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terminal part and  R1 the carboxylic end of C16 or C20 fatty acid precursors (modified from Fontana 
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and tridecanal (■). Values (means ± S.D.; N = 600) are the results of three different biological 

experiments (modified from Romano et al., 2010). 
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FIGURE 1.11: (A) Paracentrotus lividus 48 hours plutei after incubation in decadienal at 1.32 μM 

(b), 2.63 μM (c), 3.95 μM (d) and 5.26 μM (e) compared to control embryo (a). (B) Percentage of 

abnormal sea urchin larvae after 48 hours of treatment with  several decadienal concentration ranging 

from 1.32 μM to 6.58 μM. Control is reported as 0 μM decadienal concentration. Yellow bars = 

retarded larvae; blue bars = abnormal pluteus larvae; red bar = abnormal gastrulae and blastulae; 

green = dead pre-hatched embryos. Values (means ± S.D.; N = 600) are the results of three different 

experiments (modified from Romano et al., 2010). 

 

FIGURE 1.12: Active mitochondria visualised by the mitochondrial-specific fluorescent dye Mito 

tracker within Paracentrotus lividus egg before the fertilization (A and B); egg 10 minutes after the 

elevation of the fertilization envelope (C and D); embryos at 50 min post fertilization (E and F); 

embryos at 50 min post fertilization incubated with 5 μg ml-1 decadienal (G and H). Upper panels are 

images in transmitted light; lower panels are the same images in fluorescent light. (Modified from 

Romano et al., 2011). 

 

FIGURE 1.13: Schematic representation of molecular cell death pathways activated by the three 

different PUAs in lung adenocarcinoma cell lines A549. Red arrows indicate signal transduction via 

activated by decadienal; blue arrows indicate signal transduction via activated by octadienal; green 

arrows indicate signal transduction via activated by heptadienal (from Sansone et al., 2014) 

 

FIGURE 2.1: Schematic representation of in vitro experiment for the treatment of sea urchin 

Paracentrotus lividus embryos with different concentrations of heptadienal (2 μM, 2,5 μM, 3 μM, 

5,5 μM and 6 μM) for 5 hours, 21 hours and 48 hours. 

 

FIGURE 2.2: the flowchart show the several steps needed for the bioinformatic study of 

Paracentrotus lividus database. This analysis started from aminoacid sequences from Homo sapiens, 

and, passing though Strongylocentrotus purpuratus, identified and annotated ortholog protein and 

nucleotide sequences from our model organism. 

 

FIGURE 3.1: Morphological effects of five different heptadienal concentrations (2.0 μM, 2.5 μM, 

3.0 μM, 5.5 μM and 6.0 μM) on sea urchin Paracentrotus lividus embryo development. For each 

concentration of pure compound, embryos at the pluteus stage were analysed under the microscope 

and divided in ‘Normal plutei’ and ‘Abnormal plutei’. The ratio between the two different 

morphological groups is expressed as percentage respect to the entire number of embryos examined. 

 

FIGURE 3.2: Pictures obtained by inverted microscope showing some examples of different types 

of malformations induced in Paracentrotus lividus plutei at 48 hours post fertilization (hpf) after 

incubation with the three polyunsaturated aldehydes (B, C, D, E, F, G and H) in comparison with the 

normal conformation (A) of the control. Embryos were fixed with 4% of paraformaldehyde (modified 

from Varrella et al.,2014).  
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FIGURE 3.3: Extrinsic apoptotic pathway: (A, C, E and G) Multialignment of aminoacid sequences 

AIFM1, RIPK4, TNFR16 and TNFR27 from Homo sapiens, Strongylocentrotus purpuratus and 

Paracentrotus lividus. (B, D, F and H) Complex intron-exon structure of the P. lividus genes involved 

in extrinsic apoptosis. 

 

FIGURE 3.4: Phylogenetic tree showing the inferred evolutionary relationship among various 

members of the Receptor Interacting Serine/Threonine Kinase (RIPK) superfamily from Homo 

sapiens, Strongylocentrotus purpuratus and Paracentrotus lividus. 

 

FIGURE 3.5: Phylogenetic analysis showing the inferred evolutionary relationship among various 

members of the Tumor Necrosis Factor Receptor (TNFR) superfamily from Homo sapiens, 

Strongylocentrotus purpuratus and Paracentrotus lividus. 

 

FIGURE 3.6: Intrinsic apoptoc pathway: (A, C and E) Multialignment of aminoacid sequences of 

BAX, BCL2 and PARP from Homo sapiens, Strongylocentrotus purpuratus and Paracentrotus 

lividus. (B, D and F) Complex intron-exon structure of the P. lividus genes involved in intrinsic 

apoptosis. 

 

FIGURE 3.7: Autophagy: (A, C, E and G) Multialignment of aminoacid sequences of BECN, PINK, 

ULK1 and ULK3 from Homo sapiens, Strongylocentrotus purpuratus and Paracentrotus lividus. (B, 

D, F and H) Complex intron-exon structure of the P. lividus genes involved in intrinsic apoptosis. 

 

FIGURE 3.8: Phylogenetic tree that represents the evolutionary relationship among various 

members of the Unc-51 Like Autophagy Activating Kinase (ULK) superfamily from Homo sapiens, 

Strongylocentrotus purpuratus and Paracentrotus lividus. 

 

FIGURE 3.9: Efficiency amplification was calculated for each primer pair, generating a standard 

curves with serial 10-fold dilutions of the calibrator’s cDNA sample by using the cycle threshold (Ct) 

value versus the logarithm of each dilution factor and using the equation E=10−1/slope. 

 

FIGURE 3.10: Gene expression study by Real Time q-PCR of twelve genes involved in three 

different death cell signaling pathway in embryos incubated with increasing heptadienal 

concentrations (2 μM, 2.5 μM, 3 μM, 5.5 μM and 6 μM) and collected at a specific developmental 

stage of P. lividus: early blastula (5 hpf). (A) Gene expression levels of Aifm1, Ripk, Tnfr16, Tnfr27 

and NfkB (involved in extrinsic apoptosis). (B) Gene expression levels of Bax, Bcl2 and Parp 

(involved in intrinsic apoptosis). (C) Gene expression levels of Ulk1, Ulk3, Pink and Becn1 (involved 

in autophagy). Data are reported as a fold difference (mean ± SD), compared to control embryos in 

sea water without heptadienal. Fold differences greater than ±2 were considered to be significant. 
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FIGURE 3.11: Gene expression study by Real Time q-PCR of twelve genes involved in three 

different death cell signaling pathway in embryos incubated with increasing heptadienal 

concentrations (2 μM, 2.5 μM, 3 μM, 5.5 μM and 6 μM) and collected at a specific developmental 

stage of P. lividus: early prisma (21 hpf). (A) Gene expression levels of Aifm1, Ripk4, Tnfr16, Tnfr27 

and NfkB (involved in extrinsic apoptosis). (B) Gene expression levels of Bax, Bcl2 and Parp 

(involved in intrinsic apoptosis). (C) Gene expression levels of Ulk1, Ulk3, Pink and Becn1 (involved 

in autophagy). Data are reported as a fold difference (mean ± SD), compared to control embryos in 

sea water without heptadienal. Fold differences greater than ±2 were considered to be significant. 

 

FIGURE 3.12: Gene expression study by Real Time q-PCR of twelve genes involved in three 

different death cell signaling pathway in embryos incubated with increasing heptadienal 

concentrations (2 μM, 2.5 μM, 3 μM, 5.5 μM and 6 μM) and collected at a specific developmental 

stage of P. lividus: pluteus stage (48 hpf). (A) Gene expression levels of Aifm1, Ripk, Tnfr16, Tnfr27 

and NfkB (involved in extrinsic apoptosis). (B) Gene expression levels of Bax, Bcl2 and Parp 

(involved in intrinsic apoptosis). (C) Gene expression levels of Ulk1, Ulk3, Pink and Becn1 (involved 

in autophagy). Data are reported as a fold difference (mean ± SD), compared to control embryos in 

sea water without heptadienal. Fold differences greater than ±2 were considered to be significant. 

 

FIGURE 3.13: Gene expression study by Real-Time qPCR of thirteen genes involved in three 

different death cell signaling pathways in A549 cell line treated with 5 μM of heptadienal for 2 hours. 

(A) Gene expression levels of AIFM_1, RIPK_2, TRAIL_R1, TNF_R1, TNF_R2 and NfkB 

(involved in extrinsic apoptosis). (B) Gene expression levels of BAX, BCL_2 and PARP (involved 

in intrinsic apoptosis). (C) Gene expression levels of ULK_1, ULK_3, PINK and BECN_1 (involved 

in autophagy). Data are reported as a fold difference (mean ± SD), compared to control A549 cells 

without heptadienal. Fold differences greater than ±2 were considered significant. 

 

FIGURE 8.1: Chemical characterization of ethanol/water crude extract. (A) HPLC chromatogram of 

pigments from the ethanol/water extract of the green microalga Tetraselmis suecica. (B) Table 

describes peak identification, retention time, abbreviations and online spectral characteristics of the 

ethanol/water extract of the green microalga Tetraselmis suecica. 

 

FIGURE 8.2: Chemical characterization of ethanol/water crude extract. (A) LC-PDA-ESI+MS/MS 

analysis of the carotenoid pool in the ethanol/water extract of Tetraselmis suecica. (B) Table 

describes for each peak retention time, maximum of absorbance (expressed in nm), ESI+-MS 

(expressed in m/z), ESI+-MS/MS (expressed in m/z) and relative names of the chemical components 

of the ethanol/water extract of the green microalga Tetraselmis suecica. 
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FIGURE 8.3: In vitro repairing activity of Tetraselmis suecica ethanol/water extract against H2O2 

treatment. (A) Human lung adenocarcinoma cells (A549) treated with various concentrations of T. 

suecica extracts for 24 and 48 h. Cell viability was determined using the MTT assay and expressed 

as the percentage of control growing cells. (B) Cell viability of lung adenocarcinoma cells (A549) 

treated with various concentrations of H2O2 (0.3 mM, 3 mM, 30 mM and 300 mM) for 24 and 48 h . 

(C) Effect of extract on cell viability of A549 cells following exposure to H2O2 prior to extract 

treatment at 2 μg ml-1, 5 μg ml-1, 10 μg ml-1, 25 μg ml-1, 50 μg ml-1, 100 μg ml-1, 200 μg ml-1 and 400 

μg ml-1. Three independent assays were performed in triplicate; data are shown as mean ±S.D. 

Significant differences between treated groups were determined using Students-t test (*) and ANOVA 

followed by Dunnett’s test (#). Crosshatched symbols denote significant differences between 

treatments and control (#p<0.05). 

 

FIGURE 8.4: Histograms showing the results of gene expression analysis. (A, B, and C) Effect of 

Tetraselmis suecica ethanol/water extract at three different concentrations (100 µg ml-1, 200 µg ml-1 

and 400 μg ml-1) on oxidative stress gene expression in H2O2-treated human lung adenocarcinoma 

cells (A549). A549 cells were pretreated with H2O2 (30 mM = 12 μg ml-1) for 1 h prior to extract 

treatments (100, 200 and 400 μg ml-1) and harvested 2 h later. (D) Negative control for the evaluation 

of the effect of Tetraselmis suecica ethanol/water extract (without any injury pre-treatment) at three 

different concentrations (100, 200 and 400 μg ml-1) on oxidative stress gene expression in human 

lung adenocarcinoma cells (A549).  Three independent assays were performed in triplicate and the 

data are expressed as mean ±S.D. Expression values greater or lower than a two-fold difference with 

respect to the controls were considered significant.  

 

FIGURE 8.5: The effect of Tetraselmis suecica ethanol/water extract on oxidative stress protein 

expression in H2O2-treated human lung adenocarcinoma cells (A549). (A, B and C) Three 

independent assays were performed in triplicate and the data shown are mean ±S.D. The values above 

the blots represent the densitometric analysis of the photographic sheets measuring the variation in 

protein expression. The values of the bands are normalized versus actin and represented as ratio 

between the expression of single protein and actin. Asterisks denote significant differences compared 

to controls (*p≤0.05 and **p<0.005 ). 

 

FIGURE 8.6: The effect of ethanol/water extract from Tetraselmis suecica on prostaglandin PGE2 

serum-release induced by H2O2 -treatment in human lung adenocarcinoma cells (A549). (A) Average 

PGE2 concentration (pg μl-1) determined by ELISA in culture medium of cells treated with 100, 200 

and 400 μg ml-1 of the extract for 24 h. (B) Average of the PGE2 concentration (pg μl-1) determined 

by ELISA in culture medium of cells treated with 100, 200 and 400 μg ml-1 of  extract for 24 h after 

pretreatment with 30 mM (= 12 μg ml-1) of H2O2 for 1 h. Asterisks denote significant differences 

compared to controls (*p≤0.05 and **p<0.005) and determined using Students-t test. 

 

 

 

 

 



 

19 
 

FIGURE 8.7: Response of EpiDermTM tissue cultures after topical application of 30 mM (= 12 μg 

ml-1) H2O2 for 1 h prior to Tetraselmis suecica ethanol/water extract treatment (200 μg ml-1) showing 

the repairing effect of the extract after H2O2 treatment. Three independent assays were performed in 

triplicate; data are shown as mean ±S.D. Significant differences between treated groups were 

determined using Students-t test (*p≤0.05) and ANOVA. NC = not treated. Ts 200 μg = 200 µg T. 

suecica extract; H2O2 + Ts 200 µg = epidermal tissue pretreated with H2O2 for 1 h and recovered with 

extract. 

 

FIGURE 8.8: Effect of an n-butanol extract of the dinoflagellate Alexandrium andersoni on lung 

adenocarcinoma (A549) and colorectal carcinoma (HT-29) cancer cell lines. Percentage of viable 

cells for A549 (A) and HT-29 (B) were calculated with the MTT viability assay. Values are reported 

as mean ± S.D. compared to controls (100% viability). Concentrations tested were 10, 50, 100, 200 

and 400 μg ml-1 for 24 and 48 h. Asterisks denote statistically significant differences with a p value 

≤0.0001. 

 

FIGURE 8.9: Histograms showing the effects of Alexandrium andersoni n-butanol extract on the 

expression levels of target genes in lung adenocarcinoma A549 (A) and in colorectal adenocarcinoma 

HT-29 (B) cell lines. Gene expression analysis was conducted after 2 h of treatment with 400 µg ml-

1 of extract; error bars represent ±S.D. 

 

FIGURE 8.10: Histograms showing the effects of Alexandrium andersoni n-butanol extract on the 

expression levels of target proteins. (A) TNFR1, (B) RIP-k1, (C) DR3 and (D) control (actin) in lung 

adenocarcinoma A549 cells. Immunoblot analysis shows that the extract induced TNF signaling after 

24 h. Asterisk denotes significant increase in protein levels. **p≤0.05 versus control; error bars 

represent ±SD.  

 

FIGURE 8.11: (A) Flow cytometric analysis of DNA content in  A549 cells exposed to Alexandrium 

andersoni n-butanol extract for 8 h at 200 µg ml-1 concentration (empty red line) and untreated control 

cells (full blue line). (B) Distribution of A549 cells in different phases of the cell cycle after 8 h of 

exposure to 100 and 200 µg ml-1 of A. andersonii extract, respectively. Percentage of cells in each 

phase was obtained with the ModFit LT Software. (C) Percentage of A549 cells in each cell cycle 

phase after 2, 4, 6 and 8 h treatment with Alexandrium andersoni n-butanol extract at 100 and 200 µg 

ml-1concentrations. 

 

FIGURE 8.12: Effect of SPE fractions of the dinoflagellate Alexandrium andersoni on lung 

adenocarcinoma (A549) and colorectal carcinoma (HT-29) cancer cell lines, and lung fibroblast 

(WI38) and brunch-lung epithelial (Beas-2B) normal cell lines.  Percentage of viable cells for A549 

(A), HT-29 (B) and control WI38 (C) and BEAS-2B (D) cell lines using the MTT viability assay. 

Same experiments performed on tumor cell lines in the presence of caspase inhibitor (E, F). Values 

are reported as mean ± S.D. compared to controls (100% viability). Concentrations tested were 1, 10 

and 100 μg ml-1 for 48 h. 
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FIGURE 8.13: Histograms showing the effects of Alexandrium andersoni SPE fractions B and D on 

the expression levels of target genes in lung adenocarcinoma A549 (A) and in colorectal 

adenocarcinoma HT-29 (B) cell lines. Gene expression analysis was conducted after 2 h of treatment 

with 1 µg ml-1 of the two fractions; error bars represent ±S.D. 

 

FIGURE 9.1: Schematic representation of the cellular response activated by H2O2 (A) and repairing 

effect induced by Tetraselmis suecica extract (B) after H2O2 pretreatment. 

 

FIGURE 9.2: Schematic representation of pathways induced by Alexandrium andersoni n-butanol 

extract in lung adenocarcinoma A549 (A) and colorectal adenocarcinoma HT-29 (B) cell lines. 

  



 

21 
 

LIST OF TABLES 
 

TABLE 1.1: Scientific classification of the sea urchin Paracentrotus lividus 

 

TABLE 1.2: schematic description of sea urchin Paracentrotus lividus embryo developmental stages 

 

TABLE 2.1: schematic representation of genes analysed in different developmental stages of sea 

urchin Paracentrotus lividus 

 

TABLE 3.1: Efficiency and linear regression coefficients (R2) values of the twelve genes. 

 

TABLE 8.1. Radical scavenging capacity (RSC, %) of Tetraselmis suecica ethanol/water extract on 

DPPH free radical. Values are reported as percentage versus a blank and are the mean ±SD of three 

independent samples analyzed three times. Asterisks denote significant increases in measured radical 

scavenging activity *p≤0.05 versus control. 

 

TABLE 8.2. List of genes studied belonging to several oxidative stress response and detoxification 

and repairing mechanisms. 

  



 

22 
 

ABSTRACT 

(English version) 
 

 The marine environment covers nearly the 70% of the earth surface. Furthermore, oceans 

contain a very rich and still unexplored biodiversity. Only the 10% of the total marine organisms 

living in the oceans are now identified and studied for various applications. Thus, the oceans 

represents one of most valuable natural resource. For this reason, the exploration of the marine 

ecosystem constitutes a European priority, within research strategies, in parallel with the creation of 

conservation and protection programs for keeping the ocean healthy for future generations, through 

an eco-friendly exploitation of marine resources. Starting from an ecological and holistic approach, 

all marine biodiversity will provide a sea of resources for biotechnological applications.  In particular, 

marine organisms have several potential applications in the biotechnology field, for the discovery of 

new pharmaceuticals, nutraceuticals, cosmetics, food and feed, aquaculture methods and 

technologies, biomaterials, bioenergy, biomonitoring and bioremediation.  

In this experimental study, I addressed two aspects of the use of marine resources for biotechnological 

applications: a) the development of marine model organisms as useful molecular tool for in vitro eco-

toxicological studies and for in situ assessment of ocean health; b) the discovery of new marine 

natural products from marine microalgae for biomedical applications. 

The sea urchin  Paracentrotus lividus was studied as marine model organism in order to 

develop new tools to evaluate the effect of  stressors in the marine environment. Using a bioinformatic 

approach, twelve genes involved in some of the main cell death pathways were identified from sea 

urchin P. lividus genome: Pl_Aifm1, Pl_Ripk, Pl_Tnfr16, Pl_Tnfr19/27, Pl_Bax, Pl_Bcl2, Pl_Parp, 

Pl_Becn, Pl_Pink, Pl_Ulk1/2 and Pl_Ulk3. Embryos treated with heptadienal, a bioactive compound 

from marine diatoms, activated programmed caspase-independent cell death (extrinsic apoptosis) 

with simultaneous involvement of selective autophagic mechanism (called mitophagy). These results 

are in accordance with molecular analysis obtained for human tumoral cell line treated with the same 

marine compound. In fact, A549 cells activated, after treatment with heptadienal, extrinsic apoptosis 

with the simultaneous trigger of autophagic pathway. 

The study of the potential of marine microalgae for biotechnological applications focused on 

antiproliferative and antioxidant activities. In detail, the microalga Alexandrium andersoni showed 

anticancer effect against two tumour cell lines; the crude extract of Tetraselmis suecica posseshowed 

a strong scavenging and repairing effect after oxidative damage. 

Results obtained demonstrated, from one hand, that the sea urchin P. lividus can represent a 

suitable model organism for the assessment of induction of cell death mechanisms by chemical 

extracts or pure compounds, but also as molecular tool for in situ studies of chemical contaminants 

or anthropogenic stressful factors that can interfere with the marine ecosystem. On the other hand, 

results obtained with two marine microalgae (A. andersoni and T. suecica) confirmed the enormous 

potential of marine microalgae for the identification of new natural products with possible 

applications for pharmaceutical and cosmeceutical industries.  
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ABSTRACT 

(Italian version) 
 

La superficie terrestre è ricoperta per quasi il 70% dall’ecosistema marino. Inoltre, gli oceani 

ospitano una ricca ed ancora poco esplorata biodiversità. Attualmente, solo il 10% degli organismi 

che vivono nell’ambiente marino sono stati identificati e studiati per varie applicazioni. Per queste 

ragioni, gli oceani rappresentano una tra le più preziose risorse naturali. La profonda esplorazione dei 

vari ecosistemi marini costituisce attualmente una priorità per l’Unione Europea, nel contesto delle 

nuove strategie di ricerca. L’obbiettivo principale riguarda la creazione di programmi di 

conservazione e protezione ambientale, utili a salvaguardare la salute dei nostri mari per le future 

generazioni, ma al contempo stabilire dei processi per un uso ecosostenibile delle risorse marine. 

Partendo da un approccio ecologico ed olistico, la biodiversità marina può offrire un mare di risorse 

per l’uomo e per le sue applicazioni biotecnologiche. In particolare, gli organismi marini hanno già 

dimostrato o posseggono enorme potenziale per applicazioni di tipo biotecnologico, nel settore della 

farmacologica, nutraceutica, cosmeceutica, cibo funzionale, nuove tecnologie per l’acquacoltura, 

biomateriali, bioenergia, biomonitoraggio e biorimediazione ambientale. Questo studio sperimentale 

prende in considerazione due aspetti fondamentali dell’uso di risorse marine per applicazioni 

biotecnologiche: a) lo sviluppo e la caratterizzazione di un organismo modello marino come 

strumento molecolare laboratoriale per studi eco-tossicologici in vitro e per monitoraggio in situ dello 

stato di salute degli ambienti marini costieri; b) l’identificazione di nuovi composti naturali con 

potenziali applicazioni biomediche, a partire dalle microalghe marine.  

Un approccio bioinformatico è stato usato per identificare nel genoma del riccio di mare 

Paracentrotus lividus le sequenze codificanti per alcuni fattori chiave coinvolti nei principali pathway 

di morte cellulare programmata: apoptosi estrinseca, apoptosi intrinseca ed autofagia (compreso un 

meccanismo autofagico specifico, chiamato mitofagia). I geni identificati sono: Pl_Aifm1, Pl_Ripk, 

Pl_Tnfr16, Pl_Tnfr19/27, Pl_Bax, Pl_Bcl2, Pl_Parp, Pl_Becn, Pl_Pink, Pl_Ulk1/2 and Pl_Ulk3. Gli 

embrioni del riccio di mare P. lividus sono stati trattati con diverse concentrazioni di 2-trans,4-trans 

eptadienale e successivamente è stato analizzato l’effetto a livello molecolare. In particolare, 

l’eptadienale attiva una morte cellulare programmata (senza il coinvolgimento delle caspasi) ed un 

meccanismo mitofagico, i quali operano in sinergia. Questi risultati molecolari sono sovrapponibili 

con il pattern di attivazione genica ottenuto in seguito al trattamento di una linea cellulare umana con 

il medesimo composto puro. Infatti, la linea cellulare A549 attiva, in seguito al trattamento con 

eptadienale, un meccanismo di apoptosi estrinseca con la simultanea induzione della via autofagica. 

Il lavoro sperimentale si è anche concentrato sullo studio del potenziale biotecnologico delle 

microalghe marine, quali fonti di nuovi composti naturali. In dettaglio, il dinoflagellato Alexandrium 

andersoni ha mostrato un potente effetto antiproliferativo su due linee tumorali umane, mentre un 

estratto crudo ottenuto dalla microalga Tetraselmis suecica possiede una forte attività di radical-

scavenging ed è responsabile dell’attivazione dei meccanismi di riparo dal danno ossidativo. I risultati 

ottenuti, descritti in questo lavoro di tesi, dimostrano da un lato che il riccio di mare P. lividus può 

rappresentare un valido organismo modello per la valutazione dei meccanismi molecolari di morte 

indotti da estratti chimici o molecole pure, ed inoltre può essere utilizzato come tool molecolare per 

studi in situ atti alla valutazione dell’impatto sugli ecosistemi marini di contaminanti chimici o di 
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fattori antropocentrici in grado di interferire con i processi biologici ed ecologici dei nostri mari. 

Dall’altro lato, i risultati ottenuti dai due microorganismi marini (A. andersoni e T. suecica) rivelano 

l’enorme potenziale delle microalghe marine nell’identificazione di nuovi composti naturali dalla 

maggiore efficacia, con applicazioni per le industrie farmaceutiche e cosmeceutiche. 
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I. Resources from the sea for a sea of resources 

The marine environment covers the major part of the earth’s surface (71%). Europe has a 

70.000 km coastline along two oceans and four seas: the Atlantic and Arctic Oceans, the Baltic, the 

North Sea, the Mediterranean, and the Black Sea. European population lives for about 40% in 

maritime regions. Oceans contain a very rich and still unexplored biodiversity. Only the 10% of the 

total marine organisms (including deep-sea organisms) living in the oceans are now identified and 

studied for various applications. The ocean is one of Earth's most valuable natural resource. It 

provides food in the form of fish and shellfish, moving a great portion of European economy each 

year. It serves for transportation, both travel and shipping. It provides a treasured source of recreation 

for humans. It is mined for minerals (salt, sand, gravel, and some manganese, copper, nickel, iron, 

and cobalt can be found in the deep sea) and drilled for crude oil.  

The ocean plays a critical role in removing carbon from the atmosphere and providing oxygen, 

covering an essential role in regulating Earth's climate. The ocean is an increasingly important source 

of organisms with enormous biomedical potential for fighting diseases. These are just a few examples 

of the importance of the ocean for human wellbeing. The exploration of the marine ecosystems should 

constitute an essential research program to allow at each nation to activate conservation and 

protection strategies for keeping the ocean healthy for future generations. European States push for 

holistic and integrated approaches to sustainable development that will guide humanity to live in 

harmony with nature and lead to efforts to restore the health and integrity of the Earth’s ecosystem. 

In this context, a relevant issue is represented by the conservation and sustainable use of the 

oceans and seas and of their resources for sustainable development, including through their 

contributions to poverty eradication, sustained economic growth, food security and creation of 

sustainable livelihoods. Starting from an ecological and holistic approach all marine biodiversity will 

provide a sea of resources for biotechnological applications.  The study of biology and physiology of 

unexplored marine organisms could be associated with a potential exploitation in marine 

biotechnology field, for the discovery of new pharmaceuticals, nutraceuticals, cosmetics, food and 

feed,  aquaculture methods and technologies, biomaterials, bioenergy and so on. A goal of the VII 

Framework Programme for Research and Technological Development in marine biotechnology ERA-

NET- MBT (European Research Area - NET - Marine Biotech) has been to support the development 

of marine biotechnology research and innovation. The Blue Growth strategy incorporates European 

marine biotechnology in the bio-economic strategy for Europe, recognizing a dominant role in the 

impact and socio-economic challenges faced by Europe. ERA - NET - MBT has set guidelines for 

marine biotechnology so that through the sustainable use of marine biological resources, there is the 

creation of new markets, thereby generating, new revenues and boosting employment. In this study I 

tried to address two aspects of the use of marine biological resources for biotechnological 

applications: 

 

1.  Development of marine model organisms as useful tool for eco-toxicological studies and 

for the assessment of ocean health; 

 

2. Discovery of new marine natural products for biomedical applications. 
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II. European strategies and Marine Biotechnology 

Seas have always represented for humans a fundamental source of products and services, 

becoming a predominant factor for the increase of population density around coastal areas. Ocean 

ecosystems influence consistently the good status of human populations, through the salubrious air 

along coasts, high quality of food offered and enhance psychophysical wellness (figure I). On the 

other hand, there are several factors acting as anthropic pressure on marine environment such as 

industrial productions, maritime transport, agriculture and organic wastewater. Changes and 

degradation of marine environments produce direct but also indirect effects on human health and 

wellbeing; it is still not well characterized and described how human pressure in a specific place 

affect other regions of the marine ecosystem, with a long-term repercussions. The evaluation and 

relative management of the impacts derived from this pressure on both human health and marine 

environment itself have extensively been studied, but as two separate phenomena so far. 

 

 

 

 

 
FIGURE I: English census data on the direct relationship between coastal proximity and stated health 

status (adapted from Wheeler et al., 2012). 

 

 

 

 

The scientific community has recognizing the strong need for a more holistic approach to 

study and understanding the complex relationship between ocean environments on one hand, and 

human health and well-being on the other.  

An interdisciplinary approach could be used to study the complexity of this effects and 

interactions by the formation of complex network across a wide range of scientific disciplines, within 
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medicine, public health and natural, social and economic sciences. The complex and mutual 

interactions between human health and marine environment requires a systems approach addressing 

all levels of organization from bottom (at gene level) to ecosystems. 

In this direction, USA has already invested economic resources in the last decade, creating a 

multidisciplinary oceans and human health research programs. This program include the 

establishment of seven Centers for Oceans and Human Health (COHH) and a complementary 

National Oceanic and Atmospheric Administration (NOAA) Oceans and Human Health Initiative 

(OHHI) to conduct, coordinate and communicate research in this new integrative field. 

Europe currently do not provide a similar oceans and human health research framework and 

the European Marine Board has recently published paper as a first step to raise priorities to encourage 

the development of a coherent transnational oceans and human health research effort in Europe 

(Position Paper 19, European Marine Board, 2013). This position paper identify the most important 

research needs and priorities to study ocean heath, that is intrinsically interconnected and impacted 

by humans and their well-being. To manage this relationship, European research need an efficient 

polity framework, linking maritime and public health policies.   

Hence, the European research effort explained in this paper is not just an attempt to create 

new interesting scientific challenges, but could represent the starting point to ensure an improvement 

of public health and good environmental status of European seas, which are mutually linked. 

Marine biotechnology is widely recognized as an outstanding research area that can contribute 

significantly to the well-being of the society and the European bio-economy. The definition of 

biotechnology is: “The application of science and technology to living organisms, as well as parts, 

products and models thereof, to alter living or non-living materials for the production of knowledge, 

goods and services” (www.oecd.org). In the case of marine biotechnology, the living organisms are 

derived from marine sources. 

Marine biotechnology (called also blue biotechnology) is representing a relative new research 

field, which is creating new opportunities to explore and successively exploit marine resources, with 

sustainable development and approach. This scientific area raise great interest by European policies, 

able to build and contribute to an eco-sustainable and highly efficient economy and society. The 

strong point of marine biotechnology is represented by the high biodiversity of marine environments. 

