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Preface 
 

Tunnelling is a branch of civil engineering that has experienced many changes over the 

time and even today the development of tunnelling technology makes it increasingly 

powerful. The tunnel construction planning and the study of its behaviour under different load 

conditions involves many interdisciplinary aspects mainly of geotechnical and structural 

engineering; it is a complex mechanism of soil-structure interaction strongly influenced by the 

nature of the soil, lining technology and the excavation process. The soil and the lining suffer a 

continuous changing of their stress and strain state during tunnelling which plays the main 

role on the soil and lining behaviour. 

Mechanized excavation is a particular tunnel construction technique more competitive 

with respect to traditional ones since it allows almost contemporary the excavation phases 

execution and the tunnel lining installation, thanks to the use of Tunnel Boring Machine that, 

with the aid of sophisticated automation and control systems, advances to tens of meters per 

day in different geological and hydrogeological conditions.  

In urban areas where tunnelling can have a potential impact on the aboveground 

structures in terms of settlements and deformations, mechanized tunnelling with closed shield 

is a widespread technique able to ensure front stability and an acceptable range of 

settlements. 

In such construction technique, the structural behaviour of lining is mainly influenced by its 

installation process and its segmental nature (Bloom 2001) which induces a complex three-

dimensional interaction mechanism between the single concrete lining segments (Koiama 

2003) through the longitudinal joints (between the segments in the same ring) and 

circumferential joints (between the rings). 

The particularity of this technology arises to research many questions about the real 

structural behaviour of tunnel lining which is not yet completely clear, during tunnel 

construction, under static and dynamic loads, about the real structural behaviour of 

longitudinal and transversal joints, about the possibility to optimize lining design obtaining 

more powerful systems.  

Experimental and numerical research produced up to now shows that the joints have an 

important effect on the tunnel lining behaviour and it can’t be neglected in the project of this 

kind of structure to obtain a realistic modelling.  

The knowledge of the behaviour of segmental joints under tunnelling loading is certainly 

advanced giving a good instrument of interpretation of the global structural behaviour and the 

main influence parameters which should be taken into account into analytical or numerical 

approaches for the tunnel lining design. Analytical and two dimensional simplified numerical 

methods, considering the effect of longitudinal joints on tunnel lining behaviour, are usually 

applied to pre-dimension the segmental tunnel lining; these approaches can’t consider the 

joint technology and then its three dimensional effect. Only a three dimensional numerical 

modelling can be used to achieve a very high level of joint detail and definition. This last 

approach in addition, allows to take into consideration the main forces acting on the lining 

during the entire tunnel excavation process, influencing the long term state of stress and 

strain in the lining. 
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Unlike the static case, the knowledge of dynamic behaviour of segmental tunnel lining is 

not yet very advanced.  

The wave passage along the tunnel can cause 1) bending in the transversal lining section 

induced by a transversal component of seismic action 2) axial deformation 

(compression/tension along the tunnel axis) and bending in the longitudinal horizontal plane 

for the wave passage along the tunnel axis due to the spatial incoherence of the seismic 

motion. 

The first deformation mechanism leads increment of the internal forces acting on the 

transversal bending plain of the lining and relative displacement/rotation in the longitudinal 

joints; the second deformation mechanism on the other hand, has an effect on the transversal 

bending response of the lining, increasing the transversal component of internal forces, and 

generate also an increment of longitudinal component of lining internal forces and relative 

displacement/rotation in the circumferential joints.  

Such complex soil-structure interaction mechanism under seismic loads are generally 

studied in the experimental literature with monitored centrifuge or shaking table tests on 

physical models at reduced scale. These tests allow to monitor the main mechanisms involved 

in the evolution of observed phenomena to be identified and provide an extensive base of 

experimental data to calibrate advanced numerical methods of analysis in ideal situations 

where soil properties, boundary conditions and dynamic loads are clearly defined.  

No centrifuge test has been performed up to now considering the presence of the joints in 

the lining; they usually consider the soil-structure interaction in the case of not jointed lining 

under uniform load respect the tunnel axis. Multi-points shaking table in a linear array instead 

allows to simulate the travelling waves passage along the tunnel axis; some experiments have 

been performed in the technical literature for such immersed tunnel longitudinally jointed, 

considering the coupled effect of transversal and longitudinal deformation mechanisms due to 

multi-directional seismic shaking (Yuan Y. et al 2016, Yu H. et al 2016a) . 

Transversal and longitudinal dynamic behaviours of segmental lining are typically 

approached separately with simplified 1D analytical (pseudo-static) solutions, simplified 2D 

pseudo-static approach or with 2D full dynamic analysis, without evaluate the real 3D coupled 

deformation mechanism nor considering the dynamic behaviour of the joints during seismic 

shaking which excessive rotation could induce a possible damage for the post-earthquake 

segmental lining functionality. 

The three-dimensionality of the problem related to the segmental tunnel lining behaviour 

is investigate in this work both under static and dynamic loading conditions, including the 

complex excavation process of mechanized tunnelling in the first case and the asynchronous 

of the ground motion in the second one. 

Such considerations have been carried out on the seismic vulnerability of this tunnel lining 

technology under plane strain seismic loading. 
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Contents and outline of the thesis 
 

The aim of the presented dissertation is to provide a three-dimensional numerical model 

suitable to interpret the static and dynamic behaviour of a kind of segmental tunnel lining in 

soft soil. The static performance of the structure is investigated during the tunnel 

construction, involving the main tunnelling loads, obtaining the evolution of the state of stress 

and strain in the lining. 

 The dynamic performance of segmental lining has been investigated both under uniform 

and not uniform seismic loads. In the case of uniform seismic load, pseudo static and full 

dynamic approaches have been compared, while non-linear coupled analysis have been used 

to investigate the post-earthquake lining condition.  

A study of the seismic vulnerability of such structures has been conducted based on 

fragility curves for different levels of damage. A procedure for the forecast method of risk 

assessment has been proposed for the case of segmental tunnel lining assuming as critical 

damage parameter the longitudinal joints rotation. Furthermore, a study of feasibility of 

Earthquake Early Warning System, EEWS, based on thresholds has been conducted through a 

probabilistic and a real-time approach for such tunnel structure. 

The coupling effect of multi-directional seismic motion both in transversal and longitudinal 

direction of the tunnel has also taken into account in the evaluation of dynamic tunnel 

behaviour.  A comparison between the effect of synchronous and not synchronous seismic 

motion along the tunnel axis has been done in terms of dynamic increment of the 

components of forces in the lining. 

 

The work has been divided into three main parts. 

 

FIRST PART - Behaviour of segmental tunnel lining under static loads 

The first part is strictly related to the behaviour of segmental lining under static loads 

involved into tunnelling and structured in three chapters. 

Chapter 1: A description of longitudinal and circumferential joint mechanical behaviour has 

been introduced through a literature review of many experimental tests performed 

up to now on different joint technologies, representing the starting point of the 

research because it allows to focus the governing factors of the structural response 

of such structures. The technology effect on the coupling interaction between the 

segments and different approaches of design have been discussed. Analytical 

solutions, 2D simplified numerical analysis and more sophisticated 3D numerical 

analysis are compared to understand the degree of approximation or detail that 

can be achieved with different approaches 

Chapter 2: The behaviour of the segmental tunnel lining is influenced not only by the 

technology itself  but also by the load scheme to which it is subjected and the loads 

level which undergoes during tunnelling, until to achieve a steady state in long 

term condition. The chapter discusses the technological aspects of mechanized 

excavation that mainly influence the tunnel lining loading and its structural 

behaviour. A literature review of some 3D numerical models of tunnel excavation 

process is discussed.  
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Chapter 3: The case history of the segmental lining referred to the connecting railway in 

Florence, studied by Do et al. 2013, is here repurposed. A three dimensional 

numerical model has been calibrated for the case of study and the comparison 

with the authors has been proposed in terms of increment of internal forces in the 

lining in the long term condition. This is a preliminary study for the calibration of 

the segmental lining numerical model, better investigated and validated for the 

case history of Metro Line 6 of Naples for which monitoring data of the entire 

excavation process were available. 

The mechanized excavation process of Metro Line 6 of Naples has been 

implemented in the FE code Plaxis 3D according to the available monitoring data of 

the Tunnel Boring Machine advancement. The proposed model has been validated 

against the experimental measurements of the strains of in situ instrumented 

segmented ring. 

 

 

SECOND PART: Behaviour of segmental tunnel lining under uniform seismic loads. 

Once investigated the static stress and strain condition due to the tunnelling loads, the 

second part of the work concerns the dynamic behaviour of segmental tunnel lining under 

seismic uniform load, and is structured in two chapters. 

Chapter 4: An overview of the dynamic response of underground structures under transversal 

earthquake loading is presented with reference to the damages occurred in the 

underground structures during recent earthquakes. The common analytical 

solutions, simplified and advanced numerical methods to predict the behaviour of 

tunnels during seismic shaking are here discussed.  

The chapter approaches to the introduced problem investigating from one hand 

the effect of different literature dynamic methods and from the other hand the 

effect of segmental lining technology in the following way: 

I. Pseudo-static and full dynamic approaches for the evaluation of the effects of 

uniform seismic shaking in the tunnel transversal section have been compared 

in terms of dynamic increment of internal forces. The comparison refers to the 

plain strain tunnel section of the case study of Metro Line 6 of Naples. 

II. Starting from the interpretation of the results of the centrifuge test model T3 

performed by Lanzano 2009 on a continuous tunnel lining in reduced scale, the 

study of the soil-structure interaction has been extended to the case of 

segmental lining. The dynamic behaviour of longitudinal joints has been 

investigated with a set of non-linear 3D full dynamic analyses on the segmental 

layout adopted in the Chapter 3. The results have been carried out in terms of 

joint rotation during the dynamic time for different real recorded earthquakes. 

The seismic demand of segmental lining has been compared with the 

continuous lining one, including the effect of the excavation process on the pre-

seismic conditions which influence the dynamic response of the lining. 
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Chapter 5: The numerical results obtained in the Chapter 4 are the starting point for the 

evaluation of the seismic vulnerability of the segmental tunnel lining studied in this 

Chapter. The fragility curves have been adopted as forecast method of vulnerability 

of the structure, constructed for different levels of damage and based on 2D non-

linear full dynamic analysis. Longitudinal joint rotation has been assumed as 

potential damage parameter, in consideration of the higher flexibility of the 

segmental lining respect the case of continuous one, and the high rotational 

demand in correspondence of the longitudinal joints. The framework of the 

problem, procedure of numerical simulations and definition of numerical fragility 

curves for minor, moderate and extensive damage and for different soil types (B, C 

and D) are here discussed. The sets of fragility curves carried out have been 

compared with empirical fragility curves available in literature.  

In the structure engineering, fragility curves are commonly used in the application 

of Earthquake Early Warning Systems (EEWS) based on thresholds which represent 

a tool for the implementation of protective measures aiming at reducing the 

vulnerability of structure to seismic risk. In this context, a preliminary study of 

feasibility of EEWS based on thresholds has been conducted simulating different 

scenarios of earthquake for some Italian target sites, through the probabilistic 

hazard disaggregation approach and real-time approach. The PRobabilistic and 

Evolutionary early warning SysTem (PRESTo; Satriano et al. 2011, 

http://www.prestoews.org), for instance, a free and open source software 

platform for EEW developed by the RISSCLab group of the University Federico II in 

Naples, Italy, has been used for the real-time simulation. 

 

THIRD PART: Behaviour of tunnel under non uniform seismic loads. 

The problem of the underground structures behaviour subjected to asynchronous seismic 

shaking is here discussed and approached through numerical methods. This part is structured 

as follows. 

Chapter 6: The understanding of soil free field deformation and the interaction with tunnel 

due to the travelling wave passage is dealt with the literature review of some 

experimental tests conducted with shaking table on such kind of segmental and 

immersed tunnels. The chapter itemizes also analytical and numerical solutions 

developed in the technical literature. 

A three dimensional numerical model able to catch the main deformation 

mechanisms of the soil subjected to multi-directional seismic motion, has been 

developed in the FE code Plaxis 3D. The free field soil response under travelling 

waves has been validated against the results obtained on the same model 

developed in Abaqus 3D. Once validated the free-field numerical model, the soil 

structure interaction has been investigated with a set of parametrical analysis 

varying longitudinal time-lag of the travelling wave in terms of dynamic increment 

of transversal and longitudinal internal forces arising in the lining. A comparison 

between uniform and not uniform seismic load is shown for different seismic 

loading cases. 

http://www.prestoews.org/
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A simplified 2D multi-masses-beam-springs model developed by Li Chong 2016 has 

been implemented in Abaqus 2D in order to provide a further validation of the 

proposed 3D model in terms of soil-structure interaction, comparing the 

longitudinal component of dynamic increment of internal forces evaluated with 2D 

and 3D numerical methods.  
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1 Chapter 1. Segmental tunnel lining 

CHAPTER 1 

Segmental tunnel lining 
 

 

Introduction  
 

Segmental lining is the typical support system of mechanized excavation, realized through the 

installation of multiple adjacent rings along the tunnel axis, assembled within the TBM tail shield 

with single precast concrete segments, with defined dimension and shape.  

 In a such configuration, tunnel lining presents structural discontinuities between the segments of 

the same ring (longitudinal joint), in a parallel direction to the tunnel axis, and between adjacent 

rings (transversal or circumferential joint), in the transverse direction. 

Each segment is usually in a different angular position of the previous or subsequent ring, giving a 

3D staggered lining configuration to the tunnel structure along the longitudinal direction, creating a 

masonry layout to minimize the sailing problem when four corners of segments coincide (Bloom 

2001) and avoid the longitudinal joints to be in line. 

Joints seem to be the vulnerable locations of tunnel, playing an important rule on the bearing 

capacity of the lining and, more in general, on its mechanical behaviour. For this reason, technical 

literature gives particular attention to the joint technology. 

Due to the high speed at which the technology has developed within some country, there is a 

significant variation in the design of such joint connections but also materials, geometry, 

waterproofing and reinforcement systems of lining can be very different.  

 

1.1  Technological aspects 
 

The lining installed with mechanized tunnelling can be one or more layered constructions. The 

single layer construction, generally realized with segments, has to guarantee itself the support for 

the excavated cavity and the waterproofing requirements at short and long term. In double layer 

construction, the outer lining, generally made of shotcrete, has not a long-term structural function, 

ensured by the inner one very similar to the single layer system, but has to provide an immediate 

support against the soil pressure without a waterproofing function, usually undertaken by an 

intermediate membrane.  

Segments are designed to provide structural capacity to resist temporary loads, demoulding, 

storage/stacking, transportation, handling, erection and grouting pressures,  permanent loads, 

external ground loads, external water pressure, TBM thrust,  imposed loads (traffic, adjacent 

foundation/pile loads), external construction (adjacent tunnel construction) and dynamic loads, 

longitudinal and circumferential joints have to adsorb compressive stresses generated by the TBM 

thrust during excavation and by the surrounding soil along the segments contact surface.  
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1.1.1 Segments 
 

In the common practice the single ring is made up of several segments identical in the shape 

(rectangular, trapezoidal, rhomboidal or hexagonal) unless for the closing segment (the key), the last 

segment placed in the assembly of the ring to close it.  

The rectangular and trapezoidal shapes are the most commonly used in the design practice in 

particular for largest ring diameters with the tendency to use hexagonal segments for smaller ones. 

There latter present a significant benefit respect to the other shapes because the TBM can thrust 

from half of the ring while the other half is being erected. In addition, for the characteristic shape of 

singular segment, there is no continuous ring joint in this system, as this is offset by a half segment 

width between adjacent segments, inducing a stiffer structure compared with the rectangular one. 

Disadvantage of this technology result from the size of the segments with increasing diameter, 

involving problems in transport and assembly process, therefore preferable for diameters up to 4.50 

m. 

Segment dimensions are chosen to be as large as possible, resulting in a minimum number of 

segments per ring, with the aim of optimising the speed at which the tunnel boring machine 

advances. The segment’s width production, transporting and installing needs. 

The segment’s thickness is function of structural and constructional needs, typically included 

between 0.20 m to 0.70 m. The minimum thickness has to be such to absorb through the load-

bearing area the thrust jacking forces, the maximum one is such to resist bending from external 

loads. In the case of ordinary tunnel diameter, lining thickness is typically about 1/20 of tunnel 

diameter (Bloom 2001) and the segments are usually precast elements of Ordinary Concrete C35/45 

reinforced with steel or steel fibres. Recently the research is investigating other geo-synthetic fibres 

and innovative solution, such as Glass Fiber Reinforced Polymer, which can be used mainly when a 

high resistance is required (Caratelli et al. 2016). 

Reinforced concrete is used to withstand bending moments and splitting forces that occur in the 

installation process and during the transport. In the case of tunnel with large diameter, lining 

thickness increases significantly. Typically, for logistic problems related to the construction of such 

tunnel, the segments are made with steel fibre reinforced high strength concrete C100/115 and ultra 

high strength concrete C180/210, to reduce the lining thickness up to a value of 1/58 of tunnel 

diameter. 

 

1.1.2 Connections 
 

Longitudinal connection  

 

Longitudinal connection is the contact surface between two adjacent segments in the same ring. 

It can be flat, convex or convex-concave contact surfaces (Figure 1.1).  

Convex surface contact is usually used in the case of large axial compressive forces demand, and 

then for high value of joint rotation, unacceptable to ensure the equilibrium in a flat joint. Convex 

joint system is not very stable during ring installation because there is no ring compressive force and 

no resistance to rotation, so that it is necessary to add bolting joints to avoid the segment collapse. 

 

 



 

 

3 Chapter 1. Segmental tunnel lining 

 

Figure 1.1. Longitudinal contact surfaces (after Maidl B. et al. 2011). 

 

Convex-concave contact surface is preferred for very high rotational demand; in this case the 

edges of the concave side of the joint are particularly at risk not providing enough reinforcement at 

this location. 

At time, the contact surface between the segments can be just a concrete-concrete surface, can 

be made of packers material, usually to distribute the loads in the joints neglecting damaging stress 

concentration, or can be jointed, to increase the node resistance.  

The packers material can be made generally of plastic or bituminous, the bolts are generally in 

steel and they can be straight, curved or inclined (Figure 1.2). For their collocation it is necessary to 

create “pockets” and “grooves” into which the bolts are inserted, the bolts themselves are metallic 

while the embedded threads, if present, are generally in plastic. 

 

 

 
 

Figure 1.2. Joints with bolts. a) straight bolt, b) curved bolt, c) inclined bolt (AFTES 1999). 

 

Through the contact surfaces and connecting elements if there are, axial ring forces, bending 

moments from eccentric axial forces and shear forces from external and internal loads are 

transferred, reducing the forces acting on the adjacent segments. 

 

Flat longitudinal joint Longitudinal joint with 

convex contact surfaces 

Longitudinal joint as hinge 
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Circumferential connection  

 

The contact surface between adjacent rings is usually flat or convex-concave and not necessarily 

perpendicular to the tunnel axis, as in the case of tapered rings (Figure 1.3).  

 

 
Figure 1.3. Tapered ring. 

Circumferential joints are usually a concrete-concrete interface and can be bolted, as for the 

longitudinal ones, but can be also thickness of packing materials or joints with dowels (Figure 1.4a) 

which usually doesn’t provide a mechanical effort or any coupling transferring mechanism as in the 

case of permanent bolts, or pin and socket systems (Figure 1.4b) which provides a coupling affect at 

point location. 

In the last years push-fit plastic dowels have replaced steel bolts on the circumferential joint in 

many parts of the world, and there are projects where guiding rods have been used in place of steel 

bolts on the longitudinal joint (Harding and Chappell 2014). 

 

(a) 

 
 

 

                           (b) 

 
 

 

Figure 1.4. a) Joints with dowels (AFTES 1999); b) Joints with pin and socket system (after Maidl B. et al. 2011). 

 

1.1.3 Sealing and grouting 

 

About the possible infiltration of water in the gallery, the entire tunnel support system has to be 

waterproof to guarantee the functionality of structure; in multi-layered construction lining, a 

waterproofing membrane is usually used between inner and outer lining, in the case of single layer 
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construction this function have to be ensured by the high concrete quality of the segments 

themselves and a waterproofing joint systems. Usually they are used sealing elements (or gaskets) 

positioned in special grooves placed on each single side of all segments close to the extrados; these 

elements are always under compression and their choose is function of the maximum and minimum 

pressure that they will be subjected to in the presence of the maximum gap and offset vales, with an 

adequate safety system. In the case of joints rotation, the gaskets can undergoes to pressure or de-

compression, if is subjected to sagging or hogging moment, and the de-compression effect on the 

gasket could influence its water tightness function.  

Sealing and gaskets system has little influence on the joint mechanical behaviour, their presence 

doesn’t affect the joint rotation angle and bolt strain more than 4% (Li et al 2015) 

Another source waterproofing comes from the grout used to fill the annular gap between the 

segments and the soil, providing an appropriate bedding for the lining. The gap filling is a very 

sensitive operation playing an important rule on the minimization of the surface settlements and, at 

the same time, on the evaluation of the loads acting on the lining which are very influenced by the 

rheological properties of the injected materials, typically classified into three main types, 1) inert 

mixes, 2) cement mixes and 3) two-component mixes. 

All these materials are in an initial fluid state and differ for the time of their consolidation 

process, which is strictly related also to the soil permeability, faster in the case of high permeable 

soil like sand and slower in less permeable soil like clay. This phenomenon, which implies a stress 

release around the tunnel cavity, explains why the grout pressure decreases in the time going into a 

plastic state and into a final hardened state; the loads derived from the grout, acting on the lining, 

are clearly time-dependent. 

Bezuijen and Talmon 2004 show the grout pressures measurements around two of the lining 

segments of the Sophia Rail Tunnel.  

 

 
                                           (a)                                     

 
                          (b) 

   
                           (c) 

Figure 1.5. (a) Grout pressure in the time in function of drilling velocity; (b) Variation of grout pressure 
with the depth below the top of the tunnel section; (c) Variation of grout pressure gradient in the time 

(Bezuijen and Talmon 2004). 
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Figure 1.5(a) plots the grout pressure as function of the time together with the drilling velocity; 

the pressure starts from zero, increases during drilling when the grout is injected and decreases 

during the periods of standstill, due to consolidation of the grout (dewatering of the grout into the 

soil). Figure 1.5(b) shows the distribution of the pressures as function of the height below the top of 

the tunnel section which increases almost linearly with the height but with a vertical gradient not 

constant in the time, starting from a lower slope respect the hydrostatic condition and decreasing 

until to reach a steady state in gradient, as also showed in the Figure 1.5(c) where the pressure 

gradient is plotted in the time. 

The last technologies privilege the back-filling of ultra-fluid two-component mixes, limiting the 

consolidation time, ensuring a complete filling of the gap and avoiding all negative aspects 

correlated with the use of traditional cementitious grouts such as the risks of choking pipes and 

pumps. The two-component grout consists of an A and B components: A-Component is a stabilized 

grout containing varied combinations of water, binders, bentonite, and admixtures; B-Component is 

a liquid accelerator that is added to the A-Component when injected into the annulus. The 

flowability of A-component needed for the pumping requirement is function above all of 1) water to 

cement ratio, 2) solids content and 3) time since the stabilizer (or retarder) was mixed before the 

injection with B-component;  it is usually measured using a flow cone as indicated in the ASTM 

C939–10. When the A and B components are mixed, the grout takes a gel consistency and the gel 

time (5s-10s) has to be sufficient to distribute throughout the annulus to guaranty a homogeneous 

confinement to the ring and the minimum early stiffness of the grout (ASTM C942-10). The early 

grout compressive strength is required to ensure the segments to support the loads imposed by the 

backup gantry as well as to transfer the loads between the segments and the soil. It is between 0.1 

to 1 MPa in 1 hour and between 1 to 5 MPa in 28 days and it is function of the amount of the mixed 

materials. Peila et al. 2011 show the results of a series of tests related to the behaviour of a two-

component injection grout for filling the annular voids behind the segmental lining during 

mechanized tunnelling with EPB machines. The authors tested the gout in the fresh and hardened 

state confirming this typical range of the grout strength and observed also how the grout 

consolidation process has its more effect on the last 1-3 installed rings, in function of the TBM 

velocity of advancement. 

 

 

Figure 1.6. Properties of 2 component backfill grout material ETAC (Hashimoto et al. 2000). 
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Simultaneous backfill grouting in shield tunnelling was introduced for the first time in 1982 in the 

construction of No. 4 line of the Osaka Subway in Japan and after exported in many regions of the 

world, such as Asia, Europe and America, for its capability to keep the settlement in the range of 10 - 

30 mm (Hirata 1989). In Europe the most widespread two component simultaneous backfill grout is 

the ETAC, developed in the Netherlands using local materials, and used for the first time in the soft-

ground EPB excavation of the Botlek rail tunnel (Feddema et al. 2001). 

Figure 1.6 shows the properties of the ETAC material. After mixing, the A and B materials become 

gel in 5-10 seconds; in the next 10-25 minutes the material sustain plastic state and, after others 30 

minutes, hardens completely.  

 

 

1.2 Effect of segmental layout on lining behaviour 
 

The joints technology has a double effect on the global structural lining behaviour: 1) the 

connections make the lining a multi-hinged structure where the nodes behaves as semi-rigid 

connections (Do et al. 2014) with an intermediate behaviour between a ideally fully rigid and a 

pinned connection, able to transmit axial forces, shearing forces and bending moments through the 

connections; 2) the presence of the joints in the staggered configuration generates a coupling 

mechanism of transfer of the forces between the segments subjected to a longitudinally distributed 

loads and this leads the lining to behave as a 3D structure in a stiffer configuration  than an isolated 

ring (Arnau and Molins 2012). 

A direct way to understand the structural behaviour of longitudinal and circumferential joints is to 

follow their evolution of stress and strain states during experimental tests.  

 

1.2.1     Experimental behaviour of joints 

 

Many experimental study have been conducted by different authors considering the effects of 

such technologies of joint, putting in evidence their strict dependence.  

An interesting experimental study carried out by Cavalaro and Aguado 2011 highlights some 

behaviour aspects of  joints with packers under simple (normal) stress and under coupled (normal 

and tangential)  stresses up to failure. Two different test configurations were designed to reproduce 

the conditions found in some Spanish tunnels (Line 3 in Madrid, Line 9 in Barcelona, M30 in Madrid, 

Cela Tunnel in Madrid and Pajares tunnel in Asturias) varying the packers’ material (bituminous, 

rubber, plywood).  

The first test consists of cycles of loading and unloading to which the packers are submitted 

through contact with two concrete blocks or two steel plates. The packer’s behaviour under simple 

stress presents, at the first loading stage, the increase of the measured strain for each stress 

application, at the sustained step an increase of strain for a constant load and at the unloading stage 

the decrease of measured strain with the decrease of stress (Figure 1.7). This non-linear elastic 

hysteretic behaviour is function of the packers’ material, more evident for bituminous ones, and can 

be translated into a softening of the material after the first load cycle due to a change in the 

microstructure of the packers at the maximum normal load.  
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Figure 1.7. Behaviour of elastomeric and bituminous joints under simple compression                                   
(Cavalaro and Aguado 2011) 

 

According with the authors, the presence of plastic range in both materials’ behaviour, that is the 

transition zone between the stiff and yielding zone, shows that the physical mechanism isn’t a simple 

friction between two surfaces but probably there is a second resistant mechanism increasing the 

tangential resistance of the joint.  

The test under normal and tangential stress required two different configuration of load, one 

horizontal in which three concrete blocks are placed horizontally with the packer in the middle, and 

one vertical in which three concrete blocks are placed vertically with the packer in the middle; first 

the normal load is applied, with hydraulic jacks in the first case and with a press in the second case, 

second the tangential load is applied with a gantry and an hydraulic jack respectively. The relate 

tangential stress-displacements curves (Figure 1.8) carried out for different level of load (1.5 - 8 -12 

MPa), are very different in the case of rubber material (Figure 1.8a), bituminous material (Figure 

1.8b) and in the case of direct contact (Figure 1.8c). For the rubber, the tangential stress-

displacements curve identifies a first stiff phase in which an increase of tangential load produces a 

reduced increase of displacements of the middle block until the reach, a second plastic phase 

characterized by bigger displacements of the middle block and, reached the maximum tangential 

stress τmax, a yield phase with big displacements and a small reduction of the tangential stress 

applied τ2. The bituminous exhibits a shorter stiff initial stage, under a lower level of tangential 

stress, a longer plastic stage until to reach the maximum tangential stress at the end of the test, 

without an evident transition between the plastic and the yielding stage. The direct contact finally 

shows a very stiff initial stage, with a not significant increment of displacements, reaching a higher 

value of tangential stress respect the other cases under the same load, with observed cracks and 

simultaneous movements of middle block. 

So the behaviour of these three different packer joints is identified with low friction (bituminous 

material), intermediate friction (rubber material) and high friction (concrete-concrete). 

The work represents a clear identification of the physical mechanisms that occur in the joints with 

packers and clarifies some aspect to be taken into account in the conceptual model that describes a 

nonlinear behaviour and a failure mechanism of the joints governed by a 1) simple friction 

mechanism, between the materials in contact and 2) interlocking effect (Figure 1.9) due to the 

superficial porosity of the concrete at the interface, function of the applied normal stress and 

increases with this, which deforms in the contact area penetrating the irregularities of the concrete 

generating a certain anchorage effect.  
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          (a) 

 

               (b) 

 

 

 

 

 

 

 

 

 

 

           (c) 

 

Figure 1.8. Tangential stress-displacement curve for packers in rubber (a), in bituminous (b) and with direct 
contact (c) (Cavalaro and Aguado 2011). 

 
 

 

Figure 1.9. Interlocking effect in the packer-concrete interface (Cavalaro and Aguado 2011). 

 

If the tangential stress of interface is higher than that resisted by the packer material, the failure 

occurs in packer material like in the mechanism 1 (Figure 1.10), where the packer material is 

subjected to very high deformation and displacements. 

If the tangential stress of interface is lower than that resisted by the packer material, the failure 

occurs in the interface like in the mechanism 2 (Figure 1.8), where relative displacements between 

the concrete and the packer material are observed. 

In the case of joints with concrete-concrete interface contact, the failure is governed only by a 

friction mechanism with the failure of the concrete interface itself which exhibits a more fragile 

behaviour respect the case of joints with packers. 

Because in a lining ring longitudinal joints are located in different points of the section and then 

subjected to different bending schemes, a realistic overview of the behaviour of the joints in a 
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segmental ring can be derived from a full scale test on the joint, investigating different joints load 

configurations. 

 

 

Figure 1.10. Failure mechanisms in joint with packer material (Cavalaro and Aguado 2011). 

 

Li et al 2015 for example, have studied the flat bolted longitudinal joint structural behaviour of 

Shanghai Metro Line No.13 with a full-scale test conducted continuously loading the joint until it is 

completely failure. The segments are 0.35m thick, 1.2m of width and 6.2m of external diameter. The 

high-strength C55 concrete has been used for the segments, connected with two bolts M30. The 

joint is loaded into four loading stages in both the sagging and hogging moment cases. Figure 1.11 

shows the test scheme for the bending case, where horizontal and vertical loads simulate the axial 

and bending moments; for the hogging case the system is rotated upside down. 

 

 
Figure 1.11. Scheme of bending test (Li et al 2015). 

 

During the loading test it can be possible distinguish four different states of stress to which the 

joint is subjected, both for the sagging -positive- bending (Figure 1.12) then the hogging -negative- 

bending (Figure 1.13). 

State 1: The contact surface joint is closed without joint rotation. The bolt strain is close to zero, and 

the neutral axis of the cross section is above (sagging moment) or below (hogging moment) 

the position of the bolt. 

State 2: The contact surface joint is gradually opening from the internal (sagging moment) or the 

external (hogging moment) side, and joint starts to rotate. The bolt tensile strain start to 

increase and the neutral axis estranges from the intrados (sagging moment) or the extrados 

(hogging moment). 
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State 3: Increase of joint opening until to close the gap between the two concrete segments at the 

external (sagging moment) or internal (hogging moment) edge. This leads an additional 

concrete contact force F0 at the external (sagging moment) or internal (hogging moment) 

edge and the joint opening tend to slow down. 

State 4: The bolt strain exceeds its yield strain while the joint opening accelerates. With the 

increasing of compressive deformation of the concrete at the external (sagging moment) or 

internal (hogging moment) edge, the concrete undergoes to failure together with the 

complete opening of the joint. 

 

 

 
 

 

 
 

 

 
 

 
 

 

JOINT SUBLECED TO SAGGING MOMENT 

STATE 2 

 

 

STATE 3 

STATE 4 

Figure 1.12.  Stress state in sagging moment during the loading phases (Li et al 2015). 
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The mechanical behaviour of the longitudinal joint subjected to a hogging moment is very similar 

to that subjected to a sagging moment as Figure 1.10 and Figure 1.11 show. The main difference 

consists in the value of moment for which they reach the same opening: the joint under negative 

moments reaches the same value of rotation respect the case of positive moment for lower value of 

moment (Figure 1.14). 

 

JOINT SUBLECED TO HOGGING MOMENT 

STATE 2 

STATE 3 

STATE 4 

Figure 1.13. Stress state in hogging moment during the loading phases (Li et al. 2015). 
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                                              (a) 

 
                                               (b) 

Figure 1.14. Development of the joint opening with (a) sagging moment and (b) hogging moment                    
(Li et al. 2015). 

 

Another important conclusion has been carried out by the authors by means of a series of 

parametric analysis with their analytical progressive mechanical model, varying the bolt location.  

When the bolt is located to the internal edge, the smaller joint opening is read under sagging 

moment, and the larger joint opening is read under hogging moment (Figure 1.15) 

This means that the bolt position along the surface contact influence the joint behaviour but also 

its behaviour itself; when the bolt is located closer to the internal edge in fact, the bolt strains and 

the bearing capacity are larger for the joint subjected to a positive moment then in the case of joint 

subjected to a negative moment. 

 

 
                                            (a) 

 
                                            (b) 

Figure 1.15. Development of the joint opening with (a) sagging moment and (b) hogging moment                          
(Li et al. 2015). 

 

Same conclusions can be done for the axial load influence. For the sagging moment case, the joint 

rotation angle and bolt strain increase with the increasing of the axial load, for the hogging moment 

case, the joint rotation angle and bolt strain decrease with the increasing of the axial load. According 

with this test results, other authors (Do et al. (b) 2013) also have numerically confirmed the 

influence of join pattern configuration on the lining forces distribution, for which the joint rotational 

stiffness under negative bending moment was approximately to be ½ - ⅓ of the stiffness under a 

positive moment. 
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Liu et al. 2017a have performed a similar test on the same joint, considering a different load 

system according to existing full-scale testing results obtained by the same author on the ultimate 

strength of continuously-jointed segmental tunnel linings (Liu et al. 2015b). The authors show the 

results in terms of segments deflection (Figure 16) and joint rotation (Figure 1.17), in function of the 

bending moment, for the sagging and hogging case. 

Figure 1.16a shows how the segments rich the final deflection value under a higher value of 

sagging moment respect the case of hogging (Figure 1.16b) with a consequent stiffer behaviour. The 

joint behaves linear elastically until a bending moment equal to 90 kNm in the case of sagging 

(Figure 1.17a) and until 127.5 kNm in the case of hogging (Figure 17b) when the full concrete section 

is under compression. Then the elastic stage is larger for the joint under negative bending which 

exhibits a lower stiffness. The surface contact starts to open until a limit value of moment equal to 

250kNm for positive moment and 200 kN/m for negative moment. 

 

  (a) 

 

  (b) 

 
        Figure 1. 16. Sample deflection in case of sagging (a) and hogging (b) moment (Liu et al. 2017a). 

 

 

Figure 1.17 shows the results in terms of moment-joint rotation. The initial rotation angle rigidity 

of the positive bending moment joint is about 11000 kNm/rad, and that of the negative bending 

moment joint is 6500 kNm/rad. In addition the plot shows how the stresses in the bolts are almost 

absent when full cross-section or partial cross-section is under compression.  

 

            (a) 

 

         (b) 

 
Figure 1.17. Joint rotation in case of sagging (a) and hogging (b) moment (Liu et al. 2017a). 

 

This experimental evidence can lead to the conclusion that a not-bolted flat joints behaves as a 

bolted flat joint in the first stages of loading. 
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Liu et al. 2017b performed an interesting experimental tests on the structural scheme in Figure 

18 which reproduce the typical staggered configuration of a segmental lining within two segments in 

the middle, representative of the middle ring, and other two adjacent on both sides, with the same 

properties of the previous experimental test, with the add of circumferential joints, equal to the 

longitudinal ones. On this layout the authors performed three different test: 

1) Three-ring compression bending test: the three rings are loaded with longitudinal, axial and 

vertical load (Figure 1.18a). The test allow to monitor the rings deflection, longitudinal joints 

opening, circumferential dislocation, concrete and bolt strains. 

2) Single-ring compression-bending test: in the scheme of Figure 1.18a, only the central ring is 

loaded with axial and vertical loads  

3) Shear test on circumferential joints: in the scheme of Figure 1.18b, a longitudinal stretch of 

the lining is loaded in longitudinal and vertical direction.   

The combination of the different tests allow to investigate the effect of interaction between the 

segment both on the segments behaviour than on the longitudinal and circumferential joints 

behaviour. 

(a) 

 

(b) 

 

  

Figure 1.18. Layout of the scheme of (a) three ring compression bending test and (b) shear test                                  

(Liu et al. 2017b). 

  

 

The comparison between the results obtained from the first two tests shows a constraining effect 

on the middle ring. Figure 1.19, for example, plots a lower deflection of the middle ring obtained in 

the three ring bending test (stiffer behaviour) respect the case of the test on a single ring (lower 

stiffer).  

The failure occurs earlier in the middle ring in the test 2 because it is concentrated only in the 

longitudinal joints, while during the test 1 the failure is distributed along both joint directions.  

Looking at the longitudinal joint rotation, Figure 1.20 shows an increase of rotational stiffness due 

to the interaction between the three rings where the joint failure appears for higher value of 

bending moment and lower value of its rotation respect the case of isolated ring. 

The comparison between test 1 and test 2 shows how the longitudinal and circumferential bolts 

start to carry a load later in the case of the test 2, in any case the circumferential bolts start to be 

stressed before the longitudinal ones.  

The rotational stiffness remains constant during all the test 1 while presents a decrease in 

correspondence of the inflection point in the test 2, as observed also in the previous showed 

bending tests on single ring (Figures 1.14, 1.15, 1.16, 1.17).  
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The rotational stiffness of longitudinal joint is function of the longitudinal load level, increasing 

with the longitudinal load increase (Figure 1.21a, b). 

Looking at the behaviour of circumferential joints during the bending test on three ring, Figure 

1.22 shows the increasing of joints dislocation in function of the bending load increasing. For the 

circumferential joint 1, negative values refer to the internal surface of the joint, positive values refer 

to the external surface of the joint; the opposite convention has been adopted for the 

circumferential joint 2. 

 
Figure 1.19. Comparison between test 1 and test 2 in terms of deflection of the middle ring (Liu et al. 2017b). 

 

 
Figure 1.20. Comparison between test 1 and test 2 in terms of longitudinal joint rotation (Liu et al. 2017b). 

(a) 

 

(b) 

 

 

Figure 1.21. Effect of longitudinal force on the (a) middle ring deflection and (b) longitudinal joint 

rotation (Liu et al. 2017b). 
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The maximum deflection of circumferential joints is reached in correspondence in the middle of 

the sections and equal for both of them to 0.004m for the failure bending loads of 767 kNm. In 

correspondence of the edges instead, circumferential joint 1 reaches the maximum deflection value 

of 0.002m in the external surface while the circumferential joint 2 reaches the maximum deflection 

value about of 0.004m in the internal surface. 

 

                                   (a) 
 

 

                                 (b) 

 

Figure 1.22. Circumferential joint 1(a) and 2(b) behaviour during test 1 (Liu et al. 2017b). 

 

During test 3 circumferential joints are directly tested. Figure 1.23 shows the surface of shear 

failure in both joints 1 and 2 with the achievement of shear failure in the intrados of joint 2.  

Circumferential                             Circumferential  
joint 2                                           joint 1 

 
 
 

Intrados of  
circumferential joint 2 

 

Extrados of  
circumferential joint 1 

 
 

Figure 1.23. Shear failure in the circumferential joints (Liu et al. 2017b). 
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The relative shear force-dislocation joint plot, shows an initial working stage where the joint is 

under compression exhibiting a high shear stiffness; in this stage the main interaction mechanism 

between the two surfaces in contact is the friction while the circumferential joint starts to be 

stressed and dislocated. There is a second working stage in which cracks began to appear and, with 

the shear load increasing, the joint reduces the own shear stiffness until the failure of the concrete 

at the intrados (joint 2) and the shear failure of the joint. Circumferential Joint 1 and 2 behaviour is 

the same, joint 1 reaches the failure after the joint 2 exhibiting a higher shear stiffness. 

 

1.2.2 3D interaction of segments 

 

As seen so far, literature experimental tests on lining joints on single or multiple rings put in 

evidence the 3D behaviour of segmental tunnel lining. 

When an isolated ring is loaded by the surrounding ground, it deforms according to its flexibility, 

and its radial displacements are due to mainly the longitudinal joint rotations in function of its 

rotational stiffness.  

When multiple rings are loaded by a distributed load, there is a transferring of longitudinal 

displacements between the segments thought the circumferential joints, which determines the 

structural interaction between the rings and, at the same time, a transferring of transversal 

displacements between the segments thought the longitudinal joints, which determines the 

structural interaction between the segments in the same ring. 

This double coupling effect generates differences in terms of radial and axial displacements for 

each ring providing a lower global deformation, or a higher stiffening of the lining with a consequent 

increasing of internal forces. 

 

 

Figure 1.24. 3D interaction mechanism between the segments in the segmental tunnel lining                                             
(Koiama 2003) 

 

Koyama 2003 shows the structural scheme of this interaction mechanism (Figure 24). He assumes 

that each segment transfers part of bending moment M1 to following segment in the same ring, by 

means of longitudinal joints, and another part M2 to adjacent two rings trough lateral joints.  The 

author define the effective ratio of bending rigidity η, corresponding to the ratio between the 

transversal deflection of a continuous ring ΔD2 and a segmental ring ΔD1 for the presence of 

longitudinal joints (Figure 1.25); it is function of the transversal segment’s size and longitudinal joint 

rotational stiffness 
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Figure 1.25.  Concept of the efficient ratio of bending rigidity (Koiama 2003). 

 

The bending moment calculated considering the presence of longitudinal joint has to be 

increased within an additional rate of bending moment ζ, which takes into account the transfer of 

bending moment trough the circumferential joints, and then function of the longitudinal segment 

size and stiffness of circumferential joint. 

It is not so easy define a clear method to estimate these parameters because they involve many 

variables and in particular because, thinking to a typical mechanized excavation process where 

longitudinal load acting on a ring change during excavation advancement, the ratio ζ can’t be 

constant and, as consequence, also the ratio η which are clearly load-dependent. 

