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1.1 Lactic acid bacteria 

Lactic acid bacteria (LAB) are a functional group of microorganisms characterized as Gram- 

positive, non-sporulating, acid-tolerant, catalase negative, non-motile, rod or coccus-shaped 

bacteria, belonging to the phylum Firmicutes with low (≤55 mol %) G+C in the DNA (Carr et al., 

2002). LAB are generally classified as oxygen-tolerant anaerobes and lack of cytochromes and 

porphyrins (components of electron transport chains, ETC), therefore, they get energy mainly 

through substrate level phosphorylation, producing lactic acid as major end-product. Orla-Jensen  

(1919) originally grouped LAB in four genera: Lactobacillus, Leuconostoc, Pediococcus and 

Streptococcus, however, taxonomic revisions have proposed several new genera and the remaining 

group comprises the following: Aerococcus, Alloiococcus, Carnobacterium, Dolosigranulum, 

Enterococcus, Globicatella, Lactococcus, Oenococcus, Tetragenococcus, Vagococcus, and 

Weissella. These genera include more than 300 species and they are found in nutritionally rich 

habitats such as food (dairy, meat and fish products, beer, wine, fruits, vegetables and silage), water, 

soil and they are part of the normal microflora in the mouth, gastro-intestinal (GI), and genital tracts 

of humans and many animals. Based on the metabolic pathways used to ferment glucose and the 

ability to metabolize pentoses, LAB are divided into two groups, homolactic and heterolactic. The 

first group, ferments glucose to exclusively lactic acid via the Embden-Meyerhof-Parnas (EMP). In 

this pathway, two molecules of ATP are generated from one molecule of glucose via substrate-level 

phosphorylation. The second group metabolize glucose via 6-phosphogluconate/phosphoketolase 

(6-PG/PK) pathway, producing one molecule each of lactic acid, CO2 and ethanol from one 

molecule of glucose consumed (Carr et al., 2002). LAB have been used for centuries for their 

technological and functional properties in the manufacture of fermented foods. Besides food 

production, LAB are used in a variety of other industrial applications such as the production of 

lactic acid, high-value metabolites involved in flavour and texture development or health 

applications, probiotic products, and antimicrobial peptides. 

 

 
1.2 The genera Lactobacillus  

Among LAB, Lactobacillus is the most numerous genus of the Lactobacillaceae family and of the 

Lactobacillales order. The genus includes several Generally Recognized As Safe (GRAS) species 

and many strains have a remarkable significance in both food microbiology and human health field, 

due to their contribution to food fermentations or their use as probiotics. Members of the genus 

Lactobacillus are non-spore-forming, non-motile and generally rod-shaped bacteria; cells are 

sometimes organized in chains. They are usually considered aero-tolerant anaerobic, aciduric or 
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acidophilic bacteria and lacking of catalase enzyme, although, the presence of a heme and 

manganese-dependent catalase has been found in some strains of Lb. plantarum, Lb. casei and Lb. 

sakei species (Abriouel et al., 2004; Rochat et al., 2006; Guidone et al., 2013; Zotta et al., 2016). 

The genus Lactobacillus is composed by 200 species and, from a taxonomic viewpoint, it belongs 

to phylum Firmicutes, class Bacilli, order Lactobacillales and family Lactobacillaceae (Felis and 

Dellaglio, 2007). On the basis on the metabolic pathways, three physiological Lactobacillus groups 

were classified: (i) obligately homofermentative lactobacilli (group A), ferment glucose to 

exclusively lactic acid via EPM pathway but lack of 6-PG/PK pathway, therefore, neither gluconate 

and pentoses are fermented, (ii) facultatively homofermentative (group B), ferment glucose and 

pentose via EPM and 6-PG/PK pathway, respectively, with a resulting production of acetic acid and 

ethanol under glucose limitation, and (iii) obligately heterofermenative (group C) that metabolize 

glucose, pentoses and related compounds via 6-PG/PK pathway and produce lactic acid, CO2 and 

ethanol (or acetic acid) (Hammes and Vogel, 1995). Over the past 20 years, the taxonomic analysis 

of Lactobacillus genus, based on the comparative analysis of 16S rRNA gene sequence, was 

characterized by a complex evolutionary history. Despite the taxonomy studies, conducted by 

Dellaglio and Felis (2005), Felis and Dellaglio (2007) and Salvetti et al. (2012), have make several 

changes in the phylogenetic structure of the Lactobacillus genus, recently further revision was 

carried out by Pot et al. (2014). To data, 17 phylogenetic groups can be discriminated, which are 

reported below: Lb. delbrueckii, Lb. salivarius, Lb. reuteri, Lb. rossiae and Lb. siliginis branch, Lb. 

vaccinostercus, Lb. casei, Lb. sakei, Lb. alimentarius, Lb. plant, Lb. brevis, Lb. collinoides, Lb. 

kunkeci and Lb. ozensis, Lb. fructivorans, Lb. buchneri, Lb. coryniformis, Lb. composti and Lb. 

floricola cluster, and Lb. perolens. Many species of this genus are widely used as starter or 

protective cultures in food fermentations and several strains, often of human origin, are actively 

used as probiotics. Furthermore, lactobacilli are under development as delivery systems in vaccines 

and therapeutics field.  

 

1.2.1 Lactobacillus johnsonii and Lactobacillus gasseri species: taxonomic, genomic and 

physiological aspects 

Lb. johnsonii and Lb. gasseri are Gram-positive, non‐sporulating, rod‐shaped,with a low G-C 

content (34.6%) in their DNA. Based on the results of DNA-DNA hybridizations, Lb. johnsonii and 

Lb. gasseri species belonging to Lb. acidophilus group that was recently embedded in L. delbrueckii 

group (Pot et al., 2014). These species are dominant bacteria in human gut and in vaginal 

microbiota and have received particular attention due to their reported probiotic activity (Pridmore 

et al., 2003). Likewise at other species of Lb. acidophilus group, Lb. johnsonii an Lb. gasseri are 
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defined as closely related bacteria (Singh et al., 2009).  It is difficult to differentiate unambiguously 

these two species and several studies have explored a polyphasic strategy, based on one or more 

molecular techniques, necessary for accurate species identification (Pot et al., 1993; Plessis ad 

Dicks, 1995; Ventura and Zink, 2002; Berger et al., 2007; Singh et al., 2009). At time, 4 finished 

genomes and 3 in draft status of Lb. johnsonii, and 2 finished genomes and 12 in draft status of Lb. 

gasseri are available in IMG/M (https://img.jgi.doe.gov) database. Whole-genome sequencing and 

comparative genomic analysis of Lb. johnsonii NCC533 and Lb. gasseri ATCC 33323 strains, 

revealed a genomes similarity highly significant (E ≤ 1e-100) between these species and a sequence 

identity of many houskeeping genes higher than 94%. However, several unique strains-specific 

genes were found (Pridmore et al., 2003; Berger et al., 2007). Moreover, these studies have revealed 

a high number of genome encoding traits that are not widely distributed among other Lactobacillus 

species but they could explain the successful adaptation of these bacteria to the gastrointestinal tract 

(GIT) (Peril et al., 2008). Both species share several metabolic capabilities. Lb. johnsonii and Lb. 

gasseri are described as strict anaerobes with homofermentative energy metabolism, so they are 

able to ferment hexose to acid lactic via EMP pathway. They have a partial citrate cycle (TCA) with 

fumarate reductase (fccA) and fumarate hydratase (fumH) enzymes, nevertheless, unlike L. gasseri, 

Lb. johnsonii lack of malate hydrogenase (mdh) enzyme. Lb. gasseri genome encodes for 21 

putative phosphoenoltransferase system (PTS), compared to 16 PTS found in L. johnsonii genome 

(Pridmore et al., 2003; Peril et al., 2008), however, the Lb. gasseri carbohydrate utilization pattern 

resembles that of Lb. johnsonii. They are able to ferment glucose, fructose, cellobiose, trehalose, 

sucrose, mannose and N-acetyl glucosamine. Unlike Lb. johnsonii, Lb. gasseri lack of lactose 

permease, so its lactose uptake is only mediated by PTS transporters, which in turn are absent in Lb. 

johnsonii. Moreover, Lb. gasseri lack of Lb. johnsonii-specific metabolic cluster (LJ0635) predicted 

to encode a maltose 6-phosphate glucosidase, a maltose IIBC PTS, and a RpiR-type phosphosugar-

responsive regulator (Pridmore et al., 2003). Regarding amino acids metabolism, both species are 

able to synthesize aspartate from oxalacetate and convert L-aspartate into L-asparagine by 

asparagine synthase. However, Lb. johnsonii and Lb. gasseri remain incapable to synthesize most 

amino acids, as well as, purine nucleotides and cofactors, therefore, they typically reside in the 

upper GI tract where it can obtain nutrients from the host.  

 

1.2.1.1 Probiotic feature of Lb. johnsonii and Lb. gasseri strains 

Lb. johnsonii and Lb. gasseri have been extensively studied for their probiotic properties. Recently, 

they have been object of various research investigations, many of which show the potential of Lb. 

johnsonii and Lb. gasseri as adjuvant therapy in various GIT human diseases. Lb. johnsonii NCC 
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533, formerly known as Lb. johnsonii LA1 (Nestlé culture collection), is a well documented 

probiotic strain and its DNA sequence have been fully demonstrated (Pridmore at al., 2003). 

Lb. johnsonii LA1 has been shown to give many beneficial effects for the host, including 

stimulation of gut immune response (immunomodulation) and intestinal homeostasis, pathogen 

inhibition and improvement of Helicobacter pylori eradication regimens. The strain has been shown 

to strongly adhere to the intestinal epithelial monolayer (Ventura et al., 2002; Prindmore et al., 

2003). It has been demonstrated that in Lb. johnsonii, lipoteichoic acids (LTA), the elongation 

factor Tu and the heat shock proteins (GroEL) can act as adhesin-like factors (Granato et al., 1999). 

These bacterial surface structures are able to bind the human epithelial lines and induce the 

secretion of different cytokines, involved in the immunomostimolatory mechanisms (Marteu et al., 

1997; Granato et al., 2004; Bergonzelli et al., 2006). Moreover, in human studies, feeding of 

fermented milk containing L. johnsonii LA1 has been demonstrated to reinforce human leucocyte 

phagocytic activity, improve IgA immunoglobulin level in the serum and re-establish the 

homeostasis of the human faecal microbiota (Link-Amster, 1994; Schiffrin et al., 1995; Yamamoto 

et al., 2006; Garrido et al., 2005; Fukushima et al., 2007). An important mechanism that may 

explain the health-promoting effects of probiotic bacteria is their ability to modulate the intestinal 

microbiota and to maintain an equilibrium between the intestinal population of beneficial and 

potentially harmful bacteria. Disruption of the intestinal microbiota homeostasis is found in several 

GIT disorders such as the inflammatory bowel diseases (IBD), allergies and rheumatoid arthritis. It 

is well known that Lb. johnsonii LA1 plays an important role in inhibition of the gut colonization 

by pathogenic bacteria. This strains exert a competitive exclusion mechanism through (i) the 

production of antimicrobial substances and (ii) the competition for nutrients or specific receptor 

site, on epithelial cell surface, to prevent the pathogen adherence. In vivo and in vitro studies 

demonstrated the inhibitory effect of LA1 against several pathogens found in human diarrhea, 

including E. coli (EPEC), E. coli (ETEC) and Salmonella typhimurium strains (Bernet et al 1994; 

Livrelli et al., 1996; Camard et al., 1997; Neseer et al., 2000). Pridmore et al. (2008) and Massaudi 

et al. (2005) observed that the ability Lb. johnsonii to produce H2O2 and acetic acid could support 

this killing activity. Studies concerning intestinal cell lines, animal models and human voluntaries 

have shown that Lb. johnsonii LA1 exert an antimicrobial activity also against Helicobacter pylori. 

In vitro studies, LA1 exerts bacteriostatic or bactericidal activities against this pathogen and 

decrease its adhesion to cultured cells (Bernet et al., 1997). In animal model studies, the 

administration of LA1 could potentially affect the humoral immune response. In particular, it was 

observed a distinct attenuation in the neutrophilic polymorphonuclear inflammatory infiltration of 

the laminae propriae of the LA1-administered mice, as well as, a significant reduction of the 
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immunoglobulin IgG level in the LA1-treated mice, compared to untreated (Sgouras et al., 2005). In 

humans, a significant decrease in IgG antibody titer has been suggested as an indicator for 

successful eradication of H. pylori (Bergey et al., 2003). Finally, in clinical studies were also 

demonstrated that the regular ingestion of a dietary product containing LA1 may interfere with H. 

pylori colonization. In double-blind, placebo-controlled clinical trials, the administration of 

acidified milk containing LA1 strain modulated the H. pylori infection, decreasing the severity of 

gastritis in H. pylori–positive peoples during treatment (Cruchet et al., 2003; Pantoflickova et al., 

2007; Gotteland et al., 2008).  Similarly to Lb. johnsonii, different strains of Lb. gasseri are widely 

studied for their probiotic activity. To date, no dairy products contain Lb. gasseri probiotic strains, 

however, there are several pharmaceutical formulations that contain them. Several studies have 

explored the probiotic features of Lb. gasseri strains, including immunostimulation, pathogen 

inhibition, ability to re-establish intestinal homeostasis and prevention and treatment of 

hipercholesterolemia, and abdominal adiposity in rats and in humans (Martin et al 2005). Recently, 

Luongo et al. (2013) observed that L. gasseri OLLL2809 strain induced dendritic cells (DCs) to 

produce high levels of interleukines IL-10, IL-6, IL-12 and TNF-α, that play a kay role in IgA 

switching mechanism. Moreover, Sakai et al. (2014) demonstrated the increased IgA production in 

the mouse small intestine after oral administration with Lb. gasseri LG2055. The same authors 

elucidated also the detailed molecular mechanisms for the IgA production by lymphocyte B cells. 

They suggested that LG2055 is able to activate both (DCs) and B cells to induce the IgA 

production, and toll-like receptor 2 (TLR2) signal is critical for this production. Moreover, the 

authors showed that transforming growth factor beta (TGF-b), produced by LG2055-stimulated cell 

lines, induces the production of different interleukines (IL-6, IL-10, IL12) involved in the IgA 

pruduction. In clinical study, the consumption of dietary product containing L. gasseri CECT 5714 

resulted in an increase of phagocytic cells, including monocytes and neutrophils, and in a significant 

increase of the total IgA concentration in serum (Olivares et al., 2006). Adhesion, aggregation, and 

co-aggregation are phenotypic traits that potentially provide a microbial colonization advantage of 

Lb. gasseri against pathogenic bacteria. Several studies, in fact, have demonstrated the ability of 

adhesion and aggregation of the potentially probiotic L. gasseri and a significant antagonism 

activity against Clostridium difficile, Clostridium sakazakii and Staphylococcus aureus (Otero and 

Macias, 2006; Ferreira et al., 2011). Moreover, Kawai et al. (1998) discovered a Lb. gasseri strain 

able to produce a bacteriocin, Gassericin A. This antimicrobial compound is active against several 

food-borne pathogenic bacteria, including Listeria monocytogenes, Bacillus cereus, and S. aureus 

(Kawai et al., 2001). An excess of visceral fat accumulation is considered a crucial factor in the 

development of a series of metabolic disorders. Recent studies have shown the involvement of Lb. 

http://link.springer.com/article/10.1007/s11274-013-1368-3
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gasseri in body weight and adipose tissue level control (Kadooka et al., 2010; Kang et al 2010; 

Kung et al., 2013). Ogawa et al. (2015) demonstrated that mice fed with Lb. gasseri LG2055 

showed a lower lymphatic lipid absorption and increased faecal fat excretion, compared to control 

group. Suppression of lipid absorption in the mice small intestine has been proposed as a potential 

mechanism for the anti-obesity effects of LG2055. Moreover, in clinic trial the same authors shown 

that the consumption of LG2055 decreased the BMI, and the serum triacylglycerol and cholesterol 

concentrations in peripheral blood (Ogawa et al., 2014). 

