”	ridge	(Moretti	and	Rodolfi,	2000);	

“Type	B”,	featured	by	shallow	slides	coexisting	with	concentrated	water	erosion	(Rodolfi	and	Frascati,	1979).	
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Fig.	3.11	-	Inventories	of	landslide	(a)	and	badlands	(b)	affecting	the	municipal	territory	of	Volterra.	

3.2.1 Available	data	

Data	for	analyses	were	obtained	by	remote	sensing	techniques,	instruments	locates	into	and	close	to	the	

landslide	 area,	 terrain	 calculations	 on	 Digital	 Terrain	 Model	 (DTM)	 data,	 with	 10-m	 cell	 size	 resolution	

obtained	from	TINITALY/	01	DEM	Project	(Tarquini	et	al.,	2012),	allowing	the	reconstruction	carried	out	by	

ArcGIS®	software	of	Aspect	and	Slope	digital	maps.	

The	lithologies	of	the	southwestern	region	of	Volterra	affected	by	slope	instabilities	were	investigated	by	

means	of	twelve	drillings	by	the	GEOSER	s.c.r.l.	&	GEOPROGETTI	company	(Fig.	3.12).	Some	of	these	were	

subsequently	converted	 in	piezometers	and	 inclinometers	 (S1,	S2,	S4,	S6,	S7,	S8	and	S11)	 to	monitor	 the	

depth	of	the	water	table	and	the	movement	of	the	landslide,	respectively.	
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Fig.	3.12	-	Topographical	map	(1:5000)	of	the	southwestern	area	of	Volterra	with	the	location	of	the	drillings	and	the	

inclinometric	investigations	(GEOSER	s.c.r.	&	GEOPROGETTI,	2010).	

The	 inclinometers	 installed	 in	 seven	 boreholes	 were	 system	 IN910	 (Fig.	 3.13)	 provided	 by	 SIM	

INSTRUMENT	 S.n.c.	 Company	 of	Magenta,	Milan	 (Lombardy	 province,	 north	 Italy).	 They	were	 located	 as	

follows:	

	

Ø S1,	S2	and	S4	in	the	Fontecorrenti	area.	The	inclinometer	S4	was	destroyed	and	made	useless;	

Ø S6	and	S7	in	the	San	Lazzaro	region;	

Ø S8	and	S11	in	the	Le	Colombaie	zone.	

	

	
Fig.	3.13	-	Details	of	the	inclinometer	used	to	monitor	the	landslide	in	Volterra.	
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In	addition	to	conventional	methods,	remote	sensing	investigations	by	means	of	historical	aerial	images,	

analysed	 by	 the	 Structure	 from	Motion	 technique,	 and	 Persistent	 Scatterers	 developed	 by	 the	 A-DInSAR	

methods	were	adopted	to	investigate	the	area	of	interest.	

The	 available	 historical	 aerial	 images	were	 requested	 to	 the	 Italian	 Istituto	Geografico	Militare	 (IGM)	

database	and	 five	 series	 covering	 the	area	of	 interest	 from	1954	 to	1996,	 in	 grey	 scale,	were	 found	and	

obtained	(Table	3.3).		

	

Table	3.3	-	Characteristics	of	the	historical	aerial	photographs.	

Acquisition	year	 Number	of	
photos	

Approximate	
scale	

Time	span	
(year)	

Flying	height	
(m)	

Focal	length	
(mm)	

1954	 3	 1:30000	 -	 5000	 154.17	

1965	 4	 1:22000	 11	 3000	 152.35	

1982	 5	 1:30000	 17	 4500	 152.55	

1986	 3	 1:32000	 4	 5000	 152.55	

1995	 2	 1:38000	 9	 5800	 152.73	

1996	 2	 1:40000	 1	 6200	 153.22	

	

ERS1/2	and	ENVISAT	Persistent	Scatterers	located	in	the	investigated	area	were	identified	by	the	Portale	

Cartografico	Nazionale	(PCN)	of	the	Italian	Environmental	Ministery	(http://www.pcn.minambiente.it/).	To	

investigate	the	deformation	PS	of	C-band	ERS1/2,	acquired	 in	the	descending	orbit,	and	ENVISAT,	 in	both	

ascending	and	descending	data,	 from	1992	 to	2000	and	 from	2003	 to	2010,	 respectively,	were	analysed.	

Furthermore,	57	COSMO-SkyMed	X-band	images	were	provided	by	the	Italian	Space	Agency	under	request	

of	the	Italian	Civil	Protection	Department	to	investigate	the	territory	affected	by	hydrogeological	problems	

during	2014,	e.g.	Volterra.	These	images	covering	the	studied	area	from	2010	to	2015	(Table	3.4).	

	

Table	3.4	-	Main	features	of	the	PSI	dataset	in	the	Volterra	site.	CSK	indicates	the	COSMO-SkyMed	sensor.	

Features	 ERS	 ENVISAT	 ENVISAT	 CSK	 CSK	

Wavelength	 C	(		5̴.6	cm)	 C	(		5̴.6	cm)	 C	(		5̴.6	cm)	 X	(		̴3.1	cm)	 X	(		̴3.1	cm)	

Incident	Angle	θ	 		̴23°	 		̴23°	 		̴23°	 31°	 26.6°	

Geometry	 Descending	 Ascending	 Descending	 Ascending	 Descending	

PS	cell	resolution	(m	x	m)	 4	x	20	 4	x	20	 4	x	20	 3	x	3	 3	x	3	

Revisit	time	 35	days	 35	days	 35	days	 16	days	 16	day	

Temporal	span	

(day/month/year)	

24/09/1992	

27/11/2000	

26/08/2003	

20/07/2010	

10/02/2003	

28/06/2010	

24/02/2010	

15/11/2013	

28/01/2011	

07/01/2015	

Processing	method	 PSInSARTM	 PSInSARTM	 PSInSARTM	 SqueeSARTM	 SqueeSARTM	

N°	of	images	used	 41	 41	 35	 25	 41	
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4 Methodology	

Both	 remote	 sensing	 analysis	 and	 field	 surveys	 were	 executed.	 In	 this	 chapter,	 the	 different	

methodologies	applied	to	the	two	investigated	areas	are	explained	and	described	in	detail.	

4.1 Remote	sensing	analysis	

Several	 techniques	 of	 remote	 sensing	 were	 applied	 for	 the	 scopes	 of	 the	 PhD	 research.	 The	 PhD	

investigations	were	developed	with	the	contribution	of	the	Structure	from	Motion	technique,	to	reconstruct	

the	 3D	 model	 of	 the	 study	 areas	 and	 landslide	 evolutionary	 stages.	 Moreover,	 Advanced-Differential	

Interferometry	products,	obtained	by	the	elaboration	of	Synthetic	Aperture	Radar	images	in	C-	and	X-band,	

were	also	used	for	the	scopes	of	the	research.	

4.1.1 3D	reconstruction	of	aerial	images	

Historically,	 “photogrammetrie”	 was	 a	 name	 coined	 by	 pioneers	 in	 the	 1840’s	 who	 used	 cameras	 to	

estimate	the	shape	of	terrain	through	ground	and	aerial	photographs	(Jebara	et	al.,	1999;	Maybank,	2012).	

Digital	photogrammetric	analysis	is	a	cost-effective	and	useful	tool	to	pursue	geomorphological	studies	(Lane	

et	al.,	1993;	Chandler,	1999).	Old	aerial	non-digital	photos	provide	a	two-dimensional	(2D)	sight	and	a	three-

dimensional	(3D)	vision	only	for	the	overlapped	area	by	means	of	stereoscopy.	Despite	the	use	of	old	aerial	

photos	shows	several	limitations,	it	still	plays	a	key	role	to	detect,	map	and	monitor	geomorphological	and	

environmental	evolution	of	natural	processes	affecting	the	territory	(Carrara	et	al.,	2003).	For	this	reason,	

cost-effective	 methods	 for	 modelling	 and	 remote	 sensing	 approaches	 were	 spread	 and	 increased	 in	

importance	in	last	decades	(García-Ruiz	et	al.,	2013).	The	analysis	conducted	by	stereophotogrammetry	using	

non-digital	 images,	 allows	 the	 observation	 of	 geomorphological	 evolution	 along	 several	 decades	 (Hapke,	

2005).	Currently,	the	use	of	a	stereoscope	is	considered	obsolete	and	a	relatively	old	technique	(Slama	et	al.,	

1980),	 while	 several	 free	 and	 commercial	 software	 packages	 allowing	 the	 3D	 vision	 through	 the	 use	 of	

anaglyph	glasses	 (glasses	with	one	 lens	blue	and	the	other	one	red)	were	developed.	Formerly,	historical	

aerial	photos	were	used	for	producing	Digital	Elevation	Models	(DEMs)	(Dewitte	et	al.,	2008),	to	delineate	

geomorphological	 shapes	 and	 for	 analysing	 their	 evolution	 in	 time.	 Recently,	 the	 popularity	 of	 remote	

sensing	techniques,	such	as	Structure	from	Motion	(SfM	in	the	following)	emerged	in	the	late	1970s	(Ullman,	

1979),	becoming	more	and	more	important	since	the	last	decade	(Abellan	et	al.,	2016).	Digital	models	created	

through	 3D	 laser	 scanning	 or	 LiDAR	 (Light	 Detection	 And	 Ranging)	 instruments	 can	 show	 the	 evolution	

between	different	acquisitions	of	data	related	to	specific	moments	without	the	possibility	to	obtain	digital	
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information	of	 the	past.	Contrarily,	SfM	 technique,	 allowing	 the	 reconstruction	of	 a	 surface	by	means	of	

digital	photographs,	can	be	used	in	order	to	investigate	the	situation	of	a	site	in	several	moments.	Therefore,	

if	 historical	 digitalized	 images	 (non-digital	 scanned	 pictures)	 of	 a	 site	 were	 available,	 it	 is	 reasonable	 to	

consider	that	a	digital	model	can	be	generated	to	reconstruct	the	geomorphological	situation	since	the	40’s	

(years	 of	 the	 first	 historical	 series	 available	 for	many	 areas)	 in	 order	 to	 investigate	 the	 evolution	 of	 the	

recognizable	phenomena.	

Despite	 the	 algorithm	 was	 developed	 several	 years	 ago,	 the	 application	 of	 the	 SfM	 technique	 for	

geomorphological	studies	of	the	Earth	surface	evolution,	and	in	the	geosciences	in	general,	is	an	emerging	

approach	 with	 basic	 tenets	 comparable	 to	 those	 of	 the	 stereo-photogrammetry	 (Snavely	 et	 al.,	 2008;	

Westoby	et	al.,	2012).	This	approach	allows	to	generate	3D	point	clouds	(hereafter	3DPC)	handling	a	set	of	

overlapping	digital	photographs	to	represent,	in	a	relative	“image-space”	coordinate	system,	the	geometry	

and	the	structure	of	the	scene	(Hartley	and	Zisserman,	2003;	Szeliski,	2010;	Fisher	et	al.,	2013).	To	project	

the	object	of	 interest	 in	an	absolute	 coordinate	 system,	 some	Ground	Control	Points	 (GCPs)	with	known	

object-space	 coordinates	 have	 to	 be	 inserted	 in	 order	 to	make	 useful	 this	 technique	 in	 the	 geosciences	

branch.	

The	SfM	approach	is	widely	used	for	applications	of	computer	vision	to	recover	3D	shape	and	appearance	

of	 objects	 in	 imagery	 (Szeliski,	 2010;	 Doneus	 et	 al.,	 2011).	 In	 literature,	 several	 examples	 of	 3D	

reconstructions	of	external	 façades	of	buildings	and	monuments	 (e.g.	Snavely	et	al.,	2008;	Furukawa	and	

Ponce,	2010)	or	archaeological	sites	(e.g.	Doneus	et	al.,	2011;	Verhoeven,	2011;	Verhoeven	et	al.,	2012)	are	

available.	Moreover,	the	recent	diffusion	of	Unmanned	Aerial	Vehicles	(UAVs)	allowed	the	application	of	SfM	

techniques	to	produce	Digital	Elevation	Models	(DEMs)	(Turner	et	al.,	2012;	Lucieer	et	al.,	2013;	James	and	

Robson,	2014).	

Agisoft	 Photoscan	 Pro	 software	 exploits	 the	 SfM	 technique	 and	 it	 works	 using	 digital	 images	 and	

algorithms	optimized	for	taking	advantages	of	the	graphic	processing	unit	(GPU)	(Lucieer	et	al.,	2013).	The	

SfM	procedure	and	the	parameters	commonly	adopted	in	Photoscan	are	described	in	Verhoeven	(2011)	and	

Doneus	et	al.	(2011).	To	investigate	the	evolution	of	the	two	test	areas,	the	common	procedure	to	reconstruct	

in	3D	on	object	has	been	adapted	to	generate	3D	models	from	historical	aerial	non-digital	images.	The	simply	

imagery	processing	workflow	is	summarized	in	Fig.	4.1.	

	



Integration	of	field	investigations	and	remote	sensing	techniques	for	the	assessment	of	landslide	activity	and	damage	
	

M.	Del	Soldato	

	

39	

		

	

Fig.	4.1	-	Adapted	workflow	for	3D	reconstruction	by	non-digital	historical	images.	

The	proposed	flowchart	gives	an	easy	overview	of	the	processing,	with	the	dedicated	setting	adopted	for	

historical	 non-digital	 photos	 that	 could	 have	 relevant	 impact	 for	 the	 study	 of	 environmental	 evolution	

(Carrara	et	al.,	2003).	By	means	of	the	reconstruction	of	3D	models	and	the	extraction	of	 information	for	

areas	where,	at	 least,	two	images	took	in	the	same	time	are	partially	overlapped,	this	approach	offers	an	

important	opportunity	to	apply	the	SfM	technique	in	the	geosciences	branch.	Furthermore,	these	features	

permit	to	analyse	the	evolution	of	geomorphological	features	over	wide	areas	by	historical	aerial	pictures	
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available	since,	at	least,	the	’40s.	

First	of	all,	the	correct	choice	of	the	images	covering	the	area	of	interest	is	fundamental.	For	example,	one	

of	the	most	important	factors	that	determines	a	reliable	reconstruction	is	the	overlapping	between,	at	least,	

two	pictures	of	the	investigated	area.	This	condition	plays	a	key	role	to	develop	the	3D	reconstruction	without	

bumping	into	errors	and	lacks	of	information	in	the	restitutions.	The	available	old	source	data	are	generally	

printed	 images	 and,	 given	 that	 the	 software	works	with	 digital	 imagery,	 raw	 data	 have	 to	 be	 digitalized	

through	 a	 scan	 process	 with	 close	 attention	 and	 appropriate	 resolution	 to	 preserve	 all	 the	 valuable	

information.	It	is	worthy	to	note	that	photos,	and	consequently	scanned	images,	can	be	degraded	by	time	

and	even	ruined	by	the	users	compromising	some	information.	Secondarily,	the	scanned	images	have	to	be	

cropped,	preserving	 the	central	pixel	 coincident	with	 the	 intersection	of	 the	optical	axis	 in	order	 to	have	

exactly	the	same	number	of	pixels	to	be	processed	by	the	software	recognising	all	the	images	as	shot	by	the	

same	camera.	

The	first	phase	of	the	process	is	the	alignment	of	the	prepared	images.	Once	that	all	images	are	loaded	in	

a	chunk5,	the	alignment	process	can	be	performed,	in	order	to	allow	the	software	to	automatically	calculate	

the	camera	positions	and	orientations	in	the	local	“image-space”	coordinate	system	and	to	correlate	images	

each	other.	A	big	advantage	of	the	SfM	technique	is	the	automatic	reconstruction	of	the	scene	geometry,	the	

camera	pose	and	its	orientation	(Snavely	et	al.,	2008),	by	means	of	a	redundant	iterative	bundle	adjustment	

procedure	 on	 features	 extracted	 from	 a	 set	 of	 overlapping	 digital	 imagery.	 In	 this	 way,	 the	 camera	

parameters	are	assessed	and	calibrated,	and	if	the	images	are	well	prepared	they	have	to	be	recognized	as	

acquired	by	the	same	camera	type,	in	order	to	apply	the	optimization	processes	and	the	lens	calibration	to	

all	 images	 simultaneously.	 This	 process	 allows	 to	 dramatically	 reduce	 the	 number	 of	 unknowns.	 The	

alignment	step	is	performed	using	simple	settings	(Fig.	4.2a):	High	accuracy,	Generic	pair	selection,	suitable	

for	unknown	camera	positions	as	for	old	aerial	images.	

The	alignment	procedure	has	to	be	conducted	for	each	set	of	images,	e.g.	for	each	year	of	recording	and	

for	each	area	of	interest.	If	the	area	of	interest	is	close	to	water	regions	(e.g.	big	lake	or	sea),	much	attention	

has	to	be	paid.	It	could	happen	that	a	large	part	of	the	overlapped	area	between	the	images	under	process	

falls	 into	water	areas	and	the	alignment	could	be	not	allowed	due	to	the	 lack	of	 information.	 In	case	this	

occurs,	a	mask	to	“eliminate”	the	area	with	no,	or	not	enough,	information,	e.g.	water	regions,	can	be	created	

and	the	alignment	has	to	be	launched	again.	

The	provided	 result	of	 the	 first	phase	 is	a	 sparse	point	cloud	of	 the	overlapped	area	with	 the	 relative	

position	in	the	“space-image”	of	the	processed	photos	(Fig.	4.2b).	

	

																																																													
5	Chunk:	box	where	set	of	photos	could	be	split	 if	 in	the	same	project	different	years	are	present	concerning	the	

same	area	or	different	areas	of	interest.	The	elaboration	of	the	images	is	conducted	separately.	
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Fig.	4.2	-	a)	Screenshot	of	the	setting	for	the	suitable	alignment	for	historical	aerial	photos,	when	the	camera	position	

is	unknown.	B)	Sparse	cloud	generated	after	the	alignment	of	the	images.	

The	 re-projection	 of	 a	 sparse	 cloud	 from	 a	 local	 “image-space”	 coordinate	 system	 to	 an	 absolute	

coordinate	system	chosen	by	the	operator	is	possible	adding	several	GCPs	and	TiePoints	(step	2	in	Fig.	4.1).	

The	handbook	of	Photoscan	(2013)	suggests	to	input	at	least	10	-	15	GCPs	distributed	evenly	within	the	area	

of	interest	to	obtain	a	good	georeferencing.	The	accumulated	experience	had	taught	that	the	main	important	

thing	 for	obtaining	a	high	precision	 is	a	good	distribution	of	 the	GPCs	 in	 the	whole	area,	 increasing	 their	

number.	 In	addition,	Tie	Points,	points	with	no	coordinates,	but	well-recognizable	on	each	 image,	can	be	

added	to	increase	the	correlation	between	the	different	overlapping	images	and	to	improve	the	correction	

of	their	distortion.	The	coordinates	of	the	GCPs	can	be	obtained	by	means	of	GPS	campaigns	during	field	

surveys	or	they	can	be	extracted	from	DEM	or	through	official	Web	Map	Services	(WMS)	available	on	web	

sites.	Close	attention	has	to	be	paid	to	recognize	as	accurate	as	possible	the	same	location	of	points	where	

the	coordinates	are	taken	on	historical	and	currently	available	photos.	Once	that	several	GCPs	are	inserted	

on	the	aligned	photos	(Fig.	4.3a),	the	referring	coordinate	system	has	to	be	updated	in	that	of	the	inserted	

points	and	the	calibration	process	has	to	be	launched.	By	means	of	the	Optimize	camera	tool,	error	in	meters	

and	 in	pixels	of	each	GPCs	 input	 is	automatically	 calculated	 (Fig.	4.3b).	The	suggested	parameter	by	 the	

software	can	be	used	and	an	expected	precision	of	the	georeferencing	were	visualized	in	the	bottom	of	the	

GCPs	of	the	list.	In	case	the	obtained	precision	is	not	enough	for	the	aim	of	the	work,	errors	can	be	enhanced	

in	several	ways:	

a) switching	off	GPCs	with	excessive	errors;	

b) checking	the	correct	positioning	of	the	GCPs	and	the	correspondence	of	the	TiePoints;	

c) improving	the	numbers	of	GCPs	and	covering	areas	in	which	they	are	scarce;	

d) adding	some	Tie	Points	to	improve	the	alignment	and	the	correlation	between	the	overlapped	images.	

The	calibration	tool	has	to	be	launched	each	time	that	some	GCPs	or	TiePoints	are	added,	switched	off	or	
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modified,	to	update	the	georeferencing	precision	assessment.	

	
Fig.	4.3	-	a)	Dense	cloud	of	a	Ligurian	area	where	several	Ground	Control	Points	and	Tie	Points	were	added.	b)	Example	

of	the	table	in	which	the	errors	of	the	inserted	GCPs	and	TiePoints	are	shown.	

The	 3D	 reconstruction	 is	 generated	 into	 a	 delineated	 space	 that	 can	 be	 sized	 and	 rotated	 to	 set	 the	

bounding	box	in	which	the	3D	Point	Cloud,	and	the	subsequently	products,	will	be	generated.	Attention	has	

to	be	paid	during	the	orienting	phase	of	the	ground	plane,	recognizable	by	means	of	the	red	colour	(the	lower	

surface	of	the	box	in	Fig.	4.4a),	under	the	model	and	parallel	to	the	XY	plane.	This	operation	is	important	

because	it	defines	the	reconstruction	plane	for	the	tool	to	calculate	the	height	information	from	the	terrain	

surface	to	be	assigned	to	each	point	of	the	3DPC.	The	3DPC	generation	is	conducted	setting	the	Quality	as	

Medium	and	the	Depth	filtering	as	Aggressive	(Fig.	4.4b).	The	Medium	quality	is	enough	for	the	goal	of	the	

work	considering	 that	 the	 reconstruction	 is	 conducted	on	digitalized	historical	 images	 that	not	have	high	

resolution.	 A	 higher	 quality	 would	 ask	 more	 time	 and	 a	 higher	 performance	 of	 the	 machine	 should	 be	

necessary,	with	high	probability	to	obtain	no	better	results	since	the	cell	of	work	considered	by	the	algorithm	

would	be	smaller	than	the	pixel	resolution	of	the	processed	imagery	(Photoscan,	2013).	The	depth	filtering	

is	set	as	Aggressive	because	this	preference	is	suitable	for	areas	with	no	meaningful	detail	and	it	allows	to	

sort	out	most	of	the	outliers,	then	it	results	adequate	for	the	reconstruction	of	terrain	from	historical	aerial	

images.	Using	other	filters,	areas	with	important	slope	changes	are	generally	visualized	as	holes,	thus	showing	

areas	with	no	information.	
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Fig.	4.4	-	a)	Reshaping	of	the	Box	where	the	Dense	Cloud	will	be	generate.	b)	Setting	of	the	Dense	Cloud	tool.	

The	subsequent	step	envisages	the	reconstruction	of	the	polygonal	mesh	from	the	3DPC	data	previously	

generated.	As	settings	in	the	tool	window	High	field	as	Surface	type,	Dense	cloud	as	Source	data	and	High	

Face	 count	 configuration	 are	 chosen	 (Fig.	 4.5a).	High	 field	 as	 surface	 type	 is	 suitable	 for	 aerial	 images	

because	it	is	optimized	for	modelling	planar	surfaces	as	terrains	or	basereliefs.	The	Interpolation	preference	

allows	three	possibilities	based	on	the	aim	of	the	study:	Enable	(default)	creates	the	mesh	closing	holes,	if	

present	in	the	3DPC,	interpolating	points	close	to	them;	Disabled	leaves	the	holes	also	in	the	computed	mesh;	

Extrapolated	 generates	a	mesh	extrapolating	 it	until	 the	boundary	of	 the	box	previously	defined,	even	 if	

bigger	than	the	dense	points	cloud.	In	case	some	holes	are	present,	they	subsequently	can	be	also	closed	

editing	the	geometry	by	means	of	a	tool	that	works	in	the	same	way,	even	if	the	mesh	was	generated.	

Despite	the	creation	of	the	texture	is	not	mandatory,	it	can	be	built	on	the	mesh	data	to	further	inspect	

the	possible	reconstruction	of	 the	area	of	 interest	before	generating	the	model	and	exporting	results.	To	

perform	 the	 texture	 Orthophotos	 or	 Adaptive	 Orthophotos	 as	Mapping	 mode	 and	Mosaic	 (default)	 as	

Blending	mode	 parameters	have	 to	be	 set	 (Fig.	4.5b).	 The	 choice	between	 the	Orthophotos	 or	Adaptive	

orthophotos	has	to	be	taken	based	on	the	investigated	area.	Orthophotos	and	Adaptive	orthophotos	work	

with	the	same	algorithm,	but	the	second	one,	in	addition,	processes	separately	regions	where	vertical	areas	

are	present.	
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Fig.	4.5	-	Setting	to	generate	the	Mesh	(a)	and	the	Texture	(b).	

At	the	end,	Digital	Elevation	Model	and	the	Orthomosaic	of	the	whole	area	covered	by	 images	can	be	

reconstructed.	The	DEM	generation	is	based	on	the	Dense	cloud	and	as	Coordinate	System	the	one	assigned	

during	the	input	the	GCPs	is	suggested	by	the	software.	The	Interpolation	setting	(Fig.	4.6a)	follows	the	same	

choices	used	for	the	Mesh	generation	(Step	4	in	Fig.	4.1).	Setting	boundary	by	coordinates	is	not	necessary	

because	at	default	 the	used	box	dimensions	are	 fixed	during	 the	phase	concerning	the	generation	of	 the	

3DPC.	Once	performed	the	DEM,	the	contour	lines	can	be	set	by	the	operator	and	automatically	traced	by	

the	software	according	to	chosen	interval	(Fig.	4.6b).	Obviously,	the	quality	of	the	generated	model	strongly	

depends	on	the	available	initial	data	and	on	the	accuracy	used	during	the	input	of	GPCs	and	TiePoints.	

	

	
Fig.	4.6	-	Parameters	for	the	DEM	generation	(a)	and	an	example	of	DEM	with	25	m	contour	(b).	

The	orthomosaic,	generated	starting	from	the	Digital	Elevation	Model	or	from	the	Mesh,	allows	to	have	a	

preliminary	 vision	of	 the	whole	 rebuilt	 and	georeferred	area	by	means	of	 the	use	of	 the	historical	 aerial	

images.	Also	in	this	case,	in	the	preferences	dialog	box	it	is	possible	to	choice	of	the	coordinate	system	of	the	

product,	 the	Geographical	 projection	used	 in	 the	previous	 stage	 is	 suggested,	 and	 the	Blending	mode	 at	
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default	is	set	as	Mosaic	mode	in	the	texture	passage.	The	pixel	size,	shown	in	the	bottom	of	the	dialog	box,	

is	automatically	set	according	to	the	resolution	of	the	initial	data,	the	developed	processing	and	the	size	of	

the	orthomosaic.	As	for	the	DEM,	it	is	not	necessary	to	set	the	boundary	coordinates	because	they	are	carried	

out	by	the	previous	stages.	

	

	
Fig.	 4.7	 -	Preferences	 to	build	 the	orthomosaic	 (a)	 for	a	 region	 covered	by	 three	historical	 images	with	 sufficient	

overlapping	area	(b)	to	generate	it.	The	result	is	a	big	georeferred	image	(c)	covering	the	entire	area	with	enough	

overlapping	to	correlate	the	single	shot.	

4.1.2 Persistent	Scatterer	Interferometry	

4.1.2.1 Radar	

RAdio	Detection	And	Ranging,	known	as	RADAR,	is	a	technique	based	on	the	use	of	electromagnetic	waves	

that	allow	to	determine	the	position	as	well	as	the	velocity	of	fix	and	moving	targets	with	high	precision.	The	

radar	technology	works	with	a	two-way	travel	time	of	pulses	in	radio	wavelengths.	The	receiver	is	able	to	

assess	the	echo	of	the	back-scattered	signal	by	the	object	inferring	its	intensity	and	physical	quantity.	The	

technique	 was	 born	 for	 military	 applications	 and	 only	 in	 the	 last	 decades	 was	 spread	 also	 for	 civil	 and	

scientific	 utilizations	 (Hanssen,	 2001).	 The	 use	 of	 this	 type	 of	 sensors	 allows	 the	 acquisition	 of	 data	

independently	of	the	weather	conditions	and	illuminations	getting	it	usable	regardless	during	day	and	night.	

The	 application	 in	 geosciences	 gives	 big	 advantages	 for	 monitoring	 geomorphological	 evolutions,	 for	

instance,	by	means	of	the	possibility	to	have	overviews	of	wide	regions	of	the	Earth.	Radar	geometry	(Fig.	
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4.8)	is	able	to	distinguish	targets,	differently	from	the	optical	instruments,	by	means	of	their	reflected	signal	

only	based	on	the	returning	time	of	the	emitted	signal.	Is	it	worthy	to	notice	that,	to	perform	this,	the	radar	

works	using	a	side-looking	shape	to	enlighten	just	one	side	of	the	ground	range,	generally	the	right-side.	

 

	
Fig.	4.8	-	Image	Radar	geometry	(Trivero	and	Biamino,	2010).	

Swat	 is	the	area	of	the	Earth	surface	enlightened	by	the	microwave	beam	with	a	certain	obliquity	with	

respect	to	the	nadir.	The	azimuth	range	or	along-track	 is	the	direction	along	the	trajectory	of	the	sensor,	

while	the	ground	range	or	across-track	is	the	perpendicular	way.	The	direction	between	the	antenna	and	the	

object	along	the	Line	of	Sight	(LOS)	 is	called	Slant	range.	Given	that	the	radar	is	side-looking,	the	angle	of	

incident	and	the	angle	of	local	incident	have	to	be	distinguished	(Fig.	4.9).	The	first	one	is	the	angle	between	

the	radar	waves	and	the	vertical	ones,	while	the	local	incident	is	the	angle	formed	between	the	radar	waves	

and	the	normal	with	respect	to	the	surface,	subjects	to	changes	according	the	ground	slope.	
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Fig.	4.9	-	Relation	between	the	LOS	and	the	geometry	for	the	incidence	angle	θ	and	for	the	local	incidence	angle	θl	

(Rizzoli	and	Bräutigam,	2014).	

4.1.2.2 Synthetic	Aperture	Radar	(SAR)	

The	Synthetic	Aperture	Radar	(SAR)	is	a	technique	in	which	the	signal	processing	is	used	to	improve	the	

resolution	 “synthesizing”	 a	 very	 long	 antenna	 (Fig.	 4.10).	 This	 permits	 to	 maintain	 an	 antenna	 with	

reasonable	dimension	reaching	good	resolution.	

	

	
Fig.	4.10	-	The	geometry	and	terms	of	the	SAR	systems	(Ouchi,	2013).	HSAR:	height	of	the	SAR	platform;	c:	velocity	of	

the	microwave;	r(t):	slant-range	distances	at	the	azimuth	time	t;	R:	slant-range	distances	at	the	azimuth	when	the	

antenna	is	nearest	to	the	target	at	the	origin	of	the	ground	coordinate	system	(x,	y).	

SAR	sensors	can	work	in	different	bands	of	the	electromagnetic	spectrum	(Fig.	4.11)	and,	based	on	the	

length	of	the	wavelength,	the	penetration	of	the	signal	changes.	For	 instance,	to	have	strong	penetration	
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into	the	vegetation	and	soils	the	wavelength	should	be	longer,	then	with	low	frequency	(e.g.	L-band).	

	

	
Fig.	4.11	-	Microwave	spectrum	used	for	the	SAR	methods	(Ouchi,	2013)	related	with	the	satellite	constellation	on	

which	were	mounted	(past,	present	and	future	launches).	

The	 images	 registered	 from	 the	 radar	 satellite	 sensors	 are	 affected	 by	 geometric	 and	 radiometric	

distortions.	The	geometric	distortion	is	due	to	the	relationship	between	the	Line	of	Sight	(LOS)	of	the	satellite,	

function	depending	also	on	the	flying	line,	and	the	topography	of	the	scanned	area.	Objects	close	to	the	flying	

area	(near	range)	appear	compressed	in	direction	of	the	ground	range	if	compared	with	objects	farther	from	

the	sensor	(far	range).	Through	the	slant-to-ground	projection,	it	is	possible	to	approximate	the	real	position	

of	 the	 sensors	 and	 better	 interpret	 the	 resulting	 images	 knowing	 the	 average	 height	 of	 the	 sensor	with	

respect	to	the	area.	Three	types	of	geometrical	distortions	affect	the	images	captured	from	the	side-looking	

satellites:	

Ø Foreshortening	(Fig.	4.12a):	when	the	radar	beam	reaches	the	base	of	a	tall	feature	tilted	towards	the	

radar	(e.g.	a	mountain)	before	the	top	of	it,	the	foreshortening	effect	occurs.	The	distance	between	

these	 two	 points	 (A	 to	 B),	 from	 the	 radar	 measures	 distance	 in	 slant-range,	 appears	 compressed	

representing	the	length	of	the	slope	incorrectly	(A'	to	B').	The	severity	of	this	effect	depends	on	the	

angle	between	the	hillside,	or	mountain	slope,	and	the	incidence	angle	of	the	radar	beam.	Maximum	

foreshortening	occurs	when	the	radar	beam	is	perpendicular	to	the	slope	so	that	the	base	and	the	top	

of	the	slope	are	imaged	simultaneously	(A’	and	B’	are	projected	in	the	same	place),	reducing	the	length	

of	the	slope	close	to	zero	 in	slant	range.	This	geometrical	distortion	 is	recognizable	 in	the	acquired	

radar	images	by	means	of	the	white	colour	of	affected	areas.	

Ø Layover	(Fig.	4.12b):	when	the	radar	beam	arrives	at	the	top	of	a	tall	shape	tilted	towards	the	radar	
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(e.g.	a	mountain)	before	the	base,	the	layover	effect	occurs.	In	this	case	the	return	signal	from	the	top	

of	the	feature	(B’)	is	received	before	the	signal	from	the	bottom	(A’).	In	this	way,	the	top	of	the	feature	

is	displayed	towards	the	radar	from	its	true	position	on	the	ground,	and	it	"lays	over"	the	base	of	the	

feature	(B'	to	A').	This	effect	on	a	radar	image	looks	very	similar	to	the	foreshortening	distortion	and,	

also	in	this	case,	the	layover	is	most	severe	for	small	incidence	angles,	the	near	range	of	a	swath,	and	

in	mountainous	terrain.	Also	in	this	case	the	layover	effect	is	distinguishable	in	radar	satellite	images	

for	white	areas,	but	it	has	not	to	be	confused	with	the	foreshortening.	

Ø Shadowing	 (Fig.	 4.12c):	 when	 the	 radar	 beam	 is	 not	 able	 to	 illuminate,	 the	 ground	 surface	 the	

shadowing	 effect	 occurs.	 Shadowing	 affects	 areas	 in	 down	 range	 dimensions	 (i.e.	 towards	 the	 far	

range),	behind	vertical	shapes	and	slopes	with	steep	sides.	Given	that	the	radar	beam	does	not	manage	

to	 illuminate	 the	 surfaces,	 shadowed	 regions	appear	dark	on	 the	 radar	 satellite	 images	due	 to	not	

enough	energy	to	be	backscattered.	The	shadow	effect	looks	more	obliquely	as	much	as	the	incidence	

angle	increases	from	near	to	far	range.	This	geometrical	distortion	is	recognizable	in	radar	images	as	

black	area,	paying	attention	to	not	confuse	this	effect	with	water	areas.	

To	reduce	the	effect	of	the	geometric	distortion	several	techniques	were	developed	based	on,	as	instance,	

the	use	of	several	images	to	taking	advantage	of	different	view	angles	or	by	means	of	DEM	to	correct	it.	
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Fig.	 4.12	 -	 Geometric	 distortion	 effects	 (Farr,	 1993):	 a)	 foreshortening	 (www.nrcan.gc.ca);	 b)	 layover	 (Xu	 and	

Cumming,	1996);	c)	shadowing	(www.geo.uzh.ch).	

The	radiometric	distortion	influences	the	energy	received	to	the	sensors	and	often	it	is	associated	to	the	

geometric	distortion.	For	example,	considering	the	foreshortening	geometric	effect,	the	sensor	receives	the	

backscattered	energy	stored	in	a	smaller	area	than	the	real	one	absorbing	intense	reflected	energy	in	few	

pixels.	 The	main	 problem	 is	 that	 the	 effect	 of	 this	 distortion	 could	 not	 be	 adjusted	without	 information	

derived	from	other	sources	to	validate	the	results	and	understand	the	topography	of	the	investigated	area.	

Furthermore,	 the	 way	 in	 which	 SAR	 data	 are	 recorded	 should	 be	 understood	 to	 fully	 comprise	 this	

phenomenon.	

Beside	 these	 negative	 effects,	 the	 use	 of	 the	 Radar	 system,	 through	 the	 Interferometry	 SAR	 (InSAR)	

technique,	first	described	by	Gabriel	et	al.	(1989)	and	applied	by	Massonnet	et	al.	(1993),	lays	the	bases	to	

analyse	single	or	few	interferences	allowing	to	understand	several	Earth	surface	deformations.	Successively,	

Ferretti	et	al.	(2001)	and	Berardino	et	al.	(2002)	developed	the	multi-pass	interferometric	technique	reaching	

good	results	on	the	quantitative	assessment	of	the	deformation	along	the	LOS.	SAR	Interferometry	(InSAR)	
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is	 an	 important	 branch	 of	 the	 remote	 sensing,	 playing	 a	 key	 role	 in	 active	 geological	 processes,	 such	 as	

landslide	 mapping	 and	 monitoring.	 The	 interferometric	 processing	 of	 the	 images	 works	 to	 provide	 the	

relative	 position	 changes	 of	 different	 points.	 Investigated	 deformations,	 for	 instance,	 take	 place	 on	 the	

ground	surfaces	survey	caused	by	sudden	events	(e.g.	earthquakes),	slow	natural	events	(e.g.	landslides	or	

glacier	melting),	or	produced	from	anthropogenic	activity	(e.g.	subsidence	due	to	copious	fluid	extraction)	

(e.g.	Schmidt	and	Bürgmann,	2003;	Colesanti	and	Wasowski,	2006;	Funning	et	al.,	2007;	Hooper	et	al.,	2007;	

Herrera	et	al.,	2009;	Lagios	et	al.,	2011;	Bianchini	et	al.,	2012;	Lagios	et	al.,	2012;	Cigna	et	al.,	2013;	Tomás	et	

al.,	2013;	Bianchini	et	al.,	2014;	Del	Ventisette	et	al.,	2014;	Notti	et	al.,	2014;	Tomás	et	al.,	2014).	Satellite	

sensors	are	side-looking	and	the	images	are	acquired	in	two	different	orbits:	ascending	or	descending	(Fig.	

4.13a)	following	few	degrees	of	shift	with	respect	to	the	N-S	direction	and	acquiring	perpendicularly	with	

respect	to	the	Line	of	Sight	(LOS).	Sensors	moving	from	south	to	north	acquire	in	ascending	orbit,	satellites	

following	 the	 trace	 from	 north	 to	 south	 register	 in	 descending	 geometry.	 For	 this	 reason,	 movements	

respectively	located	on	west-facing	and	east-facing	slopes	are	better	detectable	while,	using	satellites	that	

follow	the	polar	orbits,	 landslides	or	ground	displacements	occurring	along	 the	north-south	direction	are	

difficult	to	identify	and	estimate.	This	is	due	to	the	natural	rotation	of	the	Earth	and	the	side	looking	of	the	

SAR	antenna	that	enlighten	only	one	direction	during	each	orbit	trajectory.		