Many literature works have studied the possible calibration and influence of these parameters, 

which seem to be the main parameters for the evaluation of lining loads in their structural project. 

Fei et al. 2014 have studied the transverse bending rigidity efficiency of segmental lining 

performing laboratory structural model tests. The authors investigate the η value for three different 

segmental lining configuration, straight and stagger jointed ring, uniform ring (Figure 26) and 

consider flat bolted joints both for longitudinal and lateral connections under different pre-

tightening forces. 

Figure 1.27 shows as under the same loading condition straight jointed segmental ring has the 

largest deformation rate followed by the stagger jointed ring and the uniform ring, with the 

experimental evidence that longitudinal joints reduce the transversal bending rigidity of the ring. 

 

 
                    (a) 

 
                      (b) 

 
                     (c) 

Figure 1.26. Joint segmental ring models (a) straight jointed ring; (b) stagger jointed ring; (c) 

uniform ring (Fei et al. 2014). 

 

The tests show in addition how the effective ratio η of the transverse bending rigidity of stagger 

configuration is higher than in the case of straight configuration, in particular is between 0.3 and 0.8 

in the first case and between 0.09 and 0.23 in the second one.  
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The tests don’t take into account the effect of longitudinal forces on the bending of the middle ring 

and then its influence on the additional rate ζ. 

 

 

Figure 1.27. Deformations of middle ring (Fei et al. 2014). 

 

Liu et al. 2017b have been evaluate the inter-ring (longitudinal) forces transmission on the 

compression-bending test performed on the three rings showed before, taking into account both the 

longitudinal than the transversal load transfer. Comparing the deflection of the middle ring obtained 

with the test 1 (three ring test) and test 2 (single ring) under different longitudinal load levels, the 

authors are able to evaluate the coefficient of bending transmission in the transversal bending plane 

named ξ1, taking into account the effect of longitudinal forces and the load level, as in the scheme of 

Figure 1.28. The bending moments acting in the segments have been back calculated starting from 

the strains recorders. 

Table 1.1 shows the calculated values of transfer bending coefficient ξ1 with the increasing of the 

longitudinal force for both cases of positive and negative bending which is constant during the tests, 

and the redistribution of bending moment between the segments during the tests.  

 

 

  
  

 
 

 

 

Figure 1.28. Scheme for the evaluation of the transfer bending coefficient in the middle ring. 

 

The coefficient ξ1 increases with the increasing of longitudinal load and it is higher in the case of 

hogging. The calculated range is between 0.198 and 0.438, respectively in correspondence of the 

lower and the higher value of applied longitudinal force. 
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(a) 

 

(b) 

 

Table 1.1. Transfer bending coefficient for positive (a) and negative (b) compression-bending test in 
function of longitudinal load (Liu et al. 2017b). 

 

The authors investigate also the influence of the bending load on the interaction mechanism 

between the segments. Table 1.2 shows the calculated values of transfer bending coefficient ξ1 with 

the increasing of the bending moment for both cases of positive and negative bending, while the 

longitudinal force is constant during the tests, and the redistribution of bending moment between 

the segments during the tests.  

The coefficient ξ1 increases with the increasing of bending moment and it is higher in the case of 

hogging again. The calculated range is between 0.182 and 0.504, respectively in correspondence of 

the lower and the higher value of applied bending moment. 

The experimental results confirm that, unless the geometrical and mechanical properties of the 

lining and the joints, the main parameter of influence of the 3D interaction mechanism between the 

lining segments in transversal and longitudinal direction is load level condition.   

Only a three dimensional approach could be able to follow the forces redistribution in the 

segments together with the evolution of the loads acting in any direction. 

 
(a) 

 

 

(b) 

 

Table 1.2. Transfer bending coefficient for positive (a) and negative (b) compression-bending test in function 
of bending load (Liu et al. 2017b). 

 

 

1.3 Design of segmental lining  
 

Although the knowledge on the tunnel lining behaviour is still not completely well known, 

literature experimental tests review conducted on such complex structure discussed up to now, 

gives to us a good instrument of interpretation of the global structural behaviour and the main 

influence parameters which should be taken into account into analytical or numerical approaches for 

the tunnel lining design.  
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It should be said that, as for every problem of civil engineering, the passage from the 

experimental approach to the analytical or numerical one is something rather difficult which has to 

consider very often simplified assumptions. It is not possible to analytically or numerically reproduce 

what exactly happens in the observed mechanism, and probably it is not necessary for the 

engineering needs. “Models should always be of only adequate complexity” (Wood 2004) respect the 

problem, not more not less. 

In this context, a model of adequate complexity which returns a good interpretation of this king 

of tunnel lining behaviour, in any design approach, have to consider: 

 

 Presence of longitudinal joints or their effect in the lining; 

 Presence of circumferential joints or their effect in the lining; 

 Prevision of the real load level acting on the lining. 

 

In technical literature, this issue is dealt in very many different ways, in function of the adopted 

level of design.  

Lee et al. 2001 classified all tunnel lining design methods into four main type: 

 

1. Empirical design methods, based on past tunnelling practices;  

2. Design methods, based on in situ measurement and laboratory testing;  

3. Circular ring in elastic foundation method;  

4. Continuum mechanics models, including analytical methods and numerical methods.  

 

The last two methods are the most commonly adopted for design purposes where the joints 

influence is taken into account with two different approaches:  the indirect method and the direct 

method (Do et al. 2014). 

The indirect method models simulate the joints effect on the tunnel lining assuming a reduction 

of lining rigidity, the direct methods instead, model the segments and the joints as structural 

elements. At the same time the loading condition induced by the surrounding soil can be applied by 

means of active or passive loading mode (Bloom 2002). The active loading mode assumes that the 

surrounding ground applies the earth/water pressures to the lining structure actively, calculated 

with theoretical or empirical formulas; the passive loading mode takes into account the soil-structure 

interaction and the earth/water pressure transferred to the lining are calculated through the 

displacement compatibility between the soil and the lining. 

Koiama 2003 summarises in the Figure 1.29 the proposed literature structural models for 

segmental tunnel lining using for analytical and numerical solution. 

The uniform rigidity ring model is an indirect method to take into account the joints presence 

within reduced stiffness of the lining; the multi-hinge ring method models the joins as fully hinges 

not considering the flexural behaviour of concrete-concrete contact area, ignoring the partial 

moment transmitting capacity; the beam-spring model is a more realistic method modelling the joint 

behaviour with rotational spring with a proper stiffness low. The beam-spring I models the 

circumferential joints with rigid links, the beam-spring II models the circumferential joints shear 

spring. 
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Figure 1.29. Structural models of the segment ring (Koiama 2003) 

 

1.3.1 Indirect methods  

 

Analytical methods and simplified 2D numerical analysis are a preliminary level of lining design, 

suggesting solutions able to take into account in a simplified way the global longitudinal joint effect 

on the lining.  

Literature review proposes different approaches to take into account the presence of the joints 

within indirect approach. 

 The Reducing liner rigidity model (RR model) models a continuous ring with a reduced rigidity by 

applying the reduction factor η (Equation 1.1) to the bending stiffness Ei of continuous lining respect 

the segmental lining one (EI)eq (Bloom 2001, JSCE  1996, Lee et al 2001, El Nagar et al. 2008) which is 

the key parameters of this method, with a rather difficult interpretation as discussed before (c.f. 

1.2.1). 

 

𝜂 =
(𝐸𝐼)𝑒𝑞

(𝐸𝐼)
                                                                      (1.1) 

 

Many authors have investigated the η value via analytical methods, as for example Liu et Hou 

1991 and Lee et Gee 2001.  

Liu & Hou 1991 evaluate η value correlating the moment reduction factor to the maximum 

horizontal displacement of a continuous ring (Eq. 1.2) within the parameter b (Eq. 1.3):  

 

𝜂 =
1

1+𝑏
                                                                        (1.2) 

 

 𝑏 =
3𝐸𝐼

𝑅𝐾𝑅𝑂
 ∑ 𝑐𝑜𝑠𝜑𝑖𝑐𝑜𝑠2𝜑𝑖

𝑚
𝑖=1          (0 < 𝜑𝑖 <

𝜋

2
)                          (1.3) 

  

Where EI is the bending rigidity of the tunnel lining per unit length; KRO is the rotational spring 

stiffness of the joints, φi is the angle measured from the vertical direction around the tunnel of the ith 

joint in the range 0 - 90°; m is the number of joints in the range of 0-90°; and R is the tunnel radius.   
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Lee & Gee 2001 proposed an analytical model to determine the internal forces and displacements 

of jointed segmental tunnels taking into consideration the effect of joint stiffness within an iterative 

application of the force method. 

Table 1.3 resumes the main results obtained by the authors: joint stiffness, joint number and joint 

geometry are the main factors affecting the effective rigidity ratio η, according to the experimental 

test performed by Liu et al. 2017a, b. 

 

 
 

Table 1.3. Main factors affecting the effective rigidity ratio η (Lee & Gee 2001) 

 

The authors provided graphical relations between the reduction factor of the bending rigidity η 

and soil resistance Ks, relating the η parameter and the joint stiffness, within a dimensionless 

parameter called the joint stiffness ratio λ (Eq. 1.4) which represents the relative stiffness of the joint 

over the rigidity of the lining segment. 

 

𝜆 =
𝐾𝜃𝑙

𝐸𝐼
                                                                            (1.4) 

 

In the Equation 1.4, the calculation length l is usually assumed equal to 1 m, kθ is the rotational 

stiffness of the joint per unit length. Figure 1.30 plot the effective rigidity ratio, η, against stiffness 

ratio in logarithmic scale, logλ, for different soil resistance Ks. The higher slope η-logλ relation is 

higher for lower value of λ indicating that the effective bending rigidity ratio is more sensitive in the 

case of more flexible segmental ring, which varies between 0.1 and 0.4, in the typical range of the 

effective rigidity ratio λ. 

 

 
 

Figure 1.30. Effective bending rigidity ratios η in function of the joint stiffness ratio λ (Lee & Gee 2001). 
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Different approach is that used in the Effective moment of inertia of liners model (EMI model) 

proposed by Muir Wood 1975 within the following equation 1.5 reducing the moment of inertia of a 

ring in function of the number of joints. 

  

𝐼𝑒 = 𝐼𝑗 + (
4

𝑛
)

2
𝐼                                                                   (1.5) 

 

The parameter n is the joints number, Ij the joint inertia, I the continuous lining inertia. The 

approach doesn’t consider the joint rotational stiffness neither the influence of their orientation and 

staggering along the tunnel axis neither the circumferential joints. 

The model has been adopted by many authors (Henfry et al. 2004,Henfry et al. 2006, Ding et al. 

2004)  and, as the RR model, presents a limit due to the fact that the lining stiffness affects itself the 

lining internal forces and the key parameters η and Ie have a very large rage on their application 

(Koiama & Nashimura 1998, Zhong et al. 2003, Huang et al. 2006, Feng et al. 2011); because 

segmental lining behaviour is strictly dependent on joint technology, this approach can return not in 

every case a good prevision of lining internal forces. 

Table 1.4 shown in Lee & Gee 2001 compares the effective rigidity ratios η obtained by the 

author himself for six tunnel cases with the η values predicted by the approaches of Muir Wood 

1975 and Liu & Hou 1991. Muir Wood and Liu & Hou methods were developed for evenly distributed 

joints around the tunnel ring, thus these approaches are not applicable for case 2 and case 6 tunnels 

with uneven joint distribution, while the Lee & Gee method is applicable to a six-joint lining system, 

and therefore not applicable for the case 3 tunnel with an eight-joint lining system. The comparison 

shows how Lee & Gee 2001 and Liu & Hou 1991 evaluated very similar η value which significantly 

differ from the results predicted by Muir Wood (1975) which can’t take into account any structural 

effects such as tunnel geometry, joint stiffness, and joint orientation and any dependency of load. 

Blom 2001 introduced a reduction factor, named ζ, of a continuous lining bending stiffness, 

derived from the analytical solution introduced by the author for jointed lining. Equation 1.6 shows 

the adopted formula where the coefficient C*x and C*y (Equations 1.7 and 1.8) are function of the 

angle βi at the ith joint location (Figure 1.31a). 

Figure 1.31b shows the results of the Equation 1.6 for several numbers of segments (and 

longitudinal joints) in function of the joint contact area lt, segmental thickness t and the radius R. 

 

𝜁 =
1

1+
3

4

𝑡3

𝑙𝑡
2𝑟 (𝐶𝑥

∗
 +𝐶𝑦

∗)
                                                                 (1.6) 

 

𝐶𝑥
∗ = ∑ 𝑐𝑜𝑠(𝛽𝑖)

𝛽𝑖<
𝜋

2
𝜋

2
<𝛽𝑖

𝑐𝑜𝑠(2𝛽𝑖)                                                                                                          (1.7) 

 

𝐶𝑦
∗ = ∑ 𝑠𝑖𝑛(𝛽𝑖)𝛽𝑖<𝜋

𝜋<𝛽𝑖
𝑐𝑜𝑠(2𝛽𝑖)                                                                                                          (1.8) 

 

 

The reducing factor ζ of bending stiffness increases with the joints number and with the 

decreasing of the ratio 
𝑙2𝑟

𝑑 
3  

 that refers to the rotation capability of the joint. 
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Figure 1.31. (a) Scheme of βi angle; (b) effective bending rigidity ratio η in function of the joint stiffness ratio λ 

(Blom 2001). 

 

 
Table 1.4. Comparison of η values predicted used by the Lee et al.2001, by Hou et al. 1991 and applying Muir 

Wood Method (Lee et al. 2001). 

 

1.3.2 2D calculation methods 

 

With reference to the Figure 1.29, the multi-hinge ring model is the least suitable 2D direct 

method to interpret longitudinal joints which behaves as a semi-rigid connection (Do et al. 2014) and 

not as a fully rigid or a fully hinged (Figure 1.32). 

  The beam-spring model (BSM) instead, is a more realistic method respect the previous one, 

modelling the joint with partial moment transmitting capacity. To this end, the spring is usually 

modelled as a rotational spring which give a rotational capability to the joint. In this last approach, 

the key parameter is the joint rotational stiffness low.  
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In absence of experimental curve for the specific case to be calibrated, the literature proposes 

many models to simulate and calibrate segmental joint behaviour. Janßen’s joint method 1983 for 

instance, assumes that the contact area between two lining segments can be represented by a 

fictitious concrete beam with a depth equal to the joint contact area’s width and its height and width 

equalling the joint’s contact height (Figure 1.33a). This concrete beam has an elastic behaviour under 

compression and doesn’t resist any tensile stresses at all.  

 

 

 

 

 

 

 

Figure 1.32. Structural behaviour of connections (Kartal et al. 2010). 

 

Figure 1.33b shows the moment-rotation relationship assumed for the joint, where are 

distinguished three different working stages, function of the eccentricity e=N/M of the resultant of 

the normal force in the joint section.  

 

Figure 1.33. a) Cross section of the longitudinal joint; b) M-θ relationship in Janssen joint.

 

In the first branch of loading the joint is completely under compression for an eccentricity e < tj/6. 

This is the case of closed joint when the stresses produced by the bending moment are smaller than 

normal stresses. In this condition joint will behaves linear-elastically with a constant rotational 

stiffness (linear branch of M-θ curve). For an eccentricity e > tj/6 the joint starts to open with a not 

linear elastic behaviour. The rotational stiffness is not constant but decreases with the moment 

increasing (non-linear elastic branch of M-θ curve). 

The transition between the linear and the non-linear branch occurs theoretically at M =
1

6
Ntj. 

The equilibrium of the joint section in the non-linear branch of M-θ relation is guaranteed until the 

maximum bending moment M =
1

2
Ntj. For high value of rotation, plastic strains occur in the 

concrete until the joint failure. 
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Table 1.5 resumes the equation of Janßen’s joint model in the different working stages, where b 

is the width of joint, Es is the Young’s modulus of the lining, tj is the height of contact, N is the normal 

force and θ is the rotation.  

In correspondence of closed joint condition, the initial stiffness is function only of the Young’s 

modulus of the concrete and the contact height of the joint; for opened joint condition, the 

rotational stiffness is function also of the bending moment and normal force values.  

 

 

Closed joint                  Exentricity                                         𝑒 =
𝑀

𝑁
<

𝑡𝑗

6
  

         

Rotational stiffness                          𝑘𝜗 =
𝑏 𝑡𝑗

2 𝐸𝑠

12
   

 

Moment transition                          𝑀 =
1

6
𝑁𝑡𝑗  

 

Opened joint                  Exentricity                                         𝑒 =
𝑀

𝑁
>

𝑡𝑗

6
 

Rotational stiffness                          𝑘𝜗 =
9 𝑏 𝑡𝑗 𝐸𝑠 𝑀(

2𝑀

𝑁𝑡𝑗
−1)

2

8 𝑁
 

Maximum bending moment           𝑀 =
1

2
𝑁𝑡𝑗  

Opened joint with plastic 
concrete behaviour 

Exentricity                                          𝑒 =
𝑀

𝑁
≫

𝑡𝑗

6
 

 
 

Table 1.5. Janßen’s joint model. 

 

How suitable is the Janßen’s joint model for the segmental lining joints? Hordijk and Gijsbers 1996 

performed various experimental test on flat joint with concrete-concrete interface, with and without 

bolts, and compared the M-θ experimental relationship with Janßen analytical one. 

Figure 1.34 shows the scheme used for the tests. Tunnel segments are 350 mm thick and 500 mm 

width with a contact height of the joint is 158 mm. The segments were loaded by increasing bending 

moments, under different value of normal forces. Figure 1.35 shows the test results in terms of 

moment-rotation and the results derived from analytical solution. 

 

 

Figure 1.34. Layout of experimental test on flat concrete-concrete joint (Hordijk and Gijsbers 1996).



 

 

29 Chapter 1: Segmental tunnel lining 

The comparison shows a good agreement between the two results. Janßen’s solution is not able to 

reproduce exactly the initial joint stiffness then, for very low value of rotation, the moment is not 

fitted very well, and this is true in particular for low value of normal forces. 

In addition, according to the authors, the initial rotational stiffness is not affected by the presence 

of bolts. This interesting conclusion has been carried out also from the experimental test conducted by 

Liu et al 1017, where the bolt start to be stressed not from the start of the test but after a certain load 

level. The effect of bolt in a concrete-concrete joint is in terms of increasing of ultimate bending 

moment. In the Hordijk and Gijsbers work indeed, the ultimate bending moment of bolted joints is 

higher than a non-bolted one. This increase in maximum bending moment capacity is in the order of 

20 kNm/m and decreases with an increasing normal force.  

 

 

Figure 1.35. Comparison between experimental and analytical solution (Hordijk and Gijsbers 1996). 

  

Klappers et al. 2006 studied the segmental lining behaviour within the beam and spring models 

(BSM) analysis with coupled and un-coupled spring ring model. The authors consider two different 

rings configuration as in Figure 1.36a, system I: ring 1 has no hinge at the crown and ring 2 is rotated 

by half a segment which means that there is a hinge at the crown; system II: all hinges are rotated by 

15° compared to system I.  

 
 

 

 

 

 

 

 

Figure 1.36. (a) Rings configuration; (b) Structural system of coupled spring beam model                                   
(Klappers et al. 2006).  
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Longitudinal joints are modelled with springs with a rotational capability calibrated with the 

Janßen’s M-θ non-linear relation, while the circumferential joint within radial spring to simulate the 

coupling between the rings choosing the frictional coefficient µ=0.5. 

The following Table 1.6 shows the comparison between the coupled and uncoupled approach for 

both system I and II, respect the case of rigid ring and Muir Wood ring. 

As expected, the bending moments calculated for the coupled rings are always higher than the 

moment calculated for the uncoupled ring, for both rings configuration. 

The coupled calculations show that ring 1 of systems I is stiffer than ring 2 which causes a load 

transfer from ring 2 to ring 1. The coupling of the rings reduces the deformation, but increases the 

bending moments especially for the “stiffer” ring. 

Muir-Wood ring return similar value of bending moment evaluated with uncoupled calculation of 

system II and lower value respect the case of rigid ring. 

 

 

Table 1.6. Comparison between rigid ring, Muir Wood ring, coupled and uncoupled beam-spring model          

(Klappers et al. 2006). 

 

1.3.3 3D calculation methods 

 

To predict a realistic segmental tunnel lining three dimensional behaviour, including all aspects that 

have been introduced so far here, is almost complex and 3D numerical approach is a way to reproduce 

the three-dimensionality of the problem without introduce too many assumptions as in the 

aforementioned cases. Here there are shown some literature numerical 3D experiences focusing on 

the way to model the longitudinal and circumferential joint and their coupling effect in terms of lining 

structural performance.  

Blom et al. 1999 studied the case of the shield-driven "Green Heart" Tunnel of the High Speed Line-

South in the Netherlands; the authors proposed a detailed 3D FEM analysis of tunnel structures using 

Ansys FEM software modelling the longitudinal and the transversal joints, represented by packing 

material not dealt with in detail, with contact elements behaving as linear spring until the sliding. 

Klappers et al. 2006 in the same work discussed before (c.f. 1.3.2) discuss also a 3D FEM model, 

simulating the longitudinal and circumferential joints behaviour as in the case of beam-spring model. 

Figure 1.37 shows the numerical 3D model and the effect of coupling (Figure 1.37b) respect the 

uncoupling (figure 1.37a). 

In the uncoupled system only longitudinal joint are activated and each ring deforms independently 

each other according to their transversal flexibility, in the coupled system the presence of 

circumferential joints leads to a redistribution of stress along the tunnel axis direction. In the Table 1.7 

the authors compare the results carried out with the beam-spring model and FEM analysis. 
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Figure 1.37. Uncoupled (a) and coupled (b) 3D numerical ring model (Klappers et al. 2006).

 

The comparison shows how the results obtained with the beam-spring model return similar value of 

those obtained with 3D FEM solution, both for coupled and uncoupled systems. This result demonstrates 

the reliability of the beam-spring model for transversal bending load. This is true only for this load 

configuration, any consideration has been evaluated for the 3D effect due to a configuration longitudinal 

loading. 

 

 
Table 1.7. Comparison between coupled and uncoupled beam-spring model and FEM analysis                      

(Klappers et al. 2006). 

 

Teachavorasinskun et al. 2010 performed a series of 3D numerical analysis with SAP2000 to 

investigate the longitudinal joint influence on the segmental lining. The joint are modelled with interface 

elements, indicated with springs in Figure 1.38a, with a rotational stiffness calibrated numerically against 

a true scale bending test on a curved bolted flat joint (Figure 1.38b), calculating a range of rotational 

stiffness between 1000 and 3000 kNm/rad, then a constant elastic rotational stiffness is used to model 

the joint. 

 

(a) 

 

(b) 

 
 

Figure 1.38. (a) Numerical segmental lining model; (b) Calibration of rotational joint stiffness    
(Teachavorasinskun et al. 2010) 



 

 

32 Chapter 1: Segmental tunnel lining 

The authors investigate also the influence of longitudinal joins number and position in the transversal 

lining section. In Figure 1.39a and 1.39b, the upper and lower values of bending in segmental lining, 

varying the joints number, are plotted respect the maximum bending moment for a not jointed lining, 

with respect to the variation on rotational stiffness.  

 

(a)  

 

(b) 

 
Figure 1.39. (a) Numerical segmental lining model; (b) Calibration of rotational joint stiffness      

(Teachavorasinskun et al. 2010) 

 

In the range suggested by the authors, the upper and lower bending moment undergo to a reduction 

factor η equal respectively about of 0.9-0.85 and 0.3-0.9 respect a not jointed lining. Increasing the joints 

number the reduction factor η increase, while increasing the joint rotational stiffness jointed lining tend 

to behave as a not jointed lining. The condition of moment equal to zero correspond to the limit case of 

perfect hinge, with zero rotational stiffness. The authors don’t consider the presence of circumferential 

joints neither the staggering effect of the longitudinal ones (2D condition). 

Arnau and Molins 2012 studied the 3D coupling between adjacent ring for the effect of the uniform 

longitudinal load induced by the soil weight.  The studied case is the Line 9 subway tunnel of Barcelona 

(excavation diameter equal to 10.9m and lining thickness equal to 0.35m) referring to a section of eleven 

rings, which presents a concrete-concrete contact surface as longitudinal joint and plastic packers as 

circumferential joints. The concrete elements are shell elements with linear elastic behaviour, 

longitudinal and circumferential joints are both non-linear interfaces elements. The frictional packer-

concrete behaviour has been reproduced within Mohr Coulomb constitutive model; the Young’s modulus 

has been measured with compression test E=2*E5 kN/m2, while the friction coefficient μ=0.2076 derived 

from the tangential resistance test conducted by Cavalaro 2009. The coupling effect is described respect 

a reference ring in terms of increment of internal forces respect the case of no coupling effect. Figure 

1.40 shows the increment of bending moment with the increasing of longitudinal forces. This increment is 

also related to the variation of K0 coefficient and of course decreasing this value, then increasing the 

bending load, the increment of bending moment is higher. 

The authors investigate also the influence of coupling effect with respect of the lining slenderness, 

defining the coefficient 𝑆𝑙 =
𝑇𝑢𝑛𝑛𝑒𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟

𝑙𝑖𝑛𝑖𝑛𝑔 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠
, equal to 31.1 in their case. Figure 1.41 shows how the 

increment of lining slenderness, or a the reduction of lining thickness, implies a linear increase of bending 

moment, then a linear increase of coupling effect, respect the case of uncoupling.  

Figure 1.42 instead shows an exponential increase of coupling effect with the reduction of longitudinal 

joint height in terms of increment of bending moment; increasing the joint height there is a reduction of 

its rotational stiffness and as consequence a reduction of increment of bending moment. As 

consequence, minimize the longitudinal joint height implies a direct reduction of the influence of coupling 

effect. 
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(a) 

 
(b) 

 
Figure 1.40. Maximum and minimum bending moments for the central ring ring 6 in the case of             

(a) E=50MPa and (b) E=150MPa  (Arnau and Molins 2012). 
 

 
Figure 1.41. Influence of lining stiffness on the coupling rings (Arnau and Molins 2012). 

 

 
 

Figure 1.42. Influence joint height on the coupling rings (Es=25MPa, K0=0.5, F=40 MN (Arnau and Molins 2012). 
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Do et al. 2013 studied in Flac 3D the Bologna–Florence railway line project. The authors modelled the 

joints in both direction with an axial, tangential and rotational springs (Figure 1.43). The axial spring has 

been represented by a linear relation with a constant coefficient spring, the radial and the rotational 

spring by means of a bi-linear elastic with a limited bearing capacity using the Janssen joint model.  

 

 

 

 

Figure 1.43. Scheme of joints adopted in the 3D numerical model (Do et al. 2014) 

 

Table 1.8 resume the longitudinal and circumferential joints parameters. The rotational stiffness has 

been calibrated within the Janßen’s joint, modelling the moment-rotation curve with a bilinear one, not 

considering the reduced stiffness due to the non-linear joint behaviour (Zhong et al 2006, Van Oorsouw 

2010, Thienert and Pulsfort 2011). 

 

 
Table 1.8. Longitudinal and circumferential joint parameters (Do et al. 2014). 

 

To investigate to coupling effect, the authors compared the result obtained with parametric analysis 

for the following six joint patterns configuration in terms of bending moment, normal and longitudinal 

forces (Figure 1.44): 

 

(a) Model M1: Continuous lining.  

(b) Model M2: straight rings—type 1 joint pattern 

(c) Model M3: staggered rings—type 2 joint pattern 

(d) Model M4: staggered rings—type 3 joint pattern 

(e) Model M5: staggered rings— type 2 joint pattern, rigid link at circumferential joints  

(f) Model M6: staggered rings—type 2 joint pattern, free link at circumferential joints 

  
                  M1                               M2                              M3                              M4                             M5                               M6 

 

Figure 1.44. Lining models (Do et al. 2014). 
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The model M1, M2 and M6 don’t allow a coupling effect in longitudinal direction. The model M3, M4 

and M5 show a different influence in terms on longitudinal coupling due to the fact that the different 

staggered configuration gives a different global stiffness to the segmental lining with a consequent 

different redistribution of the forces through the joint. In particular, the minimum differences between 

the bending moments for these three cases induced in the successive rings are obtained in the case of 

model M4, the stiffer configuration respect the staggered cases, with a maximum value of bending 

moment lower than that obtained in the other cases M3 and M5. The authors observed also that the 

major effect of joint pattern is in terms of bending moment, with a maximum difference between two 

successive rings of about 26.1 % while the normal force, longitudinal force are in a similar range with a 

maximum difference between two successive rings of only 1.8 and 3.4 respectively. 

In Table 1.9 the authors compare the induced internal forces for the different 6 cases of lining 

configuration, considering the continuous M1 lining the reference case. The factor R is the ratio between 

the maximum value of bending moment and normal force in the reference ring for the different 

staggered configuration respect the model M1. 

The maximum positive and negative bending moment of straight joint model M2, is lower than that 

obtained in the other staggered case, showing the most deformable condition. The normal force in the 

staggered joint lining cases is always higher than the ones obtained in the case of a continuous lining, 

unless for the case of straight joint pattern. In terms of longitudinal force, the model M2 calculate the 

higher value respect the staggered cases. 

 

 
 

Table 1.9. Comparison of internal forces for the different lining configuration (Do et al. 2014). 

 

 

An advanced numerical study has been developed by Majdi et al. 2015 to investigate the moment-

rotation behaviour of different segmental joint (Figure 1.45) and its effect on the transversal lining 

behaviour.  

To this end, the authors modelled Hordijk and Gijsbers 1996 experimental test described before, with 

3D ABAQUS finite element software. The numerical calibration (Figure 1.46) has been done modelling the 

joint with a contact surface which a non-linear stress–strain behaviour. The used constitutive model 

allows to follow the joint behaviour during all the stage of working until failure, including a failure 

envelope to define the concrete cracks under tension stress and the crushes that occur under 

compressive stress and can simulate concrete features after cracking or crushing. 

Figure 1.47a shows how increasing the joint height, the initial rotation stiffness and the ultimate 

bending moment of joints increase. On the contrary, reducing the joint height, there is an increasing of 

stress joint concentration in a contact area (Figure 1.48) which leads to an increment of joint curvature 

and then its rotation. 
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Figure 1.45. Joint models (Majdi et al. 2015). 

 

 

 
 

Figure 1.46. Calibration of moment-rotation relation for joint (Majdi et al. 2015). 

 

 

       (a) 
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(b) 

 
Figure 1.47. Moment-rotation relation for flat and convex II (a) and convex and dowel & socket joints (b)                    

(Majdi et al. 2015). 

 

Convex joint type I, dowel & socket joint type I and II and flat joint shows the same initial rotation 

stiffness but a light different ultimate bending moment (Figure 1.44b). In particular, the dowel and socket 

joint (type I) has the highest moment capacity, and the convex joint (type I) the minimum.  

 
                              300mm                          250mm                                   200mm                                 150mm 

 
 

 

Figure 1.48. Flat joint stresses (Majdi et al. 2015). 

 

Rather different is the convex joint (type I) behaviour (Figure 1.47a). Initial rotational stiffness is similar 

to that one exhibited by the flat joint with the smaller height but with a very different ability to transfer 

bending moment. A flat joint is able to transfer bending moments while a such convex geometry no 

moments will be transferred, and then it behaves like a hinge. For this reason convex joints are usually 

used for very high rotation (c.f. 1.1.2).  

According to experimental results obtained by Liu et al. 2017, Figure 1.49 shows that flat bolted and 

non-bolted flat joints exhibit the same initial rotational stiffness. The presence of the bolts increments the 

ultimate bending moment of flat joints. 

Guan et al. 2015 studied the segmental lining behaviour of Fuzhou Metro Line 1 within the  indirect 

(uniform ring model) and direct (3D shell-spring model) approaches to investigate the key parameters of 

both methods, the effective ratio of bending rigidity η and the transfer ratio of bending moment ξ 

respectively. 

Longitudinal and circumferential joint have been modelled in the FE code Flac 3D by means of a 

rotational and shear springs (Figure 1.50) calibrated against the results of a large scale bending and 

shearing test for joint-connected segments.  
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Figure 1.49. Moment-rotation relation for bolted and non-bolted flat joint (Majdi et al. 2015). 

 

 
Figure 1.50. Scheme of numerical model of segmented lining of Fuzhou Metro Line 1 (Guan et al. 2015). 

 

 

Figure 1.51 shows how the rotational stiffness of longitudinal and circumferential joints is described 

within a bilinear low of moment-rotation. Longitudinal joint behaves differently when subjected to 

positive or negative bending moment, in accordance with the experimental results showed before (c.f. 

1.2.1). 

 

 
Figure 1.51. Behaviour of (a) longitudinal and (b) circumferential joint of Fuzhou Metro Line 1                                 

(Guan et al. 2015). 

 

In this way the authors calculate a rotational stiffness k+
r / k-

r of 10000/4000 kNm/rad and a shear 

stiffness 50000 kNm/rad. 

To estimate the more suitable value of η and ξ for the studied case, the authors set before the η vale a 

null value of transfer ratio of bending moment, and in a second moment determined the ξ, value which 
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artificially modifies the bending moment within the Equation 1.9. In this stage the effective ratio of 

bending rigidity is constant and equal to that one calibrated in the first step. 

 

𝑀𝑆 = 𝑀0(1 + 𝜉);  𝑀𝐽 = 𝑀0(1 − 𝜉)                                                         (1.9) 

 

where M0 is the most unfavourable bending moment calculated for the load scheme of Figure 1.52 

and MS and MJ the modified bending moments. 

 

 
 

Figure 1.52. Load scheme of uniform ring (Ding et al. 2004). 

 

Table 1.10 shows the results of the two different approaches in terms of bending moment. The values 

evaluated with the uniform ring method, for a η value set equal to 0.48 and a ξ set equal to 0.45, are 

slightly higher than those calculated within the shell-spring method. 

 

 Shell-spring model Uniform ring model 

M+
S (kNm) 

M-
S (kNm) 

 97 

-99 

 127 

-102 

M+
J (kNm) 

M-
J (kNm) 

 33 

-38 

 48 

-38 

 

Table 1.10. Load scheme of uniform ring (Ding et al. 2004). 

 

 

Table 1.11 shows the results of η and ξ values for the studied case and the influence of overburden, 

soil properties and water head.  

The effective ratio of bending rigidity increases with the overburden increasing, decreases with the 

increasing of water head and increases with good soil properties.  

The transfer ratio of bending moment is not influenced by the soil parameter but seems to be 

influenced only by the lining technology itself and load level.   
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(a) 

 

(b) 

 

Table 1.11. Selection of η and ξ due to (a) the different overburdens and soil properties (b) and different heads and soil 

properties (Guan et al. 2015).
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CHAPTER 2 

Mechanized tunnelling effect on the lining behaviour 
 

 

Introduction 
  

Tunnelling induces a complex interaction mechanism between the soil, the grout of the filled gap and 

the concrete of the segments which suffer a continuous changing of stresses and strains during the front 

advancement until its removal. So that tunnel lining segments must be calculated not only according to 

the standards of reinforced concrete constructions but “…specific circumstances must be taken in 

account, which make design much more complicated: the determination of loads during ring erection, 

advance of the TBM, earth pressure and bedding of the articulated ring, is difficult. The ring model and the 

design input values must be studied carefully according to the parameters of the surrounding soil (Muir 

Wood 2012).” 

The purpose of this Chapter is to give an overview of different tunnelling technologies developed 

during years in order to discuss their effects in the lining behaviour. 

Many authors have proposed several different tools to predict the internal forces arising in the lining 

within sophisticated 3D numerical models which are here discussed.  

The case history of Bologna-Firenze railway, very well detailed in the work of Do et al. 2013, has been 

adopted as reference benchmark to define a 3D numerical model of segmental tunnel lining developed in 

Plaxis 3D and compare the results with those obtained by the authors using Flac 3D. 

 

 

2.1 Mechanized tunnelling methods 
 

2.1.1 History of mechanized tunnelling 
 

Mechanized tunnelling is a type of excavation method which allows almost contemporary the 

excavation phases execution and the tunnel lining installation directly in the underground space, thanks 

to the use of Tunnel Boring Machine TBM that, with the aid of sophisticated automation and control 

systems, advances to tens of meters per day in different geological and hydrogeological conditions. In soft 

soil, the shield is a protective structure used in the excavation of tunnels to allow the soil to remain stable 

during the time, serving as temporary support structure for the tunnel during excavation. 

In modern urban areas highly populated where soft alluvial deposits are widespread and the demand 

for tunnels is high (as in Japan particularly), shield tunnelling have contributed greatly to urban 

infrastructure development, representing the best suitable method of excavation with the less impact on 

the surrounding. 

Shield tunnelling was developed to excavate tunnels through the soft ground below rivers for the first 

time by Marc Isambard Brunel to build the Thames Tunnel in London in 1825.  

https://en.wikipedia.org/wiki/Tunnel
https://en.wikipedia.org/wiki/Marc_Isambard_Brunel
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Brunel is said to have been inspired in his design by the shell of the shipworm Teredo navalis (Figure 

2.1), a mollusc whose efficiency at boring through submerged timber he observed while working in a 

shipyard. 

 
Figure 2.1. The “Teredo Navalis” tunnelling (Guglielmetti et al. 2008). 

 

His basic concept was to press a rigid frame (shield) forward through soft ground with jacks, thus 

preventing the ground from collapsing, and build the tunnel structure within the frames; by repeating the 

process of jacking then constructing the support structure, the tunnel would move forward (Figure 2.1). 

The shield use for the Thames Tunnel was rectangular in cross section with 12 adjacent frames divided in 

3 chambers.  

 

 
Figure 2.2. Brunel shield tunnel excavation under River Thames in London (Guglielmetti et al. 2008). 

 

A later redesign with a circular cross section was used by Peter W. Barlow to construct the Tower 

Subway in 1869, which at once made it simpler in construction and better able to support the weight of 

the surrounding soil.  

The Barlow design was enlarged and further improved by James Henry Greathead for the construction 

of the City and South London Railway (today part of London Underground's Northern line) in 1884. His 

system was also used in the driving of the running tunnels for the Waterloo & City Railway which opened 

in 1898. Cast steel segments, backfilling, and injection were all used by Greathead in his shield work, so 

his was the prototype of today's shield.  

Simultaneously, Alfred Ely Beach of New York City devised a shield, also circular in cross section, which 

he used to drive the Brodway pneumatic railway tunnel in New York. 

The use of compressed air was afterwards studied to control water inrush for work on the Woolwich 

Tunnel beneath the River Thames in 1876, although it was not actually used until the end of the work. 

First successful applications of this face support technique were in Antwerp Dock tunnel (1879) and in the 

Hudson river tunnel, New York 1880. 

https://en.wikipedia.org/wiki/Shipworm
https://en.wikipedia.org/wiki/Peter_W._Barlow
https://en.wikipedia.org/wiki/James_Henry_Greathead
https://en.wikipedia.org/wiki/City_and_South_London_Railway
https://en.wikipedia.org/wiki/London_Underground
https://en.wikipedia.org/wiki/Northern_line
https://en.wikipedia.org/wiki/Waterloo_%26_City_line
https://www.britannica.com/biography/Alfred-Ely-Beach
https://www.britannica.com/place/New-York-City
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The failed attempt to drive the Hudson river with caisson and compressed air in 1880 (Figure 2.3) 

leads Greathead to suggest a combined use of compressed air with the shield technology to support both 

the face and the tunnel profile (Figure 2.4). 

 

 

 
Figure 2.3. Scheme of compressed air technology used for tunnel under Hudson River in New York              

(Guglielmetti et al. 2008). 

 

 
Figure 2.4. Greathead compressed air shield for tunnel under Hudson River in New York (Guglielmetti et al. 2008). 

 
The combination of shield and compressed air represent the design scheme of the first generation 

shield tunnelling technology developed about 150 years ago. No great advances were developed in the 

technology until the 1960s when a very fast develop of sophisticated technologies started until the more 

modern tunnelling shields. 

 

2.1.2 Modern mechanized tunnelling 

 
The modern shielded machines are normally circular tube divided into three main section: front shield, 

middle shield and tail shield. The front shield consist of the external edge of excavation chamber, where 

the excavated soil is fed to the transportation system, and the pressure bulkhead. This latter separates 

the excavation chamber from the rest of the tunnel under atmospheric pressure and transfers the 

required support to the medium to guarantee the structural stability of possible sliding wedge. Just 

behind the front shied, there is the main drive with each control device.  Under the tail skin the lining 

rings are assembled. 

Shield machines can be classified into three main groups in function of their support to the excavation 

face: Slurry Shield and Hydro Shield which apply the face pressure hydraulically and Earth Balance 

pressure (EPB) Shield which applies the face pressure mechanically; in the case of soil with sufficiently 

high shear strength no active support is needed and the soil is in equilibrium just with the “natural 

support" 
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- The Slurry Shield Technology (Figure 2.5a) supports the excavation face by a pressurized bentonite 

slurry pumped into the excavation chamber, typically composed of a bentonite suspension in water, 

with some additives if necessary. A pumping system feed the fresh slurry and remove the muck from 

the excavation chamber through a pipeline; the balance between this in-flow and out-flow controls 

the pressure to face excavation stability. 

- The Hydroshield Technology (Figure 2.5b) is very similar to that one just described, with the add of 

supplementary chamber with the function of control the slurry pressure within compressed air. In this 

way, the face pressure is guaranteed in part by the hydrostatic pressure of slurry and in part by air 

pressure applied on the slurry through the overlying air cushion. 

 

Figure 2.5. Scheme of (a) Slurry Shield SS, (b) Hydro Shield HS and (c) Earth Balance Pressure Shield EPBS 
(Guglielmetti et al. 2008). 
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The slurry pressure against the soil creates a film of material (called “cake”), which rheological 

properties, together with the hydro-geological soil conditions, influence the cake thickness and then the 

confinement of the soil at the TBM face. 

- The EPB Technology (Figure 2.5c) uses the jacks thrust on the last installed lining for the TBM 

advancement, while the front stability is guaranteed by face pressure applied within the ground just 

excavated, pressurized in the excavation chamber. The magnitude of the thrust is proportional to the 

average pressure required at the front, the soil-shield friction and the weight of the machine. The 

required front pressure is guaranteed by the velocity control of the screw conveyor. 

 

 
Figure 2.6. Face loading scheme in function of shield machines technology. 

 

 

Figure 2.6 shows the face loading scheme in function of shield machines technology. In the case of 

Hydroshield with partitioned excavation chamber within a submerged wall, the loading pattern of the 
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pressure bulkhead can vary the load on the face and the balancing load is transferred by the submerged 

wall itself.  

The front excavation is performed, for each shield technology, with a circular cutting head which 

rotational speed and torque moment calibrated in function of the excavated soil and can be varied for 

non-homogeneous ground condition. Different technologies are available for the case of Slurry and Hydro 

shield (Figure 2.7a) and for the case of EPB shield (Figure 2.6b), due to the different functioning principle.  

