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Summary 

In this thesis, I describe a nonlinear method to invert potential fields data, based on 

inverting the scaling function (τ) of the potential fields - a quantity that is independent on 

the source property, that is mass density in gravity case or the magnetic susceptibility in 

the magnetic case.  In this approach no a priori prescription of the density contrast is 

needed and the source model geometry is determined independently of it. We assume 

Talwani’s formula and generalize the Multi-HOmogeneity Depth Estimation (MHODE) 

method to the case of the inhomogeneous field generated by a general 2D source. The 

scaling function is calculated at different altitudes along the lines defined by the extreme 

points of the potential fields and the inversion of the scaling function yields the 

coordinates of the vertices of a multiple source body with complex geometrical shape. 

Once the geometry is estimated, the source density is automatically computed from a 

simple regression of the scaling function of the gravity data vs. that generated from the 

estimated source body with unit density.  

We solve the above nonlinear problem by the Very Fast Simulated Annealing 

algorithm. The best performance is obtained when some vertices are constrained by either 

reasonable bounds or exact knowledge. In the salt-dome case we assumed that the top of 

the body is known from seismic and we solved for the lateral and bottom parts of the 

body. We applied the technique on data from three synthetic cases of complex sources 

and on the gravity anomalies over the Mors salt-dome (Denmark) and the Godavari Basin 

(India). In all these cases, the method performed very well in terms of both geometrical 

and source-property definition. 
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1 Introduction 

Geophysics is a science involving physics, mathematics and geology, addressed to 

the understanding of the complexity and heterogeneity of the Earth. Such heterogeneities 

occur because of the very diverse internal composition of the Earth that can be 

characterized by variations in their physical properties. 

Geophysical studies, in practice, measure the change in physical quantities with 

respect to time and distance. Each geophysical method is associated with one or more 

physical property of the Earth, such as mass contrast in gravity or resistivity variation in 

electrical methods. 

Evaluating the potential of oil or gas deposits, or energy and environmental 

resources in general (i.e. minerals and water), requires the integration of information 

collected from geology, drilling, seismology, electromagnetics, potential fields and 

others. The goal, is, obviously, gaining a good volumetric estimate of the physical 

property and planning to discover the resources production in the finest way. 

Potential field methods, mainly gravity and magnetic methods, are among the 

oldest methods used in exploring the Earth interior. Despite the increasing role of other 

geophysical methods, some of which having better subsurface resolution, the gravity and 

magnetic methods continue to have an important role, thanks to their passive nature and 

to their successful contribution in deep and challenging environments, such as sub-salt 

structures and deep sea, to their smaller cost and to new powerful methods of analysis 

and modelling, which are indeed related to new high-quality and high-resolution data.  

Moreover, information provided by inverting gravity and magnetic data can help to 

refine the targets and minimize the risk of investigation before the actual potential is 

defined. Additionally, these methods can be successfully applied in the environmental 

and engineering areas of interest, to assess the size of existing issues, to mitigate 

consequences and lead future drilling tests. Once measured data have been analyzed and 

interpreted, the results can also be used as input to model various systems, to prevent 

future environmental and engineering critical situations. 
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Inversion and imaging methods are the most valuable methods to retrieve 

automatically or semi-automatically the relevant information from the potential field 

data. The main focus of this thesis is on the development of a new inversion technique for 

interpreting inhomogeneous potential field data generated by complex sources. 

1.1 Background of inverse problem: 

Potential field data inversion is a very active research field, and each year new 

methods or variants to existing methods are proposed. The major advantages of inverse 

methods include automatic generation of the source parameters and the flexibility to 

account for different forms of a priori information about the unknown source distribution. 

We must first distinguish between linear and non-linear inverse problems. In a 

linear problem, forward modeling involves application of a linear operator to the data. 

The solution of such problem typically involves the search for a solution minimizing a 

function, called the objective function. 

However, the ill-posed nature of the problem requires some a priori information. 

The objective function usually assumes the following form: 

φ= φ
d
 + µ φ

m , 

where the first term, φ
d
, is usually expressed as ∥Wd(Am−d)∥2, that is the weighted 

misfit functional, where d are the observed data, A is the matrix kernel, m is the 

unknown model and Wd is the inverse data covariance or a data weighting matrix.  µ is 

the regularization parameter, assessing the balance between the opposite requirements of 

fitting the data and satisfying the a priori information, expressed in the second term, 

called model objective function. φ
m
 is usually expressed as ∥Wm(m−m

0 
)∥2, that is the 

weighted minimum-norm solution with respect to a reference model m
0
. Several types of 

constraints may be included in φ
m

, such as density/magnetization spatial gradients, model 

depth-weighting, compactness/smoothing stabilizers, directional operators, sparseness 

constraints and bounds/constraints for the model, the closeness to some “a priori” model 

and so on (e.g., Li and Oldenburg, 1996; 1998; Pilkington, 1997; Zhdanov, 2002; Cella 

and Fedi, 2012). As regards the constraints, Paoletti et al., (2014) presented a self-
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constrained inversion procedure based not only on external constraints 

(geophysical/geological information, drill logs), but also on self-constraints, such as 

depth, structural index, horizontal position and dip of the source edges, that are estimated 

in advance by apposite methods of analysis of potential field anomalies.  

Adding specific requirements to the solution, such as a priori information on 

density bounds, may transform the linear problem into a nonlinear problem and specific 

algorithms are required, such as the conjugate gradients, to get the solution through an 

iterative cycle; preconditioning may speed up the process (Zhdanov, 2002; Pilkington, 

1997).  

Non-linear problems are usually solved by local optimization methods, that involve 

local linearization, but the solution is largely affected by the choice of a starting model. 

In fact, for nonlinear problems, many minima of different importance are likely to occur; 

this means that gradient-based local optimization algorithms are only suitable if m is 

close to some “a priori” model m
0
. A completely different class of inverse methods for 

nonlinear problems involves a search based on randomly sampling the model-space, with 

a directivity to guide the search. These methods include global optimization methods, 

such as simulated annealing (SA) and genetic algorithms (GAs) (Dimri, 1992; Sen and 

Stoffa, 2013). Applications of such methods, or combinations of global and local 

methods, have been exploited for potential field inversion by some authors (e.g., Zidarov 

and Zhelev, 1970; René, 1986; Camacho et al., 2000; Nagihara and Hall, 2001; 

Krahenbuhl and Li, 2006; Uieda and Barbosa, 2012). All of these methods, however 

assume prefixed values for the density contrast. 

1.2 Ambiguity of the inverse problem: 

It is well known that the interpretation of potential field data is characterized by 

inherent ambiguity (e.g., Roy, 1962). This means that many different models can 

generate exactly the same anomaly, as shown by Skeels (1947, Figure 1). Even 

considering a subset of the gravity sources, i.e. those being homogeneous in density, it is 

impossible to invert uniquely the data for their volume and density.  

 A different approach is inverting for the depth and shape of the source without 

needing the density to be known. This approach is inherent in Euler Deconvolution 
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(Thompson, 1982; Reid et al., 1990) and in some other methods, such as the interface 

determination under a priori information about two upper and lower depth limits (Fedi 

and Rapolla, 1999).  

In this thesis, we adopt this last kind of approach and will invert the problem based 

on a function which does not depend on the density, namely the scaling function (Fedi, 

2007). In order to solve this inverse problem we will use limited prior information about 

general depth bounds and depth at some points. The new inverse method consists of 

solving a set of nonlinear equations of the scaling function (Fedi, 2007) for the unknown 

vertex positions of a source model, defined according to the Talwani’s formula (1959).  

 

The scaling function defines the behaviour of potential fields vs. scales, or altitudes, 

independent of the source property (Fedi, 2007). It may be easily computed from the 

gravity measurements and, as shown in Fedi (2007), it assumes a very simple analytical 

expression when homogeneous fields are concerned. Since Talwani’s formula allows us 

to consider source models generating inhomogeneous fields, we will use, in particular, 

the Multi Homogeneous Depth Estimation MHODE method (Fedi et al., 2015), which is 

based on the interpretation of the scaling function for a general field, either homogeneous 

or inhomogeneous. A very fast simulated-annealing algorithm (VFSA, Ingber, 1989; Sen 

and Stoffa, 1995) is used here to solve efficiently our nonlinear problem. 

MHODE method performs very well for complex sources and allows the general 

ambiguity to be reduced. For instance, consider the simple case of a dipping dike.  

 Let us assume to know the top of the source from external information and try to 

deduce the bottom from inverting the gravity field. We first performed the gravity data 

inversion using the VFSA algorithm. As expected, the inversion based on the gravity data 

produced many models, all relatively close to the true one, characterized by different 

density contrasts (Figure 1.1) and it is difficult to choose the correct model without any 

external geological information about the source since the data produced by these models 

fit equally well the observed gravity data (Chauhan and Fedi, 2015). We then inverted the 

scaling function (Figure 1.2) and were able to retrieve successfully the bottom part of the 

body without any priori information about the density. 
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Figure 1.1 Inversion of a single-scale gravity anomaly, at z=0 km. Top: The gravity anomaly 
(black) and the computed anomalies from the inverted source models; Bottom: True source 

(black line) and inverted source models. Different colours indicate different densities. 

 

 
Figure 1.2 Inversion of the scaling function on a multiscale dataset. a) gravity anomaly; b) 

Multiscale 1st order derivative gravity field with ridges (cyan curves); c) scaling function for 
each cyan ridge; d) Source model. The top of the source is fixed (black solid dots), leaving the 

bottom vertices to be estimated by inversion (black circles). 
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In the following chapters of this thesis, we will discuss the main theoretical aspects 

that are used in this research project, starting from a brief description of some potential 

field methods and functional transformations. We will then describe the MHODE method 

in detail and the modifications we introduced in the related inverse problem by using the 

VFSA method. Then we will discuss the application of these algorithms to several 

synthetic cases corresponding to a 2D salt-dome model, assuming realistic scenarios, and 

then to two real cases: the gravity data of the Mors salt dome (Denmark) and of the 

Gadavari basin (India).  
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2 Potential fields Theory 

At any point of the space, a unit mass, a unit charge or a magnetic dipole 

experience certain kind of forces. These forces can be repulsive, like between two poles 

of the same polarity for the electric field or attractive as for the gravitational field (Roy, 

2008). In general, these forces are called field of forces. These fields follow laws that 

were defined in mathematical form by many scientists throughout the time. In 

geophysics, we enjoy the physical nature of these fields to image the subsurface.  

Force fields act in the space at a given time (Blakely, 1996). Examples of force fields are 

the gravitational field and the magnetic field of the Earth. Fields can be classified in two 

categories, either vector or scalar. For examples, rock density or gas temperature at a 

certain point and time are scalar fields. Gravitational attraction, heat flow and velocity of 

the fluid are examples of vector fields (Blakely, 1996).  

Mathematically, if the field F, having a scalar potential 𝜙  given by 𝐹 = ∇𝜙  (or 𝐹 =

−∇𝜙), is conservative then the field F is named potential field and satisfies the Laplace’s 

equation in the region out of the sources: 

 

 ∇,𝜙 = 0.  2.1 

 

This means that the sum of the rates of change of the field gradient in three 

orthogonal directions is zero (Kearey et al., 2002). In Cartesian coordinates Laplace’s 

equation is: 

 

 
𝜕,𝜙
𝜕𝑥, +

𝜕,𝜙
𝜕𝑦, +

𝜕,𝜙
𝜕𝑧, = 0,  2.2 

  

where 𝜙 refer to the gravitational and magnetic potentials. 

Following the above remarks, we may define harmonic functions. Following 

Blakely (1996), any function that satisfy the Laplace’s equation, has continuous, single- 
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valued derivatives and has second derivatives. If a function is harmonic in a region R, do 

not have the maxima and minima within the region except on boundaries but the converse 

may not be true. 

Gravity and magnetic fields, are both potential field methods and obey all the 

physical criteria mentioned above. A brief description about these methods is given in the 

following section.   

