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Abstract 

 
 

ABSTRACT 

 

Hydrogen is the ideal candidate to fulfill the growing energy demand in a sustainable manner 

because of its high energy content and no emission of greenhouse gases from its combustion. 

Currently most of hydrogen generation techniques involve the employment of fossil fuels, with 

consequent production of toxic greenhouse gases. The possibility to produce hydrogen by 

means of photocatalytic processes using the solar radiation as energy source fits in perfectly 

with the switch to a more sustainable energy production. The solar photocatalytic hydrogen 

generation can be achieved by reforming organic substances contained in civil or industrial 

wastewaters. This could allow to combine water decontamination with production of an 

energy carrier starting from a renewable source, the solar radiation. 

Hydrogen production through photoreforming of organic species using copper-modified TiO2 

photocatalysts is attracting a considerable attention during last years. It is reported that the 

doping of TiO2 with copper species helps enhance to separate the electron-hole pairs, thus 

reducing the occurrence of the recombination reaction, and extend the light absorption to the 

visible range of the solar spectrum. The choice of copper is supported by its low-cost and 

abundance in Earth’s crust. 

In particular, the use of catalysts prepared by in situ photodeposition processes, with 

nanometric size, could represent a straightforward promising strategy to improve the process 

efficiency. 

In this study, the production of hydrogen by photocatalytic reforming of oxygenated organic 

species was investigated using metal copper-modified TiO2 nanoparticles, prepared “in situ” 

by reduction of cupric ions. 

The behavior of different alcohols and organic acids to undergo photoreforming with 

hydrogen production was investigated and compared. A characterization of the catalysts 

recovered at the end of the runs revealed the formation of zero-valent copper nanoparticles 

on the catalysts surface. 

The effect of adopting different crystallographic phases of TiO2  was also assessed. In 

particular, three TiO2 commercial samples of different crystalline phases (mixed-phase P25, 

pure anatase and pure rutile) were employed to prepare Cu-doped TiO2 materials by in situ 

copper photo-deposition. The resulting samples were extensively characterized by several 

complementary techniques and tested as photocatalysts for hydrogen production through 

photoreforming of alcohols. Correlations between hydrogen production rates and physical-
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chemical properties (structural, compositional and optical properties) of the samples are 

discussed. The analyses highlighted the major roles played by physical sizes and surface 

properties of TiO2 particles in determining the morphology, the dispersion of zero-valent 

copper nanoparticles on TiO2 surface and, ultimately, the photocatalytic performances. 

A modeling investigation was performed through the development of a simplified kinetic 

model taking into account the mass balance equations for the main reactive species involved 

in the photocatalytic system. The kinetic model was tested to predict hydrogen generation 

rates for experimental runs carried out at different initial concentrations of sacrificial agent 

(methanol and glycerol) and at varying photocatalyst load. The modeling investigation 

allowed to estimate for the first time the equilibrium adsorption constants and the 

kinetic constant for the hole-capture by sacrificial agents, as well as the quantum yield and 

the rate constant of electron-hole recombination for the copper modified-TiO2 nano-

photocatalyst. 

The simultaneous presence in the aqueous matrix of an inorganic ion, that is chloride, was 

also investigated when formic acid was adopted as sacrificial agent. The effect on hydrogen 

generation rate of the initial concentrations of formic acid, chloride and cupric ion, and pH 

values was evaluated. These experimental outcomes were rationalized within a consistent 

reaction mechanism able to predict the system behavior under different operating conditions. 

Therefore, this critical literature review has been performed with the aim of providing a 

complete and reliable  approach to promote new competitive processes able to use waste 

organic streams for hydrogen generation through photacatalytic system based on solar 

energy. 
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1. Background 

 

1.1 Hydrogen as en energy vector 

Hydrogen represents as an important energy carrier for the future due to its high energy 

content and the absence of greenhouse-responsible and toxic emissions during its combustion 

[1]. It undergoes a clean combustion reaction with oxygen (    ) to generate energy (   

         ). 

 

   
    

      
       

 

As shown in Table 1.1, hydrogen has the highest energy content amongst different fuels. 

 

Table 1.1: Energy content (MJ/kg) of different fuels [2]. 

 

Fuel Energy content (MJ/kg) 

Hydrogen 120 

Liquefied natural gas 54.4 

Propane 49.6 

Automotive gasoline 46.4 

Automotive diesel 45.6 

Ethanol 29.6 

Methanol 19.7 

Coke 27 

Wood (dry) 16.2 

 

As hydrogen can be found on earth in combination with other elements, its industrial 

availability is closely related to production processes which starts from substances containing 

it. Such substances may be currently represented  by fossil fuels (i.e., coal, oil, natural gas), 

biomasses [3], organic substances eventually contained in civil or industrial wastewaters, or 

by the water itself [4]. In particular, hydrogen is usually produced as syngas component from 
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fossil fuels by steam reforming and water gas shift processes [5]. Further minor technologies 

for hydrogen generation include chemical, electrochemical, thermal, and biological processes 

[6-8]. The main sources of hydrogen production, together with their percentage, are reported 

in Figure 1.1. 

 

 

Figure 1.1: Main sources for hydrogen generation [3]. 

 

Although hydrogen production from fossil fuels is an established technology, such raw 

materials are unappealing for the future due to their unrenewable nature and the emission of 

greenhouse gases (carbon dioxide) to ensure the energy required for hydrogen production 

processes. 

The attractive possibility to produce hydrogen by adopting solar energy may allow to employ 

a fully renewable energy source and avoid irreversible effects on the environment. As regards 

solar energy, hydrogen generation can be achieved by means of thermo-chemical [9], photo-

electrochemical, and photo-chemical processes [10]. In particular, photochemical processes 

require the adoption of catalysts able to absorb the solar radiation, in order to promote 

electrons to the higher energy levels needed for hydrogen production. Photocatalytic 

processes for hydrogen production in aqueous solutions include water photosplitting [11] and 

photoreforming of organic species [12].  

 

1.2 Photocatalytic processes for hydrogen generation 
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The generation of hydrogen from water or organic substances contained in industrial or civil 

wastewaters may be achieved  by means of photocatalytic processes exploiting the solar 

radiation arriving daily on earth. 

Two different approaches can be adopted for the photocatalytic hydrogen production: 1) 

photocatalytic water splitting and 2) photocatalytic reforming of organics. 

 

1.2.1 Photocatalytic water splitting 

The overall reaction of photocatalytic water splitting consists of water decomposition, which 

gives rise to the formation of hydrogen and oxygen gases (    ). 

 

   
    

       
       

 

As shown in Figure 1.2, such method relies on the capability of water to be reduced and 

oxidized by reacting with photogenerated electrons and positive holes (generated after 

semiconductor catalyst irradiation), respectively [4,13,14].  

 
Figure 1.2: Schematic illustration of water photosplitting. Oxidation of water by positive 

holes in the valence band (VB) and reduction of proton by photogenerated electrons in the 

conduction band (CB). 

 

The back reaction between hydrogen and oxygen regenerating water is kinetically and 

thermodynamically favored in photocatalytic water splitting. With the aim of avoiding 

hydrogen and oxygen recombination, photocatalytic processes may be performed by 

employing organic hole scavengers under inert atmosphere.  
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1.2.2 Photoreforming of organics 

As shown in Figure 1.3, the so-called photocatalytic reforming is based on the ability of some 

organic species, named sacrificial agents, to donate electrons to the positive holes of the 

irradiated photocatalyst and be oxidized generating protons ions, which are reduced to 

hydrogen by photogenerated electrons. No oxygen gas generation is recorded in 

photocatalytic reforming processes. 

 

Figure 1.3: Schematic illustration for the photoreforming process. Oxidation of organics 

(A) by positive holes in the valence band (VB) and reduction of proton ions by 

photogenerated electrons in the conduction band (CB). 

 

Short chain alcohols (e.g., methanol, ethanol and glycerol), carboxylic acids, (e.g., formic 

acid), and carbohydrates (e.g., glucose) are the organic species most commonly adopted in 

photoreforming processes [15,16]. The possibility of using industrial and civil wastewater 

streams containing such organics species can be considered, thus leading to a combined 

process of wastewater treatment with simultaneous hydrogen generation. 

 

1.2.3 Photocatalytic processes for hydrogen generation: experimental setups 

Both photocatalytic water splitting and reforming of organics may be performed through 

different experimental setups. The first method consists of a system in which the 

photocatalyst is merely suspended in solution; the second approach employs a 

photoelectrochemical cell [17] with the catalyst immobilized on a photoanode. As regards  

irradiated photoelectrochemical cells, water (in photosplitting) or organic species (in 

photoreforming) are oxidized at the photoanode, whereas protons are reduced at the cathode 

in a second compartment, being the two electrodes electrically connected (Fig. 1.4). 
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Figure 1.4: Photoelectrochemical cell for photoreforming. Oxidation of organics (A) at the 

anode (i.e., Pt and TiO2) and proton production; proton migration to the anodic 

compartment through the ion-permeable membrane; proton reduction at the cathode (i.e., 

Pt). 

 

A combination of photosplitting and photoreforming processes is feasible by adopting 

selected inorganic electron donors (i.e., I
-
 or Fe

2+
). The oxidized forms of such species may be 

reduced on a second photocatalyst, thus enabling simultaneous water oxidation and oxygen 

formation [18 ]. For example, two photocatalysts may be properly selected and suspended in 

the same solution in the case of iodide: a first catalysts on which protons (or water) reduction 

along with iodide to iodate oxidation occur, and (ii) a second one allowing a further iodate to 

iodide reduction while water is oxidized to oxygen. The resulting overall reaction is water 

photosplitting without any sacrificial organic consumption [19]. 

 

1.3 Effective photocatalyst hallmarks 

In general, an efficient photocatalyst needs have the following characteristics [20]: 

- to be capable to absorb in the UV-Vis region of the solar spectrum and to actually use 

this energy to generate electron-hole pairs. In this region, about 50% of solar energy is 

concentrated and, in particular, about 45% is in the visible range. The availability of 

photocatalysts capable of absorbing in the visible range of the electromagnetic 

spectrum may, in principle, guarantee the capture and storage in the photoproducts of 

a significant part of the energy emitted by the sun, provided that the energy absorbed 

is actually used to generate charge transporters (photogenerated electrons and holes); 
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- to be capable to immediately separate these pairs transferring electrons and holes at 

the liquid-semiconductor junction, where they participate to half-reactions; it is well 

known that photogenerated electrons and positive holes can recombine: 

 

                 

 

thus reducing the efficiency of the process of interest, including hydrogen generation. 

The incorporation in the photocatalyst of species capable of promoting this separation 

is necessary to achieve a significant efficiency. It has been reported that for any 

photocatalyst, to be considered commercially viable, it has to display an efficiency of 

overall energy capture of about 15% in the visible region of the electromagnetic 

spectrum [21]; 

- to be characterized by an electronic structure which makes the half-reactions of 

interest thermodynamically feasible. As indicated in Figures 1.2 and 1.3, the charge 

transporters formed upon the absorption of the radiation are allocated on electronic 

bands which are characterized by different potentials. In Figure 1.5, the importance of 

the position of energy bands in the semiconductor photocatalyst (e.g., TiO2) is 

highlighted. As a matter of fact, the capability of photogenerated electrons to reduce 

protons (or water) is strictly related to the position of the conduction band (CB) 

potential in the photocatalyst hosting them, which must be lower than that of the 

H
+
/H2 couple, as shown in Figure 1.5. At the same time, the potential of the valence 

band (VB), in which the holes are present, has to be higher than that of the H2O/O2 

couple for water photosplitting, or suitable for the organic species (e.g., methanol and 

formaldehyde) oxidation in photoreforming (Fig. 1.5); 

- to be characterized by surface active sites that make possible the occurrence of these 

reactions. 
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Figure 1.5: Positions of electronic bands of TiO2 (anatase) and energy levels of some 

selected redox couples (data sources: [22], [23], [24],[25]). The energy scale is 

reported referring either to the vacuum level or to the Standard Hydrogen Electrode 

(SHE). 

 

Metal oxides of transition elements whose cations show a d
0
 or d

10
 configuration (Ti

4+
, Zr

4+
, 

Nb
5+

, Ta
5+

, W
6+

, Ce
4+

, Ga
3+

, In
3+

, Ge
4+

, Sn
4+

, Sb
5+

) have been so far successfully adopted for 

water splitting tests [4]. 

 

1.4 Titanium dioxide 

TiO2, in different crystalline forms, pure or properly modified, is one of the most investigated 

photocatalysts due to its great availability and low cost [20]. However, the properties of TiO2, 

both in anatase or rutile forms, for water photosplitting or photoreforming, are not particularly 

inspiring since this solid is characterized by an electronic band structure which allows to 

absorb radiation only in UV range and with a significant occurrence of the recombination 

reaction, which greatly contributes to lower the efficiency of the process. Many of these 



Background 

8 
 

aspects are treated in details in several excellent reviews which have been published so far 

mainly for water photosplitting [4,18,26,27]. 

In the preparation of TiO2-based catalysts, for both methods of hydrogen generation, the 

general approach followed by researchers is the use of some co-catalysts, mainly represented 

by noble metals, combined with the solid semiconductor [28,29]. These species, once 

deposited on the semiconductor surface, are believed to act as electron traps which 

significantly reduce the parasitic recombination reaction between photogenerated electrons 

and holes, responsible for the low efficiencies recorded on pure TiO2 (Fig. 1.6), and to 

kinetically favor the reduction of water (in the case of splitting) or of proton ions 

(photoreforming). 

 

Figure 1.6: Effect of the incorporation of metal co-catalysts on the photocatalyst surface. 

 

Another noticeable strategy to prevent the e
-
-h

+
 recombination reaction is that of coupling 

photocatalyst particles with photosensitizers [30]. As shown in Figure 1.7, in these systems 

photogenerated electrons from the excited state of the sensitizers (S) can be quickly 

transferred to the CB of TiO2, while the positive holes remain in the sensitizer, leading to an 

effective charge separation [30]. 
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Figure 1.7: Mechanism of electron transfer in photosensitized systems. 

 

Moreover, a growing interest is also nowadays recorded among researchers to extend the TiO2 

absorption capability to capture the more abundant fraction of the solar radiation arriving on 

earth represented by that contained in the visible light range [4]. To this purpose, several 

approaches have so far been adopted to prepare some photocatalysts for hydrogen generation 

(e.g., for water photosplitting). Among these methods the use of metal or non-metal doping to 

obtain narrower band gaps, or that of dye sensitizers, have often been reported [31-35]. 
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2. State of the art 

 

2.1 Copper modified-TiO2 catalysts for H2 generation through photoreforming of 

organics: introduction 

A literature survey disclosed the increasing presence of papers in which hydrogen generation 

was attempted through photocatalytic reforming of organic species, by means of TiO2-based 

catalysts modified with copper or used in the presence of copper salts.  

The choice of copper is motivated by its cheapness and abundance in Earth’s crust [36]. In 

particular, metal Cu, CuO, Cu2O, Cu(OH)2, and CuS, alone or in presence of a second co-

catalyst have been proposed and tested to prepare copper-TiO2 based photocatalysts [37]. It is 

reported that the doping of TiO2 with copper species can effectively lower the band gap of 

TiO2 by generating either structural defects into its framework, or active trap centers for 

electrons, due to heterojunction phenomena, thus limiting charge recombination [38-40]. 

Different techniques, such as hydrothermal/solvothermal processes, impregnation, 

precipitation, electrodeposition, and sol-gel method, have been so far adopted to include 

copper species on TiO2 catalysts [37]. 

Therefore, a critical analysis of these papers was carried out by comparing mainly the 

different ways of preparation, the mechanisms proposed, the efficiencies recorded, the 

extension of TiO2 light absorption capabilities, the sacrificial organics adopted and the pH of 

the test solutions, with the aim of collecting relevant references and stimulating the 

development of new ideas for the solution of problems which still limit the full exploitation 

on industrial scale of photocatalytic reforming for hydrogen generation. 

 

2.2 TiO2-Copper based photocatalytic systems and their preparation 

Three groups of approaches for the combination of copper and TiO2 have so far been used by 

researchers to develop photocatalytic systems for hydrogen generation: 

A. Cupric ions dissolved in aqueous solutions in which TiO2 is suspended; 

B. Copper incorporated on the TiO2 surface (as Cu
0
 or Cu

2+
, cupric or cuprous oxide, 

cupric hydroxide, CuCr2O4, CuFe2O4, CuS, CuAlO2); 
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C. Copper incorporated on the TiO2 surface in the presence of a second co-catalyst 

(nitrogen, graphene, carbon fibers, Al2O3, RuO2, etc.). 

In the case of Group A) approaches, there is no requirement of any particular preparation of 

the catalyst. Lanese et al. [41] reported that to generate hydrogen through a photocatalytic 

reforming process from a sacrificial organic species (i.e., formic acid), it is only necessary to 

suspend a commercial TiO2 sample (i.e., pure anatase) in an acidic aqueous solution 

containing dissolved Cu
2+

 ions and chloride ions. Obviously, although the simplicity of 

assembling the system is an advantage, it is clear that the recovery of the reactants from the 

solution is not easy, due to the coexistence of different dissolved - Cu
2+

 - and suspended - 

TiO2 and Cu
0
 - chemical species present in the system. 

Hydrogen can also be produced from UV irradiation of an aqueous solution in which both an 

organic sacrificial agent and cupric ions are present, suspending in it TiO2 nanotubes [42]. 

The process is presented as a way of producing hydrogen through the simultaneous removal 

from water of both an organic species (which is oxidized) and cupric ions (which are reduced 

to Cu
0 

and deposit on the TiO2 surface). The main difference between the two works is 

represented by the fact that in the system reported by Lanese et al. [41] hydrogen forms when 

copper is substantially present as dissolved species, whereas Xu et al. [42] recorded a 

significant formation of hydrogen when Cu
0
 is deposited on the TiO2 surface. 

In the case of Group B) approaches, to incorporate copper on the TiO2 surface, one of the 

methods indicated in Table 2.1, lines 1-9, 11-13, 15-17, 20-24, 27, 29-30, 32-42, 44-48 is 

generally adopted. 

It is interesting to observe that, according to the specific procedure for the preparation of the 

catalyst chosen, different active species can be incorporated on the TiO2 surface. For example, 

for catalysts prepared through TiO2 impregnation and calcination, a certain amount of TiO2 is 

dispersed in an aqueous solution containing a copper salt, i.e. Cu(NO3)2, as reported in Table 

2.1, lines 5, 10-11, 15-16, 29-30, 32-33, 37-38, 44. The water surplus is evaporated to dryness 

under slow heating and constant stirring. The samples are dried at 110 °C and calcined for 

some hours at different temperatures. It was indicated that the operating conditions of 

calcination (mainly the temperature) may influence both the oxidation state (+1 or +2) of 

copper [43] and its aggregation level [44,45]. Increase in the temperature beyond 300 °C 

results in reduction of the number of exposed Cu atoms and consequently the hydrogen 

generation rate [44,45]. 
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In the case of electrodeposition, the electrolyte can be prepared, for example, by dissolving 

CuSO4 in a lactic acid aqueous solution with pH adjustment to 11.0 with a NaOH solution 

[46]. The electrolyte is stirred and kept at a constant temperature of 25 °C. Different types of 

catalysts are obtained according to the deposition potential applied. The samples obtained are 

dried at 50 °C overnight in vacuum [46]. The characterization generally indicates that the 

lower the potential applied, the lower the size of Cu2O particles deposited on TiO2. 

When photodeposition is adopted, a fixed amount of dried TiO2 is suspended in aqueous 

solutions containing a dissolved copper salt [47]. A small amount of methanol is added as 

sacrificial agent and a medium pressure mercury lamp is used as light source. The irradiation 

is carried out for many hours under an inert atmosphere with continuous stirring of the 

mixture. At the end of the preparation, the solid is separated (by centrifugation) and washed 

with water to remove the residues of copper salt and methanol. After drying, it is calcined at 

different temperatures. With this method, Cu
0
 particles were reported to form on the TiO2 

surface [47]. 

In the case of Group C) approaches, the preparation of the catalyst was performed as reported 

in Table 2.1, lines 18, 19, 25-26, 28, 31, 43. For example, if a copper species is incorporated 

along with carbon fibers [48], a certain amount of TiO2 is added to a slurry containing 

dissolved copper nitrate and suspended carbon fibers. After ultrasonicating the final slurry for 

4 hours, the water surplus is evaporated and the solid dried at 110 °C for 12 hours, and then 

calcined at 300 °C for 4 hours. The presence of CuO particles on the surface of the composite 

material obtained is demonstrated by XRD and Raman measurements. 

To prepare a copper containing TiO2-graphene composite, a hydrothermal method was 

proposed [49]. A certain amount of graphene oxide is dispersed by sonication in ethanol. 

After this treatment, both TiO2 and CuO are added in a proper ratio to this suspension that is 

kept at 180 °C for 10 hours. The composite is recovered by filtration followed by rinsing with 

deionised water. 

According to a mechanical mixing method also reported for the preparation of copper 

modified-TiO2 catalyst in the presence of a second co-catalyst [50], the oxide powders of 

interest (i.e., CuO and Al2O3) are mixed with TiO2 in a mortar before their sintering in a 

furnace under air atmosphere at 500 °C for about 3 hours. 

An overview on the TiO2 types used indicates that in 60% of cases commercial TiO2 P25 was 

chosen as photocatalyst. In particular, P25 was preferred for catalysts preparation methods 

such as impregnation [43,51,52], complex precipitation [53-55], mechanical mixing [50], and 

hydrothermal methods [49,56,57]. In other cases, home-prepared titanium dioxide materials 
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synthesized from appropriate precursors were used. Among other titanium precursors, 

titanium butoxide was used in electrospinning [58,59] and sol-gel [60] processes. In addition, 

titanium isopropoxide was largely employed in sol-gel methods [61-63], and in catalysts 

preparation techniques such as water-in-oil microemulsion method [64,65]. Pure anatase was 

adopted in a single case of TiO2 suspended in a solution containing dissolved Cu
2+

 ions [41], 

and in experimental arrangements involving an impregnation method [66,67]. Finally, titanyl 

sulfate [62,65], titanium tetrachloride [68], and Ti foils [69] or plates [70] were also employed 

in further catalysts preparation procedures. 



