
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Dipartimento di Matematica e Applicazioni
“Renato Caccioppoli”

Dottorato di Ricerca in Scienze Matematiche e Informatiche

Tesi di Dottorato di

Mattia Brescia

Double Chain Conditions
in Group Theory

CICLO XXIX, S.S.D. MAT/02





Contents

Introduction 3
Historical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Practical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Double chain condition on subgroups 12
1.1 Maximal condition . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Minimal condition . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Double chain condition . . . . . . . . . . . . . . . . . . . . . . . 15

2 Double chain condition on normal subgroups 18
2.1 Maximal condition . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Minimal condition . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Double chain condition . . . . . . . . . . . . . . . . . . . . . . . 24

3 Double chain condition on non-normal subgroups 28
3.1 Maximal condition . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Minimal condition . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Double chain condition . . . . . . . . . . . . . . . . . . . . . . . 34

4 Double chain condition on subnormal subgroups 39
4.1 Maximal condition . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Minimal condition . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Double chain condition . . . . . . . . . . . . . . . . . . . . . . . 43

5 Double chain condition on subnormal non-normal subgroups 49
5.1 Maximal condition . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Minimal condition . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Double chain condition . . . . . . . . . . . . . . . . . . . . . . . 56

6 Double chain condition on non-pronormal subgroups 66
6.1 Maximal condition . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Minimal condition . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Double chain condition . . . . . . . . . . . . . . . . . . . . . . . 75

Bibliography 81

2



Introduction

Historical

During the history of Group Theory long has been (and long is) the journey to
escape from the finite, still bringing along the nice-working and somehow re-
assuring properties of the finite world. Long has been the path through which
academics from all over the world tried to reconcile the fairly impressive and
sometimes (or maybe very often) unsettling matter of infinity even with the
centuries-old difficulty of talking about it, driven everyone just by their deep
love for knowledge itself. As we may clearly rule out, with small exceptions,
any mere practical wish from this, we could then even say that the urge to keep
on looking for the finite inside the infinite is nothing but that first momentum
which once gave birth to Group Theory as the study of groups of permuta-
tions and groups of matrices and which endures still today, after more than
two centuries (not really much compared with even the countable infinite, but
no little time for us). In the early 1880s Walther von Dyck, a student of Fe-
lix Klein, laid the first systematic foundations for presentations of groups and
after him many were the scholars, for instance in Erlangen under Felix Klein
and in Berlin under Issai Schur, who began taking a serious interest in the
matter. Such was the florid background which saw the finiteness conditions as
a distinct branch of Infinite Group Theory coming to prominence and even-
tually flourishing. On the other side of the research, in 1921 Emmy Noether,
under the aegis of David Hilbert, introduced and deeply studied the maximal
condition on ideals of a ring in her paper Idealtheorie in Ringbereichen, and
around 1928 Emil Artin dealt with the minimal condition on right ideals, both
of them bringing with their works great development to modern algebra. In
the mutual exchange of awareness and hints typical of the mathematical in-
ternational community, everything is important and can have almost instantly
an influence over something in the same net. These two examples, in fact,
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INTRODUCTION

are not only useful in a general meaning as finiteness conditions but have here
greater importance qua chain conditions, properly speaking, and not only in
ring theory, where they were firstly developed, but in Group Theory, too, as
one would have been able to experience shortly afterwards.
During the following years such conditions were studied in a proper group

theoretical sense by famous algebraists such as Otto Schmidt, Robert Remak
and Helmut Wielandt. Later on, Sergei N. Černikov, Reinhold Baer and Ana-
toly I. Mal’cev extended the study of maximal and minimal chain condition
further more. On the one hand, it was discovered that many classes of groups
satisfying the maximal condition on subgroups shared the same good behavior,
being the classes of finite extensions of a polycyclic group; on the other hand,
the inspection on the minimal condition revealed that several relevant classes
(and more or less the same as in the maximal case) were well-behaved, being
the classes whose elements are finite extensions of an abelian group satisfy-
ing the minimal condition. Notice that abelian groups satisfying the minimal
condition on subgroups and polycyclic groups are well-studied and completely
described. Thus soon arose the question about to what extent these good be-
haviors could hold and there was a mild hope for almost every class of groups
to have it. Unfortunately, in 1979 Alexander Ol’̌sanskĭi in his Infinite groups
with cyclic subgroups proved the existence of infinite simple groups having both
the maximal and the minimal condition on subgroups, building a stainless roof
over every further development on the subject.
Nonetheless, the research must go on and several different forms of minimal

and maximal chain conditions were examined; among the others a significant
role was taken by the maximal and minimal conditions on non-θ-subgroups,
where θ is a subgroup theoretical property.
For the purpose of our work, we now mention that, together with exploring

such conditions on θ or non-θ subgroups, someone came up with the idea of
studying chain conditions other than the minimal and the maximal one. Even-
tually, the result was that the imposition of weaker forms of the classical chain
conditions in many cases produces remarkable effects. In particular, the so-
called double chain condition was taken into account. In 1971 Dmitrij Zaicev
in his paper On the theory of minimax groups and in 1973 Thomas Shores in
A chain condition for groups independently proved that if G is a generalized
soluble group admitting no chains of subgroups with the same order type of
the set of integers, then G is a finite extension of a soluble group and it either
satisfies the minimal or the maximal condition on subgroups. These results are
a remarkable example of both the aesthetics and the intrinsic force of the sub-
ject: even in the more complex hypotheses an intimate truth will appear, which
will reduce the question to simpler, more accessible ones. In particular, most
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INTRODUCTION

of the times it is possible to reduce a suitable condition to its extremal cases,
namely those cases for which the statement is trivial, as minimal and maxi-
mal condition are for the double chain condition on subgroups. Throughout
this work many interesting examples of this behavior will be shown, not only
with regards to double chain conditions, and still some case will be revealed,
for which a strict reduction into extremal cases is not possible. At the occur-
rence of such (bad, indeed, but imperfections makes perfection) situations, an
example will be given.
It should also be mentioned that the double chain condition for other algebraic

structures, like for instance rings and modules, has also been studied (see for
instance [14]).

In conclusion, along this work a triadic structure is going to be exhibited,
so that each chapter will concern a subgroup property θ and will show fun-
damental or useful results about the maximal and the minimal condition on
θ-subgroups, then moving on to the related double chain condition and showing
the behavior of several reasonable classes of groups satisfying it, in comparison
with the results for the other two conditions, which it extends.

Practical

A group class X is said to be a finiteness class if

F ≤ X ≤ U

with F and U being the class of finite groups and the class of all groups,
respectively. In other words, a class of groups X is said to be a finiteness class
if the class of finite groups lies in it. The group theoretical property related
with such a class is said finiteness condition and it is satisfied by every finite
group by definition. Among finiteness conditions great importance has been
given to the so-called chain conditions, which are the fulcrum of this thesis.
Since the word chain is generally used to define a totally ordered set (i.e. an
ordered set in which every pair of elements are comparable under the order
relation), it is now clear that totally ordered sets must be involved.
Let θ be a group theoretical property and T a totally ordered set. Then

we say that a group G satisfies the T -chain condition on θ-subgroups if the
lattice of θ-subgroups of G ordered by inclusion does not contain any T -ordered
subset. For instance, if we choose T = (N, <) and θ as the property of being a
subgroup, then the related chain condition is the well-known maximal condition
on subgroups, which in literature can also be found under other names such as
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maximum condition (on subgroups), ascending chain condition (on subgroups)
or Max, often referring to the related class. Precisely a group G belongs to
Max if and only if for each ascending chain

X0 ≤ X1 ≤ . . . ≤ Xn ≤ . . .

of subgroups of G there exists an integer k such that Xn = Xk for all n ≥ k.
On the other hand, if we choose T = (N, >) and θ as the property of being a

subgroup, then the related chain condition is the renowned minimal condition
on subgroups, which in literature can also be found under other names such as
minimum condition (on subgroups), descending chain condition (on subgroups)
or Min, frequently referring to the related class. Precisely a group G belongs
to Min if and only if for each descending chain

X0 ≥ X1 ≥ . . . ≥ Xn ≥ . . .

of subgroups of G there exists an integer k such that Xn = Xk for all n ≥ k.
From the first historical definition a generalization of these two properties to
θ-subgroups for other properties θ is straightforward.
Finally, coming to the core of this work, we have the double chain condition

on θ-subgroups if we take T = (Z, <) and θ as a subgroup theoretical property.
We shall say that a group G satisfies the double chain condition on θ-subgroups
if for each double chain

. . . ≤ X−n ≤ . . . ≤ X−1 ≤ X0 ≤ X1 ≤ . . . ≤ Xn ≤ . . .

of θ-subgroups of G there exists an integer k such that either Xn = Xk for all
n ≤ k or Xn = Xk for all n ≥ k. Obviously, both the minimal and the maximal
conditions on θ-subgroups imply the double chain condition on θ-subgroups,
forming its first two trivial extremal cases.

We are going to give here some of the basic instruments or concepts which
will be of great use in the following chapters. Firstly we are bringing the reader
into the mood of dealing with double chain conditions, showing simple cases
where double chains appear and some related results. Secondly we are giving
some preliminary results which we will use extensively in the following.

The appearance of double chains
Let us show here some cases where double chains immediately are formed,

which will make it possible to use the double chain conditions (and maximal
and minimal conditions, too, clearly) to obtain well-behaved subgroups to
proceed in our study. One of them is the following lemma, which allows us to
take into direct account the perhaps most eye-catching results from satisfying
double chain conditions.
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Lemma 0.0.1. Let χ be a subgroup theoretical property such that the inter-
section of two χ-subgroups is still a χ-subgroup and let G be a group satisfying
the double chain condition on non-χ-subgroups. Let H/K be a section of G
which is a direct product of infinitely many non-trivial subgroups. Then K is
a χ-subgroup of G and such is every direct term of H/K.

Proof. H/K is a direct product of infinitely many non-trivial subgroups if and
only if it contains a direct product of countably many non-trivial subgroups
so without loss of generality we can let {Hn|n ∈ Z} be a countably infinite
collection of subgroups of H properly containing K and such that H/K =
Dri∈ZHi/K. We can then split this collection into two infinite collections,
namely {Ui|i ∈ Z} and {Vj|j ∈ Z}, such that

H/K = Dri∈ZUi/K ×Drj∈ZVj/K

and for each integer n define

U∗n = 〈Uk|k < n〉

V ∗n = 〈Vk|k < n〉.

It is clear that these two families form two infinite double chains of subgroups
of G. Therefore, since the group satisfies the double chain condition on non-
χ-subgroups, there exist two integers s and r such that U∗rχG and V ∗s χG.
Obviously we have that U∗r ∩V ∗s = K and K is a χ-subgroup by the hypothesis
on χ.
If now we take a subgroup Hm from the collection {Hn|n ∈ Z}, we have that
H/Hm satisfies the same hypotheses of the lemma and then by the first part of
the proof and by the generality of Hm we have that every direct term of H/K
is a χ-subgroup of G.

This result underlines, in a rather simple way, how the presence of a direct
product of subgroups may have potentially a strong influence on the whole
group in case it satisfies a double chain condition, giving us infinitely many
well-behaved subgroups to employ. The extent of the effect is obviously greatly
influenced by the nature of the property χ, as we will show along this work.
Now we are going to show a couple of usual circumstances in which infinite

direct products of subgroups (and hence double chains) show up.

For our purposes we are going to define the concept of independence for a
set of indices. Let G be a group and let {Sα|α ∈ I} be a family of subgroups
of G. A subset B of I is said to be independent if 〈Sβ|β ∈ B〉 = Drβ∈BSβ.
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In this case {Sβ|β ∈ B} is said to be an independent set of subgroups of G.
It is useful to notice that for every non-empty set of indices A the set of all
independent subset of A is an inductive set and hence Zorn’s Lemma can be
applied to it.

For an abelian group G the rank rp(G) or p-rank of G is the cardinality of a
maximal independent subset of cyclic p-subgroups of G. Similarly the 0-rank
or torsion-free rank of G is defined as the cardinality of a maximal independent
subset of infinite cyclic subgroups of G.

Now, for an abelian p-group to have finite rank is equivalent to satisfying the
minimal condition on subgroups [see for instance [52] p. 107]. With this in
mind the following is an easy consequence.

Proposition 0.0.2. Let G be an abelian periodic group not satisfying the min-
imal condition on subgroups. Then G contains a subgroup which is direct prod-
uct of infinitely many subgroups.

From the above we can see how to find double chains by means of abelian
subgroups not satisfying Min and this will be used broadly in the following.

Let us now use the definition of an independent set to establish some more
facts about infinite direct products and conditions for their existence in groups.

Lemma 0.0.3. Let G be a group and let {Mα|α ∈ I} be a family of minimal
normal subgroups of G. Then the subgroup generated by the family is the direct
product of certain members of that family.

Proof. Let J = 〈Mα|α ∈ I〉. By Zorn’s Lemma we can find a maximal inde-
pendent set B ⊆ I. Let K = Drβ∈BMβ and suppose K 6= J . Then there is an
α ∈ I such that Mα is not contained in K and clearly Mα ∩K = {1} by the
minimality of Mα. Hence MαK = Mα × K and the set B ∪ {α} contradicts
the maximality of B. Therefore J = K and the lemma is proved.

Recall that, given a group G, we define the socle of G to be equal to {1} if
G does not have minimal normal subgroups and equal to the product of all its
minimal normal subgroups if G does.

Corollary 0.0.4. The socle of a group G is the direct product of a (possibly
empty) set of minimal normal subgroups of G.
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Other relevant preliminaries
The elementary consideration that every group has a chief series, together

with the knowledge about some classes of groups possessing particular series
of this kind, lead many to investigate about possible extensions of those classes
for which the properties of their chief series still hold. Important steps in this
direction were firstly made by A. I. Mal’cev [35] in 1941. Here we present these
theorems as proved, in a more modern fashion, by McLain [37] in 1956 .

Theorem 0.0.5 (Mal’cev [35]). The property “every chief factor is abelian” is
L-closed

Proof. Let us suppose the existence of a group G such that satisfies “every
chief factor is abelian” locally and which has a minimal normal subgroup N
containing a and b such that c = [a, b] 6= 1. By minimality, N = 〈c〉G and
clearly there exist g1, . . . , gn in G such that a and b belong to 〈cg1 , . . . , cgn〉. By
hypotesis all chief factors of H = 〈c, g1, . . . , gn〉 are abelian and since c ∈ (〈c〉H)′

we have that 〈c〉H = (〈c〉H)′. On the other hand by Zorn’s Lemma we can find
in 〈c〉H a subgroup M which is normal in H, does not contain c and it is
maximal with respect to these conditions. Then 〈c〉H/M is a chief factor of H,
so (〈c〉H)′ ≤M < 〈c〉H , a contradiction.

Theorem 0.0.6 (Mal’cev [35]). The property “every chief factor is central” is
L-closed

Proof. Let us suppose the existence of a group G such that satisfies “every chief
factor is central” locally and having a minimal normal subgroup N such that
there are a ∈ N and g ∈ G such that c = [a, g] 6= 1. By minimality, N = 〈c〉G
and clearly there exist g1, . . . , gn in G such that a belongs to 〈cg1 , . . . , cgn〉.
By hypothesis all chief factors of H = 〈c, g, g1, . . . , gn〉 are central. Let us say
A = 〈a〉H . Since obviously [A,H] is normal in H, we have that [A,H] contains
c and all its conjugates in H, then A ≤ [A,H] and clearly A = [A,H]. If
we now take M as a maximal H-invariant subgroup of A not containing a we
have that A/M is a chief factor of H and hence [A,H] ≤ M < A, which is a
contradiction.

Some significant results follow from these parallel theorems.

Corollary 0.0.7. A chief factor of a locally soluble group is abelian and a
chief factor of a locally nilpotent group is central.
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From this we can straightforwardly see that

Corollary 0.0.8. A locally soluble simple group must be cyclic of prime order.

Anyway many consequences of these results will be given in the following.

We now give a conclusion to this practical introduction by presenting the
concept of (right) Engel element, which is one of the many possible ways of
extending properties pertaining nilpotency.
If G is a group and x an element of G, we can define x to be a right Engel

element of G if for each y in G there exists a natural number n such that

[x, y, . . . , y︸ ︷︷ ︸
n

] = 1.

We write here R(G) for the set of right Engel elements of G. In general one does
not know whether R(G) is a subgroup of G or not, but clearly there are classes
of groups, such as the class of nilpotent groups (where obviously every element
is a right Engel element), for which R(G) is a rather well-behaved subgroup.
One relevant study about the problem of Engel elements was spotlighted in a
paper by Baer in 1957. One of the most important results is that in a group
G satisfying Max R(G) is the hypercentre of G ([4], p. 257). As concerns our
case we have the following statement.

Proposition 0.0.9. Let G be a locally (finite-by-nilpotent) group, then R(G)
is the largest normal subgroup of G respect with the condition of having all
G-chief factors being central factors of G.

Proof. Firstly notice that R(G) is easily seen to be a locally nilpotent char-
acteristic subgroup of G by the quoted result of Baer. Now we want to prove
that, for each X and Y such that X/Y is a chief factor of G and X ≤ R(G),
X/Y is a central factor of G. We can assume without loss of generality that
Y = {1} and take by a contradiction x ∈ X and g ∈ G such that t = [x, g] 6= 1.
Since clearly X = 〈y〉G there exists a finitely generated subgroup H of G such
that x ∈ 〈y〉H . Say K = 〈t, g,H〉. Then t ∈ [〈t〉K , K] and so 〈t〉K = [〈t〉K , K].
On the other hand, we have that 〈t〉K ≤ R(K) and that R(K) coincides with
the hypercentre of K, since K is Max, so [〈t〉K , K] < 〈t〉K and this proves our
first claim.
Let now S be a normal subgroup of G having a G-central series and fix

an element x of G. K = S〈x〉 has a central series and so does in K every
finitely generated subgroup, which is by hypothesis finite-by-nilpotent and then
nilpotent. So K is locally nilpotent and this means, by the arbitrariness of x,
that S lies inside R(G).
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On the notation:
Maximal and minimal condition on θ-subgroups will be referred to as Max-θ

and Min-θ, respectively. Regarding the double chain condition on θ-subgroups,
we will instead write DCθ. In particular, ab, n, nn, sn, snab, snn, np will stand
for the subgroup property of being “abelian”, “normal”, “non-normal”, “sub-
normal”, “subnormal abelian”, “subnormal non-normal” and “non-pronormal”,
respectively.
Apart from this, most of our notation is standard and can be found in [48].
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Chapter 1
Double chain condition on subgroups

Here we are going to introduce the fundamental chain conditions, in which θ
is the property of being merely a group. We should remember in advance that
even in this seemingly very elementary case serious pathologies can come out.
In fact, in 1979 Alexander Oľsanskĭi [41] has shown that there exist infinite
simple groups satisfying both minimal and maximal condition on their sub-
groups, making then the study of those properties being reasonably restricted
to a universe of generalized soluble groups in order to exclude such ill-behaved
groups.

1.1 Maximal condition

As we just noticed, the maximal condition on subgroups, together with the
minimal condition, cannot aim to reach the deepest generality and mostly has
to deal with the fact of its study being restricted time by time to some class
of generalized soluble groups. At the beginning, until the quoted paper of
Oľsanskĭi, many approached the study of this property and many achieved
remarkable results; among them Hirsch, Mal’cev, Baer, Schmidt, Bowers and
Robinson, who came with claiming that the general question might have not
a positive (and certainly not an easy) answer. Together with these consider-
ations, many papers were published in which the study was restricted with
regards to the type of property (see Zappa [62]) or to the class of groups.
Since the theme is well-studied and can be easily found throughout the liter-

ature, here we will present some basic results for future use, only showing the
more relevant proofs.
In his paper of 1951 Mal’cev proved that a soluble group of automorphisms

of a finitely generated abelian group is polycyclic (Mal’cev [36], Theorem 2).
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1.2. MINIMAL CONDITION

This result was eventually generalized by Baer ([3], Satz B’) and finally by
Robinson ([48], Theorem 3.27), whose result we report here.

Theorem 1.1.1. A radical group of automorphisms of a polycyclic-by-finite
group is polycyclic.