So huge potential is still poorly exploited and marine resources could play a central role for many 

industrial activities and for bioprocesses used for the maintenance of ecosystem integrity. This will 

lead to new application in fields such as drug discovery, novel functional foods and food ingredients, 

bio-remediation, biomaterials, aquaculture, environmental biomonitoring, diagnostics, production 

processes, bioenergy etc. European policies focus attention and conspicuous part of its economic 

effort in the area of marine biotechnology in order to find competitive niches. Sufficient attention is 

given to sustainable exploitation of the uniqueness of Europe’s marine biosphere and the 

understanding of its biodiversity and natural heritages. 
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AIM OF THE THESIS 
 

 

 

 The purpose of the experimental activities was the identification of new marine resources for 

biotechnological applications. First part (Section 1) of the thesis describes the attempt to redesign a 

new role for an “old” marine model organism, the sea urchin Paracentrotus lividus. This work aimed 

to develop useful molecular tools for the in vitro eco-toxicological or antiproliferative assays, with 

possible application for in situ assessment of marine environment health.  

With a bioinformatic approach twelve key genes involved in some of the principal death cell signaling 

pathways were annotated in P. lividus genome, using orthologous relationship with well-studied 

Homo sapiens cell-death genes. Sea urchin embryos and human cell lines were treated with the same 

marine pure compound (heptadienal), in order to characterize the molecular pathways activated after 

the treatment and to compare the response between two such evolutionary distant organisms. This 

will help in understanding the degree of conservation of relevant pathways involved in the response 

of cell and organisms to stress induced by toxicants. 

Second part (Section 2) of the thesis focuses on the discovery and characterization of new 

natural products from marine microalgae using different approaches. In particular, Alexandrium 

andersoni was studied for the potential antiproliferative activity of this dinoflagellate on two very 

resistant cancer cell lines, lung adenocarcinoma (A549) and colorectal carcinoma (HT-29). Absence 

of in vitro cytotoxicity on normal cell lines was also evaluated to verify the specificity of the anti-

proliferative activity against tumour cell lines. Using a molecular biology approach, extracts and SPE 

fractions of this species were used to investigate the activation of different cell death signaling 

pathways in the two tumor cell lines tested. Cell cycle analysis was also carried out to better 

characterize the phase in which the block of proliferation occurs.  

Tetraselmis suecica was the object of a study for the identification and characterization of 

compounds with antioxidant property and activation of repairing mechanisms following oxidative 

damage. To this end, in vitro human cell line and ex vivo human skin model were used. Viability 

assays were performed for the assessment of the desirable recovery effect of the ethanol/water crude 

extract of T. suecica after decrease of cell and tissue viability induced by well know oxidizing agent 

(H2O2). The interesting effect detected, was further analysed at the gene level in order to demonstrate 

the involvement of anti-inflammatory and repairing key molecular factors, and results corroborated 

at biochemical level. 

This thesis intend to strongly demonstrate the wide range of opportunity that could offer the 

marine environment. The diversified marine world can take advantage from human research activities 

addressed to the identification of new biomonitoring tools and innovative techniques for the 

conservation, protection and bioremediation of the seas, but also humans can identify and exploit new 

natural marine resource for an ecosustainable concept of economy for pharmacological industries and 

healthcare sector.   
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SECTION 1 

 

 

 

The marine model organism Paracentrotus lividus: 

an established marine model organism for new 

biotechnological applications 
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CHAPTER 1.  
 

Introduction 
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1.1  The sea urchin model Paracentrotus lividus: an overview 

 

Sea urchin represented for more than 150 years an ideal marine model system for a wide range 

of experimental purposes, trying to answer to fundamental biological questions. For well over a 

century, a huge number of seminal discoveries have provided insights that dramatically influenced 

several fields of biology. Their relative abundance along coasts, the large size of adults, clarity and 

large size of their eggs (and relative embryos) and the simplicity with which experiments can be set 

up on gametes and embryos and the ease of perturbation of embryo development made the sea urchins 

a favourite target for early works in many investigations. For these reasons, sea urchins have been 

one of the most popular marine organisms utilised for studies in a wide range of scientific disciplines, 

such as reproductive biology (Vacquier, Swanson, and Hellberg 1995), embryology (Davidson, 

Cameron, and Ransick 1998; Lee et al. 1999), toxicology (Dinnel et al. 1989), gene regulation 

(Davidson et al. 2002), as well as evolutionary biology (Peterson, Cameron, and Davidson 2000).  

The adult body is characterized by pentamerous symmetry, having a central plate with five 

regions arranged around it. The typical size of adult animals ranging from 6 to 12 cm, but exist also 

larger sea urchin species that can reach up to 36 cm (for some Indo-Pacific sea urchin species). The 

entire body can be divided equatorially into upper part called aboral hemisphere and bottom part 

called oral hemisphere (figure 1.1). 

 

 

 

 

 

 
  

FIGURE 1.1: Sea urchin Paracentrotus lividus in the marine environment. (modified from 

www.marinespecies.org ) 

http://www.marinespecies.org/
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A ring with 10 plates characterizes aboral hemisphere, which contains periprocto, the anal 

region of the animal. The madreporite (or madreporic) plate constitutes another important structure 

present in aboral hemisphere, having the role of connection between the liquid of the aquifer system 

and external environment. The madreporite plate is connected to the ring canal, which in turn is joined 

with the radial canals. This apparatus allow the sea urchin movements, using sea water brought from 

the external environment and canalized into the tube feet. 

The oral hemisphere is the side facing the substrate, containing a mouth in the middle of this 

area. The mouth can be easily identify by the typical presence of the apparatus used to chew, 

composed by 5 teeth, operated by a complex system of plates and muscles called Aristotle's lantern; 

this structure is surrounded by peristomal membrane (a membranous layer). 

Respiration occurs through the ambulacral pedicels, which allow gas exchange and the 

entrance of oxygen into the boby. Most animals possess five pairs of external gills, distributed all 

around the mouth. When the animal is low on oxygen, fluid can be pumped through the gills interiors, 

using muscles associated with the lantern. Tube feet could also function as additional respiratory 

organs, creating secondary sites of gas exchange. 

At the end of sea urchin spines there are the pedicellariae, with different morphologies and 

relative different functions. Pedicellaria can be with suction-cup at the end, used for locomotion and 

for holding stones and snails through which some species of sea urchins use to cover their body, and 

pedicellaria with a small hollow spindle at the end used as defense against enemies, by injection of 

toxic poison (some examples are Diatema sp., and Echinotrix sp.). 

Sea urchins are able to rapidly regenerate all these external appendages described 

(pedicellariae, tube foot and spines), as well as the wounds or lesions of the shell, by a regeneration 

process of the skeleton.  

The reproductive system is organized in five separate gonads connected together by 

mesenteric filaments at the inner surface of the inter-ambulacral areas. When gonads are mature, they 

appear orange and swollen. Once mature, gonads extend from the aboral hemisphere, where they can 

communicate with the external marine environment, almost to the lantern of Aristotele (Lawrence, 

2013). 

Among several species of sea urchins with applications in science as model organisms, 

Paracentrotus lividus have gained a dominant presence in many European research institutes. 

Geographically, it is largely distributed throughout the Mediterranean Sea and in the Atlantic 

northeast, from Scotland and Ireland to southern Morocco and Canary islands, including the Azores. 

This species of sea urchin is particularly common in coastal habitat where winter water temperatures 

range from 10 to 15°C, and summer water temperatures range from 18 to 25°C. In fact, its temperature 

limits correspond to around 8°C winter and 28°C summer isotherms, respectively. A seasonal 

reproductive annual cycle that varies among species characterize the adult animals. Depending on the 

variation of specific temperatures every years, the reproductive period of P. lividus could be 

considered from December to May. 
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P. lividus belong to the Parachinidae, a family of the phylum Echinodermata (table 1.1). Due 

to their position in the phylogenetic tree, Echinoderms are considered a phylum in the direct 

evolutionary line leading to the vertebrates. In fact, it is important to remark that sea urchins, 

Hemichordates and other echinoderms, occupy a key phylogenetic position as the only non-cordate 

deuterostomes. For this reason, sea urchin has been broadly utilized to better describe molecular, 

embryonal and morphological repercussion of many stress factors able to induce diseases and 

disorders in marine environment and humans.    

 

 

 

 

 

TABLE 1.1: Scientific classification of the sea urchin Paracentrotus lividus 

 

Kingdom Animalia 

Phylum Echinodermata 

Subphylum Echinozea 

Class Echinoidea 

Subclass Euechinoidea 

Infraclass Carinacea 

Superorder Echinacea 

Order Camarodonta 

Infraorder Echinidea 

Family Parechinidae 

Genus Paracentrotus 

Species Paracentrotus lividus 

 

 

 

 

 

As deuterostomes, sea urchins have developed the anus from the blastopore and the mouth 

origin from the opposite cavity. A comparison between two so different organisms as humans and 

sea urchins could seems, at first glance, awkward. The sea urchin body has radial symmetry and a 

globose form with no proof of a head, whereas humans are bilaterally symmetrical with a complex 

head containing sensory structures. However, sea urchins lie on the same major branch of the tree of 

life (the deuterostomes) to which humans belong. Even though the sea urchin form differs radically 

from that of vertebrates, they share many of the same gene families. Echinoderms diverged very early 

from the major lineage of the deuterostomes; for this reason their genomes reflect the basic qualities 
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of this lineage and inform to a deep reach of time the evolutionary changes leading to the human 

genome. 

P. lividus is typically a subtidal species, living from the mean water mark down to 70-80 

meters (Harmelin et al. 1980; Crook et al., 2000); these animals live in contact with the seabed or 

otherwise fixed to a solid substrates. It is an herbivore with a variable impact on surrounding 

environment that might depends by population density in that specific area. Likely to other rock 

burrowing species, P. lividus can switch from mobile (grazing) to sedentary (drift-feeding) feeding 

when in burrows (Granville, 2008). 

P. lividus, similarly to many sea urchin species, have a globular and regular shapes and all 

body is covered with robust spines. This external defensive structure is formed by calcium carbonate 

mixed with organic matter; the length of spines differs according to the genus (Smith 1999; Su et al., 

2000). 

The developmental process of sea urchins is characteristic of many marine invertebrates. Sea 

urchins are gonochoristic; individual adult animals aggregate in marine environment before spawning 

and then, after appropriate stimulations, they release eggs and sperm into the surround water column 

for an external fertilization. 

The sea urchin eggs are typically spherical and very large (with a diameter of about 0.1 mm) 

and non-motile, containing a small amount of yolk. The eggs are internally homogeneous, containing 

uniformly distributed yolk granules and other intracellular organelles. The external region of the 

ovum cytoplasm, referred to as the cortex, includes numerous cortical granules underlying the egg 

plasma membrane, or oolema. The sea urchin eggs include two egg envelopes. The vitelline envelope 

is the primary egg envelope (an extended glycocalyx) and it is located just outside the oolema. The 

secondary egg envelope, the jelly coat, is a thicker coat around the ovum. It consists of several 

glycoprotein components, some of which have important roles in the pre-fusion fertilization 

processes. Once eggs are in contact with external sea water, jelly coat undergoes a swelling 

phenomenon.  

Sea urchin sperms are very small gametes, with a head and a tail. The head appears ovoid and 

contains a pair of centrioles, the acrosome and the nucleus. The acrosome plays several important 

roles in fertilization, providing hydrolytic enzymes for penetration of the egg envelopes and for 

gamete fusion. The nucleus contains highly condensed chromosomes. The tail contains mitochondria 

and microtubules, essential for the movement. Under concentrated conditions (inside the adult 

animal), sea urchin sperms are immobile, probably due to the high carbon dioxide concentration. 

When dispersed in sea water (in diluted conditions), sperms become extremely motile. Once sperms 

are activated, their ability to participate in fertilization is rapidly lost after few minutes. 

Fertilization, the union of a male and female gamete producing a zygote, consists of two fusion 

events. The first event is the gamete fusion, that consists in the fusion of the sperm and egg plasma 

membranes. The second event is represented by the pronuclear fusion, that is the fusion of the male 

and female haploid pronuclei. Gamete fusion results in the activation of the eggs. As a result, the 

metabolically quiescent eggs are stimulated to organise its developmental blueprint. Pronuclear 

fusion restores diploid condition and produces a genetically unique entity.  

When sperms contact eggs they become bound to the jelly coat. This sperm-egg binding 

represent the first step and it is due to the interaction of fertilizin, one of the components of the egg 

jelly, and antifertilizin, associated with the sperm plasma membrane. The first two processes, 

activation of the sperm and sperm egg binding, are easily observed with light microscope. Following 

sperm egg binding, the acrosome reaction occurs; hydrolytic enzymes are released allowing the sperm 
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to penetrate the jelly coat and make contact with the vitelline envelope. At this point the first fusion 

event of fertilization, plasma-membrane fusion or gamete fusion, takes place. 

Soon after the fusion process of the gametes, the creation of the fertilization envelope and the 

entrance of the sperm head into the ovum cytoplasm occur as simultaneous event. Moreover, the 

cortical granules exocytose and liberate their contents. This secretion causes a characteristic wrinkling 

of the egg surface (figure 1.2) and allow to the vitelline envelope to be lifted away from the oolema. 

The vitelline envelope and some of the cortical granule contents join and form the fertilization 

envelope. The fertilization envelope has an important role serving as barrier blocking the polyspermy 

process. The formation of the fertilization envelope is easy to observe in many sea urchins species by 

microscope, since this envelope is elevated a considerable distance from the egg surface. After gamete 

fusion, the second fusion event of fertilization occurs within 30 to 45 minutes and consists in the 

pronuclear fusion. 

 

 

 

 

 

 
 

FIGURE 1.2: Pictures taken with inverted microscope. (A) Mature egg of the sea urchin 

Paracentrotus lividus. (B) Motile sperms of the sea urchin Paracentrotus lividus. (C) Egg of the sea 

urchin Paracentrotus lividus 4 minutes after fertilization event. 
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During the following cleavage processes, the single-celled zygote is converted into a 

multicellular embryo through rapid and repeated mitotic cell divisions. During this phase of 

development, there is no growth in term of size of the embryo. As the single cell is divided into many 

cells, the ratio of cytoplasmatic to nuclear volume of the blastomeres is increased, allowing for more 

effective nuclear-cytoplasmic interactions. In addition, the cytoplasmic areas containing specific 

developmental information are segregated into different cells of the embryo. This segregation of 

developmental potential is a fundamental finely regulated process for later cell differentiation. 

Cleavage of sea urchin embryos is radial holoblastic, since the cleavage furrow cuts through the entire 

dividing cell. Moreover, the cleavage occurs radial, the cleaving embryo is radially symmetrical, and 

with one exception equal, since the cells produced at each cytokinesis are equal in term of size. 

The two-cell stage is the first cleavage event and (figure 1.3) occurs 60 to 90 minutes after 

gamete fusion, depending on the sea urchin species and on the experimental conditions. The plane of 

the cleavage furrow is meridional or longitudinal, passing along the animal-vegetal pole axis. The 

second cleavage is meridional and produces the four-cell stage (figure 1.3); the first and the second 

mitotic division are perpendicular to each other. The third cleavage is equatorial or horizontal, cut 

perpendicularly across the polar axis, dividing animal and vegetal hemisphere, and result in the eight-

cell stage (figure 1.3). 

However, the fourth mitotic division is completely different respect to the previous three. The 

eight cells previously formed become sixtheen blastomeres,  with two meridional divisions. The 

animal half is represented by eight cells, with the same volume, called mesomeres. The vegetal 

hemisphere undergoes an unequal equatorial cleavage, producing four larger cells, called 

macromeres, and four smaller cells, called micromeres (figure 1.3). Soon after the 16-cell embryo 

cleaves, the eight mesomeres divide to create two animal tiers, “an1” and “an2”, one staggered above 

the other. The macromeres go through a meridional division, forming a tier of eight cells below an2. 

The micromeres also divide, albeit somewhat later, producing a small cluster below the larger tier. 

All the cleavage furrows of the sixth division are on equatorial plane. The seventh division event 

produces the 128-cell stage and occurs on meridional plane, bringing the embryo to the blastula stage. 
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FIGURE 1.3: Cleavage in the sea urchin. Planes of cleavage in the first three divisions and the 

formation of tiers of cells in divisions 4–7. From: The Early Development of Sea Urchins. (modified 

from ‘Developmental Biology’. 6th edition. Gilbert SF. Sunderland, MA; 2000) 

 

 

 

 

 

 

The blastula stage is characterized by cells forming a sphere surrounding a central cavity fluid 

filled, called blastocoel. Starting from this stage, all cells have same size, rate of cell division declines 

and all are in contact on the inside with the proteinaceous fluid of the blastocoel and with the lyaline 

layer on the outside (figure 1.4). 

Approximately six to seven hours after fertilization, the sea urchin embryo enters the blastula 

stage. The blastomeres develop cilia on their outer surface. As a result of the beating of these cilia, 

the embryo will rotate within the fertilization envelope. Approximately ten to twelve hours after 

fertilization, the mid-blastula is composed of about 600 cells and hatches out of the fertilization 

envelope. The hatching process is facilitated by the blastula releases of a “hatching enzyme”, which 

is able to weaken and dissolve the membrane sufficiently for the blastula to break through. A small 

portion of long cilia, the apical tuft, develops at the animal pole of the blastula. In the late blastula 

stage the embryo becomes thicker at the vegetal pole, forming the vegetal plate.  

Gastrulation begins when the primary mesenchyme cells, which are derived from the 

micromeres and located in the approximate center of the vegetal plate region, migrate as individual 
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cells into the blastocoel. This cell movement is called ingression. During gastrulation, extensive 

cellular rearrangements occurs, usually at morphogenetic level, converting the spherical and hollow 

blastula into a multi-layered gastrula. These deep rearrangements are due to changes in cell shape and 

in some cases changes in cell affinity, and are responsible of the creation of the three germ layers: 

ectoderm, mesoderm, and endoderm.  

Following the ingression process, cells of the vegetal plate region invaginate, forming a 

depression called blastopore. As invagination of the vegetal plate region continues a blind-ended tube, 

the archenteron, is formed. The elongation of archenteron continues, due to continued cell movement 

from the surface of the embryo through the blastopore. The tip of the archenteron makes contact with 

the ectoderm opposite the blastopore. The gastrula stage (figure 1.4) and specific invagination of the 

vegetal plate region occur 20 to 24 hours after fertilization (the early process of gastrulation start 12 

hours post fertilization). Approximately six hours are required for the archenteron to move across the 

blastocoel and make contact with the ectoderm at the animal pole of the embryo. At the gastrula stage, 

embryos contain approximately 1000 cells.  

 

 

 

 

 

 
 

FIGURE 1.4: Pictures taken with inverted microscope of several developmental stage of the 

Paracentrotus lividus embryos. 

 

 

 

 

 

The prism stage is characterized by a change in the overall shape of the embryos and the 

beginning of differentiation of larval structures (figure 1.4). During the prism stage, the embryo takes 

on the shape of a rounded, truncated pyramid. At the point of contact between the archenteron tip and 
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the overlying ectoderm, the ectoderm invaginates slightly to form the future stomodaeum. At the 

stomodaeum level, embryos develop the mouth and the anterior opening of the digestive tract will. 

The anal opening of the digestive tract develops from the blastopore. Two constrictions appear in the 

archenteron subdividing it into three regions-esophagus, stomach, and intestine. The side of the 

embryo containing the stomodaeum becomes flattened forming the oral surface (referred to as the 

ventral side) of the developing larva. The blastoporal side of the embryo also becomes flattened and 

forms the anal surface (referred to as the posterior side) of the developing larva. A band of cilia 

develops around the stomodaeum. As this occurs, the apical tuft disappears and the embryo elongates 

slightly along what classically has been called the dorso-ventral axis. As a result of these changes in 

shape, the direction of movement changes so that the prism (and later the pluteus) usually moves with 

the oral surface forward. The primary mesenchyme cells begin to aggregate and differentiate into the 

triradiate spicules, forming the rudiments of the larval skeleton. The secondary mesenchyme cells 

begin to differentiate into pigment cells. 

 

 

 

 

 

 
 

FIGURE 1.5: Pictures taken with inverted microscope of pluteus larva of the Paracentrotus lividus. 

 

 

 

 

 

The fully developed pluteus larva is somewhat elongated (figure 1.5). The oral lobe appears as an 

outgrowth on the oral surface above the stomodaeum. In this developmental stage appears also two 

arms, the preoral arms that extend out from the oral lobe (also called the oral arms). Two additional 

arms, the postoral arms, appear at the larval stage and extend out from the junction of the oral and 

anal surfaces (also called the anal arms); the postoral arms are longer than the preoral arms. Due to 

changes in the shape, the developing digestive tract is bent into a J-shape and the stomach enlarges 

and fills a large part of the body of the pluteus. The sea urchin embryos reach the larval stage 48 



 

44 
 

hours after the fertilization event and form part of the zooplankton. A period of extensive feeding and 

continued larval development is required (about 28 days) before metamorphosis process to a 

miniature sea urchin occurs (the most important developmental stages of P. lividus are summarised 

in table 1.2)  

 

 

 

 

 

TABLE 1.2: schematic description of sea urchin Paracentrotus lividus embryo developmental stages 

 

Chronological development of Sea Urchin Paracentrotus lividus embryos at 19°C 

TIME (hours) Developmental stages 

0 h Fertilization event 

1 h 2 blastomeres 

2 h 4 blastomeres 

3 h 8 blastomeres 

4 h Morula (32/64 blatomeres) 

5-6 h Blastula 

10 h Swimming blastula 

12 h Early gastrula 

21-24 h Late gastrula/Prism 

48 h Pluteus 

 

 

 

 

 

 Sea urchin is one of the few model organisms considered promising by the European Centre 

for the Validation of Alternative Models (ECVAM). In addition, early and late developmental stages 

of sea urchins, and echinoderms in general, represent since long time a principal experimental model 

to investigate the mechanisms driving the developmental and differentiation processes, the 

ecotoxicological implication of chemical compounds found as environmental and food contaminants 

and also an useful marine model organisms for the study of apoptotic mechanisms of new marine 

natural compounds with antiproliferative effect. This marine model organism fully respect the 3Rs 

objectives (Reduction, Refinement, Replacement of animal experiments), that will lead to the 

reduction of vertebrate use for toxicity tests (Passantino, 2008). 

This is also support by the fact that in the last years results of the project “Sea Urchin 

Genome”, carried out by California Institute of Technology  were published, making available for the 

scientific community Strongylocentrotus purpuratus genome (Sea Urchin Genome Sequencing 

Consortium). Moreover, a consortium formed by European Research Institutes is working on the 

complete sequencing of the Mediterranean sea urchin (P. lividus). All this genomic information gives 
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new impulse at the sea urchin as marine model. In the last decade, molecular studies and bioinformatic 

investigations have gained a central role in many research institute, since genome contains all 

information regulating physiological cellular process and responsible of insurgence of many diseases. 

This new genomic knowledge support the reasonable scientific effort to validate sea urchin as 

molecular tool, in vitro and in situ, for the assessment and conservation of ocean health. 

 

 

 

 

 

 

1.2 The sea urchin Paracentrotus lividus as model organisms to study 

the effect of diatom secondary metabolites  

 

Diatoms have traditionally been regarded as providing the bulk of the marine food chain to 

top consumers and predominant fisheries. In the past, they have been considered as beneficial factor 

for the survival and growth of primary consumers such as benthic filter feeders (e.g. bivalves) and 

zooplankton (e.g. copepods). However, researchers have recently opened to doubt of the theory of 

beneficial role of diatoms in the marine food web. In the last 20 years, researchers studying the 

interactions between diatoms and copepods demonstrated a strong reduction of fertilization process 

and/or hatching success when herbivorous copepods species were fed with diatom diets. (Ianora and 

Poulet 1993; Poulet et al., 1994; Chaudron et al., 1996; Buttino et al., 1999; Ianora and Miralto 2010 

for a review). All the evidences obtained are known as the paradox of the diatoms-copepods 

interaction. The term paradox is justified by the unique negative effect induced when copepods feed 

with diatoms. In fact, the most commons negative pant-animal interactions known in the marine 

environment are related to poisoning or repellent mechanisms, but a reproductive failure induction 

was never observed before. 

Ianora and Poulet (1993) carried out the pioneer study in this new direction, demonstrating 

the blockage of the reproductive system of copepod Temora stylifera fed with mono-algal diet of 

diatom Thalassiosira rotula. More in detail, copepods kept unvaried the high eggs production for 

more than 15 days, but algal diet was able to strongly compromised the hatching success; control 

experiments were represented by same copepod species fed with the dinoflagellate Prorocentrum 

minimum. Poulet et al., (1994) hypothesized that the reduction of hatching rates in the copepod 

Calanus helgolandicus was a direct effect of unknown anti-mitotic compounds derived from diatoms, 

which arrested embryogenesis. The embryonic development of copepods was blocked when eggs 

were exposed to diatom extracts in a dose-dependent manner (Poulet et al., 1994; Ianora et al., 1995; 

Miralto et al., 1995).  

Miralto et al. (1999) carried out in field experiments, demonstrating that the hatching success of 

copepods during a diatom dominated bloom in the Northern Adriatic Sea was strongly reduced. They 

observed only 12 % of the eggs hatching respect with 90 % measured at the end of algal bloom 

condition. In the same study, Miralto et al. (1999) isolated from the bloom of diatoms (Thalassiosira 

rotula, Skeletonema marinoi and Pseudo-nitzschia delicatissima) and then characterized two C10 

short chain polyunsaturated aldehydes: 2E,4E/Z-decadienal and 2E,4E/Z,7Z-decatrienal. 
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In a more recent study, Ianora et al. (2004) have also assessed the effect of maternal diatom-

diet on the fitness of copepod offspring. The study showed a blockage of the development in all larvae 

of C. helgolandicus females fed with the diatom Skeletonema marinoi. In addition, larvae, generated 

by females fed with Skeletonema marinoi, conserved high mortality rate even if the larvae were 

recovered with control diet of the dinoflagellates Prorocentrum minimum. On the other hand, when 

the females were fed with the dinoflagellates Prorocentrum minimum and the relative nauplii were 

grown with Skeletonema marinoi, the mortality rate decreased significantly. Considering all these 

experimental results, maternal-feeding quality was demonstrated to be even more important than 

nauplia sustenance for progeny survival.  

These surprising findings have driven researchers to concentrate the attention on chemical 

studies in order to characterize the molecules responsible for these toxic effects. Thus, first 

biochemical evidences demonstrated that these uncharacterized compounds were the final products 

of a lipoxygenase-hydroperoxide lyase metabolic pathway (figure 1.6). This biochemical cascade is 

activated after mechanical breakage of algal cells, occurring during grazing by predators or 

senescence processes, and the production of secondary metabolites increases dramatically after few 

seconds. Lipoxygenases (LOXs) represent a key point involved in this biosynthetic pathway; they are 

enzymes able to catalyse insertion of oxygen to double bonds of polyunsaturated fatty acids (PUFAs). 

More in detail, lipase enzymes are activate by cell damages, which release PUFAs from cell 

membranes. These undergo immediately an oxidation and cleavage process with the consequent 

formation of polyunsaturated aldehydes (PUAs) and many other secondary metabolites, collectively 

termed oxylipins (Fontana e al., 2007a and 2007b) 
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FIGURE 1.6: Biosynthetic pathway of oxylipins, starting from fatty acids. The biochemical 

mechanism involve the lipoxygenase enzimes (LOXs) in marine diatoms. R1 represents the methyl 

terminal part and  R1 the carboxylic end of C16 or C20 fatty acid precursors (modified from Fontana 

et al., 2007b). 

 

 

 

 

 

Diatom species and strains are able to produce specific type and different quantity of oxylipins 

(Pohnert et al., 2002, Taylor et al., 2009); these high specificity produce variable effects on 

zooplankton grazers (Ianora and Miralto 2010) (figure 1.7). 
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FIGURE 1.7: An overview of oxylipins synthetized in the marine diatom species Skeletonema 

marinoi, Chaetoceros socialis, Chaetoceros affinis, Thalassiosira rotula and Pseudo-nitzschia 

delicatissima (from Ianora and Miralto, 2010).  

 

 

 

 

 

Plants produce a plethora of secondary metabolites with signalling functions. In particular, 

terrestrial plants are able to produce compounds belonging to oxylipin family. This mechanism is 

finely regulated, in fact when the production of oxylipins overtake a threshold, lipoxygenase activity 

is inhibited (Spiteller 2003), suggesting that the process reaches a balance between consumption of 

precursors (Polyunsaturated Fatty Acids, PUFAs) and synthesis of oxylipins. 

In marine environment the regulation of oxylipin production is slightly different. Diatoms, 

after mechanical damage, produce continuously oxylipins such as Polyunsaturated Aldehydes 

(PUAs), because, at the sea level, the effect and relative efficacy of released compounds are constantly 

interfered by the dilution occurred in seawater. In this way, PUAs, as soon as produced by diatoms, 

are carried away and the production process continues until precursors are available. This specific 

regulation of the defence strategy in marine environment allows maintaining a high local 

concentration around diatoms (46.9, 4.7 and 0.5 μmol PUA L−1 at a distance of 1, 10 and 100 μm 

from the cell surface, respectively). Thus, high local concentration contrasts the potent dilution effect 

created by the sea, avoiding decline of secondary metabolites efficiency (Ribalet et al., 2007b). 
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 At this important study, followed further chemical methodology able to identify a larger 

amount of PUAs from diatoms, expecially from Skeletonema marinoi and Thalassiosira rotula. 

Subsequently an expanded range of PUAs were identified (figure 1.8), including 2E,4E heptadienal; 

2E,4Z-octadienal; 2E,4E-octadienal; 2E,4E-2,4,7-octatrienal and 2E,4Z decadienal (Pohnert 2000, 

2002; Pohnert and Boland, 2002; d’Ippolito et al., 2002a, 2002b, 2003).  

 

 

 

 

 

 
 

FIGURE 1.8: Chemical structures of diatom-derived polyunsaturated aldehydes (From Ribalet, 

2007) 

 

 

 

 

 

The metabolic pathway and all enzymes involved in the PUAs biosynthesis, as said before, 

seem to be induced soon after membrane damage and for this reason PUAs are, as principal function, 

the direct responsible of anti-predator signalling. However, researchers have also identified other 

PUAs related functions, each specific of certain concentration of the signalling molecules. In fact , 

Spiteller (2003) hypothesized three different types of physiological responses induced by PUAs and 

their precursors. The nanomolar levels or lower amounts of oxylipins constitute the cell division and 

cell proliferation signalling, while larger amounts of oxylipins induce death signalling. In particular, 

micromolar concentrations of signalling molecules are able to induce specifically necrosis, while very 

large amounts of oxylipins activate apoptotic cell death.  
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A confirmation at this thesis coming from the study of Casotti et al., (2005), where the marine 

diatom Thalassosira weissflogii treated with very large amounts of decadienal (up to 6.4 μM) 

exhibited a clear growth inhibition due to activation of the programmed cell death. Recent study 

assigned at PUAs two separate roles when they acting on their direct producers or on other species. 

