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Chapter 1 
 

Introduction 

1.1 Approximate Computing: motivations 
In the last years, important changes occurred in the VLSI 

world and, more in general, in the electronic community. The 
traditional Dennard scaling [1], which allowed, for around three 
decades, to obtain always smaller transistors with better performance, 
broke off in about 2005 [2]-[3]. 

While Moore’s Law continues to provide increased transistors 
count (in 2014 Intel launched 14nm node [4]), the benefits deriving 
from smaller transistors sizes, diminished. Indeed reliability and 
energy issues (i.e. leakage power) arising with nanometer feature 
sizes, prevent threshold voltage to scale down and therefore operating 
voltage has remained at a constant value for several processor chip 
generation [4]. Moreover, in the race for always better performance, 
clock frequencies scaled up faster than dictated by Dennard scaling 
(Fig. 1) [3]. As a consequence of this phenomena, it was not possible 
to keep the power envelope constant from a generation to the 
successive (Fig. 2). The uninterrupted increase of chip power density 
(delayed by the clever low-power methodologies developed in the 
years [3]) stopped the clock frequency scaling, since processors 
attained the power wall for air cooling [3] (Fig. 1). 

On the other hand, the computing workloads have profoundly 
changed, due to applications needing increased computing power to 
perform Recognition, Mining, Synthesis (RMS) tasks [5], to process 
always richer media and to interact with users and environment [6]. 

The need for always more computing power and the gain 
limitations due to the end of Dennard scaling (e.g. clock frequency 
saturation [7], Fig. 1) marked the transition to the multi-core 
architectures. These, while leveraging the inherent parallelism of 
many applications, started to show their limits, mainly due to thermal 
power. Indeed, in multi-core architectures, due to fixed power budget, 
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it is not possible to use all the cores at the maximum frequency and, as 
a result, going from a generation to the successive, the fraction of chip 
area which is dark (i.e. in idle state) increases, leading to the so-called 
dark silicon [8]. 

 
Fig. 1 Clock frequency vs year [3]. The red line represents the frequency scaling 

employing Dennard scaling [1]. In the insert, voltage vs year is reported. Note that, 
since about 2005, the scaling for both clock frequency and voltage saturated. 

 
Fig. 2 Power density in 2mW mm  vs year  
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Ensuring high performance, while meeting the power budget is 
a really challenging task. Therefore researches and designers started to 
search novel solutions to compute efficiently. One of the key to 
overcome this challenge is hardware specialization, which allows 
improving energy efficiency up to 2-3 orders of magnitude [3], with 
respect to general purpose solutions. In this context, one of the most 
promising solutions is given by the Approximate Computing. Indeed, 
many applications exhibit approximation resiliency or can tolerate 
small errors without compromise significantly the quality of their 
results [9]. As an example, in multimedia applications, small errors 
can be tolerated, due to the limited perceptual capabilities of humans 
[10]. For instance, this concept has been already used in compression 
algorithms for images, audio, video. Moreover in RMS applications, 
there no exist an unique golden result, while rather, a good enough 
answer [11]. Other applications operates on imprecise data inputs, as 
those collected by sensors. 
 Therefore Approximate Computing, breaking the dogma that 
computation must be error free [12], exploits error resiliency of 
applications to achieve better performance. Indeed, relaxing the 
correctness requirement, simpler, faster and/or more energy efficient 
circuits can be obtained.  
 Approximate Computing, therefore, allows enlarging the design 
space, introducing quality (or accuracy) as additional variable, 
enabling new possible trade-offs between quality, power, area and 
speed. 

1.2 Research topics 
Approximate computing literature is very broad, involving many 
layers of computation, spanning from approximate programming 
languages to inexact hardware [13]-[18]. 
My research activity is based on the design and optimization of 
approximate fundamental digital blocks. 
As first topic, I have worked on adders, developing speculative 
(approximate) topologies of the main parallel-prefix adders. In order 
to use these topologies in common digital systems, speculative adders 
must include error detection and correction networks, leading to a 
variable-latency adder topology. I have worked on improvements of 
both error correction and detection networks.  
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In particular, part of my work has been devoted to develop an 
effective  error correction technique for speculative adders working 
with signed operands. 
As second topic I worked on digital building blocks for error tolerant 
applications. In this contest the requirement on the correctness of the 
results is relaxed, therefore computations can contain errors. I have 
investigated an error correction technique to contain the error rate 
when approximate adders deal with signed operands.  
Moreover, a study about suitability of approximate adders in 
carry-save Multiply and Accumulate units, has been investigated.  
In particular, Multiply and Accumulate (MAC) units constitute 
another recurrent arithmetic building block in digital systems. In this 
contest, I have worked on precision-scalable MACs, developing a 
novel, real-time (data-aware), error compensation technique. In this 
context I also developed a precision-scalable approximate MAC unit, 
in which the partial product matrix is compressed in an approximate 
way. 
Moreover I have investigated precision-scalable topologies of 
standard cell memories (SCMs). These are recently emerged as an 
alternative to SRAM Macrocells for systems needing a large number 
of small embedded memories. 
The precision-scalable MACs and SCMs can be part of a system that 
leverages approximations to improve energy efficiency. 

1.3 Thesis outline 
 The thesis is organized as follows.  
The chapter two reports my research activity about approximate 
adders. It is divided in two main parts, in the first one, after an 
introduction of parallel-prefix adders, the proposed speculative 
topologies are introduced. Moreover the error detection and correction 
techniques are introduced and investigated, for error-free applications. 
In the second part, approximate adders for error tolerant applications 
are illustrated. In particular an approximate adder is introduced, in 
which an error correction technique is proposed to decrease the error 
rate. An example for audio applications is shown. Moreover the 
suitability of approximate adders in carry-save MACs is investigated. 
The chapter three is divided in two sections. In the first one my 
research activity on precision-scalable MACs is discussed. The second 
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section shows a precision-scalable topology of a standard cell memory 
(SCM). 
In the chapter four a precision scalable approximate convolver for 
computer vision applications is discussed; this is composed of both the 
precision-scalable SCMs and MACs, shown in the chapter three.  
The activities shown in chapters three and four have been investigated 
in collaboration with National University of Singapore, Green IC 
group, where I spent six months as visiting PhD student. 
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Chapter 2 
 

Speculative Adders 

2.1 Introduction 
 This chapter focuses on the design of approximate adders 
topologies. These kind of adders are usually indicated, in the 
literature, as “speculative adders” [19]-[22]. 
 Speculative adders draw their motivations from the need to 
improve adders performance, which are usually limited by their long 
and rarely activated critical path, following a “better than worst case” 
approach [23]. 
 Improving adders performance is indeed a challenging and useful 
task, since adders are ubiquitous in digital systems and a great 
research effort has been spent in the past in order to optimize their 
performance in the area-timing-power design space. The great number 
of different adder topologies is the result of that investigation effort. 
Going from the simpler carry-ripple, to carry-select, carry-lookahead 
and parallel-prefix adders topologies [24]-[26], it is possible to trade 
area and power for timing, as a function of the specification of the 
system in which the adders are called to operate. 
 Theoretical study about adders have shown that the speed bound 
of n-bit binary adders goes as ( )2logO n . This bound corresponds to 
the worst case path, which involves a carry propagation that, starting 
from the least significant bit (LSB), reaches the most significant bit 
(MSB), traversing the whole adder. A such condition, under uniformly 
distributed and uncorrelated operands assumption, is pretty rare. 
Indeed, in [20] authors show that the average carry propagation length  
has a logarithmic behavior with the adder size n. The Figure 1 reports 
the carry length distribution in a 32-bit adder, with operands 
uniformly distributed and uncorrelated. In this example it easy to 
locate the mean value of the distribution, being around five, 
confirming the behavior discussed in [20]. Therefore in a 32-bit adder, 
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under the abovementioned hypothesis, in the average case, the carry 
propagation length is significantly smaller than adder size n, allowing 
enough room to make “the common case faster”.  

 
Fig. 1 Carry length in a 32-bit adder, with uniformly distributed and uncorrelated 

operands. The average carry length is around five. 

2.2 Speculative adders: general overview  
 In this section a general representation of speculative adders is 
introduced. Moreover, error detection network will be discussed. This 
general representation will be used, in the following of the chapter, to 
discuss the proposed topologies. At the end of this paragraph a brief 
review of the state of art is discussed. 
 As previously discussed, in a n-bit adder, the MSB of the result 
depends on all the previous bits, since, in the worst case, a carry can 
be generated in the LSB and can traverse the whole adder. The Fig. 2 
shows, in the employed representation, an n=18-bit adder, where the 
gray line treads the critical path. This is triggered by the following 
condition: 

 
Fig. 2 n=18 adder. The gray lines shows the critical path: a carry generates in the 

LSB and propagates up to the MSB. Therefore s17 has to “wait” the carry 
propagation before being correctly evaluated. 
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 { }
0 0 1

1, 1,2,..., 2i i

a b
a b for i n

= =
 ⊕ = ∈ −

   (2.1) 

where ⊕  stands for the XOR operation. When this condition occurs 
the evaluation of the sum s requires the biggest delay. 
 As discussed in the previous paragraph, condition (2.1), under 
the assumption that a and b are uniformly distributed and 
uncorrelated, is pretty rare, since the average carry length is 
comparable with 2log n . Leveraging this observation, speculative 
adders assume that carry propagates no more than p<n bits. Therefore 
each sum bit is predicted by considering only the p previous less 
significantly bits. This allows to repartition the adders into multiple, 
smaller, sub-adders operating in parallel [27], this turns into more 
efficient addition implementation, at the price of occasional errors. 
The Fig. 3 shows an example of speculative adder. 

 
Fig. 3 The adder of Fig. 2 is partitioned into five sub-adders operating in parallel. 

Each sub-adder, considers only p previous bits to evaluate r sum bits. 

In this figure, the adder of Fig. 2 has been subdivided into five 
sub-adders, each one, following the notation introduced in [28], 
produces r sum bits (with the exception of the first one, which 
produces r+p output bit), “speculated” considering only p previous 
bits. The size of each sub-adder is r+p. 

2.2.1 Error detection 

Speculative adders are usually augmented with an error 
detection network [18], [20]-[22], [28], [30]. This network flags the 
errors due to mispredictions, allowing to adopt different correction 
techniques. 
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 The Fig. 4 shows a possible error condition: a carry is 
generated at the bit position #1 and propagates for more than p (p=3, 
in this example) bits. As a consequence, the output from s6 to s10 are 
wrongly flipped, since they are calculated assuming that the carry-in 
of the second sub-adder is zero, due to speculation.  

 
Fig. 4 Example of error condition: the carry generated at bit position #1 propagates 

for more than p bits, determining an incorrect result. 

In order to formally determine a general error condition, let us 
introduce, in the following, the generate gi and propagate pi signals 
computed as:  

 i i ig a b=    (2.2) 
 i i ip a b= ⊕   (2.3) 

The condition gi=1 means that a carry is generated at bit i, while the 
condition pi=1 means that a carry is propagated through bit i. The 
concept of generate and propagate can be extended to a block of 
contiguous bits, from bit k to bit i (with k ≤ i) as follows: 

 [ : ]
[ : ] [ : ] [ : ]

if
otherwise

i
i k

i j i j l k

g i k
g

g p g
==  +

  (2.4) 

 [ : ]
[ : ] [ : ]

if
otherwise

i
i k

i j l k

p i k
p

p p
== 


  (2.5) 

where: i ≥ l ≥ j ≥k, and + operator stands for logical OR. 
The condition g[i:k]=1 means that a carry is generated in the block k-i, 
while the condition p[i:k]=1 means that a carry is propagated through 
the block. In the example of Fig. 4, g1=1, p2=1, determining g[2:0]=1; 
moreover, being p3=p4=p5=1, then p[5:3]=1.  
 Let us observe that an error occurs whenever a sub-adder 
should receive a carry-in equal to one, due to generation and 
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propagation in the previous bits. Indeed, with reference to Fig. 4, the 
second sub-adder assumes a carry-in equal to zero, due to speculation, 
while, instead, the real carry-in is one. This condition can be 
expressed as: 

 [5:3] [2: 0] error in sub-adder 2p g   (2.6) 

Similarly, the error condition in the third sub-adder can be expressed 
as:  

 [8: 6] [5:3] error in sub-adder 3p g   (2.7) 

Note that the (2.7) does not include all the error conditions of 
sub-adder three, since it can give incorrect results also when (2.7) is 
not asserted, due to errors happened in previous sub-adders; this is the 
case of Fig. 4. The error conditions in the other sub-adders of Fig. 4 
can be determined similarly. 
 Let us introduce a general Boolean equation for the error flag 
Eu [31]: 

 ( ) ( )
1

[ 1 1: ( 2) ] [ 1 1: ( 2) ]
2

M

u i r p i r r i r i r
i

E p g
+

− + − − + − − −
=

= ∑   (2.8) 

where  

 n pM
r
− =   

  (2.9) 

is the number of sub-adders and the ∑ symbol represents the logical 
OR. It is worthwhile observing that (2.8) is a necessary and sufficient 
error condition. 

2.2.1.1 Error rate analysis 

In [28] the error probability of speculative adders is expressed 
by means of a complex model. An approximate closed-form equation 
can be found following an approach similar to [18]. 

Let us observe that the first sub-adder, computing r+p outputs, 
is exact, therefore the error can occur in the remaining M-1 
sub-adders. For instance, in Fig. 3, we have an error in the second 
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sub-adder if (i) there is a carry-out coming from bit position #3 and 
(ii) this carry propagates across bits #4,5,6. In general for uniformly 
distributed operands, it can easily be demonstrated that condition (i) 
occurs with a probability of (1/2)(1-2-r), while condition (ii) occurs 
with probability 2-p. The error probability of each sub-adder is hence 
≈(1-2-r)2-(p+1) and the probability of having an exact result is 
≈1-(1-2-r)2-(p+1). Since we have M-1 inexact sub-adders, the overall 
error probability writes as: 

 ( )( ) 1( 1)1 1 2 1 2
Mp r

uniformp
−− + −− − −   (2.10) 

 The data in Tab. I show that (2.10) gives results very close to 
the exact model of [28]. 

2.2.2 State of art 

 Different implementations of speculative adders have been 
proposed in the literature. In [20] the Almost Correct Adder (ACA-I) 
is implemented with r=1 and exploits some hardware sharing between 
overlapping sub-adders. In [29] the Error Tolerant Adder Type II 
(ETA-II) is proposed and can be considered, in the representation of 
Fig. 3, as a speculative adder with r=p. In [18] the Accuracy 
Configurable Approximate Adder (ACAA) can be configured at 
runtime by changing circuit structure in order to tune accuracy; also in 
this case we have r=p in each sub-adder. The Speculative Carry-Select 
Adder (SCSA) of [30] also uses sub-adders and a similar carry 
prediction mechanism as ETA-II. The low-latency Generic Accuracy 
Configurable Adder (GeAr) [28] increases the design space by 
removing constraints on adder decomposition of previous approaches. 

TABLE I. ERROR PROBABILITY FOR UNIFORMLY DISTRIBUITED INPUTS 

Adder Config. 
(n,r,p) 

Error 
probability 
[28] 

Error 
probability 
(2.10) 

(12,4,4) 2.9297% 2.9297% 
(16,4,4) 5.770% 5.859% 
(16,4,8) 0.1831% 0.1831% 
(32,8,8) 0.3891% 0.3887% 
(48,8,16) 0.0023% 0.0023% 
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The Carry Speculative Adder (CSPA) is proposed in [22] and 
implements a carry-select speculative adder, composed by sub-adders 
as shown in the general scheme of Fig. 3, with r=p. 

2.3 Parallel-Prefix adders 
In this paragraph parallel-prefix adders are briefly recalled, in 

order to introduce, in the following of the chapter, the proposed 
speculative parallel-prefix adders topologies. 

The binary addition problem can be formulated as follows: 
given an n-bit augend A=an-1an-2...a0 and an n-bit addend  
B=bn-1bn-2...b0 generate the n-bit sum S=sn-1sn-2...s0. Let us indicate as 
ci the carry out of the i-th bit. The sum bit si and the carry ci can be 
computed as follows: 

 1i i i is a b c −= ⊕ ⊕   (2.11) 
 1 1i i i i i i ic a b a c b c− −= + +   (2.12) 

In prefix addition we use three stages to compute the sum: 
pre-processing, prefix-processing and post-processing. 
In the pre-processing stage the generate gi and propagate pi signal are 
computed as in (2.2) and (2.3). The concept of generate and propagate 
can be extended to a block of contiguous bits, as shown in (2.4) and 
(2.5). In particular the signals defined by (2.4) are called block 
generate while the ones in (2.5) are called block propagate. Thus, for 
any bit i, the carry ci can be expressed as: 

 [ :0] [ :0] 1i i ic g p c−= +   (2.13) 

where c-1 is the input carry of the n-bit adder. In the following, for the 
sake of simplicity, we assume that c-1=0, so that (2.13) simplifies as: 

 [ :0]i ic g=   (2.14) 

The block generate and propagate terms are computed in the 
prefix-processing stage of the adder. To that purpose, the (g[i:k], p[i:k]) 
couples are expressed with the help of the prefix operator ● defined as 
follows: 
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g p g p g p

g p g p p

= • =

+
  (2.15) 

where: i ≥ l ≥ j ≥k. The prefix operator has two important properties: it 
is associative and it is idempotent. These properties are exploited in 
the prefix-processing stage to speed-up the computation. 
 Finally, in the post-processing stage, the sum bit si are 
computed using (2.13) and: 

 1i i is p c −= ⊕   (2.16) 

2.3.1 Kogge-Stone 

The Kogge-Stone parallel-prefix stage [32] is shown in Fig. 5. 

 
Fig. 5 n=16 Kogge-Stone prefix-processing stage. 

Here black dots represent the prefix operator (2.15), while white dots 
are simple placeholders. Kogge-Stone adder is composed by log2(n) 
levels, and present a fanout of two, using a large number of cells and 
many wire track. 

2.3.2 Brent-Kung 

 The Brent-Kung [33] adder topology is shown in Fig. 6. The 
number of black dots is lower than Kogge-Stone, while still presenting 
a fanout of two. This is achieved using additional levels. The total 
number of levels is 2log2(n)-1. 
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Fig. 6 n=16 Brent-Kung prefix-processing stage. 

2.3.3 Han-Carlson 

 A good trade-off between fanout, number of logic levels and 
number of black cells is given by Han-Carlson (Fig. 7). The outer 
rows of the Han-Carlson [34] topology are Brent-Kung graphs, while 
the inner rows are Kogge-Stone graphs. Han-Carlson adder exhibits an 
additional level with respect Kogge-Stone, being their total number 
equal to log2(n)+1. 

2.3.4 Hybrid Han-Carlson 

 The Hybrid Han-Carlson [35] (Fig. 8) further decreases 
complexity with respect Han-Carlson, at a cost of two additionals 
levels with respect Kogge-Stone adder. The two outhers rows are 
Brent-Kung graphs, while the inner ones are Kogge-Stone graphs. 
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Fig. 7 n=16 Han-Carlson prefix-processing stage. 

 
Fig. 8 n=16 Hybrid Han-Carlson prefix-processing stage. 

2.3.5 Sklansky 

 Sklansky [36] uses the minimum number log2(n) of levels, but the 
fanout of black cells (implementing the prefix operator (7)) double at 
each level (Fig. 9). 
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Fig. 9 n=16 Sklansky prefix-processing stage. 

2.3.6 Ladner-Fisher 

 Ladner-Fisher [37] (Fig. 10) adder represents and intermediate 
topology between Skalansky and Brent-Kung. Indeed, the first two 
level are Brent-Kung graphs, the intermediate levels are Sklansky 
graphs (with consequent increased fanout from one level to the 
successive) while the last one is a carry merge level, common in 
Brent-Kung, Han-Carlson and Hybrid Han-Carlson topologies. The 
toal number of levels is log2(n)+1. 

 
Fig. 10 n=16 Ladner-Fisher prefix-processing stage. 
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2.3.7 Carry-Increment 

Fig. 11 shows an example of a carry increment (C-I) adder (this is the 
prefix adder corresponding to the carry select architecture). The input 
operands are divided into w size groups (w=4 in Fig. 11), each one 
using a Kogge-Stone topology in this example. The result of a group 
is propagated to all the bits of the next group using a string of black 
cells aligned on the same row. The total number of levels is 
log2(w) + n/w – 1. 

 
Fig. 11 n=16 Carry-Increment prefix-processing stage. 

2.4 Variable-Latency Speculative Adders 
 The general scheme of Variable-Latency Speculative Adders 
(VLSA) is shown in Fig. 12 [20], [22]. In this scheme, an approximate 
adder is augmented of an error detection network, as that discussed in 
paragraph 2.2.1, and of an error correction circuitry. The error 
detection asserts the signal E when the speculation fails. In this case 
an additional clock cycle is required to provide a correct result, 
through the error correction block. Therefore, the addition time is one 
clock cycle when speculation is correct, and two clock cycles when 
the speculation fails. We can define the average addition time Tavg, as 
follows: 

 2 (1 ) (1 )avg Err Err Errclk clk clkT P T P T T P= ⋅ ⋅ + − ⋅ = +   (2.17) 
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where Tclk is the clock period and PErr is the error probability of the 
speculative adder. 
 

 
Fig. 12 General scheme of variable-latency speculative adder. When the speculative 
sum is incorrect, the E signal is asserted. The pipeline is therefore stalled and, in an 
additional clock cycle, the correct result is provided as output, with the help of an 

error correction stage. 

 Variable latency speculative prefix adders can be subdivided in 
five stages: pre-processing, speculative prefix processing, post-
processing, error detection and error recovery. The error recovery 
stage is off the critical path, as it has two clock cycles to obtain the 
exact sum when speculation fails. In the following, this different 
stages are introduced. 

2.4.1 Pre-processing 

 In the pre-processing stage the generate gi and propagate pi signals 
are computed as in (2.2) and (2.3). Note that this stage is employed 
also in classical, non-speculative, parallel-prefix adders, as already 
discussed in the paragraph 2.3. 
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2.4.2 Speculative prefix-processing 

 The speculative prefix-processing stage is one of the main 
difference compared with the standard prefix adders recalled in 
previous paragraph. Instead of computing all the g[i:0] and p[i:0] 
required in (2.13) to obtain the exact carry values, only a subset of 
block generate and propagate signals is calculated; in the 
post-processing stage approximate carry values are obtained from this 
subset. The output of the speculative prefix-processing stage will also 
be used in the error detection and in the error recovery stages 
discussed in the following. 
 As discussed in the paragraph 2.2, the basic assumption behind 
speculative prefix-processing stage is that carry signals propagate for 
no more than p bits, with p<n and p=O(log2(n)). 

2.4.2.1 Han-Carlson topology 

 Han-Carlson (H-C) adder constitutes a good trade-off between 
fanout, number of logic levels and number of black cells. Because of 
this, Han-Carlson adder can achieve equal speed performance respect 
to Kogge-Stone adder, at lower power consumption and area [38]. 
Therefore it is interesting to implement a speculative Han-Carlson 
adder. 
 Moved by these reasons, we have generated a Han-Carlson 
speculative prefix-processing stage by deleting the last rows of the 
Kogge-Stone part of the adder [39]. As an example, the Fig. 13 shows 
the Han-Carlson adder of Fig. 7 in which the two Brent-Kung rows at 
the beginning and at the end of the graph are unchanged, while the last 
Kogge-Stone row is pruned. As shown in Fig. 13, the 9 rightmost 
output are exact (i.e. the values of g[i:0] and p[i:0] are calculated 
according to (2.13), for { }0,1,..,8i ∈ ), the other outputs are instead 
speculative, since the obtained block-propagate and generate span 
only to a subset of the inputs. As an example, the tree in Fig. 13 yields 
g[12:4] and p[12:4], instead of g[12:0] and p[12:0] (Fig. 7). 
 In the following, we indicate as h the number of exact output 
computed by the speculative carry-tree and as lj  the block length of 
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the j-th speculative output (as an example, in Fig. 13 we have h = 9 
and l12 = 9). 
 As shown in Fig. 13, the speculative outputs can be grouped, the 
member of the same group having a common black node parent (for 
example the output (g[11:4],p[11:4]) and (g[12:4],p[12:4]) have the same 
black node parent highlighted as 11:4). 