The	combination	of	the	ascending	and	descending	acquisitions	allows	to	eliminate	the	main	effect	of	the	

spatial	distortion	abovementioned,	even	if	finding	two	SAR	images	(from	ascending	and	descending	orbit)	

acquired	at	the	same	time	and	identifying	the	same	target	could	be	difficult.	In	case	this	could	occur,	the	real	

displacement	vector	(Fig.	4.13b)	can	be	obtained.	
	

	
Fig.	 4.13	 -	 Ascending	 and	 descending	 orbits	 (a)	 with	 right-looking	 satellite	 and	 the	 combination	 (b)	 of	 the	 orbit	

measurements	to	obtain	the	true	vertical	and	east-west	components	of	the	motion	(tre-altamira.com).	
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4.1.2.3 SAR	Interferometry	

The	 SAR	 technique	 applied	 on	 studies	 of	 ground	movement	 detection	 is	 focused	 on	 the	 Differential	

Interferometric	SAR	(DInSAR)	approach	(Fig.	4.14)	(Massonnet	and	Feigl,	1998).	Such	methodology	is	often	

affected	 by	 atmospheric	 and	 temporal	 decorrelations	 (Massonnet	 and	 Feigl,	 1998;	 Ferretti	 et	 al.,	 2001;	

Colesanti	et	al.,	2003)	that	disturb	the	products.	A	possible	solution	to	overcome	these	drawbacks	is	the	use	

of	the	improved	technique	that	takes	advantage	from	multi-temporal	radar	acquisitions	for	reaching	results	

allowing	the	investigation	of	PS	displacement	time-series.	In	this	way	the	motion	of	each	PS	along	the	Line-

Of-Sight	 (LOS),	 such	 as	 the	 Persistent	 Scattering	 Interferometry	 (PSI)	 (Kampes	 and	 Adam,	 2006)	 can	 be	

exploited	and	carried	out.	For	instance,	by	means	of	a	specific	analysis	considering	phase	changes	in	a	series	

of	 SAR	 images	 acquired	 at	 different	 times	 over	 the	 same	 region,	 a	 series	 of	 interferograms	 related	 to	 a	

“master”	image	can	be	provided.	The	PSI	technique	works	a	step	further	with	respect	to	the	conventional	

DInSAR	 correcting	 the	 atmospheric,	 orbital	 and	 topographical	 induced	 errors	 in	 order	 to	 derive	 velocity	

measurements	and	relatively	precise	displacements	on	specific	ground	target.	

	

	
Fig.	4.14	-	Two	SAR	images	of	the	same	area	are	acquired	at	different	times	recording,	by	means	an	interferogram,	

surface	movements	occurring	between	the	two	acquisitions	(www.ga.gov.au).	
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The	term	PSI	represents	a	specific	class	of	DInSAR	techniques	and	it	is	used	to	indicate	several	approaches	

to	extract	long-term	stable	benchmarks	and	high-reflective	ground	elements,	namely	Persistent	Scatterers	

(PS)	from	several	multi-interferogram	analyses	of	SAR	data.	PSI	name	includes	also	the	techniques	based	on	

the	Distributes	Scatterers	(DS)	and	other	hybrid	methods	(Crosetto	et	al.,	2010):	

Ø Persistent	 Scatterers	 Interferometry	 SAR	 (PSInSARTM)	 was	 the	 first	 approach	 to	 extract	 the	 PS	

developed	 by	 TRE,	 Italy,	 (Tele-Rilevamento	 Europa)	 spin-off	 company	 of	 Politecnico	 di	Milano	 and	

Ferretti	et	al.	(2000,	2001);	

Ø Small	Baseline	Subset	(SBAS)	technique	(Berardino	et	al.,	2002;	Lanari	et	al.,	2004;	Casu	et	al.,	2006)	

was	subsequently	reviewed	by	Lanari	et	al.	(2007)	from	CNR	(Consiglio	Nazionale	delle	Ricerche),	Italy;	

Ø Stanford	 Method	 for	 Persistent	 Scatterers	 (StaMPS)	 approach	 was	 developed	 at	 the	 Stanford	

University,	USA,	by	Hooper	et	al.	(2004)	and	improved	by	Hooper	et	al.	(2007)	to	provide	time	series	

of	deformation	based	on	the	spatially	correlated	nature	of	ground	deformations	using	pixels	with	low	

phase	variance;	

Ø Coherent	 Pixel	 Technique	 (CPT)	was	 grown	at	 the	Remote	 Sensing	 Laboratory	 (RSLab)	 of	 the	UPC,	

Spain,	(Universitat	Politècnica	de	Catalunya)	to	take	advantage	from	the	separately	use	of	amplitude-	

and	 coherence-based	 approach	 as	 selection	 criteria	 to	 obtain	 the	 components	 of	 non-linear	

deformations	(Mora	et	al.,	2003;	Blanco-Sanchez	et	al.,	2008);	

Ø Interferometric	 Point	 Target	 Analysis	 (IPTA)	 developed	 from	 the	 GAMMA	 Remote	 Sensing,	

Switzerland,	 and	 presented	 by	 Werner	 et	 al.	 (2003)	 and	 Strozzi	 et	 al.	 (2006)	 to	 find	 persistent	

benchmark	in	low	coherence	regions,	allows	the	use	of	large	baselines	for	the	phase	interpretation;	

Ø Stable	Point	Network	(SPN)	was	strengthened	by	the	Altamira	group	(Spain)	to	estimate	the	linear	and	

non-linear	components	of	deformation,	to	improve	the	use	of	adaptive	filters	and	to	implement	the	

combination	of	temporal	and	spatial	filters	(Duro	et	al.,	2004;	Crosetto	et	al.,	2008);	

Ø SqueeSARTM	 is	an	 implementation	of	the	PSInSARTM	technique	proposed	by	Ferretti	et	al.	 (2011)	to	

provide	measurements	also	taking	advantage	of	natural	points	over	area	of	interest.	This	technique,	

developed	by	the	TRE,	Italy,	(Tele-Rilevamento	Europa),	provides	a	point	density	much	higher	than	the	

others.	

	

PSI	 analysis	 integrated	with	 auxiliary	 and	 ancillary	 data	were	 useful	 in	 several	 cases	 for	mapping	 and	

monitoring	slow-moving	landslides	and	to	assess	their	state	of	activity	(Notti	et	al.,	2010;	Righini	et	al.,	2012;	

Herrera	et	al.,	2013;	Bianchini	et	al.,	2015a).	

	

The	PS	data	interpreted	and	elaborated	during	this	PhD	Thesis	were	processed	through	PSInSARTM,	CPT	

and	SqueeSARTM	techniques.	All	these	methodologies	are	described	in	detail	in	the	following	subsections.	
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4.1.2.4 Coherent	Pixel	Technique	(CPT)	

Among	 the	 several	 methods	 to	 process	 and	 elaborate	 the	 radar	 satellite	 images,	 the	 Coherent	 Pixel	

Technique	 (CPT)	 algorithm	 implemented	 by	 Mora	 et	 al.	 (2003)	 and	Werner	 et	 al.	 (2003)	 in	 a	 SUBSOFT	

processor	at	the	Remote	Sensing	Laboratory	(RSLab)	of	the	Universitat	Politecnica	de	Catalunya	(UPC)	was	

chosen	for	the	investigated	area	of	Agnone	(Molise	Region,	southern	Italy).	CPT	is	an	algorithm	able	to	assess	

the	deformation	evolution	from	a	stack	of	differential	interferograms	for	wide	areas	for	several	SAR	satellites	

such	as	ERS,	ENVISAT,	TerraSAR-X	and	COSMO-SkyMed.	

First	of	all,	images	have	to	be	co-registered	before	to	develop	the	interferometric	processing.	This	phase	

is	a	simple	superimposing,	in	the	slant	range	geometry,	of	two	or	more	SAR	images	recorded	in	the	same	

orbit	and	by	the	same	acquisition	mode.	A	coregistration	is	required	for	stacks	of	SAR	images	covering	the	

same	region	on	which	some	filters	have	to	be	applied.	To	correct	rotational	and	scale	differences	or	relative	

translational	shifts,	 the	spatial	coregistration	and	a	potentially	resampling	 in	case	of	different	pixel	size	 is	

required.	Essentially,	using	the	CPT	algorithm,	the	coregistration	consists	in	two	subsequent	phases:	a	coarse	

registration	and	a	subsequent	fine	registration.	The	first	step	is	dedicated	to	align	the	cropped	images	with	

an	accuracy	of	a	pixel	for	the	whole	scene	and	it	is	performed	by	means	of	the	amplitude	correlation	of	a	

portion	 of	 both	 images.	 The	 second	 one	 is	 finer	 reaching	 precisions	 of	 a	 fraction	 of	 pixel	 and	 it	 works	

processing	 pixel	 per	 pixel	 separately	 by	means	 of	 a	 geocoding	 requiring	 an	 external	 DEM	 and	 the	 orbit	

information	or	correlating	the	amplitude	of	divided	block	of	the	images.	
	

The	processing	scheme	is	composed	by	three	main	steps:	

Ø generation	of	the	best	interferogram	chosen	among	all	the	available	images	of	the	investigated	

area	to	identify	the	minimum	number	of	interferograms	needed	to	reach	the	maximum	quality	

overall.	The	selection	is	made	considering	the	spatial	baseline6	(Bn),	the	temporal	baseline7	(Bf)	

and	 the	Doppler	 frequency	 (Df).	 The	 estimation	 of	 the	 spatial	 (normal)	 baseline	 is	 based	 on	 a	

reference	image,	usually	selecting	the	one	used	as	reference	already	in	the	co-registered	process.	

Subsequently,	 the	 interferogram	 selection	 works	 using	 the	 Delaunay	 triangulation8	 of	 the	

available	images	in	the	[Bn,	Bt,	Df]	to	represent	each	interferogram	by	an	arc	connecting	a	pair	of	

images.	

Ø selection	of	 the	pixels	within	 the	area	under	 investigation	where	 terrain	deformations	 can	be	

detected	 on	 pixels	with	 enough	 phase	 quality	 along	 acquisition.	 Several	 criteria	 based	 on	 the	

																																																													
6	Spatial	baseline:	the	“distance”	of	the	Slave	acquisition	respect	to	the	Master	images.	It	is	also	called	“normal”	baseline.	
7	Temporal	baseline:	difference	in	time	between	the	acquisitions.	
8	Delaunay	triangulation:	kind	of	triangulation	connecting	neighbouring	pixels,	but	not	allowing	the	overlapping	of	triangles.	
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amplitude	dispersion	 (Ferretti	et	al.,	2001)	and	the	coherence	stability	 (Berardino	et	al.,	2002)	

exist	in	order	to	select	the	better	pixel.	

Ø analysis	to	calculate	the	linear	deformation	by	time	series	of	pixels	within	the	period	of	interest.	

The	CPT	approach	relates	the	neighbouring	selected	pixels	by	means	of	a	Delaunay	triangulation	

to	overcome	the	difficult	to	evaluate	the	phase	of	each	pixel	due	to	the	occurrence	of	an	offset	

among	different	interferograms.	The	connection	between	neighbouring	pixels,	assumed	as	nodes	

of	a	mesh,	are	linked	setting	a	maximum	length	in	order	to	reduce	the	atmospheric	effect.	In	fact,	

the	longest	distance	has	been	properly	fixed	to	consider	negligible	the	atmospheric	term.	To	reach	

a	good	estimation	of	the	node,	then	assuming	their	linear	velocity	and	DEM	error	constant	in	the	

whole	set	of	differential	interferogram	of	the	available	data,	it	is	possible	to	work	on	the	phase	

model.	

To	 obtain	 the	 velocity	 values	 for	 each	 pixel	 an	 integration	 process	 is	 necessary.	 Furthermore,	 a	 good	

distribution	of	control	points,	stable	points	affected	by	deformation	and	characterized	by	well-known	linear	

velocity	 and	 height,	 helps	 to	 reduce	 the	 errors	 among	 zones	 badly	 connected.	 Blanco	 et	 al.	 (2006)	

implemented	the	multi-layer	processing	in	order	to	provide	larger	pixel	density	preserving	the	suitability	of	

the	result	and	dividing	the	selected	pixels	in	different	layer	according	their	quality.	The	multi-layer	processing	

enhances	the	linear	result	and	increases	the	pixel	density	due	to	the	iteratively	linear	block	executed	starting	

from	the	high	quality	level	and	adding	layers	successively	in	order	to	preserve	the	high	quality	class	and	to	

improve	the	low	quality	levels.	

4.1.2.5 SqueeSARTM	

PSInSAR™	was	recently	improved	and	replaced	by	the	SqueeSAR™	algorithm	(Ferretti	et	al.,	2011).	This	

technique	was	applied	by	TRE-ALTAMIRA	company	 to	process	 the	COSMO-SkyMed	data	available	 for	 the	

Volterra	site	(Tuscany	region,	central	 Italy)	to	provide	a	high	density	of	points	to	analyse.	SqueeSAR™	is	a	

term	 that	 recall	 the	 concept	 of	 “squeezing”.	 In	 DInSAR	 application	 it	 is	 related	 to	 the	 association	 of	

information	 to	 coherent	 matrix	 in	 order	 to	 extract	 an	 optimum	 vector	 of	 phase	 values	 to	 use	 for	

interferometric	analysis.	SqueeSARTM	technique	results	to	be	a	very	effective	tool	for	different	scales,	from	

regional	 to	single	building,	 to	monitor	with	high	precision	displacements	 taking	advantages	of	 the	 typical	

remote	sensing	characteristics,	the	ability	to	cover	wide	areas	and	the	possibility	to	assess	displacements	of	

few	millimetres.	

Generally,	two	big	families	of	targets	can	be	extracted	by	means	of	the	InSAR	processing	on	radar	satellite	

images:	 Persistent	 Scatterers	 (PS),	 point-wise	 scatterers	 having	 the	 reflected	 energy	 of	 a	 single	 or	 a	 few	

connected	pixels,	 and	 the	Distributed	 Scatterers	 (DS)	 corresponding	 to	 a	homogeneous	area	 covering	by	
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several	 pixels	 (e.g.	 forest,	 agricultural	 field).	DS	 correspond	 to	 the	 return	 characteristics	of	 several	 pixels	

“statistically	homogeneous”.	

The	SqueeSARTM	algorithm	was	created	to	cover	the	necessity	to	combine	the	PS	and	DS	improving	the	

density	of	measured	points	(Hooper,	2008;	Zebker	and	Shanker,	2008).	Its	aim	was	to	increase	the	spatial	

distribution	of	points	preserving	the	high	quality	reached	by	means	of	the	PS	technique.	PSInSARTM	has	some	

limitations	about	the	density	of	points	and	the	quality	of	the	time-series	in	non-urban	areas	that	DS,	by	means	

of	a	statistical	description	of	the	sensor	parameters	used	and	the	kind	of	object	illuminated,	can	overcome.	

The	SqueeSARTM	can	be	considered	as	the	second	generation	of	PSI	techniques	that	made	visible	targets	from	

radar	images	identifiable	by	the	PS	and	points	recognizable	by	means	of	the	spatially	DS.	Persistent	Scatterers	

usually	 identified	 on	 man-made	 structures,	 and	 Distributed	 Scatterers,	 generally	 corresponding	 to	

uncultivated,	desert	or	debris	covered	ground	surfaces,	are	jointly	processed	without	significant	changes	in	

the	PSInSARTM	algorithm.	Their	combination	allows	results	with	a	lower	standard	deviation	with	respect	to	

the	traditional	PSInSARTM	algorithm	(Ferretti	et	al.,	2011;	Lagios	et	al.,	2013)	thanks	to	the	higher	density	of	

measured	points	and	the	wide	spatial	coverage.	

An	 important	 improvement	with	 respect	 to	 the	other	multi-interferogram	algorithms	 is	 the	use	of	 all	

possible	 interferograms,	 following	 the	 theory	 that	 any	 interferogram	 could	 give	 significant	 information	

according	to	 its	coherence	 level.	The	SqueeSARTM	algorithm	is	based	on	the	analysis	made	by	means	of	a	

correlation	matrix	and,	without	taking	into	account	the	temporal	and	geometrical	baseline,	the	generation	

of	each	possible	interferogram	correlated	to	its	coherence	value.	Furthermore,	an	important	innovation	is	

due	to	the	an	implemented	filtering	technique	(DespecKS)	that	allows	to	preserve	the	information	associated	

to	 a	 point-wise	 radar	 target	 (Ferretti	 et	 al.,	 2011).	 The	 results	 of	 the	 SqueeSAR	 technique	 for	 each	

measurement	 point	 includes	 the	 yearly	 displacement	 velocity	 value	 and	 the	 possibility	 to	 extract	 the	

displacement	time	history.	

For	 further	 information	 about	 the	 SqueeSARTM	 techniques	 see	 Ferretti	 et	 al.	 (2011)	 where	 the	

implementation	on	the	PSInSARTM	algorithm	is	extensively	explained.	

4.1.2.6 Vertical	(Vv)	and	Horizontal	(Hv)	velocity	

As	mentioned,	radar	satellites	are	able	to	acquire	along	two	different	polar	orbits,	ascending	from	south	

to	north	and	descending	from	north	to	south.	Images	recorded	by	SAR	sensors	allow	to	measure	the	velocity	

along	 the	Line	of	Sight	 (LOS),	 thus	 the	displacement	during	 time	along	a	unit	vector	co-directional	of	 the	

satellite.	If	both	geometries	data	were	acquired	and	are	available,	the	real	velocity	of	displacement	affecting	

targets	can	be	calculated	as	a	vector	𝑉	as	follow	(Eq.	1):	

𝑉 = 𝑉# ∙ 𝑠# + 𝑉' ∙ 𝑠' + 𝑉( ∙ 𝑠(	 	 	 	 	 	 	 	 	 (1)	

where	Vx,	Vy	and	Vz	are	the	velocity	components	along	the	horizontal	(E-W	and	N-S)	and	vertical	directions	(Z	
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component),	while	𝑠#,	𝑠'	and	𝑠(	are	the	unit	vectors	of	the	three	coordinate	axes.	

The	 combination	 of	 the	 velocities	 acquired	 by	 both	 ascending	 and	 descending	 orbits,	 provides	 the	

possibility	to	decompose	the	detected	motion	along	the	LOS	 into	the	horizontal	and	vertical	components	

(Manzo	et	al.,	2006;	Notti	et	al.,	2014).	Using	the	mean	velocity	of	the	two	available	orbits	a	system	with	two	

formulas	and	three	variables	will	be	created	as	follow	(Eq.	2):	

𝑉) = 𝑉# ∙ ℎ+,-,) + 𝑉' ∙ ℎ+,-,) + 𝑉( ∙ 𝑒+,-,)
𝑉0 = 𝑉# ∙ ℎ+,-,0 + 𝑉' ∙ ℎ+,-,0 + 𝑉( ∙ 𝑒+,-,0

	 	 	 	 	 	 	 	 (2)	

where	hLOS,a,	eLOS,a,	hLOS,d	and	eLOS,d	represent	the	LOS	directional	cosines	for	ascending	and	descending	passes,	

respectively.	

Eq.	 (2)	 can	 not	 be	 solved	 having	 too	much	 unknowns,	 so	 the	N-S	 horizontal	 components	 have	 to	 be	

considered	negligible	due	to	the	characteristics	of	the	geometrical	acquisition	(Notti	et	al.,	2014).	Considering	

the	N-S	component	of	the	velocity	to	zero	allow	to	solve	the	Eq.	(2)	and	assuming	the	availability	of	both	

geometries,	ascending	and	descending,	the	Horizontal	(VH)	and	Vertical	(VV)	components	of	the	motion	can	

be	derived	by	means	of	trigonometric	rules	(Eq.	3).	

𝑉1 =
23 4567,8 9 28 4567,8

:567,3 4567,39:567,8 4567,8

𝑉2 =
23 :567,3 9 28 :567,8

4567,3 :567,394567,8 :567,8

	 	 	 	 	 	 	 	 	 	 (3)	

where	Va	and	Vd	represent	the	velocity	measured	by	the	satellite	along	the	LOS	direction	in	the	ascending	

and	descending	passes,	respectively,	hLOS,a	(Eq.	4),	eLOS,a	(Eq.	5)	and	nLOS,d	(Eq.	6)	are	the	LOS	directional	cosines	

for	ascending	and	descending	orbits,	respectively.	

ℎ+,- = cos 𝛼 	 	 	 	 	 	 	 	 	 	 	 (4)	

𝑒+,- = cos 1.571 − 𝛼 ∗ cos𝜔	 	 	 	 	 	 	 	 	 (5)	

𝑛+,- = cos 1.571 − 𝛼 ∗ cos 𝜂		 	 	 	 	 	 	 	 	 (6)	

𝜂 = 3.142 − 	𝜃	 	 	 𝜔 = 4.712 − 𝜃	

The	VV	computed	by	Eq.	(3),	corresponding	to	the	vector	VV1	in	Fig.	4.15	is	the	result	of	the	combination	

between	 the	 ascending	 and	 descending	 LOS	 measurement;	 while	 if	 the	 available	 orbit	 is	 only	 one,	

indifferently	ascending	or	descending,	the	vertical	component	of	the	motion	is	derivable	only	in	case	the	real	

movement	in	nearby	to	the	vertical.	For	instance,	in	case	of	availability	of	the	ascending	orbit	only,	the	VH	is	

assumed	as	0	and	the	vertical	component	is	shown	by	the	vector	VV2	in	Fig.	4.15	and	calculated	by	means	of	

Eq.	(7)	(Bianchini	and	Moretti,	2015).	

𝑉2 =
23 :567,3

4567,3 :567,3
= 23

4567,3
= 23

MNOP
	 	 	 	 	 	 	 	 	 (7)	

where	hLOS,d	and	eLOS,d	represent	the	LOS	directional	cosines	for	the	descending	geometry	and	𝜃	is	the	satellite	

incident	angle.	
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Fig.	4.15	-	Scheme	of	the	spatial	acquisition	configuration	by	ascending	and	descending	orbits	and	the	composition	in	

vertical	and	horizontal	velocity	components	of	an	almost-vertical	real	motion	(Bianchini	and	Moretti,	2015).	

To	convert	the	velocity	measured	along	the	LOS	into	Vertical	and	Horizontal	displacement,	each	single	

point	 of	 measure	 has	 to	 be	 recognized	 as	 a	 valid	 target	 in	 both	 geometries	 and	 synthetic	 PS,	 artificial	

Persistent	Scatterers	following	a	sampling	grid,	have	to	be	created	(Rosi	et	al.,	2014).	In	this	way,	spatially	

regular	series	of	synthetic	PS	were	collected	through	a	sampling	grid	with	square	cells	in	which	to	calculate	

the	 mean	 deformation	 velocity	 for	 both	 orbits.	 The	 process	 (Fig.	 4.16)	 provides	 a	 distributed	 velocity	

deformation	for	ascending	and	descending	geometries,	and	solving	Eq.	2	the	Vertical	(VV)	and	Horizontal	(VH)	

velocity	can	be	extracted.	
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Fig.	 4.16	 -	 Flow-chart	 of	 the	process	 to	 extract	 the	Vertical	 and	Horizontal	 components	 starting	 from	PS	of	 both	

ascending	and	descending	geometries	(Rosi	et	al.,	2014).	

The	 choice	 of	 the	 cell	 size	 to	 adopt	 for	 the	 conversion	 of	 PS	 in	 synthetic	 PS	 has	 to	 consider	 several	

parameters.	It	depends	on	the	scale	of	the	investigated	site,	the	number	and	the	distribution	of	the	Persistent	

Scatterers	in	the	area	and,	also,	on	the	dimension	of	the	investigated	phenomena.	

Once	 that	 the	 vertical	 and	 horizontal	 components	 of	 the	 vector	 are	 calculated,	 the	main	 direction	 of	

ground	 deformation,	 the	 real	 velocity	 (Vr)	 can	 be	 calculated	 in	 order	 to	 discriminate	 areas	 affected	 by	

landslide	 or	 by	 subsidence.	 Given	 that	 the	 angle	 between	 VH	 and	 VV	 is	 90°,	 it	 is	 possible	 to	 apply	 the	

Pythagoras	theorem	to	calculate	Vr	(Eq.	8)	based	on	the	angle	between	the	VE	and	the	Vr	(a)	or	the	angle	

between	VV	and	Vr	(b)	(Rosi	et	al.,	2014).	

sin 𝛼 = 𝑉1
𝑉S sin 𝛿	 or	 sin 𝛽 = 𝑉2

𝑉S sin 𝛿	 	 	 	 	 	 	 (8)	

where	d	is	90°,	the	angle	between	VV	and	VH.	

At	the	end	to	define	the	direction,	thus	the	quarter	in	which	the	estimated	Vr	fall	into,	the	sign	of	VV	and	

VH	have	to	be	taken	into	account	(Table	4.1)	
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Table	4.1	-	Definition	of	Vr	direction	depending	on	VV	and	VH	values	(from	Rosi	et	al.,	2014).	

	
	

4.1.2.7 Time	series	analysis	

Recently,	by	means	of	the	improvement	of	the	processing	techniques,	the	analysis	on	the	capability	of	the	

DInSAR	techniques	was	possible	in	the	investigation	of	the	evolution	of	natural	processes	(Calò	et	al.,	2014).	

Furthermore,	 examining	 the	 time	 series	 of	 Persistent	 Scatterers,	 different	 trends	 can	 be	 automatically	

identifiable	detecting	distinct	phases	of	the	temporal	evolution	(Milone	and	Scepi,	2012;	Cigna	et	al.,	2012;	

Berti	et	al.,	2013).	

Notti	 et	 al.	 (2015),	 in	 order	 to	 properly	 characterize	 the	 temporal	 behaviour	 of	 the	 displacement,	

proposed	and	 improved	a	methodology	 to	analyse	 the	 time	series	with	particular	 focus	on	 landslide	and	

subsidence	phenomena.	The	authors	suggested	a	wider	improved	post-processing	of	time	series	analyses	to	

better	observe	the	ground	truth:	

Ø Removing	noise	and	regional	trends	-	useful	for	time	series	affected	by	trends	or	anomalies	not	

related	 to	 the	 ground	 motions.	 These	 can	 be	 identified	 selecting	 the	 PS	 in	 stable	 area,	

recognizable	by	LOS	velocities	comprise	between	±0.5	mm/y,	and	with	high	coherence	(such	as	>	

0.9).	Once	revealed	the	presence	of	a	specific	regional	trend	a	correct	time	series	can	be	computed	

removing	the	average	stable	time	series	to	the	original	one.	
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Ø Removing	single	date	anomalies	-	errors	related	to	anomalous	displacement	diffuse	to	all	dataset	

at	certain	date.	To	detect	the	errors,	stable	(±0.5	mm/y)	time	series	with	high	coherence	(>	0.9)	

can	be	selected	and	if	more	than	one-third	of	them	show	significant	peaks	at	the	same	date,	these	

data	should	be	removed.	

Ø Detect	 and	 correct	 possible	 phase	 unwrapping	 errors	 -	 this	 can	 occur	 when	 between	 two	

successive	acquisitions	or	two	close	targets	of	the	dataset	are	subject	to	a	displacement	bigger	

than	a	quarter	of	the	radar	wavelength	(e.g.	Crosetto	et	al.,	2010).	This	error	can	occur	especially	

investigating	landslide-prone	areas	affected	by	possible	sudden	motions.	

In	this	work,	taking	into	account	the	available	data,	the	time	series	investigated	in	the	two	site	of	interest,	

CL-PO	landslide	and	southwestern	sector	of	Volterra,	were	corrected	by	the	regional	trend	in	order	to	better	

analyse	the	displacement	in	time.	

	

In	2013	Berti	et	al.	developed	a	procedure	based	on	a	sequence	of	 statistical	characterization	 tests	 in	

order	to	classify	the	Persistent	Scatterers	Interferometry	(PSI)	time	series	according	to	their	peculiar	trends.	

This	 method	 overcomes	 such	 limitation	 of	 the	Milone	 and	 Scepi	 (2011)	 clustering	 approach,	 allowing	 a	

classification	of	the	PSI	time	series	into	six	recurrent	patterns:	

Ø Type	0	“uncorrelated”	-	displacement	that	does	not	follow	any	pattern;	

Ø Type	1	“linear”	-	displacement	that	linearly	increases	in	time	according	to	a	constant	velocity;	

Ø Type	2	“quadratic”	-	time	series	characterized	by	a	continuously	variation	of	the	velocity	ion	time;	

Ø Type	3	 “bilinear”	 -	 time	 series	with	 a	 breakpoint	with	 continuous	 function	dividing	 two	 linear	

tracts	with	constant	velocity;	

Ø Type	 4	 “discontinuous	 with	 constant	 velocity”	 -	 time	 series	 segmented	 by	 a	 breakpoint	 with	

discontinuous	function	dividing	two	linear	tracts	with	similar	velocity;	

Ø Type	 5	 “discontinuous	 with	 variable	 velocity”	 -	 time	 series	 segmented	 by	 a	 breakpoint	 with	

discontinuous	function	dividing	two	linear	tracts	with	different	velocity.	

The	classification	of	the	time	series	can	help	the	interpretation	of	physical	processes	related	to	slope	

instabilities.	It	is	worthy	noticing	that	the	time	series	categorization	is	highly	dependent	on	the	quality	

of	the	used	dataset.	
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4.2 Field	investigations	

Landslide	mapping	is	an	important	tool	to	predict	future	evolution,	assess	the	correlate	risks	and	manage	

the	 landslide-territory	 (Wu	 et	 al.,	 1996).	 Several	 field	 surveys,	 both	 for	 the	 damage	 investigation	 and	 to	

recognize	the	geomorphological	features	to	implement	the	remote	sensing	techniques,	were	conducted	in	

the	areas	of	interest.	

4.2.1 Damage	classification	

Urbanized	 areas	 affected	 by	 landslide	 displacements	 often	 reveal	 ruptures	 and	 cracks	 on	man-made	

facilities.	These	effects	occur	when	the	ground	movements	affecting	buildings	are	greater	than	the	tensions	

which	 structures	 are	 capable	 to	 absorb	 without	 showing	 deformations.	 The	most	 rigid,	 or	 the	 weakest,	

constructive	elements	of	facilities	are	the	first	elements	that	show	suffering	injures,	e.g.	walls	and	façades	

and	joints,	respectively	(Bru	et	al.,	2013).	Damage	and	economic	losses	resulting	from	rapid	landslides,	such	

as	debris	flows,	earth	flows	or	rock	falls	(Cruden,	1991),	are	the	most	severe	and	therefore	the	most	easily	

recognizable.	 Conversely,	 slow-moving	 landslides	 impacting	 on	 facilities,	 can	 be	more	 difficult	 to	 detect	

despite	leading	to	a	total	or	partial	disruption	of	their	serviceability.	Effects	of	slope	movements	can	be	also	

revealed	by	cracks	and	 ruptures	occurring	on	man-made	 infrastructures	and	anthropic	or	natural	ground	

surfaces.	

The	 investigation	of	 landslide-induced	damage	can	be	motivated	by	a	wide	range	of	user	purposes,	as	

administrative	 (to	declare	restrictive	rules	such	as	 the	evacuation	 for	no	safe	constructions),	planning	 (to	

estimate	 direct	 and	 indirect	 costs	 and	 assess	 the	 needed	 restoration,	 reconstruction	 or	 relocation	 of	

structures),	scientific	(to	study	the	phenomena,	its	extension	and	possible	evolution)	and	engineering	design	

(to	arrange	a	reconstruction	plan)	(Alexander,	1986).	

4.2.1.1 Existing	approaches	

A	considerable	amount	of	scientific	literature	dealing	with	damage	assessment	in	landslide-prone	and	-

affected	areas	already	exists	(Skempton	and	MacDonald	1956;	Burland	1977;	Lee	and	Moore	1991;	Chiocchio	

et	al.	1997;	Cooper	2008;	Mansour	et	al.	2011).	Each	work	presents	some	benefits	and	constraints,	i.e.	the	

choice	of	the	relevant	parameters	to	use,	the	lack	of	concern	on	some	important	features	and	the	difficulty	

of	 applicability	 (Del	 Soldato	 et	 al.,	 2016a).	Most	 of	 the	 existing	 damage	 classification	methods	 consider	

different	 conflicting	 parameters	 without	 taking	 into	 account	 the	 relevance	 of	 damage	 investigations	 at	

ground	surfaces.	Furthermore,	none	of	them	takes	into	consideration	the	possibility	of	their	applicability	not	

only	on	buildings,	but	more	generally	on	facilities.	These	pending	issues	do	not	allow	a	simple	and	univocal	

application	and	result,	 therefore	a	complete	and	easy-to-use	methodology	 is	 required	 (Del	Soldato	et	al.,	

under	 review_a).	 The	 classification	 of	 the	 landslide-induced	 damage	 affecting	 different	 types	 of	 facilities	
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plays	a	fundamental	role	in	order	to	assess	their	damage	level	related	to	the	intensity	of	ground	motion	and	

impact	severity,	as	well	as	indirectly	to	support	a	more	precise	mapping	of	landslide-prone	areas	(Ciampalini	

et	al.	2014;	Del	Soldato	et	al.,	under	review_a).	

The	first	simple	classification	of	building	damage,	based	on	the	severity	of	the	cracks	affecting	elements,	

even	if	without	defining	clear	limits	of	evaluation,	was	employed	by	Skempton	and	MacDonald	(1956).	The	

Authors	 divided	 damage	 in	 three	 main	 categories:	 architectural,	 functional	 and	 structural	 damage.	

Architectural	damage	are	referred	to	the	appearance	on	the	construction,	e.g.	fine	cracks	in	finishes,	floor	or	

panel	walls	 (wider	 than	0.5	mm),	 in	plaster	 (wider	 than	1mm)	and	 in	 rough	concrete	and	masonry	walls.	

Functional	damage	involve	the	use	of	the	structure	producing	extensive	cracks,	tilting	of	floors	and	walls,	

falling	plaster,	obstructed	doors	and	windows	and	other	non-structural	damage.	Structural	damage	prejudice	

the	 stability	 of	 the	 construction	 manifesting	 ruptures	 and	 distortions	 in	 support	 elements	 (e.g.	 pillars,	

columns	and	load-bearing	walls).	In	practice,	damage	affecting	facilities	are	assessed	performing	field	surveys	

highly	conditioned	by	the	criteria	adopted	and	by	the	experience	of	the	operators.	

During	 the	 second	 half	 of	 the	 last	 century	 the	 scientific	 community	 developed	 some	 specific	 damage	

classifications	 for	 areas	 affected	 by	 natural	 catastrophic	 phenomena	 as	 earthquakes	 (e.g.	 Wood	 and	

Neumann,	1931;	Medvedev,	1965;	Grünthal,	1998;	Baggio	et	al.,	2009),	subsidence	(e.g.	Howard	Humphreys	

&	Partners,	1993;	Van	Rooy,	1989;	Freeman	et	al.,	1994)	and	landslides	(e.g.	Burland,	1977;	Alexander,	1986;	

Geomorphological	Services	LTD,	1991;	Lee	and	Moore,	1991;	Chiocchio	et	al.,	1997;	Cooper,	2008).	

Here	after,	the	five	approaches	existing	in	literature	and	one	developed	during	the	thesis	applied	to	assess	

used	to	classify	buildings	and	facilities	of	the	two	study	sites	are	described.	

4.2.1.2 Burland	(1977)	

Burland	(1977)	disseminated	the	first	classification	including	a	ranking	scheme	and	some	suggested	values	

in	order	to	 limit	the	subjectivity	of	the	operator.	The	Author	presented	a	simple	system	derived	from	the	

cumulated	 experience	 by	 three	 previous	works:	 a	 study	 of	 the	 economic	 consequences	 of	 the	 heave	 of	

construction	on	swelling	clays	where	a	simple	categorization	of	the	damage	based	on	their	restoration	was	

conceived	(Jennings	and	Kerrich,	1962);	a	simple	classification	based	on	wide	experiences	of	damage	caused	

by	 subsidence	 (National	 Coal	 Board,	 1975);	 a	 ranking	 proposed	 by	 the	 Coal	 Board’s	 recommendations	

(MacLeod	and	Littlejohn,	1974).	The	Burland	(1977)	classification	(Table	4.2)	consists	of	six	classes	of	damage,	

including	the	width	of	cracks	and	their	relationship	with	the	facility	of	restoration.	The	provided	values	are	

related	only	to	visible	or	aesthetic	damage,	observed	corrosion	and	cracks	permitting	the	penetration	or	the	

lacking	of	 liquids	or	gases.	For	reinforced	concrete,	the	approach	to	adopt	should	be	more	severe	(Nawy,	

1968).	
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Subsequently,	 Boscardin	 and	 Cording	 (1989)	 slightly	modified	 the	 classification	maintaining	 the	 same	

structure	and	correcting	some	approximations	based	on	their	experience.	

	

Table	4.2	-	Classification	of	damage	according	to	Burland	(1977)	modified	by	Boscardin	&	Cording	(1989).	

Grades	 Damage	level	 Crack	width	
(CW	in	mm)	 Description	of	damage	

0	 Negligible	 <	0.1	 Hairline	cracks	
1	 Very	Slight	 <	1	 Fine	cracks	and	isolated	generally	restricted	to	internal	walls	finishes	

2	 Slight	 <	5	 Several	slight	fractures	inside	building;	exterior	cracks	visible;	doors	and	
windows	may	stick	slightly	

3	 Moderate	 5	<	CW	<	15	
	or	several	>	3	mm	

Several	cracks;	doors	and	windows	sticking.	Utility	service	may	be	interrupted;	
weathertightness	often	impaired	

4	 Severe	
15	<	CW	<	25	
depending	on	

number	of	cracks	

Windows	and	door	frames	distorted;	floor	sloping	noticeably;	Walls	lean	or	
bulge	noticeably,	some	loss	of	bearing	in	beams;	utility	service	disrupted	

5	 Very	severe	 >	25	 Beams	lose	bearing;	walls	lean	badly	and	require	shoring;	windows	broken	
with	distortion;	danger	of	instability.	

4.2.1.3 Alexander	(1986)	

In	1986,	Alexander,	after	an	important	landslide	event	affecting	Ancona	(central	Italy)	in	December	1982	

(Alexander,	1983),	presented	an	alternative	intensity	scale	of	damage.	This	methodology	is	referred	to	the	

landslide-induced	damage	observable	on	buildings	and	it	was	developed	in	order	to	compare	visible	damage	

on	different	structures	involved	in	the	same	event.	The	ranking	shows	eight	categories,	two	more	then	the	

previous	one	(Burland,	1977)	to	consider	also	the	partial	and	total	collapse	as	well	as	the	possibility	of	the	no	

damage:	none,	negligible,	light,	moderate,	serious,	very	serious,	partial	collapse	and	total	collapse	(Table	4.3).	