 
 

1.3 Activation and regulation of aerobic metabolism in lactic acid bacteria. 

Lactic acid bacteria (LAB) are generally recognized as anaerobic aerotolerant, that get their energy 

mainly through substrate level phosphorylation. Two major pathways for the hexoses metabolism 

are known: (i) Embden-Meyerhof-Parnas (EMP), in which lactic acid is the major fermentation end-

product (homofermentative metabolism), and (ii) the phosphoketolase pathway, in which acetic 

acid, propionic acid, CO2, ethanol are formed in addition to lactic acid (heterofermentative 

metabolism) (Kleerebezem & Hugenholtzy, 2003). LAB do not need oxygen for growth but they 

can grow under aerobic conditions and the pyruvate produced from glycolityc or phosphoketolase 

pathway may be aerobically metabolized into acetyl-phosphate and acetate (Petersen et al., 2012). It 

has been noted that, the presence of oxygen can have a remarkable effect on growth, metabolism 

and cell viability. Several LAB are able to consume oxygen through the action of flavoprotein 

oxidases, including NADH oxidase (NOX), pyruvate oxidase (POX), L-alpha-glycerophosphate 

oxidase, L-amino acid oxidase and lactate oxidase (LOX) that contributed to oxygen tollerance 

(Guidone et al., 2013). In particularly, in presence of oxygen, pyruvate can be catabolized in acetate 

via pyruvate oxidase-acetate kinase (POX-ACK) pathway with additional ATP generation. This 

pathway involved three enzymatic steps: (a) oxidation of lactate to pyruvate by the NAD-dependent 

lactate dehydrogenase (nLDH), (b) oxidative decarboxylation of pyruvate to acetyl-phosphate 

(acetyl-P) by POX (with production of CO2 and H2O2) and (c) de-phosphorylation of 

acetylphosphate to acetate by acetate kinase (ACK) activity (Goffin et al., 2004). This metabolism 

can have a beneficial effect on cell viability for two reasons: (i) the accumulation of acetate instead 

of lactate could ensure the pH homeostasis and therefore increase cell survival during the stationary 

phase growth, (ii) the generated extra ATP can allow an additional cell metabolism after glucose 

exhaustion and an increased biomass production compared to anaerobic growth conditions (Goffin 

et al., 2004; Quatravaux et al., 2006). Previous studies have been demonstrated that the 

transcriptional regulators are directly involved in molecular mechanisms of oxygen regulation in 
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LAB. It was noted that the POX-ACK pathway is induced by oxygen presence and the expression 

of pox gene is controlled by carbon catabolite repression. In fact, several authors have been studied 

the role of CcpA protein (Catabolite control protein A) in the control of metabolism of different 

LAB, including Lb. casei (Gosalbes et al., 1999), Lb. pentosus (Mahr er al., 2000), Lactococcus 

lactis (Gaudu et al., 2003, Lopez de Felipe & Gaudu 2009) and Lb plantarum (Muscariello et al., 

2001, Lorquet et al., 2004, Castaldo et al., 2006, Zotta et al., 2012). In particular, in Lb. plantarum 

pox activity (the key enzyme in oxygen metabolism) is induced by oxygen and hydrogen peroxide 

and strongly repressed in presence of glucose excess by CcpA action at the transcriptional level 

(Goffin et al., 2006; Muscariello et al., 2008). Lorquet et al. (2004) demonstrated that pox 

transcription was repressed by binding of CcpA protein with the cre sequence, located in the pox 

promoter, end the repression is relieved when glucose concentration becomes limiting for growth 

(at the end of the exponential phase and during the stationary phase growth).  

 
 
1.4 Respiration metabolism in lactic acid bacteria  

Although named and used in food fermentation for their main attribute, that is lactic acid 

production, several LAB have the potential to activate an aerobic respiratory pathway when 

exogenous heme or heme and menaquinones (vitamin K2) were provided (Petersen et al., 2012). In 

LAB, heme-induced respiration metabolism was firstly studied in Leuconoctoc mesenteroides 

specie (Bryan-Jones & Whittenbury, 1969; Antonie Van Leeuwenhoek, 1970), however, it 

remained little investigated until about fifteen years ago when aerobic respiration metabolism and 

its positive physiological impact has extensively studied in Lactococcus lactis (Blank et al., 2001; 

Duwat et al., 2001; Gaudu et al., 2002). To date, respiration metabolism has also been investigated 

in some strains of heterofermentative Lb. reuteri and Lb. spicheri (Ianniello er al., 2015), in 

Lactobacillus casei (Zotta et al., 2014a; Ianniello et al., 2015; Ricciardi et al., 2015) and Lb. 

plantarum groups (Brooijmans et al., 2009, Guidone et al., 2011; Watanabe et al., 2012; Zotta et al 

2012; Zotta et al., 2013; Zotta et al., 2014b). These studies have revealed that the shift from 

fermentative towards respiratory metabolism increased biomass production, long-term survival in 

the storage and resistance to oxygen and acid induced stress in bacterial cells. Therefore, these 

findings opened new perspectives on LAB lifestyle. The respiration is the oxidative breakdown of 

organic molecules through the activation of a minimal electron transport chain (ETC) that generates 

a proton motive force (PMF) and produces energy (ATP) by F0F1-ATPase activity. In respiration-

competent LAB, the ETC required three main membrane components: (i) an electron donator 

(NADH dehydrogense), (ii) an electron shuttle (usually menaquinones) that drive electrons from the 
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dehydrogenase to a terminal acceptor enzyme, and (iii) a heme-requiring final electron acceptor 

(Cytochrome oxidase) that allows the reduction of oxygen to water (Lechardeur et al., 2011). 

Despite the different type of cytochromes (bo-type cytochrome with a b-hemes, an o-heme and 

copper as cofactor), cytochrome bd-tipe oxidase (with two b-hemes and a single d-heme) is the only 

terminal oxidase used in ETC of some LAB (Minghetti et al., 1992; Borisov et al., 2011; Petersen et 

al., 2012). In particularly, cytochrome bd oxydase contains two-subunit integral membrane protein: 

(i) cytochrome bd-I ubiquinol oxidase subunit I (CydA) and (ii) cytochrome bd-I ubiquinol oxidase 

subunit II (CydB), and two ATP-binding cassette transporters (assembly subunits), called CydC and 

CydD (Borisov et al., 2011). Unlike cytochrome bd oxidase (encoded by cydABCD operon) that is 

synthesized by most of LAB, these bacteria lack enzymes for complete heme biosynthesis pathway 

and only some strains of Lactococcus lactis, Enterococcus fecalis and Leuconostoc mesenteroides, 

Leuconostoc citreum have the complete (mena)quinones biosynthesis pathway (encoded by 

menFDHBEC gene) (Lechardeur et al., 2011). Therefore, in LAB, the respiratory metabolism may 

occur only when heme or heme and menaquinone are supplied. On the basis of this consideration, 

Pedersen et al. (2012) classified LAB into three categories: (i) strains non able to activate 

respiration metabolism, (ii) respiration-competent in presence of heme, and (iii) respiration-

competent in presence of heme and menaquinones. Even if do not synthesize heme, respiration 

competent LAB can able to assimilate heme and use it directly as a cofactor to activate aerobic 

respiration. Studies in L. lactis have explored a potential mechanism for heme uptake and 

homeostasis. Legardeur et al. (2010) demonstrated that a chaperone protein, named AhpC, may be 

involved both in insertion of heme in citochrome oxidase membranes and in protection of 

intracellular heme pool from degradation or efflux mechanisms. Moreover, the same authors 

revealed the key role of hrtRBA operon in heme homeostasis in order to avoid toxicity in L. lactis. 

In fact, deletion of hrtRBA operon results in a heme-sensitive phenotype with high production of 

reactive oxygen species (ROS). Therefore, respiration may be considered as a highly regulated 

process and it only occurs when exogenous heme are provided. Finally, unlike respiratory bacteria 

(i.e. E. coli and B. subtilis) that use the Krebs cycle to produce NADH, LAB have needed of 

glycolytic activity to generate NADH, required for NADH dehydrogenase activity in ETC. For this 

reason, Petersen et al. (2012), suggested that fermentation metabolism is likely required prior to, or 

during, respiration metabolism. As previously described, respiration metabolism have been widely 

investigated in Lc. lactis,  L. plantarum and L. casei group, suggesting that respiration cultivation 

provided several advantages on bacterial robustness. Two major physiological consequences on 

LAB behaviour have been attributed to respiration metabolism: 
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(i) Increased biomass production: the respiration process is energetically more efficient than 

fermentation. The aerobic respiration process can involve glycolysis, citric acid cycle and ETC and 

produce up to 36 mol of ATP, compared to 2 ATP in fermentation alone. 

(ii) Increased survival to oxidative and acid stresses: in some LAB, condition which promote 

aerobic and respiratory growth decrease ROS accumulation and oxidative damage compared to 

fermentation. Activation of respiration metabolism, through heme supplementation, may promote 

the synthesis of catalase antioxidant enzyme and cytochrome bd oxidase. Catalase can degrade 

H2O2 and protect the cell from oxidative damage, while CydAB can remove intracellular oxygen 

converting it in water. Moreover, respiratory cultivation led to the production of superoxide 

dismutase (SOD) in Lc. lactis (Duwat et al., 2001) and catalase, NADH oxidase (NOX) and NADH 

peroxidase (NPR) in L. plantarum (Guidone et al., 2013; Watanabe et al., 2012; Zotta et al., 2013).  

The activation of respiration metabolism can generate less acid stress due to a change in metabolites 

pools production. In particularly, NADH is used by ETC and NOX/NPR activity instead by lactate 

dehydrogenase for lactic acid production, while, the pyruvate is converted into acetate, acetoin and 

diacetyl (Duwat et al., 2001; Pedersen et al., 2008). Thus, the accumulation of acetate instead of 

lactate could have a beneficial effect for the bacterial cells ensuring the pH homeostasis and long 

term survival during storage phase.  

 

 

1.5 Oxidative stress response in lactic acid bacteria 

The presence of oxygen in the growth environment of LAB is considered one of the main factors 

affecting cell survival, due to the induction of lethal oxidative damages (Ruiz et al., 2011) caused 

by the action of toxic by-products reactive oxygen species (ROS), including the superoxide anion 

radical (O2-), hydroxyl radical (OH•) and hydrogen peroxide (H2O2). Moreover, ROS can further 

react with some cations (Fe2+ and Cu2+) leading to highly reactive oxidants via Fenton reaction (De 

Angelis & Gobetti 2004; Kang et al., 2013). LAB are classified as anaerobes oxygen tolerant, 

therefore, lack effective oxygen scavenging enzymes and cellular repair mechanisms. Hence, the 

accumulation of toxic oxygen metabolites can cause protein damage, DNA mutations, oxidation of 

phospholipidic membrane, modification in low-density lipoproteins, as well as, the production of 

undesirable compounds in fermented food (Amaretti et al., 2013). However, most LAB can grow 

under aerobic conditions and their simplest way to utilize oxygen is through the action of 

flavoprotein oxidases (NOX, POX, LOX, α-glicerophosphate oxidase and L-amino acid oxidase) to 

oxidize substrates such as pyruvate or NADH (Sonomoto et al., 2011). Although these enzymes can 

eliminate oxygen from the environment, their activity results in the accumulation of H2O2 (> 1mM), 



 

the primary cause of oxidative stress. On the other hand, under respiratory condition ROS can be 

generated due to leakage of electrons from intermediates of ETC (Watanabe et al., 2011). 

H2O2 and ROS scavenge ability is an important factor which contributes to aerotolera

strains. In order to detoxify ROS, LAB employ different mechanisms to protect against ox

stress. The main enzymes involved in

  

1.5.1 Catalase 

Catalase is a common antioxidant enzyme 

It catalyzes the degradation of hydrogen peroxide

+O2). LAB are generally considered 

however, a significant number of catalase sequences have been

Three classes of catalases are found: (

(pseudocatalases) and (c) catalase

peroxidases) (Frankenberg et al., 2002). 

(also named bifunctional catalase) have heme as prosthetic group, but they 

differences in active site and tertiary and quaternary structures 

2007). Despite catalyzes the same reaction

reaction mechanism. In a monofunctional catalase cycle, a first stage involves oxidation of the heme

iron, using H2O2 as substrate, to form compound 

molecule is used as a reducing agent

molecular oxygen (Reaction 2). 

conventional peroxidases. Thus, a peroxidase cycle includes three reactions, 

formation (Reaction 1), compound I reduction to compound II

oxidized via one-electron transfers releasing radicals (

back to ferric peroxidase in a second one
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and ROS scavenge ability is an important factor which contributes to aerotolera

. In order to detoxify ROS, LAB employ different mechanisms to protect against ox

involved in oxidative stress resistance in LAB are describe below

a common antioxidant enzyme found in nearly all living organisms exposed to oxygen. 

hydrogen peroxide to water and molecular oxygen

LAB are generally considered as catalase-negative microorganisms 

a significant number of catalase sequences have been discovered in several LAB genome.

catalases are found: (a) monofunctional catalases, (b) 

) catalase-peroxidases (closely related by sequence and structure to plant 

l., 2002). Both monofunctional catalase and catalase

(also named bifunctional catalase) have heme as prosthetic group, but they 

differences in active site and tertiary and quaternary structures (Chelikani  et al., 2004; Vlasits

the same reaction, catalases and catalase-peroxidases follow a different 

In a monofunctional catalase cycle, a first stage involves oxidation of the heme

to form compound I (Reaction 1). In a second stage

molecule is used as a reducing agent for compound I regenerating the native enzyme and releasing 

). Catalase peroxidase exhibit a peroxidase activity similar to 

Thus, a peroxidase cycle includes three reactions, 

), compound I reduction to compound II, where electron donors (AH

electron transfers releasing radicals (AH) (Reaction 3) and compound II redu

ferric peroxidase in a second one-electron reduction (Reaction 4) (Jakopitsch et al., 2003).
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Thus, a peroxidase cycle includes three reactions, (i) compound I 
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Jakopitsch et al., 2003). 
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The manganese catalases are not as widespread as the heme-containing catalases and so far have 

been identified only in bacteria. The crystal structures of the manganese catalases, one from 

Thermus thermophilus and the second from Lb. plantarum, reveal a homo-hexamer structure where 

each subunit contains a dimanganese group as catalytic center (Chelikani  et al., 2004). Like heme-

catalases, manganese catalase reaction occurs in two steps: (i) an oxidative reaction in which H2O2 

is oxidized to dioxygen, followed by reduction of the manganese cluster, and (ii) a reductive 

reaction in which the reduced metallocluster delivers the electrons and protons to a second molecule 

of substrate, resulting in O-O bond cleavage and formation of two molecules of H2O (Figure x) 

(Whittaker et al., 2012). Genome analysis in LAB indicated that, the gene katA, encoding for 

monofunctional catalase, was found in several genomes of Lb. sakei, Lb. plantarum, Lb. casei, and 

E. faecalis strains (Knauf et al.; 1992; Frankenberg et al., 2002; Abriouel et al., 2004; Zotta et al., 

2016), while, the gene Mn-kat, encoding for manganese catalase, is little distributed, and only 

encountered in a few Pediococcus, Enterococcus and Lactobacillus strains (Yamamoto et al., 2011). 

To date, the KatG, encoding for catalase-peroxidase, was found only in a few strains of 

Enterococcus fecalis (https://www.ncbi.nlm.nih.gov/). Species belonging to Lactococcus, 

Leuconostoc and Oenocuccus do not have genes encoding for heme- manganese catalase and 

catalase peroxidase. 

 

1.5.2 Superoxide dismutase  

Superoxide dismutases (SODs) are metalloenzymes that catalyze the the dismutation reaction of the 

superoxide (O2−) radical into molecular oxygen (O2) or (H2O2). On the basis of metal cofactor 

present in their redox-active center, four types of SODs have been characterized: (i) manganese 

(Mn-SOD), (ii) iron (Fe-SOD), (iii) copper/zinc (Cu/Zu-SOD) and nickel (Ni-SOD) superoxide 

dismutases (Wuerges et al., 2004). However, only Mn-SODs have been found in several LAB, 

including streptococci, lactococci, enterococci and in some lactobacilli species (i.e. Lb. sakei, Lb. 

sanfranciscensis) (Yamamoto et al., 2011).  

 

1.5.3 NADH oxidase-NADH peroxidase system 

NADH oxidase and NADH peroxidase are supposed to be the major enzymes involved in the 

proposed NAD(P)-dependent H2O2 scavenging pathway in LAB. In a common oxidative resistance 

mechanism, intracellular oxygen is first used to oxidize NADH in NAD+ by NADH oxidase, 

generating H2O2. Afterwards, H2O2 is reduced to H2O by NADH peroxidase. In particularly, two 

type of NADH oxidase have been found, (i) a NADH- H2O2 oxidase that reduce O2 to form H2O2, 
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and (ii) a NADH- H2O oxidase that promote the oxidation of O2 directly in H2O (Talkawar & 

Kailasapathy, 2004). 

