
University of Naples ”Federico II”

Dep. of Mathematics and Applications ”R. Caccioppoli”

The Shortest Path Tour Problem
and its variants

PhD Thesis

DANIELE FERONE

1 2 3 4

5

1

1 1 1

Supervisor: Paola Festa
Professor

Naples, February 2017

Abstract

Scope of this thesis is to provide a treatment of the Shortest Path Tour Problem, and
its variants. It presents a deep investigation of two variants of the SPTP, the Constrained
Shortest Path Tour Problem and Shortest Path Tour Problem with Time Windows, respec-
tively. Moreover, a GRASP meta-heuristic is applied to solve further hard combinatorial
optimization problems.

1

Ai miei nonni e…
a mia figlia Chiara!

Ringraziamenti

N on ho mai scritto ringraziamenti nelle mie tesi precedenti perché il percorso non era
finito. Questo lavoro, invece, segna davvero la fine di un percorso e l’inizio di uno

che sarà completamente nuovo.
Il mio percorso universitario è iniziato nel lontano 2004 e tante cose sono successe

durante questi tredici anni. Tante sono state le persone che ho incontrato durante questo
percorso e a cui va dedicata una parola.

Inizio con il ringraziare Fabrizio, se ho scelto informatica una parte del merito è
sicuramente tuo. Dopo il mio primo esame mi hai detto di non accontentarmi… ho provato
a fare del mio meglio. Ci siamo conosciuti condividendo l’amore per il teatro e, sebbene
sia riuscito a recitare con te, coltivo ancora il desiderio di poterlo rifare sotto la tua guida.

I ringraziamenti successivi vanno ai PdK: Davide (bruececkel), Nino (gib) e Francesco
(jobzino). Siete stati i miei compagni di viaggio più stretti durante le lauree. Ora siete
tutti lontani per lavoro, ma come dimenticare le pasquette o le nottate di Warrock? Ogni
corso che ho potuto frequentare in vostra compagnia è stato più divertente di qualsiasi
corso che ho dovuto seguire da solo. Ogni esame in cui abbiamo studiato insieme è stato
più un gioco che un lavoro.

Durante il dottorato ho trovato nuovi compagni di viaggio. Un grande ringraziamento
va al Team MAT09: Antonio (antonap) e Tommaso (Supersantos). Mi avete accompa-
gnato per il secondo e terzo anno, lavorare con voi è stato decisamente più divertente che
lavorare da solo. Siete stati ottimi colleghi e spero che continueremo ad esserlo a lungo!

I ringraziamenti “universitari” terminano, ovviamente, con il ringraziare la Profes-
soressa Paola Festa. È stata mia relatrice per le due tesi di laurea e poi mia tutor di
dottorato. Una così lunga collaborazione testimonia la mia stima profonda per te, sia
come accademica, ma soprattutto come persona! Sei il modello lavorativo a cui aspiro,
grazie per i tuoi insegnamenti e per la stima che ho sempre avvertito. Ho ancora tanto da
imparare da te!

Ringrazio la famiglia Santoro allargata. Mi siete sempre stati vicini nelle vicende
universitarie prima e lavorative poi, facendomi sentire la vostra stima e il vostro affetto,
un ringraziamento grande.

Non posso non ricordare i miei nonni e le mie zie. Molti non hanno potuto vedere la
fine del mio percorso, ma so che mi sono vicini. Grazie per il vostro supporto!

5

Ringraziamenti

In questa lista di persone che mi hanno accompagnato e aiutato non posso non citare
Pasquale, la mia adorata nipotina Jolanda e, soprattutto, la mia sorellina Marcella!!!
A dispetto della lontananza fisica so, e voglio che lo sappia anche tu, che alla minima
necessità siamo disponibili l’uno per l’altra.

Il ringraziamento più grande va sicuramente ai miei genitori Vincenzo e Rosa.
Tutto ciò che di buono sono riuscito a fare nella vita, compreso questo traguardo, è merito
devi vostri insegnamenti, del vostro incoraggiamento e dei vostri sacrifici. Non avrei potuto
avere genitori migliori!

I miei genitori sono anche l’esempio a cui aspiro nel mio rapporto con mia moglie
Maria. La nostra storia è cominciata nello stesso periodo in cui è cominciato il mio
viaggio universitario e senza di te non sarebbe stato lo stesso. Mi hai sempre incoraggiato
e aiutato nelle difficoltà. Ti amo! Grazie per il tuo supporto e per lo splendido regalo di
quest’ultimo anno.

Regalo che ha il nome di Chiara, mia figlia. Un ringraziamento enorme a te perché
ogni giorno mi regali una gioia infinita! Che la vita ti riservi tantissima gioia!

Spero non aver dimenticato nessuno, ma nel caso non me ne vogliate. Non sono uno
scrittore, quindi probabilmente questi ringraziamenti non saranno molto belli, ma sono
sentiti.

Voglio bene a tutti voi.

Napoli, Febbraio 2017

Daniele Ferone

6

Contents

Abstract 1

Ringraziamenti 5

1 Introduction 15
1.1 The Shortest Path Problem . 16
1.2 The Shortest Path Tour Problem . 17

2 Shortest Path Tour Problem variants 19
2.1 Complexity . 19
2.2 Solution approaches . 24

2.2.1 An exact method . 24
2.2.2 A GRASP . 28
2.2.3 Experimental results . 33

2.3 A more sophisticated exact approach . 40
2.3.1 Mathematical formulation . 40
2.3.2 An advanced exact approach . 41
2.3.3 Experimental results . 45

2.4 Shortest Path Tour Problem with Time Windows 58
2.4.1 Introduction . 58
2.4.2 Dynamic programming algorithm . 59
2.4.3 Bounds . 61
2.4.4 Experimental results . 62

3 GRASP algorithms for the FFMSP, p-Center, and MCS 67
3.1 Far From Most String Problem . 67

3.1.1 Introduction . 67
3.1.2 GRASP with Path Relinking . 68
3.1.3 Results . 69

3.2 p-Center . 74
3.2.1 Introduction . 74
3.2.2 A new local search for the p-center 75

7

CONTENTS

3.2.3 Experimental results . 76
3.3 Minimum Cost SAT Problem . 78

3.3.1 Introduction . 78
3.3.2 Mathematical formulation of the problem 80
3.3.3 A GRASP for Minimum Cost SAT 80
3.3.4 Experimental results . 82

3.4 Biased Randomized SimGRASP . 82
3.4.1 BR-GRASP and SimGRASP methodologies 84
3.4.2 Including simulation in GRASP . 85
3.4.3 Experiments . 86

4 Conclusions 89

Bibliography 91

8

List of Figures

1.1 A SPTP instance on a small graph G. 17

2.1 A small HP instance. 21
2.2 The CSPTP instance corresponding to the small HP instance depicted

in Figure 2.1. 22
2.3 Multistage graph G′ associated to the graph G represented in Figure 1.1. . 26
2.4 GRASP mean running times for big complete graphs. 35
2.5 GRASP mean running times with different N values. 36
2.6 Mean running times for complete graphs on γ variation. 37
2.7 Performance profiles for optimal solutions of M1 and M2 on sparse random

graphs. 48
2.8 Performance profiles of M1 and M2 on complete graphs. 49
2.9 Computational times to solve M1 and M2 formulations on Random graphs. 50
2.10 Computational times to solve M1 and M2 formulations on Complete graphs. 50
2.11 Computational times to solve M1 and M2 formulations on Grid graphs. . . 51
2.12 Performance profiles of B&B and B&Bnew algorithms for optimal solutions. 52
2.13 Performance profile on complete graphs with γ = 0.35 for optimal solutions. 53
2.14 Performance profile on complete graphs with γ = 0.70 for optimal solutions. 53
2.15 Performance profile on random sparse graphs with γ = 0.35 for optimal

solutions. 54
2.16 Performance profile on random sparse graphs with γ = 0.70 for optimal

solutions. 54
2.17 Performance profile on grid graphs for feasible solutions. 55
2.18 Computational times over complete graphs. 56
2.19 Computational times over random graphs. 56
2.20 Computational times over grid graphs. 57
2.21 A small example of waiting problem. 61
2.22 Labeling performance profiles for complete graphs. 64
2.23 Labeling computational times for complete graphs. 64
2.24 Labeling performance profiles for random graphs. 65
2.25 Labeling computational times for random graphs. 65
2.26 Labeling performance profiles for grid graphs. 66

9

LIST OF FIGURES

2.27 Labeling computational times for grid graphs. 66

3.1 Time to target distributions comparing grasp and grasp-h-b (1). 74
3.2 Time to target distributions comparing grasp and grasp-h-b (2). 75
3.3 Traditional and Biased Randomized GRASP element selection. 85

10

List of Tables

2.1 B&B on complete graphs (1). 34
2.2 B&B on complete graphs (2). 34
2.3 B&B on random graphs (1). 36
2.4 B&B on random graphs (2). 38
2.5 B&B on small sized square grids. 39
2.6 B&B on small sized elongated grids. 39
2.7 Characteristics of the Grid Networks. 45

3.1 Comparison between the different hybrid GRASP strategies on A. 71
3.2 Comparison between the different hybrid GRASP strategies on B random. 72
3.3 Comparison between the different hybrid GRASP strategies on B real. . . 73
3.4 Results on ORLIB instances. 79
3.5 Comparison between GRASP and other MCS solvers. 83
3.6 Performance of BR-GRASP and SimGRASP for the VRP. 88

11

List of Algorithms

2.1 Polynomial reduction algorithm from the HP to the CSPTP. 20
2.2 Branch & Bound for the CSPTP. 27
2.3 Pseudo-code of a generic GRASP. 29
2.4 Construction of a Greedy Randomized Solution when N ∈ {2, 3}. 30
2.5 Construction of a Greedy Randomized Solution for the CSPTP. 31
2.6 Local Search for the CSPTP. 32
2.7 Function that generates a new branching tree node. 42
2.8 New Branch & Bound algorithm. 43
2.9 Dynamic programming algorithm for the solution of SPTP. 44
2.10 Generation algorithm. 46
2.11 Dynamic programming algorithm to solve SPTPTW 60
2.12 Algorithm to obtain an upper bound for SPTPTW 62

3.1 Pseudo-code of path-relinking for the FFMSP. 69
3.2 Pseudocode of the plateau surfer local search algorithm. 77
3.3 Pseudo-code of GRASP construction phase. 81
3.4 Construction phase with Biased Randomization. 84
3.5 General SimGRASP framework. 86

13

Chapter 1
Introduction

Computer science is no more about
computers than astronomy is about
telescopes.

Edsger Dijkstra

M ain scope of this thesis is to provide an exhaustive treatment of the Shortest Path
Tour Problem (SPTP) and its variants. The SPTP can be seen as a constrained

version of the classical Shortest Path Problem and arises in several contexts, such as
warehouse management or control of robot motions. In the first case, assume that an order
arrives for a certain set of N collections of items stored in a warehouse. A vehicle has to
collect at least one item of each collection of the order to ship them to the costumers. In
control of robot motions, assume that to manufacture workpieces, a robot has to perform
at least one operation selected from a set of N types of operations. In this latter case,
operations are associated with nodes of a directed graph and the time needed for a tool
change is the distance between two nodes. In both cases, there are precedence constraints
to be satisfied that can be well modeled by the SPTP.

The rest of Chapter 1 is devoted to the formal definition of the SPTP, proved to be
polynomially solvable. Given both the practical and theoretical interests related to an
in-depth study of the problem, in this work two different new variants of the SPTP are
presented: the Constrained Shortest Path Tour Problem (CSPTP) and the Shortest Path
Tour Problem with Time Windows (SPTPTW). Both variants are deeply investigated
in Chapter 2. Unlike the SPTP, we have proved that these two problems are compu-
tationally intractable. To exactly solve them, we have proposed two Branch & Bound
(B&B) algorithms and a dynamic programming approach. Given the intractability of the
problems, those exact methods are not able to tackle large size instances in reasonable
running times. Due to this, the use of an heuristic algorithm has been explored for the
CSPTP. In particular, a GRASP meta-heuristic has been applied to solve the problem.

The results obtained by our GRASP tailored for the CSPTP encouraged the use of this

15

Chapter 1. Introduction

technique to approximatively solve other complex Combinatorial Optimization Problems
(COPs) arising in several practical contexts. The results obtained by these studies are
presented in Chapter 3.

Nowadays, the vast majority of practical interest problems can be modeled through
hard COPs. Hence, the refinement of these meta-heuristics and their proper implementa-
tion are increasingly needed. Furthermore, in order to handle more realistic scenarios, it
is needed to introduce stochasticity: one of the primary components of the real world. It
is in this spirit that in Chapter 3 we propose an extension of the GRASP meta-heuristic,
which can be used to solve non deterministic problems.

Conclusions and final remarks of the thesis are summarized in Chapter 4.

1.1 The Shortest Path Problem

The Shortest Path Problem (SPP) is a classical combinatorial problem that arises
as subproblem when solving many optimization problems. Since it contains the most
important ingredients of network flows problems, it has been widely studied and there
exists a great number of algorithms to solve it [6, 9, 11, 21, 38].

Several variants of SPP appear in a wide variety of contexts and practical application
settings. In particular, the Shortest Path Tour Problem is a constrained version of the
classical Shortest Path Problem.

In the rest of this document, the following notation is used. Let G = (V, A, C) a weighted
directed graph, where Given G = (V, A, C) be a directed graph, where

• V = {1, . . . , n} is a set of n nodes;

• A = {(i, j) ∈ V × V | i, j ∈ V ∧ i , j} is a set of m arcs;

• C : A → R+∪{0} is a function that assigns a nonnegative length cij to each arc (i, j) ∈ A;

• for each node i ∈ V , let FS(i) = {j ∈ V | (i, j) ∈ A} and BS(i) = {j ∈ V | (j, i) ∈ A} be the
forward star and backward star of node i, respectively;

• a path P = {i1, . . . , ik} is a sequence of k nodes ij ∈ V , such that (ij, ij+1) ∈ A, for all
j = 1, . . . , k − 1;

• the length (or cost) C(P) of any path P is defined as the sum of the lengths of the
arcs on the path, i.e. C(P) =

∑k−1
j=1 cj,j+1.

Let G = (V, A, C) a directed weighted graph, and let s, d ∈ V , s , d, be two different
nodes of the graph, the single-origin single-destination Shortest Path Problem consists in

16

1.2 The Shortest Path Tour Problem

1 2 3 4

5

1

1 1 1

Figure 1.1: A SPTP instance on a small graph G, where T1 = {1}, T2 = {3}, T3 = {2},
T4 = {4}.

finding a directed path from s to d that minimizes the cost of the path. Formally, the
SPP admits the following 0-1 integer programming formulation:

min
∑

(i,j)∈A
cijxij (1.1a)

s.t.

∑
j∈FS(i)

xij −
∑

j∈BS(i)

xji =


1, i = s;

−1, i = d;

0, otherwise;

(1.1b)

xij ∈ { 0, 1 } ∀ (i, j) ∈ A. (1.1c)

1.2 The Shortest Path Tour Problem

The Shortest Path Tour Problem (SPTP) was first defined by Bertsekas in his book
devoted to Dynamic Programming and Optimal Control [7], and later formalized and
studied by Festa [26].

Definition 1.1. Given G = (V, A, C) be a directed weighted graph, the shortest path tour
problem (SPTP) consists in finding a shortest path from a source node s to a destination
node d, s, d ∈ V , s , d, by ensuring that at least one node of each node disjoint subsets
T1, . . . , TN , is crossed according to the sequence wherewith the subsets are ordered. Any
intermediate nodes between visits to the subsets Th, h = 1, . . . , N are allowed.

In Figure 1.1, an example instance of SPTP is depicted. Let the source node s = 1 and
the destination node d = 4, it is easy to verify that the shortest path between them is the
path Π = (1, 2, 3, 4), whose cost is C(Π) = 3. Conversely, given the sets T1 = {1}, T2 = {3},
T3 = {2}, T4 = {4}, the best shortest path tour from s to d is the path Π = (1, 2, 3, 2, 3, 4),
whose cost is C(Π) = 5 and is not simple.

17

Chapter 1. Introduction

Festa [26] proved that SPTP is polynomially solvable, since it can be reduced to a
classical SPP on an opportunely expanded graph, and Festa et al. [27] proposed a dynamic
programming algorithm to solve the problem.

18

Chapter 2
Shortest Path Tour Problem variants

T he Constrained Shortest Path Tour Problem (CSPTP), first presented in Ferone
et al. [19], is a variant of the SPTP. In particular, in CSPTP it is forbidden to

cross an arc twice. Respect to the Definition 1.1, the problem can be defined as follows.

Definition 2.1. The Constrained Shortest Path Tour Problem (CSPTP) consists in
finding a shortest path from a source node s to a destination node d, s, d ∈ V , s , d, by
ensuring that at least one node of each node disjoint subsets T1, . . . , TN , is crossed according
to the sequence wherewith the subsets are ordered and each arc (i, j) ∈ A is crossed at
most once. Any intermediate nodes between visits to the subsets Th, h = 1, . . . , N are
allowed.

Although the definition is only slightly different from the definition of the SPTP, the
resulting problem has a huge difference in theoretical properties. Indeed, the CSPTP is
a NP-hard problem, and it is not possible to optimally solve big instances in reasonable
computation times.

2.1 Complexity

To prove the hardness of the CSPTP, it will be proved that the Hamiltonian Path
problem (HP) is polynomially Karp-reducible to the CSPTP.

Let G = (V, A, C) a graph, and let s and d, s, d ∈ V , s , d, be the origin and the
destination node, respectively. Then, the HP consists in finding in G a minimum cost
Hamiltonian path from s to d. In Karp [42], it was proven that the HP is NP-complete.

To prove that HP is polynomially Karp-reducible to the CSPTP (HP <p
m CSPTP),

we need to define a polynomially computable function f (IHP) that transforms any instance
IHP of the HP in an instance ICSPTP of the CSPTP. In other words, we need to design a
polynomial-time Karp-reduction algorithm that takes as input an instance IHP of the HP
and builds a directed graph containing a feasible path tour PT if and only if there exists a
feasible Hamiltonian path in IHP.

19

Chapter 2. Shortest Path Tour Problem variants

Given any HP instance IHP

⟨G = (V, A, C), s, d⟩ ,

Algorithm 2.1 is the pseudo-code of the reduction algorithm that outputs a CSPTP
instance ⟨

G′ = (V ′, A′, C′), s−, d+, {Th}h=1,...,n+1
⟩

by performing the following operations:

• for each node i ∈ V ,

– insert in V ′ nodes i− and i+;

– insert in A′ arc (i−, i+) with cost 0;

• for each arc (i, j) ∈ A and for each k = 2, . . . , n,

– insert in V ′ node ijk ;

– insert in Tk node ijk;

– insert in A′ arc (i+, ijk) with cost cij and arc (ijk , j−) with cost 0;

• set T1 = {s−} and Tn+1 = {d+}.

Algorithm 2.1: Polynomial reduction algorithm from the HP to the CSPTP.

1 Function HamPath-to-CSPTP(V, A, C, s, d)
2 V ′ ← A′ ← ∅ ;
3 n ← |V | ;
4 for i ← 2 to n do
5 Ti ← ∅ ;
6 for i ∈ V do
7 V ′ ← V ′ ∪ {i−, i+} ;
8 A′ ← A′ ∪ {(i−, i+)} ;
9 c′(i−, i+)← 0 ;

10 for (i, j) ∈ A do
11 for k ← 2 to n do
12 V ′ ← V ′ ∪ {ijk} ;
13 A′ ← A′ ∪ {(i+, ijk), (ijk , j−)};
14 c′(i+, ijk)← c(i, j);
15 c′(ijk , j−)← 0 ;
16 Tk ← Tk ∪ {ijk} ;
17 T1 ← {s−};
18 Tn+1 ← {d+};
19 return (G = (V ′, A′, C′), s−, d+, {Th}h=1,...,n+1);

20

2.1 Complexity

1 3

24

1

2
1

1

1

Figure 2.1: A small HP instance: bold line style indicates a Hamiltonian Path from node
1 to node 4.

Summarizing, the set of nodes V ′ can be defined as follows:

V ′ =
∪
i∈V

{
i−, i+

} ∪ k=2,...,n∪
(i,j)∈A

{
ijk

}
,

while the set A′ can be defined as:

A′ =
∪
i∈V

{
(i−, i+)

} ∪ k=2,...,n∪
(i,j)∈A

{
(i+, ijk), (ijk , j−)

}
.

