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Abstract 

Understanding rheological properties and flow behavior of human blood is the object 

of a large body of literature related to both biomedical and clinical field of cardiovascular 

disorders as well as to the development of microfluidic platforms for blood testing. 

Hemorheology and haemodynamics are the areas of research related to these topics. The 

former deals with all the aspects of the flow properties of blood via classical bulk 

rheology testing while the latter investigates the relationship among physical properties 

influencing blood flow through the vessels (i.e. flow rate, shear stress, vessel 

architecture, driving pressure). Although hemorheology and haemodynamics seem to 

have the potential to describe complex physiological phenomena, there is still 

uncertainty regarding the exact applicability to specific issues. For example, the 

rheological characterization by common rheological protocols of a complex biological 

fluid such as human blood is a difficult task, especially the investigation of viscoelastic 

properties. Furthermore, the experiments on blood fluid dynamic in vitro might be 

unreliable due to the differences between the micro-environment present in vivo and the 

simplified conditions typical of in vitro systems. 

Human blood shows unusual, and for certain aspects, unique properties: it is a 

concentrated suspension of cells among which red blood cells (RBC or erythrocytes) 

dominate in terms of number over the others (i.e. white blood cells and platelets). 

Furthermore, RBC are highly deformable cells and tend to aggregate reversibly under 

static or very slow flow rates. From a rheological point of view, blood mechanical 

response to continuous stress, i.e. shear thinning and yield stress, are strictly related to 

RBC peculiar features. Moreover, blood is also a time-dependent material and presents 

viscoelastic properties 

Here, an extensive rheological characterization under both continuous and 

oscillatory conditions is presented, demonstrating that human blood shows a peculiar 

viscoelastic behavior. In particular, the viscous character prevails over the elastic one 

even if the latter gives a significant contribution to the mechanical spectra. In addition, 

the effects of increasing RBC volume fraction and of the addition of dextran, an 

aggregating agent, has been studied, showing a gel-like response. 

Regarding haemodynamics, blood flow in human body shows uncommon 

phenomena compared to other fluids, such as the Fahraeus effect, axial migration of 

RBC, etc. Literature papers focus on the study of blood flow by using in vitro models 

able to mimic the in vivo conditions of the human vascular system. The microfluidic 

paradigm has been mostly used to resemble human microvasculature, either analyzing 

blood flow behavior under microconfined conditions or studying the effect of flow on 

endothelial cells lining microchannel walls. However, both the approaches present some 

limits: in the first case, the endothelial contribution and its interaction with blood cells 

are lacking, whereas in the second case, although channels are lined with endothelial 

cells, there is no blood flow but only cell culture medium flow. Moreover, the properties 
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and the role of endothelial glycocalyx (GCX), a negatively charged hairy layer of 

proteoglycans and glycoproteins located on the inner surface of the vascular 

endothelium, is far from being fully elucidated. Thus, none of the strategies can be 

considered as reliable models of in vivo microcirculation, and discrepancies between in 

vitro studies and physiological conditions have been observed. In this work, the two 

approaches have been coupled, allowing the study of blood flow in microchannels lined 

with endothelial cells, including the GCX to better model real microvasculature.  

Microchannels dimensions and flow conditions have been chosen to mimic big arterioles 

and venules regions. Velocity profiles of RBC in endothelialized microchannel have 

been compared with bare ones, suggesting a marginal role of the endothelial layer. 

Moreover, the electronegativity of endothelial GCX seems not to influence RBC flow. 

A case study that uses the mentioned approach is addressed to the analysis of malaria 

infected RBC by Plasmodium falciparum parasite. Indeed, the pathogenicity of 

Plasmodium parasite results from its ability to adhere to endothelium during its life 

cycle, preventing removal by the spleen. Preliminary results regarding dynamics of a 

single RBC are in good agreement with previous numerical simulation works, while the 

cytoadhesion has shown that both healthy and infected RBC adhere on endothelial cells.  

These findings could be useful for the understanding of the human blood flow 

behavior. In particular, viscoelastic characterization could help in elucidating the role of 

hemorheological alteration in pathologies such as myocardial infarction, hypertension, 

and diabetes. On the other hand, RBC-endothelial cell flow assay can serve as starting 

point to design blood-on-chip platforms aimed to study drug transport in blood stream. 



1 

1. Introduction 

In this chapter, a general overview of the main contents of the thesis is reported, 

highlighting important results present in the literature, in order to allow a better 

understanding of chapters 2, 3, 4. 

First of all, the main hemorheological properties are discussed, focusing on the 

aggregation of RBC and on the viscoelasticity of blood. Then, a brief presentation of the 

flow behavior of human blood through the vessels is presented. In particular, blood flow 

in human body and in vitro models are discussed.  

1.1 Human blood 

Blood is the most important biological fluid in the human body. Under physiological 

conditions, blood consists of a concentrated suspension of cells, called corpuscles or 

formed elements, divided into RBC, white blood cells and platelets, immersed in a water-

based fluid called plasma. The latter contains 92% of water and several solutes such as 

proteins (mainly fibrinogen, cholesterol, albumins, and globulins), and electrolytes 

(Figure 1.1A). Blood is defined as a fluid connective tissue, specialized in performing 

many important functions within the body, such as transporting oxygen, nutrients and 

hormones to cells and tissues all over the body, removing waste, regulation of body pH 

and temperature, and coagulation [1]. 

Due to their predominant presence and special features, RBC rule properties and 

fluid dynamic of blood, RBC volume percentage in blood (called hematocrit - Htc) 

typically varying between 40-50%. Erythrocytes are nucleus-free cells and, in health and 

if not subjected to external stress, present a biconcave disc shape with a diameter of 6-8 

μm, thickness of 2 μm, and mean corpuscular volume ranging from 80 to 100 μm3. The 

cell membrane can be related as a composite material consisting of a phospholipid 

bilayer and an underlying two-dimensional network of spectrin molecules which serves 

as the membrane skeleton. At the interface membrane-environment, a coating of 

glycolipids and glycoproteins, called glycocalyx (i.e. GCX) protrudes from the 

membrane surface (Figure 1.1B). 
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Figure 1.1 - (A) Human blood composition; (B) Erythrocyte morphology and membrane 

structure 

1.2 Hemorheology 

Hemorheology [2] is the branch of rheology that focuses on the study of the flow 

properties of blood. It is becoming an issue of growing interest, for both research and 

clinic field, for blood storage [3, 4], for industrial biotechnologies (e.g. in the formulation 

of fluids of biological interest [5]), and in the design of diagnostic devices [6]. 

Blood flow behavior has been long recognized as a fundamental problem in 

physiology and biomechanics and a number of works describe in detail the 

macrorheological behavior of human blood [2, 7, 8]. In general, blood can be defined in 

several ways: as a two-phase liquid, as a solid-liquid suspension, where the formed 

elements represent the solid phase, and as a liquid-liquid aggregating emulsion, 

considering the high deformability and aggregability of RBC under shear [2]. It has been 

widely demonstrated that erythrocytes exert the most significant influence on the 

mechanical properties of blood, mainly due to their high concentration compared to the 

other formed elements. Thus, human blood can be seen as a non-Newtonian, viscoelastic 

fluid, in which RBC behave as neutrally buoyant, aggregating microcapsules with high 

deformability but small area stretchability [9] suspended in plasma.  

At a fixed value of temperature and shear rate, the rheological properties of the blood 

are determined by the characteristics of the plasma and the cellular phase, as well as 

aggregation and deformability of RBC. In particular, plasma viscosity affects directly 

whole blood viscosity, and alterations of normal values are common in acute or chronic 

disease or in tissue lesions. Plasma acts as a Newtonian fluid in shear flow measurement, 

while it shows a viscoelastic behavior under uniaxial extensional flow [10]. Its viscosity 

ranges from 1.16 to 1.35 cP in physiological condition, exponentially decreasing with 

temperature [11]. Regarding RBC volume fraction (Hct), it is the major determinant of 

blood viscosity. In general, bi-phasic systems present viscosity that increases with the 

volume fraction of the particles dispersed in the matrix, although the relationship differs 

between one system to another (Figure 1.2). Blood viscosity increases exponentially 
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with Htc up to 99% whereas a suspension of rigid spheres at 50% in the same conditions 

is not able to flow. 

 
Figure 1.2 - Relative viscosity as a function of volume fraction of normal human RBC 

compared to that of suspensions of rigid latex spheres, rigid disks, droplets [12] 

RBC aggregability reflects the intrinsic tendency of RBC to form aggregates. The 

presence of some plasma proteins, in particular fibrinogen and globulins, makes RBC 

capable to adhere one to each other to form rod-shaped stacks of individual cells called 

rouleaux. Conversely, RBC aggregation does not occur in simple salt solutions. One of 

the most important features for rouleaux formation is the typical biconcave disk-shape, 

which is considered a prerequisite for aggregation process. Electron microscopic 

investigations showed the existence of an intercellular space of about 25 nm between 

two RBC, and the almost constant interfacial distance was associated with a deformation 

of the cell surfaces [13] (Figure 1.3). Changes of RBC shape lead to alteration of 

physiological aggregation behavior [14]. In static conditions and at very low shear rate, 

rouleaux can interact among them to form secondary structure of branched three-

dimensional aggregates. This phenomenon is driven by the interplay between 

aggregating and disaggregating forces. The factors affecting RBC aggregation can be 

divided into intrinsic (i.e. Htc, shear rate and amount of plasma proteins) and extrinsic 

(i.e. RBC shape, deformability and membrane surface properties). 
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Figure 1.3 - Transmission electron micrograph of a rouleau in plasma [13] 

Several macromolecules are capable of inducing RBC aggregation, including, 

various polymers and plasma proteins [14, 15]. Fibrinogen is the most important protein 

involved in RBC aggregation mechanism. It is a glycoprotein synthesized by the liver 

with a molecular mass of 340 kDa that binds specifically RBC. The physiological 

concentration in plasma is 150-300 mg/dl, but higher levels have been measured in 

cardiovascular disease and during inflammation states. Fibrinogen affects directly RBC 

aggregation and hence hemorheological parameters (e.g. yield stress, blood viscosity, 

and RBC sedimentation rate). In addition, other large plasma proteins are involved in 

RBC aggregation process, although there are contradictory results regarding their 

influence [14, 16, 17] (Figure 1.4). It should be considered that such proteins could  

interact one to each other, resulting in unpredictable effects [18]; a synergistic effect of 

fibrinogen and albumin has been observed resulting in an enhancement of the 

aggregation process [19]. 

 
Figure 1.4 - Effect of some plasma proteins on RBC aggregation [14] 

The tendency of RBC to aggregate can also be enhanced by the addition of various 

polymers and macromolecules such as gelatin, ficoll, starches, poly(ethylene glycol) 

(PEG), polyvinylpyrrolidone (PVP), and dextran [14]. The latter belongs to a group of 

glucose neutral polymers made by certain bacteria and it is widely used as model 

macromolecules for RBC aggregation studies [20]. Moreover, it is worth to mention that 

the interaction energy between cells depends not only on fibrinogen or dextran 

concentration, but also on the molecular weight of such macromolecules [21]. The 

mechanism at the base of RBC aggregation is controversial and not yet fully elucidated. 
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Besides attractive forces, electrostatic repulsive forces are present while Van der Walls 

forces are neglected. Two main models have been proposed to describe RBC aggregation 

both related to the presence of macromolecules, based on bridging and depletion, 

respectively. The bridging model assumes that macromolecules act as a bridge between 

two adjacent RBC; in fact aggregation occurs when the adsorption of the 

macromolecules generates bridging forces that exceed disaggregating forces due to 

electrostatic repulsion, mechanical shearing, and membrane strain (Figure 1.5A). It has 

been observed that the intercellular distance between adjacent cells is less than the size 

of the hydrated molecules, suggesting that the terminal portions of the polymers are 

adsorbed on the cell surface. Moreover, Chien has demonstrated that cell-cell separation 

distance increases with polymer size [22]. On the other hand, in the depletion model the 

presence of macromolecules in the suspending medium induces a gradient of osmotic 

pressure, leading to depletion interaction [20, 23, 24] (Figure 1.5B). The disaggregation 

forces are the same of the bridging model. These models are in disagree about the nature 

of the aggregating forces between RBC, and hence they are considered as exclusive. 

Even though the validity of the models has been the topic of long controversies, the most 

credited one, which presents recent experimental validations, is the depletion model [20, 

23-25]. 

 
Figure 1.5 - Schematic drawing of the models. (A) Bridging model; (B) Depletion model. 

Re-adapted from [24] 

The depletion concept was pioneered by Asakura and Osawa [26] and it is applied 

in general to the field of colloid chemistry [27]. Several previous reports have 

investigated the depletion mechanism from both experimental and theoretical point of 

view [23, 28]. Since RBC surface is characterized by the presence of a soft surface (i.e. 

GCX) that can be penetrated by the free macromolecules in the solution, for two RBC at 

a distance d, a GCX thickness δ, a depletion layer thickness D, and a penetration of the 

polymer into the GCX p, the depletion interaction energy wD can be approximated by: 

 𝑊𝐷 = −2Π(Δ −
𝑑

2
+ δ − p)                  Equation 1 

when (
𝑑

2
+ δ − p) ≤ Δ, and is zero when (

𝑑

2
+ δ − p) > Δ [28]. 

These models lead to two different dynamics of rouleaux formation. In the case of 

bridging model, the free end of the macromolecules adsorbed on one cell surface can 

adsorb onto the adjacent RBC, leading to their cross-link (Figure 1.6I). Such effect is 
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possible only if the distance between cells is far enough to minimize electrical repulsion. 

Subsequently, further bridges are formed when cells are in close proximity. 

Deformability plays a key role in this process; in fact, the surface area in close contact 

is maximized through cell deformation (Figure 1.6II) leading to an increasing in bridges 

formation (Figure 1.6III) [13, 14]. 

 
Figure 1.6 - Illustration of the dynamics of rouleau formation in the bridging model [13] 

Regarding depletion model, a depletion layer could be formed near cell surface when the 

loss of configuration entropy of macromolecules at the surface is not balanced by 

adsorption energy (Figure 1.7I). The depletion layer leads to the displacement of solvent 

into the bulk phase (grey arrow in Figure 1.7) due to the osmotic pressure difference 

between the intercellular polymer-poor depletion zone and the bulk phase. So adjacent 

cells slide along each other in order to maximize the contact area and thus the loss in 

free energy (black arrows in Figure 1.7). The result is the rouleaux formation (Figure 

1.7III). In contrast to the bridging model, rouleaux formation via depletion does not 

require cell deformations since adjacent RBC can slide one along each other [14]. 

 
Figure 1.7 - Illustration of the dynamics of rouleau formation in the depletion model [14] 
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RBC deformability refers to the ability of RBC to recover their discoid shape and it 

is crucial for flowing through capillaries with diameters smaller than their size at rest, 

thus guaranteeing optimal gas exchange between blood and tissues [29] (Figure 1.8). 

The high flexibility and deformability of RBC are due to three characteristics [30]: (i) 

their fluid-filled bag-like structure has large surface area-to-volume ratio. In fact, the 

excess surface area is 40% larger than the area of a sphere having the same volume [30]. 

The biconcave shape of a RBC presents a mean surface area (∼135 μm2) significantly 

greater than the surface area of a sphere enclosing the same volume (∼90 fl) [31]; (ii) 

inside the cells, a concentrated hemoglobin solution behaves as an incompressible 

viscous fluid. The intracellular fluid viscosity is 6-7 mPa·s; (iii) the viscoelastic 

properties of the cell membrane, a composite structure made of an external layer (GCX), 

a lipid bilayer capable of resisting bending, and a membrane skeleton composed of a 

protein network located on the inner surface of the lipid bilayer [32, 33]. RBC 

morphological changes have been observed both in vivo [34] and in vitro [29, 35]. 

Pathological alterations are associated with reduced RBC deformation such as malaria 

[36], hereditary disorders [37], and myocardial infarction [38]. 

 
Figure 1.8 - Image of RBC flowing in microcapillaries. Re-adapted from [29] 

In summary, the unique characteristics of RBC and their interactions result in a 

complex rheological response which is reflected in the whole blood shear thinning 

behavior [7], the presence of a yield stress value [39-41], viscoelasticity properties [9, 

42], and memory effects (i.e. thixotropy) [43, 44]. These phenomena depend on the 

magnitude of the applied deformation and therefore may be present or strengthened in 

some flow regimes such as at low shear rates; non-Newtonian character is also 

influenced by the type of deformation (shear or elongation) [45]. 

The formation and breakup of RBC aggregates at rest and under very weak flow 

fields, as well as the deformation and recovery of cell shape, lead to shear thinning 

behavior of whole blood. At rest, blood exhibits a solid-like structure which reflects the 

viscosity values of about one hundred times higher compared to water. Such structures 

can be broken into three-dimensional networks of various sizes by the action of a flow 

field and each network is able to move as individual units reaching an equilibrium size 

for a fixed shear rate [44]. Chien [46] demonstrated that the average length of RBC 

aggregates decreases with increasing shear rate, until their disappearance, resulting in 

viscosity decreasing. Shear rates values between 1 and 100 s-1 prevent aggregates 
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formation as well as induce deformation and orientation of RBC. At very high flow 

velocities, RBC are dispersed and aligned in the direction of flow; viscosity of blood 

decreases by two orders of magnitude until 4-5 mPa·s (Figure 1.9). In order to 

understand the behavior of blood under flow, the combined effects of aggregation and 

deformation of RBC is not sufficient. It has been demonstrated that the dynamics of 

individual cells in flow are linked to bulk viscosity of blood. In fact, Forsyth et al. [47] 

report that shear thinning is due to tumbling-to-tank treading transition, whereas 

deformation plays a marginal role. Recently, Lanotte et al. [48] show that blood shear 

thinning is governed by RBC dynamic; in detail they found that increasing shear rate 

induces RBC to tumble, roll, deform into stomatocytes, and finally, adopt highly 

deformed polylobed shapes. 