 

 

1.6 Impact of aerobic and respiratory metabolism in food technology 

The biochemistry of aerobic and respiratory metabolism in LAB suggest a series of complex 

mechanisms that act in unison to confer several advances on cell physiology. As described above,  

the lifestyle of the aerobic and respirative LAB results in a greater biomass-yield, growth-

efficiency, stress robustness (oxygen and acid) an long term survival compared to that under 

fermentation conditions. All these respiration-associated traits have a considerable industrial 

significance. The application of aerobic and respiratory metabolism in LAB can have a wide 

implications in three main field in LAB research: (i) starter and probiotic cultures production, (ii) 

development of food products with respirative phenotype, and (iii) human health application. These 

applications are discussed below and summarize in Table X. The respiration technology was firstly 

investigated in the 1990s and was implement by Chr. Hansen A/S industry and INRA (Institut 

National De La Recherche Agronomique), that entered into a patent license to explore the 

respiration ability of Lactococcus Lactis for the development and production of a new starter culture 

in presence of aeration and a porphyrin compound (Petersen et al., 2005). To date, this technology 

has been also used for R-604 starter culture production (Chr. Hansen A/S) with supplementation of 

precursors for the synthesis of nucleotides (Kringelum et al., 2008). However, despite aerobic and 

respiratory metabolism has improved growth and technological properties in several Lactobacillus 

strains, no patent is currently developed for the use of respirative lactobacilli as starter or probiotic 

cultures. Another interesting observation of the bacterial growth under respiration conditions is the 

ability to produce functional metabolites and aroma compounds.  

 

 

1.7 Aim and outline of this thesis 

Several authors have demonstrated that the presence of oxygen (aerobic growth) and heme and 

menaquinone (production of cytochromes and activation of an electron transport chain during 

respiratory growth) induces in some LAB species the expression of phenotypes with improved 

technological features. In recent years, several phenotypic and genotypic studies have been carried 

out to explore the aerobic and  respiratory metabolism within the Lactobacillus genus. Despite the 

significant progress made in the knowledge on cellular mechanisms underlie the aerobic and/or 

respiratory nature of lactobacilli, a very limited data are actually available in Lb. johnsonii and Lb. 
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gasseri species, although, several strains of this species have been extensively studied for their 

technological and probiotic properties. Nowadays, only Lb. johnsonii NCC533 probiotic strain has 

been studied to provide a more global understanding of the molecular responses to the presence of 

oxygen. Therefore, no study on the respiratory growth was carried out in Lb. johnsonii and Lb. 

gasseri species. In view of the above considerations, the aim of this PhD thesis was to study and 

explore the adaptive response of Lb. johnsonii/gasseri strains to switch from fermentative to aerobic 

and respiratory metabolism, by phenotypic and genotypic approach. In particular, the effect of 

aerobic (presence of oxygen) and respiratory (presence of oxygen, heme end menaquinone) 

cultivation on the growth, oxidative and starvation stress tolerance, antioxidant activity and 

metabolic profile were investigated. Moreover, the study of the genetic basis underlie the metabolic 

changes occur during aerobic and respiratory growth was carried out.  

The first experimental chapter of this thesis is focused on (i) the isolation and molecular 

characterization of strains belonging to Lb. johnsonii/gasseri species, and (ii) the assessment of 

anaerobic, aerobic and respiratory growth, tolerance towards oxidative stress and probiotic features 

(resistance to simulated oral gastrointestinal condition and antimicrobial activity) (chapter II). 

Afterwards, to better understanding the genetic basis that can explain the phenotypic evidences 

observed such as, possible aerobic and respiratory metabolism activation and oxidative stress 

tolerance, whole-genome sequencing of 2 selected strains was carried out. All result were reported 

in chapter III. Finally, the adaptation to aerobic end respiratory metabolism of 2 selected strains 

was further investigated in batch cultivation experiments. All results concerning the effect of 

aerobic and respiratory cultivation on growth kinetics, glucose and oxygen consumption, 

metabolites production, as well as, tolerance to starvation stress and antioxidant activity were 

reported in chapter IV.  

The availability of these phenotypic and genotypic data may be useful to understanding the 

mechanisms related to the aerobic and respiratory metabolism in Lb. johnsonii/gasseri species and 

to exploit them for further scientific and applicative studies. Moreover, the addition of our findings 

to the currently available data set can extend the scientific knowledge on the aerobic lifestyle and 

oxygen tolerance in Lactobacillus genus. 
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2.1 Abstract 

Oxygen is considered one of the main factors affecting probiotic bacteria survival due to the 

induction of lethal oxidative damages caused by the action of toxic by-products (reactive oxygen 

species). It has been shown that oxidative stress resistance in lactic acid bacteria is strongly 

dependent on the type of cell metabolism. The shift from fermentative to respiration metabolism 

(through the addition of heme and menaquinone and in presence of oxygen) was associated with 

increase in biomass, long term survival and production of antioxidant enzymes. The aim of this 

work was to investigate the effect of aerobic (presence of oxygen) and respiratory (presence of 

oxygen, heme end menaquinone) cultivation on the growth kinetic, catalase production and 

consequent oxygen uptake and oxidative stress response of Lactobacillus johnsonii and 

Lactobacillus gasseri strains isolated from breast-fed babies stools. Moreover, their probiotic 

features were assessed. For many strains, the aerobic and respiratory growth increased pH and 

biomass production compared to anaerobic cultivation. However, only seven of them showed to 

consume oxygen under aerobic and respiratory conditions, allowing the selection of oxygen-tolerant 

or respiratory strains. Surprisingly, one strain showed a catalase activity in all growth conditions, 

while another one showed this activity only in respiratory condition. Nevertheless, for both strains 

only respiratory condition improved their tolerance to oxidative compounds (hydrogen peroxide and 

reactive oxygen species generators) and they showed also proper probiotic features, in term of 

antimicrobial activity and ability to survive under oral-gastrointestinal simulated environment. The 

exploration of respiratory competent phenotypes with probiotic features may be extremely useful 

for the development of competitive starter or probiotic cultures. 
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2.2 INTRODUCTION 

The greatest challenge of the probiotic bacteria is enduring stresses encountered during food 

processing and gastrointestinal transit (Mils et al., 2001). Probiotic performances and robustness can 

be compromised by exposure to various environmental stresses, including acid, cold, drying, 

starvation, oxidative and osmotic stresses, that may affect the physiological status and the 

functional properties of bacterial cells (Zhang et al., 2013). Survival to harsh conditions is an 

essential prerequisite for probiotic bacteria before reaching the target site where they can exert their 

health promoting effects. Several probiotics, in fact, have shown a poor resistance to technological 

processes, limiting their use to a restricted number of food products. The presence of oxygen is 

considered one of the main factors affecting the survival of probiotic lactic acid bacteria (LAB), 

anaerobic aerotolerant microorganism, which lack the capability to synthesize an active electron 

transport chain. The aerobic environment in LAB may induce the production of toxic oxygen by-

products (reactive oxygen species, ROS, such as superoxide anion radical, hydroxyl radical and 

hydrogen peroxide) that may damage DNA, proteins and lipids, resulting in cellular death (Amaretti 

et al., 2013). Moreover, hydrogen peroxide can further react with some cations (Fe2+ and Cu2+) 

leading to highly reactive oxidants via Fenton reaction (De Angelis and Gobetti, 2004; Kang et al., 

2013). LAB get their energy mainly through substrate level phosphorylation, and lack both heme 

containing enzymes and active cytochrome oxidases, which are essential components for oxygen-

linked energy metabolism (Kang et al., 2013). However, most LAB can grow under aerobic 

conditions and their simplest way to utilize oxygen is through the action of flavoprotein oxidases 

(NADH oxidase, NOX; pyruvate oxidase, POX; lactate oxidase, LOX; α-glicerophosphate oxidase 

and L-amino acid oxidase) that use substrates such as pyruvate or NADH (Yamamoto et al., 2011). 

The activity of these enzymes, however, may result in the accumulation of toxic H2O2. LAB are 

able to overcome the oxidative damage by producing several ROS-degrading enzymes (catalase, 

superoxide dismutase, flavin-dependent oxidase and peroxidases) and different redox and repair 

systems (glutathione and thioredoxin systems) and antioxidant enzymes (catalase, pseudo-catalase, 

superoxide dismutase, and NADH-peroxidases) (Amaretti et al., 2013; Kullisaar et al., 2010; 

Rochat et al., 2006; Ruiz et al., 2011). Recently, several authors have demonstrated that oxidative 

stress resistance in some LAB species dependent on the type of metabolism and that the shift from 

fermentative towards respiratory metabolisms may increase growth, long-term survival and stress 

tolerance (Pedersen et al., 2012; Guidone et al., 2013; Ianniello et al., 2015). These effects are likely 

associated to the activation of the electron transport chain by growing cells in presence of oxygen, 

heme and menaquinone (vitamin K2). Heme is an essential cofactor in heme-dependent catalase and 
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cytochrome bd oxidase (CydAB) synthesis (Pedersen et al., 2008). Catalase can degrade H2O2 and 

protect the cell from oxidative damage, while CydAB can catalyse the rapid reduction of oxygen to 

water as well as to increase the ATP production. Instead, menaquinone may act as a central 

respiratory chain component delivering electrons from reducers (such as NADH dehydrogenase) to 

terminal oxidases (such as CydAB) (Pedersen et al., 2008). However, while respiration metabolism 

and oxidative stress response have been extensively studied in in Lactococcus lactis (Gaudu et al., 

2002; Miyoshi et al., 2003; Rezaiki et al., 2004) and Lactobacillus casei (Zotta et al., 2014; 

Ianniello et al., 2015) and Lb. plantarum groups (Zotta et al., 2012; Watanabe et al., 2012; Guidone 

et al., 2013; Zotta et al., 2013), limited data are available for the strains of Lb. johnsonii and Lb. 

gasseri. These species are genetically correlated and belonging to L. delbrueckii group (Sun et al., 

2014) Lb. johnsonii and Lb. gasseri are reported as the dominant bacteria in human gut and in 

vaginal microbiota and are described as strict anaerobes with fermentative energy metabolism 

(Pridmore et al., 2003). Current data on oxygen tolerance and oxidative stress response in Lb. 

johnsonii are limited to the probiotic strain NCC 533 (Hertzberger et al., 2013; Hertzberger et al., 

2014). These authors have observed that the endogenous production of H2O2 is the main cause of 

oxidative stress in L. johnsonii NCC 533 during its aerobic growth, even though the presence of 

oxygen relieves its carbon dioxide (CO2) and acetate dependence, compared to anaerobic growth. 

On the contrary, no data on the capability to activate a minimal respiratory chain are available for L. 

johnsonii and L. gasseri species. The aim of this work was to evaluate the effect of aerobic 

(presence of oxygen) and respiratory (presence of oxygen, heme end menaquinone) cultivation on 

the growth ability of Lb. gasseri and Lb. johnsonii strains. Tolerance of oxidative stress and other 

functional features (i.e. survival to simulated oral-gastrointestinal transit and antimicrobial activity) 

were also evaluated in order to select new promising probiotic strains. 

 

 

2.3 MATERIALS AND METHODS 

2.3.1 Samples, strains and culture conditions 

Faecal samples (n. 6) were obtained from healthy breast-fed babies, which had not used antibiotics 

prior to the sampling date and had no recent history of gastrointestinal disorders. They were 

collected from babies of personal friends of the authors. These latter were informed on the purpose 

of the research and that no clinical aspect is involved. Indeed, authors received an oral informed 

consent by the parents of babies to use faecal samples exclusively as sources of lactobacilli. Donors 

reckoned that a written consent was not necessary. On the other hand samples were de-identified 
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prior the authors received them. Ethical approval was not requested because of any clinical aspect 

involved in this study. Samples were diluted in de Man Rogosa Sharpe (MRS, Oxoid) broth, pH 

6.2, supplemented with 0.5 g/L of the reducing agent L-cysteine hydrochloride (Sigma) and 

incubated in anaerobic condition at 37°C for 48 h (Hartemink et al., 1997). At the end of the 

incubation the pre-cultures were inoculated (1% v/v) in MRS broth supplemented with 2 mg/ml of 

vancomycin hydrochloride (Sigma-Aldrich) (Hartemink et al., 1997), acidified at pH 4.5 and 

incubated in anaerobiosis at 37°C for 24 h. The pre-cultures were ten-fold diluted in quarter 

strength Ringer solution (Ringer, Oxoid), streaked on both MRS Agar and Rogosa Agar (Oxoid) 

plates and incubated in anaerobiosis at 37°C for 48 h. All isolates considered presumptively 

belonging to Lactobacillus genus were stored at -25°C in MRS broth (Oxoid) with 20% (v/v) 

glycerol. Lb. johnsonii DSM 10533T, Lb. johnsonii DSM 20533, Lb. gasseri DSM 20243T, Lb. 

gasseri DSM 20077 and Lb. rhamnosus ATCC 53103 (commercially known like GG strain) were 

used as reference strains. All lactobacilli were routinely propagated in Weissella Medium Broth 

(WMB) (Zotta et al., 2012) pH 6.8 or in MRS Agar and incubated in anaerobiosis at 37°C for 24 h. 

Nine strains belonging to potential pathogen and spoilage species (Table 1) were used for 

antimicrobial activity tests. 

 

2.3.2 Molecular characterization of isolates 

Genomic DNA was extracted using the Insta-Gene matrix (Bio-Rad, Milan, Italy) according to the 

manufacturer's protocol, with some modifications. Briefly, 2-3 colonies of each microorganism 

were suspended in 0.05 M phosphate buffer solution (PBS) pH 7.0 and centrifuged for 1 min at 

10,000 g. Pellet was dissolved in 200 µl of InstaGene matrix and incubated at 56°C for 30 min 

(Thermomixer Comfort, Eppendorf). After vortexing for 10 seconds, sample was treated for 8 

minutes at 100°C. Mixture was centrifuged at 10,000 g for 3 min and the resulting supernatant, 

containing the bacterial DNA, was used for PCR reaction. Quality and quantity of DNA was 

assessed using a NanoDrop spectrophotometer 1000 (Thermo Scientific, Milano, Italy). In order to 

avoid the presence of clones, the isolates were firstly analysed by rep-PCR using oligonucleotide 

GTG5 (5′-GTG GTG GTG GTG GTG-3′) primer (Invitrogen, Life Technologies, Milan, Italy). The 

reaction was performed in 20 μl mixtures containing: 50 ng DNA template, 2.5 μl of 10X PCR 

Buffer (Invitrogen, Milano, Italy), 50 mM MgCl2, 10 mM dNTPs mix, 10 μM primer and 

Taq Polymerase (Bio-RAD) 5 U/μl. PCR was carried out using an initial denaturation step at 95°C 

for 4 min, followed by 35 cycles of 1 min at 94°C, 1 min at 40°C and 1 min at 72°C each, and by a 

final extension of 8 min at 72°C. PCR products were separated by electrophoresis (3 h at 130 V) on 



34 
 

1.7% (w/v) agarose gel stained with 0.1 µl/ml SYBR safe (Invitrogen) and visualized by UV 

transillumination. Rep-PCR profiles were analysed by BioNumerics 5.0 software (Applied Maths) 

using Pearson’s correlation coefficient with UPGMA (Unweighted Pair Group Method with 

Arithmetic Mean) clustering of averaged profile similarities. Universal primers (Invitrogen) fD1 

(5’-AGAGTTTGATCCTGGCTCAG-3’) and rD1 (5’-AAGGAGGTGATCCAGCC-3’) (Weisburg 

et al., 1990) were used to amplify the 16S rRNA gene of isolates. PCR reaction mixture (final 

volume 50 μl) contained 50 ng of DNA template, 5 µl of 10X buffer (200 mM Tris HCl pH 8.4, 500 

mM KCl), 25 mM MgCl2, 10 mM dNTPs mix, primers 50 pM and Taq Polymeras 5 U/μl. PCR 

amplification was performed using an initial denaturation step at 95°C for 3 min, followed by 30 

cycles of 45 s at 94°C, 45 s at 55°C and 1 min at 72°C each, and by a final extension of 5 min at 

72°C. The PCR products were separated by on agarose gel 1.5% (w/v), containing 0.1 µl/l SYBR 

safe, purified using QIAquick PCR Pufication Kit (Qiagen, Milan, Italy), and sequenced by Primm 

srl (Milan, Italy). Research for DNA similarity was performed using the BLAST program of the 

National Centre of Biotechnology Information (NCBI, http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

GenBank. Strains showing a % similarity higher than 98% with Lactobacillus johnsonii/gasseri 

were used for further analyses. 