A small instance IHP is depicted in Figure 2.1. Figure 2.2 shows the corresponding in-
stance ICSPTP as returned by algorithm in Algorithm 2.1, whose computational complexity
is O(n ·m).

Lemma 2.2. There exists a feasible path P = i1, i2, . . . , ik, k ≤ n, in

⟨G = (V, A, C), s, d⟩ ,

if and only if in ⟨
G′ = (V ′, A′, C′), s−, d+, {Th}h=1,...,n+1

⟩
there exists a feasible path tour P′ from i−l to i+k , such that

P′ =

 k−1⊕
l=1

(
i−l , i+l , il il+1

l+1
)
, i−k , i+k

 .

Proof. Suppose that there exists in G a feasible path P = {i1, i2, . . . , ik}, k ≤ n. Then, by
construction there exists in A′ an arc (i−l , i+l), for each l = 1, . . . , k.

Moreover, for each arc (il , il+1) in P, there exist arcs (i+l , il il+1
q) and (il il+1

q, i−l+1) for
each q = 2, . . . , n.

Therefore, there must exist also arcs (i+l , il il+1
l+1) and (il il+1

l+1, i−l+1). Conversely, sup-

21

Chapter 2. Shortest Path Tour Problem variants

1−
1+ 3−

3+

2−

2+4−
4+

132

133

134

122

123

124

242

243

244

322 323 324412413414

0

0

0

0

2

0

1

0

0 1

1

0

1 0

20

1

0

0 1

1

0

1 0

2

0

1

0

0 1

1

0

1 0

Figure 2.2: The CSPTP instance corresponding to the small HP instance depicted in
Figure 2.1.

22

2.1 Complexity

pose that there exists in G′ the path P′, whereas path P is not present in G. This last
situation occurs if either at least one node il < V or at least one arc (il , il+1) < A.

If a node il < V , then nodes i−l and i+l would not be in V ′, which is not true. Similarly,
if an arc (il , il+1) < A, then arcs (i+l , il il+1

l+1) and (il il+1
l+1, i−l+1) would not be in A′ and this

contradicts the hypothesis of existence of path P′.

Theorem 2.3. Function f (IHP) computed by Algorithm 2.1 is a polynomially computable
function that transforms any instance IHP of HP in an instance ICSPTP of the CSPTP.

Proof. f (IHP) is polynomially computable given the polynomial complexity of Algorithm 2.1.
To show that f (IHP) is a reduction function, we must prove that there exists in G

a Hamiltonian path P from s to d with length L(P) if and only if there exists in G′ a
constrained path tour P′ from s− to d+ with length L(P′) = L(P).

⇒ By hypothesis, there exists in G a Hamiltonian path P = {i1, i2, · · · , in}, where i1 = s

and in = d. We have already shown in lemma 2.2 that there exists in G′ a path

P′ =

 n−1⊕
l=1

(
i−l , i+l , il il+1

l+1
)
i−n , i+n

 ,

where i−1 = s− and i+n = d+.

P′ is a feasible constrained path tour from s− to d+. In fact, let us suppose that P′

is not feasible. This can happen if at least one of the following cases occurs: 1) P′

crosses some arcs more than once; 2) P′ does not involve any node in some node
subsets Ti , i = 1, . . . , n+1; 3) P’ involves at least a node for each Ti , , i = 1, . . . , n+1,
but not successively and sequentially.

Suppose that P′ crosses some arcs twice. Since only nodes of type i− are such that
|FS(i−)| > 1, if some arc is involved at least twice, it must be some arc of type (i−, i+).
Nevertheless, if this is the case, then necessarily node i must be involved by P at
least twice and this contradicts the hypothesis of P as Hamiltonian path.

Finally, cases 2) and 3) can not ever occur by construction. In fact, path P′ starts
at s− ∈ T1 and ends in d+ ∈ Tn+1. Then, it involves successively and sequentially all
nodes il il+1

l+1, for each l = 1, . . . , n − 1, and each node il il+1
l+1 belongs to Tl+1.

⇐ By hypothesis, there exists in G′ a feasible constrained path tour from s− to d+.

Remember that by construction, it holds that

– for each node i− ∈ V ′, FS(i−) = {i+};

– for each node i+ ∈ V ′, FS(i+) = {ijk | k = 2, . . . , n};

– for each node ijk ∈ V ′, FS(ijk) = {j−}.

23

Chapter 2. Shortest Path Tour Problem variants

Therefore, path P′ must be necessarily as follows

P′ =

 n−1⊕
l=1

(
i−l , i+l , il il+1

l+1
)
i−n , i+n

 ,

where i−1 = s− and i+n = d+.

In fact, if for some k = 2, . . . , n, k , l + 1, P′ contains a sub-path

il , il+1, il il+1
k ,

then P′ would not be feasible, because it would violate the constraint of successively
and sequentially passing through at least one node of the node subsets Ti . Finally,
if P′ involves a smaller number of nodes, then for some subset Ti , no node in Ti would
be crossed. Similarly, if P′ involves a higher number of nodes, then P′ would cross
at least one arc more than once.

From Lemma 2.2, it follows that there exists in G a path P = {i1, i2, . . . , in}, such
that i1 = s and in = d.

P must be Hamiltonian. In fact, let us suppose that P is not Hamiltonian. Since P

visits exactly n nodes, there must be ij and ik, j, k ∈ {1, . . . , n | j , k}, such that ij = ik.
But this implies that P′ crosses arcs (i−j , i+j) and (i−k , i+k) such that (i−j , i+j) ≡ (i−k , i+k)
and this contradicts the hypothesis of feasibility of the constrained path tour P′.

The Hamiltonian path P in G and the constrained path tour P′ in G′ have the same
length by construction and by the definition of cost functions C and C′, respectively.

Corollary 2.4. CSPTP is NP-hard.

2.2 Solution approaches

2.2.1 An exact method

The first method that has been proposed to solve CSPTP is based on the B&B
technique. To design it, the CSPTP has been reduced to the Path Avoiding Forbidden
Pairs Problem (PAFPP).

Given a graph G = (V, A) and a set of pairs of nodes

F = { (a1, b1), . . . , (ak , bk) } ,

where for all i = 1, . . . , k, ai , bi and (ai , bi) ∈ (V ×V), the PAFPP consists in finding the
shortest path P from a given node s to a given node d, with the constraint that P must
contain at most one node of each pair in F .

24

2.2 Solution approaches

The PAFPP admits the following 0-1 integer programming formulation:

min
∑

(i,j)∈A
cijxij (2.1a)

s.t.

∑
j∈FS(i)

xij −
∑

j∈BS(i)

xji =


1, i = s;

−1, i = d;

0, otherwise;

(2.1b)

∑
j∈BS(a)

xja +
∑

j∈BS(b)

xjb ≤ 1 ∀ (a, b) ∈ F (2.1c)

xij ∈ { 0, 1 } ∀ (i, j) ∈ A. (2.1d)

The objective function (2.1a) minimizes the total length of a path. Constraints (2.1b)
represent the flow balance constraint at each node, while constraints (2.1c) guarantee that
no forbidden pair is violated.

Any CSPTP instance

⟨
G = (V, A, C), s, d, N, { Th }h=1,...,N

⟩
can be polynomially transformed into a PAFPP instance⟨

G′ = (V ′, A′, C′), s, d′ = d + (N − 1) ·m, F =
{

(a1, b1), . . . , (ap, bp)
}⟩

,

where p = m(N−2)(N−1)
2 and G′ is a multi-stage graph with N stages, each of them replicat-

ing G.
The nodes in V ′ can be classified in actual nodes (from 1 to n · N) and dummy nodes

(from N · n + 1 to N · (n +m)). Each arc of A′ connects an actual node to a dummy node
(or vice-versa). The actual nodes are used to replicate the paths, dummy nodes are used
to preserve feasibility.

For each arc (v, w) ∈ A and for each h = 1, . . . , N , an arc from the actual node v+n·(h−1)
to the dummy node i is inserted in A′. In addition, if w ∈ Th+1 arc (i, w + h · n) is inserted
in A′, while arc (i, h + n · (k − 1)) is added in A′ if w < Th+1. In practice, for each of the
N stages, each arc (v, w) ∈ A is represented in A′ by a pair of arcs: one connects v to a
dummy node, and the other one connects the dummy node to w. For each stage h and
for each node w, if w ∈ Th+1, then those arcs originate in stage h and end in stage h + 1;
otherwise their tail node and head node are in the same stage.

The multi-stage graph G′ associated to the original graph G shown in Figure 1.1 is
depicted in Figure 2.3. The dotted nodes indicate the dummy nodes, whereas pair of
dummy nodes, belonging to the same level, represent forbidden pairs. The optimal path

25

Chapter 2. Shortest Path Tour Problem variants

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

1

0

1

0

1

0

1

0

5

0

5

0

5

0

5

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

Figure 2.3: Multistage graph G′ associated to the graph G represented in Figure 1.1.

P′ in G′ is P′ = { 1, 21, 7, 30, 10, 27, 11, 35, 16 }, whose length is 8. The corresponding
optimal solution in G is P = { 1, 3, 2, 3, 4 } with the same length.

To obtain a lower bound, a relaxation of the PAFPP is built by deleting constraints
(2.1c). The resulting problem is a classical SPP, that can be solved by using any of the
well-known methods to address this kind of problem.

The B&B pseudo-code is reported in Algorithm 2.2. To begin, the algorithm expands
the graph to obtain the PAFPP instance, solves it with Dijkstra’s algorithm, and if the
solution is feasible it is returned as optimal (lines 2 to 5).

Otherwise, it finds the violated nodes and creates the first two subproblems (lines 6
to 10). Until the queue Q of the open subproblems is empty (line 11), a node is extracted
from the queue (line 12), the backward stars of all violated nodes are removed (line 13)
and Dijkstra algorithm solves the corresponding SPP (line 14). If the solution is feasible
and better than the incumbent, the latter is updated (lines 15 to 17).

Conversely, if the solution is unfeasible, and the solution cost of the relaxed problem is
better than the incumbent cost, the branching nodes are generated (lines 18 to 22). The
backward stars of the two nodes that violate the constraints (2.1c) are added one each to
the two subproblems. Finally, the graph is restored (line 23), in order to solve the open
subproblems.

The strategy for selecting the next sub-problem to investigate determines how the

26

2.2 Solution approaches

Algorithm 2.2: Branch & Bound for the CSPTP.

1 Function B&B(G = (V, A, C), s, d, {Ti}i=1,...,N)
2 (G′ = (V ′, A′, C′, s′, d′), F)← Expand(G, s, d, {Ti}i=1,...,N);
3 P ← Dijkstra(G′);
4 if P is feasible then
5 return (P, C′(P));
6 P∗ ← Nil; C′(P∗)← +∞;
7 (v1, v2)← Find(P);
8 S1 ← {BS(v1)};
9 S2 ← {BS(v2)};

10 Q ← {S1, S2};
11 while Q , ∅ do
12 S ← Pop(Q);
13 A′ ← A′ \ S;
14 P ← Dijkstra(G′);
15 if P is feasible then
16 if C′(P) < C′(P∗) then
17 P∗ ← P; C′(P∗)← C′(P);
18 else if C′(P) < C′(P∗) then
19 (v1, v2)← Find(P);
20 S1 ← S ∪ {BS(v1)};
21 S2 ← S ∪ {BS(v2)};
22 Q ← Q ∪ {S1, S2};
23 A′ ← A′ ∪ S;
24 return (P∗, C′(P∗))

27

Chapter 2. Shortest Path Tour Problem variants

B&B algorithm should proceed through the search tree and can have a significant effect
on the behaviour of the algorithm. To choose the next node for exploration, the proposed
approach adopts both a depth first search (DF, for short) strategy, where the node with
the largest level in the search tree is chosen, and a best bound first strategy (BF, for
short), that chooses a node with the best relaxed objective function value.

Algorithm complexity

Theorem 2.5. Let n = |V | and m = |A|, the complexity of each iteration of the B&B
approach is O(((N − 1)(n +m) − 1)2 + 2m(N − 1) + (2m(N − 1)) log((n +m) · (N − 1))).

Proof. The algorithm manages an expanded graph G′ = (V ′, A′), such that |V ′| = (N −
1)(n + m) and |A′| = 2m(N − 1). At each iteration, the algorithm has to find a violated
constrained pair, and it requires O(((N − 1)(n +m) − 1)2) to scan twice the path. After, it
removes all violated arcs with a complexity of O(2m(N−1)) and, finally, executes Dijkstra’s
algorithm, whose complexity is O((2m(N − 1)) log((n +m) · (N − 1))).

2.2.2 A GRASP

Owing the computational intractability of the CSPTP, a Greedy Randomized Adap-
tive Search Procedure (GRASP) has been designed to find optimal or near-optimal feasible
solutions.

GRASP is an iterative multi-start meta-heuristic for difficult combinatorial optimiza-
tion problems [15, 16]. It has been applied to a large set of problems [29, 30, 31], ranging
from scheduling and routing to drawing and turbine balancing.

Each GRASP iteration is characterized by two main phases: a construction phase and
a local search phase.

The construction phase starts with an empty solution, and iteratively adds one element
at a time until a complete solution is obtained. At each iteration, an element is randomly
selected from a restricted candidate list (RCL), whose elements are among the best ordered,
according to some greedy function that measures the (myopic) benefit of selecting each
element.

Once a feasible solution is obtained, the local search procedure attempts to improve it
by producing a locally optimal solution with respect to some suitably defined neighborhood
structure. Construction and local search phases are repeatedly applied. The best solution
found is returned as approximation of the optimal one. Algorithm 2.3 depicts the pseudo-
code of a generic GRASP heuristic for a minimization problem.

Construction phase

The GRASP construction phase relies on an adaptive greedy function, a construction
mechanism for the RCL, and a probabilistic selection criterion. The greedy function takes

28

2.2 Solution approaches

Algorithm 2.3: Pseudo-code of a generic GRASP.

1 Algorithm GRASP(MaxIterations)
2 for i = 1, . . . , MaxIterations do
3 Build a greedy randomized solution x ;
4 x ← LocalSearch(x) ;
5 if i = 1 then
6 x∗ ← x;
7 else if x is better than x∗ then
8 x∗ ← x;
9 return x∗ ;

into account the contribution to the objective function achieved by selecting a particular
element. The construction phase for the CSPTP is described in Algorithm 2.5. It starts
with an empty chain of paths and ends with a complete solution given by a chain of paths
from s to d.

At a generic iteration, the choice of the next path to be added is determined by ordering
all candidate paths (i.e. those that can be added to the solution) in a candidate list CL,
with respect to a greedy function related to the length of the candidate paths, computed
by DijkstraVariant function, that applies Dijkstra’s algorithm taking into account arc
repetitions.

The greedy function is adaptive because the benefits associated with every candidate
path are updated at each iteration of the construction phase to reflect the changes involved
by the selection of the previous element in terms of number of times each arc is used. The
probabilistic component is characterized by randomly choosing one of the best candidates
in the RCL, but not necessarily the top candidate.

If the number N of subsets of the problem instance to be solved is strictly less than 4,
a feasible solution PT is a chain made of either a shortest simple path from s to d (N = 2)
or of two simple paths (N = 3). In both cases, for building PT there is no gain in using the
RCL mechanism, since it can be constructed by simply invoking the DijkstraVariant
function, as done by algorithm in Algorithm 2.4.

If N ≥ 4, index i is selected at random in [2, N − 1] (line 4 of Algorithm 2.5). Path
Pi = {si , . . . , di} is computed from si ∈ Ti to di ∈ Ti+1, path PT is initialized with a chain
made of only Pi . Then, the partial chain PT is iteratively augmented both toward the
origin s and the destination d. In fact, starting from j = i +2 and until a complete feasible
solution is obtained, at each iteration of the loop while (line 14) two more paths are added
in a greedy randomized adaptive fashion: a path from a node in Ti−1 to si and a path from
dj−1 to a node in Tj.

Algorithm 2.5 uses a n × n matrix K such that kij is the number of times arc (i, j) has
been involved in the partial solution PT . Procedures Increase and Decrease update K

29

Chapter 2. Shortest Path Tour Problem variants

Algorithm 2.4: Construction of a Greedy Randomized Solution when N ∈ {2, 3}.

1 Function SimpleConstruction(V, A, s, d, N, {Ti}i=1,...,N , C, K)
2 if N = 2 then
3 return DijkstraVariant(V, A, s, d, C, K);
4 else
5 PT ← Nil ;
6 min ← +∞ ;
7 for v ∈ T2 do
8 (l1, P1)← DijkstraVariant(V, A, s, v, C, K);
9 if l1 < +∞ then

10 Increase(P1, K);
11 (l2, P2)← DijkstraVariant(V, A, v, d, C, K);
12 if l1 + l2 < min then
13 PT ← P1 ⊕ P2;
14 min ← l1 + l2;
15 Decrease(P1, v, K);
16 return (min, PT);

to reflect the choices made by the construction algorithm.

Local search

At each GRASP iteration, once obtained a path tour PT from the construction phase, a
local search procedure is applied starting from PT in the attempt of improving it by produc-
ing a locally optimal solution with respect to a suitably defined neighborhood structure.

For the CSPTP, given two solutions PT = P1 ⊕ · · · ⊕ PN−1 and RT = R1 ⊕ · · · ⊕ RN−1

their symmetric difference set is defined as follows:

∆(PT , RT) = { i = 1, . . . , N − 1 | Pi , Ri } .

Coherently, the distance between PT and RT can be defined as:

d(PT , RT) = |∆(PT , RT)| .

The pseudo-code of the local search procedure we have designed for the CSPTP is
reported in Algorithm 2.6. It takes as input the GRASP path tour PT and outputs a local
optimal feasible tour with the respect to the neighborhood N(PT), defined as follows:

N(PT) = { RT | d(PT , RT) ≤ 2 } .

The while loop (lines 3 to 20) stops as soon as any improving solution in the neigh-
borhood of the current solution cannot be found. At each iteration, given the current

30

2.2 Solution approaches

Algorithm 2.5: Construction of a Greedy Randomized Solution for the CSPTP.

1 Function Construction(V, A, s, d, N, {Ti}i=1,...,N , C, K, α)
2 if N < 4 then
3 return SimpleConstruction(V, A, s, d, N, {Ti}i=1,...,N , C, K) ;
4 i ← Rand(2, N-2); PT ← Nil; CL ← ∅;
5 for v ∈ Ti do
6 for w ∈ Ti+1 do
7 (l, P)← DijkstraVariant(V, A, v, w, C, K);
8 CL ← CL ∪ { (l, P, v, w) };
9 RCL ← MakeRCL(α); (l, P, v, w)← Select(RCL) ;

10 Pi ← P; PT ← PT ⊕ Pi ;
11 si ← v; di ← w;
12 Increase(Pi , K) ;
13 j ← i + 2; i ← i − 1 ;
14 while (i > 0) ∨ (j < N) do
15 CL ← ∅;
16 if i > 1 then
17 for v ∈ Ti do
18 (l, P)← DijkstraVariant(V, A, v, si+1, C, K) ;
19 CL ← CL ∪ { (l, P, v, si+1) } ;
20 else if i = 1 then
21 (l, P)← DijkstraVariant
22 V, A, s, s2, C, K ;
23 CL ← CL ∪ { (l, P, s, s2) } ;
24 RCL ← makeRCL(α); (l, P, v, w)← Select(RCL) ;
25 Pi ← P; PT ← Pi ⊕ PT ;
26 si ← v; di ← w ;
27 Increase(Pi , K) ;
28 CL ← ∅ ;
29 if j < N then
30 for v ∈ Tj do
31 (l, P)← DijkstraVariant(V, A, dj−1, v, C, K) ;
32 CL ← CL ∪

{
(l, p, dj−1, v)

}
;

33 else if j = N then
34 (l, P)← DijkstraVariant(V, A, dj−1, d, C, K) ;
35 CL ← CL ∪

{
(l, P, dj−1, d)

}
;

36 RCL ← makeRCL(α); (l, P, v, w)← Select(RCL) ;
37 Pj ← P; PT ← PT ⊕ Pj ;
38 sj ← v; dj ← w ;
39 Increase(Pj, K) ;
40 j ← j + 1; i ← i − 1 ;
41 return PT ;

31

Chapter 2. Shortest Path Tour Problem variants

Algorithm 2.6: Local Search for the CSPTP.

