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Introduction 
 

 

 

 

Substantial modifications are currently occurring in electrical distribution systems as they 

move toward the smart grid concept. In the context of a widespread use of distributed 

generation, controllable loads and storage systems, the main objectives of smart grids are the 

efficient use of energy, the reduction of losses in the system, and the power quality 

improvement. In particular, the increasing diffusion of controllable and non-linear loads and 

the new needs of liberalized markets impose new requirements in term of both continuity and 

quality of electrical energy, in order to avoid dangerous effects to the devices. 

Continuity usually refers to the uninterrupted electricity supply, while quality refers to a 

variety of disturbances that can occur in power systems and that can influence the 

characteristics of current and voltage waveforms. Among these disturbances, distortions of 

voltage and current waveforms have been extensively discussed in relevant literature, since 

they are gaining great interest as a consequence of several factors, such as:  

- the sensitivity of customers to distortions. Waveform distortions can determine 

considerable problems to many types of devices, such as overheating, aging effects, 

sub-synchronous oscillations and voltage fluctuations;  

- the growing penetration of electrical devices that significantly contribute to waveform 

distortions. For example, static converters that are used to supply loads and to connect 

distributed generation units or electrical storage systems to the grid are among the 

main sources of waveform distortions in modern power systems. 

Several international Standards and Recommendations have been developed and updated to 

characterize this type of disturbances, mainly dealing with time-varying waveforms. 

However, the majority of Standards are based on the application of the Short Time Fourier 

Transform. As all of the non-parametric methods, Short Time Fourier Transform is suitable to 

globally quantify the waveform distortions, but it does not allow the accurate individuation of 

detailed information on single spectral components. Alternatively, many papers have 

presented different parametric methods that were able to accurately analyse both stationary 

and non-stationary waveforms, allowing the identification of each spectral component with a 

very high resolution. Despite this, parametric methods are usually characterized by a heavier 

computational effort than Standard methods; for this reason, recent studies have been 

addressed to develop new methods able to provide an accurate estimation of spectral 

components parameters, while keeping a relatively low computational effort.  

This thesis focuses indeed on this research activity, presenting new advanced methods for the 

spectral analysis of time-varying waveforms in power systems. First, the main non-

parametric, parametric and hybrid methods are presented in details under an analytical review 
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of the state of the art, stressing both their advantages and their weaknesses. Then, a new 

advanced modified parametric method and three new advanced hybrid methods are presented 

in this thesis. All of the proposed methods guarantee an accuracy typical of the parametric 

methods, though with a significantly lower computational efforts. 

The proposed modified parametric method is the sliding-window modified ESPRIT method. It 

is based on a variation of the traditional ESPRIT algorithm from which it descends. The aim 

of this variation is the decreasing of the computational burden required for the spectral 

analysis of time-varying waveforms; this is reached by reducing the number of equation 

systems to be solved in each analysis window that slides over time. Specifically, observing 

that in most cases the frequencies are much less variable versus time than amplitudes, this 

advanced modified parametric method evaluates the frequencies and the damping factors of 

the exponentials included in the ESPRIT model only once or, at most, only a few times. 

Therefore, only one equation system must be solved to evaluate amplitudes and initial phases 

of the exponentials in each time window, with great benefits in terms of computational 

burden.  

The proposed hybrid methods are based on the joint of parametric and non-parametric 

methods. Each of these three methods is characterized by the ability of combining the 

advantages of both parametric and non-parametric techniques, while significantly curtailing 

their main shortcomings. In particular, the first method is the sliding-window Prony-DFT-

Prony method, a three-step method that combines the Prony’s method with the discrete 

Fourier transform. The second method is the sliding-window Parametric-DFT-analytical-

parametric method and it is a four-step method, specifically addressed for an accurate and fast 

assessment of current waveform distortions caused by adjustable speed drives. Eventually, the 

third method is the sliding-window Wavelet-modified ESPRIT method, based on the use of a 

discrete Wavelet transform and on the successive application of the modified ESPRIT 

method. Differently to the previous ones, this last method is expressly designed to meet the 

modern requirements in terms of spectral analysis of waveforms with spectral content from 0 

to 150 kHz. 

With reference to the proposed modified parametric method, the main innovative 

contributions are:  

(i) the use of a model (ESPRIT) that takes into account the white noise;  

(ii) the possibility of dramatically reducing the computational burden required by the 

analysis, without the need of prior assumptions of the frequencies of all of the 

spectral components to be known and of the damping factors to be zero;  

(iii) the ability to perform a check on the reliability of the results in time during the 

analysis; if the check fails, there is the possibility to evaluate again all of the fixed 

parameters, in order to always provide high accuracy. 

With reference to the proposed hybrid methods, the main original contributions are:  

(i) for the sliding-window Prony-DFT-Prony method, the improvement in the 

estimation of the spectral component amplitudes in respect to similar methods 

based on different parametric methods, although preserving a similar 

computational effort; 

(ii) for the sliding-window Parametric-DFT-analytical-parametric method, the 

significant reduction of the computational effort required for the analysis of the 
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current waveform distortions caused by adjustable speed drives, in respect to the 

parametric method and to the other hybrid methods specifically addressed to the 

analysis of the same waveform typology, although providing very accurate results; 

(iii) for the sliding-window Wavelet-modified ESPRIT method, the ability to perform a 

detailed estimation in time of each low-frequency and high-frequency spectral 

component, using an optimal time and frequency resolution in each band, in order 

to obtain an accurate time-frequency representation. 

The thesis is organized in three chapters. The first chapter provides an overview of the state of 

the art and it includes the main methods available in relevant literature for the spectral 

analysis of time-varying waveforms in power systems. The new advanced modified 

parametric method is presented in the second chapter, while the third chapter deals with the 

new advanced hybrid methods. The conclusions are in the last part of the thesis. 
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  Chapter 1.

Methods for the spectral analysis of time-varying 

waveforms in power systems: state of art 
 

 

 

1.1  Introduction 

In ideal operating conditions of electrical systems, voltage and current waveforms are 

sinusoidal waves characterized by proper, fixed values of amplitude and frequency. The 

deviations of voltage, as well as the deviations of current, from the ideal waveform are 

defined ―Power Quality (PQ) disturbances‖ [1]. PQ disturbances can be classified as 

variations and events; the formers are quasi-steady-state disturbances, while the latters are 

sudden disturbances with well-defined beginning and ending times [2]. The waveform 

distortions of currents and voltages are variations that greatly hold researchers’ interest, due to 

the wide use of static converters in modern power systems and due to the harmful effects on 

power system operations and on power system components.  

The waveform distortions consist in voltage and current signals that differ from single-

frequency sinusoidal waves, since harmonic and interharmonic components are added to the 

fundamental component at the power system frequency
1
. The International Electrotechnical 

Commission (IEC) Standards define harmonic and interharmonic components as sinusoidal 

waves characterized by frequencies that are integer multiple and not-integer multiple of the 

fundamental frequency, respectively. The spectral content of both voltage and current 

waveforms can be detected by performing a spectral analysis, and the evaluation of proper 

indices, e.g., relative individual spectral components or total harmonic distortion (THD), 

allows to estimate the level of distortion. 

Waveforms can be classified also as stationary (if they are statistically time invariant) and 

non-stationary (if they are statistically variable in time). Strictly stationary waveforms rarely 

occur in real power systems; nevertheless, in presence of sufficiently small variations it is still 

possible to assume the waveforms to be stationary. Anyway, the spectral analysis of both 

stationary and non-stationary waveforms can suffer from problems when the underlying 

assumptions of the applied methods is not fulfilled; in these conditions, non-negligible 

inaccuracies in the detection of spectral components and, consequently, in the evaluation of 

the PQ indices can often arise. For example, when a Fourier analysis of a stationary waveform 

is performed, spectral leakage problems can occur in presence of deviations from the 

                                                 
1
 In this thesis, the term ―power system frequency‖ indicates the nominal frequency of the electrical power 

system (50 or 60 Hz in western countries). As well known, some deviations of the actual frequency from the 

nominal value can occur in normal operating conditions of the electrical power system, e.g., due to the  

instantaneous unbalance between power generation and load demand. For sake of clarity, in the following, the 

term ―fundamental frequency‖ is used to indicate the actual frequency of the electrical power system. 
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fundamental frequency; on the other hand, the additional problem of the location in time of 

the spectral components occurs in the analysis of a non-stationary waveform. 

Different advanced methods for the spectral analysis and time-frequency distribution have 

been proposed in the relevant literature in order to overcome the involved inaccuracies [1-28]. 

The aim of this Chapter is to provide an overview of the most important methods for the 

spectral analysis of time-varying waveforms in power systems. In particular, the following 

Sections of this Chapter deal with non-parametric methods, parametric methods, hybrid 

methods and filter-bank based techniques, respectively; the main methods per category are 

deepened in the corresponding Section. Finally, by underlining the pros and cons of each 

considered category, a brief theoretical comparison among the methods is provided in the last 

Section. 

1.2 Non-Parametric Methods 

Non-parametric methods estimate the distribution of the waveform power content over the 

different frequencies through proper transformations [1,3-5,7-10,29]. Specifically, their 

approach consists in estimating the waveform spectrum through the evaluation of some 

coefficients (e.g., the amplitudes) of known functions (also called basis functions) that are 

used for the transformation. Fourier Transform, Wavelet Transform, Hilbert-Huang 

Transform and Chirp z-Transform are among the main techniques applied to power system 

waveform analysis that belong to this category of spectral analysis methods.  

The aforesaid techniques, together with their discrete and advanced versions, are presented in 

the following, with a particular focus on their characteristic features and on the issues related 

to the analysis of time-varying waveforms. 

1.2.1 Fourier Transform  

Fourier Transform is one of the most effective and widely used tools to perform the 

transformation of a generic waveform from the time domain to the frequency domain, by 

means of the representation of the original waveform through complex exponentials. 

The Fourier Transform  ( )  of the generic continuous-time waveform  ( ) , with 

           , is defined as [3-5]: 

 

 ( )  ∫  ( )         
  

  

 (1.1) 

 

with            . The inverse transformation is a dual expression provided by: 

 

 ( )  ∫  ( )        
  

  

  (1.2) 

 

The complex function  ( ) is the spectrum of  ( ) in the frequency domain. 

By sampling the continuous waveform  ( ) , a discrete-time waveform is obtained as 

sequence of samples  ( ); in this case the Eq. (1.1) can be rewritten as follows: 
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 ( )  ∑  ( )

  

    

          (1.3) 

 

where             and    is the sampling time interval
2
. Note that each sample of the 

waveform should be properly indicated as  (   ) , but assuming    to be constant, it is 

possible to use the compact notation  ( ). 

Generally, in practical applications, the available sampled waveforms are sequences with a 

finite number   of samples, so the  -points Discrete Fourier Transform (DFT)  ( ) can be 

defined: 

 ( )  ∑  ( )

   

   

     
 
 
 

 (1.4) 

 

with            . Also in the Eq. (1.4) the proper notation  (
 

   
)  of the DFT is 

substituted by the compact notation  ( ).  

A comparison between Eqs. (1.3) and (1.4) shows that the  -point DFT is equal to the Fourier 

Transform of the discrete-time waveform at discrete frequencies   
 

   
, with   

         . So the  -point DFT can be obtained by uniformly sampling the Fourier 

Transform of the discrete-time waveform in the frequency domain, with the distance between 

subsequent samples equal to    
 

   
;    is defined as the frequency resolution, and     

   is the  -point sequence time duration. 

The evaluation of the  -point DFT through the Eq. (1.4) requires  (  ) operations; however, 

the Fast Fourier Transform (FFT) is usually preferred in order to reduce the computational 

burden. The FFT is a very efficient algorithm in terms of computational efforts, as it requires 

only  (     ) operations; this algorithm appears to be particularly suitable when the length 

  of the sequence is an integer power of 2 [1,30].  

Given a discrete-time waveform, the  -point finite sequence of samples can be obtained by 

multiplying the sampled waveform by a proper discrete function that is different from zero 

only in a finite-length window (windowing process). Different window functions can be used 

for the windowing process; this is shown with more details afterwards. However, for sake of 

conciseness, the definitions given hereafter assume the use of a rectangular window, since it is 

typically used in the windowing process. 

Windowing process can cause different problems, since: 

- the spectrum of the windowed signal is obtained by the convolution of signal DFT and 

the selected window DFT; 

- the spectrum obtained by the DFT is constituted by components at integer multiples of 

the frequency resolution. Therefore, the ―picket fence‖ effect can affect the spectrum, 

as the exact behaviour is observable only at discrete points. The properties of the 

original signal are joint to the properties of the selected window, hence a further 

interpretation of the results is required; 

                                                 
2
 The sampling frequency         should be greater than the double of the maximum frequency present in the 

waveform spectrum, according to the Nyquist-Shannon sampling theorem.  
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- the duration of the time window    should be an integer multiple of the Fourier 

fundamental period in order to guarantee the synchronization condition and to elude 

spectral leakage problems. The Fourier fundamental period is the reciprocal of the 

Fourier fundamental frequency, defined as the greatest common divisor of each 

frequency contained in the waveform [4,31]. In particular, the Fourier fundamental 

frequency is selected as submultiple of the power system frequency with an adequate 

compromise in terms of both frequency and time resolution. In fact, if the Fourier 

fundamental frequency is too small (high frequency resolution),    might become too 

large (low time resolution), thus preventing the detection of some variations in the 

amplitudes, frequencies and initial phases of harmonics and interharmonics. 

In order to better explain the spectral leakage problem, let   ( ) be a sampled, windowed 

single spectral component, given by: 

 

  ( )   ( )   ( )        (         )   ( ) (1.5) 

 

where            ,  ( )  is a rectangular time window sampled at    with unitary 

amplitude, while  ,    and   are the amplitude, the frequency and the initial phase of the 

considered spectral component, respectively. 

Considering that the multiplication in the continuous time domain corresponds to a 

convolution in the frequency domain, the spectrum of    can be calculated as the convolution 

of the Fourier Transform of the waveform  ( ) with the      function
3
 (i.e., the Fourier 

Transform of the rectangular window, whose absolute value is shown in Fig. 1.1).  

 

 
Figure 1.1 - Absolute value of the spectrum of a rectangular window of unitary amplitude in the interval 

              

 

Then, the unilateral spectrum corresponding to the (1.5) can be expressed by discretizing as: 

 

  ( )  
 

  
      (

 

   
   )  

 

  
      (      ) (1.6) 

 

                                                 
3
 The      function assumes zero amplitudes at frequencies multiple of     , except for the frequency of the central lobe. 
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where   is the spectrum of the rectangular window. 

The amplitude of the spectrum is obtained as: 

 

|  ( )|  
 

 
 | (      )| (1.7) 

 

where         
 

 
  .  

Eq. (1.7) clearly shows that the amplitude of the spectrum depends on the     samples of the 

absolute value of      function centred at     , where each sample is taken in 

correspondence of a multiple of the frequency resolution    
 

   
 

 

  
. This leads to two 

different scenarios: 

1. the frequency    is an integer multiple of   , i.e.,        , with   positive integer 

number; 

2. the frequency    is not an integer multiple of   , i.e.          , with      

positive real number. 

For the scenario 1), the Eq. (1.7) becomes: 

 

|  ( )|  
 

 
 | ((   )    )|  

 

 
 | (

   

  
)| (1.8) 

 

with         
 

 
  . Samples of the amplitude of the spectrum are taken in correspondence 

of frequencies that are integer multiples of     ; in particular, if    , the sample is located 

in correspondence of a zero of the absolute value of the      function, otherwise, if    , the 

sample is located at the peak of the absolute value of the      function (the centre of the main 

lobe). In this circumstance, even neglecting the negative frequencies, each component of the 

original spectrum in the frequency domain is correctly reproduced (Fig. 1.2.a). 

On the other hand, for the scenario 2), the Eq. (1.7) becomes: 

 

|  ( )|  
 

 
 | ((   )      )|  

 

 
 | (

   

  
  )| (1.9) 

 

with         
 

 
  . Samples of the amplitude of the spectrum are taken in correspondence 

of frequencies that are not integer multiples of     , due to the   contribution. In this case, 

for each value of  , the samples are always taken in correspondence of non-zero values of the 

absolute value of the      function (Fig. 1.2.b); therefore, neglecting the negative frequencies 

leads to the incorrect reconstruction of the original single spectral components of the 

waveform in the frequency domain. 

For this reason, it is important to always verify the condition        , with   positive 

integer number, in order to obtain correct information on the spectrum. This condition in the 

time domain becomes: 

 

    
 

  
 

 

  
      (1.10) 
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that defines the synchronization condition: the time window duration    must be an integer 

multiple of the spectral component period   .  

If the synchronization condition is not satisfied, the spectral leakage phenomenon occurs and 

additive, non-zero components appear in the spectrum, providing inaccurate information. 

 

 
       (a)                                                                      

 
                                                                                            (b) 

Figure 1.2 - Example of synchronized spectrum (a) and non-synchronized spectrum (b) for the waveform in 

Eq.(1.5) 

 

Note that the DFT is a linear transform, so, if a waveform is constituted by several 

components, the waveform spectrum can be obtained as the sum of the spectra of each 

component, and the synchronization condition should to be verified for each component in 

order to prevent the spectral leakage phenomenon. Specifically, if the Eq. (1.10) is not 

verified for each component, also ―interferences‖ among neighbor tones can occur due to the 

spectral leakage effect.  

The duration of the time window    is generally chosen as an integer multiple of the 

fundamental period of the waveform to prevent spectral leakage, but this rule requires the 
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prior knowledge of the signal characteristics; anyway, it becomes ineffective in presence of 

non-synchronized interharmonics. 

Hence, the main causes of spectral leakage problems in power systems are due to [32]: 

(i) the deviations of the actual fundamental frequency from the expected fundamental 

frequency, leading to errors in the synchronization between fundamental and harmonics; and 

(ii) the presence of non-synchronized interharmonics. 

Several solutions have been proposed in relevant literature to improve the Fourier Transform 

tools for the estimation of power system waveform spectra [33-37]. For example, 

interpolation and synchronization techniques have been proposed in order to overcome the 

problems related to the selected duration of the analysis window and to the correspondent 

number of waveform samples [1,35]. 

Other solutions to overcome the spectral leakage deal with the use of windows different from 

the rectangular one [31-32,38-39]. Basically, the aim was to reduce the discontinuity at the 

boundaries of an observation with duration not adequate to the natural period of the waveform. 

This objective could be reached by setting to zero (or near zero) as many orders of derivative 

of the weighted sequence as possible [31,39]. Also, the window spectrum has to be 

characterized by a narrow main lobe and by low amplitude in correspondence on the other 

lobes, decreasing as the frequency increases. The effect of this approach is the minimization 

of the spread of each harmonic component.  

Some of the most commonly used windows in power systems are the Hanning window, the 

Hamming window and the Gaussian window. 

 

a) Hanning Window 

The Hanning window is one of the most useful time windows proposed as alternative to the 

rectangular window [1,31-32]. The Hanning window is characterized in the frequency domain 

by an amplitude spectrum with side lobes very small and quickly decaying, as shown in Fig. 

1.3a. This feature allows to contain the interference conditions that can occur among neighbor 

tones, due to the spectral leakage. 

However, compared to the rectangular window, the Hanning window is less suitable to 

guarantee the best resolution among tones that are close in frequency, since the main lobe of 

the amplitude spectrum of the Hanning window is double than the main lobe of the 

rectangular window. Nevertheless, an acceptable resolution is still provided also by the 

Hanning window. 