This result will be very useful in several circumstances and it is in fact used
in more then one occasion in the proof of Theorem 1.1.2 below.
Moving somehow away from Max, many were the group theorists concern-

ing about the maximal condition on abelian subgroups. Having to face sev-
eral restrictions in their approach to the pure maximal condition, many asked
themselves to what extent the less pure but not less interesting property of not
having proper ascending chains of abelian subgroups, namely Max-ab, could
lay its influence upon certain classes of groups. Clearly these classes should be,
in some sense, influenced by the structure of their abelian subgroups and there-
fore they are expected to have many of them. The restriction to generalized
soluble groups was just one step forward. In [36] (Theorem 8) Mal’cev showed
that for soluble groups Max-ab and Max coincide and this, together with the
result of Schmidt (see the section below) gave birth to a prolific literature
about this kind of finiteness conditions.
Here we give the statement of the generalization of Mal’cev’s result.

Theorem 1.1.2 (Robinson [48], Theorem 3.31). Let G be a radical group and
R the Hirsch-Plotkin radical of G. If R satisfies Max-ab then G satisfies Max.

1.2 Minimal condition

As we noticed for the maximal condition on subgroups, even the study about
the minimal condition, which is sometimes a more striking property, cannot aim
to reach the deepest generality and mostly has to be restricted time by time to
some class of generalized soluble groups. Before the quoted paper of Oľsanskĭi,
many approached the study of this property and many achieved remarkable
results; among them Černikov, from whom finite extensions of abelian groups
satisfying Min took their name, Kuroš, Baer, Schmidt, Polovickĭi and Robin-
son. Together with these considerations, many papers were published in which
the study was limited with regards to the type of property or to the class of
groups. As we will see in this section, there is a strong analogy between results
about the minimal and the maximal condition on subgroups especially when

13
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looking at our final theorems. Nevertheless, one has to point out that from the
very beginning of our brief inspection through the minimal condition a strong
asymmetry shows up. In fact, as we are going to see in a moment, in the Min
case one cannot avoid the hypothesis of something being periodic, which was
not present, even in the analogous case of being finitely generated, in the Max
case. The crucial thing here is the following: in the generalized Min case (see
Theorem 1.2.1, see Theorem 4.2.5) the group has to satisfy some periodicity
hypotheses while in the generalized Max case it has to be a radical group;
however, as we have already discussed, the generalized soluble hypothesis is a
very common one and it is basically the fundamental premise for working on
many finiteness conditions avoiding pathologies, so it is required anyway. That
is the main reason the work with the generalized Min condition is most of the
times more clumsy.
Since the theme is well-studied and can be easily found throughout the liter-

ature, here we will present some basic results for future use, only showing the
more relevant proofs. Moreover some results can be deduced from more general
ones that can be found below in the dedicated chapter (see, for example, the
results in Section 4.2).
In his paper of 1955 Baer proved an important result about the periodic group

of automorphisms of Černikov groups; in 1960 Polovickĭi [44] independently
proved the same result. We state it here.

Theorem 1.2.1. A periodic group of automorphisms of a Černikov group is
Černikov.

This result will be very useful in several circumstances and it is in fact used
in more then one occasion in the proof of Theorem 1.2.2 below.
Moving away from Min, many were the group theorists concerning about the

minimal condition on abelian subgroups, namely Min-ab, which they studied, in
the same ideal background described for the maximal condition on subgroups,
in a generalized soluble environment. In [53] (Theorem 9) Schmidt showed that
for hyperabelian groups Min-ab and Min coincide and this, together with the
quoted result of Mal’cev about soluble groups satisfying Max-ab, gave birth to
a wide literature about this kind of finiteness conditions.
Here we give the statement of the generalization of Schmidt’s result.

Theorem 1.2.2 (Robinson [48], Theorem 3.32). Let G be a radical group and
R the Hirsch-Plotkin radical of G. If R satisfies Min-ab then G is a soluble
Černikov group.

We conclude this section by proving an important result by Černikov [12], the
prove of which can be retrieved in [48] and is based on the following

14



1.3. DOUBLE CHAIN CONDITION

Lemma 1.2.3. Let G a locally finite group. If G satisfies the minimal condi-
tion on abelian p-subgroups, then so does every section of G. If G has finite
Sylow p-subgroups, then so has every section of G.

Theorem 1.2.4. Let G be a locally soluble group satisfying Min-ab. Then G
is a Černikov group.

Proof. Let H be a chief factor of G. Since by Corollary 0.0.7 H is abelian, we
know that H is an elementary abelian p-group. By Lemma 1.2.3 H is Min and
hence it is finite. The class F−H, namely the largest quotient-closed class of
groups with trivial intersection with F, is clearly a radical class and the F−H-
radical of G, say R, belongs to it, so it must induce the trivial automorphism
on H. Because of the arbitrary choice of H, we see that R has a central series,
so it is also clearly locally nilpotent. By Theorem 1.2.2 R is Černikov. On the
other hand G/R has no Prüfer subgroups by the definition of R and it is easily
seen (see, for example, the argument used inside Theorem 4.2.5) that G/R
satisfies Min-ab, too, so its abelian subgroups are all finite. Now by the well-
known theorem of Hall-Kulatilaka-Kargapolov G/R is finite and the theorem
is proved.

We conclude this section by stating an interesting result by Zaicev, which will
be used in the following.

Theorem 1.2.5 (Zaicev [61]). Let G be a periodic locally solvable group and F
be a finite group of automorphisms of G. If each F -invariant abelian subgroup
of G satisfies Min, then G satisfies Min-ab.

1.3 Double chain condition

In this section we are giving account of the quoted paper of Shores about groups
with no double chains of subgroups, which we will call here DC-groups. The
paper, mostly unaware of the recent paper of Zaicev about minimax groups,
deals with two questions: “To which extent do DC-groups satisfy either Max
or Min?” and “What are the classes of groups for which DC and DCab, namely
the double chain condition on abelian subgroups, do and do not coincide?”. As
we will see the answer is somewhat positive for the first question, being that
it is positive for a reasonably large class of groups, and somewhat negative for
the second one.
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Lemma 1.3.1. Let G be an abelian DC-group. Then G is either Max or Min.
In particular, if G is not periodic it is Max.

Proof. Let G be a periodic abelian group. Then it is clearly Min, otherwise
Soc(G) would be the direct sum of infinitely many subgroups which we could
re-arrange as a double chain.
Let now G have an element x of infinite order. Then, if we consider

. . . < 〈xn〉 < . . . < 〈x〉 ≤ 〈x, x1〉 ≤ . . . ≤ 〈x, x1, . . . , xn〉 ≤ . . .

with x1, . . . , xn, . . . elements of G it has to stop and so G satisfies Max.

Theorem 1.3.2. Let G be a nilpotent group. Then the following are equivalent:

(a) G is either Max or Min;

(b) G is a DC-group;

(c) G is a DCab-group.

Proof. Let us show the only non-trivial implication, namely (c) =⇒ (a). We
firstly claim that if G is DCab-group G/Z(G) is the same. In fact, let A/Z(G)
be an abelian subgroup of G/Z(G) and suppose that it is neither Max nor Min.
Then Z(G) satisfies Min. Let M a maximal abelian subgroup of the nilpotent
group A, we have that M cannot be Max and hence is Min by Lemma 1.3.1.
So A is not periodic by Theorem 1.2.1 and Z(G) is finite. From this we get at
once that A′ is finite, too, and that A/Z(G) is residually finite. Therefore M
is finite, a contradiction.
By means of this claim, we can now use induction on the nilpotency length

of G. Let G be periodic. By Lemma 1.3.1 Z(G) is Min and by induction
G/Z(G) is either Min or Max, that is Min in both cases and so is G. Let G
be non-periodic. Then Z(G) has to be finitely generated. If Z(G) is not Min,
then G/Z(G) is Max and so is G. So we can assume that Z(G) is finite. Now,
by induction, G/Z(G) has to be Max or Min, hence it is Max and so is G.

Let p be a prime, P be a Prüfer p-group and x an automorphism of P of
infinite order. If we consider G = 〈x〉 n P we readily see that G satisfies the
double chain condition on abelian subgroups while it does not satisfy the one
on subgroups. This gives a negative answer to our second question, at least
in the case of soluble groups, whereas, as we have just seen, it is positive for
nilpotent groups. Nevertheless, from our Lemma 1.3.1 and from Satz A.3 in
[1] one can directly deduce the following
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Proposition 1.3.3. Let G be a hyper-(finite or locally nilpotent) DCab-group.
Then G is a soluble-by-finite minimax group.

Theorem 1.3.4. Let G be a hyper-(finite or locally nilpotent) group. Then the
following are equivalent:

(a) G is soluble-by-finite and satisfies either Max or Min;

(b) G is a DC-group;

Proof. Clearly (a) =⇒ (b). Conversely let G be a hyper-(finite or locally
nilpotent) DC-group. By Proposition 1.3.3 we know that G is soluble-by-
finite. Clearly we may suppose that G is soluble and proceed by induction on
the derived length of G. Since G′ is either Max or Min, if it is not periodic it
is Max and so has to be G/G′, together with G, so we may assume G′ being
periodic and hence Min. Consider C = CG(G′), which is clearly nilpotent of
class 2 and then either Max or Min by Theorem 1.3.2. If G′ is finite, then G/C
is finite and G is either Max or Min so we can suppose that G′ is not finitely
generated. From this it follows that G itself has to be periodic and so G/G′

satisfies Min and the theorem is proved.

Theorem 1.3.5. Let G be a locally radical group. Then the following are
equivalent:

(a) G is soluble and satisfies either Max or Min;

(b) G is a DC-group;

Proof. Clearly (a) =⇒ (b). Conversely let G be a locally radical DC-group.
By Theorem 1.3.4 every finitely generated subgroup of G is soluble and satisfies
either Min or Max, so we can suppose that G is not finitely generated. From
this follows that G has to be periodic. Then every abelian subgroup of G is
Min and, by Theorem 1.2.4, G satisfies Min.
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Chapter 2
Double chain condition on normal
subgroups

This chapter will talk about chain conditions on normal subgroups. It is clear
that every simple group satisfies every chain condition on normal (and subnor-
mal) subgroups, so here we have further reasons to work in a suitable universe
of generalized soluble groups, regardless of the results of Oľsanskĭi.
As we will show, these three properties are closed under homomorphic images

and, maybe surprisingly, also under subgroups of finite index.

2.1 Maximal condition

The maximal condition on normal subgroups, which we will denote by Max-n,
is clearly P and H-closed, while it is not closed under S or Sn operators. This
is easily shown by the following

Example 2.1.1. Let G = 〈a, b : b−1ab = a2〉. Then G has only one nor-
mal subgroup which is isomorphic with the group of rational numbers whose
denominators are powers of 2.

The situation is different if we look at the inheritance for subgroups of finite
index.

Theorem 2.1.2 (Wilson [59]). Let G be a group satisfying Max-n and let H
be a subgroup of finite index of G. Then H satisfies Max-n.

Proof. Clearly we may assume H normal in G. Suppose by a contradiction
that H does not satisfy the maximal condition on H-invariant subgroups, so
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we can find in H a normal subgroup K of G maximal among the subgroups
belonging to an H-invariant ascending chain. If we fix an ascending chain
of normal subgroups of H, for instance K = K1 < K2 < . . ., and if we call
T a right transversal of H in G we notice that, for every i, K = coreTKi,
so it is not empty the set of all finite non-empty sets such that the previous
condition is satisfied for every i. Call X an element of minimal cardinality of
this set. If x ∈ X, then Xx−1 is a set with the same property, so we may
assume that 1 ∈ X. Now call Y = X \ {1} and notice that it cannot be empty
since otherwise K would not be included in any ascending chain of H-invariant
subgroups of H, which is, indeed. Let K = K1 < K2 < . . . be an ascending
chain of normal subgroups of H and let Li = KicoreYKi, which defines an
ascending chain of normal subgroups of H (clearly containing K), otherwise
we would have

Ki = KicoreXKi+1 = Ki(Ki+1∩ coreYKi+1) ≥ Ki+1∩Li = Ki+1∩Li+1 = Ki+1

from a certain integer i on.
So, by the property of X, we have that coreXLi = K and this means that

Ki = KicoreXLi = Ki(Li ∩ coreYLi) = Li ∩ (KicoreYLi) = Li.

But now from the definition of Li it follows that coreYKi = coreXKi = K and
this contradicts the minimality of X.

As with the maximal condition on subgroups, we have the following result.

Theorem 2.1.3 (Hall [29], p. 420). A soluble group satisfying Max-n is finitely
generated.

Proof. Let G be a soluble group in Max-n. Let us work by induction on
the derived length of G. Let A be the last non-trivial term of the derived
series and let X = 〈x1, . . . , xm〉 be such that G = AX. Since A satisfies
Max-G we have that there exist the elements in A, say y1, . . . , yn, such that
A = 〈y1〉G · · · 〈ym〉G and since A is abelian it follows easily that G is generated
by x1, . . . , xm, y1, . . . , yn.

As shown by Example 2.1.1 there exist metabelian groups satisfying Max-n
which does not satisfy Max, so in the universe of soluble groups we have that
Max is a proper subclass of Max-n, which is a proper subclass of the class of
finitely generated groups. Nevertheless, P. Hall showed, in particular, that for
metabelian groups these two letter classes coincide. This result is based on the
following lemma on modules which we just state here.
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Lemma 2.1.4 (Hall [29], Corollary to Lemma 3). Let H be a normal subgroup
of a group G such that G/H is polycyclic. Let N be an H-module contained in
the G-module M and such that M is generated as a G-module by N . Then, if
N satisfies Max-H, M satisfies Max-G.

Theorem 2.1.5 (Hall [29], Theorem 3). Every finitely generated abelian-by-
polycyclic group satisfies Max-n.

Proof. Let G be a group and let A be a normal abelian subgroup of G such
that G/A is polycyclic. It is known that in A there exist a1, . . . , an such that
A = 〈a1〉G, . . . , 〈an〉G. Let us take an arbitrary ai and let C = CG(〈ai〉G), so
G/C is polycyclic. Clearly 〈ai〉 is an A-module which satisfies Max-A since
A ≤ C. Then by Lemma 2.1.4, taking H = A and M = 〈ai〉G, we have
that each 〈ai〉G satisfies Max-G and since Max-G is P-closed we have that G
satisfies Max-n.

Different is the situation regarding locally nilpotent groups.

Locally Nilpotent and Locally Soluble groups

Theorem 2.1.6 (McLain [37]). For a locally nilpotent group Max and Max-n
coincide.

Proof. Let G be a locally nilpotent group satisfying Max-n and not Max,
hence being not a finitely generated nilpotent group. Since clearly G = XG′

where X is a finitely generated nilpotent subgroup of nilpotent class, say c,
G = Xγc+2 for a well-known result of McLain (see [38], Lemma 2). So G/γc+2

is nilpotent and the lower central series of G stops after finitely many steps at,
say, L, which is clearly non-trivial by our first assumption. Take now a normal
subgroup M of G maximal with respect to being properly contained in L. By
Corollary 0.0.7 L/M is a central factor of G and hence L = [L,G] ≤ M < L,
a contradiction.

On the other hand things do not work as well for locally soluble groups, how it
is shown by a construction by McLain [38], who built a periodic locally soluble
group satisfying Max-n which is not soluble, still.

Example 2.1.7 (McLain [38]). There exists a locally soluble group satisfying
Max-n which is not soluble.
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2.2 Minimal condition

The minimal condition on normal subgroups, which we will denote by Min-n,
is clearly P and H-closed, while it is not closed under S or Sn operators, as
shown in an example by Čarin [9].
On the other hand, similarly to the Max-n case, we have that Min-n is inher-

ited by subgroups of finite index.

Theorem 2.2.1 (Wilson [59]). Let G be a group satisfying Min-n and let H
be a subgroup of finite index of G. Then H satisfies Min-n.

Proof. Clearly we may assume H normal in G. Suppose by a contradiction that
H does not satisfy the minimal condition on H-invariant subgroups, so there
exists in H a subgroup M which is normal in G and minimal with respect to the
condition to belong to a descending chain of normal subgroups of H. If we fix
a descending chain of normal subgroups of H, namely M = M1 > M2 > . . .,
and if we call T a right transversal of H in G we notice that, for every i,
M = MT

i , so it is not empty the set of all finite non-empty sets such that the
previous condition is satisfied for every i. Call then X an element of minimal
cardinality of this set. We can assume that 1 ∈ X. Now call Y = X \ {1} and
notice that it cannot be empty since otherwise K would satisfy the minimal
condition on H-invariant subgroups, which is not. Let M = M1 > M2 > . . .
be a descending chain of normal subgroups of H and let Li = Mi∩MY

i , which
defines a descending chain of normal subgroups of H (clearly contained in M),
otherwise we would have

Mi = Mi ∩MX
i+1 = Mi ∩ (Mi+1M

Y
i+1) ≤Mi+1Li = Mi+1

from a certain integer i on.
So, by the property of X, we have that LXi = M and this means that

Mi = Mi ∩ LXi = Mi ∩ (LiL
Y
i ) ≤ Li(Mi ∩MY

i ) = Li.

But now from the definition of Li it follows that MY
i = MX

i = M and this
contradicts the minimality of X.

Corollary 2.2.2 (Baer [2], p. 14, Theorem 4). Let G be a group satisfying
Min-n. Then the centre and the FC-hypercentre of the finite residual of G
coincide and satisfy Min.

Proof. Let R be the finite residual of G, which is, by Min-n, minimal among
the normal subgroups of G having finite index. Say F1 the FC-centre of G and
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F2/F1 the FC-centre of R/F1, then F1 = ζ(R) and F2 = ζ2(R). If we take
y ∈ R and x ∈ ζ2(R), we have that xy = xz, where z ∈ ζ(R). Since the order
of z divides the order of x and ζ(R) clearly satisfies Min by Theorem 2.2.1, we
can say that x ∈ F1 and so F2 = ζ2(R) = ζ(R), from which the thesis follows
immediately.

Corollary 2.2.3. Let χ be the following subgroup theoretical property: HχG
if and only if H / G and AutGH is residually finite. Then a hyper-χ group
which satisfies Min-n is a Černikov group and the properties Min and Min-n
coincide for hyper-χ groups.

Proof. Let G be a hyper-χ group satisfying Min-n and R be the finite residual
of G, which is hence minimal among the normal subgroups of G having finite
index. Take an ascending normal χ-series of G and a factor F of the series.
Clearly AutRF is residually finite and R must centralize F . We have found
that R centralizes every term of the ascending χ-series and then R has an
ascending central series. So by Corollary 2.2.2 R is abelian and Černikov and
so is G.

By means of these useful corollaries it is revealed, in a pretty straightforward
way, how Min and Min-n coincide for some relevant classes.

Proposition 2.2.4 (Duguid and McLain [22]). For the FC-hypercentral groups
Min-n and Min coincide.

Proposition 2.2.5 (Baer [2], p. 16, Theorem 3). For the hyperfinite groups
Min-n and Min coincide.

Moreover, as we will see in the next paragraph, the same holds for locally
nilpotent groups.

Theorem 2.2.6 (Baer [5]). Let G be a soluble group satisfying Min-n. Then
G is locally finite.

Proof. Let us use induction on the derived length of G, say n > 1, and let
A = G(n−1). Since A does not have descending chains of G-invariant subgroups
it has an ascending chief G-series. If we take a chief factor of that series, say
F , G/CG(F ) is locally finite by induction and is isomorphic with an irreducible
group of automorphisms of F . Then F is an elementary abelian p-group [See
[5], Proposition (b)] and so G is locally finite.
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We state here a direct corollary of Lemma 0.0.3.

Corollary 2.2.7. Let M be a minimal normal subgroup of a group. Then M
satisfies Min-n if and only if M is the direct product of finitely many isomorphic
simple groups.

Locally Nilpotent and Locally Soluble groups

Analogously to what proved for Max-n, things work pretty well for locally
nilpotent groups, while for locally soluble groups things are more troublesome.

Theorem 2.2.8 (Čarin [9], McLain [37]). For a locally nilpotent group Min
and Min-n coincide.

Proof. If G is a locally nilpotent group satisfying Min-n, then it has an ascend-
ing chief series which is an ascending central series by Corollary 0.0.7. Hence
G satisfies Min by Corollary 2.2.3

This way, we have shown that a locally nilpotent group satisfying Min-n is a
hypercentral Černikov group, and examples such as that of the locally dihedral
2-group show that they need not be nilpotent. Anyway, the consideration that
in a Baer group the finite residual lies in the centre allows us to state the
following stronger result.

Proposition 2.2.9. Let G be a Baer group satisfying Min-n. Then G is a
nilpotent Černikov group.

On the other hand things do not work as well for locally soluble groups, how it
is shown by a construction by McLain [38], who built a periodic locally soluble
group satisfying Min-n which is not soluble.

