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Chapter 1

Introduction

1.1 Approximate Computing: motivations

In the last years, important changes occurred in the VLSI
world and, more in general, in the electronic community. The
traditional Dennard scaling [1], which allowed, for around three
decades, to obtain always smaller transistors with better performance,
broke off in about 2005 [2]-[3].

While Moore’s Law continues to provide increased transistors
count (in 2014 Intel launched 14nm node [4]), the benefits deriving
from smaller transistors sizes, diminished. Indeed reliability and
energy issues (i.e. leakage power) arising with nanometer feature
sizes, prevent threshold voltage to scale down and therefore operating
voltage has remained at a constant value for several processor chip
generation [4]. Moreover, in the race for always better performance,
clock frequencies scaled up faster than dictated by Dennard scaling
(Fig. 1) [3]. As a consequence of this phenomena, it was not possible
to keep the power envelope constant from a generation to the
successive (Fig. 2). The uninterrupted increase of chip power density
(delayed by the clever low-power methodologies developed in the
years [3]) stopped the clock frequency scaling, since processors
attained the power wall for air cooling [3] (Fig. 1).

On the other hand, the computing workloads have profoundly
changed, due to applications needing increased computing power to
perform Recognition, Mining, Synthesis (RMS) tasks [5], to process
always richer media and to interact with users and environment [6].

The need for always more computing power and the gain
limitations due to the end of Dennard scaling (e.g. clock frequency
saturation [7], Fig.1) marked the transition to the multi-core
architectures. These, while leveraging the inherent parallelism of
many applications, started to show their limits, mainly due to thermal
power. Indeed, in multi-core architectures, due to fixed power budget,
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it is not possible to use all the cores at the maximum frequency and, as
a result, going from a generation to the successive, the fraction of chip
area which is dark (i.e. in idle state) increases, leading to the so-called
dark silicon [8].
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Fig. 1 Clock frequency vs year [3]. The red line represents the frequency scaling
employing Dennard scaling [1]. In the insert, voltage vs year is reported. Note that,
since about 2005, the scaling for both clock frequency and voltage saturated.
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Ensuring high performance, while meeting the power budget is
a really challenging task. Therefore researches and designers started to
search novel solutions to compute efficiently. One of the key to
overcome this challenge is hardware specialization, which allows
improving energy efficiency up to 2-3 orders of magnitude [3], with
respect to general purpose solutions. In this context, one of the most
promising solutions is given by the Approximate Computing. Indeed,
many applications exhibit approximation resiliency or can tolerate
small errors without compromise significantly the quality of their
results [9]. As an example, in multimedia applications, small errors
can be tolerated, due to the limited perceptual capabilities of humans
[10]. For instance, this concept has been already used in compression
algorithms for images, audio, video. Moreover in RMS applications,
there no exist an unique golden result, while rather, a good enough
answer [11]. Other applications operates on imprecise data inputs, as
those collected by sensors.

Therefore Approximate Computing, breaking the dogma that
computation must be error free [12], exploits error resiliency of
applications to achieve better performance. Indeed, relaxing the
correctness requirement, simpler, faster and/or more energy efficient
circuits can be obtained.

Approximate Computing, therefore, allows enlarging the design
space, introducing quality (or accuracy) as additional variable,
enabling new possible trade-offs between quality, power, area and
speed.

1.2 Research topics

Approximate computing literature is very broad, involving many
layers of computation, spanning from approximate programming
languages to inexact hardware [13]-[18].

My research activity is based on the design and optimization of
approximate fundamental digital blocks.

As first topic, I have worked on adders, developing speculative
(approximate) topologies of the main parallel-prefix adders. In order
to use these topologies in common digital systems, speculative adders
must include error detection and correction networks, leading to a
variable-latency adder topology. I have worked on improvements of
both error correction and detection networks.
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In particular, part of my work has been devoted to develop an
effective error correction technique for speculative adders working
with signed operands.

As second topic I worked on digital building blocks for error tolerant
applications. In this contest the requirement on the correctness of the
results is relaxed, therefore computations can contain errors. I have
investigated an error correction technique to contain the error rate
when approximate adders deal with signed operands.

Moreover, a study about suitability of approximate adders in
carry-save Multiply and Accumulate units, has been investigated.

In particular, Multiply and Accumulate (MAC) units constitute
another recurrent arithmetic building block in digital systems. In this
contest, I have worked on precision-scalable MACs, developing a
novel, real-time (data-aware), error compensation technique. In this
context I also developed a precision-scalable approximate MAC unit,
in which the partial product matrix is compressed in an approximate
way.

Moreover 1 have investigated precision-scalable topologies of
standard cell memories (SCMs). These are recently emerged as an
alternative to SRAM Macrocells for systems needing a large number
of small embedded memories.

The precision-scalable MACs and SCMs can be part of a system that
leverages approximations to improve energy efficiency.

1.3 Thesis outline

The thesis is organized as follows.

The chapter two reports my research activity about approximate
adders. It is divided in two main parts, in the first one, after an
introduction of parallel-prefix adders, the proposed speculative
topologies are introduced. Moreover the error detection and correction
techniques are introduced and investigated, for error-free applications.
In the second part, approximate adders for error tolerant applications
are illustrated. In particular an approximate adder is introduced, in
which an error correction technique is proposed to decrease the error
rate. An example for audio applications is shown. Moreover the
suitability of approximate adders in carry-save MACs is investigated.

The chapter three is divided in two sections. In the first one my
research activity on precision-scalable MACs is discussed. The second
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section shows a precision-scalable topology of a standard cell memory
(SCM).

In the chapter four a precision scalable approximate convolver for
computer vision applications is discussed; this is composed of both the
precision-scalable SCMs and MACs, shown in the chapter three.

The activities shown in chapters three and four have been investigated
in collaboration with National University of Singapore, Green IC
group, where I spent six months as visiting PhD student.
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Chapter 2

Speculative Adders

2.1 Introduction

This chapter focuses on the design of approximate adders
topologies. These kind of adders are usually indicated, in the
literature, as “speculative adders” [19]-[22].

Speculative adders draw their motivations from the need to
improve adders performance, which are usually limited by their long
and rarely activated critical path, following a “better than worst case”
approach [23].

Improving adders performance is indeed a challenging and useful
task, since adders are ubiquitous in digital systems and a great
research effort has been spent in the past in order to optimize their
performance in the area-timing-power design space. The great number
of different adder topologies is the result of that investigation effort.
Going from the simpler carry-ripple, to carry-select, carry-lookahead
and parallel-prefix adders topologies [24]-[26], it is possible to trade
area and power for timing, as a function of the specification of the
system in which the adders are called to operate.

Theoretical study about adders have shown that the speed bound

of n-bit binary adders goes as 0(log2 n) This bound corresponds to

the worst case path, which involves a carry propagation that, starting
from the least significant bit (LSB), reaches the most significant bit
(MSB), traversing the whole adder. A such condition, under uniformly
distributed and uncorrelated operands assumption, is pretty rare.
Indeed, in [20] authors show that the average carry propagation length
has a logarithmic behavior with the adder size n. The Figure 1 reports
the carry length distribution in a 32-bit adder, with operands
uniformly distributed and uncorrelated. In this example it easy to
locate the mean value of the distribution, being around five,
confirming the behavior discussed in [20]. Therefore in a 32-bit adder,
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under the abovementioned hypothesis, in the average case, the carry
propagation length is significantly smaller than adder size n, allowing
enough room to make “the common case faster”.

30

percentage

0 5 10 15 20 25 30
carry length

Fig. 1 Carry length in a 32-bit adder, with uniformly distributed and uncorrelated
operands. The average carry length is around five.

2.2 Speculative adders: general overview

In this section a general representation of speculative adders is
introduced. Moreover, error detection network will be discussed. This
general representation will be used, in the following of the chapter, to
discuss the proposed topologies. At the end of this paragraph a brief
review of the state of art is discussed.

As previously discussed, in a n-bit adder, the MSB of the result
depends on all the previous bits, since, in the worst case, a carry can
be generated in the LSB and can traverse the whole adder. The Fig. 2
shows, in the employed representation, an n=18-bit adder, where the
gray line treads the critical path. This is triggered by the following
condition:

Ay Ay Ays Ay di3 Ay Ay Ay dy Ag Ay dg ds dy Ay al
bl7 b16 b]5 bl4 bl3 bl2 bll bl() b9 b8 b7 b6 bS b4 b3 b2 bl

S17 816 S15 S14 S13 S12 S11 S10 9 Sy S7 Sg S5 Sy 8§38, S S8
Fig. 2 n=18 adder. The gray lines shows the critical path: a carry generates in the

LSB and propagates up to the MSB. Therefore s/7 has to “wait” the carry
propagation before being correctly evaluated.
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a,=b,=1 o0
a, ®b, =1, forie{l,2,..,n—-2} '

where @ stands for the XOR operation. When this condition occurs
the evaluation of the sum s requires the biggest delay.

As discussed in the previous paragraph, condition (2.1), under
the assumption that a and b are uniformly distributed and
uncorrelated, is pretty rare, since the average carry length is
comparable with log,n. Leveraging this observation, speculative

adders assume that carry propagates no more than p<n bits. Therefore
each sum bit is predicted by considering only the p previous less
significantly bits. This allows to repartition the adders into multiple,
smaller, sub-adders operating in parallel [27], this turns into more
efficient addition implementation, at the price of occasional errors.
The Fig. 3 shows an example of speculative adder.

sub-adder # 5 sub-adder # 1

n=18 —
= =IN W
dy; dig dys|dyy diy Apyl|dyy Ay Ao|| Ay dp dgl|ds dy dy Ay A 4
by; big bis|byy byy byl|byy by by|| Dy by bg||bs by by |b, by b,
) — I —
e e e e e e e s e
S17 816 S1s S1a S13 S12 Spp S0 S9 Sy §7 Sg S5 Sy S35, 8 S

v

Fig. 3 The adder of Fig. 2 is partitioned into five sub-adders operating in parallel.
Each sub-adder, considers only p previous bits to evaluate » sum bits.

In this figure, the adder of Fig.2 has been subdivided into five
sub-adders, each one, following the notation introduced in [2§],
produces » sum bits (with the exception of the first one, which
produces r+p output bit), “speculated” considering only p previous
bits. The size of each sub-adder is r+p.

2.2.1 Error detection

Speculative adders are usually augmented with an error
detection network [18], [20]-[22], [28], [30]. This network flags the

errors due to mispredictions, allowing to adopt different correction
techniques.
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The Fig.4 shows a possible error condition: a carry is
generated at the bit position #1 and propagates for more than p (p=3,
in this example) bits. As a consequence, the output from s6 to s/0 are
wrongly flipped, since they are calculated assuming that the carry-in
of the second sub-adder is zero, due to speculation.

Speculation

*

‘th]—l
0 0 00 0 10 0 1)l0 0 1|1 1 0|1 0
0 1 010 0 1|0 1 1|1 1 00 0 110 0
13171316131513141513151213111310139lssls7lséissis4iss152151150
0 0O 01 01 00111 0002000
Fig. 4 Example of error condition: the carry generated at bit position #1 propagates

for more than p bits, determining an incorrect result.

In order to formally determine a general error condition, let us
introduce, in the following, the generate g; and propagate p; signals
computed as:

g =ab, (2.2)

p,=a,®b, (2.3)

The condition g=1 means that a carry is generated at bit 7, while the
condition p;=1 means that a carry is propagated through bit i. The

concept of generate and propagate can be extended to a block of
contiguous bits, from bit k to bit i (with k& <) as follows:

8i ifi=k o4
8lik] = | |
] 8li:j1 T Pli:j18[1:k] otherwise
' ifi=k
o =1 - 2.5)
. Pi:j1 P[] otherwise

where: i >/ > >k, and + operator stands for logical OR.
The condition gp;,=1 means that a carry is generated in the block 4-i,
while the condition pj;.j=1 means that a carry is propagated through
the block. In the example of Fig. 4, g/=1, p,=I, determining gp.o=1;
moreover, being ps=p,=ps=1, then ps.3=1.

Let us observe that an error occurs whenever a sub-adder
should receive a carry-in equal to one, due to generation and
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propagation in the previous bits. Indeed, with reference to Fig. 4, the
second sub-adder assumes a carry-in equal to zero, due to speculation,
while, instead, the real carry-in is one. This condition can be
expressed as:

P5:318[2:0] error in sub-adder 2 (2.6)

Similarly, the error condition in the third sub-adder can be expressed
as:

D[8.618[5:3] error in sub-adder 3 2.7)

Note that the (2.7) does not include all the error conditions of
sub-adder three, since it can give incorrect results also when (2.7) is
not asserted, due to errors happened in previous sub-adders; this is the
case of Fig. 4. The error conditions in the other sub-adders of Fig. 4
can be determined similarly.

Let us introduce a general Boolean equation for the error flag
Eu[31]:

E,= 2, p [(i=1)r+ p—1: (i=2)r-+718[(i=1)r—1: (i=2)r] (2.8)
2

where

M=V_pJ 2.9)

is the number of sub-adders and the Z symbol represents the logical

OR. It is worthwhile observing that (2.8) is a necessary and sufficient
error condition.

2.2.1.1 Error rate analysis

In [28] the error probability of speculative adders is expressed
by means of a complex model. An approximate closed-form equation
can be found following an approach similar to [18].

Let us observe that the first sub-adder, computing »+p outputs,
is exact, therefore the error can occur in the remaining M-/
sub-adders. For instance, in Fig. 3, we have an error in the second
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sub-adder if (i) there is a carry-out coming from bit position #3 and
(ii) this carry propagates across bits #4,5,6. In general for uniformly
distributed operands, it can easily be demonstrated that condition (1)
occurs with a probability of (1/2)(1-2"), while condition (ii) occurs
with probability 27. The error probability of each sub-adder is hence
~(1-2")2%7"Y and the probability of having an exact result is
~1-(1-2")2%"Y. Since we have M-/ inexact sub-adders, the overall
error probability writes as:

M-1
Puniform = 1_(1 —27 (D) (1 -2 )) (2.10)

The data in Tab. I show that (2.10) gives results very close to
the exact model of [28].

2.2.2 State of art

Different implementations of speculative adders have been
proposed in the literature. In [20] the Almost Correct Adder (ACA-I)
is implemented with =1 and exploits some hardware sharing between
overlapping sub-adders. In [29] the Error Tolerant Adder Type II
(ETA-II) is proposed and can be considered, in the representation of
Fig. 3, as a speculative adder with r=p. In [18] the Accuracy
Configurable Approximate Adder (ACAA) can be configured at
runtime by changing circuit structure in order to tune accuracy; also in
this case we have r=p in each sub-adder. The Speculative Carry-Select
Adder (SCSA) of [30] also uses sub-adders and a similar carry
prediction mechanism as ETA-II. The low-latency Generic Accuracy
Configurable Adder (GeAr) [28] increases the design space by
removing constraints on adder decomposition of previous approaches.

TABLE I. ERROR PROBABILITY FOR UNIFORMLY DISTRIBUITED INPUTS

Adder Config. | Error Error
(n,r,p) probability | probability
[28] (2.10)
(12,4,4) 2.9297% 2.9297%
(16,4,4) 5.770% 5.859%
(16,4,8) 0.1831% 0.1831%
(32,8,8) 0.3891% 0.3887%
(48,8,16) 0.0023% 0.0023%
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The Carry Speculative Adder (CSPA) is proposed in [22] and
implements a carry-select speculative adder, composed by sub-adders
as shown in the general scheme of Fig. 3, with r=p.

2.3 Parallel-Prefix adders

In this paragraph parallel-prefix adders are briefly recalled, in
order to introduce, in the following of the chapter, the proposed
speculative parallel-prefix adders topologies.

The binary addition problem can be formulated as follows:
given an n-bit augend A4=a,.a,,..ap and an n-bit addend
B=b,.1b,.»...by generate the n-bit sum S=s,_;5,....50. Let us indicate as
¢; the carry out of the i-th bit. The sum bit s; and the carry ¢; can be
computed as follows:

s, =a, @b ®c, (2.11)
¢,=ab +ac, +bc, (2.12)

ii-1

In prefix addition we use three stages to compute the sum:
pre-processing, prefix-processing and post-processing.
In the pre-processing stage the generate g; and propagate p; signal are
computed as in (2.2) and (2.3). The concept of generate and propagate
can be extended to a block of contiguous bits, as shown in (2.4) and
(2.5). In particular the signals defined by (2.4) are called block
generate while the ones in (2.5) are called block propagate. Thus, for
any bit i, the carry ¢; can be expressed as:

Ci = 8oy T Plioi€a (2.13)

where c_; is the input carry of the n-bit adder. In the following, for the
sake of simplicity, we assume that ¢.;=0, so that (2.13) simplifies as:

¢ = &lio (2.14)

The block generate and propagate terms are computed in the
prefix-processing stage of the adder. To that purpose, the (gix, pi-s)
couples are expressed with the help of the prefix operator @ defined as
follows:
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(g[i:k]> p[i:k]) = (g[i:j]a Pli-j] ) ® (g[l:k]’ P[l:k]) = 2.15)
(g[i: 17T Plij18[1:k) Pli:j1P[1k) )

where: i > [ >j >k. The prefix operator has two important properties: it
is associative and it is idempotent. These properties are exploited in
the prefix-processing stage to speed-up the computation.

Finally, in the post-processing stage, the sum bit s; are
computed using (2.13) and:

s, =p,Dc, (2.16)

2.3.1 Kogge-Stone

The Kogge-Stone parallel-prefix stage [32] is shown in Fig. 5.

Kogge-Stone
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

15:0 14:0 13:0 12:0 11:0 10:0 9:0 80 7:0 6:0 5:0 4:0 3:0 2:0 1:0 O
Fig. 5 n=16 Kogge-Stone prefix-processing stage.

Here black dots represent the prefix operator (2.15), while white dots
are simple placeholders. Kogge-Stone adder is composed by logy(n)
levels, and present a fanout of two, using a large number of cells and
many wire track.

2.3.2 Brent-Kung

The Brent-Kung [33] adder topology is shown in Fig. 6. The
number of black dots is lower than Kogge-Stone, while still presenting
a fanout of two. This is achieved using additional levels. The total
number of levels is 2logy(n)-1.
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Brent-Kung
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
O O O O @, O O O O O O ) O @ @, )

15:0 14:0 13:0 12:0 11:0 10:0 9:0 &0 7:0 6:0 50 4.0 3:0 2:0 1:0 O
Fig. 6 n=16 Brent-Kung prefix-processing stage.

2.3.3 Han-Carlson

A good trade-off between fanout, number of logic levels and
number of black cells is given by Han-Carlson (Fig. 7). The outer
rows of the Han-Carlson [34] topology are Brent-Kung graphs, while
the inner rows are Kogge-Stone graphs. Han-Carlson adder exhibits an
additional level with respect Kogge-Stone, being their total number
equal to logy(n)+1.

2.3.4 Hybrid Han-Carlson

The Hybrid Han-Carlson [35] (Fig.8) further decreases
complexity with respect Han-Carlson, at a cost of two additionals
levels with respect Kogge-Stone adder. The two outhers rows are
Brent-Kung graphs, while the inner ones are Kogge-Stone graphs.
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Han-Carlson
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fig. 7 n=16 Han-Carlson prefix-processing stage.

Hybrid Han-Carlson
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15:0 14:0 13:0 12:0 11:0 10:0 9:0 80 7:0 6:0 5:0 4:.0 3:0 2:0 1:0 O
Fig. 8 n=16 Hybrid Han-Carlson prefix-processing stage.

2.3.5 Sklansky

Sklansky [36] uses the minimum number logy(n) of levels, but the
fanout of black cells (implementing the prefix operator (7)) double at
each level (Fig. 9).
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Sklansky

EVVVVVVV]%%%IE%E

15:0 14:0 13:0 12:0 11:0 10:0 9:0 80 7:0 6:0 5:0 4:0 3:0 2:0
Fig. 9 n=16 Sklansky prefix-processing stage.

2.3.6 Ladner-Fisher

Ladner-Fisher [37] (Fig. 10) adder represents and intermediate
topology between Skalansky and Brent-Kung. Indeed, the first two
level are Brent-Kung graphs, the intermediate levels are Sklansky
graphs (with consequent increased fanout from one level to the
successive) while the last one is a carry merge level, common in
Brent-Kung, Han-Carlson and Hybrid Han-Carlson topologies. The
toal number of levels is logy(n)+1.

Ladner-Fisher
13 12 9 8 7 6 3 2 1 0

i t, oot
A

15.0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7.0 6:0 5.0 4:0 3:0 220 1:0 O
Fig. 10 n=16 Ladner-Fisher prefix-processing stage.
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2.3.7 Carry-Increment

Fig. 11 shows an example of a carry increment (C-I) adder (this is the
prefix adder corresponding to the carry select architecture). The input
operands are divided into w size groups (w=4 in Fig. 11), each one
using a Kogge-Stone topology in this example. The result of a group
is propagated to all the bits of the next group using a string of black
cells aligned on the same row. The total number of levels is
logr(w) + n/w — 1.

Carry-Increment
13 12 11 10 9 8 3 2 1 0
O O

A il v

L/ 1/

O O O O O O O O O O O
15:0 14:0 13:0 12:0 11:0 10:0 9:0 &80 7:0 6:0 5:0 4:0 3:0 2:0 1:0

Fig. 11 n=16 Carry-Increment prefix-processing stage.

< 0

2.4 Variable-Latency Speculative Adders

The general scheme of Variable-Latency Speculative Adders
(VLSA) is shown in Fig. 12 [20], [22]. In this scheme, an approximate
adder is augmented of an error detection network, as that discussed in
paragraph 2.2.1, and of an error correction circuitry. The error
detection asserts the signal £ when the speculation fails. In this case
an additional clock cycle is required to provide a correct result,
through the error correction block. Therefore, the addition time is one
clock cycle when speculation is correct, and two clock cycles when
the speculation fails. We can define the average addition time T,,4 as
follows:

Tavg = P2 T + (=P ) Ty = Toy (14 Py (2.17)
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where Ty is the clock period and Pg,, is the error probability of the
speculative adder.

Y EN . Detect. S

i
4
4
'l
[
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B : EN
Error S
| [T

Fig. 12 General scheme of variable-latency speculative adder. When the speculative
sum is incorrect, the £ signal is asserted. The pipeline is therefore stalled and, in an
additional clock cycle, the correct result is provided as output, with the help of an
error correction stage.

Variable latency speculative prefix adders can be subdivided in
five stages: pre-processing, speculative prefix processing, post-
processing, error detection and error recovery. The error recovery
stage is off the critical path, as it has two clock cycles to obtain the
exact sum when speculation fails. In the following, this different
stages are introduced.

2.4.1 Pre-processing

In the pre-processing stage the generate g; and propagate p; signals
are computed as in (2.2) and (2.3). Note that this stage is employed
also in classical, non-speculative, parallel-prefix adders, as already
discussed in the paragraph 2.3.
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2.4.2 Speculative prefix-processing

The speculative prefix-processing stage is one of the main
difference compared with the standard prefix adders recalled in
previous paragraph. Instead of computing all the gp.op and pyio
required in (2.13) to obtain the exact carry values, only a subset of
block generate and propagate signals is calculated; in the
post-processing stage approximate carry values are obtained from this
subset. The output of the speculative prefix-processing stage will also
be used in the error detection and in the error recovery stages
discussed in the following.

As discussed in the paragraph 2.2, the basic assumption behind
speculative prefix-processing stage is that carry signals propagate for
no more than p bits, with p<n and p=0(log,(n)).

2.4.2.1 Han-Carlson topology

Han-Carlson (H-C) adder constitutes a good trade-off between
fanout, number of logic levels and number of black cells. Because of
this, Han-Carlson adder can achieve equal speed performance respect
to Kogge-Stone adder, at lower power consumption and area [38].
Therefore it is interesting to implement a speculative Han-Carlson
adder.

Moved by these reasons, we have generated a Han-Carlson
speculative prefix-processing stage by deleting the last rows of the
Kogge-Stone part of the adder [39]. As an example, the Fig. 13 shows
the Han-Carlson adder of Fig. 7 in which the two Brent-Kung rows at
the beginning and at the end of the graph are unchanged, while the last
Kogge-Stone row is pruned. As shown in Fig. 13, the 9 rightmost
output are exact (i.e. the values of gjo; and pj.o) are calculated

according to (2.13), for i e{O, 1,..,8} ), the other outputs are instead

speculative, since the obtained block-propagate and generate span
only to a subset of the inputs. As an example, the tree in Fig. 13 yields
8l12:4] and Dl12:4], instead 0fg[]2_~0] and Dr12:0] (Flg 7)

In the following, we indicate as 4 the number of exact output
computed by the speculative carry-tree and as /; the block length of
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the j-th speculative output (as an example, in Fig. 13 we have 7 =9
and / 12 = 9)

As shown in Fig. 13, the speculative outputs can be grouped, the
member of the same group having a common black node parent (for
example the output (g//;.4p/11-47) and (g712:41p/12-47) have the same
black node parent highlighted as 11:4).