 
Fig. 13 Han-Carlson speculative prefix-processing stage. The last Kogge-Stone row 

of the n=16 bit graph is pruned. 

 The number of outputs belonging to the same group is indicated as 
r (conceptually is the same of the genral scheme of Fig. 3) in the 
following (r=2 in the example of Fig. 13). As it can be observed, the 
block length for the outputs of a same group varies from a minimum 
(pmin=8 in Fig. 13) to a maximum (pmax=9 in Fig. 13). We define: 

 { }min( ); max( ) for: , 1,..., -1min j max jp l p l j h h n= = = +   (2.18) 

We have: 

 1max minp h p r= = + −   (2.19) 

 The last condition holds for all the prefix-processing stages 
investigated in the following, being related to the intrinsic symmetry 
of the graph. 

2.4.2.2 Kogge-Stone topology 

 The Kogge-Stone (K-S) speculative prefix-processing stage has 
been proposed in [20], [40] and can be obtained by pruning the last 
levels of a traditional Kogge-Stone adder. In the example shown in 
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Fig. 14, the last level of a n=16 bit Kogge-Stone adder (Fig. 5) is 
pruned. 

 
Fig. 14 Kogge-Stone speculative prefix-processing stage. The last row of a n=16 bit 
Kogge-Stone adder is pruned, resulting in a speculative prefix-processing stage with 

K=8. 

The speculative Kogge-Stone tree of Fig. 14 is characterized by a 
pmin = 8, h = 8 and r = 1.  

2.4.2.3 Brent-Kung topology 

A speculative prefix-processing stage can be obtained by deleting the 
intermediate rows of the standard Brent-Kung (B-K) parallel-prefix 
graph [31]. Pruning the mid row eliminates just a single black cell and 
breaks the propagate chain only for the most significant bit; more 
interesting results are obtained by deleting a larger number of rows 
[39].  
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Fig. 15 32-bit Brent-Kung prefix-processing stages (a) Original topology; (b) three 

intermediate rows of the original graph are deleted; (c) five rows deleted. 

As an example, Fig. 15 shows how can be obtained a 32-bit 
speculative B-K adder. Fig. 15(a) shows the original 32-bit B-K adder, 
while Fig. 15(b) displays what happens when three intermediate rows 
of the tree are deleted. In Fig. 15(b) we have h=15, pmin=r=8, l18=11. 
The Fig. 15(c) shows the 32-bit B-K adder where five intermediate 
rows are deleted. In this case we have: h=pmax=7, r=4, pmin=4. 

2.4.2.4 Hybrid Han-Carlson topology 

 The Hybrid Han-Carlson (HH-C) speculative prefix-processing 
stage is generated by keeping unchanged the rows at the beginning 
and at the end of the graph while deleting intermediate rows [41]. As 
an example, the Fig. 3 shows a 32-bit HH-C adder in which a single 
row is pruned, yielding a speculative stage with h=pmax=19, r=4, 
pmin=16. 
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Fig. 16 32-bit speculative Hybrid Han-Carlson prefix-processing stage. The last 

Kogge-Stone row of the original graph is deleted 

2.4.2.5 Carry-Increment topology 

 Fig. 17 shows the speculative version of the Carry-Increment (C-I) 
adder of Fig. 11. As it can be observed, the output of each group is 
propagated only to the next group (i.e. the third group is not linked to 
the first one; the fourth group is not linked to the second one and so 
on). In this way, the number of logic level reduces from 5 to 3. The 
speculative stage in Fig. 17 has h=7, r=4, pmin=4. 
 In general, the number of pruned levels P depends on group size 
w, and is equal to: P=n/w-2 [39]. 

 
Fig. 17 Speculative architecture of n=16 Carry-Increment adder: the output of each 

group is propagated only to the next one 

2.4.2.6 Ladner-Fischer topology 

 A speculative Ladner-Fischer (L-F) topology is obtained by 
deleting the intermediate levels between these ones and modifying the 
last survivor level [39]. As an example, the Fig. 18 shows a 16-bit L-F 
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adder in which the last intermediate level is pruned, yielding a 
speculative adder with h= 9, r=4, pmin=6. 

 
Fig. 18 16 bit Ladner-Fisher speculative prefix-processing stage. 

2.4.2.7 Sklansky topology 

The Sklansky (SK) speculative prefix-processing stage is obtained by 
deleting the last levels of the non-speculative topology. Fig. 19 shows 
a 16-bit example with h= 8, r=4, pmin=5 

 
Fig. 19 16 bit Sklansky speculative prefix-processing stage. 

2.4.2.8 Discussion 

 Table II summarizes the relations between pmin, r, the number of 
pruned levels P and the adder size n (h and pmax can be obtained from 
(2.19)). As it can be observed, pmin is related to n and P, with the 
exception of C-I topology, where pmin is equal to group size w. The 
parameter r is fixed for K-S, H-C and HH-C speculative topologies, 
while in B-K, C-I, L-F and SK it depends on pmin. 
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 The number of levels of the speculative prefix-processing graphs 
is also reported in Table II. As it can be observed, a logarithmic 
behavior with pmin is exhibited. 

2.4.3 Post-processing 

In the post-processing stage we firstly compute the approximate 
carries, ic  , and then use them to obtain the approximate sum bits is  
as follows: 

 1i i is p c −= ⊕    (2.20) 

Similarly to (2.14), the approximate carries are obtained as the 
generate signals available in the last level of the prefix-processing 
stage. We have: 

 [ : 0]

[ : 1]

for: 

otherwise
i

i
i

i i l

g i h
c

g − +

<= 


   (2.21) 

2.4.4 Error detection 

 The speculative carries are calculated making the following 
assumption: 

  
  
i

i

c results from propagation through no more than
  l bits   (2.22) 

In this way, for Kogge-Stone topology we assume that carry can 

TAB. II –SPECULATIVE PREFIX STAGE PARAMETERS.  
 

Topology Lmin r Number of Levels 
Kogge-Stone  n/2P 1 log2(bLmin)=log2 n − P 
Han-Carlson  n/2P 2 log2(bLmin)=log2 n − P + 1 

Hybrid 
Han-Carlson 

n/2P 4 log2(bLmin)=log2 n − P + 2 

Brent-Kung n/2(P+1)/2 Lmin log2(bLmin)=2log2 n − P − 1 
Carry-Increment w Lmin log2(2Lmin)=log2 w + 1 

Ladner-Fischer 2+n/2(P+1) Lmin-2 log2(2Lmin) = log2 n − P 
+ 1 

Sklansky 1+n/2(P+1) Lmin-1 log2(Lmin)= log2 n − P  
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propagate for no more than Lmin bits, while for other topologies with 
r>1 we can tolerate, for some bit positions, carry propagation lengths 
longer than Lmin, but always smaller than Lmax. 
The error condition Eu for the proposed topologies is expressed by 
(2.8), where, in (2.9) p must be interpreted as pmin. 
 Let us investigate, with some examples, the error detection 
logic for the proposed topologies. 
For the Kogge-Stone topology of Fig. 14, the Eu is: 

 
[15:8] 7 [14: 7] 6 [13: 6] 5 [12:5] 4

[11: 4] 3 [10:3] 2 [9: 2] 1 [8:1] 0

K SuE p g p g p g p g

p g p g p g p g
−

= + + +

+ + + +
  (2.23) 

Considering Han-Carlson of Fig. 13 we have: 

 [9: 2] [1: 0] [11: 4] [3: 2] [15:8] [7 : 6]...
H CuE p g p g p g

−
= + + +   (2.24) 

Comparing (2.24) and (2.23) we can observe that the number of terms 
to be OR-ed in order to compute Eu is halved in Han-Carlson 
topology. This derives from r value: in Han-Carlson two carries are 
“speculated” from the same parent node, therefore it is sufficient to 
check the error of the parent node only. This is formally expressed by 
(2.9). 
 We name “checking nodes” the nodes of the prefix-processing 
stage, whose outputs are needed to compute the error signal. The 
checking nodes for both the Kogge-Stone example of Fig. 14 and the 
Han–Carlson example of Fig. 13 are highlighted as white-red cells in 
Fig. 20. 
As it can be observed, in Kogge-Stone some of the checking cells are 
at the last level of the graph; their output signals are available after 
three black cells delay. In Han-Carlson the critical checking cells are 
in the second last level of the graph and are also available after three 
black cells delay, in spite of the larger number of levels of the 
Han-Carlson prefix-processing stage. From the above observations, it 
can be concluded that error detection is sensibly simplified and 
potentially faster in Han-Carlson, compared to Kogge-Stone. 
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Fig. 20 The nodes of the prefix-processing stage, whose outputs are needed to 

compute the error signal, are named “checking nodes” and are highlighted as big 
hatched dots, for the topologies in Fig. 13-14. 

In the case of Brent-Kung of Fig. 15(b) one has: 

 [15:8] [7:0] [23:16] [15:8] [31:24] [23:16]B KuE p g p g p g
−

= + +   (2.25) 

whereas for the circuit of Fig. 15(c), with M=7 (2.9), we have: 

 [7:4] [3:0] [11:8] [7:4] [15:12] [11:8]

[27:24] [23:21] [31:28] [27:24]

g g g ...

g g
uE p p p

p p

= + + +

+ +
  (2.26) 

 In general, among the investigated topologies, the K-S one 
exhibits the most complex error detection stage, involving the OR of 
n-pmin terms. The H-C halves the number of terms to be OR-ed, while 
HH-C topology further decrease complexity, needing n-pmin/4 terms. 
Brent-Kung, Carry-Increment, Sklansky and Ladner-Fischer 
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speculative topologies shows a variable r value, depending on Lmin 
(see Tab. I), but they are general more effective than K-S.  
 Another important aspect to be considered is delay. In K-S some 
of the checking nodes are at the last level of the graph, and are hence 
late-arriving signals. The situation is better in H-C and C-I, where the 
critical checking nodes are in the second last level of the graph. The 
best configurations are, from this point of view, B-K and HH-C, in 
which the checking nodes are located in the middle of the tree [39]. 
 As an additional note, the need of driving the gates of the error 
detection stage increases the fanout of the checking cells, slowing the 
speculative prefix-processing stage. 

2.4.5 Error Correction 

 The error correction stage computes the exact carry signals (2.14), 
to be used to be used for i > h, in case of misprediction. 
The error correction stage is composed by the levels of the 
prefix-processing stage pruned to obtain the speculative adder. The 
Fig. 21 shows the error correction stage of the proposed speculative 
Han-Carlson adder; the error correction of the others topologies can be 
obtained similarly. 
 It can be observed that the inclusion of the error correction stage 
increases the fanout of some of the cells of the speculative 
prefix-processing stage, with adverse effect on adder speed. 

 
Fig. 21 Error correction and detection stages for the proposed speculative Han-

Carlson adder of Fig. 13. 
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2.5 Signed operands 
Unfortunately, the assumption made on operands statistics are not 
always verified. Indeed many applications make use of 2’s 
complement representation, in which, due to the sign extension, long 
carry propagations can arise more likely than the case of uniformly 
distributed inputs. 
 This issue is exacerbated, as discussed in [42], by the fact that, in 
practical applications using 2’s complement representation, small 
numbers appear more frequently than large ones. As an example, the 
Fig. 22 shows the probability density function for an audio signal (a 
13s fragment of a pop song with 16-bit 2’s complement encoding). As 
it can be observed the signal is far from being normally distributed 
and instead it follows closely a Gaussian shape. This comes in 
agreement with [30], which assumes a Gaussian distribution to capture 
the behavior observed in [42], through software profiling. 

 
Fig. 22 Probability density function for a 13s fragment of a pop song (16-bit 2’s 

complement encoding). The red curve is a Gaussian fit. 

In presence of distribution like that in Fig. 2, long carry propagation 
can arise when summing two small number with opposite signs. In 
this condition the carry propagation length is comparable with the 
adder size, significantly increasing the error rate. 
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Fig. 23 Operation of the speculative adder of Fig. 3, when the two operand values 

are: A=268810 and B=-70410. An error occurs in the four MSBs of the result. 

The Fig. 23 reports an error condition occurring when two operands, 
with opposite signs, are added using a speculative adder. In this figure 
the two operands are: A=268810 and B=-70410. As it can be observed, 
(i) the carry propagates along the most-significant r+p bits of the 
adder (r+p=6 in the example of Fig. 23) and (ii) there is a carry-out 
from bit position n-(r+p)-1 (i.e. from bit position #11 in the example 
of Fig. 23). Thus an error occurs and the adder output is computed as: 
Y=-3078410 instead: of 198410. 

2.5.1 Error rate analysis 

 In this section a lower bound for error rate of speculative adders in 
presence of Gaussian distributed operands is shown.  
 An error condition like that represented in Fig. 23 can be 
summarized as: 

 
0

0
A Q

Q B
A B

< <
− < <
 >

  (2.27) 

where  
 ( )2n r pP − +=   (2.28) 
 In fact, since 0<A<Q and -Q<B<0 the r+p MSBs of A are all 
zeros and the r+p MSBs of B are all ones (and the carry propagates 
along the most-significant bits of the adder). Moreover, since the 
result is positive (A>B) there is certainly a carry-out from bit position 
n-(r+p)-1. Another error condition occurs also when the roles of A and 
B are swapped: 
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0

0
B Q

Q A
B A

< <
− < <
 >

  (2.29) 

In conclusion, we have an error whenever A and B have 
opposite signs, A+B>0 and both |A| and |B| are smaller than P. The 
most evident case is: A=1 and B=-1 that, in the adder of Fig. 23, gives 
as a result -64. 
 The probability of the conditions (2.27) and (2.29) is quite 
small in the case of uniformly distributed operands (in this case the 
probability that the r+p MSBs of an operand are all one or all zero is 
2−(r+p )). Instead, when the operands are Gaussian distributed the 
probability of (2.27) and (2.29) can increase significantly. 

Let us observe that the two conditions (2.27) and (2.29) happen 
with the same probability, therefore, naming pA the probability of the  
case (0<A<Q, -Q<B<0, A+B>0), the probability p1 of the conditions 
(2.27) and (2.29) is given by p1 = 2pA. The probability of 0<A<Q, 
under our hypothesis writes as: 

 1Pr(0 )
2 2

QA P erf  < < =  σ 
  (2.30) 

where erf is the error function and σ is the standard deviation of the 
Gaussian distribution (assumed to have zero mean). Moreover, using 
Gaussian symmetry, we have  

 Pr( 0) Pr(0 )P B A B− < < = < <   (2.31) 

while the probability of A+B>0 is equal to 1/2. By using the 
proprieties of jointly independent Gaussian variables (the operands are 
assumed uncorrelated) and exploiting the symmetry of the problem, 
the probability p1 can be expressed as the product of the single events 
[43]: 

 2
1

12
4 2A

Qp p erf  = =  σ 
  (2.32) 

It is important to note that (2.32) is only a lower bound of the actual 
error probability, since there are other error conditions not included in 
(2.27), (2.29). For instance, an error can occur also in the case when 
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A>Q and B<-Q, or even independently from the sign and the size of 
the operand. Nevertheless, these additional error components are often 
negligible compared to (2.32). 
 The Fig. 24 shows simulated error probabilities for three 
different adder configurations. For each adder, several simulations 
with Gaussian distributed operands have been performed, by varying 
the standard deviation σ of the distribution. One million randomly 
generated inputs have been simulated for each σ value. As it can be 
observed, the simulated error probability is much larger compared to 
the case of uniformly distributed inputs. The equation (2.32) predicts 
fairly well the numerical results; it can be observed that pgaussian→0.25 
when Q/σ>>1 that is: σ<<Q. The largest deviations between (2.32) 
and numerical simulations occur in the case n=16, r=4, p=4 where the 
adder error probability is quite large (about 6%) also for uniformly 
distributed inputs. 

 
Fig. 24 Error probability for three adder configurations, with Gaussian input 

distribution. The number in brackets are: n,r,p respectively. Lines: equation (2.32); 
dots: simulations. 

 

2.6 Variable-Latency Speculative Adders for 
signed operands 
In presence of Gaussian distributed operands, as discussed 

above, the average carry propagation length increases significantly, 
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therefore the assumption, made in the case of uniformly distributed 
operands, that the carry propagates no more than p<n bits fails. As a 
consequence the error rate increases significantly (Fig. 24), degrading 
the average addition time (2.17). 

In order to address this issue, both [30] and [42] introduce a 
global carry signal, triggered in presence of a carry chain longer than 
p. This global carry is taken into account in the approximate adder by 
using additional logic levels that negatively affects overall 
performance of the speculative adder.  

2.6.1 Speculative assumption for signed operands 

The speculative assumption (2.22), employed in the case of 
uniformly distributed operands, fails when working with signed 
operands. It is, therefore, needed to determine a novel assumption to 
mitigate the error rate increase. 

In Fig. 25(a) (where h=7 is assumed). two decimal numbers 39 
and −47 are summed and the carry is killed in bit #3; in this case the 
speculating condition (2.22) is verified and we can use (2.21) to 
compute carries without errors. 

On the other hand (Fig. 25(b)) summing the two decimal 
numbers 47 and -39 the carry generates in bit #3 and then propagates 
up to the most significant bit. The speculating condition (2.22) fails in 
this case, which is flagged as an error, with Eu=1. Note that in this 
case the carries from c3 through cn-1 are all one, while the sum bits 
from position 4 through n-1 are all zero. 

Thus, to reduce error rate, we assume a different, less stringent, 
speculating assumption to obtain ic  for i≥h: 

 

 
  

=1 

1

i

i

i

c results from propagation through no more than
  l bits
OR
c due to carry generation in the less significant
   h bits, followed by propagation through the most 
   significant n h bits i.e. from h− − ( ) 1 1to n+ −

  (2.33) 

If the first condition in (2.33) is true, then Eu in (2.8) is zero and we 
can use (2.21) to compute carries. This covers cases like the one in 
Fig. 25(a). 
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Fig. 25 Sum of two small operands, with opposite signs and absolute value 

smaller than 2h+1 (h=7 is assumed). (a) When the sum is negative (2.22) is verified 
and (2.21) gives carries without errors. (b) When the sum is positive (2.22) fails. The 

carries from position h to n-1 are high while the sum bits from position h+1 to n-1 
are zero. 

The second condition in (2.33) flags the presence of a long carry chain 
and covers cases like the one in Fig. 25(b). The second condition in 
(2.33) is verified when γ=1, where: 

 [ 1: 1]u n hE p − +γ = ⋅   (2.34) 

Let us consider, as an example, the B-K speculative prefix-processing 
stage of Fig. 15(b). From (2.25) and exploiting the condition: 
p[i:j]g[k:j]=0 for: k≤i,  the equation (2.34) becomes: 

 [31:8] [7:4] [3:0] [11:8] [7:4]g gp p p g = ⋅ +    (2.35) 

The last equation can be rewritten as: 

 [31:8] [7:0]gpg = ⋅   (2.36) 
 In general, it can be shown that: 
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 [ 1: 1] [ 1: 1] [ :0]u n h n h hE p p g− + − +g = ⋅ = ⋅   (2.37) 

Therefore, if (2.34) is asserted, we know that all the carries 
from position h to n-1 are high. Moreover, since all pi (2.3) are high 
for i=h+1..n-1, we also know that all the sum bits from position h+1 to 
n-1 are zero. 

The cases not considered in (2.33) result in a misprediction and 
require two clock cycles for error correction. From the previous 
discussion, the error condition is given by 

 [ 1: 1]s u u n hE E E p − += ⋅ γ = ⋅   (2.38) 
The architecture of the resulting speculative adder is shown in 

Fig. 26. It can be seen that this architecture is more effective than 
those reported in [30], [42], because when condition (2.34) is asserted 
the computation of output bits is not needed (the sum bits from 
position h+1 to n-1 are zero).  

As final remark, please note that condition (2.33) includes 
(2.22), therefore the resulting speculative adder can be used also in 
presence of uniformly distributed operands without no degradation in 
terms of error probability. 

 
Fig. 26 Proposed Variable Latency speculative adder for applications using 

2's complement representation. For Eu=1, γ=1 the speculative output is known 
beforehand to be 0. 
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2.7 Signed operands model 
The operation of VLAs is based on specific assumption on the 

length of carry chains. The actual statistical distribution of input 
values, therefore, strongly affects error probability and hence the 
performances of VLAs. In [18], [20], [27]-[29], [39], [42], [45] an 
uniform distribution for the input operands is assumed, which is an 
acceptable approximation of practical cases when the input values 
represent unsigned numbers [46]. In [42] profiling of software 
programs running on a physical machine was carried-out in order to 
obtain statistics with real-world workloads, using 2's complement 
representation. In [30] it is found that assuming a Gaussian 
distribution allows capturing the basics behavior of carry chains 
length distribution obtained in [42].  

In order to asses proposed topology with signed operands we 
employ mathematical distributions to approximate the distribution 
found in practical workloads. We assume that in a certain percentage 
of cases the operands A, B represent integer values uniformly 
distributed in [-2n-1, 2n-1 -1], while in the remaining cases they follow a 
Gaussian distribution with mean µ=0 and standard deviation σ. Thus, 
the operands are obtained as follows [31]: 

 
1 1( 2 , 2 1)   in the 100 % of cases( , )

(0, )                   in the remaining cases

n nU uA B
G

− − − −∈ 
s

  (2.39) 

where U is the uniform distribution and G the normal one. For a given 
wordlength n, the model (2.39) has only two parameters, u and σ. 

For u=1 each bit of both inputs A, B has an equal probability of 
being zero (this is the model to be used for workloads where input 
values represent unsigned numbers). 

For u<1, the elements taken from the Gaussian distribution 
capture the carry chains behavior found in [42]. The value of σ is 
typically much smaller than 2n-1, in order to represent operations that 
are performed between small operands (frequently found in practical 
workloads [42]). 

Fig. 27 shows histograms relative to maximum carry 
propagation length in a 32-bit adder, obtained from (2.39) using 
50,000 test vectors. Here a carry chain is defined as a generate 
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followed by propagates bit; the carry propagation length is k+1 
whenever a generate followed by k propagates bit is found. The 
example of Fig. 25(a) has a carry propagation length of 3, while in 
Fig. 25(b) the maximum carry propagation length is n−3. 
 It can be observed that for uniform distribution the length of 
carry chain is always sensibly smaller than adder size. When 50% of 
inputs are taken from Gaussian distribution with σ=256 (Fig. 27(b)), a 
bimodal distribution is observed with an appreciable portion of carry 
chains is as long as the adder size; by increasing σ the second peak of 
the distribution moves to the left (Fig. 27(c)). 

2.8 Error rate results 
In this paragraph the error rate values of the investigated 

topologies are shown, assuming operands described by model (2.39). 
For VLSA the error rate assumes significant relevance, affecting the 
average addition time (2.17). 
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Fig. 27 Histogram of maximum carry propagation length obtained with model (2.39)

, for a 32 bit adder. (a) uniform distribution; (b) half uniform, half Gaussian with 
σ=256; (b) half uniform, half Gaussian with σ=30000 

The error rate values have been evaluated performing Monte 
Carlo simulations with a 2% relative error and a 99% confidence 
level. The simulated error probability values using the three 
distributions in Fig. 27 are reported in Table III for operand size n=32 
and n=64. Error values larger than 10% are highlighted in red. For 
each topology, and for each n value, two VLSAs have been 
considered, with different pmin levels. The corresponding values of 
h=pmax and r are also reported in Table III. The grayed rows report 
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results for the H-C and K-S topologies designed to operate with 
unsigned operands (Fig. 12), to compare the error probability 
reduction, when operating with signed operands, of the topology 
proposed in Fig. 26. 
Let us firstly focus on the column u=1, corresponding to uniformly 
distributed operands. The following observations can be drawn: 

a) For uniformly distributed operands, the error 
probability of reported speculative adders assume low values. The 
maximum is given by Sklansky topology which exhibits a value of 
8.65×10–2. This is due by the value of pmin of this topology, being 
equal to 5, while the other topologies are generally reported with pmin 
values around 8. This show that the error probability as an exponential 
dependence on pmin, indeed the reported error probability for Sklansky 
topology having pmin=9 decreases significantly to 1.93×10–3. Each 
term OR-ed in (2.8), in fact, has a probability of being one that 
decreases exponentially with Lmin. Moreover it can be observed that 
the topologies with the same pmin but higher r perform better in terms 
of error rate (compare in Tab. III, the H-C and K-S topology having 
the same pmin). This can be interpreted as follows: in Kogge-Stone 
speculative prefix stage all the carries are computed independently 
from each other, instead in Han-Carlson, half of the carries (those in 
even bit-positions) are calculated from “parents” carries (those in odd 
bit-positions), through an additional level of the tree. This reduces 
error probability (if a parent carry is correct the “child” carry will be 
correct, too) [39]. This is formally expressed by (2.9) showing that 
increasing r reduces the terms to be OR-ed in Eu (2.8). Observe that 
for uniformly distributed operands, the VLSAs of Fig. 12 have the 
same error rate of the corresponding circuits using the architecture of 
Fig. 26. Actually, for this distribution of input values, the probability 
of having p[n-1:h+1]=1 is extremely low and hence, from (2.38), Es≈Eu. 
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From the last two columns in Table III, corresponding to 
distributions of Fig. 27(b) and Fig. 27(c), the following observations 
can be drawn: 

TAB. III – ERROR PROBABILITY VALUES FOR SPECULATIVE ADDERS.  