State of the art 

14 
 

Table 2.1: Classification of Cu-TiO2 catalysts used in photoreforming by sacrificial agent, preparation method and TiO2 precursor selected, pH explored, Cu 

active species identified and overall quantum yield recorded. 

 

I 

Sacrificial agent 

(s.a.) 

II 

Reason for s.a. 

choice 

III 

Catalyst preparation 

method (material) 

IV 

TiO2 

V 

Cu active 

species 

VI 

pH 

VII 

Overall 

Quantum 

Yield 

VIII 

Reference 

1 Acetic Acid 

Selection of acetic acid as a 

model biomass-derived 

compound, since biomasses 

are regarded as promising 

renewable energy sources 

1) Impregnation; 2) photodeposition; 

3) mechanical alloying; 

(Cu added as Cu(CO2CH3)2·H2O, 

Cu(NO3)2·3H2O and metallic copper, 

respectively) 

Crude TiO2 

from the 

production line 

(sulfate 

technology) 

Cu2O and 

CuO 
2.6 ― [47] 

2 

Dyes 

 

Acid Orange 

Ii 

Definition of a sustainable 

and economically viable 

strategy: azo dyes represent 

the most part of dye 

wastewaters readily 

available from industry 

Electrospinning (Cu added as 

Cu[CH3(CH2)3CH(C2H5)CO2]2) 
Ti(OBu)4 CuO 6.02 ― [58] 

3 
Brilliant Red 

X-3b 
― 

Centrifugation, drying and 

calcination of the suspension 

obtained by mixing TiO2 and CuSO4 

solutions 

Ti(OBu)4 Cu2O ― ― [96] 

4 

 

Methyl 

Orange (Mo) 

 

― 

Synthesis by homogeneous 

hydrolysation followed by 

solvothermal crystallization and 

ethylene glycol-thermal reduction 

(Cu added as Cu(CO2CH3)2·H2O) 

Ti(OBu)4 Cu2O ― ― [94] 

5 
Methylene 

Blue 

Treatment of seawater 

contaminated with dyes and 

sustainable H2 production 

Impregnation, drying and calcination 

(Cu added as Cu(NO3)2·3H2O) 

 

P25 

 

CuO ― ― [88] 
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6 

Ethanol 

― 

Mixture of CuCl2 and mesoporous 

TiO2 (synthesized by hydrolysis, sol-

gel transition, hydrothermal treatment 

and calcination) within the water-

ethanol solution 

P25 Cun
0
 ― ― [83] 

7 ― 

Quick ion impregnation 

hydroxylation method (Cu added as 

Cu(NO3)2·3H2O) 

P25 (80% 

anatase, 20% 

rutile) 

Cu
1+

 2÷12 ― [107] 

8 

Co-production of a valuable 

chemical (acetaldehyde) 

together with H2 from waste 

organic streams 

Synthesis of TiO2 supports by: 1) sol-

gel method; 2) precipitation; 3) 

water-in-oil microemulsion procedure 

(Cu added as Cu(NO3)2·3H2O by 

photodeposition on TiO2) 

Ti(OBu)4, 

TiOSO4 and 

Ti(i-PrO)4, 

respectively 

― ― ― [65] 

9 ― 
Precipitation method (Cu added as 

copper nitrate hemihydrate) 

P25, 

(85% anatase, 

15% rutile) 

Cu
2+

 

or CuO sub-

monolayers 

― ― [55] 

10 ― 
Wet impregnation and calcination 

process (Cu added as copper nitrate) 
P25 CuO ― ― [48] 

11 

 

Ethanol and Glycerol 

Valorization of biomasses 

and sustainable H2 

production 

1) Water-in-oil microemulsion 

method; 2) wet impregnation (Cu 

added as copper nitrate) 

Ti(O-i-Pr)4 

Disperded 

Cu/CuOx 

species and 

Cu ions into 

the titania 

lattice 

― ― 
[64] 

 

12 

 

Reuse of largely available 

second generation ethanol 

and sugars, extracted from 

vegetables, and glycerol, 

produced as a by-product of 

bio-diesel 

 

Sol–gel method and precipitation, 

followed in both cases by calcination 

(Cu added as copper nitrate) 

Ti(O-i-Pr)4, 

TiOSO4 
― ― ― [62] 
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13 

 

Ethylene Glycol 

 

― 
Chemical bath deposition method (Cu 

added as CuSO4) 
Ti foils (99%) 

Cu(OH)2 

 
― ― [69] 

14 Formic Acid ― 
Aqueous solutions of TiO2 and zero-

valent copper or copper sulfate 

Pure 

anatase 
Cu

0
 and Cu

1+
 0÷2 2.47% [41] 

15 

 

 

 

 

 

 

 

 

Glycerol                                

 

 

 

 

 

 

 

 

 

 

 

 

Production of biomass-

derived glycerol in large 

amounts and its rapidly 

becoming waste with 

additional disposal costs 

Impregnation method, drying and 

calcination (Cu added as Cu(NO3)2) 

P25 (anatase-

80%, rutile-

20%) 

Dispersed 

Cu
1+

 
― ― [43] 

16 

Lower costs of organic 

wastes compared to fuels 

(such asMeOH) and 

simultaneous conversion of 

them into environmentally 

friendly products 

Impregnation method, drying and 

calcination (Cu added as Cu(NO3)2) 
P25 CuO clusters ― 

13.4% 

(measures at 

365 nm) 
[51] 

17 

Production of biomass-

derived glycerol in large 

amounts and its rapidly 

becoming waste with 

additional disposal costs 

Electrodeposition method (Cu added 

as CuSO4) 

Ti foils 

(99%) 
Cu2O 7.4 ― [46] 

18 

Exceeding by-product of 

biodiesel production and of 

palm oil hydrolysis. 

Its photo-oxidation produces 

useful chemicals 

(dihydroxyacetone, 

glycolaldehyde, 

glyceraldehyde, formic acid 

and carbon dioxide) 

Co-precipitation, drying and 

calcination (Cu added as 

Cu(NO3)2·3H2O) 

P25 ― ― ― [35] 
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19 

 

Glycerol 
Sustainable organic waste 

from trans-esterification of 

vegetable oils to biodiesel 

Sol-gel method (Cu added as copper 

nitrate) 
Ti(O-i-Pr)4 Cu

1+
 and Cu

0
 ― ― [102] 

20 Glycol ― 
Deposition, drying and calcination 

(Cu added as Cu(NO3)2·3H2O) 
P25 Cu2O ― ― [95] 

21 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methanol                                                                                                                                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

― 

Incipient-wetness impregnation, 

calcination/reduction, and 

metallization process (Cu added as 

CuCl2·2H2O). Synthesis of TiO2 

powder by sol–gel 

 

TiCl4 

Oxidized Cu 

species 

 

― 

 

― 
[68] 

22 
Reuse of industrial 

wastewater 

Mixing Cu(NO3)2 and TiO2 in 

aqueous solution, drying and 

calcinations 

P25 CuO 
 

― 

 

― 
[86] 

23 ― 

 

Combined single-step sol–gel with 

surfactant-assisted templating 

mechanism (Cu added as 

Cu(NO3)2·3H2O) 

 

Ti(O-i-Pr)4 CuO ― ― [61] 

24 ― 

Impregnation method (mixture of 

TiO2 and CuNO3 in a MeOH 

solution, evaporation, drying and 

thermal treatment). Preparation of 

TiO2 structure with a sol-gel method 

Anatase CuO ― ― [66] 

25 

 

Best source for H2 among 

high energy density liquid 

fuels; exothermic reactions 

with high reaction rates 

using POM 

 

Deposition–precipitation method 

(addition of TiO2 to the aqueous 

solution containing 

Cu(NO3)2·2.5H2O, drying and 

calcination) 

P25 
Cu2O and 

CuO 
― ― [92] 
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26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Methanol  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

― 

Synthesis of TiO2-RuO2 

semiconductor by fusion; addition of 

copper phthalocyanine to the RuO2-

TiO2 slurry containing MV
2+

 

Anatase ― 1÷11 ― [30] 

27 ― 

Potentiostatic electrodeposition of 

Cu2O (Cu added as CuSO4·5H2O 

within the electrolysis solution) on a 

TiO2-coated ITO glass 

P25 Cu2O ― ― [91] 

28 ― 

Preparation of the binary support 

TiO2–Fe2O3 by impregnation method. 

Preparation of Au–Cu/TiO2–Fe2O3 

catalysts by deposition-precipitation 

method (Cu added as 

Cu(NO3)2·2.5H2O). Drying and 

calcination of the mixture 

P25 CuO ― ― [53] 

29 ― 
Impregnation method, drying and 

calcination (Cu added as Cu(NO3)2) 
P25 CuO 4.8÷5.8 ― [93] 

30 ― 

1) Complex precipitation; 2) 

impregnation methods (Cu added as 

Cu(NO3)2·3H2O) 

P25 CuO ― ― [54] 

31 

MeOH decomposition is a 

promising method for the 

practical and low-cost 

technologies in the H2-based 

energy system 

Mechanical mixing method, followed 

by the solid-state reaction at elevated 

temperature (Cu added as CuO 

nanopowder) 

P25 

(anatase 75%, 

rutile 25%) 

CuO ― ― [50] 

32 
 

― 

1) In situ sol-gel (SG); 2) wet 

impregnation (WI) ; 3) chemical 

reduction of Cu salt (NR); 4) in situ 

photodeposition (PD) (Cu added as 

Cu(NO3)2·3H2O) 

Ti(OBu)4, P25 

Cu2O (NR); 

CuO (WI and 

SG); metallic 

Cu (PD) 

0.5÷7 
 

― 
[60] 
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33 

 

 

 

 

 

 

 

 

 

 

 

         Methanol 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

― 

1) Hydrothermal method via 

adsorption-calcination process; 2) 

wet impregnation process (Cu added 

as Cu(NO3)2·3H2O) 

P25 CuO ― ― [104] 

34 ― 

Synthesis of mesoporous TiO2 

nanotube by hydrothermal-

calcination process (Cu added as 

Cu(NO3)2) 

P25 Cu
0
 ― ― [42] 

35 ― 
Hydrothermal-precipitation process 

(Cu added as Cu(NO3)2) 
P25 

Cu(OH)2 and 

Cu
0
 

― ― [56] 

36 ― Sol-gel method (Cu added as CuNO3) Ti(O-i-Pr)4 
Cu2O and 

CuO 
― ― [87] 

37 ― 

Impregnation method, drying and 

calcination (Cu added as 

Cu(NO3)2·3H2O) 

P25 Cu2O ― ― [45] 

38 ― 

Impregnation method (Cu added as 

Cu(NO3)2·3H2O). Synthesis of TiO2 

nanotube by hydrothermal treatment 

P25 CuO ― ― [52] 

39 ― 
Electrospinning and calcination (Cu 

added as Cu(NO3)2·3H2O) 
Ti(OBu)4 

Cu2O and 

CuO 
5, 6 ― 

[59] 

 

40 ― 

Pyrolisis of the homogeneous mixture 

of Ti(SO4)2 and Cu(NO3)2 (Cu added 

as Cu(NO3)2) 

Ti(SO4)2 Cu2O ― ― [90] 

41 ― 

Hydrothermal method at high 

temperature (Cu added as 

Cu(NO3)2·3H2O) 

P25 (99.5%) CuS ― ― [57] 
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42 
 

 

 

 

         Methanol 

― 
Deposition by RF magnetron 

sputtering (Cu 99.99%pure) 

Ti plates 

(99.9% pure) 
Cu

1+
 ― ― [70] 

43 ― 

CuO-TiO2 prepared by a simple 

impregnation method (Cu added as 

copper nitrate).Graphite oxide (GO) 

prepared by a modified Hummers’ 

method. CuO-TiO2-GR composite 

obtained via a hydrothermal method 

P25 CuO ― ― [49] 

44 
Methanol and 

Sulfides 

 

 

― 

Assembling Cu@Cu2O core-shell 

nanoparticles on TiO2 nanotube 

arrays (NTAs) using an 

impregnation-reduction method (Cu 

added as Cu(NO3)2·3H2O) 

Anatase 
Cu2O and 

Cu
0
 

― ― [67] 

45 Oxalic Acid ― 
Citric acid (CA)-assisted sol–gel 

method (Cu added as Cu(NO3)2) 
P25 ― ― ― [97] 

46 Phenol ― 

Preparation of the TiO2 system by a 

sol–gel method; dissolution of the of 

copper precursor, Cu(NO3)2, in the 

initial solution, drying and 

calcinations 

Ti(O-i-Pr)4 Cu
1+

 ― ― [89] 

47 

 

Sulfide and 

Thiosulfate 

 

Conversion into less harmful 

products (such as Sn
2−

 and 

S4O6
2−

) 

Directly mixing both 

catalysts,CuAlO2 and TiO2 (Cu added 

as CuO) 

P25 
 

― 
5.5÷14 ― 

[82] 

 

48 Thiosulfate 
 

― 

1) Solid state reaction; 2) co-

precipitation; 3) sol-gel (Cu added as 

CuO and Cu(NO3)2·3H2O) 

Ti(O-i-Pr)4 CuFe2O4 7, 13 1.30% [63] 

49 
DEA, TEA, TE, 

EDTA 

Comparison of H2 evolution 

rate in the presence of 

various electron donors 

Mixing Cu(NO3)2 and TiO2 powder 

in aqueous solution, drying and 

calcination. Absorption of the dye 

onto the photocatalyst surface 

P25 CuO 1÷14 5.10% [98] 



State of the art 

21 
 

 

2.3 Efficiency of hydrogen generation 

Although the amount of solar energy incoming daily on the earth’s surface is huge and its 

capture virtually unlimited the problem of the efficiency is important in any case. In fact, 

considering that any method for hydrogen generation requires an investment of resources to 

be adopted on industrial scale (for example, the land surface used to absorb the radiation), it is 

clear that only those of them showing the highest efficiency values will be chosen for 

industrial applications. 

There is more than one reason (Fig. 2.1) which makes the energy captured lower than that 

associated to the incident radiation [71]: 

1) the energy of the irradiated photons may be lower than the bandgap, Eg, (in this case, 

no absorption happens) or higher than Eg (the absorption happens but the energy 

surplus is lost as heat); 

2) only a fraction of the excited state energy is converted into chemical energy (the 

energy stored, for example, in a hydrogen molecule - e.g. its combustion energy - is 

generally a part of that necessary to transfer two electrons to the CB of the 

semiconductor used); 

3) only a fraction of the absorbed photons is converted into photogenerated electrons 

(and holes) readily available for the reaction, due to the recombination reaction. 

 

 

Figure 2.1: Fate of the energy irradiated on a TiO2 photocatalytic particle. 
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Different indicators may be used to quantify the efficiency of the energy capture [29]. One of 

them is represented by the:  

 

Overall quantum yield (        ). It is defined as the ratio between the rate of 

hydrogen generation    
 (mol/time), multiplied by 2, and the rate of photons incident 

on the catalyst particles (moles of photons/time): 

 

         
     

                              
     

 

Among the papers found to prepare this review, only few of them reported the data for the 

efficiency of generation (see Table 2.1). 

As it is evident from Table 2.1, the few values indicated in the literature for the efficiency of 

generation were specified in terms of overall quantum yield and were in the range of 1.3-

13.4%, well comparable with those found for the photocatalysts in which noble metals were 

incorporated on TiO2. For example, Abe et al. [72] reported an overall quantum yield of about 

2.0% for hydrogen generation on a photocatalyst based on Pt-TiO2 sensitized by merocyanine, 

and Konta et al. [73] estimated a quantum yield for hydrogen evolution of 5.2% with a Rh-

doped Sr-TiO3 photocatalyst loaded with a Pt co-catalyst. Moreover, Astuti et al. [74] 

indicated a quantum yield in photogeneration of molecular hydrogen of 10±5%, employing a 

TiO2 film catalyst sensitized with Zn-substituted cytochrome. 

In all the other cases, the results were expressed in terms of simple rate or specific rate of 

hydrogen generation (normalized with respect to the mass of the engaged catalyst), which are 

absolutely not sufficient to carry out a comparison among the different data, since the values 

of the effective emission power were not written, whereas only the lamp type and the nominal 

powers were mostly specified in the experimental sections. 

 

2.4 Sacrificial agents 

As reported in Table 2.1, different organic species were adopted as sacrificial agents in 

photocatalytic reforming to generate hydrogen. This indication stresses the idea that this 

process is conducted under ambient conditions unselectively with respect to the 

photodegradable organic species. However, not all the organic compounds may ensure the 

same energy output in terms of hydrogen production. In the most part of the studies found, 
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researchers used methanol, ethanol and glycerol as sacrificial agents (Table 2.1, lines 21-43, 

6-10, 15-19, respectively). The reason for these choices may be represented by the fact that 

(1) these species ensure the highest yield of hydrogen, (2) their photocatalytic degradation has 

been extensively studied, and (3) they are derived from biomass production and therefore they 

may be considered as renewable sources for hydrogen. For example, the availability of 

glycerol, a side-product in the biodiesel production process, is nowadays so large that it may 

be considered as a waste material [43]. 

In recent years, the idea of using organic pollutants as sacrificial agents is becoming popular 

among researchers working in this field. The examples of adoption of formic and oxalic acids, 

reported in Table 2.1, go exactly in this direction, since often short-chain organic acids are the 

final refractory products of organic pollutants degradation by the most part of advanced 

oxidation processes [75-78]. 

Similar motivations were indicated for the choice as electron donors of dye molecules [79,80], 

of ethylene glycol [81], and of sulfide and thiosulfate [82]. In this way a combination of 

wastewater treatment with hydrogen generation could be possible. Some indications about the 

products of oxidation by positive holes of the sacrificial agent adopted were reported for the 

following compounds: ethanol, methanol, thiosulfate and glycerol. 

 

Ethanol 

Chen et al. [55], in an attempt to explain the results they obtained with a low cost CuO-TiO2 

catalyst, reported the following overall reaction of ethyl alcohol with positive holes: 

 

                                

 

On the other hand, Korzhak et al. [83], who carried out the experimental investigation on 

mesoporous Cun
0
-TiO2 nanocomposite catalyst, tried to depict a more detailed mechanism, 

indicating the single steps through which the alcohol may give rise to acetaldehyde: 
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Although not expressly indicated, the radical species formed in reaction       still reacts with a 

positive hole also in reaction      to generate acetaldehyde, leaving a photogenerated electron 

potentially available for further reactions. Anyway, also in this case, no indications are 

reported about further oxidation of the aldehyde. 

 

Methanol: 

Also for this species, some authors [56] reported an overall oxidation reaction of the system 

based on the use of TiO2 nanotubes (TNTs): 

 

    
              
→                             

                                  

 

On the other hand, Choi et al. [66] tried to go further into the details of the process: 

 

     
   ν  
→          

        
→          

        
→             

     

considering the intervention of OH radicals formed from H2O/OH
-
 reaction with positive 

holes. 

However, it is interesting to observe that the formation of CH2(OH)2 may also be explained 

through other more probable pathways, which consider that the radical species 
•
CH2OH is still 

able to react with a positive hole, producing a proton and formaldehyde with the latter capable 

of generating hydrated compounds by the addition of water. 

 

        
                     
→                               

                  
               
→                          

 

Even for reactions      and     , possible alternative pathways may be found. For example, it 

can be considered that the species CH2(OH)2 may still react with a positive hole to form acetic 

acid, instead of carbon dioxide and hydrogen. On the other hand, no evidence is provided by 

the authors on the decarboxylation and decarbonylation they tried to support. 

Miwa et al. [50] proposed a mechanism for the organic oxidation, which only partially agrees 

with that reported by Choi et al. [66]: 



State of the art 

25 
 

 

                          

                           

                              

                      

                        

 

Even for reaction       it is possible to propose an alternative one in which the hydrated form 

of formaldehyde reacts with the positive holes producing formic acid. 

 

     
       
→            

    
→          

    
→         

      

 

Thiosulfate:  

Kezzim et al. [63], in a paper reporting on hydrogen generation over a CuFe2O4-TiO2 based 

hetero-system, gave the following overall reaction for its oxidation by the holes and formation 

of sulfite ions: 

 

    
                

               

 

In this way, it is possible to associate hydrogen generation with the removal of a species - 

thiosulfate - that is often present in industrial wastewaters from sources such as petroleum 

refineries, photo-processing, mining, paper industry and coal processing, and that can cause 

serious ecological issues [84]. 

 

Glycerol: 

Lalitha et al. [43] reported the possibility that glycerol could be oxidized through reactions 

with hydroxyl radicals, generated by the oxidation of water molecules with positive holes, 

although no indications are given on the actual presence in the reacting solution of the 

intermediates included in the reaction scheme they proposed. 

In a study on hydrogen generation with a Cu-TiO2 catalyst and glycerol as sacrificial agent, 

Montini et al. [62] found in liquid phase 1,3-dihydroxypropanone and hydroxyacetaldehyde 
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with minor occurrence of 2,3-dihydroxypropanal, 1,2-ethandiol, hydroxyacetone and two 

isomers of dimethyl-1,4-dioxane. For some of the intermediates detected, a possible formation 

pathway could be reasonably hypothesized as shown in Figure 2.2: 

 

 

Figure 2.2: Possible reaction pathways for intermediates production from glycerol. 

 

whereas for some other compounds, such as hydroxyacetone and two isomers of dimethyl-

1,4-dioxane, the formation pathways appear less defined. 

Kait et al. [35] identified glyceraldehyde, glycolic acid, and oxalic acid as intermediates of 

glycerol photooxidation under visible light illumination as shown in Figure 2.3. 

 

 

Figure 2.3: Schematic reaction mechanism of glycerol photooxidation under visible light. 