Moreover, it has been also observed that by stiffening the RBC or removing proteins 

responsible for the aggregation, whole blood viscosity at low shear rates is lower than 

that in physiological conditions. The deformability of erythrocytes allows them to align 

with the flow at high values of shear rate, reducing the viscosity. Suspension of hardened 

RBC behaves as a Newtonian fluid, but with a viscosity up to 100 times higher than that 

of the untreated blood [46]. Instead, aggregation contribution is significant only at very 

low shear rate. Figure 1.9 resumes how RBC properties influence blood rheology under 

steady-state shear flow. 

 
Figure 1.9 - Influence of RBC properties on blood viscosity at different shear rates. Re-

adapted from [2] 

The presence of a microstructure, although weak, can be related to a yield stress, i.e. 

the applied stress needed to initiate flow. Yield stress can be seen as the manifestation 

of attractive forces between particles suspended in a continuous medium. These forces 

lead to the formation of a network in the absence of flow, but are weak enough to allow 

network disruption following the application of an adequate stress [41]. Whole blood 

yield stress ranges from 3 to 5 mPa [11] and, in physiological conditions, it is a function 
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of fibrinogen concentration and Htc [49, 50]. In order to measure blood yield stress 

experimentally, two approaches have been mostly used: (i) direct methods, where the 

shear stress at which blood starts flowing is measured and (ii) indirect methods by using 

a constitutive model or linear fitting [9]. In particular, the most frequently used model 

for describing blood flow is the Casson model [51] given by: 

 𝜏
1

2⁄ = (𝑘𝛾)̇
1

2⁄ + 𝜏𝑦

1
2⁄
                      Equation 2 

where τ is the shear stress, 𝛾̇ is the shear rate, k is the Casson model constant, and τy 

is the yield shear stress. Note that when the yield stress τy vanishes, Equation 2 reduces 

to the constitutive equation of a Newtonian liquid. In order to extrapolate the yield stress, 

viscosity data should be rearranged in the so-called “Casson plot”, i.e. square root of 

shear rate and shear stress. Subsequently, straight lines obtained via linear regression 

with their intercepts being the square root of yield shear stress. High shear rate data 

should not be applied to the Casson equation, because this yields an incorrect result. 

Moreover, it should be noted that the measurement of yield stress, but also the existence 

itself, is a somewhat controversial issue [43]. 

Rheological properties of blood are time-dependent since interaction, deformation 

and alignment of RBC are not instantaneous; in particular, rouleaux formation depends 

on the intensity and the duration of the applied stresses. Thus, blood exhibits a 

thixotropic behavior, i.e. viscosity decreases with time due to shear-induced changes in 

the fluid microstructure [11]. It is not possible to find an unequivocal definition of 

thixotropy in the literature but, in general, a material is defined thixotropic when a 

reversible change in the rheological properties of the system (e.g. the viscosity, elasticity, 

normal stress) occurs, depending on the application time of a constant shear [43]. After 

a certain time and for a fixed shear rate, a dynamic balance between growth and 

destruction of the aggregates is established whereas, the balance evolves in a greater 

dispersion at the higher shear rate. Gaspar-Rosas and Thurston [52] investigated the 

aggregation rheology of RBC in a wide range of shear rates (0-500 s-1) reaching the 

important consideration for which the recovery of the structure requires approximately 

50 seconds, while at high shear rate recovery takes place faster. 

In order to describe the rheological behavior of blood, many models have been 

proposed, even though the big majority has been developed for steady state conditions. 

The most used models are the power-law model, the Quemada model and the Casson 

equation [53], although no one can fully describe the rheological behavior of blood. 

Apostolidis and Beris undertook a systematic investigation of blood rheology and 

demonstrated that the Casson model gives the best approximation of available 

experimental data [39]. In addition, the same authors proposed a parameterization of the 

Casson model parameters, the yield stress and the viscosity, in terms of quantities that 

define the physiological state of blood [39, 44]. 

1.2.1 Viscoelasticity 

Blood viscoelasticity was described for the first time by Thurston [42] and Chien 

[54]. Due to complexity of blood microstructure, the storage and recovery of the elastic 

energy and the dissipation of the viscous energy may occur in several ways. Indeed, 

transient conditions are often encountered in vivo, such as in going from larger to smaller 
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vessels, in vascular bifurcations, and due to the pulsatile nature of cardiovascular 

circulation. Although the source of blood viscoelasticity is not completely understood, 

the main role is assumed by morphological and elastic properties of RBC. Drasler and 

coworkers [55] suggested that the elastic response is associated with the presence of 

RBC aggregates and with the ability of the erythrocyte membrane to store reversibly 

energy. On the other hand, the viscous response depends on the hemoglobin solution 

into the cells, the suspending medium (e.g. plasma) and the viscous contribution of RBC 

membrane. By applying an oscillatory flow in a tube (i.e. pushing and withdrawing the 

fluid alternately), Thurston [42] measured blood viscosity and elasticity, and 

consequently how the cellular arrangements are affected by the flow rate. The viscous 

component predominates over the elastic one in the entire range of velocity gradient 

examined; when the amplitude of the shear strain exceeds the unit value, elasticity goes 

down due to an onset of change in blood microstructure. In order to explain the structural 

changes, Thurston asserts that increasing shear strain the volume occupied by cells is 

reduced, leading to the release of trapped plasma and to the formation of viscous fluid 

layers on which cells can slide [56]. Only more recently, blood viscoelastic behavior has 

been investigated by using cone-plate and parallel plate geometries at high deformation, 

where RBC microstructure could be altered [57]. Moreover, passive microrheology [58] 

and large amplitude oscillatory shear [59] have been used. All data confirm the 

predominance of the viscous component, albeit an elastic contribution being present as 

well. 

1.3 Haemodynamics 

Human body fights disease and maintains a stable internal environment thanks to a 

vast network of organs and vessels named circulatory system. The study of the 

relationship among physical properties influencing blood flow through the vessels is 

defined haemodynamics. Circulatory system includes both the lymphatic system that 

moves lymph (a clear fluid that resembles plasma), and the cardiovascular system [60] 

whose main role is the transport of blood throughout the body. The latter consists of the 

heart, which acts as a pump due to its rhythmic contraction pushing blood in the blood 

stream, and of a network of branched vessels of decreasing size, that carries blood across 

the body (Figure 1.10). In particular, arteries transport oxygenated blood and nutrients 

while veins return carbon dioxide and waste to the heart. The exchange of such 

substances with body tissues and organs occurs in the capillaries, where oxygen and 

nutrients move from the blood into the cells, and waste and carbon dioxide from the cells 

move into the capillaries.  
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Figure 1.10 - Hierarchy of the circulatory system and average lumen diameter of human 

blood vessels 

As reported in Figure 1.10, the diameter of macrovascular vessels (i.e. the large 

arteries and veins) ranges from cm to mm while the microcirculation, consisting of 

arterioles, capillaries and venules, has diameters smaller than 100 μm; in particular, the 

capillaries present diameters of only a few microns [61]. 

The system of blood vessels resembles a branching tree leading to large changes in 

the cross-sectional area. From arteries to capillaries, the total cross-sectional area 

increases reaching its maximum in the capillary bed; conversely, when venules join to 

form veins, the total cross-sectional area becomes smaller than capillaries (Figure 

1.11A). As consequence, blood flow velocity is inversely proportional to the vascular 

cross-sectional area: velocity of blood flow decreases as blood flows from the arteries to 

arterioles and capillaries, and increases as it moves into the venules and returns to the 

heart (Figure 1.11B). The circulatory system works thanks to the pressure that fluctuates 

between 120 mmHg (systolic pressure) and 80 mmHg (diastolic pressure). Pressure drop 

decreases and levels off progressively moving away from the heart; at microcirculation 

level (arterioles and capillaries) blood pressure is about 35 mmHg and fluctuations 

vanish due to branching conformation. At the venules inlet, pressure is about 16 mmHg 

and decreases going towards the veins (Figure 1.11C). In microcirculation, the total 

cross-sectional area is about 4500-6000 cm2, and the velocity of blood flow ranges 

between 0.1 cm/s in capillaries and 20 cm/s in arterioles and venules [61]. 
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Figure 1.11 - Total cross-sectional area (A), velocity of flow (B), and blood pressure of the 

systemic human circulation. Re-adapted from [61] 

1.3.1 Fluid flow principles in human body 

In general, the flow of fluid through rigid tubes is governed by the pressure gradient 

and resistance to flow which depends on fluid viscosity and channel geometry. 

Poiseuille’s law (sometimes referred to as the Poiseuille-Hagen law) links these 

properties as follows: 

 

 𝑄 = (
8𝜂𝐿

𝜋𝑟4
) 𝛥𝑃              Equation 3 

where ΔP is the pressure losses, L and r are respectively the capillary length and 

radius, η is the suspending fluid viscosity and Q is the flow rate. The term in brackets is 

the resistance to blood flow which is a function of viscosity, vessel radius, and vessel 

length. In the human body, small changes in vessel radius cause large changes in the 

flow to a tissue or organ since flow is related to the fourth power of the radius whereas 

fluid viscosity and vessel length rarely changes enough to have a significant effect on 

resistance. In the body, variations in blood flow is usually due to changes in radius. 

Poiseuille’s law is the basis of much current understanding of blood flow in larger 

vessels and in microcirculation although the cardiovascular system does not strictly meet 

the criteria necessary to apply the law. In fact, Poiseuille’s law is valid under the 

following conditions: 

• the tube is a uniform, rigid, circular cylinder; 

• the flowing fluid is Newtonian; 
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• the flow is steady, i.e., constant in time, and laminar; 

• the flow is not subject to entrance effects, i.e., non-uniformities associated 

with the entrance of the fluid into the tube. 

In many situations of practical interest, including blood flow in human body, such 

conditions are not always respected. First of all, our circulatory system is composed of 

branching elastic tubes rather than rigid tubes of constant diameter. However, such 

properties cause only small discrepancies from Poiseuille’s law. Moreover, Poiseuille’s 

law requires steady flow rather than pulsatile and laminar flow conditions characterized 

by smooth streamlines and highly ordered motion. In addition, as reported in the previous 

paragraph, human blood presents several non-Newtonian features although it is assumed 

that viscosity of blood is independent of velocity. Even though the above mentioned 

restrictions are not satisfied at all, Poiseuille’s law succeeds to describe blood flow with 

a good approximation and it is essential for the understanding of the haemodynamics of 

the circulation [11]. 

Laminar flow condition is identified by the Reynolds number, a dimensionless 

quantity which quantifies the tendency for turbulence (i.e. chaotic changes in pressure 

and flow velocity). Reynolds number is derived from non-dimensionalization of the 

Navier-Stokes equations and it is given by the ratio between inertial forces and viscous 

forces: 

 𝑅𝑒 =
𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑉𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
=

𝑣𝑑𝜌

𝜂
                Equation 4 

Where v is the mean velocity, d is the tube diameter, ρ is the fluid density, and η is 

the fluid viscosity. Low Re number (<103) signifies viscous laminar flow where fluid 

streamlines are steady and predictable; turbulent flow occurs when Reynolds number 

exceeds a critical value (~104) which is rarely exceeded in a normal cardiovascular 

system, but it is altered in several pathological states. Between these two regimes lies a 

third region (103 < Re < 104) where flow transitions from laminar to turbulent [62].  

In the human body, blood flow in large arteries is governed by inertial forces due to 

very high Reynolds number. However, the total cross-sectional area of the vessel 

increases going from arteries to capillaries resulting in a decrease of both pressure and 

velocity. In arterioles and capillaries, Reynolds number is less than 1 indicating the 

predominance of viscous forces over inertial forces (Figure 1.12).  
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Figure 1.12 - Changes in blood pressure (red line) and Re (blue line) across human body. 

Re-adapted from [63] 

In cross section and under laminar flow, the velocity is zero at the vessel wall due to 

no-slip condition and increases parabolically with flow, reaching its maximum at the 

vessel centre (Figure 1.13). The law that governs the rate of a Newtonian fluid at each 

point in a cylindrical channel is given by the formula:  

 
𝑉(𝑟) =

∆𝑃

4𝐿𝜂
(𝑎2 − 𝑟2)        Equation 5 

where a is the channel radius and r is the radial position. In general, this formula can be 

applied to blood. The peak velocity, which occurs on the centre-line, is given by: 

 𝑉𝑚𝑎𝑥 =
∆𝑃𝑎2

4𝐿𝜂
                       Equation 6 

 
Figure 1.13 - Parabolic velocity profile in Poiseuille flow where a is the tube radius and r 

is the radial position 

The volume flow rate Q in the tube can be calculated by integrating the velocity 

across the circular cross-section of the tube: 
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 𝑄 = ∫ 𝑉(𝑟)2𝜋𝑟 𝑑𝑟 =
𝜋Δ𝑃𝑎4

8𝐿𝜂

𝑎

0

 Equation 7 

which is equivalent to Poiseuille’s law with r=a. 

1.3.1.1 Flow in rectangular channel 

Microfluidic channels used in in vitro studies can be modelled as orizontal parallel 

plates, for which there is an analytical solutions for velocity and pressure. In this case, 

the Navier-Stokes equation can be simplified as: 

 0 = −∇𝑝 + 𝜇∇2𝑣⃗                      Equation 8 

where p is the pressure and 𝑣⃗ the velocity.  

The flow can be treated as a standard pressure-driven flow between two infinite parallel 

plates (Figure 1.14). The steady velocity profile v(y) is uniform along the length of the 

plate in the x-direction, and Equation 8 becomes: 

 0 = −
𝑑𝑝

𝑑𝑥
+ 𝜂

𝑑2𝑣

𝑑𝑦2
                      Equation 9 

integrating Equation 9: 

 𝑣(𝑦) = −
1

2𝜂

𝑑𝑝

𝑑𝑥
(ℎ𝑦 − 𝑦2)            Equation 10 

 

which is the parabolic velocity profile of Figure 1.14 for no slip conditions at walls. 

Since the wall shear stress τw is defined as: 

 𝜏𝑤 = 𝜂
𝑑𝑣

𝑑𝑦
                    Equation 11 

 

the slope of the velocity profile from Equation 10 can be calculated to obtain τw at the 

wall via Equation 11: 

 𝜏𝑤 = −
ℎ

2

𝑑𝑝

𝑑𝑥
                    Equation 12           

 

Moreover, the volumetric flow rate can be calculated integrating Equation 10 over the 

gap between plates: 

 𝑄 = 𝑤 ∙ ∫ 𝑣(𝑦)
ℎ

0

𝑑𝑦 = −
𝑤ℎ3

12𝜂

𝑑𝑝

𝑑𝑥
      Equation 13                                        

Combining Equation 12 and Equation 13 it can be possible to obtain a very simple 

algebraic equation for wall shear stress in terms of volumetric flow rate, fluid viscosity, 

and flow chamber dimensions: 
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 𝜏𝑤 =
6𝜂𝑄

𝑤ℎ2
                    Equation 14                                   

 

 
Figure 1.14 - Parabolic velocity profile between the flat parallel plates in the x-z plane 

Equation 14 can be applied to a rectangular duct considering the confinement by side 

walls with some deviations. The extent of the deviations depends on the cross-sectional 

aspect ratio α = h/w. Low aspect ratio (α→0) implies a slit-like geometry which is close 

to the ideal bi-dimensional model of Equation 14; on the other hand, geometries with 

high α (α→1, e.g. square-like geometry) alter flow profile due to wall effects. In this 

case, Equation 14 can be modified as follows: 

 𝜏𝑤 =
2𝜂𝑄

𝑤ℎ2
(

𝑚 + 1

𝑚
) (𝑛 + 1)               Equation 15 

In Equation 15, m and n are empirical constants, with m = 1.7 + 0.5 α-1.4 and n = 2 

for α < 1/3. It is worth to mention that wall effects will be more pronounced as aspect 

ratio increases. 

The solution for the velocity of Equation 8 can be generalized for rectangular channel 

having length (L), width (w) and height (h). The velocity along channel width and height 

is given by a Fourier series expansion: 

 

𝑣(𝑦, 𝑧) =
4ℎ2

𝜋3𝜂

𝑑𝑝

𝑑𝑥
∑

1

𝑛3 [1 −
cosh (𝑛𝜋

𝑦
ℎ

)

cosh (𝑛𝜋
𝑤
2ℎ

)
] sin (𝑛𝜋

𝑧

ℎ
)

∞

𝑛 𝑜𝑑𝑑

 Equation 16 

where x, y, and z are the coordinate axes along the channel length, width and height 

respectively. Equation 16 is valid for –w/2<y<w/2 and 0<z<h. The velocity profiles 

along channel height and channel width are reported respectively in Figure 1.15C and 

Figure 1.15D. It can be noticed that the profile along h has a parabolic shape whereas it 

is flattened along w due to the fact that dimension h is smaller than w. 
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Figure 1.15 - (A) 3D view of the velocity profile for laminar flow in a rectangular 

microchannel with h<<w. (B) Cross section view of the channel. (C) Plot of the velocity along 

the height and (D) along the width. B, C, and D re-adapted from [64] 

The flow rate can be found by integrating Equation 16 along y and z axes: 

𝑄 = 2 ∫ 𝑑𝑦 ∫ 𝑑𝑧 𝑣(𝑦, 𝑧)
ℎ

0

𝑤
2⁄

0

=
ℎ4

12𝛼𝜂

𝑑𝑝

𝑑𝑥
[1 − ∑

192𝛼

(𝜋𝑛)5
tanh (

𝑛𝜋

2𝛼
)

∞

𝑛 𝑜𝑑𝑑

]   Equation 17 

where (α=h/w) is the aspect ratio of the channel. For channels with low aspect ratio 

(α→0), the flow rate can be approximated by: 

 𝑄 ≈
ℎ4

12𝛼𝜂

𝑑𝑝

𝑑𝑥
(1 − 0.63𝛼)                    Equation 18 

Regarding resistance to flow in rectangular geometries, it can be approximated by 

using Equation 18: 

 𝑅 =
12𝛼𝜂𝐿

ℎ4

1

(1 − 0.63𝛼)
                    Equation 19 

Wall shear stress can be calculated for channel region where the flow is fully 

developed. Near the channel inlet, there is a portion of the channel where the flow is 

characterized by non-parabolic velocity profiles. In fully developed region the pressure 

gradient and the shear stress in flow are in balance and hence velocity profile does not 

change. The entrance length depends on Re and channel height h: 
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 𝐿𝑒 = 𝑎ℎ𝑅𝑒                    Equation 20 

1.3.2 Blood flow in microcirculation 

From a macroscopic perspective, blood in large arteries can be related as a 

homogenous fluid, even though it is a suspension of viscoelastic cells in a viscous 

medium. In microcirculation, the flow behavior of blood at macroscopic level is 

regulated by individual RBC properties and the interaction among them. For this reason, 

it is fundamental to approach the study of blood flow in microcirculation at cellular level 

[63].  