 

b) Hamming Window 

The Hamming window is another useful window that is often used as an alternative to the 

rectangular window [31]. The Hamming window can be considered as a modified version of 

the Hanning window, characterized, in the frequency domain, by a deep attenuation at the 

absent side lobe positions and by lower side lobes near to the main lobe, as shown in Fig. 1.3b. 

Fig. 1.3b shows also that the side lobes of the Hamming window decay slower than the side 

lobes of the Hanning window, while the main lobe is still double than the main lobe of the 

rectangular window. 

Note also that the Hamming window differs in the time domain from the Hanning window, 

since its edge values are not very close to zero. 
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    (a) 

 
     (b) 

 
     (c) 

Figure 1.3 – Absolute value of amplitude spectrum of: (a) Hanning Window; (b) Hamming Window; (c) 

Gaussian Window 
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c) Gaussian Window 

In order to maximise the performance of the DFT, the time window in Eq. (1.5) should to be a 

smooth positive function, and its Fourier Transform should have a tall, thin feature. 

Unfortunately, it is impossible to simultaneously reach high levels of ideality both in time and 

in frequency domain for a generic window. Nevertheless, the Gaussian pulse is a good 

window function candidate since the product between its mean square values of time duration 

and of bandwidth is minimum [31]. 

Actually, tails should be truncated in order to use the Gaussian pulse as window function; in 

this case the time-bandwidth product for this window is no longer the minimum. However, 

setting the truncation in correspondence to three time as much as the standard deviation, the 

error appears negligible and the aforesaid property still can be considered valid [31]. 

A parameterized window is therefore obtained; the parameter is the reciprocal of the standard 

deviation. When this parameter increases, the width of the time window decreases and the 

edge discontinuities of the window in the time domain become smoother. This means that the 

absolute value of the amplitude spectrum of Gaussian window is characterized by very wide 

main lobe and reduced side lobes that rapidly decay, as shown in Fig. 1.3c, where the 

reciprocal of the standard deviation is 3.5. 

Anyway, although the leakage effects of a rectangular window are significant in non-

synchronized conditions, the International Electrotechnical Commission (IEC) standard 

recommends the use of a rectangular window, since it assures the best frequency resolution 

[40]. 

 

The improvement of the Fourier Transform performances in presence of non-stationary 

waveforms was also investigated in relevant literature, in order to detect the variations in the 

time domain of waveform spectrum in terms of both amplitudes and frequencies. This 

objective was achieved through the Short Time Fourier Transform (STFT)  [1].  

The STFT is an extension of the Fourier Transform, based on the use of a time window that 

slides in the time over the waveform, with or without overlap. The idea is to break the 

waveform in small segments, that are separately analysed by the Fourier Transform in order to 

detect the variation of the spectrum of a non-stationary waveform during time. In this way, 

associating each spectrum to the centre of the time window, a three-dimensional 

representation (amplitudes and frequencies at each time) of the spectrum can be obtained, in 

order to detect the spectral components included in a waveform at a specific time interval 

(time-frequency representation). 

Specifically, let  ( ), with            , be the generic continuous-time waveform; its STFT 

is defined as [1]: 

 

    (   )  ∫  ( ) (   )         
  

  

 (1.11) 

 

where   is the sliding time window of duration    and   is the time shift of the same window. 

Eq. (1.11) can be rewritten by discretizing the time domain as: 
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     (   )  ∑  ( )

   

   

 (   )     
 
 
 

 (1.12) 

 

with            . Note that  ( ) and  ( ) are the generic samples of the waveform 

and sliding-window respectively, and that   is the finite number of samples for each window, 

while   is related to the shift of the sliding-window in the discrete time domain. 

Once again the duration        of the sliding time window fixes the frequency resolution 

   of the DFT spectrum. Moreover, since the frequency resolution is the reciprocal of the 

sliding-window duration, a detailed time resolution is obtained by choosing a short time 

window, but the frequency resolution gets worse, and vice versa. 

The shape of the time window can lead to false information about the spectral component 

values. The IEC standard suggests the application of the STFT with rectangular time windows 

of duration equal to 10 or 12 cycles of the fundamental period for 50-Hz or 60-Hz systems, 

respectively [40]. Anyway, in relevant literature, also other differently-shaped windows have 

been alternatively used for the STFT, following the same previous motivations. 

Eventually, the DFT is still the most widely used method for a fast spectral analysis, although 

all of the limits highlighted in this Section. In particular, many works in relevant literature are 

specifically addressed to the application of DFT-based methods for the waveform distortion 

detection in power system. A detailed literature overview in this field is in [32,34-37,39,41-

48]. 

1.2.2 Wavelet Transform  

The Wavelet Transform (WT) performs a simultaneous analysis of waveforms in both time 

and frequency domains and it is extensively used as a time-frequency technique for signal 

processing. The main differences with the STFT are: i) the possibility of performing multi-

resolution time-frequency analyses, and (ii) the use, in the mathematical definition, of 

wavelets (―small waves‖). These are functions with limited energy and zero mean, and their 

role is the same of the sine and cosine functions in Fourier analysis [1].  

Different wavelet functions are available for the transformation, so the need to choose a 

specific wavelet (mother wavelet) to be used for each application. The mother wavelet 

depends on two parameters that determine how the mother wavelet has to be dilated (stretched) 

and translated (shifted in time), respectively. Let      be the scale parameter and     be 

the translation parameter; the mother wavelet is defined as [1,8]: 

 

    ( )  
 

√ 
 (

   

 
). (1.13) 

 

The Eq. (1.13) shows that a stretched basis function is obtained if the scale parameter      , 

while a compressed basis function is available if      . Examples of the wavelet for two 

different values of the scale parameter   are in Fig. 1.4. Note also that the wavelet function 

slowly varies when      , and therefore it is possible to take into account the lower 

frequencies of the signal through its use; for       the wavelet function varies instead more 

rapidly, so its use allows to take into account the higher frequencies. The translation 
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parameter   in Eq. (1.13) is linked to shift of the wavelet that can be moved along the 

waveform in time. The term   √  is a weight related to energy conservation. 

 

 
  (a)           (b) 

Figure 1.4 – Wavelet examples: a) a > 1 ; b) a < 1 

 

As previously observed, selecting       or      , wavelet functions in (1.13) can be used 

to get information at higher and lower frequencies of the waveform, respectively. Therefore, a 

scaling function  ( ) can be introduced to obtain information at low frequencies of the signal. 

This scaling function can be defined as an aggregation of the wavelets with scale parameters 

     . Also the scaling function can be scaled and translated. 

If the mother wavelet     ( ) is a complex signal, the Continuous Wavelet Transform (CWT) 

of a given waveform  ( ) is the following dot product [1]: 

 

   (   )  〈      〉  ∫  ( )
 

√ 
 ̌ (

   

 
)

  

  

    (1.14) 

 

where the symbol   ̌represents the complex conjugate and the symbol 〈  〉 represents the inner 

product. 

For an assigned pair of parameters   and  , the coefficient obtained by the Eq. (1.14) 

characterizes the link between the waveform  ( ) and the scaled, translated mother wavelet. 

Therefore, varying the   and   values for a chosen mother wavelet, the wavelet representation 

of the waveform  ( ) can be reached in time (through the translation parameter  ) and in 

frequency (through the scale parameter  ) domains. 

However, CWT is a redundant and heavily-implementable transform, since the mother 

wavelet is continuously translated and scaled. This redundancy can be overcome by recurring 

to a Discrete Wavelet Transform (DWT) that refers to a discrete number of expansions (  

values) and translations (  values). Due to its reduced computational effort, the DWT, rather 

than CWT, is preferably used for PQ disturbance assessment. 

Scaling and translation parameters can be discretized, i.e., as     
 
 and        

 
, where   

and   are integers and   
 
  ,        are fixed values. Substituting in (1.13), the following 

expression results [1]: 

 

    ( )  
 

√  
 
 (

       
 

  
 ). (1.15) 
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Similar replacements stand also for the scaling function  ( ), as for all next relations.   

Using the Eq. (1.15) in the definition (1.14), the following coefficients for the wavelet 

transform of a continuous signal  ( ) with discrete scale and time parameters are obtained [1]: 

 

   (   )  〈      〉  
 

√  
 
∫  ( ) ̌ (

       
 

  
 )

  

  
   . (1.16) 

 

The original waveform can be reconstructed by using the inverse wavelet transform, defined 

as: 

 

 ( )  ∑ ∑ 〈      〉
  
        ( )

  
    . (1.17) 

  

If only a finite sequence  ( ) of   samples of the waveform is considered, the  -point DWT 

with discrete scale and time parameters can be defined as [1]: 

 

   (   )  
 

√  
 
∑  ( ) ̌ (

       
 

  
 )   

   . (1.18) 

 

The choice of proper values for   
 

 and    is based on the selected wavelet; the dyadic 

expansion is often used. This expansion is characterized by the scale parameter value      

and so   
 
             , while the translation parameter is     . 

The DWT is a non-uniform representation of the waveform both in time and in frequency, 

since the time and frequency spreads vary with the scale parameter  , although in an opposite 

manner: the former is proportional to  , while the latter is proportional to    . The scaling 

used in Eq. (1.18) gives a logarithmic frequency coverage to the DWT, in opposition to the 

uniform frequency coverage of STDFT, as shown in Fig. 1.5 [8]. 
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(a)    (b) 

Figure 1.5 – Comparison of time-frequency resolution between (a)  STDFT and (b) DWT with dyadic 

expansion 

 

Coherently to the theoretical aspects in Section 1.2.1, Fig. 1.5.a shows the constant time and 

frequency resolutions (   and   ) of the STDFT (fixed square boxes). Conversely, the DWT 
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resolution, shown in Fig. 1.5.b, varies across the plane. Specifically, at low frequency, the 

DWT time resolution is coarse, while the DWT frequency resolution is fine, cause of a dilated 

version of the mother wavelet, related to high value of scale parameter  . DWT resolutions 

are exactly inverse for the high frequency range, due to the contracted version of the mother 

wavelet (low value of scale parameter  ) that provides a fine time resolution and a coarse 

frequency resolution. This behavior allows a multi-resolution analysis of waveforms. 

The DWT can be implemented as multi-stage filter, constituted by high-pass and low-pass 

filters with down-sampling in cascade, as shown in Fig. 1.6. The high-pass and low-pass 

filters are related to the selected wavelet and scaling functions. As shown in Fig. 1.6, the 

output     (        ) of the high-pass filters produces the detailed version of the high-

frequency components of the decomposition, while the output     (        ) of the low-

pass filters gives the approximated version of the low-frequency components of the 

decomposition. 
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LP 

HP 
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Figure 1.6 – Fast DWT decomposition 

 

In a multi-resolution analysis, the DWT divides progressively the waveform to be analyzed in 

a discrete number of frequency bands at each decomposition level. At the first level of the 

decomposition, the waveform bandwidth is split into two parts constituted by low and high 

frequencies, respectively. At the second level, only the part made up of low frequency 

components is further split in a low frequency part and in a high frequency part. The process 

is then iteratively repeated, leading to an array of wavelet coefficients with   frequency bands 

and   coefficients that provide a representation of the original waveform. 

Specifically, the coefficients     and     in Fig. 1.6 are computed through the following 

expressions  [1,8]: 

 

   ( )  
 

√  
 
∑  ( ) ̌ (

   

  
 )   

   . 

 

(1.19) 

 

   ( )  
 

√  
 
∑  ( ) ̌ (

   

  
 )   

   . (1.20) 

 

where the symbol   ̌represents, again, the complex conjugate,   is related to the translation in 

time and   is linked to the     frequency bands, sorted from high to low frequencies.  
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Note that, as previously observed, the high frequency bandwidths are wide, thus providing a 

poor frequency resolution. Therefore, if detailed information is required for a specific spectral 

component, the DWT could not be effective. In general, the DWT is able to give only 

information on a particular frequency band, with a location that is strictly dependent on the 

selected parameters.  

Wavelet packet transform (WPT) is another decomposition technique based on the wavelet 

application. WPT has a similar implementation to the DWT, since a sequence of filter pairs is 

utilized [7]. However, the main difference of the WPT with respect to the DWT is the 

decomposition at each level of all of the frequency bands obtained as output in the previous 

decomposition level; this is clear in the WPT tree-structure shown in Fig. 1.7. In this way, the 

frequency resolution is improved also for the high frequencies. 

 
  Figure 1.7 – WPT decomposition structure  

 

The coefficients obtained at each level can be evaluated according the following equations: 

 

   
 ( )  ∑  ( )  

   (    )

   

   

 

 

(1.21) 

 

     
 ( )  ∑  ( )  

   (    )

   

   

 (1.22) 

 

where  ( ) and  ( ) are the impulse response of the low- and high-pass filter, respectively, 

and the index         ( (   )   ) represents each output frequency band at the (  

 )   level of decomposition. Then, each of these frequency bands becomes an input for the 

    level of decomposition. Note that the original sampled waveform  ( ) to be decomposed 

corresponds to   
 . 

However, in each WT application, the choice of the mother wavelet has a fundamental role. 

The proper choice of the mother wavelet is strictly related to the particular application, so, in 

each case, a prior knowledge of the nature of the waveform to be analyzed is necessary and 

the experience in the field helps to select the most appropriate function. A wide number of 

mother wavelets has been used in PQ applications; the Daubechies wavelets are among the 
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most commonly ones. This wavelet family is characterized by orthogonality and compact 

support, as well as the absence of a closed analytical expression. Moreover, the lowest-order 

Daubechies derivatives are not always continuous functions [6,8]. 

Other commonly used mother wavelets, such as Morlet and Meyer mother wavelets, derive by 

a modulated Gaussian function and a harmonic waveform, both characterized by a 

smoothness that particularly allows them to provide amplitude information in the harmonic 

analysis. For example, the Meyer wavelet is suited for the visualization of time-varying 

spectral components in the discrete time domain, since this multi-resolution analysis can 

clearly show the oscillatory nature of different spectral components included in the waveform 

[6,8]. 

As previously stated, the WT multi-resolution analysis of the waveform proves to be a proper 

tool for the PQ applications. In relevant literature, many works have proposed an extension of 

different PQ indices, such as THD and k-factor, taking into account the main features of the 

WT. Specifically, the aforesaid indices are computed using the energy content of the 

frequency bands obtained through the DWT, instead of considering the spectral components. 

For example, a WT-based evaluation of the THD was proposed in [29]. Such kind of 

evaluation was effected by assigning different weights to each decomposition frequency level, 

with higher weights associated to the lower frequencies. 

In [49] the WPT was proposed for the harmonic groups estimation defined in [40]. The WPT, 

in fact, is able to guarantee similar bandwidths across the entire frequency plane. The 

Vaidyanathan 24 and the Daubachies 20 were suggested as mother wavelets for that 

application, and a five-levels filter bank was used to obtain 32 uniform bands of 25-Hz width 

as output. Then, the filter bank output was post-processed in order to make the decomposition 

suitable to the grouping evaluation. 

Note that WT-based techniques, as well as DFT-based ones and high resolution methods 

analysed in the next Section, have been extensively applied for the detection and the analysis 

not only of waveform distortion, but also of other PQ disturbances, such as voltage sags and 

transients [2]. An exhaustive overview of the application of  WT-based methods for the 

spectral analysis in power system field is in [2,6,8,48,50-60]. 

1.2.3  Hilbert-Huang Transform 
The Hilbert-Huang Transform (HHT) is another useful non-parametric technique. This is a 

relatively modern approach for the spectral analysis and consists in a two-steps method, based 

on the definition of instantaneous frequency [7,9]. 

The HHT decomposes the waveform to be analysed in Intrinsic Mode Functions (IMFs), by 

using the Empirical Mode Decomposition (EMD) in the first step. These IMFs are adaptive 

basis functions strictly related to the specific waveform to be analysed, unlike the basis 

functions used in both FT and WT that are prior selected. The EMD is realized by an iterative 

process that stops when the found IMFs fulfils the criteria on the decomposition residual, 

according to the block scheme in Fig. 1.8. 
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  Figure 1.8 – Block scheme of the HHT first step  

 

Specifically, the decomposition stops when the last residual obtained by the iteration becomes 

a constant, a monotonic function, or a function with only one maximum and one minimum, 

from which no more IMFs can be extracted [7,9]. 

Once the waveform  ( ) is fully decomposed, being   ( ) the i-th IMF and   ( ) the final 

residual, the waveform  ( ) to be analysed can be represented as [9]: 

 

 ( )  ∑   ( )
 
      ( ). (1.23) 

 

After the decomposition, in the second step, the HHT applies the Hilbert Transform (HT) to 

the IMFs according the Eq. (1.24) [9]: 

 

 (  ( ))    ( )  
 

 
 ∫

  (  )

    
   

  

  

 (1.24) 

 

where  (  ( ))    ( )  represents the HT of the i-th IMF   ( ) , and   is the Cauchy 

principal value. 
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Then, since   ( ) and   ( ) form a complex pair, an analytical signal   ( ) can be obtained as 

[9]: 

 

  ( )    ( )     ( )    ( ) 
   ( ) (1.25) 

 

where the instantaneous amplitude   ( ) and the instantaneous phase   ( ) can be evaluated 

as follows: 

 

  ( )  √  
 ( )    

 ( ) 

 

(1.26) 

 

  ( )       
  ( )

  ( )
 (1.27) 

 

In particular, the instantaneous frequency is defined as the derivative of the instantaneous 

phase   ( ): 

 

  ( )  
 

  

   ( )

  
 (1.28) 

 

Many HHT-based methods for the spectral component detection have been proposed in the 

last decade [61-63]. Indeed, due to the adaptive basis functions for decomposition, the HHT is 

particularly suitable also for the spectral analysis of nonlinear and non-stationary waveforms., 

An exhaustive overview of the application of  HHT-based methods for the spectral analysis 

and the evaluation of PQ indices in power system field is in [48,62-69].  

1.2.4 Chirp z-Transform  
The chirp-z transform (CZT) is another important tool for the spectral analysis, and it is 

particularly indicated when the knowledge of only a small band of frequency is required with 

resolution higher than DFT [7,10]. Specifically, the CZT computes the z-transform of a finite 

number   of samples of a waveform along a general contour         in the z-plane, with 

         . The symbols   and   represent two complex numbers, given by the 

following expressions: 

 

     
      

 

(1.29) 

 

     
      (1.30) 

 

where   ,   ,    and    are real numbers.  

Given the contour, the CZT of a sampled waveform  ( ) is obtained by using two FFT and 

one inverse FFT, according to the following expression: 

 

   (  )  ∑  ( )      

   

   

 (1.31) 
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for          . 

Note that the CZT becomes the DFT if     and          . In this case, the number of 

points   in the z-plane is equal to the total number of samples   of the waveform. 

An exhaustive overview of the application of  CZT-based methods for the spectral analysis 

and the evaluation of PQ indices in power system field is in [48,70-74]. 

1.3 Parametric Methods 

The methods that have been dealt with in the previous Section descend from a ―classical 

approach‖ to the spectral analysis, based on the use of analytic transformations having the 

waveform to be analysed as input and information about the waveform spectral content as 

output. 

The ―parametric approach‖ to the spectral analysis is discussed in this Section. This is an 

alternative approach to the classical one and it is based on the definition of a model for the 

waveform to be analysed. The waveform spectrum is known when the parameters of the 

model are evaluated. 