 

Moreover, if more structurally complex sacrificial agents were adopted (i.e. dyes), no 

indications were reported about the presence of oxidation products which require further 

treatments before the final discharge of the solution. This fact limits the possibility to 

correctly evaluate the generation costs, since the availability of other treatment plants could 

be necessary in addition to the photocatalytic reactor when wastewaters are used to feed the 

system. 
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2.5 Enhancement of TiO2 light absorption capability 

Among the drawbacks of using TiO2 as a photocatalyst for solar hydrogen generation, its 

activation by UV radiation with wavelength lower than 400 nm is surely one of the most 

relevant. In fact, UV accounts only for 5.0% of the solar radiation energy [20]. A modification 

of pure TiO2 by incorporating other species is thus necessary to extend the range of absorption 

to visible light region. Pelaez et al. [85] published a comprehensive review on the 

development of visible light active TiO2 photocatalysts and their environmental applications. 

Various strategies have been adopted to extend TiO2 photoactivity to visible light domain and 

to enhance TiO2 photocatalytic properties, and thus improve TiO2 photocatalytic properties 

under solar light irradiation. In particular, non-metal and/or metal doping, dye sensitization, 

and coupled semiconductors exhibiting visible light-induced photoactivity have been 

presented and discussed, including their synthesis, properties, mechanism of activation, and 

applications [85]. 

From other studies, it resulted that a red shift is often observed when copper-incorporated 

TiO2 catalysts are prepared. This is true for different species identified on the semiconductor 

such as CuO [48,51,55,58,59,86-88], Cu2O [46,48,54,61,66,87,89-96], Cu
0 

[41,42,69], 

CuCr2O4 [97], and CuFe2O4 [63]. However, it is important to stress that the photocatalysts’ 

capability to absorb in the visible light spectrum is important only if, once irradiated, the 

solids are able to use the energy absorbed to generate electrons and holes. In other words, 

only if the visible energy absorbed by the catalysts is directly responsible for the formation of 

charge carriers, a beneficial effect may be expected from the enhanced absorption capability. 

For example, a Cu2O-TiO2 nanotube array (TNA)-based catalytic system was irradiated by 

means of a Xe lamp, in which the UV range emission was removed by a UV-400 filter [46]. A 

significant increase in the specific rate of hydrogen generation was recorded on this catalyst 

with respect to the pure TNA. The results of these experiments demonstrates that the 

incorporation of copper as Cu2O on TiO2 allows the exploitation of visible light irradiation for 

the generation of electron-hole couples, which was not possible with bare TiO2. On the other 

hand, a quite different situation was found for the CuO-TiO2 hybrid catalyst. In a study on an 

Eosin sensitized CuO-TiO2 catalyst for hydrogen generation in the presence of organic 

electron donors (e.g., triethanolammine, acetonitrile) under visible light radiation (>400 nm), 

Jin et al. [98] found that no hydrogen was produced in the absence of the sensitizer, thus 

confirming that, although the CuO-TiO2 system is capable to absorb visible light radiation, the 
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generation of electrons in the CB of CuO is not useful to make the system reactive without a 

transfer from the CB of TiO2 (which is not photoactivated in the absence of the dye under 

visible light irradiation). 

When CuCr2O4 was incorporated on TiO2 [97], an intense absorption in the visible light range 

was recorded and a significant increase of the photoactivity was observed with respect to 

either TiO2 or CuCr2O4 single catalysts, similarly to the case of the Cu2O-based system. 

However, these results were collected in experimental runs in which a Xe lamp was used 

without the adoption of cutting filters to remove the UV component. That is, the irradiation 

adopted in the experiments was in both UV and visible light ranges and the increase of the 

reactivity after the incorporation on TiO2 of copper could not unambiguously be attributed to 

the extension of the absorption range. 

Kait et al. [35] tested the activity of a TiO2 supported Cu-Ni photocatalyst under visible light 

illumination: in comparison with bare TiO2, they found a narrower band gap for Cu-Ni-TiO2 

with consequent enhancement in visible light absorption and noticeable increase in hydrogen 

generation. 

Indeed, it is well known that, to extend TiO2 photocatalytic activity to visible region, its band 

gap needs to be narrowed [99]. Another good strategy to fulfill this purpose could be that of 

using anionic dopant species, i.e. nitrogen, as substitutes for lattice oxygen [100,101]. Taylor 

et al. [102] developed a novel binary N-Cu-TiO2 photocatalyst for hydrogen production upon 

photoreforming of glycerol, under near-UV and visible light. Compared to P25 TiO2, N-Cu-

TiO2 exhibits stronger light absorption in near-UV and visible ranges, and up to 44-times 

higher rates of hydrogen production. 

 

2.6 Mechanisms of reaction 

For the papers belonging to the Group A) approaches (cupric ions dissolved in aqueous 

solutions in which TiO2 is suspended), the starting point to find a suitable mechanism able to 

explain the experimental findings is represented by the indications reported in the literature on 

the capability of cupric ions to be reduced to Cu
0
 in the presence of TiO2, UV irradiation and 

an organic species [103]. However, for the two papers quoted [41,42], the steps of generation 

of hydrogen are quite different. According to the first paper [41], the proton reduction is made 

possible by the capability of cuprous chloride complexes to release an electron in the solution 

upon UV irradiation: 
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 ν
                                

      

     
   

 ν
               

      

 

Therefore, it can be hypothesized that when cupric ions are reduced to Cu
1+

 in the 

photocatalytic process, the latter immediately forms complexes with chlorides, which undergo 

a photolytic oxidation with electrons generation. If a further partial reduction of Cu
1+

 species 

to Cu
0
 occurs, the formation of hydrogen can be explained through the photoxidation - 

catalyzed by chlorides- of zerovalent copper: 

 

     
     

 
 ν    

→         
    

                     
      

     
                       

 

The rate of hydrogen generation is strongly reduced by an increase of pH in the solution for 

values higher than 2.0, for which probably proton reduction by the photogenerated electron 

becomes the rate determining step. 

In the second paper belonging to the Group A) approaches [42], it was claimed that Cu
2+

 in 

solution is reduced to Cu
0
 through reaction with the photogenerated electrons in the CB and 

settles on the TiO2 surface. In other words, this system could be considered as the result of the 

deposition of metallic copper on TiO2, in situ. As illustrated in Figure 2.4, once deposited, 

metallic copper functions as active site for H2 formation, being the electrons in CB of TiO2 

prone to move to the Cu spots due to the lower Fermi level of metallic copper (Fig. 2.4). 

Obviously, since the reduction of Cu
2+

 competes with hydrogen formation, at the beginning of 

the run, when the cupric ions concentration is high, the rate of H2 formation appears low. 
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Figure 2.4: Illustration of the main photocatalytic reactions occurring on TiO2 nanotube 

(TNT) surface under illumination: reduction of Cu
2+

 and H
+
 by photogenerated electrons 

and oxidation of organics (A) by positive holes. 

 

The incorporation of copper on TiO2 may result in different chemical forms present on the 

semiconductor, according to the preparation procedure. The results of the characterization 

works reported in the papers analyzed evidenced the presence on TiO2 of the following main 

forms: metal copper, CuO, Cu(OH)2, Cu2O, CuCr2O4, CuFe2O4, CuS, CuAlO2 and CuO-

Al2O3. 

 

Metal copper  

The copper photodeposition may be achieved also before the experiments, as Montini et al. 

[62] performed, allowing zero-valent copper to deposit on TiO2, under UV irradiation. 

Surprisingly, during the runs, a small amount of zero-valent copper may be oxidized and 

leached into the solution. However, the degree of leaching is strongly dependent upon the 

type of irradiation used during the experiments. When the UV component is present in the 

radiation coming from the lamp, a very limited leaching is observed, due to a continuous 

photo-deposition of copper itself. 

This enhancement in photoefficieny for hydrogen generation has been ascribed, in the case of 

Cu
0 

and other
 

metals (i.e., Pt, and Pd), to a reduced recombination process between 

photogenerated holes and electrons due to the formation of Schottky barriers at the metal/TiO2 

interface [180] (Figure 2.5). In other words, as the work function of the selected noble metal 

(m) is higher than that of the titanium dioxide (s), electrons flow from TiO2 to the metal in 

order to align the Fermi energy levels (EF), with a shift of the Fermi levels of the metal to the 
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conduction band of titanium dioxide [181]. At the end of the process, the metal has more 

negative energy levels favoring the proton ion reduction from a thermodynamic point of view, 

and excess negative charges favoring the proton reduction from a kinetic point of view, 

whereas excess positive charge and a Schottky-type potential barrier are formed in the 

semiconductor. 

Moreover, the potential energy barrier (VD), formed at the noble metal-TiO2 junction 

(heterojunction) acts as an effective electron trap preventing the recombination of 

electron/hole pairs. The decrease in charge carriers recombination results in enhanced photo-

activity of the material towards hydrogen production. 

 

 

 

 

Figure 2.5: Scheme of Schottky junction between metal and semiconductor with energy 

level alignment. (a): before the heterojunction; (b): after the heterojunction. 
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In some cases, the deposition of metal nanoparticles (such as Ag and Au) on TiO2 also 

enhances the visible light photo-catalytic activity of titania particles through the ―Local 

Surface Plasmonic Resonance‖ (LSPR) [182]. The LSPR generally occurs if the oscillation 

frequency of the electromagnetic field is in phase with free electrons of the metal [183]. The 

frequency of free electrons oscillation in a metal nanoparticle with minimal power dissipation 

is known as ―plasmon resonance frequency‖. Under this condition, the conduction negative 

charges of the noble metal nanoparticles collectively oscillate generating electron plasma 

(called plasmons). This results in an enhancement of photocatalytic activity as metal 

nanoparticles can (i) act as antennas favoring a higher light absorption and (ii) sensitize the 

semiconductor by promoting the transfer of free excited electrons into the conduction band of 

the semiconductor through the so-called ―Process of Plasmon Induced Resonance Energy 

Transfer‖ (PIRET) (Figure 2.6) [184]. 

 

 

 

Figure 2.6: Dipole polarizability of metal nanoparticles under electric/magnetic fields and 

electron migration to the conduction band of the semiconductor. 
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CuO and Cu2O 

The presence of cupric and cuprous oxide on TiO2 was observed by many researchers, both at 

nano or micro scales. The combination of two inorganic semiconductors is of particular 

interest to extend the absorption spectrum range and improve the photoactivity of the catalyst. 

For these purposes, it is required to couple TiO2 (n-type semiconductor) with a p-type 

semiconductor. 

The photocatalytic system involving two or more different semiconductors (n and p types) in 

presence of a selected shuttle redox mediator is known as ―Z-scheme‖. Redox mediators are 

selected inorganic ions, such as,        
   [185],     

     [186] and            [187] used 

to increase the lifetime of photo-generated charges, and in some case to prevent the 

photocorrosion of metal sulfides used as n- or p- type semiconductors.  

Chen et al. [55] reported that, depending on the copper load on TiO2, CuO is found to be a 

sub-layer, for low Cu loads, and in the form of nanosized particles and then bulk when more 

than 3.0% of Cu is present on the semiconductor. These authors recorded a huge enhancement 

of reactivity passing from bare TiO2 to CuO-TiO2. In particular, they observed an increase of 

reactivity when increasing the Cu load up to 1.25%. Beyond this value, the reactivity reduces 

sharply, becoming 20% of the maximum observed for a Cu content equal to 15%. This 

behavior was explained considering the following: (1) the presence of CuO as co-catalyst 

makes possible an electron transfer from the CB of TiO2 to that of CuO, which reduces the 

occurrence of the electron-hole recombination reaction; (2) in the literature, a quantum size 

effect was reported according to which the band gap of CuO decreases with increasing the 

particle size with the potential of both bands changing accordingly, as shown in Figure 2.7. 

From this figure, it is evident that when bulk CuO particles are present on TiO2, the hydrogen 

formation is depressed since the electron transfer from the CB of bulk CuO to the couple 

H
+
/H2 is hindered by the difference of potential existing. Similar explanations were reported 

also by others [51]. 
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Figure 2.7: Comparison between band gaps of TiO2 and CuO at different 

concentrations/particles size. 

 

In a second group of papers dealing with the presence of CuO on TiO2, a different view was 

proposed to explain how the system works [58,86,104]. Also in this case, it was considered 

that the CB potential of CuO is more positive than that of TiO2, irrespective of the particle 

size, thus enabling an electron transfer from the latter to CuO. However, since the CB of 

isolated bulk CuO has a potential which does not allow to transfer an electron to the H
+
/H2 

couple, researchers stated that, during the passage of electrons from TiO2 to CuO, the Fermi 

level of the latter is raised, resulting into a more negative CB potential of CuO able to 

promote water (or H
+
) reduction. The negative shift of CB potential of CuO was also 

confirmed by potential measurements. 

Jeon et al. [87] investigated hydrogen production over Cu-TiO2 photocatalysts containing 

CuxO species. As shown in XRD and XPS results, depending on the crystalline structure 

(anatase and rutile) obtained after different thermal treatments (500°C and 800°C), Cu2O and 

CuO components dominate, respectively. The analysis showed that the Ti 2p3/2 bands in Cu-

TiO2 photocatalysts are shifted to binding energies lower than that of bare TiO2, revealing the 

lower oxidation state (Ti
3+

) of Ti; the shift is larger in the rutile structure, in which CuO 

species are predominant. The hydrogen generation from photoreforming of methanol is also 

greater over the rutile form than over the anatase one. The Cu-TiO2 particles absorb radiation 
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with wavelength from 200 to 800 nm, differently from bare TiO2, which absorbs only below 

380 nm. 

Lalitha et al. [43] proposed a different mechanism in which Cu
2+

 is reduced to Cu
1+

 during the 

reaction, as confirmed by XPS measurements on the catalyst used. This view allows to 

explain why, using glycerol as sacrificial agent, the rate of hydrogen generation for the CuO-

TiO2 composite catalyst: 

 

i) is 50% lower than that observed for a similar TiO2 catalyst with the same content of 

copper but present as Cu2O at the beginning of the process; 

ii) increases during the photocatalytic run. 

 

The presence of a second co-catalyst along with CuO on TiO2 was reported by Wang et al. 

[49], who prepared a system containing also graphene. As shown in Figure 2.8, once 

introduced on the semiconductor, graphene not only accepts the photogenerated electrons 

coming from the CB of TiO2 (as CuO does), but can also transfer them to H
+
 and, due to its 

excellent electrical conductivity, can act as a conductive electron transport ―highway‖. The 

addition of graphene further improves the photocatalytic performances of CuO-TiO2 system. 

The presence of two co-catalysts makes possible to obtain a specific hydrogen generation rate 

20 times greater than that of pure TiO2. 
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Figure 2.8: Illustration of the reaction mechanism of the CuO-TiO2-GR composite 

catalyst under UV-Vis light irradiation [37]. 

 

Another example of use of a second co-catalyst along with CuO on TiO2 is represented by a 

catalyst containing also carbon fibers (CF). The solid CuO-CF-TiO2 (P25) shows a hydrogen 

generation rate which is 45 times that of TiO2 (P25), and two times that of CuO-TiO2 [48]. It 

can be assumed that the electrons in the CB of TiO2 are transferred to that of CuO by two 

different ways. In fact, as a direct transfer route between the two CBs is operative due to the 

potentials difference, a second and indirect one, consisting in a first jump of the electrons to 

CF and a subsequent transport to CuO, is also active. According to this view, CF functions as 

electron acceptor and transporter, which enables lengthening of the lifetime of the 

photogenerated electrons. 

Again, another example of co-catalyst that can be coupled with CuO-TiO2 system is 

represented by a dye. Jin et al. [98] used eosin for this purpose and restricted the experiments 

to the use of visible light radiation (λ>400 nm). In the absence of the dye, no production of 

hydrogen was observed. This indicates that the semiconductor diode is not able to exploit the 

radiation used during the runs, whereas the dye does. The authors stated that, under visible 

light absorption, the dye transfers electrons to the CBs of TiO2 and CuO (and again some 
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photogenerated electrons move from TiO2 to CuO). In agreement with what reported by 

others [86], during this transfer of electrons a shift of Fermi level and CB of CuO occurs, 

promoting thus a final reduction of protons (or water molecules). 

Cu2O is one of the few p-type semiconductors which are inexpensive, non-toxic, and readily 

available. Its low band gap (2.0 eV) permits the photocatalytic activity under visible light 

irradiation of the system prepared through the deposition of copper on TiO2 nanotube arrays 

(TNA) [46]. Since the CB of Cu2O is more negative than that of TiO2, the excited electrons 

can be quickly transferred from Cu2O nanoparticles to TNA, leaving the holes on the VB of 

Cu2O and leading to an effective reduction of protons to H2, as illustrated in Figure 2.9. 

 

 

 

Figure 2.9: Mechanism of protons reduction in the Cu2O-TNA system. 

 

The photoactivity of a nanodiode with behavior intermediate between that of between that of 

p- and n-type semiconductors can be greatly enhanced if an Ohmic junction is formed, as in 

the case of Cu-Cu2O core-shell nanoparticles assembled on TiO2 nanotubes arrays [95]. 

Following the absorption of visible light by Cu2O nanoparticle shell, the photogenerated 

electrons can be more efficiently transferred to TiO2 through a copper layer. The role of the 

latter is (1) to ensure a low resistance to electron transfer, (2) to serve as an electron storage 

center which helps separate the charges on the catalyst, and (3) to contribute, by means of its 

plasmonic-excited core, to the photocatalytic properties of TNAs under visible light 

irradiation.  
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Cu(OH)2 

Dang et al. [56] found that during the fabrication of the catalyst, through a hydrothermal-

precipitation process, the surface of TiO2 nanotubes (TNTs) is covered by nano-Cu(OH)2. The 

CB potential of Cu(OH)2 is -0.222 V, more positive than that of the semiconductor (-0.260 

V), for which a transfer of photoinduced electrons is permitted from the latter to the former. 

The excess of electrons gathered on Cu(OH)2 causes the reduction of Cu(OH)2 to metallic Cu. 

Both Cu(OH)2 and metallic Cu favor the separation of photoinduced electron-hole pairs, thus 

enhancing the photocatalytic activity for hydrogen evolution. It is clear that the holes in the 

VBs of nanotubes are primarily scavenged by methanol. The following scheme may help to 

summarize all the reactions involved: 

 

TNTs
hν
 TNTs e  h          

TNTs e   Cu OH 2
Electron transfer
→          TNTs  Cu OH 2 e

          

 CuOH 2  2e  Cu  2OH 
        

TNTs e   Cu
Electron transfer
→          TNTs Cu e    

      

 CuOH 2 2e
   2H  H2   CuOH 2        

Cu 2e   2H  H2  Cu        

TNTs(6h )  CH3OH  H2O  TNTs CO2  6H         

 

A similar view was also proposed by Zhang et al. [69]. 

 

CuCr2O4 and CuFe2O4 

 

Another example of diode with behavior intermediate between that of p- and n-type 

semiconductors is represented by the system CuCr2O4-TiO2 [97]. The solid CuCr2O4 was 

reported to be able to absorb visible light irradiation due to its small band gap [105]. Under 

solar simulated radiation, mainly CuCr2O4 is activated generating the charge carriers. The 

photogenerated electrons are injected into the CB of TiO2, where they can reduce water, 

whereas the holes react with oxalic acid (the sacrificial agent). A migration of the holes 

generated on CuCr2O4 into the VB of TiO2 was also indicated by researchers, although no 
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evidence of this transfer was revealed in the work. The mechanism proposed for CuFe2O4 is 

very similar to that reported for CuCr2O4 [63]. 

 

CuS 

 

The photoactivity of CuS-TiO2 system is 32 times greater than that of pure P25 TiO2 and this 

was attributed by researchers [57] to the capability of CuS particles dispersed on the TiO2 

surface to prevent the recombination between photogenerated electrons and holes. The former 

are transferred from CB of TiO2 to CuS particles and promptly reduce protons to hydrogen 

molecules. 

 

CuAlO2 

 

A moderate activity of this species in hydrogen generation when using hole scavengers, such 

as sulfide and thiosulfate, was documented by Koriche et al. [106]. 

Brahimi et al. [82] reported on the results obtained when this semiconductor was used along 

with TiO2. No incorporation of the copper salt on the surface of TiO2 was carried out and the 

two solids were only suspended in the same solution. All the work done to characterize 

CuAlO2 prepared by Brahimi et al. [82] indicates a narrow band gap (1.29 eV) of this solid, 

which surely enables the absorption of visible light irradiation. The results of their 

experiments show that, in the presence of TiO2, there is a huge increase of photoactivity, 

which is six-fold greater than that measured on bare CuAlO2. A mechanism similar to that 

proposed for Cu2O-TiO2 is also reported, in which the electrons move from the CB of p-type 

semiconductor to that of TiO2, where they are used to reduce water molecules. The positive 

holes on CuAlO2 solid react with sulfide ions. In other words, the presence of TiO2 and the 

availability of its CB seem to have a great effect on the charge separation. 

 

CuO-Al2O3-TiO2 

 

Miwa et al. [50] tested the capability of a CuO-Al2O3-TiO2 nanocomposite material to 

generate hydrogen in the presence of methanol dissolved in water. The performance of the 

catalyst was better than those of the binary systems CuO-TiO2 and Al2O3-TiO2. According to 

the Miwa et al. [50], the role of the two oxides, CuO and Al2O3, is that of favoring an 

enhancement of the charge separation and thus increase in the efficiency of the system. 
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2.7 pH effect 

Since proton reduction by the photogenerated electron is the fundamental reaction through 

which a hydrogen molecule is generated using photocatalytic systems, it can be considered 

that the rate of this reaction depends upon the proton concentration, that is the pH of the 

solution. This aspect is of particular importance since, in the case of photoreforming, the 

presence of a sacrificial organic species (i.e., pollutant) is required. In other words, since 

wastewaters can be used to feed the photocatalytic hydrogen generator, hopefully without any 

change of their specific pH, it is particularly important to understand how this variable 

influences the performance of the system. To this purpose, the papers considered for the 

present review were analyzed and the results are reported in Table 2.1, Column IV. From 

these data, it can be said that a certain attention to the effect of pH on hydrogen generation 

was paid by researchers, although in many cases neither explanations were given for the effect 

recorded nor indications were reported about the reasons for the choices adopted. 