15 14 13 12 11 10 9 &8 7 6 S5 4 3 2 1 0

15:8 1|4:6 1356 1|2:4 11i4 lp:2 9:|2 8|:0 7.0 6:0 50 4.0 3:0 2:0 1:0 p
I 1 I 1 I 1 I

r=2 r=2 r=2 h=9
Fig. 13 Han-Carlson speculative prefix-processing stage. The last Kogge-Stone row
of the n=16 bit graph is pruned.

The number of outputs belonging to the same group is indicated as
r (conceptually is the same of the genral scheme of Fig. 3) in the
following (r=2 in the example of Fig. 13). As it can be observed, the
block length for the outputs of a same group varies from a minimum
(Pmin=38 in Fig. 13) to a maximum (p,,,,=9 in Fig. 13). We define:

P =min(,); p,. =max(l,) for: j={hh+l,.,n-1} (2.18)
We have:
P =h=p,., +7—1 (2.19)

The last condition holds for all the prefix-processing stages
investigated in the following, being related to the intrinsic symmetry
of the graph.

2.4.2.2 Kogge-Stone topology

The Kogge-Stone (K-S) speculative prefix-processing stage has
been proposed in [20], [40] and can be obtained by pruning the last
levels of a traditional Kogge-Stone adder. In the example shown in
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Fig. 14, the last level of a n=16 bit Kogge-Stone adder (Fig.5) is
pruned.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

O
15:8 14:7 13:6 12:5 11:4 10:3 9:2 81 7.0 6:0 5:0 4:0 3:0 2:0 1:0 0
1

Fig. 14 Kogge-Stone speculative prefix-processing stage. The last row of a n=16 bit
Kogge-Stone adder is pruned, resulting in a speculative prefix-processing stage with
K=8.

The speculative Kogge-Stone tree of Fig. 14 is characterized by a

Pmin=8,h=8and r = 1.

2.4.2.3 Brent-Kung topology

A speculative prefix-processing stage can be obtained by deleting the
intermediate rows of the standard Brent-Kung (B-K) parallel-prefix
graph [31]. Pruning the mid row eliminates just a single black cell and
breaks the propagate chain only for the most significant bit; more
interesting results are obtained by deleting a larger number of rows
[39].
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

31:24 30:16 29:16 28:16 27:16 26:16 25:16 24:16 23:16 22:8 21:§ 20:8 19:8 18:8 17:8 168 158 14:0 130 120 11:0 100 90 80 70 60 50 40 30 20 10 0
| ) I | f |

r=8 s r=8 L h=15

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0

o o) o) o) o
3128 30:24 29:24 28:24 27:24 26:20 25:206 24:20 23:20 22:16 21:16 20:16 19:16 18:12 17:12 16:12 15:12 14:8 13:8 128 11:8 104 94 84 74 60 50 40 30 20 10 0
I | I Y I I I 1 I | I | I

Cor=4 =4 p=4 =4 =4 r=4 h=1

Fig. 15 32-bit Brent-Kung prefix-processing stages (a) Original topology; (b) three
intermediate rows of the original graph are deleted; (c) five rows deleted.

As an example, Fig. 15 shows how can be obtained a 32-bit
speculative B-K adder. Fig. 15(a) shows the original 32-bit B-K adder,
while Fig. 15(b) displays what happens when three intermediate rows
of the tree are deleted. In Fig. 15(b) we have h=15, p,..,,=r=8, lis=11.
The Fig. 15(c) shows the 32-bit B-K adder where five intermediate
rows are deleted. In this case we have: h=p,,,,=7, =4, pmin=4.

2.4.2.4 Hybrid Han-Carlson topology

The Hybrid Han-Carlson (HH-C) speculative prefix-processing
stage is generated by keeping unchanged the rows at the beginning
and at the end of the graph while deleting intermediate rows [41]. As
an example, the Fig. 3 shows a 32-bit HH-C adder in which a single
row is pruned, yielding a speculative stage with h=p,,,=19, r=4,
pmin=16-
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 0

o) o) o o) o) o) o o) o) o) o o o) o) o O O
31:1630:12 29:12 28:12 27:12 26:8 25:8 24:8 23:8 22:4 21:4 20:4 19:4 18:0 17:0 16:0 15:0 14:0 13:0 12:0 11:0 10:0 9:0 80 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0
I | I \ I | I |

1

= Y Yo =19

Fig. 16 32-bit speculative Hybrid Han-Carlson prefix-processing stage. The last
Kogge-Stone row of the original graph is deleted

2.4.2.5 Carry-Increment topology

Fig. 17 shows the speculative version of the Carry-Increment (C-I)
adder of Fig. 11. As it can be observed, the output of each group is
propagated only to the next group (i.e. the third group is not linked to
the first one; the fourth group is not linked to the second one and so
on). In this way, the number of logic level reduces from 5 to 3. The
speculative stage in Fig. 17 has h=7, r=4, p,i,=4.

In general, the number of pruned levels P depends on group size
w, and is equal to: P=n/w-2 [39].

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
O

O
15:12 14:8 13:8 12:8 11:8 10:4 9:4 84 74 6:0 5.0 40 3:0 2:0 1:.0 O
| ] | ] | ]
I 1 I 1 I 1
r=4 r=4 h=7
Fig. 17 Speculative architecture of n=16 Carry-Increment adder: the output of each
group is propagated only to the next one

2.4.2.6 Ladner-Fischer topology

A speculative Ladner-Fischer (L-F) topology is obtained by
deleting the intermediate levels between these ones and modifying the
last survivor level [39]. As an example, the Fig. 18 shows a 16-bit L-F
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adder in which the last intermediate level is pruned, yielding a
speculative adder with 4= 9, r=4, p,,;,=6.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15:8 148138124 11:4 10:4 9:4 I80 7.0 6:0 5:0 4:0 3:0 2:0 1:0 0I
| ]
I II 11

r=4 r=4 h=9

Fig. 18 16 bit Ladner-Fisher speculative prefix-processing stage.

2.4.2.7 Sklansky topology

The Sklansky (SK) speculative prefix-processing stage is obtained by
deleting the last levels of the non-speculative topology. Fig. 19 shows
a 16-bit example with 7= 8, r=4 pmin:5

10 9

15:8 148138128114104 9:4 84 70 6:0 5:0 4.0 3:0 2:0 1:0

I r:4 I I r:4 I I h 8 I

Fig. 19 16 bit Sklansky speculative prefix-processing stage.

2.4.2.8 Discussion

Table II summarizes the relations between p,,;,, 7, the number of
pruned levels P and the adder size n (h and p,... can be obtained from
(2.19)). As it can be observed, p,;, is related to n and P, with the
exception of C-I topology, where p,,;, is equal to group size w. The
parameter r is fixed for K-S, H-C and HH-C speculative topologies,
while in B-K, C-1, L-F and SK it depends on p;.
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The number of levels of the speculative prefix-processing graphs
is also reported in Table II. As it can be observed, a logarithmic
behavior with p,,;, 1s exhibited.

2.4.3 Post-processing

In the post-processing stage we firstly compute the approximate
carries, ¢, , and then use them to obtain the approximate sum bits s,

as follows:
5, =p D¢, (2.20)

Similarly to (2.14), the approximate carries are obtained as the
generate signals available in the last level of the prefix-processing
stage. We have:

8o forri<h

€= . 2.21)
8ivict 1) otherwise

2.4.4 Error detection

The speculative carries are calculated making the following
assumption:

¢, results from propagation through no more than

I bits (2.22)

In this way, for Kogge-Stone topology we assume that carry can

TAB. II —SPECULATIVE PREFIX STAGE PARAMETERS.

Topology Lyin r Number of Levels
Kogge-Stone n/2f 1 logy(bL,,;,)=logyn — P
Han-Carlson n/2f 2 logy(bL,,;,)=logon — P+ 1

Hybrid n/2" 4 | logy(PL,)=logan — P +2

Han-Carlson
Brent-Kung n/ 2PV logy(bL,,i,)=2logyn — P —1
Carry-Increment w L, logr(2L,,;,)=log, w + 1
|—10g2(2Lm,-,,)-| =logyn—-P
+1
Sklansky 140/ 27| L1 [ogo(Lyi) E logan — P

Ladner-Fischer [2+n/2%*V| L, .-2
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propagate for no more than L,,;, bits, while for other topologies with
r>1 we can tolerate, for some bit positions, carry propagation lengths
longer than L,,;,, but always smaller than L.
The error condition E, for the proposed topologies is expressed by
(2.8), where, in (2.9) p must be interpreted as pyn.

Let us investigate, with some examples, the error detection
logic for the proposed topologies.
For the Kogge-Stone topology of Fig. 14, the Eu is:

E, . =Pns58187 + P4:7186 T P13:6185 T P[12:5184
T P[11:4)83 1 P[10:3182 + P9:2181 T P[8:1180

(2.23)

Considering Han-Carlson of Fig. 13 we have:
E, = DP9.2181:01 T P11:418[3:2] T T Pp15:818[7:6)  (2.24)

Comparing (2.24) and (2.23) we can observe that the number of terms
to be OR-ed in order to compute E, is halved in Han-Carlson
topology. This derives from » value: in Han-Carlson two carries are
“speculated” from the same parent node, therefore it is sufficient to
check the error of the parent node only. This is formally expressed by
(2.9).

We name “checking nodes” the nodes of the prefix-processing

stage, whose outputs are needed to compute the error signal. The
checking nodes for both the Kogge-Stone example of Fig. 14 and the
Han—Carlson example of Fig. 13 are highlighted as white-red cells in
Fig. 20.
As it can be observed, in Kogge-Stone some of the checking cells are
at the last level of the graph; their output signals are available after
three black cells delay. In Han-Carlson the critical checking cells are
in the second last level of the graph and are also available after three
black cells delay, in spite of the larger number of levels of the
Han-Carlson prefix-processing stage. From the above observations, it
can be concluded that error detection is sensibly simplified and
potentially faster in Han-Carlson, compared to Kogge-Stone.
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Speculative Han-Carlson

15:8 14:7 13:6 12:5 11:4 10:3 92 81 7:0 6:0 5:0 4.0 3:0 2:0 1:0 O

Fig. 20 The nodes of the prefix-processing stage, whose outputs are needed to
compute the error signal, are named “checking nodes” and are highlighted as big
hatched dots, for the topologies in Fig. 13-14.

In the case of Brent-Kung of Fig. 15(b) one has:
E, = Pussi8701t P2316)8158] T P31241812316)  (2.25)

whereas for the circuit of Fig. 15(c), with M=7 (2.9), we have:

E, = pr7.41&r3:01F Pri1g) &7:41 Pris12] 81181+ -
u [7:4] 5[3:0]™ F[118] 5[ 7:4]™" F[15:12] 5[11:8] (2.26)

T P[27:24] 823211 P[31:28] 8[27:24]

In general, among the investigated topologies, the K-S one
exhibits the most complex error detection stage, involving the OR of
n-pmin terms. The H-C halves the number of terms to be OR-ed, while
HH-C topology further decrease complexity, needing n-p,,;,/4 terms.
Brent-Kung, Carry-Increment, Sklansky and Ladner-Fischer
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speculative topologies shows a variable » value, depending on L,,;,
(see Tab. I), but they are general more effective than K-S.

Another important aspect to be considered is delay. In K-S some
of the checking nodes are at the last level of the graph, and are hence
late-arriving signals. The situation is better in H-C and C-I, where the
critical checking nodes are in the second last level of the graph. The
best configurations are, from this point of view, B-K and HH-C, in
which the checking nodes are located in the middle of the tree [39].

As an additional note, the need of driving the gates of the error
detection stage increases the fanout of the checking cells, slowing the
speculative prefix-processing stage.

2.4.5 Error Correction

The error correction stage computes the exact carry signals (2.14),
to be used to be used for i > 4, in case of misprediction.
The error correction stage is composed by the levels of the
prefix-processing stage pruned to obtain the speculative adder. The
Fig. 21 shows the error correction stage of the proposed speculative
Han-Carlson adder; the error correction of the others topologies can be
obtained similarly.

It can be observed that the inclusion of the error correction stage
increases the fanout of some of the cells of the speculative
prefix-processing stage, with adverse effect on adder speed.

Han-Carlson

0 )
Error Correction Stage - eocflissdlsssflisss el isalliseelisallisssisiirensdisisisisirramnssssnsnnommnnns
| | ; \ . = )

Y v 0 O 6 0O 6 0O 6 O & 0 O
: 15:8 14:6 13:6 12:4 11:4 102 92 80 7.0 6:0 5:0 40 3:0 2:0 1:0 0
o o H
: Speculative Output
15:0 14:0 13:0 12:0 11:0 10:0 9:0
Exact Output

Fig. 21 Error correction and detection stages for the proposed speculative Han-
Carlson adder of Fig. 13.
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2.5 Signed operands

Unfortunately, the assumption made on operands statistics are not
always verified. Indeed many applications make use of 2’s
complement representation, in which, due to the sign extension, long
carry propagations can arise more likely than the case of uniformly
distributed inputs.

This issue is exacerbated, as discussed in [42], by the fact that, in
practical applications using 2’s complement representation, small
numbers appear more frequently than large ones. As an example, the
Fig. 22 shows the probability density function for an audio signal (a
13s fragment of a pop song with 16-bit 2’s complement encoding). As
it can be observed the signal is far from being normally distributed
and instead it follows closely a Gaussian shape. This comes in
agreement with [30], which assumes a Gaussian distribution to capture
the behavior observed in [42], through software profiling.

1.2x10"
- //\ u=0 *
y \ 6=3.66x10°
2 0.8x10
ES
=
S B |
=
g 7
= 0.4x10
L 4 4 4 4
-1.5x10 -0.5x10 0 0.5x10 1.5x10

Sample value

Fig. 22 Probability density function for a 13s fragment of a pop song (16-bit 2’s
complement encoding). The red curve is a Gaussian fit.

In presence of distribution like that in Fig. 2, long carry propagation
can arise when summing two small number with opposite signs. In
this condition the carry propagation length is comparable with the
adder size, significantly increasing the error rate.
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1 11 1)1 1 1,111 O 1/0/0 O O[O O O OB
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——
error

Fig. 23 Operation of the speculative adder of Fig. 3, when the two operand values
are: A=2688,, and B=-704,,. An error occurs in the four MSBs of the result.

The Fig. 23 reports an error condition occurring when two operands,
with opposite signs, are added using a speculative adder. In this figure
the two operands are: 4=2688;p and B=-704y. As it can be observed,
(i) the carry propagates along the most-significant r+p bits of the
adder (r+p=6 in the example of Fig. 23) and (ii) there is a carry-out
from bit position n-(r+p)-1 (i.e. from bit position #11 in the example
of Fig. 23). Thus an error occurs and the adder output is computed as:
Y=-30784, instead: of 1984,.

2.5.1 Error rate analysis

In this section a lower bound for error rate of speculative adders in
presence of Gaussian distributed operands is shown.

An error condition like that represented in Fig. 23 can be
summarized as:

0<4<Q
-0<B<0 (2.27)
A>B
where
p=2"p (2.28)

In fact, since 0<4<Q and -Q<B<O0 the r+p MSBs of A4 are all
zeros and the »+p MSBs of B are all ones (and the carry propagates
along the most-significant bits of the adder). Moreover, since the
result is positive (4>B) there is certainly a carry-out from bit position
n-(r+p)-1. Another error condition occurs also when the roles of 4 and
B are swapped:
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0<B<Q
-0<A4A<0 (2.29)
B> A4

In conclusion, we have an error whenever 4 and B have
opposite signs, A+B>0 and both |4| and |B| are smaller than P. The
most evident case is: 4=1 and B=-1 that, in the adder of Fig. 23, gives
as a result -64.

The probability of the conditions (2.27) and (2.29) is quite
small in the case of uniformly distributed operands (in this case the
probability that the »+p MSBs of an operand are all one or all zero is
P )). Instead, when the operands are Gaussian distributed the
probability of (2.27) and (2.29) can increase significantly.

Let us observe that the two conditions (2.27) and (2.29) happen
with the same probability, therefore, naming p, the probability of the
case (0<A4<Q, -O<B<0, A+B>0), the probability p; of the conditions
(2.27) and (2.29) is given by p; = 2p4. The probability of 0<4<Q,
under our hypothesis writes as:

Pr(0<A<P)——erf£ (2.30)

)

where erf is the error function and o is the standard deviation of the
Gaussian distribution (assumed to have zero mean). Moreover, using
Gaussian symmetry, we have

Pr(-P<B<0)=Pr(0< A< B) (2.31)

while the probability of A+B>0 is equal to 1/2. By using the
proprieties of jointly independent Gaussian variables (the operands are
assumed uncorrelated) and exploiting the symmetry of the problem,
the probability p/ can be expressed as the product of the single events
[43]:

D= erf [G\/_j (2.32)

It is important to note that (2.32) is only a lower bound of the actual
error probability, since there are other error conditions not included in
(2.27), (2.29). For instance, an error can occur also in the case when
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A>Q and B<-Q, or even independently from the sign and the size of
the operand. Nevertheless, these additional error components are often
negligible compared to (2.32).

The Fig. 24 shows simulated error probabilities for three
different adder configurations. For each adder, several simulations
with Gaussian distributed operands have been performed, by varying
the standard deviation ¢ of the distribution. One million randomly
generated inputs have been simulated for each ¢ value. As it can be
observed, the simulated error probability is much larger compared to
the case of uniformly distributed inputs. The equation (2.32) predicts
fairly well the numerical results; it can be observed that pguugsian—0.25
when Q/c>>1 that is: 6<<(Q. The largest deviations between (2.32)
and numerical simulations occur in the case n=16, =4, p=4 where the
adder error probability is quite large (about 6%) also for uniformly
distributed inputs.
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Standard Deviation, ¢

Fig. 24 Error probability for three adder configurations, with Gaussian input
distribution. The number in brackets are: n,7,p respectively. Lines: equation (2.32);
dots: simulations.

2.6 Variable-Latency Speculative Adders for
signed operands

In presence of Gaussian distributed operands, as discussed
above, the average carry propagation length increases significantly,
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therefore the assumption, made in the case of uniformly distributed
operands, that the carry propagates no more than p<n bits fails. As a
consequence the error rate increases significantly (Fig. 24), degrading
the average addition time (2.17).

In order to address this issue, both [30] and [42] introduce a
global carry signal, triggered in presence of a carry chain longer than
p. This global carry is taken into account in the approximate adder by
using additional logic levels that negatively affects overall
performance of the speculative adder.

2.6.1 Speculative assumption for signed operands

The speculative assumption (2.22), employed in the case of
uniformly distributed operands, fails when working with signed
operands. It is, therefore, needed to determine a novel assumption to
mitigate the error rate increase.

In Fig. 25(a) (where h=7 is assumed). two decimal numbers 39
and —47 are summed and the carry is killed in bit #3; in this case the
speculating condition (2.22) is verified and we can use (2.21) to
compute carries without errors.

On the other hand (Fig. 25(b)) summing the two decimal
numbers 47 and -39 the carry generates in bit #3 and then propagates
up to the most significant bit. The speculating condition (2.22) fails in
this case, which is flagged as an error, with E,=1. Note that in this
case the carries from c; through c,.; are all one, while the sum bits
from position 4 through n-1 are all zero.

Thus, to reduce error rate, we assume a different, less stringent,
speculating assumption to obtain ¢, for i>A:

¢, results from propagation through no more than
[, bits
OR
¢,=1 dueto carry generation in the less significant
h bits, followed by propagation through the most
significant n—1—h bits (i.e. fromh+1 ton —1)
If the first condition in (2.33) is true, then E, in (2.8) is zero and we
can use (2.21) to compute carries. This covers cases like the one in
Fig. 25(a).

(2.33)
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n—1  bit position 9 § %6 543210

A 00eee+++0000100111 (39

B lleeeceeell11010001 (—47)
a) ppecccceppppppkppg

Sum ]1eeeeee1111111000

<«

n—1  bit position 9 § %6 543210

A 00sesse+0000101111 (47)
b) B lleeeesel1111011001 (-39

ppeseccppppppEPPE
Sum QQeeeeee0000001000

Fig. 25 Sum of two small operands, with opposite signs and absolute value
smaller than 2""! (h=T7 is assumed). (a) When the sum is negative (2.22) is verified
and (2.21) gives carries without errors. (b) When the sum is positive (2.22) fails. The
carries from position /4 to n-1 are high while the sum bits from position 4+1 to -1
are zero.

The second condition in (2.33) flags the presence of a long carry chain
and covers cases like the one in Fig. 25(b). The second condition in
(2.33) is verified when y=1, where:

V= Ey - Pln-th] (2.34)

Let us consider, as an example, the B-K speculative prefix-processing
stage of Fig. 15(b). From (2.25) and exploiting the condition:
Prizi8;7=0 for: k<i, the equation (2.34) becomes:

Y = P318] '[P[7:4] g301% Ppi1s) g[7;4]} (2.35)

The last equation can be rewritten as:

Y = P318]° 8[7:0] (2.36)
In general, it can be shown that:
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Y =Ey - Pin-th+1] = Pln—t:h1] " &[40] (2.37)

Therefore, if (2.34) is asserted, we know that all the carries
from position 4 to n-1 are high. Moreover, since all p; (2.3) are high
for i=h+1..n-1, we also know that all the sum bits from position /4+1 to
n-1 are zero.

The cases not considered in (2.33) result in a misprediction and
require two clock cycles for error correction. From the previous
discussion, the error condition is given by

Eg=E, - y=E, Plu-th] (2.38)

The architecture of the resulting speculative adder is shown in
Fig. 26. It can be seen that this architecture is more effective than
those reported in [30], [42], because when condition (2.34) is asserted
the computation of output bits is not needed (the sum bits from
position A+1 to n-1 are zero).

As final remark, please note that condition (2.33) includes
(2.22), therefore the resulting speculative adder can be used also in
presence of uniformly distributed operands without no degradation in
terms of error probability.

3
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~
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Approx. b | W -
> Adder
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Fig. 26 Proposed Variable Latency speculative adder for applications using

2's complement representation. For E,=1, y=1 the speculative output is known
beforehand to be 0.
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2.7 Signed operands model

The operation of VLAs is based on specific assumption on the
length of carry chains. The actual statistical distribution of input
values, therefore, strongly affects error probability and hence the
performances of VLAs. In [18], [20], [27]-[29], [39], [42], [45] an
uniform distribution for the input operands is assumed, which is an
acceptable approximation of practical cases when the input values
represent unsigned numbers [46]. In [42] profiling of software
programs running on a physical machine was carried-out in order to
obtain statistics with real-world workloads, using 2's complement
representation. In [30] it is found that assuming a Gaussian
distribution allows capturing the basics behavior of carry chains
length distribution obtained in [42].

In order to asses proposed topology with signed operands we
employ mathematical distributions to approximate the distribution
found in practical workloads. We assume that in a certain percentage
of cases the operands A4, B represent integer values uniformly
distributed in [-2"", 2" -1], while in the remaining cases they follow a
Gaussian distribution with mean =0 and standard deviation c. Thus,
the operands are obtained as follows [31]:

U=2"", 2" 1) in the 100u% of cases

G(0,0) in the remaining cases

(4, B) e{ (2.39)

where U is the uniform distribution and G the normal one. For a given
wordlength 7, the model (2.39) has only two parameters, « and c.

For u=1 each bit of both inputs 4, B has an equal probability of
being zero (this is the model to be used for workloads where input
values represent unsigned numbers).

For u<l, the elements taken from the Gaussian distribution
capture the carry chains behavior found in [42]. The value of o is
typically much smaller than 2", in order to represent operations that
are performed between small operands (frequently found in practical
workloads [42]).

Fig. 27 shows histograms relative to maximum carry
propagation length in a 32-bit adder, obtained from (2.39) using
50,000 test vectors. Here a carry chain is defined as a generate
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followed by propagates bit; the carry propagation length is A+l
whenever a generate followed by k propagates bit is found. The
example of Fig. 25(a) has a carry propagation length of 3, while in
Fig. 25(b) the maximum carry propagation length is n—3.

It can be observed that for uniform distribution the length of
carry chain is always sensibly smaller than adder size. When 50% of
inputs are taken from Gaussian distribution with =256 (Fig. 27(b)), a
bimodal distribution is observed with an appreciable portion of carry
chains is as long as the adder size; by increasing ¢ the second peak of
the distribution moves to the left (Fig. 27(c)).