The most surprising features of blood flow are the Fåhræus effect and Fåhræus -

Lindqvist effect. These two effects are strongly related to the microtube diameter and 

they were also observed in vivo experiments. The flow of a suspension of RBC in 

channel having dimensions less than 300 μm exhibits a peculiar radial distribution which 

leads to the migration of RBC toward the center of the channel, and consequently to the 

formation of a cell-depleted layer near the vessel walls (cell-free layer) [65, 66]. The 

mechanism of RBC axial migration results from a wall-induced lift enhanced by RBC 

deformability, which is related to the tank-treading motion of RBC membrane under the 

velocity gradient by tension and compression forces acting on the cell [67] (Figure 1.16). 

The wall-induced lift is, in turn, counterbalanced by a shear-induced diffusion that arises 

due to cell-cell collisions. 

 
Figure 1.16 - Mechanism of the axial migration of RBC [67] 

However, the formation of the cell-free layer has not yet completely demonstrated 

mainly due to the complex relationship between hemorheological factors [63]. 

The cell-free layer is thin, but influences the relation between flow rate and pressure 

drop, acting as a lubricating layer. As a consequence, the concentration of RBC increases 

in proximity of the center of the channel resulting in a faster motion of the cells when 

compared with the suspending medium. An increasing average speed of RBC leads to a 

reduction of the transit time of the RBC through a given tubular segment, and thus to a 

decreased Htc content in the segment (hematocrit in the tube, HT) compared to the Htc 

of the blood entering or leaving it (discharge hematocrit, HD). This mechanism, known 
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as the Fahraeus effect [68, 69], suggests that the Htc decreases as the blood proceeds 

through narrower microvessels (Figure 1.17A). 

The Fåhræus-Lindqvist effect is related to the behavior of viscosity as a function of 

tube diameter, as reported in Figure 1.17B. The apparent viscosity of blood presents a 

strong decrease with decreasing diameter of the tube until it reaches a minimum of about 

7 μm, corresponding to the diameter of the capillary blood vessels. Several experimental 

works have demonstrated that viscosity continues down to diameters of about 10 μm up 

to 5 to 7 μm where the effect is reversed. The viscosity increases again in diameters less 

than 3.5 μm approximately to the levels seen in large vessels [70-72]. This phenomenon 

endorses that viscosity is affected not the only by Htc, but also by the plasma layer and 

the microscopic motions of RBC. It should be emphasized that in rotational rheometers 

these effects have never been observed. 

 
Figure 1.17 - Fåhræus effect (A) and Fåhræus-Lindqvist effect (B) as function of channel 

diameter [11]. The shaded area contains all published data in the literature until 2006. Data 

points are the original data  

1.3.3 Physiologically relevant in vitro models 

Over the past decades, the development of microfluidic techniques has contributed 

to the understanding of the haemodynamics, providing more physiologically relevant 

models, and creating a novel research field named as Blood-on-chip [73]. The main 

feature of microfluidics is the possibility to manipulate fluids at the microscale level, 

with high precision and by using small quantities of samples and reagents. Moreover, 

microfluidic systems show many advantages, such as low fabrication cost, rapid sample 

processing, and high resolution and sensitivity of the outputs. In microfluidic channels, 

the flow is finely controlled allowing to predict in a very reliable way the transport of 

particles (e.g. cells, drug carriers) in the fluid [74]. 

A lot of papers have focused on the study of blood flow by using in vitro models 

able to reproduce, partially, in vivo conditions. These models can be divided in two 

categories according to their final aim. The first category is made up of models that 

reproduce complex vessel geometries controlling, in a very accurate way, blood flow 

conditions and behavior of blood components. Several types of microchannels (i.e. glass, 

PDMS, plastic) have been used to reproduce microvascular environment allowing a 

precise control over the experimental variables. Blood flow in microchannels has been 

widely investigated over years by using several techniques [75-78]. Velocity profiles 

reported are parabolic in some cases [78, 79] whereas blunt in others [80, 81]. For 
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example the degree of blunting decreases with the flow rate, likely due to the decreasing 

of blood viscosity resulting from cell disaggregation and deformation; on the other hand 

blunting increases with Hct being related to the largest number of interactions of the 

suspended RBC in shear flow [63]. Although microchannels are fundamental to 

understand the behavior of RBC under flow, they present significant discrepancies with 

physiological conditions. For example, in glass capillaries viscosity values are lower 

[82] and RBC deform less than in vivo conditions [83]. These discrepancies have not yet 

been understood and a variety of explanations have been proposed such as the 

irregularity of vessel diameters [82], vascular bifurcation [84] and the absence of the 

endothelial layer lining the lumen surface [85] in vivo. On the other hand, models that 

recreate the inner surface of human vessel by lining microchannels with endothelial cells 

(EC) belong to the second categories. In this case, the main goal is to replicate human 

vascular endothelium in order to study cells properties such as morphology, proteins 

expression or to test drug therapeutic efficacy.  

In general, under physiological conditions, blood vessels are exposed to a continuous 

unidirectional flow that generates a pressure and a shear stress directed respectively 

normally and parallel to the vessel wall (Figure 1.18A). The pressure results in 

circumferential stretching of the vessel wall while shear stress exerted longitudinally in 

the direction of blood flow [86]. In particular,  the apical surfaces of the EC layer are 

subjected to a wall shear stress (Figure 1.18B) which mediates vessel permeability [87], 

arterial remodeling [88] and pathophysiological processes [89]. Depending on vascular 

district in human body, EC are subjected to different hemodynamic environments 

resulting in heterogeneous structures and functions [90]. 

 
Figure 1.18 - (A) A section of a vessel wall. Re-adapted from [86]. (B) Shear stress acting 

on the apical surface of an EC 

Fiddes et al. [91] suggest an innovative method to fabricate circular microchannel 

lined with EC to mimic in vivo conditions. A cross-section of a 3D circular PDMS 

microchannel entirely covered with EC is reported in Figure 1.19A-B where cells nuclei 

and actin filaments are stained respectively in blue and green and visible thanks to 

confocal imaging. It is interesting to note that cells are able to grow in a uniform manner 

on the microchannel walls. Unfortunately, flow studies have not been carried out on this 

model. Similarly, a three-dimensional gelatin chip has been developed for the same 

purpose but in addition a controlled flow on the EC monolayer has been applied. Authors 



21 

suggest their model to mimic in vitro physiological environment related to 

haemodynamics, atherosclerosis, tumor metastasis, and drug screening [92]. By using a 

similar fabrication process, Wong and Searson [93] have created a perfusable 

endothelialized microchannel embedded in a extracellular matrix. The authors proposed 

a new tool for studying the invasion and intravasation of metastatic cancer cell in an 

artificial microvessels platform (Figure 1.19C). It has to be emphasized that both 

categories are not complete, i.e. they are lacking in some aspect of physiology and hence 

of questionable relevance in vivo. However, the main drawback is the absence of blood 

flow [94].  

 
Figure 1.19 - (A) Cross section of a channel lined with EC. (B) Fluorescent image of actin 

filaments (green) and nuclei (blue) of the same cells. Scale bars 200 µm. Re-adapted from [91]. 

(C) 3D projection of a confocal z-stack of an endothelialized channel with a cancer cell in the 

extracellular matrix. Re-adapted from [93] 

Moreover, the endothelial GCX is considered to affect blood flow, especially in 

microcirculation. GCX is a negatively charged brush-like layer of proteoglycans, 

glycosaminoglycans and glycoproteins located on the inner surface of the vascular 

endothelium with a thickness ranging from 100 to 1000 nm [95, 96] (Figure 1.20). The 

negative charge is given by sialic acid (SA) [97] which contributes to the formation of a 

protective electrostatic shield that ensure antiadhesive forces between circulating cells 

and vessel walls [98]. In general, GCX components are continuously modified and have 

a dynamic relation with the blood plasma proteins and molecules that affect the shape 

and size of the GCX layer [99]. 
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Figure 1.20 - (A) RBC flowing in a capillary covered by GCX; (B) Schematics of the 

endothelial. Re-adapted from [100]; (C) Electron microscopy image of the endothelial 

glycocalyx in a coronary capillary. Re-adapted from [101] 

In physiological conditions, GCX acts as a protective barrier determining vascular 

permeability and plays a key role in the vascular mechanotransduction of biomechanical 

stimuli, such as shear stress, into biochemical signals on the EC [102-104]. Several 

vascular diseases, such as diabetes, ischemia, and atherosclerosis are associated to GCX 

alterations [105]. 

In the case of microcirculation, the GCX layer and its interaction with RBC were 

modelled by both theoretical and numerical works [106-109]. It was found that flow 

resistance is lower in glass microcapillaries (i.e. without GCX) compared to 

microvessels in vivo [82]. To overcome this limit, Lanotte et al. [110] proposed an 

experimental model of the GCX coating glass capillaries with a polymer brush providing 

support to the hypothesis that GCX influences blood flow in microvasculature. However, 

there it is still not clear what role GCX plays in mediating blood flow. 

1.3.4 Case study: Plasmodium falciparum malaria 

Malaria is responsible for hundreds of thousands deaths every year in many countries 

where it is endemic. Plasmodium falciparum induced malaria is the most widespread 

parasitic disease in humans, with a mortality of 15–20%, mostly children in sub-Saharan 

Africa [111-114]. Over the years, effective treatments have been used against malaria 

but every time the parasite has been able to develop resistance [115]. A better 

understanding of the molecular and physiological processes through which the parasite 

is able to proliferate inside the blood stream and evade the immune system is an open 

issue related to the development of a viable and efficient vaccine [116]. 

The complex life cycle of malaria parasites is reported schematically in Figure 1.21. 

The parasites enter into human body in the form of sporozoites through the bite of a 

female Anopheles mosquito arriving to the liver. The asexual reproduction of the 

sporozoites produces free forms of parasite called merozoites which are released in the 

blood stream. Then, parasites start repeated rounds of multiplication progressing in ring, 

trophozoite and schizont stages [115]. For its development, parasite digests hemoglobin 
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inside the host cell and after 48 hours the rupture of RBC occurs, releasing 15-30 

daughter merozoites ready to infect new nearby RBC. Generally, the invasion is 

consummated within few minutes after the parasite releasing due to the limited capacity 

of the falciparum merozoites to live outside the host cell [117]. A small part of parasites 

(less than 10%) differentiate into gametocytes which are the sexual form of the parasite 

[118]. They are responsible of the transmission to the mosquito where undergo a sexual 

cycle in the gut, before entering the salivary gland as sporozoites to complete the cycle 

[119]. 

 
Figure 1.21 - Life cycle and pathogenesis of malaria in human body. Re-adapted from 

[118] 

The pathogenicity of Plasmodium parasite involves the ability of mature infected 

RBC (iRBC) to undergo several adhesive interactions, defined cytoadhesion. In 



24 

particular, iRBC can bind endothelial cells (sequestration), and adhere to healthy RBC 

(hRBC) (rosetting) and with other iRBC (auto-agglutination) [120]. It is well known that 

such phenomena lead to the development of severe malaria, i.e. potentially fatal 

manifestation or complication, due to clogging of the vessels [120] and the lack of 

identification of iRBC by the spleen [121]. Furthermore, Plasmodium falciparum 

expresses proteins that are transported to the RBC membrane causing changes in rigidity 

and shape of the iRBC [122]. 

Among them, the sequestration phenomenon is the most investigated in literature 

although the question of how it develops is still unclear. Several hypotheses have been 

proposed such as changes of RBC rigidity [112, 123], induction to release pro-

inflammatory receptors [124], binding of iRBC to specific adhesion receptors on 

endothelial cells [125], and activation of endothelial receptors [126, 127]. Recent finding 

reports the possible role of platelets and coagulation cascade [128, 129]. 

The work of MacPherson et al. [130] has provided further clarification on the 

mechanism identifying the contact point for iRBC in vivo as knob-like structure, which 

had previously been demonstrated in in vitro studies. Knobs are adhesive protrusions 

that the parasite induces on the surface of the host cell around 16 hours after injection. 

Such structures contain several proteins including PfEMP-1 (Plasmodium falciparum 

Erythrocyte Membrane Protein-1) which is largely considered responsible for iRBC 

adhesion [131]. 

Under physiological flow conditions, the cytoadhesion of iRBC may be mediated 

sequentially by a number of endothelial adhesion molecules which lead iRBC 

undergoing typical dynamic behavior, e.g. rolling; this behavior is similar to leukocytes 

in the first step towards extravasation during an acute inflammation [132, 133]. In fact, 

leukocytes use selectin receptors for rolling, localized on many microvilli rather than 

knobs. The majority of the studies about the behavior of iRBC cytoadhesion under flow 

have been carried out by numerical simulations. Fedosov et al. [134] investigated the 

dynamic of iRBC in cylindrical capillaries varying some parameters as cell stiffness, 

flow conditions, tube dimensions and Htc. The results has releveled several types of cell 

dynamics such as solid adhesion, slow slipping along the wall, and intermittent flipping. 

Moreover, by using the same multiscale model, blood flow resistance and adhesive 

dynamics of individual iRBC has been evaluated [135, 136]. Experimental data available 

in literature are fewer than simulation results. The reason is the difficulty to recreate an 

in vitro model that allows both a high level of similarity to the real case and that it is not 

extremely complicated. Indeed, several authors have preferred to create coated 

microchannel with some of the adhesion molecules which is believed to be involved in 

the pathway (e.g CD36, V-CAM1, I-CAM1) [137, 138] rather than cultivate endothelial 

cells.  

Recently, Hempel et al. [139] focused attention on the role of endothelial GCX in 

malaria pathogenesis. It has been suggested that the initial contact between iRBC and 

the vascular endothelium occurs via GCX due to the ability of infected erythrocytes to 

bind GCX components such as heparin sulfate and chondroitin sulfate [131, 140]. 

Studies on the loss of endothelial GCX as a consequence of malaria has so far not been 

investigated in humans. Therefore, only hypothesis on the mechanisms through GCX 

influences the binding of iRBC to endothelial cells have been proposed, based on the 
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ability of parasite itself to produce substances with sheddase-like activities, such as 

enzymes [141]. However, there it is still not clear what role GCX plays in mediating 

adhesion of iRBC. 

1.4 Aim of this work 

Rheological properties of blood are extremely important in the regulation of in vivo 

blood flow. The main goal of this work is to provide elucidations on some of the not well 

understood issues related to blood flow.  

To date, the majority of both research and clinical investigations in the field of 

hemorheology are based on steady shear measurements in particular in physiological 

conditions. However, they can elucidate only a part of the non-Newtonian characteristic 

of human blood. To overcome this limit, the first aim of this thesis is a deep investigation 

of blood rheology under both steady and oscillatory shear conditions by using bulk 

rheology. The steady conditions give information about viscosity while the oscillatory 

experiments provide information on the blood viscoelasticity behavior in the linear 

viscoelastic regime. Such investigation could help in elucidating the significance of 

hemorheological alterations in pathological situations, where increased hematocrit levels 

and aggregability are found. In addition to rheological studies, current haemodynamics 

investigations still present discrepancies between in vitro studies and physiological 

conditions. The second aim of this work is the study of the interaction between RBC and 

endothelial cells under flow. To achieve this purpose, a simple in vitro model which is 

closer to physiological conditions, is developed. Endothelial cells are subjected to a 

continuous flow for several days in order to induce alignment as well as occurs in human 

vessels. 

In conclusion, all the proposed approach aspires to supply novel information that 

could be helpful for a complete comprehension of blood flow in human body and for the 

development of microfluidic platform to study drug delivery of carriers in blood 

circulation. 

1.4.1 Overview 

More in detail, in chapter 1 a general background of blood rheology and 

haemodynamics is presented. Chapter 2 shows a systematic characterization of human 

blood by using conventional bulk rheology under both steady and oscillatory shear 

conditions. The former gives information about viscosity while the latter provides 

information on the blood viscoelasticity behavior in the linear viscoelastic regime. Effect 

of increased RBC volume fraction and effect of adding aggregating media are shown. In 

chapter 3 methods developed to create a simple in vitro model that mimics medium size 

human vessels are reported. In particular, human endothelial cells, cultured in a 

microchannel and subjected to a continuous medium flow are used to recreate 

physiological flow conditions. Once the basic concepts for the in vitro culture of 

endothelial cells are implemented, in chapter 4 RBC-endothelial cell interaction are 

studied. Velocity profile of RBC suspensions is the main parameter monitored during 

experiments varying flow conditions and positions along the width and the height of the 

microchannel. The effect of the endothelial GCX on RBC velocity is also considered. 

Finally, an interesting case study about adhesion of RBC infected by malaria parasite 
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Plasmodium falciparum to endothelial cells is presented. Finally, in the appendix A, a 

preliminary study on the development of oligonucleotides-functionalized surfaces for 

fluorescence-based biosensing applications is reported. 
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2. Rheology of blood 

Main results reported in this chapter are the topic of a peer-review article in 

Rheologica Acta [9]. Rheological characterization of human blood both under steady 

and oscillatory state is reported. Blood is characterized both in physiological conditions 

and in RBC aggregating media. The latter ones is obtained by the addition of a polymer 

and by increasing the Htc above the normal physiological levels. 

Blood samples with Htc values ranging from 8% to 99% are investigated under 

steady state deformation. 