 

2.3.3 Preliminary evaluation of probiotic potential of isolates 

The ability of Lb. johnsonii/gasseri strains to survive to simulated OGIT was performed according 

to Vizoso et al. (2006) with some modifications. Briefly, overnight cultures were recovered by 

centrifugation (6500 g for 10 min), washed twice with sterile saline  (NaCl 0.85%) and suspended 

in equal volume of simulated saliva juice (SSJ: NaCl 5 g/l, KCl 2.2 g/l, CaCl2 0.22 g/l and NaHCO3 

1.2 g/l, lysozyme 100 mg/l, pH 6.9) and incubated for 5 min at 37°C. The suspension was then 

centrifuged as above, re-suspended in equal volume of simulated gastric juice (SGJ: NaCl 5 g/l, 

KCl 2.2 g/l, CaCl2 0.22 g/l, NaHCO3 1.2 g/l, pepsin 3 g/l, pH 2.5) and incubated at 37°C for 120 

min under gentle agitation (200 rpm) to simulate peristalsis. After centrifugation, pellet was re-

suspended in equal volume of simulated pancreatic juice (SPJ: NaHCO3 6.4 g/l, KCl 0.239 g/l, 

NaCl 1.28 g/l, 0.5% bile salts and 0.1% pancreatin, pH 7.0) and incubated at the same condition of 

SGJ. Survival (%) was calculated after each treatment. Lactobacillus rhamnosus GG was used as 

positive control in this experiment.  

Antimicrobial activity was assayed using an agar spot test and a well diffusion agar test, as 

previously described by Banerjee et al. (2013). In the first case, 10 µl of each overnight culture 

were spotted onto a MRS Agar plate. After incubation at 37 °C for 24 h, plate was overlaid with 10 

ml of Tryptone Soya Broth (TSB, Oxoid, Milan, Italy) supplemented with 0.75% agar (TSB soft 

http://www.sciencedirect.com/science/article/pii/S0168160514001275
http://www.sciencedirect.com/science/article/pii/S0168160514001275
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agar) previously inoculated with the indicator strains (Table 1) to reach a final concentration of 

1x106 CFU/ml. After 24 h of incubation at optimal growth temperature of indicator strains the 

antimicrobial activity was detected by the presence of a clear growth inhibition zone around the 

colony of tested strain. In the well diffusion agar test, a cell free supernatant was recovered by 

centrifugation (6500 g for 10 min), adjusted at pH 6.5 with NaOH 1 M, heat-treated for 10 min at 

80°C and sterilized by a low-binding protein 0.22 µm pore size filter. Fifty µl of supernant were 

placed into a 6 mm-diameter well done in a TSB soft agar plate previously inoculated with the 

indicator strain at a final concentration of 1x106 CFU/ml. After incubation at optimal growth 

temperature of indicator strain, the antimicrobial activity was determined by measuring the diameter 

(cm) of the inhibition zone around the wells. In both agar spot test and a well diffusion agar test 

results were calculated as the mean of three experiments. The strains that showed antimicrobial 

activity in well diffusion agar test were further tested to investigate the nature of the antimicrobial 

substance produced. The sensitivity to different enzymes was tested using 10 mg/ml (final solution) 

of lipase, catalase, papain, trypsin, α-chymotrypsin, pronase E and pepsin in PBS. Ten μl of solution 

used in well diffusion assay were spotted onto TSB soft agar plates previously inoculated with the 

indicator strain. Afterwards, 8 μl of enzyme solution were deposited adjacent the spot of 

supernatant to inhibit the activity of antimicrobial substance. 

 

2.3.4 Aerobic and respiratory growth and catalase production 

The assessment of aerobic and respiratory growth as well as the presence of catalase activity were 

performed as reported by Zotta et al. (2014). Strains were cultivated for 24 h at 37°C in 24-well 

microplates in different growth conditions: anaerobic (AN, static cultivation in modified WMB with 

10 g/L of glucose, pH 6.8, with AnaeroGen bags, Oxoid), aerobioc (AE, in modified WMB, shaken 

on a rotary shaker at 150 rpm), and respiratory (RS, AE growth in modified WMB, supplemented 

with 2.5 µg/ml of hemin and 1 µg/ml of menaquinone) cultivations. Micro-plates were inoculated 

(2% v/v) with standardized (OD650= 1.0) overnight anaerobic pre-cultures and incubated for 24 h at 

37 °C. At the end of incubation the optical density at 650 nm (OD) and pH values were measured. 

Catalase activity was qualitatively evaluated by re-suspending the washed biomass derived from 1 

ml of culture in all different conditions (AN, AE and RS) in 100 µl of a 3% (v/v) H2O2 solution. 

Catalase production was revealed by an evident formation of bubbles in the cell suspension. Three 

independent replicates were carried out for each experiment. 

Strains that showed H2O2-degrading capability were further tested to quantify the enzymatic 

activity. Five ml of AN, AE and RS cultures standardized at OD650=1 were centrifuged at 13000 g 

for 5 min and the resulting pellet mixed with 1.0 ml of 60 mM H2O2 in 50 mM PBS pH 7. The 
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activity was measured at 240 nm after 3 min incubation at room temperature. Results were 

expressed as units per ml of solution (U) and calculated according to the following formula: 

U = (ΔOD * ε * df)/(t * v) 

where, 

ΔOD: decrease in absorbance after 3 minutes at 240 nm; 

ε: 39.4 M-1cm-1, extinction coefficient of H2O2 at 240 nm; 

df: dilution factor; 

t: time of analysis in min; 

v: volume of sample. 

 

2.3.5 Oxygen uptake 

The consumption of oxygen in AN, AE and RS growing cells was measured as described by 

Ricciardi et al. [29]. Briefly, washed and standardized (OD650 = 1) biomass was re-suspended in air-

saturated solution of 5.5 mM glucose and 0.002 g/l of resazurin sodium salt (Sigma) in 0.1 M PBS 

pH 7. The discoloration time (DT, expressed in minutes) from blue oxidized form (resazurin) to 

colorless reduced form (dihydroresofurin) was used as indicator of oxygen uptake. The strain 

Pseudomonas fragi SP1 was used as positive control. 

 

2.3.6 Effect of aerobic and respiratory cultivation on oxidative stress tolerance.  

AN, AE and RS cultures, washed twice and standardized (OD650 = 1) in 0.1 M PBS pH 7.0, were 

loaded in 96-well microplates and exposed to different concentrations (from 0.62 to 320 mM serial 

two-fold dilution in 0.1 M PBS pH 7.0) of H2O2, menadione and pyrogallol (Table 4) for 30 min at 

37 °C in anaerobiosis. Stressed cultures were inoculated (10% v/v) in sterile WMB broth (20 g/l 

glucose, pH 6.8; 96-well microplates) and the surviving cells were detected by evaluating the 

medium turbidity (presence/absence) after 24 h of incubation at 37°C in anaerobic conditions. For 

each strain the results were expressed as Maximum Tolerated Concentration (MCT; mM) of 

oxidative stress compounds. 

 

2.3.7 In silico analysis of genes involved in aerobic-respiratory pathway and oxidative stress 

response 

The presence of genes coding for the main enzymes involved in oxygen utilization (pyruvate 

oxidase, pox; acetate kinase, ack; lactate oxidase, lox; NADH oxidase, nox), electron transport chain 

(NADH dehydrogenase, ndh; cytochromes bd oxidase, cydABCD operon; menaquinone 

biosynthesis complex, menFDXBEC, and ubiquinone/menaquinone biosynthesis methyltransferase, 
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ubiE) and oxidative stress response (heme- and manganese-dependent catalases, kat and Mnkat; 

manganese-dependent superoxide dismutase, sodA; thioredoxin/thioredoxin reductase system, trx-

trxB; glutathione peroxidase/reductase system, gop and gor; NADH peroxidase, npr) was evaluated 

in the finished, draft and permanent draft genomes of Lb. johnsonii and Lb. gasseri from IMG/M 

(https://img.jgi.doe.gov) database (Table 2). The occurrence expressed in % (Occ) of each gene in 

the L. johnsonii and L. gasseri group was calculated. The sequences retrieved from the genomes of 

Lactococcus lactis subsp. cremoris MG1363 (menFDXBEC), Lb. plantarum WCFS1 (pox, ack, lox, 

nox, npr, cydABCD, ubiE, kat, trxA-trxB, gop-gor), Lb. plantarum ATCC 14431 (Mn-kat) and Lb. 

sakei 23K (sodA) were used as queries. Sequence similarity was detected using the default cut-off 

parameter (% of identity) obtained by ClustalW2 multiple sequence alignment tool. 

 

2.3.8 Data analysis 

Analyses were carried out in triplicate and all values were expressed as mean and standard 

deviation. Two-way Anova test and t-test analysis (Microsoft Excel for Mac version 11.5) were 

performed to evaluate significant differences (P<0.05) between averages. 

 

2.4 RESULTS  

2.4.1 Isolation and molecular characterization of strains belonging to Lb. johnsonii/gasseri species 

A pool of 145 isolates potentially belonging to Lactobacillus genus was obtained by healthy breast-

fed babies. On the basis of genotypic (rep-PCR analysis) and phenotypic (i.e. cell and colony 

morphology, growth performance, planktonic or aggregated growth in MRS broth) characteristics, a 

total of 80 strains were selected and subjected to 16s rRNA gene sequencing analysis. Results of 

BLAST analysis showed that 55 strains belonging to Lb. johnsonii/gasseri species (≥98% 

homology), while the remaining 25 strains to Lb. casei (15 strains) and Lb. plantarum groups (10 

strains). Since 16S rRNA gene sequence is not discriminative for Lb. johnsonii and Lb. gasseri 

species, in all experiments we decided to indicate the strains as Lb. johnsonii/gasseri. On the basis 

of the different rep-PCR profiles, 34 strains of Lb. johnsonii/gasseri were selected and used to 

investigate the potential probiotic features and the capability to grow in presence of oxygen and 

oxidative stress conditions.  

 

2.4.2 Survival to simulated oral gastro-intestinal transit (OGIT) 

Results of viable counts of the strains after simulated OGIT showed that all strains were 

significantly (P<0.05) resistant (at least the 50% of initial population) to SSJ exposure (Table 3). On 
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the contrary, the number of survivors to SGJ and SPJ dramatically decreased. Only 13 and 6 strains 

had at least 50% of viable cells (P<0.05) after the exposure to SGJ and SPJ, respectively (Table 3). 

Specifically, the 6 strains tolerant of SPJ showed more than 90% of survival (data not shown). As 

expected, the probiotic strain Lb. rhamnosus GG showed a high resistance to OGIT (>90% of final 

survival). 

 

2.4.3 Antimicrobial activity 

Results of agar spot test showed that 22 strains of Lb. johnsonii/gasseri exhibited antimicrobial 

activity against at least 2 of the 9 indicator strains used in this study (data not shown). In Table 1 are 

reported the strains with the widest inhibitory pattern. The strains AL5, AL3 and ALA had the 

highest antimicrobial activity against the most of indicators (diameter of inhibition halos > 2 cm). 

On the other hand, results of well-diffusion agar assay showed that only the strains BM4, AL5, 

BR32, AL3, ID5AN, BM1CM and BM61CG were able to produce antimicrobial substances, 

although they inhibited only Staphylococcus aureus DSM 20231 (data not shown). Inhibition was 

not associated to the production of bacteriocin-like substances or H2O2 since the antagonistic 

activities were not affect by the action of proteolytic enzymes and catalase. 

 

2.4.4 Aerobic and respiratory promoting growth, oxygen uptake and catalase production 

Ratios between OD and pH values (AE/AN, RS/AN) measured in the different growth conditions 

were calculated and used to identify the phenotype of each strain. Specifically, when both OD and 

pH ratios in AE/AN were >1 (Fig 1, upper right side), strains were indicated as oxygen tolerant 

phenotypes (OTP); when OD and pH ratios in RS/AN were >1 (Fig 2, upper right side), strains 

were indicated as respiration-competent phenotypes (RCP). Results showed that 14 strains had both 

OTP and RCP, while 2 strains had only the RCP. For these 16 strains the OD and pH ratios in 

RS/AE were also calculated (Fig 3) and the oxygen uptake was tested. Results showed that 12 

strains grew better when hemin and menaquinone were supplied (Fig 3, upper right side), while 4 

strains grew better when only oxygen was supplied (Figure 3, upper left side). Interestingly, the four 

strains showing OD ratio RS/AE<1 (AL5, AL15, BM32 and BM6CG) and the three strains showing 

the best growth performance in RS (ALJ, AL3 and BM4) resulted to be the strains that consumed 

oxygen during their growth (DT<180 min, Table 3). Consistently, ALJ, AL3 and BM4 consumed 

more oxygen in RS than in AE, AL5 consumed more oxygen in AE and BM6CG, unexpectedly, 

consumed oxygen only in AE cultivation. Instead, AL15 and BM32 showed the same DT in both 

AE and RS (Table 4). Catalase activity was detected only in 2 strains. Specifically, AL5 showed 
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11.30 U, 12.20 U and 12.00 U of enzymatic activity in AN, AE and RS, respectively, while AL3 

showed catalase activity only in RS with 13.50 U. 

 
 
Table 1. Results of agar spot test on the strains showing a remarkable antimicrobial activity against 

the selected indicator strains. 
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BM4 + ++ - ++ ++ ++ + ++ + 

AL5 +++ +++ ++ +++ +++ +++ + ++ - 

AL9 + + + ++ +++ + + - + 

BR32 ++ ++ +++ ++ + ++ + + - 

AL3 ++ +++ +++ +++ +++ ++ + +++ + 

ALA +++ +++ +++ +++ +++ +++ +++ + - 

ID5AN + + + ++ + + + + - 

10533T + + - ++ ++ - + + + 
 

aProvided by Department of Agriculture, Division of Microbiology, University of Naples 

FedericoII. 

(-) no inhibition halo 

(+) inhibition haloes ≥ 0.5 and ≤ 1.5 cm 

(++) inhibition haloes > 1.5 and ≤ 2.0 cm 

(+++) inhibition haloes > 2.0 cm  
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Table 2. Results of in silico analysis of genes (query sequence from Lactobacillus plantarum WCFS1) involved in aerobic and respiratory 

metabolism and oxidative stress response in Lactobacillus johnsonii e Lactobacillus gasseri genomes from Integrated Microbial Genome and 

Microbiomes database (IMG/M).  