Adder  
Topology  n pmin pmax r 

Error Probability 

u=1 u=0.5, 
σ=256 

u=0.5, 
σ=30000 

C-I 32 8 15 8 3.90×10–3 1.95×10–3 2.34×10–3 

Hyb. H-C 32 8 11 4 9.11×10–3 4.60×10–3 1.22×10–1 
16 19 4 <10–5 <10–5 <10–5 

B-K 32 8 15 8 3.90×10–3 1.95×10–3 2.34×10–3 

H-C 32 8 9 2 1.61×10–2 8.12×10–3 1.33×10–1 
16 17 2 3.80×10–5 <10–5 <10–5 

K-S 32 8 8 1 2.25×10–2 2.20×10–2 1.38×10–1 
16 16 1 5.36×10–5 <10–5 <10–5 

L-F 32 6 9 4 4.41×10–2 2.21×10–2 1.51×10–1 
10 17 8 9.58×10–4 4.78×10–4 4.78×10–4 

S-K 32 5 8 4 8.65×10–2 5.61×10–2 1.79×10–1 
9 16 8 1.93×10–3 9.72×10–4 9.80×10–4 

H-C  32 8 9 2 1.61×10–2 1.35×10–1 1.36×10–1 
16 17 2 3.80×10–5 1.25×10–1 1.19×10–1 

K-S  32 8 8 1 2.25×10–2 1.37×10–1 1.40×10–1 
16 16 1 5.36×10–5 1.25×10–1 1.19×10–1 

C-I 64 8 15 8 1.17×10–2 5.80×10–3 1.33×10–2 
16 31 16 <10–5 <10–5 <10–5 

Hyb. H-C 64 8 11 4 2.38×10–2 1.18×10–2 1.28×10–1 
16 19 4 <10–5 <10–5 <10–5 

B-K 64 8 15 8 1.17×10–2 5.80×10–3 1.33×10–2 
16 19 16 <10–5 <10–5 <10–5 

H-C 64 8 9 2 3.91×10–2 1.96×10–2 1.44×10–1 
16 17 2 1.32×10–4 <10–5 <10–5 

K-S 64 8 8 1 5.27×10–2 3.75×10–2 1.53×10–1 
16 16 1 1.82×10–4 9.01×10–5 9.32×10–5 

L-F 64 6 9 4 9.80×10–2 5.00×10–2 1.78×10–1 
10 17 8 2.91×10–3 1.45×10–3 1.45×10–3 

S-K 64 9 16 8 5.91×10–3 2.90×10–3 2.91×10–3 
17 32 16 <10–5 <10–5 <10–5 

H-C  64 8 9 2 3.91×10–2 1.45×10–1 1.47×10–1 
16 17 2 1.32×10–4 1.25×10–1 1.25×10–1 

K-S  64 8 8 1 5.27×10–2 1.52×10–1 1.54×10–1 
16 16 1 1.82×10–4 1.25×10–1 1.25×10–1 

 



48                                     VLSI Circuits For Approximate Computing 

b) The error rate of VLSAs designed for unsigned 
operands (Fig. 12) drastically increases, ranging from 12% to 18%, 
and is almost independent from pmin. These architectures, therefore, 
are unsuitable for application using 2's complement representation. 

c) The VLSAs designed for signed operands (Fig. 26) 
perform quite well with the distribution of Fig. 27(b). The error 
probability is actually lower than the case of uniformly distributed 
operands. Due to the low σ value, in fact, carry generation for 
Gaussian distributed operands takes place with high probability in the 
less-significant pmax bits of the adder and is correctly taken into 
account by the proposed architecture. 

d) When the distribution of Fig. 27(c) is considered, the 
error probability increases significantly. In this case, due to the larger 
σ value, only the architectures with pmax≥15 have a high probability of 
catching the propagation chains arising for Gaussian distributed 
operands. This result clearly shows that the best architecture for a 
VLSA is strongly related to the assumption made on the input signal 
statistics. 

2.9 Synthesis results 
The investigated topologies have been described, along with 

their speculative counterparts, in Verilog HDL and synthesized with 
Cadence RTL Compiler using UMC 65nm library, for 32bit, 64bit and 
128bit operands. The adders have been described in a structural way, 
instantiating operators (2.15). The error detection and correction 
networks have been described in behavioral way. The RTL Compiler 
synthesis directive synthesize –to_mapped –effort high has been 
employed to design the adders at their maximum speed. The 
set_multicycle_path synthesis command was used to mark the 
non-speculative outputs of the speculative adders. The dynamic power 
dissipation is evaluated after synthesis by extracting the nodes 
activities from a back-annotated simulation. 

2.9.1 The optimal pmin choice 

The variable latency speculative adders depend on the 
parameter pmin. Therefore a key point in the design of variable latency 
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speculative adders is the choice of the optimal pmin parameter. This 
choice involves a trade-off between the error probability and the speed 
of the speculative addition. Indeed, by increasing pmin the error rate 
decreases, with positive effects on Tavg (2.17), but the speculative carry 
tree slows down, since a little number of levels is pruned. 

In order to investigate this trade-off, multiple synthesis of the 
proposed topologies have been performed, for different pmin values. 
The Fig. 28, shows, as an example, the synthesis results for the 
Han-Carlson speculative adders, by varying the synthesis timing 
constraint. The Fig. 28 shows the results for 32-bit adders, the Fig. 29 
for 64-bit adders and the Fig. 30 for 128-bit adders. The x-axis reports 
the average addition time (2.17), which accounts for error probability. 
The distribution employed in Figs. 28-29-30 is represented in 
Fig. 27(a), while the VLSA topology is that suitable for unsigned 
operands (Fig. 12).  As observable, the implementations with pmin=4 
and pmin=n/2 reveals ineffective because of the high error rate (pmin=4) 
or of the little number of pruned levels (pmin=n/2). 

For 32 bit (Fig. 28) the optimum value is pmin =8; this value of 
pmin is also the best choice for n=64 bit (Fig. 29). For n=128 bit (Fig. 
30) both pmin=8 and pmin=16 give similar performance. 

 
Fig. 28 Area and power of 32-bit speculative and non-speculative 

Han-Carlson adders as a function of the timing constraint. The performance are 
shown for different pmin values. 
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Fig. 29 Area and power of 64-bit speculative and non-speculative 

Han-Carlson adders as a function of the timing constraint. The performance are 
shown for different pmin values. 

 
Fig. 30 Area and power of 128-bit speculative and non-speculative 

Han-Carlson adders as a function of the timing constraint. The performance are 
shown for different pmin values. 
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Observe that in these figures also the non-speculative 
topologies performance as reported, for comparison. To this regard, 
we can observe that the speculative topologies offer are particularly 
effective in terms of speed, allowing to reduce the minimum 
achievable delay. As an example, in the 64-bit case, the minimum 
achievable delay is about 280 ps for the non-speculative adder and 
reduces up to 225 ps in the variable latency architecture. 

The analysis of Area Occupation and Power Dissipation shows 
that speculative adders are not effective for large average delay. As 
the timing constraint imposed during synthesis is made tighter 
speculative adders become advantageous. For instance, in the 64-bit 
case, speculative Han-Carlson adder results in a lower Area for Tavg 
lower than 385 ps and also in a lower Power Dissipation for 
Tavg<350ps. For Tavg=300 ps, the non-speculative adder presents an 
area of 1885 µm2 and a power of 1.52 µW/MHz, while the variable 
latency adder exhibits an area of 1500 µm2 (20% reduction) and a 
power of about 1.39 µW/MHz (9% reduction). 

2.9.2 Comparison among investigated topologies 

In this paragraph the investigated topologies are compared 
with the aim to determine the most effective one. Moreover, in order 
to compare the proposed VLSAs suitable for signed operands 
(Fig. 26) with the previously proposed global carry approach [30], 
[42], the distribution of Fig. 27(b) is employed. 

Each VLSA has been synthesized and, as discussed in the 
previous paragraph, the topologies with optimal pmin have been 
employed in order to perform the comparison. We have found that 
pmin=8 is the best solution for all the investigated cases, with the 
exception of L-F and SK topologies. Optimal values for L-F are 
pmin=6 (32 and 64 bit) and pmin=10 (128 bit). Optimal values for SK 
are pmin=5 (32 bit) and pmin=9 (64 and 128 bit). 

The results are reported in the Fig. 31 and Fig. 32, showing, 
respectively, the area and the dynamic power versus Tavg (2.17). Note 
that, in addition to the topologies of Fig. 26, the results of 
Kogge-Stone and Han-Carlson speculative topologies, designed to 
operate with unsigned operands (Fig. 12), are reported, to show how  
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Fig. 31 Area of speculative and non-speculative adders. Each topology is reported 

at the minimum synthesizable clock period. (a) 32-bit, (b) 64-bit, (c) 128-bit. 
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Fig. 32 Power of speculative and non-speculative adders. Each topology is 
reported at the minimum synthesizable clock period. (a) 32-bit, (b) 64-bit, 

(c) 128-bit. 
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their performance are affected in presence of signed operands. 
Moreover, for the 64-bit case the HH-C speculative topology with the 
global carry technique proposed in [30] and [42] is reported. In the 
Figs. 31-32 each topology is reported at its minimum achievable 
delay. 
 As it can be observed, proposed VLSAs are faster than 
non-speculative counterparts. For 128-bit, the addition time reduces of 
about 20%, from more than 310ps (Kogge-Stone) to less than 240ps; 
the improvement is less evident, but not negligible, also for 64-bit and 
32-bit adders. This improvement in speed corresponds also to a 
reduction in area (more evident for 128 and 64bit adders). Power 
reduces in 128bit adder (compared to non-speculative K-S), while 
slightly increases for 32bit case.  
 The topologies of Fig. 12, while being effective with unsigned 
operands, reveal ineffective when operating with signed operands, due 
to the large error rate, as reported in the gray rows of Tab. III. 
Moreover, as shown in the Figs. 31(b)-32(b) the global-carry 
technique is also inefficient. Similar considerations holds investigating 
the results for different parallel-prefix speculative topologies. In 
particular, global-carry technique, while providing error probability 
similar to the ones obtainable with proposed technique, reveals 
ineffective in terms of circuit, due to the large fanout of the global 
carry signal that increases power and slows down the adders. 

 In the investigated cases the speculative L-F adder is the fastest 
one. This result is particularly evident in the 64-bit case and is due to 
the fact that the speculative prefix-processing stage mitigates the 
fan-out issues, since the maximum fan-out in this topology, 
approximatively, halves every time a level is pruned.  

In terms of area and power consumption, in the 32-bit case, H-C and 
HH-C VLSAs are the most effective topologies. For 64-bit and 
128-bit adders, the C-I and the B-K VLSAs are also competitive. 

Note that the speculative C-I topology has a logarithmic delay 
behavior (with respect to operand size n), see Fig. 17. Hence, this 
topology performs quite well as VLA, while the original one has a 
critical path traversing all the adder blocks and is hence much less 
effective.  
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2.10 Approximate Adders with error correction 
for error tolerant applications 
As discussed in chapter 1, approximate computing leverages 

error resiliency of applications to improve circuits performance. The 
assumption made in the previous paragraphs, to provide an always 
error free result to the system, employing a two-cycles error 
correction, can be relaxed in presence of error tolerant applications.  

In such scenario, the speculative output is always provided to 
the system and, eventually, corrected to alleviate the error rate or the 
error magnitude, but, in this case, the error correction, involving 
simple operations, typically happens in the same clock cycle in which 
the result is provided.  

In this paragraph an approximate adder is discussed, which 
reduces error rate in presence of signed operands. As discussed in the 
paragraph 2.5, in real applications the numbers are represented 
assuming a 2’complements representation, as a consequence the 
operands are no longer uniformly distributed, following, instead, a 
Gaussian distribution (Fig. 22). As a result, the carry propagation 
length significantly increases, raising the speculative adders error rate 
to values that compromise significantly the quality of results, also in 
error tolerant applications (the Fig. 24 reveals that the error rate can 
reach 25% of errors in presence of signed operands). 

As shown by [42], in practical applications small values 
appears more likely than higher values. Employing this observation, 
an error correction technique is proposed to reduce error rate in 
presence of Gaussian distributed operands [43]. 

As discussed in the paragraph 2.5.1, an error condition 
associated with signed operands happens whenever the operands A 
and B have opposite signs (first condition), A+B>0 (second condition) 
and |A| and |B| are sufficiently small (third condition). Note that in 
this condition the speculative adder provide an erroneous negative 
results, since the carry propagation cannot happen, due to speculation. 
Moreover, since |A| and |B| are small, also their sum will be small. 
Note that, in addition to the error condition above, many others error 
conditions are possible, but, in a signed scenario, these should happen 
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with lower probability, due to the observations that small numbers 
appears more likely than higher ones.  

The proposed adders is reported in Fig. 33. As you can see, to 
the speculative adder, composed of three sub-adders, is added some 
error correction logic. This logic is designed to detect the discussed 
error condition: the MSB of the operands A and B are XOR-ed in 
order to check that they have opposed signs (first condition); the MSB 
of the last sub-adder reveals if the sum is negative (second condition); 
the nor of the L MSBs of the first sub-adder is computed to check the 
third conditions. Indeed, if the output of the nor is high we have a hint 
that the sum is positive and smaller than ( )2 r p L+ − . When the three 
conditions are true we have three hints that allows us  to speculate that 
we are in the case of positive sum of small numbers with opposite 
signs, in this case the output is assumed to be the positive value 
produced by the first sub-adder. Indeed, in this condition, the signal E1 
is low and all the outputs from the second to the last sub-adders are 
driven to zero. Similarly, we check the L MSBs of the second 
sub-adder: if they are all zero, A and B have opposite signs and the 
sum is negative, the signal E2 goes to zero and all the outputs from the 
third through the last sub-adder are driven to zero. 

2.10.1   Error rate and quality of results 

The proposed architecture is able to catch the errors due to the 
Gaussian distributed operands and to correct them. The Fig. 34 shows 
the simulated error probabilities for three adder configurations, as a  

 
Fig. 33 Proposed approximate adder with output error correction circuit. Here 

n=16, r=4, p=4, L=4. 
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function of the standard deviation σ of the Gaussian distribution. As it 
can be observed the error rate is significantly reduced for a wide range 
of σ values (compare with Fig. 24). 

In the case of uniformly distributed inputs, the resulting error 
probabilities are reported in Tab. IV. By comparing with Tab. I, we 
can observe that proposed adders increase error rate in presence of 
uniformly distributed operands. As shown in second and third row of 
Tab. IV, the error probability for uniformly distributed operands can 
be mitigated by increasing L (at a cost in terms of hardware 
complexity, see Fig. 33). The possibility that signals E1 or E2 becomes 
erroneously low, in fact, decreases exponentially with L.  

In order to understand the impact of the error correction on a 
real application, we have simulated a simple audio processing system, 
in which an echo is added to an audio signal, by adding a waveform 
replica delayed by about ¼ of second. The obtained results are shown 

 
Fig. 34 Simulated error probability of the adder architecture proposed in 

Fig. 33. The input distribution is assumed to be Gaussian. 

TABLE IV. ERROR PROBABILITY FOR UNIFORMLY DISTRIBUITED INPUTS IN 
PROPOSED SPECULATIVE ADDERS  

Adder Config. (n,r,p) L Error probability 
(16,4,4) L=4 7.15% 
(32,8,8) L=4 3.30% 
(32,8,8) L=6 1.07% 

(48,8,16) L=6 0.78% 
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in Tab. V, where a 13sec. fragment of a song is used as a test vector 
and 24-bit adders are considered. Waveform processing requires about 
415,000 additions. The signal to noise ratio obtained with the standard 
adder is quite low when using 12-bit and 14-bit sub-adders (cases 
(24,6,6) and (24,5,9) in Tab. V), reaching 20dB only when using 
16-bit sub-adders. The proposed adder with output correction, instead, 
shows sensibly better performances, giving an error-free result for the 
n=24, r=4, p=12, L=6 configuration. 

2.10.2   Synthesis results 

The proposed adders have been synthesized in UMC 65nm 
technology, along with the non-corrected adders. Cadence RTL 
Compiler has been employed to synthesize the design. The adders 
have been described in Verilog HDL, using + operator the describe the 
sub-adders of each speculative adder. The RTL Compiler synthesis 
directive synthesize –to_mapped –effort high has been employed. 
Power is calculated by simulating the synthesized circuits, with SDF 
annotation. The synthesis results are reported in Tab. VI. The 
proposed adder with output correction is faster than standard 
(error-free) circuit; on the other hand, its power dissipation is higher. 

TABLE V. PERFORMANCE OF APPROXIMATE ADDERS IN AN AUDIO PROCESSING 
EXAMPLE  

Adder Config. (n,r,p) Error % SNR (dB) 
Without correction (24,6,6) 13.98% 8.58 

Corrected (24,6,6) L=6 0.67% 21.78 
Without correction (24,5,9) 3.46% 14.64 

Corrected (24,5,9) L=6 0.01% 40.20 
Without correction (24,6,6) 13.98% 8.58 

Corrected (24,4,12) L=6 0% ∞ 
 

TABLE VI. VLSI IMPLEMENTATION RESULTS  

Adder Config. 
(n,r,p) L 

Delay 
(ns) 

Power 
(µW/MHz) 

Power×Delay 
(fJ/MHz) 

(16,4,4) L=4 0.401 0.258 0.103 
16bit standard 0.598 0.182 0.109 
(32,8,8) L=4 0.701 0.516 0.362 

32bit standard 1.13 0.397 0.447 
(48,8,16) L=6 0.981 0.861 0.845 
48bit standard 1.81 0.593 1.07 
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The power-delay product is better in the proposed circuit, especially 
for 32-bit and 48-bit implementations. 

2.11 Approximate Adders in Carry-Save 
Multiplier-Accumulators 
In this paragraph the use of approximate adders as final adder 

of carry-save multiplier-accumulators (MACs) is investigated. The 
MACs are basic building blocks in digital signal processing 
applications. We will focus, in this paragraph, on image processing 
applications. In this context the MACs are usually employed to 
perform convolutions, which are a basic operation for image filtering 
applications. 

Many papers have introduced approximate adders for image 
processing application, but their investigations are done making 
assumptions that are hardly verified in practical applications. As an 
example, [47] employs approximate adders for image processing 
applications, but the multiplications and subtraction are performed by 
exact functional units. Similar assumption are done in [18]. 

As previously discussed, the use of approximate adders and the 
consequent performance improvement strictly depends on the input 
statistics of the approximate adder, therefore on the application. We 
propose a design flow to opportunely design the approximate adders 
accounting for the input distribution. 

The MAC employed in this paper is constituted by a carry-save 
Wallace tree for partial product compression (for a detailed discussion 
about multipliers and MACs the reader can make reference to chapter 
3). The resulting output, in carry-save format, is added using an 
approximated carry-propagate adder.  

In the following, the proposed design flow is discussed. 

2.11.1   Design flow 

We start the MAC design describing its architecture in HDL 
language. The HDL code is then read and optimized by the 
synthesizer. In this phase the synthesizer detects the arithmetic 
operator and performs datapath extraction to opportunely transform 
the arithmetic operators into optimized blocks. In this phase 
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carry-save arithmetic is usually employed in order to optimize 
datapath performance. A final carry-propagate adder is then employed 
to sum the output of the carry-save stage, obtaining the final result. 

Unfortunately, describing the MAC operation as y<=A+B*C, 
the designer is not able to access, after the synthesis, to the carry-save 
signals to be summed by the final adder. To overcome this issue, we 
employ arithmetic IP components to describe the MAC. In particular, 
in Cadence RTL Compiler synthesizer the designer can use the 
ChipWare IP Components [48], in Synopsys Design Compiler the 
designer can use DesignWare Building Block IP [49]. 

The resulting architecture is shown in the Fig. 35, where the 
component CW_multp is the partial product multiplier, while the 
CW_csa is the carry save adder, used to sum an 18-bit addend to the 
carry-save multiplier outputs. 

 
Fig. 35 MAC structure. CW_multp is the partial product multiplier, while 

CW_csa is the carry save adder. The final carry propagate adder is highlighted in 
red. On the right some of the considered 3x3 kernels are reported. 

We employ a 9x9 signed multiplier, in which the MSB of the 
pixel operand is zero. The filter coefficients are signed and use 4 
fractional bits (LSB=2−4) to represents the commonly used 3x3 kernels 
(as those represented in Fig. 35). Please note that the datapath is 
dimensioned to avoid overflow while performing image filtering. The 
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carry-propagate adder highlighted in red in Fig. 35 produces the MAC 
output Y. 

 
Fig. 36 Proposed design flow. 

The proposed design flow is shown in Fig. 36. We start 
with an HDL description which employes IP blocks, as in 
Fig. 35, then we apply constraints and synthesize the circuit. 
Then the synthesized netlist is simulated in order to extract the 
statistics of the two addends A and B (Fig. 35) summed by the 
final propagate adder. It is worthwhile observing that this 
simulation cannot be done before of the synthesis. Indeed the 
synthesizers selects the appropriate architecture for the partial 
product multiplier as a function of the applied constraints. 
Therefore the values of A and B post-synthesis may differ from 
those obtained with a pre-synthesis simulation (although their 
sum remains the same). 
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The Fig. 37 shows the statistics of the carry-save 
operands A and B when and edge filtering operation is 
performed on the test Lena image. Unlike previously 
discussed, the distribution is neither uniform nor Gaussian, as a 
consequence the formulas presented in literature to estimate 
the error probability, reveals inadequate to predict the error 
probability of the proposed MAC. 

 
Fig. 37 Distributions of the inputs A and B of the carry-propagate adder 

while performing an edge filtering on the Lena test image. 

In order to design the approximate adder, we numerically 
extract from simulated data two set of values: the probability of 
having a carry propagation from bit i to bit j (indicated as pi,j) and the 
probability of having a carry generation from bit i to bit j (indicated as 
gi,j). From these values, we can compute numerically the error 
probability of the approximate adder. Let us consider the adder shown 
in Fig. 38.  
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Fig. 38 Speculative adder segmentation. A n=18 bit adder is segmented 

using three sub-adders. Each sub-adder produces r sum bits that contribute to the 
final result and employs p bits to predict the carry. 

As usually, the first sub-adder is exact, while the second one 
gives erroneous results if the condition g[4:0] p[8:5] is asserted. This 
condition has a probability P(E1)=P(g[4:0] p[8:5]). In the third sub-adder 
adder an error occurs with probability and this occurs with a 
probability P(E2)=P(g[7:0] p[13:8]). The overall error probability is given 
by P(E)=P(E1 U E2)=P(E1)+P(E2)−P(E1∩E2). Simple calculations 
yield, in this example, P(E)=g0,4 p5,8+g5,7 p8,13. By generalizing this 
approach, we are able to quickly investigate different approximate 
adder configurations, after characterizing the distributions of A and B 
signals. 

After the design of the approximate adder, we modify the 
netlist by substituting the exact adder with the approximate one. 
Another synthesis and optimization step yields the final netlist of the 
MAC. 