On the other hand, some attempts to understand the reasons for the effects observed were also 

recorded. For example, Wu et al. [107] explored a pH range of 2.0-12.0 and found that a weak 

basic pH (ca. 10) is more propitious to promote the hydrogen production rate than acidic or 

strong basic (>10) pH. They believed that the surface properties of the photocatalyst (i.e, the 

OH radical concentration and the surface charge density) and the shift of the band gap energy 

depend on the change in pH. They indicated also the acidic condition as detrimental for 

hydrogen generation, due to a lower stability of the copper species on the surface of TiO2 

particles. 

Nada et al. [30] proposed a copper phthalocyanine photosensitized TiO2-RuO2-MV
2+

 system 

for hydrogen production from methanol, and recorded the highest hydrogen production rate 

under acidic conditions. According to their results, at low pH values more protons are 

adsorbed on the TiO2 surface, which increases the possibility of proton reduction to H2 by 

photogenerated electrons in the CB of TiO2 (e
-
CB); moreover, under acidic conditions, MV

2+ 

reduction by e
-
CB is identified as the rate controlling step. At high pH values, Ru

4+
 and Cu

2+
 

precipitate as hydroxides. 

Lanese et al. [41] reported that a reduction in proton concentration, at pH raising from 0 to 

1.0, does not result in any appreciable decrease in system reactivity, whereas a significant 

decline is noted at pH=2.0. This behavior could be considered as the result of a change in the 

rate determining step. In other words, when proton concentration decreases, the rate of 
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reaction of this species with free electrons decreases and this step limits the overall rate of 

hydrogen generation. 

Xu et al. [93] attributed the decline of hydrogen generation rate to copper leaching from the 

photocatalyst, when the solution pH drops. According to their study, when the pH value is 1, 

83.8% of copper from the CuO-TiO2 photocatalyst will be released into the solution after 1 

hour (54.0% and 2.2% for pH=3 and 5, respectively). Copper ions in solution weaken the 

capability to accept excited electrons from TiO2, inducing deactivation of the catalyst for 

hydrogen production. Leaching of copper into the solution was also reported by others, such 

as Xu et al. [60]. They observed a small decline in Cu content, since the system pH decreased 

progressively because of the generation of CO2 and HCOOH byproducts, causing Cu 

dissolution into the solution. Consequently, the efficiency of hydrogen production was 

reported to decline moderately with time. 

Other researchers recorded the existence of an optimal pH value. Brahimi et al. [82] 

conducted experiments using a CuAlO2-TiO2 catalyst in the pH range of 5.5-14.0. They 

observed an enhancement in H2 generation as pH was increased until a maximum value at 

pH≈11, beyond which a marked decrease was noted. Assuming that the electronic bands of 

CuAlO2 are pH-insensitive, they concluded that a change in pH can substantially lead to the 

modification of the band positions of TiO2 and, to be more precise, to their negative shift with 

increasing pH. 

Jin et al. [98] explored a very wide pH range (1.0-14.0) and found that by adjusting the pH 

value from 14 to 1.0 (by addition of nitric acid) the rate of hydrogen production decreased to a 

minimum just at pH 1.0. At pH 14, no significant changes were noted before and after the 

reaction in the absorption spectra of the photocatalyst, whereas a small decline in absorption 

was recorded at pH 1.0. 
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3. Aim of the thesis 

This study was devoted to a nano TiO2-photocatalytic system based on UV photoreforming of 

organic sacrificial molecules by in situ photoreduction of cupric ions. As emerged from the 

literature review, increasing research efforts have been recently devoted by researchers to 

develop copper-based TiO2 photocatalysts for hydrogen generation through photocatalytic 

reforming of organics.  

The performances of the system studied were evaluated in terms of hydrogen generation at 

varying selected operating parameters. Partial goals of this investigation are reported 

hereinafter. 

 Evaluation of the effect of adopting various oxygenated organic substrates as 

sacrificial organic agents. In particular, selected alcohols and carboxylic acids were 

employed in order to compare the role of the substrate structure on hydrogen 

production. 

 Assessment of the role of the TiO2 crystallographic phases (anatase, rutile and 

anatase/rutile) in hydrogen generation. The relationship between photocatalytic 

activity and physical-chemical properties of the catalyst was assessed by performing a 

thorough catalyst characterization including X-Ray diffraction, Dynamic Light 

Scattering, Thermogravimetry, Energy-dispersive X-ray Spectroscopy, FT-IR and 

Diffuse Reflectance UV Spectroscopies, Photolumincesce, High Resolution 

Transmission Electron Microscope, Field Emission Scanning Electron Microscopy 

analyses. 

 Development of a suitable mathematical model capable of simulating hydrogen 

production over the same catalyst (nano-Cu(s)/TiO2) when glycerol or methanol were 

adopted as sacrificial agents. 

Investigation on the presence of chloride ion in the aqueous matrix when formic acid was 

employed as sacrificial agent. 
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4. Materials and methods 

 

4.1 Chemicals 

All organic compounds used as sacrificial agents, TiO2 Aeroxide P25, TiO2 pure anatase 

phase, TiO2 pure rutile phase, cupric sulfate pentahydrate, sodium chloride, chromotropic acid 

disodium salt dehydrate, perchloric acid and sodium hydroxide were purchased from Sigma 

Aldrich. Doubly glass-distilled water was used throughout this study. Sulfuric acid was 

purchased from Carlo Erba Reagents. 

 

4.2 Hydrogen production device 

Photocatalytic runs were performed in a batch cylindrical glass jacketed reactor (300 ml) with 

an outer diameter of 6.5 cm and a height of 40 cm wrapped with an aluminum foil. The 

optical path length was 1.10 cm 

The reactor was thermostated at 25 °C and equipped with a magnetic stirrer. On the top of the 

reactor, an inlet allowed to feed reactants and nitrogen gas, and an outlet was used to collect 

liquid and gaseous samples at varying reaction times. 

The reactor was endowed with a high-pressure mercury vapor lamp by Helios Italquartz 

(power input: 125 W), principally emitting at 305, 313, and 366 nm (manufacturer’s data). 

The effective radiative powers of the lamp (   

 ) at 305 (determined through determined 

through hydrogen peroxide photolytic experiments [188]), 313 nm (determined by 

valerophenone actinometry [189]),  and 366 nm (measured using a UV radiometer Delta Ohm 

HD 2102.1) are 2.5610
-6

, 2.7010
-6 

and 3.3010
-6

 eins
-1

, respectively. The lamp was located 

inside a glass cooling jacket in the center of the reactor and surrounded by the reacting 

solution. A schematic illustration of the reactor is provided in Figure 4.1. 
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                             Figure 4.1: Batch annular reactor. 

 

4.3 Photocatalytic experiments procedure 

For each run a fixed amount of catalyst was initially suspended in an aqueous solution 

containing the sacrificial species chosen for the experiment.  

In order to avoid the undesired reaction between dissolved oxygen and photogenerated 

electrons, before starting the photocatalytic experiment, a nitrogen stream was bubbled into 

the solution for 30 minutes. Moreover, throughout the photocatalytic runs, nitrogen was 

continuously fed at a flow rate of 0.3 Lmin
-1

 in order to prevent the presence of air into the 

reactor. In selected experimental runs, a solution of sodium nitrite (1 M) was used for 

controlling the temperature (25 °C) and for cutting-off UVA radiation emitted by the lamp ( 

< 400 nm) [108].  
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At different reaction times, gaseous samples were collected by means of Tedlar gas sampling 

bags and injected into the gas-chromatograph to record the rate of hydrogen generation. The 

liquid samples, collected at different reaction times, were quickly filtered on regenerated 

cellulose filters (pore diameter 0.20 m, Scharlau) and the filtrates were used to measure total 

dissolved copper concentration and selected organic species concentration. 

The measurements of transmitted radiant power were carried out on the external wall of the 

reactor through a digital radiometer (Delta Ohm HD 2102.1). In particular, the irradiances 

emerging from the reactor in the ranges 315-400 nm and 400-1100 nm were recorded. 

 

4.4 Analytical methods 

At different reaction times gaseous and liquid samples were collected by means of Tedlar gas 

sampling bags (1 liter) and glass syringe (10 ml). Gaseous samples were analyzed by a gas-

chromatograph (Agilent 7820A) equipped with a HP-PLOT Molesieve 5A column (Agilent) 

and a TCD detector using argon as the carrier gas.  

The concentration of cupric and cuprous ions in solution was measured by means of a 

colorimetric method using an analytical kit (Macherey-Nagel) based on oxalic acid bis-

cyclohexylidene hydrazide (cuprizone). A UV/Vis spectrophotometer (Cary 100 UV-Vis 

Agilent) was employed for the measurements at a wavelength of 585 nm. The pH of the 

solution was monitored by means of an Orion 420p pH-meter (Thermo). The irradiances 

emerging from the reactor were measured by means of a UV-Vis radiometer (Delta Ohm HD 

2102.1). 

When formic acid was employed as sacrificial agent, its concentration was measured by 

means of HPLC analyses. For this purpose, the HPLC apparatus (Agilent 1100) was equipped 

with a UV–Vis detector (λ=210 nm) and a Alltech OA–1000 column, using a mobile phase of 

sulfuric acid 2.5•10
-3

 mol/L, flowing at 0.8 mL/min. 

On the other hand, when methanol was adopted as hole scavenger the concentration of 

formaldehyde was determined by the colorimetric method by Bricker and Vail [109], based 

on the use of chromotropic acid. 

 

4.5 Recovery of the catalyst 

At the end of the run, the suspension was allowed to settle overnight under inert atmosphere 

producing two distinct layers: aqueous solution on the top and Cu-modified TiO2 particles 
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deposited on the bottom. After removal of most part of the aqueous solution by decanting it, 

the remaining part was then evaporated by means of a gentle inert flow. 

 

4.6 Catalysts characterization 

4.6.1 Structural and morphological characterization 

Structural and compositional characterization of the samples was performed by dynamic light 

scattering analysis (DLS), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) N2 

adsorption analysis and high-resolution transmission electron microscopy (HR-TEM). 

XRD measurements were performed using a PANalytical diffractometer with a nickel filter 

and Cu K radiation. BET analysis allowed determining the specific surface area (SBET), 

that was evaluated by generating seven-point isotherms at 77 K for N2 adsorption (Autosorb-

1, Quantachrome) using the char sample capable of providing a specific surface area equal to 

5 m
2
 in the sample cell. 

Dynamic light scattering analyses (DLS) were performed through a Malvern Instruments 

Master Sizer 2000 granulometer operating with water as the dispersion solvent down to a 

minimum particle size of 0.02 m.  

Information on the overall surface morphology of the photocatalysts was provided by a field 

emission scanning electron microscopy (ESEM, Philips XL 30 ESEM-FEG), while more 

detailed information on crystal size and crystal structure were obtained using a JEM-2010F 

(JEOL) high-resolution transmission electron microscope (HR-TEM) with field emission gun 

at 200 kV. The samples were prepared for HR-TEM measurements by dispersing the obtained 

powders in acetone using an ultrasonicator (2510RDH, Bransonic) over 30 min and then fixed 

on a carbon coated copper grid (FCF400-Cu, FROMVAR). 

 

4.6.2 Compositional characterization 

Energy-dispersive X-ray spectroscopy (EDX) measurements for elemental mapping of 

titanium and copper were performed by a Fei Inspect Microscope, Column E-SEM W 

(Source: 200 V – 30 kV, filament: tungsten) equipped with an Everhart – Thornley detector 

(ETD). Further information was obtained through Fourier Transform Infrared (FT-IR) 

spectroscopy and thermogravimetric analysis (TG). FT-IR characterizations employed a 

Nexus spectrometer that recorded the absorbance spectra of the samples in 400–4000 cm−1 
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wavenumber range. For TG analysis, we used a thermogravimetric Netzsch TG209 apparatus, 

operating at a heating rate of 10 °C/min under a nitrogen atmosphere. 

 

4.6.3 Optical and electronic characterization 

Diffuse Reflectance UV–Vis (DRUV) measurements were performed to establish the optical 

band gap by using a Jasco spectrophotometer and BaSO4 as a reference. The optical 

absorption was measured in the 190–850 nm wavelengths range. 

Photoluminescence (PL) measurements in controlled ambient gas were used to compare the 

charge recombination efficiency of the TiO2 supports and of the Cu-TiO2 composites and to 

correlate them with the photocatalytic efficiencies. The PL experiments were carried out using 

an excitation source in the ultraviolet emission line of a He-Cd laser (325 nm wavelength, 

corresponding to a photon energy at about 3.82 eV). The PL light was focused on the input 

end of an optical fiber bundle coupled with a 320 mm focal length spectrometer. The spectral 

acquisition was provided by a Peltier-cooled CCD camera. The stabilization of nitrogen 

atmosphere in the test chamber was provided by a mass flow control system. 

Electron Paramagnetic Resonance (EPR) spectroscopy experiments were carried out by 

means of X-band (9 GHz) Bruker Elexys E-500 spectrometer (Bruker, Rheinstetten, 

Germany), equipped with a super-high sensitivity probe head. Solid samples were transferred 

to flame-sealed glass capillaries which, in turn, were coaxially inserted in a standard 4 mm 

quartz sample tube. Measurements were performed at room temperature. The instrumental 

settings were as follows: sweep width, 1500 G; resolution, 1024 points; modulation 

frequency, 100 kHz; modulation amplitude, 1.0 G. 128 scans were accumulated to improve 

the signal-to-noise ratio.  

Raman spectra were achieved using a Horiba XploRA Raman microscope system with a 

100·objective (NA 1.4, Olympus). The laser source was a frequency doubled Nd:YAG-solid 

state laser (= 532 nm, 12 mW maximum laser power at the sample). The calibration of the 

system was performed against the Stokes Raman signal of pure Si at 520 cm
-1

 using a silicon 

wafer. 
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5. Results I 

 

In-situ photodeposited Cu-TiO2 catalyst for phoreforming of organics 

 

5.1 Introduction 

As previously discussed, systems based on titanium dioxide on which copper species were 

deposited or formed as a co-catalyst were recently proposed to be promising catalysts for 

photoreforming. Amongst the techniques so far adopted to include copper species on TiO2 

catalysts [37],  only few examples of in situ photodeposition have so far been reported in the 

literature of TiO2 doping with copper [62,67,110]. Moreover, it is important to stress that each 

of these studies focused on a specific sacrificial agent.  

This investigation aimed at assessing the use of copper-TiO2-based photocatalysts prepared by 

in situ photodeposition in photoreforming processes for hydrogen generation. In addition, 

many different oxygenated organic substrates were tested to evaluate and compare effects of 

substrate structure on hydrogen production. 

 

5.2 Results 

Figures 5.1a-d show data recorded during a typical photoreforming run for hydrogen 

generation using bare TiO2-P25 and Cu-modified TiO2-P25 catalysts and glycerol as 

sacrificial agent. The addition of cupric ions to the reacting system results into their rapid 

disappearance from the solution (data not shown) and a prompt increase (Fig. 5.1a, from point 

 to ) in hydrogen generation rate with respect to the value measured in presence of bare 

TiO2-P25. At larger time hydrogen production rate decreases until it approaches a plateau 

(Fig. 5.1a, point ). A contemporary decrease in both pH (Fig. 5.1b), which reduces from an 

initial value of 6.4 to 2.9, and irradiances (Figs. 5.1c,d) - measured on the external wall of the 

reactor - is observed after copper addition into the solution. 
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Figure 5.1: Hydrogen production rate (a), pH of the solution (b), irradiance between 315-400 

nm (c) and 400-1100 nm (d) for bare TiO2 () and Cu-modified TiO2 (▲) during a typical 

photoreforming run under de-aerated conditions. 

[C3H8O3]o=0.8 M; [Cu(II)]o=0.8 mM; TiO2-P25 load = 500 mgL
-1

; pHo=6.4. 
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In particular, it is important to stress that the irradiance values recorded in both the UV and 

the visible range decrease within 30 minutes of reaction time, thus indicating a higher 

absorption capability of the resulting solid catalyst with respect to TiO2-P25 catalyst initially 

charged into the reactor. A marked change in color of the liquid samples withdrawn from the 

reactor is recorded from white typical of TiO2 particles to purple (for further information see 

the Appendix, Fig. A1), thus indicating that some chemical transformations occur during this 

interval. To achieve additional information about the system behavior, the lamp was switched 

off after 120 minutes of reaction and, after checking that hydrogen production was stopped, it 

was again switched on (point ). The analyses of the gaseous samples collected after this 

procedure indicate that hydrogen production rate immediately achieves a value equal to that 

of previously observed plateau (point ). No occurrence of any overshoot other than that 

recorded at the beginning of the photocatalytic run (  ) is observed, thus outlining that 

probably its presence is strictly related to the photodeposition of some copper species on TiO2 

particles. The run was repeated twice, demonstrating good reproducibility of the results (data 

not reported). 

The investigations were successively extended to evaluate the effects of varying Cu-modified 

TiO2-P25 catalyst load, keeping constant the Cu(II)/TiO2 mass ratio (10 wt%). Figures 5.2a,b 

show the hydrogen generation rate corresponding to the plateau obtained at different catalyst 

loads along with the irradiance values. Consistently with heterogeneous catalytic processes, 

hydrogen generation rate increases almost linearly for low increments of catalyst load; further 

additions of TiO2 amount to the reacting solution firstly result no more useful and 

successively appear detrimental for the process itself (Fig. 5.2a). Figure 5.2b shows that the 

irradiance values collected in the UV and the visible range sharply reduce increasing the TiO2 

load between 50 mg/L and 250 mg/L. On the other hand, the decreasing trend of irradiances 

in both ranges appears to slightly abate for further increases in catalyst load. 

  



Results I 

51 
 

 

 

Figure 5.2: Effects of catalyst load: hydrogen production rate (a), irradiance between 315-400 

nm and 400-1100 nm (b) for bare TiO2-P25 (squares) and Cu-modified TiO2-P25 (triangles). 

TiO2-P25 load =50÷500 mg/L; [C3H8O3]o=0.8 M; pHo=6.4. 
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An attempt to understand if this approach to hydrogen production through organic 

photoreforming can be of general use prompted us to investigate the system behavior using 

different sacrificial substrates. A large group of organic species was tested under the 

experimental conditions described for the run whose results are given in Fig. 5.1. Table 5.1 

reports all the collected data for each run with a different chemical species: a behavior similar 

to that indicated in Fig. 5.1 is recorded in terms of hydrogen generation rate, irradiance, pH 

and cupric ion concentration against time (data not shown). As a general comment to the data 

reported, it is possible to state that the proposed system works as a catalyst for hydrogen 

generation, starting from a great many different organic species. Nevertheless, the observed 

rates varied from 5.50 μmolmin
-1

 for glycerol to 0.55 μmolmin
-1

 for benzyl and isopropyl 

alcohols and zero for acetic acid only. It is noteworthy to stress that, even if acetic acid, 

benzyl alchohols and isopropyl alcohols are used as sacrificial agent, a reduction of cupric 

ions is observed, although no hydrogen production is recorded (Table 5.1).  
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Sacrificial agent 
Cu

2+
 

reduction 

H2 

production 
pHo pHfinal 

rH2 bare 

TiO2-P25 

(μmolmin
-1

) 

 

rH2 Cu-TiO2-

P25 

(μmolmin
-1

) 

 

Glycerol Yes Yes 6.40 2.90 2.18 5.50 

Methanol Yes Yes 5.50 2.9 0.89 4.37 

Formic acid Yes Yes 2.00 1.60 0.1 4.07 

Sodium formate Yes Yes 8.20 9.70 1.23 3.69 

Ethylene glycol Yes Yes 3.76 2.90 0.55 3.48 

Propylene glycol Yes Yes 5.40 2.80 1.46 3.46 

Glucose Yes Yes 5.40 2.80 0.34 2.50 

Ethanol Yes Yes 5.40 2.90 1.50 2.00 

Oxalic acid Yes Yes 0.10 0.45 0.10 0.96 

Benzyl Alcohol Yes Yes 4.80 2.90 0.41 0.55 

Isopropyl alcohol Yes Yes 5.50 2.80 0.14 0.55 

Acetic acid Yes No 2.24 2.40 - - 

 

Table 5.1: Data collected by testing under defined experimental conditions ([Cu(II)]o=0.8 

mM; TiO2 load = 500 mgL
-1

) a selected group of organics: hydrogen production and 

dissolved copper reduction capacities, starting and final pH of the reacting solution, hydrogen 

production rate in presence of bare TiO2 (rH2 bare TiO2-P25), hydrogen production rate in 

presence of Cu-modified TiO2 (rH2 Cu-TiO2-P25) before switching off the lamp (t=120 min). 
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5.3 Discussion 

According to Tung [111], it is possible to explain the data reported in Fig. 5.1 by assuming 

that, upon irradiation of TiO2 particles, the photogenerated charge carriers make possible in 

the very early stages of the process: 

 the reduction of cupric ions to cuprous one or to zero-valent copper by 

photogenerated electrons (    ), along with proton reduction to form hydrogen atom: 

 

          
           

              

 

 the oxidation of the sacrificial organic species by photogenerated positive holes (    ): 

 

         
               

 

Even though this view seems to be highly reasonable, it is necessary to go further into details 

of the process and define the oxidation state of copper species formed during the 

photocatalytic process.  

Firstly, the increase in visible-light absorption during the first stage of the process is 

consistent with the reduction of cupric ions to cuprous oxide, which is almost insoluble in 

water and could precipitate even in acidic pH conditions [67,112]. Cuprous oxide, a p-type 

semiconductor, is reported to have a band gap of about 2.0-2.2 eV [113]: this value is smaller 

than TiO2 (3.0-3.2 eV) and could properly justify the increase in absorption of the visible 

radiation.  