Example 2.2.10 (McLain [38]). There exists a locally soluble group satisfying
Min-n which is not soluble.

Finally the following is still apparently unknown.

Open Problem. Let G be a locally soluble group satisfying Min-n. Is G
periodic?
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2.3 Double chain condition

Here we will discuss on the double chain condition on normal subgroups. A
group G belonging to this class will be said to satisfy the DCn-condition. This
property is clearly closed under H, though it is not closed under P, as shown
by the direct product between a Prüfer group and an infinite cyclic group. It
is less obvious whether it is closed under subgroups of finite index or not, but,
similarly to Max-n and Min-n, we can prove this being true.

Theorem 2.3.1. Let G be a DCn-group and let H be a subgroup of finite index
of G. Then H is a DCn-group, too.

Proof. Clearly we may assume H normal in G. Suppose by a contradiction
that H does not satisfy the double chain condition on H-invariant subgroups.
If we now say S to be the set of all normal subgroups of G which belong to a
double chain of normal subgroups of H, if S is non-empty then it contains (at
least) either a maximal element K or a minimal element M . If otherwise S is
empty we can take K = {1}.
Case 1 Suppose that there exists in H such a normal subgroup K of G. If we

fix an ascending chain of normal subgroups of H, for instance K = K1 < K2 <
. . ., and if we call T a right transversal of H in G we notice that, for every i,
K = coreTKi, so it is not empty the set of all finite non-empty sets such that
the previous condition is satisfied for every i. Call X an element of minimal
cardinality of this set. If x ∈ X, then Xx−1 is a set with the same property, so
we may assume that 1 ∈ X. Now call Y = X \ {1} and notice that it cannot
be empty since otherwise K would not be included in any ascending chain of
H-invariant subgroups of H. Let K = K1 < K2 < . . . be an ascending chain
of normal subgroups of H and let Li = KicoreYKi, which defines an ascending
chain of normal subgroups of H (clearly containing K), otherwise we would
have

Ki = KicoreXKi+1 = Ki(Ki+1∩ coreYKi+1) ≥ Ki+1∩Li = Ki+1∩Li+1 = Ki+1

from a certain integer i on.
So, by the property of X, we have that coreXLi = K and this means that

Ki = KicoreXLi = Ki(Li ∩ coreYLi) = Li ∩ (KicoreYLi) = Li.

But now from the definition of Li it follows that coreYKi = coreXKi = K and
this contradicts the minimality of X.
Case 2 Suppose that there exists in H a minimal subgroup M of S. Since S

is not empty, if we fix a descending chain of normal subgroups of H, namely

24



2.3. DOUBLE CHAIN CONDITION

M = M1 > M2 > . . ., and if we call T a right transversal of H in G we notice
that, for every i, M = MT

i , so it is not empty the set of all finite non-empty
sets such that the previous condition is satisfied for every i. Call then X an
element of minimal cardinality of this set. We can assume that 1 ∈ X. Now call
Y = X\{1} and notice that it cannot be empty since otherwise K would satisfy
the minimal condition on H-invariant subgroups. Let M = M1 > M2 > . . . be
a descending chain of normal subgroups of H and let Li = Mi ∩MY

i , which
defines a descending chain of normal subgroups of H (clearly contained in M),
otherwise we would have

Mi = Mi ∩MX
i+1 = Mi ∩ (Mi+1M

Y
i+1) ≤Mi+1Li = Mi+1

from a certain integer i on.
So, by the property of X, we have that LXi = M and this means that

Mi = Mi ∩ LXi = Mi ∩ (LiL
Y
i ) ≤ Li(Mi ∩MY

i ) = Li.

But now from the definition of Li it follows that MY
i = MX

i = M and this
contradicts the minimality of X.

Let us now go into deeper details and show how we can reduce the double
chain condition on normal subgroups to the simpler cases of the minimal and
maximal conditions on normal subgroups. The following can be found in [19].

Lemma 2.3.2. The class of groups with trivial socle is closed under R.

Proof. Assume by a contradiction that there exist a group G and a collection
of normal subgroups of G {Ki|i ∈ I} such that each G/Ki has trivial socle and
G/K has non-trivial socle where

K =
⋂
i∈I

Ki.

Since G/K has non-trivial socle it contains a minimal normal subgroup N/K.
Then there exists an i ∈ I such that N ∩Ki = K and we have that NKi/Ki

is a minimal normal subgroup of G/Ki, a contradiction.

It follows in particular from Lemma 2.3.2 that any group G contains one
smallest normal subgroup S(G) such that G/S(G) has trivial socle.

Theorem 2.3.3. Let G be a DCn-group. Then S(G) satisfies the minimal con-
dition on G-invariant subgroups and G/S(G) satisfies the maximal condition
on normal subgroups.
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Proof. Clearly, G/S(G) does not contain minimal normal subgroups and sat-
isfies the property DCn, so it has to satisfy the maximal condition on normal
subgroups.
Let now N be a normal subgroup of G properly contained in S(G). G/N has

non-trivial socle, which clearly lies inside S(G)/N and this has then some non-
trivial minimal G-invariant subgroups, which are finitely many by the double
chain condition. This proves (see [2] p.3) that S(G) satisfies the minimal
condition on G-invariant subgroups.

Corollary 2.3.4. Let G be a residually finite DCn-group. Then G satisfies the
maximal condition on normal subgroups.

Proof. Since, by Theorem 2.3.3, S(G) is finite and G/S(G) satisfies the maxi-
mal condition on normal subgroups, so does G.

Corollary 2.3.5. Let G be a periodic hyper-(abelian or finite) DCn-group.
Then G satisfies the minimal condition on normal subgroups.

Proof. By Theorem 2.3.3 we can say that G/S(G) is soluble-by-finite and also
finitely generated by Theorem 2.1.3. Thus G/S(G) is finite. But again by
Theorem 2.3.3 S(G) satisfies the minimal condition on G-invariant subgroups
and so does G.

We can now provide a characterization of soluble groups satisfying Min-n and
this can be achieved by means of the above results and Theorem 2.2.6.

Corollary 2.3.6. Let G be a soluble group. Then G satisfies the minimal
condition on normal subgroups if and only if it is a periodic DCn-group.

We recall that a group G is said to have Černikov conjugacy classes or, equiv-
alently, to be a CC-group if G/CG(〈x〉G) is a Černikov group for each element
x of G.

Proposition 2.3.7. Let G be a DCn-group having Černikov conjugacy classes.
Then G satisfies either Min or Max.

Proof. Suppose that there exists an x ∈ G such that G/CG(〈x〉G) is infinite,
hence not satisfying Max-n. It follows that CG(〈x〉G) satisfies the minimal
condition on G-invariant subgroups and in particular Z(G) is a Černikov group.
On the other hand, G/Z(G) is clearly residually Černikov, then CG(〈x〉G) is
Černikov and so is G.
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Hence we can suppose that G is an FC-group, so G/Z(G) is locally normal
and finite and then by Corollaries 2.3.4 and 2.3.5 it satisfies both the maximal
and the minimal condition on normal subgroups. So G/Z(G) is finite and,
together with the fact that Z(G) satisfies either the maximal or the minimal
condition, the proposition is proved.
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Chapter 3
Double chain condition on non-normal
subgroups

We are now entering a classical and broad topic of group theory, the one which
deals with answering the question “What happens if a group G has only a few
θ-subgroup”, with θ a subgroup theoretical property. Clearly requiring a group
to have some finiteness conditions on non-θ subgroups is indeed an answer to
that question.

In the case of this chapter we are approaching chain conditions on non-normal
subgroups. The study about the class of groups satisfying the minimal con-
dition on non-normal subgroups began with Černikov in [13] and then was
widely broadened by Phillips and Wilson in [43], while groups satisfying the
maximal condition on non-normal subgroups has been investigated by Cutolo
[17]. Starting from these results the corresponding double chain condition was
studied by De Mari and de Giovanni in [19].

All these classes are clearly S and H-closed while they are not closed even
under extensions by finite groups.

3.1 Maximal condition

The aim of this section is the study of groups having many normal subgroups
in the interpretation of chain conditions and in particular the study of the
maximal condition on non-normal subgroups, which we will call Max-nn. As
we will see, in this case the situation is more complicated than in the Min-nn
case: in the latter case we are going to see a simple splitting into the two
extremal properties of being a Dedekind or a Černikov group, while here non-
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Dedekind non-Max groups satisfying Max-nn will be shown. This section will
follow the steps of [17].

Let us begin with a useful lemma.

Lemma 3.1.1. Let G be a group satisfying Max-nn. Then:

(a) Every non-normal subgroup of G is finitely generated;

(b) G′ satisfies Max. In particular G is locally polycyclic;

(c) Either G is soluble or it satisfies Max-ab.

Proof. (a) Let H be a non-finitely generated subgroup of G and let x be an
element of H. There exists an infinite sequence h1, h2, . . . , hn, . . . in H such
that 〈x, h1〉 < 〈x, h1, h2〉 < . . . < 〈x, h1, h2, . . . , hn〉 < . . ., and there is a
positive integer m such that 〈x, h1, h2, . . . , hm〉 is normal in G so 〈x〉G ≤ H
and H is normal in G.
(b) If G is Dedekind we are done, so let H be a maximal non-normal subgroup

of G. By (a) H is finitely generated, so let H = 〈x1, . . . , xn〉. If we fix xi with
0 ≤ i ≤ n, then 〈xi〉G satisfies Max, otherwise one would have an ascending
chain of subgroups between 〈xi〉 and 〈xi〉G while there is not. Then HG satisfies
Max, but G/HG is a Dedekind group, so G′ satisfies Max.
(c) Suppose that G contains an abelian group A which is not finitely gen-

erated. Then by (a) A is normal in G and by (b) every finitely generated
subgroup X/A of G/A is Max, so X is not finitely generated, hence it is nor-
mal, G/A is Dedekind and G is soluble.

Lemma 3.1.2. Let G be a group satisfying Max-nn. If G is not Dedekind,
then Z(G) = F × P × K, where F is a finite group, P is {1} or Zp∞ for a
prime p and K is torsion-free of finite rank. Moreover

(a) if P 6= {1}, K is finitely generated and every p′ subgroup is normal in G;

(b) if G has a finite non-normal subgroup, then K is finitely generated.

Proof. By Lemma 3.1.1 (a) every non-normal subgroup of G is finitely gener-
ated. If 〈c〉 is a non-normal subgroup of G and A is a non-finitely generated
subgroup of Z(G), then 〈c〉A is clearly normal in G and so in Z(G) there are
not two disjoint non-finitely generated subgroups. Then there is at most one
Prüfer p-group P for a prime p and K is of finite rank and is finitely generated
if P 6= {1}. Finally, since 〈c〉 is a characteristic subgroup of 〈c〉K, it follows
that 〈c〉K is non-normal in G, hence it is finitely generated and so is K.
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The following lemma is also needed to prove the main theorem of this section.
We state it here.

Lemma 3.1.3 (Cutolo [17], Lemma 2.3). Let G be a group satisfying Max-nn.
If G contains a central torsion-free subgroup A such that G/A is not periodic
and A is not finitely generated, then G is abelian.

Proposition 3.1.4. Let G be torsion-free nilpotent group satisfying Max-nn.
Then G is either finitely generated or abelian.

Proof. Let us suppose G is not abelian. By Lemma 3.1.3 we know that Z(G)
is finitely generated. By Lemma 3.1.1 (b) G′ is Max, so G/Z(G) is Max [See
[25], Theorem 5.9] and G is Max, too.

Lemma 3.1.5. Let G be a soluble-by-finite group satisfying Max-nn. If G is
neither Max nor Dedekind, it is either a central extension of Zp∞ for a rime p
by a finitely generated Dedekind group or the direct product of Q2 and a finite
hamiltonian group.

Proof. By Lemma 3.1.1 (b) G′ is Max, so G/Z(G) is Max [See [25], Theorem
5.9] and Z(G) cannot be finitely generated. Then G/Z(G) is a Dedekind group
and G is nilpotent. By Proposition 3.1.4 G/Tor(G) is either abelian or finitely
generated, which means abelian in any case, since in the former case Tor(G)
would be not finitely generated. So G′ is periodic, then finite and so is G/Z(G).
Let T = Tor(Z(G)) and firstly suppose G/T finitely generated. By Lemma

3.1.2 there is in T a Prüfer p-subgroup A for a prime p such that G/A is finitely
generated, which means that G/A is Dedekind.
So we can suppose G/T being not finitely generated so, by Lemma 3.1.2, T is

finite and every finite subgroup of G is normal, but G is not Dedekind so we
find an infinite non-normal cyclic subgroup 〈c〉. Since clearly 〈c〉∩Z(G) 6= {1}
we have that 〈c〉/〈c〉G is a finite non-normal subgroup of G/〈c〉G, which by
the previous argument has a central Prüfer p-subgroup P/〈c〉G such that G/P
is a finitely generated Dedekind group. So P ≤ Z(G) and P = P0 × P1

where P0 is finite and P1 is isomorphic with Qp, namely the additive group of
rational numbers whose denominators are powers of p. Clearly G/P1 is finitely
generated Dedekind, but P1 ∩ G′ = {1}, so G/P1 is finite. Then |G′| = 2
and G/Z(G) has exponent 2. By Lemma 3.1.2 every p′ subgroup of G/〈c〉G is
normal, so 〈c〉/〈c〉G is a p group and p = 2.
Let us show that G is in fact the direct product of Q2 by a finite hamiltonian

group. Let V/P1 be the 2′-component of G/P1. Then V is abelian and V =
V0 × V1 with V0 being a finite group and V1 ' Q2. As before G/V1 is a finite

30



3.1. MAXIMAL CONDITION

hamiltonian group. If we say U/V1 the Sylow 2-subgroup of G/V1, then G′ ≤ U
and V1G

′/G′ ' Q2, therefore in U/G′ there exist a subgroup B/G′ such that
U = (V1G

′)B and V1G
′ ∩ B = G′. Hence U = V1 × B and B is finite. By

this we have, finally, that G = UV = V1 × (BV0) and BV0 ' G/V1, hence our
thesis.

Theorem 3.1.6. Let G be a locally graded group. Then G satisfies Max-nn if
and only if it either

(a) satisfies Max or

(b) is a Dedekind group or

(c) is a central extension of Zp∞ for a prime p by a finitely generated Dedekind
group or

(d) is the direct product of Q2 and a finite hamiltonian group.

Proof. Let N = G′′ and let H be a subgroup of finite index of N . By Lemma
3.1.1 (b), |N : HG| is finite, too, and by Lemma 3.1.5 G/HG is metabelian.
So HG = N and N has no proper subgroup of finite index, but G is locally
graduated, so N = {1} and G itself is metabelian so we can apply again Lemma
3.1.5. Conversely, suppose first that G = NA where A is a Prüfer p-group for
a prime p contained in Z(G), G/A is a finitely generated Dedekind group and
N polycyclic and normal. Assume by a contradiction that

K1 < K2 < . . . < Kn < . . .

is an ascending chain of non-normal subgroups of G and let

K =
⋃
i∈N

Ki.

Since G/A is finitely generated K/(A ∩K) satisfies Max, so A ∩K = A and
K is normal in G. Since N is polycyclic there exists an integer n such that
K ∩N = Kn ∩N , so K/K ∩N has a proper subgroup, though it is a Prüfer
group, a contradiction.
Let finally G = Q×F such that Q ' Q2 and F is a finite hamiltonian group.

Let
K1 ≤ K2 ≤ . . . ≤ Kn ≤ . . .

be an ascending chain of non-normal subgroups of G, let K = ∪iKi and N =
Q∩K1. Clearly N is not trivial and Q/N = A×D where A is a Prüfer 2-group
and D is a finite abelian group of odd order. Therefore G/N = A×D×(FN/N)
satisfies Max-nn by what we proved above and there exists an integer n such
that K = Kn, so G satisfies Max-nn.
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Corollary 3.1.7. Let G be a locally graded group satisfying Max-nn. If G is
not Max, then G is a nilpotent central-by-finite group of class at most 2.

Proof. By Theorem 3.1.6 we can assume that G is a group of type (c). The
only case to inspect is that of G being a 2-group and a central extension of a
subgroup A ' Z2∞ by a finite hamiltonian group. Since the Schur multiplier
of G/Z(G) has exponent 2, G′ ∩Z(G) has exponent 2 and the order of A∩G′
is at most 2. Then clearly |G′| ≤ 4 and, for each x ∈ G, |G : CG(x)| ≤ 4.
But A ≤ CG(x) and each subgroup B/A of G/A such that |G/A : B/A| ≤ 4
contains G′A/A, then G′ ≤ Z(G).

3.2 Minimal condition

This condition has been studied, together with many others, in [43] by Phillips
and Wilson in which the theorem about the minimal condition on non-normal
subgroups is called Theorem B(v). It can be seen as a typical example of
splitting into extremal cases, since it proves that a locally graded group satis-
fying the minimal condition on non-normal subgroups is either a Černikov or
a Dedekind group.
It is useful for the following results to prove here a simple lemma firstly proved

in [13] by Černikov and then slightly extended by Phillips and Wilson.

Lemma 3.2.1. Let H be a finite subgroup of a group G and {Rα|α ∈ I} be a
descending chain of H-invariant subgroups of G. Then

⋂
α∈I

(RαH) = (
⋂
α∈I

Rα)H.

Proof. Let g be an element of
⋂
α∈I

(RαH), then for each α ∈ I we can find

rα ∈ Rα and hα ∈ H such that g = rαhα. Define Ih = {α ∈ I|hα = h} for
each h ∈ H. Clearly I =

⋃
h∈H

Ih and the set {
⋂
α∈Ih

(Rα)H|h ∈ H} is finite and

totally ordered so there exist h1 ∈ H such that
⋂

α∈Ih1

Rα =
⋂
α∈I

(Rα). Since

g ∈ (
⋂
h∈H

⋂
α∈Ih

Rα)H,

the lemma is proved.

Lemma 3.2.2. Let G be a soluble locally finite group satisfying Min-nn. Then
it is either a Černikov or a Dedekind group.
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Proof. Suppose G to be not a Černikov group. Let n be the biggest natural
number such that Gn is not Černikov and let H be a finite subgroup of G.
If we say A/Gn+1 the socle of Gn/Gn+1, then HA/Gn+1 is residually finite
and hence there exists a proper descending chain of H-invariant subgroups
of G/Gn+1 with trivial intersection. By Lemma 3.2.1 HGn+1/Gn+1 is normal
in G/Gn+1 and G/CG(HGn+1), as a periodic group of automorphisms of a
Černikov group, is Černikov. So CG(HGn+1) is not Černikov and it contains
a non-Černikov abelian subnormal subgroup whose socle is an infinite abelian
residually finite group centralizing H so by Lemma 3.2.1 H is normal in G and
G is a Dedekind group.

Lemma 3.2.3. Let G be a locally finite group satisfying Min-nn. Then it is
either a Černikov or a Dedekind group.

Proof. By Lemma 3.2.2 it suffices to prove that G is soluble. Let us assume G
has an infinite descending chain of normal subgroups and say L the intersection
of such a chain and sayH a finite subgroup ofG. By Lemma 3.2.1 LK is normal
in G for every finite subgroup K ≥ H, so G/HL is a Dedekind group and G/L
is finite-by-abelian. By Theorem A in [43] G is locally soluble and G/L is
soluble. This way we have shown, in particular, that there exist a natural
number k and a perfect subgroup P of G such that P = Gn for each n ≥ k.
Moreover, by the same reasoning, P has to satisfy Min-G and Theorem A in
[43] shows that P ≤ R(G), so by Proposition 0.0.9 P is hypercentral. But we
saw that P is perfect, hence it is trivial and G is soluble.

In proving the main theorem of this section we define the class of groups, say
M, in which every finitely generated subgroup is either nilpotent or has a finite
non-nilpotent homomorphic image. Clearly every M-group is locally graded
and the class itself is good enough to avoid many typical pathologies. The class
M is, indeed, large enough to contain the class of locally finite groups, that
of linear groups (Wehrfritz [57]) and that of hyper-(abelian or finite) groups
(Robinson [47]).

Theorem 3.2.4. Let G be a locally graded group. Then if G satisfies Min-nn,
it is either a Černikov or a Dedekind group.