Strains 

Completeness level of 
genome 

 pox3 (pyruvate oxidase)a  ack2  (acetate kinase)  
loxL (lactate 

oxidase) 
 

ndh (NADH 
dehydrogenase) 

  Occ 
%b Logus Tag 

%  
ID 

 Occ 
% Logus Tag 

% 
 

ID 

 Occ 
% Locus Tag 

%  
ID 

 Occ 
% Locus Tag 

%  
ID 

L. 
johnsonii  

  
100   

 
100  

  
42   

 
14 

  

FI9785 Finished  

 

FI9785_1805 51  

 

FI9785_502 60  

 

FI9785_1781 50   - - 

NCC 533 Finished  LJ_1853 51  LJ_0912 60  - -   - - 

DPC 6026 Finished  LJP_1790c 51  LJP_1241c 60  - -   - - 

N 6.2 Finished  T285_09130 51  T285_06205 60  - -   - - 

ATCC 
33200 

Permanent Draft 
 

HMPREF0528_0499 51  Ga0106082_104191 62  - - 
  

- - 

pf01 Permanent Draft  PF01_01488 45  PF01_00963 47  - -   PF01_00600 51 

16 Permanent Draft  Ga0081980_100422 52  Ga0081980_1045116 47  - -   - - 

L. gasseri    100    100    14    7   

ATCC 
33323 

Finished 
 

 

LGAS_1893 55  

 

LGAS_0431 51  

 

- - 
  

LGAS_1626 52 

130918 Finished  Ga0069304_121971 52  Ga0069304_12681 61  - -   - - 

224-1 Permanent Draft  HMPREF9209_1596 45  HMPREF9209_0556 61  - -   - - 

MV-22 Permanent Draft  LBGGDRAFT_02078 52  LBGGDRAFT_00613 46  - -   - - 

JCM 1131 Permanent Draft  JCM1131DRAFT_00094 55  JCM1131DRAFT_00560 51  - -   - - 

L32 Permanent Draft  LGS32_00996 58  LGS32_01619 60  LGS32_02417 52   - - 

SJ-9E-US Permanent Draft  HMPREF0516DRAFT_01456 51  HMPREF0516DRAFT_00713 51  - -   - - 

202-4 Permanent Draft  HMPREF0890_1112 45  HMPREF0890_1123 61  - -   - - 

2016 Permanent Draft  M497_03520 45  M497_08405 44  - -   - - 

SV-16A-
US 

Permanent Draft 
 

HMPREF5175DRAFT_01637 51  HMPREF5175DRAFT_00801 52  - - 
  

- - 

K7 Permanent Draft  LK7_00106 39  LK7_00555 61  - -   - - 

JV-V03 Permanent Draft  HMPREF0514_11618 52  HMPREF0514_10278 61  - -   - - 

L3 Permanent Draft  LGS03_01236 52  LGS03_00282 61  - -   - - 

CECT 
5714 

Permanent Draft 
 

A131_64062 52  A131_63426 44  - - 
  

- - 
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Strains 

cydA (cytochrome D ubiquinol oxidase 
subunit I) 

 
cydB (cytochrome D ubiquinol 

oxidase subunit II) 
 

ubiE (ubiquinone /manaquinone 
biosynthesis methyltrasferase) 

 trxA (thioredoxina peroxidase) 

Occ 
% 

Logus Tag % ID  
Occ 
% 

Logus Tag 
% 
ID 

 
Occ 
% 

Locus Tag 
% 
ID 

 
Occ 
% 

Locus Tag 
% 
ID 

L. johnsonii  100    100    100    100   

FI9785 

 

FI9785_1761 62  

 

FI9785_1762 59  

 

FI9785_116 53   FI9785_496 61 

NCC 533 LJ1810 62  LJ1811 59  LJ0053 53   LJ0480 61 

DPC 6026 LJP_1743 62  LJP_1744 55  LJP_0061 53   LJP_0466 43 

N 6.2 T285_08935 62  T285_08940 59  T285_00320 53   T285_02375 55 

ATCC 
33200 

HMPREF0528_0541 62  HMPREF0528_0540 50  HMPREF0528_0446 53 
  

HMPREF0528_0036 61 

pf01 PF01_01448 64  PF01_01449 55  PF01_01575 54   PF01_00129 61 

16 Ga0081980_10171 62  Ga0081980_10172 62  Ga0081980_10155 41   Ga0081980_104717 38 

L. gasseri  100    100    100    100   

ATCC 
33323 

 

LGAS_1841 64  

 

LGAS_1842 59  

 

LGAS_0051 53 
  

LGAS_0427 62 

130918 Ga0069304_121909 62  Ga0069304_121910 55  Ga0069304_1257 53   Ga0069304_121562 56 

224-1 HMPREF9209_1524 51  HMPREF9209_1525 55  HMPREF9209_1667 54   HMPREF9209_2113 57 

MV-22 LBGGDRAFT_02156 50  LBGGDRAFT_02155 40  LBGGDRAFT_00757 41   LBGGDRAFT_01384 62 

JCM 1131 JCM131DRAFT_00038 64  J CM1DRAFT_00040 59  JCM1131DRAFT_00780 43   JCM1131DRAFT_00556 57 

L32 LGS32_02557 50  LGS32_02558 46  LGS32_02172 54   LGS32_01524 60 

SJ-9E-US HMPREF0516DRAFT_01509 50  HMPREF0516DRAFT_01508 40  HMPREF0516DRAFT_00577 43   HMPREF0516DRAFT_00804 45 

202-4 HMPREF0890_0547 58  HMPREF0890_0546 40  HMPREF0890_0917 54   HMPREF0890_1432 62 

2016 M497_03250 65  M497_03255 55  M497_01865 53   M497_04780 57 

SV-16A-
US 

HMPREF5175_01604 50  HMPREF5175_01603 40  HMPREF5175DRAFT_00605 53 
  

HMPREF5175DRAFT_01158 62 

K7 LK7_00037 63  LK7_00038 55  LK7_01321 49   LK7_01550 61 

JV-V03 HMPREF0514_11680 53  HMPREF0514_11679 40  LGS32_01525 53   HMPREF0514_10102 49 

L3 LGS03_01171 62  LGS03_01172 55  LGS03_00422 45   LGS03_00194 48 

CECT 5714 A131_64178 50  A131_54100 40  A131_63987 53   A131_35963 62 
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Strains 
trxB (thioredoxina oxidase)  gor (glutathione reductase)  gop (glutathione peroxidase)  npr (NADH peroxidase) 

Occ 
% 

Logus Tag 
% 
ID 

 
Occ 
% 

Logus Tag 
% 
ID 

 
Occ 
% 

Locus Tag 
% 
ID 

 
Occ 
% 

Locus Tag 
% 
ID 

L. johnsonii  100    100    0    0   

FI9785 

 

FI9785_517  51  

 

FI9785_107 47  

 

- -   - 61 

NCC 533 LJ0501 51  LJ0042 48  - -   - 61 

DPC 6026 LJP_0493c  50  LJP_0052 48  - -   - 43 

N 6.2 T285_02480  61  T285_00250 47  - -   - 55 

ATCC 33200 Ga0106082_104129 51  HMPREF0528_0013 44  - -   - 61 

pf01 PF01_01020  64  PF01_01566 48  - -   - 61 

16 Ga0081980_1047 65  Ga0081980_10276 48  - -   - 38 

L. gasseri  100    85    7    28   

ATCC 33323 

 

LGAS_0447 43  

 

LGAS_0040 46  

 

- -    62 

130918 Ga0069304_121542 63  Ga0069304_1244 47  - -    56 

224-1 HMPREF9209_0485 62  - -  - -    57 

MV-22 LBGGDRAFT_00549 62  - -  - -   LBGG_00050 62 

JCM 1131 JCM1131DRAFT_00577 43  JCM1131DRAFT_00140 45      - 57 

L32 LGS32_00137 68  LGS32_02102 48  LGS32_00080 59   - 60 

SJ-9E-US HMPREF0516DRAFT_00773 54  HMPREF0516DRAFT_01411 45  - -   HMPREF0516_00383 45 

202-4 HMPREF0890_1451 53  HMPREF0890_0197 46  - -   - 62 

2016 M497_08685 62  M497_01805 46  - -   - 57 

SV-16A-US HMPREF5175DRAFT_00863 49  HMPREF5175DRAFT_01591 45  - -   HMPREF5175_00403 62 

K7 LK7_00572 43  LK7_00152 46  - -   - 61 

JV-V03 HMPREF0514_10221 62  HMPREF0514_11575 47   -   - 49 

L3 LGS03_00225 62  LGS03_01284 46  - -   - 48 

CECT 5714 A131_63398 43  A131_64012 46  - -   A131_62641 62 
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Table 3. Strains showing a survival ≥50% after exposure to the different conditions of oral gastro-

intestinal transit. 

SSJ SGJ SPJ 

All strains 
AL5, BR32, ID5AN, ID7AN, AL8, ALJ 
AL3, BM1CM, BM1CP, BR35, AL15 

Lb. johnsonii 10533T, Lb. gasseri 20243T 

AL5, BR32, ID5AN, ID7AN, AL3 
Lb. johnsonii 10533T 

 

 
Table 4. Consumption of oxygen in Lactobacillus johnsonii/gasseri strains expressed as 
discoloration time in minutes (DT) of the redox indicator resazurin. 
 

Strains 
Growth conditions 

AN AE RS 

AL9 >180 >180 >180 

AL5 >180 90 120 

AL15 >180 100 100 

AL8 >180 >180 >180 

BR32 >180 100 100 

BM4 >180 130 75 

BM7CP2 >180 >180 >180 

BR35 >180 >180 >180 

BM6CG >180 120 >180 

BM1CP >180 >180 >180 

BR36 >180 >180 >180 

BM2 >180 >180 >180 

BM7CP1 >180 >180 >180 

BM1CM >180 >180 >180 

ALJ >180 120 100 

AL3 >180 110 75 

Pseudomonas  fragi SP1 ND 65 ND 

 
Growth conditions: AN, anaerobiosis; AE, aerobiosis; RS, AE growth supplemented with 
 2.5 µg/mL of hemin and  1 µg/mL of menaquinone. 

 



44 
 

2.4.5 Effect of aerobic and respiratory conditions on the oxidative stress tolerance 

In order to investigate the effect of growth conditions on oxidative stress tolerance the strains 

cultivated in AN, AE and RS conditions were exposed to generators of superoxide anion 

(menadione and pyrogallol) and H2O2. Strains cultivated in AE exhibited the lowest tolerance of all 

oxidative compounds (Table 5). For several strains, the respiratory growth increased the resistance 

to H2O2. Most of respiratory growing cultures had H2O2-tolerance similar to that of cells grown 

under anaerobic conditions, while only AL9 had a lower resistance when cultivated in presence of 

oxygen, hemin and menaquinone. Compared to anaerobic conditions, respiration promoted the 

menadione resistance only in 5 strains and impaired the survival in AL9, BM6CG and BM1CM. 

With exception of AL9, the resistance of respiratory cultures to pyrogallol was similar to that of 

anaerobically growing cells.  

 

2.4.6 In silico analysis of genes involved in aerobic-respiratory metabolism and oxidative stress 

response 

Results of in silico analysis are reported in Table 2 where the occurrence and % of identity (% ID) 

of each gene is indicated. Interestingly, we found 100% of occurrence of genes pox, ack, cydA, 

cydB, ubE, trxA and trxB both in Lb. johnsonii and in Lb. gasseri. Instead, remaining genes were 

found at very low % in both species, with exclusion of gor gene that was found in all Lb. johnsonii 

genomes and lacking in only two Lb. gasseri genomes. Moreover, an ID in the range 45-55% was 

registered for most of genes. Finally, the genes kat, Man-kat, sodA, menFDXBEC and nox, not 

reported in the table, have been never annotated in genomes of L. johnsonii and L. gasseri. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 1. Scatter plot of OD650 ratio against pH ratio in AE/AN of 

 

 

 

 

 

 

 

 

ratio against pH ratio in AE/AN of Lb. johnsonii/gasseri 
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Lb. johnsonii/gasseri strains. 



 

 

 

 

Figure 2. Scatter plot of OD650 ratio against pH ratio in RS/AN of 
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Lb. johnsonii/gasseri strains 



 

 

 

 

Figure 3. Scatter plot of OD650 ratio against pH ratio in RS/AE of 
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Lb. johnsonii/gasseri strains. 
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Table 5. Tolerance of H2O2, menadione and pyrogallol (expressed as 
Maximum Tolerated Concentration MCT; mM) in Lb johnsonni/gasseri strains 
grown under  AN, AE and RS conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Growth conditions: AN, anaerobiosis; AE, aerobiosis; RS, AE growth supplemented with 2.5 µg/mL of 

 

 
 
 
 
 
 
 
 
 
 
 
 

Growth conditions: AN, anaerobiosis; AE, aerobiosis; RS, AE growth supplemented  
with 2.5 µg/mL of hemin and  1 µg/mL of menaquinone. 
 
 
 
 
 
 
 
 
 

 
 

Strains 
H2O2  (mM) Menadione  (mM) Pyrogallol  (mM) 

AN AE RS AN AE RS AN AE RS 

AL9 20 0 1.25 10 0 0 160 10 10 

AL5  10 10 40 2.5 5 20 320 80 320 

AL15  20 10 40 0.62 1.25 5 320 80 320 

AL8  20 5 20 5 0 5 80 2.5 80 

BR32  20 2.5 20 1.25 1.25 5 80 40 80 

BM4  20 20 20 5 2.5 5 320 80 320 

BM7CP2  20 5 20 2.5 0.62 2.5 80 20 80 

BR35  20 5 20 5 0 2.5 80 20 80 

BM6CG  20 0 20 10 0 5 80 0 80 

BM1CP  20 5 20 5 1.25 5 80 2.5 80 

BR36  10 5 40 10 5 20 80 20 80 

BM2  20 10 40 2.5 2.5 2.5 320 40 80 

BM7CP1  20 10 20 2.5 2.5 2.5 80 40 80 

BM1CM  20 2.5 20 10 0 5 80 0 80 

ALJ  5 2.5 20 2.5 0 2.5 40 40 80 

AL3  20 10 40 2.5 0 20 80 40 80 
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2.5 DISCUSSION 

This study investigated the adaptive response of promising probiotic Lb. johnsonii/gasseri strains to 

switch from fermentative to aerobic and respiratory metabolism and the effect of this metabolic 

pathway on oxidative stress response. We found that about 70% of lactobacilli isolated from baby 

stools belonged to Lb. johnsonii/gasseri species. This result is in agreement with findings of many 

authors (Wall et al., 2006; Mitsou et al., 2008; Morelli et al., 2008) who demonstrated that Lb. 

johnsonii/gasseri species are the more commonly homofermentative lactobacilli isolated in new-

borns and infant faeces. According to the FAO/WHO  definition, probiotics are “live 

microorganisms which, when administered in adequate amounts, confer a health benefit on the 

host” (FAO/WHO, 2002). In order to perform their physiological role, probiotics bacteria must 

overcome a number of stresses before they reach the target site (Kwarteng et al. 2015). The ability 

to survive to gastro-intestinal transit and the antimicrobial activity are two important features of 

probiotics (Vizoso et al., 2006). In this study, 34 Lb. johnsonii/gasseri strains were screened for the 

ability to pass through OGIT. All strains showed a strong resistance to saliva juice, suggesting a 

high ability to survive in the presence of lysozyme. On the contrary, for most strains the viability 

decreased when exposed to simulated gastric and intestinal juice. Six strains, however, showed a 

great resistance to OGIT, with levels of survival comparable to those of Lactobacillus rhamnosus 

GG, suggesting their possible use as probiotic supplements.  

The capability to inhibit the growth of pathogenic and spoilage bacteria varied among Lb. 

johnsonii/gasseri strains. The inhibitory activity demonstrated with agar spot test could be due to a 

lowering of pH due to organic acids production; indeed, it disappeared when free cell supernatants 

were neutralized. However, the ability to produce organic acids should be a useful feature to reduce 

colonisation of pathogenic microorganisms in human GIT. Tejero-Serinena et al. (2012) showed 

that the production of organic acids by different probiotic strains reduced the growth of potential 

pathogenic microorganisms. In presence of low O2 concentration, acetic acid and H2O2 may be 

produce by some probiotic strains. Pridmore et al. (2008) described the ability of some Lb. 

johnsonii and Lb. gasseri strains to produce H2O2 and acetic acid, with antimicrobial activity against 

Salmonella Typhimurium SLI344. In this study the neutralized cell-free supernatants had inhibitory 

activity against Staphylococcus aureus. Since bacteriocin-like and H2O2 activities were excluded, 

we hypothesized that the inhibition may be due to the production of neutral compounds or some 

undissociated short chain free fatty acids with antimicrobial activity (Huang et al., 2011; Ricke et 

al., 2014; Aldunate et al., 2015). However, further investigations are needed to reveal the nature of 

antimicrobial substances produced by Lb. johnsonii and Lb. gasseri active against Staphylococcus 
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aureus. A large diversity on the capability to grow in presence of oxygen and/or respiratory 

cofactors was present within the Lb. johnsonii and Lb. gasseri strains and on the basis of growth 

performances and oxygen consumption it was possible to group the strains in: i) oxygen-tolerant 

anaerobes, capable to grow in aerobic and respiratory conditions, but not able to consume oxygen 

(i.e. AL8, AL9, BM2, BM1CM, BM1CP, BM7CP1, BM7CP2, BR35 and BR36); ii) aerobic 

phenotypes, able to consume oxygen and for which aerobiosis was the best growth condition 

compared to respiration (i.e. AL5, AL15, BM32 and BM6CG); iii) respiratory phenotypes, able to 

consume oxygen and for which respiration was the best growth condition compared to aerobiosis 

(i.e. ALJ, AL3 and BM4); iv) oxygen-sensitive anaerobes, unable to grow in both aerobic and 

respiratory conditions (remaining strains). Hertzberger et al. (2013) evaluated for the first time the 

response of Lb. johnsonii NCC533 to oxidative conditions. Compared to anaerobiosis, the presence 

of oxygen relieved the acetate and CO2 growth dependencies of the strain, but induced more rapidly 

the entry in stationary phase. In this study, we found four strains (AL5, BM6CG, AL15 and BR32) 

with aerobic phenotype that showed increased biomass production, reduced acidification and 

oxygen uptake capability, suggesting a possible activation of aerobic metabolism. In several LAB 

strains, the stimulatory effect of oxygen was shown to be dependent by pyruvate oxidase (POX) and 

acetate kinase (ACK) activities (Goffin et al., 2006; Quatravaux et al., 2006). According to results 

of in silico analysis, Lb. johnsoni and Lb. gasseri possess genes predicted to encode for both POX 

and ACK (Occ=100%), the main enzymes involved in aerobic pathway (Pridmore et al., 2008). In 

presence of oxygen and at low glucose concentration, pyruvate can be metabolised by POX-ACK 

pathway, allowing the production of acetate, CO2 end extra ATP biosynthesis (Pedersen et al., 

2012). Therefore, in our strains the possible POX-ACK pathway activation could directly explain 

the observed physiological consequence, such as increase of pH due to a possible conversion of 

pyruvate into acetate and increase of OD due to extra ATP generation. As a matter of fact, 

Hertzberger et al. (2014) demonstrated that pox deletion in Lb. johnsonii NCC533 resulted in a 

slower growth rate and a growth arrest upon CO2 depletion, confirming the positive role of POX-

ACK pathway. The respiratory growth was never investigated in Lb. johnsonii/gasseri strains. 