In the first case the ratio between the opening area in the cutter head and the excavation section 

(opening ratio) is even more of 50% to allow the direct contact of slurry with soil, in the second case 

instead it is usually less than 35% to support the contrast of the soil. 

 

 

 

 

 

Figure 2.7. Cutter head of a (a) SS and a (b) EPBS (Guglielmetti et al. 2008). 

The efficiency of tunnelling machine is very dependent on the soil type, its permeability and the 

particles size. In the case of SS the key parameter for its efficiency is strictly related to the soil 

permeability: the formation of the “cake” is difficult in very permeable soil, as in the case of granular 

material, so there must be an upper limit to the particle size of the ground in the face to be excavated. In 

the case of EPBS the key parameter for its efficiency is strictly related to the particles size: the soil in the 

excavation chamber should be a high density mixture which could be not adequate in relatively loose soil 

and in presence of small fine content percentage (less than 20%). 

 

 
 

Figure 2.8. Fields of application for SS and EPBS machines and different conditioning techniques  

(Guglielmetti et al. 2008). 
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It is possible to extend this theoretically applicable field of EPBS with the use of appropriate additives 

for ground conditioning (Figure 2.8). 

The most common conditioning agents are 1) foams (air dispersed in water), 2) fillers (fine sand or fine 

crushed limestone) and 3) polymers (usually in combination with foams).  

 

2.2 Effects on the lining 
 

The tunnel support system should to withstand the permanent load of the ground but during tunnel 

construction different sources of load need to be considered as temporary load. 

Lining ring assembly process takes place under protection of the tail shield of the TBM following a 

prescribed assembling process. The positioning of the first segment is carried out by the erector, 

hydraulic arm at the back end of the machine, and followed by the others segments, one on the right and 

one on the left until reaching the counter-crown elements. The first external temporary load acting the 

lining is the axial force induced by the jack thrust to push the shield forward in the direction of the 

excavation while the thrust cylinders are placed against the last installed ring which behaves as abutment.  

While the subsequent ring is installed, the phisic gap between the exstrados of previous ring and the 

profile of excavation is filled with grout. The grout pressure put the ring under a pre-stressed 

compression state quite evenly before to support the soil weight. This is a second source of external 

temporary active load on the lining.  

 

 

2.2.1 Effect of jack thrust 
 

The thrust on the last installed ring for TBM advancement is completely transferred to the ring 

through hydraulic jacks system acting on bearing steel pads with a contact area smaller than the lining 

thickness.  

Generally in all the TBMs is possible to apply a constant value of thrust in four different area of 

transversal lining section as in Figure 2.9a. The possibility to differentiate the applied force simplifies the 

operation of thrust and measure out in the case of not correct alignment of the machine respect the 

middle plane of the thrusted lining (Figure 2.9b), often generated by the gravity, especially in the upper 

part of the shield, or by a curved excavation trajectory. 

 

 

 

     Figure 2.9. (a) Scheme of thrust groups on transversal lining section; (b) Eccentric placement of the thrust jack plate. 

 

(a) (b) 
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Both the different thrust forces and the possible eccentricity of jacks can generate relative 

displacements between the segments of the ring which can change progressively during the TBM’s thrust 

until the possible cracking of the elements as sometimes is observed in such construction phase due to 

the inducted multi axial state of stress. 

Cavallaro 2011 studied numerically the effect of eccentricity of the jack thrust of the group C in Figure 

2.10a on the lining behaviour. In the numerical model implemented in Abaqus 3D (Figure 2.10b) a 

“discrete crack model” has been adopted to simulate the concrete damage plasticity. 

Figure 2.11 shows the results in terms of maximum principal tension in absence of eccentricity (case a) 

and with an eccentricity of 30 mm (case b) and 50 mm (case c). Any cracks develops without eccentricity 

into any of the elements. While increasing the eccentricity value, cracks start to form with a total 

maximum length of 20cm in the case b and 68cm in the case c, demonstrating the entity of the cracks 

increases sensitively with the eccentricity. 

 

  

 

 

 

 

 
Figure 2.10. (a)Scheme of groups of jacks on the lining; (b) Numerical model in Abaqus 3D (Cavallaro 2011) 

 

 

                                     (a)                                    (b)                                    (c) 

 
 

Figure 2.11. Maximum  principal tension considering thrusting load (a) without eccentricity (b) with 

eccentricity of 30mm, (c) with eccentricity of 50mm (Cavallaro 2011) 

 

 

Also the position of the loaded points in the lining transversal profile influences the segments state of 

stress and strains. Two jack thrust configurations are commonly used in Europe: 1) in the German 

configuration (Figure 2.12a) the thrust is applied at both edges and in the middle of each segments, while 

in the French configuration (Figure 2.12b) the thrust jacks are placed at 1/4 and 3/4 of the segmental 

length. The first method seems to be more vulnerable to introduce tensile stresses in the pushed 

segment in the case of errors in the installation of the previous ring. 

 

A 

B 

C 

D 

(a) (b) 
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Figure 2.12. (a) German and (b) French jack thrust method (Groenevweg 2007) 

 

The axial force produced by the thrust, induces compressive stresses in the pushed segment with a 

spread in longitudinal direction as in Figure 2.13; outside the compression trajectory the segment is 

under tension for equilibrium, both in transversal than in radial direction (along the lining thickness). 

 

Figure 2.13. Diffusion of compression stresses due to the jack thrust. 

 

This description corresponds to what happens in the French thrust method, where the jacks are 

located in the middle of the lining section. When jacks is applied on the edge of the two segment, the 

applied force is not able to spread over the longitudinal compression trajectory symmetrically on both 

sides of segments but the force will spread over only one side; as a consequence, the compression 

trajectory is completely different respect the previous one. 

 To ensure horizontal equilibrium, a tensile spalling force develops in between the compression strut 

link of jacks forces (Figure 2.14). 

 

Figure 2.14. Tension spalling force in German jack thrust method (Groenevweg 2007). 

 

Figure 2.15 shows the different stress distribution in the segment under jack thrust in the French 

and German configuration where this latter is less effective in spreading the introduced thrust jack 

forces from the TBM. 
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50 Chapter 2: Mechanized tunnelling effect on the lining behaviour 

 

Figure 2.15. Stress distribution in tunnel segments due to introduction of thrust jack forces in the (a) French and 

(b) German thrust jack configuration (Groenevweg 2007). 

 

Looking at the transmission mechanism of longitudinal thrust between the rings along the tunnel axis 

conveyed through the circumferential joints, a consequence of the construction sequence is the 

generation of a permanent longitudinal compression state in the lining. Many authors investigated this 

aspect with 3D advanced numerical models (Bloom et al. 1999, Klappers at al. 2006, Mo & Chen 2008, Do 

et al 2013) where the long term longitudinal stresses remain close to their initial value due to the linear 

elastic behaviour of the lining, as is generally assumed for such problems. Arnau et al 2012 proposed a 

numerical model considering the effect of concrete creep during the construction process in order to 

predict the remaining compression in the lining as a function of the time. The study shows that the 

longitudinal creep deformations of the lining produces a stress relaxation process involving a gradual loss 

of the initial longitudinal compressive force until 50% after 10,000 days (Figure 2.16). This aspect, 

underline the authors, is strictly related to the concrete type and circumferential joints behaviour. 

 

 

Figure 2.16. Evolution of longitudinal lining compression stress (Arnau et al 2012). 

 

 

2.2.2 Effect of grouting 
 

The conicity and the thickness of the shield skin, the overcut produced by its cutting wheel and the 

design of the seal produce an annular gap between the external diameter of the lining and the excavation 

profile (Figure 2.17) which width range is between 13 and 18 cm (Thewes and Budach 2009).  
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Figure 2.17. Factors of influence of the annular gap (Thewes and Budach 2009). 

 

Grouting of the annular gap has a double effect of loading on the soil and on the lining:  

1) minimizes and prevents settlements at the ground surface. The reduction of settlements or setting 

up of lifting can be the result of a good performance of the grouting process, which qualitative 

description is shown in Figure 2.18; 

2) ensures embedment of the segmental lining before to support the soil weight. 

 

 
 

Figure 2.18. Schematic development of settlements and percentage of total settlements (Thewes and Budach 2009). 

 

The hardening grout process, discussed in detail in the previous chapter (c.f.1.1.3), affects directly the 

induced load from the soil to the lining. Figure 2.19 shows a simplified scheme of what happens in the 

annular gap around the lining, adopted by Bezuijen & Talmon 2009 to study the loading on the lining. 

There is a length of installed lining loaded by liquid grout and just behind loaded by hardened grout. 

The step of loading with liquid grout is the most important because determines the bending moment in 

the lining and; if this length is too long, loading will be too high and tunnelling will not be possible. 

 

 

Figure 2.19. Scheme of loading on the lining (Bezuijen & Talmon 2009). 
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As consequence of this construction mechanism, the rings loaded with liquid grout are pressed 

upwards by the buoyancy forces; it is necessary to mobilize shear forces from the TBM to achieve a stable 

tunnel lining which will lead to moments in the lining. 

In the case of Groene Hart Tunnel the bending moment in the lining was measured for a large distance 

behind the TBM using strain gauges installed in the lining segments. Figure 2.20 shows an increase of 

negative bending moment at some distance from the TBM due to the reaction force to compensate the 

buoyancy in the fluid grout zone, until to reach positive value when the grout is hardened in a steady 

state value far from the TBM tail. 

The magnitude of the bending moment in the lining is strictly related to the grout composition, and 

then its stiffness in the fluid (plastic) state, the soil properties (weigh, permeability) and of course, the 

depth of tunnel axis. 

 

 

Figure 2.20. Analytical and measured bending moment in ring 2117, Groene Hart Tunnel (Hoefsloot, 2008). 

 

It can be happens during grouting phase transverse relative displacements between subsequent rings 

due to the buoyancy forces developing when the grout is in its fluid state, or relative rotations between 

the segment due to a not uniform grouting pressure (Figure 2.21). 

 

 

Figure 2.21. Rings behaviour during grouting (Putke et al. 2015). 

 

This two different conditions impact on the structural rings behaviour in terms of internal stresses 

and, for high value of transversal displacement uz and relative rotation φ can induce shear damage in the 

circumferential joints.  
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An optimization concept has been applied by Putke et al. 2015 to such circumferential joints of 

concrete segmental lining to investigate their bearing capacity under shear load. The procedure consists 

of three steps: 

1. Numerical analyses using coupled beam or shell models to predict uz and φ for usually stage 

construction scenarios; 

2. The predicted values of uz and φ are used as input parameters or boundary conditions in the 

mathematical optimization method where concrete material, geometry and reinforcement layout 

are varied in order to enhance the segment’s bearing capacity; 

3. Experiments are carried out to assess the designs based on numerical findings. 

The criteria has been applied to three different circumferential joint types: S1) cam, S2) pot, S3) 

dowel; Figure 2.22 provides an overview of all investigated cases including their geometric variations 

(Figure 2.22a) and the test combination depending on the geometry and type of reinforcement (Figure 

2.22b). 

 

 
 

 

 

Figure 2.22. (a) Overview of test samples with geometric parameters; (b) Nomenclature of tested 
samples depending on geometry and reinforcement system; (c) Geometric parameters of the tested 

samples (Putke et al. 2015). 

 

Figure 2.23 resumes the experimental results of all samples tested including statistical, mean values 

E(x) and standard deviations σ(x). The comparisons show that the geometry is the most influencing 

S1             S2                 S3 (c) 

(a) (b) 



 

 

54 Chapter 2: Mechanized tunnelling effect on the lining behaviour 

parameter on the bearing capacity of the cam-pot joint and, although the extra reinforcement of the pot 

leads considerable increases in bearing capacity, the pot is the weaker part of this particular joint 

connection. Joints with dowels exhibit the lower bearing capacities respect all tested joints. 

  

 
 

Figure 2.23. Comparison of bearing capacity of S1, S2 and S3 (Putke et al. 2015). 

 

 

2.2.3 Effect of unfavourable conditions during tunnelling 
 

During mechanized tunnelling, they can be verify particular unfavourable conditions which can lead 

formation of cracks in the segmental lining. The most common types of cracks are caused by 1) squeezing 

action due to TBM deflection, 2) uneven contact between segments. 

 In both cases the lining is not in the commonly adopted load configuration of transversal bending 

neither the circumferential joints failure happen for the geometrical diffusion of jacks thrust, but multi-

directional bending configurations, torsion and eccentricity of jacks force lead the lining deformation 

mechanisms. 

SQUEEZING ACTION DUE TO TBM DEFLECTION 

During some shield operation such as turning or adjusting its attitude, TBM can lose the tunnel axis 

alignment generating squeezing action against the lining and then their possible dislocation of position, 

which if exceeds certain value could cause cracks in the segment (Sugimoto & Sramoon 2002, Mo & Chen 

2007).  

When the shield rotates until its tail (Figure 2.24) in fact, because the space between external 

segments surface and the wire tail brush could be not sufficient after the grout hardening, it contacts the 

last installed segment generating a reaction force f21 from the segment to the shield. 

Figure 2.25 shows two extremely condition which could be verified during the TBM driving:  

CONDITION 1 when the shield starts to drive forwards and the ring has been just installed, the contact 

force in the point A is very small, the segment are subjected to the forces induced by the 

tail brush and the jacks that, when the machine drives with deflection, become eccentric 

forces respect the middle linings section inducing their dislocation. 

CONDITION 2 when after one driving cycle, the jacks draw back, the segment are subjected to contact 

force in the point C and extrusion force which increase with decreasing of the space 

between the wire brush and the extrados of the segments.  
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Figure 2.24. Lost of alignment of the shield (Sugimoto & Sramoon 2002). 

 

Mo & Chen 2007 studied this aspects within 3D numerical analysis considering the squeezing action of 

tail brush in four different driving deflection conditions showed in Figure 2.26 (models 1 and 2 consider 

shield deflection in horizontal plane, models 3 and 4 consider deflection in the vertical plane) including 

the effect of jacking forces, grouting pressure and earth pressure. 

The numerical results in Figure 2.27 refer to the CONDITION 1 and show for the different angular 

shield deflections the effect of dislocation which seems to be maximum in terms of relative displacement 

in the model 2. Dislocation between segment (relative torsion or extrusion) cause cracks in the segments, 

usually in the key which is the most vulnerable location of the lining, and circumferential joints opening 

until their shear failure. 

 

CONDITION 1 : Shield starts to drive forwards 
 

 

CONDITION 2 : After one driving cycle 
 

 
 

Figure 2.25. Squeezing action on segments during shield driving forwards                         

(Mo & Chen 2007). 

 

 

Figure 2.26. Models of driving deflection conditions (Mo & Chen 2007). 
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Figure 2.27. Deformed shape of lining subjected to squeezing forces (Mo & Chen 2007). 

 

 

Toutlemonde et al. 2000 conducted experimental tests on concrete lining to study the cracks 

mechanisms developing under multi-directional load configurations, comparing the performance of steel 

fibre reinforced concrete (SFRC) and classic precast reinforced concrete (RC) on segments lining. 

The results plotted in Figure 2.28 in terms of vertical (a) and horizontal (b) deflection of inner side of 

the tested segments show that in such critical load configuration the bearing capacity of RC segments is 

about 2.3 higher than that of SFRC segments which exhibit a rather brittle failure.  

 

(a) 

 

(b) 

 

Figure 2.28. Bearing capacity of RC and SRFC under multidirectional flexural load (Toutlemonde et al. 2000). 

 

 

UNEVEN CONTACT BETWEEN SEGMENTS 

During lining installation it can be possible that contact deficiencies develop between the segments 

with the possible consequence of damage in the lining, in particular longitudinal cracks and the chipping 

of the segments corner are the most common type of damage (Sugimoto 2006). 
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In the case of longitudinal cracks, the damage usually occurs in the segment that is in contact with 

other two segments of the previous installed not perfectly aligned. This condition generates a partial 

contact between circumferential joints and, as the jacks thrusts the segment, a longitudinal crack appears 

at its centreline (Figure 2.29a). 

The chipping of the segments corner instead can be produced by 1) contact deficiencies between 

longitudinal joints and as consequence a load applied in correspondence of the joint produces localized 

stress concentration leading cracks formation and the chipping as shown in Figure 2.29b or by 2) a 

mishandling of the segment during their installation, so the corners of the two segments can collide 

producing a chipping for the impact. 

 

 

                   Longitudinal cracks                                                 Chipping of segment corner 

 

Figure 2.29. Scheme of uneven contact between segments (Cavalaro et al. 2011). 

 

Cavalaro et al. 2011 studied the effect of contact deficiencies along both longitudinal and 

circumferential joints simulating the uneven contact condition with two types of FE models, validating the 

results with a simplified iterative analytical solution. The results show that the contact deficiencies affect 

the maximum load resisted by the segments. The curves that relate the resistance capacity with contact 

deficiencies are similar in shape for longitudinal (Figure 2.30) and circumferential joints (Figure 2.31), 

varying the lining thickness.  

 

Figure 2.30. Relative resistant capacity in longitudinal joints (Cavalaro et al. 2011). 
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In figure 2.30 and Figure 2.31 all curves show an initial gradual reduction of the relative resistance 

capacity until a critical value of contact deficiencies in correspondence of which there is an abrupt drop of 

the resistance until the final resistant capacity which remain constant in spite of any increase of contact 

imperfection.  

 

Figure 2.31. Relative resistant capacity in longitudinal joints (Cavalaro et al. 2011). 

 

These mechanisms of failure are very dependent on the lining thickness and stiffness and rotational 

capability of longitudinal and circumferential joints and they play an important rule to allow the structure 

to resist additional load reducing the effect of cracking. 

 

 

2.3 Soil structure interaction 
 

2.3.1 Experimental evidence  
 

The complex excavation process of mechanized tunnelling induce changes in boundaries condition in 

the tunnel lining continuously during construction, imposing a three dimensional interaction between the 

lining, the grout and the surrounding soil, which is clearly time- and load-dependent.  

Arnau and Molins 2011 have conducted an innovative experimental study able to investigate the real 

soil-structure interaction and the real 3D interaction mechanism between the segments (c.f. 1.2.1) at the 

same time.  

The study has been done on the structural response of SFRC segmental tunnel lining with an in situ 

real scale test applied on an experimental section composed by 15 rings of the Line 9 of the Metro of 

Barcelona in rock formation. The experimental section consisted in universal rings (seven segments plus 

one key segment), bituminous packers 2mm thick in longitudinal joints, plastic packers 2mm thick in 

lateral joints. The conceptual definition of the test is based on applying radial loads to the tunnel crown 
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with hydraulic flat jacks (Figure 2.32a) and measuring the ring displacement and deformation by means of 

a set of instruments. 

 

 

 
Figure 2.32. (a) Scheme of load on the section crown; (b) Local arch mechanism in the loading stage 5              

(Arnau & Molins 2011). 

 

Figure 2.33 shows the scheme of loading during the test: after an initial phase where all the jacks 

apply the same constant thrust, phase 1 and phase 2 follow applying an increased constant thrust in 

different combination of jacks working. 

A schematic representation of results is shown in Figure 2.34 corresponding to Stage 5 of phase 3 of 

the test with the maximum load 1500 kN/jack applied by the jacks 1 and 2. 

The plot shows 1) the relative displacement of longitudinal joints both in tangential then in radial 

direction, 2) the pressure distribution of the lining against the soil after loading, with a reduction in the 

upper part of the loaded ring due to the loose of contact between the lining and the ground for the jack 

thrust and an increment where there is the soil reaction due to the contact. This particular load condition 

generates an arch zone with absence of soil-structure contact and a reaction zone due to the contact 

(Figure 2.32b). 
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Figure 2.33. Load scheme applied during the in situ test (Arnau & Molins 2011). 

 

The extension of the reaction zone is mainly influenced by the soil stiffness, the lining stiffness and the 

tangential adherence stresses which develop between the soil and the grout interface (Figure 2.35) due 

to the different stiffness of the materials in contact. This interaction mechanism between the soil and the 

grout affect directly the stress distribution and then its structural behaviour in terms of internal forces. 

The experimental test provides a significant evidence of the coupled mechanism between the 

segments associated with the real soil–structure interaction which develops a transfer mechanism of 

tangential forces on the adherence soil-grout interface and again on the adherence grout-concrete 

interface.  

A realistic prevision of the loading scheme of the lining couldn’t neglect the grout effect, neither in its 

fluid state, because determines the transferred load from the soil to the lining, nor in the hardened state 

because the transfer of the adherence stresses around the tunnel cavity in tangential direction. 

Additionally, the presence of longitudinal and circumferential joints allow the continuous redistribution of 

load in the lining respectively in tangential and longitudinal direction for each deformed configuration 

during the test. 

 
 

Figure 2.34. Schematic representation of the movements and external pressure at stage 5 (Arnau & Molins 2011). 
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Figure 2.35. Lining-grout-soil tangential force transmission mechanism (Arnau & Molins 2011). 

 

 

2.3.2 Numerical investigation 
 

Numerical methods are the most common tools adopted to investigate the tunnelling effect on the 

lining and soil behaviour because able to simulate the coupling mechanism of soil-structure interaction, 

modelling as realistic as possible the lining structure and using adequate constitutive model for the soil, 

involving the main influencing factors of the tunnel construction and their evolution in the time. 

Finite Element Method (FEM) and Finite Difference Method (FDM) in three dimensional model are the 

usual tools adopted for the evaluation of soil and lining behaviour during tunnelling until the end of the 

process, which have seen their first applications in research about twenty years ago and a very high 

development in the recent years within the following most common software packages:  

- Abaqus 3D (Ng et al. 2004, Migliazza et al 2009, Ochmanski 2016); 

- Ansys 3D  (Blom 1999); 

- Diana 3D  (Arnau & Molins 2011b); 

- Flac 3D (Barla et al. 2005, Dias et al. 2000a, Dias et al. 2000b, Mollon 2010, Mollon et al 2010, 

Lamburghi et al 2012); 

- Plaxis 3D (Afifipour et al 2011, Fargnoli 2015, Zhao et al. 2015). 

Unless the numerical technique to solve boundary problems, the two different methods give the same 

features to simulate the excavation; what differentiates a model rather than another is the choice of the 

influence parameters of the studied problem. 

In the case of prevision of internal forces arising in the lining during mechanized tunnelling, the most 

important parameters of influence are: 

- Soil properties; 

- Geometry of segmental lining and  mechanical behaviour of the joints; 

- Soil-structures interface properties; 

- Grout pressure; 

- Effect of consolidation of grout; 

- Jack thrust; 

- Dimension of mesh and the numerical domain. 

One of the most recent and advanced research work involving all the above mentioned parameters is 

that one developed by Do et al. 2013. The work refers to a part of the Italian high speed railway network 

connecting Bologna and Firenze. The project involves the excavation of two tunnels as in the scheme in 

Figure 2.36.  
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The excavation of the first tunnel has been objective of study. The authors provide a 3D numerical 

model (Figure 2.37a) developed in Flac 3D which allow the evaluation of the segmental tunnel lining 

behaviour and displacement of the ground surrounding the tunnel. 

Three-dimensional simulation of EPB shield tunnelling consists into the three main subsequent steps 

which scheme is proposed by the authors in Figure 2.37b: 

  

1. Excavating the ground at the tunnel face and simultaneously applying a confinement to 

ensure tunnel face stability.  

2. Installing the tunnel lining, applying the jacking force and injecting the grout behind the 

segments in order to fill the voids created at the shield tail. 

3. The TBM continues to advance, and the ground begins to become stabilized, which is 

expressed by a consolidation phase. 

 

 
 

Figure 2.36. Typical cross section of the two tunnels in Bologna-Firenze railway (Do. 2015). 

 

(a) 

 

(b) 

Figure 2.37. (a) 3D numerical model in Flac 3D; (b) Scheme of simulated excavation process (Do et al. 2013). 

 

Figure 2.38 shows some results in terms of surface soil displacements and increment of internal lining 

forces during TBM advancement respect a reference tunnel section.  

The normal and longitudinal forces are in compression forces distribution while the bending 

mechanism in the transversal section puts under compression the crown and the base of the tunnel and 

under extension the sides of the lining. The irregular shape of bending moment, normal force and 
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longitudinal force is due to the presence of longitudinal and circumferential joints generating a local 

reduction of the forces.  

 

 

 

 
 

Figure 2.38. Behaviour of the lining and surrounding ground during advancement of the tunnel face                           
(Do et al. 2013).  
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CHAPTER 3 

Case histories 
 

 

Introduction 
 

Computational model for mechanized tunnel is here dealt with a 3D numerical approach. In the 

analysis, advanced constitutive law for the soil and a sophisticated numerical model for segmental tunnel 

structure have been adopted to describe the soil and structure behaviour in order to investigate their 

influence on the obtained results.  

Because the case history of Bologna-Firenze railway has been well detailed in the work of Do et al. 

2013, already introduced in the Chapter 3, it has been adopted as reference benchmark to calibrate the 

numerical model of segmental tunnel lining defined in Plaxis 3D and compare the results with those 

obtained by the authors using Flac 3D. This is a preliminary study for the calibration of the segmental 

lining numerical model, better investigated and validated in the case history of Metro Line 6 of Naples for 

which monitoring data of the entire excavation process are available. 

The mechanized excavation process of Metro Line 6 of Naples has been implemented in the FE code 

Plaxis 3D according to the available monitoring data of the Tunnel Boring Machine advancement. The 

proposed model has been validated against the experimental measurements of the strains of in situ 

instrumented segmented ring. 

 

 

 

3.1 High speed railway link Bologna-Firenze 
 

The project of the high speed railway link Bologna-Firenze, described in details in the PhD thesis of Do 

2015, involves the excavation of two parallel tunnels with a space distance of 15m in between the two 

tunnel axes (Figure 2.34). Each tunnel, supported by a segmental lining structure, has an external 

excavation diameter of 9.4m and an internal diameter of 8.3m, 20m under the ground surface. Two Earth 

Pressure Balance Shields (EPBs) were used for the excavation, the second tunnel was driven after the first 

tunnel over a period of 6 months.  The author refers to the excavation process of the first tunnel only 

and, because the segmental tunnel lining numerical model adopted in Flac 3D has not been validated 

with any experimental-monitoring data, this case history represent a preliminary study to investigate the 

capability of another commercial code (Plaxis 3D) to  reproduce the tunnel lining behaviour in a 

segmental layout. 

Figure 3.1 shows the geometrical model adopted in Plaxis 3D: the width and height of cross section 

are B = 120 m and H = 60 m, respectively; the tunnel is 120 m long, its axis is 20 m below the ground 

surface; the internal diameter of the lining is di = 8.3 m, while the external excavation is dex = 9.4 m. 

Segmental lining consist of six concrete segments 1.5 m wide and 0.4 m thick, staggered along the 

tunnel axis, while the backfill grout layer is 0.15m thick. Both segments and grout layer have been 

modelled as material volume with elastic behaviour which parameters are resumed in Table 3.1. 
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Longitudinal joints, not described in details but assumed by the authors as a non-bolted flat contact, 

have been modelled as deformable volumes with a width equal to the lining thickness, while 

circumferential joint has been modelled by an interface between the rings (Figure 3.2). 

 

 
 

Figure 3.1. Geometrical model adopted for the case of study Bologna-Firenze railway in Plaxis 3D. 

 

The stiffness adopted for the joint volume is lower than that of concrete of the segments and this 

difference in stiffness between the two materials at contact gives a rotational capability to the lining 

node. 

In particular, the Young’s Modulus of the joint volume has been calibrated against the rotational 

stiffness kθ set by the authors equal to 100 MNm/rad/m.  
 

   
Figure 3.2. Geometrical model adopted for lining of the case of study Bologna-Firenze railway in Plaxis 3D. 
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As already discussed before (§1.3.3), the rotational stiffness is described by the authors with the 

analytical Janßen’s solution, approximating the Moment-Rotation curve as a bi-linear curve, adopting the 

simplification suggested by Thienert & Pulsfort 2011, that is the rotational stiffness is that in 

correspondence of 0.80*Myield/θ0.8, where Myield is the yielding moment in correspondence of a rotation 

angle of 0.01 radians (≈1%), for an average value of normal force equal to 1100 kN/m. 

Figure 3.3 shows the bi-linear moment-rotation relationship adopted by the authors for the joint.  

 

 

 

 

 

Myield (N=1100 kN/m)=150 kNm/m      for θ=1% 

0.8*Myield= 0.8*150 = 120 kNm/m       for θ0.8=0.1212% 

kθ  = 0.80*Myield/θ0.8 =120/0.001212 = 99 MNm/rad/m 

 
Figure 3.3.  Bi-linear moment-rotation curve adopted by Do et al. 2013 for longitudinal joint. 

 

The rotational stiffness evaluated by the authors with  Janßen’s joint model refers to a joint surface 

contact equal to 0.3m, lower that the lining thickness.  

A principle of dimensional equivalence has been established between the Janßen’s joint model (Figure 

3.4a) and the adopted model in Plaxis 3D (Figure 3.4b): in order to obtain the same rotational capability, a 

value of Young’s Modulus E* equal to 7E6 kN/m2 has been calculated for the adopted model that 

considers a joint thickness equal to the lining one. 

 

(a) Janßen’s joint model (b) Adopted joint model 

Figure 3.4.  Conceptual scheme of (a) Janßen’s joint model and (b) adopted longitudinal joint model. 

 

Because the results obtained by the authors show that the joints don’t reach in any case the limit 

value of bending moment equal to 150 kNm/m (Figure 3.3), staying in the elastic branch of the M-θ curve 

(Figure 2.36), a linear elastic constitutive model has been adopted for the joints. The same constitutive 

model has been adopted for the circumferential joints. 

Figure 3.5 shows the numerical model adopted for the structure and the entire domain with a total 

number of nodes equal to 498431 and a number of element equal to 465608, that are 10-nodes 

tetrahedral elements with four Gaussian integration points (Figure 3.6a). 

A similar tetrahedral grid is used for the mesh discretization in FLAC 3D. Each quadrangular 8-nodes 

zone is internally divided in 5 tetrahedra with two different possible overlay configurations (Figure 3.6b).  
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 Young’s modulus 

kN/m2 

Weight 

kN/m3 

Posson’s ratio 

- 

Concrete 35 E6 23 0.15 

Grout 10 E6 15 0.22 

Joint 7 E6 23 0.15 

Table 3.1. Lining parameters 

 

The tunnels were excavated through two main formations: alluvial deposits of the late Pleistocene–

Pliocene era, which is mostly alluvial deposits from the Savena River with deposits of clay, and sandy soil 

(clayey sands and Pliocene clays). The authors adopted for this study the section in correspondence of 

ring 582 of the first tunnel, modelled as an uniform soil layer. The constitutive model used by the authors 

for the soil is the so-called Cap Yield Model available in Flac 3D, a strain-hardening constitutive model 

that is characterized by a frictional Mohr–Coulomb shear envelope and an elliptic volumetric cap in the 

stress (p’,q) plane. 

 

LINING 
 
 

 

 DOMAIN 

   
 

Figure 3.5.  Numerical model adopted for the case of study Bologna-Firenze railway in Plaxis 3D 

 

The same behaviour of the soil has been reproduced with the constitutive Hardening Soil Model 

available in Plaxis 3D. Both constitutive models are based on a hyperbolic relationship between the 

vertical strain ε1 and the deviatoric stress q in primary triaxial loading as in the Equation 3.1 where qa is 

the asymptotic value of the shear strength and Ei the initial soil stiffness. 

 

−𝜀1 =
1

𝐸𝑖

𝑞

1−
𝑞

𝑞𝑎
⁄

                                                                            (3.1) 

In this way, it has been manageable to calibrate the main constitutive parameters of the soil as 

follows. 

 

Parameters of Cap Yield Soil Constitutive Model in Flac 3D 

Poisson ratio                                                           ν=0.3 

Reference elastic tangent shear modulus         Ge
ref  = 58 MPa 

Elastic tangent shear modulus                             Ge = Ge
ref (σ3 /pref)m =  98 MPa    

Reference effective pressure                               pref = 100 kPa 

Element number 465608 

Nodes number 498431 
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Friction angle                                                          φ = 37° 

Dilation angle                                                         ψ=0° 

Cohesion                                                                 c = 0 kPa 

Lateral earth pressure factor                               k0 = 0.5 

Failure ratio                                                            Rf = qf/qa = 0.9 

Parameters of Hardening Soil Constitutive Model in Plaxis 3D 

Reference elastic Young’s modulus                  E
e

ref
 = G

e

ref 
*(2(1+ν)) = 150 MPa 

 

Elastic shear modulus                                          G
e

 
= G

e 

ref 
(σ

3
/p

ref
)m = 98 MPa → (σ

3
/ p

ref
)m= 1.7 

Elastic Young’s modulus                                      E
e
 = E

e

ref
 (σ

3
/p

ref
)m  = 255 MPa 

Secant stiffness modulus                                     E
e

=
2E50

2−Rf
→ E50 =

E
e (2−Rf)

2
= 140 MPa 

 
Reference stiffness modulus                               E50

ref = E50 /(σ
3
/p

ref
)m = 82.5 MPa 

 
Un/re-loading reference stiffness modulus      Eur

ref = 2E50
ref= 2*82.5 = 165 MPa 

 

Tangent stiffness for oedometer loading          Eoed
ref = E50

ref= 82.5 MPa 
 

 

PLAXIS 3D 
 
 
 

 

FLAC 3D 
 

 
 

Figure 3.6.  (a) Local numbering and positioning on the nodes (•) and integration point (x) of a tetrahedron volume 

10-nodes element in Plaxis 3D (Scientific manual, Plaxis 3D); (b) An 8-node zone with 2 overlays of 5 tetrahedra in 

each overlay (Theoretical background, FLAC 3D). 

 

The excavation process implemented in Plaxis 3D follows the scheme adopted by the authors as in 

Figure 2.35b. Tunnel construction starts with the entrance of the shield in the tunnel during the first eight 

steps of the process, corresponding to a 12-m length of the shield machine. These initial phases only 
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include the excavation of soil at the tunnel front, with the face pressure applied by the authors within a 

trapezoidal profile, to take into account the weight of the slurry equal to 11 kN/m3, and proportional to 

the horizontal ground pressure through the lateral earth pressure factor k0.  

 After these first eight steps, the tunnel construction continues with the lining installation; to each 

shield advancement corresponds the installation of a segmental ring at the shield tail thrusted by 

eighteen jacks with a total resultant on the transversal lining section equal to 40 MN. In Plaxis 3D the 

jacks thrust has been simulated with an uniform pressure acting on the transversal tunnel section. 

 

  

Figure 3.7.  Comparison of internal forces of the reference ring at the end of Bologna-Firenze line numerical 

excavation calculated with Flac 3D by Do et al. 2013 and Plaxis 3D. 

 

At the same time the grout pressure is applied against the soil just behind the tail shield proportionally 

to the overburden pressure at the tunnel crown multiplied by an amplification set on the value of 1.2. The 

hardened grout is simulated with the activation of a volume filling the gap between the lining and the 

tunnel profile. 

Figure 3.7 and Figure 3.8 show the comparison between the models implemented in Flac 3D and 

Plaxis 3D in terms of internal forces in the reference ring (Figure 3.1) and longitudinal and transversal 

surface settlements respectively, at the end of the excavation process. 

The internal forces calculated in Plaxis 3D are in a very good agreement with the same calculated by 

the authors, in particular in terms of bending moment. The conceptual scheme adopted to model the 

joints as deformable volumes returns the same response of the authors modelling the joints as springs 

elements (§1.3.3). 
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Figure 3.8.  Comparison of longitudinal and transversal surface settlements at the end of Bologna-Firenze line 

numerical excavation calculated with Flac 3D by Do et al. 2013 and Plaxis 3D. 

 

 

It should be noted how the average value of normal force is slightly lower than that calculated by the 

authors and the longitudinal force slightly lower in correspondence of the tunnel crown. This is due to the 

fact that the jacks thrust has been modelled in Plaxis 3D with a uniform distribution of pressure and not 

as concentrated forces as in Flac 3D and this induces a not equal load distribution along the lining height, 

affecting the normal and longitudinal forces distribution.  

A good matching has been found between the constitutive model adopted for the soil that exhibits 

the same longitudinal and transversal settlements profile in both models. 

This is only a preliminary study of the tunnel lining behaviour, used to calibrated the proposed 

numerical model of segmental lining against an existing case history. This model is adopted to investigate 

the case of study proposed in the following paragraph. 

 

 

3.2 Metro Line 6 of Naples 
 

The Neapolitan Metro Underground system consists of two lines, Line 1 and Line 6, integrated in a 

wider service network, with different origins and characteristics, which belongs to the historical lines of 

regional railways: State Railways, Circumvesuviana, Circumflegrea, Cumana, Funiculars (Figure 3.9). 

Metro Line 1 of the Naples was the first metro connecting the city centre with the Vomero hill, the 

hospital area until Piscinola. Inaugurated in 1993, over the years it has added a number of stations up to 

eighteen. A part of the line is still under construction and further extensions have been already designed, 

according with the final design project of railway ring.  

Metro Line 6 of the Naples was inaugurated on 11 January 2007 connecting the districts of Fuorigrotta 

and Mergellina. This connecting stretch is currently in operation with 2.2 Km of length and four stations 

including two interchanges at Mostra and Mergellina. 

The stretch connecting Garibaldi Square with Dante Square belonging Line 1 and the stretch 

connecting Mergellina with Municipio Square belonging Line 6 were excavated with a shield Tunnel 

Boring Machine.  

This section focuses on the case history of Line 6 of Naples which tunnelling operations and soil 

conditions have been monitored during the years (Bitetti 2010, Marino 2010, Aversa et al. 2015). A 

numerical simulation of the tunnelling is presented and discussed in this Chapter, including the 

technological aspects of the segmental lining introduced in the Chapter 1 and the technological aspects 
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of the mechanized tunnelling introduced in the Chapter 2. The proposed 3D numerical model has been 

validated against the experimental measurements of the strains of in situ instrumented segmented ring.  

 

 

 
Figure 3.9. Neapolitan Metro Underground system. 

 

3.2.1 Layout and ground conditions 
 

Figure 3.10 shows the layout of the Line 6 that is made up of four sub-stretches: 

FIRST STRETCH: Porta del Parco-Campegna 

is under design stage, it is 3.9 Km long, with three stations, including 2 interchanges, one at 

Acciaieria with the funicular F8 and one at Porta del Parco with line 8. 

 

SECOND STRETCH: Campegna-Mostra 

 is at a final design stage, it is 1.1 Km long with only a station, Campegna. 

 

THIRD STRETCH: Mostra – Mergellina 

is currently in operation, it is 2.2 Km long with four stations, including two interchanges, one at 

Mostra with the line 2 and line 7, and one at Mergellina with the line 2. 

 

FOURTH STRETCH: Mergellina-Municipio 

is currently under construction, it is 3.3 Km long with four stations, including Municipio stations, 

the major interchange with line 1, funicular F2 and connections routes with the islands. 
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The stretch of interest Mergellina-Municipio is characterized by four different zones of relatively 

homogeneous conditions (Figure 3.11).  

Overall the tunnel is excavated through a thickness of loose soil (marine, alluvial and volcanic soils) 

overlying the tuff, and often underwater. Because the roof of the tuff layer is very erratic, probably due to 

the past erosive action of superficial running water coming from the hills surrounding the bay, some 

stretches of the tunnel were excavated through the tuff layer. 

 

 

Figure 3.10. Layout of Metro Line 6 of Naples. 

ZONE 1 

The tunnel is excavated at a depth of about 16m and the stretch is mainly interested by loose soils 

of pyroclastic origin (pozzolana, pumice, sand). The most superficial layers are processed by the 

waters and sediments in the marine environment or backshore.  

ZONE 2 

The tunnel, excavated about at 19m of depth, affects the tuff layer for a certain length. The water 

table is found at shallow depth, at an altitude of 1 to 1.5 m above sea level and then the tunnel line 

and the stations are immersed in water. 

ZONE 3 

The tunnel crosses the subsoil that exhibits the same geotechnical conditions of the ZONE 1, with a 

deeper tunnel cover about of 20m under the water table. 

ZONE 4 

The stretch is completely excavated in the tuff layer. 

 

Along the tunnel line, four different segmented rings (sections 1, 2, 3 and 4 in Figure 3.11) have been 

instrumented to control the strains carried out during tunnelling, starting from the early installation 

stages until the long term load condition. Section 1 in particular, in between Mergellina and Arco Mirelli 

that is in green-field condition, has been assumed as the reference experimental section for the studied 

case. 
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Figure 3.12 shows the geotechnical model of the subsoil: starting from the ground surface, below a 

negligible thickness of man-made ground cover, the tunnel is completely excavated in a seashore sandy 

layer (SS) overlaying a volcanic depth of materials, divided into a layer of pyroclastic silty sand (Pyr) and a 

layer of the fractured facies of Neapolitan Yellow Tuff, reaching the top of the bedrock at the depth of 

approximately 40 m. The ground water table is 6m under the ground surface. 

 

 
 

Figure 3.11.  Subsoil of Metro Line 6 of Naples across the stretch Mergellina-Municipio. 

 

 

Figure 3.12. Geotechnical model of subsoil of Section Mergellina-Arco Mirelli of Metro Line 6 of Naples. 

 

Table 3.2 resumes the main values of physical and mechanical parameters of the soil layers derived 

from the extended campaign of geotechnical investigation of 1998-2000, involving both laboratory tests 

and in situ tests (CPT, SPT and cross-hole tests), and from the scientific literature on the topic (Evangelista 

& Pellegrino, 1990). 
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Soil type: 

Depth: 

SS 

From 0 to 21.6 m 

Pyr 

From 21.6 to 29 m 

Tuff 

From 29 to 40 m 

γsat (kN/m3) 18 16 16 

Friction angle (°)  37 37 27 

Cohesion (MPa) 0 0 0.5 

Poisson’s ratio 0.3 0.3 0.3 

Young Modulus (MPa) 50 40 6,360E3 

Table 3.2. Physical and mechanical parameters for each soil layers of Metro Line 6 of Naples in the Section 1. 

 

 

3.2.2 Geometry of the tunnel lining and monitoring 
 

The stretch of the line actually in operation (Mostra-Mergellina) was built using the EPB TBM machine 

(Figure 3.13), installing as system support lining the so called universal ring, 1.7m wide, assembled in nine 

precast concrete elements C34/45, eight larger segments (indicated with the capital letter from B to I in 

Figure 3.14), corresponding to a central angle of 41.5 degrees, plus the keystone A (Figure 3.14) with 

angular opening of 33 degrees. The rings are assembled in a staggered configuration along the tunnel axis 

in such way that the longitudinal joints are not aligned: the links between rings then are realized by 

connecting a segment belonging to a ring to, at least, two segments of the previous ring and two 

segments of the following ring. The tunnel has an external excavation diameter of 8.150 m, the lining has 

an intrados radius of 3.625 m and extrados radius of 3.925 m, for a total thickness of 0.30 m. The annular 

void between the extrados and the external excavation diameter is backfilled with a bi-component grout 

0.15 m thick.  