2.11.2   Quality of results 

The approximate adders of Fig. 38 has been employed as final 
adder of Fig. 35. This adder exhibits P(E)≈0.09 with the statistics of 
Fig. 37. %. Note that, after convolution, each pixel value is limited to 
an 8-bit integer value, i.e. any negative value is limited to zero while 
any positive value is saturated to 255. Therefore, not every error in the 
convolution results in an erroneous pixel in the output image. The 
Fig. 39 shows the original Lena image, while the Fig. 40-41 the 
filtered ones. The image quality can be quantified with the Structural 
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Similarity Index, SSIM [50]; a value of SSIM=1 means perfect 
similarity between two images. 

 
Fig. 39 Original “Lena” image. 

         
Fig. 40 Edge filtered image. (a) exact adder; (b) approximate adder 

         

Fig. 41 Blur filtered image. (a) exact adder; (b) approximate adder 

For the edge filtered image (Fig. 40), the SSIM=0.98, therefore 
the approximate adder performs well with the edge filter. With the 
blur filter, the use of approximate adder results instead in sensible 
image noise in the form of spurious black pixels, with SSIM=0.81 for 
the two images in Fig. 41(a) and 41(b). 

2.11.3   Pixels skipping 

a) b) 

a) b) 
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The Fig. 41(b) has shown a significant degradation of image 
quality, due to spurious black pixels. It is possible to sensibly improve 
the quality of image affected by this kind of “noise” due to 
approximation, augmenting the approximate adder with a simple 
circuitry to detect the error by checking the carry-out of sub-adders #2 
and #3 and the carries c9 and c14. Indeed, as an example, in the second 
sub-adder an error occurs if the carry-out of sub-adder#1 is high, 
while the carry c9 computed by sub-adder#2 is low. 

When an error is detected, the convolution is skipped and the 
previous filtered pixel is outputted. As shown in Fig. 42 this simple 
technique reveals effective, with SSIM=0.98 for the two images in 
Fig. 41(a) and 42. 

 
Fig. 42 Blur filtered image with approximate adder and pixels skipping 

technique. 

2.11.4   Synthesis results 

The discussed MAC has been implemented in STM 28 nm 
technology, standard VT, typical corner. We have imposed constraint 
aimed to obtain a minimum area, lowe-power design. 

The Tab. VII shows the VLSI implementation results, using 
Cadence RTL Compiler. As shown, the MAC with the approximate 
adder allows improving the speed by 19%, with a 4-5% increase in 
power and area, respectively. By performing voltage scaling we can 
trade power for speed as shown in the last row of Tab. VII. By 
reducing supply voltage to 0.91 a power saving of 14% can be 
achieved, while keeping the same delay of the MAC with exact adder. 
This improvement in performance, while noticeable, is probably less 
than one would expect. 
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To better investigate this behavior, the Fig. 43 shows the 
arrival times for the inputs of the carry propagate adder. As it can be 
observed, the signals corresponding to the middle bits of the addends 
arrive later than the others [51]. This partly overcomes the speed 
advantages related to sub-adder decomposition of approximate adders. 

 
Fig. 43 Arrival times of carry propagate adder inputs. 

2.12 Conclusions 
In this chapter my research activity about speculative adders 

have been discussed. 
The first part of the chapter is devoted to discussing 

speculative adders for error-free applications. In this contest, the 
speculative adders are augmented with a two-cycles error correction 
mechanism, acting as variable latency adders. Numerous variable 
latency speculative parallel-prefix adders topologies have been 

TABLE VII. VLSI IMPLEMENTATION RESULTS  

Design VDD 
[V] 

Minimum 
period 

[ns] 

Area 
[µm2] 

Norm. 
Power 

[µW/MHz] 
MAC with Exact adder 1.0 1.38 324 1.46 

MAC with 
Approximate adder 1.0 1.11 

(-19%) 
341 

(+5%) 
1.52 

(+4%) 
MAC with 

Approximate adder 
Voltage scaled 

0.91 1.38 341 1.26 
(-14%) 
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proposed, for high speed and error-free applications. Moreover, the 
case in which speculative adders deals with 2’complements 
representation has been investigated. For this case, the error rate 
increases significantly, reducing the effectivity of speculative adders. 
Therefore, a technique which allows keeping the error rate low, also in 
presence of 2’complements representations, has been proposed. This 
technique allows reducing hardware overhead with respect other 
solutions proposed in the literature. The implementation results shows 
that variable latency speculative adders allows improving performance 
(speed and power) when the highest speed is desired, otherwise the 
standard, non-speculative adders, remains the best choice. It is also 
worthwhile observing that variable-latency speculative adder general 
scheme require to put the selection multiplexer after the output 
register, therefore they eat into the next clock cycle, reducing the 
amount of calculations that can be done there and the benefit 
compared to non-speculative adders.  

In the second part of the chapter, speculative adders for errors 
tolerant applications are discussed. In particular a speculative adder is 
proposed with employs an error correction circuitry allowing to 
reduce significantly the error rate in presence of Gaussian distributed 
operands, which is the way to model 2’complements represented 
signals. The proposed error correction increases significantly the 
quality of results in error tolerant applications, like audio processing. 
The VLSI implementation results show that the power-delay product 
improves with respect standard (non-speculative) adders.  

Moreover, a study about the use of approximate adders in 
carry-save multiply and accumulate units has been conducted. An 
approximate adders has been employed in the final stage of a Wallace 
tree carry-save MAC unit, designed for image filtering applications. It 
has been shown that in a typical image processing application the 
inputs of the carry-propagate adder are far from being uniformly or 
Gaussian distributed. Therefore formulas proposed in the literature for 
estimate error probability, while giving an important insight on 
approximate adders operation, are inadequate to judge the actual 
performance of the MAC. Therefore a design flow has been proposed 
to accurately choose the approximate adder architecture as a function 
of the application. The image filtering results have shown that, for 
some kernel filters, the approximation results in significant noise, 
affecting the overall image quality. To mitigate this phenomena, a 
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simple technique has been employed which allows skipping the 
erroneous pixel, using the previous, corrected one. This significantly 
improves quality. The VLSI implementation results show that the use 
of speculative adders as final adder in MAC units allows saving 15% 
of power in voltage scaled mode. Moreover, it has been observed that 
this gain can increase if the speculative adder is designed accounting 
for the non-uniform arrival time of the carry-save signals. 
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Chapter 3 
 

Precision-scalable units  

3.1 Introduction 
 In this chapter my research activity about precision-scalable units 
is discussed. Precision-scalable units fit in the approximate computing 
framework, allowing improving computation efficiency at expense of 
quality degradation. In particular, the peculiarity of precision-scalable 
units is the ability to change the precision level at runtime. This allows 
adapting the precision level of the unit with the precision requirements 
of a given application. Indeed, as discussed in [52], the same 
application can tolerate different precision levels during its 
computation; moreover the degree of resilience of an application 
strongly depends on the input data being processed [53]. 
 Precision-scalable units and systems have been proposed in the 
last years. In [52] a precision-scalable processor is proposed, for 
Support Vector Machine applications. The processor implements 
precision-scaling at algorithm, architecture and circuit level. A quality 
estimator and a PID controller allows to automatically control the 
precision level as a function of the input dataset, in order to keep a 
given quality level. Raha et al. [53] propose precision-scalable adders 
whose precision level is managed, at run-time, through an heuristic 
algorithm, as a function of the input dataset. The precision-scalable 
unit is employed in an MPEG encoder. In [54] a precision-scalable 
deep learning core is proposed. The authors implements bit-truncation 
to save switching energy in the arithmetic units and to speed up the 
computation. The increased speed deriving by reduced precision can 
be turned into power saving by performing voltage scaling. The 
voltage and accuracy scaling is performed at run-time during the 
feedforward path of a state of art CNN. The resulting technique is 
named by authors as “Dynamic Voltage Accuracy Scaling” (DVAS). 
Precision-scalable concept has been also employed in memories. In 
[55] Frustaci et al propose an SRAM which can dynamically trade 
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power for quality. In [56] authors focus on reducing the power 
dissipation due to off-chip memories of precision-scalable systems, 
arguing that most of the power is spent in off-chip memory accesses. 
The authors therefore propose a run-time memory controller and a 
memory access scheme to opportunely manage and read the data as a 
function of the precision of the system. 
 In this chapter two precision-scalable units are shown. Firstly, 
after an introduction of binary multiplication and an overview of error 
compensation techniques in truncated multiplier, a precision-scalable 
data-aware Multiply And Accumulate (MAC) unit is discussed. This 
MAC unit employs a programmable truncated multiplier [57] in which 
a novel real-time data-aware error compensation technique is 
proposed. Secondly, a precision-scalable standard cell memory (SCM) 
architecture is proposed. 
 In the following, the proposed precision-scalable data-aware MAC 
unit is discussed. 

3.2 Binary multiplication 
 Binary multiplication is a fundamental operation in many digital 
signal processing and machine learning algorithms. Multiplication 
operation, being more complex than addition, results in area and 
power hungry VLSI implementations. 
 Due to its inherent area consuming nature, serial multiplication has 
been widely used in the past. Nowadays, being the area a secondary 
figure of merit in modern VLSI, parallel multiplication has replaced 
serial multiplication. 
 The multiplication operation involves two steps: partial product 
generation and their summation. Assuming an MxN-bit multiplication, 
N partial products of M bits each must be opportunely shifted and 
added. Partial products summation has been widely investigated in the 
past, being the core of the multiplication operation and, in the 
following, the main contributions are briefly reported. 
 Low-power multiplier implementations have been widely 
investigated. Among these, truncated multiplier represents an effective 
way of trade accuracy for speed and power, indeed, recently, 
Synopsys has introduced the “internal rounding” datapath synthesis 
directive [58]-[59], which allows to easily implement a truncated 
multiplier . A brief overview of error compensation techniques in 
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truncated multipliers will be reported before introducing the proposed 
precision-scalable data-aware Multiply And Accumulate unit. 

3.2.1 Partial Product generation 

 Partial product generation is the first step of the multiplication 
operation. In the following, without loss of generality, let us assume 
the followings conditions: 

a. The operands X, Y are n-bit numbers; 
b. The output P is on 2n-bit (full-width multipliers); 
c. The output Pt is on n-bit (truncated multipliers). 

In the following three different partial product matrix are examined: 
Unsigned Matrix, Two’s Complement Matrix, Mixed-Operands 
Matrix. 

3.2.1.1 Unsigned Matrix 

In case of unsigned multiplication, in addition to conditions a, b, c, let 
us assume that the operands are fractional unsigned numbers in the 
range [0,1) : 
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The multiplier result can be trivially expressed as: 
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P p x y− − −

= = =

= ⋅ = ⋅∑ ∑∑   (3.3) 

The above equation states that the multiplier output is the 
weighted sum of the partial products i jx y , whose computation 

requires 2n  AND gates. The Fig 1 reports the resulting partial product 
matrix (PPM). 
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Fig. 1 Partial product matrix for 8x8 unsigned multiplier. 

3.2.1.2 Two’s Complement Matrix 

Let us derive the PPM in the case in which the operands X, Y 
are represented in two’s complement representation: 
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The output P, in this case, writes as: 
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Note that (3.6) contains negative terms. Instead of doing a 
subtraction it is possible to sum the two’s complement of the negative 
terms (Baugh-Wooley multiplier [60]). First of all, we have to extend 
the last two terms of (3.6) in the output representation, performing a 
zero padding (the negative terms extend in binary weights from 2-3 to 
2-n-1,while the output extends from 2-1 to 2-2n, please note that padding 
operation is needed in order to be able to add the negative terms with 
the other ones) . Therefore, complementing all the bits and adding one 
LSB, we have: 

 1 1 1 2
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2 2
2 2 2 2

n n
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Substituting (3.7) and (3.8) in (3.6) we have: 
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P x y x y x y− − − − − −
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The Fig. 2 shows the resulting PPM. The implementation of 
the PPM for two’s complement multiplication requires ( )2 2n −  

NAND gates and ( )( )21 1n − +  AND gates. 

 
Fig. 2 Partial product matrix for 8x8 two’s complement multiplier. 

3.2.1.3 Mixed-Operands Matrix 

Let us assume that the X operand is signed, represented in 
two’s complement, while the Y operand is unsigned: 
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In this case the result P becomes: 
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As done the for the Two’s Complement Matrix (above 
paragraph), the (3.12) can be written as summation of positive terms, 
as follows: 

 1 1 1
1

2 1 1
2 2 2 2

n n n
n i j i

i j i
i j i

P x y x y− − − − − − −

= = =

= + + ⋅ + ⋅∑∑ ∑   (3.13) 

The resulting PPM (Fig. 3) implementation requires n NAND 
gates and ( )( )1n n −  AND gates. 

 
Fig. 3 Partial product matrix for 8x8 mixed-operands multiplier. 

3.2.2 Array multiplier 

Array multipliers constitute a particular type of parallel 
multiplier, highly suitable for VLSI implementation, due to its 
regularity and to reduced wire tracks, going from one full-adder to the 
contiguous one. 

In Fig. 4 is reported an example of such multiplier, in the case 
of unsigned PPM. As it can be observed each cell in Fig. 4 receives a 
different couple xiyj (3.3). The array is composed by AND gates (for 
the partial product generation) and by MFAs and MHAs gates, which 
are respectively, full-adder (FA) cells and half-adder (HA) cells which 
include an AND gate for the generation of the remainder partial 
products xiyj, these ones are then summed with the carry and the sum 
bits coming from previous MFAs and HFAs. To this regard, please 
note that the array of Fig. 4 employs carry-save technique to avoid 
carry propagation: each full adder acts as a compressor (3,2) taking 
three inputs and producing a sum and a carry, which is therefore not 
propagated, but “saved” in the array and opportunely mixed in the 
following row to reduce the delay. Note that the LSB of the result are 
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directly produced by the array, while the MSBs are obtained through a 
final carry-propagate adder. 

 
Fig. 4 Unsigned 8x8 array multiplier. 

In the bottom-right corner of Fig. 4 the array critical path is 
reported. It involves the higher column of array, therefore array 
multiplier delay goes linearly with n. Similar considerations apply to 
the cases of Two’s Complement PPM and Mixed-Operands PPM. 

3.2.3 Tree multipliers 

As shown above, the carry-save array multiplier delay linearly 
increases with operands size n. High-speed topologies (e.g. 
parallel-prefix adders) for the final carry-propagate adder (also named 
as “Vector Merging Adder” in this context) can be implemented, 
making the array delay the bottleneck for multiplier speed. To this 
regard, faster multipliers can be obtained using tree multipliers. 

3.2.3.1 Wallace reduction tree 

Wallace [61] proposed to organize the PPM rows in group of 
three partial products and to use a full-adder to “compress” three 
partial products into two outputs, a carry and a sum bit, adopting a 
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carry-save approach. In this way, in the first step a good number of 
partial product are summed in parallel in carry-save format, speeding 
up the multiplication (with the same principle of carry-lookahead and 
parallel-prefix adders: start to compute in parallel, without waiting for 
the late-arrival signals, as long as you can). In the cases in which two 
partial products remains in a given row, an half-adder is used. In the 
second step the partial products resulting from the first step are newly 
grouped, with the same principle, and compressed using FAs. The 
height of the matrix from one step to the next, reduces approximately 
of 1.5 (thanks to the compressing action of FAs). The Fig. 5 shows the 
various compression steps in a 8x8 multiplier, implementing Wallace 
reduction three; in this figure the dots represent partial products and 
outputs of FAs and HAs. 

The Wallace reduction tree allows achieving a logarithmic 
delay, being the number of reduction levels, using (3,2) compressors 
given by [26]: 

 3/2log
2
n  

    
  (3.14) 

3.2.3.2 Dadda reduction tree 

The Wallace tree can be optimized in terms of number of FAs 
and HAs as proposed by Dadda [62]. At each reduction step, the 
height of the PPM (which is given by the height of the highest 
column) follows the Dadda’s series: 
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  (3.15) 

 Therefore, in Dadda tree, a full-adder or an half-adder is placed 
only where strictly needed, in order to follow (3.15): if, in the j-th 
step, a column of the PPM has an height jh d≤ , the column is 
maintained unchanged for the next step. The Fig. 6 shows an example 
of Dadda’s reduction tree, to an 8x8 multiplier. 
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Fig. 5 Wallace reduction tree for 8x8 PPM. Full rectangle: full-adder; 

Dashed rectangle: half-adder. h is e partial product matrix in each step. 

While the number of FAs and HAs is reduced with respect 
Wallace tree, the VMA is generally longer in Dadda multiplier. 
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Fig. 6 Dadda reduction tree for 8x8 PPM. Full rectangle: full-adder; Dashed 

rectangle: half-adder. h is e partial product matrix in each step. The number of FAs 
and HAs is reduced with respect Fig. 5. 

3.2.3.3 Three Dimensional Minimization (TDM) 
method 
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In [51] Oklobdzija et al. propose a further optimization of the 
reduction tree of partial products. After the introduction, due to Dadda 
[62], of the counters concept (a full-adder can be seen as a 
ones-counter, since its output indicate, in binary form, the number of 
ones at the input of the full adder), the researcher deeply investigated 
the implementation of bigger counters, such as (4,2) [63] and (9,2) 
[64] compressors. In [51] authors state that also when considering big 
compressors, such as (4,2), as a single cell, they can be always seen as 
composed by full-adders and that, operating a proper interconnection, 
the compressors composed by full-adders have the same speed of that 
treated as single cell. Therefore the optimization key is the 
interconnection between full-adders.  

Starting from these observations, authors define an algorithm 
for optimized partial product reduction. In this algorithm a single big 
compressor is employed, composed by the appropriate connection of 
full adders. The connection takes into account the fact that the delay 
from an input to an output of a full adder is not the same. Therefore, 
accounting for the different arrival time of the signal in the array and 
for the different timing arcs characterizing a given full-adder (and half 
adder) the authors propose an algorithm which is able to employ fast 
inputs and outputs in the critical paths of the PPM and slow input and 
outputs in the non-critical path of the PPM. As a result, the delay of 
the tree is optimized. 

3.2.4 Truncated multipliers 

As discussed above, the multiplication of two n-bit operands 
results in a 2n-bit output. In many applications this bit growth is 
avoided because such incremented precision is unnecessary, with 
benefits in terms of downstream hardware complexity. 

As shown in Fig. 7, the PPM can be separated in two main 
regions: the Least Significant Part (LSP) which contains the partial 
products belonging to the n less significant columns of the PPM and 
the Most Significant Part (MSP) which includes the partial products 
belonging to the n-1 most significant columns. With this notation, the 
full-width (exact) output P can be expressed as: 

 MSP LSPP S S= +   (3.16) 
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where SMSP and SLSP represent, respectively, the weighed sum of the 
MSP and LSP elements. 

The simple, but most expensive way to produce an n-bit output 
Pt is to truncate the full-width multiplier output P, the resulting 
multiplier is usually named as full-rounded multiplier [65]: 

  
2n MSP LSP

LSBPt trunc S S = + + 
 

  (3.17) 

Where truncn means that n least significant bit are truncated, 
while LSB is the weight of lest significant bit of the truncated output 
Pt. Please note that in this case the multiplication operation is exact, 
and the error is exclusively introduced by the rounding operation. This 
results in little area and power savings, but in the smallest error 
e P Pt= − . Under the assumption of independent and uniformly 
distributed operands, the mean and the variance of the error e are: 

 [ ] 0round roundE eµ = =   (3.18) 

 2 2 21
12round roundE e LSBe  = =    (3.19) 

The Fig. 7 shows an unsigned full-rounded multiplier PPM. 

 
Fig. 7 Full-rounded unsigned multiplier. 

Significantly higher performance improvements, at a cost of 
decreased accuracy, can be obtained discarding the partial products 
belonging to the LSP. Between these two extreme cases, a multitude 
of techniques have been proposed that discard part of the LSP partial 
products. These techniques propose also error compensation circuits. 



  Chapter 3: Precision-scalable Units                                                 81 

Let us indicate the h  most significant columns of the LSP as LSPmajor, 
while the remaining neq=n-h columns of the LSP are indicated as 
LSPminor. The leftmost column of the LSPminor is called Input 
Correction (IC) [65]. Please note that h is a design parameter ranging 
from h=n to h=0. The Fig. 8 shows the different regions of the PPM 
in a truncated multiplier. The LSPminor partial products are discarded 
and their contribution is estimated by means of the IC column. 

 
Fig. 8 PPM organization for truncated multipliers. The LSPminor terms are discarded 
to save area and power. Their contribution is estimated by means of the IC column. 

h is a design parameter. 

The Fig. 9 reports the general scheme of truncated multipliers. As 
shown in this figure, the PPM of a truncated multiplier involves the 
terms belonging to MSP and LSPmajor, while the LSPminor is estimated 
by the compensation function f(IC); the multiplier output is then 
rounded, producing an n-bit output.  

The compensation techniques can be divided into two sets: 
Constant Correction Methods (CCM) where the compensation 
function f is a constant and Variable Correction Methods (VCM). In 
the following an overview of these two different approach is given. 
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Fig. 9 General scheme of truncated multipliers. 

3.2.4.1 Constant Correction Methods 

In Constant Correction Methods (CCMs) the compensation function f 
is a constant: 

 ( )constant
majorCCM n MSP LSPPt trunc S S= + +   (3.20) 

A first discussion about truncated multipliers is reported in 
[66]. In this work the author proposes two method for error 
compensation. In the first one a constant estimates the mean value of 
LSPminor, under the assumption of independent and uniformly 
distributed inputs. In the second one some terms of the IC are 
considered to estimate the sum of the correlated terms in the LSPminor. 
The estimation is always done in terms of average value, using 
conditional probabilities and independent and uniformly distributed 
inputs assumption. This method, exploiting correlation between IC 
column and LSPminor lowers the error, at expense of a more complex 
error correction circuit. The approach of [66] is expanded by [67], 
incorporating in the constant also the compensation of the rounding 
error. 
In Kidambi et al. [68] a truncated multiplier with constant 
compensation is proposed. The multiplier discards all the partial 



  Chapter 3: Precision-scalable Units                                                 83 

products belonging to the LSP. These terms are compensated with a 
fixed bias, which is always evaluated as average value of the 
neglected columns, assuming independent and uniformly distributed 
inputs. The resulting truncated multiplier, while reducing of about 
50% area and power with respect a full-width multiplier, shows a 
large error that rapidly increase with n. 

3.2.4.2 Variable Correction Methods 

Truncated multipliers accuracy can be significantly increased, 
with some hardware overhead, employing a Variable Correction 
Method. In this case the truncated output writes as: 

 ( )( )
majorVCM n MSP LSPPt trunc S S f IC= + +   (3.21) 

As shown in Fig. 9, the compensation function f(IC) tries to 
compensate the neglected LSPminor terms. Several solution for the 
compensation function f have been proposed. 
 In [69]-[71] the authors extend the method proposed in [66], 
leveraging the correlation between the IC column and the LSPminor. In 
particular, the IC terms are “sensed” and the correction term is 
adjusted as a function on the IC sum: if all the IC  terms as zero, due 
to the correlations, the LSPminor will have a high number of zeroed 
partial products and therefore the correction term is decreased to zero. 
In the opposite case in which the IC column contains all ones, the 
correction term is adjusted to a maximum value. In [72] the authors 
propose a hybrid method, in which part of IC terms are used to obtain 
a variable term, while a constant term is obtained as a function of the 
remaining IC terms. In [73] the previous methods are improved by 
summing to the rightmost column of the LSPmajor the sum of all the IC  
terms plus a further correcting bit. Authors in [74] propose a 
correction method for truncated multipliers with h=0, manipulating 
the IC terms by means of AND-OR operation. The resulting circuit 
implementation is slow, being characterized by a ripple architecture, 
moreover the mean and mean square error are significant. Curticapean 
et al. [75] provide a modified version of the [74], improving accuracy, 
but the error correction circuit is still based on a slow ripple 
architecture. In [76] Van et al. generalize the correction proposed in 
[74], considering in the compensation function either the IC terms or 
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their complements. In [77] a compensation function that minimize 
mean-square error or maximum absolute error is proposed. The 
compensation function is obtained heuristically. The solution provided 
by Strollo et al.in [77] is simplified in terms of hardware complexity 
in [78]. In [65] Petra et al. offer a closed-form solution for mean 
square error minimization. This optimal compensation function has a 
quadratic dependence on the terms of the IC. In this paper a 
sub-optimal compensation function, best suited for hardware 
implementation, which linearizes the optimal one is proposed also. 
The sub-optimal linear compensation function is further investigated 
in [79], in which the effect of the quantization of the coefficients of 
the linear compensation function is examined. In [80] De Caro et al. 
examine the problem of minimizing the maximum absolute error 
(MAE). To this regard the linear compensation function approach, 
developed in [65], [79], is employed to determine a novel linear 
compensation function that minimizes the MAE. The proposed 
approach is then expanded also to multiply and accumulate (MAC) 
units. 