They	are	based	on	the	cracks	observation	on	walls,	their	position	and	extension,	their	distortion	of	the	rigid	

elements	and	on	the	settlement	affecting	foundations.	

The	classification	of	the	building	damage	based	on	their	description,	includes	the	visual	description	of	the	

internal	and	external	damage	and	few	referring	values	in	centimetres,	for	the	differential	settlement,	and	in	

grades,	for	the	inclination	of	the	floor.	Some	missing	features	were	spotted	applying	this	method	(Crescenzi	

et	al.,	1994;	Iovine	&	Parise,	1995)	such	as	the	missing	of	the	distinction	between	the	construction	materials	

of	the	structure	in	addition	to	the	lacking	of	data	about	the	opening	and	the	number	of	the	cracks.	In	spite	

of	the	very	simple	scheme,	the	Author	suggested	a	checklist	of	suitable	information	to	better	describe	the	

structure	 affected	 (e.g.	 typology	 of	 construction,	 description	 of	 building	 and	 foundations,	 if	 visible),	 the	

phenomenon	occurred	(e.g.	type	of	ground	movement	and	position	of	the	structure	respect	to	the	landslide)	

and	the	specific	damage	(e.g.	direction	and	magnitude	of	the	movement,	 inclination	of	the	elements	and	

typology	of	cracking).	
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Table	4.3	-Classification	of	damage	according	to	Alexander	(1986).	

Grade	 Category	of	
damage	 Description	of	building	damage	

0	 None	 Building	is	intact	

1	 Negligible	 Hairline	cracks	in	walls	or	structural	members,	no	distortion	of	structure	or	detachment	of	external	
architectural	details	

2	 Light	 Building	continue	to	be	habitable;	repair	not	urgent.	Settlement	of	foundation,	distortion	of	
structure	and	inclination	of	walls	are	not	sufficient	to	compromise	overall	stability	

3	 Moderate	
Walls	out	of	perpendicular	by	1°-2°,	or	substantial	cracking	has	occurred	to	structural	members,	or	

foundations	have	settled	during	differential	subsidence	of	at	least	15	cm;	building	requires	
evacuation	and	rapid	attention	to	ensure	its	continued	life	

4	 Serious	

Walls	out	of	perpendicular	by	several	degrees;	open	cracks	in	walls;	fracture	of	structural	members;	
fragmentation	of	masonry;	differential	settlement	of	at	least	25	cm	compromise	foundations;	floors	
inclined	by	up	to	1°-2°,	or	ruined	by	soil	heave;	internal	partition	walls	will	need	to	be	replaced;	door	
and	window	frames	too	distorted	to	use;	occupants	must	be	evacuated	and	major	repair	carried	out	

5	 Very	serious	

Walls	out	of	plumb	by	5°-6°;	structure	grossly	distorted	and	differential	settlement	will	have	
seriously	cracked	floors	and	walls	or	caused	major	rotation	or	swelling	of	the	building	(wooden	

buildings	may	have	detached	completely	from	their	foundations).	Partition	walls	and	brick	infill	walls	
will	have	at	least	partly	collapsed;	occupants	will	need	to	be	rehoused	on	a	long-term	basis	and	

rehabilitation	of	the	building	will	probably	not	be	feasible	

6	 Partial	collapse	 Requires	immediate	evacuation	of	the	occupants	and	cordoning	of	the	site	to	prevent	accidents	with	
falling	masonry	

7	 Total	collapse	 Requires	clearance	of	the	site	

4.2.1.4 Chiocchio	et	al.	(1997)	

Chiocchio	et	al.	(1997)	defined	a	new	classification	of	landslide	damage	induced	on	buildings	(Table	4.4)	

which	 overcomes	 some	 of	 the	 drawbacks	 arisen	 in	 the	 abovementioned	 classification	 during	 some	

applications	(Crescenzi	et	al.,	1994;	Iovine	and	Parise,	2002).	The	new	approach	was	conceived	thanks	to	an	

interdisciplinary	involvement	of	geologists,	geomorphologists	and	civil	engineers.	

For	the	first	time	the	damage	classification	scheme	was	implemented	by	the	distinction	of	two	different	

typologies	of	structures	(i.e.	masonry	and	reinforced	concrete)	and	quantitative	reference	values	for	some	

parameters	were	suggested.	These	improvements	were	relevant	to	analyse	the	fractures,	to	distinguish	the	

meaning	of	similar	cracks	in	different	materials	and	to	minimize	the	subjectivity	of	the	survey.	Damage	was	

schematized	 in	eight	different	grades	and,	additionally,	some	general	recommendations	for	rehabilitation	

measurements	were	defined.	Each	 level	 represents	a	state	of	 the	damage	affecting	the	building:	 the	first	

three	levels	correspond	to	negligible	and	weak	damage;	buildings	affected	by	the	fourth	grade	of	damage	

exhibit	some	serious	cracks	and	restoration	strategies	are	suggested	for	them;	the	fifth	grade	is	characterized	

by	several	failures	affecting	the	construction	and	the	surrounding	area;	the	last	two	classes	are	for	buildings	

in	which	the	level	of	damage	is	so	severe	that	the	decision	to	renovate	or	relocate	them	has	to	be	accurately	

evaluated	(Chiocchio	et	al.,	1997).	
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Table	4.4	-	Classification	of	damage	according	to	Chiocchio	et	al.	(1997).	

Grade	 Damage	
level	

Load-bearing	
structures	

Rigid	
settlement	 Cracking	 Immediate	

measures	

0	 None	
Masonry	 0	 None	 None	
Reinforced	
concrete	frame	 0	 None	 None	

1	 Negligible	
Masonry	 0	 Hairline	cracks	of	the	plaster	 None	
Reinforced	
concrete	frame	 0	 Hairline	cracks	of	the	plaster	 None	

2	 Light	
Masonry	 2	-	3	cm	 Small	cracks	through	walls	and	partitions	 None	
Reinforced	
concrete	frame	 2	-	3	cm	 Small	cracks	through	walls	and	partitions	 None	

3	 Moderate	
Masonry	 10	-	15	cm	 Open	cracks	in	walls;	walls	disjunction;	little	deformation;	

badly	working	casings	
Evacuation	
suggested	

Reinforced	
concrete	frame	 10	-	15	cm	 Significant	cracking	in	the	beams;	partition	walls	deformed	

and	crumbling;	badly	working	casing	
Evacuation	
suggested	

4	 Serious	
Masonry	 15	-	20	cm	 Considerable	disjunction	of	walls;	space	deformation;	

partition	walls	collapsed;	unusable	casing	
Evacuation	&	

shoring	
Reinforced	
concrete	frame	 15	-	20	cm	 Perimetric	and	partition	walls	partly	collapsed;	deformed	

structures;	spread	cracking	 Evacuation	

5	 Very	
serious	

Masonry	 >25	cm	 Open	cracks	in	floor;	partition	walls	totally	collapsed;	
seriously	ruined	lintels	

Evacuation	&	
cordoning	

Reinforced	
concrete	frame	 >20	cm	 u.d.	 Evacuation	&	

cordoning	

6	 Partial	
collapse	

Masonry	 u.d.	 u.d.	 Cordoning	
Reinforced	
concrete	frame	 u.d.	 u.d.	 Cordoning	

7	 Total	
collapse	

Masonry	 u.d.	 u.d.	 Cordoning	
Reinforced	
concrete	frame	 u.d.	 u.d.	 Cordoning	

	

4.2.1.5 Cooper	(2008)	

Cooper	 (2008)	 conducted	 a	 study	 on	 several	 existing	methods	 devised	 to	 categorize	 damage	 due	 to	

subsidence,	earthquakes,	mining	and	landslide	phenomena.	Moreover,	the	recording	procedure	and	scheme	

of	 damage	 has	 to	 be	 popular,	 simple	 and	 easily	 to	 use	 by	means	 of	more	 practical	 parameters	 for	 field	

surveys.	The	Author	found	that	many	parameters,	with	slight	differences,	were	commonly	used	to	evaluate	

and	 classify	 the	 injuries.	 The	affinity	between	 several	 existing	 schemes	 for	 recording	damage	 induced	by	

landslides	and	subsidence	permitted	to	generate	a	single	classification	scheme,	independently	of	the	causes	

(Cooper,	2008).	This	ranking	divides	the	severity	of	the	damage	 in	seven	classes,	 from	very	slight	to	total	

collapse,	in	addition	to	a	negligible	one.	It	is	worthy	to	notice	as	the	description	of	the	damage	not	include	

details	 about	 cracks	 on	 foundations	 or	 on	 other	 subsurface	 amenities	 and	 the	 external	 visibility	 of	 the	

building	 cracks	 is	 added	 because	 the	 internal	 accessibility	 to	 the	 structures	 has	 not	 to	 be	 considered	 as	

necessary	 condition.	 The	 suggested	 ranking	 (Table	4.5)	 includes	 the	 characterization	and	classification	of	

building	damage	and	a	description,	and	relative	categorization,	of	the	ground	surface	ruptures	distinguished	

for	the	two	causes.	In	fact,	ground	damage	caused	by	landslides	and	subsidence	were	included	considering	
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that	most	of	the	survey	was	performed	studying	the	external	façades	of	buildings	and	cracks	on	sidewalk	and	

on	natural	surfaces	can	improve	the	capability	of	the	assessment	of	the	severity	of	damage.	

	

Table	4.5	-	Classification	of	damage	according	to	Cooper	(2008).	

Grade	 Typical	building	damage	 Subsidence	ground	damage	 Landslide	Ground	damage	

0	 Hairline	cracking,	widths	to	0.1	mm.	Not	visible	
from	outside	 Not	visible	 Not	visible	

1	

Fine	cracks,	generally	restricted	to	internal	wall	
finishes:	rarely	visible	in	external	brickwork.	

Typical	crack	widths	up	to	1	mm.	generally	not	
visible	from	outside	

Not	visible	 Not	visible	

2	

Cracks	not	necessarily	visible	externally,	some	
external	repointing	may	be	required.	Doors	
and	windows	may	stick	slightly.	Typical	cracks	
widths	up	to	5	mm.	difficult	to	record	from	

outside	

Not	visible	 Not	visible	

3	

Cracks	that	can	be	patched	by	a	builder.	
Repointing	of	external	brickwork	and	possibly	
a	small	amount	of	brickwork	to	be	replaced.	

Doors	and	windows	sticking,	slight	tilt	to	walls,	
service	pipes	may	fracture.	Typical	crack	

widths	are	5-15	mm,	or	several	of	say	3	mm.	
Visible	from	outside	

Slight	depression	in	open	ground	
or	highway,	noticeable	to	vehicle	
users,	but	may	not	be	obvious	to	
casual	observers.	Repairs	generally	
superficial,	but	may	involve	local	

pavement	reconstruction	

No	damage	likely	to	be	noticed	in	
vegetated	ground.	Tight	cracks	in	

hard	surfaces	paths,	roads,	
pavements	and	structures	with	no	
appreciable	lipping	or	separation	

4	

Extensive	damage	that	requires	breaking-out	
and	replacing	section	of	walls,	especially	over	
doors	and	windows.	Windows	and	doors	
frames	distorted,	floors	sloping	noticeably;	
some	loss	of	bearing	in	beams,	distortion	of	
structure.	Service	pipes	disrupted.	Typical	

crack	widths	are	15-25	mm,	but	also	depends	
on	numbers	of	cracks.	Noticeable	from	outside	

Significant	depression,	often	
accompanied	by	cracking,	in	open	
ground	or	highway.	Obvious	to	the	
casual	observer.	Small	hole	may	
form.	Repairs	to	the	highway	

generally	require	excavation	and	
reconstruction	of	the	road	

pavement	

Slight	stretching	of	roots,	tension	
changes	on	wires	and	fences.	Open	
cracks,	distortion,	separation	or	

relative	settlement.	Small	fragment	
falls	cause	slight	damage	to	roads	
and	structures.	Remedial	works	not	

urgent	

5	

Structural	damage,	which	requires	a	major	
repair	job,	involving	partial	or	complete	

rebuilding.	Beams	lose	bearing	capacity,	walls	
lean	badly	and	require	shoring.	Windows	

broken	with	distortion.	Danger	of	instability.	
Typical	crack	widths	are	>25	mm,	but	depend	
on	the	number	of	cracks.	Very	obvious	from	

outside	

Rotation	or	swelling	of	the	ground	
or	significant	depression,	often	

accompanied	by	cracking,	in	open	
ground	or	highway.	General	

disruption	of	services	in	highways.	
Significant	repair	required	

Widespread	tension	cracks	in	soil	
and	turf.	Ground	surface	bulged	

and/or	depressed.	Settlement	may	
tilt	walls,	fracture	of	structures,	
service	pipe	and	cables.	Remedial	

work	necessary	

6	 Partial	collapse.	Very	obvious	from	outside	
Collapse	of	ground	or	highway,	
significant	open	void,	services	
severed	or	severely	disrupted	

Extensive	ground	cracking	with	
minor	scarps,	ground	bulging	and	
soil	rolls.	Minor	flows,	falls	and	
slide	may	affect	roads	and	

structures.	Settlement	causes	
cracks	and	distortion	to	structures	
and	roads.	Remedial	work	urgent	

7	 Total	collapse.	Very	obvious	from	outside	 Large	open	void	

Extensive	ground	cracking	with	
major	scarps	and	grabens.	Major	
debris,	earth	or	mud	flows,	and	

slides	and	falls.	Settlement	causes	
rotation	or	swelling	of	ground,	

gross	distortion	and	destruction	of	
structures.	Major	remedial	works	

may	not	be	feasible	
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Furthermore,	according	to	the	Author,	damage	to	roads	and	other	facilities	can	be	also	evaluated	and	

could	be	even	surveyed	and	related	to	more	severe	classes	of	damage	(above	the	third	grade).	The	definition	

of	the	categories,	the	descriptions	and	the	ranking	of	the	landslide-induced	damage	affecting	buildings	and	

ground	 surfaces	 were	 carried	 out	 analysing	 the	 National	 Coal	 Board	 (1975),	 Alexander	 (1986),	

Geomorphological	Service	Ltd	(1991),	Freeman	et	al.	(1994),	the	Institution	of	Structural	Engineers	(1994)	

and	Chiocchio	et	al.	(1997).	

4.2.1.6 DPC	(Baggio	et	al.,	2009)	

In	Italy	a	further	approach	to	classify	damage	affecting	civil	constructions	and	to	evaluate	the	reliability	of	

buildings	to	host	safely	its	inhabitants	after	seismic	events	was	presented	by	the	Italian	Department	of	Civil	

Protection	(DPC	hereafter)	(Baggio	et	al.,	2009).	This	method	was	conceived	to	survey	damage	after	seismic	

events,	in	order	to	assess	the	fitting	for	human	habitation	of	the	buildings.	Such	approach	is	applicable	also	

to	landslides	because,	also	in	slope	movements,	damage	is	due	to	the	effects	of	shear	stress.	Several	field	

experiences	of	seismic	events	in	Italy	(e.g.	Irpinia,	Campania	region	in	1980,	Abruzzo	region	in	1984,	Basilicata	

region	in	1990)	was	the	base	of	this	methodology,	then	it	was	tested	in	subsequent	earthquakes	(e.g.	Umbria-

Marche	regions	in	1997	and	Pollino,	Basilicata-Calabria	regions,	in	1998).	The	aim	of	this	ranking	scheme	is	

to	extract	a	judgment	on	the	reliability	of	the	structure	to	host	safely	its	inhabitants.	

The	 DPC	 approach	 was	 devised	 for	 quick	 survey	 and	 to	 classify	 the	 damage	 magnitude,	 even	 if	 the	

requested	 field	 analysis	 on	 the	 structure	 has	 been	 conducted	with	 care.	 It	 was	 conceived	 to	 assess	 the	

reliability	of	the	structure,	it	is	more	complete	than	others	one,	composed	of	several	tables	and	schemes	to	

be	followed	during	the	post-seismic	events	survey.	Overall,	the	form	to	compile	during	the	field	campaign	is	

composed	of	nine	 sections:	 three	 tables	dedicated	 to	 the	 identification	 and	description	of	 the	examined	

buildings;	 two	 sections	 referred	 to	 the	 structural	 and	 non-structural	 damage	 and	 the	 quickly	 performed	

measures;	one	part	including	the	evaluation	of	the	induced	hazard	for	surrounding	constructions;	one	section	

about	the	terrain	and	foundations;	one	section	for	the	judgment	of	conformity	to	standards;	the	last	one	

conceived	to	note	down	further	information.	

The	assessment	of	the	damage	magnitude	was	realized	in	six	grades	of	severity,	but	divided	in	four	classes:	

nothing	(no	damage);	weak;	moderate	&	serious;	very	serious	&	collapse.	The	peculiarity	of	this	approach	is	

the	introduction	of	the	evaluation	of	the	damage	extension.	It	has	to	be	evaluated	in	percentage,	separating	

the	categories	by	an	interval	of	33%	or	66%,	of	the	magnitude	of	damage	divided	in	null	(D0)	for	no	damage,	

weak	 (D1),	 medium-severe	 (D2-D3)	 and	 very	 severe	 (D4-D5)	 (Table	 4.6).	 To	 assess	 damage	 affecting	

structures,	section	by	section,	the	extension	of	the	cracks	and	their	magnitude	have	to	be	taken	into	account	

considering	the	sum	of	the	damage	extension	can	not	exceed	1,	representing	the	entire	building	(e.g.	2/3	of	

D4-D5	+	1/3	of	D2/D3).	
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Table	4.6	-	Classification	of	damage	according	to	the	DPC	(Baggio	et	al.,	2009).	

Grades	 Damage	level	 Crack	width	
(CW	in	mm)	 General	description	of	the	damage	

D0	 Nothing	 None	 None	

D1	 Weak	 ≤	1	
Damage	don't	change	significantly	the	resistance	of	the	structure;	slightly	cracks	(≤	
1mm)	in	walls;	limited	separation	of	elements	and	dislocation	(≤	1mm);	limited	

distortion	without	separation	or	structural	failure	

D2/D3	 Moderate	&	
Serious	 <	10	or	15	

Damage	that	could	change	significantly	the	resistance	of	the	structures	without	the	
collapse	of	elements;	cracks	with	big	entity	than	D1	with	possible	expulsion	of	
material	(≤	1cm	or	more	close	to	the	opening);	symptom	of	crushing	crack;	

important	disjunctions;	possible	small	collapse	

D4/D5	 Very	Serious	&	
Collapse	 >	15	 Damage	that	evidently	modify	the	resistance	of	the	structures;	possible	partial	and	

total	collapse	
	

The	DPC	classification	was	realized	to	classify	damage,	not	to	categorize	the	whole	structures,	considering	

the	original	aim	of	the	approach:	the	evaluation	of	the	fitting	of	the	human	habitation	of	buildings	affected	

by	a	seismic	event.	For	this	reason,	a	further	elaboration	was	necessary	to	apply	the	method	to	the	PhD	cases	

of	study.	All	the	possible	crossings	between	percentage	of	the	extension	of	the	level	of	damage	and	the	four	

classes	 of	 cracks	 size	were	 taken	 into	 account	 using	 a	matrix	 to	 evaluate	 a	whole	 unit.	 Several	 possible	

combinations	were	individuated,	considering	also	the	possibility	that	the	entire	building	is	affected	by	the	

same	type	of	damage	(100%	in	the	same	class).	For	each	level	of	damage,	a	value	was	assigned	and	then,	the	

values	were	grouped	between	0	(negligible	damage)	and	7	(total	collapse)	to	be	comparable	with	the	other	

above	described	classifications.	

4.2.2 Global	Position	System	(GPS)	survey	

To	 better	 understand	 the	 movement	 of	 several	 areas,	 sometimes	 not	 visible	 by	 remote	 sensing	

techniques,	involved	by	a	landslide	and	to	monitor	their	evolution,	a	Global	Position	System	(GPS)	survey	can	

play	a	key	role.	Furthermore,	this	approach	can	be	applied	over	time	repeating	measurements	in	the	same	

control	points	and	allowing	the	evaluation	of	their	displacement.	A	GPS	sensor	(Fig.	4.17)	is	composed	of	a	

console	to	manage	the	measured	points	and	an	antenna	that	has	to	put	up	on	a	rod	with	note	height	(i.e.	

one	or	two	m).	The	system	allows	to	perform	occasional	measurements,	that	have	to	be	repeated	over	time,	

in	addition	to	real-time	measurement	based	on	the	aim	of	the	studies,	i.e.	small	or	large	scale	analysis.	This	

approach,	with	respect	to	the	terrestrial	instrumentations	(e.g.	terrestrial	geodetic	sensor)	can	work	in	any	

condition	of	visibility	and	weather.	On	the	other	hand,	GPS	requires	a	certain	satellite	“covering”,	at	least	

four	satellites	have	to	be	visible	from	the	receiver,	of	the	monitored	area	to	reach	good	precision.	

To	reach	good	precision	during	the	survey	the	console	has	to	be	connected	to	internet,	by	means	of	the	

use	of	a	mobile	phone,	to	calculate	as	good	as	possible	the	correct	position	by	the	triangulation	method.	In	

this	way,	it	is	possible	to	reach	errors	of	 ±	0.05	m.	The	three	dimensional	coordinates	(latitude,	longitude	
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and	height)	(Bonnard	et	al.,	1996;	Wasowski	et	al.,	2004;	Mills	et	al.,	2005;	Webster	and	Dias,	2006;	Yin	et	

al.,	2008;	Zhang	et	al.,	2008)	of	various	control	points	can	be	obtained	for	several	readings	and,	by	means	of	

statistical	evaluation	on	the	reliability	of	the	data,	the	displacement	vector	for	each	measured	point	can	be	

assessed	correlating	the	repeated	measures.	

	

	
Fig.	4.17	-	GPS	sensor	(a)	and	an	example	of	to	application	during	a	field	campaign	survey	in	Agnone	(b).	

	 	



Integration	of	field	investigations	and	remote	sensing	techniques	for	the	assessment	of	landslide	activity	and	damage	
	

M.	Del	Soldato	

	

71	

		

4.3 Damage	-	displacement	relationship	

In	 order	 to	 understand	 and	 prevent	 human	 losses	 and	 decrease	 consequently	 economic	 disasters,	 a	

correlation	between	the	surveyed	and	classified	damage	on	the	facilities	and	kinematic	parameters	obtained	

by	the	A-DInSAR	technique	were	investigated.	

4.3.1 Velocity	projected	along	the	slope	(Vslope)	

This	work	was	conducted	using	both	ascending	and	descending	geometries	of	the	satellite	because	the	

slopes	in	both	analysed	cases	of	study	are	exposed	to	Southeast	and	West,	respectively.	In	both	cases,	the	

combination	between	ascending	and	descending	PS	was	allowed	projecting	the	velocity	measured	along	the	

LOS	in	velocity	along	the	steepest	slope.	Notti	et	al.	(2014)	presented	a	formula	(Eq.	9)	subsequently	modified	

by	Colesanti	and	Wasowski	(2006)	and	Plank	(2014)	to	project	the	velocity	measured	along	the	Line-of-Sight	

(LOS)	of	the	satellite	along	the	slope.	

𝑉OVNW: =
2567
X

	 	 	 	 	 	 	 	 	 	 	 	 (9)	

where	 VLOS	 is	 the	 velocity	 measured	 by	 the	 satellite	 along	 the	 Line-Of-Sight	 and	 C	 represents	 the	

percentage	 of	 movement	 that	 the	 SAR	 sensor	 can	 register.	 This	 coefficient	 (Eq.	 10)	 is	 calculated	 using	

parameters	derived	from	the	DEM	of	the	investigated	area	and	the	direction	cosine	(Eq.	4,	5	and	6)	of	the	

LOS	depending	on	the	incident	angle	and	the	LOS	azimuth	in	radians.	

𝐶 = 𝑛+,- ∗ cos 𝑆 ∗ sin 𝐴 − 1.571 + 𝑒+,- ∗ −1 ∗ cos 𝑆 ∗ cos 𝐴 − 1.571 + ℎ+,- ∗ sin 𝑆 	 (10)	

Where:	

ℎ+,- = cos 𝛼 	 	 	 	 	 	 	 	 	 	 	 (5)	

𝑒+,- = cos 1.571 − 𝛼 ∗ cos𝜔	 	 	 	 	 	 	 	 	 (6)	

𝑛+,- = cos 1.571 − 𝛼 ∗ cos 𝜂		 	 	 	 	 	 	 	 	 (7)	

𝜂 = 3.142 − 	𝜃	 	 	 𝜔 = 4.712 − 𝜃	

Using	Vslope	the	evaluated	velocity	affecting	the	structures	is	closer	to	the	real	more	than	the	measured	

one	along	the	LOS.	Furthermore,	to	calculate	the	velocity	along	the	slope	allows	to	combine	both	geometries	

to	assess	the	movement	affecting	each	building.	On	the	other	hand,	the	projection	along	the	slope	has	some	

limitations	due	to,	for	instance,	small	variations	in	the	slope	orientation	that	provoke	strong	effect	on	the	

Vslope	measurement.	Notti	et	al.	(2014)	suggest	some	consideration	to	adopt	in	order	to	reduce	the	problems	

affecting	the	reprojecton	of	the	velocity:	

Ø discard	the	PS,	or	assume	correct	VLOS,	 in	case	of	positive	Vslope	values,	i.e.	indicating	up	movements	

along	the	slope	(very	difficult	condition);	

Ø project	PS	LOS	velocity	only	on	areas	with	more	than	5°	of	slope	because	the	occurrence	of	landslides	

in	flat	area	is	very	rare	and	the	movement	could	be	caused	by	other	reasons;	
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Ø set	a	maximum	value	of	the	coefficient	C	to	reduce	any	exaggeration	of	the	projection	when	this	value	

tends	 towards	0.	Notti	et	al.	 (2014)	 suggests,	based	on	empirical	experience,	 three	categories	𝐶 =

−0.2	when	−0.2 < 𝐶 < 0	and	𝐶 = 0.2	in	case	of	0	< 𝐶 < 0.2.	

Ø C	value	varies	strongly	with	the	irregularity	of	the	slope,	then	Notti	et	al.	(2014)	suggests	to	use	a	DEM	

with	 low	 resolution,	 or	 resampled,	 to	 smooth	 out	 small	 variation	 causing	 errors	 and	 uniform	 the	

coefficient	into	the	entire	landslide.	

Vslope	 parameter	 was	 used	 to	 classify	 the	 buildings	 in	 order	 to	 investigate	 for	 a	 relationship	 with	 the	

damage.	In	this	way	the	buildings	were	categorized	based	on	a	velocity	of	displacement	close	to	the	real	one	

affecting	 them.	PS	 are	 intersected	with	 the	buildings	 isolating	PS	only	 referred	 to	 the	 structures	 and,	 by	

means	of	Summary	Statistics	tool	of	ArcGIS®	the	mean	Vslope	was	assessed	for	each	construction.	Considering	

that	the	process	of	velocity	reprojection	caused	an	increment	of	the	“error”	inducing	to	enlarge	the	range	of	

stability	from	±2	mm/year	or	±1.5	mm/year,	for	C-band	and	X-band	respectively,	to	±5	mm/year.	

4.3.2 Cumulated	displacement	projected	along	the	slope	(Dslope)	

Another	important	parameter	describing	the	movement	of	the	landslide	is	the	displacement.	By	means	

of	the	possibility	to	have	available	data	on	both	ascending	and	descending	orbits	is	possible	to	project	the	

displacement,	as	the	for	the	velocity,	along	the	slope.	Using	the	same	coefficient	C	(Eq.	10)	and	the	same	

precaution	above	mentioned,	Dslope	was	calculated	as	follows	(Eq.	11)	

𝐷OVNW: =
0567
X

		 	 	 	 	 	 	 	 	 	 	 (11)	

where	DLOS	is	the	maximum	displacement	measured	for	the	examined	period	along	the	LOS	and	C	is	the	

quantity	of	registered	movement	(Eq.	9).	

In	this	way	it	is	possible	to	improve	the	number	of	PS	for	areas	were	they	are	scarce,	allowing	the	merging	

between	the	two	orbits,	and	to	investigate	the	real	displacement	affecting	the	target.	

Also	 for	Dslope	 values	were	used	 to	 categorize	 the	buildings	 in	order	 to	 look	 for	 a	 correlation	with	 the	

damage	recorded	on	the	structures.	To	categorize	the	buildings	based	on	the	displacement	close	to	the	real	

occurring	on	them,	PS	are	intersected	with	the	structure	to	take	into	consideration	only	the	signal	reflected	

by	the	constructions.	Then	by	means	of	Summary	Statistics	tool	of	ArcGIS®	the	mean	Dslope	was	extracted	for	

each	structure.	Also	for	this	parameter	the	process	of	the	reprojection	caused	an	increment	of	the	“error”	

inducing	 to	 expand	 the	 range	 of	 stability	 from	 ±2	 mm/year	 or	 ±1.5	 mm/year,	 for	 C-band	 and	 X-band	

respectively,	to	±5	mm/year.	
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5 Application	and	results	

5.1 New	ranking	

The	applications	of	the	considered	methodologies	to	classify	the	landslide-induced	damage	on	structures	

known	in	scientific	literature	(Table	5.1)	show	several	benefits	and	constraints	that	were	taken	into	account	

and	critically	examined	to	propose	a	new	approach	for	a	quick	damage	assessment.	The	aim	of	the	method	

was	to	overcome	eventual	difficulties	in	damage	survey,	as	well	as	to	reduce	the	drawbacks	revealed	when	

applying	 the	 aforesaid	 methods.	 The	 developed	 approach	 is	 a	 well-structured	 simple	 method	 for	 the	

recognition	and	classification	of	damage	with	the	final	aim	of	providing	a	subsequent	effective	categorization	

of	the	entire	affected	structures.	

	

Table	5.1	-	Summary	of	features	of	the	existing	classifications	regarding	landslide-induced	damage.	

	 Burland	et	al.	 Alexander	 Chiocchio	et	al.	 Cooper	 DPC	-	Baggio	et	al.	

Year	 1977	 1986	 1997	 2008	 2009	
Number	of	classes	 6	 8	 8	 8	 4	
Distinction	of	
structure	 NO	 NO	 YES	 NO	 NO	

Reference	values	 YES	(mm)	 NO	 YES	(cm)	 YES	(mm)	 YES	(mm)	
Partition	of	the	

structure	 NO	 NO	 NO	 NO	 YES	

Applicability	on	
ground	surface	 NO	 NO	 NO	 YES	 NO	

	

As	mentioned	in	Cooper	(2008),	a	method	for	assessing	 landslide-induced	damage	on	buildings	should	

allow	to	assess	damage	on	 facilities	and	ground	surfaces,	 it	 should	be	simple	and	rapid	 to	apply	and	not	

requiring	the	accessibility	of	the	interiors	of	the	investigated	constructions	(e.g.	often	private	dwellings).	To	

such	a	scope,	the	proposed	approach	is	divided	in	two	main	steps:	firstly,	recognition	and	classification	of	the	

severity	of	damage,	supported	by	drawings,	notes	and	pictures;	secondly,	the	a	posteriori	categorization	of	

the	entire	facilities	affected	by	damage.	The	specific	goal	was	to	propose	an	easy	and	suitable	methodology	

of	damage	survey	which	allows	also	to	assess	the	level	of	criticality	of	the	whole	damaged	facility	and	help	in	

the	characterization	of	the	investigated	area.	

To	simplify	the	recognition	of	damage	during	the	damage	assessment	on	structures,	a	visual	description	

(Fig.	5.1)	of	the	possible	observable	cracks	and	fractures	affecting	the	facilities,	by	means	of	the	scheme	in	

Table	5.2	derives	from	Baggio	et	al.	(2009),	improved	by	the	experiences	accumulated	in	field,	was	reported.	
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Fig.	5.1	-	Referring	scheme	of	the	damage	which	could	affect	structures	and	grounds	in	a	landslide-prone	area:	a)	thin	

and	open	vertical	cracks;	b)	thin	and	open	horizontal	fractures;	c)	diagonal	tension	cracks;	d)	severe	open	damage;	e)	

local	crushing	with	or	without	loss	of	material;	f)	hairline	fissure	in	plaster;	g)	loss	of	plaster	enclosed	by	cracks;	h)	

horizontal	 and	 vertical	 damage	 close	 to	 the	 intersection	 of	 walls;	 i)	 distortion	 of	 services	 as	 doors,	 windows	 or	

chimneys;	j)	unstable	wedge	in	the	intersection	of	walls	severely	affected	by	open	cracks;	k)	bended	roof;	l)	collapse	

of	part	of	the	structure	(e.g.	roof);	m)	open	and	thin	fractures	between	the	external	façades	and	the	sidewalk;	n)	

open	(sometimes	filled	by	soil	and	grass)	and	thin	parallel	damage	in	sidewalk;	o)	open	(sometimes	filled	by	soil	and	

grass)	and	thin	perpendicular	fractures	in	sidewalk;	p)	damage	due	to	the	propagation	of	the	landsliding	effects	on	

horizontal	structures;	q)	extensive	ground	cracking	with	minor	and	major	scarps;	r)	fracture	retracing	the	scarps	of	

the	landslide	with	tension	cracks	in	soil;	s)	thin	fissure	in	ground	surfaces;	t)	piece	of	horizontal	structure	fractured	

and	collapsed	along	the	scarp	of	the	landslide	(from	Del	Soldato	et	al.,	under	review_b).	

The	proposed	classification	differentiates	six	levels	(Table	5.2)	from	the	non	presence	to	the	high	severity	

of	damage:	no	damage	(G0),	negligible	(G1),	weak	(G2),	moderate	(G3),	severe	(G4)	and	very	severe	(G5).	

The	 distinction	 of	 five	 grades	 of	 damage,	 in	 addition	 to	 the	 no	 damage	 level	 (G0),	 derives	 from	 the	

classification	of	Burland	(1977)	and	the	merging	with	the	DPC	one	(Baggio	et	al.,	2009).	
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Table	5.2	-	New	proposed	approach	(Del	Soldato	et	al.,	under	review_b)	for	the	classification	of	observable	damage	

affecting	facilities	and	ground	surfaces.	It	was	developed	based	on	the	scheme	of	Burland	et	al.	(1977),	Alexander	

(1986),	Chiocchio	et	al.,	(1997),	Cooper	(2008)	and	DPC	(Baggio	et	al.,	2009).	

Damage	
level	

Load-
bearing	
structures	

Crack	width	
(CW	in	mm)	

Cracking	description	 Ground	damage	

G0	
No	damage	

Masonry	

-	 Building	is	intact	 Not	visible	Reinforced	
concrete	
frame	

G1	
Negligible	

Masonry	

≤	1	

Fine	or	 isolated	cracks,	generally	 in	 internal	
walls	 or	 finishes	 not	 influencing	 the	
resistance	 of	 the	 structure;	 no	 distortion.	
Not	 visible	 from	 the	 outside,	 rarely	 in	
brickwork.	 Restoring	 with	 normal	
redecoration	

Not	visible	
Reinforced	
concrete	
frame	

G2	
Weak	

Masonry	

1	<	CW	≤	5	

Settlement	 of	 foundations,	 distortion	 and	
inclination	not	involving	the	stability.	Several	
slight	fractures	on	walls	and	partitions	inside	
the	buildings.	Doors	and	windows	may	stick	
slightly.	 Repair	 not	 urgent,	 some	 external	
redecoration	 probably	 required.	Difficult	 to	
record	from	outside.	

Thin	cracks	in	hard	surfaces	as	roads,	
concrete	 pavements.	 No	 ruptures	
visible	 in	 vegetated	 ground.	 No	
separation	 or	 distortion	 in	 vertical	
structures	

Reinforced	
concrete	
frame	

G3	
Moderate	

Masonry	
5	<	CW	≤	15	

or	several	>	3	mm	

Open	cracks	in	walls	that	could	influence	the	
resistance	of	the	structure;	walls	disjunction	
and	lintel	deformation	with	sticking	of	doors	
and	windows.	Possible	expulsion	of	materials	
and	fracturing	of	service	pipes.	Visible	from	
outside.	

Change	 of	 tension	 in	 wires	 and	
fences.	 Open	 cracks,	 distortion,	
separation	 or	 relative	 settlement	
with	falling	of	small	fragment	due	to	
slight	damage	to	road	and	structures.	
Remedial	works	not	urgent	

Reinforced	
concrete	
frame	

G4	
Severe	

Masonry	
15	<	CW	≤	25	
depending	on	

number	of	cracks	

Spread	 cracking	 and	 fractures	 in	 structural	
members	conditioning	the	resistance	of	the	
structure.	 Considerable	 disjunction;	 floors	
inclined	 and	 walls	 out	 of	 perpendicular.	
Windows	 and	 doors	 too	 distorted	 to	 use,	
walls	lean	or	bulge	noticeably,	service	pipes	
disrupted.	 Evacuation	 and	 shoring.	
Noticeable	from	outside.	

Ground	 surface	 bulged	 and/or	
depressed	 presenting	 widespread	
tension	 cracks	 in	 soil	 and	 turf.	
Settlement	may	tilt	walls,	fracture	of	
structures,	 service	 pipe	 and	 cables.	
Remedial	work	necessary	

Reinforced	
concrete	
frame	

5	<	CW	≤	20	
depending	on	

number	of	cracks	

G5	
Very	severe	

Masonry	
>	25	

depending	on	
number	of	cracks	

Partial	collapse	of	 floor	and	open	cracks	on	
structural	parts	hardly	damaging	the	stability	
of	 the	 structure.	 Out	 of	 plumb	 walls,	
structure	grossly	distorted,	seriously	cracked	
floors	and	walls,	doors	and	windows	broken.	
Possible	 major	 rotation	 or	 swelling	 of	 the	
building	and	collapse	of	part	of	the	structure.	
Evacuation	 and	 cordoning;	 Occupant	 will	
need	 to	 be	 rehoused.	 Partial	 or	 total	
rebuilding	 requires,	 probably	 not	 feasible.	
Very	obviously	from	outside	

Extensive	 ground	 cracking	 with	
minor	 and	 major	 scarps,	 ground	
bulging	 and	 soil	 rolls.	 Debris,	 earth	
and	 mud	 flows,	 falls	 and	 slide	 may	
affect	 man-made	 facilities.	
Settlement	 causes	 cracks,	 rotation	
and	 distortion	 to	 structures	 and	
roads.	Remedial	works	urgent.	