1 Function LocalSearch(pt, V, A, s, d, N, {Ti}i=1,...,N , C, K)
2 flag ← true;
3 while flag = true do
4 flag ← false;
5 for i ← 2 to N − 1 do
6 Decrease(Pi−1, K) ;
7 Decrease(Pi , K) ;
8 min ← L(Pi−1) + L(Pi) ;
9 for v ∈ Ti do

10 (l′, P′)← DijkstraVariant(V, A, si−1, v, C, K) ;
11 Increase(P′, K) ;
12 (l′′, P′′)← DijkstraVariant(V, A, v, di , C, K) ;
13 Decrease(P′, K) ;
14 if l′ + l′′ < min then
15 min ← l′ + l′′ ;
16 Pi−1 ← P′ ;
17 Pi ← P′′ ;
18 flag ← true ;
19 Increase(Pi−1, K);
20 Increase(Pi , K);
21 return PT ;

32

2.2 Solution approaches

solution PT =
⊕N−1

i=1 Pi , iteratively for i = 2, . . . , N − 1 it checks whether Pi−1 ⊕ Pi can be
substituted by any shorter P′ ⊕ P′′, where P′ originates in si−1 and ends in some node v in
Ti and P′′ originates in v and ends in di (lines 9 to 18).

The neighborhood is explored with a best improvement strategy.

2.2.3 Experimental results

To analyze the performance of the proposed algorithms, a large amount of computa-
tional experiments were performed. The algorithms have been coded in C++ language
and run on a Intel Core i7 Quad core @ 2.67 GHz processor, under the Linux (Ubuntu
11.10) operating system.

The objective of the computational study has been to compare the running times
achieved by the algorithms as a function of the parameter N , when applied on several
different networks, with different densities and number of nodes. All test problems have
been pseudo-randomly generated by using a generator proposed by Festa and Pallottino
[28]. For a detailed description of how such instances are generated, the reader is referred
to Festa [26].

B&B has been implemented using two different strategies to build the branching tree:
depth first (BBdf) and best bound first (BBbf). The criterion used to stop GRASP has been
MaxIterations = 100.

For each problem family, ten different instances have been generated and the mean
running time (in seconds) has been computed and stored. The quality of the solutions
determined by GRASP has been evaluated by computing the mean relative error ϸ = z′−z∗

z∗ ,
where z′ is the objective function value corresponding to the suboptimal solution and z∗

is the optimal value.
In the following, we use γ to denote the number of nodes belong to some Ti .

Complete graphs

A first set of experiments involves complete graphs with the goal of analyzing how
running times of B&B and GRASP vary depending on the number n of nodes. The number
of sets Ti is N = .25n and γ = .40n nodes belong to some Ti .

Looking at the results reported in Table 2.1, it is evident that GRASP is a robust
heuristic, able to find an optimal solution in very limited running times compared with
those required by B&B. Furthermore, for most instances BBdf slightly outperforms BBbf.

On complete graphs with more than 260 nodes only GRASP could be tested, because
both B&B implementations failed to solve the problem. Figure 2.4 plots the running times
required by GRASP to solve instances on complete graphs with n ∈ {300, 350, 400, 450, 500}
and N = .25n. Looking at the results, it emerges that in a reasonable running time,
medium-large size problem instances can be managed.

33

Chapter 2. Shortest Path Tour Problem variants

Table 2.1: Complete graphs: N = .25n and γ = .40n.

BBbf BBdf GRASP

n Time Time Time ϸ

100 1.09 1 1.27 0
150 4.2 4.2 4.72 0
200 14.8 15 11.57 0
250 50.36 32 21.59 0
252 54 65.6 23.55 0
254 213.9 122.5 24.45 0
256 255.9 225.6 24.04 0
258 197.1 186.7 24.20 0
260 371.6 370.5 25.82 0

In order to assess the behaviour of the algorithms as a function of the number N of
node subsets, another computational experiment was performed on complete graphs with
n ∈ {100, 150}, N ∈ { .2n, .4n, .6n, .7n, .75n, .8n }, and γ = .8n. Table 2.2 shows the mean
running time for both B&B implementations to find an optimal solution. For GRASP, the
mean relative error and the mean running time to perform 100 iterations are reported.

Table 2.2: Complete graphs, γ = .8n.

BBbf BBdf GRASP

n, N Time Time Time ϸ

100, 20 0.6 0.8 3 0
100, 40 2.1 2.3 2.6 0
100, 60 5.4 6.3 2.7 0
100, 80 22.21 43.35 1.57 0.001

150, 20 3.1 3.1 10 0.005
150, 40 9.8 10 9.7 0.0005
150, 60 55.4 63.9 8.4 0.00004
150, 70 96.4 110.8 8.5 0.0007
150, 75 282.7 315.1 7.6 0.001

From the results, it is evident that the running time of BBbf and BBdf increases with
N . This behaviour can be explained by observing that the size of the expanded graph G′

depends on N , and therefore to build it a higher computational cost is required. With
respect to GRASP, the higher the number N the lower the mean running time.

For a deeper analysis of this behaviour, Figure 2.5 plots the mean running times
required by GRASP to find the best local optimal solution over MaxIterations = 100 itera-
tions for complete graphs with n = 200 and N ∈ { .1n, .2n, .3n, .4n, .5n, .6n, .7n, .8n, .9n, n }.

34

2.2 Solution approaches

100

200

300

400

300 350 400 450 500
Nodes

S
ec

on
ds

Figure 2.4: Mean running times (over ten trials) required by GRASP to find the best solution
for complete graphs with N = .25n and n ∈ {300, 350, 400, 450, 500}.

Looking at the results, for N ∼ n the mean running time is very low, less than about 30
seconds. This behaviour can be explained by observing that the higher N , the lower the
cardinality of each Ti , i = 1, . . . , N , which impacts both the construction and local search
phases. In the construction phase, a smaller number of iterations is performed each time
a new path must be found to be added to the partial chain. In the local search, a smaller
effort must be spent to explore the lower cardinality neighborhood of the current solution.

On complete graphs with n = 200, N = 10, and

γ ∈ { .1n, .2n, .3n, .4n, .5n, .6n, .7n, .8n, .9n, n } ,

a further experiment has been performed, whose results are shown in Figure 2.6. The
figure plots the mean running times required by B&B implementations to find an optimal
solution and the mean running time required by GRASP to find the best local optimal
solution.

Looking at the figure, it is evident that the running time of GRASP varies proportionally
to γ. This result confirms the conclusion drawn above about the relationship between the
cardinality of node subsets and running time to perform each local search and construction
iterations. On the contrary, B&B computing time does not depend on γ. This behaviour
can be explained noting that the size of the expanded graph is exactly the same.

35

Chapter 2. Shortest Path Tour Problem variants

20

30

40

10 20 30 40 50 60 70 80 90 100
N

S
ec

on
ds

Figure 2.5: Mean running times (over ten trials) required by GRASP to find the best solution
for complete graphs with n = 200 and N ∈ {.1n, .2n, .3n, .4n, .5n, .6n, .7n, .8n, .9n, n}.

Random graphs

Table 2.3 reports running times on random graphs with n = 100 and m ∈ {4n, 8n, 16n, 32n}.
For these instances, GRASP found high quality solutions with a mean relative error ϸ less
than or equal to 0.004. Running times of GRASP and B&B implementations are compet-
itive, with the exception of sparse graphs with 400 arcs. This is not surprising because
in case of sparse graphs B&B techniques need to perform a high number of branching
operations. Contrary to the complete graphs case, the BBdf is outperformed by BBbf.
This behaviour is explained by observing that in the sparse case there are less feasible
solutions. Therefore, it is not worthwhile applying a depth strategy that tends to rapidly

Table 2.3: Random graphs: n = 100, N = .24n, and γ = .40n.

BBbf BBdf GRASP

m Time Time Time ϸ
400 24.9 85.9 0.2 0.004
800 0.7 2 0.22 0.001

1600 0.2 0.5 0.32 0
3200 0.3 0.4 0.53 0.0004

36

2.2 Solution approaches

●

●

●

●

●

●

●

●

●

●

0

3

6

9

10 20 30 40 50 60 70 80 90 100
γ

S
ec

on
ds

Algorithm ● GRASP BBbf BBdf

Figure 2.6: Mean running times (over ten trials) for complete graphs with n = 150, N = 15
and γ ∈ {.1n, .2n, .3n, .4n, .5n, .6n, .7n, .8n, .9n, n}.

find complete solutions that in this case can be infeasible with high probability.
Summarizing, the higher m the lower the computational effort, since the higher the

density of the graph, the higher the number of paths connecting two nodes. Consequently,
it is less likely that any arc constraint is violated. In other words, the denser the graph,
the lower the number of the generated subproblems and coherently the depth of the cor-
responding branching tree.

To better analyze the performances of the two B&B implementations compared to the
GRASP, additional experiments have been carried out on difficult instances solved within
a very small computational time, that is on sparse random graphs and letting all the
algorithms run for a fixed amount of time equal to 3 seconds.

For both B&B implementations, Table 2.4 reports in the second and third columns the
mean running times to find an optimal solution (columns BBbf Time and BBdf Time). In
the fourth, the fifth, and the sixth columns (BBbf_time ϸ, BBdf_time ϸ, and GRASP_time
ϸ) it reports the mean relative errors of two B&B implementations and of GRASP after 3
seconds of running time, respectively. The symbol ”—” means that the related approach
is not able to find a feasible solution within the time limit of 3 seconds, for each of the
considered instances.

It is evident that with the same amount of time BBdf has a higher probability to find a

37

Chapter 2. Shortest Path Tour Problem variants

Table 2.4: Random graphs, N = .20n and γ = .40n.

BBbf BBdf BBbf_time BBdf_time GRASP_time
Size (n, m) Time Time ϸ ϸ ϸ

100, 500 0.1 0.8 0 0 0.001
120, 600 3 7.4 — 0.009 0.0005
140, 700 34.3 166.8 — 0.058 0.005
160, 800 86.2 271 — 0.068 0.003
180, 900 25.4 386.6 — 0.046 0.006

feasible solution than does BBbf. Except for the case n = 100, m = 500, the version of the
GRASP that is executed for only 3 seconds (i.e., GRASP_time) has always a mean relative
error lower than BBdf_time. This confirms the robustness of GRASP for sparse graphs.

Grid graphs

A final set of experiments involves two types of grid graphs: square grids with side
length l ∈ {9, 10, 12, 14, 20, 25} (i.e., n ∈ {81, 100, 144, 196, 400, 625}) and elongated grids
with shortest side length l1 ∈ {4, 5, 7, 10, 12} and highest side length l2 ∈ {15, 20, 25, 40, 50}.
The number of sets Ti is N =∈ {.15n, .16n, .17n, .18n, .19n} and γ = .35n. For each grid
type and for each size, we have computed the average running times employed by BBbf
and GRASP over 100 different randomly generated instances. The criterion adopted to stop
GRASP has been either the achievement of an optimal solution or, in the worst case, the
achievement of the time limit equal to the one required by BBbf.

For small sized squared and elongated grids, the results obtained are summarized in
Tables 2.5 and 2.6, where for each problem type, the instance size is reported in the
first column. The second and third columns report BBbf and GRASP mean running times,
respectively. The remaining columns report the number of instances optimally solved by
GRASP out of 100 versus those solved by BBbf, and the mean relative error ϸ computed
over all instances solved by BBbf.

The results obtained confirm that the B&B method can only be used to solve small
sized instances of the problem, since only for three square grid type graphs (i.e., 09×09N15,
09×09N16, and 09×09N17) it found an optimal solution for all 100 instances in reasonable
running times.

For the same three square grid type graphs, GRASP found an optimal solution for 95,
96, and 91 out the 100 instances, respectively. For 20 square grid type graphs, GRASP
found high quality solutions with a mean relative error ϸ less than or equal to 0.002.

Running times of GRASP are lower by several order of magnitude compared to BBbf.
This is not surprising because grid graphs are sparse and, as already shown in other
experiments, in case of sparse graphs B&B techniques perform a large number of branching

38

2.2 Solution approaches

Table 2.5: Small sized square grids: l ∈ {9, 10}, N ∈ {.15n, .16n, .17n, .18n, .19n}, and
γ = .35n.

Instance BBbf time GRASP time # GRASP optima ϸ

09 × 09N15 0.30 0.12 95 / 100 0.0004
09 × 09N16 0.33 0.14 96 / 100 0.0004
09 × 09N17 1.23 0.19 91 / 100 0.0008
09 × 09N18 4.34 1.17 78 / 99 0.0026
09 × 09N19 6.03 2.07 71 / 98 0.0022

10 × 10N15 4.57 0.94 87 / 99 0.0005
10 × 10N16 18.06 3.54 77 / 92 0.0012
10 × 10N17 19.35 4.32 70 / 85 0.0011
10 × 10N18 36.48 10.47 62 / 84 0.0020
10 × 10N19 42.39 13.93 42 / 58 0.0016

Table 2.6: Small sized elongated grids: l1 ∈ {5, 7} and l2 ∈ {15, 20}, N ∈
{.15n, .16n, .17n, .18n, .19n}, and γ = .35n.

Instance BBbf time GRASP time # GRASP optima ϸ

05 × 20N15 16.2614 4.3863 70 / 88 0.0010
05 × 20N16 28.2877 6.9315 60 / 73 0.0010
05 × 20N17 24.4222 4.1111 41 / 45 0.0004
05 × 20N18 68.3824 20.4412 26 / 34 0.0015
05 × 20N19 62.0435 19.0435 17 / 23 0.0021

07 × 15N15 8.1649 1.3402 86 / 97 0.0006
07 × 15N16 111.6440 18.9333 77 / 90 0.0009
07 × 15N17 21.8861 6.1392 62 / 79 0.0014
07 × 15N18 32.9524 5.6031 56 / 63 0.0003
07 × 15N19 39.4792 12.7292 36 / 48 0.0018

39

Chapter 2. Shortest Path Tour Problem variants

operations.

2.3 A more sophisticated exact approach

The main disadvantage of the presented B&B is that it needs to expand the graph
G to a graph G′ that represents the PAFPP instance. Indeed, the expanded graph is
much larger than the original one, and B&B cannot solve medium instances because the
expanded graph overflows memory limits.

To overcome this limitation, Ferone et al. [18] proposed an integer mathematical pro-
gram that can model the CSPTP on its original graph, and allows the design of a new
B&B algorithm that has better performance.

The basic observation that lies behind this new approach is that each sub-path from
Tk to Tk+1, for each k = 1, . . . , N − 1, must be simple. Otherwise, it is possible to remove
the cycle, obtaining a feasible solution with lower cost. Therefore, CSPTP can be viewed
as a concatenation of N − 1 simple paths, where the generic k-th path starts in a node of
Tk and ends in a node of Tk+1.

2.3.1 Mathematical formulation

By defining for sub-path k = 1, 2, . . . , N − 1 and for each arc (i, j) ∈ A, the binary
variables:

xk
ij =

 1, if arc (i, j) belongs to the simple path from Tk to Tk+1;
0, otherwise,

the CSPTP can be formulated as the following 0-1 integer linear program:

min
∑

(i,j)∈A

N−1∑
k=1

cijx
k
ij (2.2a)

s.t.
N−1∑
k=1

xk
ij ≤ 1 ∀ (i, j) ∈ A (2.2b)∑

j∈FS(s)

x1
sj = 1 (2.2c)∑

j∈BS(s)

x1
js = 0 (2.2d)∑

j∈FS(s)

xk
sj −

∑
j∈BS(s)

xk
js = 0 ∀ k = 2, . . . , N − 1 (2.2e)∑

j∈BS(d)

xN−1
jd = 1 (2.2f)∑

j∈FS(d)

xk
dj −

∑
j∈BS(d)

xk
jd = 0 ∀ k = 1, . . . , N − 2 (2.2g)

40

2.3 A more sophisticated exact approach

∑
j∈FS(i)

xk
ij −

∑
j∈BS(i)

xk
ji = 0 ∀ i ∈ T1 ∪ TN \ {s, d},∀ k = 1, . . . , N − 1 (2.2h)∑

j∈FS(i)

x l
ij −

∑
j∈BS(i)

x l
ji = 0 ∀ l = 2, . . . , N − 1, ∀ k , l,∀ i < Tk (2.2i)∑

j∈FS(i)

x l
ij −

∑
j∈BS(i)

x l
ji −

∑
j∈BS(i)

x l−1
ji = 0 ∀ l = 2, . . . , N − 1, ∀ k , l, ∀i ∈ Tk (2.2j)∑

j∈FS(i)

xk
ij −

∑
j∈BS(i)

xk
ji = 0 ∀ k = 1, . . . , N − 1,∀ i < ∪N−1

l=1 Tl (2.2k)

xk
ij ∈ { 0, 1 } ∀ (i, j) ∈ A,∀ k = 1, . . . , N − 1. (2.2l)

Objective function (2.2a) represents the total length of the solution path to be min-
imized. Constraints (2.2b) ensure that each arc (i, j) ∈ A is included in the path tour at
most once. Constraints (2.2c) and (2.2d) impose that the path tour starts at the source
node s.

Since the source node s can be visited again in sub-paths i = 2, . . . , N − 1, condi-
tions (2.2e) represent the flow balance constraints at source node, whereas constraints (2.2f)
and (2.2g) are the specular flow balance constraints at the destination node.

Constraints (2.2h) impose that the nodes belonging to T1 ∪ TN cannot be neither
the destination nor the source node of any intermediate simple path. Constraints (2.2i)
and (2.2j) guarantee that any node belonging to Tk, for some k = 2, . . . , N − 1, can be
the destination node of the sub-path k − 1 and the source node of the sub-path k, but it
cannot be neither destination nor source node for other sub-paths.

Finally, conditions (2.2k) represent the flow balance constraints at each node that does
not belong to any Tk.

2.3.2 An advanced exact approach

Relying on the mathematical formulation (2.2), a new Branch & Bound algorithm
(referred in sequel as B&Bnew) was proposed. This new algorithm is more efficient than
the algorithm presented in Section 2.2.1.

A path tour is a concatenation of simple paths between Ti and Ti+1, ∀ i = 1, . . . , N−1. A
generic node Pt of the branching tree corresponds to a subproblem of the original CSPTP
problem. By relaxing per elimination constraints (2.2b), the relaxed subproblem Pr

t is a
shortest path tour problem that can be polynomially solved. Once optimally solved Pr

t , if
its optimal solution results infeasible for Pt , there must exist a pair of indices i and j such
that the Pr

t solution path crosses at least twice an arc (v, w), one time in the sub-path from
Ti to Ti+1, the other time in the sub-path from Tj to Tj+1. In this case, B&Bnew generates
two new branching nodes: it is imposed that the solution must not include the arc (v, w)
in the sub-path from Ti to Ti+1 and in the sub-path from Tj to Tj+1, respectively.

To efficiently address the solution of each subproblems, each branching tree node uses

41

Chapter 2. Shortest Path Tour Problem variants

the following data structures:

• an N −1-dimensional array paths that stores in position i, i = 1, . . . , N −1, all paths
from each node in Ti to all nodes in Ti+1;

• an N − 1-dimensional array constraints that stores in position i, i = 1, . . . , N − 1, all
the arcs that cannot be used in the solution for the sub-path from Ti to Ti+1;

• an index i that identifies the sub-path that must be recomputed.

Algorithm 2.7: Function that generates a new branching tree node.

1 Function GenerateNode(paths, constraints, i, (v, w))
2 Node.paths← paths ;
3 Node.constraints← constraints ;
4 Node.constraints[i]← Node.constraints[i] ∪ {(v, w)} ;
5 Node.paths[i]← ∅ ;
6 Node.index ← i ;
7 return Node ;

The pseudo-code of B&Bnew is reported in Algorithm 2.8. To generate a new branching
node, it invokes the function described in Algorithm 2.7. B&Bnew starts by computing
a shortest path between all pairs of vertices (line 2). Then, it looks for the best path
tour that can be constructed with the computed shortest paths. If the resulting tour is
feasible, then it is also optimal for the CSPTP and it is returned by the algorithm (lines 3
to 5). Otherwise, all shortest paths are stored for later use (lines 6 to 9). At line 10, the
algorithm finds an arc (v, w) that is repeated in the solution, since it belongs both to the
path from Ti to Ti+1 and to the path from Tj to Tj+1. Hence, two branching nodes are
generated. In particular, the node related to the index i

• saves the constraint, imposing that the arc (v, w) cannot belong to the path from Ti

to Ti+1;

• discards the paths from Ti to Ti+1;

• memorizes the index i.