Proof. Firstly take H as a finitely generated subgroup of G. By Min-nn there
exists K < H such that |H : K| is finite and K is a Dedekind group. So H is
in particular an M-group and so is G.
By Lemma 3.2.3 we can suppose that G is not locally finite, therefore neither

a Černikov nor a Dedekind group. So there exists H < G such that there are
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h ∈ H and g ∈ G and hg /∈ H. Since H cannot be locally finite, so there exists
a finitely generated infinite subgroup H1 of H. Hence we can suppose without
loss of generality that G is finitely generated and residually finite by replacing
it with 〈h, g,H1〉.
Let M be a minimal non-normal subgroup of G, which cannot be finite by

Lemma 3.2.1. Clearly M cannot be the product of two proper subgroups so
it has to be of Prüfer type, but G is residually finite and this is our final
contradiction.

3.3 Double chain condition

Now we will discuss about groups satisfying the double chain condition on
non-normal subgroups, in other words the DCnn condition. As we will see, for
reasonably large classes of groups to satisfy the double chain condition on non-
normal subgroups simply means to satisfy either the maximal or the minimal
condition on non-normal subgroups. The following is based on [19].
We begin with a fundamental lemma which is a transposition of Lemma 0.0.1

to the case of non-normal subgroups. As we noticed while presenting that
lemma, it shows a useful tool in working with double chains.

Lemma 3.3.1. Let G be a DCnn-group and let H/K be a section of G which is
the direct product of infinitely many non-trivial subgroups. Then K is normal
in G and G/K is a Dedekind group.

Proof. Let {Hn|n ∈ Z} be a countably infinite collection of subgroups of H
properly containing K. We can then split this collection into two infinite
collections, namely {Ui|i ∈ Z} and {Vj|j ∈ Z}, such that

H/K = Dri∈ZUi/K ×Drj∈ZVj/K

and for each integer n define

U∗n = 〈Uk|k < n〉

V ∗n = 〈Vk|k < n〉.

Since the group satisfies the double chain condition, there exist two integers
s and r such that U∗r / G and V ∗s / G. Obviously we have that U∗r ∩ V ∗s =
K and K is normal. In order to prove that G/K is a Dedekind group we
can suppose, without loss of generality, that K = {1}, which means that
H = Dri∈ZUi × Drj∈ZVj where each term is normal in G by the first part of
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the proof. Let now x be an element of G and notice that 〈x〉 ∩ H can be
contained only in a finite number of direct terms of H, so we can assume that
〈x〉 ∩H = {1}. This way, again by the double chain condition, we have that
there exist two integers such that 〈x〉U∗r /G and 〈x〉V ∗s /G, from which follows
that 〈x〉 / G. Therefore G is a Dedekind group.

Corollary 3.3.2. Let G be a DCnn-group. Than either G is a Dedekind group
or each abelian subgroup of G is minimax.

Proof. Suppose G is not a Dedeind group. Let A be an abelian subgroup of
G and B a maximal free subgroup B of A, which, by Lemma 3.3.1, is finitely
generated. If we assume by a contradiction that A/B is not a Černikov group
we have that, for each n ≥ 3, A/B2n has infinite socle and so by Lemma 3.3.1
B2n is a normal subgroup of G and G/B2n is abelian, since it has elements of
order 8. Then G is residually abelian and then abelian, a contradiction.

A straightforward consequence of the previous corollary together with the
well-known result by Šunkov that locally finite groups satisfying the minimal
condition on their abelian subgroups are Černikov groups (see [55]), is the
following

Corollary 3.3.3. Let G be a locally finite DCnn-group. Than G is either a
Dedekind or a Černikov group.

As we said, we will not deal with any weak chain condition, using some of the
results concerning them, nonetheless. An important result of these ones is the
following, which we state here.

Theorem 3.3.4 (Zaičev [60], Theorem 1). In the class of locally soluble-by-
finite groups, the Min-∞, Max-∞ and DC-∞ conditions are equivalent and
they determine there the class of soluble-by-finite minimax groups.

Lemma 3.3.5. Let G be a DCnn-group. Then every non-normal subgroup of
G is either periodic or finitely generated.

Proof. Let H be a subgroup which is neither finitely generated nor periodic. If
there is in H a subgroup 〈a〉 of infinite order which is not normal in G, then it
contains an infinite descending chain of non-normal subgroups of G and hence
there exists a positive integer n such that 〈a, x, h1, . . . , hn〉, with h1, . . . , hn in
H, is normal in G for any x in H, so H is normal. Suppose now that all
infinite cyclic subgroups of H are normal in G. Take in H b and y of infinite
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and finite order, respectively. If y−1by = b, 〈b, y〉 = 〈b, by〉 is normal in G and
so 〈y〉G ≤ H. If y−1by = b−1, we have that

. . . < 〈b2n , y〉 < . . . < 〈b2, y〉 < 〈b, y〉

is a descending chain of non-normal subgroup so, as in the first part of the
proof, 〈y〉 is normal in G and H is normal as well.

Theorem 3.3.6. Let G be a locally radical DCnn-group. Then G is soluble.

Proof. Clearly we can suppose that G is not Dedekind, so by Corollary 3.3.2
every abelian subgroup of G is minimax. From this all finitely generated sub-
groups are soluble and minimax [see [48] 10.35] and together with the quoted
result of Šunkov follows that each periodic subgroup of G is Černikov. Hence
G is locally soluble. Say L = γ3(G). If we show that L satisfies the weak
double chain condition on subgroups, and hence that it is soluble by Theorem
3.3.4, we are done, so suppose that there is in L a double chain

. . . < H−n < . . . < H−1 < H0 < H1 < . . . < Hn < . . .

such that |Hi+1 : Hi| =∞ for each integer i. Since there is an integer m such
that Hm is normal in G, by Theorem 3.3.4 follows that both Hm and G/Hm

are not minimax and moreover any subgroup X containing Hm is clearly not
minimax, too, so it is normal in G by Lemma 3.3.5. So G/Hm is Dedekind
and L ≤ Hm which is impossible.

Lemma 3.3.7. Let G be a DCnn-group and let

H1 < H2 < . . . < Hn < . . .

be an infinite ascending chain of non-normal subgroup of G. Then Hi is peri-
odic for each positive integer i.

Proof. Assume there exists an integer m such that Hm is not periodic. Then,
since clearly every infinite cyclic subgroup of Hm is normal in G, Hm cannot
be generated by its elements of infinite order. Thus we can find two elements
of finite order, say x and y, such that xy is of infinite order. But we have,
then, that 〈x, y〉/C〈x,y〉(xy) is an infinite dihedral group and so 〈x, y〉 does not
satisfy Min-nn, which is impossible.

Now we get to the main theorem of this section, which shows the desired
result for double chain conditions.
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Theorem 3.3.8. Let G be a locally radical DCnn-group. Then G satisfies
either the minimal or the maximal condition on non-normal subgroups.

Proof. By Theorem 3.3.6 G is soluble and assume that G does not satisfy
our thesis. Then by Corollary 3.3.2 G is minimax. If we say R the Hirsch-
Plotkin radical of G, it cannot satisfy Min by Theorem 1.2.2 and so it is not
periodic. We claim that R′ is finite so we can assume the existence in R of
an infinite non-normal subgroup 〈a〉. Clearly between 〈a〉 and 〈a〉G there are
only finitely many subgroups, so 〈a〉G satisfies Max-n, by Theorem 2.1.6 it is a
finitely generated nilpotent group and its elements of finite order form a finite
subgroup E. Let us assume the existence of an infinite ascending chain

H1 < H2 < . . . < Hn < . . .

of non-normal subgroups of R containing E. Clearly an integer m must exist
such that Hm〈a〉G is normal in G, but Hm, being by Lemma 3.3.7 the torsion
subgroup of Hm〈a〉G is also normal in G, which shows that R satisfies Max-nn
and so by Theorem 1.1.2 and Corollary 3.1.7 R′ is finite. In particular, R
is an FC-group and the finite residual J of G is contained in Z(R), so every
subgroup of J has to be normal in G. In fact, if every infinite cyclic subgroup
of R is normal in G the fact is easy-checked and if there is an infinite subgroup
〈a〉 of R which is non-normal in G it clearly cannot centralize more than one
Prüfer group and then J is trivial or a Prüfer group and so it has all of its
subgroups normal in G.
Since G is minimax every periodic subgroup of G/J is finite and so G/J

satisfies Max-nn by Lemma 3.3.7 and J 6= {1}. So each infinite cyclic subgroup
of G has finitely many conjugates. Let now X/J be a non-normal subgroup
of G. By Lemma 3.1.1 (a), X/J is polycyclic, so X cannot be polycyclic and
hence it is periodic by Lemma 3.3.5, which implies that X/J is finite. So G/J
satisfies Min-nn and hence is Dedekind by Theorem 3.2.4 and hence abelian.
Therefore G′ is periodic, G is generated by its aperiodic elements and is an
FC-group. Thus J ≤ Z(G), G is nilpotent and G′ is finite, indeed. Let Y be a
non-normal subgroup of G. If Y is finitely generated it has clearly finitely many
conjugates and if it is periodic the same holds, since Y/Y ∩J is finite. However,
by Lemma 3.3.5 every non-normal subgroup of G is either periodic or finitely
generated, so G/Z(G) is finite [see [40], Theorem 13.2]. Write Z(G) = K × L
with K torsion-free and L Černikov. K cannot be finitely generated, otherwise
G would satisfy Max-nn by Theorem 3.1.6. Then we can take in K a double
chain of finitely generated subgroups, for instance

. . . < K2n

1 < . . . < K2
1 < K1 < K2 < . . . < Kn < . . . .
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If we now say T a periodic subgroup of G, clearly there exists a subgroup V
from that chain such that V T is normal in G, so T , as a characteristic subgroup
of V T , is normal in G, which hence satisfies Max-nn by Lemma 3.3.7 and this
is our final contradiction.
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Chapter 4
Double chain condition on subnormal
subgroups

In this chapter we will take into account the results about chain conditions
for subnormal subgroups heading towards an inspection on the double chain
condition on subnormal subgroups and a characterization of radical groups
satisfying such a property.

Notice firstly that clearly the classes of groups satisfying a chain condition on
subnormal subgroups are subclasses of those containing groups satisfying the
corresponding chain conditions on normal subgroups so all those results can
be used here. Hence, in some cases, our treatise will proceed faster.

The study about the class of groups satisfying the minimal and maximal
condition on subnormal subgroups has been breefly afforded by Kuroš in [30]
and Robinson in [48]. Starting from these results and from those about normal
subgroups in [19] the corresponding double chain condition was studied by
Brescia and de Giovanni in [8].

All these classes are clearly Sn and H-closed.

4.1 Maximal condition

Firstly, we can easily notice that Max-sn is closed under the following opera-
tions: Sn, H, P and R0. By these closure operations we can steadily deduce
that, for instance, for soluble groups Max and Max-sn coincide. The same
cannot be said about Max-n and Max-sn because of the existence of groups
such as those shown by McLain (see Example 2.1.7). On the other hand it is
well-known the existence of simple groups not satisfying Max, so it is proved
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that Max-sn is a class which comes strictly between Max and Max-n.
As we were saying in advance, the exposition about the class of groups sat-

isfying the maximal condition on subnormal subgroups can be heavily helped
by looking at the results for the corresponding condition on normal subgroups.
For example, by using Theorem 0.0.5 we can deduce that

Theorem 4.1.1. Let G be a radical group. It satisfies Max-sn, if and only if
it satisfies Max.

On the other hand, it seems still being unknown the following

Open Problem. Let G be a locally soluble group satisfying Max-sn. Is G
polycyclic?

Finally, we end this section with a rapid incursion in the land of Max-snab,
for the study of which the reader can refer, among other properties, to Baer
[6] and to Robinson [46].

Theorem 4.1.2. Let G be a soluble group satisfying Max-snab. Then G is a
polycyclic group.

Proof. If we show that Max-snab in our case is preserved under taking quotient
over abelian normal subgroups, then the thesis follows by induction on the
derived length of G so let H be a normal abelian subgroup of G. Clearly H
is Max, take an abelian subgroup A/H of G/H and let C = CA(H). Since
[C ′, C] ≤ [H,C] = {1}, C is nilpotent. Say M a maximal normal abelian
subgroup of C, which is Max by hypothesis. Then by Theorem 1.1.1 both
C/M and A/C are p̌olycyclic and so A is Max, which completes the proof.

In the two quoted works of Baer and Robinson this result is indeed proved
true for subsoluble groups.

4.2 Minimal condition

Firstly, we can easily notice that Min-sn is closed under the following opera-
tions: Sn, H, P and R0. By this closure operations we can steadily deduce
that, for instance, for soluble groups Min and Min-sn coincide. The same
cannot be said about Min-n and Min-sn because of the existence of groups
such as those show by McLain (see Example 2.2.10). On the other hand, it is
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well-known the existence of simple groups not satisfying Min, so it is proved
that Min-sn is a class coming strictly between Min and Min-n.
As we were saying in advance, the exposition about the class of groups sat-

isfying the minimal condition on subnormal subgroups can be heavily helped
by looking at the results for the corresponding condition on normal subgroups.
Nevertheless, in this case, we cannot apply the analogue of Theorem 0.0.5 in
showing that a radical group satisfying Min-sn is a Černikov group. We are
going to need a little more work to get there and beyond that, eventually avoid-
ing ending with an open problem for locally soluble groups as in the maximal
case.
Let us prove a preliminary result, which will be useful more than once in the

following.

Theorem 4.2.1 (Wielandt [58]). Let H and K be subnormal subgroups of
a group G and let H ∩ K = {1}. If H is a non-abelian simple group, then
[H,K] = {1}.

Proof. Let J = 〈H,K〉 and proceed by induction on the subnormal defect s of
H in J . If s ≤ 1, H is normal in J , so [H,K] either equals H or is trivial. In
the former case any subnormal subgroup of J containing K must also contain
H, so K = J and H = H ∩ J = {1}. Then [H,K] = {1}. Let s > 1 and
assume the thesis holds for s−1. Now there exists a k ∈ K such that Hk 6= H.
Clearly H ∩ Hk = {1} and the subnormal defect of H in HJ is s − 1, so by
induction [H,Hk] = {1}. Then, for each h and h1 in H we have

{1} = [h, hk1] = [h, h1[h1, k]] = [h, [h1, k]][h, h1]
[h1,k],

from which we have that H = H ′ ≤ [H,K]. Hence K = J and H = {1}, a
contradiction.

The proof of the following lemma is totally analogous with that of Lemma
0.0.3, though slightly different in the conclusion. Also here, then, we are going
to make use of the concept of an independent set of indices which we have seen
together with the quoted lemma.

Lemma 4.2.2. Let G be a group and let {Sα|α ∈ I} a family of subnormal
non-abelian simple subgroups of G. Then the subgroup generated by the family
is the direct product of certain members of that family.

Proof. Let J = 〈Sα|α ∈ I〉. By Zorn’s Lemma we can find a maximal indepen-
dent set B ⊆ I. Let K = Drβ∈BSβ and suppose K 6= J . Then there is an α ∈ I
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such that Sα is not contained in K and clearly Sα ∩K = {1}. So, by Theorem
4.2.1, [Sα, K] = {1} and SαK = Sα ×K and the set B ∪ {α} contradicts the
maximality of B. Therefore J = K and the lemma is proved.

Theorem 4.2.3. Let G be a group satisfying Min-sn. Then G is a Černikov
group if and only if G is a hyper-(finite or locally nilpotent) group.

Proof. If G is a Černikov group then the result is trivially true, so let us
prove the converse. In this case, if we show that G has a finite non-trivial
normal subgroup then, since Min-sn is H-closed, we will have shown that G is
hyperfinite and the theorem will follow from Proposition 2.2.5.

Let G be a non-trivial hyper-(finite or locally nilpotent) group satisfying Min-
sn and let R be the Hirsch-Plotkin radical of G. If R is non-trivial, by Theorem
2.2.8 it contains a finite non-trivial characteristic subgroup so we can suppose
R = {1}. In this case, there is in G no non-trivial locally nilpotent ascendant
subgroup and by hypothesis G contains a finite non-trivial ascendant subgroup
and then a simple non-abelian ascendant subgroup H. If we consider HG it
satisfies Min-sn and by Lemma 4.2.2 it is the direct product of conjugates of
H, which is finite, and hence HG is a finite non-trivial normal subgroup of
G.

We can now finally state the results concerning Min-sn for radical and locally
soluble groups.

Theorem 4.2.4. Let G be a group which is radical or locally soluble. Then G
satisfies Min-sn if and only if it satisfies Min.

Proof. Let G be a radical group satisfying Min-sn. Then by Theorem 4.2.3 it
satisfies Min.

Let G be a locally soluble group satisfying Min-sn. Then by Corollary 0.0.7
G is hyperabelian and by Theorem 4.2.3 it satisfies Min.

Finally, we end this section with a rapid incursion in the land of Min-snab,
for the study of which the reader can refer, among other properties, to Baer
[6] and to Robinson [46].

Theorem 4.2.5. Let G be a periodic soluble group satisfying Min-snab. Then
G is a Černikov group.
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Proof. If we show that Min-snab in our case is preserved under taking quotient
over abelian normal subgroups, then the thesis follows by induction on the
derived length of G so let H be a normal abelian subgroup of G. Clearly H
is Min, take an abelian subgroup A/H of G/H and let C = CA(H). Since
[C ′, C] ≤ [H,C], C is nilpotent. Say M a maximal normal abelian subgroup of
C, which is Min by hypothesis. Then by Theorem 1.2.1 both C/M and A/C
are Černikov and so A is Min, which completes the proof.

In the two quoted works of Baer and Robinson this result is indeed proved
true for subsoluble groups and, moreover, has been stressed how the periodicity
hypothesis is unavoidable. In fact, it can be found a metabelian non-periodic
group with no descending chains of abelian subnormal subgroups, which is not
Černikov.

Example 4.2.6. Let P be a group of type p∞ for some prime number p and
Up be the additive group of the ring of p-adic integers. Then G = Up n P is a
non-Černikov group satisfying DCsnab

4.3 Double chain condition

Here we come to the final section of this chapter, which will involve the study
of groups satisfying the double chain condition on subnormal subgroups. The
main theorem will show how the desired theorem of the form “if G is a group
satisfying the double chain condition on θ-subgroups, then G satisfies either
Max-θ or Min-θ” is not always achievable; in this case, effectively, we will
show a soluble group satisfying the double chain condition on subnormal sub-
groups but which satisfies neither the maximal nor the minimal condition on
subnormal subgroups. The results in this section can be found in [8].
Our first main theorem shows that for residually finite groups the double chain

condition and the maximal condition on subnormal subgroups are equivalent.
In particular, any radical residually finite group satisfying the double chain
condition on subnormal subgroups is polycyclic.

Theorem 4.3.1. Let G be a residually finite DCsn-group. Then G satisfies
the maximal condition on subnormal subgroups.

Proof. Assume for a contradiction that the group G does not satisfy the max-
imal condition on subnormal subgroups. As G satisfies the maximal condition
on normal subgroups by Corollary 2.3.4, there exists a maximal finite normal
subgroup M of G. Clearly G/M is likewise a counterexample to the statement,
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and hence a replacement of G by G/M allows us to suppose without loss of
generality that G has no finite non-trivial normal subgroups.
Let H be the Hirsch-Plotkin radical of G. Again Corollary 2.3.4 yields that
H satisfies the maximal condition on normal subgroups, so that it is a finitely
generated nilpotent group by Theorem 2.1.6. Then G/H cannot satisfy the
maximal condition on subnormal subgroups, and hence H satisfies also the
minimal condition on subgroups. It follows that H is finite, and so even trivial.
Assume that G contains a finite non-trivial subnormal subgroup, and so also a
finite simple non-abelian subnormal subgroup Y . Let K be a normal subgroup
of finite index of G such that Y ∩K = {1}. Then [Y,K] = {1} by Theorem
4.2.1, so that Y has finitely many conjugates in G and hence its normal closure
Y G is finite. This contradiction shows that all subnormal non-trivial subgroups
of G are infinite. Let

X1 < X2 < . . . < Xn < . . .

be an infinite ascending chain of subnormal subgroups of G. Since X1 is infinite
and residually finite, it admits an infinite descending normal series

X1 > X0 > X−1 > . . . > X−n > . . .

and so
. . . < X−n < . . . < X−1 < X0 < X1 < . . . < Xn < . . .

is a double chain consisting of subnormal subgroups of G. This last contradic-
tion completes the proof.

Lemma 4.3.2. Let G be a locally nilpotent DCsn-group. Then G is hyper-
central.