Parametric methods overcome a lot of drawbacks of the non-parametric ones, thus allowing 

for a great accuracy in the spectral component estimation. For example, there is no definition 

of frequency resolution related to the time duration of the analysis window in the parametric 

framework, and therefore all of the main problems of the DFT-based methods are avoided [1-

2]. 

Each parametric method assumes that the waveform model is constituted by a finite number 

of exponential functions. This means that the output spectrum is discrete and contains a finite 

number of spectral components, while the non-parametric methods could provide a spectrum 

constituted by an infinite number of spectral components. 

Parametric methods can be used to characterize both stationary and non-stationary waveforms. 

In the first case, the parameter estimation can be obtained through an entire data sequence of 

the waveform to be analysed. In the second case, the spectrum variability in time can be 

detected by dividing the available sampled waveform into a proper number of blocks [1]. In 

this way, the same principle used for the STFT is repeated, since the analysis of the different 

data blocks of the waveform corresponds to the use of a time window that slides in time. 

These sliding-windows can be either overlapped or non-overlapped according to the particular 

application, and, for each window, the parameters of the model of the selected parametric 

method are evaluated. As a result, a representation of spectral component amplitudes and 

frequencies versus time (time-frequency representation) is obtained [1]. The Prony’s method, 

the Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT), and the 

MUltiple SIgnal Classification (MUSIC) method are the most common examples of 

parametric methods applied to power system waveform distortion assessment. 

Other parametric methods are developed according to the non-stationary data modelling 

approach. These methods apply a mathematical model of the system under study, and they 

utilize the voltage and current measurements in order to provide a dynamic correction to the 

model at any time. In this way, voltage and current phasors for different harmonic orders can 

be obtained by the state model, and their variations can be detected versus time in a 

measurement update step. The main method in this category is the Kalman filter [7,28].  
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A brief discussion of the theoretical background of Prony’s method, ESPRIT method, MUSIC 

method and Kalman filter is presented in the next Sub-sections. 

1.3.1 Prony’s method 
The Prony’s method approximates the waveform samples with a linear combination of a finite 

number   of complex exponentials. The computation of the unknown parameters of each 

exponential function provides a spectral estimation of the waveform. These parameters are the 

amplitudes, the frequencies, the damping factors and the initial phases of the exponentials. 

Their estimation is obtained by solving linear equation systems which impose the 

minimization of the error between the waveform samples and their approximation provided 

by the model. 

Let  ( ) be a  -point sequence of the waveform to be analysed; Prony’s method uses the 

following model to achieve the approximation  ̂( ) of each sample [1]: 

 

 ̂( )  ∑    
(      )        

   ,               (1.32) 

 

where   ,   ,         and    are the amplitude, the damping factor, the angular velocity, 

and the initial phase of the k-th exponential, respectively, and   is the exponential code. Since 

the waveform to be approximated is real,       is an even number and the linear 

combination (1.32) is constituted by couples of complex conjugated exponentials. Introducing 

the following variables [1]: 

 

    (      )   
 

(1.33) 

 

          (1.34) 

 

the Eq. (1.32) can be rewritten in the following, more compact form [1]: 

 

  ̂( )  ∑     
  

   ,               (1.35) 

 

Considering only   equations and substituting  ̂( ) with the actual waveform samples in the 

Eq. (1.35), the following system  is obtained [1]: 
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] (1.36) 

 

Prony’s approach is to separately calculate the variables    and   . This is possible by 

introducing a polynomial whose roots are the variables   , i.e. [1]: 

 

    ( )        (   )   ( )   ; (1.37) 
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obviously, the calculation of    by means the Eq. (1.37) requires the knowledge of the 

coefficients  ( ),           . These can be evaluated by solving the following linear 

equation system obtained by manipulations of Eqs. (1.36) and (1.37) [1]: 

 

∑  ( ) (   )    
   ,                 (1.38) 

 

Once the variables    are known by solving Eqs. (1.38) and (1.37), the values    are 

evaluated by solving the linear equation system (1.36). Then, the unknown parameters of the 

  exponential components can be evaluated as: 

 

   
  

  
      *

  (  )

  (  )
+  (    ),      |  |    , 

   |  |                                                 *
  (  )

  (  )
+  

(1.39) 

 

As previously stated, the Prony’s method can be applied both to an entire data sequence and 

to successive data blocks, applying a sliding-window on all available waveform. This sliding-

window can be shifted in time either by overlapping the subsequent data blocks, or by non-

overlapping them according to the required representation of model parameters (typically, 

amplitudes and frequencies) in time.  

Note also that the data block size can be fixed or variable, depending on the particular nature 

of the waveform to be analysed. An adaptive sizing of the analysis windows was described in 

[11] for the sliding-window Prony’s method. The usefulness of the adaptive windows in the 

detection of time-varying harmonic and interharmonic components is related to an evaluation 

of the proper width of each window, based on finding the best fit of the waveform in time. 

Specifically, fixed the sampling rate   , if only    samples of the waveform  ( )  are 

considered for the j-th time window, the estimation error can be evaluated for each sample as: 

 

   | ̂( )   ( ) |,                (1.40) 

 

where  ̂( ) is evaluated as in (1.32). 

Evaluating the (1.40) for each of the    samples considered in the j-th time window, the mean 

square relative error        
  can be defined in order to quantify the fidelity of the current 

model: 

 

       
  

 

  
∑

| ̂( )  ( ) | 

 ( ) 

    

   .    (1.41) 

 

In particular, it is possible to individuate the most suitable length of the j-th time window 

when        
      

  occurs by properly selecting a threshold value     
  for the mean square 

relative error        
 . 

Moreover, as previously mentioned, the Prony’s model requires the prior selection of the 

number of exponential functions in the linear combination (1.32). This number fixes 

univocally also the number of spectral components that could be evaluated by the method, so 

this selection is a fundamental aspect. The general principle is that a too smoothed spectrum is 



24 

 

obtained when a too small number of exponentials is selected, while some spurious low-

amplitude spectral components could be introduced in the spectrum if a too high number of 

exponentials is chosen. 

Different criteria were proposed in relevant literature in order to individuate the proper 

number of exponentials to be included in the Prony’s model. Among them, Final Prediction 

Error (FPE), the Akaike Information Criterion (AIC), the Minimum Description Length 

(MDL) criterion, the autoregressive transfer criterion (CAT), and a criterion based on the 

eigendecomposition of the sample autocorrelation matrix are the most frequently applied [4-

5,75-79]. 

In particular, the MDL criterion seems to properly evaluate the optimal number of exponential 

function in (1.32) when power system waveforms are analysed. The MDL method selects the 

value   corresponding to the minimum of the following MDL function: 

 

   ( )     ( ̂ 
 )       (1.42) 

 

where   is the number of samples in the analysis window and  ̂ 
  is the estimated variance of 

the square prediction error [80].  

Due to the great accuracy provided by the Prony’s method, many other Prony-based methods 

and their applications have been proposed in relevant literature [80-89]. For example, a 

reduced Prony’s algorithm was presented in [88-89], where damping factors and frequencies 

of all of the spectral components included in the waveform spectrum were supposed to be 

prior known. In this way, only the linear equation system for the estimation of    had to be 

solved, reducing global computational efforts. An exhaustive overview of the application of  

Prony-based methods for the spectral analysis and the evaluation of PQ indices in power 

system field is in [11,80,83-86,88,90-94]. 

1.3.2 ESPRIT method 
The ESPRIT method belongs to the so-called ―subspace methods‖, since is involves the linear 

algebraic concept of subspace in the model parameter estimation. The ESPRIT model 

assumes the waveform samples to be represented through a sum of     couples of complex 

conjugated exponentials in the white noise. This is a background noise, and it represents the 

additive noise related to the measurement observations. The statistical characterization of the 

white noise is prior known in terms of mean value and co-variance. The unknown parameters 

of the model are, once again, the damping factors, the amplitudes, the initial phases and the 

frequencies of the exponentials. 

Assuming the waveform sample vector to belong to a subspace, this vector can be used in the 

estimation of the auto-correlation matrix. In particular, two subspaces can be defined i.e., the 

waveform and the noise subspace. The fundamental principle of the ESPRIT method consists 

in the shift invariance between the discrete time series, which guarantees the rotational 

invariance between the corresponding subspaces. 

Let  ( ) be a  -point sequence of the waveform; ESPRIT method uses the following model 

to achieve the approximation  ̂( ) of each sample [1]: 

 

 ̂( )  ∑    
(      )     ( ) 

   ,               (1.43) 
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where           and  ( ) represents the additive white noise. 

Considering only      samples  ( ) of the waveform, and substituting them to  ̂( ) in 

(1.43), the following relationship can be written: 

 

 ( )        ( ),    (1.44) 

 

where: 
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(1.45) 

 

The previous relationships show that the matrix   provides information about the damping 

factors and the frequencies of the   components selected in the ESPRIT model. The 

evaluation of an estimation  ̂  of    obtained by means of an estimation  ̂  of the auto-

correlation matrix   of the waveform, evaluated for the selected    samples, is therefore 

necessary. 

The eigenvectors of the auto-correlation matrix   of order    can be divided between the 

matrix             and the matrix               . The elements of   

correspond to the   largest eigenvalues of  , while the elements of   correspond to the 

remaining eigenvalues. In this way, two subspaces are constructed: signal and noise subspace, 

respectively.  

Let       be the identity matrix of order     ; two other matrices             and 

            are introduced to select the first      rows and the last      rows of  , 

respectively; the following matrices    and    are thus obtained: 

 

      ,   

      . 
(1.46) 

 

These matrices allow the evaluation of the matrix  : 

 

      . (1.47) 

 

According to the rotational invariance theory, the evaluation of the rotation matrix   is 

equivalent to the calculation of matrix   . The total least-squares (TLS) approach (TLS-

ESPRIT) is one of the most common methods for the estimation  ̂ of  : 
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 ̂  ( ̂ 
  ̂ )

   ̂ 
  ̂ . (1.48) 

 

where  ̂  and  ̂  are estimations of    and   , respectively. 

As previously stated, the knowledge of the eigenvalues of  ̂, that are the same eigenvalues of 

 ̂, allows the evaluation of frequencies and damping factors of the   exponential functions in 

the ESPRIT model. Once frequencies and damping factors are known, also the   amplitudes 

and the   initial phases can be computed.  

In particular, the amplitudes are obtained by solving a linear system of   equations related to 

the definition of the auto-correlation matrix  : 

 

         
  . (1.49) 

 

where the symbol    represents the Hermitian matrix,   is the identity matrix of order  ,   
  is 

the variance of the white noise and: 
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. (1.50) 

 

The initial phases can be then estimated through the vector   obtained by solving the (1.44) 

and imposing the white noise  ( ) to be negligible. 

Also the ESPRIT method can be applied to an entire data sequence or to several data blocks, 

with or without overlapping. Moreover, the adaptive technique introduced for the Prony’s 

method can also be applied in the ESPRIT method [80]. An exhaustive overview of the 

application of ESPRIT-based methods for the spectral analysis and the evaluation of PQ 

indices in power system field is in [92,94-101]. 

1.3.3 MUSIC method 

The MUSIC method is another subspace method, characterized by the same model (1.43) of 

the ESPRIT method. The parameters of the model are once again the amplitudes, the damping 

factors, the initial phases and the frequencies of the exponential functions. 

Also the MUSIC method is based on the manipulation of the eigenvectors of an auto-

correlation matrix estimation  ̂; these eigenvectors can be opportunely separated into signal 

and noise subspaces. 

As previously seen, the ESPRIT method uses only the signal subspace in the procedure for the 

evaluation of the unknown parameters in the model (1.43). Instead, the MUSIC method uses 

only the noise subspace in its procedure for the estimation of the frequencies in the model 

(1.43). In particular, let                be the noise subspace; its elements are 

manipulated in order to obtain the following polynomial in the z-domain: 

 

 ̂( )  
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(1.51) 
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with: 

 

  ( )  ∑   ( ) 
  

    

   

 (1.52) 

 

where   ( ) is the r-th element of the i-th eigenvector in noise subspace. 

Note that the polynomial  ̂( ) in (1.51) has   roots, two by two complex conjugate, along 

the unit circle. These roots provide the frequencies of the waveform spectral components. 

This technique for frequency detection is called the Root-MUSIC method. 

Once the frequencies are known, the corresponding amplitudes can be evaluated by solving a 

linear equation system of dimension   obtained through the estimated autocorrelation matrix, 

as well as for the ESPRIT method. Similarly to ESPRIT method, also the initial phase 

estimation is performed. 

As previously stated, the Root-MUSIC method can be applied to an entire data sequence or to 

several data blocks, with or without overlapping [80]. An exhaustive overview of the 

application of MUSIC-based methods for the spectral analysis and the evaluation of PQ 

indices in power system field is in [80,94,97,100-103]. 

1.3.4 Kalman filter 

Kalman Filter [12] is an algorithm that considers a set of mathematical equations with added 

noise, and it assumes the availability of inaccurate measurement data. Kalman filter allows a 

recursive evaluation of past, present or future value estimations through the minimization of 

the mean square error. 

The mathematical model is constructed by means of the state variable approach in discrete 

time domain. Assuming a fixed sampling rate   , at the generic time     (     ) the model 

assumes the following expression [6-7]: 

 

 (   )     ( ) ( )   ( ) 
 

(1.53a) 

 

 ( )     ( ) ( )   ( ) (1.53b) 

 

where: 

-  ( ) and  ( ) are the state vector and the measurement vector, respectively; 

-  ( ) and  ( ) are the independent model and measurement white noise, respectively, 

with prior known probability density functions. They represent the inability of the 

model to properly fit the system under study and the measurement error, respectively; 

-    ( ) is generally a time dependent state transition matrix, that makes a connection 

between the state  (   ) and the state  ( ); 

-    ( ) is generally a time dependent measurement matrix, that makes a connection 

between the measurement  ( ) and the corresponding state  ( ). 
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The Eqs. (1.53a) and (1.53b) are defined as state equations and measurement equations, 

respectively. Some examples of models for the description of sinusoidal waveform are 

provided in the next Sub-section. 

Starting from an initial state estimation  ̂( ) and to its corresponding covariance error matrix 

estimation    ( ), Kalman filter recursively applies the following set of equation: 

- predictive time-update equations: 

 

 ̂ ( )     (   ) ̂(   ) 
 

(1.54) 
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- corrective measurement-update equations: 
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where: 

-  ̂( ) and  ̂ ( ) are the posterior (obtained after the measurement correction) and the 

prior (obtained without the measurement correction) estimation of the state variables at 

time    , respectively; 

-    
 ( ) and    ( ) are the prediction of the covariance error matrix at time (   )   

and the updated covariance error matrix at time    , respectively; 

-    (   ) and    ( ) are the process noise covariance matrix at time (   )   

and measurement noise covariance matrix at time    , respectively; 

-    ( ) is the Kalman gain evaluated at time    . 

Two common models for the description of sinusoidal waveform are generally reported in 

relevant literature. In particular, for a single component waveform, the first model is based on 

the concept of the harmonic oscillator, and its state equations can be represented as follow 

[6,104]: 

 

[
   (   )
   (   )

]    (   )       ( )

 [
    (   )     (   )
     (   )     (   )

] [
   ( )
   ( )

] 
(1.59) 

 

with obvious meaning of the symbols. In this case the state vector contains the real 

(cosinusoidal) and imaginary (sinusoidal) part of the actual voltage or current waveform. 

Moreover, in this model, the state transition matrix     is a time-constant matrix. 

The corresponding measurement equation associated to the (1.59) is: 
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  ( )      ( )      [
   ( )
   ( )

] (1.60) 

 

where the measurement is represented by the real part of the waveform under analysis. 

The second model describes the sinusoidal waveform with a single spectral component by 

means of its phasor, so the state vector is represented by the direct and quadrature components 

of the phasor itself [6,104]: 

 

[
    (   )
    (   )

]    (   )       ( )  *
  
  

+ [
    ( )
    ( )

] (1.61) 

 

In this case the state transition matrix     is an identity matrix, since the phasor ideally does 

not change in time. 

The associated measurement equation is: 

 

  ( )     ( ) ( )       (    )     (    ) [
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] (1.62) 

 

where the measurement matrix    ( ) is a time-dependent matrix, and the measurement is 

the same of the previous model. 

Obviously, when the waveform to be analysed has more than one spectral component, the 

system has to be represented by an enlarged version of the models, where, the state vector 

dimension has to be   if  /2 is the total number of spectral component included in the 

waveform. 

According to the different necessities of the specific applications, many modifications to the 

traditional Kalman filter have been proposed in relevant literature. Among these, the most 

relevant techniques are the Extended Kalman filter, the Unscented Kalman filter and the 

Ensemble Kalman filter. The aforesaid methods have the aim of overcoming the main limits 

of the traditional Kalman filter (mainly the low performances in presence of non-linear 

systems, and the high-computational effort) [105-106]. An exhaustive overview of the 

application of Kalman Filter-based methods for the spectral analysis and the evaluation of PQ 

indices in power system field is in [28,97,105-112]. 

1.4 Hybrid Methods 

Many hybrid methods have been proposed in relevant literature [13-21], aiming to take the 

advantages of the original methods from which descend and to simultaneously overcome their 

main drawbacks [7].  

Hybrid methods, as presented in [13-14], join different non-parametric methods. In [13], i.e., 

the proposed method detected transients by means of the WT, and then the FFT was used for 

the spectral analysis of the same waveform. Also the method proposed in [14] was based on 

WT and the FFT. In this case, the aim of the WT was to de-noise of the waveform before it 

was analysed through the FFT. 
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Similarly, also hybrid methods based only on parametric methods have been introduced in 

relevant literature. In [15], the authors combined the Kalman filter and the Prony method. In 

particular, the Prony method was used for the detection of the frequency spectral components 

included in the waveform, while the Kalman filter provided the corresponding amplitudes and 

initial phases. A Prony-ESPRIT based method for the assessment of the waveform distortion 

due to adjustable speed drive (ASD) was presented in [21]. This method was articulated in 

four step, and it was also based on the analytical knowledge of the frequencies introduced by 

the ASD, so only amplitudes and initial phases were evaluated for some bands of frequency. 

The hybrid methods constituted of combinations of one or more non-parametric methods with 

one or more parametric methods are the most significant, since, generally, the resulting 

method is able to compensate the drawbacks of the original methods. 

For example, the WT coupled to the Kalman filter was presented in [16]f or a real-time 

estimation of the spectral components. Specifically, the WT was used in order to reduce the 

tracking time of a Kalman filter-based method, applied for the detection of different harmonic 

amplitudes and phases. In [17], the WT was coupled to the Prony method; the WT was 

performed to individuate the transients and then, the transient frequency contents was 

evaluated through the Prony method.  

The sliding-window hybrid methods based on the joint of parametric methods and DFT are 

particularly suitable when a spectrum detection characterized by high accuracy and reduced 

computational effort is required. Different sliding-window parametric-DFT methods have 

been proposed in relevant literature [18-20]. These hybrid methods can be double-steps [18-

19] or three-steps [20], and are characterized by a decomposition of the waveform in two or 

more frequency bands, separately analysed through a parametric method or through the DFT. 