2.8 Error rate results

In this paragraph the error rate values of the investigated
topologies are shown, assuming operands described by model (2.39).
For VLSA the error rate assumes significant relevance, affecting the
average addition time (2.17).
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Fig. 27 Histogram of maximum carry propagation length obtained with model (2.39)
, for a 32 bit adder. (a) uniform distribution; (b) half uniform, half Gaussian with
6=256; (b) half uniform, half Gaussian with =30000

The error rate values have been evaluated performing Monte
Carlo simulations with a 2% relative error and a 99% confidence
level. The simulated error probability values using the three
distributions in Fig. 27 are reported in Table III for operand size n=32
and n=64. Error values larger than 10% are highlighted in red. For
each topology, and for each n value, two VLSAs have been
considered, with different p,,;, levels. The corresponding values of
h=pmax and r are also reported in Table IIl. The grayed rows report
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results for the H-C and K-S topologies designed to operate with
unsigned operands (Fig. 12), to compare the error probability
reduction, when operating with signed operands, of the topology
proposed in Fig. 26.

Let us firstly focus on the column u=1, corresponding to uniformly
distributed operands. The following observations can be drawn:

a) For wuniformly distributed operands, the error
probability of reported speculative adders assume low values. The
maximum is given by Sklansky topology which exhibits a value of
8.65x107% This is due by the value of p,., of this topology, being
equal to 5, while the other topologies are generally reported with p,;,
values around 8. This show that the error probability as an exponential
dependence on p,,;, indeed the reported error probability for Sklansky
topology having pni,=9 decreases significantly to 1.93x107°. Each
term OR-ed in (2.8), in fact, has a probability of being one that
decreases exponentially with L,,;,. Moreover it can be observed that
the topologies with the same p,,;, but higher » perform better in terms
of error rate (compare in Tab. III, the H-C and K-S topology having
the same p,;,). This can be interpreted as follows: in Kogge-Stone
speculative prefix stage all the carries are computed independently
from each other, instead in Han-Carlson, half of the carries (those in
even bit-positions) are calculated from “parents” carries (those in odd
bit-positions), through an additional level of the tree. This reduces
error probability (if a parent carry is correct the “child” carry will be
correct, too) [39]. This is formally expressed by (2.9) showing that
increasing  reduces the terms to be OR-ed in £, (2.8). Observe that
for uniformly distributed operands, the VLSAs of Fig. 12 have the
same error rate of the corresponding circuits using the architecture of
Fig. 26. Actually, for this distribution of input values, the probability
of having pp,.1.4+17=1 is extremely low and hence, from (2.38), E~E,,.
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From the last two columns in Table III, corresponding to
distributions of Fig. 27(b) and Fig. 27(c), the following observations
can be drawn:

TAB. III — ERROR PROBABILITY VALUES FOR SPECULATIVE ADDERS.

Adder o oo | . ErroruP:r(;)lS)abllltyuzo5
Topology min max u:1 o~ s
6=256 | 6=30000

C-1 32| 8 15 | 8 |3.90x107° | 1.95x107° | 2.34x10°°
3 3 1

b, ec [ 32 [S [ IL T4 EOIDI0 7400107122 1)
B-K [32] 8 | 15 [ 8 |3.90x107 | 1.95x10° [ 2.34x10”
—) —3 —1

He |32 e e T a0 T oo
=) =) -1

i o T TR EE T TR R T
Lr | lo 19 [4]44110° [2.21x10° | 151x10°
10 | 17 | 8 |9.58x10* | 4.78x10* | 4.78x10°*

—) ) 1

SK 0 IS 8 | 4 8.65X1073 5.6IXI04 1.79x104
9 | 16 | 8 [1.93x10° | 9.72x107* | 9.80x10

8 9 | 2 [1.61x107 | 1.35x10" | 1.36x10""

S 2 16 | 17 | 2 |3.80x107° | 1.25%10" | 1.19x10"
8 8 | 1 ]225x107 | 1.37x10" | 1.40x10""

I 216 T16 1 [536x10° [ 1.25%10 7| 1.19x10"
cl o4 |8 15 | 8 | 1.17x107% | 5.80x10° | 1.33x10°*
) 16 | 31 16| <107 <10”° <10”°

8 11 | 4 |238x102 | 1.18x107% | 1.28x10"!

Hyb. H-C | 64 5 T3 [ <107 <107 <107
—) —3 —2

sk [ s
=) =) -1

H-C 64 186 197 ; igéiig*‘ 1'9<61?)}50 1.1412}50
K.S 64 8 8 | 1 ]527x1072 | 3.75x107% | 1.53x10"!
16 | 16 | 1 | 1.82x107* | 9.01x10° | 9.32x10°°

Lk lealo 19 141980x10"]5.00<10" | 1.78x10
10 | 17 | 8 [2.91x107° | 1.45x107° | 1.45x10°°

3 =3 =3

SK 64 197 ;g 186 5'9<11?)5) 2'9<01?)150 2'9<11?)150
8 9 | 2 [3.91x107 | 1.45x10" | 1.47x10""

S C 16 | 17 | 2 | 1.32x107% | 1.25%10" | 1.25x10""
8 8 | 1 ]527x107 | 1.52x10" | 1.54x10""

I 04 16 T16 [ 1 [1.82x10° | 1.25x10 " | 1.25x10"
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b) The error rate of VLSAs designed for unsigned
operands (Fig. 12) drastically increases, ranging from 12% to 18%,
and is almost independent from p,;,. These architectures, therefore,
are unsuitable for application using 2's complement representation.

c) The VLSAs designed for signed operands (Fig. 26)
perform quite well with the distribution of Fig. 27(b). The error
probability is actually lower than the case of uniformly distributed
operands. Due to the low o value, in fact, carry generation for
Gaussian distributed operands takes place with high probability in the
less-significant p,,, bits of the adder and is correctly taken into
account by the proposed architecture.

d) When the distribution of Fig. 27(c) is considered, the
error probability increases significantly. In this case, due to the larger
o value, only the architectures with p,,,,>15 have a high probability of
catching the propagation chains arising for Gaussian distributed
operands. This result clearly shows that the best architecture for a
VLSA is strongly related to the assumption made on the input signal
statistics.

2.9 Synthesis results

The investigated topologies have been described, along with
their speculative counterparts, in Verilog HDL and synthesized with
Cadence RTL Compiler using UMC 65nm library, for 32bit, 64bit and
128bit operands. The adders have been described in a structural way,
instantiating operators (2.15). The error detection and correction
networks have been described in behavioral way. The RTL Compiler
synthesis directive synthesize —to_mapped —effort high has been
employed to design the adders at their maximum speed. The
set_multicycle_path synthesis command was used to mark the
non-speculative outputs of the speculative adders. The dynamic power
dissipation is evaluated after synthesis by extracting the nodes
activities from a back-annotated simulation.

2.9.1 The optimal p,,;, choice

The variable latency speculative adders depend on the
parameter p,,;;. Therefore a key point in the design of variable latency
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speculative adders is the choice of the optimal p,,, parameter. This
choice involves a trade-off between the error probability and the speed
of the speculative addition. Indeed, by increasing p,,;, the error rate
decreases, with positive effects on 7,4 (2.17), but the speculative carry
tree slows down, since a little number of levels is pruned.

In order to investigate this trade-off, multiple synthesis of the
proposed topologies have been performed, for different p,,;, values.
The Fig. 28, shows, as an example, the synthesis results for the
Han-Carlson speculative adders, by varying the synthesis timing
constraint. The Fig. 28 shows the results for 32-bit adders, the Fig. 29
for 64-bit adders and the Fig. 30 for 128-bit adders. The x-axis reports
the average addition time (2.17), which accounts for error probability.
The distribution employed in Figs. 28-29-30 is represented in
Fig. 27(a), while the VLSA topology is that suitable for unsigned
operands (Fig. 12). As observable, the implementations with p,,;,,=4
and p,..,=n/2 reveals ineffective because of the high error rate (p,,;,=4)
or of the little number of pruned levels (p,,,,=n/2).

For 32 bit (Fig. 28) the optimum value is p,;, =8; this value of
Pmin 18 also the best choice for n=64 bit (Fig. 29). For n=128 bit (Fig.
30) both p,,;,=8 and p,,;,=16 give similar performance.
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Fig. 28 Area and power of 32-bit speculative and non-speculative
Han-Carlson adders as a function of the timing constraint. The performance are
shown for different p,,;, values.
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Han-Carlson adders as a function of the timing constraint. The performance are
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Fig. 30 Area and power of 128-bit speculative and non-speculative
Han-Carlson adders as a function of the timing constraint. The performance are
shown for different p,,;, values.
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Observe that in these figures also the non-speculative
topologies performance as reported, for comparison. To this regard,
we can observe that the speculative topologies offer are particularly
effective in terms of speed, allowing to reduce the minimum
achievable delay. As an example, in the 64-bit case, the minimum
achievable delay is about 280 ps for the non-speculative adder and
reduces up to 225 ps in the variable latency architecture.

The analysis of Area Occupation and Power Dissipation shows
that speculative adders are not effective for large average delay. As
the timing constraint imposed during synthesis is made tighter
speculative adders become advantageous. For instance, in the 64-bit
case, speculative Han-Carlson adder results in a lower Area for 7,4
lower than 385 ps and also in a lower Power Dissipation for
T,4,g<350ps. For T,,,~=300 ps, the non-speculative adder presents an
area of 1885 umz and a power of 1.52 uW/MHz, while the variable
latency adder exhibits an area of 1500 pm® (20% reduction) and a
power of about 1.39 pyW/MHz (9% reduction).

2.9.2 Comparison among investigated topologies

In this paragraph the investigated topologies are compared
with the aim to determine the most effective one. Moreover, in order
to compare the proposed VLSAs suitable for signed operands
(Fig. 26) with the previously proposed global carry approach [30],
[42], the distribution of Fig. 27(b) is employed.

Each VLSA has been synthesized and, as discussed in the
previous paragraph, the topologies with optimal p,; have been
employed in order to perform the comparison. We have found that
pmin=8 1s the best solution for all the investigated cases, with the
exception of L-F and SK topologies. Optimal values for L-F are
Pmin=6 (32 and 64 bit) and p,,;,=10 (128 bit). Optimal values for SK
are ppmi,=5 (32 bit) and p,,;,=9 (64 and 128 bit).

The results are reported in the Fig. 31 and Fig. 32, showing,
respectively, the area and the dynamic power versus 7y, (2.17). Note
that, in addition to the topologies of Fig.26, the results of
Kogge-Stone and Han-Carlson speculative topologies, designed to
operate with unsigned operands (Fig. 12), are reported, to show how
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their performance are affected in presence of signed operands.
Moreover, for the 64-bit case the HH-C speculative topology with the
global carry technique proposed in [30] and [42] is reported. In the
Figs. 31-32 each topology is reported at its minimum achievable
delay.

As it can be observed, proposed VLSAs are faster than
non-speculative counterparts. For 128-bit, the addition time reduces of
about 20%, from more than 310ps (Kogge-Stone) to less than 240ps;
the improvement is less evident, but not negligible, also for 64-bit and
32-bit adders. This improvement in speed corresponds also to a
reduction in area (more evident for 128 and 64bit adders). Power
reduces in 128bit adder (compared to non-speculative K-S), while
slightly increases for 32bit case.

The topologies of Fig. 12, while being effective with unsigned
operands, reveal ineffective when operating with signed operands, due
to the large error rate, as reported in the gray rows of Tab. IIL
Moreover, as shown in the Figs.31(b)-32(b) the global-carry
technique is also inefficient. Similar considerations holds investigating
the results for different parallel-prefix speculative topologies. In
particular, global-carry technique, while providing error probability
similar to the ones obtainable with proposed technique, reveals
ineffective in terms of circuit, due to the large fanout of the global
carry signal that increases power and slows down the adders.

In the investigated cases the speculative L-F adder is the fastest
one. This result is particularly evident in the 64-bit case and is due to
the fact that the speculative prefix-processing stage mitigates the
fan-out issues, since the maximum fan-out in this topology,
approximatively, halves every time a level is pruned.

In terms of area and power consumption, in the 32-bit case, H-C and
HH-C VLSAs are the most effective topologies. For 64-bit and
128-bit adders, the C-I and the B-K VLSAs are also competitive.

Note that the speculative C-I topology has a logarithmic delay
behavior (with respect to operand size n), see Fig. 17. Hence, this
topology performs quite well as VLA, while the original one has a
critical path traversing all the adder blocks and is hence much less
effective.
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2.10 Approximate Adders with error correction
for error tolerant applications

As discussed in chapter 1, approximate computing leverages
error resiliency of applications to improve circuits performance. The
assumption made in the previous paragraphs, to provide an always
error free result to the system, employing a two-cycles error
correction, can be relaxed in presence of error tolerant applications.

In such scenario, the speculative output is always provided to
the system and, eventually, corrected to alleviate the error rate or the
error magnitude, but, in this case, the error correction, involving
simple operations, typically happens in the same clock cycle in which
the result is provided.

In this paragraph an approximate adder is discussed, which
reduces error rate in presence of signed operands. As discussed in the
paragraph 2.5, in real applications the numbers are represented
assuming a 2’complements representation, as a consequence the
operands are no longer uniformly distributed, following, instead, a
Gaussian distribution (Fig. 22). As a result, the carry propagation
length significantly increases, raising the speculative adders error rate
to values that compromise significantly the quality of results, also in
error tolerant applications (the Fig. 24 reveals that the error rate can
reach 25% of errors in presence of signed operands).

As shown by [42], in practical applications small values
appears more likely than higher values. Employing this observation,
an error correction technique is proposed to reduce error rate in
presence of Gaussian distributed operands [43].

As discussed in the paragraph2.5.1, an error condition
associated with signed operands happens whenever the operands A
and B have opposite signs (first condition), 4+B>0 (second condition)
and |4| and |B| are sufficiently small (third condition). Note that in
this condition the speculative adder provide an erroneous negative
results, since the carry propagation cannot happen, due to speculation.
Moreover, since |4| and |B| are small, also their sum will be small.
Note that, in addition to the error condition above, many others error
conditions are possible, but, in a signed scenario, these should happen
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with lower probability, due to the observations that small numbers
appears more likely than higher ones.

The proposed adders is reported in Fig. 33. As you can see, to
the speculative adder, composed of three sub-adders, is added some
error correction logic. This logic is designed to detect the discussed
error condition: the MSB of the operands 4 and B are XOR-ed in
order to check that they have opposed signs (first condition); the MSB
of the last sub-adder reveals if the sum is negative (second condition);
the nor of the L MSBs of the first sub-adder is computed to check the
third conditions. Indeed, if the output of the nor is high we have a hint

that the sum is positive and smaller than 2“*”"". When the three
conditions are true we have three hints that allows us to speculate that
we are in the case of positive sum of small numbers with opposite
signs, in this case the output is assumed to be the positive value
produced by the first sub-adder. Indeed, in this condition, the signal £,
is low and all the outputs from the second to the last sub-adders are
driven to zero. Similarly, we check the L MSBs of the second
sub-adder: if they are all zero, 4 and B have opposite signs and the
sum is negative, the signal £, goes to zero and all the outputs from the
third through the last sub-adder are driven to zero.

2.10.1 Error rate and quality of results

The proposed architecture is able to catch the errors due to the
Gaussian distributed operands and to correct them. The Fig. 34 shows
the simulated error probabilities for three adder configurations, as a

s dyy Ay Ayp| Ay Ay Ay dg||dy dg ds dy| Ay 4y 4 4y
bys by, bys by by, by by bg||b; bg bs by| by by, b, by

1
S1s Sis

a,sxor by a,sxor bs

Sl
154
S; Sg S5 S, Sy S, S S,

TITITeYYY E‘

S15 S1a S13 S12 8y, S10 S Sy

Fig. 33 Proposed approximate adder with output error correction circuit. Here
n=16, r=4, p=4, L=4.
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function of the standard deviation ¢ of the Gaussian distribution. As it
can be observed the error rate is significantly reduced for a wide range
of ¢ values (compare with Fig. 24).

In the case of uniformly distributed inputs, the resulting error
probabilities are reported in Tab. IV. By comparing with Tab. I, we
can observe that proposed adders increase error rate in presence of
uniformly distributed operands. As shown in second and third row of
Tab. 1V, the error probability for uniformly distributed operands can
be mitigated by increasing L (at a cost in terms of hardware
complexity, see Fig. 33). The possibility that signals £ or £, becomes
erroneously low, in fact, decreases exponentially with L.

In order to understand the impact of the error correction on a
real application, we have simulated a simple audio processing system,
in which an echo is added to an audio signal, by adding a waveform
replica delayed by about 4 of second. The obtained results are shown

0.08 . :
007_ (16a 47 47 L:4)
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0.05F
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(32,8, 8,L=4) |

Error probability

0.03+ :
(32,8, 8, L=6)

0.02-
0.01F

0

Standard Deviation, ¢

Fig. 34 Simulated error probability of the adder architecture proposed in
Fig. 33. The input distribution is assumed to be Gaussian.

TABLE IV. ERROR PROBABILITY FOR UNIFORMLY DISTRIBUITED INPUTS IN
PROPOSED SPECULATIVE ADDERS

Adder Config. (n,r,p) L Error probability
(16,44) L=4 7.15%
(32,8,8) L=4 3.30%
(32,8,8) L=6 1.07%
(48,8,16) L=6 0.78%




TABLE V. PERFORMANCE OF APPROXIMATE ADDERS IN AN AUDIO PROCESSING

EXAMPLE

Adder Config. (n,r,p) Error % | SNR (dB)
Without correction (24,6,6) 13.98% 8.58

Corrected (24,6,6) L=6 0.67% 21.78
Without correction (24,5,9) 3.46% 14.64

Corrected (24,5,9) L=6 0.01% 40.20
Without correction (24,6,6) 13.98% 8.58

Corrected (24,4,12) L=6 0% )

TABLE VI. VLSI IMPLEMENTATION RESULTS

Adder Config. Delay Power PowerxDelay
(n,r,p) L (ns) | (WW/MHz) (fJ/MHz)
(16,4,4) L=4 0.401 0.258 0.103
16bit standard 0.598 0.182 0.109
(32,8,8) L=4 0.701 0.516 0.362
32bit standard 1.13 0.397 0.447
(48,8,16) L=6 0.981 0.861 0.845
48bit standard 1.81 0.593 1.07

in Tab. V, where a 13sec. fragment of a song is used as a test vector
and 24-bit adders are considered. Waveform processing requires about
415,000 additions. The signal to noise ratio obtained with the standard
adder is quite low when using 12-bit and 14-bit sub-adders (cases
(24,6,6) and (24,5,9) in Tab. V), reaching 20dB only when using
16-bit sub-adders. The proposed adder with output correction, instead,
shows sensibly better performances, giving an error-free result for the
n=24, r=4, p=12, L=6 configuration.

2.10.2 Synthesis results

The proposed adders have been synthesized in UMC 65nm
technology, along with the non-corrected adders. Cadence RTL
Compiler has been employed to synthesize the design. The adders
have been described in Verilog HDL, using + operator the describe the
sub-adders of each speculative adder. The RTL Compiler synthesis
directive synthesize —to_mapped —effort high has been employed.
Power is calculated by simulating the synthesized circuits, with SDF
annotation. The synthesis results are reported in Tab. VI. The
proposed adder with output correction is faster than standard
(error-free) circuit; on the other hand, its power dissipation is higher.
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The power-delay product is better in the proposed circuit, especially
for 32-bit and 48-bit implementations.

2.11 Approximate Adders in Carry-Save
Multiplier-Accumulators

In this paragraph the use of approximate adders as final adder
of carry-save multiplier-accumulators (MACs) is investigated. The
MACs are basic building blocks in digital signal processing
applications. We will focus, in this paragraph, on image processing
applications. In this context the MACs are usually employed to
perform convolutions, which are a basic operation for image filtering
applications.

Many papers have introduced approximate adders for image
processing application, but their investigations are done making
assumptions that are hardly verified in practical applications. As an
example, [47] employs approximate adders for image processing
applications, but the multiplications and subtraction are performed by
exact functional units. Similar assumption are done in [18].

As previously discussed, the use of approximate adders and the
consequent performance improvement strictly depends on the input
statistics of the approximate adder, therefore on the application. We
propose a design flow to opportunely design the approximate adders
accounting for the input distribution.

The MAC employed in this paper is constituted by a carry-save
Wallace tree for partial product compression (for a detailed discussion
about multipliers and MACs the reader can make reference to chapter
3). The resulting output, in carry-save format, is added using an
approximated carry-propagate adder.

In the following, the proposed design flow is discussed.

2.11.1 Design flow

We start the MAC design describing its architecture in HDL
language. The HDL code is then read and optimized by the
synthesizer. In this phase the synthesizer detects the arithmetic
operator and performs datapath extraction to opportunely transform
the arithmetic operators into optimized blocks. In this phase
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carry-save arithmetic is usually employed in order to optimize
datapath performance. A final carry-propagate adder is then employed
to sum the output of the carry-save stage, obtaining the final result.

Unfortunately, describing the MAC operation as y<=A+B*C,
the designer is not able to access, after the synthesis, to the carry-save
signals to be summed by the final adder. To overcome this issue, we
employ arithmetic IP components to describe the MAC. In particular,
in Cadence RTL Compiler synthesizer the designer can use the
ChipWare IP Components [48], in Synopsys Design Compiler the
designer can use DesignWare Building Block IP [49].

The resulting architecture is shown in the Fig. 35, where the
component CW multp is the partial product multiplier, while the
CW_csa is the carry save adder, used to sum an 18-bit addend to the
carry-save multiplier outputs.

pixel filter prewious
is;' is; 18
0o -1 0 0o -1 0
CVY_multp 1 5 -1 1 4 -1
0o-1 0 0o-1 0
15 Tis 18 sharpen edge
WY csa
1 1 2 1 1 1 1 1
T o f:l2 4 2| |1 1 1
A E 1 2 1 1 1 1
birir average
18
T

Fig. 35 MAC structure. CW_multp is the partial product multiplier, while
CW _csa is the carry save adder. The final carry propagate adder is highlighted in
red. On the right some of the considered 3x3 kernels are reported.

We employ a 9x9 signed multiplier, in which the MSB of the
pixel operand is zero. The filter coefficients are signed and use 4
fractional bits (LSB=2"") to represents the commonly used 3x3 kernels
(as those represented in Fig. 35). Please note that the datapath is
dimensioned to avoid overflow while performing image filtering. The
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carry-propagate adder highlighted in red in Fig. 35 produces the MAC
output Y.
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Fig. 36 Proposed design flow.

The proposed design flow is shown in Fig. 36. We start
with an HDL description which employes IP blocks, as in
Fig. 35, then we apply constraints and synthesize the circuit.
Then the synthesized netlist is simulated in order to extract the
statistics of the two addends A4 and B (Fig. 35) summed by the
final propagate adder. It is worthwhile observing that this
simulation cannot be done before of the synthesis. Indeed the
synthesizers selects the appropriate architecture for the partial
product multiplier as a function of the applied constraints.
Therefore the values of 4 and B post-synthesis may differ from
those obtained with a pre-synthesis simulation (although their
sum remains the same).
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The Fig. 37 shows the statistics of the carry-save
operands 4 and B when and edge filtering operation is
performed on the test Lena image. Unlike previously
discussed, the distribution is neither uniform nor Gaussian, as a
consequence the formulas presented in literature to estimate
the error probability, reveals inadequate to predict the error
probability of the proposed MAC.
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Fig. 37 Distributions of the inputs 4 and B of the carry-propagate adder
while performing an edge filtering on the Lena test image.

In order to design the approximate adder, we numerically
extract from simulated data two set of values: the probability of
having a carry propagation from bit i to bit j (indicated as p;;) and the
probability of having a carry generation from bit i to bitj (indicated as
gij)- From these values, we can compute numerically the error
probability of the approximate adder. Let us consider the adder shown
in Fig. 38.
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Fig. 38 Speculative adder segmentation. A n=18 bit adder is segmented
using three sub-adders. Each sub-adder produces » sum bits that contribute to the
final result and employs p bits to predict the carry.

As usually, the first sub-adder is exact, while the second one
gives erroneous results if the condition gps.9) prs.5) 1s asserted. This
condition has a probability P(E})=P(g4:0 ps:s1)- In the third sub-adder
adder an error occurs with probability and this occurs with a
probability P(E>)=P(g[7.01 p113:51)- The overall error probability is given
by P(E)=P(E, U E;)=P(E\)*P(E,)—-P(E\NE). Simple calculations
yield, in this example, P(E)=go4 psstgs7 ps.i3. By generalizing this
approach, we are able to quickly investigate different approximate
adder configurations, after characterizing the distributions of 4 and B
signals.

After the design of the approximate adder, we modify the
netlist by substituting the exact adder with the approximate one.
Another synthesis and optimization step yields the final netlist of the
MAC.