In fact, Gallina et al., (2014) described that Skeletonema marionoi, a PUAs producing species, 

recognizes itself PUAs signal as intra-population infochemicals, as a chemical that transmits 

information in an interaction between two individuals, inducing in the receiver a behavioural or 

physiological response (Vet and Dicke, 1992). On the other hand, Pheodactylum tricornutum, a no-

PUAs producing species, transduces PUAs input as allelochemical mechanism, as process involving 

secondary metabolites that influences the growth and development of biological systems (Roger et 

al., 2006). 

At the end, PUAs could be synthetized and released even if there is not a cell damage or 

grazing activity. Watson and Satchwill (2003) detected PUAs in culture medium of the freshwater 

chrysophytes, growth as mono-species culture in normal conditions; thus, they confirmed  that these 

oxylipins may play a role not only in the chemical defence mechanisms against grazers, but also as 

signalling molecules within diatom populations. The same role of the PUAs was confirmed by more 

recent studies with marine diatoms. Vidoudez et al. (2011) have quantified the release of PUAs in the 

Adriatic Sea in order to study its critical roles in chemically mediated plankton interactions, acting as 

dissolved infochemicals. In situ, PUAs are produced at the end of bloom as effect of cell 

disintegration. 

 All these studied described above had shed light on PUAs, their chemical characterization and 

molecular effects and ecological roles. Moreover, PUAs are commercially available, relatively cheap 

and enough stable to be used for laboratory experiments. 

Few studies are carried out about the deleterious effects of algal toxic compounds on 

gametogenesis, gamete functionality, fertilization, embryonic mitosis, and larval fitness. By the way, 

the effects of oxylipins, produced by diatoms, on fertilization and development processes are the most 

comprehensively explored among marine natural products. First studies demonstrated that diatoms 

producing oxylipins were able to interfere with pronuclear fusion process. In fact, Poulet et al. (1995) 

studied the effect of diatom diet (Phaeodactlylum tricornutum) on eggs of copedod Calanus 

finmarchicus and Buttino et al. (1999) treated P. lividus eggs with different diatom extracts. In both 

studies has been observed a failure of the pronuclear fusion. Some year later, Hansen et al. (2003) 

demonstrated that extracts of Phaeocystis pouchetii were able to reduce drastically the fertilization 

success of the sea urchin (Sphaerechinus granularis) eggs. In addition, interference with sperm 

functions and its fertilization potential was investigated. Ianora et al. (1999) fed the copepod Temora 

stylifera with different diets of dinoflagellates, which were able to induce a strong decrease of sperm 

quality. Tosti et al. (2003) investigated the effect of PUAs on first stages of fertilization processes in 

Ciona intestinalis. They demonstrated the inhibitory effect of decadienal and decatrienal on the 

fertilization-current generated when sperm-egg binding event occurs and on the plasma membrane 

voltage-gated calcium currents.  

 Many studies have largely demonstrate also the arrest of embryogenic process induced by 

diatom-derived oxylipins. Poulet et al. (1994) gave the first contribution in this field, studying the 

Calanus helgolandicus embryos exposed to Thalassiosira rotula extracts. Poulet et al. described in 

his study that the point of cell division arrest could change, but occur, depending on the age of the 

eggs before exposure, either prior to fusion of male and female pronuclei, or during mitosis. However, 

embryos underwent stonkingly abnormal development. The abnormality included a dark brown, 
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opaque outer membrane, globular cytoplasm, blockage of pronuclei, or dispersed chromatin scattered 

in the egg matrix of non-hatched eggs. In the same decade, Buttino et al. (1999) investigated the effect 

of extracts of Thalassiosira rotula on sea urchin and ascidian development. The study report a 

hatching inhibition with consequent blockage of tubulin organization, and inhibition of chromatin 

condensation. The cell division process is arrested due to an activation of microtubule 

depolymerisation, observed from pronuclear fusion to telophase. All these effects induced by diatom-

derived oxylipins were directly connected with the activation of programmed cell death, although has 

been observed in the studies reported above different responses in copepods and sea urchins (Romano 

et al. 2003).  

 To date, only few studies are present in literature on the biological and chemical 

characterization of the other oxylipins. Fontana et al. (2007b) investigated the chemical compounds 

produce by two diatoms, which did not produce PUAs, but which, similarly to PUA-producing diatom 

Skeletonema marinoi, interfere with hatching success. Fontana et al., studying Chaetoceros socialis 

and Chaetoceros affinis better explained all a series of past laboratory and field results showing how 

diatoms damage zooplankton grazers even in the absence of polyunsaturated aldehydes production. 

More in detail, they showed that copepod dysfunctions can be also induced by highly reactive oxygen 

species (hROS) and a blended mixture pf secondary metabolites produced by diatoms, including fatty 

acid hydroperoxides (FAHs) and oxylipins such as Hydroxy-EicosaPentaEnoic acids (HEPEs) and 

epoxyalcohols (HepETEs); these molecules displayed teratogenic and proapoptotic activities agaist 

zooplankton grazers. All these finding are sufficient to assign to oxylipns a crucial role in plant 

defence mechanisms, because they are able to induce the activation of dangerous signalling against 

herbivore. Moreover, oxylipins are though as protective compounds, with antibacterial and wound 

healing functions.  

In the marine ecosystem, not only diatoms produce oxylipins. In particular, the red alga 

Rhodymenia pertusa produce four oxylipins including 5-HEPE, suggesting that this specie contains 

a unique 5R-lipoxygenase system (Jiang et al., 2000). Moreover, the brown kelp Laminaria digitata 

synthetize the 15-HEPE and its production is triggered soon after copper-induced stress (Gerwick, 

1994; Ritter et al., 2008); the same molecule was found in the microalga Nannochloropsis gaditana 

(Iqbal et al., 2013). The 15-HEPE was study also for its anti-inflammatory activity. In fact, Iqbal et 

al. (2013) demonstrated the inhibition of the Tumor necrosis factor-α (TNF-α) induced by the 15-

HEPE. Other investigation in this research line can lead to the identification of novel oxylipins or 

secondary metabolites with crucial role in the chemical communication and defence mechanisms. 

The study of chemical structure and ecological role of these secondary metabolites should be followed 

by the investigation of their biological effect on other species, included human and animals. 

Therefore, more studied and efforts are still essential to better understand the role and the effects of 

these chemical mediators in the marine environment. These potential results can be utilized for 

pharmaceutical applications, investigating the bioactivity of marine compounds on mammalian cells 

and responding to the strong demand of new drug from emerging and established disease. 

 

 

 

 

 

 

 



 

52 
 

1.3 PUAs: morphological and molecular effects on Paracentrotus lividus 

and human cell lines 

 

The morphological studies of the effect of PUAs has been carried out mainly using decadienal, 

as the first oxylipins chemically characterized that is also commercially available. More than a decade 

ago, one of the first study on the mechanisms underlying the effect of decadienal (Romano et al. 2003) 

described the pro-apoptotic effect induced by decadienal on sea urchin embryos. In this early study, 

researchers assessed the ability of the decadienal to specifically activate enzyme with caspase-like 

function in sea urchin embryos, using commercially available kit developed for vertebrate model 

organisms. This kit contains a fluorescent substrate, the acetylated peptideAc-DEVD-AFC 

(carbobenzoxy-Asp-Glu-Val-Asp-7-amino-4-trifluoromethyl coumarin), which releases the 

fluorescent AFC moiety after enzymatic hydrolysis (figure 1.9). 

 

 

 

 

 

 
 

FIGURE 1.9: Caspase-3-like activity in Paracentrotus lividus embryos. Values represented (means 

± S.D.) originate from three different biological experiment (modified from Romano et al., 2003) 

 

 

 

 

 

 

Sea urchin embryos treated with  5 μg ml–1 of decadienal showed caspase-3-like activity 

already  after 60 minutes of exposure, with maximum activity after 120 minutes of incubation (figure 
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1.9). In order to demonstrate that proteolytic activity measured was attributable univocally to the sea 

urchin caspase-3-like enzymes, researcher performed the same experiment in the presence of a 

caspase-3 specific inhibitor (Z-VAD-FMK). In this case, the release of AFC moiety drastically 

decrease to zero. Moreover, the activation of caspase-like enzymes was dose-dependent, because was 

more evident and occurred earlier if embryos were treated with higher concentration of decadienal 

(10 μg ml–1). 

Other PUAs, such as decatrienal, octadienal, octatrienal, tridecanal and heptadienal  were 

investigated for their deleterious effects on early and later developmental stages of sea urchin 

embryos (Romano et al., 2010). All these secondary metabolites were able to block cell cleavage in 

P. lividus. Heptadienal arrests the cell cleavage at 27.27 μM, octadienal at 16.13 μM, octatrienal at 

11.46 μM and decadienal was the most active among these compounds blocking cell division at 5.26 

μM. The saturated aldehyde tridecanal, also found in diatoms, did not interfere with first cleavage up 

to 25 μM. These data demonstrate a direct proportion between the chain length of PUAs (from C7 to 

C10) and blockage effect of the cell cleavage. Moreover, researchers analysed the effect of 

decadienal, heptadienal and octadienal on sea urchin hatching success. They clearly showed that the 

three PUAs exerted a very strong dose-dependent effect, with decadienal showing somewhat stronger 

effect than the other two aldehydes. In fact, 3.0 μM of decadienal reduced hatching viability to <50%, 

whereas the other two aldehydes induced a slight reduction at the same concentration (>90% of 

hatching viability). The three PUAs induced a total inhibition of hatching viability at different 

concentrations: 3.95 μM for decadienal, 8.08 μM for octadienal and 11.36 μM for heptadienal. This 

confirm that longer-chained aldehydes had somewhat stronger effects than shorter-chained aldehydes 

(figure 1.10). Another interesting finding in Romano et al. (2010) was to observe that when 

decadienal, octadienal and heptadienal were added as a mixture to the medium containing a 1:1:1 

ratio did not occur inhibition effect on cell cleavage and only a slightly increased effect on egg 

hatching viability, demonstrating a total absence of synergistic effects. 
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FIGURE 1.10: (A) Percentage of cleavage inhibition in sea urchin embryos following PUAs 

treatment. (B) Percentage of hatched sea urchin larvae. 2-trans,4-trans-decadienal (●), aldehyde mix 

(●), 2-trans,4-trans-octadienal (♦), 2-trans,4-trans,7-octatrienal (□), 2-trans,4-trans-heptadienal (▼) 

and tridecanal (■). Values (means ± S.D.; N = 600) are the results of three different biological 

experiments (modified from Romano et al., 2010). 

 

 

 

 

 

 

Romano et al. (2010) tested also the effect of decadienal at lower concentration (than 6.58 μM 

that induce the arrest of cleavage) on arrest of cell division. From 1.32 to 5.26 μM of decadienal were 

used to treat sea urchin embryos soon after elevation of fertilization envelope. These decadienal 
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concentrations increased the number of abnormal sea urchin plutei and delayed the development of 

larvae or embryos, which showed various degrees of malformations with the increasing of 

concentrations tested (figure 1.11). At lower concentrations (1.32-2.63 μM), malformations were less 

severe with a shortening of spicules and arms. At higher concentrations (3.95-5.26 μM), larvae were 

similar to blastula and gastrula stages, showing severe abnormalities or blebbing associated with 

apoptosis. 

 

 

 

 

 

 

 
 

FIGURE 1.11: (A) Paracentrotus lividus 48 hours plutei after incubation in decadienal at 1.32 μM 

(b), 2.63 μM (c), 3.95 μM (d) and 5.26 μM (e) compared to control embryo (a). (B) Percentage of 

abnormal sea urchin larvae after 48 hours of treatment with  several decadienal concentration ranging 

from 1.32 μM to 6.58 μM. Control is reported as 0 μM decadienal concentration. Yellow bars = 

retarded larvae; blue bars = abnormal pluteus larvae; red bar = abnormal gastrulae and blastulae; 

green = dead pre-hatched embryos. Values (means ± S.D.; N = 600) are the results of three different 

experiments (modified from Romano et al., 2010). 
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In a more recent study, Romano et al. (2011) assessed the effect of decadienal on the 

mitochondrial functionality of the P. lividus embryos. Mito tracker was used in this work, a dye 

staining mitochondria in live cells, which accumulates inside the organelle, depending on membrane 

potential. Sea urchin eggs, before to be fertilized, were treated with 5 μg ml-1 of decadienal in filter 

seawater and, 20 minute post fertilization, Mito Tracker was added to marks specifically active 

mitochondria. The  figure 1.12 shows the fluorescence due to the Mito Tracker  that dramatically 

decreased with respect to the control, indicating that decadienal impairs mitochondrial functionality. 
 

 

 

 

 

 

 
FIGURE 1.12: Active mitochondria visualised by the mitochondrial-specific fluorescent dye Mito 

tracker within Paracentrotus lividus egg before the fertilization (A and B); egg 10 minutes after the 

elevation of the fertilization envelope (C and D); embryos at 50 min post fertilization (E and F); 

embryos at 50 min post fertilization incubated with 5 μg ml-1 decadienal (G and H). Upper panels are 

images in transmitted light; lower panels are the same images in fluorescent light. (Modified from 

Romano et al., 2011). 

 

 

 

 

 

 

P. lividus sea urchin embryos has recently been used as model organism to study the 

ecotoxicological effect at molecular level of marine natural compounds. Marrone et al. (2012) 

exposed sea urchin embryos at low concentration of decadienal (0.25 μg ml-1) and analysed the 

variation of expression levels of sixteen genes by Real Time qPCR. These genes are implicated in a 

broad range of functional responses, such as stress, skeletogenesis and development. The low 
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decadienal concentration was able to activate different class of genes in the sea urchin P. lividus. The 

activation of this machinery is fundamental to defend sea urchin against the toxic aldehyde, inducing 

the upregulation of heat shock protein 60 and two proteases, (hat and BP10), at the blastula stage, and 

heat shock protein 56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism 

stage. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a 

dose-dependent response of activated target genes. The researchers hypothesized a specific defence 

mechanism activate against decadienal, that Paracentrotus lividus place in motion as protection 

strategy from environmental toxicants. This mechanism represents a defensome, which is a complex 

network of genes involved in many cellular response related to toxicity injuries.  

Recent molecular study carried out at Stazione Zoologica “Anton Dohrn” gave further insight 

in the molecular response induced by diatom-derived aldehydes on P. lividus (Varrella et al., 2014). 

This study investigated the variation of gene expression induced by other two ecologically relevant 

aldehydes, heptadienal and octadienal, allowing a comparison among the molecular effect of the three 

principal aldehydes. Varrella et al. (2014) described the activation of gene mechanisms induced by 

increasing concentrations of heptadienal and octadienal, hypothesising the molecular pathways 

responsible for the teratogenic  effect. In fact, they analysed 31 genes that could be potential target of 

PUAs, having a key roles in a broad range of cellular response such as stress, skeletogenesis, 

detoxification, development and differentiation. More in detail, the three aldehydes were able to 

activate stress response in sea urchin Paracentrotus lividus whyle genes related to detoxification 

process were downregulated. Moreover, they found an upregulation of some gene involved in the 

development and differentiation process. Only the genes involved in the skeletogenic processes were 

differently activated by the three PUAs. Decadienal induced a downregulation of the skeletogenesis, 

but heptadienal and octadienal produced an upregulation of some gene involved in the same 

mechanism. 

Following study used interactomic Ingenuity Pathway Analysis to show how the genes 

targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A. These 

four genes represent crucial nodes within the network, having a large number of interactions (Varrella 

et al., 2016). This study better described how  the sea urchin P. lividus can use its defensome, the 

integrated network of genes, to mount a defence mechanism against environmental toxic compounds. 

The study suggests that sea urchin can be also used as sentinel organism and bioindicator for the early 

signals of stressful conditions in the marine ecosystem 

Successively to these morphological and molecular evidences, in which was clear that PUAs 

were able to exert an antiproliferative effect on actively proliferating cells and target specific 

molecular pathway, drug discovery experiments were performed using this class of chemical 

compounds. Sansone et al. (2014) examined the effects of the three PUAs on different human cell 

lines. They studied the molecular mechanisms activated by the treatment at different concentrations 

of decadienal, octadienal and heptadienal on the lung adenocarcinoma cell line (A549), colorectal 

adenocarcinoma cell line (COLO 205) and the normal lung/brunch epithelial BEAS-2B cell line. The 

viability results revealed that PUAs have strong cytotoxic effects on both A549 and COLO 205 cancer 

cells, but the same compounds did not affect BEAS-2B normal cells. Decadienal was the strongest 

among the three PUAs tested, at all times and concentrations considered, but surprisingly, heptadienal 

was as strong as decadienal after 48 hours. On the contrary, octadienal was not able to reduce cell 

viability at levels similar  to the other PUAs. More in detail, decadienal reduced the cell viability of 

A549 at about 25% with 2 µM and at 0 % with 5 and 10 µM, after 72 hours. Moreover, the same 

compound induced a strong reduction of cell viability also in COLO205, reducing viable cell to 30%, 
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20% and 10% when treated with 2, 5 and 10 µM respectively. The heptadienal induced a reduction 

of cell viability at 70%, 50% and 0% when A549 were treated with 2, 5 and 10 µM respectively. The 

same effect was observed on COLO205, where 2, 5 and 10 µM of heptadienal induced a decrease of 

percentage in cell viability of 70%, 60% and 35% respectively. 

Sansone et al. (2014) characterized in the same study the molecular death signaling pathways 

activated by the three PUAs in A549 cells (figure 1.13). Cells treated with decadienal activated Tumor 

Necrosis Factor Receptor 1 (TNFR1) and Fas Associated Death Domain (FADD) leading to 

necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP). 

The same death signalling pathway, TNFR1/FADD/caspase pathway, was also activated by 

octadienal, but only after 48 hours. In the case of octadienal, researchers observed also an 

upregulation of RIP gene that probably is able to activate a survival pathway, in accordance with the 

results obtained, where octadienal caused less damage to the cells compared to the other two PUAs. 

In contrast, cells treated with heptadienal activated the receptor protein Fas that is a key factor able 

to induce early apoptosis mechanism without involvement of survival signals. Fas in turn activated 

FADD, which then triggers the same caspase molecular pathway induced by decadienal and 

octadienal, without the activation of RIP. 

 

 

 

 

 

 

 
 

FIGURE 1.13: Schematic representation of molecular cell death pathways activated by the three 

different PUAs in lung adenocarcinoma cell lines A549. Red arrows indicate signal transduction via 

activated by decadienal; blue arrows indicate signal transduction via activated by octadienal; green 

arrows indicate signal transduction via activated by heptadienal (from Sansone et al., 2014). 
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CHAPTER 2.  
 

Materials and Methods 
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2.1 Ethics Statement 
 

All animals were collected in the Gulf of Naples, from non protected or private areas, 

according to Italian legislation of the Marina Mercantile (Decreto del Presidente della Repubblica 

DPR 1639/68, 09/19/1980 confirmed on 01/10/2000). The study involves only sea urchin P. lividus, 

not involving any protected or endangered species. All animal procedures were in compliance with 

the guidelines of the European Union (Directive 609/86), on the protection of animals used for 

scientific purposes. 

 

 

 

 

 

 

2.2 Paracentrotus lividus collection, stimulation of spawning and 

fertilization test 
 

Sea urchins P. lividus were collected by dive operators (Gianluca Zazo and Marco 

Cannavacciuolo), operating for the RIMAR department of the Stazione Zoologica “Anton Dohrn” of 

Naples. Animals were collected from a specific site of the Gulf of Naples, called Rocce Verdi 

(coordinates of sampling point are: 40°47'50.5"N 14°12'05.8"E). Sea urchins were transported in a 

refrigerated box and brought to the research institute; animals were maintained in large tanks with 

circulating sea water, at least for 3 days to allow to sea urchin to recover from stress conditions due 

to sampling and carriage, before to use them for experimental activities. 

To obtain gametes from animals to carry out experiments, sea urchins were shaken vigorously 

and observed on the apical portion of the animal shell, where are released both eggs (that appear 

orange in colour) or sperms (that are white). If the only shaking was not efficacious, sea urchins were 

injected with a solution 2M of potassium chloride (KCl); this method generates definitely spawning 

through the contraction of muscles around the gonads. Sea urchins, soon after shaking or injection, 

were placed with the anal pole face down on a beaker containing filtered sea water (FSW) to collect 

eggs. Sperm was collected with a plastic disposable pipettes, transferred in a 1.5 ml Eppendorf tube 

and maintained dry and concentrated at 4°C until fertilization. 

At the end of the spawning, eggs where washed and separated from macro-impurity (e.g. 

macroalgae and spines) using a cotton lint and washed for three times with FSW. During all 

manipulation steps eggs were maintained in a beaker with large surface, in order to contain eggs in 

monolayer, allowing gas exchange. 

Before to start any experiment with sea urchin embryos, a fertilization test was carried out, in 

order to evaluate eggs and sperm quality and analyse the fertilization efficiency. Test was performed 

in a multiwell plate (12 well), where in 1 ml of FSW was added a drop containing eggs. The dry 

sperm was diluted 1:1000 with FSW and a drop of dilution was added to eggs; 2 minutes after 

fertilization was possible to evaluate if biological material was suitable for further in vitro 

experiments. An observation with optical microscope was enough to understand if the sperm has been 
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able to elevate the fertilization membrane and later to observe the first mitotic division. These basic 

biological processes are crucial to identify if eggs are suitable for in vitro experiments, showing 

absence of previous stress factors, which could alter the following step of experimentation and 

relative result quality. 

 

 

 

 

 

 

2.3 Setting up the in vitro experiment for the incubation of sea urchin 

embryos with the Oxylipin 

 

The purpose of this experiment was to collect samples treated with the heptadienal to analyse 

the effect of this aldehyde on target genes and proteins. In detail, Pyrex crystallizing dishes with 50 

ml of FSW were used to incubate 8000 eggs (about 150/160 eggs/ml).  

After the washing step and successfully passed the fertilization test, eggs were maintained in 

a backer with exactly 100 ml of FSW. In a multiwell plate, 3 wells were filled with 1 ml of FSW, and 

10 μL of homogeneous suspension of eggs was added in each well. These three samples were counted 

under an inverted microscope (Zeiss Axiovert 135TV microscope), in order to evaluate the number 

of eggs contained in each well. The mean of the three values represents the number of eggs present 

in 10 μL of suspension. Using a proportion formula, has been possible to calculate the volume of eggs 

suspension containing 8000 eggs to set up the incubation step. 

The oxylipin 2E,4E-heptadienal (Sigma-Aldrich, Milan, Italy) was diluted in 10 ml methanol 

in a graduated flask . The effect of methanol on sea urchin development has been already tested in a 

previous studies (Romano et al 2003). The maximum percentage of methanol concentration that do 

not interfere with sea urchin embryo development is 10%. 

The solution was then diluted in order to obtain heptadienal concentrations of 200 μM, 250 

μM, 300 μM, 550 μM and 600 μM; these concentrations were 100 time more concentrated than those 

to be tested, in order to reach the desired concentrations after the final dilution in the crystallizing 

dish containing FSW. 

The figure 2.1 shows the set up created for the 18 different in vitro incubations to obtain 

biological samples in order to study variation of gene expression after heptadienal treatment. In this 

case, 5 different concentrations were tested (2 μM, 2,5 μM, 3 μM, 5,5 μM and 6 μM), at three 

incubation times (5 hours, 21 hours, and 48 hours), with relative controls. 
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FIGURE 2.1: Schematic representation of in vitro experiment for the treatment of sea urchin 

Paracentrotus lividus embryos with different concentrations of heptadienal (2 μM, 2,5 μM, 3 μM, 

5,5 μM and 6 μM) for 5 hours, 21 hours and 48 hours. 

 

 

 

 

 

 

In each crystallizing containing FSW was added the right amount of unfertilized eggs. 500 μL 

of the different stock solutions of heptadienal (100 time more concentrate) were added to crystallizing 

containing 50 ml of FSW to obtain 2 μM, 2,5 μM, 3 μM, 5,5 μM and 6 μM. Eggs were incubated for 

10 minutes with oxylipin at room temperature, before to proceed with the fertilization.  

Dry sperm was diluted 1:1000 (5 μL of sperm in 15 ml of FSW) and added to each 

crystallizing, in accord to previous study (Romano et al., 2010). In detail, 180 μL of diluted sperm 

was added to each crystallizing containing 50 ml of FSW and 8000 eggs. Sea urchin eggs, soon after 

treatment with heptadienal and fertilization, were maintained in a thermostatic chamber with 12-12 

hours light:dark cycle at 19-20°C. 
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2.4 Samples collection for gene expression analysis in Paracentrotus 

lividus  
 

To stop the incubation of sea urchin embryos, 50 ml of embryo culture for gene expression 

experiments were centrifuge in Falcon tube at 3600 x g, for 15 minutes, at 4°C. Supernatants were 

discard and pellets were transferred in 2 ml Eppendorf tube and centrifuge again at 3600 x g, for 15 

minutes, at 4°C to remove all residual FSW. Pellets obtained were quickly frozen in liquid nitrogen 

and then stored at -80°C for further experimental steps. 

These in vitro incubation experiments were conducted in 5 replicates, collecting eggs from 5 

different females each fertilized with a mix of sperm from different males. Each replicate experiment 

was carried out in different working days. 

At the end of incubation time (48 hours), 1 ml from each crystallizing dish were fixed using 

2% formalin to evaluate, though a morphological analysis, the entity of malformations generated after 

incubation of sea urchin embryos with the oxylipin (see 4.1 paragraph, in chapter 3, Results). 

More in detail, about 120-140 fixed plutei were evaluated using a microscope and considered 

normal or abnormal larvae following the classification of malformations reported in Carballeira et al. 

(2012). The number of malformed plutei at 48 hours after fertilization, incubated with different 

oxylipin concentrations, was compared to the control, in order to obtain the percentage of 

malformation generated by heptadienal exposure. 

 

 

 

 

 

 

2.5 A bioinformatic approach for identifying coding DNA and 

aminoacid sequences of a set of human proteins involved in cell 

death pathways 

 

The purpose of the thesis was the investigation of death cell signaling pathways activated 

when sea urchin embryos were incubated with a pure marine compound, analysing the effects of 

heptadienal at specific developmental stages. For this reason, twelve key genes were selected in order, 

never studied before, to understand which specific cell death mechanism was activated by the 

oxylipin. 

The thesis project focused its attention on searching, with several bioinformatic tools, coding 

regions for proteins playing key role in three of the principal cell death signaling pathways, in order 

to understand how sea urchin organizes, at molecular level, cell death response. These genes are listed 

in the Table 2.1 and are classified in 3 clusters: 

 

 

 

- Extrinsic apoptotic pathway:  

Apoptosis Inducing Factor, Mitochondria Associated 1 (AIFM1); 
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Receptor Interacting Serine/Threonine Kinase 4 (RIPK4);  

Tumor Necrosis Factor Receptor 16 (TNFR16); 

Tumor Necrosis Factor Receptor 27 (TNFR27); 

Nuclear Factor Kappa B (NF-kB) 

 

- Intrinsic apoptotic pathway: 

BCL2 Associated X Protein (BAX); 

B-Cell CLL/Lymphoma 2 (BCL2);  

Poly ADP-Ribose Polymerase 1 (PARP1) 

 

- Autophagic pathway:  

Beclin 1 (BECN1);  

PTEN Induced Putative Kinase 1 (PINK1);  

Unc-51 Like Autophagy Activating Kinase 1 (UKL1);  

Unc-51 Like Autophagy Activating Kinase 3 (UKL3); 

 

 

 

These genes, with the exception of NF-kB, have not a nucleotide sequence available online. 

The sequences annotated using several bioinformatics tools available online: the algorithm BLAST 

(Basic Local Alignment Search Tool, available at www.ncbi.nih.nlm.gov; Altschul et al., 1997); 

GenScan (available at http://genes.mit.edu/GENSCAN.html); Reverse and Complement (available at 

http://www.bioinformatics.org/sms/rev_comp.html); EMBOSS Transeq (available at 

http://www.ebi.ac.uk/Tools/st/emboss_transeq/). 

The National Center for Biotechnology Information (NCBI) was used as preferential 

bioinformatic database to search nucleotide and aminoacid sequences with relative annotations 

already available online.  

Bioinformatic analysis started searching the Homo sapiens proteins listed above. Each 

sequence was used to find the relative orthologous protein from Strongylocentrotus purpuratus 

running a Blastp search, when it was not possible to directly identify the P. lividus candidate. For this 

purpose, SpBase (http://www.spbase.org/SpBase/search/) represented the genome sequencing 

database used for the purple sea urchin (S. purpuratus). 

Therefore, once obtained human protein of interest and its clear orthologs from S. purpuratus, 

they were used to run a tBlastn search against the P. lividus genome database (http://octopus.obs-

vlfr.fr/blast/oursin/blast_oursin.php), in order to identify the genomic region coding for the ortholog 

protein. The identified contig or scaffold were processed with GenScan (Burge and Karlin, 1997) for 

predicting the genomic locus and exon-intron structure of genes of interest. This step allowed to 

obtain in silico, starting from contig/scaffold without any annotations, all possible coding DNA 

sequences (CDSs) and the relative aminoacid sequences prediction, with a good approximation. 

The following step required a multiple protein alignment, performed by using ClustalW of all 

possible with those of H. sapiens and S. purpuratus. The only one aminoacid sequence predicted with 

high homology with H. sapiens and S. purpuratus was expected result and was validated running a 

Blastp of the aminoacid sequences prediction and a Blastn of the CDS selected against all sequences 

of NCBI database. This last check level of the analysis was essential to confirm that our in silico 

http://www.bioinformatics.org/sms/rev_comp.html
http://www.ebi.ac.uk/Tools/st/emboss_transeq/
http://octopus.obs-vlfr.fr/blast/oursin/blast_oursin.php
http://octopus.obs-vlfr.fr/blast/oursin/blast_oursin.php
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prediction, obtained by bioinformatic tools and criteria, was highly conserved in phylogenetically 

close organisms and therefore reliable.  

At the end of this bioinformatic analysis, ClustalW was used to align contig/scaffold of P. 

lividus and relative CDS prediction, in order to design the exon-intron structure (see flowchart in 

figure 2.2).  

 

 

 

 

 

 

 
FIGURE 2.2: the flowchart show the several steps needed for the bioinformatic study of 

Paracentrotus lividus database. This analysis started from aminoacid sequences from Homo sapiens, 

and, passing though Strongylocentrotus purpuratus, identified and annotated ortholog protein and 

nucleotide sequences from our model organism. 

 

 

 

 

 

 

2.6 RNA extraction and cDNA synthesis from sea urchin embryos 

 

Frozen pellets of P. lividus embryos were dissolved in Trisure Reagent (adopting a ratio of 

100µl reagent:10 mg embryos) for RNA extraction, promoting tissue desegregation (Bioline, cat. 