Reinforced	
concrete	
frame	

>	20	
depending	on	

number	of	cracks	

	

Comparing	the	proposed	classification	of	damage	level	to	the	existing	ranking	it	is	possible	to	notice	the	

absence	of	levels	referred	to	the	collapse	condition,	indifferently	partially	or	totally.	The	choice	was	done	to	

pursue	the	specific	target	of	the	ranking,	thus	the	classification	of	cracks	and	fractures	observed	during	field	

surveys.	In	this	way	the	collapses	can	be	categorized	as	very	severe	following	the	philosophy	of	Burland	(1977)	
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and	DPC	(Baggio	et	al.,	2009)	recording	schemes.	The	second	column,	concerning	the	typology	of	the	load-

bearing	structure,	takes	inspiration	from	the	approaches	of	Alexander	(1986)	and	Chiocchio	et	al.	(1997).	The	

difference	of	behaviour	between	masonry	and	reinforced	concrete	frameworks	were	already	touched	upon	

by	Nawy	(1968).	Steel	and	timber	frames	are	not	considered	because	their	response	to	the	movement	can	

be	 assimilated	 to	 the	 reinforced	 concrete	 reaction	 (Grünthal,	 1998).	 The	 width	 of	 the	 cracks,	 and	 their	

numbers	are	considered	important	parameters	to	group	the	visible	fractures	on	facilities	and	the	exhibited	

values	are	reported	by	Burland	(1977)	and	Cooper	(2008)	categorizations	in	addition	to	the	illustrations	of	

the	damage	from	Alexander	(1986)	and	DPC	(Baggio	et	al.,	2009).	The	descriptions	of	damage	were	derived	

taking	into	account	the	main	features	of	each	abovementioned	existing	classifications.	Some	modifications,	

based	on	the	accumulated	experience,	were	made	in	order	to	adapt	the	characterizations	to	better	recognize	

damage	from	the	exterior	of	structures.	It	is	important	to	highlight	that	fractures	affecting	foundations	are	

not	 considered	 in	 the	 categorization	because	not	easily	 recognizable	without	 invasive	 investigations.	 The	

definitions	of	the	ground	damage	was	adopted	from	the	Cooper	(2008)	classification	and	modified	 in	the	

proposed	 approach	 by	 not	 taking	 into	 account	 interpretation	 of	 the	 severity	 but	 considering	 strictly	 a	

classification	of	cracks,	as	being	not	related	with	the	consequences	that	could	be	elicited	on	the	structures.	

In	this	way,	the	ground	landslide-induced	damage	is	classifiable	from	weak	(G2),	to	very	severe	(G5)	as	for	

the	visible	cracks	on	facilities.	To	facilitate	a	methodical	survey	of	the	buildings	a	recording	damage	scheme	

(Fig.	5.2)	was	suggested	in	order	to	better	compare	all	the	surveyed	constructions.	By	means	of	this	support,	

the	categorization	of	Table	5.2	and	the	visual	description	shown	in	Fig.	5.1,	a	good	classification	of	cracks	and	

ruptures	on	facilities	and	on	ground	surfaces	is	possible.	The	suggested	scheme	requires	several	information	

about	 the	 structures,	 important	 not	 only	 to	 investigate	 damage,	 but	 also	 for	 the	 evaluation	 of	 their	

vulnerability	or	risk	(Uzielli	et	al.,	2015).	
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Fig.	5.2	-	Suggested	recording	scheme	to	survey	damage	on	structures	(Del	Soldato	et	al.,	under	review_b).	

DAMAGE RECORDING SCHEME 
 

  
Data 

   
ID 

 
Site 

 
Corners coordinates 

 
X Y Z 

Municipality  Prov.  N    
Type of construction 

 
E 

   
Load-bearing material 

 
S 

   
Date of construction 

 
W 

   
Floors 

 
Position respect to the landslide 

 

 

Thin and open vertical, horizontal and diagonal cracks (a, b, c and d); local crushing 
with or without losing of material (e and g); fissure and cracks in plaster and 
intersection of walls (f and h); distortion of services (i); unstable wedge and bended or 
collapse roof (j, k and l); open and thin crack between the wall and sidewalk (m); open 
(sometimes filled) and thin parallel and perpendicular cracks in in horizontal structures 
(n and o); propagation of landslide crown (p); minor or major scarps (q); fractures and 
thin fissure in ground surfaces (r and s); piece of structure fall along the scarp (t) 

Extension of the damage G0 G1 G2 G3 G4 G5 
< 1/3       

1/3 < damage < 2/3       
> 2/3       

Description and sketch of the damage 

 

Observations: 
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The	 second	 part	 of	 the	 work	 consists	 in	 the	 assessment	 of	 the	 damage	 severity	 affecting	 the	 whole	

structure.	This	has	to	be	carried	out	after	the	damage	classification	recognized	by	means	of	field	surveys.	The	

aim	is	the	estimation	of	the	stability	of	the	entire	structure	considering	the	construction	divided	in	sectors	

and	taking	into	account	the	extension	of	damage.	All	possible	crossings	considering	all	grades	of	the	proposed	

classification	are	shown	and	considered	in	Table	5.3.	The	empty	cells	represent	the	no	possible	crossings,	

while	the	colours	show	the	severity	of	damage	grouped	into	8	levels	of	damage:	no	damage,	negligible,	weak,	

moderate,	severe,	very	severe,	potential	collapse	and	not-habitable.		

	

Table	5.3	-	Table	of	conversion	from	the	level	of	damage	recognized	on	each	sector	of	the	facilities	to	the	classification	

of	the	entire	structures	(Del	Soldato	et	al.,	under	review_b).	

	
	

The	 classification	 based	 on	 the	 characterization	 of	 damage	 severity	 considers	 six	 levels	 while	 the	

classification	of	the	whole	structure	expects	eight	classes.	By	means	of	a	mathematical	value	assigned	to	each	

level	of	damage,	a	numerical	value	is	assigned	to	each	crossing	cell.	First	of	all,	for	no	damage	(G0)	the	value	

1	was	arbitrarily	designated	in	order	to	allow	the	division	in	portions.	The	thresholds	between	the	classes	of	

the	categories	of	the	whole	constructions	(i.e.	seven)	were	defined	correlating	them	with	the	numbers	of	the	

level	of	damage	(i.e.	five).	Structures	entirely	affected	by	the	same	level	of	cracking	have	to	be	evaluated	in	

two	different	parts	 to	enter	 in	 the	symmetric	matrix	 (Table	5.3).	The	ground	fractures	classified	with	 the	

scheme	 in	Table	 5.2	have	not	 to	been	 contemplated	 in	 the	 second	phase	 (Table	5.3),	 dedicated	 to	 rank	

damage	on	facilities.	
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> 2/3 G5 - - 7.000 - - 6.533 - - 6.067 - - 5.600 - - 5.133 - - 5.000 

1/3 < G5 < 2/3 - 7.000 - - 6.300 - - 5.600 - - 4.900 - - 4.200 - - 4.000 - 

< 1/3 G5 7.000 - - 6.067 - - 5.133 - - 4.200 - - 3.267 - - 3.000 - - 

> 2/3 G4 - - 6.067 - - 5.600 - - 5.133 - - 4.667 - - 4.200 - - 4.067 

1/3 < G4 < 2/3 - 6.300 - - 5.600 - - 4.900 - - 4.200 - - 3.500 - - 3.300 - 

< 1/3 G4 6.533 - - 5.600 - - 4.667 - - 3.733 - - 2.800 - - 2.533 - - 

> 2/3 G3 - - 5.133 - - 4.667 - - 4.200 - - 3.733 - - 3.267 - - 3.133 
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< 1/3 G0 5.000 - - 4.067 - - 3.133 - - 2.200 - - 1.267 - - 1.000 - - 
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5.2 Agnone	landslide	(Molise	region)	

5.2.1 Reconstruction	of	evolutionary	stages	and	monitoring	of	the	landslide	

The	 investigated	 Colle	 Lapponi	 -	 Piano	 Ovetta	 landslide	 is	 a	 deep-seated	 mass-movement	 whose	

morphological	 features	 and	effects	 on	 involved	 structures	 are	 the	 results	 of	 two	 important	 reactivations	

occurred	 in	 January	2003	and	between	December	2004	and	January	2005,	which	were	followed	by	other	

minor	continuous	movements.	

The	first	evidences	of	a	landslide	affecting	the	investigated	site	were	found	in	literature	and	dated	back	

to	the	beginning	of	the	XX	century.	Almagià	(1910)	described	a	phenomenon	that	occurred	on	March	1905	

damaging	 the	 access	 bridge	 to	 the	historical	 centre	 of	Agnone	 caused	by	 the	 combination	of	 an	 intense	

rainfall	period	with	the	snow-melting.	Other	old	reports	are	very	rare	to	find,	but	it	is	known	that	the	territory	

of	the	Agnone	municipality	was	diffusely	and	chronically	affected	by	landslides.	

In	order	 to	 investigate	 the	evolution	of	 the	 landslide,	 the	historical	aerial	 images	 taken	by	 the	 IGM	 in	

different	 years	 since	 1945	 were	 analysed.	 By	 means	 of	 the	 application	 of	 the	 Structure	 from	 Motion	

technique,	the	3D	reconstructions	of	several	years	of	the	landslide	area	were	realized	in	order	to	investigate	

the	evolution	of	 the	 landslide	 (Fig.	 5.5).	 The	precision	of	 the	models	depends	on	 the	quality	of	 the	 scan	

process	 used	 for	 the	 images	 and	 the	 source	 of	 the	 GCPs	 coordinates,	 in	 this	 case	 a	 DEM	with	 5-m	 cell	

resolution.	 In	 this	 way,	 all	 the	 reconstruction	 realized	 for	 the	 Agnone	 landslide	 resulted	 with	 a	 pixel	

dimension	 lower	 than	 5	 m	 (Fig.	 5.5).	 For	 the	 analysis	 of	 the	 evolution	 of	 the	 CL-PO	 landslide,	 the	 3D	

reconstructions	were	developed	only	on	the	 landslide	area	and	the	surrounding	region.	Analysing	 the	3D	

reconstructions	developed	 for	 seven	historical	 sets	of	 images,	 from	1945	 to	2005,	different	stages	of	 the	

mass-movement	 evolution	 affecting	 the	 Colle	 Lapponi	 -	 Piano	 Ovetta	 were	 recognized.	 It	 is	 interesting	

noticing	that	the	first	activation,	or	reactivation,	of	the	landslide	occurred	before	the	1945	involving	only	the	

western	 part	 of	 the	 valley	 (Fig.	 5.5a)	 and	 damaging	 the	 access	 road	 to	 some	 buildings.	 The	 subsequent	

reconstructions	made	by	means	of	aerial	 images	of	1954,	1981	and	1986,	 shown	as	 the	evolution	of	 the	

territory	 tried	 to	 remove	 the	geo-morphological	 shapes	determined	by	 the	 landslide	before	1945.	 In	 the	

model	of	 1954	no	 important	enlargements	of	 the	 investigated	area	were	 shown:	only	 little	 advancing	of	

material	at	the	foot	can	be	recognized.	(Fig.	5.5b).	The	3D	reconstruction	of	1981	do	not	show	important	

differences	too,	even	if	a	cloud	on	the	right	side	of	the	valley	covers	part	of	the	landslide	area	(Fig.	5.5c).	The	

diffusion	 of	 several	 ploughed	 and	 cultivated	 areas	 allows	 to	 suppose	 that	 no	 new	 events	 occurred.	 This	

hypothesis	 can	 be	 confirmed	 by	 the	model	 of	 1986	 where	 the	 signs	 of	 the	 landslide	 are	 almost	 totally	

obliterated	by	the	time	and	by	means	of	diffused	agricultural	practices	(Fig.	5.5d).	The	changes	recognizable	

in	the	abovementioned	period,	from	1945	to	1986,	are	due	to	very	little	events	affecting	the	flanks	or	the	
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river,	or	due	to	the	transportation	of	the	beforehand	mobilized	materials.	The	reconstruction	developed	by	

means	of	the	set	of	images	shot	in	1991	shows	a	continuous	enlarging	of	the	movement	only	on	the	natural	

embankments	 probably	 due	 to	 the	 erosion.	 Other	 important	 facets	 to	 highlight	 are	 the	 interventions	

operated	along	the	Verrino	Torrent	(in	the	lower	part	of	the	reconstructed	area)	and	along	the	river	flowing	

into	the	CL-PO	valley	(Fig.	5.5e).	These	works	were	probably	made	to	avoid	the	continuous	span	erosion	and	

to	control	the	runoff	drainage,	which	in	some	cases	are	still	visible	in	the	lower	part	of	the	landslide,	close	to	

the	spilling	of	the	river	into	the	Verrino	torrent.	

	

Table	5.4	-	Ground	Control	Points	precision	carried	out	by	the	reports	of	Photoscan.	

Year	 X	error	(m)	 Y	error	(m)	 Z	error	(m)	 XY	error	(m)	 Total	(m)	 Image	(pix)	

1945	 3.173	 1.388	 2.577	 3.463	 4.317	 0.657	

1954	 2.721	 1.594	 2.010	 3.154	 3.740	 0.873	

1981	 0.416	 0.678	 0.621	 0.795	 1.009	 0.539	

1986	 1.373	 1.367	 1.732	 1.938	 2.599	 0.521	

1991	 0.906	 1.111	 1.331	 1.434	 1.956	 0.362	

2003	 0.989	 1.414	 1.125	 1.725	 2.060	 0.392	

2005	 0.331	 1.153	 0.701	 1.199	 1.389	 1.138	

	

Guzzetti	 et	 al.	 (1994)	 edited	 the	 nationwide	 AVI	 project,	 by	means	 of	 an	 archival	 and	 bibliographical	

landslides	research,	carrying	out	between	the	1970	and	1998,	more	than	60	landslides	affected	the	council	

territory	of	Agnone.	Two	important	phenomena	were	reported	in	literature		regarding	the	area	close	to	the	

investigated	Colle	Lapponi	-	Piano	Ovetta:	a)	a	 landslide	involving	two	pylons	of	the	State	Road	viaduct	 in	

February	1984,	forcing	its	partially	demolition	(Guadagno	et	al.,	1987);	b)	a	mass-movement	in	1994	involving	

the	Colle	Lapponi	-	Piano	Ovetta	valley	causing	the	interruption	of	an	important	dirty	road,	connecting	several	

houses.	 In	2008	ISPRA	(Istituto	Superiore	per	 la	Protezione	e	 la	Ricerca	Ambientale)	updated	the	landslide	

inventory	and	produced	the	IFFI	project	(Italian	Landslides	Inventory	Project)	in	which	for	the	whole	Agnone	

territory	recorded	more	than	450	events.	

The	following	news	about	the	CL-PO	landslide	were	issued	in	2003	when,	between	23rd	and	27th	January,	

an	intense	rainfall	event	with	more	than	200	mm	over	72	hours	(Fig.	5.3a)	provoked	an	important	reactivation	

(Fig.	5.5f	and	g)	of	a	historical	dormant	landslide,	due	to	an	unusual	increase	of	pore	pressures	(Calcaterra	et	

al.,	2008).	Nearby	the	territory	involved	in	the	mass	movement,	a	cumulative	precipitation	of	about	50	mm	

was	measured	and	with	high	probability	this	was	a	main	triggering	factor	of	the	deep-seated	landslide.	The	

mass	 movement	 involved	 the	 Agnone	 Flysch	 formation	 with	 a	 complex	 style	 consisting	 in	 a	 large	 roto-

translational	slide	and	an	earth-flow	(Cruden	and	Varnes,	1996).	The	consistent	effects	on	the	territory	and	
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on	facilities	forced	the	municipality	administration	to	adopt	restrictive	measures,	i.e.	the	evacuation	of	13	

buildings,	and	relative	17	families	living	inside,	located	into	and	close	to	the	area	involved	by	the	landslide.	

Owing	to	the	severity	of	the	situation,	the	municipal	administrator	earmarked	funds	to	the	fulfilment	of	some	

urgent	 interventions	 to	 improve	 the	 drainage	 in	 the	 upper	 part	 of	 the	 landslide	 body	 where	 the	

hydrogeological	condition	and	the	ponding	of	water	could	have	been	a	possible	dangerous	triggering	factor.	

For	this	reason,	some	excavations	of	trenches	were	realized	in	order	to	intercept	and	drain	surficial	water	

table	as	well	as	some	re-shaping	of	the	mass-movement	were	made.	In	spite	of	these	remedial	maintenances,	

the	 landslide	 continued	 to	 be	 active	 in	 the	 following	 years,	 increasing	 its	 dimension	 and	 carrying	 on	 to	

provoke	several	damage	on	facilities	and	buildings.	Some	testaments	are	due	to	the	continuous	problems	

occurring	on	 the	 road	sited	on	 the	crown	on	 the	 landslide,	 repeatedly	affected	by	cracks	and	sliding	and	

continuously	renovated	by	means	of	the	use	of	natural	engineering	interventions,	i.e.	gabionades.	From	the	

3D	model	of	2003	(Fig.	5.5f)	the	big	entity	of	the	displacement	is	not	appreciable	as	well	as	by	means	of	the	

picture	(Fig.	5.5g).	It	is	probable	that	they	are	not	registered	in	the	same	period,	but	that	the	photo	was	shot	

some	months	 later	 when	 the	 phenomenon	 was	 subject	 to	 a	 further	 evolution.	 For	 instance,	 on	 the	 3D	

reconstruction	 the	 dirty	 road	 that	 crossed	 the	 landslide	 is	 yet	 recognizable,	 instead	 in	 the	 picture	 it	 is	

indistinguishable	from	the	detritus.	

Less	 than	 two	years	 later	 the	 first	 important	 reactivation,	a	 series	of	 several	 rainfall	events	 (Fig.	5.3b)	

activate	again	the	CL-PO	landslide,	in	March	2004	(Fig.	5.5h)	and	between	December	2004	-	January	2005	

(Fig.	 5.5i	 and	 j),	 extending	 the	 involved	 area	 until	 it	 reached	 an	 estimated	 total	 volume	 of	 3.5×106	 m3	

(Calcaterra	et	al.,	2008).	Consequently,	a	new	reshaping	of	the	slope	and	10	trench	drains,	were	realized	in	

order	to	avoid	further	damage	on	facilities	and	reactivations.	

	

	
Fig.	5.3		-	Precipitation	graphs	of	two	main	reactivations	that	occurred	in	January	2003	(a)	and	between	December	

2004	and	January	2004	(b)	(Del	Soldato	et	al.,	under	review_a).	
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These	actions	allowed	the	stabilization	of	 the	mass	movement	 in	 the	middle-lower	 region.	From	2004	

onward,	a	set	of	topographic	benchmarks	were	placed	in	unstable	areas	to	monitor	the	ground	movement	

of	the	landslide.	By	means	of	topographical	measurements,	the	landslide	enlarging	was	estimated	about	350	

m	of	advancing	at	the	toe	and	about	270	m	of	retrogressing	in	the	head	sector,	reaching	a	total	length	up	to	

1500	m.	 Some	of	 them	were	measured	again	during	 the	 field	 campaign	carried	out	 in	 July	 2016.	Not	 all	

benchmarks	were	found	because	during	the	years	some	of	them	were	destroyed	during	the	realization	of	

the	drainage	operations,	lost	for	the	continuous	displacement	affecting	the	territory	or	because	too	difficult	

to	 reach	 due	 to	 the	 intense	 vegetation,	 ground	 damage	 and	 some	 gates	 to	 contain	 the	 animals.	 The	

displacement	calculated	during	the	time	span	between	the	measurement	carried	out	in	2006	and	in	2016	are	

only	for	few	benchmarks	(Fig.	5.4).	
	

	
Fig.	5.4	-	Displacement	measured	between	2006	and	2016	of	some	topographical	benchmarks	located	inside	the	CL-

PO	landslide.	The	dimension	and	the	orientation	of	the	arrows	reflect	to	the	value	of	the	displacement.	

In	the	following	period,	until	June	2006,	the	material	involved	in	previous	reactivation	continued	to	move	

inside	the	landslide	increasing	its	length	of	about	70	m	in	the	foot	region.	Then	between	April	2006	and	April	

2007	an	incessant	 lower	displacement	rate	was	recognized.	The	pictures	shot	from	the	same	place	of	the	

previous	 one	 (Fig.	 5.5k),	 focusing	 on	 the	 entire	 landslide,	 simplifies	 the	 recognition	 of	 the	 progressive	

increment	of	the	involved	area	by	the	mass-movement	and	the	displaced	materials.	
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Fig.	5.5	-	Visual	evolution	of	the	Colle	Lapponi	-	Piano	Ovetta	landslide	from	1945	to	2007	by	means	of	the	remote	

sensing	analysis	to	realize	the	3D	models	and	some	pictures	shot	from	the	same	place.	
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The	continuous	slow	movement	was	testified	to	the	monitoring	campaign	carried	out	by	the	inclinometers	

(Fig.	5.6)	from	April	2006	(used	as	“read	zero”)	until	July	2006	by	means	of	three	measurements	(Table	5.3)	

after	which	the	instruments	were	broken	due	to	the	large	movement	affecting	the	landslide.	

	

	
Fig.	5.6	-	Localization	of	the	inclinometers	in	the	CL-PO	landslide.	

Table	5.5	-	Temporal	sequence	of	the	inclinometric	measurements	(GEOSERVICE).	

Inclinometers	 S1	 S2	 S3	 S4	 S5	(ex	S2)	 S6	

Installation	 11/01/06	 03/02/06	 30/01/06	 15/02/06	 11/04/06	 12/04/06-	

Reading	"0"	 16/03/06	 16/03/06	 16/03/06	 17/03/06	 -	 13/04/06	

Reading	"1"	 13/04/06	 lost	 13/04/06	 13/04/06	 13/04/06	 19/05/06	

Reading	"2"	 19/05/06	 lost	 19/05/06	 19/05/06	 19/05/06	 21/06/06	

Reading	"3"	 21/06/06	 lost	 21/06/06	 21/06/06	 lost	 19/07/06	

Reading	"4"	 19/07/06	 lost	 19/07/06	 19/07/06	 lost	 06/09/06	

Reading	"5"	 06/09/06	 lost	 06/09/06	 06/09/06	 lost	 04/10/06	

Reading	"6"	 04/10/06	 lost	 04/10/06	 04/10/06	 lost	 08/11/06	

Reading	"7"	 08/11/06	 lost	 08/11/06	 08/11/06	 lost	 06/12/06	

Reading	"8"	 06/12/06	 lost	 06/12/06	 06/12/06	 lost	 10/01/07	

Reading	"9"	 10/01/07	 lost	 10/01/07	 10/01/07	 lost	 lost	
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The	measurements	were	recorded	about	once	per	month	and	plotted	in	the	schemes	shown	in	Fig.	5.7.	

	

Starting	from	the	landslide	crown	to	the	internal	body:	

Ø the	 inclinometer	placed	close	to	the	boundary	 in	the	crown	of	 the	 landslide,	S6	 (Fig.	5.7a),	did	not	

show	important	movement,	even	if	some	little	displacements	were	visible	recognizable	as	a	possible	

retrograde	increasing	of	the	mass-movement;	

Ø the	instrument	installed	in	the	soil	drilling	S4	(Fig.	5.7b)	showed	movements	of	possible	slip	surfaces	

at	23	m	depth;	

Ø the	inclinometer	sited	in	the	borehole	S3	(Fig.	5.7c)	was	noisy,	but	at	12	m	depth	showed	an	evident	

surface	of	displacement	between	April	and	June;	

Ø the	 instrument	 located	 in	 the	 hole	 S2/S5	 (Fig.	 5.7d)	 highlighted	 a	 slip	 surface	 with	movement	 of	

centimetres	to	9	m	depth	and	an	instability	in	the	bottom	of	the	hole	at	18	m	depth;	

Ø the	 inclinometer	 placed	 in	 the	 toe	 of	 the	 landslide,	 at	 the	 time	 of	 the	 installation,	 S1	 (Fig.	 5.7e)	

presented	a	 rupture	 surface	at	about	8m	of	depth	corresponding	 to	a	movement	 started	between	

March	and	May	and	remaining	constant	with	a	velocity	of	3	mm	per	month.	

	



Integration	of	field	investigations	and	remote	sensing	techniques	for	the	assessment	of	landslide	activity	and	damage	
	

M.	Del	Soldato	

	

	

	
Fig.	5.7	-	Graphic	restitution	of	the	inclinometric	data.	a)	S6	in	the	crown	of	the	landslide;	b)	S4	in	the	upper	part	of	

the	body	of	 the	mass	movement;	 c)	S3	 in	 the	middle	of	 the	body	 landslide;	d)	S5	 (ex	S2);	e)	S1	 in	 the	 toe	of	 the	

landslide	when	it	was	installed.	

The	continuous	movements	of	the	slope	led	the	local	administrator	to	adopt	new	mitigation	measures	to	

eliminate	another	lake	formed	in	the	middle	part	of	the	landslide	caused	by	a	ground	subsidence	and	by	a	

drainage	of	the	surface	runoff.	Ten	trench	drains	6.5	m	deep	and	about	150	m	long	in	addition	to	a	reshaping	

of	 the	 slope	were	 realized	 in	order	 to	 stabilize	 the	middle-lower	 region	of	 the	mass	movement	 to	 avoid	

further	down	slope	with	possible	formation	of	a	dam	in	the	Verrino	torrent.	

No	more	reports	or	news	of	important	reactivations	were	reported,	but	the	field	surveys	conducted	in	

2015	 and	 2016	 highlighted	 as	 the	 movement	 of	 the	 landslide	 was	 not	 arrested	 (Fig.	 5.8a	 and	 b).	 The	

dimension	of	the	landslide	area	was	recognized	in	a	continuous	enlargement	by	a	series	of	geomorphological	

features,	a	continuous	progression	of	important	visible	damage	on	facilities	and	buildings	as	well	as	the	visual	

comparison	of	oblique	terrestrial	pictures	taken	during	field	campaigns.	



Integration	of	field	investigations	and	remote	sensing	techniques	for	the	assessment	of	landslide	activity	and	damage	
	

M.	Del	Soldato	

	

87	

		

	
Fig.	5.8	-	Visual	evolution	of	the	Colle	Lapponi	-	Piano	Ovetta	mass-movement	by	means	of	two	oblique	terrestrial	

pictures	taken	during	field	surveys	conducted	in	November	2015	(a)	and	in	July	2016	(b).	

From	 3D	 terrain	models	 generated	 by	 SfM	 technique	 applied	 to	 historical	 aerial	 images,	 a	 difference	

between	 the	 3DPCs	 referred	 to	 1945	 and	 to	 2003	 was	 computed	 to	 assess	 the	 change	 of	 volume	 that	

occurred	on	the	landslide	region	and	surroundings	by	means	of	CloudCompare	software	(M3C2	plugin).	This	

tools	allow	to	carry	out	quantitative	results,	but	the	resolution	of	the	 input	raw	data	and	the	elaboration	

process	permits	to	evaluate	volume	changes.	The	M3C2	is	an	appropriate	tool	for	Terrestrial	Laser	Scanning	

(TLS)	and	photogrammetric	data	in	complex	3D	environments	using	a	grid	of	“core”	points	and	the	normal	

analysis	(Brodu	and	Lague,	2012).	It	works	directly	on	the	point	clouds,	computing	the	3D	variation	in	local	

distance	between	two	points	along	the	normal	surface	and	estimating	a	confidence	interval	for	each	distance	

measurement	(Lague	et	al.,	2013).	In	the	application	of	CL-PO	landslide	the	1945	3D	Points	Cloud	were	used	

as	 reference	 cloud,	 while	 the	 2003	 3D	 Points	 Cloud	 were	 assumed	 as	 compared	 cloud.	 Operating	 the	

difference	between	the	two	Point	Clouds	a	distribution	of	the	changes	of	volume	were	carried	out	(Fig.	5.9).	

Investigating	the	area	where	the	event	of	2003	occurred	(Fig.	5.9a),	a	region	affected	by	an	important	loss	of	

volume,	in	blue,	and	an	accumulation	zone,	in	red,	were	recognized.	These	zones	are	in	accordance	with	the	

localization	of	 the	 trigger	 area	of	 the	 landslide	 and	 the	 zone	where	 the	 run-out	material	were	 amassed,	

respectively.	 Besides	 the	 investigation	 involved	 the	 reconstructed	 3D	 Point	 Clouds	 referred	 to	 2003,	 the	

volume	difference	analysis	was	conducted	also	considering	the	traced	landslide	contour	in	2016	by	means	of	

field	surveys	and	supported	by	remote	sensing	techniques	(Fig.	5.9b).	It	is	worth	noting	the	influence	of	the	

reactivation	affecting	the	uphill	area	respect	to	the	2003	crown.	In	this	region	some	areas	in	alternation	red	

and	in	light	blue	are	recognizable.	These	areas	are	identifiable	as	smooth	tilted	morphological	shapes	formed	

due	to	the	landslide	events.	
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Fig.	5.9	-	Difference	in	volume	between	the	reconstructed	3D	Points	Clouds	of	1945	and	of	2003	segmented	on	the	

boundary	of	the	landslide	that	occurred	in	2003	(a)	and	on	the	contour	of	the	landslide	traced	in	2016	(b).	

Considering	the	present	contour	of	the	landslide,	the	right	lobe	involved	in	an	old	event	occurred	before	

1945,	year	of	the	first	set	of	examined	images	of	this	area,	is	recognizable.	It	shows	an	important	region	with	

hot	 colour,	 indicating	 areas	where	 increment	 of	 volume	 occurred.	 This	 is	 due	 to	 the	 analysis	 conducted	

starting	from	the	1945	set	of	images	shot	after	an	important	landslide.	In	this	way,	the	volume	recorded	as	

increment	in	that	area	can	be	probably	related	to	some	interventions	executed	successively	between	1986	

and	1991,	as	recognizable	by	the	respective	set	of	historical	aerial	photos	(Fig.	5.10).	
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Fig.	5.10	-	Orthomosaic	of	the	CL-PO	landslide	referred	to	1991	with	highlighted	in	the	red	circle	the	fulfilled	works	

between	1986	and	1991.	

The	evolution	of	the	recent	years	was	assessed	by	means	of	several	field	campaigns	aimed	at	surveying	

the	 displacement	 affecting	 8	 trihedral	 Corner	 Reflectors9	 located	 inside	 the	 landslide	 body	 and	 to	 map	

principal	landslide	structural	features	as	main	and	secondary	scarps.	The	displacement,	estimated	using	GPS	

measurements	 (Table	 5.6),	 allowed	 to	 display	 the	movement	 that	 occurred	 on	 each	 still	 available	 today	

Corner	Reflector.	During	the	field	surveys	was	notice	as,	during	the	monitoring	period,	one	of	them	(CR8)	

was	removed	and	another	one	(CR2)	was,	with	high	probability,	moved	or	distorted	losing	its	usefulness.	

The	last	reading	in	2016	was	conducted	with	a	new	instrument	not	needing	the	reading	of	the	bases	to	

ensure	precise	measurements.	As	for	some	benchmarks,	several	readings	carried	out	for	Corner	Reflectors	

were	used	to	assess	their	displacements	(Fig.	5.11).	

	

	 	

																																																													
9Corer	Reflectors:	passive	instruments	composed	by	three	perpendicular	intersecting	flat	surfaces,	reflecting	back	

the	waves	directly	towards	the	source.	The	three	intersecting	surfaces	often	have	square	shapes,	made	of	metal	used	
to	reflect	radio	waves	from	radar	sets.	This	causes	them	to	show	a	strong	"return"	on	radar	screens.	
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Table	5.6	-	Summary	of	the	GPS	measurements	conducted	for	the	CL-PO	landslide.	

	 Reading	"0”	 Reading	"1”	 Reading	"2”	 Reading	"3”	 Reading	"4”	 Reading	"5”	

Base_1	 Nov-2010	 Feb-2011	 Nov-2011	 Mar-2012	 May-2013	 no	surveyed	

Base_2	 Nov-2010	 Feb-2011	 Nov-2011	 no	survey	 no	survey	 no	surveyed	

Base_3	 Nov-2010	 Feb-2011	 Nov-2011	 Mar-2012	 May-2013	 no	surveyed	

CR1	 Nov-2010	 Feb-2011	 Nov-2011	 Mar-2012	 May-2013	 16/07/16	

CR2	 Nov-2010	 Feb-2011	 Nov-2011	 Mar-2012	 lost	 (16/07/16)	

CR3	 Nov-2010	 Feb-2011	 Nov-2011	 Mar-2012	 May-2013	 16/07/16	

CR4	 Nov-2010	 Feb-2011	 Nov-2011	 Mar-2012	 May-2013	 16/07/16	

CR5	 Nov-2010	 Feb-2011	 Nov-2011	 Mar-2012	 May-2013	 16/07/16	

CR6	 Nov-2010	 Feb-2011	 Nov-2011	 Mar-2012	 May-2013	 16/07/16	

CR7	 Nov-2010	 Feb-2011	 Nov-2011	 Mar-2012	 May-2013	 16/07/16	

CR8	 Nov-2010	 Feb-2011	 Nov-2011	 Mar-2012	 lost	 lost	

	

The	information	of	the	displacements	measured	on	benchmarks	and	on	Corner	Reflectors	are	important	

because	they	allow	a	better	understanding	of	ground	movements	inside	the	landslide	body.	
	

	
Fig.	 5.11	 -	 Displayed	 displacement	 for	 the	 Corner	 Reflector	 located	 into	 the	 body	 of	 the	 CL-PO	 landslides	 map	

measured	by	means	of	GPS	campaigns	from	2010	to	2016.	The	dimension	and	the	orientation	of	the	arrows	reflect	

the	value	of	the	displacement.	

A	geomorphological	mapping	of	the	landslide	surroundings,	in	addition	to	the	recognition	of	the	main	and	

secondary	scarp	of	the	mass-movement,	was	realized	by	means	of	on-site	observations	and	evidences	(Fig.	
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5.12)	in	order	to	map	the	numerous	scarps	and	counter-slopes,	mainly	recognized	during	the	last	field	surveys	

of	July	2016,	behind	and	close	to	the	top	of	the	landslide.	
	

	
Fig.	5.12	-	Geomorphological	map	of	the	landslide	area	and	its	uphill	region.	

The	numerous	recognized	scarps	 indicate	that	the	mass-movement	affected	causing	geomorphological	

changes	 into	 the	body	of	 the	 landslide	 and	 in	 the	uphill	 area.	 Their	 localization	 and	mapping	 could	help	

understanding	 the	 influencing	 of	 the	 phenomenon	 and	 the	 possible	 future	 evolution	 of	 the	 landslide.	

Furthermore,	the	geomorphological	map	indirectly	shows	the	continuous	evolution	of	the	slope	also	after	

the	known	main	reactivations.	Some	scarps	and	counter-slopes	were	visible	 in	the	area	between	the	two	

lobes	of	the	mass-movement,	where	no	important	phenomena	occurred,	but	they	are	indicative	of	further	

involvement	of	this	area.	The	evidences	induced	to	trace	the	“probable	boundary”	even	if	no	important	active	

signs	were	recognized	along	the	investigated	time-span.	It	is	worthy	to	note	that	most	part	of	the	recognized	

scarps,	 mainly	 far	 from	 the	 boundary	 of	 the	 landslide,	 are	 smoothed.	 This	 could	 suggest	 no	 recent	

movements	in	those	areas,	but	possible	older	ones.	This	hypothesis	is	in	accordance	with	the	probability	that	

the	area	was	involved	in	some	paleo-landslide	on	which	the	investigated	mass-movement	is	superimposed.	

Furthermore,	 the	 improvement	 of	 the	 remote	 sensing	 approaches	 allows	 to	 investigate	 the	 recent	

evolution	of	the	landslide	by	means	of	the	use	of	Persistent	Scatterer	Interferometry	(PSI)	data.	The	available	

Persistent	Scatterers	(PS)	radar	benchmarks	from	1992	to	2000,	ERS1/2	satellite	(Fig.	5.13a),	from	2002	to	

2010,	ENVISAT	platform	(Fig.	5.13b),	and	from	2012	to	2015,	COSMO-SkyMed	sensor	(Fig.	5.13c),	confirm	

the	temporal	evolution	and	the	acceleration	in	some	periods,	when	the	main	reactivation	occurred.	The	main	

problem	of	this	technique	for	the	CL-PO	area	is	the	low	density	of	radar	points	due	to	the	rare	outcropping	

and/or	urban	facilities	and	high	presence	of	vegetation.	
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Fig.	5.13	-	PS	covers	the	CL-PO	landslide	acquired	by	ERS	(a),	ENVISAT	(b)	and	COSMO-SkyMed	(c)	sensors.	
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An	unusual	sample	time	series	(Fig.	5.14)	extracted	on	a	structure	sited	on	the	crown	of	the	landslide,	

representing	a	graph	displacement-time	including	all	data	from	ERS,	ENVISAT	and	COSMO-SkyMed	sensors,	

shows	 the	 important	movement	affecting	 the	 investigated	 region	and	 the	periods	of	main	activity	of	 the	

landslide.	The	main	period	of	movement	affecting	the	crown	area	 is	well	visible	and	confined	from	2003,	

when	the	first	main	reactivation	occurred,	to	2010.	Using	a	small	scale,	the	different	reactivations	are	not	

easy	to	recognize.	It	is	worthwhile	noticing	that	the	velocities	of	shown	displacement	were	measured	along	

the	LOS	in	ascending	orbits.	Furthermore,	the	plotted	data	are	a	sample	of	the	backscattered	PS	on	a	building	

located	on	the	actual	crown,	that	in	2003	were	far	from	the	landslide.	The	territory	in	front	of	this	building	

was	influenced	by	important	geomorphological	modifications	that	smoothed	the	landscape.	

	

	
Fig.	5.14	-	Complete	time-series	merging	the	data	of	all	sensors	showing	and	confirming	the	most	important	period	

of	movement	due	to	the	main	reactivations	that	occurred	between	2003	to	2007.	Data	are	taken	on	the	Build_01	

located	close	to	the	landslide	crown.	

The	Persistent	Scatterers	Interferometry	(PSI)	time	series	of	each	sensor	for	both	acquisition	geometries	

into	and	close	to	the	landslide	were	analysed	and	classified	by	the	Notti	et	al.	(2015)	approach	and	classified	

by	means	of	 the	automated	method	of	Berti	et	al.	 (2013),	 respectively.	 In	 this	way,	 the	 time	series	were	

corrected	removing	the	regional	trend,	in	order	to	better	visualize	and	analyse	the	trend.	Furthermore,	they	

were	categorized	in	six	target	trends:	uncorrelated,	linear,	quadratic,	bilinear,	discontinuous	with	constant	

velocity	and	discontinuous	with	variable	velocity.	To	help	the	localization	and	description	of	the	PS	time	series	

analysed,	 four	 areas	were	 identified	 (Fig.	 5.15):	 structures	 on	 the	 crown	of	 the	 landslide	 (Area	 1),	 three	

neighbour	buildings	above	the	crown	(Area	2),	a	built	up	area	close	to	the	crown	of	the	mass-movement	

(Area	3)	and	two	constructions	on	the	left	flank	of	the	landslide	(Area	4).	
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Fig.	5.15	-	Areas	where	the	time	series	were	separately	examined.	

The	ERS	data,	even	if	few,	in	ascending	orbit	show	time	series	with	breakpoint	in	autumn	1995	for	PS	in	

Area	1,	Area	2	and	Area	3.	This	information	indicates	that	already	in	1995	the	left	lobe	of	the	landslide,	where	

actually	the	crown	of	the	mass-movement	is	sited,	was	affected	by	displacements.	Furthermore,	analysing	

the	ascending	PS	data	into	the	investigated	area,	the	time	series	were	classified	(Berti	et	al.,	2013)	in	four	

types	(Fig.	5.16):	uncorrelated	(65%),	time	series	of	PS	external	from	the	landslide;	linear	(17%),	time	series	

of	few	points	backscattered	by	buildings	in	Area	3;	quadratic	(11%)	,	time	series	scattered	external	to	the	

mass-movement;	bilinear	(6%),	time	series	with	breakpoints	in	Area	1	and	some	constructions	in	Area	3.	