2.1 Gravity Method 

The gravitation field is defined in terms of gravitational potential or Newtonian 

Potential U: 

 𝑈 =
𝛾𝑀
𝑟 	, 

 2.3 

 

where γ is the gravitational constant, M is the mass of the Earth and r is the distance 

from the center of the Earth. 

The gravitational potential is a scalar quantity, whereas gravitational acceleration is 

a vector quantity having the direction vertically downward. First-order directional 

derivatives of U are the components of gravity in the corresponding direction (Kearey et 

al., 2002) and it is defined as: 

 

 𝐠 = ∇𝑈 =
𝜕𝑈
𝜕𝑥 𝐢 +

𝜕𝑈
𝜕𝑦 𝐣 +

𝜕𝑈
𝜕𝑧 𝐤	, 

 2.4 

 

where 𝐢, 𝐣 and 𝐤 are the unit vectors in the positive direction of x, y and z axes 

respectively. Equation 2.4 can be extended to calculate the gradient of any gravity field 

components. 

The gravitational potential is harmonic at all the points outside of the mass that 

yields ∇,𝑈 = 0, but in the space occupied by masses: 

 

 ∇,𝑈 = −4𝜋𝛾𝜌	,	  2.5 
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where ρ is the density of the mass distribution at a given point.  

This is the Poisson’s equation that describe the potential at all points of the mass 

distribution.  

In geophysical exploration, gravimeters measure only the vertical component of the 

gravity, as given by: 

 𝑔A =
𝜕𝑔
𝜕𝑧	. 

 2.6 

For any objective of applying gravity method, the collected data during surveying 

need the corrections for all the variation in the Earth’s gravitational field which do not 

result from the difference of density of the underlying rocks. The observed gravity is the 

sum of the following components (Blakely, 1996): 

• attraction of the reference ellipsoid (theoretical gravity). 

• effect of elevation above sea level (free air effect). 

• effect of “normal” mass above sea level (Bouguer slab and terrain effects). 

• time-dependent variations (tidal and instrumental drift effects). 

• effect of moving platform (Eӧtvӧs effect). 

• effect of masses that support topographic loads (isostatic effects). 

• effect of crust and upper mantle density variations ("geology"). 

The main aim is to isolate the last quantity – the effect of the density variations in 

crustal and upper mantle from all other terms. This process is referred to as gravity 

reduction. 

The mean value of the gravity at the Earth’s surface is about 9.8 ms-2 and variations 

in gravity caused by density variations in the subsurface are of the order of 100 µms-2. 

The most common parameters used in gravity method are CGS and SIs unit system as 

shown in the following table: 
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Table 2.1 Unit system commonly used in gravity method (after Hinze et al., 2013) 

Gravity parameters CGSu SIu 

Gravitational constant 6.674 X 10-8 cm3/g s2 6.674 X 10-11 m3/kg s2 

Force of attraction 105 dyns Newton(N) 

Gravitational acceleration 

cm/s2 

milliGal (mGal) 

microGal (µGal) 

10-2 m/s2 

10-5 m/s2 

10-8 m/s2 

Density g/cm3 103 kg/m3 

 

The measurement of gravity gradients is often given in the Eötvös unit which is 

equals 10-4 mGal/m or 0.1 mGal/km. 

2.2 Magnetic method 

The magnetic scalar potential V(r), of a dipole whose magnetic moment is m, can 

be written as: 

 

 𝑉 𝑟 = −𝐦�∇
1
𝑟 	,  2.7 

 

where r is the distance operator.  

The magnetic field may also be defined in terms of electric currents. If an electric 

current I, is flowing in a loop of radius r, the magnetic strength at the center of the loop is 

H=I/2r. 

2.2.1 Magnetic Permeability and Susceptibility. 

Materials can be magnetized by acquiring the component of magnetization in the 

presence of an external magnetic field and it is called induced magnetization which is in 

the same (or reverse) direction of the external magnetic field as: 
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 𝐌 = 𝜒𝐇	.  2.8 

 

The constant 𝜒  in the Equation 2.9 is called the magnetic susceptibility. 

Susceptibility is a dimensionless quantity but differs in magnitude as it is in emu equals 

4π times in SI units. 

While magnetic permeability µ, is different in both the systems and derived 

differently as following: 

In the emu system, 

𝑩 = 𝐇 + 4π𝐌 

                                                            = 𝐇+ 4πχ𝐇 

                                                            = (1 + 4πχ)𝐇 

                                                            = µ𝐇 

 𝜇 = 1 + 4𝜋𝜒	. 2.9 

In SI units, 

𝑩 = 𝜇N(𝐇 +𝐌) 

                                                           = 𝜇N(𝐇 + χ𝐇) 

                                                           = 𝜇N(1 + χ)𝐇 

                                                           = µ𝐇 

 𝜇 = 𝜇N 1 + χ . 2.10 

 

The relationship between M and H is not necessarily linear because the magnetic 

susceptibility 𝜒  may vary with the field intensity, may be negative, and may be 

represented more accurately in some materials as a tensor (Blakely, 1996). Susceptibility 

is in essence a measure of how susceptible a material is to become magnetized 

(Reynolds, 1997). 

There are many kinds of magnetizations and their understanding is important how 

the variations of magnetic properties produce the magnetic anomalies (Hinze et al., 

2013). These properties can be defined as: 
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Diamagnetism, for example, is an inherent property of all matter. In the presence of 

external magnetic field, the orbital path of the electron rotates in a way that induced 

magnetization is small and in the opposite sense to the applied field. Consequently, 

diamagnetic susceptibility is negative.  

Paramagnetism, is a property of those solids that have atomic magnetic moments 

because in this substances, the electron shells are incomplete so the unpaired electrons 

produce a magnetic field. When it is placed in an external magnetic field, the atomic 

moments or unpaired electrons partially align parallel to the applied field thereby 

producing a net magnetization in the direction of the applied field. This is still, however a 

relatively weak effect. However, all minerals are diamagnetic and some are paramagnetic 

but in both cases their magnetizations do not have significant contributors to the 

geomagnetic field.  

Though, there is a class of magnetism that have great importance on geomagnetic 

studies. Certain materials not only have atomic moments, but neighboring moments 

interact strongly with each other. This interaction is a result of a quantum mechanical 

effect called exchange energy. Suffice it to say that the exchange energy causes a 

spontaneous magnetization that is many times greater than paramagnetic or diamagnetic 

effects (Blakely, 1996). These types of materials are called ferromagnetic. There are 

several types of ferromagnetic materials, depending on the alignment of their atomic 

moments. If the atomic moment aligned parallel to one another, results ferromagnetism; 

if the atomic moment aligned antiparallel to one another and total moment is neutralized, 

results anti-ferromagnetism; and the last is the ferrimagnetism, in which atomic moments 

are antiparallel but do not cancel. The strength of the magnetization of ferromagnetic and 

ferrimagnetic materials decreases with temperature and disappears at the Curie 

temperature (Kearey et al., 2002). 

The spontaneous magnetization of ferromagnetic materials can be very large at the 

scale of individual mineral grain but due to random orientation the net magnetization may 

be negligible at outcrop scale. Due to the presence of ferromagnetic mineral, rocks will 

acquire a magnetization Mi, called induced magnetization in the direction of applied filed 

H can be denoted as: 

𝐌𝒊 = χ𝐇	. 
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If the rock is placed in a field-free environment, the induced magnetization falls to 

zero (Blakely, 1996). However, ferromagnetic materials have a special ability to retain a 

permanent magnetization even in the absence of external magnetic fields and it is called 

remanent magnetization, may be denoted by Mr. The remanent magnetization of crustal 

rock depends not only on their atomic structure, crystallographic and chemical 

composition, but also on their geological, tectonic and thermal history. In geophysical 

studies, it is usual to consider the total magnetization M of the rock as the vector 

summation of induced and remanent magnetization, that is: 

 

 𝐌 = 𝐌P +𝐌Q = χ𝐇 +𝐌𝒓	. 2.11 

 

The ratio between remanent magnetization and induced magnetization is expressed 

by the Koenigsberger ratio as the following: 

 

 𝑄 =
𝐌Q

𝐌P
=
𝐌Q

χ𝐇	. 
2.12 

 

These may be oriented in different directions and may differ significantly in 

magnitude. The magnetic effects of a rock arise from the resultant M of the two 

magnetization vectors. 

Magnetic anomalies caused by the rocks are superposed to the geomagnetic field 

similar to gravity anomalies which are superposed to the gravitational field. However, the 

magnetic field is more complex, due to variation in amplitude and in direction of the 

geomagnetic field. Consequently, knowledge of the behavior of the magnetic field is 

necessary both in the reduction of magnetic data to a suitable datum and in the 

interpretation of the resulting anomalies. The magnetic field is geometrically more 

complex than the gravity field of the Earth and exhibits irregular variation in both 

orientation and magnitude with latitude, longitude and time (Kearey et al., 2002). 

Total-field magnetometers are usually the instrument of choice for airborne and 

shipborne magnetic surveys. As the name implies, total-field magnetometers measure the 

magnitude of the total magnetic field without regard to its magnetic direction. 
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The total field T is given by: 

 

 𝐓 = 𝐅 + ∆𝐅	, 2.13 

 

where F is the geomagnetic field and ∆F represents the perturbation of F due to 

some crustal magnetic sources. 

The total-field anomaly is calculated from total-field measurements by subtracting 

the magnitude of a suitable regional field, usually the IGRF model appropriate for the 

date of the survey. If T represents the total field at any point, and F is the regional field at 

the same point, then the total-field anomaly is given by (Blakely, 1996): 

 

 ∆𝐓 = 𝐓 − 𝐅 	. 2.14 

 

If |F| >> |∆F|, the total field ∆T can be considered as the component of the 

anomalous field ∆F in the direction of F and thus it can be considered a harmonic 

function (e.g., Blakely, 1996). This condition is usually verified in crustal magnetic 

studies.  

The SI unit of magnetic field strength is the tesla (T). For the magnetic variation 

due to rock, a subunit, the nanotesla (nT), is commonly used; 1 nT=10
-9

T. The strength of 

F varies from about 25000 nT in equatorial regions to about 70000 nT at the poles 

(Kearey et al., 2002). 

2.2.2 Poisson’s Relation. 

The governing laws of the gravitational attraction and magnetic scalar potential 

have some obvious similarities (e.g. their magnitude are inversely proportional to the 

squared distance to their point sources). By eliminating this common factor in both the 

formulas we may provide a relationship that is called Poisson’s relation: 
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where gi is the component of gravity in the direction of magnetization, 𝛾  is the 

gravitational, M is the uniform magnetization, 𝜌 the constant density, and 𝑘 = 𝜇N 4𝜋 

henry/meter (where 𝜇N is the permeability of free space). 

The relation states that the magnetic potential is proportional to the gravitational 

attraction in the direction of magnetization, provided a common source have uniform 

magnetization and density distributions (Blakely, 1996). 

 𝑉 =
𝑘𝑀𝑔P
𝛾𝜌 	, 2.15 
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3 Transformations of potential fields and forward 

modeling 

Transformations of potential fields provide the desired geological information that 

cannot be retrieved from measured data. There are many transformations applied to 

potential field data, but here we will discuss only those used in this thesis, such as upward 

continuation and derivatives. 

3.1 Upward continuation of the field 

Upward continuation is an operator applied to potential field data to transform the 

anomaly field measured at some level to that on a higher level. Particularly, upward 

continuation is a low pass filter as it relatively attenuates the high frequency components 

of the field, such as the effects caused by the shallowest sources. 

Upward continuation originates from Green’s third identity (Blakely, 1996), which 

defines that if U is a harmonic continuous function, with continuous derivatives through a 

regular region R, then at any point P within the harmonic region R, it can be evaluated 

from its behavior on the boundary S: 

 

 𝑈 𝑃 =
1
4𝜋

1
𝑟
𝜕𝑈
𝜕𝑛 − 𝑈

𝜕
𝜕𝑛
1
𝑟 𝑑𝑆

[
	, 3.1 

 

where n is the outward normal direction, r is the distance from P to the point of 

integration on S. No information is needed about the sources except that it must be 

outside of the region R. 