 

 

 

Figure 3.13. TBM produced by WIRTH, model TB816H / GS to excavate the Metro Line 6 of Naples 
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Figure 3.14. Geometry of segmental tunnel lining of Metro Line 6 of Naples. 

 

In order to avoid the possible concentration of stress in correspondence of the extrados and intrados 

corners between the segments, these latter have a chipping about of 2-5 mm in correspondence of each 

corner (Figure 3.15).  

 

Figure 3.15. Details of design of ring segments of Metro Line 6 of Naples. 
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Figure 3.16 shows the details of design of the joints. Longitudinal and circumferential joints are direct 

concrete-to-concrete flat contacts along the height of the lining thickness. The height of the surfaces at 

contact is about 2/3 of the lining thickness, 0.181m. 

 

 
Figure 3.16. Details of design of circumferential and longitudinal joints of Metro Line 6 of Naples. 

 

In correspondence of the circumferential joint there are also dowel connections in plastic with a steel 

core (Figure 3.16 and 3.17), three for the main segment and two for the key (Figure 3.14). The dowels are 

completely covered and hidden, are inserted into the segment during the assemblage and are mortise-

inserted into the segment of the last assembled ring. The Bi-block system of FIP INDUSTRIALE (pin+ 

sockets), used as longitudinal connectors in circumferential joint of Metro Line 6 of Naples, are design to 

a minimum resistance to the shear of 95 kN and to the pull out of 60 kN. 

 

 

  
 

Figure 3.17.  Bi-block system of FIP INDUSTRIALE type 60/234, used as longitudinal 
connectors in circumferential joint of Metro Line 6 of Naples. 

 

 

The waterproofing of the ring is guaranteed by a gasket system in Ethylene-Propylene Diene Monomer 

(EPDM), placed in special groves along each side of the segment close to the extrados (Figure 3.16). This 

system guarantees the water seal for a misalignment until of 12mm of between the segments at contact. 
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(a) 

 

                            (b) 
 

 

 

 
Figure 3.18.  Schematic layout of the vibrating wire gauges positioning in the (a) transversal 

section and (b) in the plant of the segments of the instrumented ring. 

 

 

The segments of the ring in Section 1 have been instrumented with vibrating wire gauges (Figure 3.19) 

embedded in the segments during construction at the manufacturer’s plant to measure the concrete 

strains. The measuring instrumentation consists of five pairs of extensometer bars, in transversal and 

longitudinal direction, arranged as in Figure 3.18a, b: a pair of orthogonal gauges close to the extrados, a 

pair close to the intrados, the same respect to the axis of symmetry, and a pair of orthogonal gauges in 

the middle of the section. 

 

Figure 3.19. Layout of installation of the vibrating wire gauges. 

The measurements were recorded using a wireless data logger, which allowed an accurate follow up 

of the strain changes in the segments since the concreting stage, during installation and for a long time 

after the tunnel construction. The vibrating wire gauges measure indeed the variation of tensile stress Δσ 

of the wire as the variation of its natural frequency of vibration Δf due to the relative displacements at 

the ends of the strain gage. The deformations Δε are derived from Δσ as:  

           22
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                                             (3.2) 

where E is the Young’s modulus of the steel wire, L the length of the wire. 

The strains records (Figure 3.20) show how the section is mainly under compression; longitudinal 

strains could be under tension if there is the effect of the jacks eccentricity respect the middle of the ring 

while the lateral gauges could dilate for Poisson effect.  

Overall, it can be noticed also how the strains in the concrete volume of each segment are not 

uniform, nor in tangential neither in longitudinal direction. This is due to mainly the effect of the 

installation process that occurs inside the tail skin of the machine: the boundary conditions of each 
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segment change whenever a new segment is installed, the action and reaction forces transmitted 

through the joints induce an initial state of strain that is different for each segment (Pepe G. 2008). 

The long term monitoring of the strains in each segment of the instrumented rind is included in 

Appendix 1. 

 

SEGMENT B 

 
Figure 3.20. Long term monitoring of the longitudinal and circumferential strains in the Segment B of the 

instrumented ring (Marino 2010). 

 

 

3.2.3 3D numerical model 
 

The computational model has been developed with the Finite Element Method in Plaxis 3D 

(Brinkgreve et al. 2013). Figure 3.21 shows the proposed model consisting of 250000 elements. The soil 

domain,discretised by 10-node tetrahedral elements, has a vertical depth of 40m, width equal to 90m, 

according with Gunn 1993 in order to minimize the boundaries effect on the structure. The longitudinal 

dimension of the model, along the tunnel axis direction, has been set equal to 120m after a parametrical 

analysis to guarantee that plane strain conditions occur in the central reference lining section (Figure 

3.21c). 

The non-linear soil behaviour has been simulate with an advanced constitutive model, the Hardening 

Soil Small Strain HSss model (Benz, 2007) available in Plaxis library. This is an elastoplastic model with 

isotropic hardening that can take into account the stiffness decay with strain level and the plastic 

deformation in the early stages of loading. Table 3.3 resumes the main HSss constitutive parameters 
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adopted for the first two layers (Aversa et al. 2015, Bilotta et al. 2017), and discussed in details in 

Appendix 2. 

Figure 3.22 reports the curves  describing the variation of the equivalent shear stiffness with respect 

to the small strain value, G0. The curves were inferred from previous laboratory tests performed on 

samples of  the same lithotypes taken in other nearby sites (Vinale, 1988).The  tuff layer has been 

modelled with the Mohr Coulomb model (Table 3.2). 

 Furthermore, the numerical prevision of the adopted constitutive model is included in the figure. 

 

(a) 3D NUMERICAL MODEL 

 

(b) TRANSVERSAL SECTION 

 

(c) LONGITUDINAL SECTION 

 

Figure 3.21. Three dimensional numerical model of the Metro Line 6 of Naples. 
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 E50
ref 

kN/m2 

Eoed
ref 

kN/m2 

Eur
ref 

kN/m2 

γ0.7 G0
ref 

kN/m2 

pref 

kN/m2 

SS 40e3 40e3 85e3 0.13e-3 88e3 115 

Pyr 47e3 47e3 100e3 0.19e-3 182e3     170 

Table 3.3. HSss constitutive parameters for SS. and Pyr. layers (Aversa et al 2015, Bilotta et al. 2017). 

 

The literature damping curve, D(γ), is also introduced in Figure 3.22, compared with the numerical 

prevision, and should be used for the dynamic simulation in the next Chapter. 

 

 

Figure 3.22. Variation with shear strain of normalized stiffness for SS, Pyr layers. 

 

About the tunnel lining structure, the numerical model assumed for the case history of Florence-

Bologna railways, back-analyzed in the previous paragraph (§3.1) and used as a preliminar calibration of 

the numerical model of the lining, has used also for this case of study, with some modifications. The 

segments indeed, have been modelled as concrete volume elements with linear elastic behaviour; 

longitudinal joints, which are non-bolted flat joints, have been modelled as deformable volumes with the 

heigh equal to the width, assuming the Mohr-Coulomb elastic-perfectly plastic model; the circumferential 

joints are modelled as interface elements with elastic-perfectly plastic behaviour, not modelling the bi-

block elements which have mainly the function of positioning of the segments along the longitudinal 

direction and not a real structural function. Figure 3.23a and b shows the numerical 3D model adopted 

for the lining and the geometry of the longitudinal joint. 

In absence of experimental test on the joints, the rotational stiffness of the joints has been calibrated 

on the base of the analytical solution of Janßen’s joint model. The rotational stiffness is evaluated in 

correspondence of 0.80*Myield/θ0.8 (Do et al. 2013, Thienert & Pulsfort 2011, Van Oorsouw 2010, Zhong et 

al. 2006) where Myield is the yielding moment in correspondence of a rotation angle of 0.01 radians (≈1%) 

equal to 61.5 kNm/m for an average value of normal force of 750 kN/m. 
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(a) 

 

(b) 

 
Figure 3.23. (a) Three dimensional numerical model of the segmental lining and (b) particular of 

the longitudinal joint of the metro Line 6 of Naples. 
 

Figure 3.24 shows the bi-linear moment-rotation relationship adopted for the case of study. 

 

 

 

 

 

- Myield (N=750 kN/m) = 61.5 kNm/m      for θ=1% 

- 0.8*Myield= 0.8*150 = 48.5 kNm/m       for θ0.8=0.108% 

-  kθ  = 0.80*Myield/θ0.8 =48.5/0.00108= 45 kNm/rad/m 

 

Figure 3.24. Bi-linear moment-rotation curve adopted for the joints of the metro Line 6 of Naples. 
 

 

The Young’s modulus E* of the elasto-plastic joint element is set equal to equal to 6E6 kN/m2 

calculated in function of the joint height (0.811m), observing the equivalence principle estabilished 

before (§2.4). 

For the calibration of Morh Coulomb model of the joint, the cohesion has been back-calculated as: 
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                                                         (3.3) 

where σcy is the compressive yielding strength of the concrete C34/45 and Kp is the ratio expressed in 

Equation 3.4, calculated for φ=42° (value chosen in the typical range for the concrete).  

 

𝑘𝑃 =
(1+𝑠𝑒𝑛𝜑)

(1−𝑠𝑒𝑛𝜑)                                                                     (3.4) 

 

The Equation 3.3  has been obtained as shown in Appendix 3. 

Furthermore, The tensile strenght of the joint volume is assumed null, according with Janßen’s theory. 

Circumferential joint behaves the same as the longitudinal one, assigning directly to the interface that 

models the circumferential joint, the material properties of the Mohr Coulomb model through the 

“Custom Option” available in the code. 

Interface is modelled in Plaxis 3D with triangular 12-nodes elements, each working in pairs, compatible 

with the 6-nodes triangular elements of the soil, using 6 Gaussian integration points. The distance 

between two nodes in pair is zero, each of which has three traslational degrees of freedom to simulate 
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the possible relative displacement between the nodes. 

Table 3.4 shows the parameters adopted for the segments and the joints. 

 

 

 E (kN/m2) γ (kN/m3) ν c (kN/m2) φ (°) 

Segments 35E6 25 0.15 - - 

Joints 6E6 25 0.15 9000 42 

Table 3.4. Concrete segments and joints parameters. 

The TBM shield has been modelled with a steel plate (Table 3.5) with a linear elastic behaviour. The 

shield tapering has been simulated with a linearly varying diameter contraction applied along the plate, 

up to a maximum value of 0.3% of the diameter in correspondence of the front. 

 

TBM shield 

Thickness t m 0.35 

Weight  

Young’s Modulus 

Poisson ratio 

γ 

E 

ν 

kN/m3 

kN/m2 

- 

120 

2.1*108 

0.25 

Table 3.5. TBM shield parameters. 

The TBM and soil interaction has been simulated via an interface surface characterised by the strength 

parameters of the adjacent soil reduced by 10%, applying a reducing factor (Rinterface available in Plaxis) 

equal to 0.9. 

 

3.2.4 Details of the EPB-TBM tunnelling 
 

The tunnel excavation process (simplified scheme in Figure 3.25) has been simulated in advancement 

stages of ground excavation, each including the following steps: 

- TBM advancement. The TBM advancement is simulated deactivating a slice of soil in 

correspondence of the front, wide as the lining width (1.7m), and advancing the shield of the same 

length. The face stability is guaranteed, during tunnelling, applying a horizontal pressure at the 

front. This value is set equal 170 kN/m2 as in the monitoring data available (Figure 3.26) in 

correspondence of the instrumented ring. A vertical increment of 18 kN/m2/m of the front 

pressure has been used to take into account the effect of the slurry weight with the depth. 

- Lining installation. To each step of front advancement corresponds the installation of a ring, 

simulated with the activation of the concrete lining volume. The ring installation takes place under 

the TBM tail skin. The jacking thrust on the transversal section of the last installed ring is simulated  

with concentrate forced in longitudinal direction consisting of 29 point loads, as in the scheme in 

Figure 3.19. Each jack can achieve a maximum value of thrust of 2215 kN. In the numerical model a 
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thrust of 2000 kN has been considered for each jack, which resultant on the lining transversal 

section is that read during the monitoring (Figure 3.27). 

- Grouting. Just behind the last installed ring, outside the TBM skin, the grout pressure in its early 

fluid state is applied on the lining and against the soil as radial pressure distribution equal 155 

kN/m2 with a vertical increment of 10 kN/m2/m due to the grout weight. The grout pressure value 

is that read during the monitoring in correspondence of the instrumented ring (Figure 3.26). 

- Grout hardening.. The annular gap between the lining and the soil is filled with solid element of 

grout with isotropic elastic behaviour. In a simplified way the effect of the grout hardening was 

modelled (Figure 3.28): in a first step, a lower stiffness is assigned to the grout to account for the 

mechanical properties of a plastic grout, in the subsequent step a higher stiffness is assigned to 

reproduce the hardened grout behaviour. The choice to consider the length of the stretch for 

which the grout is in the plastic state equal to one ring is compatible with the speed of 

advancement of the TBM machine and the fast process of hardening of the bi-component grout. 

The concrete-grout and grout-soil interactions have been modelled with interface elements which 

behaves elasto-plastically.  

 

 

Figure 3.25. Scheme of the TBM EPB tunnelling adopted for the Metro Line 6 of Naples. 

 

 

 

Figure 3.26. TBM performance of Metro Line 6 of Naples (Bitetti B. 2010). 
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This simplified approach allows to predict and back-calculate the real load transferred from the soil to 

the lining trough the grout. Table 3.6 shows the parameter adopted in the model in terms of Young’s 

Modulus E and reduction factor of the interfaces strength and stiffness Ri. 

In the case of hardened grout, the Young’s modulus E was known while the reducing factor was fixed. 

Between the concrete and the grout, in particular, it is set equal to 0.9, simulating a very stiff contact; 

between the grout and the soil, it is set equal to 0.7, a reasonable value in the case of interaction in sand. 

In the case of plastic grout case instead, the Young’s modulus of the grout was fixed equal to 0.015 

MPa, a reasonable value in correspondence of the early stage of the grout hardening, while the reduction 

factors Ri of the interfaces have been back-calculated to closely fit the in situ concrete measurements in 

the circumferential direction. 

 

Figure 3.27.  Jacking thrust resultant during tunnelling of Metro Line 6 of Naples (Bitetti B. 2010). 

 

The final back-calculated value of Ri is equal to 0.3 in the case of concrete-grout and equal to 0.4 in 

the case of grout-soil interaction, exhibiting a smoother interface behaviour in the first case then the 

second one, as expected. 

 

 Figure 3.28. Zoom in on the scheme of the interaction mechanism concrete-grout-soil during tunnelling 

adopted to simulate the effect of the grout hardening. 
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E plastic grout GPa 0.015 

ν plastic grout - 0.45 

Ri concrete-plastic grout - 0.3 

Ri plastic grout-soil - 0.4 

Ehardened grout GPa 15 

ν hardened grout - 0.15 

Ri concrete-hardened grout - 0.9 

Ri hardened grout-soil - 0.7 

 

Table 3.6. Grout parameters. 

 

3.2.5 Validation of the 3D numerical model 
 

The numerical model has been validated in terms of concrete segments deformations. As the gauges 

are directed in the transversal section of the lining (Figure 3.18b), the strain gauge readings allow to 

derive the strains in the specific point in longitudinal direction, parallel to the tunnel axis, and in the 

tangent direction in the measured point.  

For this reason, the comparison between the measured and numerical strains has been done 

considering the longitudinal component εyy and the tangent (circumferential) component εcirc. of the 

strains evaluated, these latter, as the composition of the two orthogonal contributes εyz and εyx as in the 

Figure 3.29. 

 

 

Figure 3.29. Calculation scheme of the circumferential strain in a reference point of the ring. 

 

Figure 3.30 and 3.31 show the comparison between the measured and the numerical strains in the 

case of circumferential and longitudinal strains respectively.  

The comparison in terms of longitudinal strains in particular, has been done comparing the average 

value of calculated strains in each segment with the same obtained from measurements, removing the 

tensile strains likely caused by the eccentricity of the jack thrust with respect to the middle line of the 

lining, not considered in the numerical model. 
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Figure 3.30. Comparison between the measured and calculated circumferential strains. 

 

The comparison in terms of circumferential strains (Figure 2.30) shows a very good agreement 

between the measures and the calculation both in terms of trend that in terms of magnitude, except for 

some singular points, where very high strains were measured respect the other points in the relative 

segments, as in the case of the points T4 of segment C and T4 of the segment I. 

Similarly, in terms of longitudinal strains the comparison (Figure 2.31) shows a good matching 

between the results, although the numerical ones are in average slightly higher than the measured ones 

due to the fact, not simulating tensile stresses in the numerical model, the ring is subjected only to 

compressive strains. 

Once validated the proposed numerical model comparing the measured and the calculated strains in 

the instrumented tunnel lining, a series of consideration have been done on the lining and soil hevaviour 

during tunnelling in the following paragraph. 

 



 

 

90 Chapter 3: Case histories 

 

Figure 3.31. Comparison between the measured and calculated longitudinal strains. 

 

3.2.6 Structure and soil behaviour during tunnelling 
 

Tunnelling induces a continuous stresses and strains evolution in the time of excavation both in the 

lining, as seen before, and in the soil.  

The lining behaviour is approached in terms of internal forces distribution in the ring at various stages 

during constructions, induced by the current state of strain. 

 The soil behaviour has been analysed in terms of strains and stress paths around the tunnel cavity and 

in terms of ground movements during the excavation process.  

Some considerations on the shear stresses arising at the interface between the soil and the lining 

through the grout layer surrounding the concrete rings are also discussed 

 

Tunnel structure behaviour  

Figure 3.32 shows the distributions of bending moments and normal forces in both directions, along 

the section of the reference ring, at different stages during tunnel construction: when jack thrusts are 

applied, when the grout radial pressure is applied and at the end of the entire construction process. The 

numerical results show how the soil-structure interaction is only in part responsible of the internal forces 

arising in the tunnel lining, much of which is due to the excavation process itself. 

The irregular shape of of the bending moment distribution is due to the presence of longitudinal joints 

while the effect of the jack forces modelled as point loads is more evident in the normal and longitudinal 

forces distribution, with a local increase in correspondence of the loaded points.  

Figure 3.33 puts in evidence the effect of joints on such segmental lining behaviour, comparing the 

internal forces distribution obtained at the end of excavation process in the case of segmental and 

continuous lining. In terms of bending moment, the segmental lining exhibits in general a more 

deformable behaviour, with an avarage value of the resultant lower than the case of continuous lining. 

This difference between the two lining configurations is not really impressive in this case of study due 

to the fact that the influence of the joints on the reduction of the bending moment decreases with the 

joint number increasing (Do et al. 2013b). In the case of Naples, the segmental lining with a rather hight 

number of longitudinal joints equal to nine, exhibits a quite similar behaviour respect the case of 
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continuous lining in terms of bending moment. 

 

 
 

Figure 3.32. Numerical internal forces in transversal section of reference ring in terms of (a) bending moment, (b) 

longitudinal force and (c) normal force. 

 

Also the normal force is affected by the joints pattern, exhibiting in avarage a lower value of the 

resultant in the lining reference section, while the longitudinal force is lower affected by the joints, as 

observed by other authors (Do et al. 2013a), showing the same avarage value in the section, with a higher 

oscillation in correspondence of the joints location, respect the case of continuous lining. 

Interesting is to understand what happens in the grout annulus during the tunnel excavation. Figure 

3.34 for instance shows the evolution of the longitudinal and vertical strains in some points of the grout 

layer, until to reach a steady state condition when the front is far from the reference section. 

There is an increase of the strains during the grout hardening until their stabilization: in the vertical 
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direction the grout is under compression due to the radial soil stresses; in longitudinal direction instead, 

the grout undergoes extension for Poisson’s effect, both in plastic that in hardened state, since it is 

neither well confined neither loaded in longitudinal direction. 

 

 

 

Figure 3.33. Comparison of (a) bending moment, (b) longitudinal force and (c) normal force between continuous and 

segmental lining. 
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Figure 3.34. Longitudinal and vertical strains on the grout during tunnelling. 

 

 

 

Figure 3.35. Development of the components of shear stresses τx and τy with displacements in correspondence of 

the soil-structure interface during tunnelling 

 

During tunneling, frictional forces develop on the surface contact between the surrounding soil and 

the excavated tunnel. The radial load acting on the lining and the jack thrust acting longitudinally induce 

normal σn and tangential τ stresses on the external lining surface. The surface roughness and hardness of 

two materials in contact (grout and soil) are the main parameters influencing the interface friction 

behaviour. 
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Figure 3.35 shows the development of the two component of shear stress τx and τy along the 

transversal and longitudinal directions with, respectively, the transversal and longitudinal component of 

displacement ux and uy, during the front advancement. The results are referred to an interface point on 

the crown of the reference ring and show the increase of tangential stresses with displacements during 

front advancement. 

The magnitude of the shear stresses arising in this point is such to develop small displacement within 

the interface which remains elastic during the entire excavation process, as shown in Figure 3.36. 

 

 
Figure 3.36. Mobilized and limit shear stress at the soil-structure interface. 

 

Soil behaviour 

The evolution of soil strains around the tunnel during construction is shown in Figure 3.37. The vertical 

(a), longitudinal (b) and transversal (c) strain calculated in a number of points around the tunnel cavity, in 

the middle transversal section of a reference ring (y=23.35m), are shown in the figure. In particular: point 

K and L are located 2 m an 6 m above the tunnel crown; point M and N are located 2 m an 6 m on the 

right side of tunnel; point O and P are located 2 m an 6 m below the invert. 

The construction stages are also evidenced in the figure. When the excavation starts, the selected 

points are far from the front and they are subjected to a gradual tendency to compression (negative 

strains) in longitudinal direction due to the front pressure in advancement, and to extension (positive 

stains) in vertical direction due to the relaxation around the cavity; transversal strains are not affected 

very much in this phase.  

During the TBM passage, the soil behaves differently depending on the position with respect to the 

tunnel. For instance, in the case of vertical strains, the points located under and above the tunnel (K-L-O-

P) are under compression, the point on the side of tunnel (M-N) are in extension. In particular, in 

correspondence of grout pressure the strains are subjected to a significant increase after which they keep 

the same value until long term condition. In longitudinal direction, the points are under compression 

during the TBM passage, tend to extension for the grout pressure effect and, and then tend again to 

compression, apart from the points K and O.  

The latter are the closest points to the tunnel along the vertical axis, and they remain in extension also 

in long term condition, although undergoing very low values of strain. In the transverse direction, the 

points under and above the tunnel are under compression, the points on the right are under tension. 
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Again an increase of strains is observed in correspondence of the grout pressure.  

In any case, the magnitude of strains decreases moving away from the tunnel: higher values of the 

strains were calculated in the points K, M and O compared to the points L, N and P.  

It is also worth looking at the stress paths of the same points around the tunnel cavity, in Figure 3.38. 

The points labelled as ‘1’ indicate the initial stress conditions, while the two subsequent marked along the 

stress path indicate the TBM passage and the final state of stress, respectively. 

Above the tunnel, the nearest point K starts from a higher deviator stress, q, than the point L and it 

undergoes a larger decrease. The isotropic stress, p’, is almost constant in L. Beneath the tunnel, both in 

O and in P an almost similar reduction of both q and p’ is calculated. However both above and below the 

tunnel, the closer is the point to the tunnel, the larger is the stress change. 

Points M and N on the right side of tunnel, show a low increase of deviator stress, very similar in the 

two points and an increase of p’ when TBM is passing through the section.  

 

 

Figure 3.37. Soil strains around tunnel cavity respectively (a) in vertical, (b) longitudinal and (c) transversal direction, 

during tunnelling. 
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Figure 3.38. Stress paths around tunnel cavity respectively (a) above the crown, (b) on the right side of the tunnel 

axis; (c) under the bench, during tunnelling. 

 

Looking at the tunnelling effect in terms of induced displacemments, the vertical displacements that 

correspondingly develop at the ground surface in the transverse section while the excavation front 

advances are shown in Figure 3.39. 

The settlement increase with the tunnel excavation up to a value equal to 0.15% of external 
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excavation diameter while the distance of inflection point “i” from the tunnel axis is about of 1.2D, close 

to the empirical solution (Clough and Smith, 1981). 

Figure 3.40 shows the evolution of the surface soil settlements along the longitudinal axis during 

tunnel construction. It can be observed how the maximum surface settlement increases with the tunnel 

progression until stabilizing after about 3D of excavation span. The figure also shows that a non-negligible 

boundary effect develops up to a distance of 2.5-3 D from the lateral boundary, thus confirming the need 

to create a numerical model longer than 10D. 

 

 

Figure 3.39. Vertical displacements at the ground surface along the transversal section y=26.35m during tunnelling. 

 

 

Figure 3.41 shows the vertical settlements along the longitudinal axis at the tunnel crown. The shape 

of the displacement profile is generally more irregular than at the ground surface, since it is more directly 

affected by the boundary conditions that model the TBM excavation process 

  

 

Figure 3.40. Vertical displacements at the ground surface along the longitudinal direction during tunnelling. 

Front advancement 

Front advancement 



 

 

98 Chapter 3: Case histories 

 

Figure 3.41. Vertical displacements at the tunnel crown along the longitudinal direction during tunnelling. 

 



 

 

 

 

 

 

 

 

 

 

SECOND PART: Behaviour of segmental lining under uniform 

seismic load 
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CHAPTER 4 

Tunnel - ground interaction during uniform seismic shaking 
 

 

 

Introduction 
 

The behaviour of tunnels under seismic actions is  rather complex and until two decades ago it was 

generally not considered as a major design issue. Only recently, experimental and numerical research has 

made some significant steps towards the comprehension of the mechanisms governing soil-structure 

interaction for such a structure under seismic actions. 

It is generally assumed that the seismic behaviour of the tunnel in soft ground  is governed by the 

surrounding soil, while the inertial load contribution of the underground structure itself is negligible 

(Hashash et al., 2001). Hence changes of internal forces in the lining due to seismic shaking are generally 

calculated from the transient response of the ground. During the earthquake, the tunnel lining structure 

undergoes deformation both in the transverse section (Hashash et al., 2005), induced by soil shear strain 

in the vertical plane, and in longitudinal direction (St.John & Zahrah, 1987; Kawashima 1999) due to the 

asynchronous motion along the tunnel axis; the common design methods approach the two deformation 

mechanisms separately, not considering the coupled effect. 

This Chapter focuses on the response of different design approaches that model in different ways the 

soil-tunnel interaction (Hashash et al. 2001, Pitilakis  and Tsinidis, 2014) subjected to seismic uniform 

load, with deformation mechanism in the transversal direction only. Pseudo-static and full dynamic 

approaches for instance, have been compared in terms of dynamic increment of the tunnel internal 

forces. The comparison refers to the plain strain tunnel section of the case study of Metro Line 6 of 

Naples.  

 
 

Figure 4.1. Layout of the Chapter 4. 
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As well as the different seismic design approaches, the Chapter investigates also the effect of the 

segmental  lining technology on the tunnel seismic behaviour. During eartquakes, segmental lining 

performs better than a continuous ring due to the higher structural flexibility, producing a decrease of 

deformations in the lining and an increase of the whole structural aseismic capability. However, under 

high levels of ground shaking, the joints are the most vulnerable points of tunnel structure leading to 

joints opening, as observed for example during Kobe eartquake (Dean 2006). 

Starting from the interpretation of the results of the centrifuge test model T3 performed by Lanzano 

2009 on a continuous tunnel lining in reduced scale, the study of the soil-structure interaction has been 

extended to the case of segmental lining. The dynamic behaviour of longitudinal joints has been 

investigated with a set of non-linear 3D full dynamic analyses on the segmental layout. The results have 

been carried out in terms of joint rotation during the dynamic time for different real earthquakes.  

Figure 4.1 shows the organization scheme of this Chapter. 

 

 

4.1        Literature review 
 

 
Seismic underground structures behaviour is very different, generally better, respect the aboveground 

ones. In the first case infact the inertial contribution of the tunnel structure is negligible respect the 

surrounding soil (Wang 1993; Kawashima 2000, Pitilakis & Tsinidis 2010) so that the the soil-structure 

interaction in mainly due to the kinematic interaction and the response of the embedded structure is 

then dominated by the soil. Figure 4.2 shows the different response of the two types of structure that, 

subjected to the same input motion, achieve different level of load and acceleration in the structure. 

 

 
Figure 4.2. Comparison between the seismic behaviour of aboveground and underground structure      

(Pitilakis & Tsinidis 2010) 

 

The kinematic soil-structure interaction in underground structures is therefore dominated  by the 

relative soil-stucture stiffness, that is how flexible is the structure respect the soil. Typically can be 

verified different situations: 1) when the tunnel is very rigid respect the soil, no deformation arise in the 

structure; 2) when the structure is stiffer than soil  lining deformations are lower than the soil 
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deformation in absence of the structure ( free-field soil condition); 3) when the structure is stiff as the 

soil,  the lining follows free-field deformation; 4) when the structure is less stiff than soil, the lining is 

subjected to deformation higher than the free-field condition.  

Another key parameter in the kinematic interaction is the interface friction of the contact surface 

between the soil and the tunnel (Huo et al. 2005, Sederat et al. 2009, Tsinidis et al. 2016) . The two 

extreme cases of soil-tunnel interface, known in literatute as “no slip condition” (rigid contact with a high 

value of friction coefficient)  and “full slip condition” (weak contact with low value of friction coefficient) 

affect differently the yielding response of the soil at the adjacent area of the tunnel: a no slip interface 

will lead to reduced deformations and strains in this soil area and thus the soil stiffness and strength will 

not degrade considerably; a full slip interface  will cause increased deformations and strains in the 

adjacent soil, resulting in a rise of the soil yielding and the soil stiffness degradation (Tsinidis et al. 2016).  

Also the earthquake loades applied on the structure influence its interaction with the surrounding soil, 

typically a slip condition is associated to weak earthquakes while no slip condition to strong earthquakes.  

Figure 4.3 shows the effect of the two key parameters discussed above in terms of soil plastic strain 

distributions computed at the end of seismic shaking. The comparisons verify the effect of interface 

properties on the yielding response of the adjacent soil, with higher values of plastic strains in the case of 

full slip condition respect the case of no slip. In terms of soil-tunnel relative stiffness,  the soil plastic 

strains are much lower in the case of rigid tunnel than those predicted around the flexible one. 

 

 

 

Figure 4.3. Soil plastic strains computed at the end of seismic shaking for flexible and rigid tunnel, in the case of full 

slip and no slip interface condition (Tsinidis et al. 2016). 

 

Similarly, the interface condition and the structure stiffness affect directly the tunnel response in 

terms of increment of dynamic forces. The effect of the mobilized friction along the interface in 

particular, is significant for the dynamic axial force, while it becomes almost negligible for the dynamic 
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bending moment (Huo et al. 2005; Sedarat et al. 2009; Kouretzis et al. 2013, Tsinidis et al. 2016). Soil-

tunnel stiffness instead, affect both axial and bending moment and change during seismic shaking both in 

transversal than in longitudinal tunnel section. 

Figure 4.4 how the dynamic increment of normal force ΔN increases with the friction increasing, while 

this effect is negligible in terms of bending moment ΔM, and how the rigid tunnel suffer higher value of 

ΔN and ΔM respect the flexible one. 

 

 

Figure 4.4. Effect of the soil–tunnel interface friction on (a) the axial force and (b) the bending moment for rigid and 

flexible tunnel (Tsinidis et al. 2016). 

 

These results refer to a plain strain condition occurring when the tunnel is subjected to an uniform 

seismic shaking (transversal component of seismic shaking). 

When such a structure is subjected to seismic waves inclined in any direction respect the tunnel axis 

indeed, it undergoes to different types of deformations mechanism (Owen & Scholl, 1981) as shown in 

Figure 4.5. 

In the transveral tunnel direction, “ovalling (for circular tunnel) or racking (for rectangular tunnel) 

deformations” developed when shear waves propagate normally, or nearly, to the tunnel axis, resulting in 

a distortion of the cross-sectional shape of the tunnel lining. 

Due to the asynchronous motion along the tunnel axis (not uniform seismic load), a double 

deformation mechanism involves the tunnel along the longitudinal direction: 1) “axial deformations” 

generated by the components of seismic waves that produce motions parallel to the axis of the tunnel 

and cause alternating compression and tension; 2) “bending and shear deformations” in the horizontal 

tunnel plane, caused by the components of seismic waves producing particle motions perpendicular to 

the longitudinal axis. 

Such deformation mechanisms cold induce several several damage in a shallow tunnel in soft soil, 

whose type and size is strictly related to many influencing factors of the soil, the structure and the seismic 

avent, such as: 

- type of tunnel (excavated with traditional or mechanized technology); 

- the shape, size and depth of the structure; 

- the properties of the surrounding ground;  

- the properties of the structure; 

- relative soil-structure stiffness and interface surface contact behaviour; 
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- the severity of ground shaking (i.e. peak ground acceleration and magnitude); 

- direction of propagation of the earthquake respect the structure. 

 

 

Figure 4.5. Types of tunnel deformations during a seismic event (Owen & Scholl, 1981). 

 

Very few data are available concerning damages to underground structures and tunnels due to 

earthquakes before 70’s. Damages and failures were accurately documented only after this data, when 

many authors systematically collected data of tunnel damages for different earthquake events. Dowding 

& Rozen (1978) were the first to collect cases of damage to tunnel observed after American and Japanese 

earthquakes. Such a database was updated by Owen & Scholl (1981) after San Francisco (1906) and San 

Fernando (1971) earthquakes, by Sharma & Judd (1991), Power et al. (1996) after Kobe (1995) and 

Northridge (1995) earthquakes, by Corigliano (2006) after Chi-Chi (1999) (Taiwan) and Niigata (2004) 

(Japan) earthquakes. 

Most of all data refer to the tunnels excavated by traditional methods and the most common type of 

damage are those in Figure 4.6. It can be observed how the different deformation mechanisms 

introduced before can induce in the tunnel lining cracks in longitudinal, transversal and inclined direction 

and also shear. This reflects the fact that, as well as the the lining stiffness and the interface behaviour 

also the seismic event itself, in terms of maximum acceleration and direction of propagation, is a key 

parameter for the evaluation of the tunnel lining seismic response. 

Figure 4.7 shows a case history of tunnel damage after earthquake in Italy. Monteluco road tunnel, 

excavated with traditional method, is located in the center of Italy, three kilometres distant from the 

epicentre of L’Aquila earthquake event (6 of April 2009, Mw 6.3). After the seimic event, the tunnel has 

presented a widespread crack pattern, documented by visual survey and by monitoring of a stretch of 

450m of the tunnel for about five months after the main event. 

The crack pattern involves deformation mechanisms both in transversal that in longitudinal direction 

and inclined one also, mainly concentrated on the sides of the tunnel, in the order of tenths of a 

millimetres, and in correspondence of the concrete casting shootings, in the order of centimeters. 

The long term monitoring of the crack movements (Figure 4.8) shows an initial tendency to cracks 

opening, a subsequent tendency to closing, in long term condition instead a tendency to movements 
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stabilization except for the points located near the  concrete casting shootings, the most vulnerable 

points of the structure in correspondence of which water seepage was been observed. 

 

 

Figure 4.6. Types of tunnel damage (Wang et al. 2001). 

 

It should be noted how in literature there are very few works focusing on the dynamic damages of 

segmental tunnel lining installed by mechanized excavation, probably due to the fact that this is a quite 

recent technology that has been experienced not very many observable damages. Dean et al. 2006 

conducted an extensive literature search to find tunnel inspection reports from various earthquakes that 

have occurred in urban areas over the past 25 years and, concerning the segmental lining technology, the 

authors documented the case history of the Isobe Dore Shield Tunnel in Japan. After Kobe Earthquake of 

January 17, 1995 (Moment magnitude 6.9 and surface horizontal acceleration 0.5g), the damage report 

of Isobe Dore Tunnel stated the following (JSCE, 1995, p.152): “…there was some spalling in the grooves in 

the segments between segment rings; otherwise the structure remained undamaged…”. 

 

Figure 4.7. Damages after L’Aquila earthquake 2009 observed in Monteluco road tunnel in Italy                         
(Valente et al. 2010). 
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Figure 4.8. Long term monitoring of crack displacements in Monteluco road tunnel in Italy after L’Aquila 
earthquake (Valente et al. 2010). 

 

This case history shows a different seismic performance of a segmental lining respect the continuous 

case; the presence of joints makes the lining globally more flexible, with a high demand of rotation in 

correspondence of the joints that, under high value of acceleration, can experience excessive rotation 

with a possible lost of watertightness as in the case od Isobe Dore Tunnel. 

This iussue is not very investigated in the tecnical literature that is more focused on the case of 

continuous tunnel lining, approaching the problem with different design methods. 

In literature, there are two main approaches of analysis with different complexity and different 

reliability of the results: 

- Uncoupled analysis  

- Coupled full dynamic analysis  

Uncopled analysis can be consider a quasi-static approach where the seismic load acting on the 

structure in a static way is introduced in terms of equivalent forces (Forced-Based-Model, FBM) or 

equivalent field displacements (Displacement-Based-Method, DBM), assuming that the structure 

undergoes the free field ground deformation.  

Overall the DBM is more appropiate and consistent with the phisics of the problem (Pitilakis and 

Tsinidis 2010) since the ground distorsions generated by the seismic shaking affect the underground 

structure also that undergoes the soil deformation.  The effect of the equivalent seismic load on the 

structure can be evaluated using analytical formulas (Wang 1993, Penzien & Wu 1998, Penzien 2000) or 

simplified numerical anlysis. The analytical solution are more approximated because refer to a tunnel 

modelled as an elastic beam, modelling the relative soil-structure relative stiffness in the extreme cases 

of no slip and full slip interface condition, not considering explicitly the soil-structure interaction. The 

semplified numerical methods are less approximate approaches allowing an accurate evaluation of the 

input parameters for the soil-structure interaction analyses.  

 The full dynamic analysis is the most complete and detailed analysis level solving the motion 

equations, including the soil-structure interaction, in the analysis domain. Full dynamic analysis allows to 

investigate the non linear behaviour of the soil and of the structure and the effect of the main influence 

paramenters. 

The soil shear modulus G and the damping D for instance, are modified in a multi step procedure at 

every step of analysis, according with the shear deformation of the soil γ, estimated in the previous time 
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step for each soil depht. The degradation of the shear soil modulus G(γ) and the increase of the damping 

ratio D(γ) with the soil deformation level, are descibed by the selected G(γ)-D(γ) curve. 

 

4.2 Approaches of analysis in plane strain  
 

With reference to a real case study (Fabozzi et al. 2017) including a large open multi-propped 

excavation and a circular segmented tunnel in a densely urbanized area of the city centre in Napoli, the 

section in correspondence of San Pasquale Station (Figure 4.9) has been used to investigate some of the 

above mentioned aspects. 

 

 

Figure 4.9. Localization of the analysis section and geotechnical model of subsoil of Section 2 - San Pasquale 

Station of Metro Line 6 of Naples. 

 

The tunnel axis of San Pasquale section in deeper than that of section 1 studied in the Chapter 3 and 

excavated in between the SS and Pyr layers which have a different thickness respect the previous case. 

The physical and mechanical parameters and the calibration of the constitutive model assumed for the 

three layer are the same of the Section 1 (see Table 3.2 and Table 3.3 respectively). 

Pseudo static (DBM) and full dynamic analysis have been compared  focusing on the effects of ground 

shaking on the  increment of internal forces in the structure with respect to those acting in static 

conditions, preliminarly evaluated. 



 

 

109 Chapter 4: Tunnel-ground interaction during uniform seismic shaking  

4.2.1 Pseudo-static analysis 

 
Pseudo-static effect of an earthquake has been evaluated through the following steps:  

1. numerical modelling of the excavation of the tunnel to calculate the initial state of stress action on 

the tunnel lining; 

2. free-field FF seismic response analyses of the site to calculate the pseudo static load; 

3. pseudo-static analyses: the equivalent seismic load calculated with the FF analysis is statically 

applied  to the structure as a distribution of displacements. The quasi-static analysis allows to 

evaluate the dynamic increment of internal forces in the lining respect the initial static ones. 

 

1. NUMERICAL MODELLING OF THE EXCAVATION OF THE TUNNEL 

The segmental section of the tunnel (Figure 4.10a), whose geometry was already described in details 

in Chapter 3, was modelled for semplicity as an equivalent continuous concrete ring (Figure 4.10b) in the 

numerical analyses, adopting an equivalent inertia of the lining section, Ieq (Table 4.1), defined as 

proposed by Muir Wood (1975), by the following formula:  

𝐼𝑒𝑞 = 𝐼𝑗 + (
4

𝑛
)

2
𝐼                                                                             (4.1) 

 

where n is the number of joints, Ij the inertia of a single joint, I that of the continuous lining.  

 

  

Figure 4.10. (a) Actual vs. (b) simplified geometry of the segmental tunnel lining. 

 

A linear elastic behaviour was assumed for both concrete and grout, with the relevant parameters 

already summarized in Table 3.3. 

The FE mesh of the subsoil and the tunnel developed in Plaxis 2D is shown in Figure 4.11. The lateral 

boundary conditions during static analysis consisted of fixed displacements in the horizontal direction at 

the vertical sides of the model and fixed displacements in both directions at the bottom. Displacements 

along the upper surface were set free. 

An interface between the grout and the soil was introduced, with a reducing factor R= 0.7 applied to 

strength and stiffness of the interface material, compared to the surrounding soil.  
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Material I 

m4/m 

ti 

m 

Ieq 

m4/m 

teq 

m 

Concrete 0.00225 0.30 0.00101 0.23 

Grout 0.00028 0.15 - - 

Table 4.1: Equivalent parameters of the continuous lining. 

 

 

Figure 4.11. 2D FE numerical model. 

  

 In order to reproduce the state of stress around the tunnel cavity, taking into account the 3D arching 

effect that occurs within the soil and the deformations before lining installation, the initial lithostatic 

stress, σ0, was proportionally reduced around the cavity to:  

  01                                                                        (4.2) 

where the stress relaxation coefficient λ was assumed equal to 0.3. The excavation was then simulated 

through three phases: 

- Phase 1. Generation of the initial lithostatic stress field; 

- Phase 2. Stress relaxation; 

- Phase 3. Lining installation and grouting, in drained conditions. 

Figure 4.12 shows the results of calculations in terms of bending moment M and normal force N 

induced in the tunnel lining by such a simplified 2D excavation process. Starting from this static state of 

stress, pseudo-static and full dynamic analyses were performed, as detailed in the following sections. 

 

 

Figure 4.12. Static internal forces in the tunnel lining. 
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2. FREE-FIELD SEISMIC RESPONSE ANALYSES  

 

According to the Probabilistic Seismic Hazard Analysis (PSHA), adopted by the Italian Building  code 

(NTC, 2008), the reference value of the peak ground acceleration, ag, for a given design limit  state, is 

related to the probability of exceedance, Pr, of the earthquake along the reference life cycle  of the 

building or infrastructure, VR. For the studied site, the median hazard curve shown in Figure 4.13a 

provides a value of ag=0.168g, by assuming a ‘life safety limit state’ (i.e. Pr=10%), and VR=50y, which 

correspond to a return period, TR, of the design earthquake as high as 475y.  