The	 ERS	 descending	 data	 give	 back	 very	 few	 information	 and	 the	 classification	 of	 Berti	 et	 al.	 (2013)	

categorizes	quite	all	the	PS	of	the	area	as	linear	(70%),	but	no	more	points	are	present	close	to	the	landslide.	

(Fig.	5.16).	
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Fig.	 5.16	 -	 Categorization	 of	 the	 ERS	 ascending	 and	 descending	 PS	 time	 series	 of	 the	 surrounding	 of	 the	 CL-PO	

landslide.	

For	the	subsequent	period,	the	ENVISAT	data	were	investigated	with	the	same	method	(Fig.	5.17).	The	PS	

time	 series	 acquired	 in	 ascending	 orbit	were	 analysed	 individuating	 three	 breakpoints	 in	 three	 different	

years:	in	spring	and	autumn	2005	on	buildings	located	in	the	built	up	region	of	Area	3	and	uphill	with	respect	

to	 the	 crown;	 in	 2006	 PS	 backscattered	 by	 the	 structure	 in	Area	 1;	 in	 2007,	 a	 little	 number	 of	 PS	 with	

breakpoint	were	 individuated	on	different	areas	confirming	the	continue	slow	displacement	affecting	the	

landslide-prone	area.	The	categorization	of	Berti	et	al	(2013)	of	the	ENVISAT	PS	time	series	show	four	classes:	

uncorrelated	(55%),	linear	(18%),	quadratic	(17%)	and	bilinear	(10%).	Also	the	ENVISAT	descending	data	were	

categorized	with	 the	 same	approach,	 but	 no	 significant	 information	were	 carried	out	because	 the	major	

number	of	PS	time	series	result	classified	as	uncorrelated	(94%).	
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Fig.	 5.17	 -	 Classification	 of	 ENVISAT	 ascending	 and	 descending	 PS	 time	 series	 of	 the	 surrounding	 of	 the	 CL-PO	

landslide.	

The	same	method	was	applied	for	the	data	acquired	by	COSMO-SkyMed	(Fig.	5.18).	Analysing	the	time	

series	two	set	of	breakpoints	were	individuated:	few	points	located	in	Area	3	shows	the	breakpoint	in	spring	

2013;	in	autumn	2014	PS	time	series	with	breakpoints	were	localized	along	and	uphill	with	respect	to	the	

actually	crown.	In	both	ascending	and	descending	orbits	the	classification	of	Berti	et	al.	(2013)	on	this	dataset	

gave	back	a	categorisation	spreads	on	six	classes,	two	more	with	respect	to	what	happened	for	the	C-band	

data.	The	descending	data	are	quite	noisy,	for	this	reason	the	main	part	of	the	PS	time	series	was	ranked	as	

discontinuous	with	constant	velocity	(70%),	the	21%	in	the	quadratic	class	and	the	remaining	percentage	is	

divided	in	the	other	categories.	

The	ascending	PS	show	time	series	in	all	possible	classes:	uncorrelated	(12%)	uphill	with	respect	to	the	

crown;	linear	(18%)	in	the	crown	or	close	to	the	boundary;	few	quadratic	(4%)	for	some	buildings	in	Area	2	

and	 for	 the	construction	 in	Area	3	built	 in	 the	crown;	bilinear	 (62%)	 for	quite	all	points	backscattered	by	

structures	sited	 in	 the	crown	and	 in	Area	2	and	3;	discontinuous	with	constant	velocity	 (only	1%)	 for	 few	

points	in	Area	3;	discontinuous	with	variable	velocity	(3%)	for	some	sparse	points	in	the	surrounding	of	the	

landslide.	
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Fig.	5.18	-	Categorization	of	the	COSMO-SkyMed	ascending	and	descending	PS	time	series	of	the	surrounding	of	the	

CL-PO	landslide.	

Furthermore,	to	better	understand	the	development	of	this	landslide,	some	time	series	were	extracted	

and	individually	analysed	for	each	satellite	sensor	in	order	to	separately	examined	the	displacement	affecting	

the	structures.	All	Time	Series	were	investigated	by	means	of	the	User-Oriented	Methodology	for	DInSAR	

Time	Series	Analysis	and	Interpretation	of	Notti	et	al.	(2015).	In	this	way,	the	analysis	conducted	on	the	Time	

Series	 made	 cleaning	 them	 by	 the	 regional	 trend	 in	 order	 to	 eliminate	 possible	 noise	 and	 to	 focus	 the	

attention	 on	 the	 real	 displacement.	 The	 ERS1/2	 data	 are	 very	 sparse,	 noisy	 and	 they	 do	 not	 cover	 all	

constructions,	in	fact	for	only	one	of	the	chosen	areas	the	PS	resulted	reliable.	Constructions	sited	on	the	

right	 side	 of	 the	 landslide	were	 not	 taken	 into	 consideration	 in	 this	 analysis	 because	 recent	movements	

caused	by	sliding	involved	only	the	left	lobe.	All	time	series	were	recorded	along	the	Line	Of	Sight	in	ascending	

geometries.	

For	Area	1,	the	displacement	affecting	a	building	with	a	concrete	sidewalk	around	it	is	analysed	by	means	

of	PS	of	all	satellite	sensors.	The	period	1993-2000	was	investigated	by	the	data	acquired	by	ERS1/2,	but	it	is	

worthy	noticing	that	the	gap	between	the	first	two	acquisition	is	about	2	years	and	this	is	visible	in	the	time	

series	as	a	 linear	displacement	(black	circle	 in	Fig.	5.19a)	 instead	 is	only	a	 lacking	of	 information.	For	this	
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period,	only	few	points	sited	close	to	the	actual	crown	of	the	landslide	were	recognized	but,	already	at	that	

time,	 showing	a	high	displacement	along	 the	 Line	Of	 Sight	of	 the	 satellite.	 The	depured	 time	 series	with	

respect	to	the	regional	trend	(Notti	et	al.,	2015)	Fig.	5.19a	shows	important	movements	(about	120	mm	were	

registered)	with	cyclically	repeats,	even	if	no	important	reactivations	and	damage	was	advised	before	the	

main	event	of	January	2003.	This	area	was	affected	by	 important	displacement	during	and	post	the	main	

event	occurred	in	January	2003,	after	that	several	interventions	to	drainage	were	made.	The	time-series	of	

the	following	period,	acquired	by	ENVISAT	satellite,	are	too	noisy.	Subsequently,	also	 in	the	period	2010-

2015,	the	COSMO-SkyMed	PS	recorded	on	this	construction	showing	cyclical	 little	movements.	During	the	

winter	period,	between	November	and	February,	little	displacements	were	registered,	probably	related	to	

rainy	and	snowy	precipitations	(Fig.	5.19b).	
	

	
Fig.	5.19	-	Sample	time	series	registered	by	the	ERS1/2	(a)	and	COSMO-SkyMed	(b)	satellites	on	Area	1.	

Area	2,	sited	behind	Area	1,	based	on	the	damage	surveys	and	on	several	campaigns,	it	seems	stable.	The	

PSs	of	all	sensors,	ERS1/2,	ENVISAT	and	COSMO-SkyMed,	confirm	this	idea	of	stability,	even	if	the	analysed	

time-series	are	very	noisy.	They	do	not	show	important	displacement,	but	only	some	fluctuations	contained	

in	the	stability	range,	even	if	with	trend,	due	to	the	snowy	periods	that	create	some	problems	of	reflection	

of	 the	radar	signal	 (Fig.	5.20)	not	 removable	correcting	the	time	series	 to	 the	regional	 trend	 (notti	et	al.,	

2015).	
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Fig.	5.20	-	Sample	time	series	registered	by	the	COSMO-SkyMed	satellites	on	Area	2.	

Area	3	is	one	of	the	most	populated,	in	which	almost	all	buildings	were	evacuated	after	the	main	event.	

Even	if	not	all	structures	are	severely	damaged,	the	PS	guarantee	that	important	movement	affected	those	

structures.	The	ERS	data	are	too	few	and	noisy	to	be	reliable	to	investigate	displacements,	while	ENVISAT	PS,	

even	if	also	in	this	case	result	noisy	also	removing	the	regional	trend	to	the	original	time	series	(Notti	et	al.,	

2015),	by	means	of	a	sample	time-series	(Fig.	5.21)	registered	on	the	built	up	Area3	is	cyclical	and	influenced	

displacement	in	the	winter	period	by	the	covering	snow	interfering	with	the	radar	measurements.	The	main	

reactivation	of	the	CL-PO	mass-movement	occurred	 in	January	2003	 is	not	well	recognizable	by	the	time-

series.	This	is	probably	due	to	the	occurred	displacement	bigger	than	the	possible	recognizable	or	because	

the	satellite	did	not	gather	good	images	in	that	precise	period,	in	fact	as	visible	in	the	first	black	circle	in	Fig.	

5.21,	only	points	indicating	an	important	displacement	are	visible.	The	same	problem	affects	the	reactivation	

that	occurred	between	December	2004	and	January	2005,	while	the	displacements	of	June	and	July	2006	

(the	 second	 black	 circles	 in	 Fig.	 5.21),	 as	 well	 testified	 by	 the	 inclinometers	 data,	 are	 recognizable.	

Furthermore,	an	important	increase	of	displacement	is	detectable	from	November	2009.	
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Fig.	5.21	-	Sample	of	a	time	series	of	the	Area3	recorded	by	the	ENVISAT	sensors	from	2002	to	2012.	

After	2	years’	gap	of	PS	information,	COSMO-SkyMed	data	(Fig.	5.22)	indicated	a	continuous	movement	

affecting	this	area.	It	is	worthy	noticing	that	the	referring	scale	is	much	different,	but	the	cyclical	displacement	

is	also	visible	also	depurating	the	time	series	by	the	little	trend	affecting	the	entire	framework.	

	

	
Fig.	5.22	-	Sample	of	the	time-series	recorded	for	the	Area	3	by	the	COSMO-SkyMed	sensors	for	the	period	2012-2015.	

Displacements	detected	for	Area	4	allowed	investigating	deformations	affecting	two	constructions	each	

one	composed	by	two	connected	structures.	The	ERS	data	are	not	backscattered	and	the	ENVISAT	PS	resulted	

very	noisy	also	applying	the	Notti	et	al.	(2015)	method	to	remove	the	regional	trend	affecting	the	time	series,	

but	they	show	a	trend	of	important	movements	(green	traced	line	in	Fig.	5.23).	In	this	graph,	displacements	

caused	by	several	reactivations	occurred	in	the	analysed	period	are	difficult	to	isolate	due	to	the	noise	caused	

by	atmospheric	and	snow	interferences.	
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Fig.	5.23	-	Sample	of	a	time	series	of	the	Area	4	recorded	by	the	ENVISAT	sensors	from	2002	to	2012.	

COSMO-SkyMed	PS	data	elaborated	and	corrected	by	the	regional	trend	for	this	area	showed	a	different	

tendency	of	movement.	Until	about	the	middle	of	2012,	data	showed	a	movement	away	from	the	satellite,	

instead	in	the	following	the	signal	exhibits	a	continuous	decreasing	of	the	distance	respect	to	the	sensor	(Fig.	

5.24).	By	means	of	orthophotos	and	field	surveys	conducted	in	this	region,	another	landslide	close	to	the	CL-

PO,	but	having	a	different	direction,	i.e.	NE,	was	recognized	(Fig.	5.25a).	The	increasing	of	dimension	of	this	

mass-movement	 could	 have	 caused	 an	 inversion	 of	 the	 displacement	 measured	 on	 the	 investigated	

construction	due	to	the	involving	by	its	retrograde	effects.	It	is	important	noticing	that	the	amount	of	these	

values	is	small,	close	to	the	instrumental	error,	but	it	is	interesting	to	be	mentioned.	

	

	
Fig.	5.24	-	Sample	of	the	time-series	recorded	for	the	Area	4	by	the	COSMO-SkyMed	sensors	for	the	period	2012-2015.	
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In	the	middle	of	the	two	adjacent	buildings,	constituting	the	monitored	structures,	a	vertical	open	crack,	

characterized	little	aperture	in	the	bottom	and	bigger	 in	the	upper	part	close	to	the	roof	(Fig.	5.25b)	was	

recognized	 during	 the	 field	 campaign,	 probably	 caused	 by	 the	 different	 direction	 of	 movement	 which	

affected	 them.	 Furthermore,	 cyclical	 rates	 of	 movements	 were	 possible	 to	 recognize	 also	 in	 this	 graph	

supporting	 the	hypothesis	about	 the	 influence	of	 the	snow	and	 the	atmospheric	 conditions,	or	problems	

affecting	acquisition	or	elaboration	of	the	raw	data.	

	

	
Fig.	5.25	-	Localization	of	the	structures	of	the	Area	4	and	their	proximity	to	the	closer	 landslide	(a).	Open	cracks	

visible	between	two	adjacent	constructions	(b).	

In	spite	of	the	conducted	works	to	stabilize	the	area	and	the	knowledge	on	this	landslide,	it	is	impossible	

to	say	if	the	movement	has	been	arrested.	As	explained	by	means	of	the	PS	data	and	confirmed	by	several	

surveys	 the	 landslide	 seems	 still	 now	 active	 with	 several	 consequent	 problems	 and	 damage	 regarding	

facilities	as	well	as	indirect	economic	losses	due	to	the	abandonment	of	the	agricultural	terrains.	

5.2.2 Damage	classification	of	facilities	

The	reactivation	of	the	landslide	occurred	in	January	2003	and	its	continuous	evolution	caused	serious	

damage	to	facilities	and	buildings	chiefly	related	to	the	loss	of	support	to	structures	due	to	a	downward	and	

outward	movement	of	the	foundation	zone	(Hunt,	2005).	The	buildings	sited	close	to	the	body	and	on	the	

crown	of	the	increasing	mass-movement,	were	subjected	to	some	restrictive	measures	by	 local	municipal	

administrator,	e.g.	precautionary	evacuation.	In	November	2015	and	July	2016	34	buildings,	2	walls	and	3	

concrete	 nearby	 anthropogenic	 surfaces	were	 surveyed	 and	 the	 individuated	 and	 characterized	 damage	

classified.	Moreover,	the	same	buildings,	with	others	close	to	the	mass	movements,	were	investigated	and	
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monitored	 using	 the	 remote	 sensing	 techniques	 by	means	 of	 the	 Persistent	 Scatterers.	 During	 the	 field	

campaigns	the	external	damage	on	the	structures	were	surveyed	adopting	a	developed	regular	scheme	(Fig.	

5.2).	The	phase	of	the	 identification	of	the	damage	requests	attention	because	same	openings,	or	similar	

cracks,	could	mean	different	answers	of	the	structures	depending	on	several	factors	e.g.	different	material	

construction.	

Some	examples	of	different	typologies	of	damage	affecting	the	facilities:	

	

Ø hairline	cracks	(Fig.	5.26a);	

Ø open	ruptures	on	external	walls	(Fig.	5.26b	and	c);	

Ø fractures	and	open	cracks	between	walls	and	external	sidewalk	(Fig.	5.26d	and	e);	

Ø rare,	but	possible	collapse	of	roof	(Fig.	5.26f).	

	

	

Fig.	5.26	-	Example	of	cracks	and	rupture	identified	on	structures.	a)	hairline	cracks	on	plaster	of	masonry	wall;	b)	

open	crack	on	reinforced	concrete	walls;	c)	open	crack	of	masonry	building	walls;	d)	open	crack	between	wall	and	

external	sidewalk;	e)	open	crack	between	external	wall	and	ground	surface;	f)	collapsed	roof	in	a	masonry	building	

(Del	Soldato	et	al.,	under	review_a)	
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In	concrete	sidewalks	and	walls,	the	following	elements	were	investigated:	

	

Ø hairline	cracks	(Fig.	5.27a	and	the	red	arrow	in	Fig.	5.27c);	

Ø open	cracks	(Fig.	5.27b,	c	and	d).	

	

	
Fig.	5.27	-	Fine	(a)	and	open	(b)	cracks	recognizable	on	pavement	of	sidewalks	slab;	hairline	(highlighted	by	means	of	

red	arrows)	and	open	fractures	on	concrete	(c)	and	masonry	walls	(d).	

The	performed	 in	 situ	 investigation	allowed	 to	 collect	qualitative	and	quantitative	 information	on	 the	

damage	to	provide	an	assessment	of	the	studied	elements,	according	to	literature	classifications	(Burland,	

1977;	Alexander,	1986;	Chiocchio	et	al.,	1997;	Cooper,	2008;	Baggio	et	al.,	2009)	described	in	the	paragraph	

4.2.1.1	and	by	means	of	the	newly	developed	approach	(paragraph	5.1)	(Del	Soldato	et	al.,	under	review_b).	

Although	landslide	damage	classifications	known	in	literature	were	devised	for	categorizing	only	buildings,	

they	were	applied	to	rank	also	different	man-made	elements	(i.e.	an	electricity	pole,	two	walls	and	three	

concrete	areas)	strongly	affected	by	damage.	The	application	of	these	different	approaches	gave	back	five	

categorizations	of	the	building	base	on	the	affecting	damage.	

Chronologically,	 the	 first	 classification	 adopted	 for	 the	 structures	 was	 that	 of	 Burland	 (1977)	 which	

investigates	only	damage	of	external	façades,	although	important	displacement	could	affect	the	foundation	

system.	Considering	this	ranking	about	a	half	of	the	buildings,	were	classified	from	Slight	to	Very	severely	

levels	 of	 damage	 (Fig.	 5.28).	 Furthermore,	 several	 rural	 constructions	 resulted	 abandoned	 and	 strongly	

affected	by	damage	or	partially	collapsed.	Few	buildings	show	low	levels	of	damage.	In	fact,	according	to	this	

approach	only	two	structures	resulted	in	the	Negligible	class	and	four	in	Very	slight	class,	mainly	observed	in	

recent-built	structures	and	in	small	constructions	probably	slightly	recently	renovated.	
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Fig.	5.28	-	Classification	of	the	facilities	close	to	the	CL-PO	landslide	according	to	Burland,	1977.	

The	 methodology	 of	 Alexander	 (1986),	 estimating	 the	 crack	 aperture	 in	 centimetres,	 instead	 of	

millimetres,	as	the	previous	one,	implies	less	sensitivity	for	construction	affected	by	low	levels	of	damage.	

This	difference	provoked	the	classification	of	many	structures	in	Light	and	Moderate	classes	(Fig.	5.29).	It	is	

worthy	noticing	that,	to	support	these	differences,	already	in	Moderate	class	of	damage	the	“evacuation	and	

rapid	attention	to	ensure”	is	suggested.	Another	noteworthy	thing	is	due	to	the	improvement	respect	to	the	

previous	approach	by	adding	Partial	collapse	and	Total	collapse	categories	for	buildings	strongly	affected	by	

damage.	Nine	buildings	classified	in	the	maximum	grade	of	damage	according	to	Burland	(1977)	classification,	

in	Alexander’s	(1986)	ranking	are	categorized	in	three	different	high	level	classes	of	damage:	three	in	Very	

Serious,	five	in	Partial	collapse	and	one	in	Total	collapse.	
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Fig.	5.29	-	Classification	of	the	facilities	close	to	the	CL-PO	landslide	according	to	Alexander,	1986.	

The	categorization	made	by	Chiocchio	et	al.	(1997),	with	respect	to	the	previous	older	classifications,	adds	

the	distinction	between	masonry	and	reinforced	concrete	into	the	level	of	gravity	of	damage.	By	means	of	

this	improvement,	structures	affected	by	important	rigid	settlements,	previously	classified	as	low	levels	of	

damage,	resulted	grouped	in	more	severe	classes	(Fig.	5.30).	Then	main	part	of	the	structures	shows	Light	

and	Moderate	 levels	 of	 damage	 and	 already	 for	Moderate	 category	 the	 evacuation	 is	 suggested	 by	 the	

Authors.	The	high	ranks,	 i.e.	Partial	collapse	and	Total	collapse,	 include	six	buildings	probably	abandoned	

several	 years	 ago	 before	 the	main	 event,	 as	 happened	 for	 the	 categorization	made	by	Alexander	 (1986)	

approach.	
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Fig.	5.30	-	Classification	of	the	facilities	close	to	the	CL-PO	landslide	according	to	Chiocchio	et	al.	(1997).	

For	the	first	time,	the	description	and	categorization	of	the	landslide	ground	damage	was	added	to	the	

facilities	 and	 buildings	 damage	 classification	 by	 Cooper	 (2008).	 The	 values	 used	 to	 characterize	 the	

recognizable	 opening	 of	 cracks	 on	 the	 investigated	 elements	 are	 evaluated	 in	millimetres	 as	 for	 Burland	

(1977).	This	could	be	a	reason	whereby	a	greater	number	of	facilities	are	ranked	into	highest	levels	of	damage	

if	comparing	result	with	those	previously	shown.	This	methodology,	and	the	scale	to	recognize	damage,	result	

to	be	more	appropriate	in	classifying	ruptures	affecting	different	facilities,	not	only	buildings,	as	pillars,	walls	

and	concrete	sidewalks.	Several	buildings	are	classified	into	Class	2	and	Class	3,	compatible	respectively	with	

the	Slight	and	Moderate	categories,	to	confirm	the	good	applicability	of	this	approach	(Fig.	5.31).	
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Fig.	5.31	-	Classification	of	the	facilities	close	to	the	CL-PO	landslide	according	to	Cooper	(2008).	

At	the	end,	in	spite	of	the	DPC	approach	(Baggio	et	al.,	2009),	which	shows	only	four	ranks	to	categorize	

the	level	of	damage,	they	were	subdivided	in	eight	classes	to	allow	a	comparison	with	the	others:	two	low	

levels	 (None	and	Negligible),	 four	categories	of	 important	damage	 (Severe,	Very	 severe,	Partial	 and	 Total	

collapse)	and	two	intermediate	grades	(Slight	and	Moderate).	Result	of	the	classification	(Fig.	5.32)	is	a	more	

homogeneous	 ranking	 of	 the	 buildings	 damage,	 than	 the	 previous	 described	 and	 applied	 approaches,	

involving	all	classes.	Besides	the	little	number	of	facilities	located	in	the	study	area,	it	is	possible	to	identify	a	

concentration	 of	 the	 number	 of	 structures	 in	 Severe	 and	 Very	 severe	 classes	 of	 damage.	 The	 DPC	

methodology	is	though	for	paying	more	attention	to	buildings	with	visible	damage	because	its	original	aim	is	

to	evaluate	the	suitability	for	human	habitation	of	the	construction	after	the	occurrence	of	a	seismic	event.	
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Fig.	5.32	-	Classification	of	the	facilities	close	to	the	CL-PO	landslide	according	to	the	DPC	approach	(Baggio	et	al.,	

2009).	

To	follow	the	application	of	the	literature	ranking,	a	new	methodology	was	developed	and	applied	to	the	

same	site.	Del	Soldato	et	al.	(under	review_b)	approach	results	to	be	a	complete	method	to	investigate	the	

cracks	affecting	the	ground	surfaces,	as	 in	Cooper	(2008),	the	structures	and,	a	posteriori,	 the	facilities	 in	

sensu	 stricto	 allowing	 a	more	 precise	 categorization	 (Fig.	 5.33).	 The	 classification	 of	 the	 buildings	 in	 the	

surrounding	of	the	CL-PO	is	well	distributed	and	represents	all	categories.	An	important	number	of	them	are	

classified	in	Negligible	and	Weak	ranks,	as	seen	for	the	others	approach.	Furthermore,	an	important	number	

of	 structures,	 probably	mainly	 represented	 by	 rural	 and	 abandoned	 constructions,	 fall	 into	 the	Potential	

Collapse.	This	approach	results	to	be	applicable	for	buildings	as	well	as	for	other	facilities,	in	fact	the	damage	

situation	for	some	walls	and	concrete	sidewalks	 investigated	and	ranked	was	also	represented	with	good	

precision.	
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Fig.	 5.33	 -	 Classification	 of	 the	 facilities	 close	 to	 the	 CL-PO	 landslide	 according	 to	 the	 Del	 Soldato	 et	 al.	

(NewAprroach_under	review)	approach.	

It	is	curious	and	interesting	noticing	as,	for	all	the	applied	and	shown	categorizations,	the	buildings	located	

on	 the	probable	 current	 crown	of	 the	 landslide	 (B01	 in	Fig.	5.34c)	 is	 classified	 in	 low	o	very	 low	 level	of	

damage.	This	reflects	the	real	situation	of	the	damage	visible	on	the	external	façades	of	the	construction,	

affected	by	very	few	and	tight	visible	cracks	(Fig.	5.34a),	despite	a	possible	very	important	rupture	involving	

its	foundations.	This	hypothesis	is	justified	and	supported	by	important	visible	ruptures	affecting	the	front	

concrete	sidewalk	(S01	in	Fig.	5.34c),	partially	collapsed	into	the	landslide	(Fig.	5.34b).	

	

	
Fig.	5.34	-North	façade	(a)	of	the	building	(B01)	located	on	the	crown	of	the	landslide	with	in	front	a	several	damage	

concrete	sidewalk	(b)	partially	collapsed	(red	circle).	



Integration	of	field	investigations	and	remote	sensing	techniques	for	the	assessment	of	landslide	activity	and	damage	
	

M.	Del	Soldato	

	

111	

	

Furthermore,	 two	 concrete	 walls	 and	 other	 two	 sidewalks	 were	 investigated	 and	 classified	 because	

affected	by	several	open	cracks	or	showing	distortion.	Also	in	this	case,	the	applied	categorization	reflected	

the	situation	of	the	structures.	The	application	of	the	rankings	developed	by	Cooper	(2008)	and	Del	Soldato	

et	al.	(under	review_b)	demonstrated	to	be	the	more	suitable	methods	adaptable	also	for	different	facilities,	

besides	of	buildings.	The	same	ranking	approach	was	applied	to	classify	the	ruptures	on	anthropic	surfaces	

and	on	the	ground	(Fig.	5.35).	The	possibility	to	add	this	information	on	a	map,	to	investigate	and	to	classify	

the	grade	of	damage	visible	on	the	ground	surfaces	could	be	interesting	due	to	their	probably	relation	with	

the	propagation	of	the	movement	and	the	increasing	of	the	dimension	of	the	mass	movement.	On	the	crown	

area	of	landslide	some	fractures,	that	indicate	the	possible	retrogression	of	the	boundary	of	the	landsliding	

zone,	 are	 visible.	 Laterally	 of	 the	 body	 of	 the	mass-movement	 some	 cracks	 are	 recognizable	 in	 the	 soils	

inducing	 to	 the	 possible	 continuous	 movement	 of	 the	 landslide.	 During	 several	 field	 campaigns,	 it	 was	

possible	 identifying	 the	 continuous	 retrogression	 of	 the	 landslide	 crown,	 enlarging	 its	 boundaries	 and	

dimensions.	Some	cracks	were	simple	to	recognize	by	means	of	manifestations	of	new	opening	tension	cracks	

or	the	partial	collapses	of	border	sidewalks,	made	of	reinforced	concrete.	Their	severity	was	classified	by	

analysing	their	linear	extension,	their	displacement	and	their	location	(i.e.	in	soils	or	on	rigid	material).	
	

	
Fig.	5.35	-	Classification	of	fracture	and	ruptures	recognizable	in	soil	and	man-made	surfaces	by	the	methods	proposed	

by	Cooper	(2008)	(a)	and	Del	Soldato	et	al.	(under	review_b)	(b).	
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In	 addition	 to	 the	 classifications	 of	 the	 recognized	 damage	 during	 field	 surveys,	 structures	 were	

categorized	also	by	means	of	the	use	of	the	remote	sensing	analysis.	The	Persistent	Scatterers,	reflected	by	

structures,	were	analysed	and	elaborated	to	extract	the	velocity	maximum	displacement	measured	along	the	

LOS	and	the	for	both	ascending	and	descending	geometries.	Furthermore,	the	mean	velocity	and	average	

displacement,	reprojected	along	the	slope,	affecting	each	construction	were	assessed	to	categorize	them.	

The	 ENVISAT	 data	 extracted	 from	 the	 National	 Cartographic	 Portal	 (PCN)	 of	 the	 PST-A	 Project	 (Piano	

Straordinario	 di	 Telerilevamento,	 Italian	 Ministry	 of	 the	 Environment	 and	 Protection	 of	 Land	 and	 Sea	 -	

MATTM;	National	Cartographic	Portal)	cover	the	area,	but	the	high	vegetation	caused	a	low	density	of	PS.	

Several	structures	resulted	no	covered	by	PS	data,	even	considering	the	combination	of	 the	data	of	both	

geometries.	Furthermore,	the	same	analysis	was	conducted	using	the	PS	derived	from	the	elaboration	by	the	

CPT	algorithm	on	COSMO-SkyMed	images	covering	the	span	period	from	February	2012	to	May	2015.	The	

number	 of	 Persistent	 Scatterers	 elaborated	 using	 this	 sensor	 is	 higher	 than	 of	 ENVISAT	 and	 with	 both	

geometries,	ascending	and	descending,	almost	all	structures	are	monitored	and	classifiable.	

The	velocity	and	the	displacement	measured	along	the	Line	of	Sight	(LOS)	for	each	building	were	assessed,	

separately	for	ascending	and	descending	orbits,	taking	into	account	only	the	PS	reflected	by	the	structures.	

Once	isolated	the	PS	on	the	buildings	for	each	orbit,	the	average	by	means	of	Summary	statistics	tools	of	

ArcGIS®	of	the	LOS	velocity	and	the	maximum	displacement	were	calculated	and	used	to	classify	structures.	

First	of	all,	it	is	important	to	notice	that	the	higher	velocities	are	recorded	in	the	crown	region	of	the	landslide,	

even	if	not	for	all	construction	PS	data	were	available.	The	colours	of	the	buildings	were	assigned	according	

to	the	scale	of	colours	used	for	the	velocity,	while	the	threshold	values	were	chosen	combining	the	quality	

of	 the	data	with	 the	possible	 response	of	 the	structures.	As	visible	 in	Fig.	5.36,	 low	velocities	not	always	

indicate	no	displacement,	in	fact,	some	buildings	affected	by	low	velocity,	recognizable	in	green	in	Fig.	5.36a,	

after	 eight	 years	 show	 a	 cumulated	 displacement	 of	 different	millimetres,	 exhibited	 in	 yellow	 or	 orange	

colours	in	Fig.	5.36b.	
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Fig.	5.36	-	Building	classification	conducted	based	on	the	Velocity	(a)	and	the	cumulated	displacement	(b)	recorded	

along	the	Line	of	Sight	of	the	ascending	orbit	of	ENVISAT	sensor.	

The	same	work	was	carried	out	with	difficulty	on	 the	descending	PS	due	 to	 the	very	 low	density.	The	

results	were	shown	in	Fig.	5.37a	and	b,	but	only	five	structures	were	classified,	three	of	which	are	not	so	

close	to	the	landslide.	
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Fig.	5.37	-	Building	classification	conducted	based	on	the	Velocity	(a)	and	the	cumulated	displacement	(b)	recorded	

along	the	Line	Of	Sight	of	the	descending	orbit	of	ENVISAT	sensor.	

Using	the	X-band	data	from	COSMO-SkyMed	the	same	type	of	work	was	conducted	taking	advantage	from	

the	better	spatial	distribution	and	the	higher	precision	of	the	measurements.	The	colours	used	to	classify	the	

buildings	by	means	of	the	analysis	of	the	CSK	data	are	the	same	used	for	the	ENVISAT	data,	but	the	threshold	

values	are	different	based	on	precision	of	the	available	data.	The	velocity	and	the	cumulated	displacement	

assessed	using	the	ascending	data	along	the	LOS,	are	shown	in	Fig.	5.38a.	The	LOS	velocity,	coming	inbound	

to	the	sensor,	and	the	cumulated	displacement,	for	the	period	2012	-	2015,	exhibit	a	relative	calm	situation	

for	 all	 constructions,	 except	 for	 a	 built	 up	 area	 on	 the	 left	 side	 of	 the	 crown	 (Fig.	 5.38b)	 where	 some	

movements	were	recorded.	Some	aspects	are	worthy	to	be	pointed	out:	
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Ø the	building	located	on	the	actual	crown	of	the	landslide,	B01,	is	not	affected	by	important	velocity	

and	 neither	 by	 cumulated	 displacement.	 This	 confirms	 the	 surveys	 conducted	 during	 the	 field	

campaigns,	where	negligible	damage	on	this	construction	were	recognized.		

Ø a	different	situation	affects	the	external	sidewalk,	as	mentioned	before,	but	unfortunately	no	PS	data	

are	available	on	this	structure	due	to	its	little	dimensions;	

Ø the	only	area	affected	by	important	velocity	and	cumulated	displacement	(>	of	1.5	mm)	is	that	built	

close	to	the	crown.	The	damage	recorded	in	this	area	during	the	surveys	conduct	in	different	periods,	

show	an	increasing	of	cracking;	

Ø the	building	severely	affected	by	damage	in	the	foundation	sited	on	the	left	side	of	the	crown	of	the	

mass-movement	 (yellow	 in	 box	 1	 in	 Fig.	 5.38a)	 show	 a	 moderate	 velocity,	 but	 negligible	

displacement.	The	displacement	in	this	area	pertain	to	the	terrain	in	front	of	the	construction	affects	

its	foundation	but,	until	now,	not	harshly	involving	the	structure;	

Ø maximum	displacement	measured	for	several	structures	 is	 lower	than	the	expected	based	on	the	

LOS	velocity.	This	is	justified	by	the	cyclical	velocity	as	above	shown	in	the	time-series	that	smooth	

the	cumulated	displacement.	
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Fig.	5.38	-	Building	classification	conducted	based	on	the	Velocity	(a)	and	the	cumulated	displacement	(b)	recorded	

along	the	Line	of	Sight	of	the	ascending	orbit	of	COSMO-SkyMed	sensor.	

Using	the	same	threshold	values,	the	classifications	of	the	buildings	based	on	the	LOS	velocity	and	the	

cumulated	 displacement	 were	 conducted	 also	 by	 means	 of	 the	 descending	 PS	 data	 (Fig.	 5.39).	 The	

displacement	measured	moving	away	from	the	ascending	orbit,	in	the	descending	geometries	is	registered	

moving	toward	the	sensor,	therefore	with	positive	values.	For	this	reason,	and	for	a	simpler	comprehension	

of	the	images,	the	scale	of	colours	was	maintained	the	same,	but	using	the	absolute	value.	In	this	way,	the	

classification	is	visually	comparable	with	that	carried	out	by	the	ascending	PS.	First	of	all,	it	is	worthy	noticing	

that	 the	 ranked	 buildings	 are	 mainly	 present	 in	 the	 crown	 area	 than	 in	 other	 regions	 of	 the	 landslide.	

Furthermore,	it	is	important	remembering	that	the	descending	data	are	affected	by	a	bigger	imprecision	due	
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to	the	difficulty	encountered	during	the	elaboration	of	the	raw	data.	In	spite	of	this,	the	LOS	velocity	and	the	

cumulated	displacement	registered	on	the	constructions	located	on	the	crown	of	the	left	side	of	the	landslide	

result	 comparable	 with	 that	 carried	 out	 by	 the	 other	 orbit.	 The	 main	 differences	 are	 recorded	 in	 the	

structures	located	out	of	the	landslide	boundary	that,	with	high	probability,	are	subjected	to	errors	due	to	

the	difficult	processing	of	the	descending	images.	The	attention	during	the	processing	was	paid	on	structures	

located	very	close	to	the	landslide	in	order	to	find	out,	as	well	as	possible,	reliable	information	about	them.	

	

	
Fig.	5.39	-	Building	classification	conducted	based	on	the	Velocity	(a)	and	the	cumulated	displacement	(b)	recorded	

along	the	Line	of	Sight	of	the	descending	orbit	of	COSMO-SkyMed	sensor.	
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Even	 if	 the	 landslide	 is	 E-W	oriented,	 and	 thus	 suitable	 to	 be	 visible	 from	both	 orbits	 of	 the	 satellite	

sensors,	the	descending	PS	data,	both	ENVISAT	and	COSMO-SkyMed,	are	affected	by	uncertainty	and	scarce	

spatial	distribution.	To	overcome	this	problem,	ascending	and	descending	orbits	were	combined	to	better	

classify	the	building,	reprojected	LOS	velocities	and	cumulated	displacements	along	the	direction	of	the	local	

steepest	 slope	 of	 the	 PS	 intersecting	 the	 constructions.	 Then,	 the	 structures	were	 classified	 through	 the	

analysis	 of	 the	 velocity	 and	 the	 maximum	 displacement	 projected	 along	 the	 slope	 (Vslope	 and	 Dslope,	

respectively)	derived	from	ENVISAT	and	COSMO-SkyMed	sensors.	

For	the	case	study	of	Agnone,	the	projection	of	the	velocity	and	the	cumulated	displacement	along	the	

steepest	slope	was	conducted	using	the	DEMs	with	5-m	and	10-m	cell	resolution.	This	was	done	to	verify	the	

suggestion	by	Notti	et	al.	(2010)	about	the	use	of	a	DEM	with	low	resolution	to	reach	better	results.		

Using	 the	 available	 PS	 dataset,	 the	 projection	 conducted	 with	 both	 DEM	 (Fig.	 5.40a	 with	 5-m	 cell	

resolution	DEM	and	Fig.	5.40b	with	10-m	cell	resolution	DEM),	shows	little	differences	in	the	classification	of	

structures.	Some	differences	were	carried	out	only	analysing	the	relationship	between	the	classification	of	

the	buildings	and	the	Dslope	parameter.	For	categorization	conducted	with	the	velocity	projected	along	the	

slope	was	increased	the	stability	range	due	to	the	elaboration	that	adds	a	possible	error	to	the	values.	For	

this	reason,	the	“stability”	threshold	was	enlarged	to	±	5	mm/year,	also	because	the	used	value	is	an	average	

of	all	 the	PS	data	reflected	by	each	structure.	The	major	part	of	 the	structures	 far	 from	the	 landslide	are	

classified	as	not	 influenced	by	high	displacement	and	only	 the	constructions	 located	on	the	actual	crown	

results	affected	by	high	rate	of	displacement.	It	is	worth	noticing	that	the	span	of	investigation	of	the	ENVISAT	

is	between	November	2002	and	July	2010	period	during	which	two	main	reactivations,	in	January	2003	and	

between	December	2004	and	January	2005,	involved	the	central	region	of	the	landslide	where	no	PS	data	

and	construction	were	recorded.	However,	the	high	average	annual	rates	on	buildings	sited	on	the	actual	

crown	are	a	good	indicators	for	the	location,	extension	and	intensity	of	the	phenomenon.	
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Fig.	 5.40	 -	 Building	 classification	by	means	of	 the	 velocity	projected	along	 the	 slope	and	averaged	assessed	with	

ENVISAT	sensors	for	each	construction	using	DEM	with	5-m	cell	resolution	(a)	and	10-m	cell	resolution	(b).	
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The	 same	 comparison	and	 typology	of	 classification	were	 conducted	also	by	means	of	 the	 cumulated	

displacement	 projected	 along	 the	 slope.	 In	 this	 case	 the	 values	 of	 cumulated	displacement	 affecting	 the	

constructions	explain	better	the	important	movements	involving	the	area	during	the	two	main	reactivation	

events.	The	same	buildings,	which	by	the	Vslope	were	classified	with	high	velocity,	also	using	the	Dslope	resulted	

ranked	 in	 high	 category	 to	 confirm	 the	 importance	 of	 the	 reactivations	 occurred	 during	 the	 ENVISAT	

acquisition	period	influencing	also	the	buildings	located	on	the	actual	crown.	Furthermore,	several	buildings	

located	further	from	the	landslide	classified	as	“stable”	by	means	of	the	Vslope,	because	with	a	low	average	

annual	velocity,	reach	noticeable	cumulated	displacement	(some	examples	in	Table	5.7).	