Similar information are stored at the node corresponding to index j (lines 11 to 14).
The algorithm iterates until the queue Q of current active nodes becomes empty

(line 16). At each iteration, the algorithm selects a node and removes from the graph
the constrained arcs (lines 17 to 19), computes a shortest path between all nodes in Ti

and Ti+1, and then applies a dynamic programming algorithm (described in the following)
to find the best path tour (lines 20 to 23). Afterwards, the graph is restored (line 24). The

42

2.3 A more sophisticated exact approach

Algorithm 2.8: New Branch & Bound algorithm.

1 Function B&Bnew(G = (V, A, C), s, d, {Ti}i=1,...,N)
2 ShortestPaths ← FloydWarshall(G) ;
3 x ← DP(V, A, s, {Ti}i=1,...,N , ShortestPaths) ;
4 if x is feasible then
5 return (x, z(x)) ;
6 for i ← 1 to N − 1 do
7 for v ∈ Ti do
8 for w ∈ Ti+1 do
9 Paths[i]← Paths[i] ∪ {ShortestPaths[v][w]} ;

10 ((v, w), i, j)← Find(x) ;
11 Node1 ← GenerateNode(Paths, [∅]N−1

i=1 , i, (v, w)) ;
12 Node2 ← GenerateNode(Paths, [∅]N−1

i=1 , j, (v, w)) ;
13 k ← 2 ;
14 Q ← {Node1, Node2} ;
15 x∗ ← Nil, z(x∗)← +∞ ;
16 while Q is not empty do
17 Node ← Pop(Q) ;
18 i ← Node.index;
19 A ← A \ Node.costraints[i] ;
20 for v ∈ Ti do
21 for w ∈ Ti+1 do
22 Node.paths[i]← Node.paths[i] ∪ {Dijkstra(G, v, w)};
23 x ← DP(Node.paths) ;
24 A ← A ∪ Node.costraints[i] ;
25 if x is feasible then
26 if z(x) < z(x∗) then
27 x∗ ← x; z(x∗)← z(x);
28 else if z(x) < z(x∗) then
29 k ← k + 2;
30 ((v, w), i, j)← Find(x);
31 Nodek−1 ← GenerateNodes(Node.paths, Node.constraints, i, (v, w));
32 Nodek ← GenerateNodes(Node.paths, Node.constraints, j, (v, w));
33 Q ← Q ∪ {Nodek , Nodek−1};
34 return (x∗, z(x∗)) ;

43

Chapter 2. Shortest Path Tour Problem variants

last part of the algorithm is concerned with examining the solution. The following two
cases can occur: 1) the current solution is feasible; 2) the current solution is infeasible.
In the first case (line 25), if the current solution is better than the incumbent solution,
the latter is updated. In the second case, if the bounding criterion is not satisfied, two
branching nodes are generated (lines 28 to 33). As soon as the queue Q becomes empty,
the incumbent solution is returned as final result (line 34).

An interesting property of this approach is that it does not need to recompute from
scratch the entire path tour at each node. In fact, when the analyzed node contains the
index i, only the sub-path from Ti to Ti+1 is redetermined, by computing the shortest
paths between Ti and Ti+1. Generally speaking, this leads to a reduction of the running
time needed to solve the subproblem associated to each node.

Dynamic programming algorithm

The main operations executed by the dynamic programming algorithm implemented
to solve the SPTP problem are given in Algorithm 2.9.

Algorithm 2.9: Dynamic programming algorithm for the solution of SPTP.

1 Function DP(V, A, s, {Ti}i=1,...,N , L[,])
2 for l ← 1 to 2 do
3 for w ∈ Tl do
4 C[w]← L[s, w];
5 if L[s, w] < +∞ then
6 Pred[w]← s;
7 else
8 Pred[w]← Nil
9 for l ← 3 to N do

10 for w ∈ Tl do
11 C[w]← +∞;
12 Pred[w]← Nil;
13 for z ∈ Tl−1 do
14 if C[z] + L[z, w] < C[w] then
15 C[w]← C[z] + L[z, w];
16 Pred[w]← z;
17 return (C, Pred)

Let L be the matrix of the shortest path costs between all pairs of nodes. The first
lines 2 to 8 compute the best path between each node v ∈ T2 and s, then in lines 9 to 16,
for each l ∈ 3, . . . , N , the best path tour is computed from the nodes in Tl−1 to the current
node v ∈ Tl . At the end, in C[d] there will be the cost of the optimal solution, and the
array Pred contains the sequence of nodes in Ti , for i = 1, . . . , N .

44

2.3 A more sophisticated exact approach

2.3.3 Experimental results

Test environment

The B&Bnew has been implemented in C++ and compiled into bytecode with g++
(Ubuntu 5.2.1-22ubuntu2) 5.2.1 Flag: -std=c++14. Running times reported are UNIX
real wall-clock times in seconds, excluding the time to read the instance. The random
number generator used was Matsumoto and Nishimura’s Mersenne Twister [46].

All experiments were run on S.Co.P.E.1, a cluster of nodes, connected by 10 Gigabit
Infiniband technology, each of them with two processors Intel Xeon E5-4610v2@2.30 Ghz.
Each execution was limited to a single processor.

Test Problems

Three classes of pseudo-randomly generated instances are considered to assess the be-
haviour of the considered solution approaches: complete, random sparse, and grid graphs.
All test problems are built by using the generator proposed by Festa and Pallottino [28].

Networks with different density values and number of nodes have been taken into
account. For all networks, the arc costs are chosen according to a uniform distribution in
the range from [10, 100].

Complete Graphs Nine complete graphs are considered. Each of these test problems,
referred to as C1, . . . , C9, in the sequel, includes all the possible n(n − 1) arcs. The
number of nodes are n ∈ { 100, . . . , 500 } with a step of 50.

Grid Graphs Six grid graphs have been considered (i.e., G1, . . . , G6), whose character-
istics are given in Table 2.7. The nodes are arranged in a planar grid. Each pair of
adjacent nodes are connected in both directions.

Random Sparse Graphs A set of 10 random graphs of different size (named R1, . . . , R10,
in the sequel) have been generated. The number of nodes n has been set equal to
250, 500 and the number of arcs m has been chosen as {0.1, 0.2, 0.3, 0.4, 0.5}·n(n−1).

Table 2.7: Characteristics of the Grid Networks.

Problem Dimension Nodes Arcs
G1 5 × 10 50 170
G2 10 × 20 200 740
G3 15 × 30 450 1710
G4 5 × 5 25 80
G5 10 × 10 100 360
G6 15 × 15 125 840

1S.Co.P.E. is a computing infrastructure at the University of Napoli FEDERICO II.

45

Chapter 2. Shortest Path Tour Problem variants

Algorithm 2.10: Generation algorithm.

1 Function GenerateGraph(type, n, m, α, γ, seed)
2 SetSeed(seed);
3 Generate G = (V, A, C) with the generator by [28] using parameters (type, n, m);
4 N ← ⌊α · n⌋; γ ← ⌊γ · n⌋;
5 Z ← ∅;
6 s← Rand(V \ Z); Z ← Z ∪ {s};
7 d ← Rand(V \ Z); Z ← Z ∪ {d};
8 T1 ← {s}; TN ← {d};
9 for i ← 2 to N − 1 do

10 v ← Rand(V \ Z);
11 Ti ← {v}; Z ← Z ∪ {v};
12 for i ← N + 1 to γ do
13 v ← Rand(V \ Z);
14 i ← Rand(1, N);
15 Ti ← Ti ∪ {v}; Z ← Z ∪ {v};
16 return (G, s, d, {Ti}i=1,...,N);

For each of the aforementioned network, a set of CSPTP instances has been defined
by choosing the number N of subsets Ti as a percentage α of the number of nodes n. In
particular, α has been set equal to 0.10 and 0.25. In addition, the size of the subsets
Ti has been defined, by selecting randomly a percentage γ of the number of nodes and
inserting them into the subsets Ti , according to the procedure outlined in Algorithm 2.10.

Firstly, the weighted graph is generated with the generator by Festa and Pallottino
[28] (line 3). Then the source and destination nodes randomly picked in non constrained
nodes and inserted in T1 and TN , respectively (lines 6–8). To ensure that all subsets Ti

are non-empty, a random node is assigned to each subset Ti , i = 2, . . . , N − 1 (lines 9–10).
Finally, until the instance is complete, a random node is added in a random set Ti . All
Rand calls use a uniform distribution between the candidates.

In the computational experiments, γ has been chosen equal to 0.35 and 0.70. For each
problem type, ten different instances have been generated. The average running time (in
seconds) has been computed and stored.

Algorithms

The following algorithms and models are compared:

• M1: the mathematical model of PAFPP on the expanded graph presented in Sec-
tion 2.2.1;

• B&B: the Branch & Bound algorithm presented in Section 2.2.1;

• GRASP: the GRASP metaheuristic (Section 2.2.2);

46

2.3 A more sophisticated exact approach

• M2: the mathematical model presented in Section 2.3.1;

• B&Bnew: the Branch & Bound algorithm presented Section 2.3.2.

Empirical evaluation of the mathematical models

In this section, the mathematical models M1 and M2 are compared, in terms of ef-
ficiency. In particular, the number of times in which each model is solved (i.e, either
the optimal or a feasible solution is found), on the 10 different instances, are chosen as
statistics to evaluate the performance of the considered models. In the computational
experiments, a time limit of 30 minutes on the solver execution time was imposed.

The performance profiles for both models M1 and M2 are highlighted in Figures 2.7
and 2.8, where the computational results collected on random sparse and complete graphs
are reported, respectively. Two plots are reported for each set: one related to the optimal
solution and the other to the feasible solution. On the grid graphs, the results of both the
models are equal, except for the case G3 α = 0.1, γ = 0.7. In this case, M1 is optimally
solved on 10 instances, conversely with M2 the optimum is reached in 8 cases.

The collected computational results clearly underline that the mathematical formula-
tion M2 outperforms M1 on random and complete graphs. From Figures 2.7 and 2.8, it
is evident that M2 is solved (i.e, either the optimal or a feasible solution is obtained) a
greater number of times respect to M1, within the imposed time limit.

To better analyze the behaviour of the two models, it is useful to consider also the
computational times, given in Figures 2.9 to 2.11. It is quite evident that M2 completely
outperforms M1 on Random and Complete networks, and it is competitive on most of the
Grid instances. Moreover, M2 does not need the construction of the expanded graph, and
it requires less memory.

Empirical evaluation of the Branch & Bound approaches

In this section, a comparison of B&Bnew with B&B is presented. The computational
experiments have been carried out, by considering, for both the approaches, the best found
first strategy to build the branching tree. This choice has been motivated by the fact that,
as shown in Section 2.2.3, this strategy outperforms the depth first one.

In Figure 2.12, the performance profiles of the two approaches are shown. It is evident
that B&Bnew outperforms consistently B&B. For all graph’s typologies, B&Bnew is able
to find the optimal solution on a greater number of instances than those solved by B&B.
Particularly, for complete graphs (Figure 2.12a), B&Bnew always find an optimal solution.

It was an expected behaviour for two main reasons. Firstly, B&Bnew shows a better
time complexity than B&B, since at each node, B&Bnew have to recalculate only a small
part of the path tour. Secondly, B&Bnew does not need to expand the graph, thus a
significant difference in memory usage is observed. Indeed, B&B is not able to solve a

47

Chapter 2. Shortest Path Tour Problem variants

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

0

2

4

6

8

10

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10 R

1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

10 R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10 R

1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

10

Instance

V
al

ue

Model M1 M2

(a) Optimal solutions

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

0

2

4

6

8

10

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10 R

1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

10 R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10 R

1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

10

Instance

V
al

ue

Model M1 M2

(b) Feasible solutions

Figure 2.7: Performance profiles for optimal solutions of M1 and M2 on sparse random
graphs.

48

2.3 A more sophisticated exact approach

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

0

2

4

6

8

10

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

Instance

V
al

ue

Model M1 M2

(a) Optimal solutions

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

0

2

4

6

8

10

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

Instance

V
al

ue

Model M1 M2

(b) Feasible solutions

Figure 2.8: Performance profiles of M1 and M2 on complete graphs.

49

Chapter 2. Shortest Path Tour Problem variants

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

●
●

●

●

●

●
●

●

●

●

●

●

●

●

0

1000

2000

3000

4000

5000

R1 R2 R3 R4 R5 R6 R7 R8 R1 R2 R3 R4 R5 R6 R7 R8 R9 R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

Instance

S
ec

on
ds

Model ● M1 M2

Figure 2.9: Computational times to solve M1 and M2 formulations on Random graphs.

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

●
●

●

●

●
●

●

●

●

●

●

●

0

1000

2000

3000

4000

C1 C2 C3 C4 C5 C6 C1 C2 C3 C4 C5 C7 C1 C2 C3 C4 C1 C2 C3 C4

Instance

S
ec

on
ds

Model ● M1 M2

Figure 2.10: Computational times to solve M1 and M2 formulations on Complete graphs.

50

2.3 A more sophisticated exact approach

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

● ●

●

● ● ● ● ●

●

● ● ● ●

●

● ●

●

●

●

● ●

●

0

500

1000

G1 G2 G3 G4 G5 G6 G1 G2 G3 G4 G5 G6 G1 G2 G4 G5 G6 G1 G2 G4 G5 G6

Instance

S
ec

on
ds

Model ● M1 M2

Figure 2.11: Computational times to solve M1 and M2 formulations on Grid graphs.

large number of instances, because it requires a huge amount of memory and fails to
allocate it.

Comparison with the GRASP

In this section, the best performing approaches (i.e., B&Bnew and M2) are compared
with the GRASP metaheuristic.

The results for complete graphs are shown in Figures 2.13 and 2.14. It is evident that
B&Bnew is very accurate and efficient on complete graphs, since it is able to find always the
optimum. GRASP shows quite good performance and is able to solve to optimality several
instances (and it finds a feasible solution on all the test problems). On the other hand,
M2 behaves quite poorly, especially on large-size instances. It is evident that B&Bnew

outperforms CPLEX, because it follows a solution strategy well-tailored to the problem
under study, that relies on the solution of only SPP sub-problems.

The computational results collected on the random graphs (see Figures 2.15 and 2.16)
underline that B&Bnew behaves the best and for the big instances, GRASP is not able to
find optimal solutions.

A completely different behaviour is observed for the grid graphs. More specifically, the
results reported in Figure 2.17 show that B&Bnew and M2 do not find feasible solutions
on several instances. On the contrary, GRASP always finds a feasible solution. This

51

Chapter 2. Shortest Path Tour Problem variants

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

0

2

4

6

8

10

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

Instance

V
al

ue

Algorithm B&B B&Bnew

(a) Complete graphs

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

0

2

4

6

8

10

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10 R

1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

10 R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10 R

1
R

2
R

3
R

4
R

5
R

6
R

7
R

8
R

9
R

10

Instance

V
al

ue

Algorithm B&B B&Bnew

(b) Random graphs

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

0

2

4

6

8

10

G
1

G
2

G
3

G
4

G
5

G
6

G
1

G
2

G
3

G
4

G
5

G
6

G
1

G
2

G
4

G
5

G
6

G
1

G
2

G
4

G
5

G
6

Instance

V
al

ue

Algorithm B&B B&Bnew

(c) Grid graphs

Figure 2.12: Performance profiles of B&B and B&Bnew algorithms for optimal solutions.

52

2.3 A more sophisticated exact approach

α : 0.1

γ : 0.35

α : 0.25

γ : 0.35

0

2

4

6

8

10

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 C2 C3 C4 C5 C6 C7 C8 C9
Instance

V
al

ue

Algorithm M2 B&Bnew GRASP

Figure 2.13: Performance profile on complete graphs with γ = 0.35 for optimal solutions.

α : 0.1

γ : 0.7

α : 0.25

γ : 0.7

0

2

4

6

8

10

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 C2 C3 C4 C5 C6 C7 C8 C9
Instance

V
al

ue

Algorithm M2 B&Bnew GRASP

Figure 2.14: Performance profile on complete graphs with γ = 0.70 for optimal solutions.

53

Chapter 2. Shortest Path Tour Problem variants

α : 0.1

γ : 0.35

α : 0.25

γ : 0.35

0

2

4

6

8

10

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
Instance

V
al

ue

Algorithm M2 B&Bnew GRASP

Figure 2.15: Performance profile on random sparse graphs with γ = 0.35 for optimal
solutions.

α : 0.1

γ : 0.7

α : 0.25

γ : 0.7

0

2

4

6

8

10

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
Instance

V
al

ue

Algorithm M2 B&Bnew GRASP

Figure 2.16: Performance profile on random sparse graphs with γ = 0.70 for optimal
solutions.

54

2.3 A more sophisticated exact approach

behaviour was expected, given the computational complexity of CSPTP.

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

0

2

4

6

8

10

G1 G2 G3 G4 G5 G6 G1 G2 G3 G4 G5 G6 G1 G2 G4 G5 G6 G1 G2 G4 G5 G6
Instance

V
al

ue

Algorithm M2 B&Bnew GRASP

Figure 2.17: Performance profile on grid graphs for feasible solutions.

A detailed comparison of computational times of the three algorithms is given in Fig-
ures 2.18 to 2.20. The average computational times over ten instances for all types of test
problems is reported. If the algorithm was not able to solve any instances, the value is
missed.

The computational times confirm the results of the performance profiles: for complete
and random graphs the B&Bnew algorithm is the best one, followed by GRASP. For grid
graphs, the GRASP shows in general the smallest time of execution.

55

Chapter 2. Shortest Path Tour Problem variants

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

1

100

C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 C2 C3 C4 C5 C6 C7 C8 C9 C1 C2 C3 C4 C5 C6 C7 C8 C9

Instance

S
ec

on
ds

 (
lo

g)

Algorithm ● M2 B&Bnew GRASP

Figure 2.18: Computational times over complete graphs.

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

●

●
● ●

●

●
● ●

●

●
●

● ●

● ● ● ●

●

●

● ● ●

●

●
●

● ●

1

100

R1R2R3R4R5R6R7R8R9
R10 R1R2R3R4R5R6R7R8R9

R10 R1R2R3R4R5R6R7R8R9
R10 R1R2R3R4R5R6R7R8R9

R10

Instance

S
ec

on
ds

 (
lo

g)

Algorithm ● M2 B&Bnew GRASP

Figure 2.19: Computational times over random graphs.

56

2.3 A more sophisticated exact approach

α : 0.1

γ : 0.35

α : 0.1

γ : 0.7

α : 0.25

γ : 0.35

α : 0.25

γ : 0.7

● ●

●

● ● ● ● ●

●

● ● ● ●

●

● ●

●

●

●

● ●

●

0

500

1000

G1 G2 G3 G4 G5 G6 G1 G2 G3 G4 G5 G6 G1 G2 G4 G5 G6 G1 G2 G4 G5 G6

Instance

S
ec

on
ds

Algorithm ● M2 B&Bnew GRASP

Figure 2.20: Computational times over grid graphs.

57

Chapter 2. Shortest Path Tour Problem variants

2.4 Shortest Path Tour Problem with Time Windows

2.4.1 Introduction

The Resource-Constrained Shortest Path Problem (RCSPP) [51] is a variant of clas-
sical SPP, where besides the usual cost cij associated with each arc (i, j), there is an
additional r-dimensional resource vector R. Formally, let G = (V, A) a directed graph, a
cost cij and |R| scalars wh

ij , h = 1, . . . , |R|, which represent the consumption along arc (i, j)
of resource h, are associated with each arc (i, j) ∈ A.

Let s, d ∈ V two distinct nodes, RCSPP aims to find a minimum cost path from
s to d, such that all feasibility constraints on the resources h = 1, . . . , |R| are satisfied.
Indeed, a resource window [ah

i , bh
i], with ah

i < bh
i , h = 1 . . . , |R|, is associated with each

node i ∈ V . A path Π is feasible if and only if ah
i ≤ wh(Π) ≤ bh

i , where wh(Π) =
∑

(i,j)∈Πwh
ij ,

for h = 1, . . . , |R|.
A widely studied type of RCSPP is the Shortest Path Problem with Time Windows

(SPPTW). In this case, the only resource associated with the arcs is time. A cost
cij and a transit time tij are associated with each arc (i, j) ∈ A, whereas a time window
[ei , li] is associated to each node i ∈ V . A path Πsd from s to d is feasible if and only if
ei ≤ τ(Πsi) ≤ li , for each sub-path Πsi , where

τ(Πsi) = max

 ei ,
∑

(j,k)∈Πsi

 .