3.3 Precision-scalable MAC Unit 
In this paragraph the proposed precision-scalable MAC unit, 

along with the proposed real-time data-aware compensation technique 
are discussed.  

MACs units are the basic units of DSP processors, since a 
multitude of algorithms are based on Sum Of Products (SOP) (FIR 
filtering, image processing, machine learning). Recently, MACs units 
constitute the core of deep learning accelerators, being SOP a central 
operation in many machine learning algorithms, such as 
Convolutional Neural Networks (CNN). Due to the compute intensive 
role that SOP has in CNN algorithms, developing energy-efficient 
MAC operation is of great importance, facilitating the implementation 
of machine learning algorithms in mobile, battery-operated devices.  

The starting point of my research activity regarding 
precision-scalable MAC unit is the work proposed by de la Guia Solaz 
et al. [57] which discusses about a programmable truncated multiplier. 
In this paper the authors propose a multiplier for general purpose 
systems which can be “programmed”, in the sense that its accuracy 
can be controlled with a fine-grain approach, as a function of the 
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application. The accuracy is modified by choosing the number of 
column to discard in the PPM of a multiplier. In this way the accuracy 
is traded for dynamic power. In this work, for the first time, the 
truncation is expanded also in the MSP region. The Fig. 10 shows the 
PPM proposed in [57]. As it can be observed, the signal tj with j  
ranging from 0 to 2n-2 allows disabling each column of the PPM. The 
disabling is implemented imposing 0jt = , as a result, all the partial 
products of the j-th column will be freezed to zero, eliminating any 
switching activity in the column. 

Authors in [57] employ a Constant Compensation Method 
(CCM), in order to compensate for the neglected partial products. The 
compensation constant is calculated under the assumption of 
independent and uniformly distributed operands, with the same 
approach of [68]. Please note that, being the number of discarded 
columns imposed at run-time, different compensation constants must 
be provided as a function of the actual number of discarded columns. 
As a consequence, in [57] authors perform the compensation in 
software, observing that providing the constants for the different 
truncation levels can be hardware-expensive, reducing the power 
improvement achievable with the truncation. The precision-scalable 
multiplier is embedded in [57] in a DSP system and the number of 
column to be neglected is fixed through an internal register, whose 
value is controlled by a dedicated instruction set. 
 Starting from [57], my research activity focused on two 
contributions: i) developing, for the first time, an hardware 
compensation method for programmable truncated multipliers; ii) 
implement a data-aware, low-power, compensation technique. 
Regarding this second point, it is worthwhile observing that the 
Constant Compensation Method employed in [57], being based on 
specific assumption regarding input operands (independence and 
uniform distribution) does not meet the flexibility paradigm which 
constitutes the baseline for precision-scalable units: the ability to 
adapt to datasets statistics. Therefore my research activity focused on 
implement an adaptive (“data-aware”), low-power, compensation 
technique for precision scalable-units. 

3.3.1 Real-Time Data-Aware Compensation Technique 



86                                     VLSI Circuits For Approximate Computing 

The key motivation of precision-scalable unit is the ability to 
improve energy efficiency at expense of quality degradation of the 
results. In the case of precision-scalable unit, maximizing the accuracy 
achieved at a given precision level, without affecting the dissipated 
power, is of paramount importance, allowing performing a more 
aggressive precision scaling to trade the increased accuracy for power.  

In the case of precision-scalable truncated multipliers this 
observation translates into an higher number of neglected column (i.e. 
less dynamic power dissipation) when the accuracy is maximized. 
Therefore an energy-efficient, precise, compensation technique is 
required. In [57] this challenge is solved by performing a software 
compensation, in which the multiplier result is corrected with the 
addition of a compensation constant estimated assuming that the 
neglected partial products are independent and uniformly distributed.  

In this paragraph, the proposed low-power, real-time 
data-aware compensation technique is discussed. The basic idea to 
obtain a data-aware compensation is to “sense” the error done with a 
given precision level. In order to achieve a low-power circuital 
implementation, the sensing is performed every 1F   multiplication. 

Let’s obtain an expression that describes the error in function 
of the precision level, in a precision-scalable truncated multiplier with 
mixed operands PPM. The precision-scaled output can be written as 
follows: 

( ) ( ) ( )
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∑
  (3.22) 

where nt is the number of discarded columns (as an example, nt=0 
means { }1 0,2 1jt j n= ∀ ∈ −  therefore no column is discarded 
(compare with Fig. 10), while nt=2 means 

{ } 0 11 2,2 1 ; 0jt j n t t= ∀ ∈ − = =  ), r(i+j) is defined as follows: 
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Fig. 10 Precision-scalable PPM for signed operands. The tj signals allows to 

discarding the PPM columns with a fine-grain approach. 
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SE(nt) is the sign-extension prevention constant, which is a function of 
the number of discarded columns, nt: 
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  (3.24) 

while K is the compensation function, defined in the following. The 
exact output P, is expressed as follows: 

 1
1

2 1 1
2 2

n n n
i j i

i j i
i j i

P SE x y x y− − − −

= = =

= + ⋅ + ⋅∑∑ ∑   (3.25) 

being 1 12 2 nSE − − −= +  as stated by (3.13). The MAC output can be 
expressed, for the precision-scalable circuit, as: 

 ( )
1

M

t n g t t
i

Z trunc P n+
=

 =  
 
∑   (3.26) 

And for the exact circuit as: 

 
1

M

n g
i

Z trunc P+
=

 =  
 
∑   (3.27) 

being M the number of multiplications to be accumulated and g the 
number of eventually employed guard-bit (n+g bits are truncated, 
providing an n-bits output). While (3.22) and (3.25) describe the 
multiplication operation, the (3.26) and (3.27) describe the 
accumulation one. Note that, with respect to (3.17), (3.20), (3.21) the 
truncation operation is not performed at the output of the multiplier, 
but at output of the MAC unit, avoiding, in this way, the accumulation 
of the truncation error.  
It is worthwhile observing that, while the accumulation is done in an 
accurate way for both the precision-scaled and the exact MAC, the 
error source for the precision-scaled unit is given by the truncated 
multiplication (3.22). This error can be obtained as follows: 
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where   

 ( ) ( )
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  (3.29) 

The (3.28), (3.29) state that, substantially, the error can be calculated 
using a dual PPM, in which only the columns deactivated in the 
precision-scalable multiplier are activated. 
In the proposed real-time, data-aware compensation technique, the 
error e, computed by the dual PPM, is sampled with an aggressive 
subsampling period F, and each L samples a mean error em is 
evaluated: 

 ( ) ( )( )( ( 1) ) 2 ( )
m

e u L F e u L F e u
e u

L
− − + − − + +

=


  (3.30) 

The (3.30) states that the mean error em, at a given clock period u is 
evaluated accumulating the actual sample and the previous L-1 ones, 
each of them far from the contiguous of F clock periods, due to the 
subsampling. 
It is worthwhile recalling that the mean square error (MSE) is directly 
related to mean error µ  (whose em constitutes an estimate), as 
follows: 

 2 2MSE σ µ= +   (3.31) 

where 2σ  is the error variance. Therefore compensating the mean 
error represents a first step for MSE minimization. This observation 
constitutes the baseline of all the Constant Correction Methods. Please 
note that the MSE is directly related to PSNR definition, which 
represents a standard quality metric for images: 
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 { }
1020 log

MAX I
PSNR

MSE
 

=  
 

  (3.32) 

In (3.32) { }MAX I  represents the maximum pixel value in the image I 

(for an 8-bits grayscale image { } 255MAX I = ). In the following, we 
impose the mean error compensation. The difference with Constant 
Correction Methods is that in the proposed approach the mean error is 
estimated on the actual data statistics, therefore the compensation term 
K is adaptive and the compensation term can be defined “data-aware”. 

Therefore, the mean error is compared with zero: if the 
comparison is true (em=0) the compensation K is not updated, while if 
the mean error em is not zero the compensation term is updated as 
follows: 

 ( ) ( ) ( )
( ) ( ) ( )

0
0

m

m m

K u L F if e u
K u

K u L F e u if e u
− ⋅ ==  − ⋅ + ≠

  (3.33) 

Note that the update of em and K happens every L F⋅  clock cycles, 
due to the subsampling and the accumulation. When 0me ≠  the 
compensation term is corrected summing the previous K to the actual 
mean error, in this way, if 0me < , therefore the truncated product is 
over-compensated (compare with (3.28)), the compensation terms is 
decreased, in order to decrease the over-compensation error and vice 
versa when 0me > . 

3.3.1.1 Circuit Overview 

In this paragraph a circuital overview is discussed. The Fig. 11 shows 
a top-level view of the proposed approach. 
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Fig. 11 Top level view of the proposed circuit. Note that the Error Compensation  
block works at scaled frequency and that provides the compensation term K to the 

Precision-Scalable MAC Unit. 

The input operands X, Y are fed with a Tck clock period to the 
programmable-truncated PPM, in which nt columns are deactivated. A 
combinatory circuit acts as decoder to translate the nt signals into 2n-1 
tj signals of Fig. 10. The programmable-truncated PPM can be 
implemented as TDM, carry-save tree, providing two outputs in 
carry-save format s1 and s2, to be added in order to complete the 
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multiplication. These two signals are added with the compensation 
term K provided by the error compensation circuit, and with the output 
of the accumulator register, in order to perform a MAC operation. The 
result is then truncated in order to provide an n-bits output (3.22), 
(3.26). Regarding the error compensation circuit, the operands X and Y 
are sampled with a clock period F times bigger than Tck. Note that, in 
order to compute the error e, the columns neglected in the 
programmable-truncated PPM must be taken into account, therefore 
the signal t passes through a logic inverter and is fed to the 
Error-Compensation block, in order to implement (3.28). The mean 
error computation em (3.30) and the K control (3.33) are also 
implemented in this block. Let us discuss, in more details, the 
Precision-Scalable MAC Unit and the Error Compensation blocks. 

3.3.1.1.1 Precision-Scalable MAC Unit 

The Precision-Scalable MAC Unit (Fig. 11) is composed by 
the Programmable-Truncated PPM, a multi-operands adder and an 
accumulation register. 
The Programmable-Truncated MAC Unit is similar to that represented 
in Fig. 10, with the exception that no sign extension prevention 
constant is introduced. Indeed, as stated by (3.24), the sign extension 
(SE) constant is function of the number of discarded columns nt, 
therefore its implementation requires a LUT. Note that a constant in 
the PPM can be easily accounted in the carry-save tree 
implementation with negligible increased complexity; this is not the 
case for SE(nt), assuming different values as a function of the 
discarded columns: in this case an additional row of partial products 
must be accounted, with consequent lower performance in terms of 
speed and power. In order to avoid this overhead, the LUT is not 
implemented, and the SE(nt) is controlled by the Error Compensation 
circuit, embedding its value in the compensation term K. At the reset 
of the circuit, the compensation term K is initialized to the SE constant 
corresponding to the condition 0tn = . Its value is then adjusted 
automatically as a function of nt, thanks to the constraint 0me =  (3.33)
. As a result the expression for Pt(nt) (3.22) becomes: 
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while the expression for error calculation (3.28) modifies as follows: 
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Note that also in the (3.35) the LUT is avoided. 
The Programmable-Truncated PPM provides as output the two 

signals s1 and s2 in carry-save format. These two signals must be 
added with the compensation term K and with the output of the 
accumulator ACC through a multi-operand adder; these two signals 
are sign extended with g guard bit before entering in the carry-save 
tree (the multi-operand adder can be implemented as carry-save tree). 
Note that, as observed for SE(nt) , the addition of the compensation 
term represents a significant overhead, requiring an additional row in 
the tree, of length 2n g+ , slowing down the circuit and increasing the 
power dissipation. This overhead can be avoided, initializing, at the 
start of the M multiplications (compare (3.26)) , the accumulator 
register with the compensation term K multiplied M times. This 
requires an additional multiplexer in the Precision-Scalable MAC Unit 
(which is simpler and faster than a row of full-adders) and a constant 
multiplier (implemented with shifts and additions) in the Error 
Compensation block. Note that this multiplier, while increasing the 
area occupation, does not impact the energy efficiency of the circuit, 
due to the low working frequency of the Error Compensation block 
( 1F  ). The resulting scheme for the Precision-Scalable MAC Unit 
is shown in Fig. 12, where the rst_acc signal becomes high when a 
new set of M multiplication starts and goes down in the next clock 
cycle. Note that a register has been added at the output of the unit; this 
register can be easily clock-gated and enabled when a set of M 
multiplications is computed. 
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Fig. 12 Precision-Scalable MAC Unit. Note that the compensation terms is 

initialized at each new set of M multiplications through the multiplexer. 

3.3.1.1.2 Error Compensation  

The Error Compensation block is shown in detail in the 
Fig. 13. After a sampling stage, implemented with a register operating 
with a clock period equal to ckF T⋅ , the sampled inputs and the t  
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signal are fed to a Programmable-Truncated PPM that is similar to 
that in the Precision-Scalable MAC Unit, with the exception of an 
additional row, accounting for SE (3.35). The two outputs in carry 
save format s1 and s2 and the actual correction term ( )K u L F− ⋅  are 
summed in order to compute the error e. In addition to them, an extra 
signal is added, which is the output of the accumulator, needed to 
perform the mean operation. Note that this multi-operand adder can 
be, as previously discussed, implemented as a carry-save tree, in 
which ge guard bit are included, due to the accumulation of the L 
samples. At the end of the accumulation (i.e. when L samples are 
accumulated), a division by L must be performed (3.30). In order to 
save hardware and power, we impose the constraint that L is a two 
power. In this way the division can be trivially implemented as a 
variation of representation followed by LSB truncation, therefore no 
extra-hardware is needed, being the implementation a wiring matter. 
In order to avoid unnecessary switching in the downstream circuits, a 
multiplexer is inserted, clamping to zero its output when the 
accumulation is not completed (RSTcntK=0). The em signal is then 
compared with zero in order to implement the control mechanism 
(3.33). Note that the output of the adder is multiplied by M. This 
multiplier can be significantly simplified, as already discussed, being 
a constant multiplier. Observe, moreover, that the final multiplexer 
can be eliminated if the clock of the output register is produced by a 
CGIC (Clock Gate Integrated Cell), whose enable is the signal 
!Update, with beneficial effects on the dynamic power dissipation.  
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Fig. 13 Error Compensation circuit. The discarded column in the Precision-Scalable 

MAC Unit are now activated in order to compute the committed error. The error 
(subsampled with a factor F, note the input register) is then accumulated and the 

mean error is evaluated. A control circuit, in function of the actual mean error 
manage the compensation term value. The actual compensation term is then 

multiplied by M though a constant multiplier and given to the Precision-Scalable 
MAC Unit. 
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3.3.1.2 Parameters choice 

In this paragraph an heuristic analysis on image processing 
applications is carried out in order to establish the values of F and L 
parameters able to assure the best quality-energy ratio.  

3.3.1.2.1 2D Convolution 

 Before analyzing the results of the analysis, let us briefly 
introduce the 2D convolution, which is a standard operation in 
computer vision applications. It allows to filter an image through a 
filter, that, in this context, is usually named as “kernel”. The filtering 
process happens performing a 2D convolution: the kernel, usually 
represented as a squared matrix qxq, is overlapped on all the possible 
qxq image windows, and, for each window, a SOP operation between 
kernel coefficients and homologous image pixels is performed, 
producing, as output, a filtered pixel, as represented in Fig. 14. 

 
Fig. 14 Filtering of an image window through a kernel. A single pixel is produced, 

corresponding to the central position of the window. 

The operation can be formally expressed as [81]: 
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where I is the original image, h the filtered one, k is the kernel and 
( ),i j  is a generic pixel. The (3.36) must be extended to the remaining 

( )', 'i j  pixels belonging to the original image. 

3.3.1.2.2 Case study for Gaussian kernel 

In order to find out the effect on the image quality due to different 
choices of parameters F and L, the 2D convolution between “Lena” 
image and the following Gaussian kernel has been investigated: 

 

0.0392 0.0398 0.0400 0.0398 0.0392
0.0398 0.0404 0.0406 0.0404 0.0398
0.0400 0.0406 0.0408 0.0406 0.0400
0.0398 0.0404 0.0406 0.0404 0.0398
0.0392 0.0398 0.0400 0.0398 0.0392

gk

 
 
 
 =
 
 
  

  (3.37) 

The (3.37) kernel has been obtained through the Matlab command 
fspecial('gaussian',5,10). In the following, the result for nt=6 are 
presented. Please note that the following considerations are pretty 
general and the following behavior is observed with others kernels and 
nt values. 

The Fig. 15 shows PSNR results for the convolution between 
Lena image and (3.37) kernel, when six columns of the PPM are 
neglected. Please observe that L is varied in the [ ]4;64  range, while F 

in [ ]2;2048 . The results for the case in which the error is not 
compensated and is compensated assuming the uniform distribution 
are also shown in this figure, for comparison. Please note that x-axis, 
in Fig. 15 is in logarithmic scale. 
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Fig. 15 PSNR result for the proposed approach and for the Uniform and No 

Compensation ones, in the case of Gaussian kernel. For the proposed approach 
different value of L are shown, while the x-axis is subsampling factor F. 

As observable in Fig. 15, for 10F <  the PSNR is more than 
10dB higher than the case of no compensation and more than 7dB 
higher than that of uniform compensation. Unfortunately, a such 
relatively frequent subsampling factor highly impacts on energy 
efficiency of the proposed MAC unit. A key observation is that the 
PSNR, after a rapid decrease, remains approximately flat for 10F > , 
decreasing only for very high subsampling values (approximately for 

512F > ). This behavior is found also with other filters analyzed. 
Note, moreover, that in the flat region, the PSNR tends to increase 
with L (the opposite happens for 10F < ), this can be explained with 
the fact that in this region, due to the high subsampling value, the 
sampled errors e (3.28) tend to be uncorrelated, therefore the mean 
error em tends to be a bad estimation of the real mean error µ , when 
the number of accumulated samples L is too low. Instead, in the region 
with 10F < , the samples tend to be correlated, therefore the mean 
error em is a good estimation also when L is low: in this region, 
keeping L low offers the best results because the response time of the 
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control decreases with L (and F), allowing to rapidly compensate the 
errors made. 

As a result of these observations, to improve energy-efficiency, 
the proposed compensation technique will work in the flat region. In 
particular, the following parameters have been chosen: 

 
*

*

128
64

F
L

 =


=
  (3.38) 

Note that such choice increases PSNR of more than 3dB with 
respect uniform compensation and of more than 7dB with respect no 
compensation, for the case of Fig. 15. In the following more detailed 
results are given for different kernels, images and nt values. 

3.3.1.3 Results 

In this paragraph the quality and VLSI implementation results 
are discussed.  

3.3.1.3.1 Quality results 

The proposed real-time data-aware compensation technique 
has been assessed on different images and kernels. A comparison with 
the cases of No Compensation and Uniform Compensation is 
provided. The following three test images have been considered for 
the next quality results: 

 
Fig. 16 Cameraman test image, resolution: 204x204. 
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Fig. 17 Lena test image, resolution: 223x292. 

 
Fig. 18 Airplane test image, resolution: 288x511. 

The following kernels have been considered: 
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1 1 1

1 1 1 1
9

1 1 1
averagek

 
 =  
  

  (3.39) 

 
1 2 1

1 2 4 2
16

1 2 1
blurk

 
 =  
  

  (3.40) 

 
1 1 0
1 0 1

0 1 1
embossk

− − 
 − 
  

=   (3.41) 

 
0 1 0
1 5 1

0 1 0
sharpk

− 
 = − − 
 − 

  (3.42) 

 _

1 0 1
2 0 2
1 0 1

sobel vk
− 

 = − 
 − 

  (3.43) 

In addition to Average (3.39), Blur (3.40), Emboss (3.41), Sharp 
(3.42), Sobel Vertical (3.43), Gaussian (3.37), two kernels extracted 
from an actual Convolutional Neural Network (CNN) (VGG-F [82]) 
have been employed, one of size 11x11 “VGG 11x11”, another of size 
3x3 “VGG3x3”. For simplicity, only the values of VGG3x3 are 
reported: 

 3 3

0.0254 0.0044 0.0174
0.0223 0.0126 0.0066
0.0146 0.0005 0.0108

VGG xk
− − 

 = − − 
 − 

  (3.44) 

Note that the values of CNNs kernels are the result of a training 
procedure. The Kernels have been quantized assuming different 
representation on 8-bits, since of their significant difference in terms 
of absolute value. From an hardware perspective this corresponds to 
employ a shifter after the MAC operation, this is a common design 
choice in all practical Digital Signal Processors. 
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In the following tables, the quality results, expressed in terms 
of PSNR (3.32) and Structural Similarity Index (SSIM) [50] are 
shown for the employed kernels and for Lena, Airplane and 
Cameraman test image. In the tables, the maximum PSNR and SSIM 
for each row (corresponding to a given nt) are reported in red, while 
the maximum values higher, respectively, than 3 dB and 0.1 (please 
note that SSIM is dimensionless, while PSNR is expressed in dB) , for 
PSNR and SSIM with respect the second best value in the row, are 
reported in bold red. 
 Table I shows quality results for Average kernel. As it can be 
observed, the proposed approach exhibits, almost always, the best 
PSNR, while in terms of SSIM negligible differences appear between 
proposed and uniform approaches, while the results corresponding to 
the No Compensation show worse performance. In some cases, 
especially for aggressive precision-scaling levels, proposed approach 
allows increasing PSNR of more than 3°dB, up to 10 dB. 
 The results corresponding to Blur kernel are shown in Table II. 
In this case, the proposed approach always shows the best result in 
terms of PSNR, with an improvement more than 3°dB in almost all 
cases, with a peak of 16°dB. In terms of SSIM negligible differences 
exist with uniform approach (note that No Compensation approach 
offers good results when non aggressive precision-scaling is 
performed). 

Table III shows the performance for Emboss Kernel. In this 
case proposed approach offers always the best results both in terms of 
PSNR and SSIM, where results are significant improved with respect 
Uniform and No Compensation case. Note that, in terms of PSNR, the 
Uniform approach exhibits significantly lower performance than No 
Compensation one. Also in terms of SSIM, No Compensation offers 
better performance than Uniform approach, when a non-aggressive 
precision scaling is performed. The Uniform approach tends to be 
unsuitable for this kind of kernel, due to the presence of a integer 
coefficients, resulting in a significant number of zeroed LSB. As a 
result uniform approach results in an over-compensation, which 
degrades SSIM and PSNR in higher measure. 

In Table IV quality performance for Gaussian Kernel are 
reported. Also in this case the proposed approach exhibits the best 
PSNR values, with improvement up to 9°dB. In terms of SSIM the 
performance are comparable with that of Uniform approach, while for 
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the No Compensation one, performance rapidly decreases with high 
number of discarded columns. 

For the case of Sharp kernel, the results are shown in Tab. V. 
Also with this kernel, proposed technique exhibits significantly better 
PSNR and SSIM results with respect the other two approaches. Note 
that No Compensation approach offers better PSNR performance with 
respect Uniform one, while the results are about the same in terms of 
SSIM: in both the case the SSIM rapidly decreases increasing nt. 

Table VI reports the result for Sobel Vertical Kernel. In this 
case the consideration are similar to that made for Emboss Kernel: 
proposed approach shows the best performance in terms of PSNR and 
SSIM and the Uniform approach fails to compensate the errors, 
performing worse than the No Compensation one. 

The Table VII shows the results for the VGG11x11 kernel. In 
this case similar results are obtained using proposed approach and 
Uniform one. In particular, proposed technique often results in better 
PSNR, while the SSIM is often better for the case of uniform 
compensation, however no significant differences are observed. Note 
that No Compensation approach is the worst one in this case, rapidly 
degrading its performance quality when a significant number of 
columns is neglected. Similar considerations apply to VGG3x3 
(Table VIII), in which the performance between proposed and uniform 
approach are almost the same. 