Proof. Let N any proper normal subgroup of G. In order to prove that G/N
has a non-trivial centre, it can obviously be assumed that G/N is not nilpotent,
so that it cannot satisfy the maximal condition on normal subgroups. It follows
that G/N contains a minimal normal subgroup, and hence Z(G/N) 6= {1}.
Therefore G is hypercentral.

We will also need the following elementary result on maximal nilpotent normal
subgroups of hyperabelian groups.

Lemma 4.3.3 ([18], Lemma 3). Let G be a hyperabelian group, and let M be
a maximal element of the set of all nilpotent normal subgroups of G of class at
most 2. Then CG(M) = Z(M).
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Proof. Assume for a contradiction that Z(M) < CG(M). As G is hyperabelian,
there exists an abelian non-trivial normal subgroup A/Z(M) of G/Z(M) such
that A ≤ CG(M). Then A′ is contained in Z(M), and hence

(AM)′ = A′M ′[A,M ] = A′M ′ ≤ Z(M) ≤ Z(AM).

Therefore, the normal subgroup AM of G is nilpotent with class at most 2
so that AM = M and A is contained in M , which means that A ≤ Z(M), a
contradiction.

We can now prove that radical groups with the double chain condition on
subnormal subgroups are soluble. Observe here that it seems still unknown
whether a locally soluble group satisfying the maximal condition on subnormal
subgroups must be soluble (and so polycyclic).

Lemma 4.3.4. Let G be a radical DCsn-group. Then G is soluble.

Proof. Let

{1} = H0 < H1 < . . . < Hα < Hα+1 < . . . < Hτ = G

be an ascending normal series of G whose factors are locally nilpotent. For
each ordinal α < τ the group Hα+1/Hα is hypercentral by Lemma 4.3.2, and
so G is hyperabelian. Assume for a contradiction that G is insoluble, and let T
be the largest periodic normal subgroup of G. If T < G, the factor group G/T
contains a torsion-free abelian non-trivial normal subgroup A/T . Then G/A
must satisfy the maximal condition on subnormal subgroups, and in particular
it is soluble, so that G/T is a soluble group. Therefore the subgroup T is
not soluble, and hence without loss of generality it can be assumed that G is
periodic.
The set of all nilpotent normal subgroups of G of class at most 2 contains a

maximal element M by Zorn’s Lemma, and CG(M) = Z(M) by Lemma 4.3.3.
As G/M is not soluble, it cannot satisfy the maximal condition on subnormal
subgroups, so that M satisfies the minimal condition on subnormal subgroups
and hence it is a Černikov group . But G/Z(M) is isomorphic to a periodic
group of automorphisms of M , and so it is finite (see [48], p.85). This last
contradiction completes the proof.

We are now ready to prove the main theorem of this section, in which a
characterisation of soluble groups is given.
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Theorem 4.3.5. Let G be a radical group. Then G is a DCsn-group if and
only if one of the following conditions holds:

(a) G satisfies Min-sn;

(b) G satisfies Max-sn;

(c) G = HJ , where J is the finite residual of G, H is polycyclic, CH(J) is
finite and every subnormal subgroup of G either properly contains J or
is a Černikov group.

Proof. Suppose first that the radical group G satisfies the double chain con-
dition on subnormal subgroups, but it neither satisfies the minimal nor the
maximal condition on subnormal subgroups. It follows from Lemma 4.3.4 that
G is soluble, and hence it is minimax, because each factor of the derived series
of G either satisfy the minimal or the maximal condition on subgroups. The
finite residual J of G is the direct product of finitely many Prüfer subgroups
(see [49], Theorem 10.33), and the infinite factor group G/J is polycyclic by
Theorem 4.3.1. Thus the Fitting subgroup F/J of G/J contains an element
of infinite order aJ . Assume that [J, F ] is properly contained in J , so that
J/[J, F ] is a non-trivial direct product of Prüfer subgroups. For each positive
integer n, let Sn/[J, F ] = Socn(J/[J, F ]) be the n-th term of the upper socle
series of J/[J, F ]. Then

. . . < 〈a2n〉[J, F ] < . . . < 〈a2〉[J, F ] < 〈a〉[J, F ] < 〈a〉S1 < . . . < 〈a〉Sn < . . .

is a double chain of subnormal subgroups of G. This contradiction shows that
[J, F ] = J . If p is any prime number and Jp is the p-component of J , it follows
that [Jp, F ] = Jp. Thus the cohomology group Hn(G/J, Jp) has finite exponent
for each non-negative integer n and for all primes p (see [50]), and so

Hn(G/J, J) =
⊕
p

Hn(G/J, Jp)

is periodic for all n. In particular, the cohomology class of the extension

J G G/J

has finite order, and so G nearly splits over J (see [51], Lemma 10). As J is
divisible, it follows that there exists a subgroup H of G such that G = HJ
and H ∩ J is finite, and H is obviously polycyclic. The centralizer CH(J) is a
normal subgroup of G, and

J =
⋃
n∈N

Socn(J)
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, so that the sequence

CH(J) ≤ CH(J)Soc1(J) ≤ . . . ≤ CH(J)Socn(J) ≤ . . .

is an infinite ascending chain of normal subgroups of G. Thus the double chain
condition on subnormal subgroups yields that CH(J) satisfies the minimal
condition on subnormal subgroups, and hence it is finite.
Let X be any subnormal subgroup of G which is not a Černikov group. Then
X does not satisfy the minimal condition on subnormal subgroups, and so the
set of all subnormal subgroups of G containing X must satisfy the maximal
condition. In particular, there exists a positive integer m such that XJ =
XSocm(J), so that X has finite index in XJ . But J has no proper subgroups
of finite index, and hence it is properly contained in X.
Conversely, suppose that G = HJ has the structure described in (c), and let

. . . ≤ X−n ≤ . . . ≤ X−1 ≤ X0 ≤ X1 ≤ . . . ≤ Xn ≤ . . .

be a chain of subnormal subgroups of G indexed by the linearly ordered set of
integers. By the assumption we have that either X0 is a Černikov group or it
contains J . As the factor group G/J is polycyclic, it follows that there exists
a non-negative integer m such that either Xn = Xm for all n ≥ m or Xn = Xm

for all n ≤ m. Therefore G satisfies the double chain condition on subnormal
subgroups.

In the last part of the section it will be proved that in the situation described
in case (c) of Theorem 4.3.5, the group G need not to split over its finite
residual.

We shall denote by M(sn) the class of all groups satisfying both the minimal
and the maximal condition on subnormal subgroups. It is well-known that
M(sn) is just the class of groups admitting a subnormal composition series of
finite length. Obviously, our next lemma holds in particular for finite normal
subgroups.

Lemma 4.3.6. Let G be a group containing a normal M(sn)-subgroup N such
that G/N is a DCsn-group. Then G itself is a DCsn-group.

Proof. Assume for a contradiction that

. . . < X−n < . . . < X−1 < X0 < X1 < . . . < Xn < . . .

is a double chain of subnormal subgroups of G. As Xi ∩ N is a subnormal
subgroup of G for all integers i and N belongs to M(sn), there exists a positive
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integer k such that Xi ∩ N = Xk ∩ N for each i ≥ k and Xi ∩ N = X−k ∩ N
for each i ≤ −k. Then it follows from the Dedekind modular law that XiN <
Xi+1N for each i ≥ k and XiN > Xi−1N for each i ≤ −k, which is impossible
because XiN is subnormal in G for all i and G/N has no double chains of
subnormal subgroups. This contradiction proves the statement.

Consider a non-split central extension

C U Q

where C = 〈c〉 is a group of prime order p > 2 and Q is a free abelian group
of rank 2, and let P be a group of type p∞, and 〈x〉 its unique subgroup of
order p. Then Q is isomorphic to a group of automorphisms of P , and so we
may construct a semidirect product K = U n P , with CU(P ) = C. As C
is contained in the centre of K, the subgroup M = 〈c−1x〉 is normal in K,
and we may consider the factor group G = K/M . Then J = PM/M is the
finite residual of G, and G = HJ , where H = UM/M . Moreover, H ∩ J has
order p, and G cannot split over J because U does not split over C. Finally,
N = 〈c, x〉/M is a finite normal subgroup of G and

G/N ' K/C

satisfies the double chain condition on subnormal subgroups, so that G is a
DCsn-group by Lemma 4.3.6.

We conclude this chapter with a brief note on groups satisfying the double
chain condition on subnormal abelian subgroups, shortly said DCsnab-groups.
Groups satisfying the classical chain conditions on abelian subnormal sub-

groups have been studied (see [6] and [46]); in particular, referring to Theorem
4.2.5, it has been proved that any periodic soluble group with the minimal con-
dition on abelian subnormal subgroups is a Černikov group, while, referring to
Theorem 4.1.2, it has been proved that soluble groups with the maximal condi-
tion on abelian subnormal subgroups are polycyclic. Observe that, by looking
at Example 4.2.6, the periodicity assumption is crucial in the study of soluble
groups with the minimal condition on abelian subnormal subgroups. On the
other hand, for periodic soluble groups the double chain condition on (abelian)
subnormal subgroups and the minimal condition on (abelian) subnormal sub-
groups obviously coincide, and so we will not discuss here the double chain
condition on abelian subnormal subgroups.
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Chapter 5
Double chain condition on subnormal
non-normal subgroups

In this chapter we will take into account the results about chain conditions on
subnormal non-normal subgroups heading towards an inspection on the double
chain condition on subnormal non-normal subgroups.

Notice firstly that clearly the classes of groups satisfying a chain condition
on subnormal non-normal subgroups are strictly related with the class of T -
groups, namely those groups in which every subnormal subgroup is normal,
which is an additional extermal case for our conditions, together with the re-
spective maximal and minimal chain conditions. Finite soluble T -groups has
been described by Gaschütz [26] in 1957, who proved, among the other results,
that these groups are metabelian and hypercyclic. These results has been ex-
tended to the infinite case by Robinson [45] in 1964 and other interesting facts
concerning generalized soluble groups satisfying the property T were investi-
gated. After these works many were the paper dealing with the structure of
generalized T -groups, always in a generalized soluble environment. Some of
these generalizations arose by imposing restrictions on the set of the subnormal
non-normal subgroups. For instance, in [23] and in [24] Franciosi and de Gio-
vanni studied (generalized) soluble groups in which, respectively, every infinite
subnormal subgroup is normal and in which subnormal non-normal subgroups
have finite index.

The study about the class of groups satisfying the maximal and minimal con-
dition on subnormal non-normal subgroups has been afforded by de Giovanni
and de Mari in [20] and [21], respectively.

All these classes are clearly Sn and H-closed.

Notice that hereafter through this chapter we will make more or less implicitly
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use of the results in the paper of Cooper on power automorphisms [15].

Now we will report some useful lemmas on DCsnn-groups which obviously
still hold for groups satisfying Max-snn and Min-snn. In particular notice the
analogy between the following lemma and Lemma 3.3.1.

Lemma 5.0.1. Let G be a DCsnn-group and let H/K be a section of G which
is a direct product of infinitely many non-trivial cyclic subgroups. Suppose that
H is subnormal in G, then K and H are normal in G and every cyclic subgroup
of the Baer radical B/K of G/K is normal in G/K.

Proof. H/K is a direct product of infinitely many cyclic non-trivial subgroups
if and only if it contains a direct product of countably many cyclic non-trivial
subgroups so, without loss of generality, we can let {Hn|n ∈ Z} be a countably
infinite collection of subgroups of H properly containing K, such that Hi/K
is cyclic for all i ∈ Z and that H/K = Dri∈ZHi/K. We can then split this
collection into two infinite collections, namely {Ui|i ∈ Z} and {Vj|j ∈ Z}, such
that

H/K = Dri∈ZUi/K ×Drj∈ZVj/K

and for each integer n define

U∗n = 〈Uk|k < n〉

V ∗n = 〈Vk|k < n〉.

Since the group satisfies the double chain condition on subnormal non-normal
subgroups, there exist two integers r and s such that U∗r / G and V ∗s / G both
of them being normal in G. Obviously we have U∗r ∩V ∗s = K and K is normal.
On the other hand by the same reasoning we see that each direct term of H/K
is normal in G/K, so H/K is normal in G/K, too, and H is normal in G.

In order to prove that every cyclic subgroup of the Baer radical B/K of G/K
is normal in G/K, we can suppose, without loss of generality, that K = {1}.
Let now x be an element of B and notice that 〈x〉∩H can be contained only in a
finite number of direct terms of H, so we can assume that 〈x〉∩H = {1}. This
way, again by the double chain condition, we have that there exist two integers
k and h such that 〈x〉U∗k and 〈x〉V ∗h are normal in G. So 〈x〉 = 〈x〉U∗k ∩ 〈x〉V ∗h
is normal in G.

Lemma 5.0.2. Let G be a Baer DCsnn-group. Then either G is a Dedekind
group or each subnormal abelian subgroup of G is minimax.
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Proof. Suppose G is not a Dedekind group and let A be an abelian subnormal
subgroup of G and B a free abelian subgroup of A such that A/B is periodic.
By Lemma 5.0.1, B is finitely generated. Suppose by a contradiction that A/B
is not Min, then, if we take an integer n, A/B2n has an infinite socle which is
product of infinitely many subgroups. Again by Lemma 5.0.1 B2n is normal in
G and G/B2n is a Dedekind group, and hence even an abelian group for every
n > 2. Thus G is abelian and this is a contradiction.

Lemma 5.0.3. Let G be a DCsnn-group and let X be a subnormal non-normal
subgroup of G. If X is a Baer group, then XG satisfies either Max or Min.

Proof. X is contained in the Baer radical and so XG is a Baer group, too. Let
us suppose XG is not Černikov and so it is not periodic, otherwise it would
contain an infinite direct product of cyclic subgroups and then, by Lemma
5.0.1, X would be even normal in G. Since it is generated by its elements
of infinite order, there exists in X an element x which contains an infinite
descending chain of subnormal non-normal subgroups of G. We now claim that
X is finitely generated. Suppose it is not, then we may consider a maximal
element M in the family of subnormal subgroups of X which are not normal in
G and which contain x. But for each element y ∈ X \M we have that 〈M, y〉
is normal in G and hence that X = 〈〈M, y〉|y ∈ X \M〉 is normal in G, so we
proved that X is finitely generated and that is Max. Clearly, thanks to the
presence of 〈x〉, there is no ascending chain of subnormal subgroups between
X and XG, so each factor of the subnormal series of X satisfies Max and hence
XG itself is polycyclic.

Corollary 5.0.4. Let G be a DCsnn-group and let X be a subnormal non-
normal subgroup of G. If X is a Baer group, then it is either periodic or
finitely generated.

Here we report a simple lemma we will use in the following [see [19], Lemma
2.2].

Lemma 5.0.5. Let G be a locally nilpotent group whose derived subgroup G′

is finitely generated. Then G is nilpotent.

Proposition 5.0.6. Let G be a DCsnn-group and let B be the Baer radical of
G. Then B is nilpotent and in particular B coincides with the Fitting subgroup
of G.

Proof. By Proposition 2.2.9, we can suppose that B is not a Černikov group
and not a T -group so it is not even periodic, otherwise by Lemma 5.0.2 it
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would satisfy Min-snab hence being Černikov by Theorem 4.2.5. So we can
find an aperiodic element x such that 〈x〉 contains an infinite descending chain
of subnormal non-normal subgroups of G. Then we may consider a maximal
element M in the family of subnormal non-normal subgroups of B which con-
tain x, so B/MB is a Dedekind group and B′MB/MB is finite. Since x ∈ M ,
MB is not Černikov and so by Lemma 5.0.3 it satisfies Max. Hence B′ itself
satisfies Max and then, by Lemma 5.0.5, B is nilpotent.

Now remembering that a soluble group is minimax if and only if all of its
abelian subgroups are minimax (see [49], Theorem 10.35) and combining Lemma
5.0.2 and Proposition 5.0.6 we have the following

Corollary 5.0.7. Let G be a DCsnn-group and let B be the Baer radical of G.
Then B is either a Dedekind or a minimax group.

Proposition 5.0.8. Let G be a DCsnn-group and let H be a subnormal Baer
subgroup of G. Then H satisfies either the minimal or the maximal condition
on non-normal subgroups. In particular, if H is not Černikov, then it satisfies
the maximal condition on its non-normal subgroups.

Proof. By Proposition 5.0.6, H satisfies the double chain condition on its non-
normal subgroups and so by Theorem 3.3.8 it satisfies either the minimal or
the maximal condition on non-normal subgroups.

We conclude this introduction by showing how finitely generated soluble
DCsnn-groups behave likewise finitely generated soluble T -groups.

Proposition 5.0.9. Let G be a finitely generated soluble group with the DCsnn
condition. Then G is polycyclic.

Proof. Let A be the least non-trivial term of the derived series of G and assume
by induction that G/A is polycyclic. Then there exists F , a finite subgroup
of A, such that FG = A. So, if F = A, G is polycyclic, otherwise F is a
subnormal non-normal subgroup of G and by Lemma 5.0.3 we can assume A
is Černikov. Let J be the finite residual of A. Since G/J is polycyclic, J is the
normal closure of a finite subgroup. But every finite subgroup of J has finite
normal closure in G, hence J = {1} and G is polycyclic.

5.1 Maximal condition

This section is based on the paper of De Mari and de Giovanni [20]. Some
results are here extended from the same hypotheses while some others are
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reported in their double chain (hence still extended) form in the dedicated
section. The wanted and chased parallelisms with the work of Robinson about
T -groups are evident.

Theorem 5.1.1. Let G be a subsoluble group satisfying Max-snn. Then G is
soluble.

Proof. Let τ be an ordinal number and suppose the existence of an ascending
normal series of G with abelian factors

{1} = G0 < G1 < . . . < Gτ = G.

Consider by a contradiction the least ordinal, clearly a limit ordinal, µ ≤ τ
such that Gµ is not soluble. Since G satisfies Max-snn, the set of ordinal
numbers α < µ such that there exists a subnormal non-normal subgroup X
such that Gα < X < Gβ for some α < β < µ, then there is an ordinal δ < µ
such that Gβ/Gδ is a metabelian T -group for every δ < β < µ. Therefore,
since

Gµ =
⋃

δ<β<µ

Gβ,

Gµ/Gδ is metabelian and this cannot be.

In general let

{1} = X0 < X1 < . . . < Xτ = G

an ascending subnormal series of G with abelian factors. Say k the finite
number of terms of the series which are not normal in G. By the first part of
the proof we may assume that k > 0 and let ρ < τ be the largest ordinal such
that Xρ is not normal in G. Then Xρ+1 is normal in G and G/Xρ+1 is soluble
by the above. Moreover, by induction, Xρ+1 itself is soluble and so is G.

For the periodic case we can clearly partially refer to the general statements
in the section about the double chain condition on subnormal non-normal
subgroups. Here, instead, we are going to give account of some results about
the general case which will differ, a posteriori, from the ones in the double
chain section.

Lemma 5.1.2. Let G be a group satisfying Max-snn and let F be the Fitting
subgroup of G. If X is a subgroup of F which is not finitely generated, then X
is normal in G.
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Proof. Since F is nilpotent by Proposition 5.0.6, X is subnormal in G. For each
element x of X we can construct an ascending chain of subnormal subgroups
of G, for instance

〈x〉 < 〈x, x1〉 < . . . < 〈x, x1, . . . , xn〉 < . . . ,

where x1, . . . , xn are elements of X. By hypothesis there exists a positive
integer k such that 〈x, x1, . . . , xk〉 is normal in G, which means that 〈x〉G ≤ X
and X is normal in G.

Recall that the set of all automorphisms of G fixing every infinite subgroup
of G, namely IAut(G), is a subgroup of Aut(G) and contains PAut(G), the
group of every power automorphisms of G. The behavior of IAut(G) has been
studied in [16] by Curzio, Franciosi and de Giovanni.

Lemma 5.1.3. Let G be a an infinite soluble group satisfying Max-snn with
periodic Fitting subgroup F . If F is not a finite extension of a Prüfer group,
then every subgroup of F is normal in G.

Proof. By Lemma 5.1.2 every infinite subgroup fo F is normal inG, soG/CG(F )
is isomorphic to a subgroup of IAut(F ). Since we can assume that PAut(F )
6= IAut(F ), we have that F is a finite extension of a Prüfer group [see [16],
Proposition 2.5].

The following is the main theorem of [20] regarding the non-periodic case and
it uses arguments which are more generally developed in the section about the
double chain condition in this chapter. We state it here.