Upward continuation can be performed level-to-level, level-to-draped, draped-to-

level and draped-to-draped. The simplest and most common case is the level-to-level 

continuation. In this case, potential field data are measured on a constant surface z0 and 

continued to a desired higher altitude surface. Mathematically, it can be defined as: 
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 𝑈 𝑥, 𝑦, 𝑧N − ∆𝑧 =
∆𝑧
2𝜋

𝑈 𝑥\, 𝑦\, 𝑧N
𝑥 − 𝑥\ , + 𝑦 − 𝑦\ , + ∆𝑧 ]

,
𝑑𝑥\𝑑𝑦\	,

^_^_

`_`_

 3.2 

 

where ∆z > 0, and z is negative outward. Basically, Equation 3.2 is a convolution 

integral and can be performed using the Fourier transform and the convolution theorem. 

The numerical implementation of this formula obviously considers a finite-extent and 

equally spaced dataset, which leads to the known types of errors for the continued data 

(Fedi et al., 2012; Mastellone et al., 2014). Upward continued data can be calculated 

either by the convolution in space domain or multiplication in Fourier domain. Therefore, 

in the frequency domain, the Fourier transform of the data is simply multiplied by the 

frequency operator: 

 

 𝑒` 𝐤 ∆A;		∆𝑧 > 0	, 3.3 

 

where k is the wavenumber vector. In practice, the real dataset is discrete and refers to a 

finite survey area. Thus, errors may affect the low frequency content, while applying 

upward continuation in the frequency domain. These errors can be significantly reduced, 

by extending the dataset by adding data through another survey or by extrapolating the 

dataset (Fedi and Pilkington, 2012; Oppenheim and Schafer, 1975). Extrapolation of the 

dataset can be done: zero-padding, symmetric extension (Fedi et al., 2012) or maximum 

entropy extension (Gibert and Galdéano, 1985). 

3.2 Derivatives of the potential field 

Both horizontal and vertical derivative of potential field are very useful and 

significantly contribute to the edge analysis of anomalous sources (Nabighian, 1972; 

Simpson et al., 1986;). The main purpose of using different orders of the derivatives, is to 

calculate the scaling function along different ridges (Fedi, 2007; Fedi et al., 2009). In the 

following chapters, we will discuss the scaling function and multi-ridge method in detail. 
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Consider a scalar quantity 𝜙(𝑥, 𝑦)  measured on the horizontal surface. The 

horizontal derivatives of them can be easily calculated space domain by finite difference 

method as: 

 

 𝑑𝜙(𝑥, 𝑦)
𝑑𝑥 ≈

𝜙 𝑥 + ∆𝑥, 𝑦 − 𝜙 𝑥, 𝑦
2∆𝑥 	. 3.4 

 

 
𝑑𝜙(𝑥, 𝑦)
𝑑𝑦 ≈

𝜙 𝑥, 𝑦 + ∆𝑦 − 𝜙 𝑥, 𝑦
2∆𝑦 	. 3.5 

 

It is also possible to calculate horizontal derivatives in Fourier domain (e.g. 

Pedersen, 1989) as: 

 

 ℱ
𝑑f𝜙
𝑑𝑥f = 𝑖𝑘h fℱ 𝜙 ; 	𝑜𝑟, ℱ

𝑑f𝜙
𝑑𝑦f = 𝑖𝑘j

fℱ 𝜙 	, 3.6 

 

 where (ikx)
n
 and (iky)

n
 are the filters that transform the field into the nth-order field 

derivative with respect to x and y. 

If we consider 𝜙 as the potential, it is possible to compute the vertical derivative of 

the field thanks to the Laplace Equation: 

 

 
𝜕,𝜙
𝜕𝑧, = −

𝜕,𝜙
𝜕𝑥, −

𝜕,𝜙
𝜕𝑦,	, 

3.7 

 

which leads to: 

 

 ℱ
𝜕,𝜙
𝜕𝑧, = 𝑘h,ℱ 𝜙 + 𝑘j,ℱ 𝜙 	, 3.8 

 

 ℱ
𝜕,𝜙
𝜕𝑧, = 𝑘 ,ℱ 𝜙 	. 3.9 
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So, by applying the Fourier transform to potential field data, multiplying by |k|
2
, 

and then applying the inverse Fourier transformation, the second vertical derivative of the 

potential can be obtained. This formula can be extended to any nth-order vertical 

derivative of the potential (Blakely, 1996) as following: 

 

 ℱ
𝜕f𝜙
𝜕𝑧f = 𝑘 fℱ 𝜙 	. 3.10 

 

Now we move to the forward modeling of the anomalous fields. The work 

developed in this thesis can be applied to any type of potential field data but here, we will 

show the application only on gravity data. We will discuss in the last chapter about other 

possible application and extension of the developed method. 

In the following section, we will discuss the 2D Talwani’s approach and its 

extension to calculate the derivatives of the field by complex sources.  

 

3.3 2-D modelling of complex sources by Talwani’s formula 

In order to consider a generic multiple-source body, generating an inhomogeneous 

field, we here use the gravity field formula due to Talwani for 2D sources (Talwani et al., 

1959). Any two-dimensional body can be modeled by approximating its boundary by a 

polygon with a set of q sides (Figure 3.1). We here follow all the notations given by 

Blakely, 1996. With this formulation for the source, the gravity field g will be expressed 

at some arbitrary points 𝑥P, 𝑧k Plm,…,o as (Talwani et al., 1959; Blakely, 1996): 

 

 𝑔P 𝑥p𝑧p = 2𝛾𝜌
𝛽p

1 + 𝛼p,

s

plm

log
𝑟p^m
𝑟p

− 𝛼p 𝜃p^m − 𝜃p 	, 
 

3.11 
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where γ and ρ are the gravitational constant and density respectively; Q is the 

number of sides of the polygon; xq and zq are the coordinates of the polygon vertices; rq 

and θq are defined according to Figure 3.1 and following formulas: 

 

𝛼p =
hxyz`hx
Axyz`Ax

,       𝛽p = (𝑥p − 𝑥k) 	− 𝛼p(𝑧p − 𝑧k). 

𝑟p = 𝑥p − 𝑥k
,
+ (𝑧p − 𝑧k),

m/,
	. 

𝑟p^m = 𝑥p^m − 𝑥k
,
+ (𝑧p^m − 𝑧k),

m/,
	. 

𝜃p = tan`m
𝑧p − 𝑧k
𝑥p − 𝑥k

	. 

𝜃p^m = tan`m Axyz`A�
hxyz`h�

. 

 

 
Figure 3.1 A generic complex source. 

 

As in further computation we will perform inversion of the scaling function of 

high-order derivatives, it is convenient to extend Equation 3.11 for calculating field 

derivatives. 

3.3.1 Talwani’s formula for the vertical field derivative (∂g/∂z). 

We can simply take the partial derivative of the field in Equation 3.11, in order to 

extend it for vertical derivative as: 
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𝜕𝑔
𝜕𝑧 P

= 2𝛾𝜌 	 	
𝛼p

1 + 𝛼p,
log

𝑟p^m
𝑟p

− 𝛼p 𝜃p^m − 𝜃p

s

plm

+
𝛽p

1 + 𝛼p,
(𝑧p − 𝑧k)

𝑟p,
−
(𝑧p^m − 𝑧k)

𝑟p^m,

− 𝛼p
(𝑥p − 𝑥k)

𝑟p,
−
(𝑥p^m − 𝑥k)

𝑟p^m, 	. 

 
3.12 

 

3.3.2 Talwani’s formula for the horizontal field derivative (∂g/∂x). 

Similarly, we can extend the Equation 3.11 for calculating the horizontal derivative 

by taking partial derivative with respect to x as following: 

 

 

𝜕𝑔
𝜕𝑥 P

= 	 	
−𝛼p
1 + 𝛼p,

log
𝑟p^m
𝑟p

− 𝛼p 𝜃p^m − 𝜃p

s

plm

+
𝛽p

1 + 𝛼p,
(𝑥p − 𝑥k)

𝑟p,
−
(𝑥p^m − 𝑥k)

𝑟p^m,

− 𝛼p
(𝑧p^m − 𝑧k)

𝑟p^m, −
(𝑧p − 𝑧k)

𝑟p,
	. 

 
3.13 

 

The formula given in Equation 3.11 is also derived for higher orders of derivatives, 

which are given in Appendix A. In further chapters, we will see that these formulas are 

needed in order to calculate the scaling function and so define the objective function for 

the inverse problem. 

The gravity field and its derivatives can be numerically calculated by assigning 

values to the coordinates of the vertices, as shown in Figure 3.2 for the source described  

in Figure 3.1, assuming a 1 g/cm3 density contrast. 
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Figure 3.2 a) Gravity field (g) due to the complex source given in Figure 3.1; b) ∂g/∂x and 

∂g/∂z; c) ∂2g/∂z2and ∂2g/∂z∂x;  
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4 Multi-Homogeneity Depth Estimation (MHODE) 

Fedi et al., (2015) developed a method for estimating the source-parameter from 

homogeneous or inhomogeneous potential field data, called Multi-Homogeneity Depth 

Estimation (MHODE). They proposed the generalization of the homogeneity law into a 

multi-homogeneity law, accounting for the fact that the homogeneity degree is a scale 

dependent quantity that changes with respect to the distance from the sources, except in 

the asymptotic regions. These asymptotic regions may occur when the observation point 

is either very near to the source or very far to the source. However, in practical world we 

basically study the field somewhere between these two regions and deal with 

inhomogeneous field. Therefore, the MHODE method allows studying inhomogeneous 

potential fields.  

The MHODE method involves the inversion of the scaling function (Fedi, 2007) of 

the potential field in a multiscale framework. The practical approach of the MHODE 

methods includes the following steps: a) upward continuation of the field in 3D space; b) 

Multi-ridge analysis of continued field; c) calculation of the scaling function along the 

ridges; d) forming a system of equations for the scaling function (this means that we 

approximate the inhomogeneous field to be locally homogeneous at each altitude); e) 

solving the system of equations to retrieve the unknown source parameters.  

In the further section, before discussing the main theoretical aspect of MHODE 

method, we will briefly discuss about multi-ridge analysis of potential field, scaling 

function and Depth from Extreme Points (DEXP, Fedi, 2007) methods, as the theoretical 

root of the scaling function lies in the DEXP theory. 

 

4.1 Multiridge method 

The Multiridge method (Fedi et al., 2009) is a geometrical method to find the 

source depth by searching the intersection of different ridges in the source region. As the 

name of the method suggests, this is a multiscale method that use the homogeneity law 

and the upward continuation of the potential field in the 3D space. It allows estimating 
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the source position in a very easy way. More precisely, the method is based on the 

evaluation of the zeroes of the absolute values of the horizontal derivative of the field 

(called ridges) at a set of altitudes. 

Potential fields of simple or ideal sources are homogeneous functions of degree n: 

 

 𝑓 𝑡𝑥, 𝑡𝑦, 𝑡𝑧 = 𝑡f𝑓 𝑥, 𝑦, 𝑧 	.  4.1 

 

For many kinds of ideal sources, the homogeneity degree corresponds to the fall-

rate of the field (Thompson, 1982). The homogeneity degree n may be written as n = v-p, 

where v is an integer value ranging from 0 to 3, depending on the kind of homogeneous 

source (i.e. sphere, cylinder, dike and contact) and p is the order of the potential field (i.e. 

magnetic, p = 3; gravity, p = 2 etc.). For instance, for the magnetic field of a 

homogeneously magnetized sphere, n = – 3, p = 3, and v = 0 (Fedi et al., 2009). 

Fedi et al., 2009 gave a quite extended definition of ridges, defining three types of 

ridges: 

• Zeros of the horizontal derivative 

• Zeros of the vertical derivative 

• Zeros of the field itself 

 

Generally, the computed ridges are straight lines for homogeneous or one-point 

sources (Fedi et al., 2009) and the intersection of the ridges occurs in the source region at 

the source position (i.e. at the depth to the center of a sphere or at the depth to the top of 

an infinite vertical cylinder). However, if the field is not homogeneous, as it trivially 

occurs in the case of interfering anomalies, the computed ridges are curved (Fedi et al., 

2009). The number of ridges depends on the order of the partial derivatives of the field, it 

increases according to the order of the field. 