BIO-38033). Direct-zolTM RNA MiniPrep (Zimo Research, cat. R2052) was used to purify, by spin 

column, total RNA directly from biological samples lysed with Trisure Reagent. RNA concentration 

was assessed by the aborbance at 260 nm, using the nanophotomer NanodroP (ND-1000 UV-Vis 

Spectrophotometer; NanoDrop Technologies). The purity of extracted RNA was evaluated by 260 

nm/280 nm and 260 nm/230 nm ratios, indicative of presence of protein and phenolic residues, 
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respectively (samples with ratios comprised between 1.8<A260/A280<2 and 1.6<A260/230<2.2 

were considered high purity RNA). Contaminating DNA was removed by treating each sample with 

DNase RNase-free kit (Roche), in order to degrade DNA trace still present in the RNA samples, 

according to the manufacturer’s instructions. Extracted RNA samples, resuspended in H2O plus 

DEPC (diethylpyrocarbonate, potent inhibitor of RNase), were stored at -80°C until the reverse 

transcription step. 

The samples were then loaded and resolved on a 1% agarose gel in TAE 1x buffer (40 mM 

Tris Acetate and 1 mM EDTA) with pH 8, in order to assess the integrity of extracted RNA 

(Sambrook et al., 1989). Agarose gels showed intact rRNA subunits (28S and 18S), indicating slight 

or absent degradation of RNA samples. 

Each sample was retrotranscribed (600 ng of total RNA extracted) with iScriptTM cDNA 

Synthesis kit (Biorad), following the manufacturer’s instructions. Synthetized cDNA was stored at -

20°C and later used in Real-Time qPCR experiments without dilution. 

Once all cDNA have been synthetized, several PCR (Polymerase Chain Reaction) was 

performed using primers previously designed for the zinc-finger transcription factor Pl-Z12–1. PCR 

performed with well studied gene were carried out, before the Real Time qPCR, as checkpoint control 

assessing efficiency of previous steps, in order to establish the high quality of the RNA samples. 

C1000 Touch Thermal Cycler (Bio-Rad) was used to carry out all PCR reactions. In each 

sample was mixed 1x PCR reaction buffer (Roche), 0.2 mM dNTP, 5 units of Taq (Roche), 100 ng/μL 

of each oligo, 2 μL of template cDNA and nuclease-free water to reach 30 μl final volume. The 

machine run a PCR program consisting of a initial denaturation phase at 95° C for 2 minutes, followed 

by 35 cycles ( single cycle is formed by 3 step: 95° C for 45 seconds, 60° C for 1 minute and 72° C 

for 30 seconds) and a final elongation phase at 72° C for 10 minutes. At the end of PCR process, all 

samples were run on 1% agarose gel (containing ethidium bromide) to observe the presence of 

specific bands. Size marker was used for fragment size determination. 

 

 

 

 

 

 

2.7 Primer design and validation 

 

In order to verify the reliability of primer pairs of the twelve selected genes identified by 

bioinformatic analysis (designed for the following Real-Time qPCR experiments), a PCR experiment 

was performed for amplifying the relative coding sequences (Table 2.1). It was strongly preferred 

those primers able to amplify regions that anneal to genomic sequences on intron-to-exon boundary. 

With such primers, any products amplified from genomic DNA would be much larger than the 

product amplified from intron-less cDNA. Primers were designed to amplify region from 90 to 200 

bp size and Gene Runner program, V3.05 (Hasting Software) was used to predict primer melting 

temperature (Tm) and check if they formed dimers, hairpin, bulge and internal loops.  

The amplification of fragments were carried out using Taq High Fidelity PCR System (Roche, 

Milan, Italy). PCR conditions were optimized on a C1000 Touch Thermal Cycler (Bio-Rad). In each 

reaction was mixed 1x PCR reaction buffer (Roche), 0.2 mM dNTP, 5 units of Taq (Roche), 100 
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ng/μL of specific primers, 2 μL of template cDNA and nuclease-free water to reach 30 μl final 

volume. The machine run a PCR program consisting of an initial denaturation phase at 95° C for 2 

minutes, followed by 35 cycles. Each cycle is formed by a first step at 95° C for 45 seconds, 

temperature and time of annealing evaluated for every pair of primers (from 56°C to 65°C) and 72° 

C for 30 seconds. At the end of 35 cycles, a final elongation phase is set at 72° C for 10 minutes. 

Amplified PCR products were separated by 1% agarose gel in TAE 1x buffer (40 mM Tris 

Acetate and 1 mM EDTA) with pH 8 and ethidium bromide staining at the final concentration of 0.5 

μg/ml. The resulting bands were excised from the gel and extracted according to the procedure 

reported in QIAquick Gel Extraction kit (Qiagen, Milan, Italy). The specificity of the PCR products 

were checked at the SZN-Molecular Biology Service by DNA sequencing, using 15 femtomoles of 

purified PCR product and 4.5 picomoles of each primers in the Beckman CEQ 2000 Automated 

Sequencer. The results obtained were aligned, through algorithm BLAST, with the relative nucleotide 

sequence used for the primer design. 
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TABLE 2.1: schematic representation of genes analysed in different developmental stages of sea 

urchin Paracentrotus lividus 

 

Gene Accession 

number 

Primer Sequence (5’=>3’) PCR 

fragment 

(bp) 

 

REFERENCE GENE 

Pl-Z12-1   5′-AGCGCCACACCAAAAGAAGTC-3′  

93  5′-GGATGATAGACAGGGCTGTTTGGA-3′ 

 

EXTRINSIC APOPTOSIS 

AIFM1  Pl_Aifm1_F3 5′- 3′: TAGTGGCAGTGGGTCTGGAA  

163 Pl_Aifm1_R3 5′- 3′: CGCCCTAGCTTGATGTCGTA 

 

RIPK_4  Pl_Ripk4_F1 5′- 3′: GGAGGCTCTTTTGGAGACG  

151 Pl_Ripk4_R1 5′- 3′: CCTCACGTCTGAGTTCATCG 

 

TNFR_16  Pl_Tnfr16_F3 5′- 3′: TGGAACCTACTCGGATCTCGT  

155 Pl_Tnfr16_R3 5′- 3′: CATTGGCTGGTTGGGAAGTC 

 

TNFR_27  Pl_Tnfr27_F1 5′- 3′: CAACTGAAGAGCCTTCTCC  

202 Pl_Tnfr27_R2 5′- 3′: GATCAAGCTCAGTACAACGC 

 

Pl_NF-kB: HE574572  5′- 3′: TCCCATGGAGGACTGCCGTGTCA  

116  5′- 3′: TCGTTGGTTACCAAGGAGACCACA 

 

INTRINSIC APOPTOSIS 

BAX  Pl_Bax_F1 5′- 3′: CGTATCGAGCAGACACGGTT  

100 Pl_Bax_R1 5′- 3′: GCTGGAAACGCTCCACAATG 

 

BCL_2  Pl_Bcl2_F2 5′- 3′: TAGGGGTATAGCGGCAGTCA  

91 Pl_Bcl2_R2 5′- 3′: GGCATCCCATCCTCCTTGTT 

 

PARP_1  Pl_Parp_F2 5′- 3′: CCAAGAACCCAATCAAACGCC  

97 Pl_Parp_R1 5′- 3′: CTAGTAAAGAACGTGCAGG 

 

AUTOPHAGY 

BECN_1  Pl_Becn1_F2 5′- 3′: TCCACTCCTCCAGTGCAAAC  

113 Pl_Becn1_R2 5′- 3′: ACAAGAGCACGGGGAGGATA 

 

PINK  Pl_Pink_F1 5′- 3′: GCAGTTGGTTACCTTGGC  

137 Pl_Pink_R1 5′- 3′:GGATGTGCGATTTCATTGCG 

 

ULK1  Pl_Ulk1_F3 5′- 3′: TTGAAGGCTAGGACACTGGAC 176 

Pl_Ulk1_R3 5′- 3′: ACTGGCATTGGGGAAGTTGAG 

 

ULK_3  

 

Pl_Ulk3_F1 5′- 3′: GTAATGGAAGCTGTGAAGGC 160 

 Pl_Ulk3_R2 5′- 3′: GCCTAGAGTACATGAGGAGAG 
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2.8 Analysis of variation of gene expression of Paracentrotus lividus samples, by 

Real Time qPCR 

 

Real Time qPCR experiments were run with all cDNA samples to study the quantitative 

variations of gene expression along five developmental stages of P. lividus incubated with five 

increasing concentrations of heptadienal. 

Prior to conduct Real Time qPCR experiments, the efficiency and specificity of amplification 

reactions was assess for all primer pairs, through melting curve analysis. The efficiency (E) of each 

primer pair was calculated according to standard methods curves, in accord with the equation: 

 

E = 10-1/slope 

 

Starting from a cDNA obtained from control embryos (about 200ng/µl), five serial dilutuions 

were generated: 1:1, 1:5, 1:10, 1:50 and 1:100. Using the cycle threshold (Ct) values obtained versus 

the logarithm of each dilution factor, standard curves were designed for each oligonucleotide pair. 

PCR efficiencies were found to be 2 for endogenous control and target genes. 

Real Time qPCR experiments were set up using not diluted cDNA as template for the reaction 

mix containing 0.3 mM for each of the two primers (final concentration) and 1x FastStart SYBR 

Green master mix (total volume of 10 μl; Applied Biosystems). 

All data obtained from Real Time qPCR experiments with cDNA sample were normalized 

using the zinc-finger transcription factor Pl-Z12–1 mRNA as endogenous control, the expression of 

which remained relatively constant in all the developmental stages examined, according to Costa et 

al. (2012). Each assay included a no-template control for each primer pair. To capture intra-assay 

variability all Real Time qPCR reactions were carried out in triplicate. 

Real Time qPCR amplifications were run in a ViiATM7 Real Time PCR System (Applied 

Biosystems) thermal cycler, using a specific thermal profile composed by four steps. The fist cycle, 

for cDNA denaturation, was at 95°C for 10 min. Second step was characterized by 40 cycles for 

amplification at 95°C for 15 sec and 60°C for 1 min. Following step was for final elongation at 72°C 

for 5 min. Last cycle, for melting curve analysis (from 60°C to 95°C), was set to verify the presence 

of a single product. Fluorescence was measured using ViiATM7 Software (Applied Biosystems). The 

expression of each gene was analysed and internally normalized against Pl-Z12–1 endogenous control 

using REST software (Relative Expression Software Tool) based on the Pfaffl method (Pfaffl 2001; 

Pfaffl et al., 2002). Evaluation of the relative expression ratio (R) of a target gene took into 

consideration  E value and the CP deviation of an unknown sample versus a control; R was expressed 

in comparison to a reference gene: 
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The equation shows the most convenient mathematical model, because considers an efficiency 

correction for real time PCR efficiency of the individual transcripts (Pfaffl 2001). The ratio of a target 

gene is expressed in a sample versus a control in comparison to a reference gene. Etarget is the Real 

Time PCR efficiency of target gene transcript; Eref is the Real Time PCR efficiency of a reference 

gene transcript; ΔCPtarget is the CP deviation of control – sample of the target gene transcript; ΔCPref 

is the CP deviation of control – sample of the reference gene transcript. Only expression values greater 

than a 2.00-fold difference with respect to the controls were considered a significant variation of gene 

expression.  

 

 

 

 

 

 

2.9 Maintenance and treatment of A549 with heptadienal  

 

A549 (ATCC CCL185) human lung adenocarcinoma cells were cultured in DMEM medium 

(Dulbecco’s modified Eagle’s medium) supplemented with 10% (v/v) fetal bovine serum (FBS), 100 

units ml-1 penicillin and 100 µg ml-1 streptomycin. Cells were seeded in flasks and incubated in a 5% 

CO2 humidified chamber at 37 °C for growth. Medium renewal occurred every 3 days, and cells were 

detached via trypsinization before they reached confluence. A549, (20 x 106 cells well-1) were seeded 

in Petri dishes (100 mm diameter) and kept overnight for attachment. The next day, the medium was 

replaced with fresh medium containing 5μM of heptadienal. The experiment was performed in 

triplicate and cells collected after 2 hours for RNA extraction and gene expression analysis. 

 

 

 

 

 

 

2.10 RNA Extraction and Real-Time PCR of the cell samples 

 

After 2 hours of treatment, A549 cells were washed directly in the Petri dish by adding cold 

PBS and rocking gently. Cells were lysed in the Petri dish by adding 1 ml of Trisure Reagent (Bioline, 

cat. BIO-38033) per 100 mm diameter dish. RNA was isolated according to the manufacturer’s 

protocol of the extraction reagent. RNA concentration and purity was assessed using the 

nanophotomer NanodroP (Euroclone). RNA concentration was measured for each sample by the 

aborbance at 260 nm, using the nanophotomer NanodroP (ND-1000 UV-Vis Spectrophotometer; 

NanoDrop Technologies). The purity of the RNA samples were evaluated by 260 nm/280 nm and 

260 nm/230 nm ratios, indicative of presence of protein and phenolic residues, respectively. 200 ng 

of RNA was subjected to reverse transcription reaction using the RT2 first strand kit (Qiagen, 

cat.330401) according to the manufacturer’s instructions. Real-Time quantitative reverse 
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transcription PCR (qRT-PCR) was performed in triplicate using the RT2 Profiler PCR Arrays kit 

(Qiagen, cat.330231) to analyze the expression of death cell signaling genes in the human cell lines. 

Plates were run on a ViiA7 (Applied Biosystems 384 well blocks), Standard Fast PCR Cycling 

protocol with 10 µl reaction volumes. Cycling conditions used were: 1 cycle initiation at 95.0 °C for 

10 min followed by amplification for 40 cycles at 95.0°C for 15 s and 60.0 °C for 1 min. Amplification 

data were collected via ViiA 7 RUO Software (Applied Biosystems). Ct-values were analyzed with 

PCR array data analysis online software 

(http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php, Qiagen). 
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CHAPTER 3.  
 

Results 
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3.1 Morphological analysis of the effects of Heptadienal on 

Paracentrotus lividus embryos development 

 
The present study intends to evaluate the effect, at morphological and molecular level, of the 

aldehyde heptadienal on sea urchin P. lividus embryos development. Sea urchin eggs were exposed 

to increasing concentrations of the pure compound: 2.0 µM, 2.5 µM, 3.0 µM, 5.5 µM and 6 µM. After 

10 minutes from the treatment, sea urchin eggs were fertilized with diluted sperm mix and let to 

develop in standardised conditions. 

The morphological analysis was carried out at 48 hours after fertilization (larva stage, pluteus), 

comparing the normal embryo body structures of controls with sea urchin embryos treated with 

different concentrations of heptadienal. Only three biological replicate were considered suitable for 

further experiment because they showed similar morphological response to the heptadienal. 

The observation of plutei by microscope revealed strong morphological differences between 

control and treatment experiments. The percentage of abnormal plutei increased proportionally with 

heptadienal concentrations. As shown in figure 3.1, 2.0 µM of the aldehyde induced malformations 

in 15% of sea urchin embryos treated. Around 24% of total embryos treated with 2.5 µM of the 

aldehyde showed significant abnormality. 3.0 µM of heptadienal caused malformations in 37% of 

plutei exposed to the treatment. 61% of total sea urchin embryos treated with 5.5 µM of pure 

compound showed developmental abnormalities. 6.0 µM of the aldehyde induced malformations in 

around 74% of treated plutei. 
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FIGURE 3.1: Morphological effects of five different heptadienal concentrations (2.0 μM, 2.5 μM, 

3.0 μM, 5.5 μM and 6.0 μM) on sea urchin Paracentrotus lividus embryo development. For each 

concentration of pure compound, embryos at the pluteus stage were analysed under the microscope 

and divided in ‘Normal plutei’ and ‘Abnormal plutei’. The ratio between the two different 

morphological groups is expressed as percentage respect to the entire number of embryos examined. 

 

 

  

 

 

 

More in detail, heptadienal was able to cause significant malformations along entire body of 

sea urchins and delay of embryo development. In particular, each pluteus was classified as abnormal 

when entire body was malformed, but also when malformations occurred in specific structures and 

appendices of the larva, such us spicules, arms and apex (figure 3.2). Sometimes arms asymmetrical 

crooked or degraded; they could be found longer and broader than in the negative control. Spicules 

development was another important parameter for evaluation of abnormality. Microscopic 

observation revealed poorly formed and parallel spicules in plutei treated with heptadienal. Spicules 

were also found to be unattached at the tip and/or with crooked apex. 
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FIGURE 3.2: Pictures obtained by inverted microscope showing some examples of different types 

of malformations induced in Paracentrotus lividus plutei at 48 hours post fertilization (hpf) after 

incubation with the three polyunsaturated aldehydes (B, C, D, E, F, G and H) in comparison with the 

normal conformation (A) of the control. Embryos were fixed with 4% of paraformaldehyde (modified 

from Varrella et al.,2014).  

 

 

 

 

 

 

3.2 Gene structures and aminoacid sequences of Paracentrotus lividus 

identify by bioinformatic study 

 

The annotation of the gene structure was instrumental to design primers able to amplify coding 

regions that anneal to genomic sequences on intron to exons boundary.  

The genes Apoptosis Inducing Factor, Mitochondria Associated 1 (Aifm1), Receptor 

Interacting Serine/Threonine Kinase (Ripk), Tumor Necrosis Factor Receptors 16 (Tnfr16) and 

Tumor Necrosis Factor Receptors 19/27 (Tnfr19/27) are considered key factors involved in the 

extrinsic apoptosis death signaling pathway (figure 3.3).  
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FIGURE 3.3: Extrinsic apoptotic pathway: (A, C, E and G) Multialignment of aminoacid sequences 

AIFM1, RIPK4, TNFR16 and TNFR27 from Homo sapiens, Strongylocentrotus purpuratus and 

Paracentrotus lividus. (B, D, F and H) Complex intron-exon structure of the P. lividus genes involved 

in extrinsic apoptosis. 

 

 

 

 

 

 

In particular, Pl_Aifm1 was found to be the ortholog of human Apoptosis Inducing Factor, 

Mitochondria Associated 1 (Hs_AIFM1), in P. lividus. As shown in figure 3.3, this gene is intron-

less, since the CDS is contained in a single exon. On the other hand, bioinformatic analysis of Pl_Ripk 

did not conduct to a clear orthology with a specific human gene belonging to the Receptor Interacting 

Serine/Threonine Kinase (RIPK) superfamily. Nevertheless, Pl_Ripk represented the only element 

found in P. lividus with nucleotide and aminoacid sequence having the highest similarity to queries 

used (Hs_RIPK1 and Sp_Ripk), and characterized by a CDS derived from eight exons. To obtain this 

result was necessary annotation for the scaffold found in P. lividus database and phylogenetic study 
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among members of this Receptor superfamily from H. sapiens, S. purpuratus and P. lividus (figure 

3.4). 

 

 

 

 

 

 
FIGURE 3.4: Phylogenetic tree showing the inferred evolutionary relationship among various 

members of the Receptor Interacting Serine/Threonine Kinase (RIPK) superfamily from Homo 

sapiens, Strongylocentrotus purpuratus and Paracentrotus lividus. 
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The only two genes belonging to the Tumor Necrosis Factor Receptors (TNFR) superfamily identified 

in P. lividus were Pl_Tnfr16 and Pl_Tnfr19/27. Annotation and phylogeny were necessary to establish 

orthologous relationship between TNF receptors superfamily members from H. sapiens and P. 

lividus. As it is possible to deduce from the phylogenetic analysis (figure 3.5), Pl_Tnfr16 is the clear 

ortholog of human gene Hs_TNFR16 and S. purpuratus gene Sp_Tnfr16; Pl_Tnfr19/27 seem to be 

the single correspondent gene of human onhologs Hs_TNFR19 and Hs_TNFR27. Both genes are 

characterized by a complex intron-exon structure, being multi-exon genes. The primary transcript 

contains 4 exons from Pl_Tnfr16 and 7 exons from Pl_Tnfr19/27.  
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FIGURE 3.5: Phylogenetic analysis showing the inferred evolutionary relationship among various 

members of the Tumor Necrosis Factor Receptor (TNFR) superfamily from Homo sapiens, 

Strongylocentrotus purpuratus and Paracentrotus lividus. 
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The genes BCL2 Associated X Protein (BAX), B-Cell CLL/Lymphoma 2 (BCL_2) and Poly 

ADP-Ribose Polymerase 1 (PARP1) are considered key factor involved in the intrinsic apoptosis 

death signaling pathway. In more detail, Pl_Bax was found to be a clear ortholog of human gene 

Hs_BAX and, as shown in figure 3.6, this sea urchin gene is characterized by a single exon 

(intronless). On the contrary, the others two genes possess a complex intron-exon structure. Pl_Bcl2 

primary transcript contains 6 exons and this gene is a clear ortholog of the human Hs_BCL2. Pl_Parp 

is the ortholog of the human gene Hs_PARP1 and the relative primary transcript contains 13 exons. 
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FIGURE 3.6: Intrinsic apoptoc pathway: (A, C and E) Multialignment of aminoacid sequences of 

BAX, BCL2 and PARP from Homo sapiens, Strongylocentrotus purpuratus and Paracentrotus 

lividus. (B, D and F) Complex intron-exon structure of the P. lividus genes involved in intrinsic 

apoptosis. 

 

 

 

 

 

 

The genes Beclin 1 (BECN1), PTEN Induced Putative Kinase 1 (PINK1), Unc-51 Like Autophagy 

Activating Kinase 1 (UKL1) and Unc-51 Like Autophagy Activating Kinase 3 (UKL3) are involved 

in the molecular pathway of autophagy. This set of genes contributes to induction of the mechanism, 
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formation of characteristic autophagosomes and activation of selective autophagic process as 

mitophagy, designed for the removal of damaged mitochondria (figure 3.7).  
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FIGURE 3.7: Autophagy: (A, C, E and G) Multialignment of aminoacid sequences of BECN, PINK, 

ULK1 and ULK3 from Homo sapiens, Strongylocentrotus purpuratus and Paracentrotus lividus. (B, 

D, F and H) Complex intron-exon structure of the P. lividus genes involved in intrinsic apoptosis. 

 

 

 

 

 

 

In particular, both Pl_Becn and Pl_Pink were found to be clear orthologs of human 

Hs_BECN1 and Hs_PINK1. The complex intron-exon of these genes were also annotated (Pl_Becn 

presents 2 exons and Pl_Pink 8 exons). A different analysis was carried out for members 1 and 3 of 

the Unc-51 Like Autophagy Activating Kinase family, where a phylogenetic analysis was performed. 

Sea urchin P. lividus seem to code only for 2 members of Unc-51 Like Autophagy Activating 

Kinase (ULK) superfamily:  Pl_Ulk1/2 and Pl_Ulk3. As shown in figure 3.8, Pl_Ulk1/2 is a clear 

ortholog of equivalent protein in S. purpuratus (Sp_Ulk1); these two proteins are grouped in the 

phylogenetic tree with Hs_ULK1 and Hs_ULK2 from H. sapiens. For this reason, Pl_Ulk1/2 was 

considered the ortholog of human proteins HS_ULK1 and Hs_ULK2. On the other hand, the analysis 

for Pl_Ulk3 conducted to a clear orthology with proteins from S. purpuratus and H. sapiens (Sp_Ulk3 

and Hs_ULK3). 
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FIGURE 3.8: Phylogenetic tree that represents the evolutionary relationship among various members 

of the Unc-51 Like Autophagy Activating Kinase (ULK) superfamily from Homo sapiens, 

Strongylocentrotus purpuratus and Paracentrotus lividus. 
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3.3 Primers validation 

 

The primers specificity and relative efficiency was tested in order to study the expression level of the 

twelve selected genes. The ability of each primer pair designed to amplify genes of interest was at 

first instance tested by standard PCR. Amplification was verified on 1.5% agarose gel and 

subsequently sequenced. The specificity was also confirmed by the presence of a single peak in the 

melting curve analysis performed by qPCR. The linear regression coefficients (R2) of each standard 

curve for PCR efficiency (figure 3.9), which was determined for each gene using 10-fold serial 

dilutions of the cDNA, ranged from 0,9282 to 0.9983. 
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FIGURE 3.9: Efficiency amplification was calculated for each primer pair, generating a standard 

curves with serial 10-fold dilutions of the calibrator’s cDNA sample by using the cycle threshold (Ct) 

value versus the logarithm of each dilution factor and using the equation E=10−1/slope. 

 

 

 

 

 

 

The PCR efficiency was excellent for the majority of genes examined (Aifm1, 0.9559; Bax, 0.9702; 

Bcl2, 0.9710; Becn1, 0.9957; Nfkb, 0.9983; Pink, 0.9631; Tnfr16, 0.9578; Tnfr27, 0.9290; Ulk1, 

0.9281; Ulk3, 0.9843; Z12-1, 0.9761). Two other genes showed not perfect efficiency (Parp, 0.5670 

and Ripk4, 0.7923), but in these cases the cycle threshold (Ct) values observed were higher of 30 

(Table 3.1).  

 

 

 

 

 

 

TABLE 3.1: Efficiency and linear regression coefficients (R2) values of the twelve genes. 
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3.4 Analysis of the variation of gene expression of sea urchin 

Paracentrotus lividus exposed to heptadienal 
 

Sea urchin eggs were treated 10 minutes before fertilization and the following embryos 

developed were collected at three different times, stopping the incubation at specific developmental 

stages. The incubation times were: 5 hours post fertilization (hpf) corresponding to early blastula 

stage, 21 hpf corresponding to early prism and 48 hpf where embryos reach the larva stage called 

pluteus stage. Genes were grouped for their involvement in the specific cell death signaling pathway.  

As shown in figure 3.10 A, the treatment of sea urchin embryos with heptadienal at different 

concentrations (2 µM, 2.5 µM, 3 µM, 5.5 µM and 6 µM) for 5 huors did not produce significant 

variation of expression for all genes analysed, involved in extrinsic apoptotic death pathway.  

 Among genes involved in intrinsic apoptotic pathway (figure 3.10 B), only PARP showed a 

variation of gene expression at the same incubation time, since BAX e BCL_2 have fold-change 

values comparable to the control. Treatment of sea urchin embryos with 2 µM of heptadienal 

produced down-regulation of the Parp gene (-2.35 fold change). 

No genes belonging to the autophagic molecular mechanism showed a significant variation of gene 

expression level, since Ulk1, Ulk3, Pink and Becn1 showed fold-change values into basal expression 

levels (figure 3.10 C). 
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FIGURE 3.10: Gene expression study by Real Time q-PCR of twelve genes involved in three 

different death cell signaling pathway in embryos incubated with increasing heptadienal 

concentrations (2 μM, 2.5 μM, 3 μM, 5.5 μM and 6 μM) and collected at a specific developmental 

stage of P. lividus: early blastula (5 hpf). (A) Gene expression levels of Aifm1, Ripk, Tnfr16, Tnfr27 

and NfkB (involved in extrinsic apoptosis). (B) Gene expression levels of Bax, Bcl2 and Parp 

(involved in intrinsic apoptosis). (C) Gene expression levels of Ulk1, Ulk3, Pink and Becn1 (involved 

in autophagy). Data are reported as a fold difference (mean ± SD), compared to control embryos in 

sea water without heptadienal. Fold differences greater than ±2 were considered to be significant. 

 

 

 

 

 

 

In figure 3.11 (A, B and C) is shown the variation of gene expression levels of all genes 

examined when P. lividus embryos were incubated for 21 hpf with different concentrations of 

heptadienal (2 µM, 2.5 µM, 3 µM, 5.5 µM and 6 µM). At this developmental stage, 2.5 µM of 

heptadienal was the most active concentration, creating a down-regulation of all genes involved in 

the extrinsic apoptotic pathway. In particular, Aifm1 was down-regulated with 4.13-fold change 

decrease, Ripk showed a 4.20-fold change decrease, Tnfr16 and Tnfr27 was down-regulated with 

5.35-fold change and 3.86-fold change decrease respectively and NfkB exhibited 4.68-fold change 

decrease. Moreover, 2 µM of heptadienal showed a downregulation effect on Aifm1 and 6 µM was 

able to downregulated the Ripk4 gene. 

A different response pattern was found for genes involved in intrinsic apoptotic pathway, 

when embryos were treated with the five concentrations of heptadienal for 21 hpf. Bax and Bcl2 

genes were not affected at this developmental stage for all concentrations tested. The only gene 

responsive was Parp at two specific concentrations. In particular, 2.5 and 5.5 µM of heptadienal 

decrease the expression level of the Parp gene, -6.82-fold change and -3.13-fold change respectively. 

All the others concentrations, even if created negative values of fold change of the Parp gene, did not 

show a significant reduction of gene expression levels (2 µM -1.39-fold change, 3 µM -1.33-fold 

change and 6 µM -1,83-fold change) 

In regard to autophagy, the most active concentration of heptadienal was again 2.5 µM. More 

in detail, Ulk1, Ulk3 and Pink genes were down-regulated when embryos was treated with the specific 

concentration of 2,5 µM (-4.10-fold change, -4.38-fold change and -4.50-fold change, respectively). 

At lower concentration (2 µM), only Ulk1 was down-regulated (-2.57-fold change), while at higher 

concentrations no genes were affected by the treatment, showing fold differences values inside the 

range of non-significance. Becn1 did not showed significant variation of gene expression levels at all 

concentrations tested of heptadienal.   
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FIGURE 3.11: Gene expression study by Real Time q-PCR of twelve genes involved in three 

different death cell signaling pathway in embryos incubated with increasing heptadienal 

concentrations (2 μM, 2.5 μM, 3 μM, 5.5 μM and 6 μM) and collected at a specific developmental 

stage of P. lividus: early prisma (21 hpf). (A) Gene expression levels of Aifm1, Ripk4, Tnfr16, Tnfr27 

and NfkB (involved in extrinsic apoptosis). (B) Gene expression levels of Bax, Bcl2 and Parp 

(involved in intrinsic apoptosis). (C) Gene expression levels of Ulk1, Ulk3, Pink and Becn1 (involved 

in autophagy). Data are reported as a fold difference (mean ± SD), compared to control embryos in 

sea water without heptadienal. Fold differences greater than ±2 were considered to be significant. 

 

 

 

 

 

 

The figure 3.12 show the variation of expression levels of all genes studied at the larval stage 

(pluteus stage, 48 hpf) of sea urchin P. lividus embryos treated with five concentrations (2 µM, 2.5 

µM, 3 µM, 5.5 µM and 6 µM). At this specific developmental stage, several concentrations produced 

a significant upregulation of all the five genes involved in the extrinsic apoptotic pathway.  