Theorem 5.1.4. Let G be a soluble non-polycyclic group satisfying Max-snn
and let F be the Fitting subgroup of G. If either F is torsion-free or the torsion
subgroup T of F is infinite and not a finite extension of a Prüfer group, then
every subnormal non-normal subgroup of G has finite index in G.

Corollary 5.1.5. Let G be a torsion-free soluble group satisfying Max-snn. If
G is not polycyclic, then it is abelian.

Proof. The thesis follows from Theorem 5.1.4 and from Corollary 3.4 in [24]
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5.2 Minimal condition

This section is based on the paper of De Mari and de Giovanni [21]. Like for
the previous section, some results are here extended from the same hypotheses
while some others are reported in their double chain (hence still extended)
form in the dedicated section. The aim of the paper is mostly to highlight the
similarities between T -groups and groups satisfying Min-snn.

As for the case of the maximal condition on subnormal non-normal subgroups,
here we can apply the results proved at the beginning of the current chapter.
So we have at once that in a group satisfying Min-snn the Baer radical is
nilpotent, that it is either a Dedekind or a minimax group, that the class of
nilpotent DCsnn-groups splits into its extremal classes, that finitely generated
groups satisfying Min-snn are finitely generated and so on. A posteriori, by
looking at Proposition 5.3.1, which does not use any fact pertaining Min-snn,
we can also say that subsoluble groups satisfying the minimal condition on
subnormal non-normal subgroups are soluble, indeed.

For the periodic case we can clearly refer to the general statements in the
section about the double chain condition on subnormal non-normal subgroups.
Here, instead, we are going to give account of some results about the general
case.

Below, we present the main results of [21] for the non-periodic case and before
them some lemmas, which are stronger than the corresponding ones in the
double chain case.

Lemma 5.2.1. Let G be a group satisfying Min-snn and let F be the Fitting
subgroup of G. If F is not a Černikov group, then all subgroups of F are
normal in G.

Proof. If 〈x〉 is an infinite cyclic subgroup of F , it has to be normal in G by
Min-snn. Then, since F is generated by its aperiodic elements, if we assume
that F is not periodic, then every subgroup of F is normal in G. On the other
hand, if F is periodic, as it is not Černikov, the thesis follows from Lemma
5.0.1.

And now for an argument which is not a rare encounter when dealing with
subnormal non-normal subgroups.

Lemma 5.2.2. Let G be a group satisfying Min-snn if G = 〈z, A〉, where A
is an abelian normal subgroup of G, z2 ∈ A and az = a−1 for each a ∈ A, then
G has finitely many subnormal non-nomal subgroups.
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Proof. Clearly, γn+1 = A2n for each positive integer n. Say L =
⋂
n∈NA

2n and

assume that A2n > A2n+1
for each n. Since z4 = 1, we have that 〈z〉A2n >

〈z〉A2n+1
so, since they are all subnormal in G, there exists a positive integer

k such that 〈z〉A2k is normal in G; then A2 = G′ = [G, z] lies inside 〈z〉A2k

and 〈z〉A2 = 〈z〉A2k , which is a contradiction. So we know that there exists a
natural number c such that L = A2c , hence L is an abelian 2-divisible group
and G/L is a nilpotent 2-group of finite exponent. Since G/L satisfies Min-nn,
by Theorem 3.2.4 it is either finite or a Dedekind group. If we now say H to
be a subnormal non-normal subgroup of G, it has an element h that acts as
the inversion on each element of A, so [L,H] = L2 = L and L ≤ H. Therefore,
if G is not a T group, every subnormal non-normal subgroup of G contains L
and G/L is finite, hence our claim.

Theorem 5.2.3. Let G be a soluble group satisfying Min-snn whose Fitting
subgroup F is non-periodic. Then G has finitely many subnormal non-normal
subgroups.

Proof. By Lemma 5.2.1 every subgroup of F is normal in G, hence F is abelian
and we can assume that |G/F | = 2. Then G has finitely many subnormal non-
normal subgroups by Lemma 5.2.2.

Now the main result for non-periodic groups satisfying Min-snn with Fitting
subgroup being, this time, periodic is stated as follows.

Theorem 5.2.4. Let G be a soluble non-periodic group satisfying Min-snn
whose Fitting subgroup F is periodic and let T be the largest periodic normal
subgroup of G. If G is not a Černikov group, then T/F is finite and G/T is a
T -group.

5.3 Double chain condition

As we have already pointed out, the class of DCsnn-groups is closed under Sn
and H. Anyway it is not closed under other closure operators, such as D0,
namely it is not closed under direct products. In fact, firstly take A = Cp∞ oCp
as the wreath product between the Prüfer group Cp∞ and Cp, the cyclic group
of order p, for a given prime p; secondly let B = F/[F, [F, F ]] where F is a 2-
generator free group. Then A×B does not belong to DCsnn while both A and
B do, since they satisfy, respectively, the minimal and the maximal condition
on subgroups.
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Proposition 5.3.1. Let G be a subsoluble DCsnn-group. Then it is soluble.

Proof. Since in every DCsnn-group the Baer radical is nilpotent by Lemma
5.0.6 and G is hyper-Baer, then G is hyperabelian.
Suppose by contradiction that G is not soluble. Let F be the Fitting subgroup

of G. Since G is not soluble not all the subgroups of F can be normal in G.
Firstly assume that F is not Černikov, then it must be non-periodic, otherwise
it would contain a subgroup which is a direct product of infinitely many non-
trivial cyclic subgroups and hence, by Lemma 5.0.1, every subgroup of F would
be normal inG. On the other hand, if F is not periodic there exists an aperiodic
element x in F such that 〈x〉 is not normal in G. Then there exists a sequence
of integer numbers k1, . . . , kn, . . . such that

. . . < 〈xkn〉 < . . . < 〈xk1〉

is a descending chain of subnormal non-normal subgroups of G, so that G/F
satisfies the maximal condition on subnormal non-normal subgroups and that
is a contradiction by Theorem 5.1.1.
Hence we have found that in this case F has to be Černikov. Denote T as

the maximal torsion normal subgroup of G. Since F is nilpotent, F is the
Fitting subgroup of T , too, so T itself is Černikov. If we now call J the finite
residual of T , we have that T/J is finite and so the Fitting subgroup K/J
of G/J cannot be periodic, since G/J cannot be finite. But clearly not every
subgroup in K/J is normal in G/J , so there exists an aperiodic element y of K
such that 〈y〉J is not normal in G/J . Then there exists a sequence of integer
numbers h1, . . . , hn, . . . such that

. . . < 〈yhn〉J < . . . < 〈yh1〉J

is a descending chain of subnormal non-normal subgroups of G. So G/K
satisfies the maximal condition on subnormal non-normal subgroups and it is
hence soluble by Theorem 5.1.1 and this is our final contradiction.

The periodic case

In this section we will inspect some results on the periodic case and see how in
the primary case our description of DCsnn-groups splits in two extremal cases:
that of Černikov groups and that of groups having only a finite number of
subnormal non-normal subgroups.

Unfortunately, in 1986 Leinen [33] solved an open problem firstly stated by
Robinson in [45] by proving that there exists a locally nilpotent T -group which
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is not soluble (and hence also not Černikov). This poses a clear limit to our
hopes about possible upwards extensions.

Lemma 5.3.2. Let G be a periodic soluble DCsnn-group and let F = Fit(G).
If G is not Černikov, then every subgroup of F is normal in G. In particular,
G is metabelian and hypercyclic.

Proof. Since G is not Černikov, F is not Černikov, too, so it contains an infinite
direct product of subnormal subgroups of G and every subgroup of F is normal
in G by Lemma 5.0.1. Moreover G/CG(F ) is a group of power automorphisms
of F and hence it is abelian, so G′ ≤ CG(F ) ≤ F is abelian and has all of its
subgroups normal in G. Hence G is metabelian and hypercyclic.

Lemma 5.3.3. Let G be a periodic soluble DCsnn-group. Then, if G is not a
T -group, G/G′ is a Černikov group and G is abelian-by-finite.

Proof. Since we can suppose that G is not Černikov, by Lemma 5.3.2 every
subgroup of the Fitting subgroup F of G is normal in G and G is metabelian.
Let now H be a subnormal non-normal subgroup of G. Since H ′ is contained
in F , it is normal in G. Then H/H ′ is an abelian subnormal non-normal
subgroup of G/H ′, which is hence Černikov by Lemma 5.3.2. So clearly G/G′

is Černikov, too. Moreover we have that G/F is Černikov, but it is residually
finite, so it is finite and G is abelian-by-finite, provided that F is a Dedekind
group.

Now we have a proposition which in the periodic case connects our property
with one studied by Casolo [10].

Proposition 5.3.4. Let G be a periodic soluble group with the DCsnn condition
and let H be a subnormal non-normal subgroup of G. Then G/HG is Černikov.
Moreover, if G is not Černikov, HG/HG is finite.

Proof. We can clearly assume that G is not Černikov, so by Lemma 5.3.2 every
subgroup of the Fitting subgroup F of G is normal in G and G is metabelian.
Since H ′ is contained in F , it is normal in G. H/HG is an abelian subnormal
non-normal subgroup of G/HG, which is hence Černikov by Lemma 5.3.2. By
Lemma 5.3.3, F has finite index in G and clearly F ∩ H = HG, so H/HG is
finite. Since H/HG is contained in the Fitting subgroup of G/HG and so it has
finitely many conjugates in G/HG [See Robinson Part 1, 5.49] we have that
HG/HG is finite.

Let L be the last term of the lower central central series of a group G. In the
context of periodic T -groups we have that L just coincides with γ3(G) and with
the next proposition we are going to show a similar behavior in DCsnn-groups.
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Proposition 5.3.5. Let G be a periodic soluble group with the DCsnn condition
and let L be the hypocentre of G. Then G/L is nilpotent and G′/L is finite.
In particular, if G is hypocentral, G is nilpotent.

Proof. Assume by a contradiction that G/L is not nilpotent, then G/γω is not
nilpotent, too, so we can suppose G being residually nilpotent and hence it
is the product of its Sylow subgroups [see [49], p. 8]. Since G is clearly not
Černikov, by Proposition 5.3.4 each subnormal subgroup has finite index in its
normal closure and moreover we can easily see that the abelian divisible radical
D of G is in the centre of G. Hence G is nilpotent since its Sylow subgroups
are all nilpotent [see [10], Theorem 3.2].
If G/L is a T -group, then it is also a Dedekind group and has finite commu-

tator subgroup, while, if that is not the case, it has to be Černikov, and then
again G′/L is finite.

Lemma 5.3.6. Le G be a periodic soluble DCsnn-group and let L be the
hypocentre of G. If L 6= L2, then G is either a Černikov group or a T -group.

Proof. Let us assume the thesis is invalid. By Proposition 5.3.5, we know that
G/L is nilpotent. Moreover, by Proposition 5.3.5 and Lemma 5.3.3 G/L is
Černikov, so L is not Černikov. Take now H ≤ L such that |L : H| ≤ 2. By
Lemma 5.3.2, H is normal in G since it is contained in the Fitting subgroup
of G and G/H is a Baer group and then it is also nilpotent, implying that
L = L2, and this is a contradiction.

Theorem 5.3.7. Let G be an primary soluble DCsnn-group. If G is not
Černikov, then the following hold

(a) If G is a p-group for some odd prime p, then G is abelian;

(b) if G is a 2-group, then it has finitely many subnormal non-normal sub-
groups.

Proof. By Proposition 5.3.4, every subnormal non-normal subgroup of G has
finite index in its normal closure, so we can apply Theorem 3.2 of [10]. Then,
if p is odd, G is abelian and if p = 2 the Fitting subgroup of G has index in
G at most 2. Clearly we may suppose the latter statement holds. Since G is
not Černikov, by Lemma 5.3.2 every subgroup of G is normal in G, so we may
suppose |G : F | = 2 and G = 〈F, z〉 for any element z ∈ G \ F . Since by
Proposition 5.3.5 and Lemma 5.3.6 the last term L of the lower central series
of G is a non-trivial divisible group, we know that z acts as the inversion on
each element of F . Thus there exists a natural number n such that L = F 2n ,
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which means G/L has finite exponent and G/L is finite by Lemma 5.3.3. Let
now H a subnormal non-normal subgroup of G. Clearly H is not contained in
F , so [L,H] = L2 = L and L ≤ H. Therefore the group G has finitely many
subnormal non-normal subgroups.

The general case

In this section we are going to prove general results on DCsnn-groups, partic-
ularly in connection with other already known properties on subnormal non-
normal subgroups, such as the obvious property of being a T -group, that of
having no infinite subnormal non-normal subgroups and that of having no in-
finite subnormal non-normal subgroups of infinite index. Groups satisfying
the latter properties are said IT -groups and LT -groups, respectively and have
being studied in [23] and in [24], respectively, by Franciosi and de Giovanni.

Lemma 5.3.8. Let G be a soluble DCsnn-group and let F be the Fitting sub-
group of G. If F is not periodic and every subgroup of F is normal in G, then
G is either a T -group or an LT -group.

Proof. Since every subgroup of F is normal in G and F is not periodic, G =
〈F, z〉 where z acts trivially on every element of F or xz = x−1 for each x ∈ F
and z2 ∈ F . We can suppose that z acts as the inversion on every element of
F . If G/F 4 is finite, then G is an LT -group [see [24], Theorem 3.3] so we can
suppose that G/F 4 is infinite. We know that G/F 4 is nilpotent [see [7], Lemma
3.8] and it has finite exponent, so by Lemma 5.3.2 it is Dedekind. Let us define
H = 〈z2, F 4〉 and consider the Dedekind group G/H. Clearly zH has order 2
and lies in the centre of G/H so F/H is in the centre of G/H, too, and this
means that F/H has exponent 2. So we have found that 〈z2, F 2〉 = 〈z2, F 4〉
and G is a T -group [see [45], Theorem 3.1.1].

Lemma 5.3.9. Let G be a soluble DCsnn-group and let A be a torsion-free
abelian subnormal subgroup of G which is not finitely generated. Then every
subgroup of A is normal in G.

Proof. Assume by contradiction the existence of a finitely generated subgroup
H of A which is not normal in G. So, for a proper choice of k1, . . . , kn, . . .,

. . . < Hkn < . . . < Hk1 < H

is a descending chain of subnormal non-normal subgroups of G. Hence we can
take H as a subgroup being maximal with respect to the condition of not being
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G-invariant. So A is normal in G and we can still suppose that H is finitely
generated. Let us suppose that the torsion-free rank r0(H) of H is strictly
less than the torsion-free rank r0(A) of A. Hence there exists an element
x ∈ A\H such that H∩〈x〉 = {1}. By the maximality of H we have then that
H =

⋂
〈H, xn〉 is normal in G, so we can suppose that r0(H) = r0(A) and A

has finite rank. Since A/H cannot be generated by two proper subgroups, it is
isomorphic to a group of type p∞ for a prime p. If r0(A) = 1, H is contained
in a cyclic normal subgroup of G and hence is clearly normal in G, so we can
take H = 〈a1〉 × 〈a2〉 × . . .× 〈am〉 with 〈a1〉, for instance, being non-normal in
G. Let us fix a prime q 6= p and put Hq = 〈a1〉 × 〈aq2〉 × . . .× 〈aqm〉. It is easy
to see that A/Hq = H/Hq ×Bq/Hq where Bq/Hq is a group of type p∞. Since
each Bq is not finitely generated and contains a descending chain of subnormal
non-normal subgroups, for instance . . . < 〈aln1 〉 < . . . 〈al11 〉 < 〈a1〉 for a proper
choice of such integers, it is normal in G and hence B =

⋂
q 6=p

Bq is normal in G,

too. But we have that

B ∩H = (
⋂
q 6=p

Bq) ∩H =
⋂
q 6=p

(Bq ∩H) =
⋂
q 6=p

Hq = 〈a1〉.

Since, for each q 6= p, r0(Bq) = r0(Bq∩H), then r0(B) = 1 and 〈a1〉 is contained
in a cyclic G-invariant subgroup of B and hence it is normal in G, which is a
contradiction.

Lemma 5.3.10. Let G be a DCsnn-group, let F be the Fitting subgroup of G
and let

H1 < . . . < Hn < . . .

be an ascending chain of subgroups of F which are not normal in G. Then Hn

is periodic for each n.

Proof. Assume the result is false, so let n be the minimum natural number
such that Hn is non-periodic and let a be an aperiodic element of Hn. Clearly
〈a〉 has to be normal in G so every aperiodic element of Hn is normal in G.
This means that Hn is normal in G, but that is a contradiction.

Lemma 5.3.11. Let G be a soluble non-polycyclic DCsnn-group and let F be
the Fitting subgroup of G. If F is reduced, then every subgroup of F is normal
in G. In particular, if F is not periodic, G is either a T -group or an LT -group.

Proof. Let T be the torsion subgroup of F . If T is infinite, as F is reduced,
it does not satisfy Min, and hence contains a direct product of infinite cycles.
By Lemma 5.3.2 every subgroup of F is normal in G, so we may suppose that
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T is finite. Since G is not polycyclic, F cannot be periodic and hence not
Černikov so, by Proposition 5.0.8, it satisfies the maximal condition on non-
normal subgroups. By Theorem 3.1.6, F can be an abelian group or the direct
product of Q2 with a finite group. So in every case F = T × A where A is
an abelian torsion-free not finitely generated group. By Lemma 5.3.9 every
subgroup of A is normal in G so if we say x a periodic element of F we can
construct a double chain of subnormal subgroups of G, for instance

. . . < A−n〈x〉 < . . . < A0〈x〉 < . . . < An〈x〉 < . . .

where the collection {Ai|i ∈ N} forms a double chain in A. Then there exists
an integer k such that Ak〈x〉 is normal in G and hence 〈x〉 = T ∩ Ak〈x〉 is
normal in G and so every subgroup of F is normal in G.

Corollary 5.3.12. Let G be a soluble residually finite DCsnn-group. Then G
is either polycyclic or metabelian and hypercyclic.

Proof. Supposing that G is not polycyclic, by Lemma 5.3.11 G/CG(F ) is
abelian and G′ ≤ CG(F ) = F , so G′ is abelian and every subgroup of G′

is normal in G. So G is metabelian and hypercyclic.

Proposition 5.3.13. Let G be a soluble torsion-free DCsnn group. Then G is
either polycyclic or abelian.

Proof. Supposing that G is not polycyclic, by Lemma 5.3.11 F is abelian, so
G/F is a group of power automorphisms of an abelian torsion-free group and
so |G/F | ≤ 2 (see [15], Corollary 4.2.3). Let us now suppose the existence of
a non-trivial element x of G \ F . Since x2 ∈ F , x has to act trivially on every
element of F and so it belongs to F itself, which cannot be. This implies that
G is abelian.

Lemma 5.3.14. Let G be a soluble non-polycyclic group satisfying the DCsnn

and let F be the Fitting subgroup of G. If the torsion subgroup T of F is not a
finite extension of a group of type p∞ and F is not periodic, then G is either
a T -group or an LT -group.

Proof. Since G is not polycyclic F cannot be finitely generated and by hypoth-
esis it is neither Černikov, so, by Proposition 5.0.8, it satisfies the maximal
condition on non-normal subgroups. Since we can suppose that T is Černikov,
F is the direct product of T by an abelian torsion-free group, say A. If A is
not finitely generated, then similarly to what we proved in Lemma 5.3.11 we
can prove that every subgroup of F is normal in G. So suppose that T is not
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finitely generated. Since it is not a finite extension of a group of type p∞, it
has to contain a subgroup B such that B = B1 × B2 where B1 and B2 are
both not finitely generated. So, if we take a as an aperiodic element of F , we
have that 〈B1, a〉 and 〈B2, a〉 are both normal in G by Corollary 5.0.4 and so
〈a〉 = 〈B1, a〉∩〈B2, a〉 is normal in G and hence every subgroup of F is normal
in G.
The conclusion follows from Lemma 5.3.8.

Lemma 5.3.15. Let G be a soluble DCsnn-group and let F be the Fitting
subgroup of G. If F is torsion-free, then G is either polycyclic or an LT -group.

Proof. Let us assume that G is not polycyclic, so F is not polycyclic as well.
By Lemma 5.3.11 every subgroup of F is normal in G and by Lemma 5.3.8 we
have that G is an LT -group.

Lemma 5.3.16. Let G be a soluble DCsnn-group. If G is residually finite and
F , the Fitting subgroup of G, is not periodic, then G is either polycyclic or an
LT -group.

Proof. Let us assume that G is not polycyclic, so F is not polycylic as well. F
is also reduced, so by Lemma 5.3.11 every subgroup of F is normal in G. So
we have that G is an LT -group by Lemma 5.3.8.