Specifically, the method presented in [18] analysed the fundamental frequency and the 

interharmonics below the 100 Hz in the first step by means the ESPRIT method. Then, thanks 

to the knowledge of the fundamental period of the waveform, in the second step it was 

possible to use a synchronized time window for the spectral analysis effected through the 

DFT. In this second step, the DFT was applied for the analysis of the original waveform, 

curtailed of the frequency band analysed in the first step, providing only the harmonic 

components included in the original waveform. 

Similarly to the method in [18], the hybrid method presented in [19] analysed the fundamental 

component in the first step by means of the Prony’s method, then the harmonic components 

were obtained by a synchronized DFT. 

Finally, the method presented in [20] was a sort of extension of the previous methods, since a 

step was added in order to estimate the interharmonics components above 100 Hz. 

Specifically, the waveform was divided also in this case in two frequency bands. In the first 

step, the spectral components up to 100 Hz were detected through the ESPRIT method. After 

this step, the estimated fundamental component was used for the synchronization of the DFT 

analysis window, that allowed, in the second step, the harmonic detection. In the third step, 

the ESPRIT method was again applied to the residual waveform (the original waveform 

without spectral component up to 100 Hz and without harmonic components), in order to 

estimate the interharmonics above 100 Hz. 

Note that in these hybrid methods, thanks to the division in two bands of frequency, the 

parametric models require in each steps a more reduced number of exponentials than that 
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required using the parametric method for the spectral analysis of the whole waveform. 

Moreover, the use of a synchronized window for the DFT in the second step allows an 

increased accuracy in the harmonic detection. In this way, all of the aforesaid methods 

simultaneously guarantee a higher accuracy than the DFT and a lower computational effort 

than the parametric method.  

The use of sliding-windows in the spectral analysis allows these parametric-DFT based 

methods to be applied also for the detection of time-varying spectral components and for the 

evaluation of PQ indices. 

1.5 Filter bank-based Techniques 

The wavelet based techniques can be considered as successive band-pass filters, so the signal 

processing has been greatly inspired also by different other filter bank-based techniques 

[6,113]. 

The multiscale analysis and synthesis filter banks are made up of combined versions of the 

basic module in Fig. 1.9, where   ( ) and   ( ) are the low-pass and high-pass filter of a 

two-channel analysis filter bank and   ( ) and   ( ) are the low-pass and high-pass filter of a 

two-channel synthesis filter bank. 

 

 
                                      (a)          (b) 

  Figure 1.9 – Basic module of (a) analysis filter bank and (b) synthesis filter bank 

 

Both filter banks require a resampling; a down-sampling of 2 is applied to the output 

waveforms for the analysis filters, while an up-sampling of 2 is needed for the input 

waveforms for the synthesis filters [2]. 

Basic modules can be combined in order to obtain full-length bandpass components of the 

original waveform. The sizing of both analysis and synthesis filter bank is based on the 

―perfect reconstruction‖ (PR) concept. This means that it is desirable that the waveform 

remains uncorrupted (except for possible time delay or amplification) after the analysis filter 

bank and the synthesis filter bank are applied. The PR condition is reached by verifying the 

following conditions in the  -domain: 

 

  ( )  (  )    ( )  (  )    (1.63) 

 

  ( )  ( )    ( )  ( )       (1.64) 
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with   representing the time delay. The Eqs. (1.63) and (1.64) are the aliasing cancellation 

condition and the no-distortion condition, respectively. In particular, from the (1.63) it 

descends that: 

 

  ( )    (  )   ( )     (  ) (1.65) 

 

Moreover, introducing the half-band filter   ( )    ( )  ( ) and substituting the (1.65) in 

the (1.64), the following relation can be obtained: 

 

  ( )    (  )       (1.66) 

 

The PR conditions guarantee the filter banks to be orthogonal; this means that the synthesis 

filter bank corresponds to the inverse of the analysis filter bank, i.e.: 

 

[
  ( )

  ( )
]  [

  ( )

  ( )
]    (1.67) 

 

Sometimes finite impulse response (FIR) filters are required both for the analysis and for the 

synthesis filter banks. In these cases, since the inverse of a FIR filter is often an infinite 

impulse response (IIR) filter, an additive condition between   ( ) and   ( ) in the filter 

bank sizing is required in order to make the two filters orthogonal [2].  

Assuming an odd order   , a possible choice is to impose the coefficients of the high-pass 

filter   ( ) as the alternating flip of the low-pass filter   ( ): 

 

  ( )         (    ) (1.68) 

 

Substituting the Eq. (1.68) in (1.65): 

 

  ( )    (  )        ( 
  ) (1.69) 

 

  ( )     (  )        ( 
  ) (1.70) 

 

So, given the low-pass analysis filter   ( ), the Eqs. (1.68) – (1.70) have to be used to obtain 

the other filters of the orthogonal PR FIR filter banks. 

In other cases, a filter bank with linear-phase is required. The impulse response of such a filter 

can be either symmetric : 

 

 ( )       (   ) (1.71) 

 

or asymmetric: 

 

 ( )        (   ) (1.72) 

 

In particular, the following conditions have to be satisfied in order to obtain a two-channel bi-

orthogonal PR filter bank with linear-phase: 
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  ( )        ( 
  ) and   ( )         ( 

  ) (1.73) 

 

for an even filter order   , or: 

 

  ( )        ( 
  ) and   ( )        ( 

  ) (1.74) 

 

for an odd filter order   . 

The relationships (1.73) and (1.74) involve that both    and   
   have to be roots of the filter. 

This propriety has to be used in the factorization of  ( ), in order to obtain   ( ) and   ( ) 

as linear-phase filters. Once   ( )  and   ( )  are obtained, the other two filters can be 

evaluated using the Eqs. (1.65). 

Note that linear-phase filters cannot be also orthogonal filters for two-channel PR FIR filter 

banks. Therefore, a proper selection between the two possibilities is necessary on the basis of 

the specific applications.  

An exhaustive overview of the application of filter banks for the spectral analysis and the 

evaluation of PQ indices in power system field is in [28,113-118]. 

1.6 Theoretical comparisons among the methods 

The non-parametric methods perform a transformation of the sampled waveform and do not 

require a prior knowledge of the system under investigation. The DFT is the most popular 

non-parametric method, but it has many drawbacks, i.e.: (i) the frequency resolution is related 

to the selected time duration of the analysis window; (ii) spectral leakage problems and picket 

fence effects can occur; (iii) the FFT algorithm needs, for each analysis window, a number of 

samples equal to an integer power of 2 to be able to cover a integer number of cycles of the 

fundamental period. Windowing, interpolation and resampling techniques reduce some of the 

aforesaid DFT limitations, but the incompatibility to simultaneously have high time- and 

frequency-resolutions persists, making the DFT-based methods less accurate than other 

techniques. However, the main advantage of the DFT-based methods is the reduced 

computational burden, especially when the FFT algorithm is used.  

The DWT and the WPT are able to provide multi-resolution spectral analyses, offering good 

time information about the analysed waveform, especially in the transient identification. 

Nevertheless, both DWT and WPT have very limited capability to provide accurate frequency 

detection; the WPT appears to show an improvement with respect to the DWT, since it has a 

more uniform frequency decomposition. However, the main drawbacks of the WT-based 

methods are the high computational effort, and difficulties in the result interpretation and in 

the proper selection of the mother wavelet. 

The HHT is based on the decomposition of the waveform in IMFs, utilized as adaptive basis 

functions. This makes the HHT particularly suitable for the spectral analysis of both non-

linear and non-stationary waveforms. Also the HHT requires adequate additional tools for the 

interpretation of the transformed parameters related, e.g., to the energetic content of the 

spectral component. The HHT accuracy is highly dependent on the choices and the 

approximations effected during the application of the EMD, and, an oversampling of the 
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waveform is often required in order to more-accurately identify the instantaneous frequency, 

thus hugely increasing the computational burden. However, the main drawback of the HHT is 

the unsuitable detection of closely-located spectral components, and, above all, the HHT 

applications are limited to narrow band-passed signals, that are very rare in modern electrical 

systems.  

The CZT is another important method for the spectral analysis, but its application appears to 

be very limited since it is able to provide accurate information (even better than DFT) only on 

small frequency bands, although requiring higher computational burden than DFT. 

Conversely to non-parametric methods, the parametric methods can provide very accurate 

results without frequency resolution problems, but their main drawback is the too high 

computational burden that limits their use for the only offline applications. In particular, the 

Prony’s method, ESPRIT method and MUSIC method require a duration of the analysis 

window equal to at least one cycle of the fundamental period, but they are free from 

synchronized sampling or spectral leakage problems. Little inaccuracies of Prony’s method 

can arise when the waveform to be analysed is heavily affected by noise. This problem is 

overcome by both the ESPRIT and the MUSIC method, that include the contribute of the 

white noise into their model. However, the MUSIC method requires too high storage 

potentiality for the analysis of large array, and it also appears to be less accurate than the 

ESPRIT method. Note also that the ESPRIT method error in the detection of the spectral 

component amplitudes is higher than the respective Prony’s method error, while the frequency 

estimation is generally provided with the same accuracy. Difficulties can arise for the Prony’s 

method, ESPRIT method and MUSIC method in the adequate selection of the model order, 

even if their adaptive versions are able to properly choose the number of exponentials to be 

included in the model. 

The Kalman filter needs more information about the system to be observed than the previous 

parametric methods. It can suffer with problem related to the filter drop-off and related to 

sudden variations of state variables for invariance of the estimation parameters.  

Hybrid methods try to overcome as much as possible the main problems of the basis method, 

still holding their advantages. In particular, the aim of the parametric-DFT-based hybrid 

methods is to guarantee a reduced computational effort than a parametric method, and higher 

accuracy than the DFT. 

Finally, although the filter banks require a computational effort lower than DFT-based 

methods and DWT-based methods, their accuracy is generally poor, since filter outputs do not 

correspond to pure harmonic components, and overlapped spectral content is often included in 

each band. 
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  Chapter 2.

Modified parametric methods for the spectral 

analysis of time-varying waveforms in power systems 

 

2.1 Introduction 

The state of art of methods for the spectral analysis of power system waveforms was 

summarized in Chapter 1. The comparison of the different traditional techniques available in 

relevant literature brought out the main characteristics and issues related to the spectral 

analysis methods applied in the power system field. Also the need of new advanced methods 

for the spectral analysis of voltage and current waveforms in modern power systems emerged 

from that investigation. Specifically, the new advanced methods should have the following 

characteristics: (i) a computational effort that is comparable to that of the traditional STFT-

based methods, and (ii) adequate accuracy in the assessment of the waveform spectral 

components. Starting from the consideration that the damping factors and the frequencies of 

the spectral components in power system applications slightly vary in time [1-11], and 

inspired by the method presented in [12], a new sliding-window modified ESPRIT method 

that fully meets the above requirements is presented in this Chapter [13].  

In particular, as stated in the Chapter 1, the method proposed in [12] assumed that in the 

Prony’s model the damping factors of the spectral components are equal to zero and the 

frequencies are constant. In a successive version of the same method [14], the possibility of 

varying the frequencies for each analysis window is considered, using as input of the 

procedure a frequency matrix instead of a frequency vector. Moreover, in both cases, the 

application of the method requires that the frequencies of all spectral components, the number 

of components used in the model and the duration of the analysis window must be prior 

known; clearly, these are serious flaws in the method. In addition, Prony’s method is known 

to behave poorly when a signal is corrupted with an added noise. 

Motivated by the issues indicated above, the method presented in this Chapter introduces the 

following substantial improvements: 

(i) it is based on the use of the ESPRIT method that is known to behave better than 

Prony’s method when a signal is corrupted by added noise;  

(ii) it does not assume that the frequencies of all of the spectral components are constant 

all over the analysed waveform and prior known; rather, it calculates the frequencies of the 

spectral components at least once and, at most, only a few times along the entire signal that is 

being analysed; 

(iii) it does not assume that the damping factors of all of the spectral components are equal 

to zero all over the analysed waveform; rather, it calculates the damping factors of the spectral 

components at least once and, at most, only a few times along the entire signal that is being 

analysed; 
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(iv) a duration equal to some cycles of the fundamental period is selected for the analysis 

window in order to guarantee a proper evaluation of both the fixed frequencies and the fixed 

damping factors of the spectral components; 

(v) also the number of components used in the model and the order of the correlation 

matrix are not fixed a priori, but based on an evaluation performed at least once and, at most, 

only a few times along the entire signal that is being analysed. 

Obviously, the proposed approach is not generally applicable, but it is particularly beneficial 

for many waveforms due to the accuracy of the results and the low computational effort 

required. Thus, it can be used in practical applications for the rapid and accurate computation 

of PQ indices [15]. 

The remainder of this Chapter shows the details of new sliding-window modified ESPRIT 

method, highlighting the benefits it provides and the results of several experiments. 

2.2 Sliding-window modified ESPRIT method 

As stated in the Chapter 1, the sliding-window ESPRIT method provides very accurate results 

in the spectral analysis of the waveforms of power systems, but its computational time is 

usually very high because equations (1.48) and (1.49) must be solved for each window inside 

the whole signal to be analyzed, and the size of the involved systems can be so large that their 

solution becomes burdensome, depending on the correlation matrix size    (linked to window 

size  ) and the number   of exponentials [4,16].  

In this Section, a novel scheme is presented with the aim of providing accurate estimation of 

the spectral components of waveforms while keeping the computational cost significantly 

lower than the efforts required by not only the sliding-window ESPRIT method but also by 

both the other main traditional parametric methods and the hybrid methods.  

The novel scheme modifies ESPRIT’s original approach by (i) evaluating the frequencies of 

the exponentials one time or, at most, only a few times; (ii) evaluating the damping factors of 

the exponentials one time or, at most, only a few times; (iii) evaluating the amplitudes and 

initial phases of the exponentials in all the time windows but with a significant reduced 

computational effort. Moreover, the waveform is appropriately sampled to increase the 

accuracy of the results. 

In the next Sub-Sections, these choices are motivated and illustrated with details. The block 

diagram of the proposed new scheme (Fig. 2.1) is also described and discussed. 

2.2.1 Model formulation and solving procedure  

 

a)  Frequency evaluation 

The analysis of time-varying waveforms in several power system applications has shown that 

in most cases the spectral components of the waveform are characterized by frequencies that 

are much less variable versus time than amplitudes, so only the variations of the spectral 

component amplitudes are often detected in the time or taken into account [1-11].  
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Figure 2.1 - Block diagram of the new, modified, sliding-window, ESPRIT scheme  

 

As an example, Figures 2.2, 2.3, and 2.4 show some spectral components of measured 

waveforms of a wind-turbine generator during soft starting (Fig. 2.2), an industrial load 

(autoclave) (Fig.2.3) and a photovoltaic plant (Fig. 2.4). As shown in Figs. 2.2, 2.3, and 2.4, 

the main spectral components are harmonics, the frequencies (Figs. 2.2a, 2.3a, and 2.4a) of 

which vary slowly with time. This behavior depends mainly on the correlation between the 

harmonic frequencies and the frequency of the fundamental component, which is slowly and 

slightly variable with time in modern, interconnected power systems. Also, interharmonic 

frequencies, if present, vary slowly.  

Note that similar behavior is not the general rule, mainly for the frequencies of interharmonics. 

For example [8,11], adjustable speed drives, cycloconverters or arc furnaces can be 

characterized by interharmonics the frequencies of which are determined by factors that are 

not correlated with the fundamental frequency, so significant temporal frequency variations 

can be experienced. Moreover, the modern diffusion of static converters, utilized by both 

distributed power plants and end-user equipment for the connection to the grid, as well as the 

use of power line communication sources have determined also the introduction of spectral 

components at high-frequency (from 2 to 150 kHz) in voltage and current waveforms [17-23].  
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                                  (a) 

 
                                  (b) 

Figure 2.2 - Frequencies (a) and amplitudes (b) of the spectral components of the measured waveform of a 

wind-turbine generator during soft starting  

 

These high-frequency spectral components (supraharmonics) are characterized by high non-

stationarity with fast dynamics in time, and consequently with frequencies and amplitudes 

that can rapidly vary vs. time [23].  

Despite this, in many practical applications, the spectral component frequencies with a good 

approximation can be considered slowly and slightly variable versus time. 

Motivated by the aforesaid consideration, instead of [12] where the frequencies are constant 

or instead of both [12,14] where the frequencies are known a priori, the novel scheme 

presented in this Chapter calculates initially the frequencies of the spectral components of the 

waveform from the analysis of  the first sliding window, the basis window, and initially 

assumes that the frequencies in the successive sliding windows, i.e., the no-basis windows, 

can be considered constant. 

Moreover, in order to avoid masking effects when frequencies are significantly varying, the 

novel method repeats periodically the calculation of all of the ESPRIT model parameters in a 

new basis window and performs a check on the spectral analysis results. In this way, for 

example, if the reconstruction error of the waveform or the difference between the values 

calculated in two consecutive basis windows are greater than a tolerance value, the 

frequencies are updated and the spectral analysis can proceed. 

Specifically, as shown in Fig. 2.1, if   is the window counter with an initial value of   and the 

first analysis window (     ) is a basis window, an integer number    is introduced to 

define the distance between two successive basis windows. The first choice of the value     
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can be determined heuristically based on the knowledge of the waveforms to be analyzed. 

After the first interval       , the choice of the successive values of    can be updated using 

different criteria. For example, one of the following criteria could be applied: (i)    could be 

an integer number that is inversely proportional to the value of the maximum difference 

between the values of frequencies calculated in the new basis window and those obtained 

previously; (ii)    could be an integer number that grows as the reconstruction error value, 

evaluated in each analysis window, is kept below a fixed threshold value. Eventually, with the 

assumption of constant frequencies inside the no-basis windows, the Sliding-window 

modified ESPRIT method is able to reduce the unknowns to be obtained and the 

computational effort significantly, as will be described in more detail in the next Sub-Sections. 

 

 
                                                                        (a) 

 
                                                                        (b) 
Figure 2.3 - Frequencies (a) and amplitudes (b) of the spectral components of the measured waveform of an 

industrial load 

 

  b) Damping factor evaluation 

As observed in the Chapter 1, in the traditional Prony’s approach the damping factors have an 

important role; however, in [12] they became less significant, since in the case of very short 

duration of the windows, the damping factors usually have very small values (close to zero). 

In the novel scheme analyzed in this Chapter, instead, since the damping factors contribution 

to the model grows with increasing of the analysis window duration, it is proposed to assume 

the values of the damping factors of the spectral components inside the no-basis windows 

equal to the values computed in the basis window, because the ESPRIT model requires a 

slightly larger value of   than the Prony’s model for two reasons: 
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1. the ESPRIT performance improves with increasing of the order    of the correlation 

matrix, so, since     , the value of   has to be a proper number of times the 

waveform’s fundamental period; 

2. differently to the Prony’s method, the ESPRIT algorithm doesn’t require the research 

of the optimal duration   of the window under examination to improve the estimation 

of the waveform spectral components, so the   value is constant. 

 

 
                                                                        (a) 

 
                                                                        (b) 
Figure 2.4 - Frequencies (a) and amplitudes (b) of the spectral components of the measured waveform of a 

photovoltaic plant 

 

 

In these circumstances, the aforesaid fixed value of   determines that damping factors cannot 

be neglected in the ESPRIT model (1.43). However, since the selection of a unique duration 

for all of the analysis window, a stationary damping trend of the spectral components can be 

supposed in time, and consequently the damping factor values can be assumed almost 

constant along the windows. 

Then, the novel method assumes that in addition to the frequencies also the damping factors 

of the exponentials (i) are calculated by applying the traditional ESPRIT method in the basis 

windows; and (ii) are assumed constant along the no-basis windows. 