Similarly to aerobic metabolism adaptation, the ability to shift toward respiratory pathway was 

strain-specific. In this study we found that the strains AL3, ALJ and BM4 had a respiratory 

phenotype. Like most LAB, the genomes of Lb. johnsonii and Lb. gasseri lack the genes for 

menaquinone and heme biosynthesis, but harbour those for the cytochrome oxidase production 

(Occ=100%). Thus, in these species, the respiratory metabolism may occur only when heme and 

menaquinone are supplied (Petersen et al., 2012). As in all lactobacilli, the mechanism of heme 

uptake is unknown. However, heme-binding proteins and heme homeostasis systems have been 



51 
 

investigated in several LAB competent for aerobic respiration (Gaudu et al., 2003; Lechardeur et 

al., 2010; Lechardeur et al., 2011; Sawai et al., 2012). In several LAB the growth in presence of 

oxygen may result in the production and accumulation of H2O2 and ROS. Pridmore et al. [36] and 

Hertzberger et al. (2014) demonstrated that the accumulation of H2O2 due to LOX and POX activity 

was the primary reason of oxidative stress in Lb. johnsonii NCC533. Therefore, the ability to 

scavenge H2O2 and ROS may contribute to the survival in aerobic conditions. Surprisingly, we 

found that two strains had a catalase like activity. Specifically, the strain AL5 was able to degrade 

H2O2 in all growth conditions, suggesting the presence of both heme and manganese-dependent 

catalases. On the contrary, the strain AL3 showed catalase activity only in RS conditions, 

suggesting the presence of heme-catalase. Although the heme and manganese-catalase activity has 

been previously studied in several LAB species (Knauf et al., 1992; Abriouel et al., 2004; Rochat et 

al., 2006; Guidone et al., 2013; Ianniello et al., 2015; Ianniello et al., 2016) this is the first study that 

demonstrated it in Lb. johnsonii/gasseri strains. However, genes encoding for heme-catalase or Mn-

catalase were never annotated in Lb. johnsonii and Lb. gasseri genomes. Heme-dependent and Mn-

dependent catalase activities were previously found in the respiration-competent strain Lb. casei 

N87 (Zotta et al., 2014; Ianniello et al., 2015; Ianniello et al., 2016) and the genome sequence 

confirmed the presence of both genes (Zotta et al. 2016). In our study, several strains showed a 

higher resistance to H2O2 and radical generators when cultivated in RS, compared to AN and AE 

conditions. The H2O2 robustness of respirative cells of AL5 and AL3 (up to 40 mM of H2O2) could 

be related to the catalase-like activity. The strains AL15, BR36, BM2 and ALJ, although lack 

catalase activity, showed higher H2O2 tolerance in RS condition. These results suggested that other 

mechanisms might be involved in H2O2 resistance. Ianniello et al. (Ianniello et al., 2015) 

demonstrated that in Lb. rhamnosus GG, Lb. casei Shirota and in some respiration-competent 

strains of Lb. casei, the increased resistance to H2O2 under RS condition was due to NADH 

peroxidase (NPR) activity. In our study all strains were able to cope to menadione and pyrogallol 

stress in both RS and AN, although they lack the sod gene encoding for superoxide dismutase 

(SOD) enzyme. The in silico gene distribution analysis revealed high % of occurrence in Lb. 

johnsonii and Lb. gasseri genomes of sequences encoding for glutathione reductase (gor), 

thioredoxin peroxidase (trxA) and thioredoxin reductase (trxB). These enzymes belong to 

flavoprotein disulfide oxidoreductases family and play a significant role in oxidative stress 

resistance, maintaining a high intracellular thiol/disulfide homeostasis in both prokaryotic and 

eukaryotic cells (Harel et al., 2000; Janschn et al., 2007). Glutathione and thioredoxin reductase 

systems and their role in oxygen and H2O2 tolerance have been explored in some 

Lactobacillus species (Li et al., 2003; Vido et al., 2005; Serrano et al., 2007; Jansch et al., 2007; 
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Kullisaar et al., 2010; Serata et al., 2012). The genes encoding for other enzymes of glutathione 

system, gshA (γ-glutamylcystiene synthetase) and gshB (glutathione synthetase), are absent in the 

genomes of Lb. johnsonii and Lb. gasseri, suggesting that they are not able to synthetize 

glutathione, but they may use it when supplied. 

In conclusion, we investigated 34 Lb. johnsonii/gasseri strains from baby stools and found that 

some of them showed both typical probiotic features, like resistance to OGIT and antimicrobial 

activity, and aerobic environment adaptation. In particular, the strains AL5, BR32 and AL3 showed 

to tolerate very well the stress due to OGIT, in fact more than 90% of their population survived to 

this treatment. Furthermore, they showed to inhibit the growth of most of indicator strains used in 

this study by producing organic acids, and the growth of a Staphylococcus aureus strain by 

producing a sort of antimicrobial substance, not ascribable to a protein or to hydrogen peroxide, be 

further investigated. Additionally, they showed an interesting adaptation to aerobic environment 

with the AL5 and BR32 strains showing an OTP and the AL3 strain showing a RCP. Their overall 

enhanced resistance to oxidative stressors and the evidence of catalase production ability of AL5 

and AL3 strains confirmed this adaptation. Probiotic strains of this type could effectively work both 

during biomass production and in food or processing in which the aerobic condition could be a 

limiting factor for a standard probiotic strain. 
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Draft genome sequence of oxygen-tolerant 
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3.1 INTRODUCTION 

The study of the aerobic and respiratory metabolism within the Lactobacillus genus is limited to 

species of Lb. plantarum and Lb. casei group, while, no reports on the respiratory growth in Lb. 

johnsonii and Lb. gasseri species is currently available, even if these species include strains with 

interesting technological features. Lb. johnsonii and Lb. gasseri are dominant bacteria in human gut 

and in vaginal microbiota and have received particular attention due to their reported probiotic 

activities (Pridmore et al., 2003). In our previous screening study, we investigated 34 Lb. 

johnsonii/gasseri strains from baby stools and found that some of them showed an interesting 

adaptation to aerobic environment and typical probiotic features (resistance to oral-gastrointestinal 

transit and antimicrobial activity). The shift towards aerobic and respiratory growth has been largely 

investigated in heterofermentative lactobacilli (Brooijmans et al., 2009; Zotta et al 2012; Watanabe 

et al., 2012; Guidone et al., 2013; Zotta et al., 2014a; Zotta et al., 2014b; Ricciardi et al., 2014; 

Ianniello et al., 2015; Ianniello et al., 2016), while, limited data are available in homofermentative 

lactobacilli. Nowadays, only Lb. johnsonii NCC533 probiotic strain has been  studied to provide a 

more global understanding of the molecular responses to the presence of oxygen (Hertzberger et al., 

2013-2014). However, most of the knowledge obtained by genetic studies are related only to the 

consequences of O2 and CO2 exposure on Lb. johnsonii NCC533 physiology, but they not fully 

explain the complexity of mechanisms underlie of the aerobic metabolism and oxidative stress 

response. In our screening study, Lb. johnsonii/gasseri AL3 and AL5 strains were selected because 

of their ability to grow under aerobic and/or respiratory promoting conditions and scavenge 

hydrogen peroxidase and reactive oxygen species (ROS). Results of in silico analysis, performed 

with all Lb. johnsonii and Lb. gasseri genomes (finished, permanent draft and draft status) available 

in IMG (Integrated Microbial Genome) database, revealed the presence of several genes involved in 

oxygen utilization, electron transport chain activation and oxidative stress tolerance. However, 

many genes have been found with a very low % of occurrence. Therefore, at this research point it 

was considered necessary to proceed with the genome sequencing of Lb johnsonii/gasseri AL3 and 

AL5 strains toward a better understanding of the genetic basis that can explain the phenotypic 

features observed. Moreover, the genomes sequencing allowed the correct species-level 

identification of the strains. 

 

 

 

 



61 
 

3.2 MATERIALS AND METHODS 

3.2.1 Strains and culture conditions 

Lb. johnsonii/gasseri AL3 and AL5 strains were routinely propagated in de Man Rogosa Sharpe 

(MRS, Oxoid) broth and incubated in anaerobiosis at 37°C for 24 h. 

 

3.2.2 Sample preparation for gDNA sequencing 

The genomic DNA (gDNA) from AL3 and AL5 cultures were extracted by using MasterPure 

GramPositive DNA purification kit (Epicentre, Illumina company, Chicago, U.S.A) according to 

the manufacturer's protocol. The quality and quantity of gDNA was assessed using agarose gel 

electrophoresis and both NanoDrop spectrophotometer 1000 and a Qubit fluorometer (Thermo 

Scientific, Milano, Italy).  

 

3.2.3 Genome sequencing 

The construction of NGS libraries was performed using Nextera DNA library preparation kit 

(Illumina) and the quality of the obtained libraries was evaluated by Agilent on-chip 

electrophoresis. The whole-genome sequencing of the strains was performed by GATC Biotech AG 

company, (Germany) using Illumina HiSeq platform. 

 

3.2.4 Bioinformatics analysis 

Before assembly, the quality of the reads was analysed by FastQC bioinformatics tool. The reads 

were assembled with IDBA software and the assembly was further improved by using SSPACE 

software. The genes were predicted with PROKKA software.  Predicted genes were queried against 

an amino acidic database containing genes involved in aerobic and respiratory metabolism and 

oxidative stress response, by using BLASTx (https://blast.ncbi.nlm.nih.gov/Blast.cgi). A match was 

considered valid when showing more than 30% of identity to the database amino acidic subject 

sequences over at least 90% of the length.  The functional annotation was carried out using NCBI 

Prokaryotic Genome Automatic Annotation Pipeline (PGAP). 
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3.3 RESULTS AND DISCUSSION  

3.3.1 General genome characteristics 

The features of genome annotation of the strains AL3 and AL5 are summarized in Table 1. The 

resulting AL3 and AL5 draft genome sizes are 1,994,887 pb and 1,999,212 pb, respectively. The 

AL3 draft genome contained 16 scaffolds, with an overall G+C content of 34.81%, while AL5 draft 

genome contained 35 scaffolds, with an overall G+C content of 34.87%. A total of 1,945 and 1,998 

genes were found for AL3 and AL5, respectively.  

 

Table 1. Main features and statistics of AL3 and AL5 genome assembly and annotation 

Genomic features 
Strains 

AL3 AL5 
Total assembly length (bp) 1,987,677 1,985,485 
Average coverage 279.0X 303.0X 
Number of scaffolds (>200 bp) 16 35 
G+C content (%) 34.81 34.87 
N50 (bp) 1,106,151 1,125,240 

N75 (bp) 559,690 571,948 

Total genes 1,945 1,998 
Protein-coding genes 1,874 1,832 
Pseudogenes 77 100 
tRNA genes 61 56 

rRNA genes  71 66 

 

The phenotypic evidences on the capability of AL3 and AL5 strains to grow under aerobic and 

respiratory conditions and to cope to oxidative stress response, are supported by genomic 

information. The results of genome analysis revealed the presence, in both strains, of main genes 

involved in oxygen utilization (pyruvate oxidase, pox; lactate oxidase, lox; NADH oxidase, nox; L-

amino oxidase; acetate kinase, ack), in the synthesis of electron transport chain components (NADH 

dehydrogenase, ndh; cytochrome oxidase operon, cydABCD; ubiquinone/menaquinone biosynthesis 

C-methylase, ubiE), as well as in oxidative stress response (NADH-peroxidase, npr; superoxide 

dismutase, sod; glutathione reductase, gor; thioredoxina peroxidase, trxA; thioredoxina oxidase, 

trxB; γ-glutamylcystiene synthetase, gshA; DNA-binding protein from starved cells, dpr). The 

genes encoding for catalase (kat), pseudocatalase (Mn-kat), catalase-peroxidase (katG), glutathione 

peroxidase (gop), glutathione synthetase (gshB) and bifunctional glutamate-cysteine 

ligase/glutathione synthetase (gshF) were not found. As shown in figure 1, the genetic pattern is 

very similar among the strains, although, the strain AL5 lacks of L-amino acid oxidase (flavoprotein 

oxidase) and ribH gene encoding for riboflavin synthase enzyme. The analysis of genome 
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sequences has also allowed the correct species-level identification. In particularly, ribA (GTP 

cyclohydrolase II, involved in riboflavin metabolism) and ribH were used as Lb. gasseri species-

specific genes, while, galP (galactose permease) was used as Lb. johnsonii species-specific gene. 

Therefore, results of blast analysis have shown that both strains belong to Lb. gasseri species. On 

the basis of our results, AL5 and AL3 strains have the genetic potential for the activation of both 

aerobic metabolism (presence of pox and ack genes involved in aerobic conversion of pyruvate to 

acetate) and respiratory pathway (presence of genes involved in minimal electron transport chain 

activation), as well as to tolerate oxygen for the presence of main flavoproteins oxidase (nox, lox). 

Noteworthy, in both strains we found sequences encoding for lox, nox, ndh, npr and gop genes that, 

in our previous in silico analysis (chapter II), they showed a very low % of occurrence in Lb. 

johnsonii and Lb. gasseri genomes. Moreover, as described before, a gene encoding for L-amino 

acid oxidase was found in AL3 strain. Interestingly, to date this gene has never been annotated in all 

Lb. johnsonii and Lb. gasseri genomes (https://www.ncbi.nlm.nih.gov/). In our previous screening 

study, the strains AL3 and AL5 showed catalase like activity, but the genes encoding for kat, Mn-

kat and katG were not found. However, in both genomes we found a gene that showed a significant 

similarity (45%) with oxyR gene of Lb. plantarum. OxyR is a hydrogen peroxide-inducible protein 

activator (Teramoto et al., 2013). It has been demonstrated that OxyR acts as peroxide-sensing 

transcriptional regulator of gene encoding for katG in Escherichia coli, Salmonella typhimurium, 

Corynebacterium diphtheriae and Caulobacter crescentus under oxidative stress conditions (Tao et 

al., 1991; Papp-szabo et al., 1994; Belkini et al., 1996; Tkachenko et al., 2001; Italiani et al. 2011; 

Teramoto et al., 2013). Surprisingly, the results of genome analysis revealed that both genomes 

have sequences encoding for the antioxidant enzyme superoxide dismutase (SOD). Noteworthy, 

SOD sequences are relatively rare in Lactobacillus genus and occur only in some strains of Lb. 

sanfranciscensis, Lb. sakei, Lb. curvatus and Lb. paracasei species (Yamamoto et al., 2011; Zotta et 

al., 2017). This is the first time that sod gene was annotated in Lb. gasseri genome. Moreover, the 

genome analysis also revealed the presence of large pattern of genes involved in oxidative stress 

resistance mechanisms. In both genomes, in fact, genes encoding for NADH oxidase, NADH 

peroxidase (NOX, NPR), Dps-like peroxide resistance protein (DPR) and for the complete 

thioredoxin-thioredoxin (TrxA/TrxB) reductase system, were found. NOX and NPR are the main 

enzymes involved in the NAD(P)-dependent H2O2 scavenging pathway in LAB, however, the 

occurrence of NOX gene is very limited among lactobacilli compared to NPR (Zotta el al., 2017). 