2.11.2 Quality of results

The approximate adders of Fig. 38 has been employed as final
adder of Fig. 35. This adder exhibits P(E)~0.09 with the statistics of
Fig. 37. %. Note that, after convolution, each pixel value is limited to
an 8-bit integer value, i.e. any negative value is limited to zero while
any positive value is saturated to 255. Therefore, not every error in the
convolution results in an erroneous pixel in the output image. The
Fig. 39 shows the original Lena image, while the Fig.40-41 the
filtered ones. The image quality can be quantified with the Structural
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Similarity Index, SSIM [50]; a value of SSIM=1 means perfect
similarity between two images.

Fig. 40 Edge filtered image. (a) exact adder; (b) approximate adder

Fig. 41 Blur filtered image. (a) exact adder; (b) approximate adder

For the edge filtered image (Fig. 40), the SSIM=0.98, therefore
the approximate adder performs well with the edge filter. With the
blur filter, the use of approximate adder results instead in sensible
image noise in the form of spurious black pixels, with SSIM=0.81 for
the two images in Fig. 41(a) and 41(b).

2.11.3 Pixels skipping
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The Fig. 41(b) has shown a significant degradation of image
quality, due to spurious black pixels. It is possible to sensibly improve
the quality of image affected by this kind of “noise” due to
approximation, augmenting the approximate adder with a simple
circuitry to detect the error by checking the carry-out of sub-adders #2
and #3 and the carries ¢ and cj4. Indeed, as an example, in the second
sub-adder an error occurs if the carry-out of sub-adder#1 is high,
while the carry ¢y computed by sub-adder#2 is low.

When an error is detected, the convolution is skipped and the
previous filtered pixel is outputted. As shown in Fig. 42 this simple
technique reveals effective, with SSIM=0.98 for the two images in
Fig. 41(a) and 42.

Fig. 42 Blur filtered image with approximate adder and pixels skipping
technique.

2.11.4 Synthesis results

The discussed MAC has been implemented in STM 28 nm
technology, standard Vr, typical corner. We have imposed constraint
aimed to obtain a minimum area, lowe-power design.

The Tab. VII shows the VLSI implementation results, using
Cadence RTL Compiler. As shown, the MAC with the approximate
adder allows improving the speed by 19%, with a 4-5% increase in
power and area, respectively. By performing voltage scaling we can
trade power for speed as shown in the last row of Tab. VIL. By
reducing supply voltage to 0.91 a power saving of 14% can be
achieved, while keeping the same delay of the MAC with exact adder.
This improvement in performance, while noticeable, is probably less
than one would expect.
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2.12 Conclusions

TABLE VII. VLSI IMPLEMENTATION RESULTS

v Minimum Area Norm.
Design [\';i) period ] Power
[ns] Hm [uW/MHz]

MAC with Exact adder | 1.0 1.38 324 1.46
MAC with 1.0 1.11 341 1.52

Approximate adder ' (-19%) (+5%) (+4%)
MAC with 1.26

Approximate adder 0.91 1.38 341 (-14%)

Voltage scaled

To better investigate this behavior, the Fig. 43 shows the
arrival times for the inputs of the carry propagate adder. As it can be
observed, the signals corresponding to the middle bits of the addends
arrive later than the others [51]. This partly overcomes the speed
advantages related to sub-adder decomposition of approximate adders.
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In this chapter my research activity about speculative adders

have been discussed.

The first part of the chapter is devoted to discussing
speculative adders for error-free applications. In this contest, the
speculative adders are augmented with a two-cycles error correction
mechanism, acting as variable latency adders. Numerous variable
latency speculative parallel-prefix adders topologies have been

6 8

1
10

Bit Position

Fig. 43 Arrival times of carry propagate adder inputs.
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proposed, for high speed and error-free applications. Moreover, the
case in which speculative adders deals with 2’complements
representation has been investigated. For this case, the error rate
increases significantly, reducing the effectivity of speculative adders.
Therefore, a technique which allows keeping the error rate low, also in
presence of 2’complements representations, has been proposed. This
technique allows reducing hardware overhead with respect other
solutions proposed in the literature. The implementation results shows
that variable latency speculative adders allows improving performance
(speed and power) when the highest speed is desired, otherwise the
standard, non-speculative adders, remains the best choice. It is also
worthwhile observing that variable-latency speculative adder general
scheme require to put the selection multiplexer after the output
register, therefore they eat into the next clock cycle, reducing the
amount of calculations that can be done there and the benefit
compared to non-speculative adders.

In the second part of the chapter, speculative adders for errors
tolerant applications are discussed. In particular a speculative adder is
proposed with employs an error correction circuitry allowing to
reduce significantly the error rate in presence of Gaussian distributed
operands, which is the way to model 2’complements represented
signals. The proposed error correction increases significantly the
quality of results in error tolerant applications, like audio processing.
The VLSI implementation results show that the power-delay product
improves with respect standard (non-speculative) adders.

Moreover, a study about the use of approximate adders in
carry-save multiply and accumulate units has been conducted. An
approximate adders has been employed in the final stage of a Wallace
tree carry-save MAC unit, designed for image filtering applications. It
has been shown that in a typical image processing application the
inputs of the carry-propagate adder are far from being uniformly or
Gaussian distributed. Therefore formulas proposed in the literature for
estimate error probability, while giving an important insight on
approximate adders operation, are inadequate to judge the actual
performance of the MAC. Therefore a design flow has been proposed
to accurately choose the approximate adder architecture as a function
of the application. The image filtering results have shown that, for
some kernel filters, the approximation results in significant noise,
affecting the overall image quality. To mitigate this phenomena, a
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simple technique has been employed which allows skipping the
erroneous pixel, using the previous, corrected one. This significantly
improves quality. The VLSI implementation results show that the use
of speculative adders as final adder in MAC units allows saving 15%
of power in voltage scaled mode. Moreover, it has been observed that
this gain can increase if the speculative adder is designed accounting
for the non-uniform arrival time of the carry-save signals.
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Chapter 3

Precision-scalable units

3.1 Introduction

In this chapter my research activity about precision-scalable units
is discussed. Precision-scalable units fit in the approximate computing
framework, allowing improving computation efficiency at expense of
quality degradation. In particular, the peculiarity of precision-scalable
units is the ability to change the precision level at runtime. This allows
adapting the precision level of the unit with the precision requirements
of a given application. Indeed, as discussed in [52], the same
application can tolerate different precision levels during its
computation; moreover the degree of resilience of an application
strongly depends on the input data being processed [53].

Precision-scalable units and systems have been proposed in the
last years. In [52] a precision-scalable processor is proposed, for
Support Vector Machine applications. The processor implements
precision-scaling at algorithm, architecture and circuit level. A quality
estimator and a PID controller allows to automatically control the
precision level as a function of the input dataset, in order to keep a
given quality level. Raha et al. [53] propose precision-scalable adders
whose precision level is managed, at run-time, through an heuristic
algorithm, as a function of the input dataset. The precision-scalable
unit is employed in an MPEG encoder. In [54] a precision-scalable
deep learning core is proposed. The authors implements bit-truncation
to save switching energy in the arithmetic units and to speed up the
computation. The increased speed deriving by reduced precision can
be turned into power saving by performing voltage scaling. The
voltage and accuracy scaling is performed at run-time during the
feedforward path of a state of art CNN. The resulting technique is
named by authors as “Dynamic Voltage Accuracy Scaling” (DVAS).
Precision-scalable concept has been also employed in memories. In
[55] Frustaci et al propose an SRAM which can dynamically trade
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power for quality. In [56] authors focus on reducing the power
dissipation due to off-chip memories of precision-scalable systems,
arguing that most of the power is spent in off-chip memory accesses.
The authors therefore propose a run-time memory controller and a
memory access scheme to opportunely manage and read the data as a
function of the precision of the system.

In this chapter two precision-scalable units are shown. Firstly,
after an introduction of binary multiplication and an overview of error
compensation techniques in truncated multiplier, a precision-scalable
data-aware Multiply And Accumulate (MAC) unit is discussed. This
MAC unit employs a programmable truncated multiplier [57] in which
a novel real-time data-aware error compensation technique is
proposed. Secondly, a precision-scalable standard cell memory (SCM)
architecture is proposed.

In the following, the proposed precision-scalable data-aware MAC
unit is discussed.

3.2 Binary multiplication

Binary multiplication is a fundamental operation in many digital
signal processing and machine learning algorithms. Multiplication
operation, being more complex than addition, results in area and
power hungry VLSI implementations.

Due to its inherent area consuming nature, serial multiplication has
been widely used in the past. Nowadays, being the area a secondary
figure of merit in modern VLSI, parallel multiplication has replaced
serial multiplication.

The multiplication operation involves two steps: partial product
generation and their summation. Assuming an MxN-bit multiplication,
N partial products of M bits each must be opportunely shifted and
added. Partial products summation has been widely investigated in the
past, being the core of the multiplication operation and, in the
following, the main contributions are briefly reported.

Low-power multiplier implementations have been widely
investigated. Among these, truncated multiplier represents an effective
way of trade accuracy for speed and power, indeed, recently,
Synopsys has introduced the “internal rounding” datapath synthesis
directive [58]-[59], which allows to easily implement a truncated
multiplier . A brief overview of error compensation techniques in
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truncated multipliers will be reported before introducing the proposed
precision-scalable data-aware Multiply And Accumulate unit.

3.2.1 Partial Product generation

Partial product generation is the first step of the multiplication
operation. In the following, without loss of generality, let us assume
the followings conditions:

a. The operands X, Y are n-bit numbers;
b. The output P is on 2n-bit (full-width multipliers);
c. The output Pt is on n-bit (truncated multipliers).

In the following three different partial product matrix are examined:
Unsigned Matrix, Two’s Complement Matrix, Mixed-Operands
Matrix.

3.2.1.1 Unsigned Matrix

In case of unsigned multiplication, in addition to conditions a, b, c, let
us assume that the operands are fractional unsigned numbers in the
range [0,1):

X:Zn:xi-fi (3.1)
i=1

y=3x 2" (3.2)
i-1

The multiplier result can be trivially expressed as:

2n n

P=)p-2"=>>xy 2" (3.3)
i=1

i=l j=1

The above equation states that the multiplier output is the
weighted sum of the partial products xy,, whose computation

requires n° AND gates. The Fig 1 reports the resulting partial product
matrix (PPM).
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Weights 2% 22 2° 2% 2% 2¢ 27 2® 2°
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2710 2—11 2712 2713 2714 2—15 2—16
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XiYe X2Ye X3Ye XaYe XsYe XeYe X7Y¥e XsYe
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X1Y2 XaY2 X3Y2 XgY2 XsY2 XeY2 X7¥2 XgYa
X1Y1 X2Y1 X3Y1 XgY1 XsY1 XeY1 Xz¥1 XgYi

Pi P2 Pz Pa Ps Ps P77 Ps P P Pux P2 Pz Pz Pis P

Fig. 1 Partial product matrix for 8x8 unsigned multiplier.

3.2.1.2 Two’s Complement Matrix

Let us derive the PPM in the case in which the operands X, ¥
are represented in two’s complement representation:

X=-x-2"+) x-2" (3.4)

i=2

Y=—y-27"+) 2" (3.5)

i=2

The output P, in this case, writes as:

P:_pl 27 +2ani 27 =X 27 +Zn:Zn:Xiyj Q7

i=2 i=2 j=2
n n
—ic1 —ic1
_leyi'z _Zylxi'z
i—2 i—2

Note that (3.6) contains negative terms. Instead of doing a
subtraction it is possible to sum the two’s complement of the negative
terms (Baugh-Wooley multiplier [60]). First of all, we have to extend
the last two terms of (3.6) in the output representation, performing a
zero padding (the negative terms extend in binary weights from 27 to
2™ while the output extends from 27! to 2", please note that padding
operation is needed in order to be able to add the negative terms with

the other ones) . Therefore, complementing all the bits and adding one
LSB, we have:

(3.6)

Y xy2 = Z?yl. R, L b (3.7)
i=2 =2
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=Yy 27 =Yy 2 2 427 (3.8)
i=2 i=2
Substituting (3.7) and (3.8) in (3.6) we have:
P=2"427" 43" Y xy 27 4 Y (v +xy, )27 (3.9)
i=2 j=2 i=2

The Fig. 2 shows the resulting PPM. The implementation of
the PPM for two’s complement multiplication requires (2n—2)

NAND gates and ((n —1)2 +1) AND gates.

Weights _Z—l 272 2—3 274 2—5 2—5 2—7 2—8 279 2—10 2711 2—12 2—13 2—14 2—15 2716
X1 X2 Xs Xa Xs Xe¢ X7 Xg
Yi Y2 Vs Ya ¥s Ye Y7 Vs

i X1Ys X2Yg X3Ys XaY¥s XsYs XeYs X7¥s XsgYs
_ Xa¥7 Xo¥7 X3Y7 XaY7 XsY7 XeY7 X7Y7 XsY7
___ XiYe X2Ye X3Ye Xa¥s XsYs XeYe X7Ys XsYe
____ XaYs XaYs X3Ys Xg¥s5 XsY5 XeYs X7Ys XgYs
__ XaYa X2Ya X3Ya XaYa XsYa XeYa X7Ya XgYa
___ Xi¥s3 Xa¥3 XsY3 Xa¥s XsY3 XeY3 X7Y3 XgYs3
— XVp XYy XaVr XaVo XsVz XeV2 XpYa XsY2
1 X1 %Y1 %Y1 Xg¥1 XsY1 XeY1 X7Y1 XsYi

Pir P2 Ps Pa Ps Pe P7 Ps Ps Pio Pux P2 Pz Pus Pis P

Fig. 2 Partial product matrix for 8x8 two’s complement multiplier.

3.2.1.3 Mixed-Operands Matrix

Let us assume that the X operand is signed, represented in
two’s complement, while the ¥ operand is unsigned:

X=-x-2"4> x-2" (3.10)

i=2
y=>y-2" (3.11)
i=1

In this case the result P becomes:

P=-p, 27 +ipi 27 = ,Zlixiyj 27 _i'xlyi 277 (3.12)
i=2 i=l

i=2 j=1
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As done the for the Two’s Complement Matrix (above

paragraph), the (3.12) can be written as summation of positive terms,
as follows:

P=2"+2""43 Y xyp, 277+ Y xy, 2 (3.13)
i=2 j=1 i=1
The resulting PPM (Fig. 3) implementation requires n NAND
gates and (n(n—l)) AND gates.
Weights -2* 22 2 2 2% 2¢ 27 2% 2° Y M 2 B o™

X1 Xa X3 Xg Xs Xg X7 Xg
Yi Y2 V3 Ya Y5 Ye Y7 Vs

-15

____ Xi¥s Xo¥s XsYz XaYs XsYz Xg¥z XYz XgYs

_ XaY7 Xo¥7 Xs¥Y7 XgY7 XsY7 XeY7 X7¥Y7 XgY7
____ Xa¥e X2Ye X3Ye XaY¥s XsYe XeYe X7¥e XsYe
__ Xi¥s Xo¥s X3Ys XgYs XsYs XeYs X7Ys XgYs
_ XaYa XYa X3¥a XaYa XsYa XeYa X7Ya XgYa
__ XiYs Xa2¥3 Xs3Y3 Xg¥3 XsY3 XeYs X7Y3 XgYs
_ XiY2 XaY2 X3Y2 XgYa2 XsY2 XeY2 X7Y2 XgY2
X1Y1 X2Y1 X3Y1 XaY1 XsY1 XeY1 X7Y1 XgY1

1 1
Pir P2 Ps Pa Ps Pe P7 Pz P9 P Pz P12 Pz Pis Pis Pie

Fig. 3 Partial product matrix for 8x8 mixed-operands multiplier.

3.2.2 Array multiplier

Array multipliers constitute a particular type of parallel
multiplier, highly suitable for VLSI implementation, due to its
regularity and to reduced wire tracks, going from one full-adder to the
contiguous one.

In Fig. 4 is reported an example of such multiplier, in the case
of unsigned PPM. As it can be observed each cell in Fig. 4 receives a
different couple x;y; (3.3). The array is composed by AND gates (for
the partial product generation) and by MFAs and MHAs gates, which
are respectively, full-adder (FA) cells and half-adder (HA) cells which
include an AND gate for the generation of the remainder partial
products x;y;, these ones are then summed with the carry and the sum
bits coming from previous MFAs and HFAs. To this regard, please
note that the array of Fig. 4 employs carry-save technique to avoid
carry propagation: each full adder acts as a compressor (3,2) taking
three inputs and producing a sum and a carry, which is therefore not
propagated, but “saved” in the array and opportunely mixed in the
following row to reduce the delay. Note that the LSB of the result are
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directly produced by the array, while the MSBs are obtained through a
final carry-propagate adder.

Xg X, X5 Xs X, X X, X,
v P P P PAra.
Z|axp Pl FaND Y{aND ¥]AND Y| AND F]AND | AND
V. /
227 Z1anp Y v Y v Y via Yl via Pl via Y via Pivma Pue
e
727 71anD Y vra Ylvea Plviea VIvra Plvea m—‘A,’l.\WA Prs
v ‘ L Ix L Y INE INE INE T T
°" Z1anp Y vra Y| MEa Y| MEA Y |MEFA ¥ MFA 1 MFA FMFA Pre
rd - L Ix X IXT A4 INL I L ¥
Vs
/‘ AND Y| MFA V|MrA YMra Y[MEa FIMEA V| MvEA F]MFA Pu
- X IX X IN I E INE I E KL ¥ T
°° Zlanp Ylmra Y vra Ylvea Yvra Y vEa FlvEea £ vea Po
v A XA T A T T A T A VA T
- / |AND_{"| MFA Y| MFA .{ | MFA . | MFA .{ | MFA { | MFA { | MFA p“ Critical
vt LI T IAT IAT IAT IAT I T T T [H oo
AND MFA MFA MFA MFA MFA MFA MFA P :H |m]
o
r3 3 3 3 ¥ ¥ T i -
. , . [m]] u
CARRY PROPAGATE ADDER Py oMl 0
-

7777771
P, P, p: P. Ps Ps P, Ps

Fig. 4 Unsigned 8x8 array multiplier.

In the bottom-right corner of Fig. 4 the array critical path is
reported. It involves the higher column of array, therefore array
multiplier delay goes linearly with n. Similar considerations apply to
the cases of Two’s Complement PPM and Mixed-Operands PPM.

3.2.3 Tree multipliers

As shown above, the carry-save array multiplier delay linearly
increases with operands size n. High-speed topologies (e.g.
parallel-prefix adders) for the final carry-propagate adder (also named
as “Vector Merging Adder” in this context) can be implemented,
making the array delay the bottleneck for multiplier speed. To this
regard, faster multipliers can be obtained using tree multipliers.

3.2.3.1 Wallace reduction tree

Wallace [61] proposed to organize the PPM rows in group of
three partial products and to use a full-adder to “compress” three
partial products into two outputs, a carry and a sum bit, adopting a
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carry-save approach. In this way, in the first step a good number of
partial product are summed in parallel in carry-save format, speeding
up the multiplication (with the same principle of carry-lookahead and
parallel-prefix adders: start to compute in parallel, without waiting for
the late-arrival signals, as long as you can). In the cases in which two
partial products remains in a given row, an half-adder is used. In the
second step the partial products resulting from the first step are newly
grouped, with the same principle, and compressed using FAs. The
height of the matrix from one step to the next, reduces approximately
of 1.5 (thanks to the compressing action of FAs). The Fig. 5 shows the
various compression steps in a 8x8 multiplier, implementing Wallace
reduction three; in this figure the dots represent partial products and
outputs of FAs and HAs.

The Wallace reduction tree allows achieving a logarithmic
delay, being the number of reduction levels, using (3,2) compressors

given by [26]:
n
[logy2 (Eﬂ (3.14)

3.2.3.2 Dadda reduction tree

The Wallace tree can be optimized in terms of number of FAs
and HAs as proposed by Dadda [62]. At each reduction step, the
height of the PPM (which is given by the height of the highest
column) follows the Dadda’s series:

d =2;
3 .
dj+l :\‘Ede 5 >1

Therefore, in Dadda tree, a full-adder or an half-adder is placed
only where strictly needed, in order to follow (3.15): if, in the j-th
step, a column of the PPM has an height A<d,, the column is

(3.15)

maintained unchanged for the next step. The Fig. 6 shows an example
of Dadda’s reduction tree, to an 8x8 multiplier.
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Fig. 5 Wallace reduction tree for 8x8 PPM. Full rectangle: full-adder;
Dashed rectangle: half-adder. 4 is e partial product matrix in each step.

While the number of FAs and HAs is reduced with respect
Wallace tree, the VMA is generally longer in Dadda multiplier.
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Fig. 6 Dadda reduction tree for 8x8 PPM. Full rectangle: full-adder; Dashed
rectangle: half-adder. 4 is e partial product matrix in each step. The number of FAs
and HAs is reduced with respect Fig. 5.

3.2.3.3 Three Dimensional Minimization (TDM)
method
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In [51] Oklobdzija et al. propose a further optimization of the
reduction tree of partial products. After the introduction, due to Dadda
[62], of the counters concept (a full-adder can be seen as a
ones-counter, since its output indicate, in binary form, the number of
ones at the input of the full adder), the researcher deeply investigated
the implementation of bigger counters, such as (4,2) [63] and (9,2)
[64] compressors. In [51] authors state that also when considering big
compressors, such as (4,2), as a single cell, they can be always seen as
composed by full-adders and that, operating a proper interconnection,
the compressors composed by full-adders have the same speed of that
treated as single cell. Therefore the optimization key is the
interconnection between full-adders.

Starting from these observations, authors define an algorithm
for optimized partial product reduction. In this algorithm a single big
compressor is employed, composed by the appropriate connection of
full adders. The connection takes into account the fact that the delay
from an input to an output of a full adder is not the same. Therefore,
accounting for the different arrival time of the signal in the array and
for the different timing arcs characterizing a given full-adder (and half
adder) the authors propose an algorithm which is able to employ fast
inputs and outputs in the critical paths of the PPM and slow input and
outputs in the non-critical path of the PPM. As a result, the delay of
the tree is optimized.

3.2.4 Truncated multipliers

As discussed above, the multiplication of two n-bit operands
results in a 2n-bit output. In many applications this bit growth is
avoided because such incremented precision is unnecessary, with
benefits in terms of downstream hardware complexity.

As shown in Fig. 7, the PPM can be separated in two main
regions: the Least Significant Part (LSP) which contains the partial
products belonging to the » less significant columns of the PPM and
the Most Significant Part (MSP) which includes the partial products
belonging to the n-/ most significant columns. With this notation, the
full-width (exact) output P can be expressed as:

P=S,,+S, (3.16)
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where Sysp and Sy sp represent, respectively, the weighed sum of the
MSP and LSP elements.

The simple, but most expensive way to produce an n-bit output
Pt is to truncate the full-width multiplier output P, the resulting
multiplier is usually named as full-rounded multiplier [65]:

LSB
Pt =trunc, (SMSP +S, +ij

(3.17)
Where trunc, means that n least significant bit are truncated,
while LSB is the weight of lest significant bit of the truncated output
Pt. Please note that in this case the multiplication operation is exact,
and the error is exclusively introduced by the rounding operation. This
results in little area and power savings, but in the smallest error
e=P—Pt. Under the assumption of independent and uniformly
distributed operands, the mean and the variance of the error e are:

lurotmd = E [eround] = 0 (3 1 8)

gzround = E I:ezround :‘ = %LSBz (3 19)

The Fig. 7 shows an unsigned full-rounded multiplier PPM.

21 22 23 2% 9% 26 27 28 2° 0 pu
X1 X2 X3 Xa Xs Xe X7 Xg
Yi Y2 ¥s3 VYa Y5 Ve Y7 Vs

2 13 214 215 6

X1Ys X2Ys Xs3¥s XaYs XsYs Xe¥s X7¥s XgYs
Xi1Y7 || X2¥7 X3Y7 XaY7 XsY7 XeY7 X7Y7 XgY7
msp X1¥e XoVe|| X3V Xa¥s XsYe XeVe Xi¥e XaVe
X1Ys X2Ys XsYs|| XaYs XsYs XeYs X7Ys XsgYs
X1Ya X2Ya X3Ya XaYa|| XsYa XeYa X7Ya XgYa
X1Ys Xz2Y3 XsY3 XaYs XsYs|| XeY3 X7Y3 XgYs
X1Y2 X2Y2 X3Y2 XaY2 XsY2 XeYa|| X7Y2 XsY2 LSP
X1Y1 Xo¥Y1 X3Y1 XaY1 XsY1 XeY1 X7Yi| XsY1

 ——_:T

Pi P2 Ps Pa Ps Ps P77 Pz Po—Pio—Psr—Pi>—Piz—Pia—Pss—Pss—

Truncated

Fig. 7 Full-rounded unsigned multiplier.