Moreover, the precipitation of cuprous oxide can be partially responsible for the decrease in 

pH. To explain the decrement of pH, it is worth noticing that two proton ions are generated 

from the oxidation of the organic species (3), and two additional proton ions derive from the 

formation of Cu2O (4) through the reaction between cupric ions and photogenerated electrons 

[114]: 
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Therefore, the moles of protons generated are twice as many as those of cupric ions reduced. 

This means that, for a starting cupric ion concentration equal to 0.8 mM such as in this study, 

a protons concentration of 1.6 mM arises from reactions 3 and 4. For a starting pH of 5.0, the 

initial concentration of proton ions may be neglected with respect to that due to the 

occurrence of the reactions      and     . Accordingly, a final pH of about 2.8 (pH=-

log(1.610
-3

)) is estimated, which agrees with values measured during the runs. 

On these basis, a direct evidence for the presence of cuprous oxide in the system was 

investigated. Figure 5.3a shows the UV-visible absorption spectra for some selected samples 

recovered at the end of the photoreforming runs. In particular, the samples analyzed can be 

classified as reported below: 

i. Cu-modified TiO2-P25 recovered after a typical photoreforming run in presence of 

cupric ions and TiO2-P25; 

ii. Cu2O-TiO2-P25 resulting from a photoreforming run carried out by adding Cu2O to a 

TiO2-P25 suspension; 

iii. TiO2-P25 and Cu2O composed of bare P25 titanium dioxide and pure cuprous oxide, 

respectively. 

The sharp basal absorption edge located at about 416 nm in bare TiO2-P25 is consistent with 

the pristine bandgap of  P25 (3.2 eV) [115], whereas pure Cu2O shows a broad absorption 

band in the visible spectral range, starting from about 430 nm. 

Figure 3a indicates that Cu-modified TiO2-P25 and Cu2O-TiO2-P25 have similar absorption 

spectra and both the samples absorb at higher wavelengths (>400 nm) with respect to bare 

TiO2-P25 sample. 

Moreover, from a careful investigation of the DRUV spectra in the wavelength range of 520-

580 nm, where signals belonging to plasmon resonance of copper nanoparticles fall [116,20], 

a large absorption band may be observed for both the copper-based-titanium dioxide catalysts.  

These data clarify that in the first stage of the process, during which Cu-modified TiO2-P25 

forms, the light absorption behavior of the solid suspended in the reactor drastically change, 

assuming a relevant character in the visible range. The intensity measured in UV-visible 

spectra is also expressed as the value of the Kubelka–Munk function F(R).  
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Figure 5.3b shows the energy gap values calculated by linearization of Tauc plot of 

(F(R)hv)
1/2

 versus photon energy (hv). The red shift of the absorption edge from 386 nm (for 

the TiO2-P25) to 431 nm (for Cu2O-TiO2-P25) is consistent with an energy band gap of about 

2.6 eV. However, the last value does not totally agree with that reported in the literature for 

Cu2O (2.2 eV). The results collected raised some doubts about the nature of the species 

formed on TiO2-P25 surface. 

 

 

Figure 5.3: DRUV absorption spectra (panel a) and plots of (F(R)hv)
1/2 

versus photon energy, 

hv, (panel b) for Cu-modified TiO2-P25, Cu2O- TiO2-P25, TiO2-P25 and Cu2O. 
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To collect clearer indications on these species, Raman spectra (Fig. 5.4a), EPR analysis (Fig. 

5.4b) and XRD patterns (Fig. 5.4c) were planned and carried out on some catalyst samples.  

The Raman spectrum of Cu-modified TiO2-P25 is characterized by an intense peak at 148 cm
-

1 
and three short peaks at 400 cm

-1
, 520 cm

-1
 and 640 cm

-1
,
.
 which corresponds to the active 

modes of bare TiO2-P25. Actually, the typical peak of Cu2O corresponding to the second-

order overtone at 219 cm
-1

 [117] is not observed in the spectrum of the catalyst formed in situ.  

Figure 5.4b shows EPR spectra on Cu-modified TiO2-P25 and Cu2O- TiO2-P25 samples. As a 

reference, the EPR spectrum of the TiO2 Degussa P25 in presence of cupric ions before 

irradiation is reported, showing the typical signal of Cu(II)/TiO2 system [118]. For both the 

catalysts no paramagnetic signals are detectable, thus clearly confirming the absence of Cu
2+

 

species adsorbed on the TiO2-P25 catalyst surface.  

On the other hand, comparing to each other the XRD spectra shown in Fig. 5.4c, for the 

samples collected after the photocatalytic processes it is possible to distinguish the presence 

of two peaks at 2 values 43°3’ and 50°5’, which exactly match those of zero-valent copper, 

whereas no peaks due to Cu2O are observed. Conversely, the peaks related to the occurrence 

of Cu2O are present and no signals ascribed to zero-valent copper are found in the XRD 

spectrum of a sample obtained by adding Cu2O to a P25 suspension without UV irradiation. 
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Figure 5.4: Raman spectra (panel a), EPR spectra (panel b) and XRD pattern (panel c) 

registered for Cu-modified TiO2-P25, Cu2O- TiO2-P25 before and after irradiation, bare TiO2-

P25 and Cu(0) powders. In panel c, the purple arrows indicate the diffraction peaks 

corresponding to the Cu(0) species, while the pink arrows are related to the diffraction peaks 

of Cu2O. 
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It is clear that Raman and XRD results do not support the formation of Cu2O on TiO2 surface, 

but only the presence of zero-valent copper particles. Therefore, a different explanation for 

the absorption in the visible range must be sought.  

To this purpose, the crystallite size of zero-valent copper (D) was calculated using XRD data 

and the Scherrer’s equation (  
 

    
) where k is a constant (0.94 for spherical particles), λ 

is the wavelength of the X-ray radiation (0.154 nm), ß is the line width at half maximum 

intensity of the peak, and  is the angle of diffraction (21°6’). The mean size of particles 

estimated from the Scherrer’s formulas is close to 5 nm, thus indicating the formation of zero-

valent copper nanoparticles in the first stage of the photocatalytic process. 

The increase in hydrogen productivity of zero-valent nanocopper-loaded titania with respect 

to undoped commercial P25can be mainly ascribed to the existence of Schottky barriers at the 

metal copper-titania interfaces inhibiting the recombination of photogenerated electrons and 

holes [119,120].  

Due to the disparity between zero-valent copper and TiO2 work functions, photogenerated 

electrons move from titania to zero-valent copper as the latter is deposited on the former until 

the two Fermi levels are aligned, while photogenerated holes are concentrated on the TiO2 

side. This process enhances the efficiency of the photocatalytic process by preventing the 

recombination of electron-hole pairs.  

On the other hand, zero-valent copper, whose presence was confirmed by XRD spectra (Fig. 

5.4c), is also important for its contribution to the catalytic activity. Indeed, the metal 

deposited on TiO2 plays an essential role as active site on which photogenerated electrons are 

temporary trapped and successively transferred to proton to generate hydrogen. 

It is worth noticing that it is possible to explain the decrease in pH recorded during the runs 

even if the formation of zero-valent copper particles upon reduction of cupric ions is 

considered. Indeed, as reported in reaction     , in order to obtain two moles of zero-valent 

copper from two moles of cupric ions it is necessary to have four moles of electrons. As a 

result, reaction  proves that the consumption of four positive holes is required, resulting in the 

generation of four hydrogen ions. Therefore, once more, for each reduced mole of cupric ion 

two moles of hydrogen ions form.  

According to previous investigations [103,121], when participating to a photocatalytic process 

each organic substrate may behave either as a species ―strongly adsorbed‖ on the catalyst 

surface or as a ―weakly adsorbed‖ species. With reference to these situations, two 
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mechanisms are generally reported [122,123] substantially different in the reaction through 

which the substrate oxidizes. Indeed, for ―strongly adsorbed‖ compounds the oxidation 

proceeds essentially through a direct reaction of the organic species with surface positive 

holes (reaction     ). On the other hand, as stated above, photogenerated electrons may be 

captured at the very beginning of the process by either cupric and cuprous ions (    ), and 

successively by protons resulting into hydrogen generation (    ): 

 

      
           

 

For ―weakly adsorbed‖ species, the oxidation proceeds through the interaction between the 

organic compound dissolved in the solution and surface-bound hydroxyl radicals which form 

as a result of a trapping process of the holes on the surface of TiO2 (     and     ): 

 

          
                   

                                  

 

Moreover, surface-bound hydroxyl radicals are also capable to react with photogenerated 

electrons giving rise to an overall fast recombination (    ), which makes the occurrence of 

     negligible: 

 

             
                

 

Although no literature indications can be found on the behavior of the organic species adopted 

in the present study as probe molecules, it is reasonable to consider small molecules capable 

of strongly adsorbing on the TiO2 surface. This is the case of molecules such as methanol, 

ethanol, formic acid, and those having more than one single functional group such as 1,2-

ethandiol, glycerol, and glucose. On the other hand, it could be supposed that bulky species 

with a single OH group (e.g., isopropyl and benzyl alcohols) only weakly adsorb on the TiO2 

surface, thus           are preferred. When acetic acid is used as sacrificial agent, no 

hydrogen production is observed. This apparently ―anomalous‖ result may be explained on 
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the basis of the photo-Kolbe mechanism [124]. This mechanism takes into account, as first 

step, the decarboxylation of the organic acid through hole oxidation, as indicated in     : 

 

             
       

               

 

After     , under deaerated conditions, carbon centered radicals react with photogenerated 

electron (     ), thus preventing the formation of hydrogen [125,126], or give at a lower extent 

a cross termination (     ): 
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Summary 

The photocatalytic generation of hydrogen from different oxygenated organic species (mostly 

alcohols and carboxylic acids) through the adoption of copper-modified TiO2-P25 catalysts 

was studied. The photocatalysts were prepared in situ by means of a photodeposition 

procedure. Various measurements done during the experiments (i.e., intensity of radiation 

emerging from the reactor) and on the recovered photocatalyst (i.e., DRUV, XRD and Raman 

analysis) support the deposition on TiO2 surface of Cu nanoparticles with particle size of 

about 5 nm. The photodeposition of Cu nanoparticles markedly enhances the photoefficiency 

for hydrogen generation with respect to bare titanium dioxide initially charged in the 

photoreactor.  

Experimental results indicate that, for the most part of the organic species adopted as 

sacrificial agents, the hydrogen production rates were appreciably higher (e.g., 5.5 μmoles of 

H2/minutes for glycerol) than that observed for bare P25 (e.g., 2.1 μmoles of H2/minutes for 

glycerol). In presence of benzyl alcohol, 2-propanol and acetic acid, no additional formation 

of hydrogen is observed, although each analysis done during the experiments confirm the 

reduction of cupric ions to zero-valent copper. 

To explain this behavior, a consistent mechanism was proposed. The mechanism is based on a 

different oxidation capability of the organic species related to their tendency to adsorb on the 

catalyst surface. When the species strongly adsorb, beneficial effects are observed in terms of 

an additional hydrogen generation with respect to bare titanium dioxide. Indeed, a negligible 

proton reduction occurs in the case of a weak adsorption by the organic species.
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6. Results II 

Effect of different crystalline phases  

 

6.1 Introduction 

Literature findings revealed that commercial TiO2 samples exhibit contrasting photocatalytic 

activity for hydrogen production not clearly related to different crystallographic phases 

(anatase, rutile and anatase/rutile) and intrinsically related to several and different factors, 

such surface area, crystallinity, particle size, and morphology [140]. 

The relationship between photocatalytic activity and physical-chemical properties of the 

catalyst, e.g. surface morphology, crystal structure, particle size, surface defects and optical 

behavior, is crucial to properly design materials with increased hydrogen production 

efficiencies.  

Structural and surface properties of TiO2 supports can markedly influence dispersion and 

oxidation state of copper in Cu-modified TiO2 materials [141]. This highlights the importance 

of analyzing and understanding the variables controlling Cu deposition onto TiO2 surface. The 

role that TiO2 surface properties (surface area, oxygen vacancies) play in determining 

morphology and distribution of Cu nanoparticles during in-situ photodeposition was therefore 

investigated.  

To this purpose, the physical-chemical properties and the photoefficiencies for hydrogen 

production of three TiO2 commercial samples - i.e. P25, pure anatase, and pure rutile - 

modified by in situ copper photodeposition were compared. In particular, the hydrogen 

production rates were compared and a physical-chemical characterization was performed 

through a combined approach of complementary techniques, including X-Ray diffraction 

(XRD), Dynamic Light Scattering (DLS), Thermogravimetry (TG), Energy-dispersive X-ray 

Spectroscopy (EDX), FT-IR and Diffuse Reflectance UV (DRUV) Spectroscopies, 

Photolumincesce (PL), High Resolution Transmission Electron Microscope (HR-TEM), Field 

Emission Scanning Electron Microscopy (FE-SEM). 
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6.2 Results 

6.2.1 Photocatalytic runs 

Figure 6.1 shows the hydrogen production rate measured during the photoreforming of two 

alcohols used as sacrificial agents (i.e., methanol and glycerol), employing different titanium 

oxides (P25, anatase and rutile), used as bare (up to 30 min) and after adding cupric ions to 

the reacting mixture. Several information can be inferred from the plot. 

o P25 based catalysts showed in all cases a hydrogen production rate larger than those 

measured for anatase and rutile based catalysts.  

o The addition of cupric ions to the mixture resulted into a marked enhancement of the 

rate of hydrogen production with respect to bare materials. 

o In presence of P25 based catalyst (with or without copper), a higher generation 

rate was recorded when glycerol was used as hole scavenger. 

o After the cupric sulfate addition, hydrogen generation rate in the presence of 

P25 undergoes a marked increase for both sacrificial agents (circles) with 

respect to anatase (triangles) or rutile (squares).  

o Under the adopted experimental conditions, the hydrogen rate productions 

approached, in all the cases, a plateau after 1 hour from the cupric ions 

additions. 

o All the photocatalysts were not active under visible light, i.e., for radiations 

with wavelength higher than 400 nm. 
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Figure 6.1: Effect of TiO2 type on the hydrogen production rate. TiO2 load: 500 mg/l, 

Cu/TiO2 ratio: 10% w/w. Hole scavenger agent (10% v/v): (empty symbols) glycerol 0.82 M; 

(full symbols) methanol 2.47 M. 

(,) P25-TiO2 based catalyst; (, ) rutile-TiO2 based catalyst; (, ) anatase-TiO2 

based catalyst. 
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Figures 6.2a,b show respectively the profiles of copper dissolved normalized concentration 

and the pH of the mixture using methanol as hole scavenger.   

The decrease in cupric ions concentration (Fig. 6.2a) and pH (Fig. 6.2b) were due to copper  

photodeposition over different titania supports, as previously assessed for P25 (see Chapter 

5), according to the simultaneous occurrence of reactions of cupric ions with photogenerated 

electrons: 

 

 

r6.1 

 

and alcohol with positive holes: 

 

 
r6.2 

 

As it can be noticed, the largest rates of copper photodeposition (Fig. 6.2a) and pH decrease 

(Fig. 6.2b) are observed for P25 (circles), whereas the lowest are associated to anatase 

(triangles). A similar trend was observed using glycerol as sacrificial agent (data not shown). 

Moreover, a change of reaction rate for copper photodeposition was recorded within the first 

two minutes after lamp switching on for rutile and P25 based catalysts, and within four 

minutes for anatase. This result may be mainly ascribed to the requirement for the lamp to 

warm up and reach maximum light emission (dashed line). 

  

Cu(II) Cu(0)+ e-2

R-OH  + 2 h+ Rox + 2 H+
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Figure 6.2: Dissolved copper photoreduction (a) and pH (b) profiles. TiO2 load: 500 mg/l, 

Cu/TiO2 ratio: 10% w/w. Hole scavenger agent: methanol 10% v/v. 

() P25-TiO2 based catalyst; () rutile-TiO2 based catalyst; () anatase-TiO2 based catalyst; 

(--) lamp power emitted ( < 400 nm). 
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6.2.2 Overall power transmission 

The transmitted radiant powers of the suspension were measured in the wavelength range of 

315-400 nm for TiO2 containing suspensions before and after the cupric sulfate additions 

(Figure 6.3).  

 

 

Figure 6.3: Radiant power transmitted by the aqueous suspension before the Cu(II) addition 

(pH  5) and after the Cu addition (pH  3.2). Wavelength range: 315-400 nm.  TiO2 load: 

500 mg/l, Cu/TiO2 ratio: 10% w/w. Hole scavenger agent: methanol or glycerol 10% v/v. 

 

The mixtures containing undoped P25 (pH suspension  5.0) or Cu-doped P25 (pH 

suspension  3.2), showed the highest values of attenuation of the radiation transmitted ( 

95%). Anatase containing suspensions exhibited a behavior similar to P25, in which anatase is 

the prevalent phase (anatase:rutile, ca 80:20). On the contrary, bare rutile suspensions were 

characterized by the smallest values of attenuation of radiant power transmitted (65%) with a 

small increase of the optical density for the Cu-doped rutile (73%). The pH of the aqueous 

suspension (5.0 and 3.2) seems to do not influence the optical properties of the investigated 

photocatalytic systems. The attenuation observed can be caused by light absorption and by 

physical processes of extinction of the particles such as scattering and reflection phenomena. 

The collected results matched with those previously reported in literature [142] according to 

which the specific absorption coefficient below wavelengths of 335 nm and the specific 
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scattering coefficient for P25 are the largest among those estimated for different titanium 

dioxide particles.  

 

6.2.3 Field emission scanning electron microscopy (FE-SEM)  

The morphology, i.e. shape and size, of Cu-doped titania samples was investigated by FE-

SEM (Figs. 6.4a-c). All the samples consisted of aggregated round-shaped nanoparticles. The 

crystallite sizes range between 50 – 110 nm for Cu/P25 and between 100 – 300 nm for 

Cu/anatase and Cu/rutile. The morphology of the photocatalysts did not change during the 

photocatalytic runs (data not shown). 

 

 

 

Figure 6.4: FE-SEM images of Cu/P25 (a), Cu/anatase (b), Cu/rutile (c). 
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6.2.4 Energy-dispersive X-ray spectroscopy (EDX) 

The EDX analyses, performed on a selected area (2.4 mm x 2.2 mm) for the three different 

copper loaded photocatalysts (see Appendix, Fig. A2), shows peaks at 4.5 keV and 8.1 keV 

for titanium and copper and provides Cu/Ti ratios close to 10% by weight in all samples (% 

wt: 9.83, 10.53 and 11.4 for P25, anatase and rutile respectively), thus ensuring that they have 

similar Cu content. 

 

6.2.5 High resolution transmission electron microscope (HR-TEM)   

Figures 6.5a,b and 6.6 show HR-TEM images obtained for the copper doped commercial 

TiO2. The images were taken at the same magnification to allow a direct comparison of the 

size distribution of titania and copper nanoparticles. 

The presence of copper nanoparticles located at the edges of the TiO2 particles, appearing as 

light grey spots in the HR-TEM images, was clearly evidenced in the photocatalysts. The 

average diameter of copper nanoparticles, estimated from HR-TEM analysis, was about 3.5 

nm for Cu/P25 material and close to 10 nm for Cu/anatase and Cu/rutile samples. 
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Figure 6.5: HR-TEM images of Cu/P25HR-TEM images of Cu/P25 (a), Cu/anatase (b). 

  

(a)

(b)



Results II 

72 
 

 

                

Figure 6.6: HR-TEM images of Cu/rutile. 

 

6.2.6 Dynamic light scattering (DLS) 

It is known that the particle sizes of photocatalytic materials affect the optical behavior of the 

mixture and consequently the radiant field inside the photoreactor and the photocatalytic 

efficiency of the process [143]. For this reason, DLS analysis was used to characterize the 

particle agglomerates size in the aqueous mixture containing different titania powders. The 

―in situ‖ distribution of the size as a function of the intensity is reported in Figure 6.7. 

It is noteworthy to stress that the DLS analysis was carried out on bare titania only (not 

Cu/TiO2) because the device cannot work under inert atmosphere in order to avoid the fast 

reoxidation of Cu-species reduced. 

The hydrodynamic diameters of aggregates were 2.4 m, 2.7 m and 0.53 m for bare P25, 

rutile and anatase respectively, thus indicating that, at pH = 5.5, P25 and pure rutile formed 

larger aggregates sizes which were of the same order of magnitude. The value collected for 

P25 sample was in perfect agreement with that reported by others [135] but it was quite 

different from that one (0.7 m) reported by Cabrera et al [142]. However, it should be noted 

that in the latter case the samples were dried at 150 °C for 12 hrs and successively dispersed 

and sonicated in water for 1 hour before DLS measurement. On the other hand, the 

(c)
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hydrodynamic sizes estimated in the present investigation were partially in accordance with 

those measured for the same bare TiO2 but at a different pH (3.0) through electrophoretic light 

scattering spectrophotometry [144]. In particular, values of 0.473 m, 0.467 m and 1.18 m 

were estimated for P25, anatase and rutile respectively.   
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Figure 6.7: Laser granulometric analysis for bare TiO2 at pH  5.0. anatase (black line), rutile 

(blue line); P25 (red line).  

 

 

6.2.7 X-Ray Diffraction (XRD) 

Figures 6.8a-c show XRD spectra for pristine and Cu-modified commercial TiO2 

nanostructures.  
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Figure 6.8: XRD patterns registered for bare (red) and Cu-loaded (blue) TiO2: P25 (a), 

anatase (b) and rutile (c). 

 

The XRD peaks corresponding to anatase and rutile phases were observed in the spectra of 

pristine powders as reported in Figures 6.8a-c, according to literature [178]. For pristine 
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titania photocatalysts, the XRD peaks of P25 show lower intensity than anatase and rutile 

samples, indicating a lower crystalline grade for P25 with respect to anatase and rutile. 

On the other hand, for the copper loaded photocatalysts (recuperated after the photocatalytic 

process), three peaks at 2 values of 43°3’, 50°5’ and 70° can be distinguished. As previously 

reported in Chapter 5, Section 5.3, these peaks exactly match those of zero-valent copper, 

whereas no peaks due to CuO and Cu2O can be appreciated [130].  