Thus, the presence of npr, trxA, dpr and sod genes could explain the peculiar resistance of AL3 and 

AL5 strains toward H2O2 and menadione observed in our previous study. Regarding to glutathione 

(GSH) synthesis, the strains can be able to perform only the first reaction of the GSH synthesis and 
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regenerate glutathione from its oxidized form (glutathione disulfide, GSSH) because only gor and 

gshA genes, compared to the complete genes pattern of GSH reductase system (gshA, gshB, gor, 

gop,) were found. Interestingly, unlike trxA, trxB and gor genes that are widely distributed among 

Lb. gasseri and other Lactobacillus genomes, gshA and dpr genes are absent in all Lactobacillus 

genomes (Zotta et al., 2017). Dpr is a member of the DNA-binding proteins from starved cells 

(Dps) that are able to provide cell protection during exposure to harsh environmental stress, 

including oxidative stress and nutritional deprivation. The function of Dpr has been the object of 

numerous studies and its role in acid and oxidative stress (iron and hydrogen peroxide 

detoxification) resistance in Escherichia coli, has been proposed (Calhoun et al., 2011). While, 

regarding to LAB, the role of Dpr in the oxidative stress response was reported only in some species 

of Streptococcus and in Lactococcus lactis (Pulliainen et al., 2003; Cesselin et al., 2011). Finally, in 

both genomes we found soxR and soxS genes. SoxR and soxS are adjacent genes and their critical 

role in transcriptional regulation of the defence system for oxidative stress has been extensively 

studied in Escherichia coli (Seo et al., 2015). However, at best of our knowledge no evidence on the 

soxR and soxS role in oxidative stress resistance mechanisms in LAB has been reported. In 

conclusion, genomic information can support the phenotypic evidences of Lb. gasseri AL3 and AL5 

strains observed in our screening study. Draft genome sequence of Lb. gasseri strains with a 

detailed analysis of the genes pattern involved in aerobic and respiratory pathway, as well in 

oxidative stress resistance have not been published at the time. Therefore, the availability of these 

genomic data may be useful to confirm the promising features of Lb. gasseri AL3 and AL5 strains 

and to exploit them for further studies to understanding the aerobic and respiratory lifestyle of this 

species. Moreover, the addition of our findings to the currently available data set can extend the 

genomic evidence of aerobic lifestyle and oxygen tolerance in Lactobacillus genus.  
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Figure 1. Graphical summary of genes presence/absence in the genomes of Lactobacillus gasseri 

AL3 and AL5.  

 

 

 

 

 

 



66 
 

3.4 REFERENCES 

Belkin S, Smulski DS, Volmer H, Vandyr T, La Rossa R. (1996). Oxidative stress detection with 

Escherichia coli harboring a katG9. Appl Envirin Microbiol. 62: 2252-2256. 

Brooijmans JW, de Vos WM, Hugenholtz J. (2009). Lactobacillus plantarum electron transport 

chain. Appl Environ Microbiol. 75, 3580-3585. 

Calhoun L, Kwon L. (2011). Structure, function and regulation of the DNA-binding protein Dps 

and its role in acid and oxidative stress resistance in Escherichia coli: a review. J App 

Microbiol. 110: 375-386. 

Cesselin B, Derré-Bobillot A, Fernandez A, Lamberet G, Lechardeur D, Yamamoto,Y, et al. (2011).  

Responses of lactic acid bacteria to oxidative stress. In Tsakalidou, E., Papadimitriou, K. 

(Eds.), Stress responses in lactic acid bacteria. Springer. 

Guidone A, Ianniello RG, Ricciardi A, Zotta T, Parente E. (2013). Aerobic metabolism and 

oxidative stress tolerance in the Lactobacillus plantarum group. Word J Microbiol Biotechnol. 

29: 1713-1722. 

Hertzberger RY, Pridmore RD, Gysler C, Kleerebezem M, de Mattos M. (2013). Oxygen relieves 

the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533. PLoS ONE. 8(2): 

e57235.  

Hertzberger RY, Arents J, Dekker H,  Pridmore RD, Gysler C, Kleerebezem M, et al. (2014). H2O2 

production in species of the Lactobacillus acidophilus group: a central role for a novel NADH-

dependent flavin reductase. Appl Environ Microbiol. 80: 2229-2239.  

Ianniello RG, Zheng J, Zotta T, Ricciardi A, Gänzle MG. (2015). Biochemical analysis of 

respiratory metabolism in the heterofermentative Lactobacillus spicheri and Lactobacillus 

reuteri. J Appl Microbiol. 119: 763-775. 

Ianniello  RG, Zotta T, Matera A, Genovese F, Parente E, Ricciardi A. (2016). Investigation of 

factors affecting aerobic and respiratory growth in the oxygen-tolerant strain Lactobacillus 

casei N87. PlosOne. 11-1-19. 



67 
 

Italiani J, Valeria CS, , da Silva N, Braz V, Marques M. (2011). Regulation of catalase-peroxidase 

KatG is OxyR dependent and fur independent in Caulobacter crescentus. J Bacteriol. 193: 

1734-1744. 

Pulliainen AT, Haataja S, Kähkönen S, Finne J. (2003). Molecular basis of H2O2 resistance 

mediated by Streptococcal Dpr. demonstration of the functional involvement of the putative 

ferroxidase center by site-directed mutagenesis in Streptococcus suis. J Biological Chem. 

7:7996-8005. 

Pridmore R, Berger B, Desiere F, Vilanova F, Barretto C, Pittet A, et al. (2003). The genome 

sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. PNAS. 101: 

2512-2517. 

Ricciardi A, Ianniello RG, Tramutola A, Parente E, Zotta T. (2014). Rapid detection assay for 

oxygen consumption in the Lactobacillus casei group. An Microb. 64 1861-1864. 

Seo S, Kim D, Szubin R, Palsson F. (2015). Genome-wide reconstruction of OxyR and SoxRS 

transcriptional regulatory networks under oxidative stress in Escherichia coli K-12 MG1655. 

Cell Reports. 12: 1289-1299. 

Szabo P, Firtel M, Joseph PD. (1994). Comparison of the Sensitivities of Salmonella typhimurium 

oxyR and katG Mutants to Killing by Human Neutrophils. Inf Immun. 62: 2662-2668. 

Tao K, Makino K, Yonei S, Nakata A, Shinagawa H. (1991). Purification and characterization of 

the Escherichia coli OxyR protein, the positive regulator for a hydrogen peroxide-inducible 

regulon1. J Biochem. 109: 262-266. 

Teramoto H, Inui M, Yukawa H. (2011). OxyR acts as a transcriptional repressor of hydrogen 

peroxide-inducible antioxidant genes in Corynebacterium glutamicum R. The FEBS J. 280: 

3298-3312. 

Tkachenko A, Nesterova L, Pshenichnov M. (2001). The role of the natural polyamine putrescine 

in defense against oxidative stress in Escherichia coli. Arch Microbiol. 176: 155-157. 

Watanabe M, van der Veen S, Abee T. (2012). Impact of respiration on resistance of Lactobacillus 

plantarum WCFS1 to acid stress. Appl Environ Microbio. 78: 4062-4064. 



68 
 

Yamamoto Y, Gaudu P, Gruss A. (2011). Oxidative stress and oxygen metabolism in lactic acid 

bacteria, in lactic acid bacteria and bifidobacteria: current progress in advanced research, ed. K. 

Sonomoto (Norfolk:Caister).  

Zotta T, Ricciardi A, Guidone A, Sacco M, Muscariello L, Mazzeo MF, Cacace G, Parente E. 

(2012). Inactivation of ccpA and aeration affect growth, metabolite production and stress 

tolerance Lactobacillus plantarum WCFS1. J Food Microbiol. 155: 51-59. 

Zotta, T., Ianniello, R.G., Guidone, A., Parente, E., Ricciardi, A. (2014a). Selection of mutants 

tolerant of oxidative stress from respiratory cultures of Lactobacillus plantarum C17. J  Appl 

Microbiol. 116: 632-643. 

Zotta T, Ricciardi A, Ianniello RG, Parente E, Reale A, Rossi F, et al. (2014b). Assessment of 

aerobic and respiratory growth in the Lactobacillus casei group. PLoS ONE. 9: 99189. 

Zotta T, Parente E, Ricciardi A. (2017). Aerobic metabolism in the genus Lactobacillus: Impact on 

stress response and potential application in the food industry. J Appl Microbiol. DOI: 

10.1111/jam.13399. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 
 

 

 

 

 

 

 

 

 

 

CHAPTER IV 

Metabolic profiling and stress response of oxygen-

tolerant Lactobacillus gasseri strains growth in  

batch fermentation 

 

 

 

 

 

 

 

 

 

 

 

 

 



70 
 

4.1 INTRODUCTION 

The fermentative metabolism of lactic acid bacteria (LAB) has been intensively studied mainly due 

to its industrial relevance. However, in recent years several phenotypic and genotypic information 

indicated that many industrially relevant LAB are able to shift toward aerobic and respiratory 

metabolism (Zotta et al., 2017). Aerobic and respiratory pathway has been studied and characterized 

in several LAB species, allowing the selection of strains with improved technological and stress 

response properties. In particular, the advantages of aerobic and respiratory promoting growth have 

been successfully used by Chr. Hansen A/S industry that entered into a patent license to explore the 

respiration ability of Lactococcus lactis for the development and production of a new starter culture 

in presence of aeration and a porphyry compound (Petersen et al., 2005). However, the application 

of aerobic and respiratory metabolism in LAB can have a wide implication in three main field in 

LAB research: (i) starter and probiotic cultures production, (ii) development of food products with 

respirative phenotype, and (iii) human health application. The biochemistry of aerobic and 

respiratory metabolism in LAB suggest a series of complex mechanisms that act in unison to confer 

several advances on cell physiology. As described before, the lifestyle of the aerobic and respirative 

LAB results in a greater biomass-yield, growth-efficiency, stress robustness and a long term 

survival compared to that under fermentation condition. All these respiration-associated traits have 

a considerable industrial significance. Despite the advancements obtained on this topic research, 

less is known for the two closely related species Lb. johnsonii and Lb. gasseri. In our previous 

screening study, the adaptive response of promising probiotic Lb. johnsonii/gasseri strains to switch 

from fermentative to aerobic and respiratory metabolism and the effect of this metabolic pathway 

on oxidative stress response was investigated. Two strains (AL3 and AL5), belonging to Lb. gasseri 

species, were selected for their ability to grow under aerobic and/or respiratory promoting 

conditions and scavenge hydrogen peroxide (H2O2) and reactive oxygen species (ROS). Genomic 

information supported the phenotypic evidences. Draft genome sequence analysis, in fact, revealed 

the presence, in both strains, of main genes involved in aerobic and respiratory metabolism as well 

as in oxidative stress response. At this research point we decided to investigate the adaptation to 

aerobic end respiratory metabolism of AL3 and AL5 strains in more controlled growth conditions 

using fed-batch cultivation. The metabolic profiles, in term of sugars consumption and metabolites 

production, were further investigated in order to provide additional biochemical evidences of a 

possible activation of aerobic and/or respiratory pathway. Moreover, the effect of this metabolic 

pathway on antioxidant activity and starvation stress resistance of the strains was evaluated. 
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4.2 MATERIALS AND METHODS 

4.2.1 Strains and culture conditions 

Lb. gasseri AL3 and AL5 were routinely propagated in modified Weissella Medium Broth pH 6.8 

(mWMB) (Zotta et al., 2012) and incubated in anaerobiosis at 37°C for 24 h. 

 

4.2.2 Fermentation conditions 

The growth of the strains was carried out in 1 L fermentation vessel (Applikon Biotechnology, 

Schiedam, the Netherlands) in mWMB at 37°C for 30 h, under different growth conditions: 

anerobiosis (AN, nitrogen flow at 0.1 vol/vol/min, stirrer speed 150 rpm), aerobiosis (AE, air flow 

at 0.1 vol/vol/min, stirrer speed 150 rpm) and respiratory (RS, AE growth supplemented with 2.5 

µg/ml of hemin and 1 µg/ml of menaquinone) cultivations. Bioreactor was inoculated (2% v/v) with 

standardized (OD650= 1.0) overnight anaerobic pre-cultures. Dissolved oxygen concentration 

(DO%) was measured using a polarographic electrode (Applikon Biotechnology). Fermentation 

parameters such as DO%, pH and temperature were controlled using ezControl controllers 

(Applikon, Schiedam, the Netherlands). The foam was controlled by adding at the start of the 

fermentation process 0.5 ml of Antifoam solution (Sigma-Aldrich). Growth of the strains under AN, 

AE and RS conditions was monitored by measuring the optical density of the cultures at 650 nm, 

(OD650) at different time points (0, 3, 4, 5, 6, 7, 8, 9, 20, 22, 24, 26, 28 and 30 h). Moreover, after 0, 

7, 9, 20, 22, 24 and 30 h of cultivation in the different growth conditions, samples were collected 

and used for HPLC analysis as described below.  

 

4.2.3 HPLC analysis 

Sugars consumption and metabolites production of Lb. gasseri AL3 and AL5 strains during AN, 

AE and RS cultivations were measured by HPLC analysis. An aliquot of 1 ml of AN, AE and RS 

cultures were collected at different time points and centrifuged at 13000 g for 5 min. The resulting 

supernatants were diluted in mobile phase (H2SO4 0.01 N) 1:5 (vol/vol) and filtered by AcroDisc 

millipore (0.2 µm). Sugars and metabolites were quantified by system (Gilson 307 Series HPLC 

system) fitted with column (MetaCarb 67 h column 6.5x300 mm, Varian) in an oven thermostated 

at 65°C. Column was eluted at 0.4 ml/min by a solution 1:9 (vol/vol) of H2SO4 in ultrapure water. A 

refractometer (RID 133, Gilson) was used as detector. Standards were used for quantification of 

different sugars s in the samples.  
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4.2.4 Tolerance to starvation stress  

For both strains, cultures were collected at 20 h in AE condition and at 28 h in RS conditions. 

Samples were centrifugation (6500 g, 10 min) ), washed twice in 20 mM potassium phosphate 

buffer pH 7 (PB7) and re-suspended in PB7 to obtain a final OD650 = 1. Tolerance to starvation was 

evaluated by storing cell suspensions at 4 °C and viable counting was performed on MRS Agar 

(Oxoid) at 0, 7, 14, 21 and 28 days. 

 

4.2.5 Assay of scavenging activity against DPPH (1,1-diphenyl-2-picrylhydrazil) radical 

The ability to scavenge DPPH by AL3 and AL5 under AE and RS conditions was evaluated in 

according to the protocols of Wang et al. (2009). For both strains, cultures were collected at 20 h in 

AE condition and at 28 h in RS conditions. Before the assay, cell suspensions were standardized to 

OD650 = 1.  

 

4.2.6 Data analysis 

Analyses were carried out in triplicate and all values were expressed as mean and standard 

deviation. Two-way Anova test and t-test analysis (Microsoft Excel for Mac version 11.5) were 

performed to evaluate significant differences (P<0.05) between averages. 

 
 
 

4.3 RESULTS  

4.3.1 Growth parameters and metabolites production 

The growth curves of Lb. gasseri AL3 and AL5 strains in anaerobiosis (AN), aerobiosis (AE) and 

in respiration (RS) during fermentation experiments were obtained. All results shown below are 

related to the AL3 and AL5 growth in AE and RS conditions because both strains have not been 

able to grow in AN condition. The kinetics of growth, DO% and pH values of AL3 and AL5 during 

fermentation processes are shown in Figure 1 and 2, respectively. Results showed that the AE 

condition impaired the growth of AL3 compared to RS. In AE (Figure 1, panel A), AL3 has 

achieved the highest cell density (OD650= 0.8) and was able to consume oxygen up to 20 h growth. 