Significantly higher performance improvements, at a cost of
decreased accuracy, can be obtained discarding the partial products
belonging to the LSP. Between these two extreme cases, a multitude
of techniques have been proposed that discard part of the LSP partial
products. These techniques propose also error compensation circuits.
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Let us indicate the # most significant columns of the LSP as LSPjor,
while the remaining n.,=n-h columns of the LSP are indicated as
LSPyinor. The leftmost column of the LSPp is called Input
Correction (IC) [65]. Please note that / is a design parameter ranging
from h=n to h=0. The Fig. 8 shows the different regions of the PPM
in a truncated multiplier. The LSPin partial products are discarded
and their contribution is estimated by means of the IC column.

2-[ 2—2 2—} 2-4 2-5 2-6 2-7 2-8 2-‘) 2-[() 2-1[ 2-12 2-13 2-[4 2-15 2-10
1% XX X X XX
Yio Y2 ¥z Y4 Y5 Y¢ Y7 W8

X4Yg Xs¥g Xg¥g X7¥g Xgyg i
Xsy7 Xe¥7 X7¥7 Xg¥7 .

X3Y6 X4¥s Xe¥e X7¥6 XXyQ_,-"'

X4Ys XsYsiXeYs| X7¥s XgVs 2

X5y D
374 £ LSPminor,

X1y X% ;
X1Y2 X2¥2 X3¥2 X4Yz X4¥y XsY2|[XeY2
X1¥1 Xo¥1 X3¥1 XY X4¥y XsYp XY XgY(...~

Pr P> Py Py Ps Pg P7 Pg Po Pio P P2 Pr
n | — h —i I n-h-1

ey
=
=
o
@

P16

Fig. 8 PPM organization for truncated multipliers. The LSP ., terms are discarded
to save area and power. Their contribution is estimated by means of the IC column.
h is a design parameter.

The Fig. 9 reports the general scheme of truncated multipliers. As
shown in this figure, the PPM of a truncated multiplier involves the
terms belonging to MSP and LSPy,j0r, While the LSPiner 1s estimated
by the compensation function f{(/C); the multiplier output is then
rounded, producing an n-bit output.

The compensation techniques can be divided into two sets:
Constant Correction Methods (CCM) where the compensation
function f'is a constant and Variable Correction Methods (VCM). In
the following an overview of these two different approach is given.
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Fig. 9 General scheme of truncated multipliers.

3.2.4.1 Constant Correction Methods

In Constant Correction Methods (CCMs) the compensation function f
is a constant:

Pt =trunc, (S wse +Susp,, T constant) (3.20)

A first discussion about truncated multipliers is reported in
[66]. In this work the author proposes two method for error
compensation. In the first one a constant estimates the mean value of
LSPuinor, under the assumption of independent and uniformly
distributed inputs. In the second one some terms of the IC are
considered to estimate the sum of the correlated terms in the LSPinor
The estimation is always done in terms of average value, using
conditional probabilities and independent and uniformly distributed
inputs assumption. This method, exploiting correlation between IC
column and LSPnr lowers the error, at expense of a more complex
error correction circuit. The approach of [66] is expanded by [67],
incorporating in the constant also the compensation of the rounding
error.
In Kidambi et al. [68] a truncated multiplier with constant
compensation is proposed. The multiplier discards all the partial
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products belonging to the LSP. These terms are compensated with a
fixed bias, which is always evaluated as average value of the
neglected columns, assuming independent and uniformly distributed
inputs. The resulting truncated multiplier, while reducing of about
50% area and power with respect a full-width multiplier, shows a
large error that rapidly increase with 7.

3.2.4.2 Variable Correction Methods

Truncated multipliers accuracy can be significantly increased,
with some hardware overhead, employing a Variable Correction
Method. In this case the truncated output writes as:

+ f(IC)) (3.21)

As shown in Fig. 9, the compensation function f(IC) tries to
compensate the neglected LSP, terms. Several solution for the
compensation function f have been proposed.

In [69]-[71] the authors extend the method proposed in [66],
leveraging the correlation between the /C column and the LSPyinor. In
particular, the /C terms are ‘“sensed” and the correction term is
adjusted as a function on the /C sum: if all the /C terms as zero, due
to the correlations, the LSPi will have a high number of zeroed
partial products and therefore the correction term is decreased to zero.
In the opposite case in which the /C column contains all ones, the
correction term is adjusted to a maximum value. In [72] the authors
propose a hybrid method, in which part of /C terms are used to obtain
a variable term, while a constant term is obtained as a function of the
remaining /C terms. In [73] the previous methods are improved by
summing to the rightmost column of the LSP jor the sum of all the /C
terms plus a further correcting bit. Authors in [74] propose a
correction method for truncated multipliers with =0, manipulating
the /C terms by means of AND-OR operation. The resulting circuit
implementation is slow, being characterized by a ripple architecture,
moreover the mean and mean square error are significant. Curticapean
et al. [75] provide a modified version of the [74], improving accuracy,
but the error correction circuit is still based on a slow ripple
architecture. In [76] Van et al. generalize the correction proposed in
[74], considering in the compensation function either the /C terms or

Pty =trunc, (SMSP +S8n

major
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their complements. In [77] a compensation function that minimize
mean-square error or maximum absolute error is proposed. The
compensation function is obtained heuristically. The solution provided
by Strollo et al.in [77] is simplified in terms of hardware complexity
in [78]. In [65] Petra et al. offer a closed-form solution for mean
square error minimization. This optimal compensation function has a
quadratic dependence on the terms of the /C. In this paper a
sub-optimal compensation function, best suited for hardware
implementation, which linearizes the optimal one is proposed also.
The sub-optimal linear compensation function is further investigated
in [79], in which the effect of the quantization of the coefficients of
the linear compensation function is examined. In [80] De Caro et al.
examine the problem of minimizing the maximum absolute error
(MAE). To this regard the linear compensation function approach,
developed in [65], [79], is employed to determine a novel linear
compensation function that minimizes the MAE. The proposed
approach is then expanded also to multiply and accumulate (MAC)
units.

3.3 Precision-scalable MAC Unit

In this paragraph the proposed precision-scalable MAC unit,
along with the proposed real-time data-aware compensation technique
are discussed.

MACs units are the basic units of DSP processors, since a
multitude of algorithms are based on Sum Of Products (SOP) (FIR
filtering, image processing, machine learning). Recently, MACs units
constitute the core of deep learning accelerators, being SOP a central
operation in many machine learning algorithms, such as
Convolutional Neural Networks (CNN). Due to the compute intensive
role that SOP has in CNN algorithms, developing energy-efficient
MAC operation is of great importance, facilitating the implementation
of machine learning algorithms in mobile, battery-operated devices.

The starting point of my research activity regarding
precision-scalable MAC unit is the work proposed by de la Guia Solaz
et al. [57] which discusses about a programmable truncated multiplier.
In this paper the authors propose a multiplier for general purpose
systems which can be “programmed”, in the sense that its accuracy
can be controlled with a fine-grain approach, as a function of the
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application. The accuracy is modified by choosing the number of
column to discard in the PPM of a multiplier. In this way the accuracy
is traded for dynamic power. In this work, for the first time, the
truncation is expanded also in the MSP region. The Fig. 10 shows the
PPM proposed in [57]. As it can be observed, the signal # with j
ranging from 0 to 2n-2 allows disabling each column of the PPM. The
disabling is implemented imposing ¢, =0, as a result, all the partial

products of the j-th column will be freezed to zero, eliminating any
switching activity in the column.

Authors in [57] employ a Constant Compensation Method
(CCM), in order to compensate for the neglected partial products. The
compensation constant is calculated under the assumption of
independent and uniformly distributed operands, with the same
approach of [68]. Please note that, being the number of discarded
columns imposed at run-time, different compensation constants must
be provided as a function of the actual number of discarded columns.
As a consequence, in [57] authors perform the compensation in
software, observing that providing the constants for the different
truncation levels can be hardware-expensive, reducing the power
improvement achievable with the truncation. The precision-scalable
multiplier is embedded in [57] in a DSP system and the number of
column to be neglected is fixed through an internal register, whose
value is controlled by a dedicated instruction set.

Starting from [57], my research activity focused on two
contributions: 1) developing, for the first time, an hardware
compensation method for programmable truncated multipliers; ii)
implement a data-aware, low-power, compensation technique.
Regarding this second point, it is worthwhile observing that the
Constant Compensation Method employed in [57], being based on
specific assumption regarding input operands (independence and
uniform distribution) does not meet the flexibility paradigm which
constitutes the baseline for precision-scalable units: the ability to
adapt to datasets statistics. Therefore my research activity focused on
implement an adaptive (“data-aware”), low-power, compensation
technique for precision scalable-units.

3.3.1 Real-Time Data-Aware Compensation Technique
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The key motivation of precision-scalable unit is the ability to
improve energy efficiency at expense of quality degradation of the
results. In the case of precision-scalable unit, maximizing the accuracy
achieved at a given precision level, without affecting the dissipated
power, is of paramount importance, allowing performing a more
aggressive precision scaling to trade the increased accuracy for power.

In the case of precision-scalable truncated multipliers this
observation translates into an higher number of neglected column (i.e.
less dynamic power dissipation) when the accuracy is maximized.
Therefore an energy-efficient, precise, compensation technique is
required. In [57] this challenge is solved by performing a software
compensation, in which the multiplier result is corrected with the
addition of a compensation constant estimated assuming that the
neglected partial products are independent and uniformly distributed.

In this paragraph, the proposed low-power, real-time
data-aware compensation technique is discussed. The basic idea to
obtain a data-aware compensation is to “sense” the error done with a
given precision level. In order to achieve a low-power circuital
implementation, the sensing is performed every F > 1 multiplication.

Let’s obtain an expression that describes the error in function
of the precision level, in a precision-scalable truncated multiplier with
mixed operands PPM. The precision-scaled output can be written as
follows:

Pt(l’lt):SE(nt)_{_ixiyj.r(l'_{_j)_zfiai_‘_
) . (3.22)
Sy, r(i+1)27 4K
i=1

where n, is the number of discarded columns (as an example, n~=0
means ¢, =1 Vje€{0,2n—1} therefore no column is discarded

(compare with Fig. 10), while n=2 means
t,=1 Vje{2,2n-1};1,=1,=0), r(i+j) is defined as follows:
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Fig. 10 Precision-scalable PPM for signed operands. The # signals allows to

discarding the PPM columns with a fine-grain approach.

(3.23)

if i+j>2n—nt
if i+j<2n—nt

1

0

r(i+j):{
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SE(n,) is the sign-extension prevention constant, which is a function of
the number of discarded columns, #;:

27'+27 ifm <n
SE(n,)=42"427"" ifn<n, <2n-2 (3.24)
0 ifn=2n-1

while K is the compensation function, defined in the following. The
exact output P, is expressed as follows:

P=SE+> Y xy, 277 +> xy, 27" (3.25)
i=2 j=1 i=1
being SE=2"+2"" as stated by (3.13). The MAC output can be
expressed, for the precision-scalable circuit, as:

M

Z, =trunc,,, [ P (nt )j (3.26)

i=1

And for the exact circuit as:

Z =trunc,,, (i Pj (3.27)

i=1

being M the number of multiplications to be accumulated and g the
number of eventually employed guard-bit (n+g bits are truncated,
providing an n-bits output). While (3.22) and (3.25) describe the
multiplication operation, the (3.26) and (3.27) describe the
accumulation one. Note that, with respect to (3.17), (3.20), (3.21) the
truncation operation is not performed at the output of the multiplier,
but at output of the MAC unit, avoiding, in this way, the accumulation
of the truncation error.

It is worthwhile observing that, while the accumulation is done in an
accurate way for both the precision-scaled and the exact MAC, the
error source for the precision-scaled unit is given by the truncated
multiplication (3.22). This error can be obtained as follows:
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e(nt):P_Pt(nt):

n n _—

SE—SE(n)+> > xy, r(i+j)-27" (3.28)

i=2 j=1

+Zn:ryl.-r(i+l)-2”"’ -K
i=1

where

r(w)zl—r(w)z

The (3.28), (3.29) state that, substantially, the error can be calculated
using a dual PPM, in which only the columns deactivated in the
precision-scalable multiplier are activated.

In the proposed real-time, data-aware compensation technique, the
error e, computed by the dual PPM, is sampled with an aggressive
subsampling period F, and each L samples a mean error e, is
evaluated:

{1 if w>2n—n, (3.29)

0 if w<2n-n,

e(u—(L-DF)+e(u—(L-2)F)+...+e(u)

e (u)=
L

The (3.30) states that the mean error e,, at a given clock period u is
evaluated accumulating the actual sample and the previous L-/ ones,
each of them far from the contiguous of F clock periods, due to the
subsampling.
It is worthwhile recalling that the mean square error (MSE) is directly
related to mean error x (whose e, constitutes an estimate), as
follows:

(3.30)

MSE =o0° + i (3.31)

where o is the error variance. Therefore compensating the mean
error represents a first step for MSE minimization. This observation
constitutes the baseline of all the Constant Correction Methods. Please
note that the MSE is directly related to PSNR definition, which
represents a standard quality metric for images:
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JMSE 32

In (3.32) MAX {I} represents the maximum pixel value in the image /

[MAX{I}]
PSNR =20log,,

(for an 8-bits grayscale image MAX {I}=255). In the following, we

impose the mean error compensation. The difference with Constant
Correction Methods is that in the proposed approach the mean error is
estimated on the actual data statistics, therefore the compensation term
K is adaptive and the compensation term can be defined “data-aware”.

Therefore, the mean error is compared with zero: if the
comparison is true (e,=0) the compensation K is not updated, while if
the mean error e, is not zero the compensation term is updated as
follows:

K(u—L-F) if e, (u)=0

K(u):{K(u—L-F)Jrem(u) if e, (u)#0 (3:33)

Note that the update of e,, and K happens every L-F clock cycles,
due to the subsampling and the accumulation. When e, #0 the
compensation term is corrected summing the previous K to the actual
mean error, in this way, if e <0, therefore the truncated product is

over-compensated (compare with (3.28)), the compensation terms is
decreased, in order to decrease the over-compensation error and vice
versa when e, >0.

3.3.1.1 Circuit Overview

In this paragraph a circuital overview is discussed. The Fig. 11 shows
a top-level view of the proposed approach.
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Fig. 11 Top level view of the proposed circuit. Note that the Error Compensation
block works at scaled frequency and that provides the compensation term K to the
Precision-Scalable MAC Unit.

The input operands X, Y are fed with a 7Tck clock period to the
programmable-truncated PPM, in which n, columns are deactivated. A
combinatory circuit acts as decoder to translate the n, signals into 2n-/
t; signals of Fig. 10. The programmable-truncated PPM can be
implemented as TDM, carry-save tree, providing two outputs in
carry-save format s/ and s2, to be added in order to complete the
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multiplication. These two signals are added with the compensation
term K provided by the error compensation circuit, and with the output
of the accumulator register, in order to perform a MAC operation. The
result is then truncated in order to provide an n-bits output (3.22),
(3.26). Regarding the error compensation circuit, the operands X and Y
are sampled with a clock period F' times bigger than 7ck. Note that, in
order to compute the error e, the columns neglected in the
programmable-truncated PPM must be taken into account, therefore
the signal ¢ passes through a logic inverter and is fed to the
Error-Compensation block, in order to implement (3.28). The mean
error computation e, (3.30) and the K control (3.33) are also
implemented in this block. Let us discuss, in more details, the
Precision-Scalable MAC Unit and the Error Compensation blocks.

3.3.1.1.1 Precision-Scalable MAC Unit

The Precision-Scalable MAC Unit (Fig. 11) is composed by
the Programmable-Truncated PPM, a multi-operands adder and an
accumulation register.

The Programmable-Truncated MAC Unit is similar to that represented
in Fig. 10, with the exception that no sign extension prevention
constant is introduced. Indeed, as stated by (3.24), the sign extension
(SE) constant is function of the number of discarded columns
therefore its implementation requires a LUT. Note that a constant in
the PPM can be easily accounted in the carry-save tree
implementation with negligible increased complexity; this is not the
case for SE(n,), assuming different values as a function of the
discarded columns: in this case an additional row of partial products
must be accounted, with consequent lower performance in terms of
speed and power. In order to avoid this overhead, the LUT is not
implemented, and the SE(n,) is controlled by the Error Compensation
circuit, embedding its value in the compensation term K. At the reset
of the circuit, the compensation term K is initialized to the SE constant
corresponding to the condition #n =0. Its value is then adjusted

automatically as a function of »,, thanks to the constraint e, =0 (3.33)
. As a result the expression for P,(nt) (3.22) becomes:
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P (nt) = ixiyj -r(i+j)~2”"j +
"jf (3.34)
Y oxy, r(i+1)-277+ K
i-1

while the expression for error calculation (3.28) modifies as follows:

n n —_—

e(n)=SE+Y. > xy, -r(i+j)2""

= (3.35)

+leyj -r(i+1)-2’[’j -K
i=1
Note that also in the (3.35) the LUT is avoided.

The Programmable-Truncated PPM provides as output the two
signals s/ and s2 in carry-save format. These two signals must be
added with the compensation term K and with the output of the
accumulator ACC through a multi-operand adder; these two signals
are sign extended with g guard bit before entering in the carry-save
tree (the multi-operand adder can be implemented as carry-save tree).
Note that, as observed for SE(n,) , the addition of the compensation
term represents a significant overhead, requiring an additional row in
the tree, of length 2n+ g, slowing down the circuit and increasing the

power dissipation. This overhead can be avoided, initializing, at the
start of the M multiplications (compare (3.26)) , the accumulator
register with the compensation term K multiplied M times. This
requires an additional multiplexer in the Precision-Scalable MAC Unit
(which is simpler and faster than a row of full-adders) and a constant
multiplier (implemented with shifts and additions) in the Error
Compensation block. Note that this multiplier, while increasing the
area occupation, does not impact the energy efficiency of the circuit,
due to the low working frequency of the Error Compensation block
(F >1). The resulting scheme for the Precision-Scalable MAC Unit
is shown in Fig. 12, where the rst acc signal becomes high when a
new set of M multiplication starts and goes down in the next clock
cycle. Note that a register has been added at the output of the unit; this
register can be easily clock-gated and enabled when a set of M
multiplications is computed.
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Fig. 12 Precision-Scalable MAC Unit. Note that the compensation terms is
initialized at each new set of M multiplications through the multiplexer.

3.3.1.1.2  Error Compensation

The Error Compensation block is shown in detail in the
Fig. 13. After a sampling stage, implemented with a register operating

with a clock period equal to F-T,, the sampled inputs and the t
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signal are fed to a Programmable-Truncated PPM that is similar to
that in the Precision-Scalable MAC Unit, with the exception of an
additional row, accounting for SE (3.35). The two outputs in carry

save format s/ and s2 and the actual correction term K (u —-L-F ) are

summed in order to compute the error e. In addition to them, an extra
signal is added, which is the output of the accumulator, needed to
perform the mean operation. Note that this multi-operand adder can
be, as previously discussed, implemented as a carry-save tree, in
which g, guard bit are included, due to the accumulation of the L
samples. At the end of the accumulation (i.e. when L samples are
accumulated), a division by L must be performed (3.30). In order to
save hardware and power, we impose the constraint that L is a two
power. In this way the division can be trivially implemented as a
variation of representation followed by LSB truncation, therefore no
extra-hardware is needed, being the implementation a wiring matter.
In order to avoid unnecessary switching in the downstream circuits, a
multiplexer is inserted, clamping to zero its output when the
accumulation is not completed (RSTcntK=0). The e, signal is then
compared with zero in order to implement the control mechanism
(3.33). Note that the output of the adder is multiplied by M. This
multiplier can be significantly simplified, as already discussed, being
a constant multiplier. Observe, moreover, that the final multiplexer
can be eliminated if the clock of the output register is produced by a
CGIC (Clock Gate Integrated Cell), whose enable is the signal
!Update, with beneficial effects on the dynamic power dissipation.
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Fig. 13 Error Compensation circuit. The discarded column in the Precision-Scalable
MAC Unit are now activated in order to compute the committed error. The error
(subsampled with a factor F, note the input register) is then accumulated and the

mean error is evaluated. A control circuit, in function of the actual mean error
manage the compensation term value. The actual compensation term is then
multiplied by M though a constant multiplier and given to the Precision-Scalable
MAC Unit.
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3.3.1.2 Parameters choice

In this paragraph an heuristic analysis on image processing
applications is carried out in order to establish the values of /" and L
parameters able to assure the best quality-energy ratio.

3.3.1.2.1 2D Convolution

Before analyzing the results of the analysis, let us briefly
introduce the 2D convolution, which is a standard operation in
computer vision applications. It allows to filter an image through a
filter, that, in this context, is usually named as “kernel”. The filtering
process happens performing a 2D convolution: the kernel, usually
represented as a squared matrix gxg, is overlapped on all the possible
gxq image windows, and, for each window, a SOP operation between
kernel coefficients and homologous image pixels is performed,
producing, as output, a filtered pixel, as represented in Fig. 14.

output kernel (flipped) input
i|h|9 0,0 (1.01‘{35'4
(1,1 fleld
. C b a a1
I == (0,2)
...--—"'..-—-"._-l-""""'-'-——— ]
—
I._.--—‘,..---"-""'"""-F——--. ...---""'"""'—#F—-F
|
—
| i
.--"'""f

Fig. 14 Filtering of an image window through a kernel. A single pixel is produced,
corresponding to the central position of the window.

The operation can be formally expressed as [81]:
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h[i,j] [z i ®k l ] =iqul[r,c]-k[i—r,j—c] (3.36)

r=1 c=1
where [ is the original image, / the filtered one, k is the kernel and
(i,/) is a generic pixel. The (3.36) must be extended to the remaining

(i',j') pixels belonging to the original image.

3.3.1.2.2 Case study for Gaussian kernel

In order to find out the effect on the image quality due to different
choices of parameters F and L, the 2D convolution between “Lena”
image and the following Gaussian kernel has been investigated:

10.0392  0.0398 0.0400 0.0398 0.0392]
0.0398 0.0404 0.0406 0.0404 0.0398
k,={0.0400 0.0406 0.0408 0.0406 0.0400 (3.37)
0.0398 0.0404 0.0406 0.0404 0.0398
10.0392  0.0398 0.0400 0.0398 0.0392 |

The (3.37) kernel has been obtained through the Matlab command
fspecial('gaussian',5,10). In the following, the result for n,=6 are
presented. Please note that the following considerations are pretty
general and the following behavior is observed with others kernels and
n; values.

The Fig. 15 shows PSNR results for the convolution between
Lena image and (3.37) kernel, when six columns of the PPM are

neglected. Please observe that L is varied in the [4;64] range, while F

in [2;2048]. The results for the case in which the error is not

compensated and is compensated assuming the uniform distribution
are also shown in this figure, for comparison. Please note that x-axis,
in Fig. 15 is in logarithmic scale.
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Fig. 15 PSNR result for the proposed approach and for the Uniform and No
Compensation ones, in the case of Gaussian kernel. For the proposed approach
different value of L are shown, while the x-axis is subsampling factor F.

As observable in Fig. 15, for F <10 the PSNR is more than
10dB higher than the case of no compensation and more than 7dB
higher than that of uniform compensation. Unfortunately, a such
relatively frequent subsampling factor highly impacts on energy
efficiency of the proposed MAC unit. A key observation is that the
PSNR, after a rapid decrease, remains approximately flat for F >10,
decreasing only for very high subsampling values (approximately for
F >512). This behavior is found also with other filters analyzed.
Note, moreover, that in the flat region, the PSNR tends to increase
with L (the opposite happens for F <10), this can be explained with
the fact that in this region, due to the high subsampling value, the
sampled errors e (3.28) tend to be uncorrelated, therefore the mean
error e, tends to be a bad estimation of the real mean error x, when

the number of accumulated samples L is too low. Instead, in the region
with F <10, the samples tend to be correlated, therefore the mean
error e, is a good estimation also when L is low: in this region,
keeping L low offers the best results because the response time of the



100 VLSI Circuits For Approximate Computing

control decreases with L (and F), allowing to rapidly compensate the
errors made.

As a result of these observations, to improve energy-efficiency,
the proposed compensation technique will work in the flat region. In
particular, the following parameters have been chosen:

F" =128

L =64

Note that such choice increases PSNR of more than 3dB with
respect uniform compensation and of more than 7dB with respect no

compensation, for the case of Fig. 15. In the following more detailed
results are given for different kernels, images and 7, values.

(3.38)

3.3.1.3 Results

In this paragraph the quality and VLSI implementation results
are discussed.