Also in this case, the crystallite size (D) of titania and zero-valent copper was calculated using 

XRD data and applying the Scherrer equation (  
 

    
), where k is a constant (0.94 for 

spherical particles), λ is the wavelength of the X-ray radiation (0.154 nm),  is the line width 

at half maximum intensity of the peak, and  is the angle of diffraction (21°6’). The average 

crystalline sizes of TiO2 crystals were 9, 13 and 18 nm for P25, anatase and rutile samples 

respectively. Similar values were calculated in copper loaded photocatalysts. Also, the mean 

size of zero-valent copper nanoparticles formed in the first stage of the photocatalytic process, 

was close to 5 nm for P25, 10 nm for anatase and to 13 nm for rutile. Moreover, a decrease of 

relative intensities of peaks were observed related to the TiO2 nature in the case of copper 

loaded titania. Cu/P25 presents a lower crystalline grade with respect to Cu/anatase and 

Cu/rutile materials. 

 

6.2.8 Surface area determination 

The BET surface area of the different TiO2 and Cu/TiO2 particles are reported in Table 6.1. 

For bare TiO2 samples, the BET data are in agreement with the literature [145,146]. A small 

increase is observed in the case of rutile, while no significant changes were observed for P25 

and anatase after zero-valent copper deposition. 

 

6.2.9 FT-IR and Thermogravimetric (TG) analyses 

FT-IR and TG results on the pristine TiO2 samples are shown in Figures 6.9. FT-IR spectra 

(Figure 6.9a) show the typical OH band at 3350 cm
-1

 for all the three TiO2 samples. The 

signal is more evident in the FT-IR spectrum of P25 material. Furthermore, TG curve of P25 

(Figure 6.9b) shows a more pronounced weight loss, starting from 200°C, that results from 

chemically bound water (OH groups) [147]. These results clearly confirm that P25 presents a 

higher number of surface hydroxyl groups for catalyst mass with respect to anatase and rutile. 

A determination of hydroxyl surface density (OH/nm
2
), was carried out through TG 
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measurements, including an isothermal heating at 120 °C for 20 min, required to remove 

physically adsorbed water.  The OH/nm
2
 values for P25, anatase and rutile, reported in Table 

6.1, were calculated based on the weight loss from 120 °C to 500 °C detected by following 

Eq. 6.1 [137]: 

 

 
  

      

( 
  
   )

  
             

            
     

  

   

          
 

 

 

Eq. 6.1 

 

where     is the sample weight at the corresponding temperature Ti, (120 °C),       the 

molecular weight of water, NA Avogadro’s constant, SSA the specific surface area  and α is a 

calibration factor (equal to 0.625). For each bare TiO2 sample (P25, anatase, rutile), it is 

assumed that at T2= 500 °C the powder surface is free of OH surface groups; therefore, OH 

surface density (#OH/nm
2
) at that temperature was neglected in Eq. 6.1 [137]. 

For Cu-modified samples, the FT-IR and TG spectra appear not quantitatively reliable, due to 

the presence of some organic traces of the sacrificial agent on the catalysts surface. 

 

 

 P25 Cu/P25 Anatase Cu/anatase Rutile Cu/rutile 

SBET (m
2
/g) 50.1 48.5 9.5 12.2 21.6 18.9 

HO surface density 

(OH/nm
2
) 

8.0 -- 4.4 -- 9.1 -- 

 

Table 6.1: Surface properties of pristine and Cu-modified TiO2 photocatalysts. 
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Figure 6.9: FT-IR (a) and TG (b) spectra registered for bare P25 (blue line), anatase (black 

line) and rutile (red line). 
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6.2.10 Diffuse-Reflectance UV (DRUV) spectroscopy  

DRUV spectra are shown in Figure 6.10a. The measured intensity was expressed as the value 

of the Kubelka–Munk function F(R). The energy gap values were calculated by linearization 

of the plot of (F(R)h)
1/2

 against photon energy, as reported in Figure 6.10b for bare TiO2 and 

in Figure 6.10c for copper-doped TiO2. For the bare TiO2 powders, the evaluated optical band 

gap is  in the range 3.0-3.2 eV for the transition from the valence band (VB) to the conduction 

band (CB), in agreement with literature values [115,148]. 

Figure 6.10a indicates that Cu-doped TiO2 photocatalysts are much less optically transparent 

than the bare TiO2 ones in the visible range ( > 400 nm). This effect is probably due to 

scattering phenomena and to local surface plasmon resonance of copper nanoparticles 

deposited on the surface of TiO2, also associated to a decrease in the optical band-gap values 

(Fig. 6.10c). These data clarify that in the first stage of the process, during which Cu-modified 

TiO2 is formed, the light absorption behavior of the solid suspended in the reactor drastically 

changes, assuming a relevant character in the visible range. 
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Figure 6.10: Diffuse Reflectance UV (DRUV) spectra (a) for bare (continuous curves) 

and Cu-modified (dashed curves) TiO2 catalysts: anatase (black line), rutile (blue line) and 

P25 (red line).Plots of (F(R)h)
1/2

 versus photon energy for bare TiO2 samples (b) and 

Cu/TiO2 samples (c). 
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6.2.11 Photoluminescence 

Photoluminescence (PL) spectroscopy was conducted to probe the radiative recombination 

efficiency of photogenerated charges in the TiO2 nanoparticles and to evidence their eventual 

changes caused by the Cu doping. PL spectra acquired for bare commercial TiO2 acquired in 

inert environment (dry N2) are reported in Figure 6.11. As the PL intensity of TiO2 strongly 

depends on the presence of oxygen adsorbates [149,150], all the spectra were acquired after 

stabilizing the PL intensity level by flowing N2 in the test chamber for 30 minutes. The same 

integration time (10 s) was used for the three spectra. 

 

 

Figure 6.11: PL intensity spectra of the commercial TiO2 samples under dry nitrogen 

atmosphere. 

 

The well-known difference [150] in the PL spectra of the three polymorphs of TiO2 is clearly 

evidenced in the experimental data. In fact, it is observed that the PL of rutile TiO2 is peaked 

in the near infrared region, whereas P25 and anatase exhibit the same PL spectra (VIS) 

peaked at about 500 nm. Near-infrared rutile PL and visible anatase PL originate from 

different emission mechanisms and exhibit different quantum efficiencies. Hence a direct 

comparison between their intensities is little informative. Instead, the difference in PL 

intensity of P25 (black curve) and anatase (blue curve) is more significant. As observed in 
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Figure 6.11, P25 nanoparticles show a visible PL intensity less (by a factor of about 2.5) than 

the anatase nanoparticles one. 

The PL spectra of Cu-doped TiO2 samples are reported in Figures 6.12a-c. It is found that the 

presence of Cu does not modify the PL shape (i.e. the PL emission still originates from TiO2), 

but leads to a significant quenching of the PL intensity. This effect is extremely relevant in the 

case of Cu/P25 as can be seen in Figure 6.12a, where the PL intensities are reported in log 

scale to evidence the extent of PL suppression induced by sample modification. The same 

effect is also relevant for anatase, even if to a lesser extent, and present in rutile.  

 

 

Figure 6.12: PL spectra of bare TiO2 and Cu-doped TiO2 photocatalysts, measured in dry 

nitrogen. (a): Bare P25 (grey curve) and Cu-doped P25 (blue curve). Notice the logarithmic 

scale. (b): Bare anatase TiO2 (grey curve) and Cu-doped anatase (blue curve). (c): Bare rutile 

TiO2 (grey curve) and Cu-doped rutile (blue curve). 
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6.3 Discussion 

The results reported in Figure 6.1 indicate that the photocatalytic efficiencies for hydrogen 

production significantly depend upon the crystal phase of the used TiO2 particles. The largest 

production yield was measured for P25, whereas similar rates were observed for bare anatase 

and rutile. The same trend is observed after the Cu doping. As we discuss in the present 

section, different physical-chemical properties can be invoked to explain such differences, 

including electron-hole pairs recombination, surface/bulk defects, titanium dioxide and zero-

valent copper particles size, TiO2 specific surface area, hydroxyl surface density, and copper 

distribution on TiO2 surfaces.  

 

6.3.1 Undoped TiO2 photocatalysts 

The pristine titania materials showed poor photoactivity for hydrogen generation, although the 

activity of P25 is relatively higher than anatase and rutile. The low hydrogen productivity 

recorded for all bare titania is ascribable to fast electron/hole pair recombination. As regards 

the different reactivity of undoped materials, it is worth to observe that several investigations 

indicate P25 titania as more reactive than anatase and rutile alone [151-154]. 

The higher photocatalytic activity of P25, which consists of anatase and rutile crystallites, is 

mainly ascribed to a synergistic effect between the two crystalline phases [152]. More to the 

point, free charge carriers can spontaneously migrate from one phase to another, forming local 

built-in electric field in the transition region at the boundary between anatase and rutile 

crystallites that may enhance charge separation, hampering the mutual recombination between 

the mobile photogenerated charge carriers, increasing their lifetime and thus improving their 

reactivity towards chemicals [155].  

The visible PL emission peaked at about 500 nm has been attributed to radiative 

recombination of free (conduction band) electrons with localized holes, trapped at O vacancy 

sites (F-centers) or Ti
3+

 sites adjacent to surface bridging O atoms [156,157]. Hence, this PL 

emission is supposed to depend on the spatial overlap between the quantum wave functions 

associated to free electrons and the involved defects (trapped holes). The analysis reported in 

Figs. 6.12 revealed that the intensity of this PL emission is lower for P25 sample, compared to 

the anatase sample. This suggests the occurrence of improved charge separation in P25, 

possibly caused by the above-mentioned charge transfer at anatase/rutile junctions. The 

absence of the near-infrared emission of rutile - ascribed to the recombination of trapped 

electrons and free holes [150] - in PL spectra of P25 may reveal electron transfer between the 
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two phase, although controversial opinions on the direction of electron flow (rutile-to-anatase 

or vice versa) are reported in the literature review [155,158-161].   

Specific surface area, particle size, crystal composition, and surface hydroxyl density also can 

be accounted for the higher photocatalytic activity of P25. The specific surface area correlates 

with the number of external chemicals that can be brought in contact with a given mass of 

photocatalyst, and thus correlates with the yield of a photocatalytic transformation. 

The BET analyses (Table 6.1) indicated higher specific surface area for P25 catalyst with 

respect to anatase and rutile materials, thus accounting its larger efficiency in hydrogen 

production. 

Concerning particle size, and FE-SEM (Fig. 6.5a,b and Fig. 6.6) indicated smaller mean size 

of TiO2 particles for P25 with respect to anatase and rutile materials. It is known that for 

smaller sized particles, separation and transport of photo-generated charge carriers to the 

surface of titania are noticeably favored [162]. On the contrary, for larger sized titania 

particles, a higher likelihood of charge carriers trapping by bulk defects with consequent 

inhibition photocatalytic surface reactions occur. 

The aggregation behavior of the dispersion of titania particles could also affect system 

reactivity. Figures 6.3 and 6.7 indicate that both P25 and rutile form aggregates of particles 

when suspended in water. These aggregates have similar size distributions, although they 

show different optical properties in terms of transmitted photon flux for the wavelength range 

of 315 - 400 nm. On the other hand, aqueous suspensions containing P25 or anatase exhibit 

similar transmittance values but different values of average hydrodynamic diameter of 

aggregates, that for anatase is one order of magnitude smaller than P25. The results indicate 

that the optical behavior of the investigated photocatalytic systems is very complex and 

cannot be directly related to the particle agglomerate sizes. Moreover, based on the results 

reported in Figure 6.1, it can be stated that neither the size of particle aggregates nor the 

macroscopic optical properties of the mixtures are related to the differences in the 

photocatalytic activity recorded for the investigated materials. 

As regards hydroxyl surface density of titania photocatalysts, it is reported [163,164] that an 

increase in surface hydroxyl concentration is directly correlated to an increase in surface 

defects, such as surface oxygen vacancies and Ti
3+

 centers. Such surface defects can affect the 

separation of photogenerated charge carriers on the TiO2 surface under UV irradiation, and 

therefore the activity of the material [165,166]. In particular, photogenerated holes can be 

trapped by hydroxyl groups generating surface defects with low electron density (oxygen 

vacancies), which react with the sacrificial agent (i.e, methanol or glycerol). On the other 
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hand, photogenerated electrons can be trapped by Ti
4+

 sites leading to Ti
3+

 centers, which can 

reduce hydronium ion to proton. Protons combine with electrons to generate hydrogen gas.  

Experimental results reported in the present work (FT-IR specta and TG curves) have 

confirmed a lower number of surface OH groups for catalyst mass in undoped anatase and 

rutile powders with respect to undoped P25, thus attesting the presence of a minor number of 

bulk/surface defects although such data do not match the higher catalytic activity of anatase 

compared to rutile (Table 6.1). 

 

6.3.2 Copper-doped TiO2 photocatalysts 

As thoroughly motivated in Chapter 5, the recombination of photogenerated electrons and 

holes on the TiO2 surface is strongly suppressed by the presence of metal-copper particles. 

This is confirmed by the low PL intensity of Cu/TiO2 samples with respect to bare TiO2 

samples (Figs. 6.12a-c). 

However, as reported in Figure 6.1, copper modified P25 photocatalyst exhibits an activity in 

terms of hydrogen production rate far higher than copper-modified anatase and rutile 

materials. The photoactivity difference could be related to several 

morphological/chemical/electronic properties of doped titania, such as (i) the different 

hydroxyl group density per unit mass of catalyst, (ii) the different size of titania particles and 

metal copper deposits, and (iii) the existence of the homojunction region in P25. 

As discussed above, FT-IR and TG analyses (Figs. 6.9a,b) indicated a higher density of 

hydroxyl groups per unit weight of catalyst for P25 than anatase and rutile. These values, 

which were inferred from the data reported in Table 6.1, were 400, 42, and 148 (10
9
·OH/ng of 

TiO2) for P25, anatase, and rutile, respectively. 

According to the literature findings, oxygen vacancies act as active sites for water 

dissociation, in the sense that water is adsorbed dissociatively in oxygen vacancies and via 

proton transfer to a neighbor bridging oxygen site thus generating hydroxyl groups on TiO2 

surface [167]. Therefore, the presence of a higher amount of hydroxyl groups on P25 surface, 

as shown by thermogravimentic and FT-IR results (Fig. 6.9), is an evidence of a higher 

number of oxygen vacancies of P25 material than anatase and rutile. Both experimental data 

and theoretical calculations show that metals are preferentially deposited over oxygen 

vacancies that act as nucleating centers on the TiO2 surface [168]. 
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The amount of hydroxyl groups on the photocatalyst surface can also affect the deposition of 

zero-valent copper particles during the photocatalytic process, with a impact on H2-production 

activity of the modified photocatalyst. 

In fact, hydroxyl groups can promote the physical adsorption on the photocatalyst surface of 

solvated cupric ions, which are readily reduced to zero-valent copper ions by reaction with 

surface photoelectrons [60,107,169].  

As a consequence, it can be expected that the distribution of Cu nanoparticles should be more 

uniform in P25 than anatase and rutile due to the larger number of surface hydroxyl groups 

characterizing the P25 surface. On the contrary, the lower hydroxyl groups concentration 

calculated for anatase and rutile is expected to disfavor the uniform photodeposition of zero-

valent copper particles and affects the size of metal copper deposits on the photocatalyst 

surface. 

In addition, the occurrence of the homojunction region and the smaller primary size of 

particles for P25 than anatase and rutile samples increases the lifetime of free charge carriers, 

thus enhancing the concentration of photogenerated electrons on the surface of P25 during the 

photodeposition of copper. The higher electron surface density determine a more uniform 

photodeposition of zero-valent copper. Summarizing, the intrinsic P25 characteristic (i.e., 

charge separation and increased surface HO group density) are expected to both lead to a 

more uniform distribution of Cu nanoparticles scattered on a large portion of TiO2 surface. 

Since copper content for the three photocatalysts is similar, a decrease in nanoparticle size of 

metal deposited on P25 to anatase and rutile should be expected. This prediction is indeed 

confirmed by XRD (Fig. 6.8) and HR-TEM (Fig. 6.6) analyses. Smaller Cu nanoparticles, 

results in an increased contact surface per unit volume of titania, thus increasing the 

probability of having effective traps for the photoelectrons [170-173].  

The broader distribution of small Cu nanoparticles on vast portions of TiO2 surfaces in P25 

samples compared to rutile/anatase samples allows explaining the huge differences in PL 

emission measured for pure P25 versus the Cu-P25 samples (Fig. 6.12a). 

In fact, the quenching associated to Cu presence, observed in all Cu-doped samples (See Figs. 

6.12a-c) can be assigned to the reduced radiative recombination caused by charge transfer and 

the consequent electron depletion in TiO2 close to the Cu boundary. As shown in Fig. 6.12a, 

the quenching is particularly remarkable for Cu-P25 samples. Our interpretation is that in this 

case, thanks to the largest Cu/TiO2 surface contact and to the smaller size of both TiO2 and Cu 

nanoparticles, the electron depletion affects fractions of TiO2 nanoparticles volume greater 
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than those depleted by Cu/anatase and Cu/rutile contact, strongly inhibiting the PL activity of 

TiO2. 

Instead, for larger nanoparticles of titania (Cu/anatase and Cu/rutile), photogenerated carriers 

can be formed far from the Cu/TiO2 interface. In this case, the lifetime of photogenerated 

electrons, located in the bulk of TiO2 and far from the boundary with Cu deposits, is not 

expected to be significantly affected by copper nanoparticles. Thus, the PL intensity of larger 

nanoparticles will be less affected by metal particles on the TiO2 surface or, in other words, 

the Cu/TiO2 interface-related PL quenching is stronger for P25 than anatase and rutile. 

Concluding, both the improved photocatalytic activity of the Cu-P25 catalysts and the PL 

quenching can be traced back to the intrinsic characteristics of Cu deposition. 

The difference in hydrogen production rate observed in presence of Cu/P25 when varying the 

nature of the alcohol (i.e., methanol, glycerol) is related to the higher (i) number of hydroxyl 

groups of the alcohol and (ii) number of hydrogen atoms in the -position to the alcoholic 

group, (iii) polarity and (iv) hole scavenging ability of glycerol compared to methanol [154]. 

The small different activity between Cu/anatase and Cu/rutile may be ascribed to several 

factors, such as surface/bulk defects ratio, crystalline/amorphous phase ratio, type of the 

exposed facets of rutile and anatase samples [165], and nature of sacrificial agent [154]. 

Overall, Table 6.2 reports a list of features related to the best photoefficiency for H2 

generation shown by P25-based samples. 
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Undoped and copper-doped P25  

Properties Effect Proof 

Homojunction at the 

rutile/anatase interphase 

Reduction of e
-
/h

+
 pair 

recombination 

Literature findings,  

PL analyses 

 

Higher density of OH groups 

per unit weight of catalyst 

Reduction of e
-
/h

+
 pair 

recombination, promotion of Cu
2+

 

adsorption on the catalyst surface, 

more uniform distribution and 

smaller size of metal copper 

particles over the surface 

 

Literature findings, 

HR-TEM, FT-IR and 

TG analyses 

Smaller size of P25 particles 

and zero-valent copper 

deposits 

Reduction of e
-
/h

+
 pair 

recombination, higher specific 

surface density 

Literature findings, 

BET, PL, FE-SEM, 

HR-TEM and XRD 

analyses 

 

Table 6.2: Summary of the electronic and morphological properties of undoped and copper 

doped P25. 
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6.4 Summary 

The photoactivity for hydrogen generation of undoped commercial TiO2 photocatalysts and 

zero-valent copper doped TiO2 using methanol or glycerol as sacrificial species under UVA 

radiation was studied. Experimental results indicate that the polymorphic composition of the 

titania adopted has a marked influence on the photoactivity for both the groups of materials. 

The photocatalytic activity of undoped and copper-doped materials had the following order: 

P25   bare anatase   bare rutile, which can be explained in terms of (i) relative 

photogenerated charge carrier concentration on the surface, (ii) titania and metal copper 

nanoparticles sizes, and (iii) amount of superficial hydroxyl groups. For undoped commercial 

materials, the higher photoreactivity of P25 TiO2 compared to that of anatase and rutile is 

ascribed to a synergistic effect between the two crystallographic phases (anatase and rutile) 

forming a homojunction region, which reduces the natural tendency of charge carriers to 

recombine. 

The introduction of zero-valent copper in these materials allows electron transfer from the 

TiO2 conduction band to the metal, thus further reducing charge carriers recombination and 

promoting the photoreactivity. The best results related to the introduction of copper were 

observed in the case of P25, as in this case a more efficient use of the copper on the 

photocatalyst surface occurs. This may be explained by considering that the presence of 

hydroxyl groups affects copper distribution on the catalyst surface. The highest value of 

hydroxyl group concentration per unit mass was found in P25, whose HR-TEM images 

indicate a more uniform distribution of zero-valent copper than anatase and rutile.
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7. Results III 

Kinetic modeling of H2 generation over nano-Cu/TiO2 catalyst through 

photoreforming of alcohols 

 

7.1 Introduction 

In Chapter 5, hydrogen generation from different oxygenated compounds by adopting a 

nanocopper modified-TiO2-P25 catalyst prepared by ―in situ‖ deposition process was 

investigated. The best results were observed for organic species strongly adsorbed on the 

catalyst surface such as methanol, glycerol, and formic acid. 

The development of a suitable mathematical model capable of simulating hydrogen 

production over the same catalyst (nano-Cu(s)/TiO2) when glycerol or methanol were adopted 

as sacrificial agents is herein presented. 

 

7.2 Kinetic model 

A simplified network of reactions was singled out by considering that, upon irradiation of 

Cu(s)/TiO2 catalyst nanoparticles, a couple of charge carriers is generated (r7.1): 

 

          

               
→           (r7.1)                  

   

 
      

    

 
       

 

The rate of reaction r7.1, which is a photochemical step, was accounted for by the products 

between quantum yields, in both the UVA       and the visible range (    ), and respective 

radiation powers absorbed by the catalyst suspension (            ) divided by the volume of 

irradiated solution (V = 0.280 L). 