There are several approaches to draw the ridges automatically by computer 

algorithm, by searching for the zeros or the maxima/minima of a function. As proposed 

by Fedi et al., (2009), Canny’s algorithm (1986) is one of the more efficient algorithm, 

which allows to search for maxima/minima of a generic function F. If F(x,y) is a function 
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and ∂F/∂x and ∂F/∂z are its gradients. Canny’s (1986) algorithm searches for the maxima 

and minima of F as the points where Mf is locally maximum in the Af direction, where: 

 

 𝑀𝑓 =	
𝜕𝐹
𝜕𝑥

,

+	
𝜕𝐹
𝜕𝑦

,

	,  4.2 

and 

 𝐴𝑓 = 	 tan`m
𝜕𝐹
𝜕𝑦

𝜕𝐹
𝜕𝑥

	.  4.3 

 

 First, extreme points are calculated at each altitudes and, then, ridges are obtained 

by joining each extreme point at a given altitude to the nearest one computed at the 

altitude just above. 

Fedi et al., (2009), demonstrated the validity of the method for the magnetic field 

but the same is valid for any other type of potential field, such as the gravity one. 

The magnetic field at a point P1(x,y,z), due to the magnetic dipole at a point 

P2(x0,y0,z0) can be written as follows considering the Cartesian coordinates system with 

the z-axis directed downward:  

 𝐹] = 	𝐶�𝐟 · ∇	 𝐭 · 𝛁	
𝐌

𝒓 −	𝒓N ,
	,  4.4 

 

where 𝒓 and 𝒓N are the position vectors relative to the points P1 and P2 respectively, 

M is the sphere dipole moment, Cm = µ0 / 4π, µ0 is the permeability of the free space, f is 

the unit vector in the local direction of the geomagnetic field H, t is the unit vector along 

the direction of M and 𝛁 is the gradient operator vector. The order of the potential field p, 

is three. 

As already mentioned, there are three type of ridges, defined by Fedi et al., (2009): 

a) type I, zeros of the horizontal derivative of the potential field; b) type II, zeros of the 

vertical derivate of the potential field; and c) type III, zeros of the potential field itself. 

The first type of ridge of the magnetic field in Equation 4.4 can be obtained by the 
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computing the horizontal derivative of F3, considering the cross section y = y0, and |M| = 

1: 

 

 

𝜕𝐹] 𝑟, 𝑟N
𝜕𝑥

= 	𝐶�

𝑋] + 𝑋𝑍, 𝑡j𝑓j + 3𝑋𝑍, − 2𝑋] 𝑡h𝑓h + 𝑍] − 4𝑋,𝑍 𝑡A𝑓h
+ 𝑍] − 4𝑍𝑋, 𝑡h𝑓A + 𝑋] − 4𝑋𝑍, 𝑡A𝑓A

𝑋, − 𝑍, �/, 	, 
 4.5 

 

where X=x-x0 and Z=z-z0. 

From this equation we can see that the ridges are straight lines, which can be 

expressed as: 

 𝑥 − 𝑥N = 𝛽(𝑧 − 𝑧N)	,  4.6 

 

where 𝛽 = tan(𝜙) and 𝜙 is the angle between a ridge and vertical axis z. If we assume 

that inclination and declination of the geomagnetic field are 0° and 90°, respectively, and 

f=t, the solution of the Equation 4.5 is: 

 

𝑥 = 𝑥N	, 

𝑥 − 𝑥N = 2 𝑧 − 𝑧N 	, 

𝑥 − 𝑥N = −2 𝑧 − 𝑧N 	. 

 4.7 

These three solutions (Equation 4.7) are the straight lines intersecting at the center 

of the sphere (x0, z0). This demonstration proves mathematically the validity of the 

method. It can be done in a similar manner for the vertical derivative or for higher order 

derivatives of the field.  

As mentioned before, the method can be applied to any potential field. Figure 4.1 

shows the application to gravity anomaly produced by a sphere of radius 1 km situated at 

a 6 km depth. The field is computed up to 10 km altitude in x-z plane and ridges are 

computed according to above description of the method. Ridges are joining in the source 

region at the depth of 6 km, which is the same depth of the center of the assumed sphere. 
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Figure 4.1 Depth estimation by multiridge method. a) gravity anomaly by a sphere with density 
contrast of 1 g/cm3; b) data is computed up to 10 km and ridges joining in the source region at 6 

km depth. 

 

4.2 DEXP method and Scaling function 

The Depth from Extreme Points (DEXP) method is an imaging method to retrieve 

the three-dimensional position of the source from potential field data. The method was 

developed by Fedi, 2007. Particularly, the method works in a semi-automatic way, like 

Euler deconvolution method, to estimate the source position and characteristic parameter 

of the source (Structural Index, Reid et al., 1990). 

The DEXP method can be applied to any potential field and its derivatives and the 

method is also very stable vs. noise. The DEXP method can be applied to potential field 

using following step:  

• Upward continuation of the field: DEXP requires that the data, horizontally 

and vertically in 3D space. So it is necessary to create a 3D data volume of 

the potential field. 
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• Scaling of the field: Any field f(r, r0) has to be scaled using specific laws. If 

the field is originated by a source at r0, it is transformed into a scaled field 

W(r, r0). 

• Estimation of the source depth: This step involves determining the position 

of the source by searching the extreme points of the scaled field. The 

extreme points will occur for the scaled field W(r, r0) at r(x,y,z) that is 

symmetrical to the r0(x0,y0,z0), with respect to the vertical axis. 

• Calculation of excess mass in gravity or excess dipole moment intensity for 

the magnetic field. 

 

The mathematical derivation of the DEXP method is given by following the 

demonstration of the Fedi, 2007. Consider the Newtonian potential and its derivatives of 

degree n: 

 

 𝑓 𝐫 = 𝑘
𝜕f

𝜕𝑧f
𝑀 𝐫𝟎
𝐫 − 𝐫𝟎 ,

𝑑]𝐫𝟎
�

	,  4.8 

 

where k is the physical constant related to field, M is the source density, and r and 

r0 are the position vectors of the observation and source respectively. 

Let us consider the gravity field f1(r) due to a single pole at the point r0(x0,y0,z0) 

with the density M. It can be written as follows: 

 

 𝑓m 𝐫 = 𝑀
𝑧 − 𝑧N
𝐫 − 𝐫𝟎 ,

]	.  4.9 

  

If we assume a unit density, the source at r0(0,0, z0) and the field at x= x0, y= y0, 

Equation 4.9 will be: 

 𝑓m 𝑧 =
1

𝑧 − 𝑧N ,	. 
 

4.10 
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Fedi, 2007 defined the scaling function τ, by the derivative of the logarithm of the field f 

with respect to log(z) as: 

 𝜏 𝑧 =
𝜕 log[𝑓(𝑧)]
𝜕 log(𝑧) 	. 

 
4.11 

 

The scaling function τ1 of  f1 is then:  

 𝜏m 𝑧 = −
2𝑧

𝑧 − 𝑧N
	. 

 
4.12 

We can see from Equation 4.12 that τ1 has a singularity at z= z0, that is in the source 

region. However, at z=- z0 : 

 𝜏m(Al`A�) = −
−2𝑧N

−𝑧N − 𝑧N
= 	−1	. 

 
4.13 

It follows that, 

 

 
𝜕 log 𝑓m(𝑧) + log(𝑧)

𝜕𝑧 Al`A�

= 0	.  
4.14 

    

This can be written as: 

 
𝜕𝑧𝑓m
𝜕𝑧 Al`A�

= 0	.  
4.15 

 

The function zf1 has the maxima at z= -z0. The scaled gravity field is Wg: 

 

 𝑊�m = 𝑓m𝑧	, 
 

4.16 

 

has its maximum at x= x0, y= y0 and z= -z0. This maximum occurs when a positive 

density contrast is assumed, while the minimum occurs in case of a negative density 

contrast. 
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Fedi, (2007) generalized the formula to any pth order of vertical derivative of the 

field, fp and to any type of homogeneous source. Starting from pth order derivative of 

gravity field having homogeneity degree n, 𝑓� 𝑥 = 𝑥N, 𝑦 = 𝑦N, 𝑧 = m
A`A� �y�, where N= 

-n. So the scaling function for pth order is: 

 

 𝜏� =
𝜕 log 𝑓�
𝜕 log 𝑧 = −

𝑁 + 𝑝 𝑧
𝑧 − 𝑧N

	. 
 

4.17 

     

At z= -z0, this can be written as: 

 𝜏� 𝑧 = −𝑧N = −
𝑁 + 𝑝
2 	. 

 
4.18 

Hence, the general scaled function Wp  

 𝑊� = 𝑓�𝑧�^�/,	, 
 

4.19 

  

have extreme points at (x= x0, y= y0, z= -z0).  

So, Equation 4.19 is the general form of the scaling function that is valid for any 

homogeneous potential field or any of its derivatives.  

In this thesis, the scaling function will play a key role since it does not depend on 

the physical property, namely the density for the gravity field and its derivatives.  

Equation 4.11 and Equation 4.17 will be so used throughout this thesis. 

 

 Figure 4.2 presents an application of the DEXP method about a simple case of 

gravity field due to a sphere situated at 8 km depth. As it is shown in Figure 4.2, DEXP is 

applied on the first vertical derivative of the gravity field and allows the exact depth of 

the sphere to be estimated (white plus sign on Figure 4.2d). For the advanced 

development and more details on the application of DEXP and scaling function, readers 

are referred to other papers such as, Fedi, (2007); Fedi and Pilkington, (2012); Fedi and 

Florio, (2013); Abbas et al., (2014); Abbas and Fedi, (2014); Baniamerian et al., (2016).  
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Figure 4.2 DEXP is applied on the gravity field over a buried sphere. 

 

4.3 Theory of MHODE method 

We will briefly describe here the Multi-HOmogeneity Depth Estimation (MHODE) 

method, allowing studying homogeneous and inhomogeneous potential fields as well. 

Considering the framework of homogeneous fields, there are many automatic 

methods proposed for interpreting the potential fields, such as those based on the Euler 

deconvolution (e.g., Thompson, 1982; Reid et al., 1990; Ravat, 1996; Fedi et al., 2009), 

the local wavenumber (e.g., Thurston and Smith, 1997; Smith et al., 1998), the 

Continuous Wavelet Transform (CWT) (e.g., Moreau et al., 1997; Fedi et al., 2010; Fedi 

and Cascone, 2011), the Depth from Extreme Point (DEXP) (Fedi, 2007; Fedi and 

Pilkington, 2012; Fedi and Florio, 2013; Abbas et al., 2014; Abbas & Fedi, 2014; 

Baniamerian et al., 2016) and the Multi-ridge Method (Fedi et al., 2009;	 Florio and Fedi, 

2014). All these methods are developed assuming that the field is homogeneous at least 

locally, i.e. within a moving window. More precisely, the best homogeneous field is 

searched for each position of the moving window, which can fit measurements therein.    
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Homogeneous potential fields f, are generated by ideal homogenous sources and 

satisfy the homogeneity law (Equation 4.1) or, equivalently, the Euler’s differential 

homogeneity equation: 

 

 
𝜕𝑓
𝜕𝑥 𝑥 − 𝑥N +

𝜕𝑓
𝜕𝑦 𝑦 − 𝑦N +

𝜕𝑓
𝜕𝑧 𝑧 − 𝑧N = −𝑛𝑓	, 

 
4.20 

 

where n is the homogeneity degree,  t>0 and {𝑥N,	𝑦N, 𝑧N} are the coordinates of the 

unknown single source. 