Indeed, every node i has to be served during the time window [ei , li], but it is possible to
wait in a node until the time window will be open.

According to the SPPTW principles, it is easy to extend the SPTP to include time
window constraints, resulting in the Shortest Path Tour Problem with Time Windows
(SPTPTW).

Let G = (V, A, C) be a directed and weighted graph. A non-negative transit time tij is
associated with each arc (i, j) ∈ A. Moreover, a service time si and a time window [ei , li]
are associated with each node i. Let τi be the arrival time to node i. The SPTPTW can
be defined as follows.

Definition 2.6. The Shortest Path Tour Problem with Time Windows (SPTPTW)
consists in finding a shortest path from a source node s to a destination node d, s, d ∈ V ,
s , d, by ensuring that at least one node of each node disjoint subsets T1, . . . , TN , is
crossed according to the sequence wherewith the subsets are ordered. Any intermediate
nodes between visits to the subsets Th, h = 1, . . . , N are allowed. Furthermore, the
solution path must satisfy the equations τi ≤ li, for all i ∈ V.

Note that, if T = ∪N
h=1Th , it is assumed si = 0, ei = 0, li = +∞, for all nodes i < T .

58

2.4 Shortest Path Tour Problem with Time Windows

2.4.2 Dynamic programming algorithm

Since RCSPP are NP-hard problems [34], and SPTPTW is a generalization of a
specific RCSPP problem, it follows that SPTPTW belongs to the class of NP-hard
problems.

Despite of the hardness of the problem, an exact method has been proposed. It relies
on the well known technique of Dynamic Programming (DP) [10]. The algorithm’s core is
the label concept. To each path Psi from node s to node i, is associated a label yi . Each
label is characterized by the cost of the associated path ci , the last index h of the last
subset Th visited, that is ri , and the arrival time τi .

Definition 2.7 (Feasibility). A label yi is feasible if the condition τi ≤ li holds.

Definition 2.8 (Dominance). Given two labels yi and ȳi associated with node i ∈ V , yi

dominates ȳi if the following conditions hold:

ci ≤ c̄i ,

ri ≥ r̄i ,

τi ≤ τ̄i ,

and at least one inequality is strict.

Given the two definitions above, it is clear that a feasible and non dominated label yd

must be associated to an optimal shortest path tour with time windows from source node
s to destination node d.

Algorithm 2.11 looks for a such label. In lines 2 to 4, the first label y0
s is created

associated to the path that contains only s, the list L of the labels to process, and the set
D of all non dominate labels are initialized.2

The main loop (line 5) iterates until L is empty. At each iteration a label is removed
from L, and if it is a solution better than the incumbent, the latter is updated (lines 6
to 9). Otherwise, the label is extended examining the forward start of the last node i of
the path. The arrival time into the node j is calculated in line 13. If the node j ∈ Tri+1

and the window time is not open yet, a label is created in which the current node is not
served (lines 14 to 16). Furthermore, a new label denoting that the node j has been served
is created (lines 17 to 21).

In the case that j ∈ Tri+1 and time < ej, two labels are generated to avoid the waiting
problem. Generally, in shortest path problem with time windows, if a node is reached
before the opening of the window, it is possible to wait until the window is open and
restart. In our case, the only nodes with time windows are the node in {Ti}i=1,...,N , but
waiting in a node can exclude some feasible solution.

2Each label is associated to the corresponding path, but the paths are not reported in pseudocode.

59

Chapter 2. Shortest Path Tour Problem variants

Algorithm 2.11: Dynamic programming algorithm to solve SPTPTW.

1 Function Labeling(G, s, d, {Ti}i=1,...,N)
2 y0

s ← (0, 0, 1);
3 L ← {y0

s }; D[s]← {y0
s }; D[j]← ∅∀j ∈ V, j , s;

4 best ← Nil;
5 while L , ∅ do
6 yi ← Pop(L); L ← L \ {yi};
7 if i = d and ri = N then
8 if ci < cbest then
9 best ← yi ;

10 else
11 foreach j ∈ FS(i) do
12 r̄ ← ri ;
13 time ← τi + si + tij;
14 if j ∈ Tri+1 and time < ej then
15 yj ← (ci + cij, time, r̄);
16 AddLabel(L, D, yj);
17 time ← max{time, ej};
18 if j ∈ Tri+1 then
19 r̄ ← ri + 1;
20 yj ← (ci + cij, time, r̄);
21 AddLabel(L, D, yj);
22 return best

23 Function AddLabel(L, D, yj)
24 if yj is not dominated by any label y′j belonging to D[j] then
25 Remove from D[j] and from L all label y′j that are dominated by yj;
26 L ← L ∪ {yj}; D[j]← D[j] ∪ {yj};

60

2.4 Shortest Path Tour Problem with Time Windows

1 2

3

4

5

6

T1[0, 5] T2[3, 4]

T2[2, 3] T3[3, 4]

T3[4, 7]

T4[0, 10]

1

1

2

1

2

1

Figure 2.21: A small example of waiting problem.

An example instance to illustrate the problem is depicted in Figure 2.21. All service
and transit times are equal to 1. When the node 2 ∈ T2 is reached the time is 2, waiting
until time 3 makes it infeasible to pass through node 5 (reached at time 5), so the best
found solution is (1, 2, 4, 6), that is feasible and has a cost of 5. But the best solution is
(1, 2, 3, 5, 6) with a cost equal to 4 and feasible because T2 is served in node 3.

Therefore, when a “problematic” node is reached, two different labels are generated:
in the first one, it does not wait for the opening time, the node is not served and rj is not
updated; in the second, the node is served waiting the opening of the time windows, and
rj is incremented.

2.4.3 Bounds

To improve the performance of the algorithm, several bounds can be used to reduce
the number of feasible and non dominated labels generated by the algorithm.

Obtain a feasible upper bound

There is a simple method to obtain a feasible solution that is an upper bound to the
optimal solution. It is possible to solve the SPTP using transit times tij instead of normal
weight cij. If the minimal Shortest Path Tour calculated in this manner is not feasible with
respect to the time windows, there is no feasible solution, since the path between the sets
Ti are all minimal respect to transit times. In Algorithm 2.12 the pseudo-code to obtain a
such upper bound is shown.

Cost bounding

Let Psv be a partial solution path from source node s to node v. If the cost L(Psv) is
greater than the cost of the current incumbent, then Psv can be discarded. Moreover, it
is possible to calculate the better cost that can be obtained starting from Psv to arrive to
destination d. For each v ∈ ∪N

i=1{Ti}, let SPTcost[v] be the cost of the best shortest path

61

Chapter 2. Shortest Path Tour Problem variants

Algorithm 2.12: Algorithm to obtain an upper bound for SPTPTW.

1 Function UpperBound(G, s, d, {Ti}i=1,...,N)
2 L[,]← FloydWarshall(G) ; // Using transit times as cost function
3 UB ←DP(V, A, s, d, {Ti}i=1,...,n) ; // Algorithm 2.9
4 if UB is feasible respect to time windows then
5 return UB
6 else
7 return Nil

tour from v to d, then L(Psv) + SPTcost[v] is a lower bound to each solution starting with
Psv.

For nodes that are not in ∪N
i=1{Ti}, the lower bound defined above is not applicable.

Let be C[v, w] the cost of the shortest path from v to w, and let rv the index of the last
set Ti visited in the path, then the lower bound for any node v < ∪N

i=1{Ti} can be defined
as minj∈Trv+1 { C[v, j] + SPTcost[j] }.

Given these lower bounds, a label yi can be discarded if the lower bound associated is
greater than the cost of the upper bound solution calculated with Algorithm 2.12. Clearly,
if a feasible solution better the UB is found during the computation, then UB is updated
with the new solution.

Time bounding

A second bounding technique can be used on times, rather than costs. Let be T [v, w]
the total time of shortest path respect transit times from v to w, and rv the index of the
last set Ti visited in the path. If the time consumed by a partial solution Psv plus the time
to reach the nodes in v ∈ Trv+1 exceed the time windows of all nodes v, than the current
partial solution cannot generate a feasible complete solution. Therefore, a label yi is not
feasible if not exists j ∈ Tri+1 such that τi + T [i, j] ≤ lj.

2.4.4 Experimental results

Several experiments have been performed to test the performance of the Labeling
algorithm. The comparison aims at showing that the extra computational times, needed
to calculate lower and upper bounds, is less than the time saved by pruning the bounded
labels.

Instance generation

All test problems have been pseudo-randomly generated by using a generator inspired
by Powell and Chen [50]. The generation procedure performs the following steps:

62

2.4 Shortest Path Tour Problem with Time Windows

1. The nodes are randomly dispersed in a square matrix [0, 500]×[0, 500] by a uniform
distribution, and the source node is located at (250, 250);

2. The transit time, tij for each arc, is assigned to their Euclidean distance plus a
perturbation uniformly distributed in [5, 25];

3. The cost of each arc, cij is equal to ti j − min(i,j)∈A
{

tij
}
, to ensure that all costs are

greater or equal to zero;

4. The nodes are assigned to the sets Ti , i = 1, . . . , N ;

5. To ensure the feasibility of each instance, the center of the time windows of a node
v ∈ ∪N

i=1{Ti} is equal to the of the best shortest path tour respect to times from s to
v;

6. The width of the time windows of each constrained node is a random number in
U [2

3AVG, 3
4AVG], where AVG is the input average. The time window is derived from

the center and the width.

Three types of networks have been utilized in the experiments: complete, grid, and
random graphs. For complete graphs, the number of nodes n ranges from 100 to 500 with
a step of 50, α is equal to 0.25, resulting in N = ⌊0.25n⌋, and γ = 70. As last parameter,
the average width of the time windows has been set to 100. Random graphs share the same
α, γ and AVG of the complete graphs, but the number of nodes is n ∈ { 250, 500, 750, 100 }
and the density of the graph m

n equals to { 10, 15, 20 }.
Lastly, grid graphs have the following shapes {05 × 20, 07 × 15, 09 × 09, 10 × 10, 10 ×

40, 14 × 30, 15 × 15, 20 × 20, 20 × 40, 30 × 60, 40 × 40}, and α spreads from 0.15 to 0.19.
The remain parameters are the same of the other network types.

Results

A first set of experiments involves complete graphs. Figure 2.22 shows the performance
profile, that reports the number of instances that can be resolved in six hours by the algo-
rithms. The Labeling algorithm uses both bounds on time and cost, nocostbound algo-
rithm does not use the cost bounding, and no bounding techniques are used in nobound.
In Figure 2.23, the computational times of the solved instances are reported.

A second set of experiments involves random instances, and the results are shown in
Figure 2.24. In Figure 2.25, the computational times confirm that the use of the bounding
strategies results in time savings.

Finally, the performance profile and computational times for grid networks are reported
in Figures 2.26 and 2.27, respectively. The results confirm previous behaviour.

63

Chapter 2. Shortest Path Tour Problem variants

0

2

4

6

8

10

100 150 200 250 300 350 400 450 500

Instances

V
al

ue

Labeling nocostbound nobound

Figure 2.22: Labeling performance profiles for complete graphs.

●

●

●

●

●

100

10000

10
0

15
0

20
0

25
0

30
0

Instances

S
ec

on
ds

 (
lo

g)

Algorithm ● Labeling nocostbound nobound

Figure 2.23: Labeling computational times for complete graphs.

64

2.4 Shortest Path Tour Problem with Time Windows

0

2

4

6

8

10

250x1250

250x2500

250x3750

250x5000

500x2500

500x5000

500x7500

500x10000

750x3750

750x7500

750x11250

750x15000

1000x5000

1000x10000

1000x15000

1000x20000

Instances

V
al

ue
Labeling nocostbound nobound

Figure 2.24: Labeling performance profiles for random graphs.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

10

1000

25
0x

12
50

25
0x

25
00

25
0x

37
50

25
0x

50
00

50
0x

25
00

50
0x

50
00

50
0x

75
00

50
0x

10
00

0

75
0x

37
50

75
0x

75
00

75
0x

11
25

0

75
0x

15
00

0

10
00

x5
00

0

10
00

x1
00

00

10
00

x1
50

00

10
00

x2
00

00

Instances

S
ec

on
ds

 (
lo

g)

Algorithm ● Labeling nocostbound nobound

Figure 2.25: Labeling computational times for random graphs.

65

Chapter 2. Shortest Path Tour Problem variants

0

2

4

6

8

10

20x40N18

30x60N15

30x60N16

30x60N17

30x60N18

30x60N19

40x40N15

40x40N16

40x40N17

40x40N18

40x40N19

Instances

V
al

ue

Labeling nocostbound nobound

Figure 2.26: Labeling performance profiles for grid graphs.

● ●
● ●

●
● ● ● ● ●

●
●

● ● ●

● ● ● ● ●

● ● ●

●

●

●

●

● ●

●

● ●
●

●
●

1

100

10000

10
x4

0N
15

10
x4

0N
16

10
x4

0N
17

10
x4

0N
18

10
x4

0N
19

14
x3

0N
15

14
x3

0N
16

14
x3

0N
17

14
x3

0N
18

14
x3

0N
19

15
x1

5N
15

15
x1

5N
16

15
x1

5N
17

15
x1

5N
18

15
x1

5N
19

20
x2

0N
15

20
x2

0N
16

20
x2

0N
17

20
x2

0N
18

20
x2

0N
19

20
x4

0N
15

20
x4

0N
16

20
x4

0N
17

20
x4

0N
18

20
x4

0N
19

30
x6

0N
15

30
x6

0N
16

30
x6

0N
17

30
x6

0N
18

30
x6

0N
19

40
x4

0N
15

40
x4

0N
16

40
x4

0N
17

40
x4

0N
18

40
x4

0N
19

Instances

S
ec

on
ds

 (
lo

g)

Algorithm ● Labeling nocostbound nobound

Figure 2.27: Labeling computational times for grid graphs.

66

Chapter 3
GRASP algorithms for the FFMSP, p-Center,
and MCS

3.1 Far From Most String Problem

3.1.1 Introduction

T he Far From Most String Problem (FFMSP) is one of the so called string selection
and comparison problems, that belong to the more general class of problems known

as sequences consensus, where a finite set of sequences is given and one is interested in
finding their consensus, i.e., a new sequence that agrees as much as possible with all
the given sequences. In other words, the objective is to determine a sequence called
consensus, because it represents, in some sense, all the given sequences. For the FFMSP,
the objective is to find a sequence that is far from as many sequences as possible in a given
set of sequences all having the same length. The problem has applications in several fields
[23], including molecular biology where one is interested in creating diagnostic probes for
bacterial infections or in discovering potential drug targets. Moreover, as a result of the
linear coding of DNA and proteins, one is also interested in computing distance/proximity
among biological sequences.

To formally state the problem, the following notation is needed:

• An alphabet Σ = {c1, c2, . . . , ck} is a finite set of elements, called characters;

• si = (si
1, si

2, . . . , si
m) is a sequence of length m (|si | = m) on Σ (si

j ∈ Σ, j = 1, 2, . . . , m);

• Given two sequences si and sl on Σ such that |si | = |sl |, dH (si , sl) denotes their
Hamming distance and is given by

dH (si , sl) =
|si |∑
j=1

Φ(si
j , sl

j), (3.1)

where si
j and sl

j are the characters in position j in si and sl , respectively, and Φ :

67

Chapter 3. GRASP algorithms for the FFMSP, p-Center, and MCS

Σ × Σ→ {0, 1} is the predicate function such that

Φ(a, b) =

 0, if a = b;
1, otherwise.

The FFMSP consists in determining a sequence far from as many sequences as possible
in the input set Ω. This can be formalized by stating that, given a threshold t, a string s

must be found maximizing the variable x such that

dH (s, si) ≥ t, for si ∈ P ⊆ Ω and |P | = x. (3.2)

Lanctot et al. [44] demonstrated that for sequences over an alphabet Σ with |Σ| ≥ 3,
approximating the FFMSP within a polynomial factor is NP-hard.

3.1.2 GRASP with Path Relinking

Path relinking

Path-relinking is a heuristic proposed by Glover [35] as an intensification strategy
exploring trajectories connecting elite solutions obtained by tabu search or scatter search.

Starting from one or more elite solutions, paths in the solution space leading towards
other guiding elite solutions are generated and explored in the search for better solutions.
This is accomplished by selecting moves that introduce attributes contained in the guiding
solutions. At each iteration, all moves that incorporate attributes of the guiding solution
are analyzed and the move that best improves (or least deteriorates) the initial solution
is chosen.

Algorithm 3.1 illustrates the pseudo-code of path-relinking for the FFMSP. It is
applied to a pair of sequences (s′, ŝ). Their common elements are kept constant, and the
space of solutions spanned by this pair of solutions is searched with the objective of finding
a better solution. This search is done by exploring a path in the solution space linking
solution s′ to solution ŝ. s′ is called the initial solution and ŝ the guiding solution.

The procedure then computes (line 4) the symmetric difference ∆(s′, ŝ) between the
two solutions as the set of components for which the two solutions differ:

∆(s′, ŝ) =
{

i = 1, . . . , m
∣∣∣ s′i , ŝi

}
.

Note that, |∆(s′, ŝ)| = dH (s′, ŝ) and ∆(s′, ŝ) represents the set of moves needed to reach
ŝ from s′, where a move applied to the initial solution s′ consists in selecting a position
i ∈ ∆(s′, ŝ) and replacing s′i with ŝi .

Path-relinking generates a path of solutions s′1, s′2, . . . , s′|∆(s′,ŝ)| linking s′ and ŝ. The
best solution s∗ in this path is returned by the algorithm (line 11).

68

3.1 Far From Most String Problem

Algorithm 3.1: Pseudo-code of path-relinking for the FFMSP.

1 Function PathRelinking(t, m, ft(·), s′, ŝ, Seed)
2 f ∗ ← max{ft(s), ft(ŝ)};
3 s∗ ← arg max{ft(s), ft(ŝ)};
4 ∆(s′, ŝ)← {

i = 1, . . . , m
∣∣∣ s′i , ŝi

};
5 while ∆(s′, ŝ) , ∅ do
6 i∗ ← arg max { ft(s′ ⊕ i) | i ∈ ∆(s′, ŝ) };
7 ∆(s′ ⊕ i∗, ŝ)← ∆(s′, ŝ) \ {i∗};
8 s′ ← s′ ⊕ i∗;
9 if ft(s′) > f ∗ then

10 f ∗ ← ft(s′); s∗ ← s′;
11 return s∗;

The path of solutions is computed in the loop in lines 5 through 10. This is achieved
by advancing one solution at a time in a greedy manner. At each iteration, the procedure
examines all moves i ∈ ∆(s′, ŝ) from the current solution s′ and selects the one which
results in the highest cost solution (line 6), i.e., the one which maximizes ft(s′ ⊕ i), where
s′ ⊕ i is the solution resulting from applying move i to solution s′. The best move i∗ is
made, producing solution s′ ⊕ i∗ (line 8). The set of available moves is updated (line 7). If
necessary, the best solution s∗ is updated (lines 9–10). Clearly, the algorithm stops when
∆(s′, ŝ) = ∅.

Hybridization of GRASP with PR

Since GRASP iterations are independent of one another, it does not make use of
solutions produced throughout the search. One way to add memory to GRASP is its hy-
bridization with path-relinking. The first proposal of such a hybrid method was published
by Laguna and Martí [43].

For the FFMSP, the path-relinking intensification procedure described previously,
has been integrated in the GRASP by Ferone et al. [24]. Path-relinking is applied at
each GRASP iteration to pairs (s, ŝ) of solutions, where s is the locally optimal solution
obtained by the GRASP local search and ŝ is randomly chosen from a pool with at most
MaxElite high quality solutions found along the search.