 

 

Figure 4.13. (a) Seismic hazard curve for ‘Riviera di Chiaia’ site; (b) de-aggregation chart; (c) 
selected accelerograms; input and target spectra (d). 

 

Figure 4.13b reports the corresponding de-aggregation histogram, providing the relative contribution, 

w(%), to the selected hazard value as a function of the magnitude, MS, and site-source  distance, Repi. 

The plot reflects the major influence of near-field seismic sources with relatively low potential 

magnitudes, located in the volcanic areas surrounding the city, compared to the minor dependence of 

the hazard curve of peak acceleration from far-field high-magnitude sources, pertaining to the Apennine 

chain fault systems. 

The selection of natural seismic input motions used in the dynamic analyses was performed  using 

REXEL code (Iervolino et al., 2009); seven seismic records on rock outcrop belonging to the ranges of 

4.5<Mw<7 and 0<Repi<100km, encompassing the whole de-aggregation histogram (see  Figure 4.13b), 

were selected and scaled to ag=0.168g in order to result compatible, on the average, with the uniform 

hazard ‘target’ spectrum specified by the seismic hazard map for the site, by considering a soil class ‘A’ 
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(stiff rock outcrop) according to the NTC (2008). Figures 4.13c-d respectively show the selected time 

histories and the corresponding elastic response spectra, these latter plotted together with the mean and 

the target spectrum.  Table 4.2 reports the main features of the selected signals, all recorded at European 

seismic stations, which were subjected to a band-pass filtering in the range of 0.1-25 Hz prior to the 

seismic response analyses. Given the flatness of the area and the relatively homogeneity of the subsoil, 

characterized by horizontal soil layering, any topographic effect was excluded and the stratigraphic 

amplification of the free-field motion was evaluated by means of one-dimensional seismic response 

analyses. The analyses were carried out using the EERA code (Bardet et al., 2000), operating in total 

stresses and in the frequency domain by a linear equivalent approach. The dependency on shear strain 

amplitude of the equivalent parameters (shear stiffness and damping ratio) of the materials SS, Pyr and 

Tuff1 was assumed as described by the curves shown in Figure 4.15. 

 

Earthquake ID Earthquake name Date Mw Station ID Repi [km] Waveform ID 

2309 Bingol 01/05/2003 6.3 ST539 14.0 7142 

34 Friuli 06/05/1976 6.5 ST20 23.0 55 

93 Montenegro 15/04/1979 6.9 ST64 21.0 198 

291 Umbria Marche 06/10/1997 5.5 ST236 5.0 651 

2142 South Iceland 21/06/2000 6.4 ST2558 5.0 6349 

71 Val Comino 11/05/1984 5.5 ATQ 17.4 276 

178 l'Aquila 06/04/2009 6.3 FMG 19.3 806 

Table 4.2: Main features of the selected seismic signals. 

 

Figure 4.14 shows the results obtained for the seven input motions in terms of vertical profiles of (a) 

maximum acceleration, amax, (b) maximum shear strain, max, and (c) maximum horizontal displacement 

relative to the bedrock, umax and mobilized value of normalized shear stiffness, Gmob/G0 (d). 

 

      (a) (b)       (c) (d) 

 

Figure 4.14. Results of 1D linear equivalent response analyses. 
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It can be observed how highest shear deformations develop within the more deformable SS surface 

layer and, in particular, L’Aquila earthquake (light blue line) induces the highest, the largest strains 

throughout the whole soil layering and consequently, the highest horizontal displacements. 

This latter input motion was therefore viewed as the most conservative loading condition for 

predicting the seismic performance of the tunnel with the analyses which will be described in the 

following sections. 

 

Figure 4.15. Variation with shear strain of normalized stiffness and damping ratio for SS, Pyr and Tuff1. 

 

 

3. PSEUDO-STATIC ANALYSES 

 
The effect of an earthquake is simulated with an equivalent seismic load, statically applied  to the 

structure generally as a distribution of inertia forces or displacements (e.g. Argyroudis & Pitilakis 2012, Do 

et al. 2015).  

The results of the free-field seismic response analyses described in the previous section were 

therefore used as pseudo-static loading of the same subsoil-structure models adopted for the static 

analyses reported in the previous section. The profile of peak horizontal displacements corresponding to 

the free-field soil response to L’Aquila earthquake (light blue line in Figure 4.14c) was statically  applied to 

the boundaries of the numerical model.The soils were modelled as linearly elastic, by adopting the profile 

of the equivalent shear modulus, Gmob, mobilized in the corresponding free- field analysis (light blue line 

in Figure 4.14d). 

Figure 4.16 shows the FEM mesh adopted in the pseudo-static analysis of the tunnel, with a simplified 

pattern of the boundary conditions. The distribution of displacements corresponding to the input motion 

was applied at a distance of three diameters from the tunnel.  

The numerical mesh consists of 135.273 elements, with an average size of 0.5m. The lateral boundary 

conditions during pseudo-static analysis allow for free displacements along the vertical direction; the 

bottom nodes of the domain are fixed, while those at surface are free to move in vertical direction, and 

constrained to a constant horizontal displacement equal to the maximum free-field value, as also 

assumed in previous literature studies (e.g. Do et al., 2015; Tsinidis et al., 2016). 
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Figure 4.16. (a) Mesh and boundary conditions of the numerical model for pseudo-static analysis of the tunnel, 
(b) detail of the mesh around the tunnel. 

 

Figure 4.17 shows the contours of horizontal displacements predicted with the above numerical 

model in free-field conditions (a) and with the presence of the structure (b). The first drawing confirms 

that the reduced size of the domain was enough to reproduce a homogeneous field of displacements, 

while the second contour shows the ‘shadowing’ effect induced by the presence of the tunnel on the 

deformation of the soil around. 

 

 

Figure 4.17. Contours of horizontal displacements in free-field conditions (a) and with soil-tunnel interaction (b). 

 

The numerical model used for the pseudo-static analysis (Figure 4.16) has been assumed after a 

number of sensitivity analysis on the effect of the the distance ‘d’ of the boundaries from the tunnel axis 

and the effect of the presence of the constant horizontal displacement on the top of the model. Figure 

4.18a for instance shows as, for a fixed value of boundaries distance (d equal three times the tunnel 

diameter) the presence of the constant horizontal displacement allows to model an uniform distribution 

of the imposed horizontal displacements profile to the entire domain. In this case of consequence, the 

effect of the distance ‘d’ (Figure 4.18b) is negligible. On the contrary, in the case of absence of the 

constant horizontal displacement on the top, the model is not able to induce an uniform deformation 

mechanism in the entire domain and this effect is amplified increasing the boundaries distance ‘d’ (Figure 

4.18c). 

Note that the displacements profiles shown in Figure 4.18 refer to the middle section of the 2D 

numerical model. 

d=3D d=3D

ux ux

(a) (b)

(a) (b)
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Figure 4.18. Influence of the boundaries condition and the boundaries distance ‘d’ on the pseudo-static analysis: 
horizontal displacement profiles in correspondence of the mid section of the 2D model. 

 

The effect of the boundary distance from the structure was investigated also in terms of increments of 

internal bending moments, M, and hoop forces, N, induced in the transverse tunnel section, only for 

the case modelling the horizontal displacement contrain. 

 Figure 4.19 shows the comparison for the cases of boundary distance, d, equal to three, two and one 

time the tunnel diameter, D. Differences are negligible if not null. 

The chosen model good reproduce the homogeneous field of displacements. 

 

 

Figure 4.19. Influence of boundaries on the pseudo-static increments of bending moments (a) and hoop forces (b). 

 

4.2.2 Full dynamic analysis 
 

Full dynamic analyses that follow a coupled approach for the soil-structure interaction, provides 

satisfactory interpretation of non-linear boundary problems during earthquakes. 

Mereover, they provide a realible tool for the seismic design of tunnels, including soil-structure 

interaction and irreversible soil behaviour (Lanzano G. & Bilotta E. 2014, Lanzono G. et al 2014).  

A coupled approach was followed, by including the soil-structure interaction in the step-by-step 

solution of the equations of motion in the time domain, this  time accounting for the pre-failure non-

linear behaviour of soil through the ‘HSss’ constitutive  model (Appendix 2). 
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 It is worth mentioning that the same FE mesh used for static analysis (see Figure 4.11) was originally 

calibrated for the full dynamic analysis. As a matter of fact, the width of such numerical model was 

originally optimized by a series of sensitivity analyses, in order to reach a true free-field  condition at the 

lateral borders and to minimize the influence of vertical boundaries, modelled with viscous dashpots as 

suggested by Lysmer & Kuhlemeyer (1969). Also, the mesh was discretized aiming at a reliable 

propagation of the maximum significant frequency of the input signal (Kuhlemeyer & Lysmer 1973), 

leading to an average size of 0.65m (Figure 4.20).  

 

Figure 4.20. (a) Mesh and boundary conditions of the numerical model for full-dynamic analysis of the tunnel; (b) 
detail of the mesh around the tunnel cavity. 

 

The reference input motion of L’Aquila earthquake was applied at the rigid base of the model (rigid 

base means fix-end boundary, that is any downward-traveling waves in the soil will be completely 

reflected back toward the ground surface by the rigid layer) as a  time history of acceleration.  

An additional small-strain viscous damping was introduced in the dynamic calculation by means of the 

well-known Rayleigh formulation (Park & Hashash 2004), which considers a linear  combination of the 

mass [M] and the stiffness [K] matrices as follows: 

[𝐶] = 𝛼𝑅[𝑀] + 𝛽𝑅[𝐾]                                                                 (4.3) 

The damping coefficients, αR and βR, were calculated following to the ‘double frequency approach’, 

assuming as target values the first natural frequency of the deposit and the main frequency of the  input 

motion. The full dynamic analysis of the tunnel-subsoil system with a non-linear soil constitutive model 

allowed for predicting the evolution of the internal forces in the lining starting from the excavation stages 

and until the end of shaking.  

Figure 4.21 indeed, shows the time  history of the bending moment and the hoop force ìat the section 

=283°, where the ratio M/N reaches its maximum value over time. The residual bending moment is 

equal to 8.5 kNm/m, with a peak value of 54 kNm/m, while the residual normal force is equal to 630 

kN/m, with a peak value of 692 kN/m.° 

 

 

Figure 4.21. Time histories of (a) bending moment, M, and (b) hoop force, N, at the section located at θ=283° in 

the lining. 
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Figure 4.22 shows the distribution of the dynamic increment of bending moment ΔM and hoop force 

ΔN in the transversal tunnel section in correspondence of the peak acceleration of the input signal. 

 

 

Figure 4.22. Increment of the dynamic increment of bending moment ΔM and hoop force ΔN in the peak 

acceleration of the full dynamic analysis. 

 

4.2.3 Comparison 
 

Figure 4.23 shows the increments of internal forces around the whole lining resulting from the 

pseudo-static and full dynamic analyses; in this latter case, the values plotted are those predicted at the 

time of peak acceleration, for consistency with the assumptions made for applying the pseudo-static 

approach. 

The comparison shows that, at least for this particular case, the pseudo-static analysis underestimates 

the increment of forces with respect to the full dynamic analysis. This result is in agreement with other 

previous studies (Bilotta et al., 2007; Argyroudis & Pitilakis, 2012; Tsinidis et al., 2016) showing, in almost 

all cases of flexible lining, an underestimation of the dynamic increment of the internal forces with the 

simplified pseudo-static approach as a function of the interface behaviour. 

 

 

 
Figure 4.23. Comparison between pseudo-static and full dynamic analyses in terms of seismic increments of (a) 

bending moment, M, and (b) hoop force, N. 

 

Figure 4.24 for istance shows the effect of the interface friction on the lining internal forces; reducing 

the friction factor, therefore tending thowards a smooter interface, it can be observed a reduction of 

dynamic increment of normal forces, up to a value about equal to 40%. 

The dynamic increment of bending moment is not very influenced by the interface behaviour 
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Figure 4.24. Effect of the soil-structure interface behaviour in terms of dynamic increment of internal forces. 

 

4.3 Comparison between dynamic behaviour of segmental and continuous lining 
 

The complex interaction mechanism between the tunnel structure and the surrounding soil during 

dynamic shaking can be monitored during centrifuge tests on physical models at reduced scale. These 

tests allow the main mechanisms involved in the evolution of observed phenomena to be identified and 

provide an extensive base of experimental data to calibrate advanced numerical methods of analysis in 

ideal situations where soil properties, boundary conditions and dynamic loads are clearly defined.  

 This paragraph illustrates the results of a numerical study aimed at modelling the performance of 

continuous and segmental linings of shallow tunnel under seismic loading. A set of 3D finite-element full 

dynamic analyses have been carried out, calibrated on the experimental results of a centrifuge test on a 

model tunnel in a dense dry sand layer subjected to transversal dynamic loading (Lanzano G. et al 2012). 

The numerical study was extended to model and compare the seismic demand of a continuous and a 

segmental reinforced concrete lining, including the effect of the excavation process on the pre-seismic 

conditions and the influence of different input signals. 

The results show that 1) even in rather simple ground conditions, a suitable constitutive model for soil 

is needed to capture the effect of soil-lining interaction during and after the seismic event; 2) the effect 

of the construction stage on the seismic demand of the tunnel lining is clearly evidenced, indicating that 

the pre-seismic ground conditions influences the magnitude of changes of internal force during and after 

shaking;  3) the significant effect of the jointed pattern of a segmental lining, which implies a larger 

flexibility and compressibility in the transverse section, compared to a continuous lining, hence lower 

structural demand. 

 

4.3.1 Experimental benchmark 
 

The centrifuge test model T3, described in details by Lanzano G. 2009, is the experimental benchmark 

for the validation of the numerical model used for the study, then extended to model a realistic case, 

more complex in terms of geometry of the lining and considering natural input signals 

 It is the aluminium model of a tunnel (diameter D=75mm, thickness t=0.5mm, cover C=150mm) 

embedded in a layer of dry Leighton Buzzard sand (fraction E) at relative density of 75% (Figure 4.25). At 

prototype scale (scaling factor N=80), the tunnel diameter is 6 m, the tunnel axis depth is 15 m and the 

lining thickness is comparable to that of a concrete lining about 0.06 m thick. Figure 4.27 shows for 

instance, the main scaling laws to compare the model and the prototype.  

Vertical and hozontal accelerometers have been used to measure the accelerations of the soil during 
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the shaking, LVDT in vertical direction for the displacements reading at surface and four strain gauges 

along the transverse tunnel section for the of lining strains monitoring. 

The numerical model has been implemented in the finite element (FE) code Plaxis 3D. Figure 4.26 

shows the numerical mesh of model T3 at prototype scale: the vertical depth is 80 times the relevant 

small scale dimension (23.2 m), the width (200 m) has been established by a series of parametric analyses 

in order to reach a free-field condition and minimise the influence of boundaries. A longitudinal stretch of 

the model of 150 m has been considered to guarantee plane strain conditions in the central reference 

section, to be compared to the experimental results. 

 

(a) 

 
(b) 

 
 

Figure 4.25. (a) Layout of model T3; (b) Input motion EQ1 reference ACC13 (at prototype scale). 

 

The lateral boundary conditions consist on fixed displacements in the horizontal direction 

perpendicular to the vertical sides of the mesh in static condition; viscous dashpots are applied during 

dynamic stages of analysis (Lysmer & Kuhlemeyer 1969), the base of the model is fixed both in vertical 

and in horizontal directions, the nodes at the top surface instead are completely free. The minimum mesh 

size was set as a function of the maximum investigable frequency of the signal fmax = 0.375 Hz 

(Kuhlemeyer & Lysmer 1973). 

The pseudo-harmonic input signal, read by the reference accelerometer ACC13 and scaled up to 

prototype scale (Figure 4.27b), was applied at the base of the numerical model. It was preliminary band-

pass filtered in the interval of frequency 15–130 Hz in order to reduce the high-frequency content of the 

signal.  
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Figure 4.26. Three dimensional numerical mesh. 

 

Figure 4.27. (a) Stresses distribution in the prototype and the centrifuge model; (b) Scaling factor prototype model. 

 

The lining is a structural elastic plate (EI=3.7·102 kNm2/m; EA=2.8·106 kN/m) with a very smooth 

interface; the interface factor Rinterface, available in the code to define the interface conditions, was set 

equal to 0.05, as calibrated by Lanzano et al. 2014 matching the best interpretation of experimental 

dynamic increments of hoop forces, a reasonable value for relative flexible tunnel subjected to a “soft” 

seismic loading conditions. The dynamic behaviour of the sandy layer has been modelled with the 

Hardening Soil with small strain overlay constitutive model (Benz 2007) using the parameters shown in 

Table 4.3.  

φ  

° 

ψ 

° 

c’ 

kN/m2 

E50
ref 

kN/m2 

Eoed
ref 

kN/m2 

Eur
ref 

kN/m2 

γ0.7 

- 

G0
ref 

kN/m2 

pref 

kN/m2 

αRayleigh 

- 

βRayleigh 

- 

38.6 8.2 0.01 18.60E3 20.50E3 60.16E3 0.50E-3 72.70E3 100 0.0668 0.704 E-3 

 

Table 4.3 Soil properties and constitutive models calibration (Lanzano G. et al. 2016). 

 

The mechanical parameters of the soil were derived from Lanzano et al. 2016. 

Figure 4.28 and Figure 4.29 show the comparison between some experimental and numerical results 

in terms of accelerations time histories and Fourier spectra along the tunnel and the free field 

respectively. The numerical results are in good agreement with the experimental data, both in terms of 

acceleration and in terms of Fourier amplitude. There is an evidence of over-amplification of the signal at 

high frequencies, as observed also by Conti et al. 2014 and Amorosi et al. 2014, partially reduced by the 

additional contribution of the introduced Rayleigh damping (Figure 4.30). 



 

 

121 Chapter 4: Tunnel-ground interaction during uniform seismic shaking  

 

 

Figure 4.28. Comparison between experimental and numerical results in correspondence of the accelerometers 

along the tunnel vertical. 
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Figure 4.29. Comparison between experimental and numerical results in correspondence of the accelerometers along the 

free field vertical. 
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Figure 4.30. Rayleigh damping function adopted in the numerical analysis. 

 

 

 

Figure 4.31. Strain gauges location layout (Lanzano et al. 2012). 

 

As introduced above, the strain measurements on the tube were performed in two sections, to check 

that no boundary effects occurred and the plane-strain conditions were ensured. The main instrumented 

section (section A in Figure 4.31) was located at the mid-span of the tube and a second section was 

instrumented at 50 mm aside (section B in Figure 4.31).  

Tab 4.4 shows the comparison between the experimental and numerical internal forces (M,N) at the 

and of the spin up stage. 

The time histories of bending moments M and hoop forces N measured during model shaking are 

shown and compared with the numerical ones in Figure 4.32 and 4.33. 

Positive values represent bending moment with tensile stress increments on the internal lining surface 

and compressive hoop force, respectively. Both values of bending moments (Figure 4.32) and hoop forces 

(Figure 4.33), experimental and numerical ones, have been carried out in prototype scale and refer those 

measured along the main section A , that are practically the same of those recorded in the section B. 

Experimental data show a trend to increase during shaking, with a reversible change of internal forces 

due to the cycling loading and an their irreversible increment due to plastic strains arising in the soil 

during shaking. 

 Overall, the numerical results of the tunnel lining are less satisfactory than the soil ones, as observed 

in many other literature works (Bilotta et. al. 2014, Lanzano & Bilotta 2014, Conti et al. 2014, Amorosi et 
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al. 2014, Tsinidis et al. 2016). 

 

 
 

Figure 4.32. Comparison between experimental and numerical dynamic increment of bending moment. 

 

For instance, the transient values of bending moment and hoop force are in reasonable agreement 

with the experimental ones while the permanent values are rather different, are underestimated in all 

cases. These latter are due to mainly the densification of the soil around the tunnel, as observed by 

Lanzano et al. 2012. 

The different interpretation carried out by the numerical analysis of the permanent forces in the 

lining, may be due to a possible non homogeneity of the soil around the tunnel, not incluted in the 

numerical model. This possible condition coud generate different soil-structure relative stiffness 

compared with that one computed in the model, and could affect the soil-structure interface behaviuor 

also that is very influencing in term of hoop forces (see §4.2). 

 

 

Figure 4.33. Comparison between experimental and numerical dynamic increment of hoop force. 
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There is also a scale effect on the computational numerical model response for the interpretation of 

the internal tunnel lining forces, switching from the model to prototype scale. 

Lanzano e Bilotta 2014 infact, show how the different scale affects in particular the permanent rate of 

force rather than the reversible one. The prototype scale for instance, that was adopted in these 

numerical analysis, provides a closer interpretation of the experimental data respect the model scale in 

terms of normal forces in particular, less influencing the bending moments. 

Once verified the ability of the 3D model to back-calculate the experimental results, the calculations 

were extended to analyse the behaviour in the same sand layer of different tunnel lining technologies, 

continuous and segmental one. 

 Continuous concrete lining has a thickness t = 0.3m and diameter D = 6m. Axial and flexural stiffness 

of the ring were set to EA = 10.5E6 kN/m and EI = 78.75E3 kNm2/m, respectively, and a realistic interface 

was assumed setting Rinterface = 0.7. With regard of the segmental lining, the joints pattern adopted in the 

analysis is the same of the static case of metro Line 6 of Naples (see Chapter 3). 

A set of 3D full dynamic analysis have been performed using different natural input signals applied as 

time histories of acceleration at the base of the mesh, starting from different initial conditions, 

considering and not considering the effect of the tunnel construction. The main results are discussed in 

the next paragraphs. 

 

4.3.2 Influence of pre-seismic conditions 
  

Despite what was modelled in the centrifuge test, where the tunnel lining was already in place when 

the ground stresses were applied during spin up, in reality tunnelling involves a rather complex 

construction process. Such a process modifies the soil stresses around the tunnel and this may influence 

the dynamic response of the tunnel lining during following shaking. Hence the effects of a full excavation 

process were taken into account in the analyses.  

Typical mechanized tunnelling by an earth pressure balance (EPB) machine was simulated in the 

analyses by modelling in stages the advancement of lined cavity up to the completion of the full tunnel 

stretch, as follows. A stiff cylindrical plate modelled the TBM shield. To take into account the shield 

tapering a linearly varying diameter contraction was applied along the plate, up to a maximum value of 

0.2%. The last installed ring of lining, positioned under the TBM tail skin, was modelled with an elastic 

volume of concrete (E=36 GPa) and loaded in longitudinal direction by a jack thrust of 30 MN. Just behind 

the installed ring, the injected grout in its early fresh state was modelled by applying an uniform radial 

pressure both on the adjacent ring and against the soil; along the rest of the lining the hardened grout 

was modelled as a layer 0.15 m thick, having an elastic stiffness E=15 GPa. The effect of groung hardening 

has been modelled in a more simple way respect that showes in the Chapter 3. 

In Figure 4.34 the distribution of bending moment (Figure 4.34a), hoop force (Figure 4.34b) and 

longitudinal force (Figure 4.34c) in the transverse reference section are shown referring to the static ‘pre-

shaking’ for both cases of simulated excavation (red lines) and wished-in-place tunnel (blue lines). The 

stress change due to the excavation ensures lower internal loadings in terms of bending moments and 

normal forces with respect to the case of a wished-in-place tunnel; furthermore, the latter is almost not 

loaded in longitudinal direction. 
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Figure 4.34. Distribution along the transverse reference section of (a) bending moment, (b) hoop force, (c) 

longitudinal force in static ‘pre-shaking’. 

 

 

Once completed the whole tunnel stretch, the dynamic analysis was carried out similarly to that 

described in detailed before (§4.3.1). The results were compared with those obtained without simulating 

the excavation. Figure 4.36 shows, as an example, the case of South Iceland Earthquake (Mw=6.4, 2000) 

extracted from the European Strong Motion database. 

 

 

 

Figure 4.35. South Iceland Earthquake 2000 (M =6.4): (a) time history; (b) Fourier spectrum. 

 

The cycling action of the seismic loading involves a continuous redistribution of stress in the soil and 

around the tunnel cavity in particular, as it is has been emerged from centrifuge test (Lanzano 2009). 

Figure 4.36 shows the position of such points around the tunnel (O, M, K, P, N, L) for which the stress 

redistribution during the dynamic seismic shaking has been plotted in terms of deviatoric stress ‘q‘ and 

mean pressure ‘p‘ in Figure 4.37. The peak and permanent values of q and p time histories of such a 

points tend to increase as these approach to the gallery. This is the effect of the soil-structure interaction 

(a) (b) 

(c) 
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that affects not only the soil but the lining also; Figure 4.38 for instance, shows the time histories of 

bending moment (a) and hoop force (b) calculated at the point NE of the reference central section of the 

continuous tunnel lining.  

Note that the results shown in Figure 4.37 and Figure 4.38 have been carried out in the case of 

simulated excavation. 

 

 

Figure 4.36. Position of the selected points around the tunnel cavity. 

 

 

Fig. 4.37. Time histories of the stresses q and p around the tunnel cavity (South Iceland Earthquake Mw=6.4, a=0.36g). 
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A permanent accumulation of internal loads in the tunnel at the end of shaking can be observed, 

about 30% the maximum transient change calculated during shaking. This result confirms the 

experimental evidences obtained by Lanzano et al. 2012 and the need to use a suitable elastic-plastic 

constitutive model for soil to capture such an effect. Figure 4.39 shows the comparison in terms of 

dynamic permanent distribution of bending moment (Figure 4.39a) and hoop force (Figure 4.39b) in the 

transverse reference section between the cases of simulated excavation (red lines) and wished-in-place 

tunnel (blu lines).  

Continuous lines correspond to the static ‘pre-shaking’ while the dashed lines to the ‘post-shaking’ 

conditions. Because the effect of stress release around the cavity during the excavation is that of a lower 

internal loadings in terms of bending moments (Figure 4.34a) and normal forces (Figure 4.34b), with 

respect to the case of a wished-in-place tunnel, as a consequence this effect involves, in terms of 

permanent change of internal forces, higher values in the case of simulated excavation. This highlights 

the effect of construction on the seismic demand of the tunnel lining; the soil stiffness around the tunnel 

gradually decreases during the excavation, hence the relative stiffness of the tunnel lining during the 

following shaking is larger, thus increasing the changes of internal forces. 

 

 

Figure 4.38. Time histories of internal forces in the point NE: (a) bending moment; (b) hoop force (South Iceland 

Earthquake Mw=6.4, a=0.36g). 

 

 

Figure 4.39. Distribution along the transverse reference section of bending moment and hoop force: static ‘pre-

shaking’ -continuous lines- and ‘post-shaking’ -dashed lines- (South Iceland Earthquake Mw=6.4, a=0.36g). 
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4.3.3 Influence of the segmental layout 
 

 

The segmental layout of pre-cast concrete lining typically installed with a TBM, affects its structural 

demand, generally reducing the internal forces that arise in static conditions, compared to a continuous 

lining having the same structural section (see Capter 1 and Chapter 3).  

In order to analyse the effect of the jointed layout of the tunnel lining under shaking, a further set of 

analysis were carried out. The geometry of the segmental lining is that one of Metro Line 6 of Naples 

retrieved in Figure 4.40 where the adopted joint moment-rotation relashionship is included also. 

 

 

 
Figure 4.40. 3D numerical model of segmental lining and joint moment-rotation relationship. 

 

In Figure 4.41 the distribution along the transverse reference section of bending moment (Figure 

4.41a) and hoop force (Figure 4.41b) calculated at the end of shaking are shown. It is evident the lower 

structural demand of the segmental lining compared to the continuous lining. In the point NE for 

example, Figure 4.42 shows the lower seismic demand of the segmental lining, both in terms of bending 

moment and hoop force, up a value about of 50% lower respect the continuous case. 

Despite the fact that the loads acting in the segmental lining at the end the earthquake are lower than 

in the continuous lining, in the former case a possible fragility may arise due to the relative rotation 

between segments. This may induce decompression of the joint and consequent dislocation of the rubber 

gasket that guarantee water-tightness at the contact.  

 

 

 

 

 

 

 

Figure 4.41. Distribution along the transverse reference section of (a) bending moment, (b) hoop force: continuous vs. 

segmental lining (South Iceland Earthquake Mw=6.4, a=0.36g). 

 

Figure 4.43 for instance,  shows the time histories of relative rotation between segments during 

shaking, calculated in the joints at 45°, 135°, 225°, and 315° about the horizontal tunnel axis. It is 

interesting to point out that permanent relative rotations remains in between segments at the end of 

0

20

40

60

80

100

0,0% 0,2% 0,4% 0,6% 0,8% 1,0%

Jo
in

t 
b

en
d

in
g

 
m

o
m

en
t 

(k
N

m
/m

)

Rotation angle θ (rad)

θ 

(a) (b) 



 

 

130 Chapter 4: Tunnel-ground interaction during uniform seismic shaking  

shaking. Their magnitude is sometimes rather close to the peak values calculated during shaking, 

suggesting a potential permanent loss of water-tightness of the lining. 

 

 

Figure 4.42. Dynamic increment of bending moment and hoop force in NE point: continuous vs. segmental lining (South 

Iceland Earthquake Mw=6.4, a=0.36g). 

 

 

Figure 4.43. Time histories of relative rotation between segments (South Iceland Earthquake Mw=6.4, a=0.36g). 

 

A set of three dimensional analysis has been performed for different natural earthquake to investigate 

the effect of the peak ground acceleration and the content of frequency of the signals on the joints 

rotation. 

Figure 4.44 shows the time histories of acceleration and the relative Fourier Spectra of the earthquake 

signals adopted in the analysis, while Figures 4.45 - 4.46 - 4.47 - 4.48 - 4.49 show the time histories of the 

rotations of the joints that most suffer the deformation mechanism of the structure during seismic 

shaking. 
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Figure 4.44. Time histories and Fourier Spectra of the recorded earthquake signals adopted for 3D analysis for the 
evaluation of joints rotation in the segmental tunnel lining. 
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Figure 4.45. Time histories of joints rotation during Norcia earthquake (Italy). 

 

 

Figure 4.46. Time histories of joints rotation during Avej earthquake.  
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Figure 4.47. Time histories of joints rotation during Northridge earthquake.  

 

 

Figure 4.48. Time histories of joints rotation during Tirana earthquake.  
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Figure 4.49. Time histories of joints rotation during Friuli earthquake (Italy). 

 

The results in Figures 4.45 - 4.46 - 4.47 - 4.48 - 4.49 show that the peak and permanent values of joints 

rotation increase with peak ground acceleration increasing. It should be noted that a negative joint 

rotation corresponds to the opening of the extrados while a negative value corresponds to the opening of 

the intrados of the joint (Figure 4.50).  

 

 

Figure 4.50. Adopted sign convention of joint rotation. 

 

In almost all considered cases, the joint located at θ=45° is the most stressed, recording the highest 

value both in terms of peak and permanent rotation. 

Table 4.4 resumes all results obtained respect the selected earthquakes, comparing the peak and 

residue values for each joint. 

-Δθ

+Δθ
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Table 4.4 Peak and permanent values of joint rotations during a set of natural earthquakes 
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In Figure 4.51, the rotation demand of the selected points is associated with the capacity M-θ curve 

assumed for the joints; the peak rotation values exceed the yielding rotation in almost all joints for the 

different selected PGAs, the residual rotation values instead exceed the yielding rotation in the joints in 

the case of higher values of PGA. 

 

 
Figure 4.51. Demand rotation points of the joints under different peak ground acceleration values.

 

Numerical results included in this paragraph show the significant effect of the jointed pattern of a 

segmental lining, which implies a larger flexibility and compressibility in the transverse section, compared 

to a continuous lining, hence lower structural demand. On the other hand, permanent rotations of the 

joints were computed at the end of the dynamic stages, which may represent a further structural fragility 

of a segmental lining under seismic shaking. This evidence may lead to some concerns in highly permeable 

soils, where an excessive rotation of joints may produce dislocation of gaskets and cause severe inflow 

from groundwater. 
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CHAPTER 5 

Seismic vulnerability of segmental tunnel lining 
 

 

 

Introduction 
 

The experience from past earthquakes (see Chapter 4) reveals that underground structures are 

exposed to seismic risk and their seismic vulnerability (or fragility) is strictly related to the tunnel 

technology, the interaction developing during seismic shaking with the surrounding soil, the intensity of 

the event. Each of this factors plays an important role in terms of probability of damage and loss of 

functionality of the underground structure. 

For engineering perspective, ‘seismic hazard’ and ‘seismic risk’ are different concepts. Seismic hazard 

describes phenomena generated by earthquakes that have potential to cause harm, seismic risk is the 

likelihood of experiencing a specified level of seismic hazard in a given time exposure. Seismic hazard 

occurs naturally and can be evaluated from instrumental, historical, and geological observations, seismic 

risk is by definition an interdisciplinary topic depending on the hazard itself, the exposure and the 

structure vulnerability: 

Risk = Hazard x Vulnerability x Exposure 

 

Nowadays the ‘seismic risk assessment’, defined as the estimation of the probability of expected 

damages and losses due to seismic hazards of a structure, is a very common tool in the seismic 

engineering and generally adopted for the protection of strategic structures. 

In this context the ‘seismic vulnerability of underground structures’ has been investigated in detail, 

considering two different possible technologies of tunnel lining, continuous and segmental one. 

The fragility curves are usually adopted as forecast method of vulnerability of the structure, 

constructed for different levels of damage. The seismic vulnerability assessment of tunnels is generally 

based on empirical fragility curves (e.g. Hazus 1999; ALA 2001). They are derived from the statistical 

analysis of observed damages in past earthquakes. Some authors have calculated fragility curves based 

on the results of numerical analyses (e.g. Argyroudis & Pitilakis 2012), defining the damage index in terms 

of ratio between the flexural demand and capacity of the structural section of the tunnel lining. All above 

mentioned works refer to continuous tunnel lining. However, in the case of mechanized tunneling it is 

made of jointed segments, the results included in the Chapter 4 have shown the significant effect of the 

jointed pattern of a segmental lining which implies a lower structural demand than a continuous ring and 

a potential fragility associated to an excessive joint rotation. 

Analytical fragility curves for segmental tunnel lining, based on 2D non-linear full dynamic analysis, 

have been constructed assuming the longitudinal joint rotation as the potential damage parameter. The 

framework of the problem, procedure of numerical simulations and definition of numerical fragility 

curves for minor, moderate and extensive damage and for different soil types (B, C and D) are here 

discussed.  
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5.1 Fragility curves 
 

The vulnerability assessment of a single structure, or of a class of them, represents one of the most 

important topic of the seismic engineering. Fragility curves are one of the most used methods for the 

rapid assessment of the structure performance at different hazard levels. They give the probability of 

reaching a defined structural damage level with respect to a given level of seismic intensity motion. The 

latter can be expressed in terms of ground motion intensity measures as Peak Ground Acceleration (PGA) 

and Velocity (PGV) or Permanent Ground Displacement (PGD). 

One procedure to describe the fragility curves, generally adopted in civil engineering (Shinozuka et al. 

2000, Hazus 2004, Moschonas 2009, Argyroudis & Pitilakis 2012), is based on log-normal probability 

distribution as follows: 

 

𝑃𝑓(𝑑𝑠 ≥ 𝑑𝑠𝑖|𝐼𝑀) = 𝜙 [
1

𝛽𝑡𝑜𝑡
𝑙𝑛 (

𝐼𝑀

𝐼𝑀𝑚𝑖
)]                          (5.1) 

 

With                         

                           𝛽𝑡𝑜𝑡 = √𝛽𝑑𝑠
2 + 𝛽𝑐

2 + 𝛽𝑑
2                                                                (5.2) 

and: 

 Pf () is the probability of exceedance of a particular damage level, ds, for a given seismic intensity 

measure IM; 

 IMmi is the median of the intensity motion values IM, for which the tunnel reaches the damage level 

dsi; 

 βtot is the total standard deviation of the natural logarithm; 

 ϕ is the standard cumulative probability function. 

 

The log-normal dispersion is estimated by the standard deviation βtot. Generally, three types of 

uncertainties are taken into account:  

 the damage level definition (βds),  

 the structure capacity (βc),  

 the seismic input (βd).  

 

Based on the log-normal probability distribution function, Figure 5.1 shows the general flowchart of 

the procedure for deriving numerical fragility curves for ‘continuous lining’ of tunnels in alluvial deposits 

proposed by Argyroudis & Pitilakis 2012, the only analytical curves available in literature. The proposed 

approach is based on pseuso-static analysis following the Displacement-Based-Method, DBM (§4.2.1), 

performed with Plaxis 2D. The response of the free field soil profile and the induced seismic ground 

deformations have been calculated through 1D non-linear numerical analysis in EERA code. The profile of 

displacements of the soil in FF condition and the shear modulus and damping level derived from the 1D 

analysis have been used to model the 2D soil-tunnel interaction adopting the Mohr-Coulomb criterion.  

For a fixed structure technology, the authors consider different typical soil profiles (soil types B, C and 

D) to investigate the influence of the different soil-structure relative stiffness. 
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Figure 5.1. General flowchart of the procedure for deriving numerical fragility curves for ‘continuous lining’ of 

circular tunnels (Argyroudis & Pitilakis 2012). 

Considering the lack of references on the evaluation of the damage index for tunnel, the author 

proposed as damage index (DI) the ratio between the actual (M) and capacity (MRd) bending moment of 

the tunnel cross section, defining the rage of damage index for five different damage state (dsi) as in 

Table 5.1. The actual bending moment (M) is calculated as the combination of static and seismic loads 

while the capacity of the tunnel is estimated based on material and geometry properties of the tunnel 

section considering the induced static and seismic axial forces (N) and bending moments (M). 

 

Table 5.1. Proposed damages states for continuous circular tunnel lining (Argyroudis & Pitilakis 2012).

 

The effect of seismic structure response has been evaluated for a set of seismic input motions 

recorded from different real earthquakes (Table 5.2) scaled from 0.1 to 0.7 g in order to calculate the 

induced stresses in the tunnel for gradually increasing level of seismic intensity.  

The work of the author focuses on a structural type of tunnel which is not localized (it is not an 

existing tunnel), this is the reason why the input signals have been selected looking at the intensity of the 

event only (peak ground acceleration, magnitude, frequency content), without a site-specific seismic 

hazard assessment (deterministic DSHA or probabilistic  PSHA seismic hazard assessment). 
 
 

Table 5.2. Selected records applied to the bedrock of the soil profiles. (Argyroudis & Pitilakis 2012).

GENERAL FLOWCHART OF THE PROCEDURE FOR DERIVING NUMERICAL FRAGILITY 
CURVES FOR ‘CONTINUOUS LINING’ OF TUNNELS IN ALLUVIAL DEPOSITS.
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The definition of the median threshold value of PGA for each damage state (IMmi   in the Eq. 5.1) is 

based on the construction of the diagram of the computed damage indices versus PGA at the ground 

surface (e.g. Figure 5.2) according to the definitions of Table 5.1.  

The diagram is estimated by linear regression analysis, considering the natural logarithm of the 

damage index (LnDI) as the dependent variable and PGA as the independent variable. 

 

 
Figure 5.2. Examples of the evolution of damages with PGA at the ground surface (Argyroudis & Pitilakis 2012). 

 

Figure 5.3 shows the fragility curves carried out by the authors for the different soil types, which 

correlate the probability of damage (%) with the PGA, the earthquake intensity parameter selected by the 

authors. Comparing the fragility curves derived for the three soil types, it should be noted how, for the 

same PGA, the vulnerability is gradually increasing from soil type B to D; consistently with what we 

expected, a more deformable soil undergoes higher deformation affecting the tunnel response in terms 

of increment of internal forces, exhibiting a higher vulnerability under seismic loads. 

 

 

Figure 5.3. Numerical fragility curves for ‘continuous lining’ of circular tunnels for different soil types        

(Argyroudis & Pitilakis 2012). 

 

5.1.1 Continuous lining 
 

Based on the approach proposed by Argyroudis & Pitilakis 2012 (§5.1), the effect of coupled full 

dynamic analysis on the definition of the fragility curves for continuous circular tunnel has been 

investigated in the construction of the fragility curves. To this end, the flowchart of the procedure 

introduced before (§5.1) has been modified as in Figure 5.4. The red box for instance, indicates the 

changes carried out after Argyroudis & Pitilakis 2012.  
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Figure 5.4. Proposed flowchart of the procedure for deriving numerical fragility curves for ‘continuous lining’ of 

circular tunnels modified after Argyroudis & Pitilakis 2012.

 

1D FREE FIELD ANALYSIS 

 

A set of finite element coupled equivalent linear-visco-elastic analysis has been carried out in PLAXIS 

2D, taking into account the effect of non-linear soil behaviour in 1D equivalent free field ground response 

analysis performed in EERA code (this procedure has been already introduced in the Chapter 4, §4.2.1). 

The analysis refer to three different ideal soil deposits corresponding  to soil type B, C and D according 

with Eurocode 8 shear velocity values shown in Figure 5.5. 

 

 

 Figure 5.5. Selected velocity profiles according with EC8. 

 

Table 5.3 shows the main parameters assumed for the different soil types. The variation of the shear 

modulus G/Gmax and the damping ratio D with the strain level γ have been selected according with 

existing literature curves. A curve with a plasticity index IP=0 % was adopted for the soil types B and C, 

corresponding to sand, while a curve with IP=25% was selected for the soil type D, corresponding to clay, 

(Figure 5.6). 
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Soil Type Literature Curve IP γ (kN/m3) Vs,30 (EC8) 

B Darendeli 2001, Sand - 20 394.3 

C Darendeli 2001, Sand - 20 213.3 

D Darendeli 2001,  Clay 25 20 150.0 

Table 5.3.  Properties of different soil types.

 

 

Figure 5.6. Adopted literature curves of shear modulus reduction G/Gmax and variation of damping ratio 

D with shear strain level γ (Darendeli 2001). 

 

The non-linear equivalent viscous 1D analysis were carried out for a soil layer depth of 30m, 

discretized in a number of sub layers according with Kuhlemeyer & Lysmer 1973 criteria, overlaying a 

relative rigid bedrock (Vbedrock=1200 m/s; γbedrock=22 KN/m3; D0=1%). Sublayers 1.25m thick have been 

adopted for the soil type B, sublayers 1m thick for soil types C and D. 

The set of input signals used for the construction of the fragility curves is listed in Table 5.4. The input 

motions were selected so as their mean spectrum to match the Eurocode EC8–1 spectrum (M>6) for 

ground type A (rock). Figure 5.7 for instance, shows the spectral matching. Furthermore, the signals 

amplitude are to gradually scaled increasing the seismic intensity, as suggested by Argyroudis & Pitilakis 

2012. 