Moreover, a systematic set of oscillatory shear measurements by conventional bulk 

rheology is carried out in order to evaluate storage and loss moduli of whole human 

blood. The viscoelastic behavior is evaluated in the linear regime imposing small 

deformation in order to keep the sample microstructure unaffected. 

2.1 Materials and methods 

2.1.1 Blood samples 

Blood samples were processed according to the standard protocol for 

hemorheological tests [142]. Human blood was obtained from healthy volunteers (male 

and female, age ranging between 26 and 52 years, Hct ranging from 40 and 50%). 

Venous blood was drawn from the antecubital vein and collected into Vacutainers (BD) 

containing ethylenediaminetetraacetic acid (EDTA) and stored at room temperature. 

Regarding RBC aggregation studies, blood samples have been centrifuged for 15 

minutes at 1600 RPM and plasma and buffy coat discarded. The RBC were then washed 

twice with isotonic phosphate-buffered saline (PBS, pH 7.4). Dextran (MW 500 kDa 

from leuconostoc mesenteroides, Sigma-Aldrich) solutions have been prepared 

dissolving dextran powder in PBS. Then, washed RBC were added to dextran solution 

at the Htc value desired. 

On the other hand, in order to obtain rheological reference curves of human blood, 

the samples were used as such (i.e., at the Htc at the moment of collection). The effect 

of the RBC volume fraction on blood rheological properties has been investigated 

centrifuging blood samples for 15 minutes at 1600 RPM. The suspended plasma was 

aspirated through a large-bore needle and saved. Subsequently, RBC were re-suspended 

in autologous plasma at the desired Htc values. RBC aggregation properties have been 

studied by adding dextran to whole blood at two concentrations: 1.5 and 3 

mgDextran/mlblood. Each step of the experimental protocol was performed at room 

temperature. 

Before and after experiments, RBC viability was checked by monitoring cell 

morphology by using a microscope with a high magnification objective. 
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2.1.2 Rheological measurements 

Rheological tests were performed within 6 hours from blood collection by using a 

stress-controlled Physica rheometer MCR 301 (Anton-Paar) equipped with a titanium 

double-gap measuring system (DG 26.7, inner cup diameter: 24.267 mm, inner bob 

diameter: 24.666 mm, outer bob diameter: 26.663 mm, outer cup diameter: 27.053 mm 

and bob height: 40.000 mm). The bob rotates inside the cup, which is still and maintained 

at a constant physiological temperature of 37°C by a Peltier system. This assembly, 

presenting a high surface area and requiring small amount of sample (i.e. 1.8 ml), is ideal 

for low viscous biological materials, such as blood. 

In each test, blood samples have been gently agitated before loading, in order to 

homogenize the sample. After loading, the blood surface exposed to air (i.e. in the upper 

part of the assembly) was covered by an oil film to avoid the formation of a protein layer 

at fluid–air interfaces that generates mechanical strength. 

In order to prevent RBC sedimentation and to disrupt any aggregates, possibly 

formed during the loading step, each test was preceded by a pre-conditioning phase, at a 

constant shear rate of 200 s-1 for 20 s, followed by a rest phase of 5 s, needed to allow 

sample relaxation. 

Steady shear experiments were performed from low to high shear rates (and back in 

some cases, up-down curves) and viscosity curves were recorded by using at least 30 

measuring data points with sampling time of 10 s. 

Oscillatory shear tests have been performed in order to evaluate blood storage 

modulus G’ and loss modulus G’’. Each oscillatory measurement has been preceded by 

strain amplitude sweep test at 1 rad/s and 10 rad/s for strain amplitudes from 0.1 to 100%, 

in order to determine the linear viscoelastic regime. The frequency sweep tests were 

performed from 30 to 0.1 rad/s and strain amplitude from 7% to 10%, depending on the 

data provided by amplitude test. The number of data points per interval ranged from 8 - 

16, depending on the type of sample examined. 

2.2 Results 

2.2.1 Whole blood steady-state behavior 

In Figure 2.1A is reported the master curve of blood viscosity of 5 healthy donors 

performed in physiological conditions (T=37°C and Hct about 45%). The average 

viscosity of 20 tests is plotted as a function of shear rate and the error bars represent the 

standard deviation. It is possible to observe the well-known shear thinning behavior of 

whole blood (black circles) which is typical of aggregating suspensions, such as whole 

blood. At very low shear rate RBC tend to aggregate but increasing shear rate induces 

first disaggregation of RBC structures, and then a subsequent cell deformation. 

 Blood presents time dependent effects due to disruption and formation of RBC 

aggregates under flow and for this reason, in the development of the experimental 

protocol, blood samples have been subjected to a pre-shear step (200 s-1 for 20 s) in order 

to promote the homogeneity of the sample and to reduce any memory effects [143]. At 

low shear rates, with the pre-shear step, viscosity values are higher than the ones in the 

sample without pre-shear, indicating the presence of memory effects and the (partial) 

breakage of the static microstructure made by RBC aggregates (Figure 1.16A, open 



29 

circles). At shear rates higher than about 5 s-1 the pre-shear effect disappears, likely due 

to flow-induced disruption of RBC aggregates. Moreover, sedimentation and possible 

syneresis (phenomenon leading to the formation of a plasma layer near the surface) have 

been investigated by increasing and subsequently decreasing the imposed shear rate 

(black and grey triangles, respectively in the inset of Figure 2.1A) without reloading the 

sample and without pre-shear. When the flow rate decreases from high to low values, 

the onset of sedimentation can be noticed. It is due to RBC aggregation promoted by 

flow conditions, which in turn leads to a slight discrepancy between the down-up and 

up-down curves, often referred to as the thixotropic behavior of blood. In order to avoid 

this effect, only the increasing shear rate flow behavior (down-up curve), without the 

pre-shearing step, will be considered. 

Another peculiar signature of non-Newtonian behavior of blood is the presence of a 

yield stress. Whole blood yield stress has been confirmed experimentally by direct 

measurements [40] and by using the Casson model [144]; the latter can be applied to 

experimental data recorded at low shear rates. For this purpose, data reported in Figure 

2.1A have been rearranged in the so-called Casson plot (i.e. square root of shear stress 

vs square root of shear rate), as shown in Figure 2.1B. Data points have been fitted by 

linear regression (r2>0.99), and extrapolation to zero shear rate returned the square root 

of the yield stress. The yield stress values for samples with and without pre-shear have 

been estimated equal to 5.2 mPa and 3.8 mPa respectively. These values are in good 

agreement with previous works (ranging from 1.5 mPa to 5 mPa), both experimental 

[145] and theoretical [146]. The variation of yield stress values has been attributed to 

artifacts arising from experimental procedures followed by each investigator as well as 

the interactions between RBC and surfaces of the rheometer [44]. 

 
Figure 2.1 - (A) Master curve of whole blood viscosity as a function of shear rate: by 

applying a pre-shear (open circle) and in absence of pre-shear (dark circle). In the inset, black 

triangle represents the down-up curve, grey triangle represents up-down curve. (B) Casson plot 

of the data presented in Figure 2.1A, without pre-shear. The continuous line is a linear fit of the 

experimental data [9]. The error bars represent the standard deviation 

2.2.2 Whole blood linear viscoelasticity 

The viscoelasticity of blood has been characterized via frequency sweep test in 

which the frequency is varied while the amplitude of the deformation is kept constant.  
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Amplitude sweep tests have been carried out before each oscillatory measurement 

(Figure 2.2B) in order to evaluate the linear viscoelastic region, and consequently which 

value of deformation to be used in the experiments. It is possible to note that the onset 

of the nonlinear regime is around 5 mPa for the elastic modulus, a value very close to 

the yield stress. Such measurement confirms that blood microstructure is “at rest” in the 

linear viscoelastic region. In Figure 2.2A, G’ and the G’’ as a function of angular 

frequency, are reported. The loss modulus predominates over the storage one across the 

entire tested range of frequency and both moduli increase with frequency in a parallel 

manner. A similar trend can found in other complex fluids such as weak gels and weak 

attractive suspensions/emulsions [147-149]. The predominance of G’’ over G’ indicates 

the main role played by viscous dissipation in blood viscoelasticity whereas the absence 

of a crossover probably indicates that no major change in the structure of the RBC 

network occurs in the frequency and deformation range investigated.  

 
Figure 2.2 - (A) G’ (squares) and G’’ (triangle) as a function of angular frequency. The 

grey dashed lines represent a power law fitting of the experimental data (R2=0.99), the 

exponent for both G’ and G’’ being 0.7. (B) Strain amplitude sweep test (G’ and G’’ as a 

function of strain) at 10 rad/s for strain amplitudes from 0.1 to 100%. Re-adapted from [9]. The 

error bars represent the standard deviation 

Thurston [42, 107, 150] demonstrated that blood viscoelasticity in tube flow is 

characterized by the presence of 3D networks of RBC only at very small deformations 

(about 1%). These deformation values are beyond instrumental sensitivity due to the low 

viscosity of blood, and the higher deformations in our experimental conditions could 

lead to (partial or full) breakage of 3D structures. In particular, RBC become arranged 

in 2D structures flowing in layers separated by the suspending medium, which acts as a 

lubricant in between (Figure 2.3) [56]. So, the elastic contribution might be due to the 

tendency of two adjacent RBC layers to interact because they are close enough to be 

affected by each other, also thanks to the presence of plasma proteins, which can enhance 

RBC interactions. Thus, RBC aggregation tendency is related to two opposing forces: 

the adhesion forces between adjacent RBC layers promoted by plasma proteins, and 

shear flow which tends to disaggregate RBC aggregates. It is important to note that under 

physiological conditions, blood flow is strong enough to break RBC aggregates, 

allowing optimal microcirculation and tissue perfusion.  
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Figure 2.3 - Plasma release cell-layering theory [56] 

Figure 2.2A shows the high reproducibility of the measurements, despite the 

difficulty in handling a complex biological fluid such as blood. In fact, one of the main 

issues to take into account is the role of RBC sedimentation. The impact of RBC 

sedimentation has been investigated measuring G’ and G’’ as a function of time, as 

reported in Figure 2.4A. It can be noticed that G’ and G’’ variations with time are rather 

limited (12.5% for G’, 6.7% for G’’), indicating that kinetic of RBC sedimentation is 

negligible during rheological test (about 13 min). In addition, the average of data points 

of each frequency has been plotted on the moduli master curve of Figure 2.2A; in Figure 

2.4B one can observe that there is a good agreement between data. This result is 

supported by Fabry [151], who reports that sedimentation becomes significant only after 

20 minutes in static conditions. Thus, the higher magnitude of error bars at the lower 

frequencies in Figure 2.2A could be related to the instrument detection limit due to the 

low viscosity of blood. 

 
Figure 2.4 - (A) G’ and G’’ as a function of time for four different angular frequencies. (B) 

Data average of Figure 2.4A (white symbols) plotted on Figure 2.2A. Re-adapted from [9] 

The viscoelastic characterization of human blood under oscillatory shear flow is a 

novelty of this work and only few authors reported similar results. For this reason, the 

mechanical spectra obtained in this work is compared with some literature data [57, 58] 

in Figure 2.5 where black symbols refer to this work, grey symbols to Alves et al. [57] 

and open symbols to Campo-Deano et al. [58]. Alves et al. performed experiments by 

using rotational rheometer equipped with cone-plate geometries under oscillatory flow. 

Data were obtained with an amplitude of 20% which is beyond the linear viscoelastic 

regime according to Figure 2.2B Although Campo-Deano et al. used passive 

microrheology techniques, a reasonable agreement can be found, at least in the range 1-

10 rad/s. The comparison confirms that blood microstructure is essentially the same both 

in the static conditions encountered in microrheology and at low frequencies in bulk 
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rheology, in other words it consists of more or less aggregated RBC. It is worthwhile to 

mention that passive microrheology is based on the motion of a bead; so one could 

speculate that the source of viscoelasticity found by Campo-Deano et al. is due to 

confining effect resulting from RBC aggregates in the sample. Furthermore, RBC 

aggregates in bulk rheology are probably disrupted at high frequency; for this reason 

after about 10 rad/s, the data deviate between them. Campo-Deano et al. found a 

crossover of the moduli while in the bulk rheology G’ and G’’ tend to separate. In 

general, there is a significant agreement between the three data sets especially 

considering that the results refer to different experimental techniques and on blood 

samples treated in different ways [9]. 

 
Figure 2.5 - Comparison between whole blood mechanical spectra and results from the 

literature [9]. The error bars represent the standard deviation 

2.2.3 Effect of RBC volume fraction 

The contribution of Htc values on blood rheology has been investigated varying RBC 

volume fraction from 8% to 99%. This range allows to understand the rheological 

behavior of human blood from the semi-diluted up to the highly concentrated regime. 

In particular, rheology of semi-diluted RBC suspensions is interesting because Htc 

in microcirculation is less than the physiological value of 45% [152]. On the other hand, 

the rheological behavior of concentrated RBC suspensions (i.e. Hct higher than 45%) is 

important in order to elucidate some aspect of blood disorders such as polycythemia and 

myeloproliferative neoplasm in which Hct values are about 60%, causing impaired blood 

flow at the microcirculation level and thrombotic events [153-155]. Moreover, RBC 

stored in blood bags used for RBC transfusion can undergo rheological alterations. In 

such bag, Htc is higher than 90% [156, 157]. 

The increase of RBC volume fraction with respect to the physiological value of 45% 

(black circles in Figure 2.6) induces an upward shift of the viscosity curves and the 

typical shear thinning behavior of blood is preserved. It should be emphasized that Htc 

of 99% means that the suspending medium (i.e. plasma) is only 1%; despite there is 

almost fluid suspending, blood viscosity decreases maybe due to dynamic change of 

RBC morphologies [48]. For Htc lower than 45%, it should be noted that viscosity curves 
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reach a Newtonian plateau around 10 s-1, especially 8% and 16%. Therefore, RBC 

volume fraction affects both viscosity and the degree of non-Newtonian behavior. 

 
Figure 2.6 - Viscosity as a function of shear rate of RBC suspensions at 9 different Htc. 

The error bars represent the standard deviation 

Moreover, Figure 2.7 presents viscosity at four selected shear rates (i.e. 0.5, 1.5, 11 

and 193 s-1) for the Htc values of Figure 2.6. The dependence of viscosity on RBC 

volume fraction can be fitted with an exponential law with exponent ranging from 0.034 

(shear rate 0.5 s-1) to 0.024 (shear rate 193 s-1). 

 
Figure 2.7 - Viscosity as a function of Hct at four different shear rates 

For data reported in Figure 2.6, it has been extrapolated the yield stress values 

according to Casson’s law (black circles in Figure 2.8). The value at Htc 8% was not 

reliable due to the very low viscosity of the sample and hence it has not been reported 

here. Experimental data of this work have been compared with previous papers with 

which we are in good agreement. Our data have been fitted with a power law having an 

exponent of 3.6 (r2=0.996); this value is very close to the ones of other works (ranging 
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from 2.9 to 3.3). The little overestimation could be related to the wide range of Htc used 

that nobody has ever investigated. 

 
Figure 2.8 - Yield shear stresses obtained from Figure 2.6 plotted versus Htc (black 

circle). Curved line through points is a power law regression (exponent = 3.6, r2 = 0.996). 

Triangle up [11], diamond [145], square [158], and triangle down [40] are data from previous 

works   

Regarding viscoelasticity, the effect of Htc (60% and 90%) on RBC suspension 

moduli is shown Figure 2.9. Preliminary amplitude sweep tests have been performed for 

each Htc values (Figure 2.9B). The linear viscoelastic region has never exceeded 10% 

of strain. Appling oscillatory deformations it can be noticed that increasing Hct induces 

G’ and G’’ to approach one to each other and to be less dependent on frequency. 

Furthermore, they are shifted up suggesting a trend towards an elastic-solid like behavior 

(Figure 2.9A). 

 
Figure 2.9 - (A) G’ and G’’ as a function of angular frequencies for RBC suspensions at 

60% and 90%; (B) Strain amplitude sweep test at 10 rad/s for RBC suspensions of different 

volume fraction [9]. The error bars represent the standard deviation 

Mechanical spectra of 60%, 95%, and 99% were also carried out. In Figure 2.10 it is 

reported the dependence of G’ and G’’ from Htc at 1 rad/s and 11.7 rad/s. Viscous 

component is always higher than the elastic one except for Htc 99% at 1 rad/s. 
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Figure 2.10 - G’ and G’’ as function of Htc at 1 rad/s (A) and 11.7 rad/s (B) 

This inversion is more evident looking at the plots of Figure 2.11. Loss modulus G’’ 

against storage modulus G’ as function of angular frequency is reported for six Htc 

values (Figure 2.11A). G’’ values are higher than the ones of G’ indicating that the 

viscous response of the material prevails on the elastic one, this trend decreasing at 

increasing Hct. Only in the case of Htc 99%, G’ results higher than G’’. Moreover, the 

higher is Hct, the more the curves are shifted rightward, making the response of the 

material closer to the one of an elastic solid. In addition, tan δ that represents the ratio of 

the viscous to the elastic response (energy loss/energy stored) of the materials is reported 

in Figure 2.11B. It decreases with RBC volume fraction and at the highest Htc (i.e. 99%), 

the loss tangent is smaller than 1 indicating that G’ is bigger than G’’. As in the case of 

G’ vs G’’ plot, the trend of tan δ clearly indicates that very high concentrated suspension 

of RBC approaches to an elastic solid behavior. 

 
Figure 2.11 - (A) G’’ vs G’ and (B) loss tangent as a function of angular frequency for six 

RBC suspension of different volume fractions. Re-adapted from [9]. The error bars represent 

the standard deviation 

Cox-Merz rules has been applied to compare oscillatory and steady shear conditions 

for four Htc values. Figure 2.12 shows viscosity and the magnitude of complex viscosity 

as function of shear rate and angular frequency, respectively. For all Htc values, 

viscosities show a good agreement leading to further support to the hypothesis that in 

both continuous and oscillatory flow, the disruption of the 3D RBC network occurs. 
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Complex viscosity values are slightly higher than viscosity ones at low shear 

rates/frequencies; such discrepancies could indicate the presence of some 3D structures 

in the low frequency range. 