3.3.1.3.1  Quality results

The proposed real-time data-aware compensation technique
has been assessed on different images and kernels. A comparison with
the cases of No Compensation and Uniform Compensation is
provided. The following three test images have been considered for
the next quality results:

Cameraman

Fig. 16 Cameraman test image, resolution: 204x204.
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Lena

Fig. 17 Lena test image, resolution: 223x292.

Airplane

]

45

Fig. 18 Airplane test image, resolution: 288x511.

The following kernels have been considered:
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. 1 11
Kaverage =5| 1 11 (3.39)
1 11
| I 2 1
ky, =—|2 4 2 3.40
I 2 1
-1 0]
emboss 0 1 (3.41)
1]
0 -1 0]
Kgarp =| =1 5 =1 (3.42)
0 -1 0]
-1 0 1
ko, ,=|-2 0 2 (3.43)
-1 0 1

In addition to Average (3.39), Blur (3.40), Emboss (3.41), Sharp
(3.42), Sobel Vertical (3.43), Gaussian (3.37), two kernels extracted
from an actual Convolutional Neural Network (CNN) (VGG-F [82])
have been employed, one of size 11x11 “VGG 11x11”, another of size
3x3 “VGG3x3”. For simplicity, only the values of VGG3x3 are
reported:

0.0254 -0.0044 -0.0174
koo =10.0223  -0.0126 —0.0066 (3.44)
0.0146 —0.0005 0.0108

Note that the values of CNNs kernels are the result of a training
procedure. The Kernels have been quantized assuming different
representation on 8-bits, since of their significant difference in terms
of absolute value. From an hardware perspective this corresponds to
employ a shifter after the MAC operation, this is a common design
choice in all practical Digital Signal Processors.
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In the following tables, the quality results, expressed in terms
of PSNR (3.32) and Structural Similarity Index (SSIM) [50] are
shown for the employed kernels and for Lena, Airplane and
Cameraman test image. In the tables, the maximum PSNR and SSIM
for each row (corresponding to a given n,) are reported in red, while
the maximum values higher, respectively, than 3 dB and 0.1 (please
note that SSIM is dimensionless, while PSNR is expressed in dB) , for
PSNR and SSIM with respect the second best value in the row, are
reported in bold red.

Table I shows quality results for Average kernel. As it can be
observed, the proposed approach exhibits, almost always, the best
PSNR, while in terms of SSIM negligible differences appear between
proposed and uniform approaches, while the results corresponding to
the No Compensation show worse performance. In some cases,
especially for aggressive precision-scaling levels, proposed approach
allows increasing PSNR of more than 3°dB, up to 10 dB.

The results corresponding to Blur kernel are shown in Table II.
In this case, the proposed approach always shows the best result in
terms of PSNR, with an improvement more than 3°dB in almost all
cases, with a peak of 16°dB. In terms of SSIM negligible differences
exist with uniform approach (note that No Compensation approach
offers good results when non aggressive precision-scaling is
performed).

Table III shows the performance for Emboss Kernel. In this
case proposed approach offers always the best results both in terms of
PSNR and SSIM, where results are significant improved with respect
Uniform and No Compensation case. Note that, in terms of PSNR, the
Uniform approach exhibits significantly lower performance than No
Compensation one. Also in terms of SSIM, No Compensation offers
better performance than Uniform approach, when a non-aggressive
precision scaling is performed. The Uniform approach tends to be
unsuitable for this kind of kernel, due to the presence of a integer
coefficients, resulting in a significant number of zeroed LSB. As a
result uniform approach results in an over-compensation, which
degrades SSIM and PSNR in higher measure.

In Table IV quality performance for Gaussian Kernel are
reported. Also in this case the proposed approach exhibits the best
PSNR values, with improvement up to 9°dB. In terms of SSIM the
performance are comparable with that of Uniform approach, while for
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the No Compensation one, performance rapidly decreases with high
number of discarded columns.

For the case of Sharp kernel, the results are shown in Tab. V.
Also with this kernel, proposed technique exhibits significantly better
PSNR and SSIM results with respect the other two approaches. Note
that No Compensation approach offers better PSNR performance with
respect Uniform one, while the results are about the same in terms of
SSIM: in both the case the SSIM rapidly decreases increasing #,.

Table VI reports the result for Sobel Vertical Kernel. In this
case the consideration are similar to that made for Emboss Kernel:
proposed approach shows the best performance in terms of PSNR and
SSIM and the Uniform approach fails to compensate the errors,
performing worse than the No Compensation one.

The Table VII shows the results for the VGG11x11 kernel. In
this case similar results are obtained using proposed approach and
Uniform one. In particular, proposed technique often results in better
PSNR, while the SSIM is often better for the case of uniform
compensation, however no significant differences are observed. Note
that No Compensation approach is the worst one in this case, rapidly
degrading its performance quality when a significant number of
columns is neglected. Similar considerations apply to VGG3x3
(Table VIII), in which the performance between proposed and uniform
approach are almost the same.

At the end of this discussion it is worthwhile observing that, in
some cases the No Compensation approach offers better results than
uniform one and in other cases vice versa, while proposed approach
exhibits, in all the analyzed cases, always significant better or, at least,
comparable quality performance with respect the best among No
Compensation and uniform approaches, showing an adaptive capacity
to the dataset, which constitutes the basic motivation of the proposed
approach. Observe, moreover, that, both PSNR and SSIM measure the
quality of image (although with different theoretical considerations) ,
but, while the SSIM is intrinsically related to image processing
applications, the PSNR, being a ratio between a constant and the root
mean square error (3.32) is a rigorous measure of the mathematical
error done. With this consideration it is worthwhile observing that
proposed approach, improving especially the PSNR (due to the
constrain on the mean error imposed in (3.33)), offers the smaller
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mathematical error. This allows to employ proposed technique also for
other application contexts.

As final remark, note that the quality dependence on the kernel
is stronger than that on the image.

TABLE I. QUALITY RESULTS FOR AVERAGE KERNEL (F=128, L=64)

Proposed No . Uniform
n¢ Image Compensation
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM

6 Lena 57.45 0.99 50.55 0.99 56.59 0.99
7 Lena 53.05 0.98 42.88 0.99 53.23 0.98
8 Lena 47.49 0.97 33.70 0.97 46.79 0.97
9 Lena 41.94 0.93 27.23 0.93 40.80 0.94
10 Lena 35.51 0.83 20.84 0.78 33.55 0.84
11 Lena 28.31 0.66 14.63 0.46 24.32 0.68
12 Lena 23.35 0.50 9.53 0.12 17.73 0.50
13 Lena 19.28 0.26 7.69 0.00 13.44 0.23

6 | Cameraman | 56.78 0.96 50.80 0.92 55.72 0.95

7 | Cameraman | 51.87 0.92 43.27 0.92 52.59 0.92

8 | Cameraman | 46.31 0.84 34.53 0.84 47.17 0.85

9 | Cameraman | 39.59 0.73 26.89 0.70 38.91 0.75

10 | Cameraman | 34.05 0.65 21.20 0.57 33.46 0.66

11 | Cameraman | 27.92 0.53 15.89 0.44 26.82 0.56

12 | Cameraman | 21.14 0.40 9.91 0.20 18.76 0.44

13 | Cameraman | 16.68 0.29 5.82 0.00 13.77 0.31

6 Airplane 57.10 0.96 50.19 0.95 56.76 0.96

7 Airplane 53.64 0.94 43.76 0.94 53.45 0.94

8 Airplane 48.44 0.90 33.40 0.91 45.66 0.90

9 Airplane 40.87 0.83 25.80 0.83 35.94 0.83

10 | Airplane 36.04 0.68 20.56 0.67 32.35 0.69

11 Airplane 31.12 0.55 14.66 0.49 24.79 0.55

12 Airplane 26.32 0.49 8.40 0.29 16.57 0.48

13 Airplane 19.41 0.29 2.97 0.00 9.24 0.23
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TABLE II. QUALITY RESULTS FOR BLUR KERNEL (F=128, L=64)

Proposed No . Uniform
n¢ Image Compensation
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM

6 Lena 56.18 0.99 50.97 0.99 41.01 0.99
7 Lena 52.32 0.98 43.95 0.98 34.10 0.98
8 Lena 45.54 0.96 30.06 0.96 28.04 0.96
9 Lena 38.11 0.89 21.58 0.84 23.51 0.88
10 Lena 31.20 0.75 14.54 0.50 19.96 0.74
11 Lena 24.58 0.57 9.24 0.11 17.56 0.56
12 Lena 20.77 0.39 7.67 0.00 15.23 0.38
13 Lena 17.50 0.16 7.67 0.00 12.24 0.17
6 | Cameraman | 55.03 0.94 51.07 0.92 41.05 0.95
7 | Cameraman | 50.43 0.88 43.90 0.92 34.04 0.86
8 | Cameraman | 43.12 0.81 29.96 0.78 28.03 0.80
9 | Cameraman | 35.90 0.70 22.05 0.62 23.48 0.69
10 | Cameraman | 29.43 0.60 15.18 0.46 19.52 0.58
11 | Cameraman | 23.25 0.47 9.30 0.17 15.57 0.46
12 | Cameraman | 18.12 0.33 5.78 0.00 13.38 0.35
13 | Cameraman | 14.53 0.19 5.78 0.00 11.90 0.20
6 Airplane 56.03 0.96 50.90 0.94 41.04 0.95
7 Airplane 51.96 0.92 43.79 0.93 34.16 0.92
8 Airplane 45.84 0.87 29.83 0.88 28.19 0.88
9 Airplane 38.54 0.76 21.20 0.76 23.92 0.77
10 Airplane 32.67 0.61 14.62 0.56 19.40 0.62
11 Airplane 28.30 0.50 8.27 0.27 16.93 0.49
12 Airplane 22.45 0.40 2.94 0.00 16.42 0.40
13 Airplane 16.28 0.19 2.94 0.00 15.85 0.16
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TABLE III. QUALITY RESULTS FOR EMBOSS KERNEL (F=128, L=64)

Proposed No . Uniform
n¢ Image Compensation
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM

6 Lena o0 1 0 1 29.77 0.71
7 Lena 48.56 0.98 41.61 0.91 22.51 0.52
8 Lena 41.73 0.94 26.66 0.37 16.01 0.38
9 Lena 35.40 0.84 20.80 0.15 10.51 0.24
10 Lena 28.32 0.65 17.00 0.04 5.63 0.14
11 Lena 21.25 0.44 14.92 0.01 1.83 0.06
12 Lena 14.06 0.29 14.65 0.00 1.14 0.03
13 Lena 7.27 0.11 14.65 0.00 1.72 0.03
6 | Cameraman 0 1 o 1 29.19 0.58
7 | Cameraman | 46.89 0.82 42.57 0.71 22.03 0.44
8 | Cameraman | 40.43 0.69 28.03 0.38 15.73 0.32
9 | Cameraman | 33.64 0.60 21.59 0.22 10.38 0.23
10 | Cameraman | 26.82 0.53 16.81 0.11 5.65 0.15
11 | Cameraman | 20.53 0.42 13.39 0.02 1.79 0.07
12 | Cameraman | 13.87 0.29 12.96 0.02 1.08 0.03
13 | Cameraman | 13.06 0.18 12.96 0.02 0.75 0.03
6 Airplane o0 1 0 1 29.46 0.55
7 Airplane 48.84 0.94 42.35 0.76 22.12 0.40
8 Airplane 41.94 0.84 28.37 0.31 15.71 0.28
9 Airplane 35.16 0.67 22.01 0.16 10.29 0.19
10 | Airplane 27.60 | 0.48 17.52 0.05 5.68 0.12
11 Airplane 21.51 0.35 15.23 0.01 2.04 0.06
12 Airplane 16.62 0.21 14.52 0.00 0.68 0.02
13 Airplane 9.80 0.16 14.52 0.00 0.00 0.05
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TABLE IV. QUALITY RESULTS FOR GAUSSIAN KERNEL (F=128, L=64)

Proposed No . Uniform
n¢ Image Compensation
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM

6 Lena 57.35 0.99 49.49 0.98 53.69 0.98
7 Lena 53.17 0.98 41.79 0.98 51.51 0.98
8 Lena 48.42 0.97 32.62 0.97 47.39 0.97
9 Lena 42.91 0.95 26.15 0.94 41.72 0.96
10 Lena 37.81 0.87 19.89 0.81 37.46 0.89
11 Lena 29.84 0.71 14.07 0.46 28.93 0.74
12 Lena 25.85 0.59 9.21 0.10 23.07 0.60
13 Lena 20.08 0.32 7.84 0 16.71 0.30
6 | Cameraman | 56.87 0.95 49.86 0.92 53.25 0.92
7 | Cameraman | 52.52 0.91 42.64 0.92 49.77 0.92
8 | Cameraman | 47.77 0.87 33.30 0.87 45.49 0.87
9 | Cameraman | 40.97 0.77 25.86 0.74 40.51 0.79
10 | Cameraman | 36.03 0.68 20.25 0.60 35.56 0.70
11 | Cameraman | 30.41 0.59 15.36 0.44 29.96 0.60
12 | Cameraman | 22.47 0.46 8.67 0.15 20.46 0.50
13 | Cameraman | 20.30 0.37 6.02 0.00 19.43 0.39
6 Airplane 57.16 0.94 49.60 0.93 53.73 0.93
7 Airplane 54.25 0.92 42.54 0.91 50.66 0.92
8 Airplane 48.67 0.89 31.91 0.90 48.01 0.90
9 Airplane 40.70 0.82 24.65 0.86 39.03 0.86
10 Airplane 38.16 0.70 19.81 0.71 37.55 0.74
11 Airplane 30.55 0.56 13.30 0.52 27.29 0.60
12 Airplane 26.73 0.49 7.78 0.29 20.89 0.54
13 Airplane 22.20 0.34 3.09 0.00 13.93 0.34
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TABLE V. QUALITY RESULTS FOR SHARP KERNEL (F=128, L=64)

Proposed No . Uniform
n¢ Image Compensation
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM

6 Lena 35.96 0.96 26.96 0.95 17.99 0.91
7 Lena 26.77 0.82 16.65 0.69 11.81 0.69
8 Lena 20.22 0.62 8.02 0.10 6.39 0.38
9 Lena 14.14 0.41 6.91 0.00 4.15 0.10
10 Lena 9.22 0.24 6.84 0.00 3.90 0.02
11 Lena 6.46 0.11 6.84 0.00 3.98 0.01
12 Lena 4.65 0.01 6.84 0.00 4.31 0.01
13 Lena 4.58 0.00 6.84 0.00 4.31 0.00
6 | Cameraman | 34.34 0.77 27.07 0.74 18.10 0.71
7 | Cameraman | 25.41 0.62 16.99 0.55 12.01 0.52
8 | Cameraman | 18.15 0.53 6.91 0.15 7.92 0.32
9 | Cameraman | 12.97 0.41 5.16 0.01 5.35 0.10
10 | Cameraman | 9.35 0.26 5.09 0.00 4.48 0.02
11 | Cameraman | 5.17 0.09 5.09 0.00 4.53 0.03
12 | Cameraman | 3.61 0.00 5.09 0.00 5.02 0.00
13 | Cameraman | 3.61 0.00 5.09 0.00 4.53 0.00
6 Airplane 35.96 0.92 26.63 0.92 18.01 0.89
7 Airplane 26.71 0.71 16.05 0.67 13.64 0.51
8 Airplane 19.91 0.52 5.14 0.17 10.16 0.23
9 Airplane 13.17 0.33 2.79 0.00 8.35 0.06
10 Airplane 9.43 0.20 2.75 0.00 7.97 0.01
11| Airplane 6.40 0.09 2.75 0.00 8.07 0.01
12 Airplane 5.77 0.01 2.75 0.00 8.43 0.00
13 Airplane 2.95 0.00 2.75 0.00 2.55 0.00
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TABLE VI. QUALITY RESULTS FOR SOBEL VERTICAL KERNEL (F=128,

L=64)
Proposed No . Uniform
n¢ Image Compensation
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM

6 Lena 47.17 0.99 41.47 0.98 22.70 0.58
7 Lena 37.11 0.95 28.44 0.79 16.61 0.33
8 Lena 29.52 0.86 14.44 0.33 10.69 0.15
9 Lena 21.98 0.68 6.03 0.05 5.53 0.01
10 Lena 15.66 0.47 1.39 0.00 1.84 0.00
11 Lena 10.31 0.28 1.39 0.00 1.47 0.00
12 Lena 4.96 0.12 1.39 0.00 1.45 0.00
13 Lena 3.49 0.02 1.39 0.00 1.45 0.00
6 | Cameraman | 47.04 0.92 41.70 0.84 22.77 0.48
7 | Cameraman | 36.07 0.69 28.96 0.56 16.31 0.35
8 | Cameraman | 27.24 0.59 14.26 0.30 10.33 0.21
9 | Cameraman | 19.44 0.51 5.69 0.10 5.20 0.08
10 | Cameraman | 13.92 0.42 1.07 0.00 1.50 0.00
11 | Cameraman | 9.89 0.27 1.06 0.00 1.10 0.00
12 | Cameraman | 4.54 0.10 1.11 0.00 1.11 0.00
13 | Cameraman | 4.31 0.05 1.11 0.00 1.12 0.00
6 Airplane 47.35 0.97 41.56 0.92 22.97 0.36
7 Airplane 37.51 0.85 28.68 0.56 16.47 0.25
8 Airplane 30.23 0.67 14.18 0.23 10.30 0.14
9 Airplane 22.78 0.47 5.46 0.04 5.17 0.02
10 | Airplane 1590 | 0.31 0.95 0.00 1.60 0.00
11 Airplane 11.24 0.23 0.95 0.00 0.93 0.00
12 Airplane 9.43 0.12 0.95 0.00 0.93 0.00
13 Airplane 3.15 0.02 0.95 0.00 0.93 0.00
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TABLE VII. QUALITY RESULTS FOR VGG11x11 KERNEL (F=128, L=64)

Proposed No . Uniform
n¢ Image Compensation
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM

6 Lena 56.33 0.96 45.85 0.75 55.48 0.96
7 Lena 50.01 0.90 39.23 0.59 48.72 0.89
8 Lena 44.19 0.80 32.45 0.41 42.83 0.80
9 Lena 38.21 0.66 28.07 0.31 36.88 0.66
10 Lena 32.08 0.50 25.96 0.27 30.93 0.51
11 Lena 26.73 0.36 25.71 0.27 25.47 0.39
12 Lena 22.57 0.26 25.71 0.27 21.68 0.27
6 | Cameraman | 56.49 0.95 47.96 0.82 55.02 0.96
7 | Cameraman | 49.87 0.89 41.39 0.74 47.74 0.88
8 | Cameraman | 43.21 0.78 33.69 0.60 41.09 0.81
9 | Cameraman | 37.32 0.61 28.44 0.48 34.99 0.64
10 | Cameraman | 30.61 0.48 25.00 0.43 28.70 0.50
11 | Cameraman | 22.84 0.37 23.40 0.41 21.44 0.51
12 | Cameraman | 18.00 0.31 23.39 0.41 16.79 0.37
6 Airplane 58.57 0.99 47.63 0.90 57.55 0.99
7 Airplane 52.29 0.97 40.45 0.80 50.83 0.98
8 Airplane 45.75 0.93 33.07 0.65 45.04 0.93
9 Airplane 39.38 0.82 28.43 0.57 39.62 0.85
10 Airplane 33.08 0.63 25.85 0.54 34.46 0.74
11 Airplane 27.91 0.50 24.54 0.53 29.66 0.65
12 Airplane 24.85 0.44 24.42 0.53 25.50 0.57
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TABLE VIII. QUALITY RESULTS FOR VGG3x3 KERNEL (F=128, L=64)

Proposed No . Uniform
n¢ Image Compensation
PSNR | SSIM | PSNR | SSIM | PSNR | SSIM
Lena 63.38 0.91 55.47 0.65 63.26 0.91
Lena 59.33 0.79 51.70 0.51 58.35 0.77
Lena 54.81 0.64 45.64 0.45 54.41 0.63
Lena 51.79 0.53 40.02 0.17 51.23 0.54
Lena 47.35 0.43 37.65 0.01 45.97 0.43
Lena 42.81 0.29 37.35 0.00 41.65 0.28
Lena 39.32 0.18 37.34 0.00 39.76 0.19

Cameraman | 63.01 0.91 55.61 0.70 63.25 0.91

Cameraman | 59.50 0.83 52.09 0.65 60.08 0.84

Cameraman | 53.93 0.59 46.16 0.57 54.12 0.64

Cameraman | 50.91 0.52 40.63 0.36 51.45 0.57

Cameraman | 46.20 0.45 36.07 0.08 46.26 0.49

Cameraman | 40.58 0.32 35.45 0.02 39.58 0.38

Cameraman | 36.84 0.16 35.38 0.02 36.07 0.23

Airplane 63.50 0.90 55.84 0.59 63.72 0.90

Airplane 60.11 0.78 50.86 0.51 59.64 0.76

Airplane 55.21 0.57 44.66 0.47 53.27 0.52

Airplane 52.09 0.47 39.25 0.34 50.94 0.53

Airplane 47.87 0.36 33.48 0.04 43.21 0.37

Airplane 43.27 0.27 32.84 0.00 37.80 0.24

Y I =S N=1 1 BN el lang fog NN ) BN R RN foed fag g I ) BN R RO

Airplane 41.75 0.20 32.82 0.00 35.95 0.17

3.3.1.3.2  VLSI Implementation results

In this paragraph the VLSI implementation results, in
40nm TSMC  technology are  presented. @ The  proposed
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precision-scalable MAC Unit of Fig. 13 has been described in Verilog
HDL along with a precision scalable MAC Unit with no compensation
and with a standard MAC Unit with fixed, full precision. The
multipliers PPM has been described with the help of a Matlab script,
implementing the TDM algorithm [51] starting from the
characterization of the standard cell library (.LIB file). In order to
perform a conservative comparison, the electrical performances are
compared with the precision-scalable MAC unit with no
compensation. Indeed, from the synthesis and simulations done, in
terms of energy efficiency, the precision-scalable MAC unit
implementing a compensation technique pay an overhead, with
respect the precision-scalable MAC unit with no mechanism of
compensation, due to the additional logic for embedding the
compensation term into the carry-save tree. This overhead is the same
for both the proposed compensation approach and the uniform one.
Moreover, from a quality perspective, proposed approach exhibits
significantly better or equally with respect uniform one. Therefore no
improvement in the quality-energy tradeoff is expected when using
uniform compensation. It is, instead, interesting investigating how the
tradeoff is affected when moving from a no compensation approach to
the proposed one. The circuits have been synthesized with Cadence
RTL Compiler, with a clock constraint of 1.5 ns. The RTL Compiler
synthesis directive synthesize —to_mapped —effort high has been
employed. Moreover, a Physical Layout Estimation approach has been
followed to estimate the wire parasitic. The Error Compensation block
has been synthesized using HVT standard cells to optimize leakage
increase, while all others circuits (including the Precision-Scalable
MAC) have been synthesized at LVT. The power has been evaluated
from a VCD back-annotated post-synthesis simulation. The simulation
performs the real convolution operation on the Lena image and with
some of the filters analyzed in the previous paragraph.

In Tab. IX are reported the area occupation and power leakage
results. The area overhead for the MAC with no compensation is of
12% and this is due to the additional AND gates in the PPM for
freezing the partial products. For the proposed approach, as expected,
the area overhead is huge, being the circuit footprint more than
doubled; this is essentially due to the Compensation Circuit (Fig. 11).
Regarding leakage, thanks to the usage of HVT cells in the Error
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Compensation block, the overhead does not follow the area one, being
equal to 48% (if LVT cells are employed in the Error Compensation
block the leakage increment becomes 148%). Note that the leakage
increment can be an issue only when operating with deeply scaled
voltage supply. If this is the case, it is worthwhile observing that the
entire approach of introducing AND gates in the PPM to avoid the
switching of the partial products can be inefficient, being targeted to
decrease dynamic power at expense of the leakage one.

In Tab. X the dynamic power dissipation in full-precision
mode is reported. Here B stands for Blur kernel, £ for Emboss, G for
Gaussian, S V for Sobel Vertical. Regarding power dissipation, in full
precision mode, as expected, both the circuits increase the dissipated
power, up to 9% for the no compensation circuit, and up to 24% for
the proposed circuit. Note that the contribution to dynamic power due
to the Error Compensation circuit accounts for less than 0.5% of the
total dynamic dissipation, due to the high subsampling factor F.