At the end of this discussion it is worthwhile observing that, in 
some cases the No Compensation approach offers better results than 
uniform one and in other cases vice versa, while proposed approach 
exhibits, in all the analyzed cases, always significant better or, at least, 
comparable quality performance with respect the best among No 
Compensation and uniform approaches, showing an adaptive capacity 
to the dataset, which constitutes the basic motivation of the proposed 
approach. Observe, moreover, that, both PSNR and SSIM measure the 
quality of image (although with different theoretical considerations) , 
but, while the SSIM is intrinsically related to image processing 
applications, the PSNR, being a ratio between a constant and the root 
mean square error (3.32) is a rigorous measure of the mathematical 
error done. With this consideration it is worthwhile observing that 
proposed approach, improving especially the PSNR (due to the 
constrain on the mean error imposed in (3.33)), offers the smaller 
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mathematical error. This allows to employ proposed technique also for 
other application contexts. 

As final remark, note that the quality dependence on the kernel 
is stronger than that on the image. 

TABLE I. QUALITY RESULTS FOR AVERAGE KERNEL (F=128, L=64) 

nt Image Proposed No 
Compensation Uniform 

PSNR SSIM PSNR SSIM PSNR SSIM 
6 Lena 57.45  0.99  50.55  0.99  56.59  0.99  
7 Lena 53.05  0.98  42.88  0.99  53.23  0.98  
8 Lena 47.49  0.97  33.70  0.97  46.79  0.97  
9 Lena 41.94  0.93  27.23  0.93  40.80  0.94  
10 Lena 35.51  0.83  20.84  0.78  33.55  0.84  
11 Lena 28.31  0.66  14.63  0.46  24.32  0.68  
12 Lena 23.35  0.50  9.53  0.12  17.73  0.50  
13 Lena 19.28 0.26  7.69  0.00  13.44  0.23 
6 Cameraman 56.78  0.96  50.80  0.92  55.72  0.95  
7 Cameraman 51.87  0.92  43.27  0.92  52.59  0.92  
8 Cameraman 46.31  0.84  34.53  0.84  47.17  0.85  
9 Cameraman 39.59  0.73  26.89  0.70  38.91  0.75  
10 Cameraman 34.05  0.65  21.20  0.57  33.46  0.66  
11 Cameraman 27.92  0.53  15.89  0.44  26.82  0.56  
12 Cameraman 21.14  0.40  9.91  0.20  18.76  0.44  
13 Cameraman 16.68  0.29  5.82  0.00 13.77  0.31  
6 Airplane 57.10  0.96  50.19  0.95  56.76  0.96  
7 Airplane 53.64  0.94  43.76  0.94  53.45  0.94  
8 Airplane 48.44  0.90  33.40  0.91  45.66  0.90  
9 Airplane 40.87  0.83  25.80  0.83  35.94  0.83  
10 Airplane 36.04  0.68  20.56  0.67  32.35  0.69  
11 Airplane 31.12  0.55  14.66  0.49  24.79  0.55  
12 Airplane 26.32  0.49  8.40  0.29  16.57  0.48  
13 Airplane 19.41  0.29  2.97  0.00 9.24  0.23  
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TABLE II. QUALITY RESULTS FOR BLUR KERNEL (F=128, L=64) 

nt Image Proposed No 
Compensation Uniform 

PSNR SSIM PSNR SSIM PSNR SSIM 
6 Lena 56.18  0.99  50.97  0.99  41.01  0.99  
7 Lena 52.32  0.98  43.95  0.98  34.10  0.98  
8 Lena 45.54  0.96  30.06  0.96  28.04  0.96  
9 Lena 38.11  0.89  21.58  0.84  23.51  0.88  
10 Lena 31.20  0.75  14.54  0.50  19.96  0.74  
11 Lena 24.58  0.57  9.24  0.11  17.56  0.56  
12 Lena 20.77  0.39  7.67  0.00  15.23  0.38  
13 Lena 17.50  0.16  7.67  0.00  12.24  0.17  
6 Cameraman 55.03  0.94  51.07  0.92  41.05  0.95  
7 Cameraman 50.43  0.88  43.90  0.92  34.04  0.86  
8 Cameraman 43.12  0.81  29.96  0.78  28.03  0.80  
9 Cameraman 35.90  0.70  22.05  0.62  23.48  0.69  
10 Cameraman 29.43  0.60  15.18  0.46  19.52  0.58  
11 Cameraman 23.25  0.47  9.30  0.17  15.57  0.46  
12 Cameraman 18.12  0.33  5.78  0.00  13.38  0.35  
13 Cameraman 14.53  0.19  5.78  0.00 11.90  0.20 
6 Airplane 56.03  0.96  50.90  0.94  41.04  0.95  
7 Airplane 51.96  0.92  43.79  0.93  34.16  0.92  
8 Airplane 45.84  0.87  29.83  0.88  28.19  0.88  
9 Airplane 38.54  0.76  21.20  0.76  23.92  0.77  
10 Airplane 32.67  0.61  14.62  0.56  19.40  0.62  
11 Airplane 28.30  0.50  8.27  0.27  16.93  0.49  
12 Airplane 22.45  0.40  2.94  0.00  16.42  0.40  
13 Airplane 16.28  0.19  2.94  0.00  15.85  0.16  
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TABLE III. QUALITY RESULTS FOR EMBOSS KERNEL (F=128, L=64) 

nt Image Proposed No 
Compensation Uniform 

PSNR SSIM PSNR SSIM PSNR SSIM 
6 Lena ∞   1 ∞   1 29.77 0.71 
7 Lena 48.56 0.98 41.61 0.91 22.51 0.52 
8 Lena 41.73 0.94 26.66 0.37 16.01 0.38 
9 Lena 35.40 0.84 20.80 0.15 10.51 0.24 
10 Lena 28.32 0.65 17.00 0.04 5.63 0.14 
11 Lena 21.25  0.44  14.92  0.01  1.83  0.06  
12 Lena 14.06  0.29 14.65 0.00  1.14  0.03  
13 Lena 7.27 0.11 14.65 0.00  1.72 0.03 
6 Cameraman ∞  1 ∞  1 29.19 0.58 
7 Cameraman 46.89  0.82  42.57  0.71  22.03  0.44  
8 Cameraman 40.43  0.69  28.03  0.38  15.73  0.32  
9 Cameraman 33.64  0.60  21.59  0.22  10.38  0.23  
10 Cameraman 26.82  0.53  16.81  0.11  5.65  0.15  
11 Cameraman 20.53  0.42  13.39  0.02  1.79  0.07  
12 Cameraman 13.87  0.29  12.96 0.02  1.08  0.03  
13 Cameraman 13.06  0.18 12.96  0.02 0.75  0.03 
6 Airplane ∞  1 ∞  1 29.46 0.55 
7 Airplane 48.84  0.94  42.35  0.76  22.12  0.40  
8 Airplane 41.94  0.84  28.37  0.31  15.71  0.28  
9 Airplane 35.16  0.67  22.01  0.16  10.29  0.19  
10 Airplane 27.60  0.48  17.52  0.05  5.68  0.12  
11 Airplane 21.51  0.35  15.23  0.01  2.04  0.06  
12 Airplane 16.62 0.21  14.52  0.00  0.68  0.02  
13 Airplane 9.80  0.16 14.52 0.00  0.00  0.05 
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TABLE IV. QUALITY RESULTS FOR GAUSSIAN KERNEL (F=128, L=64) 

nt Image Proposed No 
Compensation Uniform 

PSNR SSIM PSNR SSIM PSNR SSIM 
6 Lena 57.35 0.99 49.49 0.98 53.69 0.98 
7 Lena 53.17 0.98 41.79 0.98 51.51 0.98 
8 Lena 48.42 0.97 32.62 0.97 47.39 0.97 
9 Lena 42.91 0.95 26.15 0.94 41.72 0.96 
10 Lena 37.81 0.87 19.89 0.81 37.46 0.89 
11 Lena 29.84 0.71 14.07 0.46 28.93 0.74 
12 Lena 25.85 0.59 9.21 0.10 23.07 0.60 
13 Lena 20.08 0.32  7.84  0 16.71  0.30 
6 Cameraman 56.87  0.95  49.86  0.92  53.25  0.92  
7 Cameraman 52.52  0.91  42.64  0.92  49.77  0.92  
8 Cameraman 47.77  0.87  33.30  0.87  45.49  0.87  
9 Cameraman 40.97  0.77  25.86  0.74  40.51  0.79  
10 Cameraman 36.03  0.68  20.25  0.60  35.56  0.70  
11 Cameraman 30.41  0.59  15.36  0.44  29.96  0.60  
12 Cameraman 22.47  0.46  8.67  0.15  20.46  0.50  
13 Cameraman 20.30  0.37  6.02  0.00  19.43  0.39  
6 Airplane 57.16  0.94  49.60  0.93  53.73  0.93  
7 Airplane 54.25  0.92  42.54  0.91  50.66  0.92  
8 Airplane 48.67  0.89  31.91  0.90  48.01  0.90  
9 Airplane 40.70  0.82  24.65  0.86  39.03  0.86  
10 Airplane 38.16  0.70  19.81  0.71  37.55  0.74  
11 Airplane 30.55  0.56  13.30  0.52  27.29  0.60  
12 Airplane 26.73  0.49  7.78  0.29  20.89  0.54  
13 Airplane 22.20  0.34  3.09  0.00 13.93  0.34  
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TABLE V. QUALITY RESULTS FOR SHARP KERNEL (F=128, L=64) 

nt Image Proposed No 
Compensation Uniform 

PSNR SSIM PSNR SSIM PSNR SSIM 
6 Lena 35.96  0.96  26.96  0.95  17.99  0.91  
7 Lena 26.77  0.82  16.65  0.69  11.81  0.69  
8 Lena 20.22  0.62  8.02  0.10  6.39  0.38  
9 Lena 14.14  0.41  6.91  0.00  4.15  0.10  
10 Lena 9.22  0.24  6.84  0.00  3.90  0.02  
11 Lena 6.46  0.11  6.84  0.00  3.98  0.01  
12 Lena 4.65  0.01  6.84  0.00  4.31  0.01  
13 Lena 4.58  0.00  6.84  0.00  4.31  0.00  
6 Cameraman 34.34  0.77  27.07  0.74  18.10  0.71  
7 Cameraman 25.41  0.62  16.99  0.55  12.01  0.52  
8 Cameraman 18.15  0.53  6.91  0.15  7.92  0.32  
9 Cameraman 12.97  0.41  5.16  0.01  5.35  0.10  
10 Cameraman 9.35  0.26  5.09 0.00  4.48  0.02  
11 Cameraman 5.17  0.09  5.09  0.00  4.53  0.03  
12 Cameraman 3.61  0.00  5.09  0.00  5.02  0.00  
13 Cameraman 3.61  0.00  5.09  0.00  4.53  0.00  
6 Airplane 35.96  0.92  26.63  0.92  18.01  0.89  
7 Airplane 26.71  0.71  16.05  0.67  13.64  0.51  
8 Airplane 19.91  0.52  5.14  0.17  10.16  0.23  
9 Airplane 13.17  0.33  2.79  0.00  8.35  0.06  
10 Airplane 9.43  0.20  2.75  0.00  7.97  0.01  
11 Airplane 6.40  0.09  2.75  0.00  8.07  0.01  
12 Airplane 5.77  0.01  2.75  0.00  8.43  0.00  
13 Airplane 2.95 0.00  2.75  0.00  2.55 0.00  
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TABLE VI. QUALITY RESULTS FOR SOBEL VERTICAL KERNEL (F=128, 
L=64) 

nt Image Proposed No 
Compensation Uniform 

PSNR SSIM PSNR SSIM PSNR SSIM 
6 Lena 47.17  0.99  41.47  0.98  22.70  0.58  
7 Lena 37.11  0.95  28.44  0.79  16.61  0.33  
8 Lena 29.52  0.86  14.44  0.33  10.69  0.15  
9 Lena 21.98  0.68  6.03  0.05  5.53  0.01  
10 Lena 15.66  0.47  1.39  0.00  1.84  0.00  
11 Lena 10.31  0.28  1.39  0.00  1.47  0.00  
12 Lena 4.96  0.12  1.39  0.00  1.45  0.00  
13 Lena 3.49  0.02  1.39  0.00  1.45  0.00  
6 Cameraman 47.04  0.92  41.70  0.84  22.77  0.48  
7 Cameraman 36.07  0.69  28.96  0.56  16.31  0.35  
8 Cameraman 27.24  0.59  14.26  0.30  10.33  0.21  
9 Cameraman 19.44  0.51  5.69  0.10  5.20  0.08  
10 Cameraman 13.92  0.42  1.07  0.00  1.50  0.00  
11 Cameraman 9.89  0.27  1.06  0.00  1.10  0.00  
12 Cameraman 4.54  0.10  1.11  0.00  1.11  0.00  
13 Cameraman 4.31 0.05  1.11  0.00  1.12 0.00  
6 Airplane 47.35  0.97  41.56  0.92  22.97  0.36  
7 Airplane 37.51  0.85  28.68  0.56  16.47  0.25  
8 Airplane 30.23  0.67  14.18  0.23  10.30  0.14  
9 Airplane 22.78  0.47  5.46  0.04  5.17  0.02  
10 Airplane 15.90  0.31  0.95  0.00  1.60  0.00  
11 Airplane 11.24  0.23  0.95  0.00  0.93  0.00  
12 Airplane 9.43  0.12  0.95  0.00  0.93  0.00  
13 Airplane 3.15 0.02 0.95 0.00  0.93 0.00  
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TABLE VII. QUALITY RESULTS FOR VGG11x11 KERNEL (F=128, L=64) 

nt Image Proposed No 
Compensation Uniform 

PSNR SSIM PSNR SSIM PSNR SSIM 
6 Lena 56.33  0.96  45.85  0.75  55.48  0.96  
7 Lena 50.01  0.90  39.23  0.59  48.72  0.89  
8 Lena 44.19  0.80  32.45  0.41  42.83  0.80  
9 Lena 38.21  0.66  28.07  0.31  36.88  0.66  
10 Lena 32.08  0.50  25.96  0.27  30.93  0.51  
11 Lena 26.73  0.36  25.71  0.27  25.47  0.39  
12 Lena 22.57  0.26  25.71  0.27  21.68  0.27  
6 Cameraman 56.49  0.95  47.96  0.82  55.02  0.96  
7 Cameraman 49.87  0.89  41.39  0.74  47.74  0.88  
8 Cameraman 43.21  0.78  33.69  0.60  41.09  0.81  
9 Cameraman 37.32  0.61  28.44  0.48  34.99  0.64  
10 Cameraman 30.61  0.48  25.00  0.43  28.70  0.50  
11 Cameraman 22.84  0.37  23.40  0.41  21.44  0.51  
12 Cameraman 18.00 0.31  23.39  0.41  16.79  0.37  
6 Airplane 58.57  0.99  47.63  0.90  57.55  0.99  
7 Airplane 52.29  0.97  40.45  0.80  50.83  0.98  
8 Airplane 45.75  0.93  33.07  0.65  45.04  0.93  
9 Airplane 39.38  0.82  28.43  0.57  39.62  0.85  
10 Airplane 33.08  0.63  25.85  0.54  34.46  0.74  
11 Airplane 27.91  0.50  24.54  0.53  29.66  0.65  
12 Airplane 24.85  0.44  24.42  0.53  25.50  0.57  
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TABLE VIII. QUALITY RESULTS FOR VGG3x3 KERNEL (F=128, L=64) 

nt Image Proposed No 
Compensation Uniform 

PSNR SSIM PSNR SSIM PSNR SSIM 
6 Lena 63.38  0.91  55.47  0.65  63.26  0.91  
7 Lena 59.33  0.79  51.70  0.51  58.35  0.77  
8 Lena 54.81  0.64  45.64  0.45  54.41  0.63  
9 Lena 51.79  0.53  40.02  0.17  51.23  0.54  
10 Lena 47.35  0.43  37.65  0.01  45.97  0.43  
11 Lena 42.81  0.29  37.35  0.00  41.65  0.28  
12 Lena 39.32 0.18  37.34 0.00  39.76  0.19 
6 Cameraman 63.01  0.91  55.61  0.70  63.25  0.91  
7 Cameraman 59.50  0.83  52.09  0.65  60.08  0.84  
8 Cameraman 53.93  0.59  46.16  0.57  54.12  0.64  
9 Cameraman 50.91  0.52  40.63  0.36  51.45  0.57  
10 Cameraman 46.20  0.45  36.07  0.08  46.26  0.49  
11 Cameraman 40.58  0.32  35.45  0.02  39.58  0.38  
12 Cameraman 36.84  0.16  35.38  0.02  36.07  0.23  
6 Airplane 63.50  0.90  55.84  0.59  63.72  0.90  
7 Airplane 60.11  0.78  50.86  0.51  59.64  0.76  
8 Airplane 55.21  0.57  44.66  0.47  53.27  0.52  
9 Airplane 52.09  0.47  39.25  0.34  50.94  0.53  
10 Airplane 47.87  0.36  33.48  0.04  43.21  0.37  
11 Airplane 43.27  0.27  32.84  0.00  37.80  0.24  
12 Airplane 41.75  0.20  32.82  0.00 35.95 0.17  
 

3.3.1.3.2 VLSI Implementation results 

In this paragraph the VLSI implementation results, in 
40nm TSMC technology are presented. The proposed 
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precision-scalable MAC Unit of Fig. 13 has been described in Verilog 
HDL along with a precision scalable MAC Unit with no compensation 
and with a standard MAC Unit with fixed, full precision. The 
multipliers PPM has been described with the help of a Matlab script, 
implementing the TDM algorithm [51] starting from the 
characterization of the standard cell library (.LIB file). In order to 
perform a conservative comparison, the electrical performances are 
compared with the precision-scalable MAC unit with no 
compensation. Indeed, from the synthesis and simulations done, in 
terms of energy efficiency, the precision-scalable MAC unit 
implementing a compensation technique pay an overhead, with 
respect the precision-scalable MAC unit with no mechanism of 
compensation, due to the additional logic for embedding the 
compensation term into the carry-save tree. This overhead is the same 
for both the proposed compensation approach and the uniform one. 
Moreover, from a quality perspective, proposed approach exhibits 
significantly better or equally with respect uniform one. Therefore no 
improvement in the quality-energy tradeoff is expected when using 
uniform compensation. It is, instead, interesting investigating how the 
tradeoff is affected when moving from a no compensation approach to 
the proposed one. The circuits have been synthesized with Cadence 
RTL Compiler, with a clock constraint of 1.5 ns. The RTL Compiler 
synthesis directive synthesize –to_mapped –effort high has been 
employed. Moreover, a Physical Layout Estimation approach has been 
followed to estimate the wire parasitic. The Error Compensation block 
has been synthesized using HVT standard cells to optimize leakage 
increase, while all others circuits (including the Precision-Scalable 
MAC) have been synthesized at LVT. The power has been evaluated 
from a VCD back-annotated post-synthesis simulation. The simulation 
performs the real convolution operation on the Lena image and with 
some of the filters analyzed in the previous paragraph. 

In Tab. IX are reported the area occupation and power leakage 
results. The area overhead for the MAC with no compensation is of 
12% and this is due to the additional AND gates in the PPM for 
freezing the partial products. For the proposed approach, as expected, 
the area overhead is huge, being the circuit footprint more than 
doubled; this is essentially due to the Compensation Circuit (Fig. 11). 
Regarding leakage, thanks to the usage of HVT cells in the Error 
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Compensation block, the overhead does not follow the area one, being 
equal to 48% (if LVT cells are employed in the Error Compensation 
block the leakage increment becomes 148%). Note that the leakage 
increment can be an issue only when operating with deeply scaled 
voltage supply. If this is the case, it is worthwhile observing that the 
entire approach of introducing AND gates in the PPM to avoid the 
switching of the partial products can be inefficient, being targeted to 
decrease dynamic power at expense of the leakage one. 

In Tab. X the dynamic power dissipation in full-precision 
mode is reported. Here B stands for Blur kernel, E for Emboss, G for 
Gaussian, S V for Sobel Vertical. Regarding power dissipation, in full 
precision mode, as expected, both the circuits increase the dissipated 
power, up to 9% for the no compensation circuit, and up to 24% for 
the proposed circuit. Note that the contribution to dynamic power due 
to the Error Compensation circuit accounts for less than 0.5% of the 
total dynamic dissipation, due to the high subsampling factor F. 

TABLE IX. IMPLEMENTATION RESULTS FOR FULL-PRECISION MODE 

Circuit 
Area 
[µm2] 

Power Leakage 
[µW] 

Standard 865 0.838 

No Comp. 976 
(+12%) 

0.923 
(+10%) 

Proposed 2243 
(+159%) 

1.238 
(+48%) 

 
TABLE X. IMPLEMENTATION RESULTS FOR FULL-PRECISION MODE 

Circuit Dynamic Power [µW/MHz] 

B E G S V VGG 
11x11  

VGG 
3x3 

Standard 1.447 1.221 1.577 1.367 1.670 1.918 
No 

Comp 
1.548 
(+7%) 

1.335 
(+9%) 

1.715 
(+9%) 

1.452 
(+6%) 

1.782 
(+7%) 

2.027 
(+6%) 

Proposed 1.798 
(+24%) 

1.548 
(+27%) 

1.828 
(+16%) 

1.682 
(+23%) 

1.910 
(+14%) 

2.226 
(+16%) 
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In order to have a clear insight of the quality-power tradeoff, the 
energy reduction with respect standard MAC against the quality 
(PSNR and SSIM) is reported in the next graphs, for both the MAC 
unit with no compensation the one with proposed real-time data-aware 
approach. 
The Fig. 19 reports the tradeoff curve for a Blur kernel. The x-axis 
represents the power saving with respect a standard MAC unit, while a 
the y-axis is reported the PSNR (Fig. 19 (a)) and the SSIM 
(Fig. 19 (b)). The blue line represents proposed approach, while the 
green one the no compensation one. Note that the higher is the curve 
the better is the performance, allowing the same power saving with 
higher quality. Note that for both the PSNR and SSIM cases, quality 
degrades gracefully for the proposed approach. For the no 
compensation one there is an abrupt degradation if nt is increased. 
Note that for the PSNR metric, for power saving up to 5% the no 
compensation one is the best choice, assuring higher PSNR than 
proposed approach. When a more consistent power saving is desired, 
the quality in the no compensation cases degrades, while the proposed 
approach is the best choice. Similar considerations hold for the SSIM 
(Fig. 19 (b)). Note that, while for the full-precision mode the proposed 
MAC and the one with no compensation exhibits very different power 
dissipation (Tab. X), this difference tends to be negligible cutting 
more columns (as an example in Fig. 19, for 11tn ≥  the power saving 
has the same value for both the circuits). The Fig. 20 shows the 
filtered Lena image, with both the proposed and no compensation 
MAC units, for the point with 11tn =  (circled in red in the Fig. 19 (a)-
(b)). At a price of significant degradation, around 22% of power can 
be saved. Note that for the case of Fig. 20 (b) (image resulting from no 
compensation) the image is almost totally compromised, imposing a 
bound to the power saving achievable. 

The Fig. 21 shows the tradeoff curve for Sobel Vertical kernel. 
As previously observed the proposed approach degrades gracefully. In 
this case for both the PSNR (Fig. 21 (a)) and the SSIM (Fig. 21 (b)), 
in the region where a power saving is achieved (power saved < 0), the 
proposed MAC is always the best choice. Note that, with respect 
previous kernel (Fig. 19) the curves are left-shifted, therefore with the 
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same target quality a lesser power saving is achieved. This can be 
explained observing that kernels with integers number, quantized on 
8-bits have a higher number of zeroed coefficients in the LSBs. This is 
the case of Sobel Vertical kernel. In this case, the zeroed LSBs of the 
coefficients reduce the switching in the least significant columns of 
the PPM of the standard MAC unit, therefore an advantage in terms of 
power using truncated multipliers can only be obtained with an 
aggressive precision scaling. Moreover, the sobel filter is an highpass 
filter therefore the error, which in the proposed case is almost at zero 
mean (3.33) (therefore having components at high frequency), is not 
filtered out, decreasing the quality performance. The Fig. 22 shows 
the filtered Lena images for 10tn = , corresponding to the circled red 
points in Fig. 21. Note that the Fig. 22 (a) filtered with the proposed 
MAC exhibits some noisy pixels in the background but the edge are 
preserved, while for the case of no compensation Fig. 22 (b) in 
addition to a “complemented” intensity (pixels in the background 
from black are transformed in white) some edges details disappears. In 
correspondence of this points the power reduction is lesser than 5%. 