 
Figure 2.12 - Comparison of viscosity and magnitude of complex viscosity by applying the 

Cox-Merz rule for A. Hct=45%; B. Hct=60%; C. Hct=75% and D. Hct=90% [9]. The error 

bars represent the standard deviation 

2.2.4 Effect of RBC aggregation 

The tendency of RBC to aggregate in packed structures in important issue in the 

regulation in blood flow, mainly because it causes an increase of blood viscosity, 

especially at low shear rates. The formation of complex 3D structures of RBC is 

dependent on both the number of RBC involved in the process and the cohesive forces 

within aggregates; the latter is usually expressed in terms of the shear stress/shear rate 

required to disperse the aggregate. In physiological conditions, RBC aggregation is 

promoted by several plasma proteins, primarily fibrinogen, whereas in vitro it is induced 

by the addition of model polymer, such as dextran [25, 159].  

The effect of dextran addition (two concentration, 1.5 and 3 mgDextran/mlblood) on 

whole blood viscosity is reported in Figure 2.13.Figure 1.10 It can be noticed that 

viscosity of blood samples with the addition of dextran is very close to the control one; 

in fact the two sets of dextran data superimposing to each other and also to the control 

curve indicating that even small shear rates break aggregates induced by dextran.  

Nevertheless, a particularity is present in both dextran curves indicating a change of the 

samples microstructures: a small hump (from 5.6 to 11 s-1) in which viscosity is nearly 

independent on shear rate. A possible explanation could be the breakage of 3D networks 

formed at low shear rates due to the fact that shear rates increase from low to high values. 
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In the inset of Figure 2.13, it has been reported the viscosity curves increasing (down-up 

curve) and then decreasing (up-down curve) shear rate for sample with 3 mgDextran/mlblood. 

The lowering of the viscosity in the up-down curve could be attributed to the onset of 

sedimentation of larger clusters which is related to an increased tendency to form RBC 

aggregates due to dextran addition. Comparing the trend of down-up and up-down curves 

in the inset of Figure 2.13 (enhanced aggregation) and Figure 2.1A (whole blood with 

physiological aggregation) it should be noticed the discrepancy. 

 
Figure 2.13 - Viscosity as function of shear rate for whole blood master curve and whole 

blood added with dextran at two concentrations (1,5 and 3 mg/ml). In the inset, circle 

represents the down-up curve, triangle represents up-down curve [9]. The error bars represent 

the standard deviation 

Regarding the mechanical spectra of RBC suspensions with dextran, Figure 2.14A 

shows a trend similar to Figure 2.9A; the increase of dextran concentration induces an 

upward shift of both G’ and G’’, and in the approach of the them. The presence of an 

aggregating agent makes G’ and G’’ more independent on frequency, thus suggesting an 

elastic-solid like behavior. As report for the Htc dependence, amplitude sweep test have 

been carried out to characterize the linear viscoelastic region (Figure 2.14B). 

 
Figure 2.14 - (A) G’ and G’’ as a function of angular frequencies for whole blood and 

whole blood with dextran addition at two concentration. (B) Strain amplitude sweep test at 10 

for the same samples [9]. The error bars represent the standard deviation 
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Also in this case, by applying the Cox-Merz rule on the data of Figure 2.13 and 

Figure 2.14A, a little gap between steady state and oscillatory sets of data is found at low 

shear rates/frequencies, with complex viscosity values slightly higher than viscosity ones 

(Figure 2.15). This could indicate that at higher RBC volume fraction it is still possible 

to find some 3D structures in the low frequency range. 

 
Figure 2.15 - Comparison of viscosity and magnitude of complex viscosity by applying the 

Cox-Merz rule for (A) Hct=45% and for whole blood added with dextran at 1,5 mg/ml (B) and 

3 mg/ml (C) [9]. The error bars represent the standard deviation 

In the plot of G’’ vs G’, the three sets of data lie on curves of different slopes. 

Therefore, the presence of dextran influences the rheological behavior of the samples in 

terms of microstructure. In fact, for an elastic network, the number of elastically active 

crosslinks and the concentration of high molecular weight species are strictly related to 

G’ and G’’. Moreover, tan δ values decrease with dextran concentration although they 

are higher than 1 for the two dextran concentration in the entire range of frequency. This 

confirms that the behavior of RBC suspensions approaches the one of elastic solids when 

the adhesion strength, promoted by the presence of dextran, increases. 

 
Figure 2.16 - (A) G’’ vs G’ and (B) the loss tangent as a function of angular frequency for 

whole blood and whole blood added with dextran at two concentrations (1,5 and 3 mg/ml). The 

solid line represents the line bisector [9]. The error bars represent the standard deviation 

2.3 Summary 

In this chapter, an extensive rheological characterization of human blood has been 

performed. 

Firstly, the master curves of flow curve (i.e. viscosity as a function of shear rate) and 

mechanical spectra (i.e. elastic and viscous moduli as function of angular frequency) 
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have been obtained in order to have a reference values for whole blood at physiological 

Htc. For both curves, the experimental protocol was tuned until reaching the best 

experimental procedure due to the difficult to manage a biological fluid such as blood.  

Flow curve shows the typical shear thinning behavior of blood which is intimately 

related to the dynamics and interactions among RBC. 

The main results is the blood linear viscoelasticity characterization by small 

amplitude oscillatory flow. Elastic and viscous moduli were measured in the range 0.1-

30 rad/s and G’’ was found to prevail on G’. Amplitude sweep tests suggest that blood 

microstructure is not significantly perturbed in the linear viscoelastic regime. This would 

point to the reversible deformation of the RBC network as the main source of blood 

linear viscoelasticity. However, some authors have related blood viscoelastic moduli at 

high Hct to RBC membrane rheological properties [160], which is known to exhibit a 

viscoelastic behavior [161, 162]. 

The effects of RBC volume fraction and of the addition of dextran have been also 

investigated under both steady state and oscillatory deformations. The Cox-Merz rule 

was essentially valid, with some deviations at lower frequencies/shear rates. Regarding 

RBC volume fraction, a very wide range of Htc values (from 8% to 99%) was 

characterized. Flow curve data were used to extrapolate yield stress values which are in 

good agreement with previous works. In addition, the data of this thesis cover an Htc 

range never investigated before. 

The results of this chapter could help in the understanding of blood viscoelasticity 

although its source is still to be fully understood. 
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3. Vascular endothelial cells 

This chapter describes the methods and experimental protocols developed for the 

endothelialisation of a microchannel. Cell culture protocols and a home-made perfusion 

system features are reported. Subsequently, results on cell morphology in static and flow 

conditions are shown. Staining protocol of GCX is also presented as well as the effect 

of an enzymatic treatment aimed to the remove negative charge of the GCX. 

3.1 Materials and methods 

3.1.1 Cell culture 

Primary HUVEC (Sigma-Aldrich) was cultured at 37°C in a 5% CO2 incubator on 

uncoated tissue culture polystyrene flasks. ECGM (Sigma-Aldrich) was changed every 

day. After reaching 85% confluence, HUVEC were sub-cultured using trypsin (0.25 % 

trypsin-EDTA, Sigma-Aldrich). ECGM was removed and cells were gently washed with 

PBS for few seconds. After discarding PBS, 4-5 ml trypsin was added and gently 

distributed on the whole flask surface to ensure the solution covers all the cells. After 3-

4 seconds, 4.5 ml of trypsin was removed and the flask was put in the incubator for 2-3 

minutes. To verify the trypsinization progress, cells were monitored under an inverted 

microscope until they become rounded. About 5 ml of ECGM was added to the flask to 

inhibit further tryptic activity. Cells were transferred in conical tube and centrifuged at 

1200 RPM for 5 minutes. Supernatant was aspirated from the tube without disturbing 

the cell pellet which was re-suspended by a desired ECGM volume. By using a Neubauer 

camera, cells were counted and subsequently placed in new flasks. ECGM was changed 

every 1-2 days and HUVEC discarded after 8 passages. 

3.1.2 Flow chamber 

A commercial slide made up of 6 microchannels (µ-Slide VI, Ibidi) were used to 

apply a controlled flow to HUVEC monolayer. Each microchannel is coated with 

collagen type IV and has a rectangular geometry with height (h) 0.4 mm, width (w) 3.8 

mm, and length (L) 17 mm. The hydraulic diameter of such rectangular ducts is 723 µm. 

In steady laminar flow and being h much smaller than w, it is possible to control in 

a very easy way the wall shear stress acting on the cells. The wall shear stress can be 

determined using the following equation: 

 
𝜏 =

6𝜂𝑄

𝑤ℎ2
       Equation 21 

where τ is the wall shear stress (dyn/cm2), η is viscosity of the culture medium (Pa·s), 

Q is the flow rate (ml/s), h and w are the microchannel dimensions. 

HUVEC were seeded into the microchannel starting from a suspension of about 106 

cells/ml. A volume of 60 μl is quickly dispensed in the channel, covering its whole 
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bottom surface. After 2-3 hours, cells were attached on the bottom side of the channel 

and ECGM can be added to fill the reservoir of the flow chamber. Cells were cultivated 

in the incubator for 1-2 days in order to allow HUVEC growth until reaching confluency. 

A complete medium exchange was made every 24 hours. 

3.1.3 Perfusion systems set-up 

HUVEC were subjected to shear stress stimulation through custom made flow setup 

shown in Figure 3.1. Two different perfusion systems, namely A and B, have been 

developed. The flow circuits are closed and ECGM is pushed through the tubes by the 

action of a peristaltic pump. 

The system A is shown in Figure 3.1; starting from point A, the ECGM enters the 

system and arrives on the HUVEC monolayer into the Ibidi flow chamber. After that, 

the fluid flows into the pump, passes through a Y-junction and returns in the reservoir. 

Tubes are made of PVC or Teflon, and have an ID of 1/16”. 

 
Figure 3.1 - Perfusion system A 

One of the main problem with such systems is the formation of air bubbles which 

can be pushed into the tubing system causing damage to the cells. For this reason the 

reservoir was placed upside, so any air bubble that is formed goes upward (Figure 3.2A); 

the feeding tube is located on the bottom and the drain tube is placed in an upper position. 

A Y-junction was added just before the reservoir in order to foresee the possible 

addition of fluids, without the need to stop the experiment. A valve allows the coupling 

to the system when necessary; in addition, a syringe adapter is provided in order to 

connect common plastic syringes (Figure 3.2B). 
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Figure 3.2 - Details of (A) reservoir and (B) Y-junction 

The perfusion system B presents the same features of system A, except for the ID 

which is 1/8” and for the total tube length. Moreover, peristaltic pump is different 

allowing higher RPM values. 

3.1.4 Perfusion systems characterization 

The systems were calibrated for predicting the relation between RPM and flow rate. 

In order to calculate the flow rate, a solution of 1 µm polystyrene beads (Polybead, 

Polysciences) was pumped through the system. The flow chamber was placed on an 

inverted microscope and images were acquired for data analysis. Average beads velocity 

was obtained by tracking the positions frame by frame at the centre of the channel (i.e. 

the fluid streamline are constant) for at least 20 beads. The velocity was determined by 

plotting the bead displacement as a function of time. As expected, these plots were linear 

and the slope was taken as velocity. Then, flow rate was calculated multiplying the 

average beads velocity for the channel area. A calibration curve is reported as an example 

in Figure 3.3. 

 
Figure 3.3 - Perfusion system B calibration 
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During the experimental campaign, systems A and B were implemented 

continuously (e.g. tubing length was modified, components position were changed, etc.). 

For each perfusion system, a separate calibration curve was measured. The maximum 

flow rate achievable is about 5 ml/min for system A and about 16 ml/min for system B. 

In some cases, calibration curves were calculated by weighing the volume of liquid 

pumped at fixed intervals. 

In addition, at the maximum flow rate achievable with the systems, Reynolds 

number, entrance length and pressure drop were calculated (Table 1). Re values indicate 

that the experimental conditions ensure the laminar regime in the microchannel. The 

fully developed flow is at 1.10 and 4.11 mm respectively for system A and B from the 

inlet of the microchannel which is 17 mm long; every experiment was carried out beyond 

such values. Pressure drops are negligible being in the order of magnitude of mbar. 

 System A System B 

Re 34.4 128 

Le [mm] 1.10 4.11 

ΔP [mbar] 6.10 1.67 

Table 1 - Reynolds number, entrance length, and pressure drop for both systems 

3.1.5 Flow experiment 

Once HUVEC reached confluency in static condition, shear stimulation was applied. 

Before starting the experiment, the whole system and the ECGM were equilibrated 

overnight in the incubator in order to avoid the formation of gas bubbles over time. 

Flow chamber, medium reservoir and tubing were placed inside the cell incubator 

while the peristaltic pump was placed outside close to the incubator. 

Cells were incubated under either static conditions (no shear) or shear stress for up 

to 8 days. The steady shear stress applied was of 19 dyn/cm2, which is a typical value of 

human circulatory system [163]. 

3.1.6 Microscopic imaging and cellular morphology analysis 

Greyscale TIFFs images of HUVEC in static and under flow conditions have been 

captured by using an inverted phase-contrast microscope (Nikon) equipped with 10x and 

20x objectives. 

Image analysis was carried out by using a commercial software package (Image Pro 

Plus 6.0). The morphology of single cells in the monolayer was detected automatically 

by subjecting images to contrast enhancements and smoothing functions to optimize cell 

border (Figure 3.4A). Subsequently, a threshold was applied to binarize the image, 

removing small particles and artefacts (Figure 3.4B). Measurement tools allow to count 

each cell and characterize several morphological parameters such as areas, perimeters, 

lengths, major and minor axes, angles etc. (Figure 3.4C). Objects having area less than 

50 piexl2 were automatically excluded. 
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Figure 3.4 - Image analysis process. (A) Image with contrast enhancement, (B) threshold 

application, (C) cell count  

The orientation angle (ϑ) of the cells subjected to shear flow was measured 

considering the angle between the major axis of the cell and the orthogonal direction to 

the flow (Figure 3.5A). Figure 3.5A reports two examples: cell A presents an orientation 

angle ϑA of about 65° while cell B of about 105°. The value was calculated automatically 

with Image Pro Plus, as reported previously. By using the polar plot function of Matlab 

routine, the width of the channel has been divided into 25 equal slices of 7.2° each one 

(Figure 3.5B) in order to cover the whole angle range (0-180°). By this way it is possible 

to associate each cell angle into the appropriate slice obtaining an angle histogram in 

polar coordinates which gives information on how cells orientation is distributed along 

channel width.  

 

Figure 3.5 - (A) Scheme of the orientation angle calculation. Shapes A and B are two 

examples of cells with their angle calculation. (B) Partitioning of the channel width  

Moreover, shape index was evaluated by using the following formula for each cell: 

 𝑆𝐼 =
4𝜋𝐴

𝑃2
                    Equation 22 

where A is the cell area, and P is the length of the cell perimeter. Thus, SI values 

range from 0 for a straight line to 1 for a perfect circle. Area and perimeter were 

evaluated automatically. 
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Immunofluorescent staining of the GCX was obtained by using WGA-Alexa Fluor 

488 (Molecular Probes), which excites at 495 nm and emits at 519 nm. WGA is a lectin 

that binds to SA an important component of endothelial GCX [164]. Cells were washed 

twice with PBS and then a WGA solution (0.01 mg/ml) was applied to live cells for 30-

40 min at 37°C. Before visualization, another washing step was done. 

The characterization of GCX layer was carried out with a CLSM (Leica TCS SP5). 

All CLSM images (512x512 pixels, 8 bit pixel depth) were acquired using a Leica HCX 

PL APO CS 63×1.4 NA oil immersion objective. To observe WGA specificity, an argon 

laser (λ=488 nm) was used in conjunction with a long-pass filter (λ=505 nm). 

GCX contribution was assessed via enzyme digestion. HUVEC monolayer was 

incubated with 2.5 U/ml neuraminidase (Sigma-Aldrich) for 30 min at 37°C while the 

control group was kept in the ECGM. After incubation, PBS was used to wash the 

HUVEC twice before images acquisition. 

In order to quantify the expression of GCX in cells in different experimental 

conditions, a z-stack was recorded from their apical to basilar surfaces. Then, the slices 

with the maximum mean fluorescence intensity was chosen for the quantification. To 

compare all samples, value of fluorescence intensity was normalized respect to the gain 

value, chosen during acquisition.  

3.2 Results 

3.2.1 Morphological analysis 

HUVEC seeded in Ibidi microchannel were either kept in static culture conditions or 

exposed to shear at 19 dyn/cm2 up to 8 days into cell incubator. Cells were cultured until 

a confluent monolayer for at least one day before the start of shear experiments. Ibidi 

slide allows to culture up to 6 microchannel simultaneously; another microchannel in 

which fresh ECGM was added and replaced every day during the subsequent days was 

used as control. Images of HUVEC under flow were acquired every day (Figure 3.6). 

The flow direction is from left to right and wall shear stress applied is 19 dyn/cm2 which 

is typical value of arterioles and venules in human body [163]. It can be observed that 

HUVEC in static conditions are randomly oriented throughout the channel. On the other 

hand, the orientation of cells along flow direction increases as the days passes. Moreover, 

while there is not a significant morphology change after three days, from the fourth day 

the elongation is considerable. After eight days, HUVEC are completely elongated in 

shape and well aligned to the flow direction. 
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Figure 3.6 - Images of HUVEC under flow for eight days. Flow direction is from left to 

right. Objective 10x. Scale bar 100 µm 

In order to quantify morphological parameters in Figure 3.6, a histogram plot in polar 

coordinates was created according to method in paragraph 3.1.6 (Figure 3.7). Polar plot 

is made of 25 slices of 7.2° each one. The red axis indicates the percentage of cells in a 

slice (e.g. 10 indicates 10% of all cells). Orientation angles of cells are distributed into 

belonging slice and plotted as relative frequency. Images were captured at multiple 

locations along the length of the microchannel resulting in at least 300 cells acquired for 

each day.  