TABLE IX. IMPLEMENTATION RESULTS FOR FULL-PRECISION MODE

L. Area | Power Leakage
Circuit ,
[nm’] [nW]
Standard 865 0.838
0.923
No Comp. 976
(+12%) (+10%)
1.238
Proposed 2243
(+159%) (+48%)

TABLE X. IMPLEMENTATION RESULTS FOR FULL-PRECISION MODE

Circuit Dynamic Power [uW/MHz]
VGG VGG
B E G SV 11x11 3x3

Standard | 1.447 | 1.221 | 1.577 | 1.367 | 1.670 | 1.918
No 1.548 | 1335 | 1.715 | 1452 | 1.782 | 2.027
Comp | (+7%) | (+9%) | (+9%) | (+6%) | (+7%) | (+6%)
Proposed | 1.798 | 1.548 | 1.828 | 1.682 | 1.910 | 2.226
(+24%) | (+27%) | (+16%) | (+23%) | (+14%) | (+16%)
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In order to have a clear insight of the quality-power tradeoff, the
energy reduction with respect standard MAC against the quality
(PSNR and SSIM) is reported in the next graphs, for both the MAC
unit with no compensation the one with proposed real-time data-aware
approach.

The Fig. 19 reports the tradeoff curve for a Blur kernel. The x-axis
represents the power saving with respect a standard MAC unit, while a
the y-axis is reported the PSNR (Fig. 19 (a)) and the SSIM
(Fig. 19 (b)). The blue line represents proposed approach, while the
green one the no compensation one. Note that the higher is the curve
the better is the performance, allowing the same power saving with
higher quality. Note that for both the PSNR and SSIM cases, quality
degrades gracefully for the proposed approach. For the no
compensation one there is an abrupt degradation if s, is increased.
Note that for the PSNR metric, for power saving up to 5% the no
compensation one is the best choice, assuring higher PSNR than
proposed approach. When a more consistent power saving is desired,
the quality in the no compensation cases degrades, while the proposed
approach is the best choice. Similar considerations hold for the SSIM
(Fig. 19 (b)). Note that, while for the full-precision mode the proposed
MAC and the one with no compensation exhibits very different power
dissipation (Tab. X), this difference tends to be negligible cutting
more columns (as an example in Fig. 19, for n, >11 the power saving

has the same value for both the circuits). The Fig. 20 shows the
filtered Lena image, with both the proposed and no compensation

MAC units, for the point with n, =11 (circled in red in the Fig. 19 (a)-

(b)). At a price of significant degradation, around 22% of power can
be saved. Note that for the case of Fig. 20 (b) (image resulting from no
compensation) the image is almost totally compromised, imposing a
bound to the power saving achievable.

The Fig. 21 shows the tradeoff curve for Sobel Vertical kernel.
As previously observed the proposed approach degrades gracefully. In
this case for both the PSNR (Fig. 21 (a)) and the SSIM (Fig. 21 (b)),
in the region where a power saving is achieved (power saved < 0), the
proposed MAC is always the best choice. Note that, with respect
previous kernel (Fig. 19) the curves are left-shifted, therefore with the
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same target quality a lesser power saving is achieved. This can be
explained observing that kernels with integers number, quantized on
8-bits have a higher number of zeroed coefficients in the LSBs. This is
the case of Sobel Vertical kernel. In this case, the zeroed LSBs of the
coefficients reduce the switching in the least significant columns of
the PPM of the standard MAC unit, therefore an advantage in terms of
power using truncated multipliers can only be obtained with an
aggressive precision scaling. Moreover, the sobel filter is an highpass
filter therefore the error, which in the proposed case is almost at zero
mean (3.33) (therefore having components at high frequency), is not
filtered out, decreasing the quality performance. The Fig. 22 shows
the filtered Lena images for n, =10, corresponding to the circled red

points in Fig. 21. Note that the Fig. 22 (a) filtered with the proposed
MAC exhibits some noisy pixels in the background but the edge are
preserved, while for the case of no compensation Fig. 22 (b) in
addition to a “complemented” intensity (pixels in the background
from black are transformed in white) some edges details disappears. In
correspondence of this points the power reduction is lesser than 5%.
The Fig. 23 reports the quality-power curve for the VGG 3x3
kernel. In this case the proposed approach always outperforms the no
compensation one. In particular, the degradation appears to be really
gracefully both in terms of PSNR and SSIM, decreasing almost
linearly with the discarded columns. For power saving around 20%
the difference in terms of quality is emphasized. In Fig. 24 are
reported the Lena filtered image, for n, =10, corresponding to the red

circles in Fig.23. Note that in the case of no compensation
(Fig. 24 (b)) the image filtering operation is completely compromised.
For the image filtered with proposed MAC (Fig. 24 (a)) the degraded
quality is traded for an about 27% reduction.

The filters investigated in this paragraph well reassume the
three kernel typologies that can be found in practical application: (i)
kernels like Blur and Sharp belong to the first typology for which the
proposed approach make sense for aggressive precision-scaling; (ii)
filters like Emboss, Sobel Vertical and Sobel Horizontal belong to the
second typology, where, due to a significant number of zeroed LSBs,
the power reduction is minimal; (iii) filters like Gaussian, Average,
VGG 3x3 and VGG 11x11 belongs to the third category, in which the
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proposed approach is effective in every point of the trade-off curve
quality-power.

It is worthwhile observing that proposed approach allows
increasing the precision-scaling range, enabling for an extra-gain in
terms of power.
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Fig. 19 Quality-Power tradeoff curves. (a) PSNR is employed as quality metric; (b)
SSIM is employed as quality metric. Kernel: Blur.
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a) Proposed MAC-Blur Kernel nt=11

b) No Compensation MAC-Blur Kernel nt=11

Fig. 20 (a) Filtered image with proposed MAC; (b) Filtered image with MAC with
no compensation; (c) Exact image. Kernel: Blur.
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Fig. 21 Quality-Power tradeoff curves. (a) PSNR is employed as quality metric; (b)
SSIM is employed as quality metric. Kernel: Sobel Vertical.
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a) Proposed MAC-Sobel Vertical Kernel nt=10
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Fig. 22 (a) Filtered image with proposed MAC; (b) Filtered image with MAC with
no compensation; (c¢) Exact image. Kernel: Sobel Vertical.
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a) VGG 3x3 Kernel
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Fig. 23 Quality-Power tradeoff curves. (a) PSNR is employed as quality metric; (b)
SSIM is employed as quality metric. Kernel: VGG 3x3.
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a) Proposed MAC-VGG 3x3 Kemel nt=10

b) No Compensation MAC-VGG 3x3 Kernel nt=10

C) Exact VGG 3x3 Kernel

Fig. 24 (a) Filtered image with proposed MAC; (b) Filtered image with MAC
with no compensation; (c) Exact image. Kernel: VGG 3x3.
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3.4 Precision-scalable Approximate MAC Unit

In this paragraph a precision-scalable Approximate MAC Unit
is discussed. Conversely to the MAC Unit discussed in the paragraph
3.3, here the partial product matrix is compressed in an approximate
way, employing OR gates in place of half adders. This approximate
MAC can be employed in systems area-and-power constrained.
Indeed, with respect to the MAC unit shown in the paragraph 3.3, the
Approximate MAC Unit shows significant power savings, due to the
compression step and to the precision scalability, at a price of a
reduced quality. Indeed, also when no column is discarded
(full-precision modality), the proposed Approximate MAC unit
provide to the system erroneous (approximated) results, resulting from
the approximate partial product matrix (OR gates in place of
half-adders), making it unsuitable in systems where the quality
constraint significantly varies over the time. Note that the
compression step, reducing the gates count, improves leakage and area
performance with respect standard MAC unit. Therefore, in order to
keep bounded the area occupation, a uniform compensation method is
employed. It is worthwhile observing that the proposed Real Time
Data Aware Compensation Technique (paragraph 3.3.1 ) can also
be employed, in systems where the area and leakage overhead can be
tolerated.

Recently, researches focused on energy-efficient multipliers
implementation [45], [57], [65], [83]. In [65] a truncated multiplier
with variable compensation method is proposed. The least significant
columns of the multiplier partial products matrix are discarded and a
compensation function to minimize the resulting mean square error is
employed. In [57] a programmable truncated multiplier is proposed.
The partial product columns can be dynamically freezed, with a fine
grain approach, in order to save energy when the quality constraint
can be relaxed. The resulting error is compensated in software.
Authors in [83] propose an approximate multiplier obtained reducing
the maximum height of the partial product matrix by means of
compression of partial product terms. Three different designs are
presented, in which two, three and four partial products are reduced
into one term using OR gates. In this paper the precision is fixed at
design time, therefore the energy quality tradeoff cannot be
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dynamically tuned as function of the input data and application.
Moreover, the error resulting from the compression is not
compensated, limiting the quality performance especially when three
or more terms are compressed into one.

In this paragraph a precision scalable approximate Multiply
and Accumulate (MAC) unit is proposed for computer vision
applications. In the proposed MAC unit, leveraging the observations
made in [45], the height of the partial product matrix is preliminarily
compressed (at design time). The resulting compressed matrix is then
implemented as precision scalable carry save tree, similarly to [57]. In
order to reduce the error deriving from (i) compression and (ii)

dynamic precision scalability, a compensation term is inserted in the
accumulation loop.

3.4.1 Partial product recoding and compression

In the following a signed for unsigned multiplier will be
considered. The Fig. 25 (a) shows the Partial Product Matrix (PPM) of
a signed for unsigned N=8 bits Baugh Wooley multiplier, where X is
the signed operand and Y the unsigned one. The operands are

considered fractional, with MSB of magnitude 2~
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Fig. 25(a) Partial Product Matrix (PPM) of a 8-bits signed for unsigned multiplier.
(b) Resulting PPM after recoding, compression and precision-scalability.
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The multiplier critical path is related to the maximum height of the
PPM, being equal to N. Note that the sign extension prevention
constant (whose value is for a signed for unsigned multiplier), being
a constant term, generally does not impact on the multiplier delay,
implemented as carry save tree. In order to compress the PPM (i.e.
decrease the maximum height of the matrix), a recoding of the partial
product terms can be employed. As observed in [45], two generic
partial product x,y, and x,,v,,, belonging to the i+j-th column can

be recoded as follows:
4, =xy; AND x, ;y,,, (3.45)
O,,=xy, ORx_,y,, (3.46)

1

being their sum 4 ,+0, ;=xy,+x_,y,,. Under the

hypothesis that the input bits xi and yj are uniformly and
independently  distributed, the probability to be high is

(1/4)” =0.0625 for 4., and 7/16 for O, [45]. The recoding, while

constituting an overhead due to the AND (3.45), OR (3.46) additional
gates, allows us to neglect the low-probability terms (3.45). Note that

the direct elimination of a partial product x,y; , avoiding the recoding,

involves the elimination of high probability terms, being 1/4 =0.25
the probability of a partial product to be high. Neglecting the 4, ;
terms, the approximate sum can be expressed as:

XY, +%,Y =0, (3.47)

In this way, we are approximating an half adder with an OR gate, with
consequent area, delay and power improvement, at a price of an error
on both the carry out and the sum, when both the partial products are
high. Note that also in [83], an half adder is approximated by means of
an OR gate. Authors in[83], however, propose to approximate a full
adder with a 3 inputs OR gate (acting as 3:1 compressor) and to use a
4 input OR gate as 4:1 compressor. The error deriving from these
choices, in our opinion, can be significant, affecting the overall
quality, therefore only compression using the (3.47) is employed in
our multiplier.
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Employing the recoding and compressing as in (3.47) allows halving
the maximum height of the PPM. While, for the terms in the least
significant columns (the last N columns), the compression of the
maximum possible terms using (3.47) is beneficial in terms of energy
quality tradeoff (contributing minimally to the output due to their
weight), in the most significant columns the best choice is to compress
selectively only the minimum terms of each column in order to keep
the maximum height of the compressed matrix equal to N/2. If we
indicate as i=0 the least significant PPM column (Fig. 25) , the

compression can be extended up to the i" -4 column, given by:
+ 3N-4

T
The number of OR gates needed in each column is given by the
following expression:

(3.48)

[5—‘ for 0<i<N-1
Nor(i)= (3.49)
3N —2(1‘ +1) L
= v J forN<i<i
2
The (3.49) suggests to compress as much as possible in the least

significant columns (0 <i < N —1 ) and as less as possible to keep the
height of matrix equal to N/2, in the most significant ones (N <i <i").
For the PPM of Fig. 25 (a), i =10 and Nor(10)=1 therefore only

one OR gate is needed in the i" =10 column to keep the max height of
the compressed PPM bounded to N/2.

3.4.2 Precision-scalability

In order to meet the different quality constraints (i.e. different error
resiliency) during the elaboration of a given application, the
compressed PPM must be able to scale its precision at run time.

In this paper a fine-grain approach is employed, as proposed in [57].
In particular, each column i-t4 of the PPM can be selectively
discarded, by means of an additional control signal 7;. When 7, =1 the

column is accounted in the multiplication, while, when 7, =0 all the
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partial products belonging to the i-th column are freezed to zero, in
order to save dynamic power. An external signal nt, representing the
number of columns (starting from the least significant one) to be
discarded, codifies the signals 7}: as an example, if nt =0 the 2N —1
T; signals will be all ones (no column is discarded), while if nt =8 the
signals 7 =0 for 0<i<nt—1. Employing the precision-scalability
requires to modify the (3.47) as follows:
XYt T XYl = O (3.50)

Note that the (3.50) can be easily mapped with an AO33 standard cell.
The remaining non-compressed partial product terms are AND-ed
with the control signals 7;, requiring a 3-input AND in place of a
standard 2-input AND for the partial products computation. The
resulting precision scalable PPM, after the recoding and compression
steps, is shown in Fig. 25 (b).

3.4.3 Error Analysis and Compensation

In this section an error analysis is presented in order to
determine an error compensation expression. The errors result from (i)
compression (ii) precision scalability. Therefore an expression of the
compensation terms, in function of the number of discarded columns
nt will be provided.

Let us assume that no column is actually discarded (#, =0). In
this condition the errors result from the compression step only. From
the (3.45)-(3.47) we know that the mean error committed when an half
adder is substituted by an OR gate is equal to the probability of 4, ; to

be high, which equals to (1/ 4)2 . Therefore the mean error committed

due to the compression of the i-th column with 0<i< N -2, can be
expressed, using the (3.49), as:

. 2
E,, (i):BM%j 272N Lo 0<i< N =2 (3.51)
In the column i= N -1, having the maximum height, all the partial
products must be compressed (compare ((3.49))), therefore also the
NAND partial product (deriving from Baugh Wooley multiplier) is
compressed. It can be easily shown that, when the compression
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involves this partial product, the deriving error is higher, being equal
to 3(1/4)2. This observation suggests us that, when (3.49) is used to

determine the number of employed OR gates, the compression of the
NAND partial products should be avoided whenever possible. The
mean error associated to the compression of the i = N —1 column is

given by:
£, :“N_—l J.(gj +3[1) }2 552)
2 4 4

The mean error deriving from the compression of the most significant
columns (up to i (3.48)) is expressed, using (3.49), by:

3N-2(i+1) (1Y . .
EC3(i):#-(Zj 2 e N<i<i' (3.53)
Let us assume, now, that no compression is performed, therefore the
error is only caused by precision scalability. Following an analysis
similar to [57], the mean error resulting from the precision scalability
can be expressed as:

fornt<N-1:

nt

zm_zm—S—ZN

E,(nt)= =l 3.54
P( ) for N<nt<2N—1: ( )
E,(N-1)+ > (242N -m)-2" 7"

m=N

Combining (3.51)-(3.54), the resulting mean error, when the matrix is
compressed and n¢ columns are discarded, is obtained as:

3
1

N-=2

E,(nt)+ Y E (i)+ Y Ecs(i)+Eq, fornt <N -1
N

E= e (3.55)
E,(nt)+ Y E.(i) for N<nt<2N-1

i=nt

A first attempt to compensate the error resulting from above
approximations is achieved by compensating the mean error [65]; this
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allows increasing quality metric such as mean-square-error (MSE) and
PSNR. Therefore the following compensation term will be employed:

K(nt)=E (3.56)

3.4.4 Approximate MAC Unit architecture

The discussed precision-scalable approximate PPM is
embedded in a MAC unit. The resulting circuit is shown in Fig. 26.
The precision-scalable PPM is implemented as a TDM carry-save tree
and provides as output the two signals s/ and s2 in carry-save format.
These signals are then accumulated and the resulting output Z, is

obtained truncating the N + g least significant bits of the accumulator

output ACC, where g is the number of guard-bit implemented to avoid
the overflow in the accumulation loop. Note that the nt signal, drives
both the precision-control signals 7 and the LUTs. The LUTs are used
to store the compensation terms (3.56). Note that, in order to avoid an
additional row in the multi-operand accumulation adder
(implemented, in turn,. as carry-save tree followed by a final vector
merging adder) and therefore an energy overhead due to the
compensation, the compensation term is initialized at the start of each
convolutional kernel. This requires to store in the LUTs the K(nt)
values, multiplied for the number of multiplications contained in a
convolutional kernel (e.g. 9 multiplications in a 3x3 kernel and 25
multiplications in a 5x5 kernel). A simple control circuit, starting from
the Kernel size signal (indicating the size of the kernel), initializes the
accumulation register to K(nt) through the rst_acc signal, at each new
kernel. Note that the LUTs minimally affect the dynamic power
consumption, since nt is supposed to vary with a frequency f,, < £, .

3.4.5 VLSI Implementation results

The proposed circuit has been described in Verilog HDL and
synthesized in TSMC 40nm technology using Cadence RTL
Complier. For comparison purpose the three versions of the
approximate multipliers proposed in [83] have been implemented and
embedded in a MAC unit.
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Fig. 26 Proposed precision scalable approximate MAC architecture. The LUTs store
the compensation terms K(nt).

In the following we will denote respectively as
“DATE 17 L=2", “DATE 17 L=3", “DATE 17 L=4", the version with
the PPM compressed using 2 inputs, 3 inputs and 4 inputs OR gates
[83]. A classic full precision MAC unit has also been implemented as

reference to evaluate the power improvement using the approximate
MAC units.
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TABLE XI. VLSI IMPLEMENTATION RESULTS-@VDD=1.1V

Circuit F [GHz] |Area [pm’]  |Pipakace [BW]
Classic MAC 1.11 1867 1.686
DATE17-L=2  [1.11 1111(-41%) [1.041 (-38%)
DATE17-L=3  |[1.11 903(-52%)  |0.802(-52%)
DATE17-L=4  |[1.11 880(-53%)  |0.756 (-55%)
This paper 1.11 1741(-7%) 1.404(-17%)

The Table XI shows the area and leakage performance of the
implemented MAC units. The period constraint has been imposed at
0.9 ns, which is the minimum period at which the Classic MAC unit
meets the timing constraint with zero setup slack (the approximate
MAC:s are faster), while power dissipation has been evaluated from
VCD and SDF-based post-synthesis simulations.

While the circuits proposed in [83] exhibit substantial area and
leakage improvements, up to 52% and 55% respectively, the proposed
MAC shows moderate improvements, enhancing the area of 7% and
the leakage of 17%. Compared with DATEI7-L=2 circuit, which
adopts a similar compression step, the reduced area and leakage
savings are due to the LUTs overhead, needed to implement the
compensation mechanism.

The Fig. 27 shows the power-quality tradeoff when the
“cameraman” image is filtered with a 3x3 gaussian kernel. In the
graph of Fig. 3 the x-axis reports the power saved with respect the
Classic MAC, while the y-axis reports the PSNR. The blue line
reports the power at different quality levels for the proposed MAC,
obtained by varying nt. In this graph, the higher is the curve, the better
is the trade-off, achieving the same power saving at higher quality.
When little columns are neglected, the PSNR is about 2dB higher
(point a in Fig. 27) than DATE[7-L=2 circuit, at the same or better
power saving, thanks to the compensation (3.56). When the precision
in scaled down the proposed circuit outperforms the counterparts
achieving a power reduction of 53% with tolerable quality degradation
(point b).
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Fig. 27 Quality-Power trade-off for a gaussian 3x3 kernel. Due to precision
scalability and error compensation the proposed MAC outperforms the
fixed-precision circuits proposed in [83].

3.5 Precision-scalable Latch Memory

In this paragraph a precision-scalable Latch Memory is discussed.
The proposed precision-scalable latch memory can be part of a
precision-scalable system. In these kind of systems, the data can be
incorrect, due to scaled precision, therefore the memories in which
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these data are stored can be made precision-scalable to further
increase approximations efficiency.

Standard Cell Memories (SCMs) have been introduced for the first
time in [84] and they represent an interesting alternative to SRAM
Macrocells (MMs) to implement embedded memories. The storage
functionality is assured by a matrix of flip-flops or latches. SCMs can
be described using HDL languages and easily synthesized, being
composed by standard cells. This gives high flexibility, since the
memory features (number of ports, number of words, number of bit
per words) can be easily decided at design time, according to the
specific system needs, without the limitations imposed by the usage of
a memory generator, in terms of words and word lengths [85].
Moreover, SCMs can be placed using standard CAD tools and
therefore merged with logic blocks, improving data locality with
consequent reduction of wiring and parasitics (i.e. improved energy
efficiency and timing).

In [84] authors report that SCMs offer area and energy reduction,
with respect MMs, for storage capacity up to 1kbit, while, for bigger
storage capacity, SCMs become bigger than MMs, but still exhibit a
better energy efficiency. In [86] SCMs are proposed as an alternative
to full-custom sub-Vt SRAM Macrocells for systems operating in
deeply scaled voltage supply. An extensive analysis, targeted for
ultra-low voltage applications and corroborated by ASIC
measurements, is reported in [85], showing that up to 4-6 kbit SCMs
exhibit better than sub-Vt SRAMs. A controlled placement design
methodology, as a part of the standard digital design flow, is proposed
in [87], optimizing placement density and power dissipation, due to
the reduced wire length.

3.5.1 Latch Memory architecture

The SCM storage element can be a D flip-flop or a D-latch. In the
following, we will refer to latch-based SCMs, since, compared to
flip-flop based SCMs, they are more area efficient and the timing can
be improved exploiting time borrowing [87]. We will examine
dual-port memories, with a word access scheme. Fig. 28 shows the
standard latch-memory architecture, as proposed in [84]. SCM are
composed by three main blocks: (i) write logic, (ii) read logic, (ii1)
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storage matrix. In the following, we briefly discuss about write and
read logic implementations.

3.5.1.1 Write logic

As shown in Fig. 28, the storage matrix is composed by R rows
and C columns. C latches belonging to the same row constitute a
word; at each word an address is assigned. Let us suppose that new
data must be written at the first row of the storage matrix reported in
the trivial example of Fig. 28 (here R=C=2). The corresponding
writing address will be waddr=0 (assuming to associate address 0 to
the first word, address 1 to the second one and address R-1 to the last
one). In the hypothesis that the write enable is high (we=1/) the new
data wdin is sampled on the rising edge of the gated clock clk din by
the input flip-flops (note that when wen is zero these flip-flops are
gated). The captured data must be written in the corresponding row,
identified by waddr. The selection of the appropriate word occurs as
follows. The write address decoder (WAD) produces a one-hot output
(note that if wen=0 the WAD switching is inhibited due to AND gate),
constituted by the R strobe signals of Fig.28 (in our example
waddr=0 implies strobel=1, strobe2=0). The asserted strobe signal,
in turn, activates one of the R enable signals (en in Fig. 28), with the
help of a clock gating integrated cell (CGIC, constituted by a
transparent-low latch and an AND gate, Fig. 25). The new data is then
latched in the memory. With respect to the topology proposed in [84]
the input flip-flops are introduced to improve the setup timing
constraint on the wdin data (this constraint must be met by the external
circuit feeding wdin) [87]. It is worthwhile observing that the input
flip-flops are rising edge triggered and the storage latch are high level
transparent. Therefore, the clock to output delay of the input registers
(which can be significant due to the high fan-out) occupies part of the
latch transparent window. This tight setup constraint is nevertheless
mitigated by the time borrowing capacity of the latch. This design
choice relaxes the setup constraint on the CGIC that drive en signals
(this path is generally the critical one, due to the WAD). Note that
other write approaches have been previously introduced in [84],
involving the usage of tristate buffers, but this solution has not been
considered, being less attractive in terms of area and power.
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Fig. 28 Standard Cell Memory [71]. The storage matrix is composed by RxC latches
(R=C=2 in this figure). One out R latches rows is written activating the
corresponding enable signal. The reading involve an Rtol multiplexer whose
selection signal is produced the read address decoder (RAD).

3.5.1.2 Read logic

With reference to Fig. 28, the read operation involves a read
address decoder (RAD), which has the same behavior of the WAD,
producing one-hot output bus, indicated as rowsel in Fig. 28,
corresponding to the word to be read. As discussed in [84], the read
multiplexer is energy efficient if its selection signal is a one-hot bus:
in this case the mux is easily implemented with a first level of AND
gates, performing the logic AND between each rowsel selection input
and the corresponding data bit. The outputs of this AND plane are fed
into an OR gates tree. Note that, as done for the WAD, the RAD is
gated with an AND gate, filtering read address (raddr) variations
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when the read operation is disabled (ren=0), this saves the RAD logic
to useless switching. The mux output is then sampled by a flip-flops
stage, in order to provide a synchronized output to the successive logic
stages.