Charge carriers may recombine through radiative or non-radiative processes (r7.2): 

 

     
         
→                  (r7.2)                   [ 

 ][  ] 

 

As reported by others [127], reaction r7.2 is regulated by a second-order kinetic law in which 

   is the electron/hole recombination reaction constant. 
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Otherwise, charge carriers can be scavenged. In particular, photogenerated holes can also 

react with the adsorbed sacrificial organic compound (S
*
), which successively oxidizes on the 

catalyst surface (r7.4–r7.5), where reaction r7.4 is the rate-determining step for substrate 

oxidation: 

 

               

 

   (r7.3)           [  ]  
      [ ]

       [ ] 
  

 

     
     

→               (r7.4)                   [  ][  ]  

      
 

              
    

→                         (r7.5) 

 

 

 

 

 

 

 

 

 

 

As previously proposed [128], the direct reaction between positive holes and organic 

substrates is only possible if organics are strongly adsorbed on the catalyst surface. The 

adsorbed species concentration [  ] may be obtained by a Langmuir-type model for 

adsorption, as reported for the equilibrium r6.3 in which      (M
-1

) is the adsorption 

equilibrium constant, and CT (M) is the total concentration of active sites on the catalyst 

surface for a fixed catalyst load q (gL
-1

). The term CT was calculated through the formula 

      , where N is the total moles of active sites per unit mass of catalyst (molg
-1

). 

Photogenerated electrons react with protons (r7.6) arising from the organic oxidation (r7.4–r7.5): 

 

     
            
 

→      
                   
 

→            (r7.6) 

 

In this regard, some literature indications [129] report that hydrogen molecules are formed 

from the reduction of protons adsorbed on the solid surface, without clear details on the 

kinetics governing reaction r7.6. In the present work it was assumed that protons, arising from 

the organic oxidation on the catalyst surface (r7.4), immediately reduce and form hydrogen gas 

(r7.6).  

On the basis of assumptions reported above, a mathematical model was developed based on a 

set of mass balance equations for the main species involved in the process (        : 

 

 



Results III 

91 
 

 

 [ ]

  
     [  ][  ]      

 [  ]

  
     [ 

 ][  ]      [  ][  ]      

 [  ]

  
     [ 

 ][  ]      [  ][  ]      

 [  ]

  
    [  ][  ]      

 

where 

 

                

    
   

 
      

   

 
∑   

 

 

            [    ]   
    

     
    

 
       

    

 
∑   

 

 

             [    ]   
    

 

The terms    

 ,     ,     and  are the power emitted by the lamp (see Chapter 4), the 

extinction coefficients of the photocatalyst in visible and UVA wavelengths (measured 

parameters),  and the light-path length (1.10 cm) respectively. 

The equations (       ) must be numerically integrated from the following initial 

conditions: 

 

[ ]        [ 
 ]      [  ]     , and [  ]          

 

in order to calculate the concentration of each species versus time, provided that a suitable 

value is available for each parameter included in the model proposed. 

 

7.3 Results and discussion 

Figures 7.1a,b show the results of two typical photorefoming runs on glycerol and methanol 

over bare TiO2-P25 and Cu(s)/TiO2-P25 nanomaterial, respectively. These figures indicate a 

sharp increase in hydrogen generation rate during the deposition of metal copper on the 
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semiconductor surface, followed by a lower-reactivity steady state. For all photocatalytic 

runs, after reaching steady state, the lamp was switched-off and shortly after switched-on 

again. The new switch-on time was assumed to be the zero-time to collect data for modeling 

(orange box). 

 

 

Figure 7.1: Hydrogen production rate for bare TiO2-P25 (○) and Cu(s)/TiO2-P25 (●) during a 

typical photoreforming run under de-aerated conditions. 

[Cu(II)]o=0.24 mM. TiO2 load = 150 mgL
-1

. Sacrificial agent:  methanol (a), glycerol (b) 

[CH3OH]o=2.47 M. [C3H8O3]o=0.82 M. 
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According to the findings previously reported [130], a huge increase in radiation absorption in 

the visible range ( > 400 nm) was recorded during the deposition of copper on the 

semiconductor. In order to understand if this phenomenon really contributes to charge carrier 

generation, some runs were repeated, both on glycerol and methanol, in presence of a filter (1 

M sodium nitrite solution) capable of cutting-off UVA radiation emitted by the lamp ( < 400 

nm) [108]. The results of these runs (data not shown) indicated that the Cu(s)/TiO2-P25 system 

is not reactive under visible radiation only ( > 400 nm).  

The possibility of using the model proposed in the previous paragraph is conditioned by the  

availability of suitable values of kinetic parameters included in it (            ,    and 

    ). However, literature data are available only for some of the kinetic parameters needed. 

For example, some values for     and      for glycerol [131,132] and methanol [132-134] 

using TiO2 are reported.  

For     parameter, a mean value of 1.410
10

 M
-1
s

-1
 [132] was adopted as first attempt value 

for the modeling. On the other hand, comparing the values of      reported for methanol, an 

one order of magnitude difference was found (1.410
-2

 mg
-1
L [134], 1.910

-3
 mg

-1
L [133]). 

The difference could be ascribed to the different experimental conditions adopted such as pH, 

composition of the aqueous matrices and temperature. This observation raised some doubts on 

the reliability of      literature values, and it was therefore decided not to use them for the 

present modeling investigation. 

Therefore, in order to obtain values of the adsorption constants (    ) both for methanol and 

glycerol over Cu(s)/TiO2-P25, a Langmuir-Hinshelwood-type model expressing hydrogen 

generation rate was adopted: 

 

   
 

      [ ]

      [ ]
     

  

Starting from Langmuir-Hinshelwood equation (   ) and plotting the term     
⁄  against the 

reciprocal of the substrate concentration (Fig. 7.2), a linear trend was observed from which it 

was possible to derive the suitable values for      for methanol and glycerol (Table 7.1). 
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Figure 7.2: Effects of organic concentration both for methanol (□) and glycerol (○) on 

hydrogen production rate ([C3H8O3]o = 0.10–2.47 M; [CH3OH]o = 0.31–2.47 M; [Cu(II)]o = 

0.24 mM; TiO2-P25 load = 150 mgL
-1

). 

 

 

     for methanol 
(M

-1
) 

     for glycerol 
(M

-1
) 

    

(M
-1
s

-1
) 

0.24 12.87 430 

 

Table 7.1: Values of known kinetic parameters used in the model. 
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Following the indications given above on the runs in presence of the UVA cut-off chemical 

filter, it was considered that       , whereas no data were found for     and    

parameters for the catalyst used in the present investigation. The sole values found in the 

literature for these two parameters are related to bare TiO2-P25 [127, 135,136], which could 

be adopted in the present modeling just as starting values for the optimization procedure. For 

the N parameter, that is the moles of active sites per unit mass of the catalyst, the value 

(3.9810
-4

 molg
-1

) was calculated from hydroxyl group surface density reported by Mueller et 

al. [137] for TiO2-P25 and adopted as starting datum.  

A more careful analysis of the model proposed indicated that the value of the extinction 

coefficient     for the catalyst investigated was required. Indeed, in the Lambert–Beer's-law-

like equation (eq9) the term     is used to account for the radiation power absorbed from the 

slurry (        : 

 

                              ∑    

 
 (           [    ] )                                      eq9 

 

With the aim to derive a reliable value of    , data obtained for         from the experimental 

measurements (see Chapter 4, Section 4.2) were inserted in equation 9. An average value for 

    in the wavelength range 300-400 nm was thus calculated following this approach. In 

Table 7.1 the values adopted for some known parameters (    , and    ) are reported. 

Once these values were adopted, the set of mass balance equations (       ) was solved by 

means of a proper numerical optimization procedures using the Matlab software. The 

procedures were initially applied to the analysis of data collected during methanol and 

glycerol photoreforming experiments carried out at different starting concentration of 

sacrificial agent and fixed catalyst load (150 mgL
-1

) (Table 7.2). 
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Run Organic (S) 
[S] 

(M) 

[TiO2] 

(mg∙L
-1

) 

[Cu(II)]o 

(mM) 

1a Glycerol 0.102 150 0.24 

2a Glycerol 0.205 150 0.24 

3a Glycerol 0.41 150 0.24 

4a Glycerol 0.82 150 0.24 

5a Glycerol 1.64 150 0.24 

6a Glycerol 2.47 150 0.24 

1b Methanol 2.47 150 0.24 

2b Methanol 1.23 150 0.24 

3b Methanol 0.617 150 0.24 

 

Table 7.2: Operating conditions of the experiments used in the optimization procedure. 

 

Values for the unknown parameters (N,    ,  ,and    ) were thus estimated by an iterative 

optimization procedure (Marquardt approach) that minimized the square of the differences 

between the differences between calculated and measured data for hydrogen generation rate 

and methanol consumption (objective function)[179]: 

 

   ∑∑∑(           )
 

 

   

 

   

 

   

 

 

in which the terms y and c are the calculated and experimental concentrations whereas m, n, 

and h are the number of experimental data recorded in each experiment, the number of the 

involved species and the number of the experiments used in the optimization procedure 

respectively. 

To measure methanol consumption, the amount of formaldehyde formed at different reaction 

times was subtracted from methanol starting concentration. Unfortunately, poor results were 

obtained from this optimization since the capability of the model to simulate the system 

behavior appeared too weak by using the parameters adopted (data not shown). In order to 

overcome this limit, considering that the values of      constants were obtained directly from 

the experimental data by using the Langmuir-Hinshelwood-type model, the possibility to 

adopt different initial values for     constants of methanol and glycerol was considered. 

Indeed, as reported above, a straight line was obtained by plotting the reciprocal of hydrogen 
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generation rate against the reciprocal of substrate concentration, both for methanol and 

glycerol (eq10): 

 

 

   

 
 

  [ ]
 

    

  
      

  
 

 

Since       [  ] [    ], the linear trend observed undoubtedly ruled out any 

dependence of [  ] upon [S], at least in the range explored. In other words, considering that 

the mass balance on the photogenerated holes       equals zero, for [ ] values producing 

    [ ]    it was assumed that: 

 

      
      [ ]

       [ ] 
 [  ]      

 

As a result, equation 2 was equal to equation 12: 

 

 [  ]

  
     [ 

 ][  ]         

 

which allowed to assess that [  ] is not dependent upon [ ]. From equation 11 it became that 

the last result is obtained when equation 13 is true: 

 

     (
      [ ]

      [ ]
)

 
 

     

   
 

  
 

 

     

 

When the N value previously calculated for TiO2-P25 [137] is used along with that for    

given in the literature for the same oxide [127] and     found for methanol [132] 

respectively, depending on substrate concentration the right member in equation 13 was equal 

to the values reported in Table 7.3. 
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[S] 

(M) 

 (
      [ ]

      [ ]
)

 
 

     

   
 

  
 

(Lein
-1

) 

0.30 1.69∙10
2
 

0.61 5.81∙10
2
 

1.23 1.86∙10
3
 

2.47 4.91∙10
3
 

 

Table 7.3: Values obtained in equation eq13 at varying starting concentration of methanol. 

 

Results reported in Table 7.3 required a meaningless value of     for equation 13 to be 

satisfied. Therefore, values of     significantly lower than that previously reported [132] 

must be adopted for the reaction between organics and positive holes. However, the only 

additional indication found in literature on the reaction between an organic species and 

photogenerated holes was for benzyl alcohol [138]. The reaction resulted to be regulated by a 

kinetic constant more than five orders of magnitude lower than those reported for methanol 

and glycerol. In the absence of alternatives, this value was adopted as the starting one for     

constant in the optimization procedure on data collected from methanol and glycerol 

photoreforming. Following this assumption, a new modeling attempt was performed resulting 

into a satisfactory simulation of the system behavior and producing best estimates for N,    , 

  , and     unknown parameters with low associated uncertainties (Table 7.4). The low 

reported uncertainties indicated a high sensitivity of the model developed from the associated 

parameters. 
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(M-1s-1) 
    

    for methanol 

(M-1s-1) 

    for glycerol 

(M-1s-1) 

N 

(molg
-1

) 

3.91∙10
6
 

± 

3.85∙10
4
 

0.19 

± 

2.0∙10
-3 

1.13∙10
4
 

± 

5.63∙10
1
 

4.76∙10
3
 

± 

1.19∙10
2 

3.69∙10
-4

   

±  

1.0∙10
-5

 

 

Table 7.4: Best estimated values of unknown kinetic parameters (      ,    , and N) for 

Cu(s)/TiO2-P25 catalyst. 
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Figures 7.3 and 7.4a,b show a comparison between predicted and experimental data for 

photoreforming of methanol and glycerol respectively.  

The following remarks derived from these data: 

 the best estimated value of the rate constant for electron-hole recombination (kr) on 

nanocopper-TiO2 is about four orders of magnitude lower than that reported in the 

literature for bare TiO2 (3.010
10

 M
-1

 s
-1

 [127]) thus confirming the electron trapping 

role of zero-valent copper nanoparticles and the consequent improvement in 

photocatalytic activity [130];  

 a primary quantum yield higher than that found in the literature for TiO2 for similar 

wavelengths range [135,136] was estimated for the catalyst adopted showing a more 

efficient use of absorbed energy; 

 the values obtained for      constants for methanol and glycerol on nanocopper TiO2 

photocatalyst are several orders of magnitude lower than those reported for the same 

species on TiO2-P25; 

 the value estimated for N is quite similar to those previously calculated for TiO2-P25 

(2.7410
-4

 molg
-1

 [139] and 3.9810
-4

 molg
-1

 [137]) suggesting that copper deposition 

may only negligibly modify the surface of semiconductor used. 
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Figure 7.3: Comparison between experimental (symbols) and calculated values (dashed lines) 

using methanol as sacrificial agent. [Cu(II)]o= 0.24 mM, TiO2-P25 load = 150 mgL
-1

. 

Full symbols: hydrogen production rates; empty symbols: methanol concentrations.  

[CH3OH]o = 2.47 M (, ), 1.23 M (, ),  0.617 M (, ). 
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Figure 7.4: Comparison between experimental (symbols) and calculated hydrogen production 

rates (dashed lines) using glycerol as sacrificial agent. [Cu(II)]o= 0.24 mM, TiO2-P25 load = 

150 mgL
-1

. 

(a) [C3H8O3]o =  0.102 M (), 0.205 M (), 1.64 M (). 

(b) [C3H8O3]o =  0.410 M (), 0.820 M (), 2.47 M (). 
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The model was validated by predicting the results of an additional set of glycerol and 

methanol photoreforming runs without any further adjustment of the kinetic parameters 

estimated (simulation mode). For this simulation procedure, data from experiments carried out 

at various starting concentrations of (i) sacrificial agent, (ii) cupric ion, and (iii) TiO2-P25 

load were selected. The comparison between experimental and theoretical results highlights 

the ability of the model to successfully predict the hydrogen generation rates and methanol 

consumption (Figs. 7.5 and 7.6). 
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Figure 7.5:  Comparison between experimental (symbols) and calculated hydrogen 

production rates (dashed lines) using glycerol as sacrificial agent: simulation mode. 

(): [C3H8O3]o = 0.82 M, [Cu(II)]o = 0.16 mM, TiO2-P25 load = 100 mgL
-1

. 

(): [C3H8O3]o = 0.82 M, [Cu(II)]o = 0.30 mM, TiO2-P25 load = 190 mgL
-1

. 

 

 

 

Figure 7.6: Comparison between experimental (symbols) and calculated hydrogen production 

rates (dashed lines) using methanol as sacrificial agent: simulation mode. 

Full symbols: hydrogen production rates; empty symbols: methanol concentrations.  

(, ): [CH3OH]o = 2.47 M, [Cu(II)]o = 0.16 mM, TiO2-P25 load = 100 mgL
-1

. 

(, ): [CH3OH]o = 0.31 M, [Cu(II)]o = 0.24 mM, TiO2-P25 load = 150 mgL
-1

. 

(, ): [CH3OH]o = 0.82 M, [Cu(II)]o = 0.24 mM, TiO2-P25 load = 150 mgL
-1

. 
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7.4 Summary 

Methanol and glycerol were separately employed in photocatalytic reforming for hydrogen 

production on metal-copper modified TiO2 nanoparticles prepared ―in situ‖ starting from an 

aqueous suspension containing cupric ions and TiO2. 

Starting from the mass balance equations for the main species involved in the photocatalytic 

process, a kinetic model was developed with the aim of simulating photocatalytic hydrogen 

generation. The model analyzed data collected during the experimental campaign at various 

substrate (methanol and glycerol) concentrations and catalyst loads. 

As a result, the best values of unknown parameters were estimated, such as (i) the rate of 

hole-capture and (ii) the adsorption equilibrium constants for both methanol and glycerol, (iii) 

the primary quantum yield and (iv) the rate constant for electron-hole recombination on the 

nanocopper modified-TiO2. From the values found for these parameters it can be stated that: 

(1)   a decrease in the recombination reaction occurs for the catalyst adopted, thus indicating 

the fundamental role played by copper nanoparticles on TiO2 surface in trapping 

photogenerated electrons and therefore improving hydrogen generation; 

(2) the photocatalytic system adopted is characterized by a more efficient use of the energy 

absorbed; 

(3) the value estimated in this study for equilibrium adsorption constant of glycerol is more 

than one order of magnitude higher than that calculated for methanol. Both the 

estimated constants are orders of magnitude lower than those reported in the literature 

for the same species on bare TiO2-P25; 

(4) copper deposition on the semiconductor surface negligibly modifies its surface.
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8. Results IV 

Photoreforming of formic acid in the presence of Cl
-
, Cu(II), and TiO2 

suspended particles 

 

8.1 Introduction 

The possibility of employing sacrificial organic agents contained in wastewaters for 

photocatalytic hydrogen production suggests the need of considering the simultaneous 

presence of other species in aqueous solution, such as inorganic ions (i.e., Cl
-
, SO4

2-
, NO3

-
, 

etc.). As an example, several industrial branches, such as petroleum, agro-food and leather 

sectors, generate highly saline wastewaters with significant organic content. The presence 

inorganic ions may have a significant effect on the overall photoefficiency for hydrogen 

generation. 

It is precisely in this context that a promising Cu-TiO2 photocatalytic system based on solar 

reforming of formic acid in presence of chloride ion was investigated. As demonstrated in the 

previous chapters, the use of copper species helps enhance the efficiency of  hydrogen 

generation in TiO2-based photoreforming processes, thus opening the exploitation of such 

systems to industrial scale. Moreover, this system is of large interest as formic acid is a 

common waste product generated during the manufacture and use of other chemicals, such as 

acetic acid, biomass materials, and dyes. 

Such investigation was stimulated by literature indications [41,174] on the tendency of zero-

valent copper to undergo a photocorrosive process, at very low pH (0.0–2.0), in presence of 

chloride ions and under UV–solar simulated radiation. As reported by Eisel et al. [174], the 

photo-oxidation of zero-valent copper in presence of chloride ions (    –    ) results into 

hydrogen generation through proton reduction (    ): 

 

          
  

      

→             
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In addition, in this system hydrogen can be produced also by photolysis of cuprous complexes 

formed in the solution (    –    ) [175]: 

 

                  
 

        

                  
  

        

     
     

     ν    
→                  

   
      

     
      

    ν    
→                  

   
      

     
  

 

 
             

 

A continuous production of hydrogen could be thus imagined coupling the last system (Figure 

8.1, Subsystem 2) with another one (Figure 8.1, Subsystem 1). The resulting complete system 

allows the photocatalytic reduction of cupric ions to zero-valent copper in presence of solid 

TiO2 – and the oxidation of an organic species, such as formic acid, used as sacrificial agent – 

followed by a copper reoxidation with a simultaneous hydrogen generation [41]. 

 

 

Figure 8.1: Schematic illustration of the complete system for hydrogen generation through 

nano-TiO2 photocatalytic reforming of formic acid in presence of copper species and chloride 

ions. 
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The complete system makes possible, at least in principle, the generation of hydrogen through 

the photoreforming of an organic species which could also be contained in wastewaters. 

Although Lanese et al. [41] presented the possibility to generate hydrogen through the 

complete system as proof of concept, the data collected so far indicate that hydrogen 

production cannot only be attributed to a simple combination of Subsystems 1 and 2. In fact, 

hydrogen generation was observed for prolonged reaction times only for particular initial 

values of some experimental variables, such as the following: formic acid concentration, 

chloride ion concentration, total dissolved copper concentration, starting oxidation state of 

copper (zero-valent or cupric ions) and TiO2 load. For all the experimental conditions tested 

in which initially zero-valent copper was used starting from the complete system, no 

hydrogen production was recorded during the run, although its formation only due to 

Subsystem 2 was surely observed (for this uncertainty a dotted line is adopted to indicate this 

pathway in Figure 8.1). On the other hand, the formation of hydrogen was observed in some 

runs starting from copper initially present as cupric ions and TiO2 load not higher than 100 

mg/L. However, Lanese et al. [41] did not performed detailed investigations to clearly 

identify for these variables the concentration range which can guarantee the best 

performances of the complete system. In particular, no indications were reported on the 

system reactivity over a wide concentration range neither of formic acid, chloride or total 

cupric ions (separately or simultaneously added to the reacting system), nor of pH of the 

solution. 

The present investigation aimed at fulfilling this lack of information in order to provide the 

best conditions which maximize the hydrogen generation rate, which is proportional to the 

maximum efficiency of hydrogen production. 
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8.2 Results and discussion 

In Figure 8.2 is shown an example of the results collected during a typical photocatalytic run 

starting from a suspension containing cupric ions (5.0 mM), chloride ions (10
3
 mM), formic 

acid (10
3
 mM) and TiO2 anatase (10

2
 mg/L). The hydrogen production rate increases until a 

value of about 8 μmol/min is reached and slightly reduces after the first hour of reaction time, 

whereas the total dissolved copper concentration keeps approximately constant throughout the 

experiment. The idea that the trend observed is due to a decrease of formic acid concentration 

could not be demonstrated, since no appreciable decreasing of formic acid concentration was 

detected by HPLC analyses (data not shown). 