In the iterative procedure, the ratio of the effective and maximum shear strain is assumed equal to 

0.65. The computed mobilized shear modulus G and damping ratio D to each subsoil layers, for each 
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seismic event and for each soil type, have been used in the coupled FE analysis. Figure 5.8 shows, as an 

example, the output of EERA code in terms of variation of shear modulus and the damping ratio with the 

soil depth. 

 

Event 
  

Date Mw PGA g 

Campano Lucano 
 

23/11/1980 6.9 0.10 – 0.20 

SE of Tirana 
 

09/01/1988 5.9 0.20 – 0.30 

Montenegro 
 

15/04/1979 6.9 0.15 – 0.20 

Bingol 
  

01/05/2003 6.3 0.20 – 0.30 

Friuli 
  

06-05-0976 6.5 0.25 – 0.30 

South Icelend 
 

17/09/2000 6.5 0.35 – 0.4 – 0.45 

Tabas 
  

16/09/1978 7.3 0.40 – 0.50 

Avej 
  

22/06/2002 6.5 0.25 – 0.35 – 0.5 

South Icelend (after shock) 21/06/2000 6.4 0.15 – 0.20 

Table 5.4. Selected input signals. 

  

Figure 5.7. Comparison between the mean spectra and EC8-1spectra (soil type A). 

This is the procedure adopted for the 1D FF analysis for the three types of soil B, C and D, for each 

scaled earthquake. 

 
 

Figure 5.8. Mobilized shear modulus G/Gmax and damping ratio D output of EERA code                    

(Campano-Lucano Earthquake a=0.1g). 
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FULL DYNAMIC FE ANALYSIS  

 

Once defined the FF ground response with 1D non-linear analysis for all above mentioned cases, EERA 

output have used to calibrate the 2D numerical model implemented in Plaxis 2D, carrying out viscous 

linear elastic analysis. The validation of the numerical model has been done comparing the free field 

response of the 1D and 2D model. The numerical mesh of this latter is shown in Figure 5.9a. The 

procedure of coupled analysis, the criteria and details adopted in the numerical model have been already 

introduced in the Chapter 4 (§4.2.2). 

Figure 5.10 shows, as example, the free field response of the soil evaluated with EERA and Plaxis 2D 

for the case of Campano Lucano earthquake in terms of acceleration and pseudo-acceleration of the 

point on the top of the free field vertical (see Figure 5.9a). 

The comparison between EERA code and Plaxis in FF condition has been done for all combinations of 

analysis, that is for the soil type B, C, D and for all selected signals. 

The free field numerical analysis have be followed by the soil-structure interaction analysis and the 

Figure 5.9b shows the adopted mesh for this analysis.  

 

 

Figure 5.9. Numerical 2D mesh in Plaxis for (a) free field and (b) soil-structure interaction analysis. 

 

The tunnel section has an external diameter of 10m, the tunnel axis is 15m under the ground surface 

modelled with an elastic plate (Econcrete=30.5*106 kN/m2, tlining=0.50m, ν=0.2) assuming a damping of the 

structure equal to 2% for the target frequencies of 1Hz and 10Hz.  

 

 
Figure 5.10. Comparison of the FF soil response between EERA and Plaxis 2D (Campano-Lucano Earthquake). 

 

The full dynamic coupled analysis follows an initial static stage where in a simplified way the effect of 

the tunnel excavation has been taken into account. The convergence-confinement method for instance 
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has used for this end, assuming a relaxation factor equal to 0.3. The soil structure interaction has been 

simulated with an interface element reducing of 30% the adjacent soil strength and stiffness (Rinterface 0.7). 

At the end of the dynamic seismic shaking of the maximum values of the internal forces in the lining 

are computed; Figure 5.11 shows as example the envelope of the maximum bending moment and normal 

forces evaluated during the Bingol earthquake scaled up to 0.5g. The maximum bending moment reached 

during the dynamic shaking represent the seismic demand of the structure, as defined by Argyroudis & 

Pitilakis 201. 

 
Figure 5.11. Example of envelope of (a) maximum bending moment and (b) normal force in the tunnel section       

during the dynamic time (Bingol earthquake 0.5g). 

 

CONSTRUCTION OF FRAGILITY CURVES 

 

Following the approach proposed by Argyroudis & Pitilakis 2012, the dispersion charts of damage are 

defined for each soil types assuming the PGA the control parameter while the natural logarithm of the 

damage index ID the dependent variable. The damage index ID has been calculate as in the following 

equation:  

        
𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝐷𝑒𝑚𝑎𝑛𝑑(𝑡)

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑡)
= 𝑚𝑎𝑥 (𝑡)

𝑀

𝑀𝑅𝑑(𝑁𝑅𝑑)
                                                    (5.3) 

 

In the Equation 5.3, ‘M’ is the maximum bending moment of the tunnel section computed during the 

dynamic time including the static contribution, ‘MRd’ is resistant bending moment evaluated in function of 

the resistant normal force. Table 5.5 includes the section tunnel properties used for the evaluation of the 

structure capacity. 

Thickness 

(mm) 

Length 

(mm) 

Steel Concrete Superior 

bars 

Inferior 

 bars 

Concrete cover 

(mm) 

500 1000 B450C C35/45 8φ12 8φ12 40 

Table 5.5. Properties of the tunnel lining section (b=1m) 

 

Figure 5.12 shows the dispersion charts of damage (PGA, LnID) for the soil types B, C and D. A linear 

regression line fits the data set, bounded by the corresponding standard deviation, allowing to identify 

the median threshold value of PGA for each damage state (Minor, Moderate and Extensive) in function of 

the ranges of the DI proposed by Argyroudis & Pitilakis 2012 for each state of damage. 

At this point, the fragility curves can be derived in terms of PGA (Equation 5.4). 

    𝑃𝑓(𝑑𝑠 ≥ 𝑑𝑠𝑖|𝑃𝐺𝐴) = 𝜙 [
1

𝛽𝑡𝑜𝑡
𝑙𝑛 (

𝑃𝐺𝐴

𝑃𝐺𝐴𝑚𝑖
)]                                                     (5.4) 
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Figure 5.12. Evolution of damages with PGA at the ground surface. Estimation of the median threshold values of PGA 

for each damage state. 
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In the Equation 5.4 which represents a log-normal probability distribution, ‘PGA’ is the actual value, 

‘PGAmi’ is the median of PGA values for which the tunnel reaches the damage level dsi, ‘βtot’ is the total 

standard deviation of the natural logarithm including three types of uncertainties: one related to the 

damage level definition (βds) assumed equal to 0.4 following the Hazus approach for buildings (NIBS. 

HAZUS-MH 2004), one related to the structure capacity (βc) assumed equal to 0.3 following the BART 

studies (Salmon et al. 2003) and one related to the seismic input (βd) equal to the standard deviation of 

the damage index computed from different input accelerograms. 

Figure 5.13a shows the fragility curves obtained with this procedure based on 2D visco-elastic full 

dynamic analysis, including the values of βtot and the median of the acceleration values μ for each level of 

damage and each soil types. Respect the same damage level, softer soils are characterized by a higher 

probability of damage than those surrounded by stiffer soils, therefore a soil type D has a higher 

probability of damage respect a soil type B for an assigned value of PGA. It can be noticed how, for the 

same value of PGA, the probability of damage decreases with the increasing of the damage level (from 

Minor to Extensive damage) for every type of soil type. This result lets to observe that the probability of 

extensive damage is rather low in this type of underground structure, unless rather high value of PGA. 

This structures are more vulnerable in terms of minor and moderate damage and this result is in good 

agreement with observed cases history (see Chapter 4). 

Further analysis have been carried out adopting a more advanced constitutive model for the soil to 

investigate its influence. For instance, the dry Leighton Buzzard sand (fraction E) at relative density of 

75%, adopted in centrifuge model (Lanzano G. 2009) that has introduced and back-analyzed in the 

Chapter 4, has been adopted as soil type C (Vs,30=219 m/s). Non-linear visco-elasto-plastic analysis have 

been performed based on the calibration parameters of the constitutive model resumed in Table 4.3. This 

set of analysis does not require the validation of the numerical model in free field condition. 

The comparison between the two constitutive model is shown fot the soil type C only in Figure 5.13b. 

The more realistic results obtained with the non-linear visco-elasto-plastic analysis provide a lower values 

of probability of damage, for every damage level. As it could be expected, the equivalent viscous linear 

elastic approach overestimate the probability of damage up to a value of 15%-20% in the specific case of 

soil type C. 

A comparison between the analytical curves of Argyroudis & Pitilakis 2012 is proposed in Figure 5.14a. 

The approach used by the authors based on pseudo-static analysis understimates the probability of 

structure damage, in all cases. These results were expected by the authors which compared, for some 

cases, the results obtained with the uncoupled and coupled approach. Also the results shown in this work 

(see Chapter 4, §4.2.3) left thinking the same conclusion. 

A modified version of the fragility curves obtained by Argyroudis & Pitilakis 2012 is here proposed. 

Because in the iteration procedure available in EERA code the maximum shear strains γmax are 

computed in function of the effective ones γeff (γeff=Rγ* γmax with Rγ=0.65), the displacement profiles 

applied by the authors on the boundaries of the numerical model to simulate pseudo-static seismic load 

likely produce a reduction of the real load that should be applied on the tunnel structure.  

This effect is not included in the coupled numerical approach therefore, to make consistent the 

comparison between the two approaches, coupled and uncoupled one, the median of the PGA values 

obtained by the authors for every fragility curves has been scaled of a coefficient equal to 2 that takes 

into account the effect of reduction of 0.65 of the maximum shear strains. This value that multiplies the 

deviation standard, μ, of each curve, has been estabilished dividing by 0.65 the average value of the ratio 

M/Mrd calculated by the authors with the pseudo-static analysis. 

 Figure 5.14b shows the comparison between the fragility curves based on coupled approach and 

those modified after Argyroudis & Pitilakis 2012 based on coupled approach. 



 

 

148 Chapter 5: Seismic vulnerability of segmental tunnel lining 

A set of comparisons has been done with ‘empirical fragility curves’ available in the technical 

literature. 

Figure 5.15a and Figure 5.16a for instance, show the comparison with ALA 2001, based on Power et al. 

1998 database, while Figure 5.15b and Figure 5.16b refer to HAZUS 2004.  

Analytical fragility curves, even if less realistic because based on a distribution of damages simulated in 

an ‘artificial’ way while the empirical one are based on statistical analysis of observed damages in past 

earthquakes, are more sensitive to the type of lining, geologic media and then can take into account the 

relative soil-structure relative stiffness and the interfaces condition. Empirical classifications do not 

differentiate for soil and structure type associating qualitative and quantitative information to define the 

damage level.  

If for above ground structures the empirical fragility curves can be consider rather reliable, it couldn’t 

be said the same for underground structures which dynamic behaviour is dominated by the soil response, 

not included in the empirical approach. 
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Figure 5.13. (a) Analytical fragility curves for circular continuous tunnel lining based on 2D full dynamic visco-elastic analysis; (b) Comparison with fragility curves based on 2D 

full dynamic visco-elastic-plastic analysis for soil type C. 
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Figure 5.14. Comparison with analytical fragility curves for circular tunnel lining of (a) Argyroudis & Pitilakis 2012 and (b) modified after Argyroudis & Pitilakis 2012. 
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Figure 5.15. Comparison between analytical fragility curves for circular tunnel lining with (a) empirical fragility curves ALA 2001 and (b) empirical fragility curves HAZUS 2004. 
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Figure 5.16. Comparison between analytical fragility curves for circular tunnel lining with (a) empirical fragility curves ALA 2001 and (b) empirical fragility curves HAZUS 2004.
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5.1.2 Segmental lining 
  

The numerical investigation showed in the Chapter 4 have highlighted the substantially different 

behaviour of a continuous lining respect the segmental one under seismic loads, commonly adopted in 

mechanized tunneling. There is a significant effect of the jointed pattern of a segmental lining which 

implies a lower structural demand than a continuous ring and a potential fragility associated to an 

excessive joint rotation. Based on these numerical evidences, the analytical fragility curves for segmental 

tunnel lining have been constructed with a similar approach followed in the case of continuous lining. 

Figure 5.17 for instance, shows the flowchart adopted in the case of segmental lining that differs from the 

continuous one in the parts highlighted in red.  

Apart from the different technology, the fragility curves carried out in the case of segmental lining are 

based on visco-elasto-plastic non-linear coupled analysis, refer to a different damage index ID and 

damage state DS respect the continuous case, both proposed in this work, related to the Peak Ground 

Acceleration, PGA, and the Permanent Ground Displacement, PGD. 

In this section it is discussing only the aspects which differ from the continuous case. 

 

 

 
 

Figure 5.17. Proposed flowchart of the procedure for deriving numerical fragility curves for ‘segmental lining’ of 

circular tunnels.

 

The tunnel section dimension and position (diameter, segments thickness, depth of the tunnel axis) 

and the soil-structure interface properties are the same of the continuous case. The tunnel lining has 

been divided in a number of segments equal to ten (Figure 5.18), the longitudinal joints are numerically 

modelled as elasto-plastic springs with M-θ relation as in Figure 5.18. The joint type simulates the 

behaviour of a flat non-bolted longitudinal joint with a height of the contact area between the segments 

equal to 0.25m. 

The numerical study has considered three different ground conditions, corresponding to the soil types 

B, C and D of Eurocode 8 site classification (EC8, 2004).  

Soil type C (Vs,30=219 m/s) is the same adopted for the visco-elasto-plastic analysis in the case of 

continuous lining for which experimental tests for the calibration of the constitutive parameters have 

been performed (Lanzano G. et al. 2016). As soil types B and D, ideal soil layers with equivalent shear 

wave velocity Vs,30 equal to 395 m/s and 150 m/s respectively have been assumed. 
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As just mentioned, the soil type B and D are ideal soils, therefore the corresponding geotechnical 

parameters (soil weigh γd, friction angle φpk and the angle of dilatancy ψpk) have been assigned to the soil 

types coupling the soil B together with a sand while the soil type D with a clay weakly over-consolidated. 

The stiffness soil parameters instead, have been obtained scaling the parameters associated to the soil 

C proportionally to the corresponding shear velocity Vs,30. The parameters computed in this way for the 

soil type B and D are listed in the Table 5.6 together with the soil type C parameters. 

 

 
 

Figure 5.18. Geometry of segmental tunnel section considered for the definition of the relative fragility curves.

 

To validate the calibration parameters assumed for the soil type B and D in reference to the adopted 

constitutive model Hardening Soil Small Strain, HSss, the behaviour of a soil element has been modelled in 

stress paths corresponding to drained and undrained triaxial tests, oedometer tests, simple cyclic shear 

tests simulated in Plaxis 2D. 

 

 

  Type B Type C Type D 

Vs,30 [m/s]  395 219 150 

γd [kN/m3]  20 15.2 18 

Eref
50 [MPa]  80 18.6 10 

Eref
oed [MPa]  87 20.5 11 

Eref
ur [MPa]  198 62.2 25 

νur [-]  0.2 0.2 0.2 

m [-]  0.4 0.4 0.8 

Gref
0 [MPa]  310 72.7 40 

γ 0.7 [-]  0.00017 0.00058 0.0003 

φpk [-]  40 38.6 25 

Ψpk [-]  6 8.2 2 

c' [kPa]  0.01 0.01 0.01 

αR [-]  2.09E-01 6.68E-02 1.77E-01 

βR [-]  4.30E-04 7.04E-04 9.55E-04 

Table 5.6. Constitutive parameters of HSss for the soil type B, C and D. 

 

Figures 5.19 and 5.20 show for instance the τ-γ cycles corresponding to simple cyclic shear test with 

increased level of deformation γ for the soil types B and D respectively. Figure 5.21 instead, compares the 
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different cyclic behaviour of the two soil types. Starting from these results, the degradation curve of the 

shear modulus G and the damping ratio D have been computed for soil B and D shown in Figure 5.22. 

The curves G(γ)/G0 and D(γ) obtained with numerical  shear tests for soil type B and D, have been 

compared with literature  curves. The curves made available by Darendeli (2001) for different soil types 

for instance were taken as targets. In particular, the literature curves used for soil type B refer to a dry 

sand with an effective stress σ’0 equal to 2 atm, while for soil type D they refer to a slightly over 

consolidated clay (OCR=2) with a plasticity index IP equal to 25 and an effective stress σ’0 equal to 1.28 

atm.  

Figure 5.22 shows the comparison between the numerical and literature curves for soil B and D while 

for the soil type C the curves are taken from Lanzano et al. (2016), comparing the experimental laboratory 

results (resonant column RC and torsional shear TS laboratory tests for instance) with the numerical simulations. 

The numerical procedure to perform the coupled dynamic analysis is the same adopted in the 

Chapters 4 and 5 (§ 4.2.2, 5.1.1), starting from a computed pre-seismic state of stress due to the tunnel 

excavation. 

What should be discussed in more details, is the choice of the damage index ID, the damage states DS 

and the intensity motion parameter IM for such tunnel lining technology. 

Because under seismic uniform load condition the longitudinal joints are the most vulnerable points of 

the segmental tunnel lining, as observed in the numerical results shown in the Chapter 4, the damage 

index proposed in this work has been expressed in function of the longitudinal joint rotation. This choice 

assumes that the failure mechanism of such structure could be more ‘prospective’ in correspondence of 

the joint and not in correspondence of the concrete segments, as in the case of continuous lining for 

which the damage index is suitably related to the maximum resistant moment reached in the lining 

section. 

However, to support and validate this choice, the analytical fragility curves have been defined also 

assuming as damage index the value of max(M/MRd), as proposed by Argyroudis & Pitilakis 2012 in the 

case of continuous lining, and the comparison between the two approaches shows that in the case of 

segmental lining the joints are actually more exposed to be damage. 

As introduced in the Chapter 1 about the rotational capability of the longitudinal joints, it has been 

discussed that they are mainly interested to three different working stages depending on the eccentricity 

e=N/M of the resultant of the normal force in the joint contact section. In the case of eccentricity e<t/6, 

the joint is closed, that is completely under compression, and it behaves as linear-elastic; as soon as 

eccentricity e=t/6 the joint starts to open (e>t/6). At high values of rotation, third stage, plastic strains 

occur in the concrete until the joint fails.  

What can be alarming is the rotation threshold for which the joint starts to open. Based on this 

scenario, the Janßen’s analytical solution has been adopted to define the threshold values of the damage 

index in function of the proposed damage states. The damage index and the criteria to estimate the 

damage states DS are specified in Table 5.7.  
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 Figure 5.19. Cyclic shear test on soil sample type B in Plaxis 2D.
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Figure 5.20. Cyclic shear test on soil sample type D in Plaxis 2D. 
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Figure 5.21. Isteretic behaviour of the ideal soil types B and D. 

 

 
Figure 5.22. Comparison of numerical and literature curves of G/G0 and D for soil type B, soil type C (after 

Lanzano et al. 2016) and soil type D. 
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The performance of the joint is expressed as a ratio between the ‘permanent rotation r’ of the joint 

and reference joint rotation threshold (Equation 5.5). 

𝐷𝐼 = max (𝑡)
𝑟,𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

                                                          (5.5) 

Three values of rotation were set as thresholds for damage state definition (Figure 5.23): 

 1 is the first critical threshold, in which the joint opening occurred, defined as 

1=Nl2/6EI=12M/Ebl2 (b=l); 

 y is the yielding rotation; 

 u is the ultimate rotation. 
 

Damage state (DSi) Damage Index (DI)                  Median value 

 Range  

DS1: none r/1≤ 1 - 

DS2: minor/slight 1 ≤ r/1≤1.5  1.25 1 

DS3: moderate 1,5 ≤ r/1 ≤ 2r/1-1.5y y 

DS4: extensive 2r/1 -1.5 ≤ r/1 ≤ u/1 y - 0.75y+0.5u 

 

Table 5.7. Damage index definition in terms of relative joint rotations. 

 
Figure 5.23. Rotation thresholds for damage states definition. 

 

Because the numerical results for segmental lining (see Chapter 4) have shown that for usual PGA 

values of real earthquakes longitudinal joints undergo to opening but not to a completely collapse, an 

excessive rotation of joints under high value of PGA may produce dislocation of gaskets and cause severe 

inflow from groundwater, a probably condition that may occur in the case of moderate damage.  

Such a problem has been already highlighted into an interesting work of Faisal I. Shalabi et al. 2012 

based on experimental tests with cyclic loads on a set of longitudinal and circumferential joint types. 

In this scenario, it seems to be more appropriate refer to the permanent value of joint rotation, 

computed at the end of the seismic shaking, rather than the peak one. In this case PGA and PGD were 

selected as IMs. The permanent displacement at the ground surface was used since it may be related to 

permanent rotation at a tunnel joints. PGD is also commonly used as IM for other buried structures as 

pipelines subjected to ground failure deformations (O'Rourke and Liu 1999). 
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Figures 5.24 and 5.25 show the dispersion charts of damage for the soil types B, C and D in terms of 

PGA and PGD respectively. 

 

SOIL TYPE B 

 

SOIL TYPE C 

 

SOIL TYPE D 

 
 

Figure 5.24. Evolution of damages with PGA at the ground surface. Estimation of the median threshold values of 

PGA for each damage state. 
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SOIL TYPE B 

 

SOIL TYPE C 

 

SOIL TYPE D 

 
 

Figure 5.25. Evolution of damages with PGD at the ground surface. Estimation of the median threshold values of 

PGD for each damage state. 
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Figure 5.26 shows the fragility curves obtained, when possible, in the case of soil type B, C and D 

assuming the PGA as IMi. As in the case of continuous lining, the probability of damage increases for more 

soft soil (B → C → D) and increases with the decreasing of the damage level (DS4 → DS3 → DS2). 

 

 
Figure 5.26. Fragility curves for segmental lining based on residual relative joint rotation and                              

peak ground acceleration (PGA). 

 

Comparing the computed rotation fragility curves in terms of Peak Ground Acceleration and 

Permanent Ground Displacement (Figure 5.27) it can be notice that, unlike to what happens in terms of 

PGA, the probability of damage increases with the stiffness of soils in the case of PGD assumed as IMi. 

This is due to the fact that, to achieve the same PGD, a stiffer soil has to be subjected to larger seismic 

accelerations than a softer soil.  

  
Figure 5.27. Comparison between fragility curves for segmental lining based on residual relative joint rotation and 

peak ground acceleration (PGA) vs permanent ground displacement (PGD). 

 

Figure 5.28 shows the comparison between the empirical fragility curves proposed by ALA 2001 for the 

cases of minor and moderate damages and those obtained in this study for all categories of soil type 

B+C+D. Once again, it should be mentioned that empirical curves don’t distinguish the tunnel 

technologies; overall the numeric curves are less sensible than the empiric ones to little variations of PGA. 
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Figure 5.28. Comparison between the empirical fragility curves by ALA (2001) for the cases of minor and moderate 

damages and those obtained in this study for all category B, C e D. 

 

A further set of fragility curves for segmental tunnel lining has been carried assuming as damage index 

the value of max(M(t)/MRd), as proposed by Argyroudis & Pitilakis 2012 in the case of continuous lining. 

Figure 5.29 for instance, shows the proposed curves for the soil types B and D in function of the 

maximum bending moment (curves on the left) and the residual bending moment (curves on the right) 

computed during the dynamic time in the segments of the tunnel, selecting the PGA as the IMi. 

 

SOIL TYPE B 

  
SOIL TYPE D 

  
 

Figure 5.29. Fragility curves for segmental lining assuming DI= max(Mpeak/MRd) -curves on the left- and                         

DI= max(Mresidual/MRd) -curves on the right- in function of PGA for soil types B and D. 
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In all cases, the probability of damage is very low because the maximum resistant moment in the 

section is actually never reached. Figure 5.30 shows the comparison of all the fragility curves shown in 

Figure 5.29 with the empirical ones proposed by ALA 2001 where is possible to better appreciate the low 

seismic vulnerability of the concrete segments in the segmental tunnel lining. 

  
Figure 5.30. Comparison between the fragility curves for segmental lining assuming proposed in function of the 

maximum bending moment for soil types B+D and the empirical curves proposed by ALA 2001. 

 

To point out the different exposure to be damaged of the segment and longitudinal joint in the 

segmental tunnel lining, Figure 5.31 shows the comparison between a fragility curve based on the 

residual bending moment Mresidual (red curve) and the residual joint rotation φresidual (black curve) in 

function of the permanent ground displacement PGD for the soil type B; for the same level of damage, 

the fragility curve in terms of relative joints rotation is more severe than that in terms of residual bending 

moment at the same PGD level. 

 

Figure 5.31. Comparison between the fragility curves for segmental lining assuming proposed in function of the 

maximum bending moment for soil types B+D and the empirical curves proposed by ALA 2001. 

 

Finally, it seems to be interesting comparing the fragility curves obtained in the case of continuous 

lining, based on the DI proposed by Argyroudis & Pitilakis 2012 and those obtained in the case of 

segmental lining based on the DI proposed in this work. Figure 5.32 shows this comparison together with 

the empirical curves available in literature in the case of soil type B for DS2 and DS3. In this conditions, 

the longitudinal joints of segmental lining seems to be more exposed to seismic damage respect the 

continuous tunnel lining for a defined value of PGA. Anyway, it should be remember that the segmental 

lining fragility curves are more reliable, because derived from visco-elasto-plasic analysis using an 
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advanced constitutive model for the soil (HSss), while the continuous lining fragility ones are based on 

visco-elastic numerical analysis. 

MINOR DAMAGE 

 

 
Figure 5.32. Comparison between the fragility curves for continuous lining (PGA vs Max bending moment), segmental 

lining (PGA vs Max residual joint rotation) and empirical curves proposed by ALA 2001 and HAZUS 2004 for soil type 

B, for DS2 and DS3. 
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5.2 Feasibility of early warning system for segmental tunnel lining  
 

In structural engineering, fragility curves are commonly used as a vital component of Earthquake Early 

Warning Systems (EEWS) based on thresholds, which represents a tool for the implementation of 

protective measures aiming at reducing the vulnerability of structure to seismic risk.  

In many countries particularly exposed to seismic risk, as Japan, California, Mexico, Turkey, EEW 

systems are often adopted for the seismic protection of the public structures (e.g. schools, hospitals) and 

also of the transportation systems (e.g., bridges and railways; Figure 5.33).  

Seismic Early Warning systems aims to provide warnings of imminent danger. They can be either 

based on simple thresholds or on rapid estimates of the earthquake source parameters (i.e., location and 

magnitude), but in any case, they utilize the capability of modern real-time systems to process and 

transmit information faster than seismic waves propagate. The maximum achievable warning time of an 

earthquake early warning system is defined by the difference between the detection of the faster P-wave 

(5-7 km/s) by a seismic sensor and the arrival of higher amplitude S-waves (3-5 km/s) at the user site, and 

is defined lead-time. P waves are no destructive waves, they can be analysed to derive important 

information about the seismic source size, while the S waves are slower but carry much of the energetic 

content of the seismic event, and hence have a high destructive potential. 

The lead-time is the key parameter for implementing preventive ‘security’ actions, such as: stop 

surgical operations in hospitals; slow trains to prevent encounter stretches of track with a possible risk of 

derailment; alert aircraft to postpone take-off or landing; prevent additional cars from entering the 

freeway; to stop the distribution of flammable substances (such as urban gas) which may cause fire due 

to damage to the pipes;  warn workers in factories because they interrupt dangerous production 

activities; warn school children to protect themselves under the table before the S-waves reach their 

school.  It should be noted also that, because the available time to take protective measures is function of 

the lead-time between P and S waves, it increases with the increasing of the seismic source distance, 

since the time-delay between the P and S waves increases (Figure 5.34).  

 

Figure 5.33. Worldwide Early Warning System. 
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Figure 5.34. Arrival times of S waves and P waves. 

 

Typically, EEWS follows two basic approaches: ‘regional’ (or network based), and single station ‘on-

site’ warning. Regional early warning systems are based on the use of a seismic network located near one 

or more known epicentral areas, for which the aims are to detect and locate an earthquake and to 

determine its magnitude from the analysis of the first few seconds of the arriving P waves at more 

stations (Satriano et al., 2011). The lead-time for a regional system is defined as the time difference 

between the S waves recorded in the source area and the arrival of first P waves at the target site, and 

the necessary computation and data transmission times. On-site early warning systems, instead, are 

intended for target sites located too close to a seismogenic area, where the analysis of data recorded at 

more stations of a regional network determines a lead time too small to warn the target in case of an 

event. For this reason, on-site systems rely on seismic sensors installed directly at the target site and 

exploit only the information carried by the faster early P waves. In this case, the lead time is equal to the 

S-wave minus the P-wave arrival times.  

Figure 5.35 shows the warning- and lead-times of the regional and on-site system: the first on-site 

warning occurs before the first regional warning while the expected lead-time of “Regional system 

increases with distance and it is about twice than for “On-site” systems. 

 

 
Figure 5.35. Warning- and lead-times for regional and on-site EEWS. 
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Among the EEWS operating worldwide, Figure 5.36 shows the localization of sites provides warnings 

and real time testing, distinguishing between regional and real time systems. One of the best-known 

example of on-site EEWS in the world is the one developed by the Japanese Railway in the 1960s to slow 

down or stop trains before seismic shaking affected trains running at high speed (Nakamura 1988, 1989; 

Nakamura & Tucker 1988). Nakamura used a single station approach, where seismic signals are processed 

locally and an earthquake warning is issued when ground motion exceeds the trigger threshold. This 

system, called UrEDAS, has been widely used in the Japanese railway system. 

 

 
 

Figure 5.36. Worldwide regional and on-site EEWS. 

 

In this thesis, a preliminary feasibility study concerning the use of a threshold-based EEWS for 

segmental tunnel lining has been conducted for some Italian target sites. The approach proposed 

hereinafter combines regional and on-site approaches with the fragility curves described in the previous 

part of this Chapter. Overall, the basic idea is to derive in real-time the probability of damage for 

segmental tunnel lining before the arrival of S-waves by intersecting the fragility curves with the PGA 

predicted by an EEWS at the target site. Figure 5.37 for instance, shows a schematic application of the 

fragility curves. 

 

 
Figure 5.37. Schematic application of the fragility curves. 
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The PGA value at the target site is the parameter required to evaluate the possible damage level at the 

structure. The other parameter of interest is the available lead-time, which requires the event location to 

be determined. 

Three approaches have been adopted in this work to provide the PGA and the lead-time for the 

possible seismic threats expected at a target site, defined as follow:  

 

LEVEL ‘0’ - The PGA at the target site is determined on the basis of the Probabilistic Seismic Hazard 

Analysis (PSHA, NTC 2008); no information is available on the lead-time. This approach 

allows to verify the security of the target with respect to the ground motion expected from 

the Italian code. 

 

LEVEL ‘1’ - The PGA and the lead-time at the target site are derived by a disaggregation of the PSHA, 

which allows to identify the seismic threats (i.e., combination of magnitude and epicentral 

distance) hampering a target site. This approach allows to verify the security of the target 

with respect to a set of virtual seismic source that are derived by PSHA for the specific site.  

 

LEVEL ‘2’ - The PGA at the target site is predicted through a real-time and evolutionary estimation of 

location, magnitude and using a ground motion prediction equation. This approach is 

applicable only in the cases where exist a network dedicated to EEW activities (e.g., the 

ISNet network in the Irpinia region, southern Italy) and an EEW software. In this study, the 

software PRESTo (i.e., PRobabilistic and Evolutionary early warning SysTem; Satriano et al. 

2011, http://www.prestoews.org), a free and open source software platform for EEW 

developed by the RISSCLab group of the University Federico II in Naples, Italy, has been 

considered.  In this case, the lead time is estimated considering the site-to-epicenter 

distance and the P- and S-waves velocity.  

Three target sites have been chosen (Figure 5.38): 

 The high speed railway tunnel Bologna-Firenze (lat: 43.764, lon: 11.2749); 

 The San Giovanni railway tunnel (lat: 42.265, lon: 14,482), 

 The Metro Line 6 of Naples (lat: 40.832, lon: 14.217). 

The cases of high speed railway tunnel Bologna-Firenze and the Metro Line 6 of Naples have been 

chosen because object of study in the first part of this work, where we have focused on the static aspects 

of the segmental tunnel lining behaviour (see Chapter 3). The San Giovanni railway tunnel is instead a 

representative case of a segmental tunnel lining that experienced many of the strong earthquakes that in 

the last years occurred in Central Italy (i.e., >60 km of distance from the source area). 

 

In the next section the probabilistic seismic hazard and the real-time approaches are described in 

detail for these Italian target sites. 

 

http://www.prestoews.org/
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Figure 5.38. Localization of the target sites in Italy. 

 

5.2.1 Probabilistic seismic hazard approach 
  

The goal of this earthquake engineering analyses is to ensure that the tunnel structure can withstand a 

given level of ground shaking while maintaining a desired level of performance. Questions of interest are: 

what level of ground shaking should be used to perform this analysis? Which value of PGA should be used 

in the fragility curves to define the probability of damage?  

The Probabilistic Seismic Hazard Analysis (PSHA), on which is based the Italian seismic code, provides 

the ‘design earthquakes’ in terms of magnitude, location and other parameters such as faulting style, 

computing the average return period of ground motions exceeding a given intensity measure (IM) 

threshold at the considered site. 

At its most basic level, PSHA is composed of five steps: 

High speed railway tunnel
Bologna-Firenze

San Giovanni 
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1. Identification all earthquake sources capable of producing damaging ground motions;  

2. Characterization of the earthquake magnitudes distribution (the rates at which earthquakes of various 

magnitudes are expected to occur); 

3. Characterization of the source-to-site distances distribution associated with potential earthquakes; 

4. Prediction of the resulting distribution of ground motion intensity as a function of earthquake 

magnitude, distance, etc., by adopting ground-motion prediction equations; 

5. Combination of uncertainties in earthquake size, location and ground motion intensity, using a 

calculation known as the total probability theorem; 

As result, for a given a seismic source model and a ground-motion prediction equation, the PSHA 

provides the seismic hazard maps correlating the probability of exceedance (Pr) of a ground motion level 

(IM) in a defined return period (Tr). Figure 5.39, for instance, shows the seismic hazard maps of Italy for 

four probabilities of exceedance equal to 81%, 63%, 10% and 5%. 

 

In the approach defined before as LEVEL ‘0’, these values of PGA derived from the PSHA are used to 

preliminarily estimate the probability of the different damage levels (minor, moderate and extensive 

damage) for different values of Pr (81%, 63%, 10% and 5%).  

 

 
 

Figure 5.39. Seismic hazard maps of Italy for different return periods (Instituto Nazionale di Geofisica e Vulcanologia). 
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LEVEL ‘0’ 

The procedure followed in the LEVEL ‘0’ starts with the evaluation of the PGA at the target sites in 

function of the difference exceedance probabilities considered by the Italian code (i.e., Pr=81%, Pr=63%, 

Pr=10%, Pr=5%) with the help of the data made available by the Instituto ‘Nazionale di Geofisica e 

Vulcanologia - INGV’. Figure 5.40 shows, as example, the case of Napoli, for which as a function of the 

coordinates of the target site, the PGA value in correspondence of the 50% percentile is assumed for 

each probability of exceedance. Table 5.7 summarizes the PGA calculated values for Napoli, Firenze and 

Rocca San Giovanni as function of Pr. 

Once calculated the PGA expected at the site, this is multiplied for the amplification site coefficient ‘Ss’ 

indicated by the Italian code to calculate the corresponding PGAsite at the surface. 

These amplified values of PGA are shown in Table 5.8 for all sites. The PGAsite is the input value with 

which the fragility curves have been intersected to evaluate the probability pf damage to the structure. 

 

(a) 

 

(b) 
 

 

 

Figure 5.40. (a) Grid map of hazard for Pr=81% and (b) variation of PGA with the annual frequency of exceedance in 

the target site of Naples (Instituto Nazionale di Geofisica e Vulcanologia INGV). 

 

 

Table 5.7 Selected values of PGA with the annual frequency of exceedance (Pr=81%, Pr=63%, Pr=10%, Pr=5%) in the 

target sites of Napoli, Firenze and Rocca San Giovanni. 
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50° 
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84° 

percentile

16° 

percentile

50° 

percentile

84° 

percentile

16° 

percentile

50° 

percentile

84° 

percentile

0,000 0,236 0,281 0,316 0,000 0,189 0,218 0,243 0,000 0,118 0,146 0,164

0,001 0,169 0,214 0,238 0,001 0,145 0,165 0,178 0,001 0,092 0,115 0,126

0,002 0,125 0,168 0,187 0,002 0,114 0,130 0,137 0,002 0,074 0,094 0,103

0,005 0,083 0,120 0,133 0,005 0,078 0,093 0,100 0,005 0,055 0,073 0,080

0,007 0,069 0,101 0,113 0,007 0,066 0,079 0,089 0,007 0,048 0,065 0,071

0,010 0,057 0,086 0,096 0,010 0,056 0,071 0,079 0,010 0,041 0,058 0,064

0,014 0,046 0,072 0,080 0,014 0,045 0,063 0,071 0,014 0,036 0,052 0,057

0,020 0,036 0,059 0,065 0,020 0,037 0,056 0,061 0,020 0,030 0,046 0,050

0,033 0,022 0,044 0,047 0,033 0,028 0,046 0,051 0,033 0,022 0,038 0,041

fr

a(g)

FIRENZEfr

a(g)

ROCCA SAN GIOVANNIfr

a(g)

NAPOLI
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Table 5.8 presents the probability of minor, moderate and excessive damage for the Firenze, Rocca 

San Giovanni and Napoli target sites. The probability increases from extensive to minor damage and with 

the decreasing of the probability of exceedance Pr. With this approach, the probabilities of extensive 

damage are very low for all targets, while the probabilities of minor and moderate damage are not 

negligible. It should be observed that, between the selected target sites, Napoli is the most exposed one, 

presenting the higher values of PGAsite. 

This simple approach allows to quickly assess on probabilistically bases what ground motion level 

could occur at the considered sites, which in turn is used to assess the possible level of damage for such 

kind of structures. However, since the PSHA does not provide direct indications about the location of the 

seismic sources that contributed to the hazard, it is not possible to compute the available lead-time. A 

possible strategy to overcome this issue is to exploit the disaggregation of seismic hazard, the basic idea 

of LEVEL-1 

 

 

Table 5.8 Probability of minor, moderate and extensive damage (%) calculated in function of Pr in the target sites of 

Napoli, Firenze and Rocca San Giovanni. 

 

LEVEL ‘1’ 

The LEVEL ‘1’ procedure is again based on the PSHA adopted by the Italian code, but incorporates the 

disaggregation analysis of the seismic hazard to identify ‘virtual sources’ (i.e., in terms of epicentral 

distance and magnitude) that provide the higher contribution to the hazard. Hence, the disaggregation is 

for us a means to identify scenario (i.e., seismic events) of interest for the structures. Indeed, 

disaggregation maps are expressed in terms of magnitude (Ms), source to site distance (Repi) and the 

contribution to the hazard (w%). Figure 5.41a shows as example the disaggregation map for Napoli (i.e., 

considering Pr=10%), from which results that the hazard at the considered site is mainly controlled by two 

near seismic threats (i.e., in the seismogenic map of Italy, they correspond to the zones 927 and 928, 

Figure 5.41b). 

Hence, for each pair of (MS-Repi) derived from the disaggregation analysis, the lead-time and the PGA 

at the site have been evaluated. The lead time is function of the epicentral distance (Repi) between the 

target and the virtual source, where we assume P-waves and S-wave velocities of 5.5km/sec and 3.2 

km/s, respectively. The acceleration at the target sites has then been calculated with the ground motion 

prediction equation, GMPE, Bindi et al.2011 (Equation 5.6): 

a(g)*Ss

Pr (%) Tr (y) fr FIRENZE minor moderate extensive

81 30 0,033 0,055 34,7 6,7 0,30

63 50 0,020 0,067 44,4 10,6 1,66

10 475 0,002 0,156 68,1 26,3 6,44

5 975 0,001 0,198 74,8 33,1 9,31

Pr (%) Tr (y) fr Rocca San Giovanni minor moderate extensive

81 30 0,033 0,045 22,6 3,2 0,30

63 50 0,020 0,055 34,7 6,7 0,85

10 475 0,002 0,113 58,6 18,7 3,81

5 975 0,001 0,137 63,8 22,6 5,08

Pr (%) Tr (y) fr NAPOLI minor moderate extensive

81 30 0,033 0,053 28,61 4,90 0,04

63 50 0,020 0,070 56,57 8,64 0,15

10 475 0,002 0,202 74,80 33,06 5,81

5 975 0,001 0,257 81,58 41,81 11,38

VN=50y; cu=1; VR=50y Probability of damage %
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𝑙𝑜𝑔10𝑌 = 𝑒1 + 𝐹𝐷(𝑅, 𝑀) + 𝐹𝑀(𝑀) + 𝐹𝑆 + 𝐹𝑠𝑜𝑓                                             (5.6) 

where: e1 is a constant term, FD(R,M) the distance function (Equation 5.7), FM(M) the magnitude 

scaling (Equation 5.8), Fs the site amplification, Fsof the style of faulting correction, M the moment 

magnitude, R the epicentral distance (in km), Y=Y(PGA, in cm/s2; PGV, cm/s), Mref, Rref and Mh coefficients. 

𝐹𝐷(𝑅, 𝑀) = [𝑐1 + 𝑐2(𝑀 − 𝑀𝑟𝑒𝑓)]𝑙𝑜𝑔10 (
√𝑅𝐽𝐵

2 +ℎ2

𝑅𝑟𝑒𝑓
) − 𝑐3 (√𝑅𝐽𝐵

2 + ℎ2 − 𝑅𝑟𝑒𝑓)                   (5.7) 

𝐹𝑀(𝑀) =
𝑏1(𝑀 − 𝑀ℎ) + 𝑏2(𝑀 − 𝑀ℎ)2           𝑓𝑜𝑟 𝑀 ≤ 𝑀ℎ

𝑏3(𝑀 − 𝑀ℎ)                                                                   
                                               (5.8) 

In the application Fsof and FS have been not considered. 

 

 

 

 
Figure 5.41 (a) Disaggregation map of Napoli and (b) seismogenetic zones for Italy (Meletti el al. 2008). 

 

Following this procedure, a disaggregation map, a lead-time map and an acceleration map are 

computed for the sites Napoli, Firenze and Rocca San Giovanni, considering different probabilities of 

exceedance (i.e., Pr=81%, Pr=63%, Pr=10%, Pr=5%, Figures 5.42-5.44-5.46-5.48-5.50-5.52-5.54-5.56-5.58-

5.60-5.62-5.64, respectively). The PGA maps have been in turn used in combination with the fragility 

curves to produce, still considering all MS-Repi pairs, the final maps with the probability of minor, 

moderate and extensive damage (-5.43-5.45-5.47-5.49-5.51-5.53-5.55-5.57-5.59-5.61-5.63-5.65). 