3.1.3 Results

Several strategies for implementing path-relinking have been adopted. Given two so-
lutions s′ and ŝ, the following strategies have been implemented:

Forward PR The path emanates from s′ which is the worst solution between s′ and ŝ

(grasp-h-f);

69

Chapter 3. GRASP algorithms for the FFMSP, p-Center, and MCS

Backward PR The path emanates from s′ which is the best solution between s′ and ŝ

(grasp-h-b);

Mixed PR Two paths are generated, one emanating from s′ and the other emanat-
ing from ŝ: the process stops as soon as an intermediate common solution is met
(grasp-h-m).

The algorithms were implemented in C, compiled by gcc 4.1.3, and run on an Intel i7
Quad core with a 2.67 GHz clock and 6 Gigabytes of RAM memory. The following two
sets of problem instances were used.

A. This is the set of benchmark instances introduced in Ferone et al. [22], consisting
of 600 random instances of different size. More specifically, the number n of input
sequences in Ω is in {100, 200, 300, 400}, and the length m of each of the input
sequences is in {300, 600, 800}. In all cases, the alphabet size is four, i.e., |Σ| = 4.
For each combination of n and m, the setA consists of 100 random instances. Finally,
the algorithms were applied on all instances for different settings of the threshold
parameter t varying from .75m to .85m.

B. This set of problem instances was used in Mousavi et al. [49] and was kindly provided
by the authors. In this set, some instances were randomly generated, while the
remaining are real-world instances from biology (Hyaloperonospora parasitica V 6.0
sequence data). In both the randomly generated and the real-world instances, the
alphabet size is four, i.e., |Σ| = 4, the number n of input sequences in Ω is in
{100, 200, 300}, and the length m of each of the input sequences ranges from 100 to
1200. Finally, the threshold parameter t varies from .75m to .95m.

For each problem size in set A, all the variants were run on 100 random instances and
average solution value and average running times were computed. The set B contains 10
randomly generated instances and three real-world instances, for each problem size. The
results obtained are summarized in Tables 3.1 to 3.3, where for each problem type, in the
first column the instance size (n, m, and t) is reported. The remaining columns report
the average objective function values (z) obtained by each algorithm and the standard
deviation.

Looking at the average objective function values and standard deviation , it can be
concluded that grasp-h-b finds better quality solution within a fixed running time. In
order to validate the good behaviour of the backward strategy, in Figures 3.1 to 3.2, it
is plotted the empirical distributions of the random variable time-to-target-solution-value
(TTT-plots), involving algorithms grasp, and grasp-h-b. The plots show that, given any
fixed amount of computing time, grasp-h-b has a higher probability of finding a good
quality target solution.

70

3.1 Far From Most String Problem

Table 3.1: Comparison between the different hybrid GRASP with path-relinking strategies
on instances in set A after 30 seconds of running time.

grasp grasp-h-f grasp-h-b grasp-h-m

(n, m, t) z σ2 z σ2 z σ2 z σ2

100, 300, 225 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
100, 300, 240 73.84 0.87 74.60 0.97 76.26 0.99 75.89 1.02
100, 300, 255 29.54 0.57 29.39 0.61 29.42 0.59 29.42 0.64
100, 600, 450 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
100, 600, 480 76.18 0.97 76.46 0.95 77.53 1.02 77.44 1.19
100, 600, 510 27.46 0.82 27.46 0.82 27.46 0.82 27.47 0.83
100, 800, 600 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
100, 800, 640 81.50 1.26 81.63 1.20 82.06 1.13 82.17 1.11
100, 800, 680 26.54 0.90 26.50 0.93 26.51 0.92 26.51 0.93

200, 300, 225 200.00 0.00 200.00 0.00 200.00 0.00 200.00 0.00
200, 300, 240 87.84 1.55 90.20 2.24 94.71 2.30 94.33 2.29
200, 300, 255 30.30 0.92 30.29 0.93 30.37 0.92 30.35 0.94
200, 600, 450 200.00 0.00 200.00 0.00 200.00 0.00 200.00 0.00
200, 600, 480 79.98 1.73 79.73 1.77 80.94 1.89 80.80 1.84
200, 600, 510 26.35 1.28 26.33 1.30 26.33 1.31 26.33 1.31
200, 800, 600 200.00 0.00 200.00 0.00 200.00 0.00 200.00 0.00
200, 800, 640 85.67 2.21 85.31 2.19 85.50 2.12 85.71 2.29
200, 800, 680 24.41 1.24 24.42 1.24 24.42 1.24 24.41 1.26

300, 300, 225 296.65 0.96 299.17 0.86 299.22 0.73 299.14 0.79
300, 300, 240 102.98 2.27 107.09 2.95 112.83 3.07 111.91 2.97
300, 300, 255 31.82 1.14 31.80 1.16 31.83 1.13 31.83 1.13
300, 600, 450 300.00 0.00 300.00 0.00 300.00 0.00 300.00 0.00
300, 600, 480 82.69 2.51 82.46 2.71 83.02 2.63 83.12 2.60
300, 600, 510 24.94 1.55 24.95 1.55 24.94 1.55 24.94 1.55
300, 800, 600 300.00 0.00 300.00 0.00 300.00 0.00 300.00 0.00
300, 800, 640 90.26 2.34 89.94 2.40 90.01 2.44 90.02 2.39
300, 800, 680 23.51 1.20 23.53 1.20 23.48 1.25 23.48 1.25

400, 300, 225 377.45 1.65 386.18 2.64 388.62 2.03 387.92 2.39
400, 300, 240 107.89 2.63 112.82 3.05 119.32 3.22 119.29 3.36
400, 300, 255 32.76 1.27 32.77 1.26 32.78 1.27 32.78 1.27
400, 600, 450 400.00 0.00 400.00 0.00 400.00 0.00 400.00 0.00
400, 600, 480 85.47 2.94 85.40 3.01 85.99 2.74 85.96 2.81
400, 600, 510 24.56 1.27 24.56 1.27 24.56 1.27 24.56 1.27
400, 800, 600 400.00 0.00 400.00 0.00 400.00 0.00 400.00 0.00
400, 800, 640 92.81 3.36 92.75 3.39 92.84 3.35 92.86 3.28
400, 800, 680 22.81 1.02 22.82 1.01 22.81 1.02 22.81 1.02

71

Chapter 3. GRASP algorithms for the FFMSP, p-Center, and MCS

Table 3.2: Comparison between the different hybrid GRASP with path-relinking strategies
on random instances in set B after 30 seconds of running time.

grasp grasp-h-f grasp-h-b grasp-h-m

(n, m, t) z σ2 z σ2 z σ2 z σ2

100, 100, 75 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
100, 100, 85 32.60 1.02 32.90 1.22 33.80 1.17 33.80 1.17
100, 100, 95 7.10 0.30 7.10 0.30 7.10 0.30 7.10 0.30
100, 200, 150 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
100, 200, 170 28.80 1.08 28.90 1.04 28.90 1.04 28.90 1.04
100, 200, 190 5.50 0.50 5.50 0.50 5.50 0.50 5.50 0.50
100, 400, 300 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
100, 400, 340 27.90 0.54 27.90 0.54 28.00 0.45 28.00 0.45
100, 400, 380 4.20 0.40 4.20 0.40 4.20 0.40 4.20 0.40

200, 200, 150 200.00 0.00 200.00 0.00 200.00 0.00 200.00 0.00
200, 200, 170 30.90 0.94 30.80 0.98 31.00 0.89 31.00 0.89
200, 200, 190 5.00 0.00 5.00 0.00 5.00 0.00 5.00 0.00
200, 400, 300 200.00 0.00 200.00 0.00 200.00 0.00 200.00 0.00
200, 400, 340 30.20 1.40 30.20 1.40 30.20 1.40 30.20 1.40
200, 400, 380 3.60 0.49 3.60 0.49 3.60 0.49 3.60 0.49
200, 800, 600 200.00 0.00 200.00 0.00 200.00 0.00 200.00 0.00
200, 800, 680 23.90 0.94 23.90 0.94 23.90 0.94 23.90 0.94
200, 800, 760 3.10 0.30 3.10 0.30 3.10 0.30 3.10 0.30

300, 300, 225 296.90 2.02 299.00 1.10 299.20 0.87 298.80 1.40
300, 300, 255 31.10 0.94 31.00 1.00 31.00 1.00 31.00 1.00
300, 300, 285 3.90 0.30 3.80 0.40 3.80 0.40 3.80 0.40
300, 600, 450 300.00 0.00 300.00 0.00 300.00 0.00 300.00 0.00
300, 600, 510 25.50 0.92 25.50 0.92 25.50 0.92 25.50 0.92
300, 600, 570 2.40 0.66 2.30 0.64 2.40 0.66 2.40 0.66
300, 1200, 900 300.00 0.00 300.00 0.00 300.00 0.00 300.00 0.00
300, 1200, 1020 21.40 0.66 21.40 0.66 21.40 0.66 21.40 0.66
300, 1200, 1140 1.00 0.77 1.00 0.77 1.00 0.77 1.00 0.77

72

3.1 Far From Most String Problem

Table 3.3: Comparison between the different hybrid GRASP with path-relinking strategies
on real instances in set B after 30 seconds of running time.

grasp grasp-h-f grasp-h-b grasp-h-m

(n, m, t) z σ2 z σ2 z σ2 z σ2

100, 100, 75 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
100, 100, 85 63.00 0.82 63.33 0.47 64.00 0.00 63.00 0.82
100, 100, 95 10.67 1.25 10.67 1.25 10.67 1.25 10.67 1.25
100, 200, 150 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
100, 200, 170 55.33 1.25 56.00 1.41 55.67 1.25 56.33 1.70
100, 200, 190 8.00 0.82 8.00 0.82 8.00 0.82 8.00 0.82
100, 400, 300 100.00 0.00 100.00 0.00 100.00 0.00 100.00 0.00
100, 400, 340 57.33 2.05 57.33 2.05 57.33 2.05 57.33 2.05
100, 400, 380 7.33 0.47 7.33 0.47 7.33 0.47 7.33 0.47

200, 200, 150 200.00 0.00 200.00 0.00 200.00 0.00 200.00 0.00
200, 200, 170 88.67 6.55 90.67 4.92 92.67 6.65 92.00 7.35
200, 200, 190 10.00 0.82 10.00 0.82 10.00 0.82 10.00 0.82
200, 400, 300 200.00 0.00 200.00 0.00 200.00 0.00 200.00 0.00
200, 400, 340 72.67 5.25 73.00 4.97 74.67 4.64 73.67 4.92
200, 400, 380 7.00 0.00 7.33 0.47 6.67 0.47 7.00 0.00
200, 800, 600 200.00 0.00 200.00 0.00 200.00 0.00 200.00 0.00
200, 800, 680 77.33 6.34 77.33 6.34 77.33 6.34 77.33 6.34
200, 800, 760 3.67 1.70 3.67 1.70 3.67 1.70 3.67 1.70

300, 300, 225 300.00 0.00 300.00 0.00 300.00 0.00 300.00 0.00
300, 300, 255 99.33 10.66 104.00 11.58 105.67 9.98 106.67 9.98
300, 300, 285 6.00 0.82 6.33 0.47 6.33 0.47 6.00 0.82
300, 600, 450 300.00 0.00 300.00 0.00 300.00 0.00 300.00 0.00
300, 600, 510 94.67 2.87 94.33 2.49 95.33 1.25 95.67 1.70
300, 600, 570 2.67 0.47 2.67 0.47 2.67 0.47 2.67 0.47
300, 1200, 900 300.00 0.00 300.00 0.00 300.00 0.00 300.00 0.00
300, 1200, 1020 96.33 3.86 96.33 3.86 96.67 4.03 95.33 5.91
300, 1200, 1140 1.67 0.47 1.67 0.47 1.67 0.47 1.67 0.47

73

Chapter 3. GRASP algorithms for the FFMSP, p-Center, and MCS

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●

●
●

●
●

●
●

●
●
●

●

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

Time

P
ro

ba
bi

lit
y

Algorithm ● grasp grasp−h−b

Figure 3.1: Time to target distributions (in seconds) comparing grasp and grasp-h-b on
random instance with n = 100, m = 300, t = 240, and target value ẑ = 0.73 × n.

3.2 p-Center

3.2.1 Introduction

The p-center problem is one of the best-known discrete location problems first intro-
duced by Hakimi [36]. It consists of locating p facilities and assigning clients to them in
order to minimize the maximum distance between a client and the facility to which the
client is assigned (i.e., the closest facility). It is needless to say that this problem arises
in many different real-world contexts, whenever one designs a system for public facilities,
such as schools or emergency services.

Formally, given a complete undirected edge-weighted bipartite graph G = (V ∪U, E, c),
where

• V = {1, 2, . . . , n} is a set of n potential locations for facilities;

• U = {1, 2, . . . , m} is a set of m clients or demand points;

• E = {(i, j)| i ∈ V, j ∈ U } is a set of n ×m edges;

• c : E 7→ R+ ∪ {0} is a function that assigns a nonnegative distance cij to each edge
(i, j) ∈ E.

74

3.2 p-Center

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●
●
●

●
●

●
●

●
●
●

●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

0.00

0.25

0.50

0.75

1.00

0 25 50 75

Time

P
ro

ba
bi

lit
y

Algorithm ● grasp grasp−h−b

Figure 3.2: Time to target distributions (in seconds) comparing grasp and grasp-h-b on
random instance with n = 200, m = 300, t = 240, and target value ẑ = 0.445 × n.

The p-center problem is to find a subset P ⊆ V of size p such that its weight, defined
as

C(P) = max
i∈U

min
j∈P

cij (3.3)

is minimized. The minimum value is called the radius. Although it is not a restrictive
hypothesis, in this work we consider the special case where V = U is the vertex set of
a complete graph G = (V, E), each distance cij represents the length of a shortest path
between vertices i and j (cii = 0), and hence the triangle inequality is satisfied. Kariv
and Hakimi [41] proved that the problem is NP-hard, even in the case where the input
instance has a simple structure (e.g., a planar graph of maximum vertex degree 3).

3.2.2 A new local search for the p-center

Ferone et al. [20] proposed a new local search integrated in a GRASP framework,
in order to solve the p-center problem. The classical local search for p-center has been
proposed by Hansen and Mladenović [37], here addressed as Interchange. It consists in
swapping a facility f ∈ P with a facility f < P which results in a decrease of the current
cost function. Especially in the case of instances with many vertices, usually a single swap
does not strictly improve the current solution, because there are several facilities whose

75

Chapter 3. GRASP algorithms for the FFMSP, p-Center, and MCS

distance is equal to the radius of the solution. In other words, the objective function is
characterized by large plateaus and the Interchange local search cannot escape from such
regions. To face this type of difficulties, we propose a refined way for comparing between
valid solutions by introducing the concept of critical vertex. Given a solution P ⊆ V , let
δP : V 7→ R+ ∪ {0} be a function that assigns to each vertex i ∈ V the distance between
i and its closest facility according to solution P. Clearly, the cost of a solution P can be
equivalently written as C(P) = max { δP(i) : i ∈ V }.

Definition 3.1 (Critical vertex). Let P ⊆ V be a solution whose cost is C(P). For each
vertex i ∈ V , i is said to be a critical vertex for P, if and only if δP(i) = C(P).

In the following, we denote by maxδP = |{ i ∈ V : δP(i) = C(P) }| the number of vertices
whose distance from their closest facility results in the objective function value corre-
sponding to solution P. The comparison operator <cv is defined, and P <cv P′ if and only
if maxδP < maxδ′P

.
The main idea of the plateau surfer local search is to use the concept of critical vertex

to escape from plateaus, moving to solutions that have either a better cost than the current
solution or equal cost but fewer critical vertices.

Starting from an initial solution P, the algorithm tries to improve the solution replacing
a vertex j < P with a facility i ∈ P. Clearly, this swap is stored as an improving move if
the new solution P̄ = P \ {i} ∪ {j} is strictly better than P according to the cost function C.
If C(P̄) is better than the current cost C(P), then P̄ is compared also with the incumbent
solution and if it is the best solution found so far, the incumbent is update and the swap
that led to this improvement stored (lines 10 to 12 of Algorithm 3.2).

Otherwise, the algorithm checks if it is possible to reduce the number of critical vertices.
If the new solution P̄ is such that P̄ <cv P, then the algorithm checks if P̄ is the best solution
found so far (line 13), the value that counts the number of critical vertices in a solution is
updated (line 14), and the current swap stored as an improving move (line 15).

3.2.3 Experimental results

A GRASP framework with both the local search algorithms proposed by Mladenović
et al. [47] and the PlateauSurfer has been tested. The algorithms were implemented
in C++, compiled with gcc 5.2.1 under Ubuntu with -std=c++14 flag. The stopping
criterion is maxTime = 0.1 · n + 0.5 · p. All the tests were run on a cluster of nodes,
connected by 10 Gigabit Infiniband technology, each of them with two processors Intel
Xeon E5-4610v2@2.30GHz.

Table 3.4 summarizes the results on a set of ORLIB instances, originally introduced by
Beasley [3]. It consists of 40 graphs with number of vertices ranging from 100 to 900,
each with a suggested value of p ranging from 5 to 200. Each vertex is both a user and
a potential facility, and distances are given by shortest path lengths. Each algorithm was

76

3.2 p-Center

Algorithm 3.2: Pseudocode of the plateau surfer local search algorithm based on the critical
vertex concept.

1 Function PlateauSurfer(G = ⟨V, A,C⟩ , P, p)
2 repeat
3 modified ← false;
4 forall i ∈ P do
5 best_flip ← best_cv_flip ← Nil;
6 bestNewSolValue← C(P);
7 best_cv ← maxδ(P̄);
8 forall j ∈ V \ P do
9 P̄ ← P \ {i} ∪ {j};

10 if C(P̄) < bestNewSolValue then
11 bestNewSolValue ← C(P̄);
12 best_flip ← j;
13 else if best_flip = Nil and maxδ(P̄) < best_cv then
14 best_cv ← maxδ(P̄);
15 best_cv_flip ← j;
16 if best_flip , Nil then
17 P ← P \ {i} ∪ {best_flip};
18 modified ← true;
19 else if best_cv_flip , Nil then
20 P ← P \ {i} ∪ {best_cv_flip};
21 modified ← true;
22 until modified = false;
23 return P;

77

Chapter 3. GRASP algorithms for the FFMSP, p-Center, and MCS

run with 10 different seeds, and minimum (min), average (E) and variance (σ2) values are
listed in the table. The second to last column lists the %-Gap between average solutions.
To deeper investigate the statistical significance of the results obtained by the two local
searches, a t-test has been performed. The last column of the table lists the p-values where
the %-Gap is significant, all the values are less than α = 0.01. This outcome confirms that
PlateauSurfer is better performing than Interchange local search.

3.3 Minimum Cost SAT Problem

3.3.1 Introduction

Propositional Satisfiability (SAT) and its derivations are well known problems in logic
and optimization, and belong to the special class of NP-complete problems [34]. Beside
playing a special role in the theory of complexity, they often arise in applications, where
they are used to model complex problems whose solution is of particular interest.

One such case surfaces in logic supervised learning. Here, there is a dataset of samples,
each represented by a finite number of logic variables, and a particular extension of the
classic SAT problem - the Minimum Cost Satisfiability Problem (MCS) - can be used to
iteratively identify the different clauses of a compact formula in Disjunctive Normal Form
(DNF) that possesses the desirable property of assuming the value True on one specific
subset of the dataset and the value False on the rest.

The use of MCS for learning propositional formula from data is described in Felici and
Truemper [14] and Truemper [53]. There are several reasons that motivate the validity of
such an approach to supervised learning, and that it proved to be very effective in several
applications, particularly on those derived from biological and medical data analysis [1,
5].

One of the main drawbacks of the approach described in Felici and Truemper [14]
lies in the difficulty of solving MCS exactly or with an appropriate quality level. Such
drawback is becoming more and more evident as, in the era of Big Data, the size of the
datasets that one is to analyze steadily increases. Feature selection techniques may be
used to reduce the space in which the samples are represented.

The need for efficient MCS solvers is strong, and in particular for solvers that may
take advantage of the specific structure of those MCS that represent supervised learning
problems.

Indeed, in Felici et al. [13], a GRASP-based metaheuristic designed to solve MCS
problems that arise in supervised learning is proposed. The method has been tested on
several instances derived from artificial supervised problems in logic form, and successfully
compared with three established solvers in the literature (Z3 from Microsoft Research [48],
bsolo [45], and MiniSat+ [12]).

78

3.3 Minimum Cost SAT Problem

Table 3.4: Results on ORLIB instances.