Here, the potential field f is generated by one point sources and the source 

distribution of such sources may be defined by a single point. The best example of this 

kind of sources is the homogeneously dense sphere whose field is equivalent to that of a 

point-mass having its mass distribution concentrated on its center, so that the gravity field 

may be defined by this single point (e.g., Fedi, 2016). Other examples are the infinitely 

extended cylinder in gravity fields, the dipole for magnetic fields, infinitely extended pole 

and dipole lines, semi-infinitely extended tabular sources, and the semi-infinite block 

model that may represent contact-like geological structures (e.g., Fedi, 2016). These 

sources can be interpreted by finding one depth point only (i.e., top of the vertical infinite 

cylinder in gravity) because their field is equivalent to sources having their mass (or 

dipole moment in magnetic case) concentrated at that point. 

The homogeneity degree n, for such homogeneous sources or one-point sources is 

the integer values {−3, −2, −1, 0}. All the methods for interpreting homogeneous fields 

assume the homogeneity degree as an integer value at least within a local set of data 

points. However, Fedi et al. (2015) argue that any inhomogeneous field can be 

homogeneous in two asymptotical conditions, either, a) the measurement point is very 

near to the source region, so horizontal extension can be approximated to infinite, or b) 

the measurement point is very far from source region, so any types of sources behave like 

a point source and the homogeneity degree tends to -3 in magnetic case or -2 in gravity 

case.  

However, in the real world the causative sources are complex sources and measured 

fields are no more homogeneous fields. Furthermore, Steenland (1968) has shown that 
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the homogeneity degree n is a function of distance for a complex source, and that it may 

hold fractional values as well. This is confirmed by other authors, dealing with sources 

which are not one point sources and whose homogeneity degree n is fractional: in that 

case, the retrieved depth is somewhere between the source top and centre (Keating and 

Pilkington, 2004; Gerovska et al., 2005).  

Fedi et al., 2015 treated the problem in a different way, by generalizing the 

homogeneity law, similar to multifractal scaling laws from monofractals and redefined 

the Equation 4.1 in following manner: 

 

 𝑓 𝑎𝑥, 𝑎𝑦, 𝑎𝑧 = 𝑎f(h,j,A)𝑓 𝑥, 𝑦, 𝑧 	, 
 

4.21 

 

so now Euler differential becomes: 

 

 
𝜕𝑓
𝜕𝑥 𝑥 − 𝑥N +

𝜕𝑓
𝜕𝑦 𝑦 − 𝑦N +

𝜕𝑓
𝜕𝑧 𝑧 − 𝑧N = −𝑛 𝑥, 𝑦, 𝑧 𝑓 𝑥, 𝑦, 𝑧 	, 

 
4.22 

 

where now, n is a function of distance to the source and f is an inhomogeneous 

field. 

In the further section we will discuss about local homogeneity and multi-

homogeneity of the inhomogeneous fields. 

4.3.1 Inhomogeneous and Multi-homogeneous fields. 

Inhomogeneous fields are fields generated by non-concentrated sources, which 

cannot be represented by a single one point. In general, these sources are finite in all 

extent and we may also refer to them as multiple or multipoint sources. Fedi et al., 2015 

have shown that any type of field homogenous or inhomogeneous may have integer or 

fractional values of the homogeneity degree and that it changes with respect to distance 

from the source. As it can be seen evidently (Figure 4.3) from the example of  many 

sources (Fedi et al., 2015; Ravat, 1994; Steenland, 1968), the estimated homogeneity 

degree n, is varying from 0 to -2 with respect to the depth to the top of the source. So, in 
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the case of a single-scale study, the homogeneity degree may occasionally assume an 

integer value but in reality it is continuously tending from 0 to a constant value at higher 

distance. For instance, the gravity field due to circular disk is representing three ideal 

sources at different levels: 0 at the lowest distance, where it can be interpreted as a thin 

sheet, -1 at 0.8 km, where it can be interpreted as a cylindrical structure and -2 at more 

than 8 km, where it can be interpreted as a pole source (Fedi et al., 2015). The ambiguity 

of the problem is evident from this example. 

 

 
Figure 4.3 The homogeneity degree (n) of inhomogeneous fields versus altitude. Constant curves 

are related to one point sources. For inhomogeneous sources, the homogeneity degree canges 
versus the altitude and its fractional. (From Fedi et al., 2015, after Steenland 1968). 

 

Therefore, to study the realistic nature of the sources, real and varying values of the 

homogeneity degree should be adopted along the whole multiscale dataset. This is similar 

to multifractals that are also studied at different scales. Fedi et al., (2015) then defined the 

local homogeneity by distinguishing homogenous and locally homogeneous functions.  

Consider f(r) is a continuously differentiable in the region R, then it is locally 

homogeneous of degree n, if and only if: 
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 ∇𝑓 𝐫 𝐫 − 𝐫N = −𝑛𝑓 𝐫 	. 
 

4.23 

 

From Equation 4.23 it follows that: (a) f(r) is locally homogeneous of degree n in a 

region R if and only if f it is homogeneous of degree n in some neighborhood of every 

point of R; and (b) a locally homogeneous field may be or may not be homogenous, the 

but reverse is always true.  

Since the homogeneity degree is different in different domains of the space, Fedi et 

al., (2015) introduced a new term for such potential fields, called multi-homogeneous 

field. 

So following the concept of multi-homogeneity, any function can be approximated 

as: 

 

 𝑓 𝐫 ~𝐹� 𝐫 	, 
 

4.24 

 

where FH(r) is the best homogeneous field of degree n along the lines called ridges 

(Fedi et al., 2009; Fedi et al., 2015; Florio and Fedi, 2014).  

 

4.3.2 Depth estimation of multi-homogeneous model 

In this section, we will see the practical approach of the multi-homogeneity theory. 

We may now explore the scaling function, defined in Equation 4.11. The scaling function 

has the following expression for ideal sources: 

 

 𝜏 𝑧 = 𝑛
𝑧

𝑧 − 𝑧N
	,  

4.25 

 

where z is the altitude, z0 is the source depth and n is the homogeneity degree. 

Using the definition of local homogeneity (Equation 4.24), we can write:    
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 𝜏 𝑓 ~𝜏 𝐹� 					∀𝐫 ∈ 𝑊	, 
 

4.26 

 

where, 

 

 𝜏 𝑓 =
𝜕 log 𝑓
𝜕 log(𝑧) ; 				𝜏 𝐹� = 𝑛 𝑧

𝑧
𝑧 − 𝑧N 𝑧

	, 
 

4.27 

 

4.3.3 Depth estimation of complex sources. 

We have seen the theoretical development of MHODE method in above sections. 

Fedi et al., (2015) applied the method to two-point sources such as the finite vertical 

cylinder and faults. In the next section we will discuss the extension of this approach for 

more complex and irregular sources, this being the major development of this thesis.  

In a real geological scenario, we expect the source distributions are irregular and 

complex. In particular, we will face the 2D case of gravity. We have already discussed in 

section 3.3 in chapter 3 the forward formulation to calculate the gravity using Talwani’s 

2D formula and its extension to calculate higher orders of derivatives of the gravity field. 

The main goal of this thesis is to invert the scaling function (Equation 4.11), not the field, 

and so enjoying the advantage of its independence on density or any other physical 

constant. Note that the scaling function mathematically is only function of the 

geometrical parameters of the anomalous sources.  

Now we may rewrite the formula of the scaling function as: 

 

 𝜏¡(�) =
𝜕 log(𝑔�)
𝜕 log(𝑧) 	, 

 
4.28 

 

where z is the altitude, gp is the gravity field or its any pth order of derivatives and 

τT(p), is the respective scaling function where the ‘T’ subscript refers to some 

mathematical expression for the scaling function, such as that based on the Talwani’s 
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formula. In order to compute such theoretical expression, we may rewrite Equation 4.28 

as following: 

 

 𝜏¡(�) =
1
𝑔�
𝜕𝑔�
𝜕𝑧 𝑧	. 

 
4.29 

 

As it can be seen from Equation 4.29, in order to calculate the scaling function for 

the field or its derivatives, we need to compute first 𝜕𝑔� 𝜕𝑧. 

Now consider first p=0 so that Equation 4.29 is: 

 

 𝜏¡ =
𝜕 log(𝑔)
𝜕 log(𝑧) =

1
𝑔
𝜕𝑔
𝜕𝑧 𝑧	, 

 
4.30 

 

where 𝑔	and	 𝜕𝑔 𝜕𝑧 , can be calculated according to Equations 3.11 and 3.12, 

respectively, as defined in Chapter 3. Similar considerations may be made for computing 

the scaling function of order p>1: we must compute the expression of the (p+1)th order 

vertical derivatives of the gravity field. Formulas for p=1 and p=2 are described in 

Appendix A. 

Now we may need form a system of equations based on Equations 4.29, in order to 

calculate the unknown quantities, namely the coordinates of the Q vertices of the 

polygon, using the Talwani’s 2D polygon approach, that is {𝑥¤, 𝑧¤}, as shown in Figure 

3.1.  We form finally the following system of nonlinear equations along the ridges: 

 

 

𝜏¡ 𝑥m, 𝑧m, 𝑥m, . . , 𝑥p, 𝑧m, . . , 𝑧p = 𝜏 𝑥m, 𝑧m
…																																				…

𝜏¡ 𝑥P, 𝑧P, 𝑥m, . . , 𝑥p, 𝑧m, . . , 𝑧p = 𝜏 𝑥P, 𝑧P
…																																				…

𝜏¡ 𝑥o, 𝑧o, 𝑥m, . . , 𝑥p, 𝑧m, . . , 𝑧p = 𝜏 𝑥o, 𝑧o

 
 

4.31 

 

where: 𝜏(𝑥P, 𝑧k)Plm,…,o  refers to the scaling function estimated at points of 

coordinates (𝑥P, 𝑧k)Plm,…,o	along the ridge and 𝜏¡  refers to the theoretical expression of 
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scaling function. Once again, note that system in Equation 4.31 is independent on the 

density, as it is based on the scaling function. 

In the next chapter, a detailed description will be given for the inversion that is used 

to solve the system of Equation 4.31. 
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5 Potential field data inversion  

In inversion, a theoretical geophysical response is calculated using assumed model 

parameters and estimated parameters. This is then compared with the observed data and 

their misfit is calculated. The process is repeated until the values of the estimated 

parameters will decrease the misfit adequately (e.g., Dimri, 1992). 

The initial task in most geophysical inverse problems is to describe the data. Since, 

geophysical data are recorded digitally, the dataset is simply a table of numerical values 

and can be represented by a vector in case of 1D dataset or by a matrix in case of 2D or 

3D datasets. For the convenience, considering a vector representation of the data of 

length N and as well of model parameters of length M (Menke, 1989) as: 

 𝐝 = 𝑑m, 𝑑,, 𝑑], … , 𝑑� ¡	,  5.1 

 

 𝐦 = 𝑚m,𝑚,,𝑚], … ,𝑚§
¡	.  5.2 

If the data d and model parameter m are linearly related to each other, the forward 

problem can be written in the following form: 

 𝐝 = 𝐀𝐦	,  5.3 

where A the the matrix of (N x M) dimension, is called kernel. Equation 5.3 forms 

the foundation of discrete linear inverse theory. Many important inverse problems that 

arise in the physical sciences involve precisely this equation. Others, while involving 

more complicated, nonlinear, equations, can often be solved through linear 

approximations (Menke, 1989). 

When the length of data N, is greater than the length of the model parameters M, 

(N>M), the problem is called overdetermined. The most straightforward and common 

way to invert the system is to find so called least-square solution (Menke, 1989), which 

can be written as: 
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 𝐦 = 𝐀©𝐀 `m𝐀©𝐝	,  5.4 

where superscript “T” is representing the transpose of the matrix.  

When the number of data points is less than the number of model parameters 

(N<M), the problem is undetermined and a common, but not always satisfying, solution 

of such problem is called the minimum length solution: 

 

 𝐦 = 𝐀© 𝐀𝐀© `m𝐝	.  5.5 

A common tool used in the inversion is the conjugate gradient (CG): when the 

dimension of matrix A is very large, CG algorithm can be efficiently used because we 

never form explicitly the matrix ATA or AAT, instead requires only the matrix-vector 

product of type Ap and ATq where p and q are some vectors with dimension of M and N 

respectively. 