In particular (figure 3.12 A), Aifm1 was upregulated (3.55-fold change) at lowest 

concentration of heptadienal (2 µM), but also at highest concentrations, such as 5.5 µM and 6 µM 

(3.67-fold change and 2.48-fold change, respectively). Surprisingly, 2.5 µM and 3 µM did not 

produce a significant variation of gene expression level. 2 µM, 5.5 µM and 6 µM of heptadienal were 

also responsible of the upregulation of Ripk (4.26-fold change, 4.08-fold change and 3.24-fold 

change, respectively), the expression of which remained unaltered with the other two concentrations 

(2.5 µM and 3 µM). The same expression pattern was observed for the two tumor necrosis factor 

receptors studied. More in detail, Tnfr16 was upregulated with 2 µM, 5.5 µM and 6 µM of heptadienal 

(4.81-fold change, 4.66-fold change and 4.42-fold change, respectively), but the other treatments did 

not produce a significant variation of gene expression level. The same occurs for Tnfr27, which was 

upregulated with only 2 µM, 5.5 µM and 6 µM of heptadienal (3.33-fold change, 3.24-fold change 

and 2.91-fold change respectively). Also in this case, 2.5 µM and 3 µM did not produce a significant 

variation of gene expression level. The last gene analysed, belonging to extrinsic apoptosis, was 

NfkB, which showed 4.15-fold change, 4.29-fold change and 3.58-fold change when treated with 2 

µM, 5.5 µM and 6 µM of heptadienal, respectively. NfkB, similarly to the other genes, was not 

affected by the other two heptadienal concentrations tested. 

A different response pattern was found for genes involved in intrinsic apoptotic pathway, 

when embryos were treated with the five concentrations of heptadienal for 48 hpf (figure 3.12 B). 

Bax and Bcl2 genes did not modify their expression levels when treated with heptadienal, as observed 

for the previous developmental stages. Heptadienal induced an upregulation at 2 µM, 5.5 µM and 6 

µM of the gene Parp (6.19-fold change, 5.43-fold change and 4.10-fold change, respectively). On the 

contrary, 2.5 µM and 3 µM did not produce a significant variation of gene expression level. 

Results related to autophagy showed that, also in this case, the most active concentrations of 

heptadienal were 2 µM, 5.5 µM and 6 µM of heptadienal (figure 3.12C). More in detail, Ulk1 showed 

3.67-fold change, 3.40-fold change and 2.69-fold change, when treat with 2 µM, 5.5 µM and 6 µM 

of heptadienal. Similarly, Ulk3 was upregulate at the same concentrations (3.67-fold change, 3.40-

fold change and 2.69-fold change, respectively). Pink, the function of which is strictly related to 
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mitophagic mechanism, was significantly upregulated with the same three active concentrations of 

heptadienal (4.34-fold change, 4.41-fold change and 3.82-fold change, respectively). Becn1 did not 

showed, after 48 hours of heptadienal exposure, significant variation of gene expression levels at all 

concentrations tested.   
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FIGURE 3.12: Gene expression study by Real Time q-PCR of twelve genes involved in three 

different death cell signaling pathway in embryos incubated with increasing heptadienal 
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concentrations (2 μM, 2.5 μM, 3 μM, 5.5 μM and 6 μM) and collected at a specific developmental 

stage of P. lividus: pluteus stage (48 hpf). (A) Gene expression levels of Aifm1, Ripk, Tnfr16, Tnfr27 

and NfkB (involved in extrinsic apoptosis). (B) Gene expression levels of Bax, Bcl2 and Parp 

(involved in intrinsic apoptosis). (C) Gene expression levels of Ulk1, Ulk3, Pink and Becn1 (involved 

in autophagy). Data are reported as a fold difference (mean ± SD), compared to control embryos in 

sea water without heptadienal. Fold differences greater than ±2 were considered to be significant. 

 

 

 

 

 

3.5 Analysis of the variation of gene expression of A549 cell line exposed 

to heptadienal 

 
To understand better cytotoxic effects of the heptadienal at the gene level on human cells, 

A549 cell line was used to carry out the analysis of the variation of gene expression levels by Real-

Time qPCR. Gene expression results are here reported after 2 h of treatment with 5 µM of heptadienal, 

since many factors implicated in the cell death signaling pathways were already expressed and 

activated after 2 h and also because at lower concentrations of pure compounds transcriptional effects 

were less evident. The treatment concentration was chosen following the IC50 results obtained by 

Sansone et al. (2014) for viability experiments. Control genes used for Real-Time qPCR were actin-

beta (ACTB), beta-2-microglobulin (B2M), hypoxanthine phosphoribosyltransferase (HPRT1) and 

large ribosomal protein P0 (RPLP0), the expression of which remained constant in A549 cell line. 

The histograms reported in figure 3.13 (A, B and C panels) show the relative expression ratios of the 

analysed genes with respect to controls without treatment. Only expression values greater or lower 

than a two-fold difference with respect to the controls were considered significant for up and 

downregulation results.  

As showed in figure 3.13 A, all genes examined belonging to the extrinsic pathway are 

significantly upregulated. When A549 cells were treated with 5 μM of heptadienal for 2 hours, death 

receptors, such as TNF Receptor Superfamily Member 10a (TRAIL_R1, 10.12-fold change), TNF 

Receptor Superfamily Member 1A (TNF_R1, 8.11-fold change), TNF Receptor Superfamily Member 

1B (TNF_R2, 4.49-fold change) were upregulated. Moreover, upstream and downstream death 

factors, such as Apoptosis-Inducing Factor Mitochondria Associated 1 (AIFM1, 6.19-fold change), 

Homeodomain Interacting Protein Kinase 2 (RIPK_2, 3.11-fold change and Nuclear Factor Kappa B 

Subunit 1 (NfkB, 3.41-fold change) were significantly upregulated.  

For whom concern genes belonging to the intrinsic pathway, only the anti-apoptotic factor B-

Cell CLL/Lymphoma 2 (BCL_2, 18.53-fold change) and the enzyme Poly ADP-Ribose Polymerase 

1 (PARP, 21.69-fold change) were found to be upregulated, when treated with 5 μM of heptadienal. 

On the contrary, BCL2 Associated X Protein (BAX, 1.61-fold change) did not affected by heptadienal 

after 2 hours of treatment (figure 3.13 B). 

The figure 3.13 C shows the expression level of genes involved in the autophagic mechanisms. 

Heptadienal induced after 2 hours an upregulation of Unc-51 Like Autophagy Activating Kinase 1 

(ULK1, 4,81-fold change). The other genes examined did not show a significant variation of 

expression level (ULK3, 1.89-fold change; BECN1, 1.67-fold change; PINK, 0.04-fold change).  
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FIGURE 3.13: Gene expression study by Real-Time qPCR of thirteen genes involved in three 

different death cell signaling pathways in A549 cell line treated with 5 μM of heptadienal for 2 hours. 

(A) Gene expression levels of AIFM_1, RIPK_2, TRAIL_R1, TNF_R1, TNF_R2 and NfkB (involved 

in extrinsic apoptosis). (B) Gene expression levels of BAX, BCL_2 and PARP (involved in intrinsic 

apoptosis). (C) Gene expression levels of ULK_1, ULK_3, PINK and BECN_1 (involved in 

autophagy). Data are reported as a fold difference (mean ± SD), compared to control A549 cells 

without heptadienal. Fold differences greater than ±2 were considered significant. 
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Bioinformatic approach and molecular analysis to study programmed 

cell death in sea urchin Paracentrotus lividus 
 

The present study describes the morphological and molecular effect of the aldehyde 

heptadienal on sea urchin P. lividus embryo development. Results were obtained applying a 

propaedeutic bioinformatic approach, fundamental to find and annotate several genes involved in 

specific death cell signalling pathways. The information deriving from molecular experiments was 

compared with gene expression results obtained when a human  tumour cell line was exposed to the 

marine compound heptadienal. 

Researchers showed in previous studies morphological results at several concentrations of 

PUAs, which are able to induce teratogenesis and different degrees and types of malformations in sea 

urchin embryos. By definition, teratogens are agents that cause birth defects in the offspring of 

organisms exposed to them during gestation (Ianora and Miralto 2010). 

Results reported in this study significantly expand previous studies (Romano et al., 2011; 

Marrone et al., 2012; Varrella et al., 2014 and Varrella et al., 2016) about the molecular response of 

the sea urchin P. lividus embryo to the ecologically relevant PUA heptadienal. The study investigates 

more deeply into the effect induced by the toxic PUA heptadienal on many genes belonging to death 

cell signalling pathways. Moreover, the study offers a bioinformatic approach useful to identify genes 

in P. lividus genome, for which there are not already annotation available. 

To date, only few scientific research groups have study the effects induced by PUAs on marine 

organisms, which live in close contact or interact with these secondary metabolites produced by 

marine microorganisms. In fact, very few studies are present in literature on the morphological and 

molecular effects of pure marine compounds PUAs on copepods (Ceballos and Ianora, 2003; Taylor 

et al., 2007; Buttino et al., 2008; Kâ et al., 2014; Lauritano et al., 2011 and Lauritano et al., 2012). 

More recent study investigated the effect of decadienal on the tunicate Ciona intestinalis. Lettieri et 

al. (2015) and described the induction of specific developmental malformations in C. intestinalis 

larvae in a dose-dependent manner, studying also the variation of gene expression of those factors 

involved in stress response and developmental processes.  

Moreover, sea urchin embryos showed, in the studies cited above, comparable malformations 

when they were treated with decadienal, heptadienal and octadienal, with the apex or arms being 

strongly compromised. All the aldehydes studied induce a dose-dependent effect on sea urchin 

embryos, but they differed for the concentration able to cause teratogenesis. In fact, as illustrated in 

the introduction section, decadienal represents the strongest of the three PUAs, since it can affect 

embryo development at low concentrations (Varrella et al., 2014). For the other two PUAs higher 

concentrations are necessary to perturb significantly the sea urchin embryo development. In 

particular, heptadienal act in the range of 3.0 μM and 6.0 μM to reach the same effect of decadienal, 

and octadienal required the highest concentrations (from 4.5 μM to 8.0 μM).  

In this thesis project we chose heptadienal as chemical model as it represents the most 

abundant polyunsaturated aldehyde in the marine ecosystem (Wichard et al., 2005). Bartual and 

collaborators (2014) analysed the natural amount of PUAs released principally when phytoplanktonic 

cells are wounded during grazing or lysed for senescence processes. This study shows the ubiquitous 

presence of PUAs in the open ocean environment, including upwelling areas, as well as oligotrophic 

gyres. The total concentration ranged from zero to 4.18 pmol from cells in 1 L of sea water. Three 
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PUAs were detected: heptadienal, octadienal and decadienal. Among these aldehydes, heptadienal 

represented the most common compounds in marine environment (result obtained in 79% of total 

stations sampled).  

Heptadienal is well known to induce perturbations and delay of the cell cycle in organisms 

ecologically related with diatoms. For this reason, in this study a wide range of concentrations was 

used to treat sea urchin P. lividus embryos. Sea urchin eggs were exposed to five increasing 

concentrations of the aldehyde: 2.0 µM, 2.5 µM, 3.0 µM, 5.5 µM and 6 µM (figure 3.1, see results 

chapter 3). This range of concentrations is able to produce several degree of embryo malformations. 

In fact, morphological data showed a wide range of percentage of abnormal embryos, from 15% up 

to 75%.  The main result that comes out from morphological analysis is the strong direct proportion 

between heptadienal concentrations and percentage of abnormal embryos, which accumulate several 

malformations on the entire body at the larval stage. 

With the efforts of the European research community for the complete characterization of sea 

urchin P. lividus genome, the molecular studies utilising this marine model organism are becoming 

more facilitated. Using this new knowledge, it has been possible to adopt a bioinformatic strategy to 

identify and annotate nucleotide and aminoacid sequences from P. lividus. In particular, the aim of 

this thesis, is the study of molecular targets of the marine compound heptadienal, in order to better 

clarify the cell death signalling pathways activated in sea urchin P. lividus and to compare the results 

with variation of gene expression study carried out with the same compound on human cell line 

(A549, human lung adenocarcinoma cells). 

The selection of these two model organisms found a reason in the similarity of some their 

features. Both models possess a high rate of proliferation and they are composed of cells with different 

degree of differentiation. Sea urchin embryos covered a relevant role in many studies on fundamental 

biological processes and it is still largely used to study cell death mechanisms , since possess 

morphological and biochemical characteristics suitable for this experimental applications (clarity and 

large size of eggs, the ease of perturbation of embryo development, etc.; see introduction section). 

On the other hand, tumor cell lines represent the ideal in vitro model to assess the potential 

antiproliferative effects of chemical compounds and to investigate their relative ability to induce a 

programmed cell death in human cells. A comparison of the molecular effect activated by a pure 

marine compound on two model organisms having so distant phylogenetic relationship, with sea 

urchin occupying a key phylogenetic position as the only non-cordate deuterostomes, may give some 

insight in the evolutionary conservation on fundamental cellular processes. 

 A first important outcome of this experimental work was the finding that many key factors 

involved in various death mechanisms in human are indeed strongly conserved in the P. lividus. In 

fact, many key genes involved in the extrinsic apoptosis, intrinsic apoptosis and autophagy were 

identified and annotated from the new genome data bank (http://octopus.obs-

vlfr.fr/blast/oursin/blast_oursin.php, a consortium of marine research institutes, which are still 

working on P. lividus genome). 

For the extrinsic cell death pathway, the nucleotide sequences of the genes Aifm1, Ripk, 

Tnfr16 and Tnfr27 were found and annotated (figure 3.3, see results chapter 3), starting from the 

corresponding well-known death genes in humans. In particular, Aifm1 gene product is a 

mitochondrial effector of apoptotic cell death, synthetized and released, in response to apoptotic 

signals, from the mitochondrion intermembrane space into the cytosol and to the nucleus, where it 

act as a proapoptotic factor, starting the cascade for a caspase-independent pathway (Susin et al., 

1999). In P. lividus genome a single gene was found with high homology with the human AIFM1.  

http://octopus.obs-vlfr.fr/blast/oursin/blast_oursin.php
http://octopus.obs-vlfr.fr/blast/oursin/blast_oursin.php
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The genes belonging to the Serine-threonine kinase receptors (RIPK) family are implicated in 

specific caspase-independent cell death mechanism. Members of this family are involved in the 

transduction of inflammation and cell death signals (programmed necrosis) following death receptors 

ligation and DNA damage (Hsu et al., 1996). In our study, only a single gene was found with high 

homology with the human members of the RIPK family. No a clear orthology was found for the sea 

urchin Pl_Ripk with one of the human gene family, probably due to vertebrate-specific duplications. 

The signaling that initiate extrinsic apoptotic pathways involve several transmembrane 

receptor-mediated interactions. The Tumor Necrosis Factor Receptors (TNFR) superfamily cover an 

important role in these interactions (Locksley et al., 2001; Wang and El-Deiry, 2003). Members of 

the TNF receptor superfamily share similar cysteine-rich extracellular domains and are characterized 

by a cytoplasmic domain of about 80 aminoacids called the “death domain” (Ashkenazi and Dixit, 

1998). This death domain plays a critical role in transmitting the death signal from the extracellular 

space to the intracellular signalling pathways. In this study, only two genes in P. lividus showed high 

similarity with members of the human TNFR superfamily. In particular, Pl_Tnfr16 was identified as 

a clear ortholog of the human member Hs_TNFR16, since sea urchin gene showed the highest 

similarity univocally with only that human receptor. On the other hand, Pl_Tnfr19/27 showed strong 

similarity with two members of the human TNFR superfamily: Hs_TNFR19 and Hs_TNFR27. These 

could originate from a vertebrate genome duplication (onhology relationship), therefore we can 

hypothesize that a unique ancestral Tnfr gene, still present in sea urchins, evolved in two independent 

members as observable in humans. 

Referring always to well-known death genes in human, the bioinformatic strategy was useful 

also for the individuation and annotation of three genes involved in the intrinsic apoptotic pathway: 

BCL2 Associated X Protein (Bax), B-Cell CLL/Lymphoma 2 (Bcl2) and Poly ADP-Ribose 

Polymerase 1 (Parp1) (figure 3.6, see results chapter 3). The genes Bax and Bcl2 are the principal 

antagonists for the regulation of intrinsic apoptotic machinery. More in detail (Guo et al., 2003), in 

humans Bax is responsible of the activation of  programmed cell death undergoing a conformation 

change that lead to translocation to the mitochondrion membrane, with consequent release of 

cytochrome c that then is able to triggers intrinsic apoptosis (with the involvement of Caspase 3). In 

this study, Bax showed a high conservation along the evolution, due to crucial role for the regulation 

of programmed cell death. In fact, Pl_Bax was found to be the only clear ortholog of human gene 

Hs_BAX. 

The same phylogenetic result was obtained for the antiapoptotic factor BCL2, where Pl_Bcl2 

is a clear ortholog of the human Hs_BCL2. This gene regulate cell death mechanisms by a tight 

physiological control of the mitochondrial membrane permeability. In particular, the apoptosis-

activating factor (APAF-1) requires Cytochrome C (Cyt C) to activate Caspase 9 and BCL2 prevents 

mitochondrial cytochrome c release. For this reason, BCL2 is widely believed to inhibit intrinsic 

programmed cell death (Yip and Reed, 2008). 

Different results were obtained for Parp annotation in P. lividus genome. Parp genes are 

involved in many processes, such as modulation of chromatin structure, assembly of DNA repair 

machinery, promotion of the release of Apoptosis-Inducing Factor (AIF) from mitochondria and 

transport to nucleus (Luo and Krause, 2012). Pl_Parp, the only Poly ADP-Ribose Polymerase found 

in P. lividus, is the clear ortholog of the human gene Hs_PARP1. 

Autophagy is an essential process for the lysosomal turnover of cellular macromolecules and 

organelles. The genes Beclin 1 (BECN_1), PTEN Induced Putative Kinase 1 (PINK_1), Unc-51 Like 
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Autophagy Activating Kinase 1 (UKL_1) and Unc-51 Like Autophagy Activating Kinase 3 (UKL_3) 

are involved in the molecular pathway of autophagy (figure 3.7, see results chapter 3). 

Beclin 1 is part of the PI(3) kinase class III (PI(3)KC3) lipid kinase complex that plays a 

central role in the induction of autophagy (Levine et al., 2008)). In addition to the activity in inhibiting 

apoptosis, Bcl-2 also inhibits autophagy through its ability in binding to the Beclin 1-PI(3)KC3 

complex, an example of the interaction between two major pathways of cell death (Pattingre., 2005). 

Pl_Becn was found in P. lividus as the only possible ortholog of human Hs_BECN1. 

Interesting evolutionary aspects were found for P. lividus Ulk genes. These class of molecular 

factors regulate the entire autophagic process, from upstream activation to the downstream factors 

(Klionsky, 2009). Main role of the serine/threonine-protein kinase involved in autophagy is the 

upstream regulation of phosphatidylinositol 3-kinase (PIK3C3) that regulate the formation of 

autophagophores, the precursors of autophagosomes (Chan et al., 2009). Pl_Ulk3 showed the highest 

similarity with unique member of human family (Hs_ULK3). On the other hand, Pl_Ulk1/2 exhibited 

an equal high similarity with two member of Autophagy Activating Kinase family: Hs_ULK1 and 

Hs_ULK2. As for the bioinformatic result obtained for Tnfr superfamily, this preliminary evidence 

need further detailed study and could be due to onhology relationship between sea urchin and human 

genes, since the ancestral Ulk gene generated two members with more specific functions. 

The gene Pink is involved in the protection against mitochondrial dysfunction during cellular 

stress and in the following clearance of damaged mitochondria via selective autophagy. In fact, Pink 

acts upstream of Parkin in a sort of mitochondrial quality control pathway, able to remove damaged 

mitochondria in a specific autophagic process called mitophagy (Voigt et al.,2016). Similarly to 

Pl_Becn, the sea urchin gene Pl_Pink is highly conserved in evolution, and it resulted to be the only 

clear ortholog of human Hs_PINK1. 

 Once obtained these results, specific primer pairs were designed for each P. lividus gene and 

later validated for their specificity and relative efficiency (figure 3.9 and table 3.1, see results chapter 

3). As described in the results section, the majority of the genes studied showed an excellent PCR 

efficiency with a single peak in the melting curve analysis, related to selected amplicon. The R2 values 

were higher of 0.9, with the exception of Pl_Parp and Pl_Ripk. In these cases, the efficiency was not 

optimal even if there was a single pick generated by melting curve analysis. This result is probably 

due to the low expression of these transcripts in normal conditions (in control embryos). In fact, the 

Ct values for not diluted samples was already up to 30 and reach the value 40 after two or three serial 

dilutions, making not possible the generation of standard curves on wide range of values. 

 Analysing the molecular data, this study clearly demonstrate that none death gene, belonging 

to the intrinsic apoptosis were activated in both P. lividus and human A549 cell line, when treated 

with heptadienal (figures 3.10 B, 3.11 B, 3.12 B and 3.13 B,  see results chapter 3). In detail, intrinsic 

apoptosis is not activated by heptadienal treatment in P. lividus embryos (early blastula stage), with 

the only exception of Pl_Parp gene. In fact, the only lowest concentrations of heptadienal (2 μM and 

2.5 μM) were able to induce a significant downregulation of Pl_Parp in the first two developmental 

stages examined. This gene is implicated, in human, in many functions essential in stress response 

pathways (Luo and Lee Kraus, 2012). Our result is in complete agreement with previous studies, 

where is demonstrate that sea urchin P. lividus activate stress response pathways at the swimming 

blastula stage (after 9 hours post fertilization). Varrella et al. (2014) showed that PUAs (decadienal, 

heptadienal and octadienal) induced upregulation of heat shock protein 70 (hsp70) at the same 

developmental stage (swimming blastula stage). In fact, only at the pluteus stage, heptadienal is able 

to induce upregulation of Pl_Parp gene. The intrinsic apoptotic mechanism remain inactivated due to 
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the basal expression of Bax, principal responsible of the activation of this type of programmed cell 

death. Without this protein, the mechanism that leads to the release of cytochrome c is not triggered. 

 A similar result was observed for the molecular study carried out with the same pure 

compound on A549. After 2 hours of treatment with heptadienal, Hs_BAX is comparable to the 

untreated control, while Hs_BCL2 is strongly upregulated. These data confirm that heptadienal can 

not preferentially activate intrinsic apoptosis in both sea urchin and human. Also in the case of A549, 

Hs_PARP result upregulated, since heptadienal can induce stress signals in different biological 

model, through PARP stress response pathway. 

 Completely different results were found for genes involved in extrinsic cell death pathway 

(figures 3.10 A, 3.11 A, 3.12 A and 3.13 A, see results chapter 3). In the early blastula and early prism 

stages, heptadienal did not induce activation of Pl_Aifm1, Pl_Ripk, Pl_Tnfr16, Pl_Tnfr19/27 and 

Pl_Nfkb. These genes were found all downregulated after 21 hpf. This represent an interesting 

outcome of this study, since heptadienal seems to not target any gene involved in canonical 

programmed cell death. In particular, lower concentrations (especially 2.5 μM) are responsible of the 

downregulation of many genes involved in extrinsic apoptosis and, as previously described, one 

belonging to the intrinsic pathway. This effect is probably due to the fact that heptadienal, at this 

developmental stage (prism), targeted other genes (not studied here) involved in specific death 

mechanisms. Moreover, interferences with pathways involved in the differentiation or development 

occur, as it is evident with morphological experiments, where embryos increase death and 

malformations when proportional increase dose and time of exposure (see result section and Varrella 

et al., 2014). At the prism stage, SRY-related HMG-box 9 (Sox9) gene was upregulated by 

heptadienal, suggesting an interference effect on development and in particular on left-right 

asymmetry processes (Duboc et al., 2005). When P. lividus embryos were treated for 48 hours with 

the aldehyde all genes involved in the extrinsic apoptosis were upregulated. The Pl_Tnfr16 and 

Pl_Tnfr19/27 demonstrated to be target genes of the aldehyde. The recruitment of death receptors 

produce the activation of Pl_Aifm1 (mitochondrial effector), which is a proapoptotic factor that 

initiates the cascade for a caspase-independent pathway. Moreover, death receptors are responsible 

also for the activation of Pl_Ripk that in turn is able to upregulated the transcription of the Nuclear 

Factor Kappa B (Pl_Nfkb). 

 The same pathway activated was observed also in A549 cells treated with heptadienal. In the 

human in vitro model, all receptors containing an intracellular death domain resulted upregulated 

(Hs_TRAILR1, Hs_TNFR1 and Hs_TNFR2) and, as consequence, downstream effectors of extrinsic 

apoptosis were also activated (Hs_AIFM1, Hs_RIPK2 and Hs_NFkB). These results obtained on 

human cell line concord with those described by Sansone et al. (2014). In fact, the authors identified 

a cell death signalling pathway caspase-independent activated by heptadienal, through the 

upregulation of TNFR2 that lead to direct suicide program without any survival mechanisms with the 

involvement of (AIFM1, FADD, FAS and FASL). 

Another relevant outcome of this work is represented by the involvement of autophagy in the 

molecular mechanism activated by heptadienal(figures 3.10 C, 3.11 C, 3.12 C and 3.13 C,  see results 

chapter 3). The genes examined are not activated by the aldehyde before the pluteus stage. In fact, 

low concentration of heptadienal (especially 2.5 μM) induce a downregulation of Pl_Ulk1, Pl_Ulk3 

and Pl_Pink, without the involvement of Pl_Becn1, after 5 and 21 hours. Only when treatment reaches 

48 hours of incubation, heptadienal induce an autophagic response, though the activation of the same 

genes resulting downregulated at the previous developmental stage. A similar result was obtained 
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from expression analysis of autophagic genes of A549 treated with 5 μM. In this specific case, only 

the gene Hs_ULK1 was found upregulated, demonstrating an initial activation of the autophagy. 

This pattern of gene response could be explained by the high specialization typical of the 

autophagy. More in detail, after treatment with heptadienal, sea urchin embryos and human cell line 

undergo a programmed cell death process, caspase independent, with the attempt to remove the 

intracellular damage compartments, by autophagy. Autophagy regulates the intracellular turnover of 

the organelles and proteins within cells, whereas the apoptosis controls the turnover of cells within 

tissues and organs. Many stress factors are able to induce sequentially autophagy and apoptosis 

within the same cell, by common upstream molecular signals. In fact, autophagy and autophagy 

related proteins may help the trigger of apoptosis and necrosis. In addition, autophagy can also lead 

an autophagic cell death, apoptosis independent, by the completely degradation of the cytoplasm. A 

dialogue between autophagy and programmed cell death pathway is crucial and strongly influences 

the normal clearance of damage and dying cells. In fact, the interruption and alteration of this 

functional relationship between autophagy ('self-eating') and apoptosis ('self-killing')  has important 

pathophysiological consequences.



 

113 
 

  



 

114 
 

 

 

 

 

 

 

CHAPTER 5.  
 

Conclusions and future implications 
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New molecular and environmental applications for the marine model 

organism Paracentrotus lividus 

Per definition, model species are organisms that are chosen by scientists and then recognised by 

all scientific community for their useful applications for in-depth studies. They are normally chosen 

in function of a certain characteristics of the organism, or their potential to provide easily answers to 

universal biological questions. Working with these organisms can produce information and 

knowledge transferable to other living organisms on which it is unfeasible to perform in-depth studies 

(e.g. human). Model organisms have to meet certain criteria such as a short generation time, the 

possibility to cultivate them and to reproduce fertilization and development in lab, low associated 

costs, the possibility to easily manipulate their genome and therefor to have a feasible genome size, 

and not less important, an interesting evolutionary position. Only a few model organisms that are 

currently investigated in biological Institutes around the world are of marine origin. Among 

eukaryotes, most of them are animals (e.g. sea urchin, sea squirt, lamprey, polychaete, platyneris) and 

few marine microorganisms. 

In particular, sea urchin demonstrated along many decades its validity as good model for 

embryology, ecotoxicology, developmental biology studies and also for cancer research and 

neurodegenerative disorders. Sea urchins embryos, for their specific characteristic, provide a unique 

opportunity to study patterns in developmental processes, cell cycle regulation and tumorigenesis 

events. All these biological processes need even now a well explanation for all their aspects, being 

fundamentals and at the basis of many human disorders. Using sea urchins as a model is important 

since these organisms occupy a key evolutionary position with respect to vertebrates. Indeed, the 

echinoderms and their sister group, the hemichordates are the only other deuterostome animals 

besides the chordates. The sea urchin is thus more closely related to humans than other major 

invertebrate models in use. Almost everything we today know about the chromosomal basis of 

development, maternal determinants, fertilization, maternal messenger RNA and the main regulatory 

mechanisms associated with cell cycle progression originates from research where sea urchin has had 

a central role . 

At the present, a huge group of researches forms a consortium working on the complete 

sequencing of the Mediterranean sea urchin Paracentrotus lividus genome. All this effort is producing 

a considerable amount of genomic information that will gives new impulse and a new light to the P. 

lividus as crucial marine model organisms for many European research Institutes. In fact, in the last 

decade, molecular studies and bioinformatic investigations have gained a central role in many 

research institute, since genome contains all information regulating cellular process and responsible 

of insurgence of many serious diseases. This new genomic knowledge support the reasonable 

scientific effort to validate sea urchin as a new molecular tool, in vitro and in situ, for the assessment 

and conservation of ocean health. 

The work of this experimental thesis is strictly  related  with this scenario with important 

future implications. The molecular investigation using sea urchin P. lividus and the preliminary 

knowledge about its genomic information described in this thesis has been a first attempt to validate 

an innovative molecular tool. In particular, sea urchin embryos could be used to evaluate in depth the 

effect of certain chemical compounds on a fundamental response activation: survival or death. For 
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this reason, the thesis describes a direct evolutionary relationship between sea urchin and human in 

relation to the conservation at gene level of the key factors involved in some of the main cell death 

signaling pathways. In addition, experimental work focused the attention on the analysis of gene 

expression of key genes involved in programmed cell death mechanisms after treatment with a pure 

marine compound (heptadienal), at three different sea urchin embryo developmental stages. These 

results were associated with expression level of the orthologous genes of the Homo sapiens after in 

vitro treatment of human cell line with the same marine pure compound (heptadienal). Comparing 

the bioinformatic and molecular results obtained working with the two experimental models, it is 

clear that P. lividus and H. sapiens, two evolutionarily distant organisms, show identity of the 

genomic information about key death factors and the gene network involved in programmed cell 

death seems to act in both organisms with conserved mechanism and regulation. 