Taking as example the case of Napoli (Pr=81%), the disaggregation map indicates that the seismic 

threat responsible for the highest contribution to hazard is located at 15km from the target, has 

magnitude M=5. Given this scenario, the surface acceleration expected at the target is 0.03g, to which 

corresponds a probability of minor, moderate and extensive damage equal to < 20%, < 3%, ≈ 0%, 

respectively.  

The seismic threat showing the highest acceleration at the site is a source located at 5km of distance 

from the site and magnitude M=6. Such kind of source would be associated to the high value of 
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probability of damage. On the other hand, this virtual source is associated to a very low contribution to 

the hazard, and therefore is considered unlikely.  

 

NAPOLI - PHSA -  Pr=81% in 50y 

 

Figure 5.42. Disaggregation, lead-time and acceleration maps of target site of Napoli (Pr=81%). 
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NAPOLI – Probability of Damage - Pr=81% in 50y 

 

 

 

Figure 5.43. Probability of damage maps of target site of Napoli (Pr=81%). 
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NAPOLI - PHSA -  Pr=63% in 50y 

 

 

 

Figure 5.44. Disaggregation, lead-time and acceleration maps of target site of Napoli (Pr=63%). 
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NAPOLI – Probability of Damage - Pr=63% in 50y 

 

 

 

Figure 5.45. Probability of damage maps of target site of Napoli (Pr=63%). 
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NAPOLI - PHSA -  Pr=10% in 50y 

 

 

 

Figure 5.46. Disaggregation, lead-time and acceleration maps of target site of Napoli (Pr=10%). 

 

 



 

 

180 Chapter 5: Seismic vulnerability of segmental tunnel lining 

NAPOLI – Probability of Damage - Pr=10% in 50y 

 

 

 

Figure 5.47. Probability of damage maps of target site of Napoli (Pr=10%). 
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NAPOLI - PHSA - Pr=5% in 50y 

 

 

 

Figure 5.48. Disaggregation, lead-time and acceleration maps of target site of Napoli (Pr=5%). 
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NAPOLI – Probability of Damage - Pr=5% in 50y 

 

 

 

Figure 5.49. Probability of damage maps of target site of Napoli (Pr=5%). 
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FIRENZE - PHSA - Pr=81% in 50y 

 

 

 

Figure 5.50. Disaggregation, lead-time and acceleration maps of target site of Firenze (Pr=81%). 
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FIRENZE – Probability of Damage - Pr=81% in 50y 

 

 

 

Figure 5.51. Probability of damage maps of target site of Firenze (Pr=81%). 
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FIRENZE - PHSA - Pr=63% in 50y 

 

 

 

Figure 5.52. Disaggregation, lead-time and acceleration maps of target site of Firenze (Pr=63%). 
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FIRENZE – Probability of Damage - Pr=63% in 50y 

 

 

 

Figure 5.53. Probability of damage maps of target site of Firenze (Pr=63%). 
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FIRENZE - PHSA - Pr=10% in 50y 

 

 

 

Figure 5.54. Disaggregation, lead-time and acceleration maps of target site of Firenze (Pr=10%). 
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FIRENZE – Probability of Damage - Pr=10% in 50y 

 

 

 

Figure 5.55. Probability of damage maps of target site of Firenze (Pr=10%). 

 



 

 

189 Chapter 5: Seismic vulnerability of segmental tunnel lining 

FIRENZE - PHSA - Pr=5% in 50y 

 

 

 

Figure 5.56. Disaggregation, lead-time and acceleration maps of target site of Firenze (Pr=5%). 
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FIRENZE – Probability of Damage - Pr=5% in 50y 

 

 

 

Figure 5.57. Probability of damage maps of target site of Firenze (Pr=5%). 
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ROCCA SAN GIOVANNI - PHSA - Pr=81% in 50y 

 

 

 

Figure 5.58. Disaggregation, lead-time and acceleration maps of target site of Rocca San Giovanni (Pr=81%). 
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ROCCA SAN GIOVANNI– Probability of Damage - Pr=5% in 50y 

 

 

 

Figure 5.59. Probability of damage maps of target site of Rocca San Giovanni (Pr=81%). 
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ROCCA SAN GIOVANNI - PHSA - Pr=63% in 50y 

 

 

 

Figure 5.60. Disaggregation, lead-time and acceleration maps of target site of Rocca San Giovanni (Pr=63%). 
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ROCCA SAN GIOVANNI– Probability of Damage - Pr=63% in 50y 

 

 

 

Figure 5.61. Probability of damage maps of target site of Rocca San Giovanni (Pr=63%). 
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ROCCA SAN GIOVANNI - PHSA - Pr=10% in 50y 

 

 

 

Figure 5.62. Disaggregation, lead-time and acceleration maps of target site of Rocca San Giovanni (Pr=10%). 
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ROCCA SAN GIOVANNI– Probability of Damage - Pr=10% in 50y 

 

 

 

Figure 5.63. Probability of damage maps of target site of Rocca San Giovanni (Pr=10%). 
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ROCCA SAN GIOVANNI - PHSA - Pr=5% in 50y 

 

 

 

Figure 5.64. Disaggregation, lead-time and acceleration maps of target site of Rocca San Giovanni (Pr=5%). 
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ROCCA SAN GIOVANNI– Probability of Damage - Pr=5% in 50y 

 

 

 

Figure 5.65. Probability of damage maps of target site of Rocca San Giovanni (Pr=5%). 
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In terms of lead-times, the results of the LEVEL-1 analysis indicates that considering the threats having 

the major contribution to the hazard the lead-time is in general low and  not sufficient for implementing 

‘Regional Early Warning’ approaches. On the contrary, on-site EEWS based on simple thresholds could 

provide warnings of imminent danger with enough time to protect the considered structure.  

A similar situation is observed for the target named Firenze, for which the major threat is a ‘virtual 

source’ at about 20 km and magnitude M ~5. Therefore, also in this case the site of interest is too near to 

the seismic threat to consider feasible to warn the site by regional EEWS. On the contrary, for the case of 

Rocca San Giovanni, where for Pr=81%, to the major threats correspond to seismic sources of moderate 

magnitude (4.5 – 5.75) at distances between 25 km and 65 km, the estimated lead-times are considered 

sufficiently large to suggest the use of a regional EEWS. 

Currently in Italy there are more than 750 accelerometric stations installed across the whole Country’s 

active seismic zones and a significant number of these stations (about 500) are nodes of the RAN (Italian 

accelerometric network; http://www. protezionecivile.gov.it/jcms/it/ran.wp) managed by the Italian 

Department of Civil Protection (Dipartimento della Protezione Civile, DPC), whose data are used for 

emergency response services, as well as being shared with the seismological and engineering 

communities for technical and scientific applications (Emolo A. et al. 2016). Picozzi et al. 2015 explored 

the scientific feasibility of a nation-wide EEWS in Italy that exploits the RAN and the regional EEW 

software PRESTo to provide the Italian DPC with the necessary information for planning the 

implementation of an operational EEWS in Italy. The software PRESTo is experimented at the ISNet 

(Irpinia Seimic Network, Figure 5.66), a network located in South of Italy (Campania) developed after the 

Irpinia Earthquake (on 23 of November, 1980, M=6.9) to monitor the seismicity of the area. 

Therefore, the Metro Line 6 of Napoli could be alerted by the regional EEWS given by ISNet and 

PRESTlo from the Irpinia seismic threat, an area capable of generating events with magnitude larger than 

M 7 and corresponding to the zones 927 in the seismogenic map of Italy (Figure 5.41b). 

 

 
Figure 5.66. Irpinia Seimic Network 

 

5.2.2 Real time approach 
  

The real-time approach is not bounded to the probabilistic approach proposed by the national code, 

and consists in the simulation of the effects of a real seismic event on the target site. 

 To this purpose, we exploit the PRESTo-PRobabilistic and  Evolutionary early warning  SysTem 

(Satriano et al. 2011, http://www.prestoews.org), which has been used to predict the PGA at the target 

http://www.prestoews.org/
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site through real-time and evolutionary location and magnitude estimates and a ground motion 

prediction equation.  In this case, the application has been carried out only for the site of Rocca San 

Giovanny, simulating the occurrence of the largest seismic events that have recently interested that area. 

That is to say, the Mw 6.1 L’Aquila Earthquake (occurred on 6 of April 2009) and the Mw 6.5 Norcia 

Earthquake (occurred on 30 of November 2016, M=6.5). 

 

LEVEL ‘2’ 

Norcia earthquake (30 of November 2016, M=6.5) 

 

Figure 5.67. Localization of Norcia earthquake and processed accelerometer stations during the seismic event. 

 

 

Figure 5.68.  Zoom in of the localization of Norcia earthquake and the target site Rocca San Giovanni. 
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Figure 5.69. Real-time simulation of Norcia earthquake with PRESTo to determine the PGA value at the target site 

Rocca San Giovanni. 

 

PRESTo has been used to analyse the RAN recordings of these two earthquakes simulating their 

occurrence and to estimate the PGA values at the target site Rocca San Giovanni as if they were occurring 

in real time, and thus providing a real-time estimation of the probability of damage. Figures 5.67 and 5.68 

and Figures 5.70 and 5.71 show, for instance, the localization of the target site respect Norcia and 

L’Aquila epicentres, respectively. 

As the time passes and more stations are triggered (Figure 5.69), the location and magnitude 

estimates are updated using all available data, thus providing continuously refined information about the 

earthquake parameters and ground shaking predictions at target sites.  

Figures 5.72 and 5.73 show the results of the simulations in terms of estimated PGA (Figures 5.72a for 

Norcia earthquake and 5.73a for L’Aquila earthquake, respectively) and the probability of damage 

(Figures 5.72b for Norcia earthquake and 5.73b for L’Aquila earthquake, respectively) as function of the 

time from the origin time of the event. 

The results show that for both seismic events the estimated PGA at the target site are such to lead us 

to forecast almost null probability of moderate and minor damage, and a value lower of the 10% of minor 

damage. Such results agree with the real response of the railway tunnel Rocca San Giovanni during the 

considered seismic events, during which any kind or damage was reported. 
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L’Aquila earthquake (6 of April 2009, M=6.1) 

 

Figure 5.70. Localization of L’Aquila earthquake and processed accelerometer stations during the seismic event. 

 

 

Figure 5.71.  Zoom in of the localization of L’Aquila earthquake and the target site Rocca San Giovanni. 
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Figure 5.72. Real-time estimation of PGA and (b) probability of damage at the target site Rocca San Giovanni during 

Norcia earthquake. 

 

 

Figure 5.73. Real-time estimation of PGA and (b) probability of damage at the target site Rocca San Giovanni during 

L’Aquila earthquake. 

 

The probabilistic approach defined with the LEVEL ‘2’, based on the hazard disaggregation, provides a 

useful tool to study the feasibility of EEWS. These results indicate that two of the selected targets could 

benefit of an on-site EEWS. Concerning the target in Napoli, we found that a regional EEWS given by the 

combination of the ISNet network and software PRESTo could be effective to protect the Metro Line 6 of 

Napoli from the seismic threat represented by the Irpinia area. 
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CHAPTER 6 

Tunnel - ground interaction during non uniform seismic shaking 

 

 

 

Introduction 
 

The engineering problem of dynamic soil-underground-structure interaction is commonly studied 

assuming the structure infinitely long with an uniform cross-section (buried tunnel, immersed tunnel,  

pipeline) and the incident seismic wave with a direction perpendicular to the axis of the structure which 

does not vary along this axis, then assuming a plain strain problem. 

Actually ‘long’ underground structure, that is the length of the structure is much longer than the wave 

length, undergoes to deformation also in longitudinal direction making the problem three dimensional. 

The longitudinal deformation pattern derives from the spatial incoherence of the seismic motion induced 

by the horizontal propagation of surface and body waves respect the structure axis.  

This spatial variation of the seismic ground motion implies a modification of the free field soil response 

respect the case in which the spatial incoherence is not considered. As consequence, because the 

underground structure is governed by the surrounding soil deformation during seismic shaking, the free 

field soil response under asynchronous seismic motion should be different than the synchronous case. 

This chapter focuses on the effect of the travelling wave passage along the tunnel axis on the seismic 

response of the structure. This loading condition is named in this Chapter ‘non-uniform seismic load’ and 

it is compared with the uniform seismic load in plain strain condition.  

 

 
 

Figure 6.1. Layout of the Chapter 6. 
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A three dimensional numerical model able to catch the main deformation mechanisms of the soil 

subjected to multi-directional seismic motion, has been developed in the FE code Plaxis 3D. The free field 

soil response under travelling waves has been compared with the results obtained on the same model 

developed in Abaqus 3D.  

Once validated the free-field numerical model, the soil structure interaction has been investigated 

with a set of parametrical analysis varying longitudinal time-lag of the travelling wave in terms of dynamic 

increment of transversal and longitudinal internal forces arising in the lining. A comparison between 

uniform and not uniform seismic load is shown for different seismic loading cases. 

A simplified 2D multi-masses-beam-springs model developed by Li Chong 2016 has been implemented 

in Abaqus 2D in order to compare the longitudinal component of dynamic increment of internal forces 

evaluated with two and three dimensional numerical method. 

Figure 6.1 shows the organization scheme of this Chapter. 

 

 

6.1       Literature review  
 

As introduced in the Chapter 4, tunnels are subjected to different deformation mechanisms such as 

shear deformation (→ ovaling and racking for circular and rectangular shaped tunnel respectively), axial 

compression and extension and longitudinal bending (→deforming the tunnel like a snake). Shear 

deformation is induced by the vertically propagating shear waves (uniform seismic load), the axial 

deformations in tunnels are generated by the components of seismic waves that produce motions parallel 

to the axis of the tunnel (non uniform seismic load), bending deformations are caused by the components 

of seismic waves producing particle motions perpendicular to the longitudinal axis (non uniform seismic 

load).  

Current research on the topic distinguishes (a) analytical solutions and (b) numerical methods that, in 

different way and level of detail, solve the problem. 

In the next paragraph the following analytical solutions are discussed in detail: 

i. Free field deformation approach - St. John and Zahrah 1987  

ii. Seismic deformation method - Kawashima 1999  

iii. Beam springs model - Yu H. et al. 2016  

iv. Mass-beam-springs model - Kiyomiya O. 1995 

v. Multi masses beam springs model - Li C. et al. 2017. 

 

Free field and seismic deformation methods for instance, using a pseudo-static approach, evaluate 

similarly the effect of seismic soil deformation on the tunnel structure without taking explicitly into 

account its presence and then the soil-structure interaction. Both methods include the effect of the 

incidence of the sismic wave respect the tunnel axis without simulating the effect of wave travelling. 

The beam spring model studies the effect of the travelling wave in a pseudo-static way acting directly 

on the structure. The soil structure interaction is modelling with springs elements representing the 

stiffness of the soil which seismic behaviour is not including in the model. 

Masses and multi-masses beam-springs models study the soil structure-interaction with SDOF and 

MDOF equivalent systems respectively, under non uniform seismic loads. 
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These latter represent the most advanced and sophisticated analytical methods to study the 

longitudinal behaviour of tunnel under seismic shaking. 

Regarding the numerical solutions on the topic, they are less large respect the analytical ones because 

they are very time consuming and need very large computer memory, respect the case of uniform seismic 

load too. In particular, the following numerical approaches are discussed in detail:  

 

I. Pseudo-static 3D numerical analysis, Park et al. 2009, 

II. 3D multi-scale method, Yu H. et al. 2013, 

III. 3D full dynamic analysis, Li & Song 2014. 

 

6.1.1 Analytical solutions 
  

Closed-form expressions existing in literature simply estimate the tunnel strains and stresses arising in 

the tunnel lining modelling the seismic wave field as a plane wave with the same amplitude in every 

tunnel segment, differing only in their arrival time (coherence). Wave scattering and three dimensional 

propagation are neglected, even if these phenomena can determine a variation of stress and strain along 

the tunnel axis. Figure 6.2 shows schematically the geometry of the problem. Named C the propagation 

velocity along the tunnel axis of length l,  the incidence angle and Lthe wavelength of the plane waves, 

the condition causing the motion phase displacement on the structure is l>L= C/f. This condition shows 

that the effect of longitudinal propagation is remarkable for lower propagation velocity and is not 

negligible for lower frequencies (Rampello, 2005). 

Consider a planar wave front advancing with speed C and impinging on the tunnel axis with an angle . 

The sinusoidal signal is used to represent an accelerogram with an equivalent energy content. The 

apparent velocity of the waves on the tunnel axis is Cx= C/cos.  

 
 

y 

planar wave front 

CX=C/cos 



C 

x 

DSS=DScos 

DSP=DSsin 

DS 

DPP=DPcos 

DPS=DPsin 

DP 

 

Figure 6.2. Geometry of the problem (Vanzi, 2000). 

 

Compression P waves travelling in the  direction with amplitude Dp causes, along the tunnel axis, 

both a train of compression waves, with amplitude Dpp=Dpcos, and a train of shear waves with 

amplitude Dps=Dpsen. Shear S waves with amplitude Ds can be decomposed similarly: they produce both 
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compression waves with amplitude Dsp=Dssen, along the tunnel axis, and shear waves with amplitude 

Dss=Dscos, acting transversally. Finally the stresses are coupled unless the incidence angle is 0° or 90° 

(Figure 6.2). 

 

i. Free field deformation approach - St. John and Zahrah 1987  

St. John and Zahrah 1987 used the Newmark’s approach to develop closed formula for free field axial 

and curvature strains due to the compression, shear and Rayleigh waves. Based on this, they used 

pseudo-static approach (free-field deformation method) to estimate the strains and curvature of the 

tunnel subjected to a harmonic motion propagating at an incident angle respect the tunnel axis. The free 

field approach does not consider the soil-structure interaction and this may underestimate or 

overestimate the structure deformation in function mainly of structure stiffness respect the surrounding 

soil. 

The starting point of the analytical procedure is the equation of planar wave propagation in x direction 

through a homogeneous medium: 

 

)(),( Ctxftxu                                 

(6.1) 

 

In 6.1, t is the time and C is the wave propagation speed in the medium. In order to calculate the 

curvature and strain in the wave propagation direction, the u(x, t) is derived to x: 
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Using the equations 6.2 and 6.3 the strain and curvature in free-field conditions are calculated for the 

three different types of waves (P, S, and Rayleigh waves). For example, for the compression P wave, the 

maximum longitudinal strain value is:  

p

p
lm

C

V
            (6.4) 

where Vp is the peak ground velocity of seismic signal (amplitude for sinusoidal waves) and Cp is the 

propagation velocity for the compression waves. If the maximum curvature for shear waves S is 

considered, the expression will be: 

2

1

s

s

m C

a



           (6.5) 

as is the peak ground acceleration of the seismic signal (amplitude for sinusoidal waves) and Cs is the 

propagation speed for shear waves. In the general case, the P, S and Rayleigh waves propagate in the 

medium with a generic angle of incidence on the underground structure. In Table 6.1, the components of 

deformation and curvature relevant to the different wave types, their maximum values and the angles of 

incidence for which the maximum occurs are shown (the P, S or R notation is relative to compression, 

shear and Rayleigh waves). 
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The axial and bending deformations are combined in order to calculate the total longitudinal strain. 

The values relative to compression waves P and shear waves S are: 
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Table 6.1: strain and curvature due to body and surface waves (St.John & Zahrah 1987) 

 

The analytical solutions are obtained using a quasi-static representation of the seismic actions and 

neglecting the dynamic effects of the soil/structure interaction. 

In the followings, only the shear wave S is considered; the analytical procedures are formally the same 

also for compression waves P but, as some Authors observed (St.John & Zahrah, 1987, Hashash et al., 

2001), the corresponding seismic strains are lower in comparison. 

Considering a tunnel subjected to a sinusoidal wave S with wavelength L and amplitude D the 

displacements values are (Figure 6.3): 
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The Poisson’s ratio and dynamic modulus of a deposit can be computed from measured P and S waves propagation 

velocities in an elastic medium: 
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The wavelength parameter L of the ideal sinusoidal signal representing the earthquake action is 

defined as L = TsCs (Wang, 1993), where Ts is the fundamental period of the deposit, which can be 

calculated for instance according to Idriss and Seed 1968, and Cs is the propagation speed of the shear 

waves. 

The sinusoidal wave amplitude D comes from specific site conditions. Generally the parameter D can 

be computed according to the following expressions (Hashash et al., 2001), in which it is the only 

unknown quantity, by equalling the deformations values in free-field conditions (6.10 and 6.11) and the 

structure strain of an elastic beam:  
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Figure 6.3. Displacements due to a sinusoidal shear wave. 

 

Once obtained all the wave parameters, the following expressions of the seismic internal forces in the 

tunnel lining can be computed (St.John & Zahrah, 1987): 
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where Et is the Young’s modulus of the structure, I is the second moment of area, A is the area of the 

transverse section.  

The Equations 6.12, 6.13 and 6.14 were obtained without considering the dynamic soil-structure 

interaction. Therefore, if the structure is stiffer than the surrounding ground, it distorts less, as a 
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consequence of the interaction. 

If the structure is considered as an elastic beam on an elastic soil, the static interaction is considered 

and the equation to solve is: 

p
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                      (6.15) 

where ut is the structure deformation and p is the interface stress. The contact action at the interface 

between the soil and the structure is modelled through a bed of linearly elastic springs: 
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Substituting Equation 6.16 in 6.15 the tunnel curvature obtained is lower than the value of the 

previous calculation. A reduction parameter can be used to take into account this difference: 








 




4
41

cos
2

1

1

LK

IE
R

t

t

                    (6.17) 

Shear forces and bending moments must be reduced using the R factor in order to obtain correct 

solutions. The same approach is used to find the expression of the axial force from the equation: 
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A reduction factor is obtained to be multiplied by the previous Equation 6.12 for axial forces: 
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According to Eqs 6.12, 6.13, 6.14 and 6.17, the angle that maximizes bending moments and shear 

forces is =0°. On the other hand the condition of maximum axial force does not follow straightforward 

from Eqs. 6.12, 6.13, 6.14 and 6.19, but it is common assumption in design that the maximum axial force 

can be computed for =45°, which corresponds to the exact maximum condition when the soil-structure 

interaction is neglected (6.12, 6.13, 6.14) 

In soft soil the structure modifies the deformation of the surrounding ground, therefore Eqs 6.17 and 

6.19, which accounts for interaction, should be used; on the other hand, in rock and stiff soil the use of 

the free-field expressions 6.12, 6.13, 6.14 are usually enough accurate due to the high contrast of 

stiffness between the tunnel and the ground.  

According to Eqs. 6.12, 6.13, 6.14, as structural stiffness increases due to tunnel lining reinforcements, 

this generally determines an increase of the seismic loads in the lining. In order to avoid this, flexible 

joints can be designed. 

When the use of Eqs. 6.17 and 6.19 are needed, the spring constants Kt and Ka shall be determined.  

They represent the ratios between the interface soil-structure interaction loads and the corresponding 

displacements. Literature values for this constants (Wang, 1993) are a function of the wavelength of 

incident wave: 
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where Gs and  are the shear stiffness modulus and Poisson ratio for the medium and d is the 

diameter of the circular tunnel. 
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This elastic coefficients must be representative of the dynamic behaviour and the cyclic load of the 

sinusoidal wave. 

 

ii. Seismic deformation method - Kawashima 1999  

A new quasi-static method was used in Japan for the design of underground fuel pipelines from the 

Chiba Port to the International Airport of Marita (JRA, 1976): in this method the seismic deformation of 

the ground is the assumed as the seismic action on the pipelines. In the following years the method was 

improved until it became the main design method in Japan for all the underground structures under 

seismic conditions, known as ‘Seismic Deformation Method’. 

According to the method, a long tunnel is modelled as an elastic beam in elastic soil. The equations of 

motion in the longitudinal and transverse directions are expressed as: 
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where m is the mass of lining for unit length, EtA and EtI are the axial and bending stiffness of the 

tunnel section; ua and ut are the longitudinal and transversal displacements of section x at the time t; ux 

and uy are the displacements at the same instant t of the soil surrounding the same section x, Ka and Kt, 

are the elastic constants of the springs modelling the soil reaction in the longitudinal and transversal 

direction.  

To use the above formulas in design, the soil displacements ux and uy. are computed in the method by 

assuming an ideal soil deformation of sinusoidal shape having wavelength L (Figure 6.4). 

The free-field deformation of the soil surrounding the tunnel is the result of different components due 

to the non homogeneous subsoil characteristics, the thickness of soft soil layers, and the signal variation 

compared to the bedrock registration. 

 

Figure 6.4. Ideal displacements of tunnel axis (Kawashima 1999). 

 

In order to take into account such a variability, the wavelength L of the ideal free-field displacement 

function is not the simple wavelength of the wave passing through the medium but rather an equivalent 

value that give a good agreement of the six seismic deformation components. The L adopted value is: 

Uy
Ux

Uy
Ux
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VS and VSB are the propagation velocity of the shear waves in the soil and in the bedrock respectively. 
TS is the fundamental period of soil layer, calculated as: 
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Hi and VSi are the thickness and the shear waves propagation velocity of the i-th sub-layer, that is for 

each sub-layer in which the soil is divided. Once the wavelength L is defined, the design value of the soil 

displacement both in longitudinal and transversal direction is given by the following expression: 
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where uh is the horizontal displacement at surface and is obtained, in the hypothesis of homogeneous 

soil, as: 
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where SV is the design peak ground velocity of the bedrock response spectrum. 

By substituting Eq. 6.25 in the 6.21 and 6.22, the differential equation can be solved and the axial 

forces and bending moments on the structure are given as: 
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In these expressions Nh and Nv represent the axial forces in the horizontal and vertical direction; Mh 

and Mv are the bending moments in the horizontal and the vertical plane containing the tunnel axis. 

Other terms appear in the Eqs. (23-26): 𝑢̃ℎand 𝑢̃𝑣 are the displacements at the tunnel depth, in the 

horizontal and vertical direction; cta, ctt and ctv are the transmission factors of displacements from the soil 

to the structure, in the axial and transversal components direction; finally cja, cjt and cjv are the 

modification factors due to the contours conditions of the longitudinal element. 

The transmission factors are: 
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where K are the spring stiffness in which the soil is modelled. The axial force (6.27) and the bending 

moment (6.29) expressions, combined with static loads, are used in the design of the underground 

Japanese structures. 

 

iii. Beam-springs model - Yu et al. 2016  

Yu et al. 2016 proposed a new analytical solution for dynamic response of long lined tunnels subjected 

to travelling loads taking into account both the inerzia forces and the soil-structure interaction. 

Figure 6.5 shows the idealization of the problem: the long lined tunnel is assumed to be infinitely long 

with a uniform cross-section and to behave as linear elastic. A constant stiffness EI and mass per unit 

length A is considered, where E is the Young’s modulus of elasticity, I the moment of inertia of the 

tunnel cross section,  the density of the tunnel liner, A the area of cross section of the tunnel. The tunnel 

is supported by a viscoelastic foundation with constant spring stiffness K and viscous damping C per unit 

length. 

 The surrounding soil medium is assumed to be isotropic and homogeneous and to behave as 

viscoelastic; the travelling loads are assumed to be plane harmonic loads and propagate parallel to tunnel 

axis.  

 

Figure 6.5. Long lined tunnel on a viscoelastic foundation subjected to travelling loads (Yu H. et al. 2016). 

 

Defining y(x, t) as the vertical deflection of the tunnel and F(x,t) as the plane harmonic travelling loads, 

the wave-passage loads can be expressed as: 

 

𝐹(𝑥, 𝑡) =
0                                          𝑓𝑜𝑟 𝑥 > 𝑉𝑡
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𝑥

𝑉
)]         𝑓𝑜𝑟 𝑥 ≤ 𝑉𝑡

                                                                                  (6.34) 

 

where V,  and P are the wave velocity, the frequency and amplitude of the loads, respectively. 

The tunnel structure is assumed to behave linear elastically and deform only due to the normal 

travelling loadings perpendicular to the tunnel axis (deformations of the tunnel structure due to axial 

forces are neglected); the tunnel is assumed to behave as an Euler-Bernoulli beam. 
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The governing equation of the tunnel with constant cross section resting on a viscoelastic foundation 

subjected to travelling loads is given by the following linear partial differential equation: 
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+ 𝐾𝑦(𝑥, 𝑡) = 𝐹(𝑥, 𝑡)                                                                         (6.35) 

  

assuming as boundary conditions the following ones: 

 

 Initial boundary condition :  𝑦(𝑥, 𝑡)𝑡=0 = 0;    (
𝜕𝑦(𝑥,𝑡)
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)

𝑡=0
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 Infinite boundary condition:  lim
𝑥→±∞

𝜕𝑛𝑦(𝑥,𝑡)

𝜕𝑥𝑛 = 0  (𝑛 = 0,1,2,3)                                                 (6.37) 

 

To obtain the analytical solution of the problem, the Fourier transform is used to simplify the 

governing equation of the tunnel in space domain, whereas the Laplace transform is employed to reduce 

the equation in time domain. The governing equation of the tunnel based on the integration transform, 

therefore, is changed to an algebraic equation so that the solution can be conveniently given in the 

frequency domain. Finally, the convolution theorem is employed to convert the solution into the time 

domain. 

Equation 6.38 is the integral representation of the displacement response of the long lined tunnel on 

the viscoelastic foundation subjected to travelling loads. 
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The velocity v(x,t) and acceleration a(x,t) responses of the tunnel structure can be obtained as the first 

and second derivatives of displacement response with respect to time domain: 
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Analytical solutions for the bending moment M(x,t) and shear force Q(x,t) response of the tunnel can 

be acquired as the second and third derivatives of displacement response with respect to space domain x, 

and each multiplied by a coefficient (-EI). 
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𝑢3𝑠𝑖𝑛[𝑢(𝑟−𝑥)]

𝛽(𝑢)
𝑠𝑖𝑛 [2𝜋 (𝑠 −

𝑟

𝑉
)] 𝑒−𝛼(𝑡−𝑠)𝑠𝑖𝑛[𝛽(𝑢)(𝑡 − 𝑠)]}

𝑉𝑠

0
𝑑𝑟𝑑𝑠𝑑𝑢

+∞

0
                           (6.42) 
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The equation 6.38 is deduced assuming 𝐶2 ≤ 4𝐾𝜌𝐴. When 𝐶2 ≥ 4𝐾𝜌𝐴, the equation 6.38 becomes 

as follows (Equation 6.43) and the analytical solution for velocity, bending moment and shear forces 

derived from this. 

 

𝑦(𝑥, 𝑡) =
𝑃

𝜋𝜌𝐴
∫  ∫  

𝑡

0
∫ {

𝑐𝑜𝑠[𝑢(𝑟−𝑥)]

𝛽0(𝑢)
𝑠𝑖𝑛 [2𝜋 (𝑠 −

𝑟

𝑉
)] 𝑒−𝛼(𝑡−𝑠)𝑠𝑖𝑛[𝛽0(𝑢)(𝑡 − 𝑠)]}

𝑉𝑠

0
𝑑𝑟𝑑𝑠𝑑𝑢 +

𝑢0

0

𝑃

𝜋𝜌𝐴
∫  ∫  

𝑡

0
∫ {

𝑐𝑜𝑠[𝑢(𝑟−𝑥)]

𝛽 (𝑢)
𝑠𝑖𝑛 [2𝜋 (𝑠 −

𝑟

𝑉
)] 𝑒−𝛼(𝑡−𝑠)𝑠𝑖𝑛[𝛽 (𝑢)(𝑡 − 𝑠)]}

𝑉𝑠

0
𝑑𝑟𝑑𝑠𝑑𝑢

+∞

0
                                                (6.43) 

 

where: 

𝑢0 = √
1

𝐸𝐼
(

𝐶2

4𝜌𝐴
− 𝐾)

4
;            𝛽0(𝑢) = √−

𝐸𝐼

𝜌𝐴
𝑢4 −

𝐾

𝜌𝐴
+

𝐶2

4(𝜌𝐴)2

 
                                 (6.44) 

 

iv. Mass beam springs model - Kiyomiya O. 1995  

The mass-beam-springs model is the earthquake resistant design method developed in Japan for the 

immersed tunnel (Kiyomiya O. 1995), based on the modal response of a linear system. One-dimensional 

seismic response analysis of soil is used to solve the problem of horizontal shear waves (SH waves) 

vertically propagating through a horizontally layered soil deposit from an underlying bedrock. With 

respect to linearly viscoelastic problem, the soil of each layer is assumed to behave as a Kelvin-Voigt solid 

which is represented by a constant elastic spring and a viscous damper in parallel. In this way, the wave 

equation is formulated to account for the properties of both elasticity and viscosity.  

Figure 6.6 shows the scheme of the idealized model. The surface layer is divided into a number of 

slices, perpendicular to the tunnel axis. Each slice is represented by an equivalent mass-spring system. 

The SDOF system consists of a mass representing the mass of a slice, a spring and a dashpot connecting 

the mass to the base rock. The model is on the basis of the assumption that the ground displacement is 

dominated by the fundamental shearing vibration.  

Overall, the modal response of a linear system is essentially dependent on its modal properties, such 

as natural frequencies, mode shapes, modal participation factors and modal damping ratios etc. In the 

equivalent SDOF system, three modal properties, i.e. (1) the natural frequency, (2) modal effective mass 

and (3) modal damping ratio, are used to evaluate the mass, spring and dashpot constants of the system. 

Note that the only mass of the equivalent SDOF system is actually located at the first modal effective 

height of the real system. 

The spring constant of K3 is determined so that the natural period of the system coincides with the 

natural period of the first mode of shear vibration of the slice. The model does not consider that the 

natural period of vibration of the ground is influenced by the presence of the tunnel. The neighboring 

masses are connected to one another along the tunnel axis by springs and dashpots. The spring constant 

of K2 is related to the push-pull resistance to the axial relative displacement between adjacent ground 

slices or the shear resistance to the lateral relative displacement.  
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Figure 6.6. Scheme of masses-beam-springs-model (Kiyomiya 1995). 

 

The tunnel is assumed to be an elastic beam supported by elastic or inelastic springs K1 representing 

soil rigidity. One end of each spring is considered to displace the same as the displacement of the ground 

calculated by the total model of the surface layer. In this way, the seismic response of the tunnel can be 

calculated.  

Figure 6.7 shows in more detail the springs K2 (Figure 6.7a) related the axial deformation between 

adjacent cross section, and K1 (Figure 6.7b) related the shear deformation of the ground between 

adjacent cross section. 

 

 

 
 

Figure 6.7. Axial and shear springs in masses-beam-springs-model (Li C. 2016). 

 

The response of the surface layer can be calculated by the following equation: 

[𝑀]{𝑥̈} + [𝐶]{𝑥̇} + [𝐾]{𝑥} = −[𝑀]{𝑒̈}                                                                                               (6.45) 

where: 

[𝑀]{𝑥̈} is the mass matrix multiplied the accelerations vector; 

[𝐶]{𝑥̇} is the damping matric by K1 and K2 multiplied the velocities vector; 
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[𝐾]{𝑥} is the rigid matrix multiplied the displacements vector; 

[𝑀]{𝑒̈} is the mass matrix multiplied the input acceleration vector. 

 

Seismic waves are applied at the base of the model and the response displacement of each mass is 

calculated. The displacement of the ground and at the position of the tunnel are obtained multiplying the 

displacements of the mass for the respective participation factors for the fundamental vibration mode. 

 

v. Multi masses beam springs model - Li C. et al. 2017 

The model represents an evolution of the masses-beam-springs model, performing one-dimensional 

ground seismic analysis with an equivalent MDOF system. Unlike the equivalent SDOF system, the MDOF 

proposed model is based on four modal properties, i.e. (1) the natural frequency, (2) modal effective 

mass, (3) modal effective height and (4) modal damping ratio: 

(1) Natural frequency of the equivalent MDOF system for each mode coincides with that of the 

corresponding vibration mode of the soil deposit.  

(2) Modal effective mass of the equivalent MDOF system for each mode equals to that obtained from 

corresponding vibration mode of the soil deposit.  

(3) Modal effective heights of the equivalent MDOF system are consistent with the counterparts of the 

soil deposit.  

(4) The equivalent MDOF system and the actual soil deposit have identical modal damping ratio for 

each mode. 

Figure 6.8 shows the MDOF discretization of a horizontally layered deposit. The configuration of 

dashpots in Figure 6.8b makes the damping property of the whole system viscous while the configuration 

in Figure 6.8c, proposed by the authors, is hysteretic.  

 

 

Figure 6.8. Horizontally layered soil deposit on rigid bedrock and the corresponding one-dimensional (1-D) equivalent 

MDOF system (Li C. et al. 2017). 
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The physical parameters of the modal problem are represented with the follow constants of the 

equivalent MDOF system.  

The mass and spring constants, for instance, are: 
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Where: 
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n and Mn are the n-th natural frequency and the n-th modal effective mass of 1-D soil column 

respectively; 𝑆𝑙 (
𝑁 − 𝑗

𝑁
) is the l-th number set formed by arbitrarily selecting N-j numbers from the set of 

integers from 1 to N, l=1,2…,𝐶𝑁
𝑁−1; 𝐶𝑁

𝑁−1 is the number of combinations of selecting N – j numbers from 

N numbers; j=1,2,…,N; 𝑗 = 𝑗 = 1. 

The dashpot constants of the equivalent MDOF system are determined as: 
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where djk represents the dashpot between every two mj and mk , and dj(N+1) is the dashpot between 

each mass mj and the base. 

The height for mode n of one-dimensional MDOF system associated with horizontal shear vibration is 

defined as: 

1

N
e

j jn n n

n

h h


 
                                                             (6.50) 

Where:  

n is the modal participation factor expressed as 

𝑛 = ∏
𝜔𝑚

2

𝜔𝑚
2 −𝜔𝑛

2
𝑁
𝑚=1,𝑚≠𝑛                                                      (6.51) 

φjn is the n-th mode shape of the jth mass of the equivalent MDOF system and ℎ𝑛
𝑒  is the n-th modal 

effective height of 1-D soil column expressed as 

ℎ𝑛
𝑒 =

∑ ℎ𝑗𝑚𝑗𝜑𝑗𝑛
𝑁
𝑗=1

∑ 𝑚𝑗𝜑𝑗𝑛
𝑁
𝑗=1

                                                           (6.51) 
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where hj is the height of the j-th mass over the base. 

Figure 6.9 shows the normalized heights of masses in the equivalent MDOF system for a 

homogeneous soil layer calibrated by the authors; it should be noted how the height of the mass 

corresponding to the SDOF system is the is that assumed in the masses-beam-springs-model (Kiyomiya 

1995). 

By expanding the methodology of mode equivalence from one-dimensional into two-dimensional, a 

two-dimensional equivalent MDOF system is developed for two-dimensional ground response analysis, 

schematically represented in Figure 6.10. 

 

 

 

Figure 6.9. Normalized heights of masses in the equivalent MDOF system for a homogeneous soil layer                  

(Li C. et al. 2017). 

 

 

Figure 6.10. Scheme of 2D equivalent MDOF system (Li C. 2016). 

 

6.1.2       Numerical solutions 
 

I. Pseudo-static 3D numerical analysis, Park et al. 2009 

Park et al. 2009 proposed a new procedure for simulating the tunnel response under spatial varying 

ground motion using the longitudinal displacement profile to perform pseudo-static 3D FEM analysis. 
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Starting from the definition of the coherency function which describes the spatial variability of the 

ground motion in correlation of the amplitude and the phase angles of two ground motion time histories 

uj(t) and uk(t) 

𝛾𝑗𝑘(𝜔) =
𝑆𝑗𝑘(𝜔)

√𝑆𝑗𝑗(𝜔)𝑆𝑘𝑘(𝜔)
                                                             (6.52) 

where ω is the circular frequency, Sjk(ω) is the cross-power spectrum of the motion uj(t), Sjj(ω) and 

Skk(ω) the auto-power spectrum of the motion uj(t) and uk(t) respectively, different empirical and semi-

empirical function have been proposed in literature to characterize the spatial variation of the ground 

motion. Figure 6.11 shows some empirical coherency functions function of the level of frequency and the 

separation distance. 

 

Figure 6.11. Empirical coherency functions (after Park et al. 2009). 

 

The coherency function and the procedure proposed by Abrahamson et al. 1992 has been adopted by 

the authors to generate the pseudo-static displacement profile. It comes to generate displacements time 

history of a selected earthquake starting from the acceleration time history, base line corrected before, in 

such reference point along the tunnel axis. Figure 6.12 shows the geometry of the studied problem, it is a 

tunnel 1000m long with a diameter of 10m and the reference points are at 300m 600m and 1000m. 

 

 

Figure 6.12. Geometry of the problem (Park et al. 2009). 

 

The reference and calculated ground motion displacements time histories in correspondence of the 

reference points are shown in Figure 6.13a. This displacements times histories are used to characterized 

the ground deformation shape in longitudinal direction linking the displacements in the reference nodes 

along the tunnel axis in each time step of the ground motion. Figure 6.13b shows the longitudinal 

displacements profiles along the structure at different time step.  

Abrahamson et al. 1992 Harichandran and Vanmarcke 1986 Luco and Wong 1986
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Figure 6.13. (a) Reference and calculated ground motion displacements time histories in correspondence of the 

reference points 300m, 600 and 1000m; (b) Longitudinal displacements profiles along the structure at different time 

step (Park et al. 2009). 

 

The selected ground motion is Kobe earthquake 1995. These displacements profiles refer to the 

ground surface so that, to obtain the same distribution at the tunnel depth, the generated motion need 

to be deconvolved to the bedrock and then propagated at the tunnel depth. 

The ground profiles used in the analysis are shown in Figure 6.14 referring to three different soil types 

in the instant of time of maximum curvature. The ground is assumed to be both uniform (Figure 6.14a) 

and non uniform (Figure 6.14b) changing the soil properties from type 1 to 2 and from type 1 to 3, with 

the boundary between the two soil types as in Figure 6.12. 

 

 

Figure 6.14. (a) Longitudinal displacements profile at the tunnel depth for uniform ground, soil types 1, 2 and 3; (b) 

longitudinal displacements profile at the tunnel depth for non uniform ground, soil types 1, 2 and 3; (Park et al. 2009). 

 

(a) (b)
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Figure 6.15. 3D numerical mesh for pseudo-static analysis (Park et al. 2009). 

 

Pseudo-static analysis performed on the 3D numerical mesh shown in Figure 6.15 give the results in 

Figure 6.16 and 6.17 for uniform and non uniform ground profile respectively. 

The results are shown in terms of σr, axial stress in the radial direction, Mr, bending moment in the 

radial direction, σH, axial stress in longitudinal direction, MH, bending moment due to the curvature in the 

horizontal plane. The increment of the longitudinal stress σH is significant respect the radial one that is 

rather negligible; longitudinal and radial increment of bending moments are instead similar and low 

respect the stress component. 

 

Figure 6.16. Calculated stresses and moments due to the spatially variable ground motion for uniform ground profile 

(Park et al. 2009). 
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Figure 6.17. Calculated stresses and moments due to the spatially variable ground motion for non uniform ground 

profile (Park et al. 2009). 