 

 

Figure 8.2: Hydrogen production rate () and dissolved copper normalized concentration () 

at pH=1.0 (with HClO4), [HCOOH]0=10
3
 mM, [Cu(II)]0=5.0 mM, [NaCl]0=10

3
 mM, TiO2 

anatase load=10
2
 mg/L. 
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8.3 Effect of formic acid concentration 

As reported in Figures 8.3a–b, the effect of changing the initial formic acid concentration 

towards the hydrogen production rate and Cu(II) consumption was investigated between 10 

mM and 5.010
3
 mM. It is evident that, keeping constant initial cupric ion and chloride 

concentrations, TiO2 anatase load and pH, the higher the formic acid concentration, the higher 

the maximum hydrogen production rate observed. The values of hydrogen production rate 

vary from 0.7 to 8.3 μmol/min, at least until formic acid concentration is equal to 10
3
 mM. 

 

 

Figure 8.3: Effect of formic acid concentration: hydrogen production rate (a) and dissolved 

copper normalized concentration (b) at pH=1.0 (with HClO4), [Cu(II)]0=5.0 mM, [NaCl]0=10
3
 

mM, TiO2 anatase load=10
2
 mg/L, [HCOOH]0 (mM): (+) 5.010

3
, () 10

3
, () 5.010

2
, () 

10
2
, (▲) 10. 

 

Since hydrogen production proceeds through an initial reduction of cupric ions (    ), made 

possible by a contemporary oxidation of formic acid (     ), a monotonic increase of hydrogen 

generation rate is clearly expected for higher concentrations of formic acid according to the 

results previously reported [41]: 
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As previously reported, the concentration of the organic species influences the rate of cupric 

ion reduction during the sacrificial photocatalytic process [176]. It can be thus supposed that 

reduced copper species, i.e. cuprous ones formed through reaction   , in presence of chlorides 

and under UV irradiation immediately reoxidize (          , therefore ejecting electrons 

(  
 ) in the solution and allowing a prompt reduction of protons       . 

Only a moderate reduction, if any, of total dissolved copper and low hydrogen generation 

rates were recorded during the runs with the lowest initial formic acid concentration (Figure 

8.3, full diamonds and triangles). For a starting formic acid concentration of 10
3
 mM, a 

reduction in dissolved copper of about 20% was recorded within a reaction time of 300 

minutes (Figure 8.3, full circles).  

It is worth considering that the formation of hydrogen proceeds through two consecutive 

steps: a first one (    ) in which a preventive reduction of cupric ions to cuprous ones occurs 

with a contemporary formic acid oxidation (     ), and a second one consisting in the 

photolysis of some chloride complexes of cuprous ions (         ). It can be thus 

hypothesized that any increase in initial concentration of formic acid may result into a faster 

reduction of cupric ions. The results collected indicate that, for formic acid concentrations up 

to 10
3
 mM, the rate determining step is represented by cupric ion reduction. It is therefore 

enough to accelerate the determining step to have a faster hydrogen generation for formic acid 

concentrations between 10 mM and 10
3
 mM. 

At the highest formic acid concentration tested, equal to 5.010
3
mM (Figure 8.3, cross 

symbols), dissolved copper was completely reduced after 180 minutes of reaction, casting 

doubt on the catalytic role of copper. In other words, it seems that the complete system 

(Figure 8.1) is characterized by a certain tendency of zero-valent copper to precipitate and be 

not capable of undergoing further reoxidations; therefore, zero-valent copper can be deemed 

completely unreactive for increasing reaction times. It could be reasonably considered that, 

under the adopted conditions (formic acid concentration equal to 5.010
3
mM), the 

photocatalytic reduction rate of cuprous ions is by far higher than the reoxidation rate of zero-

valent copper            , provided that this reoxidation occurs. Alternatively, it should be 

taken into account the possibility that the complete system (Figure 8.1) inhibits zero-valent 

copper oxidation together with hydrogen formation. An attempt to throw light on this specific 

point was made by investigating hydrogen generation in the system zero-valent copper/formic 

acid/chlorides/nano-TiO2/UV irradiation at pH=1.0. The data indicate values of hydrogen 

generation as lower as those recorded in the system formic acid/chlorides/nano-TiO2/solar UV  
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radiation at pH=1.0, without any significant accumulation of dissolved copper as Cu(I) or 

Cu(II) ions. This result clearly indicates that a photoxidation of zero-valent copper in presence 

of chloride ions, formic acid and nano-TiO2 does not occur at all. 

 

8.4 Effect of chloride ion concentration 

The effect of changing the initial chloride ion concentration was investigated in the range 

10
2 2.010

3
 mM (Figures 8.4a–b). 

 

Figure 8.4: Effect of chloride ion concentration. Hydrogen production rate (a) and dissolved 

copper normalized concentration (b) at pH=1.0 (with HClO4), [Cu(II)]0=5.0 mM, 

[HCOOH]0=10
3
 mM, TiO2 anatase load=10

2
 mg/L, [NaCl]0 (mM): (▲) 2.010

3
 mM, () 10

3
 

mM, () 5.010
2
 mM, () 10

2
 mM. 

 

For fixed formic acid concentration, any increase in addition of chloride ions to the reacting 

solution results into a higher hydrogen generation rate (the maximum value recorded is 8.3 

μmol/min for a chloride ion concentration of 10
3
 mM). However, it is interesting to stress 

that, contrary to what observed in the runs with variable formic acid concentration, for the 

lowest value of chloride ion tested (10
2
 mM) a significant reduction of total dissolved copper 

was recorded, along with the precipitation of a reddish–brown solid on TiO2.  

These results may be explained by supposing that, if chloride ion concentration is reduced, 

Cu(I) reoxidation through chloride complexes photolysis              is slowed down and 

becomes the rate determining step. As a consequence of this behavior, the rate of hydrogen 

generation decreases too.  
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On the other hand, a reduction in hydrogen production rate was observed for further increases 

in chloride ion concentration from 10
3
 mM up to 2.010

3
 mM (Figure 8.4, full triangles). It is 

known that at rising chloride ion content both Cu(I) and Cu(II) may form different complexed 

species, such as CuCl2
-
 and CuCl3

2-
 (for cuprous ions) [177] or CuCl

+
, CuCl2 and CuCl3

- 
(for 

cupric ions) [178]. The formation of Cu(II)–chloride complexes results into the occurrence of 

a shielding effect which reduces the radiation absorption by Cu(I)–chloride complexes. 

Indeed, both cuprous and cupric complexes are capable of absorbing in the same radiation 

range of the lamp used (305–366 nm) with comparable extinction coefficients, although those 

belonging to Cu(I) complexes type are slightly higher (Figure 8.5). 

 

 

Figure 8.5: UV spectra of Cu(I) and Cu(II) chloride complexes (data source: Davis et al., 

1978 [177]). 

 

For higher chloride ion concentrations, an increase in concentration of all chloride complexes 

occurs, causing two opposite effects: (i) a rise in concentration of cuprous-chloride complexes 

(CuCl2
- 
and CuCl3

2-
), which absorb and photolyze at wavelengths higher than 290 nm [177]; 

(ii) an increase in concentration of cupric–chloride complexes (CuCl
+
, CuCl2 and CuCl3

-
) and, 

consequently, of their shielding effect. It can be considered that the shielding effect prevails 

for chloride concentrations higher than 10
3
 mM, with a consequent reduction in hydrogen 
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generation rate. However, only the availability of a suitable kinetic model could help to 

completely throw light on this issue. 

So as to determine the nature of the precipitate, a sample recovered at the end of a run at 

pH=1 washed accordingly with the procedure reported in the experimental was submitted to a 

XRD measurement (Fig 8.6). Two peaks at 2 equal to 43°3’ and 50°5’ which can be 

ascribed to zero-valent copper were observed. Therefore, it can be concluded that the solid 

recovered is represented by zero-valent copper. 
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Figure 8.6: XRD patterns registered for a solid sample recovered at the end of a 

photocatalytic run at pH=1, bare TiO2 (anatase) and Cu(0) powders. 
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8.5 Effect of cupric ion concentration 

The influence of initial cupric ion concentration on hydrogen production rate and dissolved 

copper concentration is reported in Figure 8.7. Distinct behaviors were recorded when initial 

cupric ion concentration changes from 2.5 mM to 5.0, 10.0 and 20.0 mM (Figures 8.7a–b). 

 

 

Figure 8.7: Effect of cupric ion concentration. Hydrogen production rate (a) and dissolved 

copper normalized concentration (b) at pH=1.0 (with HClO4), [HCOOH]0=10
3
 mM, 

[NaCl]0=10
3
 mM, TiO2 anatase load=10

2
 mg/L, [Cu(II)]0 (mM): (▲) 2.5, () 5.0, () 10, () 

20. 

 

A delayed hydrogen production and a lower decrease in dissolved copper were observed at 

rising initial cupric ion concentration from 5.0 to 20 mM. A complete reduction of cupric ions 

and a reddish solid precipitation within 300 minutes of reaction were recorded only for the run 

starting from a cupric ion concentration of 2.5 mM. XRD measurements have demonstrated 

that the solid is represented by zero-valent copper (data not shown). 

To explain these observations it has to be considered that at increasing cupric ion 

concentration between 5.0 and 20 mM, the shielding effect due to the formation of Cu(II)–

chloride complexes becomes more significant and lowers the rate of hydrogen production. 

When cupric ion concentration is hugely reduced through the reaction between cupric ions 

and photoelectrons         (with a significant increase in concentration of Cu(I) in the form of 

Cu(I)–chloride complexes), the rate of hydrogen production reaches a maximum value 

(Figure 8.7). 
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For initial cupric ion concentration equal to 2.5 mM, the less important shielding effect 

promotes a faster hydrogen production, but also a rapid photocatalytic reduction of Cu(I) to  

 

zero-valent copper         which does not reoxidize. Indeed, in this case the maximum value of 

hydrogen production rate is lower with respect to that recorded starting from a cupric ion 

concentration of 5.0 mM. 

A more careful examination of these data indicates that different quantities of hydrogen are 

produced per moles of precipitated copper (   
/       , Table 8.1) for reaction times of 300 

and 600 minutes respectively, depending on the initial concentration of cupric ion adopted. 

The best results, consisting in highest values of    
/       , were recorded in the run with a 

starting cupric ion concentration of 5.0 mM for both reaction times. The results collected 

indicate that a complete precipitation of dissolved copper happens at about 600 minutes of 

reaction. This demonstrates a certain tendency of the catalytic system to deactivate, as already 

observed in the run starting from a cupric ion concentration of 2.5 mM. In other words, it is 

clear that, even for different reaction times depending on the initial cupric ion concentration 

and still in presence of significant quantities of formic acid, the system becomes no more 

capable of producing hydrogen. This deactivation of the system can be considered as a 

consequence of the complete precipitation of zero-valent copper. 

 

[Cu(II)]0  

mM 

   
/        

300 min 

   
/        

600 min 

2.5 1.8 1.8 

5.0 3.8 3.5 

10 2.7 1.8 

20 1.7 - 

 

Table 8.1: Effect of cupric ion concentration: correlation between micromoles of H2 

generated (   
) and micromoles of Cu(0) precipitated (      ) after 300 and 600 minutes of 

reaction at pH=1.0, T=25 °C, [HCOOH]0=10
3
 mM, [NaCl]0=10

3
 mM, TiO2 load=10

2
 mg/L. 
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8.6 Effect of pH of the solution 

Since a dependence of hydrogen generation rate on protons concentration (and pH) may be 

assumed, the best results could be expected under low pH condition. Indeed, proton reduction 

is a fundamental reaction through which the process develops. However, in most of the 

researches appeared in literature on copper–based TiO2 photocatalysts for hydrogen 

generation, the best performances are reported for basic or strong basic condition [82,98,107]. 

The prevailing explanation seems to rely on the detrimental effect that acidic conditions exert 

on the catalyst stability, with a continuous copper leaching into the solution [60,93]. 

To assess the effect on the system reactivity of pH in the solution, two additional 

photocatalytic runs were performed at pH 2.5 and 4.0 respectively, for both chloride ion and 

formic acid initial concentrations equal to 10
3
 mM, cupric ion concentration at 5.0 mM and 

TiO2 load equal to 10
2
 mg/L. The results collected during these runs are shown in Figure 8.8a-

b. 

 

 

Figure 8.8: Effect of pH. Hydrogen production rate (a) and dissolved copper normalized 

concentration (b), [Cu(II)]0=5.0 mM, [HCOOH]0=10
3
 mM, [NaCl]0=10

3
 mM, TiO2 anatase 

load=10
2
 mg/L, pH:  1.0,  2.5,  4.0. 

 

It is interesting to observe that both at pH 2.5 and 4.0 hydrogen production appears to be 

depressed and reaches zero after about 120 minutes of reaction. For the same reaction time 

total dissolved copper reduces to zero and a black solid is formed on TiO2 nano-particles. 

Also in this case, an attempt to characterize the nature of copper deposited on TiO2 

nanoparticles was made. The solid sample was firstly washed as reported in the experimental 
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and then submitted to X-ray diffraction analysis. XRD spectrum (Figure 8.9) shows two peaks 

at 2 equal to 43°3’ and 50°5’, clearly indicating the presence of zero-valent copper. 
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Figure 8.9: XRD patterns registered for a solid sample recovered at the end of a 

photocatalytic run at pH=4, bare TiO2 (anatase) and Cu(0) powders. 

 

The above–reported results may be explained considering that in both runs a significantly 

lower protons concentration is present with respect to the case of pH=1.0, with a consequent 

reduction in the rates of solvated electrons (  
 ) capture by protons and hydrogen generation. 

In these conditions, a higher availability of solvated electrons may be expected in solution 

with a consequent enhancement in Cu(I) and Cu(II) reduction. In other words, copper is 

continuously separated from the solution through a reduction of dissolved copper species until 

the system becomes completely unreactive. The behavior of the system investigated may be 

depicted by means of the scheme illustrated in Figure 8.10. 

  



Results IV 

120 
 

 

 

 

Figure 8.10: Schematic illustration of the reaction mechanism for the investigated system. 

 

Hydrogen formation in a system containing copper in the initial form of cupric ions is strictly 

connected to the reduction of cupric ions to cuprous ones (Step A, Figure 8.10) and the 

photolysis of Cu(I)–chloride complexes (Step B, Figure 8.10). In fact, during the photolytic 

process electrons (  
 ) are ejected into the solution and protons promptly react with them but 

not with the photogenerated ones (  
  ). Chloride complexes provide an important reservoir 

of Cu(I) in solution; therefore, in the presence of low Cl
– 

concentrations, Cu(I) more easily 

reduces to Cu(0) which precipitates (Step C, Figure 8.10). When pH is increased, the low 

proton concentration makes available a higher concentration of solvated electrons which 

reduce both Cu(II) and Cu(I) and lead to the deposition of a black solid, formed by zero-

valent copper (Step C, Figure 8.10). 
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8.7 Summary 

The present investigation proposes a new process for hydrogen generation through the system 

cupric ions/formic acid/chloride ions/nano-TiO2/UV radiation. The efficiency of the process 

in terms of hydrogen production was studied at varying the initial concentrations of formic 

acid, chloride and cupric ion and pH.  

Hydrogen generation revealed similar dependences on formic acid and chloride ion 

concentrations. The rate of hydrogen production increases up to a formic acid concentration 

of 10
3
 mM. On the other hand, a huge decrease in the maximum value of hydrogen production 

rate was observed for a formic acid concentration equal to 5.010
3
 mM, with a contemporary 

precipitation of zero-valent copper. With regard to chloride ions in solution, an increase in 

hydrogen generation rate was recorded up to a chloride concentration of 10
3
 mM, with a clear 

decrease for higher concentrations.  

Hydrogen production is also strongly dependent on cupric ion concentration. Initial increases 

in cupric ion concentration resulted in a reduction of hydrogen generation rate. An early loss 

of reactivity of the system was recorded during the run at the lowest value of cupric ion tested 

(2.5 mM), with a complete precipitation of cupric ions as zero-valent copper within a reaction 

time of 300 minutes. A similar behavior was observed for higher starting concentration of 

cupric ion, but at longer reaction times. No re-oxidation of zero-valent copper was observed 

in the complete system during the present investigation.  

The increase in pH of the solution from 1.0 to 2.5 to 4.0 resulted in a decrease in hydrogen 

generation rate and the precipitation of zero-valent copper. 

A consistent reaction mechanism able to predict the system behavior under different operating 

conditions was proposed. 
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9. Conclusions 

Hydrogen is considered as an important green energy carrier for the future, due to its high 

energy content and the absence of greenhouse gas emissions from its combustion.  

At present hydrogen production is mainly based on techniques involving fossil fuels with 

resulting production of toxic gases. An appealing alternative exploits the possibility to 

produce hydrogen by photocatalytic processes based on solar energy and water or organic 

species contained in industrial or urban wastewaters. Such processes have the merit to allow 

simultaneous water decontamination and energy production starting from a fully renewable 

energy source, the solar radiation.  

An intense scientific activity was recorded, mainly during the last years, in the field of 

photocatalytic reforming of organics to generate hydrogen over copper-based TiO2 

photocatalysts. Researchers pointed out the capability of the incorporated copper species, 

alone or in cooperation with the second co-catalyst, to (1) effectively separate the electron-

hole pairs, thus reducing the occurrence of the recombination reaction, and (2) extend the 

light absorption to the visible range of the solar spectrum. 

The photocatalytic generation of hydrogen from different oxygenated organic species (mostly 

alcohols and carboxylic acids) through the adoption of copper-modified TiO2 catalysts was 

therefore investigated in this study. Photocatalysts were prepared in situ by means of a 

photodeposition procedure. A thorough catalyst characterization supported the deposition on 

TiO2 surface of zero-valent copper nanoparticles, which markedly enhances the 

photoefficiency for hydrogen generation with respect to bare titanium dioxide catalysts. 

Depending on the organic species adopted as sacrificial agents, remarkable differences in 

hydrogen production were recorded. To explain this behavior, a mechanism based on a 

different oxidation capability of the organics related to their tendency to adsorb on the catalyst 

surface was proposed. When the species strongly adsorb (i.e, methanol, glycerol and formic 

acid) beneficial effects are observed in terms of an additional hydrogen generation with 

respect to bare titanium dioxide. Indeed, a negligible proton reduction occurs in the case of a 

weak adsorption by the organic species.  

The effect of adopting different crystallographic phases of TiO2 (anatase, rutile and 

anatase/rutile) on hydrogen generation was also investigated. In particular, the photoactivity 

for hydrogen generation of undoped commercial TiO2 photocatalysts and zero-valent copper 

doped TiO2 using methanol or glycerol as sacrificial species was studied. Experimental results 

indicate that the polymorphic composition of the titania adopted has a marked influence on 
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the photoactivity for both the groups of materials. The photocatalytic activity of undoped and 

copper-doped materials had the following order: P25   bare anatase   bare rutile, which can 

be explained in terms of (i) relative photogenerated charge carrier concentration on the 

surface, (ii) titania and metal copper nanoparticles sizes, and (iii) amount of superficial 

hydroxyl groups. Such theory was supported by a thorough catalyst including X-Ray 

diffraction, Dynamic Light Scattering, Thermogravimetry, Energy-dispersive X-ray 

Spectroscopy, FT-IR and Diffuse Reflectance UV Spectroscopies, Photolumincesce, High 

Resolution Transmission Electron Microscope, Field Emission Scanning Electron Microscopy 

analyses. 

Starting from the mass balance equations for the main species involved in the photocatalytic 

process, a kinetic model was developed with the aim of simulating hydrogen generation by 

photoreforming of selected organics over metal-copper modified TiO2 nanoparticles prepared 

in situ. The model analyzed data collected during the experimental campaign at various 

substrate (methanol and glycerol) concentrations and catalyst loads. 

As a result, the best values of unknown parameters were estimated, such as (i) the rate of 

hole-capture and (ii) the adsorption equilibrium constants for both methanol and glycerol, (iii) 

the primary quantum yield and (iv) the rate constant for electron-hole recombination on the 

nanocopper modified-TiO2. From the values found for these parameters it can be stated that a 

decrease in the recombination reaction occurs for the catalyst adopted with respect to bare 

TiO2, thus indicating the fundamental role played by copper nanoparticles on TiO2 surface in 

trapping photogenerated electrons and therefore improving hydrogen generation. 

The simultaneous presence in the aqueous matrix of an inorganic ion, that is chloride, was 

also investigated when formic acid was adopted as sacrificial agent. The efficiency of the 

process in terms of hydrogen production was studied at varying the initial concentrations of 

formic acid, chloride and cupric ion and pH. Hydrogen generation revealed similar 

dependences on formic acid and chloride ion concentrations. For such variables, maximum 

values were assessed beyond which a decrease in photoefficiency for hydrogen production 

was recorded. An optimum range of values for the starting cupric ion concentration was also 

assessed. Moreover, the increase in pH of the solution resulted in a decrease in hydrogen 

generation rate and the precipitation of zero-valent copper. A consistent reaction mechanism 

able to predict the system behavior under different operating conditions was proposed. 

This work opens the way to the development of new competitive processes able to use waste 

organic streams for hydrogen generation through low-cost photocatalytic system based on 

solar energy. 
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Appendix 

 

 

Figure A1: (a) Appearance of the reacting solution ([C3H8O3]o=0.8 M; TiO2-P25 load = 500 

mgL
-1

; pHo=6.4) at zero time in absence of copper. (b) Aspect of the same reacting solution 

after 120 min of photocatalytic treatment under de-aerated conditions in presence of copper 

([Cu(II)]o=0.8 mM). 
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Figure A2: EDX spectrum of TiO2-P25 and Cu catalyst samples.
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