Further information should be added to this study, in order to completely validate sea urchin 

P. lividus as molecular tool for the in vitro assessment of the activation of survival or death signals 

after treatment of embryos with chemical crude extracts, relative fractions or pure compounds, but 

also as environmental molecular tool for in situ studies of chemical contaminants or anthropocentric 

stressful factors that can interfere with the marine ecosystem. In fact, sea urchin naturally constitutes 

a sentinel organism able to reveal the health conditions of the seas. They are very sensitive to small 

environmental changes or stressful agents, modifying especially their reproductive fitness with 

alterations of developmental process at morphological and gene level, with consequence at the 

expense of future generations. For this reason, areas of naturalistic interest or marine environments 

with contamination rate to be evaluated, could benefit from these results and future additional 

molecular knowledge about sea urchin P. lividus death cell mechanisms, in order to assess the 

presence in the surround  of chemical, physical and biological factors that are able to induce death or 

survival, acting on crucial natural switch (on/off).  
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SECTION 2 

 

 

 

Drug Discovery from marine microorganism: 

Microalgae as source of new natural products for application in 

pharmacology 
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Introduction 
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6.1 Drug from the sea: current research and market 

 
Diseases affecting humans and all animals involved with human life are evolving their 

patterns, and new and poorly characterized diseases are emerging due to environmental changes and 

dysregulated lifestyle. The enormous increase of world population is representing a pressure factor 

on the existing resources for new drugs. As consequence, there is a continuous research of new natural 

sources to obtain innovative solution for human and animal health. In first instance, the drug 

industries research new and renewable resources to develop efficacious and safe drugs as answer to 

the increasing demands of the world population. Oceans represent a large source of a variety of 

organisms with high biodiversity due to the diversified environment generated by diverse external 

conditions with high chemical and physical variations. The enormous resources of the seas have been 

exploited by humans since ancient times, but the human activities include mainly the use of marine 

macroorganisms and plants, like fish and preparations from algae as natural medicine remediation.  

Despite the abundance and variety of marine environments and the huge biodiversity they 

host,  researchers and pharmacology industries have  payed scarce attention to marine organisms, that 

still remain an underexplored natural source for biotechnological purposes. For this reason, marine 

ecosystems could represent a promising resource that can be exploited for the identification of new 

lead compounds and the development of new drugs to combat major diseases of our era, such as 

cancer or neurodegenerative diseases.  

To date,  scientists have identified 33 animal phyla, 32 of which are embodied in the marine 

environment. Among them, 15 phyla are exclusively present in the marine ecosistems (Margulis and 

Schwartz, 1998). Marine organisms such as sponges, tunicates, soft corals, nudibranchs, sea hares, 

opisthobranch molluscs, echinoderms, bryozoans, prawns, shells, sea slugs, and marine 

microorganisms have showed potential application in the field of drug discovery and development. 

The marine organisms are in the last two decades object of studies and they are screened for 

antibacterial, anti-inflammatory, immunomodulatory, anti-fungal, antimicrobial, neuroprotective, 

anticancer, analgesic, and antimalarial properties. Up to now, 15,000 marine molecules have been 

described, out of which 3000 having interesting biological properties (Vignash et al., 2011). 

Marine natural products are generally secondary metabolites. In fact, they are not synthetized 

by primary metabolic pathways and do not cover main functions responsible for development, 

growth, or reproduction and propagation of species (Martins et al., 2014). 

Bergmann (1957) formally reported the first biologically active marine natural product in late 

1950. As previously stated, around 15,000 such unique natural compounds have been described and 

out of them 30% products have been isolated from sponges (Murti and Agarwal, 2010). 

The following molecules represent some examples of success of marine pharmacology 

research moving to the global market. Linington and colleagues (2006) discovered that the 

novel caminosides B and D glycolipids, isolated from the Caribbean marine sponge Caminus 

sphaeoroconia, were inhibitors of pathogenic Escherichia coli type III secretion system. Of particular 

interest for its anti-inflammatory properties is the Mediterranean sponge species Spongia officinalis, 

chemical extract of which was object of the in vivo study on rat model of carrageenan-induced paw 

edema assay (Dellai et al., 2010). Another chemical extract from green seaweed Ulva 
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reticulata prompted a strong interest for its neuroprotective effect. This marine plant is able to inhibit 

acetyl-and butyryl-cholinesterases, with an effect and efficacy comparable to molecules currently 

approved for Alzheimer's disease treatment (Suganthy et al., 2010). Also antiparasitic activity was 

observed for marine compounds. In particular, a chemical extract, prepared using dichloromethane, 

of Sarcotragus sp. (known as Tunisian sponge) has demonstrated in-vitro anti-leishmanial activity by 

demonstrating the associated morphological alterations in promastigotes of leishmania major (Ben 

Kahla-Nakbi et al., 2016). Antiviral agents from marine source was also found. For instance, high 

molecular weight exo-polysaccharides extracted from the Celtodoryx girardae (French marine 

sponge) possess anti-herpes simplex virus-1 (HSV) activity (Roshid et al., 2009). 

Another sponge species, Acanthella sp. (Japanese species), received attention for drug 

discovery for its antimalarial activity. The invertebrate was chemically studied and molecules 

belonging to kalihinane diterpenoids class were found, which also contains antifungal, anthelmintic, 

and antifouling compounds (Miyaoka et al., 1998). 

Cancer research has obtained important results in term of new therapeutic approaches with 

marine derived drugs. Bryostatin was obtained from the Bryozoan, Bugula neritina; some analogues 

have been extracted from sponges and tunicates. Sorbicillactone-B has been purified from a culture 

of the bacterial strain Penicillium chrysogenum, which has been isolated from a Mediterranean 

sponge Ircinia fasciculata (Bringmann et al., 2007). This marine compound has shown activity 

against leukemia cells. 

Another anticancer drug, with promising applications for tumor treatments, is keyhole limpet 

hemocyanin (KLH) that is present in Megathura crenulata, a marine gastropod species found 

abundantly in the Pacific coast of California and Mexico (Harris and Markl, 1999). KLH has been 

investigated for its remarkable immunostimulatory properties in experimental animals and also in 

human; it is finding application in experimental immunology and also clinically as an 

immunotherapeutic agent (Curtis et al., 1971).  

The first compound of marine origin to obtain approval from the U.S. Food and Drug 

Administration (USFDA) in 2004 was ziconotide, an analgesic drug for the treatment of pain. This 

marine compound derived from the marine snail Conus magus. Studies with animal models suggested 

the role of ziconotide in blocking of N-type calcium channels on the primary nociceptive nerves of 

the spinal cord (Skov et al., 2007). 

Antimicrobial properties were also found in marine compounds. For instance, the 

antimicrobial agents cephalosporins. In particular, cephalosporin C was purified and characterized 

from a marine fungus, Cephalosporium acremonium ( Murti and Agarwal, 2010). 

Even though the potentiality of marine environment are largely recognized, there are certain 

major challenges and obstacles to the identification and characterization of new drugs from marine 

organisms. One of this is represented by the variability of environmental conditions, which could 

produce different metabolites from the same organism, for the effect of rapid adaptation. Isolation 

and identification of new marine lead compounds could also have some limit, because the natural 

molecules often are present only in low quantity and it becomes very difficult to isolate such 

compounds (Molinski et al., 2009). The quantity needed for chemical and activity studies can vary 

depending on the step in the drug discovery pipeline and the typology of study. The amount of 

compound may range from few grams needed for preclinical drug development and safety analysis 

to quantities as much as kilograms required for clinical study in different phases and many of tons for 

cosmetics (Martins et al., 2014). 
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Many scientific attempts have been performed to overcome this hurdle by increased 

development of synthetic or hemisynthetic analogues derivatives with desired properties, or designing 

a pharmacophore of lower complexity with easier synthesis method (Radjasa et al., 2011). The major 

results are coming from biotechnology applications trying to design and develop a pipeline for the 

marine cultures of organisms with pharmacological and nutraceutical interest. Natural resources 

should be cultured for obtaining a sustainable approach for marine drug discovery and marine natural 

compounds production. There are already several applied research lines in this direction,for instance, 

the growth of marine organisms in their natural environment by farming, which is also known as 

“mariculture”, and the cultivation of the marine organisms under artificial conditions by the process 

called as “aquaculture” (Maier, 20109; Gerwick and Moore, 2012).  

 

 

 

 

 

 

6.2 Biotechnological potential of marine microalgae 

 
Marine microalgae are still unexplored resource for biotechnological applications with more 

than 25,000 species of which only 16 are actually in use for their economical interest. In recent years, 

microalgal culture technology is a new business area which is developing innovative technologies for 

different practical applications. Innovative processes and products have been introduced in microalgal 

biotechnology to produce vitamins, proteins, cosmetics, and healthy foods. For most of these 

applications, the market is still developing new sectors and the biotechnological use of microalgae 

will extend into new business areas. With the development of sophisticated culture and screening 

techniques, microalgal biotechnology can meet the challenging demands of both the food and 

pharmaceutical industries (Raja et al., 2008) 

At present, in nutraceutical field, due  to  their  high  nutritional  value,  mainly freshwater 

microalgae such as Spirulina and Chlorella are being massively cultured as ingredient of healthy 

food. A variety of high value products including polyunsaturated fatty acids (PUFAs), pigments such 

as carotenoids and phycobiliproteins, and bioactive compounds are useful as nutraceuticals and 

pharmaceuticals, as well as for industrial applications (Cardozo et al., 2007). 

Pharmaceutical applications of microalgae are still underexploited, although they produce a 

multitude of compounds that microalgae use as chemical defence against stress conditions or 

predators (Chu, 2011). Many important research programs are exploring and demonstrating the 

advantage of the microalgae exploitation for bioactive molecules because they represent a high 

renewable resource, since they can be cultured on a large scale for production of the desired 

chemicals. The advent of molecular biology has led to a better understanding of the biosynthesis and 

physiological functions of these bioactive molecules in microalgae. Efforts have also been invested 

to develop transgenic microalgae as “green cell factories” to produce new pharmaceuticals using 

genetic transformation techniques. 

In terms of applications in drug discovery and medical biotechnology, microalgae represent 

thus  a potential sources of high value products and bioactive molecules that may produce new lead 

compounds for further pharmacological and industrial studies and development (Chu, 2012). 
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The use of microalgae as a biological tool for monitoring and assessment of environmental 

toxicants is another application that has attracted much interest. For environmental biotechnology, 

microalgae are founding many applications, especially for bioremediation, bioassay and 

biomonitoring of environmental toxicants. Actually, several studies have demonstrated that a 

combination of various microalgae species are efficient in wastewater treatment. In addition to 

suspended cultures, immobilised microalgae system can further enhance the efficiency in the removal 

of environmental toxicants. While microalgae that are tolerant to toxicants are useful in 

bioremediation, sensitive species are useful tools for bioassay and biomonitoring of environmental 

pollutants. Microalgae have been used as bioassay organisms to assess the toxicity of pollutants such 

as heavy metals, pesticides and pharmaceuticals. The common microalgae used for bioassays of 

toxicants include Pseudokirchneriella subcapitata, Dunaliella  tertiolecta, Isochrysis  galbana, 

Chlorella spp. (Garcia et al., 200; Phang et al., 2000; Lim et al., 2010; Mustafa et al., 2012; De Bashan 

and Bashan, 2010). Microalgae have thus found a wide range of applications, but still remain to 

characterize  their huge potential  for larger applications in the  biotechnology field.  

 

 

 

 

 

 

6.3 The green microalga Tetraselmis suecica 
 

Reactive oxygen species (ROS) have been linked to the pathogenesis of several human 

diseases such as atherosclerosis, diabetes mellitus, chronic inflammation, neurodegenerative 

disorders and many types of cancers. ROS can be partially neutralized by antioxidant compounds that 

can reduce the risk of many diseases related to oxidative stress (Fiedor and Burda, 2014). Hence, 

consumer preference for natural products is increasing the interest in finding new antioxidants from 

natural sources because synthetic products can cause potential long term toxic effects (Edge and 

Truscott, 2010). Most, if not all, commercially available natural antioxidants are derived from 

terrestrial plants (e.g. rosemary, tea, coffee, grape seeds, tomato and cocoa).  Many of these 

antioxidants are carotenoids that are a class of more than 700 naturally occurring pigments 

synthesized by plants, algae, and photosynthetic bacteria. Carotenoids are known to be potent 

physical and chemical quenchers of singlet oxygen (1O2) and scavengers of other reactive oxygen 

species. However, the exact mechanisms underlying the protective function and specific molecular 

targets of carotenoids in vivo and in vitro are still poorly understood (Maiani et al.,, 2009).  

Tetraselmis suecica is a marine green microalga belonging to the class Chlorophyceae, widely 

used in aquaculture for the feeding of mollusks and crustacean larvae (Chini Zittelli et al.,, 2006) and 

as a probiotic in fish (Irianto and Austin, 2014). T. suecica is rich in vitamin E, carotenoids, 

chlorophyll, and tocopherols (Perez-Lopez et al.,, 2014) and has been suggested as a food supplement 

in human and animal diets7. The total pigment extract from T. suecica has been patented for its ability 

to enhance dermal pigmentation, reduce psoriasis lesions and increase hair growth (Carballo-

Cárdenas et al., 2003). In this study the potential biotechnological application of this species was 

investigated, analysing the  protective role at molecular level on human anaplastic cells and tissues. 
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To this aim, the pigment content of an ethanol/water extract of T. suecica was characterized. 

Moreover, the study represents an attempt to better understand the antioxidant and protective effects 

of this extract against oxidative damage, at gene and protein level.  

 

 

 

 

 

 

6.4 The dinoflagellate Alexandrium andersoni 
 

Marine dinoflagellates are a large group of eukaryotic microalgae with approximately 2000 

living species (Taylor et al., 2008). While eukaryotic, they possess many characteristics not seen in 

typical eukaryotes, such as a fifth base replacing uracil in their DNA (Hackett et al., 2004; Rizzo, 

2003), unusually large genomes and greatly reduced chloroplast genomes (Zhang et al., 1999), 

permanently condensed chromosomes lacking in histones (Hackett et al., 2004), and complex 

organelle structures such as eyespots (Hoppenrath et al., 2009; Murray et al., 2012). Several species 

of this group are potentially toxic, causing economic losses such as death of fish and shellfish, and 

human health problems due to consumption of contaminated organisms (Glibert et al., 2005). Toxic 

dinoflagellates include the species Alexandrium tamarense (gonyautoxins), Amphidinium carterae 

(haemolysins), Prorocentum lima (okaidic acid and dinophysistoxins), Prorocentrum rhathymum 

(water-soluble fast-acting toxins and hemolytic effects), Coolia monotis (cooliatoxin) and Ostreopsis 

sp. (toxic butanol-soluble compound, palytoxin analogue) (Kita et al., 2005; Kobayashi and Tsuda, 

2004; Onodera et al., 2005). Recently, a few studies have also evaluated the specific cytotoxic, 

antitumor, antibiotic, antifungal, immunosuppressant and neurotoxic activity of cultured 

dinoflagellates as potential sources for novel drug discovery (Camacho et al., 2007; Dragunow et al., 

2005; Wright and Cembella, 1998). For instance, okadaic acid from Dinophysis is a potent neurotoxin 

used in studies on the therapeutic effects of atypical antipsychotic drugs in the treatment of cognitive 

impairment and schizophrenia (He et al., 2005); whereas the compound 13-desmethyl spirolide C 

(polyketide-derived), that can be synthesized by the dinoflagellate Alexandrium ostenfeldii 

(MacKinnon et al., 2006), has shown to have beneficial effects in a transgenic mouse model of 

Alzheimer's disease (Alonso et al., 2013). In addition, pectentoxins from Dinophysis show cytotoxic 

activity against several human cancer cell lines (Jung et al., 1995) and brevetoxin exposure may elicit 

important cellular effects, including apoptosis, cell metabolism and proliferation, and cytotoxicity, in 

an immune-derived transformed cell line following in vitro exposure (Walsh et al., 2008). 

Amphidinolides isolated from the dinoflagellate Amphidinium carterae also exhibit remarkably 

potent cytotoxicity against human tumor cell lines and are expected to be hopeful lead compounds 

for new anticancer drugs (Kobayashi et al., 2003). 

This study evaluates the potential cytotoxic activity of a strain of the dinoflagellate 

Alexandrium andersoni against two very resistant cancer cell lines, lung adenocarcinoma (A549) and 

colorectal carcinoma (HT-29). Using a molecular approach, it was demonstrate that extracts of this 

species are able to activate two different cell death signalling pathways in the two tumor cell lines 

tested. We show that both signaling pathways are caspase-independent as opposed to many 
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therapeutic agents that induce caspase-dependent apoptosis (Debatin 2004), often targeting all 

proliferating cells without distinguishing between tumor and somatic cells.  
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CHAPTER 7.  
 

Materials and Methods 
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7.1 Microalgae biomass production 

 

The prasinophyte Tetraselmis suecica (strain  CCMP 906) was purchased from the culture 

collection at the National Center for Marine Algae and Microbiota (NCMA – formerly “CCMP”, 

Bigelow Laboratory for Ocean Sciences, Maine, USA) and was grown in Guillard's f/2 (Guillard, 

1975) medium in two-liter polycarbonate bottles, constantly bubbled with air filtered through 0.2 µm 

membrane filters. The dinoflagellate Alexandrium andersoni (strain FE 108 from the microalgal 

collection maintained at the Stazione Zoologica Anton Dohrn) was grown in 10 liter carboys, with 

Guillard's f/2 medium; also this species required bubbling with air filtered through 0.2 µm membrane. 

Cultures were grown at 19°C, under a photon-flux density of about 150 µmol photons m–2 s–1, and a 

photoperiod of 12:12 h light:dark (12L:12D) cycle. Initial cell concentrations were about 5 x 103 cells 

ml-1. Microalgal biomass was collected by centrifugation after 9 days (~8 x 103 cells ml-1). 

 

 

 

 

 

 

7.2 Chemical extractions and fractionation 

 

The ethanol/water T. suecica crude extract was obtained according to Goiris et al. (2011). 

Extraction procedure was conducted under dark conditions, at room temperature and under nitrogen 

atmosphere, in order to avoid oxidation of the samples. Freeze-dried biomass (~100 mg) was 

extracted with 1 ml ethanol/water (3/1, v/v) mixture for 30 min. The mixture was separated by 

centrifugation at 4500 x g, for 10 min, at 20°C, and the upper layer was transferred to a clean tube. 

The pellet was resuspended in 1 ml of the ethanol/water mixture and extracted for a second time. The 

ethanolic extract was dried in a rotary vacuum evaporator (Buchi rotavapor R-114). Dry extract was 

stored under nitrogen atmosphere at -20°C prior to analysis. 

An aliquot of the wet pellet obtained (1.3 g) from the A. andersoni cultures was frozen and 

stored at -80 °C until use for Solid Phase Extraction, whereas 10 g were lyophilized to yield 1.4 g of 

dried material that was extracted with methanol (3×150 ml) at room temperature. An aliquot of this 

methanol extract (30 mg) was subjected to a modified Kupchan's partitioning procedure as follows 

(Kupchan et al., 1973). The methanol extract was dissolved in a mixture of MeOH/H2O containing 

10% H2O and partitioned against n-hexane (2.1 mg of extract). The water content (%, v/v) of the 

MeOH extract was adjusted to 30% and partitioned against CHCl3 (11.4 mg of extract). The aqueous 

phase was concentrated to remove MeOH and then extracted with n-BuOH (2.0 mg of extract).  

For solid phase extraction (SPE) of A. andersoni, the wet microalgal cell pellet (1.3 g) was 

extracted directly with MeOH (3x7 ml). After evaporation of the solvent, 20 mg of this organic extract 

(82 mg) was subject to SPE on a GX-271 ASPEC Gilson apparatus by using CHROMABOND® HR-

X cartridges (6 ml/500 mg) as reported by Cutignano et al. (2015). This extraction yielded 4 fractions 

that were tested on A549, HT-29, WI38 and BEAS-2B human cell lines. 
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7.3 HPLC and LC-MS/MS analysis 

 

For the ethanol/water T. suecica crude extract was carried out chemical characterization in 

order to describe more in detail the content of this pool of molecules (chemical analysis were 

performed by Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Pozzuoli). 

Pigment measurements were conducted by High Performance Liquid Chromatography (HPLC), 

according to methods described in Brunet et al. (2014). Prior to injection into the HPLC, 250 µL of 

an Ion Pairing Agent (ammonium acetate 1 mol L–1, final concentration of 0.33 mol L–1) was added 

to 0.5 mL of the pigment extract and incubated for 5 minutes in the dark at 4°C. This extract was then 

injected in the 50 µL loop of the Hewlett Packard series 1100 HPLC (Hewlett Packard, Wilmington, 

NC, USA), equipped with a reversed-phase column (C8 Kinetex column; 50 mm×4.6 mm; 2.6 µm 

particle size, Phenomenex®, USA). The temperature of the column was steadily maintained at 20°C, 

and the flow rate of the mobile phase was set up at 1.7 mL min–1. The mobile phase was composed 

of two solvent mixtures: A, methanol/aqueous ammonium acetate (70/30, v/v) and B, methanol. 

During the 12 minutes elution, the gradient between the solvents was programmed: 75% A (0 min), 

50% A (1 min), 0% A (8 min) isocratic for 3 min. 

Chlorophylls and carotenoids were detected by diode-array spectroscopy (spectrum data 

collected in the range 350 - 750 nm) using a Hewlett Packard photodiode array detector, model DAD 

series 1100 and absorbance chromatogram was reported at 440 nm. Chlorophylls were also detected 

by fluorescence  using a Hewlett Packard standard FLD cell series 1100 with excitation and emission 

wavelengths set at 407 nm and 665 nm, respectively. Identification and quantification of pigments 

were carried out using pigment standards from the D.H.I. Water & Environment (Horsholm, 

Denmark). Pigment standards derived primarily from phytoplankton. The standards are flushed with 

100% N2 and supplied in sealed vials with 2.5 mL, together with a certificate of analysis. All 

information regarding the accuracy of the preparation of the standards and reference numbers of all 

standards are available at the following address: 

http://c14.dhigroup.com/productdescriptions/phytoplanktonpigmentstandards. Moreover, spectral 

information was compared with a library of chlorophyll and carotenoid spectra of pigments prepared 

from standard phytoplankton cultures (Jeffrey and Wright, 1997). 

To better characterize chemically the ethanol/water T. suecica crude extract, LC-MS/MS 

analysis was carried out on a Waters Alliance HPLC with a Waters 996 PDA detector on line with a 

Q-Tof mass spectrometer (Waters) featured by an ESI source in positive ionization mode. Column: 

Phenomenex Luna C8 250 x 4.6 mm, 5µm, 100A. Eluent A: Water, B: MeOH. Gradient: 90% B to 

100% B in 15 mins, holding for 20 mins. Flow: 0.7 ml min-1. PDA: 400-700 nm. Full Mass range: 

450-1000 m/z. 
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7.4 Scavenging activity against DPPH radical 

 

2,2-Di(4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) was used to perform the radical 

scavenger assay (Sigma Aldrich, cat. 257621) of the ethanol/water T. suecica crude extract. Various 

concentrations of extract were mixed with a final concentration of DPPH of 0.1 mM in methanol, 

allowed to react for 30 min in the dark. At the end of incubation time, absorbance was measured at 

517 nm using a microplate reader (Multiskan FC, THERMO SCIENTIFIC).   

 

 

 

 

 

 

7.5 Maintenance, treatment of human cell lines and cell viability 
 

The adenocarcinomic human alveolar basal epithelial cell line A549 was used to perform the 

in vitro experiments with the ethanol/water T. suecica crude extract. 

The lung/brunch epithelial cell line (BEAS-2B), the normal diploid human lung fibroblasts 

(WI-38), the human colorectal adenocarcinoma cells (HT-29) and A549 were used for in vitro 

experiments with A. andersoni extract and relative fractions. 

A549 cells (ATCC CCL185) were cultured in DMEM medium (Dulbecco’s modified Eagle’s 

medium) supplemented with 10% (v/v) fetal bovine serum (FBS), 100 units ml-1 penicillin and 100 

µg ml-1 streptomycin. HT-29 cells (ATCC HTB38) were maintained in McCoy's 5A medium 

supplemented with 10% (v/v) FBS, 2 mM L-glutamine, 100 units ml-1 penicillin and 100 µg ml-1 

streptomycin. WI-38 cells were purchased from the American Type Culture Collection (ATCC® 

CCL-75™) and grown in MEM supplemented with 10% of FBS, 100 units ml-1 penicillin and 100 

µg ml-1 streptomycin, 2mM of L-glutamine and non-essential amino acids (NEAA, 2 mM). BEAS-

2B cells (ATCC CRL-9609) were maintained in BEGM medium containing all the recommended 

supplements (Lonza). All cell lines were incubated in a 5% CO2 humidified chamber at 37°C for 

growth. Medium renewal occurred every 3 days, and cells were detached via trypsinization before 

they reached confluence. 

The effect of all chemical samples on cell viability was determined using the 3-(4,5-

Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide  (MTT) assay (Applichem A2231) in 

according to Gerlier and Thomasset (1986). All cell lines, seeded in 96-well plates (2 x 103 cells well-

1), after incubation times with specific samples, were treated with 10 µl (5 mg ml-1) of MTT and 

incubated for 3 h. The absorbance was recorded on a microplate reader at a wavelength of 570 nm 

(Multiskan FC, THERMO SCIENTIFIC). The effect of the samples on cell viability was evaluated 

as percent of cell viability calculated as the ratio between mean absorbance of each sample and mean 

absorbance of control. 

The ethanol/water T. suecica crude extract was tested at eight increasing concentrations: 2, 5, 

10, 25, 50, 100, 200 and 400 µg ml-1, for 24 and 48 hours. 

The A. andersoni extracts were tested at 10, 50, 100, 200 and 400 μg ml-1, for 24 and 48 hours. 

At the same incubation time were also tested the A. andersoni SPE- fractions at 1, 10 and 100 μg ml-
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1. In an independent experiment, A549 and HT-29 cells (26 x 103 cells well-1) were treated with three 

concentrations (1, 10 and 100 µg ml-1) for each SPE fraction and with caspase-3 Inhibitor 

(C30H41FN4O12, sc-3075, Santa Cruz) at 9.7 mM. Cells were allowed to grow for 24 and 48 h and 

viability was then checked with the MTT assay, as described above. 

 

 

 

 

 

 

7.6 RNA extraction, cDNA synthesis and Real-Time PCR of the cell 

samples 

A549 cells (2 x 106), used for RNA extraction and analysis of the ethanol/water T. suecica 

crude extract, were seeded in Petri dishes (100 mm diameter) to obtain four types of samples: negative 

control without any treatment, positive control with 30 mM of H2O2, cells treated with ethanol/water 

extracts (100, 200 and 400 µg ml-1), and cells recovered with extracts (100, 200 and 400 µg ml-1) 

after pre-treatment for 1 h with 30 mM H2O2. 

A549 and HT-29 cells were used for RNA extraction and analysis of the extracts and SPE 

fractions of Alexandrium andersoni. 

After 2 h of exposure time, cells were washed directly in the Petri dish by adding cold 

Phosphate-Buffered Saline (PBS) and rocking gently. Cells were lysed in the Petri dish by adding 1 

ml of Trisure Reagent (Bioline, cat. BIO-38033) per 100 mm dish diameter. RNA was isolated 

according to the manufacturer’s protocol. RNA concentration and purity was assessed using the 

nanophotomer NanodroP (Euroclone).  

About 200 ng RNA was subjected to reverse transcription reaction using the RT2 first strand 

kit (Qiagen, cat.330401) according to the manufacturer’s instructions. The qRT-PCR analysis was 

performed in triplicate using the RT2 Profiler PCR Array kit (Qiagen, cat.330231), in order to analyze 

the expression of cell oxidative stress genes on A549 cells. Plates were run on a ViiA7 (Applied 

Biosystems 384 well blocks), Standard Fast PCR Cycling protocol with 10 µl reaction volumes. 

Cycling conditions used were: 1 cycle initiation at 95.0 °C for 10 min followed by amplification for 

40 cycles at 95.0°C for 15 s and 60.0 °C for 1 min. Amplification data were collected via ViiA 7 

RUO Software (Applied Biosystems). The cycle threshold (Ct)-values were analyzed with PCR array 

data analysis online software (http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php, 

Qiagen). 
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7.7 Protein extraction and western blotting 

 

A549 cells (2 x 106), used for protein extraction and analysis of the ethanol/water T. suecica 

crude extract, were seeded in Petri dishes (100 mm diameter) to obtain four types of samples: negative 

control without any treatment, positive control with cells treated with 30 mM H2O2, cells treated with 

100, 200 and 400 µg ml-1, and cells recovered with 100, 200 and 400 µg m-1 of extract after pre-

treatment for 1 h with 30 mM H2O2. The same cell line was used to assess protein expression with A. 

andersoni extract. 

A549 cell lysate was prepared after 24 h of treatment by scraping the cells of each Petri dish 

into 1 ml of Radio Immune Precipitation Assay buffer (RIPA, Cell Signaling, cat. 9806), 

supplemented with 1 µM of protease inhibitor PMSF (Cell Signaling, cat. 8553). The lysate was 

incubated on ice for 15 min and then clarified by centrifugation at 14000 x g, for 20 min. Total protein 

concentration was determined according to the Bradford method using a Protein Assay Reagent 

(Applichem, cat. A6932) with bovine serum albumin (BSA, Sigma Aldrich, cat. A2058) as a standard. 

The protein extract was stored at -20°C until use. Before electrophoresis, protein samples were 

incubated at 100°C for 5 min. Following 10% SDS-PAGE, gels were stained with Coomassie or 

blotted onto nitrocellulose membrane (Biorad, cat. 170-4159). Membranes were incubated for 1 h in 

blocking reagent (1X Tris Buffered Saline-TBS), with 0.1% Tween-20 with 5% w/v nonfat dry milk, 

and incubated overnight at 4°C with the primary antibodies diluted in 1X TBS, 0.1% Tween-20 with 

5% BSA. 

Three key proteins were investigated for the ethanol/water T. suecica crude extract: 24-

dehydrocholesterol reductase (DHCR24, 1:1000, Sigma Aldrich SAB1405713), glutathione 

peroxidase 4 (GPX4, 1:1000, Sigma Aldrich SAB2500486), prostaglandin reductase 1 (PTGR1, 

1:1000, Sigma Aldrich SAB4500918). Positive control was obtained by using anti-β-actin antibody 

(1:500, Novus Biological cat. NB600-501). 

Primary antibodies used for A. andersoni extract were from the Death Receptor Antibody 

Sampler Kit (Cell Signaling, 8356S), including anti-TNFR1 (1:1000), anti-RIP-k1 (1:1000), anti-

DR3/TNFRSF25 (1:1000). Positive control was obtained by using anti-β-actin antibody (1:500, 

Sigma cat. A2668). 

After incubation, membranes were washed three times for 5 min each with 15 ml of 

TBS/Tween and then incubated with HRP-conjugated secondary antibody with gentle agitation for 1 

h at room temperature. For β-actin and DHCR24 antibodies, we used HRP-conjugated secondary 

antibody anti-mouse (1:10000, Santa Cruz Biotechnology); for GPX4, PTGR1, TNFR, RIP-k1 and 

DR3/TNFRSF25 antibodies we used HRP-conjugated secondary antibody anti-rabbit (1:10000, 

Jackson ImmunoResearch). 

After incubation, membranes were washed three times for 5 min each with 15 ml of 

TBS/Tween. Blotted membranes were immunodetected using clarity Western ECL (Biorad, cat. 170-

5060). Proteins were visualized with Fuji medical X-ray film (cat. 47410). Densitometric analysis of 

immunopositive bands was performed using Image J software. 
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7.8 Elisa for prostaglandin E2 (PGE2) 
 

Quantitative ELISA test was used to determine prostaglandin E2 (PGE2) levels secreted by 

A549 cells in cell culture medium before and after ethanol/water T. suecica crude extract treatment. 