The Fig. 23 reports the quality-power curve for the VGG 3x3 
kernel. In this case the proposed approach always outperforms the no 
compensation one. In particular, the degradation appears to be really 
gracefully both in terms of PSNR and SSIM, decreasing almost 
linearly with the discarded columns. For power saving around 20% 
the difference in terms of quality is emphasized. In Fig. 24 are 
reported the Lena filtered image, for 10tn = , corresponding to the red 
circles in Fig. 23. Note that in the case of no compensation 
(Fig. 24 (b)) the image filtering operation is completely compromised. 
For the image filtered with proposed MAC (Fig. 24 (a)) the degraded 
quality is traded for an about 27% reduction. 

The filters investigated in this paragraph well reassume the 
three kernel typologies that can be found in practical application: (i) 
kernels like Blur and Sharp belong to the first typology for which the 
proposed approach make sense for aggressive precision-scaling; (ii) 
filters like Emboss, Sobel Vertical and Sobel Horizontal belong to the 
second typology, where, due to a significant number of zeroed LSBs, 
the power reduction is minimal; (iii) filters like Gaussian, Average, 
VGG 3x3 and VGG 11x11 belongs to the third category, in which the 
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proposed approach is effective in every point of the trade-off curve 
quality-power. 

It is worthwhile observing that proposed approach allows 
increasing the precision-scaling range, enabling for an extra-gain in 
terms of power. 
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Fig. 19 Quality-Power tradeoff curves. (a) PSNR is employed as quality metric; (b) 
SSIM is employed as quality metric. Kernel: Blur. 
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b)

a)

c)

 
Fig. 20 (a) Filtered image with proposed MAC; (b) Filtered image with MAC with 

no compensation; (c) Exact image. Kernel: Blur. 
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Fig. 21 Quality-Power tradeoff curves. (a) PSNR is employed as quality metric; (b) 

SSIM is employed as quality metric. Kernel: Sobel Vertical. 
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b)

a)

c)

 
Fig. 22 (a) Filtered image with proposed MAC; (b) Filtered image with MAC with 

no compensation; (c) Exact image. Kernel: Sobel Vertical. 
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Fig. 23 Quality-Power tradeoff curves. (a) PSNR is employed as quality metric; (b) 

SSIM is employed as quality metric. Kernel: VGG 3x3. 
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b)

a)

c)

 
Fig. 24 (a) Filtered image with proposed MAC; (b) Filtered image with MAC 
with no compensation; (c) Exact image. Kernel: VGG 3x3. 
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3.4 Precision-scalable Approximate MAC Unit 
In this paragraph a precision-scalable Approximate MAC Unit 

is discussed. Conversely to the MAC Unit discussed in the paragraph 
3.3, here the partial product matrix is compressed in an approximate 
way, employing OR gates in place of half adders. This approximate 
MAC can be employed in systems area-and-power constrained. 
Indeed, with respect to the MAC unit shown in the paragraph 3.3, the 
Approximate MAC Unit shows significant power savings, due to the 
compression step and to the precision scalability, at a price of a 
reduced quality. Indeed, also when no column is discarded 
(full-precision modality), the proposed Approximate MAC unit 
provide to the system erroneous (approximated) results, resulting from 
the approximate partial product matrix (OR gates in place of 
half-adders), making it unsuitable in systems where the quality 
constraint significantly varies over the time.  Note that the 
compression step, reducing the gates count, improves leakage and area 
performance with respect standard MAC unit. Therefore, in order to 
keep bounded the area occupation, a uniform compensation method is 
employed. It is worthwhile observing that the proposed Real Time 
Data Aware Compensation Technique (paragraph 3.3.1 ) can also 
be employed, in systems where the area and leakage overhead can be 
tolerated. 

Recently, researches focused on energy-efficient multipliers 
implementation [45], [57], [65], [83]. In [65] a truncated multiplier 
with variable compensation method is proposed. The least significant 
columns of the multiplier partial products matrix are discarded and a 
compensation function to minimize the resulting mean square error is 
employed. In [57] a programmable truncated multiplier is proposed. 
The partial product columns can be dynamically freezed, with a fine 
grain approach, in order to save energy when the quality constraint 
can be relaxed. The resulting error is compensated in software. 
Authors in [83] propose an approximate multiplier obtained reducing 
the maximum height of the partial product matrix by means of 
compression of partial product terms. Three different designs are 
presented, in which two, three and four partial products are reduced 
into one term using OR gates. In this paper the precision is fixed at 
design time, therefore the energy quality tradeoff cannot be 
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dynamically tuned as function of the input data and application. 
Moreover, the error resulting from the compression is not 
compensated, limiting the quality performance especially when three 
or more terms are compressed into one. 

In this paragraph a precision scalable approximate Multiply 
and Accumulate (MAC) unit is proposed for computer vision 
applications. In the proposed MAC unit, leveraging the observations 
made in [45], the height of the partial product matrix is preliminarily 
compressed (at design time). The resulting compressed matrix is then 
implemented as precision scalable carry save tree, similarly to [57]. In 
order to reduce the error deriving from (i) compression and (ii) 
dynamic precision scalability, a compensation term is inserted in the 
accumulation loop. 

3.4.1 Partial product recoding and compression 

In the following a signed for unsigned multiplier will be 
considered. The Fig. 25 (a) shows the Partial Product Matrix (PPM) of 
a signed for unsigned N=8 bits Baugh Wooley multiplier, where X is 
the signed operand and Y the unsigned one. The operands are 
considered fractional, with MSB of magnitude 12− . 

 
Fig. 25(a) Partial Product Matrix (PPM) of a 8-bits signed for unsigned multiplier. 

(b) Resulting PPM after recoding, compression and precision-scalability. 
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The multiplier critical path is related to the maximum height of the 
PPM, being equal to N. Note that the sign extension prevention 
constant (whose value is   for a signed for unsigned multiplier), being 
a constant term, generally does not impact on the multiplier delay, 
implemented as carry save tree. In order to compress the PPM (i.e. 
decrease the maximum height of the matrix), a recoding of the partial 
product terms can be employed. As observed in [45], two generic 
partial product i jx y  and i k j kx y− +  belonging to the i+j-th column can 
be recoded as follows: 

,i j i j i k j kA x y AND x y− +=   (3.45) 

,i j i j i k j kO x y OR x y− +=   (3.46) 

 being their sum , ,i j i j i j i k j kA O x y x y− ++ = + . Under the 
hypothesis that the input bits xi and yj are uniformly and 
independently distributed, the probability to be high is 
( )21 4 0.0625=  for ,i jA  and 7 16  for ,i jO [45]. The recoding, while 
constituting an overhead due to the AND (3.45), OR (3.46) additional 
gates, allows us to neglect the low-probability terms (3.45). Note that 
the direct elimination of a partial product i jx y  , avoiding the recoding, 
involves the elimination of high probability terms, being 1 4 0.25=  
the probability of a partial product to be high. Neglecting the ,i jA  
terms, the approximate sum can be expressed as: 

,i j i k j k i jx y x y O− ++    (3.47) 

In this way, we are approximating an half adder with an OR gate, with 
consequent area, delay and power improvement, at a price of an error 
on both the carry out and the sum, when both the partial products are 
high. Note that also in [83], an half adder is approximated by means of 
an OR gate. Authors in[83], however, propose to approximate a full 
adder with a 3 inputs OR gate (acting as 3:1 compressor) and to use a 
4 input OR gate as 4:1 compressor. The error deriving from these 
choices, in our opinion, can be significant, affecting the overall 
quality, therefore only compression using the (3.47) is employed in 
our multiplier.  
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Employing the recoding and compressing as in (3.47) allows halving 
the maximum height of the PPM. While, for the terms in the least 
significant columns (the last N columns), the compression of the 
maximum possible terms using (3.47) is beneficial in terms of energy 
quality tradeoff (contributing minimally to the output due to their 
weight), in the most significant columns the best choice is to compress 
selectively only the minimum terms of each column in order to keep 
the maximum height of the compressed matrix equal to N/2. If we 
indicate as 0i =  the least significant PPM column (Fig. 25) , the 
compression can be extended up to the *i -th column, given by: 

* 3 4
2

Ni −
=   (3.48) 

The number of OR gates needed in each column is given by the 
following expression: 

( )
( ) *

0 1
2

3 2 1
2

i for i N
Nor i

N i
for N i i

   ≤ ≤ −    = 
− + ≤ ≤

  (3.49) 

The (3.49) suggests to compress as much as possible in the least 
significant columns ( 0 1i N≤ ≤ −  ) and as less as possible to keep the 
height of matrix equal to N/2, in the most significant ones ( *N i i≤ ≤ ). 
For the PPM of Fig. 25 (a), * 10i =  and (10) 1Nor =  therefore only 
one OR gate is needed in the * 10i = column to keep the max height of 
the compressed PPM bounded to N/2.  

3.4.2 Precision-scalability 

In order to meet the different quality constraints (i.e. different error 
resiliency) during the elaboration of a given application, the 
compressed PPM must be able to scale its precision at run time. 
In this paper a fine-grain approach is employed, as proposed in [57]. 
In particular, each column i-th of the PPM can be selectively 
discarded, by means of an additional control signal Ti. When 1iT =  the 
column is accounted in the multiplication, while, when 0iT =  all the 
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partial products belonging to the i-th column are freezed to zero, in 
order to save dynamic power. An external signal nt, representing the 
number of columns (starting from the least significant one) to be 
discarded, codifies the signals Ti: as an example, if 0nt =  the 2 1N −  
Ti signals will be all ones (no column is discarded), while if 8nt =  the 
signals 0 0 1iT for i nt= ≤ ≤ − . Employing the precision-scalability 
requires to modify the (3.47) as follows: 
 ,i j i j i k j k i j i jx y t x y t O+ − + ++    (3.50) 
Note that the (3.50) can be easily mapped with an AO33 standard cell. 
The remaining non-compressed partial product terms are AND-ed 
with the control signals Ti, requiring a 3-input AND in place of a 
standard 2-input AND for the partial products computation. The 
resulting precision scalable PPM, after the recoding and compression 
steps, is shown in Fig. 25 (b). 

3.4.3 Error Analysis and Compensation 

In this section an error analysis is presented in order to 
determine an error compensation expression. The errors result from (i) 
compression (ii) precision scalability. Therefore an expression of the 
compensation terms, in function of the number of discarded columns 
nt will be provided. 
 Let us assume that no column is actually discarded ( 0tn = ). In 
this condition the errors result from the compression step only. From 
the (3.45)-(3.47) we know that the mean error committed when an half 
adder is substituted by an OR gate is equal to the probability of ,i jA  to 

be high, which equals to ( )21 4  . Therefore the mean error committed 
due to the compression of the i-th column with 0 2i N≤ ≤ − , can be 
expressed, using the (3.49), as: 

 ( )
2

2
1

1 2 0 2
2 4

N i
C

iE i for i N− +   = ⋅ ⋅ ≤ ≤ −     
  (3.51) 

In the column 1i N= − , having the maximum height, all the partial 
products must be compressed (compare ((3.49))), therefore also the 
NAND partial product (deriving from Baugh Wooley multiplier) is 
compressed. It can be easily shown that, when the compression 
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involves this partial product, the deriving error is higher, being equal 
to ( )23 1 4 . This observation suggests us that, when (3.49) is used to 
determine the number of employed OR gates, the compression of the 
NAND partial products should be avoided whenever possible. The 
mean error associated to the compression of the 1i N= −  column is 
given by: 

 
2 2

1
2

1 1 13 2
2 4 4

N
C

NE − −
 −     = ⋅ + ⋅            

  (3.52) 

The mean error deriving from the compression of the most significant 
columns (up to *i  (3.48)) is expressed, using (3.49), by: 

 ( ) ( ) 2
2 *

3

3 2 1 1 2
2 4

N i
C

N i
E i for N i i− +− +  = ⋅ ⋅ ≤ ≤ 

 
  (3.53) 

Let us assume, now, that no compression is performed, therefore the 
error is only caused by precision scalability. Following an analysis 
similar to [57], the mean error   resulting from the precision scalability 
can be expressed as: 
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Combining (3.51)-(3.54), the resulting mean error, when the matrix is 
compressed and nt columns are discarded, is obtained as: 
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A first attempt to compensate the error resulting from above 
approximations is achieved by compensating the mean error [65]; this 
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allows increasing quality metric such as mean-square-error (MSE) and 
PSNR. Therefore the following compensation term will be employed: 

 ( )K nt E=   (3.56) 

3.4.4 Approximate MAC Unit architecture 

The discussed precision-scalable approximate PPM is 
embedded in a MAC unit. The resulting circuit is shown in Fig. 26. 
The precision-scalable PPM is implemented as a TDM carry-save tree 
and provides as output the two signals s1 and s2 in carry-save format. 
These signals are then accumulated and the resulting output tZ  is 
obtained truncating the N g+  least significant bits of the accumulator 
output ACC, where g is the number of guard-bit implemented to avoid 
the overflow in the accumulation loop. Note that the nt signal, drives 
both the precision-control signals T and the LUTs. The LUTs are used 
to store the compensation terms (3.56). Note that, in order to avoid an 
additional row in the multi-operand accumulation adder 
(implemented, in turn,. as carry-save tree followed by a final vector 
merging adder) and therefore an energy overhead due to the 
compensation, the compensation term is initialized at the start of each 
convolutional kernel. This requires to store in the LUTs the K(nt) 
values, multiplied for the number of multiplications contained in a 
convolutional kernel (e.g. 9 multiplications in a 3x3 kernel and 25 
multiplications in a 5x5 kernel). A simple control circuit, starting from 
the Kernel_size signal (indicating the size of the kernel), initializes the 
accumulation register to K(nt) through the rst_acc signal, at each new 
kernel. Note that the LUTs minimally affect the dynamic power 
consumption, since nt is supposed to vary with a frequency nt clkf f . 

3.4.5 VLSI Implementation results 

The proposed circuit has been described in Verilog HDL and 
synthesized in TSMC 40nm technology using Cadence RTL 
Complier. For comparison purpose  the three versions of the 
approximate multipliers proposed in [83] have been implemented and 
embedded in a MAC unit. 
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Fig. 26 Proposed precision scalable approximate MAC architecture. The LUTs store 

the compensation terms K(nt). 

In the following we will denote respectively as 
“DATE 17 L=2”, “DATE 17 L=3”, “DATE 17 L=4”, the version with 
the PPM compressed using 2 inputs, 3 inputs and 4 inputs OR gates 
[83]. A classic full precision MAC unit has also been implemented as 
reference to evaluate the power improvement using the approximate 
MAC units.  
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The Table XI shows the area and leakage performance of the 
implemented MAC units. The period constraint has been imposed at 
0.9 ns, which is the minimum period at which the Classic MAC unit 
meets the timing constraint with zero setup slack (the approximate 
MACs are faster), while power dissipation has been evaluated from 
VCD and SDF-based post-synthesis simulations.  

While the circuits proposed in [83] exhibit substantial area and 
leakage improvements, up to 52% and 55% respectively, the proposed 
MAC shows moderate improvements, enhancing the area of 7% and 
the leakage of 17%. Compared with DATE17-L=2 circuit, which 
adopts a similar compression step, the reduced area and leakage 
savings are due to the LUTs overhead, needed to implement the 
compensation mechanism. 

The Fig. 27 shows the power-quality tradeoff when the 
“cameraman” image is filtered with a 3x3 gaussian kernel. In the 
graph of Fig. 3 the x-axis reports the power saved with respect the 
Classic MAC, while the y-axis reports the PSNR. The blue line 
reports the power at different quality levels for the proposed MAC, 
obtained by varying nt. In this graph, the higher is the curve, the better 
is the trade-off, achieving the same power saving at higher quality. 
When little columns are neglected, the PSNR is about 2dB higher 
(point a in Fig. 27) than DATE17-L=2 circuit, at the same or better 
power saving, thanks to the compensation (3.56). When the precision 
in scaled down the proposed circuit outperforms the counterparts 
achieving a power reduction of 53% with tolerable quality degradation 
(point b). 

 
 
 
 
 

TABLE XI. VLSI IMPLEMENTATION RESULTS-@VDD=1.1V 

Circuit F [GHz] Area [µm2] PLEAKAGE [µW] 
Classic MAC 1.11 1867 1.686 
DATE17-L=2 1.11 1111(-41%) 1.041 (-38%) 
DATE17-L=3 1.11 903(-52%) 0.802(-52%) 
DATE17-L=4 1.11 880(-53%) 0.756 (-55%) 
This paper 1.11 1741(-7%) 1.404(-17%) 
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Fig. 27 Quality-Power trade-off for a gaussian 3x3 kernel. Due to precision 

scalability and error compensation the proposed MAC outperforms the 
fixed-precision circuits proposed in [83]. 

3.5 Precision-scalable Latch Memory  
 In this paragraph a precision-scalable Latch Memory is discussed. 
The proposed precision-scalable latch memory can be part of a 
precision-scalable system. In these kind of systems, the data can be 
incorrect, due to scaled precision, therefore the memories in which 
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these data are stored can be made precision-scalable to further 
increase approximations efficiency. 
 Standard Cell Memories (SCMs) have been introduced for the first 
time in [84] and they represent an interesting alternative to SRAM 
Macrocells (MMs) to implement embedded memories. The storage 
functionality is assured by a matrix of flip-flops or latches. SCMs can 
be described using HDL languages and easily synthesized, being 
composed by standard cells. This gives high flexibility, since the 
memory features (number of ports, number of words, number of bit 
per words) can be easily decided at design time, according to the 
specific system needs, without the limitations imposed by the usage of 
a memory generator, in terms of words and word lengths [85]. 
Moreover, SCMs can be placed using standard CAD tools and 
therefore merged with logic blocks, improving data locality with 
consequent reduction of wiring and parasitics (i.e. improved energy 
efficiency and timing). 
 In [84] authors report that SCMs offer area and energy reduction, 
with respect MMs, for storage capacity up to 1kbit, while, for bigger 
storage capacity, SCMs become bigger than MMs, but still exhibit a 
better energy efficiency. In [86] SCMs are proposed as an alternative 
to full-custom sub-Vt SRAM Macrocells for systems operating in 
deeply scaled voltage supply. An extensive analysis, targeted for 
ultra-low voltage applications and corroborated by ASIC 
measurements, is reported in [85], showing that up to 4-6 kbit SCMs 
exhibit better than sub-Vt SRAMs. A controlled placement design 
methodology, as a part of the standard digital design flow, is proposed 
in [87], optimizing placement density and power dissipation, due to 
the reduced wire length. 

3.5.1 Latch Memory architecture 

 The SCM storage element can be a D flip-flop or a D-latch. In the 
following, we will refer to latch-based SCMs, since, compared to 
flip-flop based SCMs, they are more area efficient and the timing can 
be improved exploiting time borrowing [87]. We will examine 
dual-port memories, with a word access scheme. Fig. 28 shows the 
standard latch-memory architecture, as proposed in [84]. SCM are 
composed by three main blocks: (i) write logic, (ii) read logic, (iii) 
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storage matrix. In the following, we briefly discuss about write and 
read logic implementations. 

3.5.1.1 Write logic 

 As shown in Fig. 28, the storage matrix is composed by R rows 
and C columns. C latches belonging to the same row constitute a 
word; at each word an address is assigned. Let us suppose that new 
data must be written at the first row of the storage matrix reported in 
the trivial example of Fig. 28 (here R=C=2). The corresponding 
writing address will be waddr=0 (assuming to associate address 0 to 
the first word, address 1 to the second one and address R-1 to the last 
one). In the hypothesis that the write enable is high (we=1) the new 
data wdin is sampled on the rising edge of the gated clock clk_din by 
the input flip-flops (note that when wen is zero these flip-flops are 
gated). The captured data must be written in the corresponding row, 
identified by waddr. The selection of the appropriate word occurs as 
follows. The write address decoder (WAD) produces a one-hot output 
(note that if wen=0 the WAD switching is inhibited due to AND gate), 
constituted by the R strobe signals of Fig. 28 (in our example 
waddr=0 implies strobe1=1, strobe2=0). The asserted strobe signal, 
in turn, activates one of the R enable signals (en in Fig. 28), with the 
help of a clock gating integrated cell (CGIC, constituted by a 
transparent-low latch and an AND gate, Fig. 25). The new data is then 
latched in the memory. With respect to the topology proposed in [84] 
the input flip-flops are introduced to improve the setup timing 
constraint on the wdin data (this constraint must be met by the external 
circuit feeding wdin) [87]. It is worthwhile observing that the input 
flip-flops are rising edge triggered and the storage latch are high level 
transparent. Therefore, the clock to output delay of the input registers 
(which can be significant due to the high fan-out) occupies part of the 
latch transparent window. This tight setup constraint is nevertheless 
mitigated by the time borrowing capacity of the latch. This design 
choice relaxes the setup constraint on the CGIC that drive en signals 
(this path is generally the critical one, due to the WAD). Note that 
other write approaches have been previously introduced in [84], 
involving the usage of tristate buffers, but this solution has not been 
considered, being less attractive in terms of area and power. 
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Fig. 28 Standard Cell Memory [71]. The storage matrix is composed by RxC latches 

(R=C=2 in this figure). One out R latches rows is written activating the 
corresponding enable signal. The reading involve an Rto1 multiplexer whose 

selection signal is produced the read address decoder (RAD). 

3.5.1.2 Read logic 

 With reference to Fig. 28, the read operation involves a read 
address decoder (RAD), which has the same behavior of the WAD, 
producing one-hot output bus, indicated as rowsel in Fig. 28, 
corresponding to the word to be read. As discussed in [84], the read 
multiplexer is energy efficient if its selection signal is a one-hot bus: 
in this case the mux is easily implemented with a first level of AND 
gates, performing the logic AND between each rowsel selection input 
and the corresponding data bit. The outputs of this AND plane are fed 
into an OR gates tree. Note that, as done for the WAD, the RAD is 
gated with an AND gate, filtering read address (raddr) variations 
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when the read operation is disabled (ren=0), this saves the RAD logic 
to useless switching. The mux output is then sampled by a flip-flops 
stage, in order to provide a synchronized output to the successive logic 
stages. 

3.5.2 Precision-scalable architecture 

In this paragraph, the proposed precision-scalable latch-memory 
architecture is discussed. The fundamental idea is to group the C 
latches belonging to every row in one or more precision-scalable 
groups (PSG), which can be activated or deactivated as function of the 
desired quality or of the input data statistic [52]-[54]. The number and 
the size (number of latches in a given group) of the PSG can be 
decided at design time, with minimal engineering effort, depending on 
the level of precision scalability of the system in which the memory 
are embedded, on the word size and, of course, on the application. The 
proposed architecture requires modifications of write logic, storage 
matrix and read logic, as detailed in the following. 

3.5.2.1 Write logic and storage matrix modification 

 Fig. 29 reports the storage matrix and the input registers write 
logic of the proposed architecture. In this example C=3, while R=2. 
Note that an additional input, indicated as g1, is shown in Fig. 29. 