	

Table	5.7	-	Example	of	buildings	located	in	different	place	respect	to	the	landslide	that	show	a	low	average	annual	

velocity	(Vslope)	but	reach	noticeable	cumulated	displacements.	The	same	results	were	carried	out	using	both	the	DEM	

with	5-m	cell	resolution	and	10-m	cell	resolution.	

Building	 Location	 ENVISAT	Vslope	5k	

(mm/y)	

ENVISAT	Vslope	10k	

(mm/y)	

ENVISAT	Dslope	5k	

(mm)	

ENVISAT	Dslope	5k	

(mm)	

B_01	 Crown	 -6.07	 -5.61	 -71.29	 -65.82	

B_30	 Out	of	crown	 -3.78	 -3.52	 -48.47	 -44.78	

B_04N	 Left	flank	 -4.59	 -4.23	 -48.22	 -44.57	
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Fig.	5.41	-	Building	classification	using	the	cumulated	displacement	projected	along	the	slope	and	averaged	evaluated	

by	ENVISAT	sensors	for	each	construction	using	DEM	with	5-m	cell	resolution	(a)	and	10-m	cell	resolution	(b).	

In	the	period	investigated	by	Dslope	calculated	for	CSK	data	(Fig.	5.42a	and	Fig.	5.42b,	respectively	realized	

by	 the	 use	 of	 DEM	 5-m	 and	 10-m	 cell	 resolution)	 no	 important	 reactivations	 were	 observed,	 but	 the	

movements	continue	to	increase	the	dimension	of	the	CL-PO	landslide.	Using	X-band	sensor	more	PS	were	

recognized	for	the	structures	under	investigation	and	as	stability	condition	was	established	at	±	2	mm/year.	
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Fig.	 5.42	 -	 Building	 classification	by	means	of	 the	 velocity	projected	along	 the	 slope	and	averaged	assessed	with	

COSMO-SkyMed	sensors	for	each	construction	using	DEM	with	5-m	cell	resolution	(a)	and	10-m	cell	resolution	(b).	

The	structure	classification	map	appears	visually	different	from	that	realized	using	ENVISAT	data	because	

the	used	scale	is	different,	but	some	buildings	show	interesting	behaviour	to	take	into	consideration.	One	of	

the	most	interesting	cases	to	examine	is	the	building	located	on	the	crown	of	the	landslide	(B01)	that	appears	

completely	 stable,	differently	 to	 the	previous	period	when	 it	was	 ranked	 in	a	 class	 characterized	by	high	
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velocity.	Beside	its	external	concrete	sidewalk	is	completely	cracked	and	partially	collapsed	with	respect	to	

the	 2005	 (Fig.	 5.34),	 recent	 field	 surveys	 revealed	 that	 at	 the	moment	 the	 construction	 does	 not	 show	

important	cracks	or	damage	on	the	external	façades.	

Another	important	evidence	carried	out	analysing	the	building	deformation	maps	by	means	of	COSMO-

SkyMed	PS	(Fig.	5.42)	comparing	it	with	that	obtained	by	ENVISAT	PS	(Fig.	5.40),	is	the	propagation	of	the	

deformation	in	the	surrounding	of	the	landslide	body.	The	velocity	along	the	slope	measurement	on	structure	

behind	 the	 traced	 crown	 could	 indicate	 possible	 future	 continuous	 evolutions	 of	 the	 phenomenon	with	

retrogressive	development	that	could	cause	an	increment	of	the	dimension	of	the	landslide	area.	

The	map	of	cumulated	displacement,	calculated	with	two	DEM	with	different	cell	resolution	(Fig.	5.43)	

shows	some	differences	in	the	classification	of	several	constructions	located	in	the	left	part	of	the	crown	of	

the	landslide	and	in	the	right	surrounding.	Some	of	them	have	value	close	to	the	threshold	and,	in	fact,	using	

the	DEM	with	cell	resolution	of	5-m	(Fig.	5.43a)	the	built-up	area	of	buildings	in	the	left	region	of	the	crown	

are	 classified	 by	 means	 of	 the	 cumulated	 Dslope	 under	 the	 5	 mm,	 while	 employing	 the	 DEM	 with	 low	

resolution,	10-m	cell,	they	are	classified	above	the	threshold	value	in	red	(Fig.	5.43b).	This	confirms	as	the	

spatial	 resolution	of	 the	 initial	 data	and	 the	 choices	done	by	 the	users	 are	 important	 to	 reach	good	and	

reliable	 results.	 Furthermore,	 this	 example	 demonstrates	 the	 key	 role	 of	 the	 field	 survey	 to	 validate	 the	

remote	sensing	analysis	and	investigations.	
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Fig.	5.43	-	Building	classification	by	means	of	the	cumulated	displacement	projected	along	the	slope	and	averaged	

evaluated	by	COSMO-SkyMed	sensors	 for	each	construction	using	DEM	with	5-m	cell	 resolution	(a)	and	10-m	cell	

resolution	(b).	
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5.3 Volterra	landslide	(Tuscany	region)	

5.3.1 Evolutionary	stages	and	monitoring	of	the	landslide	

No	more	historical	information	about	the	ground	instability	affecting	the	southwestern	sector	of	Volterra	

(Tuscany	 region,	 central	 Italy)	 were	 found,	 differently	 from	 the	 Colle	 Lapponi-Piano	Ovetta.	 The	 area	 of	

interest	is	located	between	the	rural	zone	and	the	southwestern	sector	of	the	city	centre,	characterized	by	

middle	 urban	 fabric	 density	 and	 partially	 affected	 by	 landslides.	 The	 boundary	 of	 the	 mass-movements	

affecting	these	areas	are	very	difficult	to	detect	due	to	the	anthropic	influence	obliterating	geomorphological	

shapes	and	slide	surfaces.	The	constructions	involved	and	damaged	by	landslide	were	mainly	built	in	different	

typologies,	such	as	masonry	structures	and	concrete	frameworks,	in	the	19th	century.	The	studied	landslides	

are	placed	in	a	partially	urbanized	region	of	the	southwestern	sector	where	part	of	the	cultural	and	historical	

heritage	of	Volterra	town	 is	present.	35	m	 long	and	9.5	m	high	portion	of	 the	Etruscan	fortification	walls	

embracing	the	urban	fabric	of	Volterra	suddenly	collapsed	in	the	southwestern	side	in	January	2014.	After	

the	collapses	of	part	of	the	historical	walls	to	monitor	and	demonstrate	that	no	displacement	occurred	on	

the	buildings	by	Ground-Based	Interferometric	SAR	(GB-InSAR)	(Pratesi	et	al.,	2015).	

After	 the	 emergency,	 in	 2014-2015	 the	 Department	 of	 Earth	 Sciences	 of	 the	 University	 of	 Florence	

analysed	the	ground	instability	of	the	whole	Volterra	territory	in	order	to	update	the	pre-existing	landslide	

inventories	 (e.g.	 IFFI	 and	 PAI	 projects).	 Furthermore,	 the	 state	 of	 activity	 and	 the	 typology	 of	 mass-

movements	were	characterized	(Fig.	5.44).	Several	phenomena	affecting	the	area,	some	of	these	active,	are	

shallow	 phenomena	 involving	 thick	 colluvial	 debris	 and	 underlying	 clayey	 lithotypes,	 causing	 damage	 to	

localized	buildings	and	facilities.	

An	analysis	of	the	historical	aerial	images	allowing	the	investigation	of	the	geomorphological	evolution	of	

the	region	of	interest,	as	made	for	the	Colle	Lapponi	-	Piano	Ovetta	landslide	in	Agnone,	was	developed.	By	

the	application	of	the	Structure	for	Motion	technique,	3D	models	for	different	years	were	reconstructed.	Five	

3D	reconstructions	were	realized	for	each	different	set	of	images	by	means	of	the	analysis	of	aerial	historical	

images	 shot	 by	 the	 Italian	 IGM	 (Istituto	Geografico	Militare).	 Furthermore,	 the	 area	was	 investigated	 by	

means	of	the	remote	sensing	technique,	i.e.	through	Persistent	Scatterers	Interferometry.	
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Fig.	5.44	-	Landslide	inventory	in	the	studied	soutwestern	portion	of	the	municipality	of	Volterra.	

Landslide	 geomorphological	 signatures	 are	 not	 simple	 to	 recognize	 by	 field	 investigations	 due	 to	 the	

diffusion	of	the	fabrics.	In	the	same	way,	the	recognition	of	little	and	often	obliterated	forms	on	historical	

images	with	not	high	 resolution,	 results	difficult.	Taking	advantage	 from	the	use	of	 the	 reconstructed	3D	

models	allowing	to	zoom	and	virtually	fly	inside	the	reconstructed	model,	some	geomorphological	forms	are	

better	recognizable.	The	3D	models	reach	errors	lower	than	5	m	despite	the	high	number	of	fabrics	in	the	

northeastern	zone	causing	difficulties	to	find	reliable	points	with	good	precision.	Analysing	the	evolution	in	

time	for	Le	Colombaie	and	Fontecorrenti	areas,	some	scarps	and	counterslopes	were	identified	from	the	1954	

reconstruction	(Fig.	5.45a).	The	same	shapes	result	in	continue	increment	in	1965	(Fig.	5.45b)	and	1982	(Fig.	

5.45c)	3D	Points	Clouds.	In	these	regions,	mainly	in	Fontecorrenti,	also	badland	shapes	are	well-defined	and	

easily	 to	 recognize.	 Furthermore,	 their	 evolution	 is	 easily	 recognizable	 analysing	 the	 subsequent	 3D	

reconstructions.	 The	main	 evolution	 of	 geomorphological	 features	 of	 landslides	 is	 localized	 in	 the	 upper	

portion	of	Le	Colombaie	area,	where	the	crown	of	several	landslides	is	traced	(Fig.	5.44).	In	1986	and	1995	

reconstructions	(Fig.	5.45d	and	f,	respectively)	geomorphological	signatures	are	too	difficult	to	identify	due	

to	the	spread	of	new	buildings	in	the	sectors	under	investigations.	
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Fig.	5.45	-	Evolution	of	the	Le	Colombaie	and	Fontecorrenti	areas	affected	by	both	landslides	(in	red)	and	badlands	(in	

dark	blue)	reconstructed	3D	Point	Clouds	by	means	of	the	SfM	techniques	applied	on	historical	aerial	imagery	of	1954	

(a),	1965	(b),	1982	(c),	1986	(d)	and	1995	(e).	The	boundaries	of	the	landslides	and	of	the	badlands,	derive	from	the	

inventories	of	the	municipality	strategic	plan	of	Volterra	(2005).	
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Some	 geomorphological	 signatures	were	 recognized	 by	means	 of	 the	 3D	 reconstructions	made	 using	

historical	images,	i.e.	1954	and	1995.	Some	of	them	were	identified	in	sites	in	which	during	the	‘80s	several	

constructions	were	build.	Comparing	the	zoom	of	an	area	reconstructed	in	1965	(Fig.	5.46a)	and	in	1995	(Fig.	

5.46b),	new	constructions	are	recognizable	in	the	uphill	of	a	possible	geomorphological	scarp.	Some	of	these	

buildings,	mainly	that	close	to	the	geomorphological	shape,	are	actually	affected	by	important	damage.	

	

	
Fig.	5.46	-	Particular	in	Colombaie	sector	of	the	3D	reconstructions	of	1965	(a)	and	1995	(b)	where	new	buildings	uphill	

of	a	possible	geomorphological	shape,	in	red,	were	built.	

Furthermore,	exploiting	the	3D	reconstructions	carried	out	by	the	SfM	technique,	the	difference	in	volume	

between	the	Points	Clouds	of	1954	and	of	1995	was	developed.	An	algorithm	to	compute	the	distance	in	

each	direction	between	two	clouds,	present	in	CloudCompare	software,	was	used	to	manage	the	georeferred	

points	 clouds	and	 to	 calculate	 the	changes	of	 volume.	The	analysis	was	 conducted	 for	Le	Colombaie	 and	

Fontecorrenti	areas	affected	by	slope	movements	 (Fig.	5.47).	 It	 is	 important	 to	consider	 that	 the	error	 in	

regions	very	close	to	the	boundary	are	bigger	than	in	the	centre	due	to	the	location	of	the	GCPs.	In	spite	of	

this	inconvenience,	the	qualitative	assessment	results	in	accord	to	the	literature	and	with	the	displacement	

measured	by	other	remote	sensing	techniques	and	the	site	investigations.	To	support	the	quality	of	the	result,	

some	buildings	located	in	the	crown	of	a	group	of	shallow	landslides	affecting	Le	Colombaie	area	erected	in	

the	‘80s,	in	the	3D	points	clouds	are	recognizable	as	increment	of	volume	(orange	circle	in	Fig.	5.47).	In	the	

upper	part	of	the	reconstruction	a	little	portion	not	covered	by	the	3D	reconstruction	of	1954	create	and	

increment	of	error,	in	fact	the	highest	and	the	lowest	values	are	concentrated	there.	

	



Integration	of	field	investigations	and	remote	sensing	techniques	for	the	assessment	of	landslide	activity	and	damage	
	

M.	Del	Soldato	

	

129	

	

	
Fig.	5.47	-	Detection	of	changes	of	volume	for	Le	Colombaie	and	Fontecorrenti	areas	affected	by	both	landslides	(in	

black)	and	badlands	(in	green).	The	orange	circle	indicates	some	buildings	build	between	the	1954	and	1995	were	

visible	as	increase	of	volume.	

The	 hot	 colours	 of	 Fig.	 5.47	 indicate	 areas	 where	 the	 volume	 increased,	 thus	 regions	 affected	 by	

accumulation	of	material	eroded,	displaced	by	the	movements	of	the	entire	landslide	or	by	shallow	slope-

moving	 (traced	 in	 black).	 In	 blue	 are	 recognizable	 regions	 affected	 by	 down-moving	 or	 where	 erosional	

processes	are	present	due	to	shallow	landslides	phenomena.	Moreover,	some	badlands	phenomena	(traced	

in	green)	affect	few	slopes	causing	further	erosional	and	accumulation	areas.	

To	confirm	the	hypothesis	carried	out	by	the	investigation	conducted	on	the	historical	set	of	images	from	

1954	 to	 1995	 and	 to	 monitor	 the	 recent	 evolution	 of	 the	 landslide,	 remote	 sensing	 technique,	 field	

investigations	and	direct	measurements	in	situ	were	adopted.	The	Persistent	Scatterers	of	the	study	area,	

derived	from	the	images	acquired	in	C-band	by	ERS1/2	and	ENVISAT	sensors,	processed	by	the	PSInSARTM	
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methodology	(Ferretti	et	al.,	2000,	2001),	were	available	on	the	Portale	Cartografico	Nazionale	(PCN)	of	the	

Italian	Environmental	Ministery	 (http://www.pcn.minambiente.it/).	 Furthermore,	X-band	COSMO-SkyMed	

(CSK)	constellation	acquired	by	during	the	emergency	of	2014	by	the	DPC,	were	elaborated	by	means	of	the	

SqueeSARTM	techniques	(Ferretti	et	al.,	2011)	by	TRE-ALTAMIRA	company.	

The	available	ERS	data	acquired	for	the	period	1992	-	2000	only	in	descending	geometry	(Fig.	5.48)	are	

few	 despite	 they	 show	 stability	 for	 the	 historic	 Volterra	 town	 and	 instability	 for	 some	 regions	 of	 the	

southwestern	 study	 sectors.	 The	 stability	 threshold	 for	 the	C-band	data	was	 assigned	at	 ±2	mm	and	 the	

common	 scale	 of	 colour	 (i.e.	 hot	 colours	 for	 data	 moving	 away	 from	 the	 sensor	 and	 cold	 colours	 for	

displacement	coming	toward	the	satellite)	were	used.	

	
Fig.	5.48	-	ERS	data	in	descending	orbit	bacscattered	for	the	southwestern	sector	of	Volterra	town.	

The	 ENVISAT	 data,	 gathered	 between	 2002	 and	 2010,	were	 registered	 for	 ascending	 (Fig.	 5.49a)	 and	

descending	 (Fig.	 5.49b)	 geometries	 and	 a	 higher	 number	 of	 Persistent	 Scatterers	 benchmarks	 can	 be	

detected.	For	the	data	collected	by	the	ENVISAT	satellites,	the	colours	and	the	stability	values	assigned,	i.e.	

±2	mm,	are	the	same	of	that	used	for	the	ERS	data.	

Analysing	the	PSInSARTM	products	from	ERS	and	ENVISAT	satellites,	the	Volterra	town	results	stable	while	

in	 the	 southwestern	 regions,	 Le	 Colombaie	 and	 Fontecorrenti,	 several	 zones	 affected	 by	 instabilities	 are	
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identifiable.	They	are	characterized	by	 light-blue	and	blue	points	 in	ascending	orbits	and	while	by	yellow,	

orange	and	red	in	descending	geometry.	

	

	
Fig.	5.49	-	ENVISAT	products	acquired	in	the	ascending	(a)	and	the	descending	(b)	geometries	for	the	southwestern	

sector	of	Volterra.	
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In	 the	 same	 period,	 due	 to	 some	 damage	 affecting	 buildings	 and	 facilities,	 seven	 inclinometers	were	

installed	to	monitor	the	evolution	of	the	slope	from	January	2009	(measure	considered	“read	zero”)	until	

February	 2010	 after	 four	 campaigns	 of	 measurement.	 Two	 of	 them	 located	 in	 Le	 Colombaie	 and	 in	

Fontecorrenti	sites,	respectively,	were	destroyed	due	to	very	high	ground	motions	(Fig.	5.50).	

	

	
Fig.	5.50	-	Localization	of	the	inclinometers	in	the	southwestern	sectors	of	Volterra.	

The	readings	made	about	each	three	months	were	plotted	 in	a	scheme	(Fig.	5.51),	showing	 important	

information	about	the	slip	surfaces	of	the	investigated	landslide.	

Starting	from	the	East	to	the	West:	

Ø the	inclinometer	placed	in	the	borehole	S11	(Fig.	5.51a),	did	not	show	important	movement,	even	if	

some	displacement	occurred	at	the	bottom	of	the	hole	at	20	m	depth	were	recognized;	

Ø the	instrument	sited	in	the	soil	drilling	S8	(Fig.	5.51b)	highlighted	an	evident	slip	surface	at	18	m	depth	

with	a	velocity	of	movement	of	22	mm	per	year	classifiable	from	very	slow	to	slow	(Cruden	and	Varnes,	

1996);	

Ø the	inclinometer	located	in	the	borehole	S1	(Fig.	5.51c)	did	not	show	a	clear	surface	of	rupture,	but	

annual	cyclical	movement	of	about	4	mm	at	depth	of	12	m,	where	there	is	a	change	of	clay	consistency.	

Moreover,	several	little	movements	were	registered	at	different	depths	with	low	importance;	

Ø the	instrument	installed	in	the	hole	S2	(Fig.	5.51d)	highlighted	a	rupture	surface	with	movement	from	

very	slow	to	slow	(Cruden	and	Varnes,	1996)	similar	to	that	measured	in	S8	at	16	m	depth;	
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Ø inclinometers	placed	in	the	boreholes	S6	and	S7	(Fig.	5.51e	and	f)	did	not	shown	important	movement	

recognizable	as	indicators	of	a	rupture	surface.	

	

The	measurements	collected	by	the	 inclinometer	confirmed	that,	between	January	2009	and	February	

2010,	the	instability	affected	the	southwestern	sector	of	Volterra	in	Le	Colombaie	and	Fontecorrenti	areas,	

where	the	 instruments	S11,	S8,	S1	and	S2	are	 localized,	but	does	not	 involve	the	close	San	Lazzaro	area,	

where	S6	e	S7	were	located.	

	

	
Fig.	5.51	-	Temporal	sequences	of	 inclinometer	measures	of	five	instruments	located	in	the	southwester	sector	of	

Volterra	(GEOSER	s.c.r.	&	GEOPROGETTI).	

In	the	following	period	the	monitoring	of	the	instability	was	pursued	by	means	of	the	Persistent	Scatterers	

gathered	 in	both	orbits	 by	COSMO-SkyMed	 constellation	 (ascending	 and	descending	 in	Fig.	 5.52a	 and	b,	
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respectively).	PS	extrapolated	by	SqueeSARTM	 technique	 (Ferretti	et	al.,	2011)	allowed	a	better	 spread	of	

points	also	in	areas	cover	by	diffuse	vegetation	as	in	the	southwestern	region	of	Volterra.	

	

	
Fig.	 5.52	 -	 COSMO-SkyMed	 products	 acquired	 in	 the	 ascending	 (a)	 and	 the	 descending	 (b)	 geometries	 for	 the	

southwestern	sector	of	Volterra.	
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The	areas	affected	by	ground	instability	are	easily	visible	and	recognizable	by	means	of	the	interpretation	

of	the	usual	scale	colours	related	to	the	orbit.	The	phenomena	affecting	the	study	area	are	identifiable	by	

cold	colours	in	the	ascending	geometry	and	featured	by	hot	colours	in	the	descending	one.	The	landslides	

that	occurred	in	the	southwestern	sector	of	the	Volterra’s	municipality	and	damage	affecting	buildings	in	this	

area	were	localized	by	movements	detected	for	existing	PSs.	By	means	of	PS	data,	the	ground	movements	

caused	by	the	evolution	of	badlands	are	not	easily	visible	 if	not	 involving	some	structures.	Only	using	the	

descending	data,	both	ENVISAT	and	COSMO-SkyMed,	some	little	displacements	affecting	some	constructions	

in	the	crown	of	a	badlands	were	detectable.	

As	for	the	first	case	study	of	Agnone,	the	Persistent	Scatterers	Interferometry	(PSI)	time	series	of	ENVISAT	

and	COSMO-SkyMed	satellites	acquired	in	both	acquisition	geometries	for	the	entire	southwestern	sector	of	

the	municipality	of	Volterra,	were	analysed	corrected	to	the	regional	trend	by	the	Notti	et	al.	(2015)	method.	

Furtheromore,	they	were	automatically	categorized	by	means	of	the	approach	of	Berti	et	al.	 (2013)	 in	six	

target	trends.	In	order	to	better	understand	and	monitor	the	evolution	of	the	slope	instability	across	time,	

three	areas	(Fig.	5.53)	were	chosen	to	be	investigated	separately	in	detail.	For	each	one,	a	sample	time-series	

was	extracted	and	displayed	for	each	sensor	recording	displacements.	The	analyses	conducted	for	the	chosen	

landslides	areas	were	executed	using	data	acquired	in	the	descending	orbit.	This	choice	was	done	because	

this	geometry	shows	better	displacements	and	is	the	only	one	recorded	for	all	sensors	allowing	to	investigate	

a	long	period	covered	by	ERS,	ENVISAT	and	COSMO-SkyMed	sensors.	
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Fig.	5.53	-	Study	areas	by	means	of	the	extraction	of	the	time-series	for	each	satellite	that	recorded	data.	

For	 the	 three	areas,	 the	ENVISAT	PS	 time	 series	were	 categorized	according	 to	 the	Berti	 et	 al.	 (2013)	

method.	The	analysis	was	conducted	for	the	wall	area	(Fig.	5.54a)	and	subsequently	also	for	the	area	of	main	

interest	 (Fig.	5.54b).	 Important	differences	were	 recorded	between	 the	percentage	of	distribution	of	 the	

classes	of	Berti	et	al.	(2013),	in	both	ascending	and	descending	orbits.	This	is	due	to	the	considerable	effect	

of	 the	 several	 stable	 points	 on	 the	 historical	 centre	 of	 Volterra	 resulting,	 according	 the	 used	 method,	

categorized	as	uncorrelated	because	not	showing	any	trend.	In	fact,	the	percentage	of	the	PS	time	series	for	

this	category	 in	both	descending	and	ascending	decreases	 from	69.8%	to	13.8%	and	 from	76.9%	to	49%,	

respectively,	while	 the	 linear	 classes	 increase	 in	both	orbit	 from	20.8%	 to	71.0%	 in	descending	and	 from	

19.4%	to	47%	 in	ascending.	The	other	 ranks,	quadratic,	bilinear,	discontinuous	with	constant	velocity	and	

discontinuous	with	variable	velocity,	in	ascending	and	descending	varies	too,	but	with	no	significant	changes.	

It	is	interesting	noticing	as	quite	all	the	time	series	recorded	in	Area2	and	Area3	by	ENVISAT	sensors	are	

linear,	so	with	a	constant	trend.	
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Fig.	5.54	-	Categorization	of	the	ENVISAT	ascending	and	descending	PS	time	series	of	the	whole	southwester	sector	

of	Volterra	town	(a)	and	for	the	three	area	of	interest	(b).	

The	same	type	of	analysis	was	conducted	for	the	COSMO-SkyMed	time	series	for	the	whole	southwestern	

sector	(Fig.	5.55a)	and	for	the	three	areas	of	major	interest	(Fig.	5.55b)	too.	As	for	the	investigation	covering	

the	 period	 2003-2010,	 the	 time	 series	 recorded	 on	 the	 centre	 of	 Volterra	 town	 by	 the	 COSMO-SkyMed	

constellation	 for	 the	 period	 2012-2015	 are	 categorized	 as	 uncorrelated	 due	 to	 them	 stability	 in	 both	

ascending	and	descending	orbit.	For	this	reason,	the	major	part	of	the	PS	time	series	(58.3%	in	descending	

and	 58.2%	 in	 ascending	 geometries)	 falls	 down	 in	 this	 class,	while	 only	 the	 1%	 and	 16.1%,	 respectively,	

considering	only	the	three	areas	of	interest.	The	linear	class	shows,	both	in	descending	and	ascending	orbits,	

frequencies	with	similar	values	indifferently	from	the	area	of	the	investigation	(from	26.9%	to	32%	and	from	

22.1%	 to	 27.2%,	 respectively).	 Important	 differences	 are	 recognizable	 comparing	 the	 percentage	 of	 the	
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quadratic	categories	for	the	entire	southwester	sector	of	the	Volterra	municipality	and	analysing	only	the	

areas	where	buildings	with	more	damage	were	recorded:	this	class	increase	in	descending	from	6.4%	to	38%	

and	 in	ascending	 from	10.1%	to	33.2%.	The	same	behaviour	 is	 recorded	 for	 the	bilinear	 rank	showing	an	

increment	in	descending	from	8.0%	to	26%	and	in	ascending	from	9.1%	to	22.8%.	About	the	other	classes,	

discontinuous	with	constant	velocity	and	discontinuous	with	variable	velocity,	no	important	variations	were	

visible.	

	

	
Fig.	5.55	-	Classification	of	the	COSMO-SkyMed	ascending	and	descending	PS	time	series	of	the	whole	southwester	

sector	of	Volterra	town	(a)	and	for	the	three	area	of	interest	(b).	

For	the	three	areas	with	constructions	affected	by	damage,	a	sample	time	series	representing	them	was	

shown.	To	better	interpreted	the	displacement	occurred,	the	time	series	were	depurated	by	the	region	trend	

according	to	the	Notti	et	al.	 (2015)	approach	and	for	each	one	are	shown	the	original	trend,	the	regional	
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trend	and	the	corrected	time	series.	

Area1	is	in	the	crown	of	important	a	big	landslide	and	some	shallow	landslides	affecting	the	slope	causing	

important	damage	to	numerous	constructions.	The	buildings	of	this	area	were	built	during	the	‘80s	except	

for	two	of	them.	This	makes	meaningful	analyses	made	by	PS	and	the	time-series	extracted	for	of	all	sensors	

from	the	constructions	on	this	zone	given	that	the	time	period	covered	by	the	ERS1/2,	ENVISAT	and	COSMO-

SkyMed	sensors	is	quite	comparable	with	the	age	of	them.	The	data	recorded	in	descending	geometry	show	

instability	for	the	entire	investigated	period	from	1992	to	2013	with	a	consequent	increment	of	dimensions	

of	the	involved	region.	The	ERS	(Fig.	5.56a)	and	the	CSK	(Fig.	5.56b)	data	show	an	important	trend	moving	

away	from	the	sensors	and	a	low	regional	trend	to	confirm	the	reliability	of	the	time	series.	Despite	the	time	

series	of	ENVISAT	data	are	very	noisy	a	trend	in	accord	to	that	of	ERS	and	CSK	is	recognizable.	

	

	
Fig.	5.56	-	Sample	of	time-serises	of	ERS	(a)	and	COSMO-SkyMed	(b)	sensors	acquired	in	the	Area1.	

Area2	was	chosen	sited	downhill	with	respect	to	Area1,	inside	a	landslide	complex.	In	this	portion,	several	

buildings	are	affected	by	different	grades	of	damage	and	the	investigation,	made	by	means	of	the	time-series	

covers	the	period	between	1992	and	2013.	All	investigated	constructions	in	this	area	were	built	in	2003,	even	

if	the	few	points	previously	acquired	by	C-band	of	ERS1/2	satellites	(Fig.	5.57)	already	shown	displacement	

not	influenced	by	the	regional	trend.	Comparing	the	time	series	of	this	area	with	that	of	Area1,	it	is	possible	

noticing	the	increment	of	displacement	affecting	the	constructions	of	Area2.	The	difference	can	be	ascribable	

to	the	combination	of	the	displacement	caused	by	the	landslide	activity	with	the	local	shallow	movements.	
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Fig.	5.57	-	Sample	time-series	of	ERS	data	reflecting	the	situation	of	the	Area2.	

From	 2002	 to	 2010	 and	 between	 2010	 and	 2013	 the	 PS	 number	 increased	 due	 to	 the	 anthropic	

constructions.	The	time-series	of	ENVISAT	(Fig.	5.58b)	and	COSMO-SkyMed	(Fig.	5.58c)	respectively,	exhibit	

a	continuous	moving	away	from	the	satellite,	even	if	the	ENVISAT	data	result	to	be	noisy	also	corrected	by	

the	regional	trend	(Notti	et	al.,	2015).	Comparing	the	data	with	those	recorded	in	the	crown	of	Area1,	also	

ENVISAT	and	COSMO-SkyMed	PS	show	displacement	bigger.	

	

	
Fig.	5.58	-	Sample	of	time-series	of	ENVISAT	(a)	and	COSMO-SkyMed	(b)	data	of	the	Area2.	
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In	Fontecorrenti	sector	only	Area3	were	separately	investigate	due	to	the	less	number	and	little	dimension	

of	the	landslides	affecting	this	region.	Several	buildings,	erected	in	the	‘70s	in	brick,	are	partially	located	in	

the	crown	of	a	landslide	affecting	the	upper	part	of	the	sector.	The	constructions	of	the	study	area	reflected	

for	all	sensors	allowing	the	acquisition	of	the	data	from	1992	to	2013.	The	sample	ERS	corrected	time	series	

recorded	on	the	structure	(Fig.	5.59)	shows	displacements	reaching	50	mm	in	ten	years.	

	

	
Fig.	5.59	-	Sample	of	time-serises	of	ERS	sensor	acquired	in	Area3	in	Fontecorrenti	sector.	

Despite	the	constructions	in	Area3	are	not	all	affected	by	damage,	ENVISAT	(Fig.	5.60a),	even	if	also	in	

this	case	noisy,	and	COSMO-SkyMed	(Fig.	5.60b)	time	series	confirm	the	continuous	movement	away	from	

the	satellite.	Also	in	this	case	the	investigated	time	series	were	subjected	to	the	Notti	et	al.	(2015)	approach	

in	order	to	analyse	the	trend	depurated	to	the	regional	trend.	



Integration	of	field	investigations	and	remote	sensing	techniques	for	the	assessment	of	landslide	activity	and	damage	
	

M.	Del	Soldato	

	

	

	
Fig.	5.60	-	Sample	of	the	time-series	of	ENVISAT	(a)	and	COSMO-SkyMed	(b)	data	of	Area3.	

The	 ascending	 data,	 showing	 the	 displacement	 moving	 toward	 the	 sensors,	 confirm	 the	 recorded	

movements.	 Furthermore,	 the	 ascending	 data	 acquired	 by	 COSMO-SkyMed	 were	 registered	 since	 2015	

instead	of	2013,	and	show	a	similar	trend	of	movement	of	that	displayed	above	by	the	sample	time-series.	

5.3.2 Damage	classification	of	buildings	

The	displacement	affecting	the	southwestern	sector	of	Volterra	caused	damage	on	several	constructions.	

The	damage,	 related	 to	 the	differential	movement	of	 the	 slope	due	 to	 several	 shallow	slope-movements	

(Bianchini	et	al.,	2015b),	are	mainly	concentrated	in	areas	located	in	the	crown	of	two	big	landslides	and	one	

inside	of	the	big	slope-movement	affecting	Le	Colombaie	sector.	 In	the	Volterra	case	study	only	buildings	

were	classified	because	facilities	did	not	show	important	damage	to	be	categorized.	The	only	exception	was	

the	 collapse	 of	 a	 part	 of	 the	walls	 enclosing	 Volterra	 town	 (Pratesi	 et	 al.,	 2015)	 not	 due	 to	 a	 landslide,	

therefore	it	was	not	considered	in		the	following	damage	classification	maps.	The	field	investigations	were	

performed	 in	order	 to	 individuate	 the	damage	affecting	 constructions	 in	Le	Colombaie	 and	Fontecorrenti	

sectors	for	categorizing	them	by	means	of	one	recent	proposed	damage	classification	(Cooper,	2008)	and	the	

new	developed	ranking	during	the	PhD	thesis	(Del	Soldato	et	al.,	under	review_b).	As	mentioned	before	in	

Le	Colombaie	sector,	several	constructions	are	recent	and	localized	into	areas	affected	by	active	or	quiescent	
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landslides	(Fig.	5.61a).	Fontecorrenti	area	was	partially	urbanized	already	in	the	‘60s,	but	the	constructions	

sited	in	the	upper	part	of	the	active	landslide	affecting	this	sector	was	realized	in	the	‘80s	(Fig.	5.61b).	

	

	
Fig.	5.61	-	Le	Colombaie	(a)	and	Fontecorrenti	sectors	with	the	investigated	buildings,	the	landslide	and	the	badlands	

contours.	
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In	these	urban	regions,	little	damage,	as	fine	plaster	cracks,	were	generally	quickly	restored,	differently	

for	the	more	rural	territory	of	the	Agnone	landslide	(CL-PO	landslide).	In	the	surveyed	sectors	rarely	weak	or	

negligible	damage	(red	arrows	in	Fig.	5.62a)	and	some	constructions	with	important	cracks	(red	arrows	in	

Fig.	5.62a,	b	and	c)	and	tilting	(blue	arrows	in	Fig.	5.62)	were	recognized.	

	

	
Fig.	 5.62	 -	 Different	 types	 of	 damage	 (red	 and	 blue	 arrows)	 recognized	 during	 field	 surveys	 on	 buildings	 in	 the	

southwestern	sector	of	Volterra.	a)	plaster	cracks	restored;	b)	weak	and	moderate	fractures	on	plaster;	c)	numerous	

severe	fractures;	d)	important	cracks	plunging	about	45°	and	open	fractures	between	the	two	structures;	e)	important	

tilting	between	two	parts	of	the	same	buildings.	

During	the	field	surveys	the	recording	scheme	suggested	in	the	new	developed	approach	(Fig.	5.2)	was	

used	to	reveal	damage	affecting	the	buildings	of	the	study	area	(an	example	in	Fig.	5.63	of	a	building	sited	

close	to	the	Area3).	The	use	of	this	scheme,	as	mentioned	before,	was	useful	to	survey	different	damage,	

cracks,	fractures	and	tilting	affecting	a	construction	to	categorize	their	severity	singularly	and,	in	a	second	

moment,	to	assess	their	effect	on	the	entire	construction.	
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Fig.	5.63	-	Sample	of	the	recording	scheme	(Del	Soldato	et	al.,	under	review_b)	compiled	(a),	with	two	images	(b	and	

c)	of	the	investigated	buildings,	used	for	the	recogniztion	of	the	damage	affecting	the	several	surveyed	structures	in	

the	soutwestern	sector	of	Volterra.	

Quite	all	constructions	of	both	Le	colombaie	and	Fontecorrenti	sectors,	except	for	some	isolated	structure,	

were	categorized	(Fig.	5.64)	based	on	the	damage	recorded	on	them	during	several	field	surveys.	According	

to	Cooper	(2008)	buildings	on	which	damage	recognized	were	mainly	categorized	in	Class	2	and	Class	3.	Only	

three	buildings	were	classified	in	Class	5,	rank	reflecting	important	damage.	The	major	part	of	the	buildings	

is	not	affected	by	fractures	and	several	negligible	fine	plaster	cracks	are,	with	high	probability,	not	related	to	

the	landslide	movements,	but	to	the	weather	conditions	or	to	the	age	of	the	structures.	
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Fig.	5.64	-	Classification	of	buildings	damage	according	to	Cooper	(2008).	

According	to	the	approach	developed	during	the	thesis	(Del	Soldato	et	al.,	under	review_b),	the	buildings	

classified	by	the	surveyed	damage	w	differentiated	in	more	classes	than	in	Cooper	(2008)	(Fig.	5.65).	This	

ranking,	not	considering	the	collapse	during	the	investigation	and	classification	of	the	cracks,	allows	more	

possibility	to	categorize	the	low	levels	of	damage	affecting	the	structures.	Comparing	the	classifications	of	

Cooper	 (2008)	 and	 Del	 Soldato	 et	 al.	 (under	 review_b)	 it	 is	 possible	 pointing	 out	 the	 influence	 of	 this	

difference	mainly	for	Area2	and	in	Area3.	These	built	up	areas	erected	in	the	‘80s,	are	affected	by	different	

levels	of	damage	due	to	their	position	respect	to	the	occurring	shallow	movements.	It	is	worthy	noticing	that	

for	both	classifications,	the	constructions	affected	by	important	cracks	(e.g.	the	two	big	buildings	in	Area1	

and	the	ones	in	the	right	of	Area3	or	others	structures	sparse	in	the	territory)	were	categorized	as	severely	

damaged.	

To	confirm	the	efficiency	of	the	developed	approach	by	Del	Soldato	et	al.	(under	review_b)	to	rank	better	

the	difference	of	the	damage	on	the	structures,	in	Area1	the	two	buildings	were	categorizes	differently	(one	

in	the	“Potential	collapse”	and	one	in	“Severe”	classes),	while	Cooper	(2008)	ranked	them	both	as	“Class	5”.	