Interchange PlateauSurfer

Instance min E σ2 min E σ2 %-Gap p-value

pmed01 127 127 0 127 127 0 0.00
pmed02 98 98 0 98 98 0 0.00
pmed03 93 93.14 0.12 93 93.54 0.25 0.43
pmed04 74 76.21 1.33 74 74.02 0.04 -2.87 1.20E-16
pmed05 48 48.46 0.43 48 48 0 -0.95
pmed06 84 84 0 84 84 0 0.00
pmed07 64 64.15 0.27 64 64 0 -0.23
pmed08 57 59.39 1.36 55 55.54 0.73 -6.48 3.37E-18
pmed09 42 46.87 2.83 37 37.01 0.01 -21.04 2.80E-18
pmed10 29 31.21 0.81 20 20.01 0.01 -35.89 9.38E-19

pmed11 59 59 0 59 59 0 0.00
pmed12 51 51.89 0.1 51 51.41 0.24 -0.93
pmed13 42 44.47 0.73 36 36.94 0.06 -16.93 1.04E-18
pmed14 35 38.59 3.24 26 26.85 0.13 -30.42 2.11E-18
pmed15 28 30.23 0.7 18 18 0 -40.46 1.09E-18
pmed16 47 47 0 47 47 0 0.00
pmed17 39 40.71 0.23 39 39 0 -4.20 8.69E-20
pmed18 36 37.95 0.29 29 29.41 0.24 -22.50 6.37E-19
pmed19 27 29.32 0.42 19 19.13 0.11 -34.75 6.25E-19
pmed20 25 27.05 0.99 14 14 0 -48.24 1.46E-18

pmed21 40 40 0 40 40 0 0.00
pmed22 39 40.06 0.24 38 38.94 0.06 -2.80 1.30E-18
pmed23 30 32.02 0.44 23 23.21 0.17 -27.51 7.16E-19
pmed24 24 25.38 0.34 16 16 0 -36.96 4.37E-19
pmed25 22 22.62 0.24 11 11.89 0.1 -47.44 2.77E-19
pmed26 38 38 0 38 38 0 0.00
pmed27 33 33.96 0.06 32 32 0 -5.77 2.15E-22
pmed28 26 26.78 0.17 19 19 0 -29.05 2.20E-20
pmed29 23 23.43 0.31 13 13.68 0.22 -41.61 8.00E-19
pmed30 20 21.18 0.47 10 10 0 -52.79 6.50E-19

pmed31 30 30 0 30 30 0 0.00
pmed32 30 30.37 0.23 29 29.62 0.24 -2.47
pmed33 23 23.76 0.2 16 16.28 0.2 -31.48 4.31E-19
pmed34 21 22.42 0.66 11 11.56 0.25 -48.44 1.59E-18
pmed35 30 30.01 0.01 30 30 0 -0.03
pmed36 28 29.37 0.31 27 27.65 0.23 -5.86 4.52E-18
pmed37 23 24.07 0.37 16 16 0 -33.53 2.74E-19
pmed38 29 29 0 29 29 0 0.00
pmed39 24 25.08 0.11 23 23.98 0.02 -4.39 4.68E-21
pmed40 20 21.81 0.43 14 14 0 -35.81 5.14E-19

Average -16.78

79

Chapter 3. GRASP algorithms for the FFMSP, p-Center, and MCS

3.3.2 Mathematical formulation of the problem

The Minimum Cost SAT Problem (MCS) - also known as Binate Covering Problem -
is a special case of the well known Boolean Satisfiability Problem. Given a set of n Boolean
variables X = {x1, . . . , xn}, a non-negative cost function c : X 7→ R+ such that c(xi) = ci ≥ 0,
i = 1, . . . , n, and a Boolean formula φ(X) expressed in CNF, the MCS problem consists
in finding a truth assignment for the variables in X such that the total cost is minimized
while φ(X) is satisfied. Accordingly, the mathematical formulation of the problem is given
as follows:

(MinCostSAT) z = min
n∑

i=1

cixi

subject to:
φ(X) = 1,

xi ∈ {0, 1}, ∀i = 1, . . . , n.

It is easy to see that a general SAT problem can be reduced to a MCS problem whose
costs ci are all equal to 0. Furthermore, the decision version of the MCS problem is
NP-complete [32].

3.3.3 A GRASP for Minimum Cost SAT

In order to allow a better and easier implementation of the GRASP algorithm, the
MCS has been treated as particular covering problem with incompatibility constraints.
Indeed, each literal (x,¬x) is considered as a separate element, and a clause is covered if
at least one literal in the clause is contained in the solution. The algorithm tries to add
literals to the solution in order to cover all the clauses and, once the literal x is added
to the solution, then the literal ¬x cannot be inserted (and vice versa). Therefore, if the
literal x is in solution, the variable x is assigned to true and all clauses covered by x are
satisfied. Similarly, if the literal ¬x is in solution, the variable x is assigned to false.

The construction phase adds a literal at a time, until all clauses are covered or no more
literals can be assigned. At each iteration of the construction, if a clause can be covered
only by a single literal x –due to the choices made in previous iterations– then x is selected
to cover the clause. Otherwise, if there are not clauses covered by only a single literal, the
addition of literals to the solution takes place according to a penalty function penalty(·),
which greedily sorts all the candidates literals, as described below.

Let cr(x) be the number of clauses yet to be covered that contain x. We then compute:

penalty(x) =
c(x) + cr(¬x)

cr(x)
. (3.4)

This penalty function evaluates both the benefits and disadvantages that can result

80

3.3 Minimum Cost SAT Problem

from the choice of a literal rather than another. The benefits are proportional to the
number of uncovered clauses that the chosen literal could cover, while the disadvantages
are related to both the cost of the literal and the number of uncovered clauses that could
be covered by ¬x. The smaller the penalty function penalty(x), the more favorable is
the literal x. According to the GRASP scheme, the selection of the literal to add is not
purely greedy, but a Restricted Candidate List (RCL) is created with the most promising
elements, and an element is randomly selected among them.

Algorithm 3.3: Pseudo-code of GRASP construction phase.

1 Function ConstructSolution(C, X , �)
/* C is the set of uncovered clauses */
/* X is the set of candidate literals */

2 s← ∅ ;
3 while C , ∅ do
4 if c ∈ C can be covered only by x ∈ X then
5 s← s ∪ {x};
6 X ← X \ {x,¬x};
7 C ← C \ {c̄ | x ∈ c̄};
8 else
9 compute penalty(x) ∀ x ∈ X ;

10 th ← min
x∈X
{penalty(x)} + �(max

x∈X
{penalty(x)} −min

x∈X
{penalty(x)}) ;

11 RCL ← { x ∈ X : penalty(x) ≤ th } ;
12 x̂ ← rand(RCL) ;
13 s← s ∪ {x̂};
14 X ← X \ {x̂ ,¬x̂};
15 C ← C \ {c̄ | x̂ ∈ c̄};
16 return s

Let |C| = m be the number of clauses. Since |X | = 2n, in the worst case scenario the
while loop (line 3) in the construct-solution function pseudo-coded in Algorithm 3.3
runs m times and in each run the most expensive operation consists in the construction
of the RCL. Therefore, the computational complexity is O(m · n).

In the local search phase, the algorithm uses a 1-exchange (flip) neighborhood function,
where two solutions are neighbors if and only if they differ in at most one component each
other. Therefore, if there exists a better solution s̄ that differs only for one literal from the
current solution s, the current solution s is set to s̄ and the procedure restarts. If such a
solution does not exists, the procedure ends and returns the current solution s. The local
search procedure would also re-establish feasibility if the current solution is not covering
all clauses of φ(X). A best improvement strategy has been used.

81

Chapter 3. GRASP algorithms for the FFMSP, p-Center, and MCS

3.3.4 Experimental results

GRASP has been implemented in C++ and compiled with gcc 5.4.0 with the flag
-std=c++14. All tests were run on a cluster of nodes, connected by 10 Gigabit Infiniband
technology, each of them with two processors Intel Xeon E5-4610v2@2.30GHz.

The algorithm has been compared with different solvers proposed in literature. In
particular, it has been used: Z3 solver freely available from Microsoft Research [48],
bsolo solver kindly provided by the authors Manquinho and Marques-Silva [45], and the
MiniSat+ [12] available at web page http://minisat.se/. The aim of computational
experiment is the evaluation of the quality of the solutions obtained by GRASP within
a certain time limit. More specifically, the stopping criterion for GRASP and bsolo is a
time limit of 3 hours, for Z3 and MiniSat+ is the reaching of an optimal solution.

For testing, the datasets used to test feature selection methods in Bertolazzi et al.
[4] have been used. Such testbed is composed of 4 types of problems (A,B,C,D), for each
of which 10 random repetitions have been generated. Problems of type A and B are
of moderate size (100 positive examples, 100 negative examples, 100 logic features), but
differ in the form of the formula used to classify the samples into the positive and negative
classes (the formula being more complex for B than for A). Problems of type C and D are
much larger (200 positive examples, 200 negative examples, 2500 logic features), and D
has a more complex generating logic formula than C.

Table 3.5 reports both the value of the solutions and the time needed to achieve them
(in the case of GRASP, it is average over ten runs).1 For problems of moderate size (A
and B), the results show that GRASP finds an optimal solution whenever one of the exact
solvers converges. Moreover, GRASP is very fast in finding the optimal solution, although
here it runs the full allotted time before stopping the search. For larger instances (C and
D), GRASP always provides a solution within the bounds, while two of the other tested
solvers fail in doing so and the only one that is successful (bsolo) always obtains values
of inferior quality.

3.4 Biased Randomized SimGRASP

Many real-life combinatorial optimization problems (COPs) are shaped by large prob-
lem sizes and inherent complexity through various problem constraints. Typically, this
results in NP-hard problem settings which cannot be solved to optimality in reasonable
computing times. In this context, metaheuristics have proven to be very efficient in finding
near-optimal solutions to a wide range of problem settings. Nevertheless, as a drawback,
generally metaheuristics are able to solve only deterministic problem settings. Real-life
problems often present uncertainty, resulting in stochastic versions of the classical deter-

1For missing values, the algorithm was not able to find the optimal solution in 24 hours.

82

http://minisat.se/

3.4 Biased Randomized SimGRASP

Table 3.5: Comparison between GRASP and other MCS solvers.

GRASP Z3 bsolo MiniSat+

Instance Time (s) Value Time (s) Value Time (s) Value Time (s) Value

A1 6.56 78.0 10767.75 78.0 0.09 78.0 0.19 78.0
A2 1.71 71.0 611.29 71.0 109.59 71.0 75.46 71.0
A3 0.64 65.0 49.75 65.0 598.71 65.0 10.22 65.0
A4 0.18 58.0 4.00 58.0 205.77 58.0 137.82 58.0
A5 0.29 66.0 69.31 66.0 331.51 66.0 9.03 66.0
A6 21.97 77.0 5500.17 77.0 328.93 77.0 32.82 77.0
A7 0.21 63.0 30.57 63.0 134.20 63.0 19.34 63.0
A8 0.25 62.0 6.57 62.0 307.69 62.0 16.84 62.0
A9 12.79 72.0 1088.83 72.0 3118.32 72.0 288.76 72.0
A10 0.33 66.0 42.23 66.0 62.03 66.0 37.75 66.0

B1 6.17 78.0 8600.60 78.0 304.36 78.0 121.25 78.0
B2 493.56 80.0 18789.20 80.0 4107.41 80.0 48.21 80.0
B3 205.37 77.0 7037.00 77.0 515.25 77.0 132.74 77.0
B4 38.26 77.0 7762.03 77.0 376.00 77.0 119.49 77.0
B5 19.89 79.0 15785.35 79.0 3025.26 79.0 214.52 79.0
B6 28.45 76.0 4087.14 76.0 394.45 76.0 162.31 76.0
B7 129.76 78.0 10114.84 78.0 490.30 78.0 266.25 78.0
B8 44.42 76.0 5186.45 76.0 5821.19 76.0 1319.21 76.0
B9 152.77 80.0 14802.00 80.0 5216.95 82.0 36.28 80.0
B10 7.55 73.0 1632.87 73.0 760.28 79.0 370.30 73.0

C1 366.24 132.0 86400 – 8616.25 178.0* 86400 –
C2 543.11 131.0 86400 – 323.90 150.0* 86400 –
C3 5883.6 174.1 86400 – 6166.06 177.0* 86400 –
C4 4507.63 176.3 86400 – 6209.69 178.0* 86400 –
C5 5707.51 171.2 86400 – 314.18 179.0* 86400 –
C6 6269.91 172.1 86400 – 1547.90 177.0* 86400 –
C7 6193.15 165.9 86400 – 794.90 177.0* 86400 –
C8 596.58 137.0 86400 – 306.27 169.0* 86400 –
C9 466.3 136.0 86400 – 433.32 179.0* 86400 –
C10 938.54 136.0 86400 – 3703.94 180.0* 86400 –

D1 3801.61 145.3 86400 – 307.25 175.0* 86400 –
D2 2040.64 139.0 86400 – 7704.92 177.0* 86400 –
D3 1742.78 143.0 86400 – 309.10 145.0* 86400 –
D4 1741.95 135.0 86400 – 6457.79 177.0* 86400 –
D5 1506.22 134.0 86400 – 6283.27 178.0* 86400 –
D6 1960.87 144.5 86400 – 309.11 173.0* 86400 –
D7 1544.42 143.0 86400 – 4378.73 179.0* 86400 –
D8 1756.15 144.0 86400 – 1214.97 179.0* 86400 –
D9 2779.38 137.0 86400 – 303.11 146.0* 86400 –
D10 5896.86 149.0 86400 – 319.45 170.0* 86400 –

Y 16.05 0.0 0.73 0.0 9411.06 974* 1.96 0
*sub-optimal solution
– no optimal solution found in 24 hours

83

Chapter 3. GRASP algorithms for the FFMSP, p-Center, and MCS

ministic COPs.
We next describe SimGRASP. By integrating simulation at different stages of GRASP,

this constitutes an accessible way to tackle problem settings under stochastic input un-
certainty. SimGRASP can be characterized as so called simheuristic [39]. Furthermore,
another possible extension of traditional GRASP is the Biased Randomized GRASP, that
tries to simplify and improve the construction phase of the classical GRASP.

3.4.1 BR-GRASP and SimGRASP methodologies

Introducing biased randomization during the construction phase

The first enhancement to the traditional GRASP introduces biased randomization in
the construction phase of the algorithm. This technique is proposed in Ferone et al. [25],
in contrast to the classical framework, the BR-GRASP methodology does not rely on
a RCL to build a feasible solution. The main idea is similar to Bresina [8], but it has
never combined in a GRASP framework. As shown in Algorithm 3.4, the first steps of
the construction phase and the creation of a CL (lines 2-4) are similar to the ones applied
in the traditional GRASP. However, the element selection process varies in a couple of
points. On the one hand, a non-symmetric, non-uniform distribution function is applied
to define the probabilities of including element e ∈ CL in the current solution. Different
skewed (non-symmetric) probability distribution can be used at this point, e.g., geometric
or triangular distributions. Thus, the probabilities are biased towards the most promising
solution elements. On the other hand, the BR-GRASP framework does not restrict the
candidate list of elements. This means that all feasible and non-selected elements are
potentially eligible. Figure 3.3 highlights the difference between the traditional- and the
biased randomization construction phase.

Algorithm 3.4: Construction phase with Biased Randomization.

1 Function BiasedConstruction(D, �)
2 s← ∅;
3 initialize candidate set: CL ← E;
4 order the Candidate List (CL) elements according to c(·) ;
5 while solution s is not complete do
6 Randomly select pos ∈ {1, . . . , |CL |} according to distribution D(�);
7 s← s ∪ {CL[pos]};
8 CL ← CL \ {CL[pos]} ;
9 Reorder CL;

10 return s;

84

3.4 Biased Randomized SimGRASP

Figure 3.3: (a) Traditional GRASP element selection process; (b) BR-GRASP element
selection process.

3.4.2 Including simulation in GRASP

Like other metaheuristics, GRASP alone (with or without biased randomization) is not
able to consider any input uncertainty. The SimGRASP framework, presented in Ferone
et al. [17], and outlined in the following overcomes this drawback by including simulation
at different stages of the algorithm. In general, this simheuristic methodology does not
depend on the GRASP construction phase. Thus, both GRASP and BR-GRASP could
be applied. However, as discussed by Juan et al. [39], the quality of stochastic solutions
are directly related to the deterministic output.

The general SimGRASP framework is outlined in Algorithm 3.5. Given a stochas-
tic COP, the problem settings is transformed into its deterministic counterpart (line 1).
Considering a set X of stochastic variables, each variable x ∈ X is transformed into a
deterministic value x∗ by considering the expected values E[x] = x∗. Using the determin-
istic values, an initial solution is constructed using the BR-GRASP framework (lines 2-3).
Then, the deterministic solution is evaluated in an uncertainty environment by applying
simulation (line 4). During nItershort simulation runs, all stochastic variables are hereby
simulated from any suitable empirical or theoretical probability distribution, using the ex-
pected values x∗ as distribution mean. Moreover, the variability of the stochastic variable
is defined by parameter k. Note that, high uncertainty levels can be modeled by increasing
this value, while k = 0 is equal to the deterministic case. The simulation procedure leads
to important decision making information. Not only can the stochastic costs be evaluated,
but valuable solution information and statistics of different stochastic COP solutions can

85

Chapter 3. GRASP algorithms for the FFMSP, p-Center, and MCS

Algorithm 3.5: General SimGRASP framework.

1 Function SimGRASP(Stochastic COP)
2 Transform stochastic COP into deterministic counterpart;
3 s0 ← BiasedConstruction(·);
4 s∗ ← LocalSearch(s0);
5 (s∗, sf(s∗), statistics) ← Simulation (s∗, short);
6 while stopping criterion not reached do
7 s∗∗ ← GenerateSolution;
8 s∗∗ ← LocalSearch(s∗∗)

1010 (s∗∗, sf(s∗∗), statistics) ← Simulation (s∗∗, short)
1212 if sf(s∗∗) < sf(s∗) then
1414 EliteSolutions ← add(s∗∗)
1616 s∗ ← s∗∗

1818 foreach solution s ∈ EliteSolutions do
2020 (s, sf(s), statistics) ← Simulation (s, long)
2222 return Set of stochastic solutions;

be obtained. Finally, the initial solution s∗ is set as current best solution.

3.4.3 Experiments

To show the functionality and competitiveness of both GRASP adaptions, BR-GRASP
and SimGRASP have been applied to a well-known problem setting related to production,
transportation, and logistics: the capacitated vehicle routing problem (VRP). In addition
to solving the deterministic case with BR-GRASP, the problem is also considered in its
stochastic version, the VRP with stochastic demands (VRPSD). This problem is defined
by its large size and NP-hardness, making the use of metaheuristics and their extensions
suitable to solve it.

The stochastic variables xi are generated according to a log-normal distribution func-
tion, which considers the deterministic values x∗i as distribution mean and a variance
factor k. Thus, the log-normal probability function can be formulated through a location
parameter, µi , and a scale parameter σi , with E[Di] = xi and Var[Di] = k · xi , such that:

µi = ln(E[Di]) −
1
2
· ln

(
1 +

Var[Di]
E[Di]2

)

σi =

∣∣∣∣∣∣∣∣
√

ln
(
1 +

Var[Di]
E[Di]2

)∣∣∣∣∣∣∣∣
All experiments were implemented as Java application and run on Eclipse on an

Ubuntu operating system with a personal computer with an Intel i7 Quad core, 2.67
GHz clock, and 6 GB RAM. Geometric distribution with � parameter has been used in

86

3.4 Biased Randomized SimGRASP

BiasedConstruction.
The VRP can be formulated on a graph G = (V, E), whereby customer set V =

0, 1, . . . , n describes n clients with demand di , i ∈ V \ {0}, which have to be served by a set
of vehicles located at the central depot 0 ∈ V . Travel distances between any two nodes
are described by a set E of weighted edges. Typically, the objective function consists of
the minimization of overall travel distances or costs [52].