HUVEC in static condition are randomly oriented as can be observed from the open 

fan typical of a uniform distribution of values. Already after one day, an appreciable 
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alignment in the direction of flow is present, as already reported in previous works [165, 

166]; about 80% of cells are in the range 60°-120°. The percentage of cells aligned in 

the flow direction increase as days pass. After 8 days, all cells show orientation angles 

in the range 60°-120°. 

 
Figure 3.7-– Polar plots of orientation angles. Flow direction is at 90° 

The SI was evaluated following the Equation 22. In Figure 3.8, each point represents 

the SI of a cell. In static conditions (Figure 3.8A), SI values are randomly distributed 

between 0 and 1 indicating that cells have shapes ranging from elongated to rounded 

respectively. The average value (grey line) is about 0.5. On the other hand, after 8 days 

under flow (Figure 3.8B), a significant decrease of the SI is observed.  
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Figure 3.8 - SI counting for cells in static condition (A) and after 8 days under flow (B). 

Each point represents the SI value of a cell. Grey line highlights the average value of the SI 

The average values of SI are reported in Figure 3.9. SI value is almost constant until 

the fifth day. A slight decrease is noticeable on the sixth day, while a further significant 

decrease is observed on the day 8; in fact, a statistically significant difference of the SI 

is detected between static and 8 days (P value≤0.001). Thus, it can be possible to assert 

a cell stretching after 8 days under flow. 

 
Figure 3.9 - Mean SI for all days. The difference between the sets of data in static and 8D 

is significant (P value≤0.001). The error bars represent the standard deviation 

3.2.2 GCX characterization 

Among the wide number of components of GCX (someone is still unknown), SA is 

the most commonly observed components and it is used as representative of the entire 

GCX [167]; SA is specifically bound by WGA. 

In Figure 3.10A and Figure 3.10B, static and sheared cells, the latter subjected to 19 

dyn/cm2 for 8 days, have been stained by WGA. It is evident, as already demonstrated 

in Figure 3.6, that flow induces a strong change in the morphology of cells, which appear 

more elongated in the flow direction. Staining protocol results efficient in both cases, 

and has allowed the estimation of the thickness of the cell monolayer by a z-stack 

acquisition.  



49 

 

Figure 3.10 - Confocal images of HUVEC in (A) static (B) sheared conditions. Flow 

direction is from bottom to top. Green=SA stained by WGA. Scale bar 35 µm 

From 3D reconstruction (Figure 3.11B), it is possible to observe that elongated cells 

show a finer monolayer compared to static cells (Figure 3.11A). In fact, observing planes 

x-z and y-z, the different thickness of the cells in the two cases is evident; sheared cells 

present thickness of about 5 µm whereas the static ones about 9 µm. The thickness has 

been calculated as the distance from the apical to basal surface. Moreover, the x-y plane 

shows the enface image at a given z depth that confirms the elongation in the direction 

of flow of the sheared cells compared to the static ones. Furthermore, the wavy 

fluorescent profile in the ortho images is indicative of the high specificity of WGA for 

molecules on the cell membrane. It is worth mentioning that working with cell culture is 

very complex and is almost impossible to recreate the same conditions. 

 
Figure 3.11 - 3D confocal ortho reconstruction of static (A) and sheared cells (B). Flow 

direction is from bottom to top. Green=SA stained by WGA. Scale bar 10 µm 
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Cells under flow has been then treated by the addition of an enzyme that cleaves SA 

(i.e. the component that gives the negative charge) on the GCX. The aim of this 

experiment is to investigate a possible key role of SA in the flow behavior of RBC. Being 

this component stained by WGA, the treatment with enzyme should influence the value 

of the fluorescence intensity, which could only due to the SA residues. Normalized mean 

fluorescence intensity has been calculated as reported in paragraph 3.1.6. Such 

experiments have been performed on aligned cells after eight days under flow. 

A comparison between sheared cells, before and during treatment and after two 

washes with PBS has been shown in the histogram in Figure 3.12; in addition static cells 

without enzyme treatment has been reported as a control. Firstly, it can be seen that 

fluorescence value of sheared cells results double than the static ones. Such result leads 

to the consideration that in static conditions the GCX is not fully developed while the 

flow induces the highest expression as reported in previous works [168, 169]. Regarding 

enzyme treatment, it is clear that when enzyme acts, a decrease in the fluorescence 

intensity is noticeable, already during its action. Washing with PBS does not affect 

further the intensity which present a similar value. Although the fluorescence decreases, 

it does not reach zero because enzyme fails to cleave all SA. Measurements have been 

performed on three different fields of view and results are in good agreement, as visible 

from small error bars. 

 
Figure 3.12 - Histogram of the normalized mean fluorescence intensity HUVEC in static 

(black), sheared before enzyme treatment (dark grey), sheared during enzyme incubation (light 

grey), and sheared after enzyme treatment (white). Mean values are calculated on three fields 

of view. The error bars represent the standard deviation 
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3.3 Summary 

In this chapter the morphological characterizations of HUVEC in static and under 

flow condition have been performed.  

The experimental protocol for endothelialisation of a microchannel has been 

developed either for the cell culture or for the reproduction of relevant physiological 

condition in vitro. Particular focus has been aimed to guarantee appropriate cell 

conditions up to 8 days. The wall shear stress applied was 19 dyn/cm2, a typical value of 

human vasculature. 

The monitoring of cell monolayer has been possible by acquiring images every day. 

Results show that orientation angle of cells has already been evident after one day under 

flow. As the experiment progressed, the percentage of cells orientated in the flow 

direction increase, reaching the maximum after 8 days; here all cells present orientation 

angle in the range 60°-120°.  

The effect of flow on the shape index has been also evaluated. Values indicates that 

a significant elongation of cells is evident after the eighth day. 

Finally, a quantification of the fluorescence intensity has been carried out by using 

CLSM in order to highlight the expression of GCX under static and flow conditions. One 

of the main GCX components (i.e. SA) has been selectively bound by WGA. Fluorescent 

images confirm the different cell morphology between static and flow condition and give 

information regarding cell thickness. In fact, it has been reported in ortho reconstruction 

that cells under flow are thinner than static ones, 5 and 9 µm respectively. In addition, 

GCX electronegativity has been reduced via enzymatic digestion of sialic acid. 

Several techniques have been used to estimate GCX thickness and structure [170] 

although the most widely adopted is the CLSM [164]. Such approach is questionable 

due to the technical limitation of the CLSM; in fact, its maximum axial resolution is 0.7 

µm which is a value very close to the supposed GCX thickness [103]. Recently, super-

resolution microscopy has been used to characterize GCX dimension which has 

estimated in 1.33 µm [171]. However, it is necessary to emphasize that this is the only 

work that uses super-resolution microscopy for GCX investigation. 
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4. RBC-endothelial cells: flow assay 

This chapter reports experiments aimed to examine the role of endothelial cells in 

RBC flow behavior. Firstly, the preparation procedures of the samples and the 

subsequent image analysis details are reported. Velocity profiles of hRBC suspension 

along the channel width and height are discussed. Moreover, the possible influence of 

the GCX is evaluated. Finally, preliminary results of Plasmodium falciparum infected 

RBC are reported. 

4.1 Materials and methods 

4.1.1 RBC samples 

RBC were processed following the standard protocol for hemorheological tests 

[142]. Fresh venous blood samples were drawn from healthy donors and collected into 

Vacutainers (BD) containing EDTA. First blood was centrifuged at 1,600 RPM for 15 

minutes to separate RBC from plasma; after centrifugation plasma and buffy coat were 

gently aspirated. Then, RBC were washed twice with PBS obtaining a pure RBC 

suspension without platelets, white blood cells and plasma proteins. RBC were stored at 

4°C until the experiment began and used within 6 h of collection.  

A solution made of ACD (0.6% citric acid, 2.3% sodium citrate, 1.1% anhydrous 

dextrose and 96% water) and bovine serum albumin (1 g of albumin in 5 ml of PBS) was 

used as suspending medium. ACD is mainly used as an anticoagulant to preserve blood 

whereas albumin is the most abundant blood plasma protein and it is useful to regulate 

the osmotic pressure of the medium. RBC viability was checked before each experiment 

by observing cell morphology under static conditions at high magnification. 

RBC volume fraction was selected depending on each experiment. Htc values was 

varied from 0.5% to 10%; the latter was selected to match the Htc value in 

microcirculation [172]. Diluted blood samples were necessary during acquisition along 

the microchannel height; in fact higher Htc values did not allow the penetration of the 

light into the sample. 

4.1.2 Malaria 

Malaria infected cells by Plasmodium falciparum species were kindly provided by 

Pietro Cicuta’s group at the University of Cambridge (UK). iRBC were cultured under 

a low-oxygen atmosphere by standard methods reported in Crick et al. [173], and Tiffert 

et al. [174]. IRBC were incubated at 37°C in growth medium (RPMI-1640 supplemented 

with 0.5% AlbuMAX II, Sigma-Aldrich). The medium was changed every day and 

healthy cells added appropriately to avoid saturation of parasitized cells. Htc in culture 

flasks was 1-2% while parasitemia (percentage of iRBC compared to hRBC) at most 

5%. Cultures were routinely synchronized in order to keep the parasites within a narrow 

stage range. 
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IRBC was labelled with Hoechst 33342 (Molecular Probes), a fluorescent dye that 

stains double strand DNA of living cells. Hoechst was added to iRBC at a concentration 

of 200 µg/ml and incubated for 30 minutes. 

4.1.3 Vascular endothelial cells 

Vascular endothelial cells were prepared as described previously (chapter 3). In 

order to recreate physiological conditions in vitro, primary HUVEC were cultured into 

Ibidi microchannel in static condition until a monolayer is formed. After that, a perfusion 

system was connected to the microchannel in order to apply a shear stress stimulation 

on the monolayer inducing cell alignment. The experiments of this chapter were carried 

out with HUVEC subjected to a steady shear stress of 19 dyn/cm2 for 4 days. 

4.1.4 Experimental apparatus 

Images of the flowing RBC suspensions were captured with a Zeiss Observer Z01 

equipped with a high-speed video camera (Phantom v711) using 20x, 40x and 100x 

objectives. The microscope was provided with a programmable motorized x-y-z stage 

that allows the movement of the sample to the desired position. For the experiments with 

malaria iRBC, an ATI-Eclipse inverted microscope (Nikon) was used. It was placed in 

a custom-built temperature-control stage to maintain the optimal culture temperature of 

37°C during imaging experiments. Videos were acquired with an AVT Pike F100B 

camera at frame rate ranging from few fps up to 300 fps depending on the size of the 

acquisition window. 

RBC suspensions were fed in the microchannel by using syringe pumps (Harvard 

Apparatus) by which it was possible to impose the desired flow rate. Moreover, knowing 

the geometry of the channel, it is possible to calculate the corresponding wall shear 

stress. Reynolds number, entrance length, and pressure drop were calculated in the 

microchannel at the maximum flow rate used for the experiment with RBC suspensions 

(Table 2). Reynolds number value ensures a laminar flow in the microchannel and it is 

a physiological value of arterioles. All data were obtained after 4.9 mm from the inlet of 

the channel (entire channel is 17 mm) in order to guarantee the fully developed flow. 

The pressure losses in the whole system are negligible. 

Re 153.4 

Le [mm] 4.9 

ΔP [mbar] 0.21 

Table 2 - Reynolds number, entrance length, and pressure drop at maximum flow rate 

Velocity profiles were obtained by a tracking procedure carried out by Image Pro 

Plus. It consists in a manual selection of the RBC whose x-y position is recorded by the 

software. This procedure is repeated for at least 20 RBC in the image and for at least 10 

consecutive frames. Each position of RBC is automatically marked to facilitate the 

identification of the next position (Figure 4.1). Cell positions were plotted as a function 

of time, allowing the estimation of the RBC velocity (i.e. slope of the plot). 
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Figure 4.1 - The green line is an example of RBC tracking 

The RBC velocities were stored and exported for subsequent data analysis. For each 

flow rate, at least 3 fields of view were recorded and the average value is reported in the 

following plots. The error in the manual image analysis was taken into account by 

tracking the same RBC several times and it resulted negligible, being about 0.3 µm for 

both x and y coordinates.  

The acquisition procedure is affected by the refractive index of the oil between the 

front lens and the specimen cover glass (RI 1.52) and that of the suspending medium (RI 

1.33). All data were hence corrected considering these values. 

Due to the time consuming procedure to acquire the entire channel width and height, 

data were acquired on the half of each dimension. For the channel width, two fields of 

view were acquired: the former close to the channel wall and the latter in the centreline. 

Regarding axial dimension, the entire half-height was explored. In both cases, data were 

acquired on the first RBC layer in focus starting from the bottom of the channel.  

To better visualize the velocity profile, data were reversed symmetrically respect to 

the centreline. It should be emphasized the importance of the acquisition position along 

the channel height because it can strongly influence the results.  

4.2 Velocity profiles along channel width 

The experimental velocity profiles along the channel width have been obtained by 

tracking and measuring the velocity of individual RBC flowing in the microchannel at a 

fixed height. The Htc has been chosen at 10% which is a physiologically relevant 

conditions. More concentrated suspensions have been tested but the turbidity of the 

sample has not allowed a clearly defined image acquisition. 

The velocity profiles as a function of the channel width are reported in Figure 4.2 in 

which each point represents the velocity of a RBC. Figure 4.2A refers to bare channel, 

i.e. without endothelial cells, while Figure 4.2B refers to a channel with a HUVEC 

monolayer on the bottom without shear stimulation. As expected, for both cases it is 

possible to observe a flat (plug-like) fluid velocity profile and increasing wall shear stress 

induces a shift upward of the velocity values.  
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Figure 4.2 - Experimental velocity profile along the channel width in (A) bare and (B) 

endothelialized channel. Black=14.3 Pa, dark grey=10.7 Pa, light grey=6 Pa, white=3.6 Pa 

A comparison between average values in the middle of the channel is reported in 

Figure 4.3. As visible, RBC velocity in bare channels has been always higher than 

endothelialized ones. The percentage difference for each wall shear stress are reported 

on the bars; excluding 6 Pa which seems to be unreliable, the decrease varies from 5.9% 

to 8.9%.  

This results is reasonable if compared with previous fluid dynamic characterizations 

of small microcapillaries lined with polymer brushes [110]. A decreasing in RBC 

velocity in coated microchannels is expected compared to bare microchannel due to the 

dissipation caused by the presence of the brush. This observation can be extended to the 

case of a bigger channel such as in this work.  

 
Figure 4.3 - Plateau velocity as function of wall shear stress for bare (black) and 

endothelialized (grey) channel. The error bars represent the standard deviation 

By using Equation 19 it is possible to calculate the resistance to flow of bare and 

endothelialized channels. In the latter case, the HUVEC monolayer is approximated to a 
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flat surface having height half than the height of a single cell which has been estimated 

in 9 µm (see paragraph 3.2). Therefore, the channel with the HUVEC monolayer has a 

height of 395.5 µm instead of 400 µm. The resistance to flow results 1.79x1012 kg/m4s 

and 1.88x1012 kg/m4s for the bare and endothelialized channel respectively. The 

percentage difference is of 5% which is a value slightly lower than the velocity 

difference; thus the reduction of the channel lumen is not the only reason for the 

decreasing of the velocity. This discrepancy could be due to biochemical factors induced 

by the HUVEC monolayer. 

4.2.1 GCX contribution 

In order to investigate the possible role of GCX in the RBC flow behavior, HUVEC 

have been treated with neuraminidase (see paragraph 3.1.6). The enzyme cleaves 

selectively sialic acid which is responsible for the negative charge of the GCX.  

Figure 4.4 shows the comparison of the plateau velocity for HUVEC untreated, i.e. 

used as control, and treated with enzyme. In both cases, cells have been subjected to a 

wall shear stress of 19 dyn/cm2 for 4 days. It is not possible to appreciate a significant 

difference between control and enzyme treated sample leading to the conclusion that the 

GCX charge does not influence RBC flow behavior.  

 
Figure 4.4 - Plateau velocity as function of wall shear stress for untreated HUVEC (black, 

control) and neuraminidase treated HUVEC (grey, enzyme). The error bars represent the 

standard deviation  

4.3 Velocity profiles along channel height 

Images at different axial position were captured on diluted blood samples to allow 

the path of light enters into the sample. In these experiments, blood has been tested at 

Htc value of 0.5%. Acquisitions have been carried out at different penetration depth by 

using a motorized microscope having axial resolution in the order of magnitude of few 

nanometres. Thus, the height was imposed automatically at fixed depth and two 
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magnification has been used, i.e. 100x and 20x. The latter was necessary to capture 

images in the middle of the channel (e.g. 200 µm from the bottom of the channel). 

Velocity profiles as a function of the normalized channel height are reported in 

Figure 4.5A for bare channels and Figure 4.5B for endothelialized channels at four wall 

shear stress. The parabolic profile is evident and it is in agreement with the fluid dynamic 

theory being h<<w. By a first qualitative observation, a very similar trend between bare 

and endothelialized channel is noticeable. 

 
Figure 4.5 - Experimental velocity profile along the channel height in (A) bare and (B) 

endothelialized channel. Black=1.3 Pa, dark grey=0.66 Pa, light grey=0.33 Pa, white=0.13 Pa 

Figure 4.6 reports the comparison between bare and endothelialized channel at 0.13 

Pa (Figure 4.6A) and 1.3 Pa (Figure 4.6B). No significant differences are appreciable in 

the velocity profiles indicating that endothelial layer do not influence the flow behavior 

of RBC in the microchannel investigated. 

 
Figure 4.6 - Experimental velocity profile along the channel height in (A) at 0.13 Pa and 

(B) at 1.3 Pa. Black dots refers to bare channel, white triangle to endothelialized channel 

4.4 Interaction between Plasmodium falciparum iRBC and 

endothelial cells 

Here, preliminary results on Plasmodium falciparum iRBC flowing on HUVEC 

monolayer have been reported. Results reported in this paragraph have been achieved in 

collaboration with the Cicuta’s group at University of Cambridge (UK). 
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Suspension of iRBC-hRBC were prepared at Htc of 0.5% and parasitemia up to 5%. 