The	differentiation	between	the	two	structures	is	in	accord	with	the	legislative	restrictions	promulgated	by	

the	municipality	administrators	that	decided	to	revoke	the	habitability	for	one	of	them.	
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Fig.	5.65	-	Classification	of	constructions	damage	according	to	Del	Soldato	et	al.	(under	review_b).	

Besides	of	the	classification	of	the	constructions	through	surveying	recognizable	damage,	structures	were	

categorizes	also	taking	advantage	of	the	remote	sensing	techniques.	The	Persistent	Scatterers	gathered	by	

ENVISAT	and	COSMO-SkyMed,	elaborated	by	means	of	PSInSARTM	and	SqueeSARTM	respectively,	were	used	

to	classify	structures	according	to	their	velocity	measured	along	the	Line	of	Sight	(VLOS)	and	the	maximum	

displacement	 (Dmax).	 Furthermore,	 velocity	 and	 displacement	 were	 reprojected	 along	 the	 local	 steepest	

slope,	in	order	to	homogenize	the	rates	recorded	by	the	ascending	and	the	descending	orbits	(Vslope	and	Dslope,	

respectively).	

The	categorizations	based	on	the	VLOS	and	Dmax	of	the	ENVISAT	PS	data	were	conducted	separately	for	

ascending	 and	 descending	 orbits.	 The	 ascending	 ENVISAT	 data	 allowed	 the	 categorization	 only	 for	 some	

construction	of	the	southwestern	sector	by	the	VLOS	(Fig.	5.66a)	and	the	Dmax	(Fig.	5.66b)	parameters.	The	

velocities	recorded	along	the	Line	Of	Sight	show	stability,	assigned	as	for	the	PS	data	at	±2	mm,	for	almost	all	

the	constructions	where	the	PS	were	reflected,	except	for	few	constructions.	In	Area3	three	constructions	

are	affected	by	high	velocity	that	could	indicate	the	state	of	activity	of	the	landslide,	which	causing	damage	

during	the	period	2000	-	2010.	The	maximum	displacement,	showing	high	values	to	the	construction	in	the	

Volterra	town	although	is	note	that	is	stable	(Bianchini	et	al.,	2015b),	it	suggests	that	the	noise	revealed	in	

the	time-series	create	problems	in	the	assessment	of	the	maximum	displacement	affecting	buildings.	
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Fig.	 5.66	 -	 Buildings	 classifications	 based	 on	 the	 analysis	 of	 the	 velocity	 (a)	 and	 the	maximum	 dispacements	 (b)	

measured	along	the	Line	of	Sight	of	the	ascending	orbit	by	ENVISAT	sensors.	

The	descending	orbit	better	allows	recognizing	the	real	values	of	the	parameters	affecting	the	slope	due	

to	its	orientation.	Investigating	the	PS	recorded	in	this	orbit,	the	categorization	of	the	buildings	reveal	more	

structures	affected	by	velocity	(Fig.	5.67a).	It	is	important	noticing	that	the	major	part	of	the	displacement	

affecting	 this	 area	 is	 identified	 for	 the	 Area3,	 as	 for	 the	 ascending	 geometry.	 Furthermore,	 some	

constructions	 showing	 high	 velocity	 are	 recognizable	 also	 in	 Area2	 in	 Le	 Colombaie	 sector.	 About	 the	

maximum	displacement	(Fig.	5.67b),	the	map	suggests,	as	for	the	above	mentioned	ascending	data,	that	the	

noise	create	mistakes	in	the	evaluation	of	the	Dmax	recorded	by	ENVSAT	sensor.	
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Fig.	 5.67	 -	 Buildings	 classifications	 conducted	 considerin	 the	 velocity	 (a)	 and	 the	 maximum	 dispacements	 (b)	

measured	along	the	Line	of	Sight	of	the	descending	orbit	by	ENVISAT	satellites.	

The	 same	analyses	were	made	 for	 the	period	2010	 -	2015	using	 the	X-band	data,	by	COSMO-SkyMed	

constellation.	First	of	all,	the	applied	modern	technique	(SqueeSARTM)	to	elaborate	the	raw	data	allowed	to	

cover	by	the	PS	almost	all	the	structures	located	in	these	study	sectors.	The	colours	used	for	the	classification	

of	structures	were	maintained	the	same,	changes	were	made	only	the	thresholds	in	accord	to	the	improved	
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quality	of	 the	data	 that	allowed	 to	 increase	 the	precision	of	 the	 investigation	and	 to	assign	±	1.5	mm	as	

stability	range.	

	

The	CSK	data	recorded	in	the	ascending	orbit	(Fig.	5.68a)	allows	several	considerations:	

Ø Area1,	no	shows	important	velocities	besides	its	location	in	the	crown	portion	of	landslides;	

Ø in	 Area2	 important	 velocities	 were	 recorded	 along	 the	 LOS	 for	 the	 landslide	 involving	 the	 Le	

Colombaie	sector;	

Ø in	Fontecorrenti	region,	the	velocity	recorded	in	correspondence	to	Area3	 indicates	activity	to	the	

landslide	affecting	this	zones;	

Ø the	cumulated	displacements	(Fig.	5.68b)	acquired	by	the	CSK	sensors	reflect	the	recorded	velocity,	

but	reveals	also	a	strange	displacement	affecting	the	urban	fabric	of	Volterra;	

	

Some	 strangenesses	 are	 due	 to	 the	 intersection	 between	 the	 Line	Of	 Sight	 of	 the	 satellite	 during	 its	

ascending	orbit	and	the	little	NE	dipping	of	the	town	of	Volterra	that	create	errors	affecting	the	cumulated	

displacement.	This	is	the	reason	why	the	buildings	of	Volterra	town	were	classify	affected	by	displacement,	

even	if	the	stability	of	the	city	is	known	(Bianchini	et	al.,	2015b;	Pratesi	et	al.,	2015).	
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Fig.	5.68	-	Structures	categorization	based	on	the	velocity	(a)	and	the	maximum	displacement	(b)	recorded	along	the	

Line	of	Sight	of	the	ascending	orbit	of	COSMO-SkyMed	sensors.	

The	COSMO-SkyMed	data	of	the	descending	orbit	covers	almost	all	the	structure	allowing	to	categorize	

them	 by	means	 of	 the	VLOS	 (Fig.	 5.69a)	 and	 the	Dmax	 (Fig.	 5.69b)	 acquired	 along	 the	 Line	 Of	 Sight.	 This	

geometry	is	better	than	the	ascending	one	to	record	interferometric	parameters	for	the	study	area.	For	the	

three	separate	investigated	areas	the	recorded	velocity	along	the	LOS	confirmed	the	actual	activity	of	the	

landslide.	Some	of	the	damaged	buildings	in	Area1,	are	not	covered	by	the	PS,	but	all	the	region	is	affected	
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by	moderate	velocity	and	cumulated	displacement.	Furthermore,	both	velocity	and	cumulated	displacement	

show	the	stability	of	the	Volterra	town,	confirming	the	good	quality	of	the	data	and	the	problems	due	to	the	

inclination	of	Volterra	town	affecting	the	acquisition	in	the	ascending	geometry.	

	

	
Fig.	5.69	-	Buildings	categorization	according	to	the	velocity	(a)	and	the	maximum	displacement	(b)	measured	along	

the	Line	of	Sight	of	the	descending	geometry	of	COSMO-SkyMed	constellation.	

To	combine	ascending	and	descending	data,	in	order	to	cover	more	buildings	as	possible,	the	velocity	and	

the	maximum	displacement	measured	along	the	slope	for	each	orbit	were	reprojected	along	the	slope	(Notti	
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et	al.,	2014).	This	procedure	was	done	for	both	ENVISAT	and	COSMO-SkyMed	data.	

The	ENVISAT	data	were	 sparse	and	even	 if	 the	 two	orbits	were	combined,	 several	buildings	were	not	

ranked.	As	for	the	velocity	along	the	LOS,	the	Vslope	values	result	reliable	to	classify	constructions	(Fig.	5.70a)	

showing	important	value	of	velocity	for	the	three	individuated	areas,	mainly	for	Area2	and	Area3,	while	only	

three	buildings	are	covered	by	PS	in	Area1.	It	is	important	noticing	the	hotel	built	after	2000	close	to	Area3	

affected	by	high	velocity	due	to	its	proximity	to	an	active	landslide.	Other	velocities	are	recognizable	for	spare	

structures	close	to	landslides,	partially	quiescent	and	partially	active,	affecting	Le	Colombaie	sector.	Another	

important	thing	that	have	to	be	noted	is	the	constructions	in	Area2,	not	revealing	important	damage,	but	

characterized	by	high	Vslope.	They	were	built	after	2003	then	the	velocity	and	the	displacement	measured	for	

them	in	this	period	can	be	influenced	by	the	construction	phase	of	these	buildings.	

The	same	situation	can	be	carried	out	analysing	the	classification	map	by	the	Dslope	(Fig.	5.70b)	even	if	the	

noise	observed	in	the	time-series	have	to	be	taken	into	consideration.	In	fact,	almost	all	the	buildings	in	the	

investigated	 three	areas	 show	 important	displacements.	 The	 same	 situation	 is	 recognizable	 for	 the	hotel	

close	 to	Area3.	 In	 spite	of	 the	ascending	and	 the	descending	data	were	merged	and	 the	values	 for	each	

structure	 averaged,	 the	 noise	 affecting	 all	 data	 did	 not	 allow	 to	 overpass	 the	 problems	 caused	 by	 the	

interference	between	the	dipping	of	Volterra	town	and	the	LOS.	
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Fig.	5.70	-	Building	classification	conducted	by	the	velocity	(a)	and	the	maximum	displacement	(b)	projected	along	

the	slope	and	averaged	for	each	construction,	acquired	by	ENVISAT	sensors.	

The	 same	 procedure	 was	 conducted	 to	 the	 COSMO-SkyMed	 data	 reprojecting	 the	 velocity	 and	 the	

maximum	displacement	along	the	slope.	The	result	allowed	classifying	almost	all	 the	buildings	of	the	two	

study	 sectors.	 Furthermore,	 the	 classifications	 obtained	 by	 both	Vslope	 (Fig.	 5.71a)	 and	Dslope	 (Fig.	 5.71b)	

showed	the	situation	according	to	the	mapped	landslides.	The	buildings	affected	by	damage	in	Area1	show	

moderate	velocity,	the	other	exhibits	stability.	This	situation	is	due	to	a	different	lithology	between	the	two	

series	of	parallels	construction,	one	affected	by	displacement,	the	other	one	stable.	The	same	is	confirmed	
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also	by	 the	Dslope	 ranking	 and	 the	high	displacement	measured	 for	 the	 construction	built	 perpendicularly	

respect	to	the	street.	Concordance	between	the	Vslope	and	the	Dslope	is	recognizable	also	in	Area2	and	Area3,	

even	if	the	damage	surveyed	on	the	buildings	in	these	areas	are	not	diffuse	as	the	velocity	and	the	cumulated	

displacement	by	the	satellites.	

	

	
Fig.	5.71	-	Constructions	classification	based	on	the	velocity	(a)	and	the	maximum	displacement	(b)	projected	along	

the	slope	and	averaged	for	each	structure,	acquired	by	COSMO-SkyMed	satellite.	
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5.4 Relationship	damage-displacement	

Given	that	the	main	damage	on	structures	in	landslide-prone	areas	are	due	to	the	differential	settlement,	

in	this	area	the	low	presence	of	PS	benchmarks	for	structures	did	not	allow	a	detailed	analysis.	For	this	reason,	

a	potential	relationship	between	the	damage	on	structures	recorded	by	means	of	several	surveys	(Fig.	5.2),	

and	 the	kinematic	parameters	 for	each	entire	construction	gathered	by	ENVISAT	and	COSMO-SkyMed	PS	

data	was	 investigated.	A	correlation	was	searched	by	plotting	the	classification	of	the	severity	of	damage	

affecting	 buildings	 and	 facilities,	 categorized	 by	 Cooper	 (2008)	 and	 Del	 Soldato	 et	 al.	 (under	 review_b)	

combined	with	velocity	and	cumulative	ground	displacement	measured	by	ENVISAT	and	COSMO-SkyMed	

satellites.	It	is	important	to	highlight	that	the	analysis	on	displacement	rates	and	on	damage	was	performed	

for	 each	 whole	 building,	 paying	 attention	 to	 discriminate	 the	 landslide-induced	 damage	 from	 the	 other	

causes.	Low	velocities	or	displacements	can	provoke	relevant	damage	on	structures	and	facilities	if	they	are	

affected	by	differential	settlement,	but	in	this	case,	due	to	the	low	number	of	PSs,	the	investigation	was	made	

to	understand	the	behaviour	of	entire	structures	subject	to	displacements.	The	mean	yearly	velocity	(VLOS)	

and	the	maximum	displacement	(Dmax)	measured	along	the	satellite	Line	Of	Sight,	maintained	separated	for	

ascending	and	descending	geometries,	and	velocity	and	cumulated	displacement	reprojected	along	the	local	

steepest	slope	(Vslope	and	Dslope,	respectively)	were	used.	These	last	parameters,	being	a	value	projected	along	

the	slope	direction,	were	plotted	using	the	absolute	values	to	look	for	a	relation,	assuming	that	the	detected	

movements	cannot	be	upwards	with	respect	to	the	slope.	

The	first	analyses	were	conducted	for	structures	surveyed	in	the	surrounding	area	of	the	CL-PO	landslide,	

in	 the	Agnone	municipality	 (Molise	 region,	 central	 Italy),	 involving	 the	average	values	of	VLOS	 and	Dmax	of	

ENVISAT	PS	acquired	in	ascending	geometry	backscattered	by	each	structure.	These	values	do	not	show	a	

clear	correlation	combined	with	the	ranking	of	damage	neither	according	to	Cooper	(2008)	nor	to	Del	Soldato	

et	al.	(under	review_b)	(Fig.	5.72).	The	same	investigation	was	impossible	to	conduct	for	descending	data	

because	 the	 velocity	 and	 the	 maximum	 displacement	 were	 recorded	 for	 few	 facilities,	 only	 for	 seven	

structures.	
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Fig.	5.72	-	Graphs	between	the	values	of	velocity	and	maximum	displacement	acquired	along	the	Line	Of	Sight	in	the	

ascending	orbit	of	the	ENVISAT	sensors	and	the	damage	classification	of	buildings	made	by	Cooper	(2008)	and	Del	

Soldato	et	al.	(under	review_b)	for	the	CL-PO	in	Agnone.	

To	improve	the	number	of	the	investigated	facilities,	ascending	and	descending	data	were	combined	by	

means	of	the	reprojection,	to	look	for	a	relationship	between	Vslope	and	Dslope	and	the	damage	levels	ranked	

by	Cooper	(2008)	and	Del	Soldato	et	al.	(under	review_b).	The	analyses	were	conducted	for	both	reprojecton	

made	by	the	use	of	5-m	and	10-m	cell	resolution	DEMs,	in	order	to	verify	the	suggestion	of	Notti	et	al.	(2014)	

regarding	to	this	procedure.	

The	analyses	of	the	Vslope	and	the	Dslope	data	by	the	ENVISAT	sensor,	projected	by	the	use	of	the	DEM	with	

high	resolution,	were	plotted	in	absolute	values	on	a	graph	with	the	classes	of	damage	detected	by	Cooper	

(2008)	and	Del	Soldato	et	al.	(under	review_b).	No	relations	were	detected,	but	different	velocity	rates	were	

recorded	on	structures	with	low	and	high	level	of	damage,	indifferently	(Fig.	5.73).	
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Fig.	5.73	-	Plots	of	values	of	the	velocity	and	the	maximum	displacement	reprojected,	using	a	5-m	cell	resolution	DEM,	

along	the	slope	recorded	by	ENVISAT	satellites	respect	to	the	facilities	damage	ranks	by	Cooper	(2008)	and	Del	Soldato	

et	al.	(under	review_b)	for	the	CL-PO	in	Agnone.	

In	Fig.	5.74	the	absolute	values	of	Vslope	and	Dslope	acquired	by	ENVISAT	satellites,	reprojected	calculating	

the	C	factor	for	the	DEM	with	low	resolution	(10-m	cell	resolution),	were	combined	with	the	raking	of	damage	

levels	revealed	by	Cooper	(2008)	and	Del	Soldato	et	al.	(under	review_b)	classifications.	As	for	the	Vslope	and	

Dslope	calculated	by	using	the	5-m	cell	resolution	DEM,	no	relationships	or	correlations	were	recognized	also	

for	Vslope	and	Dslope,	using	the	reprojection	conducted	on	a	10-m	cell	resolution	DEM.	This	happened	for	both	

categorization	approaches	of	Cooper	(2008)	and	Del	Soldato	et	al.	(under	review_b).	
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Fig.	5.74	-	Graphs	showing	the	values	of	velocity	and	maximum	displacement	measured	by	ENVISAT	satellites	and	

reprojected	along	the	slope	using	a	10-m	cell	resolution	DEM,	combined	to	facilities	damage	ranked	by	Cooper	(2008)	

and	Del	Soldato	et	al.	(under	review_b)	for	CL-PO	in	Agnone.	

The	 same	 analyses,	 considering	VLOS	 and	Dmax,	measured	 along	 the	 Line	Of	 Sight	 for	 both	 geometries	

separately,	as	well	as	Vslope	and	Dslope	acquired	by	COSMO-SkyMed	constellation,	combined	to	the	damage	

ranks	of	buildings,	were	conducted.	These	sensors,	working	in	X-band,	allowed	to	investigate	more	structures	

by	means	of	a	better	PSs	distribution	and	precision	of	the	assessed	velocity	and	displacement	than	C-band.	

Velocity	 and	 cumulated	 displacement	 measured	 along	 the	 ascending	 Line	 Of	 Sight	 were	 plotted	 in	

combination	with	the	categorized	damage	ranks	by	Cooper	(2008)	and	Del	Soldato	et	al.	(under	review_b)	

(Fig.	5.75)	no	revealing	evident	relations,	as	for	the	ENVISAT	data.	No	alignments	of	the	plotted	points	are	

recognizable,	in	all	graphs	the	point	are	plotted	sparsely	or	without	meaningful	clear	dispositions.	
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Fig.	5.75	-	Graphs	showing	the	values	of	velocity	and	maximum	displacement	acquired	along	the	LOS	in	the	ascending	

orbit	of	COSMO-SkyMed	constellation	related	to	the	damage	classification	of	buildings	conducted	by	Cooper	(2008)	

and	Del	Soldato	et	al.	(under	review_b)	for	CL-PO	in	Agnone.	

The	investigation	on	the	data	recorded	along	the	descending	orbit	of	COSMO-SkyMed,	even	if	few	with	

respect	to	the	ascending,	was	conducted	no	exhibiting	correlation	by	plotting	them	in	a	damage	classes	-	VLOS	

or	Dmax	graphs.	Moreover,	 the	points	are	 too	 scattered	and	 few	 to	be	meaningful	 (Fig.	5.76)	 for	assess	a	

relationship.	Furthermore,	 in	both	graphs	of	ascending	and	descending	data,	high	values	of	velocity	along	

the	LOS	for	each	rank	of	damage	was	exhibited.	
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Fig.	 5.76	 -	 Plots	 of	 the	 values	 of	 velocity	 and	 maximum	 displacement	 acquired	 along	 the	 Line	 Of	 Sight	 in	 the	

descending	orbit	by	COSMO-SkyMed	 satellites	and	 the	 classes	of	damage	 recorded	on	buildings	 classified	by	 the	

approach	of	Cooper	(2008)	and	Del	Soldato	et	al.	(under	review_b).	

The	low	number	of	buildings	and	facilities	in	the	landslide	area	of	Colle	Lapponi	-	Piano	Ovetta,	combined	

with	the	difficulty	to	extract	several	PS	due	to	few	reflectors	and	high	density	of	vegetation	also	using	the	X-

band,	push	likewise	in	this	case	to	combine	the	data	by	means	of	the	reprojection	of	velocity	and	maximum	

displacement	along	the	slope.	The	investigation	between	remote	sensing	parameters,	Vslope	and	Dslope	values	

reprojected	by	means	both	5-m	and	10-m	cell	resolutions	DEMs,	with	respect	to	the	damage	levels	recorded	

by	Cooper	 (2008)	and	Del	Soldato	et	al.	 (under	review_b),	were	made.	Differently	 from	that	occurred	for	

ENVISAT	data,	using	COSMO-SkyMed	data,	the	reprojection	made	with	both	DEMs	gave	back	good	results.	

Using	the	5-m	cell	resolution	DEM	to	reproject,	a	possible	correlation	between	the	damage	categorised	by	

Del	Soldato	et	al.	 (under	review_b)	and	the	highest	absolute	values	of	Vslope	and	Dslope	 is	visible	(Fig.	5.77)	

Upper	envelopes	between	the	maximum	Vslope	(a	in	Fig.	5.77)	or	the	cumulated	Dslope	(b	in	Fig.	5.77)	and	the	

damage	classes	were	identified.	

The	 highest	 detected	 values	 of	 damage	 for	 each	 class	 describe	 a	 regression	 line	 with	 respect	 to	 the	

absolute	values	of	Vslope	and	Dslope.	This	observation	means	that	structures	with	the	same	deformation	velocity	
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do	not	 show	an	equivalent	damage	degree,	 therefore	 the	differential	 ground	movements	affecting	 them	

cause	different	effects	on	structures,	depending	on	several	factors,	e.g.	typology,	age	of	construction,	type	

of	foundation.	Structures	falling	close	to	the	regression	line	are	characterized	by	important	damage	caused	

by	compact	displacement,	while	construction	that	are	under	the	envelope	are	featured	by	different	effect	of	

differential	settlements	or	they	are	subjected	to	no	landslide-induced	damage	(e.g.	abandoned	buildings).	

Some	points,	in	both	case	of	Vslope	and	Dslope,	representing	structures	mainly	affected	by	low	levels	of	damage,	

are	outlayers.	

Considering	the	Cooper	(2008)	ranking	no	correlations	are	recognizable	neither	with	Vslope,	nor	for	Dslope.	

	

	
Fig.	5.77	 -	Graphs	 showing	 the	values	of	velocity	and	maximum	displacement	value	acquired	by	COSMO-SkyMed	

sensors,	 reprojected	 along	 the	 slope	 using	 a	 DEM	with	 5-m	 cell	 resolution,	 compared	 to	 the	 structures	 damage	

classified	by	Cooper	(2008)	and	Del	Soldato	et	al.	(under	review_b)	for	the	CL-PO	in	Agnone.	

The	same	investigation	conducted	on	the	damage	levels	with	respect	to	the	reprojected	velocity	data,	by	

means	 of	 the	 10-m	 cell	 resolution	 DEM,	 exhibit	 a	 similar	 plot.	 The	 correlation	 is	 visible	 for	 the	 damage	

recorded	with	the	classification	of	Del	Soldato	et	al.	 (under	review_b),	showing	main	differences	 for	high	

rates	of	Vslope	 recorded	for	some	constructions	with	Negligible	damage.	An	upper	envelope	was	traced	to	

define	a	correlation,	mainly	valid	for	the	high	classes	of	damage,	between	the	velocity	of	displacement	of	the	

entire	structure	and	the	damage	classes.	As	visible	in	Fig.	5.78,	from	low	classes	of	damage	(i.e.	Weak)	the	

a	 b	
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absolute	Vslope	value	increase	for	higher	levels	of	damage,	while	for	lower	damage	grades	(i.e.	No	damage	

and	Negligible)	the	structures	are	mainly	outlayers.	To	understand	the	reason	an	individually	investigation	

was	conducted	and	quite	all	 result	 to	be	constructions	recently	built	or	 renovated.	The	same	typology	of	

relation	is	recognizable,	even	if	with	more	noise,	with	the	same	outlayers	for	structures	affected	by	low	levels	

of	damage,	between	the	Del	Soldato	et	al.	(under	review_b)	classification	and	the	Dslope	parameter.	The	same	

consideration	cannot	be	carried	out	for	damage	levels	recorded	by	Cooper’s	(2008)	classification.	

	

	
Fig.	5.78	-	Plots	of	velocity	and	maximum	displacement	reprojected	along	the	slope	using	a	10-m	cell	resolution	DEM	

values	 gathered	 by	 COSMO-SkyMed	 satellites	 related	 to	 the	 buildings	 damage	 ranked	by	 Cooper	 (2008)	 and	Del	

Soldato	et	al.	(under	review_b)	for	the	CL-PO	in	Agnone.	

Despite	 the	difficulties	due	 to	 the	 low	number	of	 artificial	 and	natural	 reflectors	 and	 the	high	 rate	of	

vegetation	in	the	study	area	of	Colle	Lapponi	-	Piano	Ovetta	landslide	in	the	municipality	of	Agnone	(southern	

Italy),	a	correlation	between	classes	of	damage	and	Vslope	values	was	carried	out.	For	COSMO-SkyMed	data	

also	the	Dslope	values	traced	an	upper	envelope,	but	the	distribution	of	the	points	resulted	a	little	noisier	than	

for	Vslope.	For	this	reason,	Vslope	values	were	taken	 into	account	 in	order	to	develop	a	symmetric	matrix	to	

categorize	the	reliability	of	the	recorded	data	with	respect	to	the	classes	of	the	surveyed	damage.	This	matrix	
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was	realized	considering	a	relationship	between	the	severity	of	the	damage	recognizable	on	structures	and	

the	absolute	value	of	the	averaged	velocity	projected	along	the	slope	for	each	construction.	Four	classes	of	

velocity	were	 considered	and,	 consistently,	 the	grades	of	damage	were	aggregated	 in	 four	 categories,	 in	

order	to	have	a	symmetric	matrix.	Once	that	the	values	of	the	stability	range	were	assigned,	i.e.	±	2	mm	for	

the	C-band	and	±	1.5	mm	for	the	X-band,	the	classes	of	Vslope,	distinguished	as	low,	medium	and	high	based	

on	its	values	have	to	be	defined	differently	for	each	case.	The	threshold	should	be	meaningful	and	it	has	to	

be	made	in	order	to	cover	all	the	investigated	structures.	The	levels	of	damaging	recorded	by	Del	Soldato	et	

al.	(under	review_b)	were	grouped	in	this	way:	

	

- In	LOW	class	No	damage	and	Negligible	categories	of	damage	were	grouped;	

- in	MEDIUM	rank	Weak	and	Moderate	classes	of	damage	were	unified;	

- in	SEVERE	category	Severe	and	Very	severe	levels	of	damage	were	assembled;	

- in	HIGH	type	Potential	collapse	and	No-habitable	were	gathered.	

	

The	same	procedure	was	made	for	the	classification	of	Cooper	(2008)	assembling:	

	

- In	LOW	rank	Class0	and	Class1	categories	of	damage	class	were	grouped;	

- in	MEDIUM	category	Class2	and	Class3	ranking	of	damage	rank	were	unified;	

- in	SEVERE	type	Class4	and	Class5	levels	of	damage	were	assembled;	

- in	HIGH	category	Class6	and	Class7	ranks	were	gathered.	

	

In	this	way,	a	table	of	category	of	reliability	of	the	Vslope	related	with	the	damage	affecting	the	structures	

was	elaborated	(Table	5.8).	

	

Table	5.8	-	Reliability	categories	of	the	relationship	between	absolute	value	of	Vslope	and	surveyed	levels	of	damage.	
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First	of	all,	this	matrix	was	applied	on	the	data	recorded	in	Agnone	by	the	COSMO-SkyMed	constellation,	

area	in	which	it	was	developed	after	the	investigation	of	possible	relations.	

Combining	the	velocity	reprojected	along	the	slope	with	the	damage	classes	categorized	by	Del	Soldato	

et	al.	(under	review_b)	(Fig.	5.79a)	and	Cooper	(2008)	(Fig.	5.79b),	two	maps	exhibiting	the	reliability	of	the	

correlation,	were	generated.	Critically	comparing	and	analysing	the	maps	carried	out,	some	considerations	

can	be	made:	

	

Ø in	Area1	two	different	situations	for	the	northern	and	southern	built-up	areas,	respectively	exhibiting	

high	and	very	low	value	of	reliability	of	the	correlations,	are	recognizable;	

Ø Area2	exhibits	only	one	buildings	ranked,	due	to	the	lacking	of	PS	information;	

Ø Area3,	even	is	further	than	the	other	investigated	regions,	shows	very	high	level	of	reliability	for	all	

constructions.	

	

It	is	interest	noticing	as,	despite	the	low	number	of	buildings	in	this	area,	more	of	them	shows	high	rate	

of	reliability,	indifferently	from	their	location.	Low	reliability	is	exhibited	for	some	buildings	in	the	crown	and	

some	 structures	 in	 the	 southwest	 crown	 of	 the	 landslide	 close	 to	 the	 nearest	 valley.	 This	 is	 justifiable	

considering	the	effect	of	the	landslide	affecting	the	closest	basin	influencing	the	velocity	of	displacement	of	

the	PS	backscattered	to	this	structures.	
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Fig.	5.79	-	Reliability	categorization	between	the	levels	of	damage	recorded	by	Cooper	(2008)	and	Del	Soldato	et	al.	

(under	review_b)	and	Vslope	recorded	by	COSMO-SkyMed	satellite	for	CL-PO	in	Agnone.	

The	validation	of	the	reliability	categorization	between	Vslope	and	the	recorded	damage	on	structures	was	

conducted	in	the	study	site	of	Volterra	municipality.	This	case	study	offers	more	buildings	and	structures	on	

which	the	efficiency	of	the	developed	matrix	can	be	investigated.	The	relation	between	Vslope	data	and	the	

damage	levels	categorized	by	Del	Soldato	et	al.	(under	review_b)	and	Cooper	(2008),	as	made	for	the	CL-PO	

landslide,	was	analysed.	This	relation	shows	that	to	the	increment	of	the	detected	Vslope,	the	severity	of	the	

surveyed	 damage	 also	 increases.	 A	 similar	 relation	 is	 exhibited	 for	 the	Dslope	 with	 respect	 to	 the	 ranked	
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damage	by	Del	Soldato	et	al.	(under	review_b).	The	Cooper	classification	allows	a	similar	interpretation	only	

for	the	Vslope	parameter,	while	for	the	Dslope	no	alignment	is	identifiable.	In	both	cases	the	reliability	shows	

low	correlation	for	low	damage	levels,	i.e.	No	damage	or	Negligible	classes,	while	good	correspondence	for	

categories	of	severely	damaged	buildings.	

The	reliability	matrix	to	investigate	the	Vslope	-	damage	classes	relations	was	applied	on	the	constructions	

of	the	southwestern	Fontecorrenti	and	Le	Colombaie	sectors	of	Volterra	(Fig.	5.80a).	The	same	approach	was	

adopted	to	evaluate	the	reliability	of	the	relationship	between	the	CSK	Vslope	and	the	damage	classification	of	

Cooper	(2008)	(Fig.	5.80b).	

The	maps	of	reliability	categorization	show	undefined	category	due	to	the	missing	data	about	the	damage	

for	the	historic	centre	of	Volterra	because	the	damage	in	that	area	were	not	investigated.	While	for	the	two	

southwestern	sectors	the	categorizations	cover	almost	all	the	constructions,	except	some	isolated	structures.	

The	area	close	to	the	centre	exhibits	structures	characterized	by	High	and	Medium	reliability	classes.	Some	

differences	are	visible	in	the	middle	of	Le	Colombaie	sector,	where	an	agglomerate	of	buildings	exhibits	Low	

reliability	 values,	 as	well	 as	 for	 some	 constructions	 in	 the	 upper	 region	 of	 Fontecorrenti.	 It	 is	 important	

noticing	 as	 few	 constructions	 ranked	 as	Very	 low	 reliability	 are	 present,	 thus	 featured	 by	 no	 agreement	

between	the	measured	Vslope	by	the	satellite	and	the	recorded	damage	categories.	

Analysing	 separately	 the	 three	 areas,	 different	 situations	 were	 visible	 due	 to	 the	 age	 of	 building	

construction	 and	 the	 severity	 of	 the	 damage	 affecting	 them.	 Furthermore,	 problems	 to	 access	 to	 some	

private	areas	influence	the	accuracy	of	the	damage	assessment:	

	

Ø Area	1	shows	high	rate	of	reliability	exhibiting	a	good	efficiency	for	damage	recently	occurred	and	then	

well	recorded	by	the	CSK;	

Ø Area2	displays	a	medium	rate	of	reliability	due	to	the	low	level	of	damage	recorded	on	these	recent	

constructions	affected	by	high	velocity	of	displacement.	Some	damage	was	recorded	on	the	external	

areas,	steps,	but	Negligible	on	the	façades;	

Ø in	Area3,	there	are	different	level	of	reliability	due	to	the	discrepancy	between	the	differentiate	levels	

of	damage	recorded	and	the	quite	constant	medium	velocity	affecting	the	whole	area.	
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Fig.	 5.80	 -	 Categorization	 of	 the	 reliability	 of	 the	 Vslope	 of	 COSMO-SkyMed	 and	 the	 relieved	 damage	 for	 both	

classification	of	Del	Soldato	et	al.	(under	review_b)	(a)	and	Cooper	(2008)	(b)	in	the	soutwestern	sectors	of	Volterra.	

In	spite	of	a	lower	density	of	the	data	recorded,	the	same	ranking	was	applied	on	Vslope	of	C-band	ENVISAT	

sensors	(Fig.	5.81).	The	categorization	of	the	reliability	of	the	relationship	between	the	Vslope	parameter	and	

the	 rate	 of	 surveyed	 damage	 shows	 that	 almost	 all	 the	 constructions	 are	 ranked	 in	 High	 and	Medium	

reliability	categories.	For	both	classification,	based	on	the	buildings	damage	classification	of	Del	Soldato	et	

al.	 (under	 review_b)	 (Fig.	 5.81a)	 and	Cooper	 (2008)	 (Fig.	 5.81b),	 the	most	part	 of	 the	 constructions	 that	

exhibit	high	rates	of	reliability	are	located	in	the	same	sites	where	occurs	for	the	Vslope	data	of	X-band	COSMO-



Integration	of	field	investigations	and	remote	sensing	techniques	for	the	assessment	of	landslide	activity	and	damage	
	

M.	Del	Soldato	

	

169	

	

SkyMed.	It	is	interesting	noticing	as	Area3	shows	highest	category	of	reliability	with	respect	to	the	previously	

categorization	made	by	the	COSMO-SkyMed	data.	This	can	be	justified	considering	that	the	main	damage	

affecting	the	structures	in	that	area	where	caused	in	period	covered	by	the	ENVISAT	data.	

	

	
Fig.	5.81	-	Classification	of	the	reliability	of	the	Vslope	of	ENVISAT	and	the	relieved	damage	for	both	ranking	of	Del	

Soldato	et	al.	(under	review_b)	(a)	and	Cooper	(2008)	(b)	in	the	soutwestern	sectors	of	Volterra.	
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6 Discussion	

The	first	outcome	of	the	PhD	work	was	the	investigation	of	the	evolution	in	time	of	two	landslide	areas	

by	means	of	remote	sensing	and	traditional	data.	For	several	available	sets	of	historical	images	of	different	

years,	the	CL-PO	landslide	of	Agnone	(Molise	region,	southern	Italy)	and	for	Le	Colombaie	and	Fontecorrenti	

sectors	 of	 Volterra	 (Tuscany	 region,	 central	 Italy),	 3D	 reconstructions	 were	 developed	 by	 means	 of	 the	

Structure	from	Motion	algorithm,	Photoscan	Pro	and	CloudCompare	software.	Usually	these	techniques,	as	

well	as	the	above-mentioned	software,	are	widely	used	for	the	analysis	in	geosciences	with	scenarios	shot	

by	UAV	 instruments.	 In	 this	PhD	thesis,	 these	 techniques	were	employed	to	create	3D	Points	Clouds	and	

models	 based	 on	 sets	 of	 aerial	 historical	 images	 dating	 from	 1945	 and	 1954	 for	 Agnone	 and	 Volterra,	

respectively.	The	precision	and	the	efficiency	of	the	models	obtained	depend	on	several	factors.	The	number	

of	images,	state	of	preservation	and	accuracy	used	during	the	scanning	process	play	a	key	role.	The	number	

of	 images	 influences	 the	 superimposing	 of	 the	 images	 and,	 consequently,	 the	dimension	 and	 the	 future	

reliability	of	3D	reconstructions	of	the	investigated	area.	Some	scratches	or	strokes	traced	by	pen	traced	on	

the	physical	old	images,	were	the	cause	of	some	problems	to	the	SfM	algorithm	even	if	the	scan	process	was	

carried	out	with	attention	and	a	very	high	resolution.	Furthermore,	the	visibility	of	the	scene	using	optical	

sensors	 could	 be	 influenced	by	 the	weather,	 for	 instance	 clouds	 that	 hide	 the	 territory.	 These	 are	 some	

inconveniences	caused	by	using	historical	sets	of	images	with	some	negative	consequences	on	the	precision	

of	 the	 results.	Moreover,	 in	 the	old	 images	 recorded	by	 IGM,	 strategic	 and	military	areas	are	masked	or	

erased.	These	regions,	as	well	as	wide	water	areas	(i.e.	big	lake	or	the	sea	close	to	coastal	area),	create	some	

problems	 to	 the	 SfM	 algorithm	 during	 the	 modelling	 because	 they	 are	 recognized	 as	 areas	 with	 no	

information.	 A	 high	 resolution	 of	 the	 digitalized	 images,	 allows	 to	 obtain	 more	 details,	 that	 help	 the	

identification	of	points	to	use	as	Ground	Control	Points	(GCPs)	and	TiePoints.	The	precision	of	the	resulting	

georeferenced	3D	model	depends	on	the	number	and	the	spatial	distribution	of	GCPs	and	TiePoints.	The	

accuracy	of	the	input	coordinates	is	based	on	the	attention	paid	during	the	identification	of	the	same	points	

on	historical	aerial	images,	on	recent	aerial	images	and	on	DEM.	Furthermore,	the	input	process	should	cover	

the	wall	area	under	investigation,	following	as	much	as	possible	a	regular	cell-grid.	This	was	not	simple	to	

pursue	for	areas	completely	influenced	by	a	phenomenon,	as	the	analysed	region	in	Agnone,	and	for	very	old	

images,	as	used	in	both	case	studies,	due	to	their	low	resolution.	DEM	or	DTM	are	used	to	find	the	coordinates	

and	the	height	of	each	GCP	and	TiePoint,	as	well	as	the	Web	Mapping	Service.	The	correct	identification	of	

the	 GCPs	 place	 on	 to	 the	 historical	 images	 is	 fundamental	 to	 create	 a	 georeferenced	model	 with	 good	

accuracy.	Obviously,	the	precision	of	the	model	depends	on	the	resolution	of	the	terrain	model	(DEM,	DTM,	

or	WMS,	indifferently)	used	to	derive	the	input	coordinates	of	the	points.	It	is	fundamental	to	notice	that	the	

buildings	are	affected	by	distortion	due	to	the	Line	Of	Sight	of	the	shooting	camera,	consequently	causing	
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shadow	 effect	 for	 elements	 in	 elevation	 such	 as	 constructions.	 The	 use	 of	 the	 LiDAR	 data	 should	 be	 an	

improvement,	giving	attention	to	the	above-mentioned	differences	between	the	DEM	and	the	DTM,	but	still	

today	it	is	not	available	for	all	Italian	territory.	In	both	case	studies,	a	DEM	with	5-m	cell	resolution	was	used	

to	obtain	the	coordinates	and	the	height	of	each	point.	Consequently,	the	maximum	precision	of	the	realized	

models	was	5-m,	even	if	the	software,	in	some	cases,	gave	back	higher	resolution	for	the	elaborations.	