The total error E can be defined by sum of squares of the individual error as:  

 

 𝐸 = 𝑒P,
�

Plm

	.  5.6 

 

This is the squared Euclidean length of the vector eTe. The Euclidean length is one 

of the possible way to quantifying the size or length of a vector. In general, the norm is 

used to refer for measuring the length and indicated by a set of double vertical bars: ||e|| is 

the norm of vector e (Menke, 1989). A general norm Lp (e.g., Menke, 1989; Dimri, 1992; 

Sen and Stoffa, 2013) is defined as: 

 

 𝐿�	𝑛𝑜𝑟𝑚:		 𝑒 � = 𝑒P �
�

Plm

m �

	,  5.7 
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where N is the number of data points. In geophysical application, the L2 norm is 

commonly used, as given by: 

 

 𝐿,	𝑛𝑜𝑟𝑚:		 𝑒 , = 𝑒P ,
�

Plm

m ,

	.  5.8 

 

Use of other norms, e.g. L1 can also be found in the geophysical literature. 

Geophysical problems are often non-linear and the error function can have multiple 

minima of various size, as shown in Figure 5.1 (Sen and Stoffa, 2013). In these case, we 

must distinguish among local optimization algorithms and global optimization algorithms 

(Dimri, 1992; Sen and Stoffa, 2013). Local optimization algorithms generally calculate 

the gradient of the problem and typically attempt to find a local minimum in the close 

neighborhood of the starting solution. These types of algorithm are often called greedy 

algorithm due to their attempt to go downhill. 

Global optimization methods attempt instead to find the global minimum of the 

error function. As described by Sen and Stoffa (2013), these types of algorithms are 

stochastic in nature and use global information about the error surface to update their 

current position. However, the convergence of these methods to the globally optimal 

solution is not guaranteed for all the algorithms except some, those based on simulated 

annealing under certain conditions. In many cases, global optimization algorithms are 

still able to find the good solution starting with poor initial models. Global optimization 

algorithms include genetic algorithm, simulated annealing algorithms and others.  

In this thesis, we used the Very Fast Annealing Algorithm (VFSA) for optimizing 

our problem. In the next section, we will discuss the VFSA and its application to the 

MHODE method.  
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Figure 5.1 Error function showing multiple minima. 

 

5.1 Global optimization for MHODE method 

The mathematical formulation of the MHODE problem concerns a set of non-linear 

equations, which we need to solve using the data at many altitudes. The ultimate goal is 

to search the source parameters related to the unknown source geometry. The chance to 

get a good solution to the problem depends on the degree of non-linearity present in the 

forward problem. In general, more are the sides of the polygon to approximate the 

geological complex structure, more accurate will be the gravity field computation; 

however, the inverse problem will become harder to be solved.  

To overcome this difficulty, it is possible to get a priori information on some of the 

vertices of the source by independent information such as geology, wells or other 

geophysical data. For instance, a salt dome structure is generally poorly defined by a 

seismic image, except the top-salt. So, gravity is often used to investigate the edges and 

bottom part of the causative body, while constraining the top part of the body from 

seismic information. In the next chapter, we will approach this important exploration 

problem, by assuming the depth to the top known from seismic data and thereafter 

inverting the data for estimating the edge and bottom part with our method. Our method 

Global minimum

Model

E
rr
or

Local minima
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can contribute to deal with the complexity of this problem, since it has the advantage of 

not depending on any a priori information about density. 

We will solve Equation 4.31 by using a Very Fast Simulated Annealing method. As 

discussed above that MHODE involves the inversion of the scaling function so we can 

write the error function as following: 

 

 𝐸 = 𝜏¡ − 	𝜏 ,	,  5.9 

 

where 𝜏¡  is the theoretical scaling function value computed using the estimated 

source model and 𝜏 is the scaling function evaluated along the ridges. 

5.1.1 Very Fast Simulated Annealing 

Very Fast Simulated Annealing (VFSA) is the modified version of simulated 

annealing (SA), proposed by Ingber (1989) who called it very fast simulated re-annealing 

(VFSR). 

Conceptually, SA is extension of statistical mechanics casted in the form of an 

optimization problem. It is basically a Monte Carlo approach for minimizing a function 

of large number of parameters (Srivastava and Sen, 2009). Simulated annealing is 

analogous to the annealing of solid materials and its concept lies in the process of 

annealing in thermodynamics (Kirkpatrick et al., 1983; Sen and Stoffa, 2013). A physical 

annealing process occurs when a solid material is heated beyond its melting point and 

then cooled it down. As molten material goes through different states to cool down or to 

reach the equilibrium state. The different stages of the cooling process may be referred to 

the state. The probability of any state (say ith) with energy E
i
, is given by Gibbs 

probability density function (or Boltzmann pdf) as follows: 

 

 𝑃 𝐸P =
exp	(− 𝐸P

𝐾𝑇)

exp(−
𝐸²
𝐾𝑇)²∈[

= 	
1

𝑍(𝑇) exp(−	
𝐸P
𝐾𝑇)	, 
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where S is the set of all the possible configurations, K is the Boltzmann’s constant, 

T is the temperature, and Z(T) is the partition function: 

 

 𝑍 𝑇 = 	 exp −
𝐸²
𝐾𝑇 		

²∈[

	.  
5.11 

 

The main state of this process is the equilibrium state. If the process is cooled down 

very rapidly (quenching), it will be addressed toward one of the local minima. If, instead, 

the process is approaching the equilibrium slowly (annealing), it will go close to the 

global minimum of E (Sen and Stoffa, 2013). 

However, the model acceptance criteria of VFSA is the same as used in SA but it 

differs in the following counts, which makes it more robust and faster. 

• Each model parameter in NM dimensional space can have different finite 

range of variations. Therefore, they are allowed to have different degree of 

perturbation from their current position. 

• Different temperature may be given for each mode parameters but it also 

required a global temperature for acceptance criteria and this can be 

different from model parameter temperature. 

• The algorithm is very quick to calculate as NM-dimensional Cauchy 

random generator (Ingber, 1993; Sen and Stoffa, 2013). 

To achieve above conditions, VFSA uses following formula for model perturbation: 

 

 𝑚P
³^m = 𝑘P³ + 𝑦P 𝑚P

�´h − 𝑚P
�Pf 	, 

 
5.12 

 

 𝑦P = 𝑠𝑔𝑛 𝑢P − 0.5 𝑇P 1 +
1
𝑇P

,¸¹`m

− 1 	, 
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with the following cooling schedule: 
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 𝑇P 𝑘 = 𝑇Nexp −𝑐P𝑘m �§ 	, 
 

5.14 

 

where  𝑚P
³  is the model parameter at the kth iteration, u is a random number 

between [0,1], T0 is the global temperature, Ti is the temperature of the i-th parameter in 

the k-th iteration and ci is the decay parameter. 

In our case, we are interested to find the model parameters (coordinates of vertices) 

or state of the process that have the minimum error. VFSA algorithm involves the 

selection of the new model as being temperature-dependent and the generation of the 

current model as being based on a Cauchy-like distribution. Cauchy distribution is a 

continuous probability distribution having an undefined mean. It is also a function of 

temperature as described by Sen and Stoffa, (1995), therefore the shape of the 

distribution is controlled by changing the temperature T.   

The algorithm starts with a starting random model m
0
 with initial temperature T and 

corresponding energy E(m
0
). A search range is required for each model parameter (called 

bounds). Then the algorithm works iteratively and at each iteration it generates a new 

random model (say m
i
 at ith iteration or state) according to the Cauchy-like distribution, 

within the given bounds. Then the error E(m
i
) is calculated by Equation 5.9. If E(m

i
) is 

less than the E(m
i-1

), the model m
i
 is accepted. For more details about VFSA algorithm, 

readers are referred to Sen and Stoffa, (2013). 
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6 Application of MHODE to gravity data 

6.1 Synthetic Cases 

In this section we will consider synthetic models simulating the geometry of a salt 

dome. In order to build a synthetic model, we consider first a salt dome, according to 

realistic geological settings (Gibson and Millegan, 1998). We will assume three different 

distributions of the density contrast, in order to simulate a realistic geological scenario. In 

all the examples we will perform a joint inversion (Equation 5.9) of the scaling functions 

for gravity, gravity gradient, 2nd order vertical derivative and 1st order vertical derivative 

of the horizontal gradient of gravity. The scaling function values are estimated along 

selected ridges, which we will describe below for each case.  
As it regards 𝜏¡, the theoretical expressions of g, 𝜕𝑔 𝜕𝑧, 𝜕,𝑔 𝜕𝑧, and 𝜕,𝑔 𝜕𝑧𝜕𝑥 

to insert in Equation 4.30 are calculated according to the Equations 3.11, 3.12, A.2 and 

A.3, respectively. A detailed description of each model will be given in the following 

sub-sections. 

6.1.1 Case 1: Uniform density sources. 

We first consider the model shown in Figure 6.1, this has a salt dome structure with 

a 2.3 g/cm3 density inside the body and 2.5 g/cm3 outside the body. This is the simplest 

geophysical scenario involving salt domes, referring to a homogeneous salt and a 

homogeneous background. The scaling functions of g, 𝜕𝑔 𝜕𝑧, 𝜕,𝑔 𝜕𝑧,, 𝜕,𝑔 𝜕𝑧𝜕𝑥 are 

estimated along the ridges from I to IX, shown in Figure 6.2 (a, b, c, d, respectively), at 

levels from 0 to 7.5 km, with a 0.4 km step. Ridges are determined by the zeros of the 

horizontal derivative for each of g, 𝜕𝑔 𝜕𝑧, 𝜕,𝑔 𝜕𝑧,. 

Assuming that the information of the top can be well retrieved by independent 

information, such as seismic, we performed a constrained inversion by fixing exactly the 

top of the body for depths from 1 to 1.5 km. We used wide bounds for searching the 

remaining vertices: 3≤ xq ≤ 27 km and 1.5 ≤ zq ≤ 8 km. 
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We started inverting for a few vertices, say 4, in order to make trials by changing 

initial temperature and number of iterations in VFSA. Once we got an optimal fitting 

between the observed and calculated values of the scaling function (Figure 6.3a), we 

incremented the number of vertices and inverted again using now 8 vertices (Figure 

6.3b). The bounds are changed accordingly to the first estimate: we narrow the ranges of 

each vertex midway the coordinates of the nearest vertices, so honoring the information 

contained in the first model. We note that the misfit error of scaling function reduces 

passing from 4 to 8 vertices. So, continued with 12 vertices (Figure 6.3c) and then with 

18 vertices, involving 36 unknowns (Figure 6.3c). This strategy proved that by increasing 

the number of vertices, the misfit error of scaling function reduces. A final good fitting is 

so obtained for all the scaling functions, as shown in Figure (Figure 6.4). 

After having retrieved the geometry of the model, we passed to model the gravity 

field corresponding to the derived model. To do this, we needed however to estimate the 

value of the density contrast. This task may be easily performed by: 

a) computing the gravity anomaly with a unit-density; 

b) forming a scatter plot between this anomaly and the observed data; 

c) computing a least-squares first-order polynomial regression analysis. 

The slopes (Figure 6.5) yields: Δρ -0.201 g/cm3, no matter the type of field 

involved (g, 𝜕𝑔 𝜕𝑧, 𝜕,𝑔 𝜕𝑧,, 𝜕,𝑔 𝜕𝑧𝜕𝑥), which is an accurate estimate of the assumed 

density contrast. Using this estimate for the density contrast and the sources geometry, 

we can compute the fields, which fit well the observed data (Figure 6.6). 
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Figure 6.1 Assumed Source model, with density 2.3 g/cm3 inside the body and 2.5 g/cm3 outside 
the body. 