Lemma 5.3.17. Let G be a soluble non-periodic DCsnn-group and let F be the
Fitting subgroup of G. If F is a Prüfer p-group for a prime p, then G is either
an IT -group or nilpotent.

Proof. Since F is a Prüfer group, G/F is an abelian, residually finite group,
so if we call J the finite residual of G we must have J = F . Moreover G′ ≤ F .
If we assume that G′ = F then G is an IT -group (see [23], Theorem 1.11). So
let G′ be a finite subgroup of F . Then G is a BFC-group and F = J ≤ Z(G).
So G is nilpotent.

Lemma 5.3.18. Let G be a soluble non-periodic DCsnn-group and let F be
the Fitting subgroup of G. If F is the direct product of infinitely many cyclic
subgroups, then G satisfies the maximal condition on subnormal non-normal
subgroups.

Proof. Let F = Dri∈ICi, where I is an infinite set and Ci is cyclic for each i ∈ I.
By Lemma 5.0.1 every subgroup of F is normal in G and G is metabelian. Let

H0 < H1 < . . . < Hn < . . .
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be an ascending chain of subnormal non-normal subgroups with H0 being a
minimal subnormal non-normal subgroup of G. Then we have that H ′0 is
normal in G and H/H ′0 is a cyclic subnormal non-normal subgroup of G/H ′0.
Since, by hypothesis, only a finite number of subgroups of F can live out of
H0, the commutator subgroup of G/H ′0 is finite and abelian and the Fitting
subgroup ofG/H ′0 coincides with the Hirsch-Plotkin radical ofG/H ′0 by Lemma
5.0.5. On the other hand the Fitting subgroup of G/H ′0 is clearly reduced and
not periodic, since G itself is not periodic and G/H ′0 is an FC-group, so by
Lemma 5.3.11 every subgroup of the Fitting subgroup of the non-polycyclic
group G/H ′0 is normal in G/H ′0, which is a contradiction.

Finally, we conclude this chapter proving a result which shows a good behavior
of DCsnn-groups in accordance with what will be seen for DCnp-groups, which
are strictly related with the present ones.

Proposition 5.3.19. Let G be a soluble DCsnn-group and let 〈x〉 be an infinite
subnormal non-normal subgroup of G. Then G is minimax.

Proof. Firstly assume G being locally nilpotent. Let F be the Fitting subgroup
of G and T be the torsion subgroup of G. If T is not Černikov, then in F we
can find an infinite direct product of cyclic subgroups, which, combined with
〈x〉, would make it normal, which is not. Hence T is Černikov and particularly,
since by Lemma 5.3.11 we can assume F is not reduced, T is a finite extension of
a Prüfer group, since 〈x〉 cannot normalize two periodic subnormal subgroups
with trivial intersection. Let now assume that G/T is not polycyclic. As
G is locally nilpotent, G/T is torsion-free and by Proposition 5.3.13 G/T is
abelian and G′ ≤ T . Thus G is a CC-group, namely a group with Černikov
conjugacy classes. Then G/Z2(G) is periodic (see [11], Theorem 2.4.7) and
G/F is periodic, too. F cannot be polycyclic, but because of 〈x〉 it is neither
Černikov, so is satisfies the maximal condition on non-normal subgroups by
Proposition 5.0.8 and then it is central-by-finite by Corollary 3.1.7. On the
other hand, Z(F ) = A×P where P is a finite extension of a Prüfer group and
A is torsion-free and finitely generated by Lemma 3.1.2. Since it is impossible
that 〈x〉Ak is normal for every natural number k, otherwise we would have
that

〈x〉 =
⋂
k∈N

〈x〉Ak

is normal and this is not the case, we know that there exists a natural number
k such that G/Ak is still periodic and contains a finite subnormal non-normal
subgroup, so it is Černikov by Lemma 5.3.2 and our lemma is proved for the
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locally nilpotent case. Now let G be a soluble DCsnn-group and H its Hirsch-
Plotkin radical. By the first part of the proof, H is minimax and hence every
ascendant abelian subgroup of G is minimax. The result follows from Corollary
6.3.9 in [34]
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Chapter 6
Double chain condition on
non-pronormal subgroups

This chapter is devoted to groups satisfying the maximal, the minimal and the
double chain condition on non-pronormal subgroups.

Pronormal subgroups has been studied for a long time in relationship with
the behavior of finite groups. In the late 80s, however, Kuzennyi and Subbotin
began studying the effect of having many pronormal subgroups in infinite
groups. In their paper [31] in 1987 they gave a complete description of periodic
locally graduated groups whose subgroups are all pronormal, showing, in the
same paper, that locally soluble non-periodic groups whose subgroups are all
pronormal are abelian. After this, in their paper [32] in 1988 they investigated
the structure of groups all of whose infinite subgroups are pronormal, proving
that such groups, if locally soluble, either have all of their subgroups being
pronormal or are finite extensions of a Prüfer group.

More recently, a paper [27] of 1995 by de Giovanni and Vincenzi and then a
paper [56] in 1998 by Vincenzi have dealt with maximal and minimal conditions
on non-pronormal subgroups. Finally, in 2001 a survey [28] about the theory
of pronormal subgroups has been published by the same authors.

We should previously remark that the examples shown by Ol’̌sanskĭi play
their role here, too. In fact, simple groups exist which are easily shown to have
each proper subgroup being cyclic and pronormal. From this consideration it
follows that many results in this chapter will have to bring along a suitable
hypothesis to avoid those simple groups. The hypothesis in question is that of
having no infinite simple sections, which is of wide use throughout the study of
pronormality. This class of groups is easily shown to contain every hyper-(finite
or locally soluble) group.

66



Lemma 6.0.1. Let G be a group having no infinite simple sections. Then G
is locally graded.

Proof. Le H be a finitely generated non-trivial subgroup of G. Then by Zorn’s
Lemma H contains a maximal normal subgroup K and H/K is simple. Then
H/K is finite and G is locally graded.

Here we are going to give account of some basic and easy properties which we
will use abroad throughout the present chapter.

Lemma 6.0.2. Let G be a group and H a subgroup of G. Then H is normal
in G if and only if H is pronormal and ascendant in G.

The above lemma underlines an interesting, maybe unexpected connection
between non-pronormal and subnormal (ascendant) non-normal subgroups. In
fact, as we will see, many are the correlations between the two properties and
the methods used in attaching both problems overlap many times. Anyway,
one of the most pivotal difference is, from the very beginning, the fact that
the DCnp condition is inherited by subgroups, while the DCsnn condition is
inherited only by subnormal subgroups.

Lemma 6.0.3. Let G be a group and let H and K be pronormal subgroups of
G such that HK = K. Then HK is a pronormal subgroup of G.

Next lemma will show a strict connection between the property of having
many pronormal subgroups and that of being a group with every subgroup
being T -groups, namely the so-called T − groups, firstly studied in [45]. This
will do as our extremal case most of the times in this chapter.

Lemma 6.0.4. Let G be a group whose cyclic subgroups are pronormal. Then
G is a T -group.

Another lemma which has a good balance of ease and strength is the follow-
ing, which reduces the study of the locally nilpotent case to that of DCnn.
Notice that here we are meeting, among many similarities, one of the crucial
differences between DCnp and DCsnn.

Lemma 6.0.5. Let G be a locally nilpotent group and H a pronormal subgroup
of G. Then H is normal in G.

Proof. Let x be an element of G and put K = NG(H). Since H is pronormal
there exists an y ∈ 〈H,Hx〉 such that Hx = Hy. We have clearly that x =
xy−1y belongs to 〈K,Kx〉 and so there exists a finitely generated subgroup F of
K such that x ∈ 〈F, F x〉. But 〈F, F x〉 = 〈F, x〉 is nilpotent and F is obviously
pronormal in 〈F, F x〉, so it is also normal in it and we have x ∈ F ≤ K. Thus
H is normal in G.
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Now we present a useful lemma which consists of the transposition of Lemma
0.0.1 to pronormal subgroups with the addition of some related consequences.
Notice that in this case the intersection closure of the property is granted by
the consideration of ascendant pronormal subgroups, which are hence normal
by Lemma 6.0.2.

Lemma 6.0.6. Let G be a DCnp-group and let H/K be a section of G which
is a direct product of infinitely many non-trivial cyclic subgroups. Suppose that
H is ascendant in G, then K and H are normal in G and every cyclic subgroup
of G/H is pronormal. Moreover G/K is a T -group.

Proof. H/K is a direct product of infinitely many non-trivial cyclic subgroups
if and only if it contains a direct product of countably many non-trivial cyclic
subgroups so without loss of generality we can let {Hn|n ∈ Z} be a countably
infinite collection of subgroups of H properly containing K and such that Hi/K
is cyclic for all i ∈ Z and that H/K = Dri∈ZHi/K. We can then split this
collection into two infinite collections, namely {Ui|i ∈ Z} and {Vj|j ∈ Z}, such
that

H/K = Dri∈ZUi/K ×Drj∈ZVj/K

and for each integer n define

U∗n = 〈Uk|k < n〉

V ∗n = 〈Vk|k < n〉.

Since the group satisfies the double chain condition on non-pronormal sub-
groups, there exist two integers s and r such that U∗r prG and V ∗s prG the both
of them being normal in G since H is ascendant. Obviously, we have that
U∗r ∩ V ∗s = K and K is normal in G. On the other hand, by the same reason-
ing we see that each direct term of H/K is normal in G/K, so H/K is normal
in G/K, too, and H is normal in G.
In order to prove that every cyclic subgroup of G/H is pronormal and then

that G/H is a T -group we can suppose, without loss of generality, that K =
{1}. Let now x be an element of G and notice that 〈x〉 ∩H can be contained
only in a finite number of direct terms of H, so we can assume that 〈x〉 ∩
H = {1}. This way, again by the double chain condition, we have that there
exists an integer r such that, for instance, 〈x〉U∗r prG. Thus the subgroup
〈x〉H = (〈x〉U∗r )H is pronormal in G.
Still assuming without loss of generality that K = {1}, let now E be a

subgroup of G and F be a subnormal subgroup of E. Call I the set of indices
such that H = Dri∈IHi and define IE = {i ∈ I|Hi ∩ E 6= {1}}, IF = {i ∈
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I|Hi ∩ F 6= {1}}, LE = Dri∈IE(Hi ∩ E) and LF = Dri∈IF (Hi ∩ F ). If IF
is infinite countable, then by the first part of the proof E/LF is a T -group
and F is normal in E. If otherwise IF is not infinite we can suppose that
F ∩ H = {1}. By the double chain condition on non-pronormal subgroups,
there exist two integer k and l such that FU∗k and FV ∗l are pronormal in G.
So they are pronormal and hence normal in EU∗k and in EV ∗l , respectively.
If we now assume that IE is infinite and countable, we may suppose that
EU∗k = EV ∗l = E and hence that F = FU∗k ∩ FV ∗l is normal in E. Finally, if
IE is finite we can assume that E∩H = {1} and so we have that F = E∩FU∗k
is normal in E.

Lemma 6.0.7. Let G be a periodic DCnp-group. If the Hirsch-Plotkin radical
H of G is not Černikov, then all of its subgroups are normal in G and every
finite subgroup of G is a T -group.

Proof. By Lemma 6.0.5, H is a DCnn-group and hence by Theorem 3.3.8 and
by Corollary 3.1.7 it is nilpotent. Let A be a maximal abelian normal subgroup
ofH, then it is not Min and thus contains a subgroup B such that B = Dri∈ZBi.
Since H is nilpotent and B is subnormal in G, as we have already seen Bi is
normal in G for each i ∈ Z and by Lemma 6.0.6 G/B is a T -group. Let X be
a cyclic subgroup of H. Clearly we can suppose that X ∩ B = {1}. We know
that G/B is a T -group, so XB is normal in G. On the other hand, by the
double chain condition on non-pronormal subgroups, there exist two integers
k and l such that XBk and XBl are both pronormal and hence normal in G.
This way we have that X = XBl ∩XBk is normal in G.
Let now E be a finite subgroup of G and L be a subnormal subgroup of E.

Clearly we can suppose that E ∩B = {1}. There exists an integer k such that
LBk is pronormal in G. So it is pronormal (and hence normal) in EBk and so
we have that L = E ∩ LBk is normal in E.

6.1 Maximal condition

This section is based on the paper of Vincenzi [56]. Some results are here
extended from the same hypotheses while some others are reported in their
double chain (hence still extended) form in the dedicated section.

Proposition 6.1.1. Let G be a finitely generated radical group satisfying the
maximal condition on non-pronormal subgroups. Then G is polycyclic.

Proof. By Lemma 6.0.5, the Hirsch-Plotkin radical H of G satisfies Max-nn.
In particular, by Theorem 3.1.6, it is a central extension of an abelian group
by a polycyclic group.
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Assume by a contradiction that G is not polycyclic, from which it follows
that H is not finitely generated by Theorem 1.1.2, so G/H cannot be periodic.
Since H is not finitely generated, it follows easily that G/H is a T -group, and
hence it is abelian. Then G is abelian-by-polycyclic by Theorem 2.1.3, G is
Max-n and so every infinite ascending chain of subgroups of H is definitively
not G-invariant. Since every subgroup of H is subnormal in G, by Lemma
6.0.2 we have our contradiction.

Theorem 6.1.2. Let G a hyper-(abelian or finite) group satisfying Max-np.
Then G is soluble-by-finite. Moreover, if G is not Max, then G is soluble.

Proof. Let

{1} = G0 < G1 < . . . < Gτ = G

be an ascending series of G such that Gβ+1/Gβ is abelian or finite for each
0 ≤ β < τ , by hypothesis and Lemma 6.0.2 there exists a natural number n
such that Gα is normal in G for each n ≤ α ≤ τ . Since clearly Gn is soluble-
by-finite we can assume that Gα is normal for each α ≤ τ . Now, by induction
on τ , we have directly our claim if τ is not a limit ordinal, so suppose this
is not the case. Then G, being the union of infinitely many soluble-by-finite
subgroups, is locally(soluble-by-finite). If we suppose by a contradiction that
G is not soluble-by-finite, there is in G a cyclic non-pronormal subgroup E1

and it has to be contained in a proper term of the ascending series of G, say
Gα1 . Then G/Gα1 is not soluble-by-finite and contains a cyclic non-pronormal
subgroup E2/Gα1 . This way we can construct an infinite ascending chain of
non-pronormal subgroups of G. Hence G is soluble-by-finite.
Suppose now that G is not Max and let K be a soluble subgroup of finite index

of G. Then clearly there is a natural number n such that Kn/Kn+1 is not Max.
Then it is easily seen that every cyclic subgroup of G/Kn is pronormal and
then G/K is soluble (see Peng [42], Theorem p.233) and so is G

Making use of an interesting, technical lemma, which follows, we will be able
to prove an optimal characterization for periodic soluble groups satisfying Max-
np.

Lemma 6.1.3. Let G be a periodic soluble group, N a normal π-subgroup of G
and H a π′-subgroup of G. Suppose either N or H is finite. If x is an element
of G such that the subgroups HN and HxN are conjugated in 〈H,Hx〉N , then
H and Hx are conjugated in 〈H,Hx〉. In particular, if HN is a pronormal
subgroup of G, then so is H.
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Proposition 6.1.4. Let G be a periodic soluble group satisfying the maximal
condition on non-pronormal subgroups. If G is not a Černikov group, then all
subgroups of G are pronormal.

Proof. Say A the last term of the lower central series of G. By Lemma 6.0.7,
every cyclic subgroup of G is pronormal and by Lemma 6.0.4 G is a T -group,
so, by the results of [45], we have that every subgroup of A is normal in G,
that A has no elements of period 2, hence it is abelian, G/A is a Dedekind
group and π(A)∩ π(G/A) = ∅. Let π ⊆ π(G/A) and P be a π-subgroup of G.
If A is finite we can apply Lemma 6.1.3, so let

A1 < . . . < An < . . .

an infinite chain of finite subgroups of A. Since P ∩ A = {1},

A1P < . . . < AnP < . . .

is strictly ascending and then there exists a natural number k such that AkP
is pronormal in G. Then P is pronormal in G by Lemma 6.1.3. Now we have
our claim, by applying Lemma 5, Lemma 6 and, easily, the main theorem of
[31].

Though Theorem 6.3.8 below obviously applies also to periodic groups satis-
fying Max-np and is an optimal split into extremal cases, Vincenzi [56] showed
a sharp characterization for this groups, too, which is worth to be stated here.

Theorem 6.1.5. Let G be a periodic hyper-(abelian or finite) group. Then G
satisfies Max-np if and only if one of the following conditions holds:

(a) G is a finite group;

(b) every subgroup of G is pronormal;

(c) G is an extension of a subgroup P of type p∞ for a prime p by a finite
T -group, and the Sylow p-subgroups of G are nilpotent.

Finally, we state the main result of [56], which is a full characterization
of hyper-(abelian or finite) groups satisfying the maximal condition on non-
pronormal subgroups.

Theorem 6.1.6. Let G be a hyper-(abelian or finite) group. Then G satisfies
Max-np if and only if one of the following conditions holds:

(a) G is Max;
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(b) every subgroup of G is pronormal;

(c) G contains a normal subgroup P of type p∞ for a prime p and a finitely
generated torsion-free central subgroup A of rank r such that, for every
subgroup N of A with rank r, G/PN is a finite T -group and the Sylow
p-subgroups of G/N are nilpotent;

(d) every finite homomorphic image of G is a T -group, G is soluble and
contains a subgroup L of finite index, with all its subgroups being normal
in G and which is extension of a finitely generated group by a Prüfer
group.

6.2 Minimal condition

This section is based on the paper of de Giovanni and Vincenzi [27]. Some
results are here extended from the same hypotheses while some others are
reported in their double chain (hence still extended) form in the dedicated
section. The aim of the paper was that of proving a result of “Phillips and
Wilson” type, namely a result of the type explored in Section 3.2.
We are firstly dealing with the periodic case, but before that we are going

to see how the imposition for a group to have only finite descending chains of
non-pronormal subgroups steps in when coming to chief factors.

Lemma 6.2.1. Let G be a group satisfying Min-np. If G has no infinite simple
sections, then every chief factor of G is finite.

Proof. Let us take H/K as a chief factor of G. By Min-np, H/K is Min-n
and then by Corollary 2.2.7 it is product of finitely many isomorphic simple
groups. Therefore H/K is finite.

Here is a useful lemma, namely Lemma 13 of [27], which we state here.

Lemma 6.2.2. Let G be a periodic countable group satisfying Min-np. If G
has no infinite simple sections, then G is hyperabelian-by-finite.

Lemma 6.2.3. Let G be a periodic hyperabelian-by-finite group satisfying Min-
np. If G has no infinite simple sections, then either G is a Černikov group or
all subgroups of G are pronormal.

Proof. Assume that G is not Černikov, say K a hyperabelian normal subgroup
of finite index of G and say L the Fitting subgroup of K. Clearly L cannot be
Černikov and by Lemma 6.0.7 every finite subgroup of G is pronormal in G.
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Assume that G contains non-pronormal subgroups and let M be a minimal
non-pronormal subgroup of G. Clearly M/M ′ is a Prüfer p-group for a prime
p, since it cannot be generated by two proper subgroups. But M is a T -group,
so M/CM(M ′) is isomorphic with a group of power automorphisms of M ′ and
so it is residually finite. Then M ′ ≤ Z(M) and M is nilpotent, thus Dedekind,
which means that M ′ has to be trivial in this case. So M is a Prüfer group.
Now, we know that G itself is a T group and so, if we say F the fitting subgroup
of G, G/CG(F ) is residually finite, so that M ≤ CG(F ). This way we have
that M is normal in MF , which is normal in G, a contradiction.

Now we are ready to prove the main result for the periodic case.

Theorem 6.2.4. Let G be a periodic group satisfying Min-np. If G has no
infinite simple sections, then either H is a Černikov group or all subgroups of
G are pronormal.

Proof. Assume G is not a Černikov group. Then it contains a countable sub-
group X which is not Černikov (see, for instance, [49], p. 107). If we take in
G a finitely generated subgroup H, then 〈H,X〉 is still countable and hence
hyperabelian-by-finite by Lemma 6.2.2. Now, by Lemma 6.2.3 all subgroups
of 〈H,X〉 are pronormal and in particular 〈H,X〉 is metabelian. By the ar-
bitrary choice of H we deduce that every finitely generated subgroup of G is
metabelian, hence G is metabelian and every subgroup of G is pronormal by
Lemma 6.2.3.