Prostaglandins were quantified in the cell medium by ELISA kit (Life Technologies, cat. EHPGE2) 

according to standard manufacturer’s recommendations. We quantified prostaglandins in four 

samples: A549 cells without treatment (control), A549 cells treated with 100, 200 and 400 µg ml-1 of 

extract, A549 cells treated with only 30 mM of H2O2 and A549 cells treated with 100, 200 and 400 

µg ml-1 of the extract after pre-treatment for 1 h with 30 mM H2O2. 

 

 

 

 

 

 

7.9 Treatment of human epidermis and tissue viability 

 
The human epidermal tissue model EpiDerm EPI-200 (size 0.63 cm2) was used as in vitro 

model to confirm the potential application of ethanol/water T. suecica crude extract as cosmeceutical. 

The effect of the extract on tissue viability was determined using the MTT assay. After 1 h treatment 

and 24 h of recovery time, tissues were transferred to 24-well plates containing MTT medium (1 mg 

ml-1). After 3 h incubation in MTT, the blue formazan salt was extracted with 2 ml/tissue of 

isopropanol and the optical density of the extracted formazan was determined using a 

spectrophotometer at a wavelength of 570 nm. Relative tissue viability was calculated for each tissue 

as percentage of the mean of the negative control tissues. Skin irritation potential of the test extract 

was predicted if the remaining relative tissue viability was below 50% (MatTek Corporation-

Protocol). 

 

 

 

 

 

 

7.10  Cell cycle analysis 

 
A549 cells (2 x 105) used for cell cycle analysis of the A. andersoni extract were seeded in 6-

well plates and treated with 10, 50, 100, 200 and 400 µg ml-1 extract for 2, 4, 6, 8, 24 and 48 hours in 

order to verify dose response in time course experiments. After treatment times, A549 cells were 

collected from plates using 1 ml of Trypsin EDTA (Lonza, Italy), fixed in 70% ethanol and stored at 
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-20° C. Cells were then washed twice with PBS, re-suspended in PBS containing 1 mg ml-1RNase A 

(Qiagen, Cat.19101), incubated at 37° C for 45 minutes and then stained with propidium iodide (10 

µg ml-1, Sigma cat. P4864) for 15 min. The percent distribution of cells in the different phases of the 

cell cycle was then estimated using a FACScalibur flow cytometer (BD Biosciences 

Immunocytometry Systems, San Jose, CA, USA), equipped with a 488 nm Ar laser and standard filter 

sets. The percentage of cells in the different phases of the cell cycle was calculated using ModFit LT 

(Verity Software House, Topsham, ME, USA). 

 

 

 

 

 

 

7.11  Statistical analysis 

 
Statistical significance of the DPPH assay was determined by Students-t test (*p values ≤ 

0.05). Statistical differences between treated and control cells for cell viability counts were 

determined by One-way ANOVA and significant differences between the treated groups by Students-

t test (*) and ANOVA followed by Dunnett’s test (#) (p values ≤ 0.001) using Microsoft Excel 

software (365 version, 2013). Gene expression data were analyzed by PCR array data analysis online 

software (http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php, Qiagen®). Only 

expression values greater than a 2.0-fold difference with respect to the controls were considered 

significant. Immunoblotting protein expression was calculated as the percentage of integral area of 

every single gel band with respect to total gel lane area, represented as pixels. Statistical differences 

between treated and controls were determined by Students-t test with significant p values ≤ 0.05. Data 

significantly different from controls, with p values < 0.001 are marked with two asterisks in the 

figures. Significant differences between treated groups, after epidermal human tissue experiments, 

were determined using Students-t test (*p ≤ 0.05) and ANOVA.  
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Results 
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Tetraselmis suecica 

 

8.1 Chemical characterization 

 
 The high performance liquid chromatography (HPLC) pigment profile of the ethanol/water 

crude extract of Tetraselmis suecica was performed to better analysed the chemical contents (figure 

8.1 A). The technique applied was able to reveal porphyrin pigments, chlorophyll a and b, α- and γ-

carotene and xanthophyll pigments such as lutein, loroxanthin dodecenoate, loroxanthin decenoate, 

violaxanthin, neoxanthin, 9’-cis-neoxanthin and antheraxanthin (figure 8.1 B). The pigments were 

identified by diode array (DAD) spectroscopy and comparing their visible absorption spectra with 

authentic standard.   
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FIGURE 8.1: Chemical characterization of ethanol/water crude extract. (A) HPLC chromatogram of 

pigments from the ethanol/water extract of the green microalga Tetraselmis suecica. (B) Table 

describes peak identification, retention time, abbreviations and online spectral characteristics of the 

ethanol/water extract of the green microalga Tetraselmis suecica. 

 

 

 

 

 

 

 Results were also supported by HPLC-PDA-MS/MS data (figure 8.2). Other xanthophyll 

pigments, such as loroxanthin and zeaxanthin, which are usually found in green algae, were not 

observed in this sample. Loroxanthin decenoate was tentatively identified only by LC-MS/MS 
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analysis. Xanthophylls constituted almost 79% of the total pigments identified, and, within the group, 

lutein was the most abundant, reaching concentrations comparable to that of chlorophyll b (Chl b 

31% of Chl a, Lutein  33% of Chl a; see for more details figure 8.2, A and B). Neoxanthin and 

violaxanthin pigments showed a percentage over Chl a of about 16%, whereas loroxanthin 

dodecenoate a percentage of  8%. 

 

 

 

 

 

 

 
 

FIGURE 8.2: Chemical characterization of ethanol/water crude extract. (A) LC-PDA-ESI+MS/MS 

analysis of the carotenoid pool in the ethanol/water extract of Tetraselmis suecica. (B) Table describes 

for each peak retention time, maximum of absorbance (expressed in nm), ESI+-MS (expressed in 

m/z), ESI+-MS/MS (expressed in m/z) and relative names of the chemical components of the 

ethanol/water extract of the green microalga Tetraselmis suecica. 
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8.2 Antioxidant activity assay 

 
The ethanol/water extract of the Tetraselmis suecica exhibited marked reducing activity 

toward radical species. This property was demonstrate testing the ability of crude extract of the green 

microalga of scavenging the 2,2-diphenyl -1-picrylhydrazyl (DPPH) radical. Addition of extract 

concentrations of 50 μg ml-1, 100 μg ml-1 and 200 μg ml-1 resulted in a dose-dependent reduction 

(21.5%, 52.0% and 97.7%, respectively) of the purple radical DPPH into the yellow reduced form. 

This activity was significantly stronger than the positive control, α-Tocopherol, tested at the same 

concentrations (Table 8.1). 

 

 

 

 

 

 

TABLE 8.1: Radical scavenging capacity (RSC, %) of Tetraselmis suecica ethanol/water extract on 

DPPH free radical. Values are reported as percentage versus a blank and are the mean ±SD of three 

independent samples analyzed three times. Asterisks denote significant increases in measured radical 

scavenging activity *p≤0.05 versus control. 

 

 

 

 

 

 

 

 

Extract concentration       

(µg/ml) 

    Optical density (OD517 

nm) 

Inhibition percentage (IP) of 

DPPH radical 

          ODT0-ODTS             

    0     0.000±0.001     0.0±0.789 

Tetraselmis suecica  50     0.0655±0.029     21.1±2.87* 

    100     0.081125±0.034     52.00±3.44* 

    200     0.111±0.051     97.72±5.09* 

                        

  0     0.000±0.001     0.0±0.789 

α-Tocopherol 50     0.0125±0.052     5.98±5.21 

  100     0.026±0.035     12.36±1.10* 

  200     0.040±0.013     26.00±1.3* 
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8.3 Cell viability and recovery experiment 

 
Lung adenocarcinoma (A549) cells treated with different concentrations of the extract for 24 

and 48 h were not affected in the majority of the concentrations tested (2 μg ml-1, 5 μg ml-1, 10 μg ml-

1, 25 μg ml-1, 50 μg ml-1, 100 μg ml-1 and 200 μg ml-1). An exception was represented by A549 cells 

at the highest concentration of 400 μg ml-1, which induced a slight reduction in cell viability (80% 

and 81% cell viability, at 400 μg ml-1, at the two incubation times, figure 8.3 A).  
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FIGURE 8.3: In vitro repairing activity of Tetraselmis suecica ethanol/water extract against H2O2 

treatment. (A) Human lung adenocarcinoma cells (A549) treated with various concentrations of T. 
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suecica extracts for 24 and 48 h. Cell viability was determined using the MTT assay and expressed 

as the percentage of control growing cells. (B) Cell viability of lung adenocarcinoma cells (A549) 

treated with various concentrations of H2O2 (0.3 mM, 3 mM, 30 mM and 300 mM) for 24 and 48 h . 

(C) Effect of extract on cell viability of A549 cells following exposure to H2O2 prior to extract 

treatment at 2 μg ml-1, 5 μg ml-1, 10 μg ml-1, 25 μg ml-1, 50 μg ml-1, 100 μg ml-1, 200 μg ml-1 and 400 

μg ml-1. Three independent assays were performed in triplicate; data are shown as mean ±S.D. 

Significant differences between treated groups were determined using Students-t test (*) and ANOVA 

followed by Dunnett’s test (#). Crosshatched symbols denote significant differences between 

treatments and control (#p<0.05). 

 

 

 

 

 

 

In order to assess the antioxidant effects of the extract we induced an oxidative stress on A549 

cells with hydrogen peroxide (H2O2). First, we treated A549 cells with a wide range of H2O2 

concentrations (0.3, 3, 30 and 300 mM) to determine the half maximal Inhibitory Concentration 

(IC50) dose to be used for pretreatment of cells, before to perform recovery experiments with extract;  

the IC50 dose was established as 30 mM after 24 h and 48 h of treatment (Figure 8.3 B). We then 

treated A549 cells with 30 mM of H2O2 for 1 h, inducing H2O2 oxidative stress, and added the extract 

to cells. The extract induced a significant recovery effect on H2O2 stressed A549 cells after 48 h of 

treatment. Histograms in figure 8.3 C show the effect of treatment with H2O2 (injury treatment) and 

successive extract. Treatment with H2O2 resulted in 36% cell viability after 48 h, whereas addition of 

extract induced a proliferation of A549 cells, with a cell viability increase of 143, 114, 125, 112, 133, 

126, 114 and 148% for all concentrations tested (2, 5, 10, 25, 50, 100, 200 and 400 μg ml-1) with 

respect to the negative control. Within the experimental error, there was a plateau effect already at 2 

µg ml-1 of the extract and a further increase of this concentration did not affect cell viability. 

 

 

 

 

 

 

8.4Analysis of the variation in gene expression  
 

The expression of genes involved in oxidative stress and repairing pathways were studied by 

Real-Time qPCR (Table 8.2).  
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TABLE 8.2: List of genes studied belonging to several oxidative stress response and detoxification 

and repairing mechanisms. 

Unigene Refseq Symbol Description Gname 

Oxidative Stress Responsive Genes 

Hs.12521

3 

NM_004045 ATOX1 ATX1 antioxidant 

protein 1 homolog  

ATX1/HAH1 

Hs.51482

1 

NM_002985 CCL5 Chemokine (C-C 

motif) ligand 5 

D17S136E/RANTES/SCYA5 

SIS-delta/SISd/TCP228/eoCP 

Hs.49872

7 

NM_014762 DHCR24 24-

dehydrocholester

ol reductase 

DCE/Nbla03646/SELADIN1/ 

seladin-1 

Hs.239 NM_021953 FOXM1 Forkhead box M1 FKHL16/FOXM1B/HFH-

11/HFH11 

HNF-3/INS-1/MPHOSPH2 

MPP-2/MPP2/PIG29/TRIDENT 

Hs.76686 NM_000581 GPX1 Glutathione 

peroxidase 1 

GPXD/GSHPX1 

Hs.43395

1 

NM_002085 GPX4 Glutathione 

peroxidase 4  

GPx-4/GSHPx-4/MCSP 

PHGPx/snGPx/snPHGPx 

Hs.52383

6 

NM_000852 GSTP1 Glutathione S-

transferase pi 1 

DFN7/FAEES3/GST3/GSTP 

HEL-S-22/PI 

Hs.36852

5 

NM_020992 PDLIM1 PDZ and LIM 

domain 1 

CLIM1/CLP-36/CLP36/HEL-S-

112 hCLIM1 

Hs.50282

3 

NM_181652 PRDX5 Peroxiredoxin 5 ACR1/AOEB166/B166/HEL-S-

55/PLP/PMP20/PRDX6/PRXV/ 

SBBI10/prx-V 

Hs.46669

3 

NM_012237 SIRT2 Sirtuin 2 SIR2/SIR2L/SIR2L2 

Hs.48704

6 

NM_000636 SOD2 Superoxide 

dismutase 2, 

mitochondrial 

IPOB/MNSOD/MVCD6 

Peroxide metabolism genes 

Hs.46026

0 

NM_001354 AKR1C2 Aldo-keto 

reductase family 

1, member C2  

AKR1C-pseudo/BABP/DD/DD-2 

DD/BABP 

Hs.52560

0 

NM_0010179

63 

HSP90AA

1 

Heat shock 

protein 90kDa 

alpha A  

EL52/HSP86/HSP89A/HSP90A 

HSP90N/HSPC1/HSPCA/HSPC

AL1 

Hs.39059

4 

NM_014331 SLC7A11 Solute carrier 

family 7  member 

11 

CCBR1/xCT 

Antinflammatory pathway 

Hs.58486

4 

NM_012212 PTGR1 Prostaglandin 

reductase 1 

LTB4DH/PGR1/ZADH3 
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In particular, variation of gene expression analysis was performed for A549 cells treated with 

100 µg ml-1, 200 µg ml-1 and 400 µg ml-1 of extract alone (figure 8.4 D) and 100 µg ml-1, 200 µg ml-

1 and 400 µg ml-1 of extract after 1 h of exposure to 30 mM of H2O2 (figures 9.4 A, 9.4 B and 9.4 C, 

respectively).  
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FIGURE 8.4: Histograms showing the results of gene expression analysis. (A, B, and C) Effect of 

Tetraselmis suecica ethanol/water extract at three different concentrations (100 µg ml-1, 200 µg ml-1 

and 400 μg ml-1) on oxidative stress gene expression in H2O2-treated human lung adenocarcinoma 

cells (A549). A549 cells were pretreated with H2O2 (30 mM = 12 μg ml-1) for 1 h prior to extract 

treatments (100, 200 and 400 μg ml-1) and harvested 2 h later. (D) Negative control for the evaluation 

of the effect of Tetraselmis suecica ethanol/water extract (without any injury pre-treatment) at three 

different concentrations (100, 200 and 400 μg ml-1) on oxidative stress gene expression in human 

lung adenocarcinoma cells (A549).  Three independent assays were performed in triplicate and the 

data are expressed as mean ±S.D. Expression values greater or lower than a two-fold difference with 

respect to the controls were considered significant.  

 

 

 

 

 

 

Only these three concentrations were chosen among that used for viability and recovery 

assays, since lower extract concentrations did not induce significant changes in gene and protein 

expression. Gene expression results are reported after 2 h of treatment since several factors implicated 

in oxidative damage repairing pathways were already expressed and activated after this time interval. 

Control genes for Real-Time qPCR were actin-beta (ACTB), beta-2-microglobulin (B2M), 

hypoxanthine phosphoribosyltransferase (HPRT1) and ribosomal protein large P0 (RPLP0), the 

expression of which remained constant. For gene expression studies, we chose the three highest 

concentrations (100, 200 and 400 µg ml-1) that showed strong repairing activities even if we observed 

a slight cytotoxicity (about 20%) at the two highest concentrations (200 and 400 µg ml-1). 

Notwithstanding the toxicity observed at biochemical level, there was only a significant dose-

dependent activation of specific oxidative stress response mechanisms without the involvement of 

those genes belonging to cell death programs with all three concentrations. This suggests that the 

slight cytotoxicity did not inhibit or interfere the repairing activity of the extract. 

24-dehydrocholesterol reductase (DHCR24) was downregulated only at 200 µg ml-1 (2.2-fold 

change). Whereas at 400 µg ml-1 all the following genes were downregulated: glutathione peroxidase 

4 (GPX4, 2.0-fold change), glutathione S-transferase pi 1 (GSTP1, 2.0– fold change), peroxiredoxin 

5 (PRDX5, 2.6-fold change), Sirtuin 2 (SIRT2, 5.18-fold change) and heat shock protein alpha class 

A member 1 (HSP90AA1, 90 kDa, 4.3-fold change). At the same concentration, there was an 

upregulation of forkhead box M1 (FOXM1, 2.71-fold change), superoxide dismutase (SOD2, 2.0-

fold change) and prostaglandin reductase 1 (PTGR1, 2.0-fold change). As shown in figures 8.4 A, 

9.4 B and 9.4 C, the antioxidant protein 1 homolog gene (ATOX1) was upregulated after H2O2 

treatment (2.7-fold change) and was highly upregulated after extract recovery treatment at 200 and 

400 µg ml-1 (6.1 and 10.2-fold change, respectively). The small inducible cytokine subfamily A5 gene 

(CCL5) was downregulated with H2O2 (4.3-fold change) and was upregulated with the extract at all 

concentrations tested (2.7, 4.3 and 8.9-fold change, respectively). Opposing gene expression patterns 

between H2O2 and extract recovery treatment at all concentrations tested were recorded in: 24-

dehydrocholesterol reductase (DHCR24, -2.9 vs 2.5, 4.8 and 13.2-fold change), forkhead box M1 

(FOXM1, -5.1 vs 2.5, 4.5 and 6.0-fold change), glutathione peroxidase 1 (GPX1 -2.0 vs 1.2, 2.0 and 

2.1-fold change) and glutathione peroxidase 4 (GPX4, -1.04 vs 1.0, 2.5 and 2.4-fold change, 



 

146 
 

respectively), glutathione S-transferase pi 1 (GSTP1, -4.9 vs  -1.1, 3.6 and 3.4-fold change), C-

terminal lim domain protein 1 (PDLIM1, -2.11 vs 2.8, 2.2 and 4.3-fold change) and aldo-keto 

reductase family 1, member C2 (AKR1C2, -2.6 vs 1.1, 2.03 and  10.0-fold change). On the contrary, 

peroxiredoxin 5 (PRDX5), solute carrier family 7 (SLC7A11) and heat shock protein alpha class A 

member 1 (HSP90AA1, 90 kDa) were upregulated with H2O2 (2.2, 6.2 and 2.3-fold change) and 

downregulated or poorly expressed at 100 µg ml-1 (1.7, -1.6 and 6.0-fold change), 200 µg ml-1 (-1.6, 

7.2 and -1.8-fold change) and 400 µg ml-1 (-6.0, -12.3 and -4.1-fold change). Interestingly, 

prostaglandin reductase 1 (PTGR1) was downregulated after H2O2 injury (-2.5-fold change) and was 

even upregulated after extract treatment at all concentrations (1.8, 2.0 and 9.0-fold change). Gene 

expression of the Sirtuin 2 (SIRT2) and superoxide dismutase (SOD2) was enhanced by extract 

treatment after 1 h of exposure to H2O2 (from -1.1 to 3.1, 6.5 and 11.2, and from 1.9 to 2.0, 2.8 and 

6.7-fold change, respectively).  

 

 

 

 

 

 

8.5 Analysis of the variation in protein expression 

 
Since DHCR24, GPX4 and PTGR1 genes play crucial roles in antioxidant/anti-inflammatory 

cell signaling pathways, A549 cells were treated with 200 and 400 μg ml-1 extract for 24 h in the 

presence and absence of 30 mM H2O2 and protein levels were analyzed by immunoblot. We chose 

the two most active concentrations used for PCR array analysis in order to compare the upregulation 

between gene and protein expression. Exposure time was 24 h since protein expression levels were 

too low before this time. Immunoblot analysis revealed a significant increase only in the expression 

of DHCR24 at the two concentrations tested with the only ethanol/water crude extract (figure 8.5 A), 

whereas the expression of GPX4 and PTGR1 significantly increased only after at 400 µg ml-1, with 

H2O2 pretreatment (figures 8.5 B and 8.5 C). 
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FIGURE 8.5: The effect of Tetraselmis suecica ethanol/water extract on oxidative stress protein 

expression in H2O2-treated human lung adenocarcinoma cells (A549). (A, B and C) Three 

independent assays were performed in triplicate and the data shown are mean ±S.D. The values above 

the blots represent the densitometric analysis of the photographic sheets measuring the variation in 

protein expression. The values of the bands are normalized versus actin and represented as ratio 

between the expression of single protein and actin. Asterisks denote significant differences compared 

to controls (*p≤0.05 and **p<0.005 ). 

 

 

 

 

 

 

8.6 Assessment of prostaglandin E2 release 

 
In light of these results, we hypothesized that the extract was able to repair peroxidative cell 

damage by reducing the quantity of prostaglandins. Quantitative ELISA test was used to determine 

prostaglandin E2 (PGE2) levels secreted by A549 cells in cell culture medium before and after extract 

treatment. As shown in figure 8.6 A, A549 cells treated with extracts (100, 200 and 400 μg ml-1 

concentrations) had the same levels of prostaglandin E2 (29, 30 and 28 pg μl-1, respectively) as the 

negative control (30 pg μl-1). On the contrary, there was a significant dose-dependent decrease (90, 

29 and 28 pg μl-1) in prostaglandin E2 levels with respect to the positive control (140 pg μl-1) in A549 

cells treated with extract (100, 200 and 400 μg ml-1) after pretreatment with 30 mM of H2O2  (figure 
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8.6 B). Our data show that extract treatment results in a significant decrease in PGE2 levels in cells 

damaged by H2O2. 

 

 

 

 
 

FIGURE 8.6: The effect of ethanol/water extract from Tetraselmis suecica on prostaglandin PGE2 

serum-release induced by H2O2 -treatment in human lung adenocarcinoma cells (A549). (A) Average 

PGE2 concentration (pg μl-1) determined by ELISA in culture medium of cells treated with 100, 200 

and 400 μg ml-1 of the extract for 24 h. (B) Average of the PGE2 concentration (pg μl-1) determined 

by ELISA in culture medium of cells treated with 100, 200 and 400 μg ml-1 of  extract for 24 h after 
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pretreatment with 30 mM (= 12 μg ml-1) of H2O2 for 1 h. Asterisks denote significant differences 

compared to controls (*p≤0.05 and **p<0.005) and determined using Students-t test. 

 

 

 

 

 

 

8.7 Effect on ex vivo tissue 

 
Finally, we used the reconstructed human epidermal tissue model EpiDerm EPI-200 (size 0.63 

cm2) as ex vivo model to confirm the potential topic application of this extract as cosmeceutical. In 

particular, we chose this tissue because in vivo oxidative stress frequently occurs in the epidermidis 

causing aging and other oxidative stress-related diseases. EPI-200 was treated with 30 mM H2O2 and 

with 200 μg ml-1 of the ethanol/water extract for 1 h, after injury with H2O2. The epidermal tissue 

model was treated with 200 μg ml-1 of the extract since this was the lowest concentration at which 

gene and protein expression data revealed a complete activation of all key factors in the antioxidant 

pathway. Treated medium was removed and replaced with extract, but without H2O2, to assess if the 

irritant effect persisted after 24 h of recovery (referred to as recovery time). Treatment with 200 μg 

ml-1 extract for 1 h significantly affected tissue viability after 24 h recovery time (85% viability) 

compared to the irritant effect of 1 h treatment with H2O2 (18% viability) (Figure 8.7). The repairing 

effect by the extract was even more evident 1 h later after treatment with 30 mM H2O2 and 200 μg 

ml-1 of the extract tissue, with viability increasing from about 20% to 108.5% with respect to the 

negative control. 
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FIGURE 8.7: Response of EpiDermTM tissue cultures after topical application of 30 mM (= 12 μg 

ml-1) H2O2 for 1 h prior to Tetraselmis suecica ethanol/water extract treatment (200 μg ml-1) showing 

the repairing effect of the extract after H2O2 treatment. Three independent assays were performed in 

triplicate; data are shown as mean ±S.D. Significant differences between treated groups were 

determined using Students-t test (*p≤0.05) and ANOVA. NC = not treated. Ts 200 μg = 200 µg T. 

suecica extract; H2O2 + Ts 200 µg = epidermal tissue pretreated with H2O2 for 1 h and recovered with 

extract.  
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Alexandrium andersoni 
 

 

 

8.8 Viability of tumor cell lines after treatment with Alexandrium 

andersoni n-butanol extract 

 
Different concentrations (10 μg ml-1, 50 μg ml-1, 100 μg ml-1, 200 μg ml-1 and 400 μg ml-1) of 

Alexandrium andersoni chemical partitions were tested on A549 and HT-29 cell lines using the MTT 

assay to determine IC50 viability values after 24 and 48 h of treatment. Only the n-butanol extract 

significantly affected viability, whereas chloroform, hexane and aqueous chemical partitions had no 

effect.  

 The n-butanol extract induced a significant dose- and time-dependent reduction in cell 

viability compared to controls (p <0.0001) in both cell lines. As shown in figure 8.8 A, there was a 

strong decrease in the percentage of viable A549 lung cancer cells after 24  and 48 h, especially at 

higher extract concentrations (100, 200 and 400 μg ml-1). Cell viability after 24 h was reduced to 48, 

21 and 8 % at these concentrations whereas after 48 h cell viability was reduced to 16, 5 and 3 %, 

respectively. IC50 value was calculated as 50 μg ml-1 after 48 h of treatment. A similar toxic effect 

was also observed in HT-29 colon cancer cells (figure 8.8 B), with a significant reduction in cell 

viability (57, 14 and 5 %) when exposed to highest concentrations (100, 200 and 400 μg ml-1) of n-

butanol extract after 24 h of treatment. After 48 h, cell viability was further reduced (14, 4 and 3 %) 

at these concentrations. IC50 value was about 52 μg ml-1 as calculated after 48 h of treatment.   
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FIGURE 8.8: Effect of an n-butanol extract of the dinoflagellate Alexandrium andersoni on lung 

adenocarcinoma (A549) and colorectal carcinoma (HT-29) cancer cell lines. Percentage of viable 

cells for A549 (A) and HT-29 (B) were calculated with the MTT viability assay. Values are reported 

as mean ± S.D. compared to controls (100% viability). Concentrations tested were 10, 50, 100, 200 

and 400 μg ml-1 for 24 and 48 h. Asterisks denote statistically significant differences with a p value 

≤0.0001. 
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8.9 Analysis of the variation in gene expression after treatment with 

Alexandrium andersoni n-butanol extract 

 
To better understand toxic effects of the n-butanol extract at the molecular level, A549 and 

HT-29 cells were analyzed for gene expression levels. Gene expression results are reported after 2 h 

of treatment with 400 µg ml-1 extract since many factors implicated in the cell death pathway were 

already expressed and activated after 2 h, and because at lower concentrations transcriptional effects 

were less evident. This concentration was tested to assess specific cell death signaling pathways 

thereby avoiding non-specific toxic responses of a “pool” of different molecules present in the 

chemical partition.  

Control genes for real-time qPCR were actin-beta (ACTB), beta-2-microglobulin (B2M), 

hypoxanthine phosphoribosyltransferase (HPRT1) and large ribosomal protein P0 (RPLP0), the 

expression of which remained constant in A549 and HT-29 cells. The histograms reported in figure 

8.9 show the relative expression ratios of the analyzed genes with respect to controls without 

treatment. Only expression values greater or lower than a two-fold difference with respect to the 

controls were considered significant for up- and downregulation results.  

After 2 h of treatment with A. andersoni n-butanol extract on A549 cells line, there was an 

upregulation of the AIFM1 - apoptosis-inducing factor 1 (2.3 fold-change) with a consequent increase 

in BCL2 - like 10 apoptosis facilitator (6.6 fold-change) and BID - BH3 interacting domain death 

agonist (2.0 fold-change) (figure 8.9A). There was also a significant upregulation of four genes 

belonging to the tumor necrosis factor superfamily: CD27 - binding pro-apoptotic protein (SIVA) 

(16.1 fold-change), FASLG - Fas ligand (2.0 fold-change), TNF - tumor necrosis factor (2.1 fold-

change), TNFSF8 - tumor necrosis factor ligand superfamily member 8 (2.5 fold-change) and DR3 - 

death receptor which is also known as TNFRSF25 - tumor necrosis factor ligand superfamily member 

25 (19.0 fold-change). Other genes that were upregulated after 2 hours of treatment were CRADD - 

CASP2 and RIPK1 domain containing adaptor with death domain (2.3 fold-change) and CYCS - 

cytochrome c somatic (3.8 fold-change). In contrast, there was a downregulation of genes that encode 

for proteins that inhibit apoptosis: BIRC3 - baculoviral IAP repeat containing 3 (-2.2 fold-change), 

XIAP - X-linked inhibitor of apoptosis (-2.9 fold-change), IGF1R - insulin-like growth factor 1 

receptor (-4.1 fold-change), NFKB1 - Nuclear Factor Kappa B Subunit 1 (-2.5 fold- change) and 

TRAF2 - TNF receptor-associated factor 2 (-2.8 fold-change). Three of the main caspases involved 

in the apoptotic cascade (caspases 2, 3 and 9) were not upregulated (figure 8.9 A).  