In order to compare BR-GRASP with the traditional GRASP metaheuristic implemen-
tation, threshold parameter α was set to 0.3, while the geometric distribution parameter
� was set to 0.5 respectively. As test instance, the sets A and B of the benchmark set
for the capacitated VRP proposed by Augerat et al. [2] are used. The algorithms running
time for the deterministic case was set to 30 seconds for both algorithm implementations.
All results are compared to the optimal results for the chosen instances elaborated in the
work of Fukasawa et al. [33]. Furthermore, the VRPSD was used to evaluate the perfor-
mance of the SimGRASP methodology. As performance indicator, the results obtained
with the simheuristic based on a multi-start heuristic procedure discussed by Juan et al.
[40] are used. As done in their paper, the deterministic demand levels di given by the
benchmarks are turned into their stochastic counterpart by applying different variance
levels k, whereby a variance level of k = 0.25 is used to obtain the results reported in this
work. Computational running times are set to 10 seconds for the stochastic case.

As summarized in Table 3.6, the traditional implementation of GRASP is on average
4.59% worse than the optimal solution. This gap can be significantly reduced to 1.88% by
introducing a biased randomized edge selection process. When comparing the combination
of a multi-start heuristic with simulation to our SimGRASP algorithm, it can be seen that
SimGRASP outperforms previous simulation-optimization approaches by -9.81%.

87

Chapter 3. GRASP algorithms for the FFMSP, p-Center, and MCS

Table 3.6: Performance of BR-GRASP and SimGRASP for the VRP.

Instance BKS
(1)

GRASP
(2)

BR-GRASP
(3)

%-Gap
(1)-(2)

%-Gap
(1)-(3)

SimMultiStart
(4)

SimGRASP
(5)

%-Gap
(4)-(5)

A-n32-k5 787.08 807.09 787.2 2.54 0.02 993.20 890.95 -10.30
A-n33-k5 662.11 687.91 662.11 3.90 0.00 815.40 750.63 -7.94
A-n33-k6 742.69 768.84 742.69 3.52 0.00 912.60 837.63 -8.21
A-n37-k5 664.8 707.81 685.26 6.47 3.08 795.00 734.44 -7.62
A-n38-k5 716.5 768.13 747.14 7.21 4.28 885.10 824.37 -6.86
A-n39-k6 822.8 863.08 835.25 4.90 1.51 1010.60 926.11 -8.36
A-n45-k6 938.1 1006.45 957.06 7.29 2.02 1184.30 1091.36 -7.85
A-n45-k7 1139.3 1199.98 1155.22 5.33 1.40 1502.00 1336.08 -11.05
A-n55-k9 1067.4 1099.84 1088.45 3.04 1.97 1408.40 1258.72 -10.63
A-n60-k9 1344.4 1421.88 1363.58 5.76 1.43 1795.70 1579.79 -12.02
A-n61-k9 1022.5 1102.23 1042.96 7.80 2.00 1330.60 1224.44 -7.98
A-n63-k9 1607 1687.96 1649.33 5.04 2.63 2203.70 1897.29 -13.90
A-n65-k9 1166.5 1239.42 1197.49 6.25 2.66 1555.30 1437.84 -7.55

A-n80-k10 1754 1860.94 1798.01 6.10 2.51 2328.40 2177.10 -6.50
B-n31-k5 676.09 681.16 676.09 0.75 0.00 855.70 757.60 -11.46
B-n35-k5 956.29 978.33 961.77 2.30 0.57 1255.50 1098.00 -12.54
B-n39-k5 549 566.71 553.27 3.23 0.78 695.90 621.34 -10.71
B-n41-k6 826.4 878.3 844.7 6.28 2.21 1103.20 1005.62 -8.84
B-n45-k5 747.5 757.16 754.23 1.29 0.90 904.60 828.04 -8.46
B-n50-k7 741 748.8 744.23 1.05 0.44 945.80 859.48 -9.13
B-n52-k7 745.8 764.9 755.85 2.56 1.35 944.40 848.71 -10.13
B-n56-k7 704 733.74 719.03 4.22 2.13 920.00 845.37 -8.11
B-n57-k9 1596 1653.42 1602.92 3.60 0.43 2199.70 1885.69 -14.27
B-n64-k9 859.3 921.56 903.43 7.25 5.14 1179.60 1064.53 -9.75

B-n67-k10 1024.4 1099.95 1086.01 7.38 6.01 1404.50 1247.67 -11.17
B-n68-k9 1263 1317.77 1305.32 4.34 3.35 1754.70 1515.88 -13.61
Average 4.59 1.88 -9.81

88

Chapter 4
Conclusions

I n this thesis the Shortest Path Tour Problem and its variants have been studied. The
SPTP is a generalized Shortest Path Problem, where given some disjoint node subset

Ti , i = 1, . . . , N , the shortest path must visits at least one node for each subset in the given
order.

Here, two main variants of the problem have been considered. The former is the
Constrained Shortest Path Tour Problem, in which a feasible solution must not include
any repeated arc. The latter is the Shortest Path Tour Problem with Time Windows, where
to each constrained node is assigned a time window in which the node can be served.

On one hand the general Shortest Path Tour Problem is polynomially solvable. On
the other hand, the two variants are NP-hard problems.

For the CSPTP, two different mathematical formulations and two exact approaches
have been proposed. Moreover, due to the complexity of the problem, a GRASP meta-
heuristic has been applied to solve the problem.

An extensive computational study has been carried out on a variety of network in-
stances with the goal of assessing the behaviour of the proposed solution procedures. The
computational results obtained have shown that, given the intrinsic complexity of the
CSPTP, the second Branch & Bound (B&Bnew) method shows good results on medium
size instances. Furthermore, when the network is dense B&Bnew is able to tackle big
instances, too. Nevertheless, the GRASP meta-heuristic can be very useful on general
big instances, where the exact techniques fails to solve the problem, due to its theoretical
complexity.

The research on the SPTPTW is still at an initial stage, but an exact dynamic
programming algorithm and several bounding strategies to improve its performance have
been proposed. The algorithm is able to cope medium size instances, but it is needed
to propose some sort of (meta-)heuristic, that can solve large size instances in reasonable
times.

A lot of work has still to be done. The problem has been proposed recently, and the
scientific literature is poor. Therefore, several research lines are open. An interesting

89

Chapter 4. Conclusions

generalization of the SPTPTW , is the Shortest Path Tour Problem with Tour Windows.
In this case, the nodes could belong to different subset Ti depending in the time they are
visited. Tour windows [ei

v, l iv] are associated with each node and indicates the interval of
time in which the node v belongs to the subset Ti .

Furthermore, an interesting and promising research line could be the application of
the aforementioned problems to more realistic-case scenarios, where the determinism is
resigns in favor of stochasticity and uncertainly.

In this thesis different side projects have been also presented. A common solving ap-
proach, GRASP meta-heuristic, has been proposed for all the problems addressed here.
Although the GRASP has been largely studied and several hybridization have been pro-
posed, to the best of my knowledge it is the first time that simulation has been integrated
in this well known framework. All existing GRASP variants and extensions can be inte-
grated in this new strategy, resulting in new tools to cope with many real-life problems.

90

Bibliography

[1] I. Arisi, M. D’Onofrio, R. Brandi, A. Felsani, S. Capsoni, G. Drovandi, G. Felici, E.
Weitschek, P. Bertolazzi, and A. Cattaneo. “Gene expression biomarkers in the brain
of a mouse model for Alzheimer’s disease: mining of microarray data by logic classi-
fication and feature selection”. Journal of Alzheimer’s Disease 24.4 (2011), pp. 721–
738 (cit. on p. 78).

[2] P. Augerat, J. M. Belenguer, E. Benavent, A. Corberàn, D. Naddef, and R. Giovanni.
Computational results with a branch and cut code for the capacitated vehicle routing
problem. Tech. rep. IASI Research Report n. 495. Rome, Italy: Institute for Systems
Analysis and Computer Science, 1998. url: http://www.iasi.cnr.it/reports%
5C_html/R495 (cit. on p. 87).

[3] J. E. Beasley. “A note on solving large p-median problems”. European Journal of
Operational Research 21 (1985), pp. 270–273 (cit. on p. 76).

[4] P. Bertolazzi, G. Felici, P. Festa, G. Fiscon, and E. Weitschek. “Integer programming
models for feature selection: New extensions and a randomized solution algorithm”.
European Journal of Operational Research 250.2 (2016), pp. 389–399 (cit. on p. 82).

[5] P. Bertolazzi, G. Felici, and E. Weitschek. “Learning to classify species with bar-
codes”. BMC bioinformatics 10.14 (2009), p. 1 (cit. on p. 78).

[6] D. P. Bertsekas. “An Auction Algorithm for Shortest Paths”. SIAM Journal on
Optimization 1.4 (1991), pp. 425–447 (cit. on p. 16).

[7] D. P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Athena
Scientific, 2005 (cit. on p. 17).

[8] J. L. Bresina. “Heuristic-biased Stochastic Sampling”. Proceedings of the Thirteenth
National Conference on Artificial Intelligence - Volume 1. AAAI’96. AAAI Press,
1996, pp. 271–278 (cit. on p. 84).

[9] R. Cerulli, P. Festa, and G. Raiconi. “Shortest Path Auction Algorithm Without
Contractions Using Virtual Source Concept”. Computational Optimization and Ap-
plications 26.2 (2003), pp. 191–208. issn: 1573-2894 (cit. on p. 16).

[10] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.
2nd. McGraw-Hill Higher Education, 2001 (cit. on p. 59).

91

http://www.iasi.cnr.it/reports%5C_html/R495
http://www.iasi.cnr.it/reports%5C_html/R495

BIBLIOGRAPHY

[11] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. Numer.
Math. 1 (Dec. 1959), pp. 269–271 (cit. on p. 16).

[12] N. Eén and N. Sörensson. “Translating pseudo-boolean constraints into SAT”. Jour-
nal on Satisfiability, Boolean Modeling and Computation 2 (2006), pp. 1–26 (cit. on
pp. 78, 82).

[13] G. Felici, D. Ferone, P. Festa, A. Napoletano, and T. Pastore. “A GRASP for the
Minimum Cost SAT Problem”. Proceedings of 11th Learning and Intelligent Opti-
mizatioN Conference. Vol. Lecture Notes in Computer Science. 2017. Forthcoming
(cit. on p. 78).

[14] G. Felici and K. Truemper. “A minsat approach for learning in logic domains”.
INFORMS Journal on computing 14.1 (2002), pp. 20–36 (cit. on p. 78).

[15] T. A. Feo and M. G. C. Resende. “A probabilistic heuristic for a computationally
difficult set covering problem”. Operations Research Letters 8.2 (1989), pp. 67–71
(cit. on p. 28).

[16] T. A. Feo and M. G. C. Resende. “Greedy Randomized Adaptive Search Procedures”.
Journal of Global Optimization 6 (1995), pp. 109–133 (cit. on p. 28).

[17] D. Ferone, P. Festa, A. Gruler, and A. A. Juan. “Combining simulation with a
GRASP metaheuristic for solving the permutation flow-shop problem with stochastic
processing times”. 2016 Winter Simulation Conference (WSC). Dec. 2016, pp. 2205–
2215 (cit. on p. 85).

[18] D. Ferone, P. Festa, and F. Guerriero. “An Efficient Exact Approach for the Con-
strained Shortest Path Tour Problem”. Computers & Operations Research (2017).
Submitted (cit. on p. 40).

[19] D. Ferone, P. Festa, F. Guerriero, and D. Laganà. “The constrained shortest path
tour problem”. Computers & Operations Research 74 (2016), pp. 64–77 (cit. on p. 19).

[20] D. Ferone, P. Festa, and A. Napoletano. “A new local search for the p-center problem
based on the critical vertex concept”. Proceedings of 11th Learning and Intelligent
OptimizatioN Conference. Vol. Lecture Notes in Computer Science. 2017. Forthcom-
ing (cit. on p. 75).

[21] D. Ferone, P. Festa, A. Napoletano, and T. Pastore. “Reoptimizing shortest paths:
From state of the art to new recent perspectives”. 2016 18th International Conference
on Transparent Optical Networks (ICTON). 2016, pp. 1–5 (cit. on p. 16).

[22] D. Ferone, P. Festa, and M. G. C. Resende. “Hybrid metaheuristics for the far
from most string problem”. Proceedings of 8th International Workshop on Hybrid
Metaheuristics. Vol. 7919 of Lecture Notes in Computer Science. 2013, pp. 174–188
(cit. on p. 70).

92

BIBLIOGRAPHY

[23] D. Ferone, P. Festa, and M. G. C. Resende. “On the Far from Most String Problem,
One of the Hardest String Selection Problems”. Dynamics of Information Systems:
Computational and Mathematical Challenges. Ed. by C. Vogiatzis, J. L. Walteros,
and P. M. Pardalos. Cham: Springer International Publishing, 2014, pp. 129–148
(cit. on p. 67).

[24] D. Ferone, P. Festa, and M. G. C. Resende. “Hybridizations of GRASP with path
relinking for the far from most string problem”. International Transactions in Op-
erational Research 23.3 (2016), pp. 481–506. issn: 1475-3995 (cit. on p. 69).

[25] D. Ferone, A. Gruler, P. Festa, and A. A. Juan. “Enhancing and Extending the
Classical GRASP Framework with Biased Randomization and Simulation”. Journal
of the Operational Research Society (2017). Submitted (cit. on p. 84).

[26] P. Festa. “Complexity analysis and optimization of the shortest path tour problem”.
Optimization Letters 6.1 (2012), pp. 163–175 (cit. on pp. 17, 18, 33).

[27] P. Festa, F. Guerriero, D. Laganà, and R. Musmanno. “Solving the shortest path
tour problem”. European Journal of Operational Research 230.3 (2013), pp. 464–474
(cit. on p. 18).

[28] P. Festa and S. Pallottino. A pseudo-random networks generator. Tech. rep. De-
partment of Mathematics and Applications “R. Caccioppoli”, University of Napoli
FEDERICO II, Italy, 2003 (cit. on pp. 33, 45, 46).

[29] P. Festa and M. G. C. Resende. “GRASP: An annotated bibliography”. Essays and
surveys in metaheuristics. Springer, 2002, pp. 325–367 (cit. on p. 28).

[30] P. Festa and M. G. C. Resende. “An annotated bibliography of GRASP - Part I:
Algorithms”. International Transactions in Operational Research 16.1 (2009), pp. 1–
24 (cit. on p. 28).

[31] P. Festa and M. G. C. Resende. “An annotated bibliography of GRASP - Part
II: Applications”. International Transactions in Operational Research 16.2 (2009),
pp. 131–172 (cit. on p. 28).

[32] Z. Fu and S. Malik. “Solving the minimum-cost satisfiability problem using sat based
branch-and-bound search”. IEEE/ACM International Conference on Computer-Aided
Design, Digest of Technical Papers, ICCAD. 2006, pp. 852–859 (cit. on p. 80).

[33] R. Fukasawa, H. Longo, J. Lysgaard, M. P. de Aragão, M. Reis, E. Uchoa, and R. F.
Werneck. “Robust Branch-and-Cut-and-Price for the Capacitated Vehicle Routing
Problem”. Mathematical Programming 106.3 (2006), pp. 491–511 (cit. on p. 87).

[34] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1979 (cit. on pp. 59, 78).

93

BIBLIOGRAPHY

[35] F. Glover. “Tabu search and adaptive memory programing – Advances, applications
and challenges”. Interfaces in Computer Science and Operations Research. Ed. by
R.S. Barr, R.V. Helgason, and J.L. Kennington. Kluwer, 1996, pp. 1–75 (cit. on
p. 68).

[36] S. L. Hakimi. “Optimum Locations of Switching Centers and the Absolute Centers
and Medians of a Graph”. Operations Research 12.3 (1964), pp. 450–459 (cit. on
p. 74).

[37] P. Hansen and N. Mladenović. “Variable neighborhood search for the p-median”.
Location Science 5.4 (1997), pp. 207–226 (cit. on p. 75).

[38] P. E. Hart, N. J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic De-
termination of Minimum Cost Paths”. IEEE Transactions on Systems Science and
Cybernetics 4.2 (July 1968), pp. 100–107 (cit. on p. 16).

[39] A. A. Juan, J. Faulin, S. E. Grasman, M. Rabe, and G. Figueira. “A review of
simheuristics: extending metaheuristics to deal with stochastic combinatorial opti-
mization problems”. Operations Research Perspectives 2 (2015), pp. 62–72 (cit. on
pp. 84, 85).

[40] A. A. Juan, J. Faulin, J. Jorba, J. Caceres, and J. M. Marquès. “Using parallel & dis-
tributed computing for real-time solving of vehicle routing problems with stochastic
demands”. Annals of Operations Research 207.1 (2013), pp. 43–65 (cit. on p. 87).

[41] O. Kariv and S. L. Hakimi. “An Algorithmic Approach to Network Location Prob-
lems. Part I: The p-Centers”. SIAM Journal on Applied Mathematics 37.3 (1979),
pp. 513–538 (cit. on p. 75).

[42] R. M. Karp. “Reducibility among Combinatorial Problems”. Complexity of computer
computations. Springer US, 1972, pp. 85–103 (cit. on p. 19).

[43] M. Laguna and R. Martí. “GRASP and path relinking for 2-layer straight line cross-
ing minimization”. INFORMS J. on Computing 11 (1999), pp. 44–52 (cit. on p. 69).

[44] J. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. “Distinguishing string selection
problems”. Information and Computation 185.1 (2003), pp. 41–55 (cit. on p. 68).

[45] V. M. Manquinho and J. P. Marques-Silva. “Search pruning techniques in SAT-based
branch-and-bound algorithms for the binate covering problem”. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 21.5 (May 2002),
pp. 505–516 (cit. on pp. 78, 82).

[46] M. Matsumoto, T. Nishimura, and Mersenne Twister. “A 623-dimensionally equidis-
tributed uniform pseudorandom number generator”. ACM Transactions on Modeling
and Computer Simulation 8.1 (1998), pp. 3–30 (cit. on p. 45).

94

BIBLIOGRAPHY

[47] N. Mladenović, M. Labbé, and P. Hansen. “Solving the p-Center Problem with Tabu
Search and Variable Neighborhood Search”. Networks 42.April (2003), pp. 48–64 (cit.
on p. 76).

[48] L. de Moura and N. Bjørner. “Z3: An Efficient SMT Solver”. Tools and Algorithms for
the Construction and Analysis of Systems: 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
2008, pp. 337–340 (cit. on pp. 78, 82).

[49] S. R. Mousavi, M. Babaie, and M. Montazerian. “An improved heuristic for the far
from most strings problem”. Journal of Heuristics 18 (2012), pp. 239–262 (cit. on
p. 70).

[50] W. B. Powell and Z. Chen. “A generalized threshold algorithm for the shortest
path problem with time windows”. DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 40 (1998), pp. 303–318 (cit. on p. 62).

[51] L. D. P. Pugliese and F. Guerriero. “A survey of resource constrained shortest path
problems: Exact solution approaches”. Networks 62.3 (2013), pp. 183–200 (cit. on
p. 58).

[52] P. Toth and D. Vigo. Vehicle Routing - Problems, Methods and Applications. Ed. by
Paolo Toth and Daniele Vigo. 2nd. Philadelphia: SIAM Monographs on Discrete
Mathematics and Applications, 2014. isbn: 978-1-61197-358-7 (cit. on p. 87).

[53] K. Truemper. Design of logic-based intelligent systems. John Wiley & Sons, 2004
(cit. on p. 78).

95

	Abstract
	Ringraziamenti
	Contents
	List of figures
	List of tables
	List of algorithms
	Introduction
	The Shortest Path Problem
	The Shortest Path Tour Problem

	Shortest Path Tour Problem variants
	Complexity
	Solution approaches
	An exact method
	A GRASP
	Experimental results

	A more sophisticated exact approach
	Mathematical formulation
	An advanced exact approach
	Experimental results

	Shortest Path Tour Problem with Time Windows
	Introduction
	Dynamic programming algorithm
	Bounds
	Experimental results

	GRASP algorithms for the FFMSP, p-Center, and MCS
	Far From Most String Problem
	Introduction
	GRASP with Path Relinking
	Results

	p-Center
	Introduction
	A new local search for the p-center
	Experimental results

	Minimum Cost SAT Problem
	Introduction
	Mathematical formulation of the problem
	A GRASP for Minimum Cost SAT
	Experimental results

	Biased Randomized SimGRASP
	BR-GRASP and SimGRASP methodologies
	Including simulation in GRASP
	Experiments

	Conclusions
	Bibliography