Instead, in RS (Figure 1, panel B) AL3 continued to grow up to 28 h (final OD650 = 1.6) showing a 

high oxygen consumption in keeping with its growth. However, RS condition seemed to delay the 

entry in exponential phase for AL3 compared to AE condition. Moreover, in RS the growth curve of 

AL3 showed a like-diauxic trend. In AE, the growth of AL3 is associated with a decrease of pH 

values until the strain entered in stationary phase (20 h) (Figure 1, panel C). While, in RS condition 

a low decrease of pH was observed from 20 h onwards, despite the increased AL3 cell density 

(Figure 1, panel D).  
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AL5 strain showed the best growth performance in AE condition (Figure 2, panel A) compared to 

RS (Figure 2, panel and B). In AE condition, the growth of AL5 is associated with a significant 

decrease of both DO% (Figure 2, panel A) and pH (Figure 2, panel C) until the strain entered in 

stationary phase (20 h). In RS condition, the growth of AL5 continued from 20 h onwards but this 

growth has not been accompanied by oxygen consumption (Figure 2, panel B). Moreover, a further 

decrease of pH was observed after 20 h onwards (Figure 2, panel D). As shown in Figure 2 (panel 

B), even in this case, the growth curve of AL5 in RS condition showed a like-diauxic trend.  

Results of the sugars consumption and metabolites production of AL3 and AL5 strains during their 

growth in AE and RS condition, are shown in Figure 3 and 4, respectively. In AE, AL3 strain was 

able to metabolized glucose, fructose and citric acid in the first 20 h of growth, and lactic acid was 

the main end product (2.3±0.1 g/L) (Figure 3, panel A). While, in RS condition (Figure 3, panel B), 

glucose was gradually metabolized until 30 h of growth, however, the highest lactic acid 

concentration (0.97 ±0.06 g/L) was produced at 20 h, and it was significantly lower than that found 

in AE condition (2.3±0.1 g/L). Moreover, unexpectedly, we also observed a significant production 

of acetic acid (1.56±0.05 g/L) from 20 h onwards. Regarding to AL5 strain in AE condition, 

glucose, fructose and citric acid was metabolized in the first 20 h, and a significant amount of acetic 

(1.85±0.08 g/L) and lactic acid (2.75±0.04 g/L) were produced (Figure 4, panel A). Unexpectedly, 

we also observed a significant consumption of citric acid (1.7±0.03 g/L). In RS condition (Figure 4, 

panel B), a lower glucose and fructose consumption was observed, compared to AE. Consequently, 

a lower concentration of acetic (0.89±0.05 g/L) and lactic (2±0.06 g/L) was produced. Noteworthy, 

no significant difference in citric acid consumption was found. 

 

4.3.2 Survival of the cells during starvation stress and antioxidant capability 

Results of viable counts of AL3 and AL5 strains after growth in AE and RS conditions are shown in 

Figure 5. In RS condition, only AL3 strain exhibited the highest tolerance of starvation condition, 

with no significant difference (P<0.05) in cell load after 28 h of storage. On the contrary, the AE 

cultivation strongly impaired the viability of the both strains. Viable count of aerobic AL3 and AL5 

cultures decreased by 3 Log and 2 Log cycles, respectively. Similar results were found for the 

capability of the strains to scavenge DPPH radicals. As shown in Figure 6, the ability to remove 

DPPH radicals was affected by the different growth conditions. In RS, AL3 strain showed the 

greater degrading activity compared to AE condition. While, in AE both strains exhibited a low 

removal capability. 
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4.4 DISCUSSION 

In our previous screening study, Lb. gasseri AL3 and AL5 strain were selected as respiratory-

competent and aerobic phenotype, respectively. In this work the ability of AL3 and AL5 strains to 

shift towards aerobic and respiratory metabolism was further investigated in batch fermentations 

and the effect of these different growth conditions on growth performance and stress tolerance 

(oxidative and starvation) was evaluated. Moreover, the metabolic profiles were investigated in 

order to provide additional biochemical evidences of possible activation of aerobic and/or 

respiratory pathway. For AL3 strain, our results seemed to confirm its capability to grow better in 

RS condition and to activate a respiratory metabolism. In RS cultivation, AL3 showed increased 

biomass production, reduced acidification and oxygen uptake capability. The comparison between 

the kinetic of growth and kinetics of substrates consumption and metabolites production in RS 

condition could explain the simil-diauxic growth of AL3 strain. In the first 20 h of growth, glucose 

is metabolized to form mainly lactic acid and this could explain the observed pH decline. After this 

time, the glucose consumption continued but only acetic acid was produced. In fact, a very low 

decrease of pH was observed despite AL3 continued to grow and to consume oxygen. Taken 

together, these results suggest a double metabolism. The strain could grow first mainly via 

fermentation and then via respiration. Similar results were found by Duwat et al. (2001). These 

authors demonstrated that in Lactococcus lactis subsp. lactis the shift towards a respiratory 

metabolism was correlated to a biphasic metabolism. In particular, in respiration condition, 

Lactococcus lactis showed glucose consumption and acid lactic accumulation in the first 7 h of 

growth. On the contrary, after this time, a continued glucose consumption and subsequent reduction 

in lactic acid accumulation was observed. Moreover, high acetate level in respiratory cultures was 

found. Therefore, these authors suggest that respiration-like metabolism occurs only late in growth. 

These evidences could support our hypothesis. The activation of cytochrome bd oxidase (by heme 

addition) in the respiratory chain can explain the high oxygen consumption and the increased cell 

density (due to extra ATP generation) observed after 20 h of growth. Moreover, the production of 

acetate instead of lactate is one of typical metabolic changes associated with respiratory growth and 

it can have a beneficial effect on pH homeostasis (Duwat et al., 2001; Petersen et al., 2008; Guidone 

et al 2013). The ability to AL3 strain to shift toward a respiratory metabolism have also contributed 

to a remarkable improvement in survival under stress starvation and increased radical scavenging 

activity. This result suggest a strong link between respiratory metabolism and stress tolerance. The 

analysis of AL3 genome sequences revealed a large pattern of genes involved in oxidative stress 

resistance mechanisms, including superoxide dismutase (SOD), NADH peroxidase (NPR), 

complete thioredoxin-thioredoxin (TrxA/TrxB) reductase system, as well as, member of the DNA-
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binding proteins from starved cells (Dps) that are able to provide cell protection during exposure to 

harsh environmental, ncluding nutritional deprivation. However, further studies are needed to better 

understand why AL3 showed these promising features only under RS condition. On the other hand, 

antioxidant activity and robustness to starvation stress was previously demonstrated in also 

respiration competent strains of Lb. plantarum (Zotta et al., 2013; Zotta et al., 2014), Lb. casei 

(Ianniello et al., 2016) and L. lactis (Razaiki et al., 2004; Casselin et al., 2010). Similarly, AL5 

strain confirms the best growth performance in AE condition. According to results of draft genome 

analysis, AL5 possess genes predicted to encode for both POX and acetate kinase (ACK), the main 

enzymes involved in aerobic pathway. In presence of oxygen, the POX-ACK pathway activation 

can directly explain the observed physiological consequences, such as production to acetate (due to 

pyruvate conversion) and increase of OD due to extra ATP generation. Noteworthy, we observed a 

significant consumption of citrate acid. In AL5 draft genome we found sequences encoding for 

citrate lyase (CL), oxaloacetate decarboxylase (AOD), pyruvate carboxylase (PYC), malate 

dehydrogenase (MDH), and fumarate hydratase (FUM), the main enzymes involved in partial 

tricarboxylic acid (TCA) cycle of LAB. These genotypic data, therefore, can support the phenotypic 

evidence. In particular, the citric acid can be converted in oxaloacetate by CL activity and the 

oxaloacetate can be converted in pyruvate by AOD activity. The pyruvate, in turn, may be rerouted 

to lactate and acetate production and this could explain the presence of both end-products during the 

AL5 growth under AE condition. As described before, in RS condition, the growth curve of AL5 

showed a like-diauxic trend. However, the possibility that the strain can activate a respiratory 

pathway is very limited, because, after 20 h of growth, the strain was not able to consume oxygen 

and lactic acid was the main end-product. Despite the aerobiosis was the best growth condition for 

AL5, the strain showed a very low resistance to stress starvation and a poor ability to scavenge 

DPPH radicals. It has been demonstrated that the activation of aerobic pathway (POX-ACK) and/or 

other enzymes involved in oxygen utilization (NADH oxidase lactate oxidase) may result in the 

high production of hydrogen peroxide (H2O2). Hertzberger et al. (2013) have found that the 

endogenous production of H2O2 is main cause of oxidative stress in Lb. johnsonii NCC 533 

probiotic strain during its aerobic growth. On the other hand, in our previous study AL5 strain 

showed H2O2 robustness only under respiration condition. Moreover, in the draft genome sequence 

we not found sequence encoding for catalase or pseudocatalase enzyme, therefore, the possible 

toxic effect of H2O2 accumulation can explain the decreased AL5 survival during long term storage. 

In conclusion, this work contributed to major understating of the adaptive response of AL3 and AL5 

strains to aerobic and respiratory metabolism and can provide important progress in the knowledge 

of this topic research field. To date, this is the first study in which the aerobic and respiratory 
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growth was evaluated in Lb. gasseri strains under batch fermentation. We demonstrated that both 

strains were not able to growth under anaerobiosis, their typical growth condition. During growth in 

batch fermentation, several differences in growth kinetics and in metabolite profiles between the 

different growth conditions were found. These results clearly suggest that several metabolic 

changes were underlie of the physiological characteristics observed. Moreover, this study evaluated 

for the first time the effect of respiratory conditions on the long term survival and radical 

scavenging activity in Lb. gasseri strains. We demonstrated that a possible activation of respiratory 

pathway can provide several advantages, such as improved biomass production and robustness of 

respiration-competent AL3 strain to oxidative and starvation stress. This features may have relevant 

technological consequences. In particular, the starvation stress tolerance and the antioxidant 

capability of some LAB are gaining very interest because of their implication in several 

technological and health-promoting applications. It has been noted that, the presence of oxygen in 

the growth environment of probiotic bacteria is one of the main factors affecting cell survival due to 

the induction of lethal oxidative damages. Moreover, recent studies reported that among probiotic 

health-promoting effects, the protection against oxidative stress and the ability to decrease the risk 

of reactive oxygen species (ROS) accumulation have a remarkable relevance (Amaretti et al., 2013; 

Zhang and Li, 2013). In this direction, the selection of specific strains with antioxidant capability 

can be exploited to formulate novel probiotic foods or supplements that can exert a role in the 

control of several free radical-related disorders. However, a further investigation on the genetic 

basis underlie the respiratory pathway and related stress response are needed. The set of all these 

results could allow significant progress in the understanding the cellular mechanisms involved 

aerobic and respiratory metabolism in homofermentative lactobacilli with promising scientific and 

applicative impact.  

 

 

 

 

 

 

 

 

 

 

 



 

Figure 1. Kinetics of growth and dissolved oxygen concentration (DO%) of 

under aerobic (AE, panel A) and respi

 

 

Figure 2. Kinetics of growth and dissolved oxygen concentration (DO%) of 

under aerobic (AE, panel A) and respiration

Kinetics of growth and dissolved oxygen concentration (DO%) of Lb. gasseri

under aerobic (AE, panel A) and respiration (RS, panel B) conditions.  

Kinetics of growth and dissolved oxygen concentration (DO%) of Lb. gasseri

AE, panel A) and respiration (RS, panel B) conditions. 
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Lb. gasseri AL3 strain 

 

Lb. gasseri AL5 strain 



 

 

Figure 3. Sugars consumption and metabolites prod
(AE, panel A) and respiration (RS, panel B)

 

 

 

 

 

 

 

Sugars consumption and metabolites production of Lb. gasseri AL3 strain under aerobic 
(RS, panel B) conditions.  
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AL3 strain under aerobic 



 

 

 

Figure 4. Sugars consumption and metabolites production of 
(AE, panel A) and respiration (RS, panel B) c

 

 

 

 

 

 

 

Sugars consumption and metabolites production of Lb. gasseri AL5
(AE, panel A) and respiration (RS, panel B) conditions. 
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AL5 strain under aerobic 



 

Figure 5. Viable counts (Log CFU/ml) of 
aerobic (AE) and respiration (RS

 
 
 
 

 

Figure 6. Percentage of hydroxyl radical scavenging activity
cultivated under aerobic (AE) and respiration (RS)
 

 

 

Viable counts (Log CFU/ml) of Lb. gasseri AL3 and AL5 strains, cultivated under 
aerobic (AE) and respiration (RS) conditions, along 28 days of starvation stress.

. Percentage of hydroxyl radical scavenging activity in Lb. gasseri AL3 and AL5 strains 
cultivated under aerobic (AE) and respiration (RS) conditions. 
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AL3 and AL5 strains, cultivated under 
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AL3 and AL5 strains 
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5. CONCLUSION   

Lb. johnsonii and Lb. gasseri species are closely related bacteria dominant in human gut and in 

vaginal microbiota. These species have received particular attention due to their reported 

technological and probiotic properties. Lb. johnsonii and Lb. gasseri species are generally described 

as strict anaerobes with fermentative energy metabolism (Pridmore et al., 2003).  

It was been noted that, the performance and robustness of LAB, including probiotic bacteria, can be 

compromised by exposure to various environmental stresses including acid, cold, drying, starvation, 

oxidative and osmotic stress that affect the physiological status and the functional properties of the 

bacterial cells. In particular, the accumulation of toxic oxygen metabolites can cause proteins 

damage, DNA mutations and membrane phospholipids oxidation, resulting in cellular death 

(Amaretti et al., 2013). To overcome the harmful effects, some LAB have developed various 

defense systems. Several authors have demonstrated that the growth condition and the type of 

metabolism significantly affect the stress responses in LAB. In particular, it was been demonstrated 

that in several LAB species the shift from fermentative to aerobic and respiration metabolism is 

associated with higher cell yield, robustness and lower oxidative stress. In this contest this PhD 

thesis was focused on the study, the understanding and the exploitation of aerobic and respiratory 

metabolism  in Lb. johnsonii and Lb. gasseri species.  

In our first study, thirty four Lb. johnsonii/ gasseri strains were isolated from best feed baby stools 

and screened for their ability to grow under aerobic and respiratory conditions. Moreover, oxidative 

stress response and functional features (i.e. survival to simulated oral-gastrointestinal transit and 

antimicrobial activity) were also evaluated in order to select new promising probiotic strains. We 

found a large diversity on the capability to grow in presence of oxygen and/or respiratory cofactors 

within the Lb. johnsonii and Lb. gasseri strains. As expected, most of strains grew better under 

anaerobiosis condition, while, remaining strains were able to cope whit aerobic condition. For many 

strains the aerobic and respiratory condition conferred several physiological advantages such as, 

increased biomass production, oxidative stress resistance and prevention of oxygen accumulation. 

Results allowed the selection of promising probiotic strains with antioxidant capability and 

respiratory and/or aerobic phenotypes. The strains Lb. johnsonii/gasseri AL5 and AL3 were 

selected as aerobic and respiratory phenotype, respectively, and used as model for the study of the 

genetic basis involved in aerobic and respiratory metabolism. Therefore, whole-genome sequencing 

of both strains was performed. The results of genome analysis revealed that both strains have the 

genetic potential for the activation of aerobic metabolism (presence of pox and ack genes involved 

in aerobic conversion of pyruvate to acetate), respiratory pathway (presence of genes involved in 

minimal electron transport chain activation), as well as to tolerate oxygen for the presence of main 
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flavoproteins oxidase (nox, lox). The analysis of genome sequences has also allowed the 

identification of genes with a very low % of occurrence (lox, nox, ndh, npr and gop) and genes (sod, 

gshA, dpr) that have never been found in Lb. johnsonii and Lb. gasseri genomes. Moreover, 

analysis of genome sequences revealed that both strains belong to Lb. gasseri species. The selected 

Lb. gasseri AL3 and AL5 strains were further used to study the basic mechanisms of the aerobic 

and respiratory metabolism. In particular, the effect of aerobic and respiratory cultivation on the 

growth, oxidative and starvation stress tolerance, antioxidant activity and metabolic profile were 

investigated during batch fermentations. Results contributed to major understating of the adaptive 

response to the aerobic and respiratory metabolism of AL5 and AL3, respectively. Moreover, this 

study evaluated for the first time the effect of respiratory growth on metabolites production, the 

long-term survival and radical scavenging activity in Lb. gasseri strains. We demonstrated that a 

possible activation of respiratory pathway can provide several advantages, such as improved 

biomass production and robustness to oxidative and starvation stress. In view of the above 

phenotypic and genotypic evidences, we provided important progress in the knowledge of this topic 

research. However, further studies need to be undertaken to exploit the respiratory phenotypes for 

the development of competitive starter and probiotic cultures for use in foods and/or in health 

applications. The preparation of starter or probiotic cultures under respiratory conditions can allows 

not only a greater biomass production but also more robust cultures with improved ability to survive 

during storage. 
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