HUVEC were aligned under flow as described previously and GCX was removed when 

necessary. In the experiments reported, only early stages iRBC have been considered 

and investigated. 

iRBC can be easily identified by black dots visible into the cell. Examples of iRBC 

are reported in Figure 4.7A and Figure 4.7B. Identification of iRBC is facilitated when 

the sample is extremely diluted (i.e. Htc less than 0.1%) causing a reduced overlapping 

of cells. It becomes more difficult during experiments at Htc higher than 0.5% due to 

sample turbidity. For this reason, malaria parasite has been labelled with Hoechst 33342 

which detects nuclear DNA (Figure 4.7C, red arrows). It is important to note that during 

flow experiments, unbound Hoechst into blood sample labels also HUVEC nucleus 

(Figure 4.7C, green arrows). However, this effect results useful to identify HUVEC 

clearly. Although the staining of malaria parasite has been previously reported in the 

literature [175, 176], this is the first time that the flow behavior of iRBC on endothelial 

cell monolayer is reported. 

 
Figure 4.7 - two iRBC by one (A) and two (B) parasites. (C) DNA labelling of HUVEC 

nucleus (green arrows) and malaria parasite inside RBC (red arrows). Scale bars 10 µm 

HUVEC treated and untreated with neuraminidase and both iRBC and hRBC have 

been considered for the analysis. Plateau velocity of iRBC-hRBC suspensions are 

reported in Figure 4.8. As in the case of hRBC (paragraph 4.2.1), no statistical difference 

can be noticed between treated and untreated cells. Moreover, data suggest that the 

overall behavior of the iRBC-hRBC suspension is not affected by the presence of iRBC. 

This is reasonable due to the low concentration of iRBC, i.e. parasitemia at most 5%. 
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Figure 4.8 - Plateau velocity of iRBC suspensions as a function of wall shear stress for 

untreated HUVEC (black) and neuraminidase treated HUVEC (grey). The error bars represent 

the standard deviation 

Focusing on singles RBC, dynamics of hRBC and iRBC flowing on a HUVEC 

monolayer are shown in the snapshot of Figure 4.9A and Figure 4.9B respectively. The 

applied wall shear stress was 0.13 Pa and the time between each frame was of 0.5 seconds 

in both cases. The hRBC glides on the HUVEC layer in a tank-treading motion while 

the iRBC flips on the cells. After 2 seconds, the latter makes a complete revolution on 

itself. Such behavior is very similar to simulation data reported by Fedosov et al. [134] 

(Figure 4.9C). Authors show that flipping motion is typical of iRBC and it is strictly 

related to Young’s modulus of the membrane which is larger than hRBC. 

 
Figure 4.9 - (A) Sequence of snapshot of a hRBC (A) and an iRBC (B) flowing on 

endothelial cells. (C) Simulation of the phenomenon [134]. Scale bar 10 µm  

It should be emphasized that dynamics of iRBC depends on the stage of parasite 

development; later stages (e.g. trophozoite and schizont) are characterized by a fivefold 
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increase in the membrane Young’s modulus compared with that of hRBC. 

Unfortunately, iRBC in such stages have not been identified in this work. 

Finally, adhesion of RBC on endothelial cells treated with neuraminidase were 

evaluated. RBC suspension has flowed on HUVEC for 1 hour at 0.33 Pa. Then, a 

washing step was applied to remove unattached RBC (1.5 ml/min for several minutes) 

by using fresh culture medium. Figure 4.10A and Figure 4.10B show images acquired 

after channel washing. The most important observation is the presence of both iRBC and 

hRBC adherent on HUVEC as clearly visible in the zoomed images. A quantification of 

attached RBC have been carried out and reported in the histogram of Figure 4.10C; the 

adhesion has been expressed as the number of adherent RBC/mm2 for two wall shear 

stresses. The result shows that there is no difference between infected and healthy cells 

which is quite anomalous because hRBC should not interact with endothelial cells or at 

least the difference should be marked. It is interesting to observe the presence of 

haemozoin on the endothelial cells underlined by red circles in Figure 4.10D. Haemozoin 

is a crystalline pigment produced by the digestive vacuole of Plasmodium parasite as a 

product of haemoglobin catabolism [177]. It is well known that haemozoin is involved 

in several aspects of the pathology of the malaria in particular during inflammatory 

response in the acute phase [178]. 

 
Figure 4.10 - Images of iRBC (A) and hRBC (B) attached on HUVEC. (C) Histogram of 

attached RBC. (D) Hemozoin residues on endothelial cells. Scale bar 10 µm 

The adhesion of iRBC to endothelial cells is a well-known phenomenon that is 

described in the literature even though the mechanisms are still unclear. On the other 
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hand, the behavior of hRBC was not expected. Figure 4.11 reports the number of 

adherent RBC (both iRBC and hRBC) at two wall shear stress on a HUVEC monolayer 

with and without (i.e. control) enzyme treatment. No difference can be noticed between 

the number of adherent RBC with and without enzyme treatment. The adhesion of both 

RBC species in the control case could be explained considering the role of the 

extracellular methemoglobin. In fact, during malaria culture in vitro, parasite releases 

toxic products that develop a pro-coagulant microenvironment. RBC lysis releases 

haemoglobin that is oxidized to form methemoglobin. The latter promotes the adhesion 

of RBC (both infected and healthy) to endothelial cells due to the production of 

inflammatory markers and cellular adhesion molecules [179, 180]. Balaji and Trivedi 

[181] demonstrated that methemoglobin induce oxidative stress within RBC caused by 

the production of free radicals. As consequence phosphatidyl serine externalization 

occurs generating sticky patches on RBC that induce adhesion to endothelium. 

Regarding the case without the SA, recently Oberleithner et al. [182] demonstrated that 

sodium renders endothelial cells sticky for hRBC by shielding selectively the negative 

charge of the endothelial GCX. One can speculate that in our experiments neuraminidase 

performs the same action of the sodium and hence no difference can be appreciable 

between healthy and infected as reported in Figure 4.10C. 

 
Figure 4.11 - Histogram of attached RBC (both hRBC and iRBC) for two wall shear 

stresses. White bars HUVEC without enzyme treatment, dark grey with enzyme treatment 

4.5 Summary 

To our knowledge, the measurements and results described in this chapter are one of 

the first attempts to study the flow behavior of human blood in the presence of 

endothelial cells. 

Microchannels have been lined with human endothelial cells as described in chapter 

3 and then velocity profiles of RBC suspensions have been evaluated along the channel 

height and channel width. In the former case, a typical flat parabolic profile has been 

reported. Plateau velocity of endothelialized channels has been found less than bare ones 

(from 5.9% to 34%). In order to explain the origin of this result, the resistance to flow 

has been estimated for both channels. The resistance to flow is about 5% higher in 
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endothelialized channel compared to the bare ones. Such value is slightly lower than the 

velocity difference leading to the conclusion that the interaction among HUVEC and 

RBC is not due to purely fluid dynamic reasons. Maybe, biochemical factors could 

regulate the flow behavior of RBC in such channels. Therefore, the contribution of the 

electronegativity of endothelial GCX has been investigated. Results show that GCX 

charge does not influence the velocity of RBC. Regarding the general trend of the 

velocity profiles along the channel height, no appreciable differences between bare and 

endothelialized channel have been found for all shear stress investigated. It should be 

emphasized that velocity profiles were acquired in different experimental conditions i.e. 

different experimental apparatus. In Figure 4.12, velocities obtained with the two 

apparatus are plotted as function of the wall shear rates. The reliability is confirmed by 

the collapse of all data on a single straight line. 

Finally, preliminary results on the interaction between Plasmodium falciparum 

iRBC and endothelial cells have been evaluated. Cytoadherence of iRBC to endothelial 

cells is an important issue related to the severity of disease. In particular, the possible 

role of GCX has been investigated reducing its negative charge via enzymatic treatment 

(i.e. cleavage of SA). Velocity values show that there is no difference between HUVEC 

with and without SA. Focusing on a single RBC, it has been shown that both hRBC and 

iRBC tend to adhere to HUVEC even though in a different manner. hRBC slip on the 

HUVEC monolayer via tank-treading of the membrane whereas iRBC flip on the 

monolayer in agreement with Fedosov et al. [134]. While it is well known that iRBC 

stick on endothelial cells, adherence of hRBC is not expected. The reason could be 

related to the iRBC culture in vitro; in fact malaria parasite releases haemoglobin which 

is converted into methemoglobin. The latter renders hRBC in the culture sticky for 

endothelial cells due to the externalization of phosphatidyl serine that generates sticky 

patches. Quantifying the number of RBC attached on the HUVEC, it has been 

demonstrated that there is no difference between hRBC and iRBC. 

 
Figure 4.12 – Plateau velocity as function of wall shear stress. Circles and triangles refer 

to two different apparatus 
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5. Conclusions 

During this PhD thesis, human blood flow properties have been investigated from 

both hemorheological and hemodynamic points of view. The unique composition of 

human blood leads to a very uncommon behavior under flow. 

A deep rheological investigation under both steady and oscillatory regimes has been 

performed. The flow curves of blood are consistent with available experimental data, 

while the oscillatory experiments provide a rigorous viscoelastic characterization in the 

linear viscoelastic regime. The viscous response prevails on the elastic term over the 

entire test range of frequencies tested although the elastic contribution is considerable. 

In order to explain these results, the plasma release cell-layering theory can be applied 

[56]. The oscillatory deformation induces RBC become arranged in 2D structures 

flowing in layers separated by the suspending medium, which acts as a lubricant in 

between. Indeed, the source of blood linear viscoelasticity is still to be fully understood; 

in fact other authors believe that viscoelasticity arises from RBC membrane rheological 

properties [160], which is known to exhibit a viscoelastic behavior [161, 162]. In 

addition the effects of RBC volume fraction and of the addition of dextran have been 

also investigated. Such samples had the purpose to simulate situation of clinical interest 

such as polycythemia (Htc up to 60%), blood bags used for transfusion (Htc higher than 

90%), and altered aggregation properties. In particular Htc values has been varied from 

8% up to 99%, a range never reported before. Results have shown an evolution to a gel-

like behavior increasing both Htc and aggregating agent. More work is still needed to 

fully elucidate rheological behavior of human blood and the related problem of the 

clinical significance of blood linear viscoelasticity. In fact. several clinical investigations 

highlight the correlation between alterations of hemorheological parameters and the 

incidence of diseases affecting the cardiovascular system [183]. It was demonstrated that 

impaired blood flow represents a risk factor of thrombosis and atherosclerosis [184] in 

pathologies such as myocardial infarction [185], hypertension [186], and diabetes [187]. 

The investigation of the flow properties of human RBC in a more physiological in 

vitro model is carried out. To this aim, methods and experimental protocols for the 

endothelialisation of microchannels have been developed by using human endothelial 

cells. A home-made perfusion system has been set up in order to recreate a physiological 

environment into the microchannel, i.e. a continuous unidirectional flow. Thus, 

alignment and elongation of endothelial cells in the direction of flow have been obtained 

as well as occurs in human vessels. By acquiring images of the cells every day, 

orientation angles and shape index have been calculated. Already after 24h, endothelial 

cells have exhibited an orientation along the flow direction while the elongation becomes 

appreciable only after 8 days. Labelling of the GCX with specific molecules (i.e. WGA-

Alexa 488) has been also done in order to evaluate the presence and the expression of 

the GCX. It has been reported that cells under flow are thinner compared to cells without 
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shear stimulation. Moreover, enzymatic digestion of the GCX component that gives the 

negative charge (i.e. SA) has been evaluated by monitoring the mean fluorescence 

intensity before and after treatment. 

All the results related to the endothelial cell characterization have been useful for the 

subsequent perfusion of endothelialized channel with RBC. Microchannels dimensions 

and flow conditions are chosen to mimic the vascular region of big arterioles and 

venules. Velocity profiles of RBC suspensions have been evaluated. A typical flat 

parabolic profile has been reported along the channel width. Comparing bare and 

endothelialized channels, plateau velocity has resulted higher in channel without cells 

(from 5.9% to 34%). In order to understand this finding, the resistance to flow has been 

estimated for both channels. It has found that the resistance to flow is about 5% higher 

in endothelialized channels than the bare ones which is a value slightly lower than the 

velocity difference. Therefore, one can speculate that the endothelial monolayer does not 

merely induce a simple reduction of the vessel lumen but it is also able to regulate RBC 

flow through biochemical factors. Regarding the trend along channel height, a parabolic 

profile has been found in both cases even though no significant differences have been 

noticed. 

The mentioned approach has been used to investigate flow properties of malaria 

infected RBC by Plasmodium falciparum parasite. It is well known that malaria disease 

may evolve into severe malaria when infected RBC evade the splenic filter thanks to 

their ability to adhere to the endothelium. Images of single infected and healthy RBC 

flowing on endothelial cells have been acquired showing a different dynamic behavior. 

Healthy RBC slide on the endothelial cells by rearranging their membrane in the typical 

tank-treading motion; on the other hand infected RBC flip continuously. These results 

are in good agreement with previous numerical simulation work [134] in which it was 

found that the main parameter governing the dynamic are the RBC membrane stiffness. 

The possible role of endothelial GCX in the adhesion process of infected RBC have been 

evaluated. Removing the GCX an unexpected result has been observed that is no 

difference has been found in the number of infected and healthy RBC attached on 

endothelial monolayer. This findings can be explained considering the work of 

Oberleithner et al. [182]. They demonstrated that sodium renders endothelial cells sticky 

for healthy RBC by shielding selectively the negative charge of the endothelial GCX. 

One can speculate that in our experiments neuraminidase performs the same action of 

the sodium and hence no difference can be appreciable between healthy and infected.  

It was obvious then do an experiment without enzyme treatment. Again, no difference 

was found. To explain this controversial result, it is appropriate to consider the role of 

the extracellular methemoglobin. During malaria culture in vitro, parasite releases toxic 

products that develop a pro-coagulant microenvironment. The process starts with RBC 

lysis that releases haemoglobin. The latter is oxidized to form methemoglobin that 

promotes the production of inflammatory markers and cellular adhesion molecules on 

RBC (both healthy and infected) to endothelial cells [179, 180]. Balaji and Trivedi [181] 

demonstrated that methemoglobin induce oxidative stress within RBC caused by the 

production of free radicals. As consequence phosphatidyl serine externalization occurs 

generating sticky patches on RBC that induce adhesion to endothelium.  
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As a concluding remark, this study presents new insights about some issues related 

to blood rheology and haemodynamics. More work is still needed to fully elucidate the 

source of blood viscoelasticity and its significance in the clinical applications. Moreover, 

flow assay that mimics blood flow in human vessels could help the development of new 

microfluidic platform for drug testing. 

5.1 Future work 

The obtained results could helpful to understand the behavior of RBC under flow. 

The source of blood linear viscoelasticity is still to be fully understood. Results obtained 

in the rheological campaign could be compared with other rheological techniques able 

to characterize or visualize blood structure at microscale level. 

By using the protocols developed in the second part of the work, it would be 

interesting to investigate the interaction among RBC and endothelium in microchannel 

reproducing capillary or post-capillary regions, i.e. reducing channel dimensions. This 

simple and realistic experimental model could be used to explore a variety of questions 

about how blood cells interact with endothelial layer in the microcirculation region 

where other interesting phenomena occurs such as extravasation of drug carriers. 

Moreover, the preliminary results on malaria infected RBC are very interesting and 

require a deeper comprehension of the obtained results. For example, further 

investigation could be addressed to understand the flow behavior of infected RBC on 

brain vascular cells, reduce microchannel dimensions, and increases parasitemia levels. 

In general, the proposed endothelialisation protocols could be used for the development 

of lab-on-chip devices in the biomedical field. 
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Appendix A - Development of oligonucleotides-

functionalized surfaces for fluorescence-based 

biosensing applications 

In the last century, technological improvement in the field of life science has led to 

reach exceptional goals. One of the main breakthroughs is represented by biochips, 

small, microelectronics-inspired devices that are used for delivery, processing, analysis 

or detection of biological molecules and species. Biochips are able to manage extremely 

small amounts of sample (few microliters or less), processing it in an adequate manner 

to provide analytical results. These devices are manufactured from substrates such as 

silicon, fused quartz, glass, and plastic, manipulated with various techniques ranging 

from micromilling to lithography. Due to their small size, biochips presents several 

advantages over bench-scale methods: they are amenable for point-of-care diagnostics, 

using small amount of reagents, producing less waste, and reducing the time and the 

costs of the analysis. 

Here, a part of a project aimed to develop a biochip for diagnostic applications is 

reported. In particular, the final device should be able to process a whole blood sample, 

extracting the nucleic acid content from white blood cells and detecting a specific mRNA 

sequence, providing the result in a digital form. The aim of this work is to provide a 

conceptual design of the device and to characterize the detection step, which is identified 

as limiting. Nucleic acid hybridization matched with confocal fluorescence microscopy 

imaging has been chosen as detection technique. 

A.1 Background 

Nucleic acid hybridization is the main technique used to detect nucleic acid 

sequences of interest. Hybridization event can be highlighted by several methods, such 

as mechanical methods (e.g. microcantilever), electrical methods (conductometric, 

amperometric, and potentiometric detection, etc.), and optical methods (fluorescence, 

interferometry, etc.). The latter ones are the most common due to their prevalent use in 

biology and life sciences. Hybridization is the process of establishing a non-covalent, 

sequence-specific interaction between two or more nucleic acids complementary strands 

into a single complex, named duplex. This process can involve DNA, RNA, or 

oligonucleotides (oligos). Hybridization of nucleic acids represents a fundamental tool 

for molecular genetics studies, and can be performed in several ways, having a common 

functioning principle: a characterized population of single stranded molecules is used to 

screen between a complex mixture of nucleic acids in a sample of medical or biological 

interest. In hybridization experiments, the characterized population of single stranded 

molecules acts as a “probe”; probes are used to scan the sample in order to find 

complementary molecules, named “targets”. For this purpose, the probes and the targets 

can be mixed, allowing their annealing in liquid or solid phase. 
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It is important to consider that both DNA and RNA needs to be denatured to perform 

the hybridization reaction. Denaturation can be achieved by heat treatment or by the 

exposition to alkaline or highly polar conditions, e.g. using urea or formamide solutions.  