Obviously, once again the problem of masking effects is avoided by making use of the same 

principles applied for the frequencies, i.e. check on the reconstruction error of the waveform 

or on the difference between the evaluated parameters in two consecutive basis window. So,  

also when the damping factors evaluated for the spectral components in a basis window don’t 

prove to be adequate for all of the successive no-basis windows, a proper check guarantees 



49 

 

both the updating of the value of    and the generation of a new basis window that 

recalculates the parameters for the following no-basis windows. 

 

  c) Amplitudes and initial phases evaluation 

With reference to the remaining parameters of the ESPRIT model (i.e., the amplitudes and 

initial phases of the exponentials), the novel scheme assumes that they are calculated (i) by 

applying the traditional ESPRIT method in the basis windows and (ii) with a new scheme 

along the no-basis windows. 

The required new scheme modifies ESPRIT model (1.43) in the no-basis windows in such 

way as: 

 

 ̂( )  ∑    
    

    ( ̂ 
       ̂ 

  )     ( )                   (2.1) 

 

where the frequencies  ̂ 
   and the damping factors  ̂ 

   are known from the analysis of the 

basis windows performed with the traditional ESPRIT method, where the eigenvalues 

 ̂ 
    ( ̂ 

       ̂ 
  ) are computed. 

With  ̂ 
   known, the linear equation system (1.48) has no longer to be solved in the no-basis 

windows, which results in significant reduction of the computational efforts. Only the linear 

equation system obtained by (1.49) and (1.44) must be solved in order to obtain amplitudes 

and initial phases in the no-basis windows; the result is: 

 

  (   
    )     

    (2.2) 

 

where the meaning of the symbols is obvious. 

Note also that the order    and the number of exponentials   involved in the analysis of the 

basis windows also are imposed for the analysis of the no-basis windows, resulting in further 

improvement in the computational efficiency.  

 

d) Resampling 

Usually, parametric methods require an adequate sampling rate in order to avoid inaccuracies 

in the evaluation of the spectral components. These methods, in fact, are able to accurately 

detect spectral components until a maximum value of frequency that is strictly linked to the 

sampling rate of the waveform [12,24-26]. Specifically, in [26] it was shown that ESPRIT 

method is able to detect spectral components with frequencies up to     , where    is the 

sampling rate, but, in some cases the estimation of the components near      was revealed 

unstable, so it is recommended to consider the accurately estimated maximum frequency 

equal to     .  

Then, in the novel method presented in this Chapter, the sampling frequency is selected 

heuristically as follows: 

 if the characteristics of the waveform to be studied are prior known, the sampling 

frequency is assumed to be four times the maximum expected frequency of the 

spectral component; otherwise, 

 the sampling frequency is assumed to be four times the maximum frequency of 

interest. 
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It should be noted that an inadequate sampling rate produces very high reconstruction errors 

due to the inability of the method to adequately approximate the waveform. Then, when the 

reconstruction error is high, the sampling frequency must be increased. It should also be noted 

that an adequate choice of the sampling frequency allows a faster research of the optimal    

and   values, which also contributes to reducing the computational burden.  

 

e) Description of the block diagram of the sliding-window modified ESPRIT method 

Fig. 2.1 shows the block diagram of the proposed approach.  

The first waveform window (basis window) is analyzed with the traditional ESPRIT 

algorithm (TEA), and all of the parameters obtained (  
     

     
  ,   

  ,    and  ) are 

stored. Then, the no-basis windows are analyzed with the modified ESPRIT algorithm (MEA), 

in which only the unknown amplitudes    and initial phases    of the spectral components 

are calculated, solving the equation system (2.2). 

It should be noted that when the number of basis windows increases, the Modified ESPRIT 

Method (MEM) approaches the Traditional ESPRIT Method (TEM) in terms of the accuracy 

of the results and of the computational time. 

According to previous Sub-Sections, in order to verify the slight variability of the fixed model 

parameters (  
  ,   

  ,    and  ) in time and in order to improve accuracy of the spectral 

analysis: (i) the difference between the frequency values calculated in two successive basis 

windows; or (ii) the time domain reconstruction error should be calculated. In the following, 

the time domain reconstruction error is applied for the check on the results reliability and for 

the evaluation of   , since the reconstruction error provides contemporary information about 

all of the model parameters (i.e.,   ,  , damping factor and frequencies) variations and the 

adequacy of the chosen sampling frequency.  

In particular, the time-domain reconstruction error is calculated for each sliding window (both 

basis and no-basis window) to ensure that its value is less than a pre-determined threshold 

(   ). This check, in the no-basis windows, ensures the identification of the significant time-

variations of the model of the signal determined in the basis window. In other words, the 

modified ESPRIT algorithm is applied only until the reconstruction error does not exceed the 

threshold value in the no-basis windows. Otherwise, a new basis window is generated and 

also the value of    is update in order to set again the expected future distance between two 

consecutive basis window. Note that the above-mentioned reconstruction error check is one of 

the elements that make the proposed method robust and prevents inaccuracies in the model. 

Another important element that ensures the reliability of the proposed approach is that the 

value of   is chosen so that it is equal to the number of samples included in a few cycles of 

the fundamental period. In fact, in a such restrained time interval, the variation of the detected 

spectral components is expected to be negligible, so the assumption of constant frequencies 

and damping factors between two consecutive windows becomes more reasonable. 

2.2.2 Numerical applications  
Several numerical experiments were conducted by analysing both synthesized and measured 

waveforms in order to evaluate the performances of the modified ESPRIT method. In 

particular, the results of MEM were compared with the results obtained by applying TEM, the 

sliding-window Joint ESPRIT-DFT method (JEDM) proposed in [7] and the STFT method 
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(STFTM). In all of the numerical experiments, comparisons were made between both the 

accuracy of the spectral component and computational time. 

For the sake of brevity, only five case studies are presented in this Sub-Section. Specifically, 

the results obtained from the analysis of three synthesized signals and of two measured 

waveforms are shown. In particular, the first two synthesized signals were generated in order 

to facilitate the comparisons between the MEM scheme and the other considered methods 

using the ground truth' values of the spectral components. These signals were characterized by 

the presence of different harmonic and interharmonic components superimposed to the 

fundamental component in order to observe the behavior of the MEM in the detection of the 

most common types of low-frequency spectral components, in presence of slight time-varying 

trends. Moreover, in both the cases, an interharmonic close to the fundamental frequency was 

introduced in the signal in order to test also possible failures or the achievements of the 

proposed method in the identification of neighboring components. The measured waveforms 

are a voltage waveform recorded at a low-voltage bus supplying a laser printer and a current 

waveform of a wind-turbine generator during soft starting. Finally, the last synthesized signal 

was chosen in order to highly stress the proposed method, showing its inability in the 

detection of time-varying spectral components at high-frequency, when wide-spectrum 

waveforms are analyzed.  

Note that the case studies 1 and 2 aimed also to show the high accuracy of the TEM in the 

component estimations and the high speed of the STFTM analysis, justifying the choice to use 

them in the two subsequent case studies 3 and 4 as references for the other two methods’ 

evaluations in term of results accuracy and computational burden, respectively. 

Note also that TEM and MEM selected N and M dynamically on the basis of the 

reconstruction error [5,16] in each analysis window of fixed duration. STFTM was applied 

with an analysis window of duration equal to 10 cycles of the fundamental period, according 

to the IEC standards [15,27]. Eventually, in the case studies related to synthesized signals, the 

results were obtained by setting a very low threshold value for the reconstruction error for the 

parametric methods, since the interest in strongly emphasizing both the maximum allowable 

precision and the computational time associated with the methods that were used. In particular, 

the value of this reconstruction error threshold as well as the duration of the analysis window 

assumed different values in each case study and they were chosen by taking into account both 

the different source of the waveforms (synthesized or measured signals) and the degree of 

variability in time of the waveforms. For example, a slightly-time-varying synthesized 

waveform can be analysed by using window with higher duration and by fixing a lower 

reconstruction error threshold than a measured waveform, affected by high noise. 

All of the programs were conducted in MATLAB, and they were not optimized for 

computational speed because we were interested only in obtaining a rough and relative 

quantification of the efficiency of the different methods. MATLAB programs were developed 

and tested on a Windows PC with an Intel i7-3770 3.4 GHz and 16 GB of RAM. 

 

a) Case study 1 

The first signal analyzed was a 4 s, acid-test, synthetic waveform. The signal, shown in Fig. 

2.5, included: 
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 a fundamental component at 50.03 Hz with an initial amplitude of 100 p.u. that 

increased by 1.2% for each interval of 0.24 s; 

 3
rd

, 5
th

, 7
th

, 11
th

, and 13
th

 order harmonics of amplitude, respectively, 3%, 4%, 3%, 

1%, and 1% of the fundamental; 

 an interharmonic at 86 Hz with an amplitude that was 0.5% of the fundamental. 

 

A white noise, with a standard deviation of 0.001, was added in order to make the waveform 

more realistic. The sampling rate was 5000 Hz and, for TEM and MEM, reconstruction error 

thresholds of 10
-11

 were used. TEM, JEDM and MEM were applied to analyze progressively 

data blocks of the same duration and time location. In particular, the duration of the analysis 

windows was chosen equal to 0.04 s in order to yield smoother results through the windows. 

Moreover, the second step of JEDM was applied with a DFT window sizes of 3 cycles of the 

fundamental period. Note that, since the waveform varied slowly with time, just one basis 

window was required for MEM, since a reconstruction error thresholds of 10
-5

 were used in 

the no-basis windows. The percentage errors in the estimates of the spectral components were 

calculated by using the results obtained from all data blocks and by evaluating their deviation 

from the actual values. 

 
Figure 2.5 – MEM - Case study 1: trend of the analysed synthetic waveform 

 

Table 2.1 shows the average percentage errors in the amplitudes and frequencies of the 

spectral components that were obtained by applying all the selected methods.  

From the analysis of the results reported in Table 2.1, it is evident that TEM and MEM 

performed similarly and were characterized by errors lower than those for JEDM and STFTM. 

STFTM furnishes, usually, the higher errors due to the well-known spectral leakage caused by 

both fundamental desynchronization and presence of interharmonics. 

Note that JEDM furnished accurate results for fundamental and interharmonic but, as 

foreseeable, had spectral leakage problems in the estimation of the harmonic components due 

to the presence of residual 86Hz interharmonic component in the second step of the method 

[7]. However, globally, JEDM provided more accurate estimations of all spectral components 

than STFTM. 



53 

 

Table 2.2 shows the computational time of the aforesaid spectral analyses performed by each 

method, in per unit of the computational time required by STFTM, that analyzed the whole 

signal in 0.36 s. 

From the analysis of Table 2.2, it is evident that using TEM the high accuracy was paid with a 

great time computation. On the other hand, JEDM furnished acceptable results with a 

significant reduction of computational burden. Conversely, MEM had a computational time 

significantly lower than TEM and just one order of magnitude higher than that of STFTM.  

Thus, the proposed method obtained in this case-study accuracy as TEM and time 

computation comparable to STFTM. 

 
Table 2.1 – MEM - Case study 1: averages errors (%) on amplitudes, frequencies, and initial phases obtained by 

TEM,  JEDM, MEM, and STFTM: (a) fundamental and interharmonic; (b) 3rd, 5th, and 7th harmonics; (c) 11th 

and 13th harmonics 

Average error [%] 

 Amplitude Frequency 

 Fundamental  Interharmonic Fundamental  Interharmonic 

TEM 420∙10
-6 

 0.070 46∙10
-6

  0.0060 

JEDM 590∙10
-6

  0.060 36∙10
-6

  0.0050 

MEM 190∙10
-6

  0.16 81∙10
-6

  0.0030 

STFTM 0.23  12 0.060  1.2 

(a) 

 

Average error [%] 

 Amplitude Frequency 

 3
rd

 5
th

 7
th

 3
rd

 5
th

 7
th

 

TEM 0.0090 0.0080 0.010 390∙10
-6

 160∙10
-6

 180∙10
-6

 

JEDM 0.64 0.22 0.19 0.0080 0.0080 0.0080 

MEM 0.0070 0.0040 0.0030 360∙10
-6

 47∙10
-6

 20∙10
-6

 

STFTM 0.33 0.27 0.38 0.060 0.060 0.060 

(b) 

 

Average error [%] 

 Amplitude Frequency 

 11
th
  13

th
 11

th
  13

th
 

TEM 0.030  0.030 290∙10
-6

  230∙10
-6

 

JEDM 0.40  0.34 0.0080  0.0080 

MEM 0.050  0.050 65∙10
-6

  400∙10
-6

 

STFTM 0.50  0.99 0.060  0.060 

(c) 

 

Table 2.2 – MEM - Case study 1: computational time by TEM, JEDM and MEM in p.u. of time required by 

STFTM   
 Computational time [p.u.] 

TEM 410 

JEDM 74 

MEM 10 

STFTM 1 

 

 

Also the effects of the sinusoidal variation of the fundamental frequency with deviations from 

0.01% to 0.1% in the synthetic waveform mentioned earlier were analyzed. In particular, 
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Tables 2.3 and 2.4 show the results, in term of average percentage errors, referred to the 0.01% 

and 0.1% deviations, respectively.  

 

Table 2.3 - MEM - Case study 1: variable fundamental frequency and maximum deviation equal to 0.01%. 

Averages errors (%) on amplitudes, frequencies, and initial phases obtained by TEM, JEDM, MEM, and 

STFTM: (a) fundamental and interharmonic; (b) 3rd, 5th, and 7th harmonics; (c) 11th and 13th harmonics 
Average error [%] 

 Amplitude Frequency 

 Fundamental  Interharmonic Fundamental  Interharmonic 

TEM 480·10
-6 

 0.095 0.0098  0.0077 

JEDM 0.074  8.5 0.0097  0.17 

MEM 0.0065  0.95 0.0061  0.0086 

STFTM 0.24  12 0.067  1.2 

(a) 

 

Average error [%] 

 Amplitude Frequency 

 3
rd

 5
th

 7
th

 3
rd

 5
th

 7
th

 

TEM 0.010 0.0070 0.012 0.0099 0.0098 0.0098 

JEDM 0.73 0.24 0.21 0.0098 0.0098 0.0098 
MEM 0.012 0.024 0.028 0.0058 0.0065 0.0062 

STFTM 0.35 0.29 0.38 0.067 0.067 0.067 

(b) 

 

Average error [%] 

 Amplitude Frequency 

 11
th
  13

th
 11

th
  13

th
 

TEM 0.036  0.032 0.0098  0.0098 

JEDM 0.42  0.35 0.0098  0.0098 

MEM 0.054  0.074 0.0062  0.0065 

STFTM 0.58  1.1 0.067  0.067 

(c) 

 

The orders of magnitude of the average percentage errors increased for all of the methods that 

were used, but, in the comparison of the methods, similar observations were made for the 

waveform with a constant fundamental frequency. Specifically, when the maximum deviation 

of frequency was 0.01% (Table 2.3), the average percentage errors of MEM have the same 

orders of magnitude of the average percentage errors of TEM, and they increase by only one 

order of magnitude with respect to those obtained for the waveform with a constant 

fundamental frequency (Table 2.1). When the maximum deviation of frequency was 0.1% 

(Table 2.4), the average percentage errors of the frequencies of TEM and MEM increased by 

about two orders of magnitude with respect to those obtained for the waveform with a 

constant fundamental frequency (Table 2.1). For the estimates of amplitude, the errors of 

MEM were one order of magnitude greater than those of TEM, and they were two orders of 

magnitude greater than those presented in Table 2.1. However, in term of the accuracy, the 

results provided by MEM approached those provided by TEM better than any other model for 

every operative condition. With reference to the computational efforts, also in case of the 

considered variations of fundamental frequency, the methods confirmed the trend shown in 

Table 2.2. The above experiments were repeated also increasing the frequency of the 

sinusoidal variations of the fundamental frequency, with growing errors. Anyway, the 
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calculation of the waveform reconstruction error in each no-basis window helps in the 

immediate identification of significant time-variations of the signal model. In fact, when the 

reconstruction error becomes significant, the model is updated, applying the ESPRIT 

algorithm without assumptions on frequency values in a new basis window. Obviously, the 

computational efforts grow with the number of basis windows. 

 

Table 2.4 - MEM - Case study 1: variable fundamental frequency and maximum deviation equal to 0.1%. 

Averages errors (%) on amplitudes, frequencies, and initial phases obtained by TEM, JEDM, MEM, and 

STFTM: (a) fundamental and interharmonic; (b) 3rd, 5th, and 7th harmonics; (c) 11th and 13th harmonics 
Average error [%] 

 Amplitude Frequency 

 Fundamental  Interharmonic Fundamental  Interharmonic 

TEM 0.0021  0.45 0.098  0.036 

JEDM 0.061  8.0 0.094  0.27 

MEM 0.0065  1.4 0.079  0.036 

STFTM 0.24  21 0.13  1.2 

(a) 

 

Average error [%] 

 Amplitude Frequency 

 3
rd

 5
th

 7
th

 3
rd

 5
th

 7
th

 

TEM 0.027 0.013 0.024 0.098 0.098 0.098 

JEDM 0.77 0.29 0.37 0.096 0.096 0.096 
MEM 0.13 0.067 0.34 0.078 0.079 0.079 

STFTM 0.67 0.71 1.7 0.13 0.13 0.13 

(b) 

 

Average error [%] 

 Amplitude Frequency 

 11
th
  13

th
 11

th
  13

th
 

TEM 0.042  0.052 0.098  0.098 

JEDM 0.79  0.67 0.096  0.096 

MEM 0.22  0.17 0.079  0.079 

STFTM 3.9  5.7 0.13  0.13 

(c) 

 

b) Case study 2 

The 5 s test waveform, shown in Fig. 2.6, was constituted by: 

 a fundamental component at 49.98 Hz with an amplitude of 100 p.u.; 

 5
th

 and 7
th

 order harmonic of amplitude that was 2% of the fundamental; 

 two interharmonics at 72 Hz and at 423 Hz with amplitudes that were 0.5% of the 

fundamental decreasing by 1.1% for each 0.24 s interval. 

A white noise with a standard deviation of 0.01 was also added. The sampling rate was 5000 

Hz and, for TEM and MEM, reconstruction error thresholds of 10
-9

 were used. TEM, JEDM 

and MEM were applied to analyze progressively data blocks of the same duration and time 

location. In particular, the duration of the analysis windows was chosen equal to 0.04 s in 

order to yield smoother results through the windows. Moreover, the second step of JEDM was 

applied with a DFT window sizes of 5 cycles of the fundamental period.  
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Figure 2.6 – MEM - Case study 2: trend of the analysed synthetic waveform 

 

Note that, since the waveform varied slowly with time, just one basis window was required 

for MEM, since a reconstruction error thresholds of 10
-5

 were used in the no-basis windows. 

Table 2.5 shows the average percentage errors for the fundamental and interharmonics 

amplitudes and frequencies. From the analysis of the results provided in Table 2.5, MEM and 

TEM provided more accurate and very similar results. It can be noted that TEM and MEM’s 

errors related to the 72Hz interharmonic are greater than the ones related to the 423Hz 

interharmonic. This behavior can be explained considering that the 72Hz interharmonic was 

near to the fundamental frequency leading to the two components interfered with each other. 

For the 423Hz interharmonic, the interference was negligible. 