 

Figure 6.2 Fields due to the source model in Figure 6.1and calculated ridges (cyan dots) in a x-z 
section, for altitudes from 0 to 7.5 km. (a) ridges of g; (b) ridges of ∂g/∂z; (c) ridges of ∂2g/∂z2; 

(d) ridges of ∂2g/∂x∂z. 
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Figure 6.3 Comaprison between the true synthetic sources model (dotted line) and our estimated 

sources model (circles and solid line). Black solid circles show the vertices of the top-salt 
assumed as constraints, the other circles stand for the vertices estimated by inversion. Scaling 
functions are inverted assuming a model with, (a) four vertices (scaling function misfit error: 
3.06%); (b) eight vertices (scaling function misfit error: 2.6%); (c) twelve vertices (scaling 

function misfit error: 1.1%); (d) eighteen vertices (scaling function misfit error:0.23%). 

 

Figure 6.4 Observed and calculated scaling functions. (a) scaling function for g along ridge I 
(see Figure 6.2a); (b, c, d) scaling functions for ∂g/∂z along ridges II, III, IV (see Figure 6.2b); 

(e, f, g) scaling functions for ∂2g/∂z2 along ridges V, VI, VII (see Figure 6.2c); (h, i) scaling 
functions for ∂2g/∂x∂z along the ridges VIII, IX (see Figure 6.2d). 
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Figure 6.5 Scatter plot between calculated fields at unit-density and observed fields. By a first-
degree polynomial fit we recover an estimation of the density contrast equal to – 0.21 g/cm3 for 

g, ∂g/∂z, ∂2g/∂z2 and ∂2g/∂x∂z. 

 

 
Figure 6.6 Observed and calculated anomalies for the salt dome in Figure 6.1.  We assumed the 
model estimated in Figure 6.3d and the -0.21 g/cm3 density contrast estimated in Figure 6.5.  (a) 

g; (b) ∂g/∂z; (c) ∂2g/∂z2; (d) ∂2g/∂x∂z. 
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6.1.2 Case 2: Inhomogeneous sources with negative density contrast. 

In this case we consider a more complex geological/geophysical situation for the 

salt dome, corresponding to a homogeneous salt density within the body and to a varying 

density out of the body, as caused by the presence of different sedimentary layers 

involving different densities (Reynold, 1997). This more complex scenario corresponds 

to subdividing the salt dome in three different parts with three different density contrasts: 

∆𝜌m =-0.22 g/cm3, ∆𝜌, =-0.18 g/cm3 and ∆𝜌] =-0.30 g/cm3, as shown in Figure 6.7. 

Following the same steps described in section 6.1.1, the gravity anomaly and its 

derivatives are calculated in x-z plane at altitudes from 0 to 7.5 km and further ridges are 

calculated for these fields (Figure 6.8). The scaling function is estimated for each ridge 

(numbered from I to IX) of the respective fields g, 𝜕𝑔 𝜕𝑧, 𝜕,𝑔 𝜕𝑧,, 𝜕,𝑔 𝜕𝑧𝜕𝑥. 

Assuming again that the information of the top can be well retrieved by external 

information, such as seismic, we performed a constrained inversion by fixing exactly the 

top of the body for depths from 1 to 1.5 km. We used again wide bounds for searching 

the remaining vertices: 3≤ xq ≤ 27 km and 1.5 ≤ zq ≤ 8. This case shows the power of our 

method in a rather complex case, yielding a good reconstruction of the salt dome 

geometry without assuming any information about the density. In fact, as the scaling 

function does not depend on the density, we expect that our estimates should not be 

affected by a density contrast changing within the body. After running the algorithm for 

1000 iterations, taking 2 minutes with a processor of 2x2.26 GHz Quad-Core Intel Xeon 

in a Mac Pro computer, we obtain in fact a source model (Figure 6.9) yielding a very 

good reconstruction of the salt dome model. The model produces scaling functions for g, 

𝜕𝑔 𝜕𝑧, 𝜕,𝑔 𝜕𝑧, , 𝜕,𝑔 𝜕𝑧𝜕𝑥,	which has a very good fitting vs. the observed scaling 

functions (Figure 6.10). As before, we have now to compute the salt density contrast 

allowing the reproduction of the observed anomalies g, 𝜕𝑔 𝜕𝑧,𝜕,𝑔 𝜕𝑧, and 𝜕,𝑔 𝜕𝑧𝜕𝑥. 

This time, however, we have a density contrast varying vs. depth, so that we should only 

account for a sort of average density contrast. After computing scatter plots among the 

anomalies generated with a unit-density and the observed data and computing a least-

squares first-order polynomial regression analysis (Figure 6.11), we get a -0.22 g/cm3 

density contrast for all the fields (g, 𝜕𝑔 𝜕𝑧, 𝜕,𝑔 𝜕𝑧, and 𝜕,𝑔 𝜕𝑧𝜕𝑥), which allows us 
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to fit fairly well the gravity anomaly and its derivatives (Figure 6.12). The calculated 

density is close to the weighted average density contrast (-0.226 g/cm3) of the assumed 

model. 

 

 
 

 

Figure 6.7 Assumed source model, characterized by having three different density contrasts: ∆𝜌m 
= -0.22 g/cm3, ∆𝜌, = - 0.18 g/cm3 and ∆𝜌] = -0.30 g/cm3.  
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Figure 6.8 Fields due to the source model in Figure 6.7 and calculated ridges (cyan dots) in a x-z 
section, for altitudes from 0 to 7.5 km. (a) ridges of g; (b) ridges of ∂g/∂z; (c) ridges of ∂2g/∂z2; 

(d) ridges of ∂2g/∂x∂z. 

 

 

Figure 6.9 Comparison between the true synthetic source model (dotted line) and our estimated 
source model (circles and solid line). Black solid circles show the vertices of the top-salt assumed 

as constraints, black circles indicates the vertices estimated by inversion.  
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Figure 6.10 Observed and calculated scaling functions. (a) scaling function for g along ridge I 
(see Figure 6.8a); (b, c) scaling functions for ∂g/∂z along ridges II, III (see Figure 6.8b); (d,e, f) 
scaling functions for ∂2g/∂z2 along ridges IV, V, VI (see Figure 6.8c); (g, h, i) scaling functions 

for ∂2g/∂x∂z along the ridges VII, VIII, IX (see Figure 6.8d). 

 

 

Figure 6.11 Scatter plots between calculated fields at unit-density and observed fields. By a first-
degree polynomial fit we recover an estimation of the density contrast equal to: -0.22 g/cm3 for 

(a) g; (b) ∂g/∂z; ∂2g/∂z2; and (d) ∂2g/∂x∂z. 
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Figure 6.12 Observed and calculated anomalies for the salt dome in Figure 6.7.  We assumed the 
model estimated in Figure 6.9 and the density contrasts estimated in Figure 6.11.  (a) g; (b) 

∂g/∂z; (c) ∂2g/∂z2; (d) ∂2g/∂x∂z. 

 

6.1.3 Case 3: Inhomogeneous sources with positive and negative density contrasts. 

In this section we simulated the most complex case for a salt dome anomaly: we 

assume in fact that the top part of the body has a positive density contrast while the rest 

of the body has various values of negative density contrasts. This corresponds to 

subdividing the source in 4 parts each one with its density contrast, as shown in Figure 

6.13, where ∆𝜌m  = 0.10 g/cm3, ∆𝜌,  = -0.10 g/cm3, ∆𝜌]  = -0.13 g/cm3 and ∆𝜌»= -0.17 

g/cm3. This situation is common for shallow salt domes: their top part is, as a matter of 

fact, denser than the background sedimentary layer, while the sign of the density contrast 

changes at greater depths (Gibson and Millegan, 1998; Krahenbuhl and Li, 2006). 

Following the same steps described in section 6.1.1, the gravity anomaly and its 

derivatives are calculated in x-z plane at altitudes from 0 to 6 km with a 0.3 km step and 

ridges are calculated for these fields (Figure 6.13). The scaling function is estimated for 
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each ridge (numbered from I to VIII) of the respective fields g, 𝜕𝑔 𝜕𝑧 , 𝜕,𝑔 𝜕𝑧, , 

𝜕,𝑔 𝜕𝑧𝜕𝑥. 

We started the inversion similarly as mentioned above in sections 6.1.1 and 6.1.2, 

letting VFSA to run for 1000 iterations. This time, however, we have a partial 

annihilation effect (Parker, 1977) for the gravity field, meaning that the field from the top 

part of the salt dome tends to cancel partially the remaining salt dome effect, caused 

instead by a negative density contrast. This is obviously due to the linear properties of the 

potential fields, because these two kinds of contributions to the field sum up 

algebraically. This is an inherent ambiguity problem in inversion of potential fields and 

can only be fixed by using external information (Parker, 1977). So, this time, we must 

work under the more restrictive hypothesis that we can assume both a geometrical and a 

density model of the top part of the body, from a seismic velocity model. Consequently, 

we calculated the gravity anomaly for the top part of the body and subtracted it from the 

observed gravity anomaly. The inversion, once again, gives a good reconstruction of the 

source model (Figure 6.15) and such model produces scaling functions for g, 𝜕𝑔 𝜕𝑧, 

𝜕,𝑔 𝜕𝑧, , 𝜕,𝑔 𝜕𝑧𝜕𝑥,	which have a good fitting vs. the observed scaling functions 

(Figure 6.16). Figure 6.17 shows the scatter plots for g, 𝜕𝑔 𝜕𝑧 , 𝜕,𝑔 𝜕𝑧,  and 

𝜕,𝑔 𝜕𝑧𝜕𝑥	among the anomalies generated with a unit-density and the observed data, 

yielding, through a least-squares first-order polynomial regression analysis the following 

density contrasts: -0.13 g/cm3 for g and 𝜕𝑔 𝜕𝑧  and -0.12 g/cm3 for 𝜕,𝑔 𝜕𝑧,  and 

𝜕,𝑔 𝜕𝑧𝜕𝑥.  As in the previous case, they must be interpreted as equivalent density 

contrast, which are in fact close to the weighted average density contrast -0.1286 g/cm3 of 

the assumed model for the middle and low part of the salt. Residual anomalies generated 

by the middle and low parts of the body (i.e., that having a negative density contrast) are 

shown in Figure 6.18. 
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Figure 6.13 Assumed source model, which is now relative to four different density contrasts: ∆𝜌m 
= 0.1 g/cm3, ∆𝜌, = - 0.1 g/cm3 and ∆𝜌] = -0.13 g/cm3 and ∆𝜌»= -0.17 g/cm3   

 

 

Figure 6.14 Fields due to the source model in Figure 6.13 and calculated ridges (cyan dots) in a 
x-z section, for altitudes from 0 to 6 km. (a) calculated ridge for g; (b) calculated ridges for 

∂g/∂z; (c) calculated ridges for ∂2g/∂z2; (d) calculated ridges for ∂2g/∂x∂z. 
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Figure 6.15 Comparison between the true synthetic source model (dotted line) and our estimated 
source model (circles and solid line). Black solid circles show the vertices of the top-salt assumed 

as constraints, black circles indicates the vertices estimated by inversion.   

 

 

Figure 6.16 Observed and calculated scaling functions. (a) scaling function for g along ridge I 
(see Figure 6.14a); (b, c) scaling functions for ∂g/∂z along ridges II, III (see Figure 6.14b); (d, e, 
f) scaling functions for ∂2g/∂z2 along ridges IV, V, VI (see Figure 6.14c); (g, h) scaling functions 

for ∂2g/∂x∂z along the ridges VII, VIII (see Figure 6.14d). 
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Figure 6.17 Scatter plots between calculated fields at unit-density and observed fields. By a first-
degree polynomial fit we recover an estimation of the density contrast equal to: (a) -0.13 g/cm3 

for g; (b) -0.13 g/cm3 for ∂g/∂z; (c) -0.12 g/cm3 for ∂2g/∂z2; (d) -0.12 g/cm3 for ∂2g/∂x∂z. 