Also in HT-29 cells, 2 h of extract treatment induced a significant upregulation of FASLG - 

Fas ligand (5.3 fold-change) and TNF - tumor necrosis factor (29.2 fold-change) (figure 8.9 B). Other 

genes such as GADD45 alpha - growth arrest and DNA-damage-inducible protein and Foxl1 - 

forkhead box L1 were also significantly upregulated (4.8 and 9.1 fold-change, respectively). Finally, 

there was an upregulation of apoptosis inductors such as Bcl-2-like protein 11 (BCL2L11) and 

induced myeloid leukemia cell differentiation protein-Mcl-1- isoform 2 (MCL1) (4.8 and 2.2 fold-

change, respectively). The DPYSL4 - dihydropyrimidinase-related protein 4 gene increased its 

expression after A. andersoni extract treatment (21.8 in fold change). In contrast, there was a 

downregulation of the ATP6V1G2 - V-type proton ATPase subunit G 2 (-4.6 fold-change) with a 

consequent decrease of Kv channel-interacting protein 1, also known as KCNIP1 (-14.9 fold-change). 
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There was also a downregulation of two genes CD40 ligand (also known TNFSF5) belonging to the 

tumor necrosis factor ligand superfamily (-7.1 fold-change) and EIF5B - eukaryotic translation 

initiation factor 5B (-2.3 fold-change). As in the case of A549 cells, there was an early downregulation 

of the TRAF2 gene (-1.5 fold-change) also in HT-29 cells. Finally, no apoptotic caspase gene 

expression was recorded, with caspases 2, 3, and 9 genes showing fold-changes values comparable 

to the control (figure 8.9 B).  
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FIGURE 8.9: Histograms showing the effects of Alexandrium andersoni n-butanol extract on the 

expression levels of target genes in lung adenocarcinoma A549 (A) and in colorectal adenocarcinoma 

HT-29 (B) cell lines. Gene expression analysis was conducted after 2 h of treatment with 400 µg ml-

1 of extract; error bars represent ±S.D. 
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8.10 Analysis of the variation in protein expression of death receptors 

after treatment of A549 with Alexandrium andersoni n-butanol extract 

 
Protein expression results are reported after 48 h of treatment with 400 µg ml-1 extract 

concentrations (figure 8.10) since many genes implicated in the necroptosis cell death pathway were 

upregulated at this concentration. After 48 h, there was a significantly increase in the expression of 

tumor necrosis factor receptor 1 (TNFR1) compared to controls, as revealed by densitometric analysis 

of the photographic sheet of the immunoblotting membrane (figure 8.10 A). On the contrary, TNF 

receptor associated factors (TRAF1 and TRAF2) were not activated as also revealed in the gene 

expression analysis (figure 8.10 A), indicating the absence of a survival pathway. The receptor-

interacting protein (RIP-k1) increased significantly (figure 8.10 B) indicating an early death-signaling 

pathway. This was confirmed by the downregulation of TNF receptor associated factors TRAF2 and 

by the upregulation of caspase and RIP adaptor with death domain-CRADD (figure 8.10 A). Another 

death receptor implicated in the extrinsic apoptotic pathway, death domain receptor 3-DR3 (also 

known as tumor necrosis factor receptor superfamily member 25-TNFRSF25) was strongly activated 

confirming death signal transduction mediated by death domain containing adaptor proteins such as 

CRADD in response to a cytotoxic effect (figure 8.10 C). -actin protein was used as the positive 

control to normalize our experimental data (figure 8.10 D).  None of the cleaved key caspases 

implicated in the apoptotic pathway were revealed by the immunoblot analysis. 
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FIGURE 8.10: Histograms showing the effects of Alexandrium andersoni n-butanol extract on the 

expression levels of target proteins. (A) TNFR1, (B) RIP-k1, (C) DR3 and (D) control (actin) in lung 

adenocarcinoma A549 cells. Immunoblot analysis shows that the extract induced TNF signaling after 

24 h. Asterisk denotes significant increase in protein levels. **p≤0.05 versus control; error bars 

represent ±SD.  

 

 

 

 

 

 

8.11 Cell cycle arrest in A549 cell line 
 

Flow cytometry was performed to analyze the effects of A. andersoni extract on the cell cycle 

of A549 cells in order to confirm the activation of the necroptotic cell death pathway revealed by 

gene expression. Cell cycle progression showed accumulation in the G2 phase with respect to G1, 

while percentages of cells in S phase were stable or similar to the untreated control (figures 8.11 A 

and 8.11 C). This accumulation suggests that the extract has a target in the late G2 phase of the cell 

cycle or first part of the M phase. The blockage was concentration dependent and highest after 8 h 

exposure to 200 µg ml-1 of extract (figures 8.11 B and 8.11 C).  
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FIGURE 8.11: (A) Flow cytometric analysis of DNA content in  A549 cells exposed to 

Alexandrium andersoni n-butanol extract for 8 h at 200 µg ml-1 concentration (empty red line) and 

untreated control cells (full blue line). (B) Distribution of A549 cells in different phases of the cell 

cycle after 8 h of exposure to 100 and 200 µg ml-1 of A. andersonii extract, respectively. Percentage 

of cells in each phase was obtained with the ModFit LT Software. (C) Percentage of A549 cells in 

each cell cycle phase after 2, 4, 6 and 8 h treatment with Alexandrium andersoni n-butanol extract at 

100 and 200 µg ml-1concentrations. 

 

 

 

 

 

 

8.12 Viability of tumor and normal cell lines after treatment with 

Alexandrium andersoni SPE-fractions and Caspase Inhibitor Assay 
 

Different concentrations (1 μg ml-1, 10 μg ml-1 and 100 μg ml-1) of A. andersoni SPE- fractions 

were screened for their cytotoxicity on different cell lines using the MTT assay to determine IC50 

values after 48 h of treatment (figure 8.12). Of the four fractions tested, fraction here named B, eluted 

with CH3CN/H2O, was the most active on A549 cell line, inducing a strong dose dependent decrease 

in cell viability (34, 29 and 5 % cell viability respectively, for all concentrations tested, figure 8.12 

A). The IC50 value calculated was ≤1 μg ml-1. 

Interestingly, the same B fraction did not induce a strong cytotoxicity on HT-29 cells (figure 

8.12 B). In this case, fraction identified as D, eluted with CH2Cl2/MeOH, significantly reduced cell 

viability of HT-29 in a dose dependent manner (43, 37 and 14 % cell viability respectively for all 

concentrations tested, Fig. 5B). The IC50 value calculated was about 1 μg ml-1. None of the two 

fractions induced cytotoxicity on normal cell lines (WI38 and Beas-2B) at all concentrations tested 

(figures 8.12 C and 8.12 D). 

To assess whether cell death induced by fractions B and D was caspase independent, we 

performed experiments in presence of caspase inhibitor. As shown in figures 8.12 E and 8.12 F, 

fractions B and D reduced viability in A549 and HT-29 cells respectively, also in the presence of the 

caspase inhibitor, indicating that cell death was not caspase-dependent. 
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FIGURE 8.12: Effect of SPE fractions of the dinoflagellate Alexandrium andersoni on lung 

adenocarcinoma (A549) and colorectal carcinoma (HT-29) cancer cell lines, and lung fibroblast 

(WI38) and brunch-lung epithelial (Beas-2B) normal cell lines.  Percentage of viable cells for A549 

(A), HT-29 (B) and control WI38 (C) and BEAS-2B (D) cell lines using the MTT viability assay. 

Same experiments performed on tumor cell lines in the presence of caspase inhibitor (E, F). Values 

are reported as mean ± S.D. compared to controls (100% viability). Concentrations tested were 1, 10 

and 100 μg ml-1 for 48 h. 
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8.13 Variation of gene expression analysis after treatment of A549 and 

HT-29 with Alexandrium andersoni SPE-fractions 
 

In order to confirm that the active SPE-fractions B and D are the responsible for the activation 

of two different cell death signaling pathways, we analyzed the gene expression of A549 and HT-29 

cells after treatment. Gene expression results are reported after 2 h of treatment with IC50 

concentration (1 µg ml-1 for both fractions) of the B and D fraction. Control genes for real-time qPCR 

were actin-beta (ACTB), beta-2-microglobulin (B2M), hypoxanthine phosphoribosyltransferase 

(HPRT1) and large ribosomal protein P0 (RPLP0), the expression of which remained constant in 

A549 and HT-29 cells. The histograms reported in figure 8.13 show the relative expression ratios of 

the analyzed genes with respect to controls without treatment. Only expression values greater or lower 

than a two-fold difference with respect to the controls were considered significant for up- and 

downregulation results.  

After 2 h of treatment with fraction B on A549 cells line there was an upregulation  of BCL2-

like 10 apoptosis facilitator (8.6 fold-change) and BID - BH3 interacting domain death agonist (2.1 

fold-change) (figure 8.13 A). As well as observed for the n-butanol crude extract, there was also a 

significant upregulation of four genes belonging to the tumor necrosis factor superfamily: CD27 - 

binding pro-apoptotic protein (SIVA) (26.1 fold-change), FASLG - Fas ligand (9.0 fold-change), 

TNF - tumor necrosis factor (7.1 fold-change), TNFSF8 - tumor necrosis factor ligand superfamily 

member 8 (5.5 fold-change). The other key genes involved in the necroptosis pathway were 

upregulated after 2 hours of treatment: CRADD - CASP2 and RIPK1 domain containing adaptor with 

death domain (12.3 fold-change) and CYCS - cytochrome c somatic (13.8 fold-change). Confirming 

the signaling activated by the crude extract, there was a downregulation of genes that encode for 

proteins that inhibit apoptosis: BIRC3 - baculoviral IAP repeat containing 3 (-2.1 fold-change), 

IGF1R - insulin-like growth factor 1 receptor (-4.1 fold-change) and NFKB1 - Nuclear Factor Kappa 

B Subunit 1 (-6.5 fold- change). Two of the main caspases involved in the apoptotic cascade (caspases  

3 and 9) were not activated (figure 8.13 A).  

The SPE active fraction D induced in HT-29 cells, after 2 h of treatment a strong upregulation 

of FASLG - Fas ligand (12.1 fold-change) and TNF - tumor necrosis factor (12.3 fold-change), as 

shown in figure 8.13 B. Other genes such as growth arrest and DNA-damage-inducible protein 

GADD45 alpha and gamma together with forkhead box L1 (Foxl1) were also significantly 

upregulated (2.7, 8.0 and 8.7 fold-change, respectively). Finally, there was an upregulation of 

apoptosis inductors such as Bcl-2-like protein 11 (BCL2L11) and MCL1 - induced myeloid leukemia 

cell differentiation protein-Mcl-1- isoform 2 (2.7 and 2.6 fold-change, respectively). 

Dihydropyrimidinase-related protein 4 - DPYSL4 gene increased its expression after fraction D 

treatment (13.0 in fold change). The same result obtained with crude extract treatment was also found 

with fraction D regard the downregulation of the ATP6V1G2 - V-type proton ATPase subunit G 2 (-

2.1 fold-change) with a consequent decrease of Kv channel-interacting protein 1, also known as 

KCNIP1 (-12.3 fold-change). There was also a downregulation of two genes CD40 ligand (also 

known TNFSF5) belonging to the tumor necrosis factor ligand superfamily (-2.4 fold-change) and 

EIF5B - eukaryotic translation initiation factor 5B (-2.0 fold-change). Finally, no apoptotic caspase 

gene expression was recorded, with caspases  3, and 9 genes showing fold-changes values not 

significantly changed respect to the control (figure 8.13 B).  
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FIGURE 8.13: Histograms showing the effects of Alexandrium andersoni SPE fractions B and D on 

the expression levels of target genes in lung adenocarcinoma A549 (A) and in colorectal 

adenocarcinoma HT-29 (B) cell lines. Gene expression analysis was conducted after 2 h of treatment 

with 1 µg ml-1 of the two fractions; error bars represent ±S.D. 
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CHAPTER 9. 
 

Discussion 
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9.1 Tetraselmis suecica reduces oxidative damage and induces repairing 

mechanisms in human cells 

 
In this experimental work, the green marine microalga Tetraselmis suecica was thought to be 

an innovative natural source for many industrial sectors operating in the field of health care, since 

showed an interesting repairing mechanisms activator. Previous studies have shown that total extracts 

of Tetraselmis sp. have potential cosmetic and pharmaceutical applications for the human hair growth 

and pigmentation of the skin, and also for stimulating the increased production of skin structural 

proteins such as filaggrin and involucrin involved in dermal diseases as Psoriasis (Pertile et al., 2015). 

In a previous study, an ethanol/water extract of Tetraselmis suecica showed a strong scavenging 

activity against 2,2-difenyl-1-picrylhydrazyl (DPPH) and peroxyl radicals rather than against the 

superoxide anions from the xanthine/xanthine oxidase system (Jo et al., 2012).  

In this work was obtained a similar type of crude extract from T. suecica, which was able to 

stimulate a strong response to cell damage and to activate, in vitro, a repairing mechanism in human 

epidermal cells. The crude extract contains high levels of xanthophylls (lutein, violaxanthin, 

neoxanthin, antheraxanthin and loroxanthin esters), pigments that are well known, singularly, for their 

biological activities as antioxidants and which are precursors of other pigments or vitamins (Dall’Osto 

et al., 2007). Lutein, which was particularly abundant in this extract, possesses pronounced free 

radical scavenging ability due to its polarity and number of conjugated double bonds (Sindhu et al., 

2010). Moreover, the same molecule has been shown to significantly decrease neurogenic 

inflammatory response in the mouse skin (Horvath et al., 2015). The antioxidant activity of 

violaxanthin and neoxanthin is also well documented (McNulty et al., 2008), whereas the biological 

activity of antheraxanthin and loroxanthin esters recently characterized in T. suecica (Garrido et al., 

2009) have not yet been investigated.  

In our study, the ethanol/water crude extract, containing high levels of carotenoids, from T. 

suecica showed marked radical scavenging ability when tested with the DPPH assay. The addition of 

extract led to 98% reduction of the radical DPPH (purple) into its reduced (yellow) form at the highest 

concentrations. As reported in Table 8.1(see chapter 8, results), the radical scavenging activity of the 

extract was dose-dependent and its strength was 70% greater than α-Tocopherol at the highest 

concentrations. Moreover, the inhibition of DPPH free radicals induced by the extract was 

comparable to other well-known antioxidant molecules such as ascorbic acid where the percentage 

reduction of the free radical is about 95% (Garcia et al., 2012). 

In order to evaluate this effect at the cellular level we challenged cells with H2O2 because a 

previous study showed that A549 lung cells have a multifaceted response when exposed to hydrogen 

peroxide (D’Andrea et al., 2004). D’Andrea et al. (2004) have shown that H2O2 induces damage to 

lipids, proteins, and nucleic acids due to the generation of reactive oxygen species (ROS). In our case, 

H2O2 caused a reduction in A549 cell viability to 36% after 48 h, but addition of the extract induced 

a strong recovery effect in cell viability, with up to 100% recovery in some cases. In order to clarify 

this effect at the molecular level, we studied the difference in oxidative stress gene expression patterns 

between cells treated only with 30 mM H2O2 and cells recovered with 100, 200 and 400 μg ml-1 of 

crude extract. The genes involved in ROS metabolism such as oxidative stress responsive genes 

ATOX1, CCL5 (RANTES), DHCR24, FOXM1, GPX1, GPX4, PDLIM1, PRDX5, SIRT2, SOD2 
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were all significantly upregulated in a dose dependent manner after extract recovery treatment for the 

highest concentrations tested. 

In particular, antioxidant genes such as GPX1 and GPX4 showed a completely reversed expression 

after extract-induced recovery with respect to H2O2 injury for all concentrations tested. On the 

contrary, PRDX5 showed an upregulation with H2O2, because this gene codes for a mitochondrial 

peroxiredoxin (Gornicka et al., 2011) that decomposes hydrogen peroxide. However, after recovery 

treatment with extract, PRDX5 gene expression levels decreased in a dose dependent manner and 

were significantly downregulated at 400 μg ml-1. This interesting finding is probably due to the ability 

of the extract to scavenge the effect induced by H2O2 thereby reducing PRDX5 gene expression 

levels. 

The genes involved in ROS metabolism such as SOD2 were upregulated with H2O2. Recovery 

treatment with the extract caused an enhanced upregulation of this gene in a dose dependent manner. 

This is an important finding because, as demonstrated in previous studies, mitochondrial SOD2 plays 

a crucial role in protecting cells against oxidative stress (Culotta et al., 2006). Another important 

result regards the effect of the extract on upregulation of DHCR24 because this is a multifunctional 

enzyme, which exerts resistance against oxidative stress and prevents apoptotic cell death when it is 

expressed at high levels (Ivanov et al., 2013). The increase in expression levels of the inflammatory 

pathway gene PTGR1 suggests a potential anti-inflammatory activity because this enzyme is 

responsible for the biological inactivation of prostaglandins and related eicosanoids (Hybertson et al., 

2011). 

The downregulation of the GSTP1 gene after H2O2 treatment indicates that cells were unable to 

defend themselves against injury. Surprisingly, after 200 and 400 μg ml-1 of the recovery treatment 

with the extract, GSTP1 was significantly upregulated indicating the restoration of the antioxidant 

defense mechanisms.  

Peroxide metabolism genes such as AKR1C2, HSP90AA1 and SLC7A11 showed different 

expression patterns. In particular, the AKR1C2 gene, which catalyzes the conversion of aldehydes 

and ketones to their corresponding alcohols (Zhang et al., 2014), was downregulated with H2O2 

treatment and upregulated in a dose-dependent manner by the recovery treatment with the extract 

(only for 200 and 400 μg ml-1). The activation of this gene indicates a specific cell response to 

hydrogen peroxide metabolites through the induction of detoxification mechanisms. Heat shock 

protein 90 kDa alpha (cytosolic) class A member 1 (HSP90AA1) was upregulated by H2O2 treatment 

because it is a pro-apoptotic factor which induces cell death in response to stress. The extract was 

able to downregulate HSP90 expression leading to the induction of cytoprotective pathways through 

the inhibition of pro-apoptotic pathways (Alani et al., 2014). Surprisingly, the extract was able to 

downregulated the SLC7A11 gene which is upregulated by the H2O2 treatment. SLC7A11 encodes a 

subunit of the xCT cystine/glutamate aminoacid transport system, which is involved in the generation 

of glutathione and the protection of cells from oxidative stress. However, in a recent study the 

expression of SLC7A11 was shown to promote tumorigenesis and chemotherapy resistance (Martin 

and Gardner, 2015). The downregulation of SLC7A11 by the extract may therefore be considered as 

a potential chemo-preventive agent. A schematic representation of the mechanism activated by the 

ethanol/water crude extract of Tetraselmis suecica is reported in figure 9.1. 
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FIGURE 9.1: Schematic representation of the cellular response activated by H2O2 (A) and repairing 

effect induced by Tetraselmis suecica extract (B) after H2O2 pretreatment. 

 

 

 

 

 

 

In order to demonstrate the activation of an oxidative stress response pathway after T. suecica extract 

recovery treatment, we also analyzed the expression of key proteins involved in antioxidant 
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mechanisms (GPX4 and DHCR24) and PTGR1. Immunoblot data confirmed gene expression results 

on the induction of an antioxidant pathway in A549 cells damaged with H2O2 and then treated with 

extract. We found that the physiological increase of the active form of GPX4 protein after 30 mM 

H2O2 treatment was enhanced by recovery treatment with 200 and 400 μg ml-1 extract. Another 

important finding was the increased expression of DHCR24 and PTGR1 proteins induced by extract 

treatment. The high upregulation of PTGR1 could be linked to a reduction in prostaglandin release 

by cells. ELISA experiments showed a significant dose-dependent decrease in prostaglandin PGE2 

levels in the culture medium after recovery treatment confirming this hypothesis. To our knowledge, 

this is the first report that an ethanol/water extract from a marine green microalga acts as an inhibitor 

of prostaglandin release in an inflammatory response. 

Due to difficulties in obtaining sufficient human lung epithelial cells to perform this study, we chose 

the A549 cell line derived from a lung carcinoma due to its considerable use in the literature as a 

surrogate cell type (Speit and Bonzheim, 2003; Lopez-Alarcona and Denucolab, 2013; Parashiva et 

al., 2014; Macnee and Rahman, 1999) due to its high levels of glutathione (Carmichael et al., 1988) 

and high (non-induced) heme oxygenase 1 (HO-1) gene expression levels (Dubrovskava and 

Wetterhahn, 1998). We are aware that  results obtained from this transformed cell line may not be 

applicable and immediately transferrable to normal lung epithelial cells in the respiratory tract in vivo. 

Thus, in order to use this extract as a potential cosmetic agent for topical application, we used human 

epidermidis tissue (EPI-200) as an experimental model and showed that the extract exerted a strong 

repairing effect after injury caused by hydrogen peroxide.  

To date, intervention trials with single antioxidants in pharmacological doses have not supported a 

repairing effect in humans (Horvath et al., 2015). However, if many antioxidants work in a network, 

‘total antioxidants’ may be a better concept than individual antioxidants. Thus, the potential 

synergistic effects of bioactive components, such as carotenoids, with different chemical structures 

and anti-oxidizing activities may be a promising agent for cosmeceutical use. The identification of 

potent marine microalgal species as peroxide scavengers and repairing agents can lead to new 

alternative cosmeceutical products or nutritional supplements for prevention of disorders related to 

oxidative damage, such as cancer, aging and skin inflammation diseases. In order to develop new 

natural cosmeceutical products for human health applications from marine microalgae, further studies 

are required to clarify if this bioactivity is ascribable to a single compound, classes of molecules (e. 

g. carotenoids) or the synergistic effect of several molecules contained in the ethanol/water extract of 

Tetraselmis suecica. 

 

 

 

 

 

 

9.2 Alexandrium andersoni activates caspase-indipendent programmed 

cell death in tumor cell lines 

 
This study indicates that an n-butanol extract and two of the relative SPE fractions of the 

dinoflagellate Alexandrium andersoni induce high cytotoxicity towards two cancer cell lines (A549 

lung cancer and HT-29 colorectal cancer) without affecting normal cell viability (WI-38 and BEAS-
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2B cell lines). In the case of A549 cells, the n-butanol extract and the active SPE fraction B induced 

the activation of cell death pathway via necroptosis and extrinsic apoptosis as shown schematically 

in figure 9.2 A. At concentrations of 400 µg ml-1 for the extract and of 1 µg ml-1 for the fraction B, 

TNF-Receptor 1 (TNFR1) was activated which in turn activated CRADD which was responsible for 

death signaling producing cytotoxicity after 24 h and 48 h. The activation of a caspase-independent 

apoptotic pathway was also confirmed by the downregulation of cell death inhibitors XIAP and 

BIRC3 (apoptosis inhibitor family-IAP) genes and TRAF2 factor that inhibit caspases and suppress 

apoptosis (Carter at al. 2013).  Activation of TNFR is responsible for cellular stress response signaling 

in the presence of TRAF2. In contrast, in cells where this factor is inhibited or silenced, an apoptotic 

response is favored (Gentle et al. 2011). A. andersoni extract also caused an overexpression of 

TNFRSF25 (also known as DR3) resulting in a caspase-independent apoptosis pathway as 

demonstrated by the upregulation of the AIFM1 gene. DR3 mediates activation of NF-kappa-B and 

induces rapid apoptosis because it interacts directly with the death domains in signaling transduction 

(Fang et al. 2008).  

Interestingly, we observed a downregulation of anti-apoptotic molecules (BIRC3 and TRAF2) and 

an upregulation of death receptors (CD27, DR3, TNF and TNFS8) for the crude extract and fraction 

B. No survival response was induced as confirmed by the downregulation of IGF1R- insulin-like 

growth factor 1 receptor that is directly involved in malignant cell defense against external insults 

(Xue et al. 2012). Finally we also found an overexpression of another receptor involved in cell death 

signaling, CD27, that activates an extrinsic apoptotic pathway. This result was confirmed by the 

upregulation of BID, Bcl2l-10 and cytochrome-C genes, which are also associated with the 

mitochondrial pathway. However, notwithstanding the initial activation of this pathway, we did not 

observe a downstream activation of apoptotic caspases for the extract and fraction B. This may 

suggest that although cytochrome C was released, the caspase cascade was not activated since the 

necroptotic pathway was too fast and privileged with respect to intrinsic apoptosis. This was 

confirmed by the decrease in cell viability in the presence of caspase inhibitor (figure 8.12 E and 8.12 

F, see results chapter 8) after treatment with active fraction B. Treatment of A549 cells with A. 

andersoni extract induced an arrest in the G2/M cell cycle phase, which is unusual when cells are 

defective for the oncogene p53, as in the case of the A549 cell line.  To date, only asperolide A 

(extracted from the marine-derived endophytic fungus Aspergillus wentii) has been shown to inhibit 

cell-cycle progression through a blockage at the G2/M phase (Chandra et al. 2002). Moreover, the 

lack of nick fragments in the flow cytogram confirms the activation of a caspase-independent pathway 

as previously discussed.  

 Also in HT-29 cells, the A. andersoni extract and active fraction D directly activated apoptosis 

through an extrinsic signaling pathway thereby indirectly inducing DNA damage as shown 

schematically in figure 9.2 B. At concentrations of 400 μg ml-1 for the extract and of 1 µg ml-1 for the 

active SPE fraction D two tumor necrosis factors FASLG and TNF genes were upregulated; these in 

turn activated CRADD that was responsible for death signaling after 24 and 48 h. The significant 

upregulation of the apoptosis inductors BCL2L11 and Mcl-1 confirmed cell death via apoptosis 

involving mitochondrial proteins without caspase activation. After 2 h of treatment at 400 μg ml-1for 

the extract and of 1 µg ml-1 for the fraction D, there was a downregulation of the V-type proton 

ATPase subunit G 2 (ATP6V1G2) with a consequent decrease of Kv channel-interacting protein 1, 

also known as KCNIP1, indicating damage of cell membrane integrity. Therefore, an increase of the 

DPYSL4 gene, which regulates cytoskeleton modelling, was probably a response to the insult 

received by the cell membrane. 
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 A. andersoni extract increased gene expression of Gadd45 alpha and Foxl1; at the same time 

fraction D showed a significant upregulation of Gadd45 alpha and gamma together with Foxl1, 

indicating and confirming DNA damage.  Gadd45 alpha and gamma, p53- and BRCA1-regulated 

stress-inducible genes, have been characterized as the most important genes targeted by a variety of 

DNA damaging agents (Sun et al. 2013). Interestingly, the signaling machinery that regulates Gadd45 

alpha and Gadd45 gamma induction by genotoxic stress involves both p53-dependent and -

independent pathways. Gadd45 alpha together with Gadd45 gamma protein play important roles in 

suppressing cell proliferation, mediating cell cycle arrest, promoting apoptosis, inducing DNA repair, 

and stabilizing chromatin assessment (Yang et al. 2013). A. andersoni extract  and fraction D also 

induced downregulation of the death receptors CD40 ligand (also known TNFSF5) and EIF5B, which 

is an initiation factor GTPase that promotes ribosomal engagement for protein synthesis. These results 

confirm that DNA damage induces activation of the Gadd45 alpha and Gadd45 gamma proteins that 

arrest cell cycle progression with a consequent block in protein synthesis (Lee et al. 2002). We did 

not observe the activation of the TRAF2 and NF-kappa-B genes indicating the antiproliferative effect 

in p53-deficient cancer cells induced by extract and fraction D (Ahmed et al. 2013; Abe et al. 2014). 

Also in the case of HT-29 cells, none of the caspases (caspases 2, 3 and 9) involved in apoptosis were 

activated in the presence of the A. andersoni treatment.  

 This is the first report where an extract and relative purified fraction from a marine 

dinoflagellate induce a caspase independent extrinsic apoptotic pathway activated by Gadd45 alpha 

and gamma factor in colorectal adenocarcinoma HT-29 cell line which is also p53 defective. This is 

surprising because Gadd45 alpha and Gadd45 gamma induce G2-M arrest only when p53 is 

functional (Jin et al. 2002).  
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FIGURE 9.2 Schematic representation of pathways induced by Alexandrium andersoni n-butanol 

extract in lung adenocarcinoma A549 (A) and colorectal adenocarcinoma HT-29 (B) cell lines.  

 

 

 

 

 

 

 

In conclusion A. andersoni extracts and fractions induced high specific cytotoxicity only towards two 

highly aggressive cancer cell lines (A549 lung cancer and HT-29 colorectal cancer) without affecting 

normal lung (WI38) and primary brunch (BEAS2B) cell lines. This cyctotoxicity was induced in both 

cases through an extrinsic caspase-independent cell signaling pathway involving necroptosis in A549 

and GADD45 alpha and gamma factor in HT-29 cells. These findings differ from those reported in 

another study showing that the carotenoid peridinin from the marine dinoflagellate Heterocapsa 

triquetra induced apoptosis in DLD-1 human colorectal cancer cells by activating both caspase-8 and 

caspase-9 (Sugawara et al. 2007). Interestingly cell blockage occurred in both cases in the G2-M 

transition and this has only been reported the compound asperolide A extracted from the marine-

derived endophytic fungus Aspergillus wentii which has been shown to inhibit cell-cycle progression 

through a blockage at the G2/M phase (Chandra et al. 2002). Another important finding is that we are 

probably dealing with two separate molecules, as suggested by the two different active SPE fractions, 

which induce different responses in the two cancer cell lines. Studies are currently underway to isolate 
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and characterize these molecules. By way of a coda, our study shows that Alexandrium andersoni 

may represent a new species for chemical and pharmacological research for cancer drug discovery. 
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CHAPTER 10.  
 

Conclusions and future implications 
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Future perspectives for marine microalgae as high renewable marine resource 

 Oceans represent an enormous, untapped and sustainable source of several biotechnological 

opportunities.  Marine resources can effectively offer valid solutions to a variety of issues relevant 

for humans and for an environmental sustainable life, in order to solve important societal challenges 

of the twenty-first century. In fact, the study of marine organisms and ecosystems can favourite the 

discovery of new and more efficacious drugs, the isolation of undiscovered enzymes useful in the 

industry, to cite a  few examples. Furthermore, the creation of new concept of fuel from sustainable 

marine sources is a new trend in bioengineering, together with the synthesis of biopolymers, new 

biodegradable plastic materials, the remediation of environmental pollution and the development on 

large scale of sustainable aquaculture.  

Marine microorganisms diversity is almost unlimited and could offers a hug biotechnological 

potential for their exploitations. Microalgae are microscopic plants that contain potential bioactive 

materials in the form of proteins, lipids, carbohydrates, carotenes and vitamins. In recent years, 

considerable interest has been paid to marine microalgae research in the fields of pharmaceuticals, 

nutraceuticals, cosmeceuticals, and production of biofuels. Biological properties of algae and their 

components are now studied in many areas of research, as source of antioxidants, antimicrobials, 

anticancer agents, anti-inflammatory and cardiovascular health, anti-obesity and antidiabetic activity. 

Knowledge obtained in these years on microalgal world has been soon transferred by industries in 

products. In fact, microalgae have been widely used for various industrial applications including 

human and animal nutrition, cosmetics, pharmaceuticals, CO2 capture, bioenergy production, and 

nutrient removal from wastewater. 

The results showed in this thesis (Marine Biotechnology sections) demonstrate the potential 

application of microalgae in health care applications. In fact, a dinoflagellate Alexandrium andersoni 

was found to produce specific chemical compounds able to induce selective death signaling pathways 

in different tumor cell lines. Further studies should examine in depth the chemical characteristics of 

the natural compounds responsible for the interesting effects. In addition, this is an attempt to improve 

the methodology for discovering and analysing new lead compounds of marine origin. 

Another important outcome of this experimental work is represented by the green microalga 

Tetraselmis suecica, which showed an interesting repairing effect after oxidative cell damage. In 

particular, the study describes the potential synergistic effect of marine bioactive compounds (e.g. 

carotenoids). The formulation (the ethanol/water crude extract of Tetraselmis suecica) contains a 

large variety of chemical component with different chemical structures and anti-oxidizing activities 

that could be promising for cosmeceutical use. This discover of such potent marine microalgal species 

as peroxide scavengers and repairing mechanisms activator can lead to new alternative cosmeceutical 

products or nutritional supplements for prevention of disorders related to oxidative damage, such as 

cancer, aging and skin inflammation diseases. For this reason, an application procedure for patenting 

these results has been launch, in order to protect the intellectual property. 

Further study are request to clarify other important effects and possible applications of marine 

microalgae. Moreover, there is a big pressure from industrial field to improve cultivation conditions 

and techniques for the production in large scale of huge amount of marine microalgae. This represent 

the priority in order to develop new commercial products ready to be launched on the market with 

competitive prizes. 
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