 

Table 2.5 - MEM - Case study 2: averages errors (%) on amplitudes, frequencies, and initial phases obtained by 

TEM, JEDM, MEM, and STFTM 

Average error [%] 

 Amplitude Frequency 

 Fundamental 72Hz 423Hz Fundamental 72Hz 423Hz 

TEM 0.0080 2.3 0.65 0.0010 0.16 0.0090 

JEDM 0.0060 1.4 26 750∙10
-6

 0.14 0.22 

MEM 0.0080 2.0 0.21 190∙10
-6

 530∙10
-6

 0.0020 

STFTM 0.020 21 25 0.040 2.8 0.47 

 

In addition, in some cases, MEM errors are lower than TEM errors; this can be explained 

observing that, in some windows, TEM’s results can be unstable for the high number of 

variable parameters. On the other hand, the reduced number of variables in non-basis 

windows of MEM determines a more stable behavior leading to reduced values of errors. 

As expected, it clearly appears that STFTM’s errors in the estimation of both 72Hz and 

423Hz interharmonics were globally the greatest in terms of amplitude and frequency due to 

the spectral leakage caused by both fundamental desynchronization and the presence of 

interharmonics. 
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Eventually, with reference to JEDM results, the fundamental and 72Hz interharmonic errors 

were about the same order of magnitude of TEM and MEM. Once again, due to spectral 

leakage, JEDM errors increase for 423Hz interharmonic. 

Table 2.6 provides the computational time by all of the methods in per unit of time required 

by STFTM, that spent 1.18 s for the analysis of the whole waveform. Table 4 shows that 

MEM had a computational time that was about one order of magnitude less than that JEDM 

and that was about the same as the time required by STFTM demonstrating the effectiveness 

of the proposed approach also in presence of fundamental desynchronization and multiple 

interharmonics. 

 

Table 2.6 - MEM - Case study 2: computational time by TEM, JEDM and MEM in p.u. of time required by 

STFTM 

 Computational time [p.u.] 

TEM 422 

JEDM 80 

MEM 9.8 

STFTM 1 

 

c) Case study 3 

A 3 s voltage waveform measured at a low voltage bus supplying a laser printer was analyzed. 

The sampling rate was 25 kHz, and it was adequate for estimating the low-frequency 

components until 5 kHz that was the maximum frequency of our interest. Fig. 2.7 shows the 

analyzed voltage waveform. 

 
Figure 2.7 – MEM - Case study 3: trend of the analysed waveform 

 

TEM, JEDM and MEM were used to analyze the same number of data blocks with sliding 

window length of 0.025 s. For TPM and for the basis window of MPM, a reconstruction error 

threshold equal to 10
-5

 was used. Moreover, the second step of JEDM was applied with 

window sizes of 3 times the fundamental period. Note that, since the waveform varied slowly 

with time also in this case study, just one basis window was required for MEM, since a 

reconstruction error thresholds of 10
-3

 were used in the no-basis windows.  
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In addition to the fundamental component, many harmonics were detected by all of the 

methods, the most significant being the 3
rd

, 5
th

, 7
th

, 9
th

, 11
th

, 13
th

, and 15
th

-order harmonics. 

The results of the analysis are shown in Table 2.7. Specifically, Table 2.7.a shows the average 

values of the amplitudes and frequencies of the most significant spectral components 

evaluated by TEM, JEDM, MEM and STFTM. In Table 2.7.b, for the same components, 

JEDM’s, MEM’s and STFTM’s average percentage errors for amplitudes and frequencies are 

shown by comparing them with the results obtained by TEM. In fact, as mentioned before, 

since the previous two test cases showed that TEM globally provided the best estimation of 

the spectral components, in this case study, as well as in the following one, TEM was 

assumed as references for the evaluation of the accuracy of all of the other applied methods.  

 

Table 2.7 - MEM - Case study 3:a) average values of the amplitudes and frequencies of the most significant 

spectral components detected by TEM, JEDM, MEM and STFTM; b) amplitude and frequency average errors 

(%) by JEDM, MEM and STFTM 

 Average value 

 Amplitude [V]  Frequency [Hz] 

 Fundamental 3
th

 5
th

 7
th

 9
th

 Fundamental 3
th

 5
th

 7
th

 9
th

 

TEM 224.13
 

2.85 4.94 3.21 1.25 49.96 150.00 250.11 349.89 449.98 

JEDM 220.80 3.06 5.04 3.23 1.30 50.00 149.97 249.92 349.94 449.92 

MEM 219.92 2.51 5.16 3.33 1.24 49.95 149.16 250.25 349.85 450.34 

STFTM 221.44 2.98 5.02 3.27 1.28 50.00 150.00 250.00 350.00 450.00 

(a) 

 
 Average error [%] 

 Amplitude   Frequency  

 Fundamental 3
th

 5
th

 7
th

 9
th

 Fundamental 3
th

 5
th

 7
th

 9
th

 

JEDM 1.5 7.4 2.0 0.62 4.0 0.080 0.020 0.080 0.010 0.010 

MEM 1.9 12 4.5 3.7 0.80 0.020 0.56 0.060 0.010 0.080 

STFTM 1.3 18 2.3 1.5 9.2 0.13 0.29 0.080 0.060 0.12 

(b) 

 

Note that, as shown in Table 2.7, in this analysis, the STFTM results and errors are 

particularly comfortable, since in this waveform the significant components are slowly 

varying harmonics. Specifically, from Table 2.7.b, it appears that STFTM, JEDM and MEM 

provided similar results for all the components in terms of both amplitude and frequency, with 

percentage errors having globally the same order of magnitude. This can be explained also 

with the absence of significant interharmonics in the measured waveform. 

Eventually, Table 2.8 compares the computational time by all of the methods in per unit of 

time required by STFTM. Once again, MEM was significantly faster than the other two 

methods; in addition it worked much better in this case study 3 than in case studies 1 and 2. 

 
Table 2.8 - MEM - Case study 3: computational time by TEM, JEDM and MEM in p.u. of time required by 

STFTM 

 Computational time [p.u.] 

TEM 2918 

JEDM 30 

MEM 4.2 

STFTM 1 
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d) Case study 4 

A current waveform measured during the soft starting of a fixed-speed wind turbine 

asynchronous generator was analyzed (Fig. 2.8). The duration of the analyzed waveform was 

about 5 s. The sampling rate was 2048 Hz, so, as discussed in Sub-Section 2.2.1, a resampling 

was necessary to allow a proper spectral analysis of the TEM and the MEM, so a sampling 

rate equal to 10 kHz was chosen. 

TEM, JEDM and MEM were used to analyze the same number of data blocks with analysis 

windows of duration equal to 0.02 s. For TEM and for the basis windows of MEM, a 

reconstruction error threshold of 10
-7

 was used. This is a waveform with a high time-varying 

nature in the first 2 s, so MEM was set to analyze a basis window whenever the reconstruction 

error exceeded 10
-3

. 

 
Figure 2.8 – MEM - Case study 4: trend of the analysed waveform 

 

The most meaningful components detected by all of the methods were the 3rd, 5th, 7th, and 

11th-order harmonics, in addition to the fundamental component. Their presence is justified 

since the fixed-speed wind turbine systems are equipped with an electronic soft starter aimed 

to avoid the increase of current during the start-up phase. The spectral emissions of this 

system primarily are caused by the action of this soft starter, which introduces odd harmonic 

components at low frequency. Fig. 2.9 shows the amplitude of the fundamental harmonic (Fig. 

2.9.a), the 5th-order harmonic (Fig. 2.9.b), and the 7th-order harmonic (Fig. 2.9.c) obtained by 

using TEM, JEDM, MEM and STFTM. All of the methods provided globally a similar 

behavior of the detected spectral components versus time, though TEM, JEDM, and MEM 

seemed to identify better than STFTM the variability in time of all the detected spectral 

components. In fact, a lack of detail in the STFTM estimations was highly evident, caused by 

both the spectral leakage problem (due to the use of an analysis window with duration not 

synchronized with the fundamental period) and the poor time resolution.  

Assuming once again the TEM values as the reference, the mean percentage errors in the 

estimations of the spectral components for JEDM, MEM and STFTM were calculated, and 

they are shown in Table 2.9. MEM and JEDM provided globally the same results in terms of 

amplitudes and frequencies. It’s fair to say that in this case study STFTM has more problems 
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in the components estimation (i.e. the average error on the 7th harmonic amplitude is more 

than 24%), since the highly time-varying nature of the waveform. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2.9 - MEM - Case study 4: a) fundamental, b) 5th, and c)7th-order harmonic components versus time 

evaluated by TEM, JEDM, MEM and STFTM 

 

Note that this case study was characterized by an important issue that occurred in some of our 

applications, i.e., TEM’s results furnished spectral components characterized by very low 

amplitudes that frequently change versus time, in a non-linear behavior. This phenomenon, 
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physically difficult to explain, seems to be linked to numerical problems due to the very low 

values of spectral component amplitudes. In order to guarantee the best investigation upon the 

selected spectral analysis methods, the percentage errors in Table 2.9 are evaluated by taking 

into account the aforesaid TEM problem. Specifically, when the spectral components detected 

by TEM presented in time an amplitude below the 2% of the corresponding fundamental 

component amplitude, the spectral estimations in those time intervals were not included in the 

evaluation of percentage errors for JEDEM, MEM and STFTM.   

It has to be emphasized that JEDM, MEM and STFTM partially exceeded the above problem 

that characterizes TEM. In fact, JEDM and STFTM were always able to detect the low-

amplitude harmonic components, since they were evaluated by the DFT algorithm. Also 

MEM was always able to detect the aforesaid low-amplitude spectral components, since, 

being the corresponding frequencies evaluated in the basis window and then imposed also in 

the no-basis windows, even if the amplitudes decreased in a no-basis window, solving the Eq. 

(2.2), the small amplitude values were still identified. 

Table 2.10 shows a comparison of the computational time by all of the methods in per unit of 

time required by STFTM. MEM was faster than the other two methods, and it approached 

STFTM better than they did; in particular, in this case study MEM approached STFTM much 

better than in the previous case studies, indicating that MEM is very powerful in the presence 

of long waveforms, since, in these cases, the computational burden of the basis windows is 

more mediated. 

 
Table 2.9 - MEM - Case study 4: average percentage errors of the most significant spectral components detected 

by JEDM and MEM 
Average error [%] 

 Amplitude Frequency 

 Fundamental 5
th

 7
th

 Fundamental 5
th

 7
th

 

JEDM 2.2 6.8 7.0 0.26 0.27 0.13 

MEM 4.1 6.5 12 0.50 0.30 0.11 

STFTM 4.4 7.1 24 0.51 0.17 0.39 

 

Table 2.10 - MEM - Case study 4: computational time by TEM, JEDM, and MEM in p.u. of time required by 

STFTM 
 Computational time [p.u.] 

TEM 126 

JEDM 8.4 

MEM 1.6 

STFTM 1 

 

 

e) Case study 5 

A synthetic 3 s waveform that emulates a current at the PCC of a PV system equipped with a 

full-bridge, unipolar inverter, is analyzed (Fig. 2.10). Specifically, the waveform was 

assembled assuming a fundamental current of 40 A at 50.02 Hz and a frequency modulation 

index    of the inverter PWM technique equal to 200; then, all odd harmonics up to the 27th 

order (low-frequency components) and a white noise with a standard deviation of 0.001 were 

added. 
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Figure 2.10 – MEM - Case study 5: trend of the analysed synthetic waveform 

 

The sampling frequency of the waveform was 50 kHz, in order to provide the most 

appropriate operating conditions for the parametric methods; this choice allowed the detection 

of the spectral components around the order    , that are the most significant introduced by 

the inverter PWM and whose amplitudes were fixed up to 2% of the fundamental, in order to 

emulate the behavior of the PV system during high-irradiance conditions [28]. 

Moreover, a frequency-modulated, high-frequency spectral component was added to the 

aforesaid spectral components. This was made in order to both emulate the presence of 

secondary emission and to test the performance of the proposed method in the detection of 

time-varying spectral components, that are typical in the high-frequency range. The added 

spectral component    ( )  was a tone at              with a sinusoidal modulation in 

frequency, according to Eq. (2.3): 

   ( )        (          ( )), (2.3) 

where: 

   ( )       (     ), (2.4) 

and     was fixed equal to the 0.5% of the fundamental amplitude,    was 5 Hz and    was 1 

Hz. 

For the TEM, JEDM and MEM the error threshold was fixed equal to 10
-5

, and the window of 

analysis moves by 0.04 s without overlap. Moreover, the second step of JEDM was applied 

with a DFT window size of 3 times the fundamental period. Note also that MEM was set to 

analyze a basis window whenever the reconstruction error exceeded 10
-3 

in order to allow the 

detection of the high-frequency time-varying spectral component. 

Table 2.11 shows the average percentage errors of the frequencies (Tab. 2.11a) and of the 

amplitudes (Tab. 2.11b) for four selected spectral components. These spectral components are 

the fundamental and the 11
th

 harmonic (low-frequency components), the component of order 

      linked to the inverter switching frequency and the frequency-modulated component 

(high-frequency components).  

The average percentage errors in Table 2.11 once again prove the better accuracy of the low-

frequency component estimations obtained through TEM and MEM; above all, the results 



63 

 

obtained through STFTM are sensibly poorer. However, the considered methods appear to 

behave differently in the estimation of high-frequency, time-invariant components and in the 

estimation of high-frequency, time-varying components. Specifically, TEM and MEM still 

provided the best estimations of the high-frequency time-invariant spectral components; the 

MEM errors for the high-frequency time-varying components became higher than STFTM 

errors both for the amplitude and the frequency in time. The loss of accuracy of the MEM was 

due the too-high duration of the analysis window, with respect to the period of    . Indeed, the 

most significant low-frequency components hid the frequency modulation on high-frequency 

components, since the effect of these high-frequency components on the whole waveform was 

marginal. For this reason, the MEM reconstruction error obtained in the no-basis window was 

often lower than the selected threshold, even if MEM assumed the modulated frequency to be 

constant in several analysis windows. On the other hand, as well known, the use of a smaller 

analysis window (i.e., at least one hundred times smaller than the one actually used) would 

not allow an accurate estimation of the low-frequency spectral components.  

 

Table 2.11 - MEM - Case study 5: (a) average percentage errors of frequency; (b) average percentage errors of 

amplitude for: the fundamental, the 11th harmonic, the component of order       and the frequency-

modulated component estimated by TEM, JEDM, MEM and  STFTM 

Average Errors of Frequency [%] 

 Fundamental 11th harmonic        Modulated 

TEM 32∙10
-6

 44∙10
-6

 4.0∙10
-6

 0.0044 

JEDM 0.013 0.015 0.0036 0.52 

MEM 33∙10
-6

 31∙10
-6

 5.1∙10
-6

 0.45 

STFTM 0.040 0.040 0.040 0.010 

(a) 

 
Average Errors of Amplitude [%] 

 Fundamental 11th harmonic        Modulated 

TEM 180∙10
-6

 0.0054 0.011 24 

JEDM 2.4 0.059 47 95 

MEM 23∙10
-6

 0.0021 0.016 95 

STFTM 0.060 0.25 82 19 

(b) 

 

Note that TEM still provided the best accuracy also in the estimation of high-frequency time-

varying spectral components, but the corresponding percentage errors significantly grew 

(about three orders of magnitude) with respect to the estimation of the low-frequency and 

high-frequency, time-invariant spectral components. This means that also TEM was highly 

stressed when it was used to analyze a wide-spectrum waveform that contains time-varying 

spectral components; this was due to the different requirements of low- and high-frequency 

spectral components in terms of duration of the analysis window. Also JEDM provided a 

great inaccuracy in the high-frequency spectral component estimation in this case study; this 

was due to the spectral leakage that affected the second step of JEDM, and that avoided the 

correct detection of the low-amplitude spectral components that were not synchronized with 

the duration of the analysis window. Obviously, this is the same problem of the STFTM; 

however, since STFTM and the second step of JEDM used a different analysis window, the 

different frequency resolution of these two methods determined dissimilar percentage errors 
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in the detection of the high-frequency spectral components, according to their proximity to the 

multiples of the frequency resolution of each method. Eventually, the significant amplitude 

percentage error of JEDM in the fundamental component estimation was related both to the 

low-pass filtering and to the down-sampling procedure performed in the first step of JEDM, 

that caused an unavoidable loss of information. 

Table 2.12 shows a comparison of the computational time required by all of the methods in 

per unit of the time required by STFTM. The computational burden of TEM was the highest 

of all of the considered methods; JEDM and MEM completed the analysis in about half of the 

time required by TEM, but their computational burden is still high with respect to the 

STFTM. This was coherent with the previous considerations on the difficulties suffered by 

both methods in the detection of spectrum that was characterized by both low- and high-

frequency spectral components, with different behavior in time. In particular, MEM in this 

case required the generation of several basis windows due to the variability of the modulated 

frequency, thus increasing the computational burden. 

 

Table 2.12 - MEM - Case study 5: computational time by TEM, JEDM, and MEM in p.u. of time required by 

STFTM 
 Computational time [p.u.] 

TEM 217.76 

JEDM 132.37 

MEM 125.86 

STFTM 1 

2.3 Conclusions  

In this chapter, an advanced, new ESPRIT-based scheme for the accurate assessment of 

waveform distortions in power systems at relatively low computational cost was presented. 

The proposed scheme was tested and evaluated on waveform recordings measured in the 

power system and on synthetically-generated data sequences. 

The method was based on the assumptions that the frequencies of the spectral components can 

be calculated once or, at most, a few times along the analyzed waveform and that the damping 

factors too can be assumed almost constant along the windows, thereby significantly reducing 

the computational effort that is required.  

The main outcomes of the scheme were: 

 guaranteed a sufficiently accurate estimation of the spectral components for many 

waveforms, significantly reducing the estimation error. 

 Resulted in a significant reduction of the computational time compared to the 

conventional ESPRIT method without sacrificing the performance of estimation. 

 Resulted in a significant reduction of the computational time compared to the recent 

hybrid ESPRIT-DFT methods, guaranteeing better performance of estimation. 

 Resulted in a significant improvement of the accuracy of the results compared to the 

DFT method, guaranteeing sometimes quite similar and sometimes similar 

computational time. 

The presented method is particularly beneficial for many waveforms, in terms of both the 

accuracy of the results and the reduced computational efforts, however, as previously stated 
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and demonstrated in this Chapter, such approach cannot be considered to be generally 

applicable. In particular, the presented method provides some inaccuracies in the presence of 

wide-spectrum waveforms that have time-varying high-frequencies spectral components. 

Moreover, the estimation problems in presence of time-varying wide-spectrum are also 

matched to a significant growing of the computational time with respect to the analysis of 

waveforms with low-frequencies that vary slightly with time. 

It is worth noting that the problems related to the spectral analysis of these wide-spectrum 

waveforms can be observed not only in the presented method, but also in the other methods 

considered in the numerical application of this Chapter. This remark underlines and endorses 

that the high-frequency disturbances are currently an important and non-trivial issue and that 

adequate analysis tools are required for their detection.  

In the following Chapter, some hybrid methods for the spectral analysis will be presented, and 

also the detection of high-frequencies disturbances will be further dealt.  
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  Chapter 3.