 

 

Figure 6.18 Observed and calculated anomalies for the salt dome in Figure 6.14.  We assumed 
the model estimated in Figure 6.15 and the density contrasts estimated in Figure 6.17.  (a) g; (b) 

∂g/∂z; (c) ∂2g/∂z2; (d) ∂2g/∂x∂z. 
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6.2 Real data inversion 

6.2.1 Mors salt dome, Denmark (waste disposal). 

We study here the Bouguer anomaly over the Mors salt dome in Northern Jutland 

(Reynolds, 1997). Initial study of this anomaly was made for safe disposal of radioactive 

material (Sharma, 1986; Reynolds, 1997), but obviously the interest for salt structures is 

specially because it is a feasible environment for hydrocarbons. We digitized the anomaly 

data from the map in Figure (2.37) of Reynolds (1997). 

 In order to calculate the ridges of the given anomaly, we performed an upward 

continuation (Blakely, 1996) of the data and computed its first-order derivatives at 

altitudes from 0 to 3 km; then we computed the field ridges for g, 𝜕𝑔 𝜕𝑧 and	𝜕𝑔 𝜕𝑥 

(Figure 6.19) along a vertical section, along the same profile considered by several 

authors (see Reynolds, Figure 2.38). We limited our computations to the first-order 

derivatives only, due to our coarse digitization of the published data map, which did not 

allow us good results at higher orders. So, we calculated the scaling function along the 

ridges from I to IV, as shown in Figure 6.19 for g, 𝜕𝑔 𝜕𝑧 and	𝜕𝑔 𝜕𝑥. The noise level is 

however relatively high for the field derivatives at the lowest altitudes, as shown by the 

great number of maxima at these altitudes; however, for multiscale methods, we can well 

regularize the problem by simply excluding such data from the analysis (e.g., Florio and 

Fedi, 2014: Figure 6). Therefore, we choose the investigation altitudes as: 0 to 3 km for g 

and 0.8 to 3 km for 𝜕𝑔 𝜕𝑥 and 𝜕𝑔 𝜕𝑧. Afterwards, we adopted the same procedure as 

for the synthetic cases, using the VFSA algorithm for inverting the scaling functions of 

the above-indicated fields. Once again, we assumed to have good information about the 

top of the source and fixed a few vertices at the salt top during inversion, as constraints.  

If we consider that the profile length is 16.1 km, we used wide bounds for searching the 

remaining vertices: 2≤ xq ≤ 14.5 km and 1.5 ≤ zq ≤ 8 km. After 1000 iterations we reached 

an optimal solution (Figure 6.20) that fits rather well the observed scaling functions for g, 

𝜕𝑔 𝜕𝑧 and	𝜕𝑔 𝜕𝑥 (Figure 6.21). You may also see in Figure 6.20 that the estimated 

source model resembles the gravity-based model built by other authors (Kreitz, 1982; 

LaFehr, 1982; Sharma, 1986; Reynolds, 1997); differently from us, however, these 

authors assumed a priori information for the density contrast. This source model was then 



 

 62 

used to calculate the field anomalies g, 𝜕𝑔 𝜕𝑧 and	𝜕𝑔 𝜕𝑥	by assuming a unit-density. 

We used them to build scatter plots and to compute the average density contrasts of the 

salt dome by the slope of the 1st order regression line (Figure 6.22). The retrieved density 

values were: -0.17 g/cm3 for g, -0.16 g/cm3 for 𝜕𝑔 𝜕𝑥 and -0.17 g/cm3 for 𝜕𝑔 𝜕𝑧. These 

values were finally utilized to compare the anomalies computed from our estimated 

model to the g, 𝜕𝑔 𝜕𝑧 and	𝜕𝑔 𝜕𝑥	anomalies (Figure 6.23). 

 

 

Figure 6.19 Fields and calculated ridges (cyan dots) in a x-z section, for altitudes from 0 to 4 km 
(a) calculated ridges for g; (b) calculated ridges for ∂g/∂x; (c) calculated ridges for ∂g/∂z. 

 

Figure 6.20 Estimated source model (solid line, black circles) with MHODE method and model 
(dotted line) as interpreted by Sharma (1986) and Reynolds (1997). Solid black dots show the 

fixed vertices of the body during inversion. 
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Figure 6.21 Observed and calculated scaling functions. (a) scaling function for g along ridge I 
(see Figure 6.19a); (b, c) scaling functions for ∂g/∂x along ridges II, III (see Figure 6.19b); (d) 

scaling functions for ∂g/∂z along ridges IV (see Figure 6.19c). 

 

 

Figure 6.22 Scatter plots between calculated fields at unit-density and observed fields. By a first-
degree polynomial fit we recover an estimation of the density contrast equal to: (a) -0.17 g/cm3 

for g; (b) -0.16 g/cm3 for ∂g/∂x; (c) -0.17 g/cm3 for ∂g/∂z. 
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Figure 6.23 Observed and calculated anomalies for the Mors salt dome in Figure 6.19. We 
assumed the source geometry estimated in Figure 6.20 (black circles) and the density contrasts 

estimated in Figure 6.22. (a) g; (b) ∂g/∂x; (c) ∂g/∂z.  

 

6.2.2 Godavri basin (Andhra Pradesh, India) 

As a second real-data case, we interpret the gravity profile of Godavari basin, 

Andhra Pradesh, India. The data, shown in Figure 6.28(a), were digitized from Rao 

(1990). The profile is over the lower Godavari valley, located approximately at 17° N and 

81° E, with strike direction NW-SE. Rao (1990) considered a simple trapezoidal model 

and inverted using Marquardt algorithm assuming -0.4 g/cm3 density contrast. 

We first calculated the horizontal and vertical derivative of the data and thereafter 

continued them and the gravity data themselves up to 2.5 km, in order to calculate the 

respective ridges, indicated in Figure 6.24 with numbers from I to IV. Even in this real 

case, we limited our analysis to the 1st order field derivatives and selected the altitudes for 

the field derivatives as those greater than 0.6 km. This because the signal-to-noise ratio 
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was too low at altitudes lower than 0.6 km, as demonstrated by the elevated number of 

maxima occurring in that scale range (Florio and Fedi, 2014). Inversion by VFSA 

algorithm was then performed on the scaling function calculated along the ridges of g, 

𝜕𝑔 𝜕𝑥 and 𝜕𝑔 𝜕𝑧, yielding the estimated source model shown in Figure 6.25. Note that 

it is close to the trapezoidal model used by Rao (1990), but that, in our case, it has been 

estimated without any a priori information about the density contrast and depth 

constraints. 
The scaling functions, computed for g, 𝜕𝑔 𝜕𝑥  and 𝜕𝑔 𝜕𝑧	 after the estimated 

source model, fit well the scaling functions of the measured data, as shown in Figure 

6.25. We then estimated the average density contrast for the source after computing the 

scatter plots for g, 𝜕𝑔 𝜕𝑥 and 𝜕𝑔 𝜕𝑧	(Figure 6.27), obtaining -0.43 g/cm3 for g, -0.41 

g/cm3 for ∂𝑔 ∂𝑥 and -0.44 g/cm3 for ∂𝑔 ∂𝑧. The estimated contrasts are slightly higher 

than that used by Rao (1990): -0.4 g/cm3. Finally, we used the calculated density 

contrasts to compute the field anomalies, which fit fairly well the original data (Figure 

6.28). 

 
Figure 6.24 Fields and calculated ridges (cyan dots) in a x-z section, for altitudes from 0 to 2.5 
km; (a) calculated ridge for g; (b) calculated ridges for ∂g/∂x; (c) calculated ridges for ∂g/∂z. 
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Figure 6.25 Estimated source model (solid line and circles) with MHODE method and model 

(dotted line) as interpreted by Rao (1990).  

 

 
Figure 6.26 Observed and calculated scaling functions. (a) scaling function for g along ridge I 
(see Figure 6.24a); (b, c) scaling functions for ∂g/∂x along ridges II, III (see Figure 6.24b); (d) 

scaling functions for ∂g/∂z along ridges IV (see Figure 6.24c). 
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Figure 6.27 Scatter plots among calculated fields at unit-density and observed fields.  By a first-
degree polynomial fit we recover an estimation of the density contrast equal to: (a) -0.43 g/cm3 

for g; (b) -0.41 g/cm3 for ∂g/∂x; (c) -0.44 g/cm3 for ∂g/∂z. 

 

 
Figure 6.28 Observed and calculated anomalies for the Godavari Basin, as estimated in Figure 
6.24. We assumed the source geometry estimated in Figure 6.25 (black circles) and the density 

contrasts estimated in Figure 6.27.  (a) g; (b) ∂g/∂x; (c) ∂g/∂z. 
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7 Conclusions and Perspective 

In this thesis, I have presented an automatic multi-scale inversion method to 

interpret potential fields generated by complex sources. We assumed a multi-source body 

in the form of the Talwani’s formula, which allows the inversion for the source positions 

of a number of vertices specified by the interpreter. 

The most significant feature of the method is that the inversion is not applied 

directly to the field anomaly data but to the scaling function values. This has three-fold 

advantages: 

a) the scaling function is independent of density and other physical constants 

and this property makes the inversion less ambiguous than the field 

inversion; 

b) the inversion is performed according to the MHODE method involving the 

scaling function evaluated along the field ridges, that is a set of few points 

at different scales, where the horizontal derivatives of the field (or of its 

derivatives) are zero. This means that only few data are involved in the 

inversion, reducing the numerical complexity of the problem; 

c) due to the above property and to the inherent stability of the multiscale 

methods, we may use ridges of the field derivatives, either vertical or 

horizontal. 

However, the method needs the forward problem to be formulated in terms of the 

scaling function, which involves new mathematical and numerical formulations for the 

problem. This was made in this thesis for the 2D gravity problem in terms of Talwani’s 

formula and formulas are given also for the derivatives of the gravity field up to the 

second order. Other formulations may be however investigated as well its extension to 

the case of 3D sources.  

In any case, the non-linearity of the scaling function equations adds complexity to 

the solution retrieval. In this thesis, we address this issue efficiently by using the VFSA 
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algorithm, which does not necessarily require a good starting model. The only constraints 

needed are reasonable bounds for the search of the solution. 

We described applications of the method to both synthetic and real-data cases. In 

order to reduce the ambiguity of the problem we studied the special case in which the top 

of the source is partially fixed by external information, as in the case of top of salt domes, 

which is often very well defined by seismic data. The solution provided by this method is 

very accurate in defining those parts of the domes (flanks and bottom), which are 

normally poorly defined by seismic data. 

Moreover, using three different scenarios of density contrast distributions we 

showed that the inversion of a quantity independent on density (the scaling function) is 

really advantageous for managing also complex cases, included that in which the density 

contrast assumes opposite signs vs. depth. 

The application to the real case of the Mors salt dome and of the Godavari basin, 

India, confirmed the validity of the method, yielding solutions in good agreement with 

models constructed by other researchers. The interest of our method is that our models 

are obtained without a priori density information and with constrains regarding only the 

top to the source. 

 Future research will regard the statistical analysis of the inversion results and 

formulation of the current method for the magnetic case. Other development will regard 

the extension of the method for interpreting data due to 3D sources. 
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Appendix A - Derivatives of gravity field in Talwani’s 

formula 

Gravity anomaly and gravity gradient can be calculated using formulas derived in 

section 3.3 for a complex body. We here described the formula to calculate the 

derivatives of higher order using Talwani’s method. All the terms written in the formula 

are the same as used in section 3.3. Based on the formula for the gravity, we describe 

now the equation that can be used to calculate the horizontal derivative of the field 

(𝜕𝑔 𝜕𝑥). 
 

𝜕𝑔
𝜕𝑥 P

= 	 	
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Taking the derivative of  𝜕𝑔 𝜕𝑧 vs. z, we give here the expression for the second-

order vertical derivative (𝜕,𝑔 𝜕𝑧,): 
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Taking the derivative of equation A.1 vs. z, we give here the expression for the 

second-order derivative 𝜕,𝑔 𝜕𝑧𝜕𝑥: 
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Differentiating 𝜕,𝑔 𝜕𝑧,	we conclude with the expression valid for the third-order 

vertical derivative of the field: 
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Equations A.1, A.2, A.3 and A.4 may be used as themselves or for calculations of 

the scaling function of high order. 