CGIC

g1
clk

D QD Q
CK

D Q
CK

D QD Q
CK

D Q
CK

D QD Q
CK

D Q
CKCGIC

wen

clk

D QD Q
CK

D Q
CK

D QD Q
CK

D Q
CK

D QD Q
CK

D Q
CK

D QD Q
CK

D Q
CK

D QD Q
CK

D Q
CK

D QD Q
CK

D Q
CK

strobe1

clk_din

clk_din_g1

CGIC
en1clk_din strobe1 CGIC

en1_g1

strobeR
CGIC

enRclk_din strobeR CGIC
enR_g1

wdin(C-1) wdin(1) wdin(0)

 
Fig. 29 Storage matrix and register logic of the proposed precision-scalable 

architecture. Additional CGIC cells are needed. 
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 This signal allows to scale down precision (g1=0). In this 
example, we assume to have a single PSG, with a group size (GS) of 2 
(we are grouping and conditionally disabling 2 LSBs of the memory). 
Focusing on the input register logic, we observe that a CGIC cell, 
whose enable is the AND between wen and g1, allows to gate the 
clock of the registers wdin(1), wdin(0) and of all latches belonging to 
the PSG (blue wires in Fig. 29). In this way, when g1=0, the input 
registers are not updated (the clock clk_din_g1 will be always low), 
avoiding to write in the latches of the PSG. This saves the dynamic 
power associated to: (i) the updating of the input registers, (ii) the 
updating of the latches, (iii) the switching of the input clock 
capacitance of flip-flops and latch, (iiii) the switching of the clock 
buffers belonging to the gated clock in the PGS (blue wires in 
Fig. 29). The drawback of this approach is given by the need of 
additional CGIC cells in the storage matrix. These additional CGIC 
cells are reported in blue in Fig. 29. They take as enable signal the 
corresponding strobe signal of the row (coming from the WAD, as in 
the architecture previously discussed) and the gated clock clk_din_g1. 
In this way, when g1=1 (full precision modality), clk_din_g1 is 
enabled and the new data is written only in the latches belonging to 
the desired row, thanks to the strobe signals. The number of additional 
CGIC cells is a function of the Number of Precision Scalable Groups 
(NPGS) and the number of rows R: 

 ( )1 1CGICN NPGS R= ⋅ +   (3.57) 

The increased number of CGIC cells represents an overhead in 
terms of area, leakage and dynamic power when operating in full 
precision mode. It is worthwhile observing that, thanks to the dual 
stage clock gating, the additional CGIC in the storage matrix 
contribute to dynamic power only when the signal clk_din_g1 is 
enabled (full precision mode and enabled writing). 

3.5.2.2 Read logic modifications 

Fig. 30 shows the proposed read logic modifications, relative 
to the example of Fig. 28. As previously discussed, when g1=0 all the 
latches in the PSG are clock (enable) gated, therefore their output, 
which constitute the input of the read logic mux is freezed. However 
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this does not prevent the mux to switch, since, when ren=1, the read 
address changes, causing commutations of the rowsignal and useless 
switching of the mux belonging to the precision-scaled group. 
Therefore, the row signal is gated with the precision control input g1, 
before to act as selection signal for the mux of the PSG; this involves 
R additional AND gates per group. Again, these additional AND 
gates, while saving dynamic power when operating in scaled precision 
mode, represent an overhead in terms of area and leakage; moreover 
they contribute to dynamic power when operating in full precision 
mode. As done for the input registers, the output registers are also 
gated using an additional CGIC cell per group, whose enable is the 
AND of the ren and  the g1 signal. This also allows avoiding 
switching activities in the successive logic stages. The total number of 
additional CGIC cells, accounting also for these last ones, is given by: 

 (2 R)CGICN NPSG NPSG R= ⋅ + ⋅   (3.58) 

 Therefore, in practical applications, the additional 
number of CGIC cells grows linearly with the number of precision 
scalable groups.  
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Fig. 30 Proposed precision-scalable read logic. The mux belonging to PSGs are 

operand-isolated when the corresponding PSG is disabled. 
As a final note, some applications may require the rdout bits 

belonging to PSGs to be zero when operating in scaled precision 
mode. This can be obtained by a simple modification of the read logic 
of Fig. 30 postponing the gating of the output registers of one clock 
cycle (in this way the zero value produced by the mux can be sampled 
by the registers). This requires only an additional OR and two 
flip-flops per PSG, with a negligible overhead. 
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3.5.3 VLSI implementation results 

In order to investigate the performance of the proposed 
architecture and the power-quality trade-off, the Precision-Scalable 
Latch Memory has been implemented in 40nm TSMC technology and 
simulated assuming to be embedded in a computer vision system, as 
frame buffer. We have implemented the proposed circuit with word 
size C equal to 8 and 16 and with R spanning from 32 to 128. Higher 
storage capabilities can be obtained by arranging more banks in 
parallel and adopting a 2-dimensional addressing scheme. For the 
memories with C=8 a single PSG (“PSG1”) has been employed, 
grouping four LSBs. For C=16 two PSGs have been implemented: 
PSG1 going from bit 0 (LSB) to 6 and PSG2 going from bit 7 to 11. 

Proposed and Classical SCMs (Fig. 28) have been described in 
Verilog HDL with the aid of Matlab scripts. The CGIC cells found in 
the standard cell library have been directly instantiated into the  
Verilog netlist. The circuits have been synthesized using Cadence 
RTL Compiler, imposing a clock period constraint of 1 ns. To this 
regard, the RTL Compiler synthesis directive synthesize –to_mapped 
–effort high has been employed; moreover the Physical Layout 
Estimation flow has been followed in order to estimate wire parasitics. 
Please note that for circuits using clock gating, the timing of the 
enable signals of the CGIC cells is not accurately accounted during 
synthesis phase, because of the lack of the clock tree. Therefore, in 
order to accurately the timing, the circuits have been automatically 
placed and routed using Cadence Encounter. Power dissipation has 
been evaluated from VCD and SDF-based post-layout simulations, in 
which the memory control signals (ren, wen, raddr, waddr) have been 
generated by a FSM, implementing the control for a convolution 
operation (image filtering). The memory has been periodically written 
with pixels belonging to real images encoded on 8-bits (for the 
memories with C=8) and 16-bits (for the memories with C=16). 

The Tab. XII shows the post-layout performance of classic and 
proposed latch memories. Area and leakage overhead is about 16% 
and is due, essentially, to the addition of CGIC cells as shown by 
equation (3.58). 

The Tab. XIII shows power performance. In this table PRW and 
PR refer to dynamic power evaluated by assuming a periodic writing 
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and no writing operation, respectively. In full-precision mode, the 
dynamic power overhead due to the additional CGIC cells is 
significant during read-write operations (in the range17%-27%) while 
it is much lower during read-only operation. The dynamic power is 
strongly reduced in the proposed memory, when the precision is 
scaled down. During read-write operations the improvement in power 
compared to the standard topology of Fig. 28 reaches 29% in the case 
C=8 and 56% for C=16. When only read operations are done, power 
saving increases up to 66%. The image quality, quantified with the 
Structural Similarity Index, SSIM [50], is also reported in Tab. XIII. 
A value of SSIM=1 means perfect similarity. For C=16 and a single 
PSG shut down, SSIM=0.99 and hence image quality is practically 
unaffected by precision scaling. In the other cases, SSIM is about 0.64 
showing a certain amount of image degradation. 

TABLE XII. POST-LAYOUT IMPLEMENTATION RESULTS  

Topology (R,C) F [GHz] Area [µm2] PLEAKAGE [µW] 
Classic 64,8 1.0 3622 1.875 

Proposed 64,8 1.0 4066 (+12%) 2.183 (+16%) 
Classic 128,8 1.0 7595 4.103 

Proposed 128,8 1.0 8653 (+14%) 4.756 (+16%) 
Classic 32,16 1.0 3359 1.71 

Proposed 32,16 1.0 3767 (+12%) 2.052 (+20%) 
Classic 64,16 1.0 7032 3.498 

Proposed 64,16 1.0 8016 (+14%) 3.969 (+13%) 

 

 
TABLE XIII. POST-LAYOUT IMPLEMENTATION RESULTS  

R,C 

Standard 
architect. 

Proposed 
full precis. 

Proposed 
PSG2=1; 
PSG1=D 

Proposed 
PSG2=D; SG1=D 

PRW 
[mW] 

PR 
[mW] 

PRW 
[mW] 

PR 
[mW] 

PRW 
[mW] 

PR 
[mW] SSIM PRW 

[mW] 
PR 

[mW] SSIM 

64,8 0.425 0.307 0.516 
+21% 

0.309 
+0.7% 

0.302 
−29% 

0.170 
−44% 0.64 - - - 

128,8 0.515 0.289 0.653 
+27% 

0.307 
+6% 

0.386 
−25% 

0.193 
−33% 0.64 - - - 

32,16 0.433 0.319 0.535 
+21% 

0.333 
+4% 

0.354 
−20% 

0.219 
−31% 0.99 0.216 

−51% 
0.141 
−56% 0.65 

64,16 0.654 0.446 0.768 
+17% 

0.455 
+2% 

0.506 
−23% 

0.266 
−40% 0.99 0.287 

−56% 
0.151 
−66% 0.65 
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To further investigate this aspect, the Fig. 31 shows the quality 
degradation obtained after applying a sharp filtering to an 8-bit depth 
grayscale image, read from the proposed memory with PSG disabled. 
While quality degradation is perceptible, it is still adequate for several 
error tolerant applications. 

Sharp, Exact

Sharp, PSNR=22 dB, SSIM=0.64

 
Fig. 28 Quality degradation due to the scaled precision in the proposed 

memory, during a sharp filtering operation. 

3.6 Conclusions 
In this chapter my research activity regarding 

precision-scalable units has been discussed. The first part of the 
chapter focuses on truncated multipliers. This are usually employed in 
DSP applications to trade performance with accuracy, in a fixed way. 
The state of art error compensation technique for truncated multipliers 
have been discussed. Then, a precision-scalable truncated multiplier, 
introduced recently in the literature, has been introduced. This can be 
used in precision scalable-systems to account for the different 
precision needs and error resiliency of processed datasets. For this 
kind of precision-scalable multipliers no error compensation technique 
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have been proposed in hardware. Therefore an hardware 
compensation technique have been proposed, able to adapt to different 
dataset. The proposed compensation technique is named as Real-Time 
Data-Aware Compensation technique, since it sense, which a given 
subsampling period, the committed errors, without making any 
statistical assumption on the error done. In this way the error can be 
compensated, independently from the particular dataset statistic. A 
compensation circuit is devoted to calculate the errors and adjust the 
value of the compensation term, on the basis of the mean error done. 
In order to achieve high energy efficiency the subsampling period of 
the error must be aggressive. The proposed approach has been 
employed in a precision-scalable Multiply and Accumulate Unit, for 
computer vision applications. 

The comparison with the other compensation technique shows 
that proposed approach is able to adapt to different dataset providing 
significantly improved quality results where the other technique fails 
and equal quality results where other compensation technique 
alternate their domain. 

In terms of quality-power tradeoff, proposed MAC Unit with 
Real-Time Data-Aware compensation technique exhibits improved 
quality-energy performance for deeply-scaled precision level, 
allowing to shift the energy bound toward higher energy efficiency 
levels. The proposed MAC has been employed on some Convolutional 
Neural Network kernels showing an always better energy-quality 
tradeoff than precision-scalable MAC with no compensation 
technique. 

Moreover, a precision-scalable Approximate MAC unit has 
been proposed. The MAC employs partial products recoding and 
compression to achieve energy efficiency. The precision-scalability 
allows tuning the precision level according to the incoming dataset. A 
low-overhead compensation technique is employed to coarsely 
compensate the committed errors. The proposed circuit allows 
reaching 53% power reduction with tolerable image quality 
degradation. 

In the second part of the chapter a precision-scalable 
latch-based memory has been discussed. This memory can be used as 
embedded memory in precision-scalable systems. 
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When the precision is scaled down, the dynamic power 
dissipation can be reduced more than 60%, compared to the classical 
Standard Cell Memory topology, with tolerable image quality 
degradation.  
 
 



144                                     VLSI Circuits For Approximate Computing 



 Chapter 4: A Precision-scalable Approximate Convolver               145 

Chapter 4 
 

A Precision-scalable Approximate 

Convolver 

4.1 Introduction 
In this last chapter a precision-scalable Approximate 

Convolver is discussed. 2D Convolution is a basic and 
compute-intensive operation in many computer vision tasks such as 
image processing and machine learning. Recently, Convolutional 
Neural Networks are achieving huge interest, due to their significantly 
better accuracy results (moreover the availability of GPU acceleration 
has drastically reduced their training time, allowing massive usage)   
with respect standard approaches, in typical machine learning tasks 
(image classification and segmentation, gesture recognition, object 
detection, speech recognition, etc.). In CNN the convolutions account 
for more than 90% of overall computation, dominating runtime and 
energy consumption [88]. In this context, hardware acceleration plays 
a critical role, allowing real time operations with optimized energy 
consumption. As discussed in [3], the energy due to the memory 
drastically impacts on the system energy budget, therefore, in the 
design of an accelerator, both the datapath and the on-chip (and 
offchip) energy contribution, must be accounted for and optimized. 

In this chapter, the discussed precision-scalable Latch Memory 
(chapter 3, paragraph 3.5) and precision-scalable Approximate MAC 
Unit (chapter 3, paragraph 3.4 ) are employed in order to implement a 
convolver for computer vision applications and machine learning. The 
MAC unit allows mapping in hardware the 2D-convolution operation, 
common to computer vision and machine learning tasks. By 
employing the precision-scalable Latch Memory, the energy benefit 
deriving from the approximate datapath (Approximate MAC Unit), is 
not hidden by the memory energy consumption, since, when the 
Approximate MAC works in precision-scaled modality, also the 
memory can scale its precision and therefore its energy dissipation. 
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4.2 Architecture 
In this paragraph the architecture of the precision-scalable 

Approximate Convolver is described. Let us recall that in the 
2D-convolution operation (3.36), a convolutional window of size qxq, 
representable as the kernel matrix, is slid on the image, as shown in 
Fig. 1, where two convolutional windows W1 and W2 are shown. 

Y1,1 K1,1 K1,2

K2,1 K2,2

Y1,2 Y1,3 Y1,4

Y2,1 Y2,2 Y2,3 Y2,4

Y3,1 Y3,2 Y3,3 Y3,4

Y4,1 Y4,2 Y4,3 Y4,4

Y1,1 K1,1 K1,2

K2,1 K2,2

Y1,2 Y1,3 Y1,4

Y2,1 Y2,2 Y2,3 Y2,4

Y3,1 Y3,2 Y3,3 Y3,4

Y4,1 Y4,2 Y4,3 Y4,4

W1=Y1,1*K1,1+Y1,2*K1,2+Y2,1*K2,1+Y2,2*K2,2

W1

W2

W2=Y2,1*K1,1+Y2,2*K1,2+Y3,1*K2,1+Y3,2*K2,2

Kernel

Kernel

Image

Image

 
Fig. 1 The kernel is slid on the image. Therefore the filtering of the whole image 

requires multiple convolutional windows (like W1 and W2) . 

The redundant nature of the 2D-convolution operation allows 
exploiting data reuse, in order to reduce the access to both on-chip and 
off-chip memory [89]. Moreover, since multiple convolutional 
windows are required to filter the whole input image (Fig. 1), this 
allows to exploit parallelism in order to achieve real-time operation. 
Therefore in the proposed architecture each convolutional window is 
mapped on a single Approximate MAC Unit. The resulting 
architecture is shown in Fig. 2. Here, three Approximate MAC Units 
are considered, organized on three rows. Each of them receives one 
operand (image pixel) from the corresponding row memory, while the 
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other operand is shared between the MAC of the column and is 
provided by a memory storing the kernel coefficients. 
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Fig. 2 (a) A new convolution is started. Three image pixels, corresponding to three 
convolutional windows computed in parallel through the three MACs, are loaded 
from the rows memory, together with a kernel coefficient. (b) second step of the 

convolution: two image pixels have been read in the previous clock cycle, therefore 
their value is read from the auxiliary registers with the help of the mux logic, 
exploiting, in this way, the data redundancy characterizing 2D-convolution 

operation.  

The working principle is described in the following. Let us 
observe that the employed topology allows parallelizing the 
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convolutional window along the Y dimension (Fig. 2). The Fig. 2 (a) 
shows the start of a convolutional operation: three image pixels are 
read from the three rows memory together with a kernel coefficient, 
read from the memory on the top. The pixels and coefficient read are 
highlighted on the right side of the Fig. 2 (a). Each of the three MACs 
perform the multiplication between the corresponding image pixel and 
the shared kernel pixel. Therefore different pixels, displaced along the 
Y dimension are multiplied by the MACs with the same kernel 
coefficient. This means that each MAC is computing a different 
convolutional window, each of them displaced along Y (compare with 
Fig. 1, showing that the same kernel coefficient K1,1 is multiplied 
with Y1,1 and Y2,1, belonging to two different and vertically displaced 
convolutional windows W1 and W2). In the next clock cycle 
(Fig. 2 (b)) one novel image pixel is loaded from the memory and 
processed by the MAC at third row, while the remaining two pixels, 
being already read at the previous clock cycle, are shifted up through 
the registers (highlighted in yellow) and the mux logic, exploiting data 
reuse. A novel kernel coefficient is instead needed at each clock cycle. 
At the tenth clock cycle (the kernel is 3x3 in this example and we are 
accounting for the latency of the accumulation register) three filtered 
pixel are produced by the three MACs, each one is the result of the 
corresponding convolutional window, as shown in Fig. 3. Note that 
when a new column of the convolutional windows starts, all the image 
pixels are read from the rows memories, while, in the other cases only 
one image pixel is read from one pixel memory and provided to the 
MAC in the last row. The described mechanism assumes that the 
image pixels are memorized in the memory rows in interleaving, in 
particular, pixels belonging to the same image row must be stored in 
the same row memory, while two contiguous pixel row must be stored 
into different (preferably contiguous to facilitate the control circuit) 
rows memories. The Fig. 4 shows the data moving during the 
convolution operation. The bolded edges represents the pixel loaded 
from the rows memories in a given clock cycle. 

The architecture shown in Figs. 2-3 can be extended on more 
columns, allowing to filter the same image with different kernels, at 
the same time. This scenario is typical in Convolutional Neural 
Networks. In this way the data reuse is further exploited. The Fig. 5 
shows the resulting 2D architecture, in which LxH MAC Units are 
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employed, while L+H memories are needed. Once the convolution is 
completed, the resulting H outputs per column, must be provided as 
output. To this regard, the MAC Units can employ a register after the 
accumulation one.  
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Fig. 3 End of the convolution. Three outputs, corresponding to the three 
convolutional windows parallelized, are produced. 
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Fig. 4 Data moving between the MAC at different clock cycles. The bold edges 

indicates  pixels that, in a given clock cycle, are read from the memory, the arrows 
highlight reused pixels. 
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This register is normally clock-gated and is enabled when a new result 
from convolution must be stored (therefore each 2q  clock cycles, 
being the kernel matrix qxq). Therefore, at the end of each 
convolution H filtered pixels are stored into the corresponding MAC 
output register for 2q  clock cycles, allowing to provide to the output 
the H pixels through a multiplexer logic, if the following condition 
holds: 

 2q H≥   (4.1) 
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Fig. 5 Convolver Architecture. LxH MACs are employed, while L+H memories are 
needed. 

4.3 Precision-scalability 
A discussion about the combined precision-scalability of Latch 

Memory ad MAC Unit is needed. As for chapter 3, nt represents the 
number of discarded least significant columns of the compressed 
PPM, while the Latch Memory employs a single Precision Scalable 
Group (PSG), allowing to freeze (to zero, as discussed in chapter 3) 4 
least significant bits.  
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Fig. 6 Resulting compressed PPM when the memories precision is scaled 

down. 

The Fig. 6 shows the compressed PPM when the Latch 
Memories operate in scaled precision modality. The red-barred terms 
are deleted due to the precision reduction of the memory. The gray 
circled terms are OR-compressed partial products where one of the 
two is zero (therefore surviving only the non-zeroed partial product), 
while the blue circled terms are 1, due to the NAND. We can observe 
that , when PSG=D, varying nt from 0 to 8 has no effect on the 
compressed partial product matrix, being the terms already zeroed by 
the memory. In the case of PSG=D, nt=8 corresponds to the 
maximum precision of the Approximate MAC. Note that corrected 
compensation constant must be calculated for nt=8-9-10. The 
calculation of this constant can be done by following the discussion of 
the paragraph 3.43 (chapter 3). Note that, however the blue circled 
terms offers a partial compensation, being 1. It is worthwhile 
observing that for 11nt ≥  no modifications of the PPM occurs due the 
memory, therefore the compensation constant is the same of that 
determined in the paragraph 3.43 (chapter 3). 

Note that while in this paragraph we have assumed that both 
the memories are precision-scaled, hybrid scenarios can be adopted, 
when only on the of the two memories operates at reduced precision. 
However, in the following of the chapter we will assume that both the 
Latch Memories providing the operands to the MACs scale down the 
precision. 

4.4 VLSI Implementation results 
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The proposed architecture has been described in Verilog HDL 
and synthesized in TSMC 40nm CMOS technology using Cadence 
RTL Compiler. In our case 4H L= =  , therefore 16 
precision-scalable Approximate 8-bit MAC Units (chapter 3, 
paragraph 3.4) have been employed, while 4 precision-scalable 
0.512Kbit Latch Memory (chapter 3, paragraph 3.5) have been 
employed as frame buffer for the image pixels and 4 
precision-scalable 0.256Kbit Latch Memory have been employed to 
store the four kernels (note that 0.256Kbit allows storing up to 5x5 
kernels, represented on 8-bits). Obviously, other choice for H and L 
can be employed, depending on the application and on area, power 
and throughput constraints. A finite state machine has been 
implemented in order to manage the memories control signals to 
implement the convolution operation. A full-precision convolver, 
employing standard MAC Units and Latch Memories has also been 
described and synthesized, in order to evaluate the performance 
improvements. The Tab. I shows the area and leakage performance of 
the proposed circuits. 

TABLE I. VLSI IMPLEMENTATION RESULTS-@VDD=1.1V 

Circuit F [GHz] Area [µm2] PLEAKAGE [µW] 
Classic Convolver 1.0 34100 28.897 

Proposed Convolver 1.0 38329(+12%) 32.161(+11%) 
 
As shown in Tab. I the proposed precision-scalable 

Approximate Convolver exhibits an area overhead of 12% and a 
similar leakage overhead. Note that this overhead is due to the 
precision-scalable Latch Memory (compare Tab. XII of chapter 3). 

TABLE II. POWER DISSIPATION-@VDD=1.1V; F=1GHZ 

Circuit PSG nt PDYNAMIC [mW] 
Classic Convolver / / 59.528 

Proposed Convolver 1 0 55.578(-7%) 
Proposed Convolver 1 4 52.597(-12%) 
Proposed Convolver 1 8 46.064(-23%) 
Proposed Convolver 1 11 40.587(-32%) 
Proposed Convolver 1 12 37.770(-37%) 
Proposed Convolver D 8 31.249(-48%) 
Proposed Convolver D 11 26.150(-56%) 
Proposed Convolver D 12 23.389(-61%) 
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The Tab. II shows the dynamic power improvements for 

different precision levels, when the Lena image is convolved with a 
Gaussian filter. Note that at working clock frequency (1GHz) the 
dynamic power dissipation is about three order of magnitude higher 
than leakage power (Tab. I). Therefore in the comparison of Tab. II 
the improvement expressed in terms of dynamic power corresponds to 
the improvement in terms of total power dissipation. We can observe 
that in case of fullprecision (PSG=1; nt=0) there is a little power 
saving (7%) due to the approximate compression of the partial product 
matrix of the Approximate MAC Units, allowing to compensate the 
overhead due to the precision-scalable Latch Memories (compare 
Tab. XII of chapter 3). When the memories are in full-precision 
(PSG=1) and only the precision of the Approximate MAC Unit is 
decreased, power savings up to 32% can be achieved with tolerable 
image quality degradation (nt=11, corresponding to point b in Fig. 27, 
chapter 3). It is worthwhile observing that for the case in which only 
the Approximate MAC Unit was considered (chapter 3), for nt=11 a 
power saving of 53% could be achieved. Therefore the memories 
partially hide the power saving achieved using approximate arithmetic 
blocks. When the precision-scalable Latch Memories operate in scaled 
precision-mode (PSG=D), significant power savings are observed, 
allowing a 56% power saving with tolerable quality degradation (as 
discussed in the previous paragraph, there is no difference in terms of 
discarded partial products in the PPM between the conditions 
(PSG=D, nt=11) and (PSG=1, nt=11), both corresponds to point b of 
Fig. 27 of chapter 3, therefore for nt=11 there is no reason to keep the 
memory in full-precision mode). 

4.5 Conclusions 
A precision scalable Approximate convolver has been 

discussed in this chapter. The convolver employes the 
precision-scalable Latch Memory and the precisionscalable 
Approximate MAC Unit discussed in the chapter 3, to develop a 
convolutor for computer vision and machine learning applications. 
Due to the precision-scalability of the memories, the 
precision-scalable Approximate Units energy improvement are not 
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hidden. Indeed, when Latch Memories operate in scaled precision 
modality, the power saving, with respect standard convolver is 
increased up to 56%, with tolerable image quality degradation. 
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