Proposed hybrid methods for the spectral analysis of 

time-varying waveforms in power systems 
 

 

 

3.1  Introduction 

As observed in Chapter 1, hybrid methods for the waveform distortion analysis were proved 

to be important tools in order to overcome the problems of the methods from which they 

derive [1-9]. In particular, the hybrid methods based on the joint of parametric and non-

parametric methods are particularly suitable to detect the spectrum with high accuracy and 

reduced computational effort [1-3]. Motivated by the above considerations, three new hybrid 

methods that properly match both parametric and non-parametric methods are presented in 

this Chapter [10-12]. 

The first method is a three-step method (Sliding-window Prony-DFT-Prony method) that 

combines the Prony’s method with the DFT [10-11]. The second method (Sliding-window 

Parametric-DFT-analytical-parametric method) is a four-step method and is addressed for an 

accurate and fast assessment of current waveform distortions caused by adjustable speed 

drives [11]. Finally, the last method (Sliding-window Wavelet-modified ESPRIT method) is 

based on a DWT step, followed by the application of the modified ESPRIT method in the 

successive step [12]. This last method, differently to the previous ones, is expressly designed 

for the modern requirements in term of spectral analysis of waveforms with wide spectra that 

include frequencies exceeding 2 kHz up to 150 kHz
4
.  

The remainder of this chapter is organized as follows. Section 3.2 describes in detail the 

sliding-window Prony-DFT-Prony method. Section 3.3 deals with the sliding-window 

parametric-DFT-analytical-parametric method. Section 3.4 provides a description of the 

sliding-window Wavelet-modified ESPRIT method. Both the theoretical aspects and 

numerical applications of the aforesaid methods are presented in each Section. Finally, the 

conclusion are in Section 3.5. 

                                                 
4

 This spectral content was initially indicated as ―high-frequency distortion‖, but recently the term 

―supraharmonic‖ is generally used. The supraharmonics have currently gained great interest since this range of 

frequencies still require not only appropriate analysis tools, but also adequate standardizations, which allow to 

define proper indices and maximum thresholds for the evaluation and the limitation of these high-frequency 

spectral components [13-17].   
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3.2 Sliding-window Prony-DFT-Prony Method 

As well known, in order to calculate the waveform spectral components in the low-

frequencies range, IEC 61000 4-7 [18] recommends DFT applied over successive rectangular 

time windows of 10 or 12 cycles of fundamental period, respectively for 50 or 60 Hz system. 

However, while the standard method is useful to globally quantify the waveform distortions, 

it is of limited use for accurately extracting detailed information on individual components, 

mainly in presence of time-varying waveforms. In fact, DFT spectral leakage can be relevant 

when: (i) time window length is not exactly an integer-multiple of power system fundamental 

and secondary (ii) in presence of interharmonics [1,19-20]. Thus, parametric high-

performance signal-analysis techniques were proposed in the relevant literature, allowing to 

identify the spectral components without spectral leakage problems (and, then, with high 

resolution), leading to an accurate evaluation of time varying waveforms. However, these 

methods are usually characterized by higher computational efforts than the DFT-based 

method [2,20-22]. 

Some recent contributions in the relevant literature proposed hybrid methods based on the 

contemporaneous use of both DFT method and high resolution parametric methods with the 

aim of providing accurate estimation of spectral components while keeping a relatively low 

computational effort, mainly in case of non-stationary waveforms [2-3]. In particular, as 

shown in the Chapter 1, in [3] a three-step sliding-window (SW) scheme was proposed that 

applies successively a SW ESPRIT, a SW DFT
5
, and a further SW ESPRIT in different pass-

bands for separately estimating the power system fundamental, harmonics and 

interharmonics, respectively. Using the strategy of divide and conquer, the SW ESPRIT is 

employed to estimate the fundamental component and a reduced number of interharmonic 

spectral components while harmonics are estimated using the SW DFT with a synchronized 

window to mitigate spectral leakage. In [2] a two-step sliding-window scheme is proposed to 

calculate new energy-based PQ indices in non-stationary conditions. Prony method is applied 

at first to estimate only the fundamental component while the SW DFT is applied in the 

second step to evaluate the remaining waveform distortions. 

The novel three-step SW scheme presented in [10,23] is described in this Section. This 

method applies successively a SW Prony, a SW DFT, and a SW Prony in different pass-bands 

for separately estimating the power system fundamental, harmonics and interharmonics. Even 

though the novel SW scheme adopts the same three-step strategy of divide and conquer of [3], 

it differs substantially from [3] since the SW Prony method is applied instead of SW ESPRIT, 

in order to improve the estimation of the spectral component amplitudes. The SW Prony is 

focused on estimating only the power system fundamental and a reduced number of high 

frequency interharmonics. In such a way, the joint SW Prony and DFT method (JPDM) may 

significantly reduce the computational cost in comparison with conventional parametric 

methods applied to the whole waveform. 

The following Sub-sections firstly describe the proposed scheme in detail, then, several case 

studies are analysed with reference to synthetic and actual waveforms.  

                                                 
5

 The SW DFT corresponds to the Short Time Fourier Transform (STFT). See Chapter 1 for further 

clarifications. 
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3.2.1 Model formulation and solving procedure 

The JPDM, as previously evidenced, alternatively applies a sliding-window Prony and a 

sliding-window DFT in different pass-bands for separately estimating the power system 

fundamental, harmonics and interharmonics. In each step, different spectral components are 

estimated with the aim of reducing the problems of spectral leakage and high computational 

efforts that can arise in SW DFT and SW Prony method application, respectively. In 

particular, this hybrid method avoids spectral leakage problems constraining the size of the 

window of the SW DFT to be an integer multiple of the fundamental period, estimated 

applying SW Prony to a low-pass filtered signal. 

The presented new scheme consists of a three-step procedure. The block diagram of the 

scheme for the analysis of a signal  ( ) is reported in Fig. 3.1.  

 

a)  First step 

In the first step, a SW Prony is applied to the low-pass filtered waveform to estimate basically 

the power system fundamental component. The filter low-pass band is from 0 to 100 Hz. 

 

 
  Figure 3.1 – Block diagrams of the SW Prony-DFT-Prony scheme  

  

Specifically, the SW Prony is applied to each   -point window of the filtered waveform 

    ( ). The filtered waveform is approximated, according to the Prony’s model presented in 

the Chapter 1, with the linear combination of          exponentials [24]: 

 

 ̂   ( )  ∑    
(        )                

  

   

 (3.1) 

 

where  ̂   ( ) is the estimated value of     ( ),       
   , and   ,    are the amplitude 

and the initial phase, respectively,    is the frequency,    is the damping factor of the      

exponential. 

Obviously, in the first step of the proposed scheme, a small integer even and positive number 

of exponentials, i.e.,     , is assigned in (3.1), since the first step was only concerned 

about the fundamental component and the interharmonic components from 0 to 100 Hz.  For 

non-stationary waveform-distortion sequences, the use of a SW Prony method guarantees a 

proper time-dependent estimation of the spectral components in the selected range of 

frequency. The presented method applies also the adaptive technique proposed in [1] that 

allows to implement the Prony’s model as correctly as possible, since the adaptive technique 

performs an optimal and adjustable choice both of the duration    of the sliding window size 

versus time and of the number of exponential    required in the model (3.1).  

As well known, the computational burden of the Prony’s method is strictly dependent on the 

cubic order of the size of the matrices related to the equation systems (1.36) and (1.38) to be 
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solved (see also Chapter 1). These sizes are     and (   )   , respectively, where   

is the number of spectral components included in the full-band signal  ( ), and   is the 

number of samples related to the duration of the sliding-window utilized when the full-band 

signal  ( ) has to be analysed. Based on the previous considerations, it’s obvious that the 

computational requirement for the first step of JPDM is significantly less than that for the SW 

Prony method applied to the full-band signal  ( ), since: (i) as previously evidenced, the first 

step was concerned about only few spectral components, that are the fundamental and the 

interharmonics from 0 to 100 Hz, so number of exponentials    required in the first step of 

JPDM is necessarily significantly lower than  ; (ii) the filtered signal     ( ) can be also 

down-sampled, according to the Nyquist-Shannon theorem, in order to reduce the number of 

samples    related to the duration of the sliding-window utilized in the first step of JPDM. 

At the end of the first step, using the estimated parameters associated with the fundamental 

and the interharmonics in the band from 0 to 100 Hz, the reconstructed first step components, 

 ̂    ( ), is obtained (Fig. 3.1). The waveform obtained as difference   ( )   ̂    ( )   ( ), 

as well as the estimated period of the fundamental component  ̂    , are used as input for the 

second step of JPDM. 

 

b)  Second step 

In the second step, the SW DFT is used to achieve an accurate and fast evaluation of the 

harmonic components included in the waveform to be analyzed. In fact, the knowledge of 

 ̂     allows to perform the analysis of the waveform   ( ) by using a SW DFT with a 

window size synchronized with the harmonic components included in   ( ). Specifically, the 

duration of the analysis window in this step can be set to 10 cycles (12 cycles) of the 

estimated fundamental period  ̂    , for 50-Hz systems (60-Hz systems), according to the 

IEC recommendations, but, if it is required, it also is possible to select a different number of 

cycles [3]. 

Note that, as stated in Chapter 1, setting the duration  ̂  of the SW DFT to be an integer 

multiple of the estimated fundamental period  ̂    , the spectral leakage from other 

harmonics is minimized. Hence, the aforesaid synchronization of the time-window in the SW 

DFT guarantees a very accurate estimation of the harmonic components, since the spectral 

leakage becomes significantly limited, being due only to the possible presence of 

interharmonics at frequencies          in   ( ). Moreover, also in this case, for non-

stationary waveform-distortion sequences, the use of a SW DFT guarantees a proper time-

dependent estimation of the harmonic components included in the waveform. 

Simultaneously, the spectral analysis of   ( ) is also obtained with a reduced computational 

effort, since the SW DFT, as observed in Chapter 1, can be performed using very fast 

algorithms as the FFT.  

Summing the reconstructed harmonic components, the waveform  ̂    ( ) can be found. 

This waveform  ̂    ( ) has to be subtracted to   ( ) in order to obtain the residual   ( ) 

(Fig. 3.1). This residual   ( ) is usually constituted by a low number of components [3]. In 

particular, based on the described decomposition of the original waveform  ( ), the spectral 

components included in   ( ) are the only interharmonic components at frequencies   

      . 
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c)  Third step 

The residual is analyzed in the third step, where the interharmonic components at frequencies 

         are estimated using the SW Prony again. Also in this step, the presented method 

applies the adaptive technique proposed in [1], in order to perform an optimal and adjustable 

choice both of the size     of the sliding window versus time and of the number of 

exponential     required in the Prony’s model: 

 

 ̂ ( )  ∑    (        )                 

   

   

 (3.2) 

 

with obvious meaning of the symbols. 

In particular, the relationships (1.36) and (1.38) in Chapter 1, as well as in the first step of the 

method, are recursively applied, starting from initial values for     and     heuristically 

selected according to: (i) the expected number of components included in the waveform to be 

analyzed and (ii) the number of samples included in some cycles of the fundamental period, 

respectively. Then, the aforesaid values of     and     are iteratively increased of    and 

  , respectively. The values of    and    are even numbers heuristically chosen, based on 

the particular application. Eventually, the JPDM uses a fast iterative procedure that minimizes 

the mean square relative reconstruction error. This, in the third step, is obtained as follow:  

 

     
  

 

   
∑

|  ( )   ̂ ( )| 

  
 ( )

   

   

 (3.3) 

 

where   ( )  are the measured samples and   ̂ ( )  are given by (3.2). Fixed a priori a 

threshold value    
  for the aforesaid error, the iteration that provides      

     
  determines 

also the optimal value of     and    , and, similarly to the first step, the corresponding 

estimated spectral components are the output of the third step.  

It should be noted that, once again, the reduced number     of model (3.2) and the opportune 

choice of the window size     provide low time computation.  

 

d)  Performances of JPDM  

As stated before, the JPDM, combining the SW DFT and SW Prony, overcomes the limits of 

SW Prony and SW DFT too. In fact, the JPDM is able to: (i) improve the DFT accuracy in the 

harmonic estimations; (ii) guarantee a reduced computational effort, since the sum of 

computational efforts in the first and third steps is significantly less than that for the SW 

Prony method applied for the full-band signal. 

In particular, the aforesaid goals are reached by reducing the dimension of the linear system 

involved in the SW Prony application, and synchronizing the sliding-window size in the DFT 

with the actual fundamental frequency of the waveform. These choices cause respectively a 

more low computation than the SW Prony applied for the full-band waveform and a 

significant reduction of the spectral leakage problem involved in the SW DFT application. 
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Hence, the JPDM appears as a good compromise in term both of accuracy and computational 

burden for the estimation of the waveform spectral components in the low-frequencies range. 

3.2.2 Numerical applications  
To evaluate the effectiveness and performances of the proposed JPDM, several numerical 

experiments were performed on both waveforms with data being acquired from the power 

systems as well as from synthetically-generated waveforms. 

For the sake of brevity, the following subsections show only three case studies, one from the 

synthetic waveforms and two from the measured waveforms. 

In the case of the waveform generated synthetically, the aim is to compare the JPDM 

performances with those of the STFT method (STFTM) according to IEC recommendations, 

the joint SW ESPRIT and DFT method presented in [3] (JEDM), the traditional Prony’s 

method (TPM), using the ground truth values of the spectral components. Comparisons were 

effected on both results accuracy and computational efforts. 

The measured waveforms are a voltage waveform during a signalling by the distributor and an 

arc furnace voltage supply waveform. These two waveforms were analysed only by the JPDM. 

For all cases, the low-pass filter was formed by a linear-phase FIR filter with a cut-off 

frequency of 200Hz. MATLAB programs were developed and tested on a Windows PC with 

an Intel® Core™ 2 Duo 2.66-GHz processor and 2048 MB of RAM. It should be noted that 

all programs are implemented by MATLAB and are not optimized for computational speed; 

then, the computational time only gives a rough and relative comparison of efficiency in 

different methods. 

 

a) Case study 1 

The synthetic waveform was an ―acid test‖, consisting of a 50.03 Hz fundamental component 

of amplitude 100 p.u., 2nd and 4th harmonic components of amplitude 1 p.u., 5th and 7th 

harmonic components of amplitude 5 p.u., 11th and 13th harmonic components of amplitude 

3 p.u. and two interharmonic components of amplitude 0.5 p.u. at frequencies 82 Hz and 182 

Hz, respectively. The sampling rate was set to be 5 kHz. The fundamental frequency value 

introduces a de-synchronization comparable with the maximum permissible error of IEC 

instruments [18]. 

All methods (JPDM, STFTM, JEDM and TPM) were applied analysing a certain number of 

data blocks. Neighbouring data blocks are chosen with 0.04 s overlap in order to yield more 

smooth results through windows. Table 3.1 shows the average percentage errors of some 

spectral component amplitudes/frequencies estimated by TPM, JEDM, JPDM and STFTM. In 

particular, Table 3.1.a shows the average percentage errors for the fundamental, 82 Hz 

interharmonic and 182 Hz interharmonic, while Table 3.1.b shows the average percentage 

errors for the 2nd, the 7th and the 13th harmonics.  

The results of Table 3.1 show that the proposed scheme has yielded an accurate estimation for 

all spectral components in terms of both amplitudes and frequencies. Moreover, the following 

considerations arise: 

(i) the estimated interharmonic frequencies with STFTM are 80 Hz and 180 Hz, as a 

consequence of the 5-Hz frequency resolution of DFT. In addition, significant errors arise in 

the spectral component amplitudes, mainly in case of interharmonic components. 
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(ii) TPM yielded highly accurate estimation for all spectral components, in terms of both 

amplitudes and frequencies. 

(iii) JEDM and JPDM furnish very good results in terms of both amplitudes and 

frequencies, with errors similar to TPM for frequencies and slightly less accurate for 

amplitudes.  

(iv) JPDM seems to provide higher accuracy than JEDM in the amplitude estimations 

obtained in the first and third step, although a worsening in the corresponding frequency 

estimation occurs. 

Further, the efficiency of the proposed scheme was evaluated by comparing the computational 

time.  

 

Table 3.1 - JPDM - Case study 1: average percentage errors of estimated amplitudes and frequencies of: (a) 

fundamental, 82Hz interharmonic and 182Hz interharmonic; (b) 2
nd

,7
th

 and 13
th

 harmonics, obtained 

with TPM, JEDM, JPDM and STFTM 

Average error [%] 

 Amplitude Frequency 

 Fundamental 82Hz 182Hz Fundamental 82Hz 182Hz 

TPM 38∙10
-12

 170∙10
-12

 73∙10
-12

 0.13∙10
-12

 0.13∙10
-12

 0.14∙10
-12

 

JEDM 0.014 0.12 0.14 22∙10
-12

 21∙10
-12

 60∙10
-6

 

JPDM 0.0053 0.0030 0.048 0.061∙10
-12

 0.0080 0.0030 

STFTM 0.026 24 26 0.060 2.4 1.1 

(a) 

 
Average error [%] 

 Amplitude Frequency 

 2nd 7th 13th 2nd 7th 13th 

TPM 31∙10
-12

 240∙10
-12

 69∙10
-12

 0.026∙10
-12

 0.018∙10
-12

 0.056∙10
-12

 

JEDM 0.48 0.051 0.28 1700∙10
-12

 22∙10
-12

 22∙10
-12

 

JPDM 0.44 0.10 0.22 0.061∙10
-12

 0.051∙10
-12

 0.057∙10
-12

 

STFTM 7.1 0.38 1.2 0.060 0.060 0.060 

(b) 

 

Table 3.2 shows the computational time required for the analysis performed by all of the 

methods in p.u. of time required by STFTM, assumed as reference. From the analysis of 

Table 3.2 results, it clearly appears that the computational time for JEDM and JPDM is 

greater than STFTM but significantly lower than TPM. Moreover, the computational time of 

JPDM is reduced by more than one scale level in comparison to TPM; a reduction of about 30% 

arises in comparison to JEDM. 

 

Table 3.2 - JPDM - Case study 1: computational time by TEM, JEDM, and JPDM in p.u. of time required by 

STFTM 
 Computational time [p.u.] 

TPM 822 

JEDM 72 

JPDM 54 

STFTM 1 

b) Case study 2 

The analyzed waveform was a measured voltage recording, that was carried out during a 

signaling by the distributor. The sampling rate was set to be 7.2 kHz. An anti-aliasing filter 

was present in the measurement device before analog to digital conversion. Figures 3.2 show 
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the time-dependent parameters (frequencies and amplitudes) of waveform components 

estimated by JPDM. 

The same number marked on the curve in Figs 3.2.a) and 3.2.b) implies that they correspond 

to the same component. In particular, Figs 3.2 show the following significant spectral 

components present in the waveform: 3rd, 4th, 5th, 7th, 9th, 11th, 13th and 15th harmonics 

and two interharmonics at frequency of about 183 Hz (amplitude below 4 V) and 283 Hz 

(amplitude below 2 V). All amplitudes fluctuate with time. The fundamental component 

(amplitude about 231 V) and a 2
nd

 harmonic with magnitude lower than 0.1% of the 

fundamental are not shown. 