Now we prove a lemma which will help us proving the general result of this
section.

Lemma 6.2.5. Let G be a group satisfying Min-np and let 〈x〉 be an infinite
cyclic subnormal subgroup of G. Then 〈x〉 ≤ Z(G).

Proof. By Min-np, 〈x〉 satisfies Min-G and hence 〈x〉 is normal in G. Assume
the existence inG of an element y such that y−1xy = x−1. Hence 〈x〉∩〈y〉 = {1}
and

. . . < 〈x2i , y〉 < . . . < 〈x2, y〉 < 〈x, y〉
is a strictly descending chain. So there exists a k > 1 such that 〈x2k , y〉
is pronormal in G. Since y2 ∈ Z(〈x, y〉), 〈x2k , y〉 is normal in 〈x, y〉 and
〈x, y〉/〈x2k , y2〉 is a finite 2-group. In particular, 〈x2k , y〉 is subnormal and hence
normal in 〈x, y〉, so that 〈x, y〉′ ≤ 〈x2k , y〉. Therefore x−2 ∈ 〈x2k , y〉 ∩ 〈x〉 =
〈x2k〉, which is impossible.

From the previous lemma and from the fact that a non-periodic nilpotent
group is generated by its element of infinite order follows that
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Corollary 6.2.6. Let G be a group satisfying Min-np and let N be a nilpotent
non-periodic normal subgroup of G. Then N is contained in Z(G).

Lemma 6.2.7. Let G be a (locally soluble)-by-finite non-periodic group satis-
fying Min-np. Then G is abelian.

Proof. Assume first that the lemma is false for finitely generated soluble groups
and say G such a group of minimal derived length k. If G′ is not periodic
then by Corollary 6.2.6 it is contained in Z(G) and G is nilpotent and hence
abelian by 6.2.6. Then G′ is periodic. Hence G/Gk−1 is not periodic and hence
abelian, so k = 2 and G′ is abelian. If we take x ∈ G′, then 〈x〉G is an abelian
group of finite exponent such that 〈x〉G/〈x〉 satisfies the minimal condition on
subgroups, so 〈x〉G is finite. Let a be an element of infinite order of G and n
a positive integer such that [〈an〉, 〈x〉G] = {1}. Then 〈an, 〈x〉G〉 is an abelian
normal subgroup of 〈a〉〈x〉G and by Corollary 6.2.6 it is central. From this
〈a〉〈x〉G is nilpotent and hence abelian. Therefore 〈a,G′〉 is abelian and by
Corollary 6.2.6, again, it lies in Z(G). So G is nilpotent and hence abelian, a
contradiction.
Suppose now that G is a (locally soluble)-by-finite group and let R be a

locally soluble normal subgroup of finite index of G. Then R is not periodic
and is abelian by the first part of the proof. So G is abelian-by-finite. Assume
the lemma is false and take G as a minimal counterexemple with regard to
the index of an abelian normal subgroup A of finite index. Then, clearly, if
A ≤ H < G, H is abelian. Therefore a well-known result by Miller and Moreno
[39] shows that G/A is soluble, so G is soluble and hence is abelian by the first
part of the proof.

Next we finally state the non-periodic part of the result of [27].

Theorem 6.2.8. Let G be a non-periodic group satisfying Min-np. If G has
no infinite simple sections, then G is abelian.

Proof. Clearly we can assume that G is finitely generated. By Lemma 6.0.1
there is in G a descending normal series with finite factors, say

G = H0 > H1 > . . . > Hn > . . . ,

and there exists a natural number k such that Hn/Hn+1 is a finite T , and hence
metabelian group, for each n ≥ k. If we now say N =

⋂
n∈NHn, then Hm/N is

hypoabelian and then soluble [see [27], Lemma 4], So G/N is soluble-by-finite
and finitely generated, so it cannot be periodic and it is abelian by Lemma
6.2.7. Then G′ ≤ N and G/G′ is not periodic. Assume that G′ 6= {1}. Since
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G is finitely generated, clearly G′ satisfies Max-G and we can take K as a
maximal G-invariant subgroup of G′. Then G′/K is a chief factor of G and by
Lemma 6.2.1 it is finite. But this way we have shown that G/K is finite-by-
abelian and finitely generated, hence abelian-by-finite and by Lemma 6.2.7 it
is abelian, which is a contradiction.

Theorem 6.2.4, together with the theorem just proved, contribute to form the
main result of [27].

Theorem 6.2.9. Let G be a group satisfying Min-np. If G has no infinite
simple sections, then either G is a Černikov group or all subgroups of G are
pronormal. In particular, if G is not periodic, G is abelian.

6.3 Double chain condition

Notice that the class of DCnp-groups is closed under S and H. If we take A as
the locally dihedral 2-group and B as the semidirect product between Z × Z
and the automorphism x : (a, b) 7→ (a, ab), then A×B does not belong to the
class DCnp while both A and B do, so our class is not closed under N0.

Lemma 6.3.1. Let G be a DCnp-group and let H be a locally nilpotent subgroup
of G. If H is not Černikov, then H is nilpotent. Equivalently, H satisfies either
the minimal or the maximal condition on non-pronormal subgroups.

Proof. By Lemma 6.0.5 we have that H satisfies the double chain condition on
non-normal subgroups and so by Theorem 3.3.8 it satisfies either the minimal
or the maximal condition on non-normal subgroups. Since H is not a Černikov
group it satisfies the maximal condition on non-normal subgroups and hence
by Corollary 3.1.7 it is nilpotent.

Since there exists, for instance, the locally dihedral 2-group which is locally
nilpotent, Černikov, but is not nilpotent, then the non-Černikov hypothesis
cannot be removed from the previous Lemma.

Lemma 6.3.2. Let G be a DCnp-group and let H be the Hirsch-Plotkin radical
of G. If every subgroup of H is normal in G, if H is not periodic and not
finitely generated, then G/H is a T -group.

Proof. Let us take an element of infinite order a and construct the following
infinite double chain in H
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. . . < 〈a2n〉 < . . . < 〈a2〉 < 〈a〉 < F1 < . . . < Fn < . . .

where F1, . . . Fn are finitely generated subgroups of H. Let b be an element of
G \H and suppose by a contradiction that H〈b〉 is not pronormal in G. If b is
of infinite order, then there is an increasing sequence of integers k1, . . . , kn, . . .
such that 〈bkn〉 is not pronormal in G for each n. So we can take into account

. . . < 〈bkn〉 < . . . < 〈bk1〉 < 〈b〉 ≤ F1〈b〉 ≤ . . . ≤ Fn〈b〉 ≤ . . .

which is a descending chain.
On the other hand, if we suppose that b has finite order, 〈a2n〉 ∩ 〈b〉 = {1} for

any positive integer n and so we can consider

. . . < 〈a2n〉〈b〉 < . . . < 〈a2〉〈b〉 < 〈a〉〈b〉 ≤ F1〈b〉 ≤ . . . ≤ Fn〈b〉 ≤ . . .

as a chain in G, which is certainly descending. In both cases, if we assume that
there exists an l > 0 such that Fl〈b〉 = Fn〈b〉 for each n > l, we have that the
polycyclic subgroup Fl〈b〉 contains an ascending chain of subgroups, and that
is impossible. So we have shown that both of the chains taken into account
are infinite double chains and so at least one of their terms is pronormal in G.
From this it follows that in both cases we have found that H〈b〉prG, but this
is a contradiction, and hence G/H is a T -group.

Proposition 6.3.3. Let G be a finitely generated radical DCnp-group. Then
G is polycyclic.

Proof. If G is a Černikov group, then it would be soluble and finite and thus
trivially polycyclic so we may suppose that G is not Černikov. Hence we know
that also the Hirsch-Plotkin radical H of G cannot be Černikov by Theorem
1.2.2, and by Lemma 6.3.1 it is nilpotent and satisfies the maximal condition
on non-normal subgroups. In particular it is a central extension of an abelian
group by a polycyclic group by Theorem 3.1.6.
Assume by a contradiction that G is not polycyclic, from which it follows

that H is not finitely generated. Assume that H is periodic. H clearly does
not satisfy Min-ab and therefore it contains an abelian subgroup A which is
product of infinitely many non-trivial cycles and so, by Lemma 6.0.6, G is a
T -group and hence polycyclic.
Let then a be an element of infinite order of H and suppose that 〈a〉 is not

pronormal in G. It contains an infinite descending chain of non-pronormal sub-
groups and so G/H satisfies Max-np which means, by Proposition 6.1.1, that
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G/H is polycyclic and G is abelian-by-polycyclic. Now we know that G has
Max-n and so every infinite ascending chain of subgroups of H is definitively
not G-invariant. Since every subgroup of H is subnormal in G, we have that
the terms of every infinite ascending chain of subgroups of H are definitively
not pronormal in G and this leads to a contradiction properly choosing in H
some elements h1, h2, . . . , hn, . . . and constructing, for instance, the following
infinite double chain of subgroups of H

. . . < 〈akn〉 < . . . < 〈ak1〉 < 〈a〉 < 〈a, h1〉 < . . . < 〈a, h1, h2, . . . , hn, . . .〉 < . . .

for a sequence k1, . . . , kn, . . . of positive integers.
Hence every element of infinite order of H is normal in G and being H gen-

erated by such elements it turns out to be a Dedekind group with all of its
subgroups normal in G.
By Lemma 6.3.2, G/H is an abelian T -group. We also have this way shown

that G is abelian-by-polycyclic, thus satisfying Max-n, which is our final con-
tradiction, since H is not finitely generated.

This proposition has an immediate consequence in the following corollary,
whose proof is straightforward.

Corollary 6.3.4. Let G be a finitely generated radical-by-finite group the DCnp

condition. Then G is polycyclic-by-finite.

We are now on the way to prove that every radical DCnp-group is indeed
soluble. So we prove a couple of lemmas first.

Lemma 6.3.5. Let G be a hyper-(locally nilpotent or finite)-group with the
DCnp condition. Then G is hyper-(abelian or finite).

Proof. Let

{1} = G0 < G1 < . . . < Gτ = G

be a series of G such that Gβ+1/Gβ is locally nilpotent or finite for each 0 ≤
β < τ . By Lemma 6.3.1, Gβ+1/Gβ is nilpotent or abelian-by-finite for each β
and hence G is hyper-(abelian or finite).

Proposition 6.3.6. Let G be a radical group with the DCnp condition. Then
G is soluble.
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Proof. Clearly we can suppose that the Hirsch-Plotkin radical H of G is
not Černikov, so it does not satisfy Min-ab and furthermore it is abelian-by-
polycyclic. If H is periodic, then it has an abelian subgroup which is product
of infinitely many cycles and is obviously subnormal in G, so by Lemma 6.0.6
G is soluble. Hence, let a be an element of infinite order of H and suppose that
〈a〉 is not pronormal in G. This way G/H satisfies Max-np and we can assume
it does not satisfy Max, otherwise we would have our thesis. By Lemma 6.3.5,
G/H is hyper-(abelian or finite) and so G/H is soluble by Theorem 6.1.2.
Therefore we can assume that every element of infinite order of H is normal in
G, having that H is a Dedekind group with all subgroups normal in G. Then
using Lemma 6.3.2 we have that G/H is soluble.

The periodic case

Let now come to our results concerning periodic DCnp groups which we will
obtain using the well-known Theorem 1.2.5 by Zaicev on periodic locally soluble
groups.

Lemma 6.3.7. Let G be a periodic locally soluble DCnp-group. Then G is
soluble and, in particular, if Z(G) is trivial G is metabelian.

Proof. Assume that G is not Černikov, take a finitely generated (hence finite
and soluble) subgroup F of G and say E a subnormal subgroup of F . If the
hypercentre of G is not Černikov we can find in it a maximal normal abelian
subgroup which is direct sum of infinitely many cyclic subgroups and so, by
Lemma 6.0.6, G is soluble. So we may suppose that the hypercentre of G is
soluble end hence even trivial. By Theorem 1.2.5, there is an abelian subgroup
A of G such that A = Dri∈ZAi where Ai is a E-invariant subgroup for each
integer i. Clearly we can suppose that A ∩ F = {1}. By the double chain
condition there exists a subgroup K of A such that EK is pronormal in G. So
it is pronormal (and hence normal) in FK and so we have that E = F ∩ EK
is normal in F . Hence the finite soluble subgroup F is metabelian, and G is
metabelian, too.

Theorem 6.3.8. Let G be a periodic locally radical DCnp-group. Then either
G is Černikov or all subgroups of G are pronormal.

Proof. By Proposition 6.3.6 and Lemma 6.3.7 we know that G is soluble. Sup-
pose H, the Hirsch-Plotkin radical of G, being not Černikov and so, by Lemma
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6.0.7, every subgroup of H is normal in G and every finite subgroup of G is a
T -group. By Proposition 6.3.3, G is locally polycyclic, hence locally finite and
G is a T -group [see [45] Lemma 2.1.1, Corollary 2]. Let E be a finite subgroup
of G and g an element of G, then 〈E, g〉 is still a finite subgroup of G, this way
being a finite T -group, which is equal to have all subgroups pronormal. Hence
there exists in 〈E, g〉 an element x such that Ex = Eg so obtaining that E is
pronormal in G.
Now assume by a contradiction that G contains non-pronormal subgroups.

Clearly G does not satisfy Max-np, for instance by Theorem 6.1.6, and there-
fore it possesses a minimal non-pronormal subgroup M . M cannot be finite
and so M/M ′ is infinite, too, from which it follows that M/M ′ ' Cp∞ for a
prime p. Furthermore, since M is a T -group, M/C(M ′) is residually finite and
then M ′ ≤ Z(M), implying that M is nilpotent and hence of Dedekind type.
Since M/M ′ is isomorphic with Cp∞ , M ′ has to be trivial. We notice that H
clearly coincide with the Fitting subgroup of G. So, as we already pointed out,
G/CG(H) is residually finite and M has to lie in CG(H). But thus we have
that M is normal in MH, hence normal in G and this is a contradiction.

The general case

Now that the periodic case is proved, we can move on to the general case.
In the remainder, we are going to show some relevant properties pertaining
DCnp-groups eventually concluding by proving that a radical group with our
condition is either a T or a minimax group.
To now deal with the general case some inspection is needed for the case in

which the presence of a particular torsion-free subgroup cannot be avoided.
Here we give a slightly different version of two lemmas in Vincenzi [56].

Lemma 6.3.9. Let G be a soluble DCnp-group and let A be a torsion-free
abelian ascendant subgroup of G which is not finitely generated. Then every
subgroup of A is normal in G.

Proof. Assume by a contradiction the existence of a finitely generated subgroup
H of A which is not normal in G. Clearly it is not even pronormal and so, for
a proper choice of natural numbers k1, . . . , kn, . . .,

. . . < Hkn < . . . < Hk1 < H

is a descending chain of non-pronormal subgroups of G. Hence, we can take
H as a subgroup being maximal with respect to the condition of being non
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G-invariant. So A is normal in G and we can still suppose that H is finitely
generated. Suppose that the torsion-free rank of H, say r0(H), is strictly less
then the torsion-free rank r0(A) of A. Hence, there exists an element x ∈ A\H
such that H ∩ 〈x〉 = {1}. By the maximality of H we have then that

H =
⋂
n∈N

〈H, xn〉

is normal in G, so we have, indeed, that r0(H) = r0(A) and A has finite rank.
Since A/H cannot be generated by two proper subgroups it is isomorphic
to a group of type p∞ for a prime p. If r0(A) = 1, H is contained in a
cyclic normal subgroup of G and hence is clearly normal in G, so we can take
H = 〈a1〉×〈a2〉× . . .×〈am〉 with 〈a1〉, for instance, being non-pronormal in G.
Let us fix a prime q 6= p and say Hq = 〈a1〉×〈aq2〉× . . .×〈aqm〉. It is easy to see
that A/Hq = H/Hq × Bq/Hq where Bq/Hq is a group of type p∞. Since each
Bq is not finitely generated and contains a descending chain of non-pronormal
subgroups, for instance . . . < 〈akn1 〉 < . . . 〈ak11 〉 < 〈a1〉, it is normal in G and
hence B =

⋂
q 6=p

Bq is normal in G, too. But we have that

B ∩H = (
⋂
q 6=p

Bq) ∩H =
⋂
q 6=p

(Bq ∩H) =
⋂
q 6=p

Hq = 〈a1〉.

Since, for each q 6= p, r0(Bq) = r0(Bq∩H), then r0(B) = 1 and 〈a1〉 is contained
in a cyclic G-invariant subgroup of B and hence it is normal in G, which is our
final contradiction.

Lemma 6.3.10. Let G be a soluble DCnp-group and let A be a torsion-free
abelian normal subgroup of G which is not finitely generated. Then A is con-
tained in Z(G).

Proof. By a contradiction suppose that there exists an x ∈ G such that [A, x] 6=
{1}; this means, since by Lemma 6.3.9 every subgroup of A is normal in G,
that x acts as the inversion on each element of A, then x2 ∈ CG(A) and
〈x〉 ∩ A = {1}.
Take now the elements a1, a2, . . . , ak, . . . in A and construct the following chain

. . . < 〈a2k1 , x〉 < . . . < 〈a21, x〉 < 〈a21, a22, x〉 < . . . < 〈a21, a22, . . . , a2k, x〉 < . . .

which is a double chain for a proper choice of the elements of A. For the double
chain condition on non-pronormal subgroups we find a subgroup B of A and

80



6.3. DOUBLE CHAIN CONDITION

a positive integer n such that 〈B2n , x〉 is pronormal in G. Since x2 centralizes
〈B, x〉, then 〈B2n , x2〉 is normal in 〈B, x〉, hence 〈B, x〉/〈B2n , x2〉 is a finite
2-group and 〈B2n , x〉 is subnormal and hence normal in 〈B, x〉. But this way
we have found that

〈B, x〉/〈B2n〉 ' 〈B2n , x〉/〈B2n〉 × 〈B〉/〈B2n〉,
which is impossible, since x acts as the inversion on each element of 〈B〉/〈B2n〉.

Lemma 6.3.11. Let G be a DCnp-group with no infinite simple sections. Then
either G is a T -group or each ascendant abelian subgroup of G is minimax.

Proof. Suppose G is not a T -group and let A be an abelian ascendant subgroup
of G and B a free abelian subgroup of A such that A/B is periodic. By Lemma
6.0.6, B is finitely generated. Suppose by a contradiction that A/B is not Min,
then, if we take an integer n, A/B2n has an infinite socle which is product of
infinitely many subgroups. Again by Lemma 6.0.6, A and B2n are normal in G
and G/B2n is a T -group; then, since G has no infinite simple sections, G/B2n

is metabelian for every n, and hence G is metabelian. Let H be the Hirsch-
Plotkin radical of G, which is not minimax since it contains A. By Lemma
6.3.1, it satisfies the maximal condition on non-normal subgroups and hence it
is a Dedekind group, but H is not periodic and so it is abelian. If we say T the
torsion subgroup of H, it has to satisfy Min, otherwise G would be abelian,
and hence H = T ×F where F is a torsion-free not finitely generated subgroup
of H. By Lemma 6.3.10, F ≤ Z(G). If each subgroup of H were normal in G,
then G/H as a group of power automorphisms of an abelian aperiodic group H
would have order 2, containing hence an element inverting every element of H,
which is impossible, since F is contained in the centre of G. Thus, there is an
infinite cyclic subgroup 〈x〉 of H which is not pronormal in G. Since it contains
a descending chain of non-pronormal subgroups and H is not finitely generated,
we can take a subgroup M of H which is finitely generated, non-pronormal
in G and maximal with respect to this condition. Clearly H/M cannot be
generated by two proper non-trivial subgroups, otherwise M would be normal
in G, so H/M satisfies Min and H is minimax, which is a contradiction.

Theorem 6.3.12. Let G be a radical DCnp-group with no infinite simple sec-
tions. If G is not a T -group, then G is minimax.

Proof. G is soluble by Proposition 6.3.6. The result now follows from Lemma
6.3.11 and from the fact that a soluble groups all of whose abelian ascendant
subgroups are minimax is minimax [see [34] Corollary 6.3.9].
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[3] R. Baer: “Auflösbare Gruppen mit Maximalbedingung”, Math. Ann. 129
(1955), 139–173.

[4] R. Baer: “Engelsche Elemente Noetherscher Gruppen”, Math. Ann. 133
(1957), 256-270.

[5] R. Baer: “Irreducible groups and automorphisms of abelian groups”, Pa-
cific J. Math. 14 (1964), 385-406.
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