Hybridization between probes and targets is affected by several variables. Stability 

of the DNA double helix depends on a fine balance of interactions including hydrogen 

bonds between bases and surrounding water molecules, and base-stacking interactions 

between adjacent bases. In a hybridization experiment, to obtain a good detection signal, 

stable formation of target-probe hybrids should be favored. On the other hand, a specific 

signal is needed, therefore non-specific interaction should be disrupted. Variables which 

are able to affect the hybridization reaction are temperature, probe design, environmental 

effects, and concentration [188]. These conditions must be highly controlled in order to 

screen between thousands of molecules and detect only the population of molecules of 

interest. Usually, the hybridization rate in liquid phase is better than solid phase. 

Moreover, solid phase hybridization allows to easily perform the washing steps required 

to obtain a specific signal. For this reasons, probes bonded to a solid support are preferred 

[189]. Generally, the support can be a plastic membrane, a glass slide, or a quartz chip. 

Commonly used methods for immobilizing DNA or oligonucleotides to solid surfaces 

are adsorption, covalent attachment, and in situ synthesis of oligos. 

A.2 Materials and methods 

Functionalized glass slides 

For the covalent immobilization of probes on solid support, we used functionalized 

glass slides (PolyAn GmbH, Germany). The slides are produced with standard 

dimension of 25 x 75 x 1.0 mm: functionality as well as contact angle of the surface is 

routinely tested before shipment. For the experiments, three different types of slides 

having 2-dimensional (2D) and 3-dimensional (3D) functionalization are chosen.  

2D-reactive glass slides are tailored for cost-effective applications and manufactured 

from high quality glass with an ultra-flat surface and low inherent fluorescence. The 

glass is coated with a thin silane layer that will covalently bind most types of bio-

molecules. The defect-free surface features uniform silane layers that provide a high 

covalent coupling efficiency together with a very low background fluorescence. Two 

types of 2D slides are tested: 

• 2D-Amino slides: the oligo is bound electrostatically with its 5’-phosphate group 

(or with another phosphate group added with an appropriate chemistry). An UV-

crosslinking step is required to attach the nucleic acid covalently on the surface; 

• 2D-Epoxy slides: the surface reacts immediately with a nucleophilic group, such 

as an amino-group linked to the oligo in a standard SN2 reaction, forming a 

covalent bond. 

3D glass slides are functionalized with a surface chemistry comprised of a long-chain 

polymer containing a defined number of reactive groups. This polymer is covalently 

linked to the surface of the slide without damaging the base substrate. The morphology 

of the functional surface and thus also the number of the reactive groups are fine-tuned 

within a narrow range. The principle of immobilization is the same than that of the 2D-

Epoxy slides. 
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Probes oligonucleotides 

Probe oligonucleotides were modified both in 3’ and 5’ termini. On 5’ terminus, 

phosphate and amino linkers were used to allow the binding on Amino and Epoxy 

surfaces, respectively. On 3’ terminus, Cy®3 fluorophore was added to detect the 

immobilized probes. It was also used two different types of spacer, named C-3 and C-

12. Probe oligonucleotides were 25 bases in length. Figure A.2.1 shows a generic probe 

oligonucleotide while Table A.2.1 summarizes all the probes combinations of 

functionalization, spacers, and sequences tested. 

 
Figure A.2.1 – Generic probe oligo 

5’ SPACER SEQUENCE 3’ 

R-OPO3
2- C-3 A Cy®3 

R-OPO3
2- C-12 A Cy®3 

R-NH2 C-3 A Cy®3 

R-NH2 C-12 A Cy®3 

R-OPO3
2- C-3 A OH 

R-OPO3
2- C-12 A OH 

Table A.2.1 – Oligos tested as a probe in immobilization experiments 

The sensitivity of DNA chips is clearly dependent on the efficiency of hybridization 

at the surface that can be improved by introducing spacer chains to attach the terminus 

of the probe to the grafting site. These create distance between the probes and the 

impenetrable surface, enhancing the hybridization process [190]. On the basis of 

literature study, spacers C-3 and C-12 are chosen, which differs in the number of carbon 

of the chain (respectively 3 and 12).  

Target oligonucleotides 

Target oligonucleotides were 25 bases in length and modified in their 5’ terminus 

with 6-FAM fluorophore (6-Carboxyfluorescein). Table A.2.2 shows the target oligos 

tested. 

5’ SEQUENCE 3’ 

6-FAM A complementary OH 
Table A.2.2 – Oligos tested as target in immobilization experiments 
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Immobilization protocols 

Immobilization protocol was slightly different for 2D-Amino and 2D or 3D-Epoxy 

supports. The protocol was developed on the basis of an extensive literature [191-194]. 

All the reagents were purchased from Sigma-Aldrich, functionalized slides were 

purchased from PolyAn GmbH, and oligos were provided by the group of Prof.ssa 

Pasqualina Buono of University of Naples Parthenope. 

Immobilization on 2D-Amino slides 

Probes were diluted in 100 mM, pH 8.5, Na2CO3/NaHCO3 buffer at 0.5 and 5 µM 

concentrations. Diluted oligonucleotides was denatured at 100°C for 10 minutes and then 

immediately spotted on 8-wells 2D-Amino slides in a chamber with 70% relative 

humidity for 1h. Slides were dried on a hot stage at 80 °C and then exposed to UV at λ 

= 365 nm for 3 minutes using an UV lamp. Subsequently, slides were immersed for 2 h 

in a passivation solution composed by 4% acetic anhydride in dicloroethane (the reaction 

with an anhydride changes the surface charge from + to – and repulse any negatively 

charged DNA target). After incubation, slides were washed with acetone,  with 100mM 

Tris HCl, 600mM NaCl, pH=7,5, 3 times with distilled water, then with SSC 1X + 0.2% 

(w/v) SDS, SSC 0.1X + 0.2% (w/v) SDS, SSC 0.1X, 2 times with distilled water and 

dried with compressed air. All the washes were conducted in agitation in a large volume 

(50 ml) of washing solution. As a control, wells treated with the same protocol except 

for the absence of the probes in spotting solution, were processed. 

Immobilization on Epoxy slides 

Immobilization protocol on Epoxy surface was the same for both 2D and 3D slides. 

Probes were diluted in 100 mM, pH 8.5, Na2CO3/NaHCO3 buffer at 1 and 10 µM 

concentrations. Probes were denatured at 100°C for 10 minutes and then immediately 

spotted on 8-wells 2D and 3D-Epoxy slides in a chamber with 70% relative humidity. 

The incubation time was overnight. Then, the slides were dried with compressed air and 

immersed a passivation solution composed by 100 mM Tris-HCl + 50 mM ethanolamine 

at pH 9.0 for 2 hours (ethanolamine is a primary amine which reacts with the Epoxy 

surface in a standard SN2 reaction, saturating the binding sites). Slides were washed 2 

times with distilled water, then with SSC 4X, SSC 2X + 0.1% (w/v) SDS, SSC 0.2X, 

SSC 0,1X, 2 times with distilled water and dried with compressed air. All the washes 

were conducted in agitation in a large volume (50 ml) of washing solution. As a control, 

wells treated with the same protocol except for the absence of the probes in spotting 

solution, were processed. 

Hybridization protocol 

The supports were denatured in boiling water for 3 minutes, then passed in ice-cold 

ethanol and dried with compressed air. Subsequently, slides were incubated for 1 h at 42 

°C with a pre-hybridization buffer composed by 2x SSC, 0.1% (w/v) SDS, 1% (w/v) 

BSA, 50% (v/v) formamide, and 0.01% (w/v) Salmon Sperm DNA, then washed with 

distilled water and dried with compressed air. Targets were diluted in a hybridization 

buffer composed by 5X SSC, 0.1% (w/v) SDS, 10% (w/v) dextran sulfate and 25% (v/v) 

formamide. Diluted samples were denatured at 100°C for 10 minutes and then 

immediately spotted on slides with a spotting volume of 2µL in a chamber at 42°C and 
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100% relative humidity. Incubation was overnight. Subsequently, slides were washed 

with SSC 2X + 0.1% (w/v) SDS, SSC 1X, SSC 0.2X, and finally with distilled water. 

All washes were conducted with a large volume of washing solution (50 ml) in agitation 

for 10 minutes. After washing, the slides were dried with compressed air. As a control, 

wells treated with the same protocol, except for the absence of targets in hybridization 

solution, were processed. 

A.3 Results 

Immobilization 

Three immobilization protocols were developed (for the sake of brevity just the last 

one is reported). Figure A.2.2a shows a typical functionalized slide before starting 

immobilization protocol with 40 spots, each one containing oligo probes. Figure A.2.2b 

shows a spot on a 2D-Epoxy slide after immobilization. The image was acquired with 

5X objective, which yields a field of view of ~3.37 mm2, whereas the area of each spot 

is ~1.43 mm2. A high fluorescent signal and a uniform black background are observed. 

 
Figure A.2.2 – a) Image of a slide before immobilization protocol starting; b) 

Immobilization spot obtained on a 2D-Epoxy support. Image is acquired with 5X objective. 

Scale bar = 200 μm 

To identify the best immobilization density for hybridization experiments, 

calibration curves were built for all the supports in a wide range of spotting solution 

concentrations (0.05, 0.1, 0.5, 1, 5, 10, 50, and 100 μM) immobilizing C-12 spacer 

oligos. In these experiments, pipetting volume was 0.4 μL. Images were acquired using 

different Gain parameters due to the wide range of concentrations investigated, i.e. to 

retain the fluorescence intensity curve between optimal values: in this way, image 

saturation is avoided. The correlation between Gain and the Mean Fluorescent Intensity 

(MFI) is verified for 3 of the 8 concentrations tested in calibration curve experiments 

(0.05 μM, 1 μM, 100 μM), resulting in a linear function as shown in Figure A.3.1. 
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Figure A.3.1 - Plot showing linearity between Gain and MFI at three different 

concentrations 

This linear correlation allows to acquire the images at different Gain values, 

normalizing the fluorescence intensities. Normalized Fluorescence Intensity was 

calculated as: 

𝑁𝐹𝐼 =
𝑀𝐹𝐼

𝐺𝐴𝐼𝑁𝐴𝐶𝑄
−

𝐶𝐹𝐼

𝐺𝐴𝐼𝑁𝐴𝐶𝑄
 

where 𝐶𝐹𝐼 is Control Fluorescence Intensity (which corresponds to the MFI value 

of a control spot without oligos) and 𝐺𝐴𝐼𝑁𝐴𝐶𝑄 is the value of the gain parameter in 

microscope acquisition software. Figure A.3.2 shows a summary of calibration curves 

obtained on all supports spotting various probe concentrations (ranging from 0.05 to 100 

μM). The plot is shown on a log-log scale fitted with a power function. The C exponent 

of the log-log scale represents the slope of the curve. Points relative to 0.05 and 0.1 μM 

were omitted because they were indistinguishable from the background. 
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Figure A.3.2 - Summary of calibration curves obtained on all the supports. Data were 

obtained from three sets of experiments 

Hybridization 

Hybridization experiments were performed using complementary 25mer oligos 

functionalized on their 5’ terminus with 6-Fluorescein amidite (6-FAM) fluorophore as 

target. As probe, blank oligos (without fluorophores), functionalized on 5’ terminus with 

functional groups chosen on the basis of the support was used. This choice is due to 

avoid the overlap between Cy®3 and 6-FAM fluorophores emission signals. In fact, 

exciting sample with 488 nm light, absorption and emission are possible not only by 6-

FAM but also by Cy®3 fluorophore, resulting in a signal overlap that could weaken, or, 

in low target concentration condition, even completely mask hybridization signal. 

Immobilization of blank probes could not be detected using direct observation in 

fluorescence microscopy. However, this evaluation can be indirectly obtained 

performing a simple hybridization experiment. In this experiment, two kinds of controls 

were established to ensure the immobilization of blank probes. Firstly, slides were 

spotted with blank and labeled probes in different positions on the same support (Figure 

A.3.3, left). Detection of labeled probes is indicative of the success of immobilization. 

Then, the surface is bathed with a hybridization solution containing the targets at 1 μM 

concentration. In the case of successfully immobilized and functional blank probes, the 

presence of green spots in correspondence of the spotted blank probe positions is 

expected. Figure A.3.3 (right) shows results of this experiment on a 2D-Amino support. 

As expected, blank spots became detectable after hybridization, due to 6-FAM 

modification of targets. This experiment has been successful on all the supports, 

confirming the functionality of surfaces and immobilization reproducibility between 

blank and Cy®3-modified probes. Images of other supports are not shown for the sake 

of brevity. 
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Figure A.3.3 - Images relative to a 2D-Amino support. (Left) Schematics of immobilization 

experiment and images of a fluorescent probe spot and a blank probe spot are shown. (Right) 

Schematics of the hybridization experiment and an image showing a blank hybridized spot. 

Same acquisition parameters compared to left blank spot image. Images acquired with 10X 

objective using 488 nm and 543 nm excitation laser for 6-FAM and Cy®3 respectively. Scale 

bars = 200 μm 

To identify the best immobilization density for target capture, hybridization 

experiments were conducted spotting a fixed target concentration (20 μM) on different 

density probe spots, ranging from 0.5 to 100 μM immobilization spotting concentrations. 

Spot position reproducibility between immobilization and hybridization phases was 

obtained using a home-made alignment system. NFI was calculated as previous 

experiments. Even functionality of surfaces was confirmed for all the supports, 

hybridization experiments was not reproducible on 2D-Amino supports. For this reason, 

the data on these supports are not reported in the next plot. Figure A.3.4 shows 

hybridization curves obtained on oligo-functionalized 2D and 3D-Epoxy surfaces. As in 

the case of the immobilization curves, hybridization data can be fitted with a logarithmic 

function. However, plot was showed on log-log scale and fitted with a power function. 
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Figure A.3.4 - Hybridization curves obtained spotting a hybridization solution containing 

the targets at 20 μM concentration on oligo functionalized 2D and 3D-Epoxy surfaces. Data 

were fitted with a power function where C is the spotted probe concentration. Data were 

obtained from three sets of experiments. On the right, two hybridization images, acquired with 

10X objective on 2D and 3D-Epoxy surfaces, are shown. Scale bars = 200 μm 

A.4 Results 

This work is part of a project aimed to develop a biochip for diagnostic applications. 

It is worth underlining that the results reported in this appendix aim to estimate the limit 

of detection of the final device. Thus, a short discussion on conceptual design of the 

biochip is provided. 

Figure A.4.1 shows a comparison between immobilization and hybridization curves 

compared to a literature study [195]. Comparing these curves, it is not possible to 

perform quantitative considerations, both in immobilization-hybridization comparison 

and in our experiments-literature comparison. This is due to relativity of units on the y-

axis (i.e. NFI), and different fluorophores and equipment used. However, it is possible 

to compare trends of data and to perform semi-quantitative observations. Interpretation 

of this plot leads to two conclusions: 

• Our data are comparable with literature data; slope of the curves is different, 

however both immobilization and hybridization experiments show a linear 

dependence when fitted on a log-log plot. This trend is probably due to progressive 

saturation of binding sites and mass transport limitations of the system; moreover, 

repulsive interactions between the considered molecules, that are negative-charged, 

could play a role in the observed behavior; 

• Regarding our results, no saturation was observed, both in immobilization and 

hybridization experiments. In the case of immobilization experiments, saturation 

could be possible spotting probe concentrations higher than 100 μM. This aspect 

was outside the aim of the present work, and was not investigated also due to the 

limited amount of materials available. In the case of hybridization experiments, the 
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fact that saturation is not observed leads to the conclusion that even in higher density 

of probes condition, steric hindrance, which could lead to hybridization inefficiency, 

was not observed. 

 
Figure A.4.1 – Comparison between immobilization and hybridization experiments on 2D 

and 3D-Epoxy slides compared with a literature study [195] 
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applications". International Journal of Cosmetic Science 37.1 (2015): 156-157. 

• Roberta Liuzzi, Antonio Carciati, Sergio Caserta and Stefano Guido. "Transport 

efficiency in transdermal drug delivery: What is the role of fluid microstructure?" 

Colloids and Surfaces B: Biointerfaces 139 (2016): 294-305. 
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Experiences in foreign laboratories 

Visiting student research collaborator (VSRC) at University of Cambridge, Cavendish 

Laboratories (Prof. Pietro Cicuta). Blood on chip for biomedical applications, 

(04/08/2016 – 08/11/2016). 

 Conferences 

• Cosminnov Cosmetic Innovation Days, Orlèans (France), 8-9/10/2013. 

• 9th Annual European Rheology Conference (AERC) 2014, Nantes (France), 8-

11/04/2014. 

• XIII National Convention of the Italian Rheology society (SIR) - Keynote, Brescia 

(Italy), 7-9/09/2014. 

• Stratum Corneum VIII, Cardiff (UK), 17-19/09/2014. 

• Italian Soft Days, Rome (Italy), 17-18/09/2014. 

• Society of Rheology (SOR) - 86th Annual Meeting, Philadelphia (USA), 5-

9/10/2014. 

• National Convention of the Italian Gereontology and Geriatrics (SIGG), Bologna 

(Italy), 26-29/11/2014. 

• Smart & Green Interfaces Conference (SGIC), COST ACTION MP1106, Belgrade 

(Serbia), 30-01/04/2015. 

• 10th Annual European Rheology Conference (AERC) 2015, Nantes (France), 14-

17/04/2015. 

• 15th European Colloid Student Conference (ECIS), Krakow (Poland), 8-11/06/2015. 

• Smart & Green Interfaces Conference (SGIC), COST ACTION MP1106, Athens 

(Greece), 4-6/05/2016. 
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• XIV National convention of the Italian Rheology Society (SIR), Montepaone Lido 

(Italy), 1-4/6/2016. 

• GRICU Meeting, Anacapri (Italy) 12-14/09/2016. 

 