 

II. 3D multi-scale method, Yu H. et al. 2013 

Although the current high performance of computers and their large mass storage capability allow to 

run large 3D FEM full dynamic analysis, the numerical model could be very expensive, if not impossible, to 

run if including structural details such as segmental lining, bolts, construction process, even with the most 

advanced supercomputer. Taking in mind this issue, multi-scale method are developed to provide an 

alternative method to overcome such difficulties. Coarse-scale mesh for instance, is adopted to model 

the seismic response of the full length of the tunnel subjected to different seismic loading, fine-scale 

mesh is adopted to include structural details, such as shafts, tunnel segments, joints and bolts, in the 

model. 

The method consists of two steps of analysis: in the first step a regular coarse mesh model all the 

domain in order to determine the seismic response characteristic of the system and to identify the areas 

where refine mesh is needed; in the second step these last areas are replaced by a refined mesh and a 

new simulation with the coupled coarse and refined mesh is carried out. An overlapping domain between 

the coarse and refined mesh is needed to avoid that high frequency waves may reflected in 

correspondence of the coarse/refined mesh interface.  

Figure 6.19 shows the coupled mesh where 0
𝐶 is the coarse sub-domain,  0

𝑅 is the refined 

subdomain and 0
𝑖𝑛𝑡the overlapping domain. 

With reference to the studied case of the Qingcaosha water-conveyance double lines shield tunnel 

(Figure 6.19) in Shanghai, China, Figure 6.20 shows the coarse mesh adopted for the numerical 3D model 

while 6.21 shows the multi scale mesh adopted for the segmental tunnel lining. 

Twenty two control sections were fixed along the tunnel (Figure 6.20a), nine section for the island 

section (D1→D9), eight for the cross river segment (G1→G8), five for the land segment (L1→L5). 
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Figure 6.18 Coupled mesh scheme in the 3D multi scale method (Yu H. et al. 2013). 

 

The results of the coarse model carried out for Shanghai earthquake under non uniform loading 

condition modelled offsetting the arrival time in each point along the longitudinal direction (see scheme 

in Figure 6.22), show a significant effect if comparing with the non uniform case. The time delay has been 

obtained assuming a shear wave velocity for the bedrock equal to 500m/s. 

Figure 6.23 for instance, shows the time histories of the dynamic increments of transversal (Figure 

6.23a) and longitudinal (Figure 6.23b) displacements in the case of uniform and non uniform seismic 

loading, referring to the G5 reference section. This last condition accounts higher value of displacements 

in both cases; similar results are shown in terms of maximum ovalization of the tunnel section (Figure 

6.24). 

 

Figure 6.19. Map of Qingcaosha in Shanghai, China (Yu H. et al. 2013). 

 

Very interesting are also the results obtained with the multi-scale coarse-refined mesh (Figure 6.21) to 

account some details of the structure. The multi scale model for instance, is able to catch for example the 

main deformation mechanism occurring in correspondence of the circumferential joints, schematically 

represented in figure 6.25. 
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Figure 6.20. (a) Coarse scale tunnel model; (b) Coarse scale soil and tunnel model (Yu H. et al. 2013). 

 

 

Figure 6.21. Mesh of multi scale tunnel model: coarse-refined mesh location; (b) detail of the segment mesh                  

(Yu H. et al. 2013). 

 

 

Figure 6.22. Non uniform seismic input mode (Yu H. et al. 2013). 

 

 

 

(a) (b)
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Figure 6.23. Time histories of the dynamic increment of transversal and longitudinal displacements in G5 section under 

uniform and not uniform shaking of Shanghai earthquake (Yu H. et al. 2013). 

 

 

Figure 6.24. Maximum ovalization of tunnel in G5 section under uniform and not uniform shaking of Shanghai 

earthquake (Yu H. et al. 2013). 

 

 

Figure 6.25. Deformation patterns of the circumferential joints: (a) joint opening; (b) joint dislocation                             

(Yu H. et al. 2013). 

 

Time histories of the circumferential joint opening and dislocation are shown in Figure 6.26a and 

Figure 6.26b respectively. The maximum value of joint opening is equal about to 2mm while the 

maximum value of joint dislocation is equal about to 2.5mm, with residual values lower than 1mm in both 

cases.  

(a) (b)
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These values are not very high to think about failure problems of the joints, the authors in fact state 

that they are lower than allowable upper limits of the Chines design code. 

 

 

Figure 6.26 Time histories of circumferential joint (a) opening and (b) dislocation in correspondence of the section G5 

(Yu H. et al. 2013). 

 

This results refer to a low value of scaled PGA equal to 0.1g. Surely for higher values of PGA, the peak 

and permanent values of circumferential joints openings and dislocations can achieve values such as to 

compromise the water sealing in correspondence of the joint. It should be noted, in addition, that this 

results are relative to a seismic loading condition including a transversal and longitudinal uniform shaking; 

in a non uniform seismic loading condition in longitudinal direction, these values could undergo to an 

increasing in terms of peak and permanent values. 

 

III. 3D full dynamic analysis, Li & Song 2014 

A 3D numerical procedure has been proposed by Li & Song 2014 to study the problem of the 

asyncronous seismic motion along the tunnel axis under the hypothesis of rigid bedrock and the oblique 

seismic incidence of body waves, a likely condition in near field problems where the incident direction is 

not vertical because the waves don’t experience enough refraction during propagation. 

Figure 6.27a for instance, shows the scheme of the problem: the waves is oblique respect the vertical 

direction with the angle  and has an incident angle φ respect the tunnel axis. 

 

 

Figure 6.27. Statement of the problem (Li & Song 2014). 

(a) (b)
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The proposed procedure, schematically shown in Figure 6.28, starts with the computation of the free 

field wave motion by compiling a FORTRAN compiler combined with the finite element software ANSYS 

3D. By solving 1D equations obtaining the displacements of the nodes in each vertical, the 1D response 

analysis is extended to the 3D case. The finite element discretization scheme is shown in Figure 6.27b: the 

horizontal plane is discretized into a rectangular grid Δy x Δx while the grid points along the incidence 

plane are spaced of Δr = cr *Δt, where cr is the horizontal apparent velocity of the incidence wave (cr = 

c/sin) and Δt is the time step chosen to satisfy the stability condition of the central difference method 

and given by 

 Δt ≤ Δz/cP    → for P and SV oblique incidence problem, 

 Δt ≤ Δz/cS      → for SH oblique incidence problem. 

 

Figure 6.28. Statement of the problem (Li & Song 2014). 

 

A soil-structure interaction analysis has been carried out assuming the 3D mesh in Figure 6.29b and 

the Dirac impulse with  angle equal to 45° and φ angle equal to 30° (Figure 6.29a). 

 

Figure 6.29. (a) Dirac input displacement; (b) stretch of the 3D numerical mesh (Li & Song 2014). 

 

 = 45°
φ = 30 

(a) (b)
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The effect of the Dirac impulse passage along the tunnel is evaluated in terms of soil and structure 

displacements (Figure 6.30) and induced forces in the structure (Figure 6.31). 

 

Figure 6.30. Soil and structure displacements during Dirac impulse passage along the tunnel (Li & Song 2014). 

 

In Figure 6.30 the effect of the wave passage is clear: the tunnel is subjected to the same deformation 

mechanism along the length in different instants of time, the same happens in terms of internal forces. 

Figure 6.31 for instance, shows the time history of the longitudinal axial Force Fx, shear force Fz and 

the bending moment in the horizontal plane Mz, each of which is characterized by the same amplitude in 

with a time delay along the tunnel axis. 
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Figure 6.31. Time histories of tunnel lining internal forces at different point along the tunnel axis during Dirac impulse 

passage (Li & Song 2014). 

 

6.2 Numerical analysis 
 

A three dimensional numerical model able to catch the main deformation mechanisms of the soil 

subjected to multi-directional seismic motion, has been proposed. 

It has been developed in the FE code Plaxis 3D. The free field soil response under travelling waves has 

been compared with the results obtained on the same model developed in Abaqus 3D.  

Once validated the free-field numerical model, the soil structure interaction has been investigated 

with a set of parametrical analyses varying longitudinal time-lag of the travelling wave in terms of dynamic 

increment of transversal and longitudinal internal forces arising in the lining. A comparison between 

uniform and non uniform seismic load is shown for different seismic loading cases. 

A simplified 2D multi-masses-beam-springs model developed by Li Chong 2016 has been implemented 

in Abaqus 2D in order to compare the longitudinal component of dynamic increment of internal forces 

evaluated with two and three dimensional numerical method. 

 

6.2.1 3D full dynamic analysis: Free-field condition 
 

The effect of travelling waves along the longitudinal direction is here dealt assuming that the input 

wave propagates vertically from a rigid bedrock to the ground surface. The asynchronous of the seismic 

motion is induced by a seismic wave shaking perpendicular to the tunnel axis and propagating 

longitudinally at the same time.  
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This is an ‘ideal’ condition that may occur in far field seismic problems when the wave arrives 

perpendicularly at the ground surface and the wave front is transversal with respect to the tunnel axis. 

Under these hypotheses, a three dimensional FE model has been developed in Plaxis 3D to investigate 

firstly the free field soil response under asynchronous seismic motion and compared with the results 

obtained on the same model developed in Abaqus 3D 

Figure 6.32 for instance, shows the geometric scheme adopted in Plaxis 3D and Abaqus 3D codes. The 

soil domain has a depth H of 60m, where is located the rigid bedrock, a width B of 200m and a length Y of 

400m.  

The soil is assumed to behave elastically and Table 6.1 resumes the main soil elastic parameters. The 

soil and bedrock velocities in particular are assumed equal to 250m/s and 800m/s respectively. The 

bedrock velocity for instance, has been used to determine the time delay (time lag) of the wave along the 

longitudinal direction. The selected input motion is a harmonic single-oscillation wave with an amplitude 

of 0.1g and a frequency equal to 4Hz (Figure 6.33).  

The asynchronous of the seismic motion has been simulated assigning to the bedrock the same 

harmonic input offsetting along the longitudinal direction of the calculated time lag. 

 In Plaxis code the time history of the input acceleration signal (or velocity or displacement) is usually 

assigned to a surface displacement that modelled the rigid bedrock while in Abaqus the input is assigned 

to each node of the surface bedrock.  

In Plaxis code, the bedrock surface has been divided into a number of surfaces displacement, 16 

surfaces with a depth yi equal to 25m, and to each displacement surface has been set the harmonic input 

with a time lag TLyi equal to 0.03s along the longitudinal direction calculated in Equation 6.53. 

 

𝑇𝐿𝑦𝑖 =
𝑦𝑖

𝑉𝑏
= 0.03𝑠                                                                                                                                          (6.53) 

 

𝑇𝐿𝑡𝑜𝑡 =
𝑦 

𝑉𝑏
= 0.5𝑠                                                                                                                                            (6.54) 

 

Likewise, in Abaqus the input at the bedrock base has been assigned directly to the mesh nodes with 

the same spatial time delay in the longitudinal direction assumed in Plaxis code. 

Figure 6.33 shows the first and the last harmonic input signal assigned to both bedrock models; the 

total time lag TLtot between the first and the last signal is equal to 0.5s (Equation 6.54). 

 

 

γsoil (kN/m3) Vsoil (m/s) soil fsoil (Hz) Vbedrock (m/s) 

20 250 0.3 1.04 800 

Table 6.1 Soil elastic parameters. 

 

The mesh size was set as a function of the maximum investigable frequency of the signal fmax = 4Hz 

(Kuhlemeyer & Lysmer 1973) and equal to hmax=Vs/(4*fmax)=7.8m. Figure 6.34 and Figure 6.35 shows the 

numerical mesh implemented in Plaxis 3D and Abaqus 3D respectively. 
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Figure 6.32. Geometric scheme adopted in Plaxis 3D and Abaqus 3D to simulate the asynchronous of the seismic motion 

in longitudinal direction y. 

 

 

Figure 6.33. Harmonic input signals along the longitudinal direction. 

 

The average size of finite elements in Plaxis code is set equal to 2.9m, modelled with 3D triangular 

elements (Figure 6.34). The mesh is regular both in transversal and then in longitudinal direction to avoid 

any effect of the different element dimension in any direction. The zoom in on the transversal section of 

the mesh is shown in Figure 6.34, this elements distribution is the same in longitudinal direction. 

The mesh implemented in Abaqus 3D instead, is made by quadrangular elements with the dimensions 

equal to 2.5m (Figure 6.35), in order to satisfy the above mentioned criteria of Kuhlemeyer & Lysmer 

1973. 
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Figure 6.34. Numerical mesh in Plaxis 3D. 

 

‘Free field boundaries’ have been applied in Plaxis on each vertical boundary of the model, both in 

transversal and longitudinal direction, as highlighted in grey in Figure 6.34. In Abaqus code ‘continuum 

infinite 3D elements (CIN3D8)’ have been applied only on the transversal vertical boundaries while 

longitudinal vertical boundaries are not absorbent and then, the free field condition in the transversal 

direction has been achieved moving away the longitudinal vertical boundaries from the tunnel axis up to 

a distance of 200m (vs 100m in Plaxis code), thus reaching a width B of the model equal to 400m (vs 

200m in Plaxis code) as in Figure 6.35. 

 

Figure 6.35. Numerical mesh in Abaqus 3D. 

 

Elastic full dynamic analysis have been carried out in Plaxis and Abaqus codes. Some control points 

have been chosen to compare the free field soil response between the two analysis. Figure 6.36 for 
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instance, shows the selected control points along the ground surface of the longitudinal vertical section in 

the middle of the model. 

 

Figure 6.36. Control points along the ground surface of the longitudinal vertical section in the middle of the model for 

the free field asynchronous analysis. 

 

 

Figure 6.37. Time histories of acceleration and Fourier spectra of the control points in the free field asynchronous 

analysis in Plaxis 3D. 

 

Figure 6.37 shows the free field soil response in correspondence of the selected control points located 

at 180m, 200m and 220m respect the origin of the y axis. It can be observe that there is a time delay 

between the input wave (black line in Figure 6.37) and the first point at y=180m. This is the time that the 

input needs to arrive at the selected point, proportional to the travelled distance and the wave velocity. 

Likewise, there is time delay (time lag) between the arrival times in the three selected points. These 

are shifted of a time-lag proportionally to their distance (equal to 20m). The free field response of the 

control points is thus the same in terms of acceleration, just shifted in the time domain, and accordingly 

the points exhibit the same Fourier spectra. This last has a content of frequencies, is not a single-

frequency spectra like that of the input signal, because the total dynamic time Δtdyn of the analysis is 

equal to 2.5s while the harmonic signal is 0.25s in duration, so that there is an overlap between the 

travelling waves inducing the generation of other frequencies. 

In Figure 6.38 there is the comparison in terms of time histories of acceleration and Fourier spectra in 

the control points calculated with Plaxis and Abaqus models. Both models behave similarly and the 

comparison is considered to be good enough to validate the proposed model in free field condition. 
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Figure 6.38. Comparison between the time histories of acceleration and Fourier spectra of the control points in the 

free field asynchronous analysis in Plaxis and Abaqus 3D. 

 

 

6.2.2 3D full dynamic analysis: Soil-structure interaction 

 
Once validated the free-field numerical model, the soil structure interaction has been investigated 

considering in the analysis a tunnel with a constant diameter equal to 6m and the axis depth equal to 30m 

(Figure 6.39). 

Table 6.2 resumes the main elastic parameters of the lining. The tunnel lining is continuous, modelled 

with an elastic structural plate working under ‘no slip’ interaction condition at the soil-structure interface. 

The input signal considered in the analysis is the same adopted in the free field analysis, a harmonic wave 

with an amplitude of 0.1g and a frequency of 4Hz, with a number of oscillations equal to five. 
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Figure 6.39. Control points along the ground surface of the longitudinal vertical section in the middle of the model for 

the free field asynchronous analysis. 

 

γconcrete (kN/m3) Econcrete (MPa) tlining (m)  

25 35 0.3 0.15 

Table 6.2 Tunnel lining elastic parameters. 

 

The objective of this analysis is to investigate the effect of the asynchronous ground motion respect 

the synchronous case. To this end, the same analysis has been carried out under the uniform seismic load 

condition too, and a comparison between the two models has been proposed.  

The comparison has been established in terms of dynamic increment of internal forces in a reference 

tunnel section located at y=200m, in the middle of the model (Figure 6.39). 

Looking at the Figure 6.40, it is possible appreciate a double effect of the asynchronous ground motion 

on the tunnel lining response: 

 

1) Non uniform seismic load increases the dynamic increment of internal forces in the lining in its 

transversal plane (Nx and My in Figure 6.41 a, b) respect the case of uniform seismic load (Time Lag = 

0s); 

2) Non uniform seismic load induces axial forces along the tunnel axis, Ny, bending in the horizontal plane, 

Mz, and shear force perpendicular to the tunnel axis, Qx (Figure 6.41 c, d, e). These components of 

forces are null in the case of uniform seismic load. 

 

Figure 6.40 shows the time histories of the tunnel lining internal forces referring to the resultant of the 

transversal tunnel reference section. The shear force in particular has been calculated as the sum of the 

resultants of the horizontal components of the shear, Qx() and Qz(), acting on the transversal tunnel 

section (Figure 6.40e). The resultant of the horizontal components of the shear acting vertically on the 

tunnel section, Qz(x), is negligible respect the resultant of the horizontal components of the shear acting 

along the local x axis direction, Qx(x). 
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(e) 
Figure 6.40. Time histories of tunnel lining internal forces induced by non uniform seismic loading for a time lag equal 

to 0.03s (→Vbedrock=800m/s) and comparison with the uniform seismic load case. 

 

Another interesting issue on the topic is the effect of the bedrock velocity, thus the time lag, on the 

asynchronous ground motion. A set of parametrical analysis, for instance, has been carried out varying 

longitudinal time-lag of the travelling wave to investigate its effect in terms of dynamic increment of 

transversal and longitudinal internal forces arising in the lining. The following velocities have been 

considered in the analysis: 

 

 Vbedrock = 800 m/s    → Time Lag = 0.030 s 

 Vbedrock = 1000 m/s  → Time Lag = 0.025 s 

 Vbedrock = 1250 m/s → Time Lag = 0.020 s 

 

The results shown in Figure 6.41 stress the effect of the time-lag and/or bedrock velocity: increasing 

the bedrock velocity, thus decreasing the time-lag along the tunnel axis, there is a decreasing of the 

dynamic increment of the internal forces in the tunnel lining and viceversa. 

 Going towards infinity the bedrock velocity, it returns the uniform seismic loading condition. 

The numerical results obtained in the proposed 3D model, although under simplified assumptions 

(elastic soil behaviour, elastic lining behaviour, no-slip soil-structure condition, no structural details such 

as grout and segmental lining), show a significant effect of the asynchronous ground motion respect the 

synchronous case. For the investigates bedrock velocities in fact, the difference between the uniform and 

non uniform seismic loading can achieve up to a maximum value of 50% in terms of Nx and My. This seems 

to be interesting thinking about the likely longitudinal joint performance under non uniform seismic 

loading which could reach higher values of rotations than those obtained in this work under uniform 

seismic loading (see Chapter 4). The asynchronous ground motion produces also longitudinal forces, 

horizontal bending and transversal shear respect the tunnel axis and their magnitude is not negligible in 

particular thinking about the circumferential joints performance during the dynamic shaking and their 

possible opening. 
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Figure 6.41. Time histories of tunnel lining internal forces induced by non uniform seismic loading for different values 

of the time-lag (TL1=0.03s, TL2=0.025s, TL3=0.02s). 
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6.2.3 2D multi-masses-beam-springs model: Soil-structure interaction 
 

A further validation of the proposed numerical model in terms of soil-structure interaction, has been 

performed comparing the response of the 3D model with  that one of the simplified 2D multi-masses-

beam-springs model developed by Li Chong 2016 in his doctoral thesis (introduced in detail before, 

§6.1.1) and implemented in Abaqus 2D. 

The comparison is proposed in terms of dynamic increment of the longitudinal components of the 

internal forces evaluated with both methods. 

The first step is to define the 1D equivalent MDOF system. The 2nd mass of the equivalent 5-DOF 

system (Figure 6.42) is nearly located at the half height of the homogeneous layer at which is the tunnel 

axis, so that the equivalent 5-DOF system is selected to represent the homogeneous soil layer. 

 

 

 

Figure 6.42 Choice of the 1D equivalent MDOF system. 

 

The homogeneous soil layer is firstly to be discretized into a series of 1D equivalent 5-DOF systems in 

the vertical direction. These 1D equivalent systems are then spring-connected consecutively at 

corresponding masses to form a 2D equivalent MDOF system, assembled by eighty 5-DOF systems in 

longitudinal direction spaced of 5m each other. 

The longitudinal springs that connect adjacent 1D equivalent systems are determined as in Equation 

6.55: 

𝑘𝑗𝑗 =
𝑚𝑗𝑉𝑆

2

𝑙𝑗𝑗
2                                                                                                                                                       (6.55) 

where mj is the mass constant of the mass ‘j’, 𝑉𝑆
2 is the shear velocity of the soil layer and 𝑙𝑗𝑗

2  is the 

lenght of the longitudinal spring. 

The tunnel beam is lastly connected to the 2nd masses with SSI springs determined as in Equation 6.56 

(St.John & Zahrah 1987, §6.1.1): 

 

𝑘𝑆𝑆𝐼 =
16𝜋𝐺(1−)

3−4
 
𝐷


                                                                                                                                        (6.56) 
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where G is the shear modulus,  the Poisson’s ratio, D the diameter of the circular tunnel and  the 

incidentv wave length. 

As such, the simplified model for soil-structure system is built. Figure 6.43 shows the simplified scheme 

of the multi-masses-beam-springs model implemented in Abaqus 2D. The properties of the soil, the 

structure and the input signal are the same adopted in the 3D model. 

 

 

 

Figure 6.43. Scheme of the 2D equivalent 5-DOF system implemented in Abaqus 2D. 

 

The central section of the model, highlighted in red in Figure 6.43, has been selected to make the 

comparison between the 3D and 2D models in terms of horizontal bending moment Mz and transversal 

shear Qx as established in Figure 6.44. 

Figure 6.45 shows the results of the comparison in terms of time histories of  the dynamic increment 

of the resultant of Mz and Qx in the reference tunnel section for the 3D and 2D model, for different values 

of time-lag (0.02s, 0.025s, 0.03s). The results of the two models are in a good agreement. Overall, in each 

case, the 3D model calculates higher values of the the dynamic increment of the internal forces respect 

the simplified 2D model. 

 

Figure 6.44. Equivalence between 3D and 2D model. 
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Figure 6.45 Comparison between 3D and 2D model in terms of time histories of dynamic increment of Mz and Qx in 

the reference tunnel section under asynchronous ground motion. 
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CHAPTER 7 

Conclusions 
 

 

 

 

 
 The aim of the present dissertation is to investigate the dynamic behaviour of a segmental tunnel 

lining in soft soil.  

A preliminary study of the static performance of the lining structure has been conducted in order to 

define and calibrate a 3D numerical model of the segmental tunnel lining adopted for the dynamic 

analysis. The latter were performed both under synchronous and asynchronous seismic motion.  

In the case of synchronous seismic motion, a study of the seismic vulnerability of such structures has 

been also carried out based on the definition of analytical fragility curves, for different levels of damage. 

A procedure for the risk assessment has been proposed, for the case of segmental tunnel lining, assuming 

as critical damage parameter the longitudinal joint rotation.  

Furthermore, a study of feasibility of Earthquake Early Warning System (EEWS) based on thresholds 

has been conducted through a probabilistic and a real-time approach for such tunnel structure.  

 

In the first part of the Thesis, the behaviour of segmental tunnel lining under static loads has been 

investigated and the following conclusions can be drawn.  

 

 The available monitoring data of the case study of Metro Line 6 in Naples have been used to 

calibrate the proposed model of a segmental lining. The long-term monitoring of the strains in an 

instrumented segmental ring provided a complete knowledge of the behaviour of the reference 

section under time-dependent loads, giving a 3D picture of the state of strains in each segment of 

the ring.  

 A 3D numerical model is necessary to model the spatial layout of the segmental lining and the effect 

of the tunnel excavation in terms of both soil-structure interaction and induced mechanized 

tunneling loads. The latter seem to have high influence on the lining deformation, thus the soil-

structure interaction is only in part responsible of the internal forces arising in the tunnel lining.  

 A detailed numerical model of the structure, of the soil and the mechanized excavation allows to 

take into account the key-parameters affecting the lining deformation.  

Concerning the soil-structure interaction, the main role is played by the soil and the contact element 

between the grout layer, elastic, and the surrounding soil, assumed with a non-linear elastoplastic 

behaviour.  

The mechanized tunneling, on the other hand, affects the lining through the shield conicity, inducing 

a redistribution of the stresses around the tunnel, the hydraulic jack thrust, that is the first external 

load applied on the lining ring after its installation, the grout pressure, that induces a rather uniform 

compressive load to the lining before it is exposed to the radial load of the surrounding soil, the 

grout hardening that, in function of the permeability of the soil at contact and its mixture, controls 

the mechanism of loading transfer from the soil to lining. 
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Finally, the presence of longitudinal and circumferential joints influences the 3D transfer of loads in 

the radial direction (surrounding soil and grout pressure) and longitudinal direction (hydraulic jack 

thrust).  

 

In the second part of the Thesis, the behaviour of segmental tunnel lining under uniform seismic loads 

has been investigated, leading to the following conclusions.  

 The influence of the key parameters of the kinematic tunnel-ground interaction, i.e. the relative 

soil-structure stiffness and the interface properties, have been investigated through different design 

approaches, based on pseudo-static and full dynamic analysis. The former simplified uncoupled 

approach simulating the effect of the earthquake with an equivalent seismic load, statically applied 

to the structure as a distribution of displacements, allows the increment of dynamic internal forces 

in the lining to be evaluated only in correspondence of the maximum acceleration of the input 

signal. It does not include the evolution of soil-structure interaction during the earthquake, as in the 

latter case of full dynamic analysis.  

In correspondence of the peak of acceleration, both approaches show that significant seismic 

increments of internal forces arise in the lining compared to the static values and this result 

highlights that seismic effects on underground structures should not be overlooked, even in low to 

moderate seismicity areas. The comparison between the selected design approaches shows that, at 

least for the studied case, the pseudo-static analysis underestimates the increment of forces with 

respect to the full dynamic analysis. This difference is strictly related to the lining and soil relative 

stiffness and interface properties.  

 The effect of the segmental lining technology on the tunnel seismic behaviour is such that the 

segmental lining exhibits a more suitable behaviour compared to a continuous ring for the higher 

structural flexibility, producing a decrease of stresses in the lining and an increase of the whole 

structural aseismic capability.  

The seismic response of the segmental tunnel lining has been investigated in detail under 

synchronous seismic motion. Under high levels of ground shaking, longitudinal joints seem to be the 

most vulnerable points of tunnel structure leading to joints opening.  

The magnitude of the possible joints opening depends mainly on the joints technology itself and 

their spatial pattern, as well as on the seismic event.  

Non-linear full dynamic analysis performed for a selected longitudinal joint technology, that is a 

non-bolted flat joint, show the achievement of peak and permanent values of joints rotations in 

correspondence of the peak of the dynamic time history and at the end of the dynamic stages 

respectively. The latter evidence may lead to some concerns in highly permeable soils, since a large 

rotation at the joints producing dislocation of gaskets may cause groundwater inflow.  

 Analytical fragility curves for segmental tunnel lining, based on 2D non-linear full dynamic analysis, 

have been constructed assuming the permanent rotation of longitudinal joint as the potential 

damage index, ID. The proposed procedure includes the definition of the damage states, DS, based 

on three different thresholds of permanent joint rotation, selected in function of the work stages as 

defined as the analytical solution of Janßen’s joint.  

Assuming as earthquake parameter, IMi, the Peak Ground Acceleration, PGA, the probability of 

damage increases for softer soil (soil type B → soil type C → soil type D) and increases with the 

decreasing of the damage level (DS4 → DS3 → DS2). 

In terms of Permanent Ground Displacement, PGD, instead, it can be notice that, unlike to what 

happens in terms of PGA, the probability of damage increases with the stiffness of soils (soil type D 
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→ soil type C → soil type B). This is due to the fact that, to achieve the same PGD, a stiffer soil has to 

be subjected to larger seismic accelerations than a softer soil.  

 An application of the proposed fragility curves has been done for a preliminary feasibility study 

concerning the use of a threshold-based Earthquake Early Warning System, EEWS, for segmental 

tunnel lining conducted for some Italian target sites. The approach proposed combines regional and 

on-site approaches with the proposed fragility curves. Three approaches have been adopted in this 

work to provide the PGA and the lead-time for the possible seismic threats expected at a target site; 

one is based on the Probabilistic Seismic Hazard Analysis (PSHA, NTC 2008) -LEVEL ‘0’-, one based 

on the disaggregation of the PSHA -LEVEL ‘1’- and one on a real-time and evolutionary estimation of 

location, magnitude and using a ground motion prediction equation -LEVEL ‘2’-.  

The approach followed in the LEVEL ‘0’ allows to quickly assess on probabilistically bases what 

ground motion level could occur at the considered sites, which in turn is used to assess the possible 

level of damage for such kind of structures. However, since the PSHA does not provide direct 

indications about the location of the seismic sources that contributed to the hazard, it is not 

possible to compute the available lead-time.  

The LEVEL ‘1’ procedure is again based on the PSHA adopted by the Italian code, but incorporates 

the disaggregation analysis of the seismic hazard to identify ‘virtual sources’ (i.e., in terms of 

epicentral distance and magnitude) that provide the higher contribution to the hazard. Following 

this procedure, a disaggregation map, a lead-time map and an acceleration map are computed for 

the target sites, considering different probabilities of exceedance. In terms of lead-times, the results 

of the LEVEL-1 analysis indicates for each selected site that, considering the threats having the 

major contribution to the hazard, the lead-time is in general low and not sufficient for implementing 

‘Regional Early Warning’ approaches.  

The real-time approach followed in the LEVEL ‘2’ is not bounded to the probabilistic approach 

proposed by the national code, and consists in the simulation of the effects of a real seismic event 

on the target site, thus providing a real-time estimation of the probability of damage. PRESTo-

PRobabilistic and Evolutionary early warning SysTem has been used to predict the PGA at the target 

site through real-time and evolutionary location and magnitude estimates and a ground motion 

prediction equation.  

Overall, the probabilistic approach defined with the LEVEL ‘2’, based on the hazard disaggregation, 

provides a useful tool to study the feasibility of EEWS. The results indicate that the selected targets 

could benefit of an on-site EEWS. Concerning the target in Naples, is shown that a regional EEWS 

given by the combination of the ISNet network and software PRESTo could be effective to protect 

the Metro Line 6 of Napoli from the seismic threat represented by the Irpinia area.  

 

Finally, in the third part of the Thesis, the behaviour of segmental tunnel lining under non-uniform 

seismic loads was also considered. This allowed further conclusions to be drawn.  

 

 The effect of multi-directional seismic motion travelling along the tunnel has been investigated in 

the case of continuous tunnel lining, including the effect of time lag. The numerical results show 

that the asynchronous ground motion has a double effect on the tunnel lining response:  

 

i. Non uniform seismic load (Time Lag ≠0) increases the dynamic increment of internal forces in the 

lining in its transversal plane (Nx and My) respect the case of uniform seismic load (Time Lag = 0s);  
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ii. Non uniform seismic load induces additional axial forces along the tunnel axis, Ny, bending in the 

horizontal plane, Mz, and shear force perpendicular to the tunnel axis, Qx. These components of 

forces are null in the case of uniform seismic load.  

 

The numerical results shows also the effect of the bedrock velocity, hence of the time lag in 

longitudinal direction, on the asynchronous ground motion: increasing the bedrock velocity, thus 

decreasing the time-lag along the tunnel axis, a decrease of the dynamic increment of the internal 

forces in the tunnel lining is observed and viceversa. Going ideally towards infinity the bedrock 

velocity, the uniform seismic loading condition occurs.  

 

 Overall, the numerical results obtained in the proposed 3D model to simulate the effect of travelling 

waves along the tunnel axis, although under simplified assumptions (elastic soil behaviour, elastic 

lining behaviour, no-slip soil-structure conditions, no structural details such as grout and segmental 

lining), show a significant effect of the asynchronous ground motion respect the synchronous case. 

For the investigated bedrock velocities, the difference between the uniform and non-uniform 

seismic loading can achieve a value of 50% in terms of Nx and My. This seems to be interesting if 

one thinks about the longitudinal joint performance under non uniform seismic loading, which could 

likely reach higher values of rotations than those obtained in this work under uniform seismic 

loading. The asynchronous ground motion produces also longitudinal forces, horizontal bending and 

transversal shear with respect to the tunnel axis and their magnitude is not negligible, in particular 

thinking about the circumferential joints performance during the dynamic shaking and their possible 

opening.  
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Appendix 1 
 

Long term monitoring of the strains in the instrumented segmental section of Metro Line 6 of 

Naples (after Marino R. 2010) 
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SEGMENT C 
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SEGMENT D 
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SEGMENT E 
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SEGMENT F 
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SEGMENT G 
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SEGMENT H 
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SEGMENT I 
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Appendix 2 
 

Hardening soil ‘HS’ (Schanz et al. 1999) and Hardening Soil small strain ‘HSss’ (Benz 2007) 

 

The Hardening Soil model, HS model, is an advanced constitutive model for the simulation of the soil 

behaviour. As for the Mohr Coulomb model, limiting states of stress are described by means of friction 

angle, φ, cohesion, c, and dilatancy angle ψ. Soil stiffness is described much more accurately by using 

three different stiffness (Figure A2.1): (1) triaxial loading stiffness E50, (2) triaxial unloading stiffness Eur, 

(3) oedometer loading stiffness Eoed. In contrast to the MC model, the HS model accounts for stress-

dependency of the stiffness moduli; this means that all stiffness increase with the pressure, usually 

referring to the reference pressure pref. 

 

Figure A2.1 Hyperbolic stress-strain relation in primary loading for a standard drained triaxial test                               

(Plaxis Manual Models) 

The basic idea for the Hardening Soil Model is the hyperbolic relationship between the vertical strain 

ε1 and the deviatoric stress q observed in the primary triaxial loading tests (Figure A1.1, Equation A2.1): 

−𝜀1 =
1

𝐸𝑖

𝑞

1−
𝑞

𝑞𝑎
⁄

                     for q < qfailure                                                    (A2.1) 

where qa is the asymptotic value of the shear strength and Ei the initial stiffness related to the E50 with 

the Equation A2.2: 

𝐸𝑖 =
2𝐸50

2−𝑅𝑓
                                                                              (A2.2) 

As soon as q=qfailure , the failure criterion is satisfied and perfectly plastic yield occurs. The relation 

between qf, given by Equation A2.3, and qa, is expressed by the failure ratio Rf<1, representing the 

percentage of failure deviatoric stress qf reached, usually automatically set equal to 0.9. 

𝑞𝑓 =
6 𝑠𝑒𝑛 𝜑𝑝𝑘

3−𝑠𝑒𝑛𝜑𝑝𝑘
(𝑝 + 𝑐 𝑐𝑜𝑡𝜑𝑝𝑘)                                                          (A2.3) 

  𝑞𝑎 =
𝑞𝑓

𝑅𝑓
                                                                            (A2.4) 

The stress strain behaviour for primary loading is highly no linear. Instead of using the tangent 

stiffness modulus for primary loading Ei, difficult to determine, the secant Young’s modulus E50 is defined. 

It is expressed by Equation A2.5: 

 𝐸50 = 𝐸50
𝑟𝑒𝑓

(
𝜎3+𝑐 𝑐𝑜𝑡𝜑𝑝𝑘

𝑝𝑟𝑒𝑓+𝑐 cot 𝜑𝑝𝑘
)

𝑚

                                                          (A2.5) 
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where E50
ref is the reference stiffness modulus corresponding to a reference stress pref, and m 

represents the amount of stress dependency of the actual stiffness on the minor principal stress σ’3 (the 

effective confining pressure in a triaxial test). E50
ref is determined from triaxial stress-strain-curve for a 

50% mobilization of the maximum shear strength qf. 

For un-reloading stress paths, the stress-dependent Eur
ref stiffness modulus is used. It is expressed by 

equation A2.6 and defined as the unloading-reloading Young’s modulus in a wide unloading-reloading 

cycle corresponding to the reference pressure σref=100KPa 

𝐸𝑢𝑟 = 𝐸𝑢𝑟
𝑟𝑒𝑓

(
𝜎3+𝑐 𝑐𝑜𝑡𝜑𝑝𝑘

𝑝𝑟𝑒𝑓+𝑐 cot 𝜑𝑝𝑘
)

𝑚

                                                      (A2.6) 

Differently from elastic models, elasto plastic hardening soil model does not imply a fixed relationship 

between the triaxial stiffness E50 and the stiffness obtained by an oedometer test Eoed. These two stiffness 

are two different inputs, Eoed is defined as in Equation A2.7: 

𝐸𝑜𝑒𝑑 = 𝐸𝑜𝑒𝑑
𝑟𝑒𝑓

(
𝑐 cos 𝜑−

𝜎3
′

𝐾0
𝑛𝑐 𝑠𝑒𝑛 𝜑

𝑐 cos 𝜑+𝑝𝑟𝑒𝑓𝑠𝑒𝑛 𝜑
)

𝑚

                                                    (A2.7) 

The Hardening Soil small strain model (Benz 2007), HSss model, is a modification of the HS model 

capable of taking into account the very high soil stiffness observed at very low strain levels, its reduction 

with the strain level (Figure A2.2) and the early accumulation of plastic deformation. 

 

Figure A2.2 Characteristic stiffness-strain behaviour of soil with typical strain ranges for laboratory tests. 

 

As shown in Figure A2.2, for deformation γ exceeding the value of 10-5, there is a rapid decrease of the 

stiffness of the soil, in terms of the shear modulus G. These aspects are taken into account through two 

additional parameters to the original model HS: the initial shear stiffness G0, and the shear strain γ0.7, 

defined as the strain at of which the secant modulus Gs is reduced to about 70% from the G0 value. The 

analytical expressions are given below (Equation A2.8 and Equation A2.9). 

𝐺0 = 𝐺0
𝑟𝑒𝑓

(
𝑐 cos 𝜑−𝜎3

′  𝑠𝑒𝑛 𝜑

𝑐 cos 𝜑+𝑝𝑟𝑒𝑓𝑠𝑒𝑛 𝜑
)

𝑚

                                                      (A2.8) 

 

𝐺 =
𝐺0

1+0,43 
𝛾

𝛾0,7

                                                                      (A2.9) 
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Where Gref
0 is the small strain shear modulus at the reference pressure pref =100 kPa, σ′3 is the 

minimum principal effective stress, m is a constant, c′ is the effective cohesion and φ is the angle of shear 

resistance.  

The evolution of the shear modulus with the increase in the shear strain is included in the constitutive 

formulation by the expression of the stiffness reduction curve proposed by Hardin and Drnevich 1972, 

successively modified by Santos and Correia 2001 in Equation A2.10: 

𝐺𝑆

𝐺0
=

1

1+𝑎|
𝛾

𝛾0.7
|
                                                                  (A2.10) 

where Gs is the secant shear modulus, ‘a’ is a constant equal to 0.385 and γ0.7 is the shear strain at 

which the shear modulus is reduced to about 70% of its initial value. 

The derivative of Equation A2.10, with respect to the shear strain, provides the tangent shear 

modulus, Gt, expressed by the Equation A2.11: 

𝐺𝑡

𝐺0
=

1

(1+𝑎|
𝛾

𝛾0.7
|)

2                                                                  (A2.11) 

The tangent shear modulus is bounded by a lower limit corresponding to the shear modulus Gur 

(Equation A2.12): 

𝐺𝑡 > 𝐺𝑢𝑟 =
𝐸𝑢𝑟

2(1+𝑢𝑟)
                                                             (A2.12) 

This latter is selected by the user, referring to a medium value of the shear strain level, γcut-off, after 

which the reversible response is characterised by a constant value of the tangent stiffness with the strain 

(Figure A2.3). The expression of γcut-off is provided in the equation A2.13: 

𝛾𝑐𝑢𝑡−𝑜𝑓𝑓 =
1

0.385
(√

𝐺0
𝑟𝑒𝑓

𝐺𝑢𝑟
𝑟𝑒𝑓 − 1) 𝛾0.7                                             (A2.13) 

 

Figure A2.3 Decay curves of the tangent and secant shear stiffness moduli of the HSss model. 
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Appendix 3 
 

Expression of the cohesion adopted for the calibration of the elasto-plastic joint model. 

 

The Mohr Coulomb constitutive model has been adopted to describe the elasto-plastic joint 

behaviour. The expression of the cohesion, c, (Equation A3.1) adopted for the calibration of the joint MC 

model, has been obtained under the hypothesis of uniaxial compression of the material (σ’1= σ’cy and 

σ’3=0). 

 

𝑐 = (−
𝜎𝑐𝑦

2√𝑘𝑝
)                                                                   (A3.1) 

 

In the σ3-σ1 stress plane, the shear failure locus is expressed by the Equation A3.2: 

 

1

2
(𝜎′3 − 𝜎′1) +

1

2
(𝜎′3 + 𝜎′1)𝑠𝑒𝑛𝜑 − 𝑐 𝑐𝑜𝑠𝜑 = 0                                                                             (A3.2) 

In uniaxial compression, equation A3.2 can be written as follows: 

   −
1

2
𝜎′

1 +
1

2
𝜎′

1𝑠𝑒𝑛𝜑 − 𝑐 𝑐𝑜𝑠𝜑 = 0                                                                                                        (A3.3) 

𝜎′
1 − 𝜎′

1𝑠𝑒𝑛𝜑 + 2𝑐 𝑐𝑜𝑠𝜑 = 0                                                                                                               (A3.4) 

𝜎′
1(1 − 𝑠𝑒𝑛𝜑) = −2𝑐 𝑐𝑜𝑠𝜑                                                                                                                    (A3.5) 

𝜎′
1 =

−2𝑐√(1−𝑠𝑒𝑛𝜑2)

1−𝑠𝑒𝑛𝜑
                                                                                                                                     (A3.6) 

𝜎′
1 = −2𝑐√

(1+𝑠𝑒𝑛𝜑)(1−𝑠𝑒𝑛𝜑)

(1−𝑠𝑒𝑛𝜑)2                                                                                                                     (A3.7) 

𝜎′
1 = −2𝑐√

(1+𝑠𝑒𝑛𝜑)

(1−𝑠𝑒𝑛𝜑)                                                                                                                                   (A3.8) 

𝜎′
1 =  −2𝑐√𝑘𝑝                                                                                                                                             (A3.9) 

The cohesion, c, can be derived as follows: 

 𝑐 = (−
𝜎𝑐𝑦

2√𝑘𝑝
)                                                                                                                                               (A3.10) 

where σcy is the compressive yielding strength of the concrete. 
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