The	 oldest	 and	 the	 youngest	 reconstructed	 3D	 Points	 Clouds	 and	 models	 were	 used	 to	 assess	 the	

morphological	 changes	 through	 a	 qualitative	 analysis	 of	 volume	differences	 between	 them.	 The	possible	

error	of	this	evaluation	could	be	higher	than	the	accuracy	of	the	models	used,	thus	not	allowing	a	quantitative	

interpretation	of	the	result.	For	this	reason,	 in	both	test	sites,	the	resulting	map	of	differences	of	volume	

were	understood	as	qualitative.	The	outcomes	can	be	considered	a	good	result	taking	into	account	that	the	

investigation	involves	sets	of	images	about	70	years	old.	In	this	way,	the	areas	influenced	by	accumulation	or	

loss	of	material	can	be	singled	out.	

In	 the	 CL-PO	 landslide	 the	 reactivation	 of	 2003,	 affecting	 the	 left-side	 of	 the	 basin,	 determined	 a	

characteristic	depletion	of	material	in	the	upper	part	of	the	landslide	and	an	accumulation	of	the	mobilized	

material	in	the	river	basin	as	visible	by	the	differences	between	the	3DPCs.	The	same	“classical”	situation	is	

not	recognizable	in	the	right-side	of	the	mass-movements,	an	area	historically	affected	by	landslides.	This	is	

due	to	the	age	of	the	landslide	with	respect	to	the	first	available	images;	in	fact	the	set	of	images	of	1945	

already	recorded	the	occurred	mass-movement.	As	a	consequence,	the	changes	of	volume	recognized	by	the	

algorithm,	 highlight	 an	 increment	 of	 volume	 due	 to	 the	 fulfilment	 interventions	 made	 to	 mitigate	 the	

possibility	of	recurrences	on	that	side.	Another	interesting	facet	to	highlight	in	the	CL-PO	area	is	the	uphill	

portion	of	territory,	where	alternations	of	reduction	and	increment	of	volume	were	evident.	These	changes	

could	 be	 interpreted	 as	movements	 due	 to	 the	 accommodation	 of	 the	 big	 displacement	 caused	 by	 the	

important	 mass-movement	 that	 occurred	 in	 January	 2003.	 To	 support	 this	 theory,	 several	 scarps	 and	

counterslopes	were	recorded	in	that	area,	as	shown	in	the	geomorphological	map	produced	by	several	field	

surveys.	 This	 interpretation,	 even	 if	 qualitative	 and	 not	 quantitative,	 can	 be	 helpful	 to	 understand	 the	

possible	effects	of	future	reactivations	and	as	a	support	to	realize	mitigation	plans,	susceptibility	maps	and	

other	products	useful	to	the	local	administrators.	

In	the	southwestern	sector	of	Volterra,	analyses	showed	two	main	separated	regions	of	accumulation	and	

loss	of	material.	Only	a	qualitative	 interpretation	was	possible	due	 to	 the	high	difficulty	 to	 insert	 several	

Ground	Control	Points	as	a	regular	grid.	This	inconvenience	caused	huge	errors	in	the	area	close	to	the	town,	

because	the	high	density	of	constructions	causes	important	shadow	effects,	and	close	to	the	border	of	the	

investigated	region,	due	to	the	lack	of	site	localized	with	high	accuracy	in	both	sets	of	images.	The	reliability	

of	the	model	and	the	consequent	qualitative	analysis	are	confirmed	by	means	of	some	constructions	in	Le	

Colombaie	area,	close	to	the	town,	built	in	the	investigated	period	of	the	volume	changes	analysis,	shown	as	
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increment	of	volume.	A	concentration	of	error	in	a	north-eastern	portion	is	due	to	a	little	area	where	the	

overlapping	of	the	images	of	1954	shows	an	empty	space	and	consequently	in	the	3D	reconstructed	model.	

For	this	area,	extensively	affected	by	gully	erosion,	the	analysis	could	support	the	investigation	and	help	also	

in	the	understanding	of	the	badlands	evolution.	The	collected	data	did	not	allow	a	precise	interpretation	due	

to	the	high	difficulty	to	find	several	GCPs	or	TiePoints	close	to	the	phenomena.	This	 is	a	 limitation	of	the	

historical	 images,	but	 important	qualitative	considerations	on	 the	 local	phenomena	affecting	an	area	are	

allowed	to	support	the	presence	of	shallow	displacements.	

The	investigation	of	the	recent	evolution	was	made	using	Persistent	Scatterers	data,	supported	by	direct	

measurements	and	field	surveys.	By	means	of	the	PCN,	the	coverage	and	the	reliability	of	the	PS	for	both	

areas	were	checked:	C-band	products	are	spread	in	the	southwestern	sector	of	Volterra,	while	in	the	CL-PO	

landslide-prone	area	the	presence	of	high	vegetation	and	the	few	natural	reflectors	prevent	many	PS	to	be	

retrieved.	Beside	some	inconveniences,	the	data	results	reliable	when	compared	with	direct	measurements,	

field	 surveys	 and	 damage	 recognizable	 in	 those	 areas	where	 important	 velocity	 was	 recorded.	 For	 each	

individuated	 area,	 in	 both	 investigated	 sites,	 sample	 time	 series	 were	 analysed.	 To	 better	 inspect	 them	

reliability	 and	 evolution	 the	 time	 series	 were	 corrected	 to	 the	 regional	 trend	 (Notti	 et	 al.,	 2015)	 and	

automatically	categorized	(Berti	et	al.,	2013).	First	of	all	the	time	series	were	visualized	and	depurated	to	the	

regional	trend.	Furthermore,	an	estimation	of	data	of	abrupt	changes	into	the	time	series	was	attempted.	

For	the	CL-PO	landslide	was	possible	individuate	some	effects,	determined	by	breakpoints	in	the	time	series,	

uphill	with	respect	to	the	mobilized	areas.	They	could	be	attributed	to	the	several	reactivation	of	the	mass-

movement	individuated	also	by	means	the	classification	of	the	time	series	even	if	no	precise	time	of	abrupt	

changes	of	velocity	involving	all	the	landslide	were	recognized,	but	different	data	involving	selected	areas.	

Regarding	 the	 Volterra	 sample	 site,	 it	 was	 possible	 to	 highlight	 as	 some	 areas,	 by	 means	 the	 linear	

classification	of	the	time	series	(Berti	et	al.,	2013),	resulted	active	already	in	the	past	and	during	the	recent	

period	they	shown	an	increment	of	displacement,	as	individuated	also	by	the	quadratic	rank	of	Berti	et	al.	

(2013).	It	is	interesting	noticing	the	change	of	percentage	values	between	the	investigations	conducted	on	

the	entire	southwestern	sector	of	Volterra	and	the	results	obtained	focusing	only	on	the	chosen	areas.	The	

percentage	of	uncorrelated	 time	series	significantly	decrease	due	to	 the	stability	of	 the	historic	centre	of	

Volterra.	Also	in	this	case	no	abrupt	changes	involving	big	area	at	the	same	time	was	individuated.	

Given	 that	 the	main	aim	of	 the	 thesis	 is	 to	 look	 for	a	 relationship	between	 landslide-induced	damage	

recorded	on	buildings	and	the	velocity	of	displacement,	the	structures	close	to	the	CL-PO	landslide	and	the	

constructions	in	the	Le	Colombaie	and	Fontecorrenti	sectors	of	Volterra	were	classified	by	means	of	several	

damage	 approaches	 and	 kinematic	 satellite	 parameters.	 Different	 categorizations	were	 based	 on	 similar	

parameters,	but	some	differences	were	observed,	i.e.	different	reference	unit.	The	comparison	between	the	

different	classifications	shows	that	the	oldest	approaches	(Burland	1977;	Alexander	1986;	Chiocchio	et	al.	

1997)	concentrate	the	categorization	of	the	structures	mainly	in	classes	representing	the	medium	damage	
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levels,	while	the	newest	rankings	(Cooper	2008;	Baggio	et	al.	2009)	result	a	little	bit	precautionary	with	more	

constructions	in	the	most	severe	classes	of	damage.	

The	analysis	of	drawbacks	and	benefits	of	five	different	existing	approaches	in	literature,	developed	in	50	

years	of	research,	attempting	to	overcome	their	disadvantages	and	exploit	advantages.	The	different	existing	

methods	were	 firstly	 applied	 and	 critically	 examined	 throughout	 the	experience	 acquired	 in	 several	 case	

studies,	 in	 order	 to	 smooth	 their	 weakness	 and	 homogenise	 the	 features	 that	 have	 to	 be	 considered.	

Therefore	a	new	methodology	to	classify	the	landslide-induced	damage	was	developed	(Del	Soldato	et	al.,	

under	review_b).	It	is	a	well-structured	approach	to	categorize	structures,	facilities	and	ground	damage	in	

landslide-prone	and	-affected	regions.	The	approach	is	divided	into	two	phases:	the	first	one	concerns	the	

identification,	 investigation	 and	 classification	 of	 cracks	 and	 fractures	 on	 structures,	 facilities	 and	 ground	

surfaces;	the	second	one	regards	an	a	posteriori	categorization	of	the	man-made	structures	in	sensu	stricto,	

in	their	complexity.	The	approach	could	appear	complicated	due	to	the	two	phases,	despite	its	simplicity	of	

application.	Furthermore,	the	new	method	is	suitable	also	to	characterize	and	classify	the	fractures	affecting	

natural	and	anthropogenic	ground	surfaces.	This	possibility	derives	from	the	effort	to	identify	and	categorize	

the	severity	of	damage	affecting	structures	and	natural	and	anthropogenic	ground	surfaces,	 indifferently.	

The	whole	structures,	i.e.	buildings	and	facilities,	have	to	be	taken	into	consideration	secondarily,	analysing	

the	ranking	of	the	damage	and	their	extension.	The	classes	of	damage,	the	thresholds	of	the	crack	width	and	

the	descriptions	of	different	damage	for	each	category	were	carried	out	from	the	previous	models.	The	union	

of	 the	 features	 of	 several	 existing	 approaches	 was	 critically	 realized	 and	 improved	 by	 means	 of	 the	

accumulated	experience	on	field.	

One	of	the	main	problems	of	the	classification	of	landslide-,	subsidence-	or	earthquake-induced	damage,	

is	 the	subjectivity	of	 the	operator	who	possesses	 few	values	and	too	general	descriptions	of	 the	possible	

damage.	To	limit	this	drawback,	a	sketch	with	function	of	referring	scheme	of	the	possible	damage	that	can	

affect	structures	and	grounds,	as	well	as	a	recording	scheme	requiring	several	information,	were	suggested	

to	 be	 used	 during	 field	 surveys.	 Such	 supplementary	 material,	 in	 addition	 to	 the	 improvement	 of	 the	

objectiveness	 of	 the	 investigation,	 allow	 operators	with	 little	 experience	 in	 this	 field	 to	 perform	 a	 good	

damage	survey	and	to	achieve	good	results.	

A	 further	 important	 characteristic	 of	 this	 approach	 is	 that	 it	 does	 not	 require	 accessibility	 to	 internal	

portions	of	the	structures.	This	philosophy	was	already	considered	in	one	of	the	last	developed	methods.	The	

experience	 accumulated	 during	 field	 surveys	 in	 landslide-prone	 areas	 conducted	 to	 consider	 that	 this	

fundamental	thought	has	to	be	taken	into	account	in	the	new	approach.	Moreover,	this	facet	plays	a	key	role	

in	the	interpretation	of	the	resulting	classification	maps	by	the	application	of	the	ranked	damage.	

The	detection,	description	and	categorization	of	cracks	and	fractures	affecting	ground	surfaces	can	help	

to	interpret	the	severity	of	the	damage	occurring	on	neighbours’	constructions.	Furthermore,	information	of	
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ground	damage	supports	the	identification	of	the	types	of	displacement,	their	evolution	and	any	increment	

of	dimension,	as	well	as	a	better	interpretation	of	the	landslide	boundaries.	

It	 is	worth	noticing	 that	 in	 the	proposed	damage	 ranking,	 classes	 concerning	 the	 collapse	are	 absent,	

differently	to	the	existing	approaches	in	literature.	In	this	way,	maintaining	the	same	number	of	classes	the	

possibility	 to	 discretize	 the	 severity	 of	 the	 cracks	 identifiable	 on	 the	 façades	 improves.	 The	 same	

consideration	 is	 true	 also	 for	 the	 categorization	 of	 fractures	 identifiable	 on	 ground	 surfaces.	 This	

improvement	was	an	indirect	consequence	derived	by	the	division	of	the	methodology	in	two	distinct	phases.	

The	new	approach	was	validated	in	different	sites,	two	of	them	were	the	case	studies	of	this	PhD	thesis.	

The	chosen	sites	exhibit	a	good	accuracy	in	the	resulting	classifications	of	buildings	and	facilities.	In	addition	

to	 the	 landslide-prone	 areas	 of	 the	 Colle	 Lapponi-Piano	 Ovetta	 in	 Agnone	 municipality	 (Molise	 region,	

southern	Italy)	and	in	the	southwestern	sector	of	Volterra	(Tuscany	region,	central	Italy),	the	method	was	

also	 proved	 on	 buildings	 in	 other	 sites	 abroad,	 e.g.	 in	 Finestrat	 (Alicante	 province,	 southwestern	 Spain).	

Different	 landslides-prone	 and	 -affected	 regions	 were	 chosen	 to	 verify	 the	 possibility	 to	 investigate	 the	

application	 of	 the	 new	 approach	 on	 different	 typologies	 of	 mass-movements	 with	 good	 accuracy.	 For	

instance,	roto-translational	slides	and	flows,	deep-seated	slow-movements,	rock	falls	and	shallow	landslides	

were	taken	into	consideration	during	the	validation	process.	

The	 applications	 of	 the	 new	 developed	 method	 (Del	 Soldato	 et	 al.,	 under	 review_b)	 allowed	 the	

understanding	of	 the	 importance	of	 the	 framework	of	 the	 suggested	damage	 recording	 scheme	and	 the	

sketch	of	the	possible	damage	affecting	structures,	natural	and	anthropogenic	surfaces.	A	drawing	of	possible	

damage	leads	to	the	identification	and	the	recognition	on	the	investigated	sites.	This	helped	also	to	assess	

the	severity	of	the	damage	during	the	surveys	in	the	validation	sites,	therefore	the	sketch	was	included	in	

the	recording	scheme	with	a	short	description	of	each	possible	damage.	Despite	the	little	time	spent	during	

field	surveys,	the	resulting	classification	is	more	precise	that	the	obtainable	with	other	existing	methods.	

The	newly	developed	approach,	which	does	not	include	the	collapse	classes	in	the	phase	of	categorization	

of	cracks	and	fractures,	allows	a	more	precise	distribution	of	the	severity	of	the	damage.	The	CL-PO	site	is	a	

rural	area	causing	consequences	on	the	categorization	of	some	constructions	classified	with	high	levels	of	

damage,	but	not	affected	by	landslide-induced	damage.	For	instance,	there	are	three	buildings	close	to	the	

boundary	of	the	mass-movements	that	clearly	as	had	been	abandoned	for	several	years	and	were	ranked	as	

collapsed	or	in-habitable.	For	these	structures	the	relation	between	damage	and	Vslope	could	not	be	verified.	

Beside	 this,	 in	 such	 case,	 the	 categorization	 of	 buildings	 and	 facilities	 of	 CL-PO	 reflects,	with	 acceptable	

precision,	 the	 preventive	 restrictions	 promulgated	 by	 the	 municipality	 administrator,	 after	 the	 main	

reactivation	 of	 2003.	On	 the	 other	 hand,	 one	 building	 sticks	 out	 as	 affected	 by	Very	 slight	 or	Negligible	

damage,	according	to	all	categorizations	used,	despite	its	position	respect	to	the	boundary	of	the	landslide	

and	 the	 restrictive	measurements	 effective	 also	 for	 it.	 This	 construction	 does	 not	 show	 damage	 on	 the	

façades,	even	if	it	is	located	on	the	present-day	crown	of	the	landslide,	while	several	open	cracks	and	a	partial	
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collapse	affect	its	sidewalk.	With	high	probability,	its	foundations	are	also	affected	by	damage.	This	case	is	a	

good	example	to	understand	the	importance	of	investigating	the	facilities,	in	addition	to	buildings,	in	order	

to	help	promulgate	restrictive	measure	by	local	administrators.	Furthermore,	this	type	of	analysis	can	also	

help	the	investigation	of	the	phenomenon.	

In	Volterra	test	site,	only	the	categorizations	of	Cooper	(2008)	and	Del	Soldato	et	al.	 (under	review_b)	

were	applied.	More	 than	500	 structures	affected	by	 several	quiescent	 and	active	 slope	 instabilities	were	

classified	in	Le	Colombaie	and	Fontecorrenti	sectors.	The	main	damaged	buildings	are	located	in	areas	where	

superficial	 displacements,	 due	 to	 colluvial	 debris,	 are	 concentrated:	 severe	 damage	 was	 recorded	 on	

buildings	in	the	upper	portion	of	active	or	quiescent	landslides	and	others	in	a	central	portion	of	the	big	Le	

Colombaie	landslide,	with	high	probability	active.	Constructions	in	the	historic	centre	were	excluded	by	the	

investigations	that	were	concentrated	on	the	regions	where	PSI	data	show	high	velocity	in	both	ascending	

and	descending	geometries.	

In	 the	 upper	 portion	 of	 Le	 Colombaie	 complex	 of	 landslides,	 several	 constructions	 show	 different	

situations	based	on	their	locations	with	respect	to	a	street.	The	four	constructions	in	the	downhill	portion	of	

the	 road,	 two	of	 these	built	 in	 the	 ‘90s	and	other	 two	older	and	now	probably	abandoned,	 show	severe	

damage.	 The	 other	 structures	 on	 the	 opposite	 side	 of	 the	 street	 do	 not	 exhibit	 any	 damage.	With	 high	

probability,	this	effect	is	due	to	the	lithological	change	between	the	upper	stable	Villamagna	sands,	the	lower	

clayey	material	(Argille	Azzurre	Formation)	and	colluvial	debris.	This	contrast	causes	important	damage	and	

differential	displacement	affecting	constructions	 in	the	downhill	portion	of	the	street.	The	severity	of	the	

damage	forces	the	local	administrator	to	promulgate	restrictions	to	one	of	these,	in	addition	to	an	instinctive	

abandonment	of	the	oldest	damaged	structures.	To	support	this	hypothesis	two	inclinometers	confirmed	the	

occurring	displacement	 exhibiting	 a	 clear	 sliding	 surface	 and	 afterwards	were	broken	 to	 the	high	 terrain	

motion.	 It	 is	 interesting	to	notice	that	the	structure,	highly	damaged	and	put	under	restriction,	 is	 located	

perpendicularly	respect	to	the	geolithological	boundary.	

Another	 region,	 where	 meaningful	 velocity	 of	 displacement	 and	 damage	 on	 the	 constructions	 were	

recorded,	is	the	urban	area	built	after	2000	inside	a	landslide	complex	in	the	Le	Colombaie	sector.	Differently	

from	the	previous	structures,	diffuse	and	fine	cracks	were	recorded	in	subsequent	field	survey.	The	causes	

can	be	probably	attributed	to	the	filling	material	compaction,	even	if	PSI	velocities	derived	from	ERS,	ENVISAT	

sensors	recorded	between	1993	and	2010,	also	show	high	values.	The	X-band	PS	and	DS	data	derived	from	

the	COSMO-SkyMed	constellation,	confirmed	the	hypothesis	made	by	the	ERS	and	ENVISAT	data.	Further	

investigation	and	future	field	survey	should	be	conducted	to	monitor	the	situation	and	the	evolution	of	the	

damage	in	this	area.		

In	the	Fontecorrenti	sector,	constructions	affected	by	damage	was	built	in	the	70’s	and	they	are	sited	in	

the	 upper	 region	 of	 two	 active	 landslides.	 Furthermore,	 a	 building	 recently	 built	 uphill	 respect	 to	 the	
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landslide,	is	partially	affected	by	important	damage	confirming	a	continuous	retrogressive	evolution	of	the	

landslide	and	growth	of	the	area	involved.	Damage	affecting	structures	is	not	homogeneously	distributed.	

The	classification	show	few	constructions	exhibiting	very	important	damage,	several	structures	with	Weak	

fractures	and	others	that	do	not	present	any	problems.	Also	for	this	area	a	contribution	of	the	local	geology	

in	the	distribution	of	the	movements	provoking	differential	displacement	is	presumed.	

In	order	to	combine	buildings	categorized	by	the	damage	with	the	displacement	affecting	the	structures,	

constructions	and	 facilities	of	 the	CL-PO	 landslide	 in	Agnone	and	of	 the	southwestern	sectors	of	Volterra	

were	categorized	by	means	of	several	parameters	derived	from	the	PS.	Velocity	and	displacement	recorded	

along	the	Line	Of	Sight,	and	velocity	and	cumulated	displacement	reprojected	along	the	slope,	were	used	to	

categorize	 the	 structures.	 The	 damage	 classification	 and	 their	 categorization	 based	 on	 the	 satellite	

parameters	were	analysed.	Plotting	all	the	used	kinematic	parameters	combined	with	the	classes	of	damage	

recorded	by	Cooper	and	Del	Soldato	et	al.	(under	review_b),	a	relationship	was	pursued.	Between	Vslope	and	

the	classes	of	damage	recorded	by	Del	Soldato	et	al.	(under	review_b)	a	disposition	along	a	linear	regression	

describing	an	upper	envelope	was	recognized	for	some	constructions.	Some	constructions	characterized	by	

low	level	of	damage,	but	high	velocities,	result	outlayers.	These	are	probably	justified	considering	that	some	

constructions	close	to	the	landslide	area	were	recently	renovated	or	under	construction.	The	points	aligned	

on	the	regression	line	describe	a	good	correlation	between	the	velocity	affecting	the	whole	construction	and	

the	recorded	damage.	Structures	characterized	by	lower	velocities,	plotted	under	the	envelope,	the	causes	

can	be	attributed	to	the	different	effects	of	differential	displacement	due	to	several	 factors,	e.g.	age	and	

typology	 of	 the	 constructions,	 or	 causes	 not	 related	 to	 the	 landslide,	 e.g.	 the	 abandonment	 of	 the	

construction.	The	ENVISAT	data	for	both	sites	result	very	noisy	and	the	accumulated	displacements	result	

unreliable	to	analyse	in	order	to	find	another	possible	relation.	The	correlation	was	previously	investigated	

and	carried	out	for	the	Agnone	test	site,	where	the	reprojection	of	the	data	were	conducted	using	two	DEM	

with	a	different	 resolution.	 It	was	surprising	because	 the	 reprojection	conducted	with	both	high	and	 low	

resolution	 DEM,	 5-m	 and	 10-m	 cell	 resolution,	 show	 a	 similar	 relation.	 This	 occurred	 investigating	 both	

ENVISAT	and	COSMO-SkyMed	data.	This	is	a	little	bit	in	contrast	with	the	thesis	of	Notti	et	al.	(2014)	according	

to	whom	a	lower	DEM	resolution	works	better	in	the	reprojection	process.	Considering	that	the	area	of	the	

CL-PO	landslide,	where	several	reactivations	influenced	a	very	big	area	with	geomorphological	local	changes	

of	 the	 topography,	 smoothed	 with	 DEM	 with	 low	 resolution,	 differences	 affecting	 the	 reprojection	 of	

velocities	along	the	slope	were	expected.	The	uniformity	of	the	data	is	justifiable	considering	that	the	PSs	are	

not	recorded	on	natural	ground	surfaces	or	outcropping,	but	only	on	man-made	structures.	

Despite	the	few	targets	investigated	in	Agnone,	a	reliability	matrix	of	the	relationship	between	the	Vslope	

acquired	by	COSMO-SkyMed	and	the	levels	of	damage	was	developed.	Applying	it	on	the	constructions	close	

to	the	CL-PO	landslide	some	interesting	situations	were	identified.	In	the	boundary	of	the	landslide	different	

reliability	classes	were	 identified	 for	 the	two	neighbouring	built-up	areas.	The	northern	one	exhibits	high	
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values,	while	in	the	southern	one	very	low	classes,	except	for	one	building,	were	shown.	These	discrepancies	

were	due	mainly	to	the	characteristics	of	the	buildings:	southern	buildings,	old	structures	built	by	masonry	

frameworks,	 registered	 all	 movements	 affecting	 the	 area;	 the	 northern	 structures,	 including	 some	

abandoned	constructions,	collapsed	or	destroyed,	and	others	under	construction	or	renovation.	Only	one	

building	shows	high	reliability	in	this	sector,	affected	by	important	damage	and	high	velocities	because	built	

on	the	present-day	boundary	cracks	of	the	landslide.	

The	procedure	was	validated	applying	the	reliability	matrix	on	the	southwestern	sectors	of	Volterra	for	

both	satellite	ENVISAT	and	COSMO-SkyMed.	The	data	and	the	field	surveys	imply	that	the	more	correct	maps	

are	 those	 derived	 from	 the	 Vslope	 recorded	 by	 the	 COSMO-SkyMed	 constellations,	 despite	 high	

correspondence	between	recorded	damage	and	Vslope	acquired	by	ENVISAT	satellites	were	visible.	Analysing	

the	obtained	reliability	classification	maps	is	evident	as	generally	the	high	reliability	is	diffused	indifferently	

to	the	sensors	used.	Considering	the	area	where	high	velocities	were	recorded,	some	considerations	can	be	

done.	Area1	shows	High	and	Moderate	values	of	reliability	for	all	structures	indifferently	to	the	used	damage	

classification	approach.	The	ENVISAT	data	for	these	structures	are	too	spread	to	make	any	considerations.	In	

Area2	and	Area3	similar	considerations	can	be	made.	For	both	areas,	the	reliability	results	higher	between	

damage	and	ENVISAT	Vslope,	 indifferently	 to	 the	applied	classification	approach.	 Investigating	 the	possible	

relationship	between	COSMO-SkyMed	Vslope	and	levels	of	damage	recorded	by	Cooper	(2008)	and	Del	Soldato	

et	al.	(under	review_b)	methods,	some	differences	were	recognizable.	This	could	be	justified	considering	that	

the	damage	 recorded	 in	 the	 recent	 field	 surveys	had	probably	occurred,	 showing	high	correlation,	 in	 the	

period	 in	 which	 the	 ENVISAT	 satellite	 recorded	 the	 displacement	 velocity.	 The	 velocity	 recorded	 by	 the	

COSMO-SkyMed	constellation	for	Area2	results	higher	respect	to	the	level	of	low	damage	degrees	affecting	

the	 structures	 surveyed	 during	 the	 field	 campaigns.	 The	 constructions	 in	 this	 sector	were	 built	 recently,	

approximatively	 in	 2003,	 on	 level-off	 filling	material.	 The	 consolidation	 of	 this	material	 could	 justify	 the	

velocity	of	displacement	recently	recorded	with	no	relevant	damage.	Furthermore,	damage	revealed	on	the	

constructions	during	field	surveys	appear	increasing,	by	which	an	influence	of	slope	movements	can	be	taken	

into	consideration.	This	hypothesis	is	supported	by	the	ERS	data	that	already	exhibited	displacement	when	

the	constructions	were	absent.	The	same	circumstance	in	Area3	can	be	justified	by	taking	into	consideration	

the	Vslope	 for	both	 sensors.	The	 levels	of	damage	are	well	 correlated	with	high	 rates	of	Vslope	 recorded	by	

ENVISAT	data.	This	allows	to	assume	that	the	main	damage	in	this	area	occurred	in	the	period	2003	-	2010,	

when	high	rates	of	Vslope	were	recorded.	To	support	this	interpretation	no	important	increment	of	the	severity	

of	the	damage	was	recorded	during	the	several	field	campaigns.	Uphill,	close	to	Area3,	a	hotel,	built	around	

the	year	2000	shows	high	reliability	for	COSMO-SkyMed	Vslope,	while	no	data	were	recorded	by	the	ENVISAT	

satellites.	The	high	rate	of	reliability	of	this	construction	with	the	CSK	Vslope	and	the	recent	recorded	damage	

on	it,	can	confirm	the	mass-movement	activity	and	the	consequent	effects	caused	to	the	structures.	
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The	abovementioned	considerations	allow	to	determine	that	the	categorization	of	the	level	of	damage	

and	their	correlation	with	the	velocity	of	displacement	recorded	by	remote	sensing	data	can	support	and	

update	the	ground	movements	interpretation	and	help	the	planning	of	mitigation	measures	by	authorities.	

The	 reliability	 categorization	 made	 for	 different	 sensors,	 between	 the	 damage	 and	 the	 velocity	 of	

displacement	is	a	fundamental	support	to	better	interpret	different	influences	of	the	damage	on	structures.	

Moreover,	 involving	ENVISAT	and	CSK	satellites,	 it	 is	possible	to	understand	the	period	in	which	the	main	

damage	 occurred,	 even	 if	 they	 were	 recently	 surveyed.	 Furthermore,	 information	 obtained	 can	 help	

hypothesize	the	possible	future	damage	when	high	rates	of	velocity	were	recorded	in	structures	with	similar	

features	considering	the	position	respect	to	the	regression	line	described	by	the	data	recorded	in	the	study	

area.	Obviously,	the	 interpretation	must	be	done	considering	also	collected	and	ancillary	data	 in	order	to	

avoid	 errors.	 Some	 examples	 of	 low	 reliability,	 justifiable	 only	 analysing	 also	 the	 traditional	 data,	 of	 the	

correlation	between	the	recorded	damage	and	VLOS	are	shown	for	some	buildings	in	Volterra	where	damage	

recently	 surveyed	 was	 caused	 by	 old	 displacements.	 The	 same	 applies	 to	 few	 collapsed/abandoned	

structures	 in	 Agnone.	 In	 this	 case,	 the	 exhibit	 reliability	 is	 low	 because	 the	 recorded	 damage,	with	 high	

possibility,	is	the	outcome	of	abandonment	rather	than	by	the	landslide.	
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7 Conclusions	

The	PhD	work	was	developed	on	two	test	sites,	Colle	Lapponi-Piano	Ovetta	(CL-PO)	in	the	municipality	of	

Agnone	(Molise	region,	southern	Italy)	and	the	southwestern	sector	of	Volterra	(Tuscany	municipality,	central	

Italy),	 both	 affected	 by	 landslides.	 The	 evolution	 of	 the	 phenomena	 affecting	 the	 study	 areas	 were	

investigated	using	several	direct	and	indirect	methods	including	the	analysis,	by	means	of	the	Structure	from	

Motion	algorithm	to	reconstruct	3D	Point	Clouds	and	models,	of	sets	of	historical	aerial	images	of	different	

years	and	the	investigation	conducted	by	DInSAR	techniques.	C-band	data,	ERS1/2	and	ENVISAT,	acquired	

from	 1992	 to	 2010,	 and	 X-band	 data,	 COSMO-SkyMed,	 covering	 the	 period	 2010	 -	 2015	 were	 used	 to	

investigate	the	recent	evolution	of	the	phenomena	in	order	to	classify	the	buildings	by	means	of	different	

kinematic	parameters.	

For	both	sites,	the	difference	between	the	oldest	and	the	newest	3D	Points	Clouds	were	made	in	order	to	

evaluate	 the	 occurred	 changes	 of	 volume.	 The	 investigation	 of	 the	 CL-PO	 landslide,	 involving	 the	 period	

between	 1945	 and	 2003,	 years	 of	 the	 last	 important	 reactivation	 show	 an	 interesting	 clear	 distinction	

between	 the	 area	 of	 loss	 and	 the	 region	 of	 accumulation	 of	material.	 Furthermore,	 some	 perturbations	

exhibited	in	the	uphill	regions	were	recognized,	justifiable	considering	that	the	area	behind	the	crown	of	the	

landslide	was	influenced	by	displacement	caused	by	the	reactivation	of	the	mass-movement	that	occurred	

in	January	2003.	The	same	analysis	was	conducted	between	the	3D	Points	Cloud	of	1954	and	1995	of	the	

southwestern	sector	of	Volterra	allowing	to	carry	out	important	characteristics	and	information	about	the	

studied	phenomena.	For	the	CL-PO	landslide	area	the	geomorphological	features	recognized	by	means	of	the	

3D	reconstruction	of	several	years	and	the	difference	between	the	3D	Points	Clouds,	were	controlled	and	

validated	conducting	several	field	surveys	and	creating	a	geomorphological	map	on	the	landslide	area	and	its	

uphill	surrounding.	

The	evolution	of	the	phenomena	helped	also	to	interpret	their	effect	on	the	structures,	and	to	distinguish	

the	damage	caused	by	the	displacement	due	to	the	mass-movement	or	other	causes.	The	damage	on	the	

structures	and	facilities	into	and	close	to	the	landslides	were	surveyed	by	means	of	several	field	campaigns	

and	their	severity	was	categorized	applying	several	damage	classification	approaches.	Buildings	and	facilities	

located	in	the	CL-PO	area	in	Agnone	were	initially	classified	according	to	five	literature	categorizations.	The	

different	damage	classifications	of	the	structures	were	compared	and	discussed	allowing	to	carry	out	benefits	

and	drawbacks	in	order	to	improve	a	new	classification	approach.	The	developed	categorization	was	tested	

and	validated	on	several	sites	including	the	CL-PO	landslide	area	and	the	southwestern	sector	of	Volterra.	

The	new	classification	method	was	developed	merging	the	good	quality	of	the	existing	schemes,	correcting	

some	drawbacks	encountered	in	the	application	and	using	a	new	idea	to	simplify	the	classification	process.	
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The	developed	classification	approach	was	divided	into	two	phases,	the	identification	of	the	damage	and	the	

categorization	 of	 the	 constructions	 in	 sensu	 stricto.	 This	 procedure	 allows	 a	 better	 recognition	 and	

classification	of	the	damage	in	addition	to	the	assessment	of	the	condition	of	the	entire	structure	with	more	

precision.	Furthermore,	it	is	applicable	on	buildings	and	facilities,	and	moreover	it	includes	features	to	rank	

the	ground	fractures.	The	importance	of	a	map	made	by	the	classification	of	the	damage	affecting	structures,	

facilities	and	ground	surfaces	is	fundamental	for	understanding	the	extension	of	the	phenomena,	but	also	to	

support	the	local	administrators.	

A	relationship	between	damage	and	kinematic	parameters	recorded	by	a	remote	sensing	technique	was	

inquired	into.	Structures	and	facilities	of	both	investigated	sites	were	categorized	by	means	of	VLOS	and	Dmax,	

separated	for	ascending	and	descending	geometries,	and	Vslope	and	Dslope	extracted	by	ENVISAT	and	COSMO-

SkyMed	data.	The	velocity	and	the	cumulated	displacement	recorded	along	the	Line	Of	Sight	both	by	ENVISAT	

and	 COSMO-SkyMed	 sensors,	 for	 each	 orbit	 separately,	 showed	 no	 important	 relationship.	 A	 linear	

regression	characterising	an	upper	envelope	was	identified	combining	the	damage	levels	with	the	averaged	

value	of	the	velocity	reprojected	along	the	deepest	local	slope	(Vslope)	for	both	ENVISAT	and	COSMO-SkyMed	

data.	Once	 identified	 for	 the	CL-PO	 landslide	case	study,	 the	same	was	applied	 to	 the	southern	sector	of	

Volterra,	classifying	the	constructions	according	to	the	Vslope	and	Dslope.	

At	the	end,	the	quality	of	the	correlation	study	was	investigated	generating	a	matrix	involving	the	severity	

of	damage	and	the	rate	of	displacement.	To	make	a	symmetrical	matrix,	four	classes	of	the	Vslope	(i.e.	stability,	

low,	medium	and	high	velocity)	and	the	eight	levels	of	the	damage	agglomerated	in	four	categories	(i.e.	low,	

medium,	severe,	high	level	of	damage)	were	plotted.	In	both	cases,	except	for	some	buildings	for	which	some	

considerations	were	made,	the	reliability	of	the	correlation	resulted	high.	
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8 Future	research	topics	

Some	consideration	on	the	possible	ideas	to	improve	the	issues	take	on	during	the	PhD	work	have	to	be	

done.	

An	improvement	to	identify	and	recognize	the	damage	on	the	structures	could	be	the	use	of	the	Infrared	

Thermographic	 (IRT)	 technique	during	 the	 field	 surveys.	 In	 this	way,	 cracks	or	 fractures	masked	by	 slight	

surficial	renovations	made	on	the	façades	can	be	recognized	in	order	to	better	assess	the	real	situation	of	

the	damage	affecting	the	structures	(Avdelidis	and	Moropoulou,	2004;	Nolesini	et	al.,	2016).	The	new	damage	

classification	approach,	developed	for	landslide-induced	damage,	should	be	tested	also	in	areas	affected	by	

subsidence	 to	 increase	 the	 possible	 application	 of	 this	 new	method.	 In	 addition,	 it	would	 be	 interesting	

investigate	 the	 possibility	 to	 have	 three	 different	 grades	 of	 damage	 in	 the	 same	 construction,	 but	 the	

difficulty	to	create	a	scheme	with	three	axes	has	to	be	considered.	

Furthermore,	for	the	CL-PO	landslide,	given	that	the	PS	data	are	few	due	to	several	factors,	to	resolve	

some	problems	it	could	be	apply	the	pixel	offset	technique	to	analyse	the	landslide	movement	(Singleton	et	

al.,	2014)	This	technique	allow	to	overcome	the	D-InSAR	limitation	on	the	spatial	displacement	gradient	using	

just	two	images	acquired	at	different	time	and	measuring	the	displacement	vectors	along	the	LOS.	In	this	way	

for	recognizable	points,	i.e.	the	Corner	Reflectors	that	result	not	visible	by	the	DInSAR	techniques,	it	possible	

obtain	 the	2-dimensional	displacements	by	measuring	the	row	and	column	offsets	as	defined	 intervals	 in	

range/azimuth	(Singleton	et	al.,	2014).	

Another	possibility	to	identify	and	assess	the	recent	effect	of	the	mass	movement	could	be	work	on	the	

satellite	raw	data	to	apply	the	change	detection	technique	working	on	the	intensity	of	the	signal	(e.g.	Wadge	

et	al.,	2002;	Wadge	et	al.,	2011;	Bignami	et	al.,	2013;	Whelley	et	al.,	2014).	This	methodology	can	be	applied	

in	both	CL-PO	and	Volterra	landslide	in	order	to	individuate	with	more	precision	areas	where	changes	and	

displacement	occurred.	

At	the	end,	it	could	be	interesting	to	improve	the	resolution	of	differences	in	volume	estimations,	in	order	

to	reach	a	quantitative	result,	for	instance	working	on	the	precision	of	the	location	of	the	input	GCPs	and	

their	coordinates	(Riquelme	et	al.,	under	review).	
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