3.5.2 Precision-scalable architecture

In this paragraph, the proposed precision-scalable latch-memory
architecture is discussed. The fundamental idea is to group the C
latches belonging to every row in one or more precision-scalable
groups (PSG), which can be activated or deactivated as function of the
desired quality or of the input data statistic [52]-[54]. The number and
the size (number of latches in a given group) of the PSG can be
decided at design time, with minimal engineering effort, depending on
the level of precision scalability of the system in which the memory
are embedded, on the word size and, of course, on the application. The
proposed architecture requires modifications of write logic, storage
matrix and read logic, as detailed in the following.

3.5.2.1 Write logic and storage matrix modification

Fig. 29 reports the storage matrix and the input registers write
logic of the proposed architecture. In this example C=3, while R=2.
Note that an additional input, indicated as g/, is shown in Fig. 29.

wdin(C-1) wdin(1) wdin(0)
Lpak Lpa, Lpa

clk dkdin | ek ~beK |-»>CK
wen clk = clk_din_g1
gl

=D Qf =D Q =D Qf—
1~HCK =1CK -1~ACK
tclk_l:,_dli_n . enl strobel aic]- enl_gl [
strobe
“P Q -D Q ~p q
-+={CK “ -CK --+{CK
clk?_d;i Meaic] enR | strobeR o __e_nR_gl J
strobel

Fig. 29 Storage matrix and register logic of the proposed precision-scalable
architecture. Additional CGIC cells are needed.
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This signal allows to scale down precision (g/=0). In this
example, we assume to have a single PSG, with a group size (GS) of 2
(we are grouping and conditionally disabling 2 LSBs of the memory).
Focusing on the input register logic, we observe that a CGIC cell,
whose enable is the AND between wen and g/, allows to gate the
clock of the registers wdin(1), wdin(0) and of all latches belonging to
the PSG (blue wires in Fig. 29). In this way, when g/=0, the input
registers are not updated (the clock clk din gl will be always low),
avoiding to write in the latches of the PSG. This saves the dynamic
power associated to: (i) the updating of the input registers, (ii) the
updating of the latches, (iii) the switching of the input clock
capacitance of flip-flops and latch, (iiii) the switching of the clock
buffers belonging to the gated clock in the PGS (blue wires in
Fig. 29). The drawback of this approach is given by the need of
additional CGIC cells in the storage matrix. These additional CGIC
cells are reported in blue in Fig. 29. They take as enable signal the
corresponding strobe signal of the row (coming from the WAD, as in
the architecture previously discussed) and the gated clock clk din gl.
In this way, when g/=1 (full precision modality), clk din gl 1is
enabled and the new data is written only in the latches belonging to
the desired row, thanks to the strobe signals. The number of additional
CGIC cells is a function of the Number of Precision Scalable Groups
(NPGS) and the number of rows R:

Neger = NPGS -(1+R) (3.57)

The increased number of CGIC cells represents an overhead in
terms of area, leakage and dynamic power when operating in full
precision mode. It is worthwhile observing that, thanks to the dual
stage clock gating, the additional CGIC in the storage matrix
contribute to dynamic power only when the signal clk din gl is
enabled (full precision mode and enabled writing).

3.5.2.2 Read logic modifications

Fig. 30 shows the proposed read logic modifications, relative
to the example of Fig. 28. As previously discussed, when g/=0 all the
latches in the PSG are clock (enable) gated, therefore their output,
which constitute the input of the read logic mux is freezed. However



138 VLSI Circuits For Approximate Computing

this does not prevent the mux to switch, since, when ren=1, the read
address changes, causing commutations of the rowsignal and useless
switching of the mux belonging to the precision-scaled group.
Therefore, the row signal is gated with the precision control input g/,
before to act as selection signal for the mux of the PSG; this involves
R additional AND gates per group. Again, these additional AND
gates, while saving dynamic power when operating in scaled precision
mode, represent an overhead in terms of area and leakage; moreover
they contribute to dynamic power when operating in full precision
mode. As done for the input registers, the output registers are also
gated using an additional CGIC cell per group, whose enable is the
AND of the ren and the g/ signal. This also allows avoiding
switching activities in the successive logic stages. The total number of
additional CGIC cells, accounting also for these last ones, is given by:

Noge = NPSG-(2+R) = NPSG- R (3.58)

Therefore, in practical applications, the additional
number of CGIC cells grows linearly with the number of precision
scalable groups.

| rowsel_g1 i

UX/

L D Q =D Q
ren —feaic—=——=pCK “ >CK “ >CK
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¥ v
gl rdout(C-1) _ rdout(1) rdout(0)
Precision-scalable group

Fig. 30 Proposed precision-scalable read logic. The mux belonging to PSGs are
operand-isolated when the corresponding PSG is disabled.

As a final note, some applications may require the rdout bits
belonging to PSGs to be zero when operating in scaled precision
mode. This can be obtained by a simple modification of the read logic
of Fig. 30 postponing the gating of the output registers of one clock
cycle (in this way the zero value produced by the mux can be sampled
by the registers). This requires only an additional OR and two
flip-flops per PSG, with a negligible overhead.
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3.5.3 VLSI implementation results

In order to investigate the performance of the proposed
architecture and the power-quality trade-off, the Precision-Scalable
Latch Memory has been implemented in 40nm TSMC technology and
simulated assuming to be embedded in a computer vision system, as
frame buffer. We have implemented the proposed circuit with word
size C equal to 8 and 16 and with R spanning from 32 to 128. Higher
storage capabilities can be obtained by arranging more banks in
parallel and adopting a 2-dimensional addressing scheme. For the
memories with C=8 a single PSG (“PSG1”) has been employed,
grouping four LSBs. For C=16 two PSGs have been implemented:
PSG1 going from bit 0 (LSB) to 6 and PSG2 going from bit 7 to 11.

Proposed and Classical SCMs (Fig. 28) have been described in
Verilog HDL with the aid of Matlab scripts. The CGIC cells found in
the standard cell library have been directly instantiated into the
Verilog netlist. The circuits have been synthesized using Cadence
RTL Compiler, imposing a clock period constraint of 1 ns. To this
regard, the RTL Compiler synthesis directive synthesize —to_mapped
—effort high has been employed; moreover the Physical Layout
Estimation flow has been followed in order to estimate wire parasitics.
Please note that for circuits using clock gating, the timing of the
enable signals of the CGIC cells is not accurately accounted during
synthesis phase, because of the lack of the clock tree. Therefore, in
order to accurately the timing, the circuits have been automatically
placed and routed using Cadence Encounter. Power dissipation has
been evaluated from VCD and SDF-based post-layout simulations, in
which the memory control signals (ren, wen, raddr, waddr) have been
generated by a FSM, implementing the control for a convolution
operation (image filtering). The memory has been periodically written
with pixels belonging to real images encoded on 8-bits (for the
memories with C=8) and 16-bits (for the memories with C=16).

The Tab. XII shows the post-layout performance of classic and
proposed latch memories. Area and leakage overhead is about 16%
and is due, essentially, to the addition of CGIC cells as shown by
equation (3.58).

The Tab. XIII shows power performance. In this table Pry and
Pr refer to dynamic power evaluated by assuming a periodic writing
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and no writing operation, respectively. In full-precision mode, the
dynamic power overhead due to the additional CGIC cells is
significant during read-write operations (in the rangel7%-27%) while
it is much lower during read-only operation. The dynamic power is
strongly reduced in the proposed memory, when the precision is
scaled down. During read-write operations the improvement in power
compared to the standard topology of Fig. 28 reaches 29% in the case
C=8 and 56% for C=16. When only read operations are done, power
saving increases up to 66%. The image quality, quantified with the
Structural Similarity Index, SSIM [50], is also reported in Tab. XIII.
A value of SSIM=1 means perfect similarity. For C=16 and a single
PSG shut down, SSIM=0.99 and hence image quality is practically
unaffected by precision scaling. In the other cases, SSIM is about 0.64
showing a certain amount of image degradation.

TABLE XII. POST-LAYOUT IMPLEMENTATION RESULTS

Topology (R,C) | F [GHz] | Area [um’] | Piuakace [BW]
Classic 64,8 1.0 3622 1.875
Proposed 64,8 1.0 |4066 (+12%)| 2.183 (+16%)
Classic 128,8 1.0 7595 4.103
Proposed 128,8 1.0 8653 (+14%)| 4.756 (+16%)
Classic 32,16 1.0 3359 1.71
Proposed 32,16 1.0 3767 (+12%)|  2.052 (+20%)
Classic 64,16 1.0 7032 3.498
Proposed 64,16 1.0 8016 (+14%)| 3.969 (+13%)

TABLE XIII. POST-LAYOUT IMPLEMENTATION RESULTS

Standard | Proposed ll’)goGp;):eld Proposed
R,C architect. | full precis. PSG1=D, PSG2=D; SG1=D

) o ST ST
6.8 0.0 0307|516 0309 030200170 o
128 0 515{ 0289 |53 0307 0386(0. 193 (1 T
32,16)0.033 0310|533 03330354 0219 o 10216/0.14T]
64.16{0654 |04 5| 0455 0.506 0,266 o 0257 0,151
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To further investigate this aspect, the Fig. 31 shows the quality
degradation obtained after applying a sharp filtering to an 8-bit depth
grayscale image, read from the proposed memory with PSG disabled.
While quality degradation is perceptible, it is still adequate for several
error tolerant applications.

Fig. 28 Quality degradation due to the scaled precision in the proposed
memory, during a sharp filtering operation.

3.6 Conclusions

In this chapter my research activity regarding
precision-scalable units has been discussed. The first part of the
chapter focuses on truncated multipliers. This are usually employed in
DSP applications to trade performance with accuracy, in a fixed way.
The state of art error compensation technique for truncated multipliers
have been discussed. Then, a precision-scalable truncated multiplier,
introduced recently in the literature, has been introduced. This can be
used in precision scalable-systems to account for the different
precision needs and error resiliency of processed datasets. For this
kind of precision-scalable multipliers no error compensation technique
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have been proposed in hardware. Therefore an hardware
compensation technique have been proposed, able to adapt to different
dataset. The proposed compensation technique is named as Real-Time
Data-Aware Compensation technique, since it sense, which a given
subsampling period, the committed errors, without making any
statistical assumption on the error done. In this way the error can be
compensated, independently from the particular dataset statistic. A
compensation circuit is devoted to calculate the errors and adjust the
value of the compensation term, on the basis of the mean error done.
In order to achieve high energy efficiency the subsampling period of
the error must be aggressive. The proposed approach has been
employed in a precision-scalable Multiply and Accumulate Unit, for
computer vision applications.

The comparison with the other compensation technique shows
that proposed approach is able to adapt to different dataset providing
significantly improved quality results where the other technique fails
and equal quality results where other compensation technique
alternate their domain.

In terms of quality-power tradeoff, proposed MAC Unit with
Real-Time Data-Aware compensation technique exhibits improved
quality-energy performance for deeply-scaled precision level,
allowing to shift the energy bound toward higher energy efficiency
levels. The proposed MAC has been employed on some Convolutional
Neural Network kernels showing an always better energy-quality
tradeoff than precision-scalable MAC with no compensation
technique.

Moreover, a precision-scalable Approximate MAC unit has
been proposed. The MAC employs partial products recoding and
compression to achieve energy efficiency. The precision-scalability
allows tuning the precision level according to the incoming dataset. A
low-overhead compensation technique is employed to coarsely
compensate the committed errors. The proposed circuit allows
reaching 53% power reduction with tolerable image quality
degradation.

In the second part of the chapter a precision-scalable
latch-based memory has been discussed. This memory can be used as
embedded memory in precision-scalable systems.
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When the precision is scaled down, the dynamic power
dissipation can be reduced more than 60%, compared to the classical
Standard Cell Memory topology, with tolerable image quality
degradation.
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Chapter 4

A Precision-scalable Approximate

Convolver

4.1 Introduction

In this last chapter a precision-scalable Approximate
Convolver is discussed. 2D Convolution is a basic and
compute-intensive operation in many computer vision tasks such as
image processing and machine learning. Recently, Convolutional
Neural Networks are achieving huge interest, due to their significantly
better accuracy results (moreover the availability of GPU acceleration
has drastically reduced their training time, allowing massive usage)
with respect standard approaches, in typical machine learning tasks
(image classification and segmentation, gesture recognition, object
detection, speech recognition, etc.). In CNN the convolutions account
for more than 90% of overall computation, dominating runtime and
energy consumption [88]. In this context, hardware acceleration plays
a critical role, allowing real time operations with optimized energy
consumption. As discussed in [3], the energy due to the memory
drastically impacts on the system energy budget, therefore, in the
design of an accelerator, both the datapath and the on-chip (and
offchip) energy contribution, must be accounted for and optimized.

In this chapter, the discussed precision-scalable Latch Memory
(chapter 3, paragraph 3.5) and precision-scalable Approximate MAC
Unit (chapter 3, paragraph 3.4 ) are employed in order to implement a
convolver for computer vision applications and machine learning. The
MAC unit allows mapping in hardware the 2D-convolution operation,
common to computer vision and machine learning tasks. By
employing the precision-scalable Latch Memory, the energy benefit
deriving from the approximate datapath (Approximate MAC Unit), is
not hidden by the memory energy consumption, since, when the
Approximate MAC works in precision-scaled modality, also the
memory can scale its precision and therefore its energy dissipation.
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4.2 Architecture

In this paragraph the architecture of the precision-scalable
Approximate Convolver is described. Let us recall that in the
2D-convolution operation (3.36), a convolutional window of size gxq,
representable as the kernel matrix, is slid on the image, as shown in
Fig. 1, where two convolutional windows W1 and W2 are shown.

Image Kernel

Y13 | Y14

Y¥2,3 | Y2,4

Y3,3 | Y3,4

W1=Y1,1*K1,1+Y1,2%K1,2+Y2,1*K2,1+Y2,2*K2,2
Y41 | Y42 | YA3 | Y44

Kernel

W2=Y2,1*%K1,1+Y2,2*K1,2+Y3,1*K2,1+Y3,2*K2,2

Fig. 1 The kernel is slid on the image. Therefore the filtering of the whole image
requires multiple convolutional windows (like W1 and W2) .

The redundant nature of the 2D-convolution operation allows
exploiting data reuse, in order to reduce the access to both on-chip and
off-chip memory [89]. Moreover, since multiple convolutional
windows are required to filter the whole input image (Fig. 1), this
allows to exploit parallelism in order to achieve real-time operation.
Therefore in the proposed architecture each convolutional window is
mapped on a single Approximate MAC Unit. The resulting
architecture is shown in Fig. 2. Here, three Approximate MAC Units
are considered, organized on three rows. Each of them receives one
operand (image pixel) from the corresponding row memory, while the
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other operand is shared between the MAC of the column and is
provided by a memory storing the kernel coefficients.

a)
Memory (Coefficients)
KZ,1|K3,1|Kl,Z|K2,2|K3,2|K1,3|K2,3|K3,3 A1,2|A1,3|A1,4]A1,5|AL,6|A1,7|AL,8
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A6,1[A6,2| +..  |AES]

A9,1(A9,2 A9,
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Memory (Coefficients)

b) K1,1|K2,1|K3,1|K1,2|K2,2|K3,Z|K1,3|K2,3|K3,3 A1,1(A1,2|A1,3]A1,4]|A1,5[A1,6]A1,7[A1,8]
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Bank_control
Fig. 2 (a) A new convolution is started. Three image pixels, corresponding to three
convolutional windows computed in parallel through the three MACs, are loaded
from the rows memory, together with a kernel coefficient. (b) second step of the
convolution: two image pixels have been read in the previous clock cycle, therefore
their value is read from the auxiliary registers with the help of the mux logic,
exploiting, in this way, the data redundancy characterizing 2D-convolution
operation.

The working principle is described in the following. Let us
observe that the employed topology allows parallelizing the
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convolutional window along the Y dimension (Fig. 2). The Fig. 2 (a)
shows the start of a convolutional operation: three image pixels are
read from the three rows memory together with a kernel coefficient,
read from the memory on the top. The pixels and coefficient read are
highlighted on the right side of the Fig. 2 (a). Each of the three MACs
perform the multiplication between the corresponding image pixel and
the shared kernel pixel. Therefore different pixels, displaced along the
Y dimension are multiplied by the MACs with the same kernel
coefficient. This means that each MAC is computing a different
convolutional window, each of them displaced along Y (compare with
Fig. 1, showing that the same kernel coefficient K7,/ is multiplied
with Y1,1 and Y2, 1, belonging to two different and vertically displaced
convolutional windows W1 and W2). In the next clock cycle
(Fig. 2 (b)) one novel image pixel is loaded from the memory and
processed by the MAC at third row, while the remaining two pixels,
being already read at the previous clock cycle, are shifted up through
the registers (highlighted in yellow) and the mux logic, exploiting data
reuse. A novel kernel coefficient is instead needed at each clock cycle.
At the tenth clock cycle (the kernel is 3x3 in this example and we are
accounting for the latency of the accumulation register) three filtered
pixel are produced by the three MACs, each one is the result of the
corresponding convolutional window, as shown in Fig. 3. Note that
when a new column of the convolutional windows starts, all the image
pixels are read from the rows memories, while, in the other cases only
one image pixel is read from one pixel memory and provided to the
MAC in the last row. The described mechanism assumes that the
image pixels are memorized in the memory rows in interleaving, in
particular, pixels belonging to the same image row must be stored in
the same row memory, while two contiguous pixel row must be stored
into different (preferably contiguous to facilitate the control circuit)
rows memories. The Fig.4 shows the data moving during the
convolution operation. The bolded edges represents the pixel loaded
from the rows memories in a given clock cycle.

The architecture shown in Figs. 2-3 can be extended on more
columns, allowing to filter the same image with different kernels, at
the same time. This scenario is typical in Convolutional Neural
Networks. In this way the data reuse is further exploited. The Fig. 5
shows the resulting 2D architecture, in which LxH MAC Units are
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employed, while L+H memories are needed. Once the convolution is
completed, the resulting H outputs per column, must be provided as
output. To this regard, the MAC Units can employ a register after the
accumulation one.

Memory (Coefficients)
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Fig. 3 End of the convolution. Three outputs, corresponding to the three
convolutional windows parallelized, are produced.
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3.1 A4, . A4,2 . A4,3 .

Fig. 4 Data moving between the MAC at different clock cycles. The bold edges
indicates pixels that, in a given clock cycle, are read from the memory, the arrows
highlight reused pixels.
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This register is normally clock-gated and is enabled when a new result
from convolution must be stored (therefore each ¢° clock cycles,

being the kernel matrix ¢xg). Therefore, at the end of each
convolution H filtered pixels are stored into the corresponding MAC

output register for ¢ clock cycles, allowing to provide to the output

the H pixels through a multiplexer logic, if the following condition
holds:

q2 >H (4.1)

BANK BANK ... BANK
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Fig. 5 Convolver Architecture. LxH MACs are employed, while L+H memories are
needed.

Bank_control

4.3 Precision-scalability

A discussion about the combined precision-scalability of Latch
Memory ad MAC Unit is needed. As for chapter 3, nt represents the
number of discarded least significant columns of the compressed
PPM, while the Latch Memory employs a single Precision Scalable
Group (PSG), allowing to freeze (to zero, as discussed in chapter 3) 4
least significant bits.
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Fig. 6 Resulting compressed PPM when the memories precision is scaled
down.

The Fig. 6 shows the compressed PPM when the Latch
Memories operate in scaled precision modality. The red-barred terms
are deleted due to the precision reduction of the memory. The gray
circled terms are OR-compressed partial products where one of the
two is zero (therefore surviving only the non-zeroed partial product),
while the blue circled terms are 1, due to the NAND. We can observe
that , when PSG=D, varying nt from 0 to 8 has no effect on the
compressed partial product matrix, being the terms already zeroed by
the memory. In the case of PSG=D, nt=8 corresponds to the
maximum precision of the Approximate MAC. Note that corrected
compensation constant must be calculated for nr=8-9-10. The
calculation of this constant can be done by following the discussion of
the paragraph 3.43 (chapter 3). Note that, however the blue circled
terms offers a partial compensation, being 1. It is worthwhile
observing that for nt >11 no modifications of the PPM occurs due the
memory, therefore the compensation constant is the same of that
determined in the paragraph 3.43 (chapter 3).

Note that while in this paragraph we have assumed that both
the memories are precision-scaled, hybrid scenarios can be adopted,
when only on the of the two memories operates at reduced precision.
However, in the following of the chapter we will assume that both the
Latch Memories providing the operands to the MACs scale down the
precision.

4.4 VLSI Implementation results
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The proposed architecture has been described in Verilog HDL
and synthesized in TSMC 40nm CMOS technology using Cadence
RTL Compiler. In our case H=L=4 , therefore 16
precision-scalable Approximate 8-bit MAC Units (chapter 3,
paragraph 3.4) have been employed, while 4 precision-scalable
0.512Kbit Latch Memory (chapter 3, paragraph 3.5) have been
employed as frame buffer for the image pixels and 4
precision-scalable 0.256Kbit Latch Memory have been employed to
store the four kernels (note that 0.256Kbit allows storing up to 5x5
kernels, represented on 8-bits). Obviously, other choice for H and L
can be employed, depending on the application and on area, power
and throughput constraints. A finite state machine has been
implemented in order to manage the memories control signals to
implement the convolution operation. A full-precision convolver,
employing standard MAC Units and Latch Memories has also been
described and synthesized, in order to evaluate the performance
improvements. The Tab. I shows the area and leakage performance of
the proposed circuits.

TABLE I. VLSI IMPLEMENTATION RESULTS-@VDD=1.1V

Circuit F [GHz] | Area [um’] | Preaxace [0W]
Classic Convolver 1.0 34100 28.897
Proposed Convolver 1.0 38329(+12%) | 32.161(+11%)

As shown in Tab.I the proposed precision-scalable
Approximate Convolver exhibits an area overhead of 12% and a
similar leakage overhead. Note that this overhead is due to the
precision-scalable Latch Memory (compare Tab. XII of chapter 3).

TABLE II. POWER DISSIPATION-@VDD=1.1V; F=1GHz

Circuit PSG
Classic Convolver
Proposed Convolver
Proposed Convolver
Proposed Convolver
Proposed Convolver
Proposed Convolver
Proposed Convolver
Proposed Convolver
Proposed Convolver

Ppynamic [mW]
59.528

55.578(-1%)
52.597(-12%)
46.064(-23%)
40.587(-32%)
37.770(-37%)
31.249(-48%)
26.150(-56%)
23.389(-61%)

=S I IS E R E
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The Tab. Il shows the dynamic power improvements for
different precision levels, when the Lena image is convolved with a
Gaussian filter. Note that at working clock frequency (1GHz) the
dynamic power dissipation is about three order of magnitude higher
than leakage power (Tab. I). Therefore in the comparison of Tab. II
the improvement expressed in terms of dynamic power corresponds to
the improvement in terms of total power dissipation. We can observe
that in case of fullprecision (PSG=1; nt=0) there is a little power
saving (7%) due to the approximate compression of the partial product
matrix of the Approximate MAC Units, allowing to compensate the
overhead due to the precision-scalable Latch Memories (compare
Tab. XII of chapter 3). When the memories are in full-precision
(PSG=1) and only the precision of the Approximate MAC Unit is
decreased, power savings up to 32% can be achieved with tolerable
image quality degradation (nt=11, corresponding to point b in Fig. 27,
chapter 3). It is worthwhile observing that for the case in which only
the Approximate MAC Unit was considered (chapter 3), for nt=11 a
power saving of 53% could be achieved. Therefore the memories
partially hide the power saving achieved using approximate arithmetic
blocks. When the precision-scalable Latch Memories operate in scaled
precision-mode (PSG=D), significant power savings are observed,
allowing a 56% power saving with tolerable quality degradation (as
discussed in the previous paragraph, there is no difference in terms of
discarded partial products in the PPM between the conditions
(PSG=D, nt=11) and (PSG=1, nt=11), both corresponds to point b of
Fig. 27 of chapter 3, therefore for nt=11 there is no reason to keep the
memory in full-precision mode).

4.5 Conclusions

A precision scalable Approximate convolver has been
discussed in this chapter. The convolver employes the
precision-scalable Latch Memory and the precisionscalable
Approximate MAC Unit discussed in the chapter 3, to develop a
convolutor for computer vision and machine learning applications.
Due to the precision-scalability of the memories, the
precision-scalable Approximate Units energy improvement are not
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hidden. Indeed, when Latch Memories operate in scaled precision
modality, the power saving, with respect standard convolver is
increased up to 56%, with tolerable image quality degradation.
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