 

   

   
(a)                                                                      (b) 

Figure 3.2 – JPDM - Case study 2: estimated spectral components: (a) frequencies (b) amplitudes  

  

The same waveform was analyzed in [3] using JEDM. With reference to the band from 0 to 

300 Hz, JEDM evidenced a spectral line splits when estimating 50Hz fundamental frequency; 

this splitting determines the presence of two interharmonics that are not evidenced in JPDM 

analysis where they are responsible of the fundamental amplitude modulation. With reference 

to the band from 300 to 800 Hz, JPDM analysis furnished similar results as in [3]; on the 

other hand, the interharmonic amplitudes obtained by JEDM are more stable than JPDM, 

shown in Fig. 3.2.b. The slightly different behavior of JEDM and JPDM can be justified by 

observing the different approach of the ESPRIT and the Prony’s methods in the detection of 

the unknown parameters included in their models (see also Chapter 1). For example: (i) 

differently to the Prony’s method, in the ESPRIT method the white noise is added in the noise; 

(ii) in the Prony’s method the detection of the model parameters mainly depends on the 

number of spectral components included in the model and on the number of samples included 

in the selected analysis window, while in the ESPRIT method the aforesaid detection depends 

also on the order of the correlation matrix. This different approach of these two parametric 

methods involves different equation systems to be solved and, consequently, a slightly 

different spectrum detection. 
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c) Case study 3 

The analyzed waveform was a measured voltage recording of 40s, obtained close to an AC 

arc furnace. The sampling rate was set to be 3 kHz. Once again, an anti-aliasing filter was 

present in the measurement device before analogical to digital conversion. Figures 3.3 show 

the time-dependent parameters (frequencies and amplitudes) of waveform components 

estimated by JPDM. 

 

 

 
(a)                                                                      (b) 

Figure 3.3 – JPDM - Case study 3: estimated spectral components: (a) frequencies (b) amplitudes  

 

In particular, Figs 3.3 show the following significant spectral components present in the 

waveform: 7th, 9th and 11th harmonics and two interharmonics at frequency of about 95 Hz 

(amplitude below 1.5 kV) and 125 Hz (amplitude below 1.5 kV). All amplitudes fluctuate 

with time as well as the interharmonic frequencies. The fundamental component (amplitude 

about 11.5 kV) is not shown. 

The same waveform was analyzed in [3] using JEDM. With reference to the band from 0 to 

110 Hz, JEDM evidenced two interharmonics around 75 Hz and 95 Hz while JPDM found 

only one interharmonic component around 95Hz (first row of Fig. 3.3.a) characterized by a 
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larger amplitude. With reference to remaining bands, JPDM analysis furnished similar results 

as in [3], except for interharmonic amplitudes that in JPDM is usually slightly larger. This is 

linked to the differences between the estimation of   ( ) signal (input of the third step 

procedures) in JPDM and JEDM methods. In fact, as observed in the previous case study, the 

different approach of the ESPRIT and the Prony’s methods in the detection of the unknown 

parameters included in their models involve little differences in the spectrum obtained by 

JEDM and JPDM (see also Chapter 1). 

3.3 Sliding-window Parametric-DFT-Analytical-Parametric methods 

The growing number of perturbing loads in modern electrical systems has generated increased 

interest in PQ issues and, consequently, expanding studies of the disturbances that 

characterize PQ [24-26]. 

Adjustable speed drives (ASDs) are one of the most prevalent disturbing loads in industrial 

systems, since ASDs cause heavy distortions in the supply-side at the point of common 

coupling (PCC) [24-26]. Thus, they have been modelled extensively in the relevant literature 

with the aim of quantifying the harmonic and interharmonic components of the current 

waveforms [1,27-31]. The analysis of literature indicated that the waveforms on the AC 

supply-side of the Pulse-Width Modulation (PWM) ASDs are characterized by several 

harmonic and interharmonic components that, depending on the particular operating 

conditions of the motors, can vary with time both in amplitude and in frequency [1,26].  

In these conditions, it is well known that some difficulties can arise in the analysis of the 

harmonic and interharmonics components if inadequate techniques are selected for the 

spectral analysis [24-25]. For example, as previously observed, IEC 61000 4-7 [18] 

recommends the use of the DFT with fixed-size rectangular windows that slide in the time on 

the waveform, but this method is helpful only for a very fast and global quantification of the 

waveform distortions. In particular, the method becomes inefficient in obtaining more detailed 

information about the spectral components when the spectral leakage phenomenon arises. The 

problems of IEC method mentioned above can be overcome by using advanced DFT-based 

methods or parametric methods, such as the Prony and ESPRIT methods [1,3,21,32-36]. In 

particular, as seen in the Chapter 1, the parametric methods are able to provide reliable results, 

especially in the detection of spectral components included in the low-frequency range. 

However, they generally need a too huge computational burden, in opposition to the modern 

requirements in term of PQ monitoring.  

In [1], the authors proposed an advanced method for the assessment of waveform distortions 

caused by ASDs. In particular, the method draws inspiration by the modulation theory used in 

[28], that provides an analytical way to forecast the harmonic and interharmonic frequencies 

up to 2 kHz due to synchronous, sinusoidal PWM drives. Moreover, the method is based on 

the cascade application of the ESPRIT and Prony methods in a three-step procedure. In the 

first and third steps, parametric methods are applied to bands of signals that contain reduced 

numbers of components, which leads to less computational efforts. In the second step, the 

frequencies of the harmonics and interharmonics are calculated by the closed-form formulas 

reported in [28]. Although the combination of these three steps resulted in accurate estimation 
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with reduced computational requirements, unfortunately those requirements are still 

significantly greater than those of the DFT method suggested by the IEC Standard. 

The sliding-window Parametric-DFT-Analytical-Parametric methods presented in [11] have 

been designed with the aim of overcoming the aforesaid problems. They are described in this 

Section. These new methods are based on proper combinations of the Prony, ESPRIT, and 

DFT methods as well as the analytical formulas in [28] for the analysis of the distortions of 

current waveforms caused by ASDs. These new methods guarantee high accuracy in the 

calculation of the spectral components, and they require computational time that is 

significantly less than that of [1] and that is similar to that of the IEC method. The methods 

involve a four-step procedure, i.e.: i) a parametric method (either the Prony or the ESPRIT 

method) is used to estimate the fundamental and the low frequency interharmonics up to 100 

Hz; ii) thanks to the estimation of the actual fundamental frequency in first step, a 

synchronized DFT is used to compute the harmonic components in the waveform; iii) the 

modulation theory used in [28] is enforced to forecast the frequency interharmonics in the 

band from 100 Hz to     , where generally       kHz; iv) once again, a parametric 

method is used to calculate the amplitudes of the high-frequency interharmonics. The 

advantages of the sliding-window Parametric-DFT-Analytical-Parametric methods are that: (i) 

in the first and last step, the computational burden is reduced drastically due to the presence of 

a filter and due to the subsequent decompositions of the waveform, which decrease the 

spectral content that must be analyzed in each step, and, consequently, decrease the number of 

exponentials required by the parametric methods; (ii) in the fourth step, the computational 

effort also is reduced significantly due to the analytical knowledge of the interharmonic 

frequencies, which reduces the variables of the signal model by 50%; and (iii) in the second 

step, the accuracy is maximized since the spectral leakage problems are contained due to the 

synchronization of the analysis window duration and the fundamental period. 

The following Sub-sections first describe the proposed scheme in detail; then, several case 

studies are analysed with reference to synthetic and actual waveforms.  

3.3.1 Model formulation and solving procedure 
The parametric methods applied in [11] for the first and last steps of the proposed procedure 

are the SW ESPRIT and SW Prony methods, used in all their possible combinations, i.e., SW 

Prony in the first step and SW ESPRIT in the last step; SW Prony in both steps; SW ESPRIT 

in both steps; SW ESPRIT in the first step and SW Prony in the last step. Figure 3.4 shows 

the block diagram of the general scheme of the sliding-window Parametric-DFT-Analytical-

Parametric methods in which each frequency band is analysed separately by a different 

method in order to optimize the performance and obtain accurate results with a computational 

effort comparable to that of the IEC method. 

In particular, two low-pass filters are used preliminarily on the original waveform  ( ): the 

first filter has a band from 0 to 200 Hz, and it leaves only the fundamental component and the 

low-frequency components in the waveform, obtaining the signal      ( ); the second filter 

has a band from 0 to 5000 Hz and its aim is to clean up the analysed original waveform by the 

noise eventually introduced by the measuring instrument, obtaining the waveform       ( ). 
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Figure 3.4 – Block scheme of the presented sliding-window Parametric-DFT-Analytical-Parametric 

methods  

 

a)  First step 

In this step, the waveform      ( ), concerned by spectral content from 0 to 200 Hz, is 

analysed using a parametric method (either SW Prony or SW ESPRIT), and an accurate 

analysis is conducted in order to obtain a reliable estimation of the low-frequency 

components. If the sampling rate    of the waveform is too high for the considered band 

according to the Nyquist-Shannon theorem, a decimation of the data block can be performed 

in order to reduce the number of samples   (and, consequently, the order    chosen for the 

correlation matrix for SW ESPRIT application). A containment of   also leads to a reduction 

of   so that either the SW ESPRIT method or the SW Prony method can provide accurate 

estimations of the amplitudes and frequencies of the spectral components in the considered 

range of frequency with less computational effort. Only the estimated spectral components in 

the frequency band from 0 to 100 Hz are used to construct the waveform  ̂    ( ) according to 

the model used by the parametric methods, and the difference   ( ) between the waveforms 

     ( ) and  ̂    ( ) is sent to the second step of the method. The choice of the frequency 

band from 0 to 100 Hz is a compromise between the need of having components that are not 

distorted by the filter and the need to estimate the frequencies of all of the components used in 

the next steps. 

 

b)  Second step 

In the second step, the waveform   ( ) is analysed by a synchronized DFT. In fact, the 

fundamental frequency accurately estimated in the first step allows us to choose a duration  ̂  

for the DFT analysis window that is exactly an integer multiple of the effective fundamental 

cycle, reducing significantly the spectral leakage problems, which remain only due to the 

presence of interharmonics above 100 Hz.  ̂  is set to 10 cycles of the fundamental period 

 ̂     for 50-Hz systems and to 12 cycles of the fundamental period for 60-Hz systems, 

according to IEC’s standard requirements [37]. The second step of the method just provides 

the evaluation of the amplitudes and frequencies of the harmonics, which are then summed in 

the time domain to yield the waveform,  ̂    ( ) . The application of DFT in this step 

guarantees a very rapid computation.  

 

c)  Third step 

Once the maximum frequency      of interest is fixed, the frequencies  ̂     obtained by the 

first step of the proposed scheme are used in the third step to compute analytically the 
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frequencies of the interharmonics in the range from 100 Hz to      using the mathematical 

model of the ASD with a double-stage converter presented in [28]. In particular, considering 

the configuration in Figure 3.5, the interharmonic components on the supply-side of the 

system are produced by the interaction between the harmonics generated by the rectifier and 

the harmonics on the DC link side due to the inverter. 

The frequencies       of the supply-side harmonic components linked to the rectifier can be 

estimated as:  

      |(   )    |                       (3.4) 

 

where     is the fundamental frequency of the supply system, and    is the number of rectifier 

pulses. At the same time, in the DC link side, if we know the fundamental frequency     of 

the voltage of the output side, the frequencies      
   of the harmonics introduced by the 

inverter can be computed as:  

 

     
   |      |       (3.5) 

 

where    is the ratio between the carrier and the modulating frequency, which, in this case, is 

an integer because a synchronous PWM modulation is considered. The values of   and   are 

chosen according to Table 3.3, where they are given based on their dependence on   . Once 

the frequencies of the harmonics are known, i.e.,       and      
  , the frequencies of the 

interharmonics, i.e.,       , on the supply side can be obtained as: 

 

       |           
  | (3.6) 

 

Note that the previous relationships indicate that interharmonic components are always 

present on the AC supply system side in this type of configuration, except when it can be 

verified that         . In the same circumstances, it is also possible for the interharmonics to 

degenerate into harmonics. 

 
Figure 3.5 – Scheme of an ASD with a double-stage converter  

 

The Eqs. (3.4)-(3.6) allow to calculate, in closed form, frequencies of the spectral components. 

In particular, according to equation (3.6), the interharmonic frequencies can be calculated 

once the fundamental frequency     of the supply system and the fundamental frequency      

of the inverter output voltage are known. 
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To estimate the fundamental frequency,  ̂   , of the inverter output voltage, the results of the 

first step were used in the following procedure: 

a) an estimation of the frequencies ( ̂    
  )

    
 (the harmonics in the DC link) is obtained 

using the frequencies  ̂     calculated in step 1 and by solving relationship (3.6), i.e., 

( ̂     )
    

 | ̂   ( ̂    
  )

    
|; 

b) an estimation of the fundamental frequency,  ̂  , of output voltage of the PWM 

inverter is obtained by equation (3.5) applied to LF waveform i.e., ( ̂    
  )

    
 

|     | ̂   with ( ̂    
  )

    
 obtained in a). 

The application of simple relationships to calculate the interharmonic frequencies from 100 

Hz to      reduces the computational efforts required in the last step dramatically. 

 

Table 3.3 - Dependence of the values of   and   on     

 Odd    Even    

Not Triple 

        

Even integers     →      Even integers Even integers     → 
Integers 

Odd integers      →       Odd integers Odd integers      → 

Triple 

        

      Even integers     →   Even triple 

integers 
Even integers     → 

Triple integers 
       Odd integers     →    Odd triple 

integers 
Odd integers      → 

 

d)  Fourth step 

Once the interharmonic frequencies from 100 Hz to      are calculated, their values are 

imposed in the fourth step of the sliding-window Parametric-DFT-Analytical-Parametric 

methods. In this step the waveform  ̂ ( ), obtained as the difference between  ̂ ( ) and 

 ̂    ( ), is analysed by a simplified algorithm of a parametric method (once again either 

ESPRIT or Prony) in order to estimate only the corresponding amplitudes of the 

interharmonics. 

Specifically, assuming the damping factors to be zero: 

- if the SW ESPRIT parametric method is used, the imposed interharmonics’ 

frequencies determine the diagonal elements  ̂  of the rotation matrix  ; then it is 

possible to obtain the interharmonics’ amplitudes using only equation (1.49) (see 

Chapter 1);  

- if the SW Prony parametric method is used, the imposed interharmonics’ 

frequencies determine the polynomial roots   , and, then, it is possible to obtain 

the interharmonics’ amplitudes with simple relationships solving only equation 

(1.36) (see Chapter 1).  

Note that the computational effort in this fourth step of the sliding-window Parametric-DFT-

Analytical-Parametric schemes is very low due to the reduced value of the number of 

exponentials M required in the model by the parametric methods. This is because only the 

interharmonic components from 100 Hz to      are included in the waveform to be analysed. 

At the same time, the computational burden also is reduced since the number of unknown 

parameters is reduced by 50%. This is because the frequencies were assigned as the output of 
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the third step, so both of the parametric methods just require the solution of one system of 

equations. 

In addition, if the sampling rate    is elevated with respect to the maximum frequency to be 

analysed, guaranteeing the respect of the parametric methods bound (          , with       

the maximum frequency that can be detected by the parametric method  [38]), a decimation of 

the data block can be applied to further reduce the computational efforts. 

3.3.2 Numerical applications 
Several numerical experiments were conducted analysing many operating conditions of the 

PWM ASD in order to test the performances and the benefits of the sliding-window 

Parametric-DFT-Analytical-Parametric methods. For the sake of brevity, only three cases are 

shown in this Section. Specifically, the results obtained from the analysis of two test signals 

and a measured AC supply current are shown. 

The analysis of the first two case studies, i.e., synthetic ASD supply currents is described in 

greater detail. These synthetic ASD supply currents were obtained according to Eqs. (3.4)-

(3.6) and by summing the harmonic and interharmonic components in the time domain, and 

their analytical expressions were obtained on the basis of our experience with actual ASDs.  

In the third case study, a measured ASD supply current with a constant load is considered. 

This measured waveform was obtained on a hardware test system constituted by a 

synchronous, sinusoidal PWM ASD. 

Figure 3.6 shows the test bench used for the AC current measurements, which was equipped 

as follows:  

- Supply system 400 V, 50 Hz; 

- Inductive input filter of 500 µH; 

- LEM Hall effect transducers LA50-S, coupled with a data acquisition (DAQ) unit, that 

was a National Instruments 6071E PCI board; 

- VSI controlled by a 40-MHz Texas Instruments DSP TMS320C30, programmed in C-

language to have a traditional sub-oscillation PWM technique, where the carrier 

frequency was set to achieve an integer modulation ratio (specifically,        in the 

following applications); 

- Four-pole pairs induction motor of 5.5 kW, connected mechanically to a DC motor 

operated by a controlled rectifier that regulates the resistance torque. 

All of the case studies were analysed using the STFT method (STFTM) according to the IEC 

recommendations, the traditional ESPRIT method (TEM), the traditional Prony method 

(TPM), the Three Step Method (TSM) proposed in [1] and all combinations of the four-step 

proposed methods, i.e.,:  

- Prony + DFT + Analytical frequencies + Prony (PDAPM); 

- Prony + DFT + Analytical frequencies + ESPRIT (PDAEM); 

- ESPRIT + DFT + Analytical frequencies + Prony (EDAPM); 

- ESPRIT + DFT + Analytical frequencies + ESPRIT method (EDAEM). 

The results obtained by the above methods were compared in terms of both accuracy and 

computational burden. All of the programs are implemented by MATLAB and are not 

optimized for computational speed, since the aim is only to give a rough and relative 

comparison of efficiency in different methods. MATLAB programs were developed and 

tested on a Windows PC with an Intel i7-3770 3.4 GHz and 16 GB of RAM. 
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Figure 3.6 – Test bench scheme  

 

a) Case study 1 

The first synthetic waveform was a 3-s AC supply current of an ASD with a fundamental 

frequency of the output voltage equal to 32.32 Hz and a fundamental frequency of the supply-

side current equal to 50.01 Hz. 

A white noise with a standard deviation of 0.001 was added to the signal in order to make the 

analysis more realistic. The sampling rate was 20 kHz, so the bounds of the parametric 

methods were broadly satisfied, since the maximum frequency of the test signal was fixed at 1 

kHz. For the parametric methods, the selected reconstruction error threshold was 0.5·10
-3

. 

Taking into account that    is an integer (      ), the fundamental frequency was 50.01 

Hz, and  ̂   was not an integer multiple of 5 Hz, so it follows that the interharmonic 

frequencies obtained by using relationships (3.4) through (3.6) were not integer multiples of 

the IEC frequency resolution (5 Hz). 

Figure 3.7 shows the spectrum of the values of the components of the test signal. Table 3.4 

shows, for the considered methods, the average percentage errors for the amplitudes and 

frequencies of some of the significant spectral components. TSM and TPM generally had the 

best results for all of the spectral components. All of the sliding-window Parametric-DFT-

Analytical-Parametric methods always had acceptable amplitude and frequency errors, so that 

all of them provided a reliable estimation of every spectral component; however, EDAEM 

and EDAPM were slightly more accurate than PDAPM and PDAEM. Also, it should be noted 

that the frequency errors of the sliding-window Parametric-DFT-Analytical-Parametric 

methods were comparable with the errors of the parametric methods applied to the entire 

waveform (TEM and TPM) and of TSM. 

For the amplitudes, the sliding-window Parametric-DFT-Analytical-Parametric methods had 

errors that were slightly greater than those of TSM; for harmonics and 232-Hz interharmonic, 

this was due to use of the DFT in the second step of the proposed scheme (Fig. 3.4). In fact, 

the presence of the interharmonics in the band from 100 Hz to      in the analysed waveform 

 ̂  resulted in spectral leakage that also influenced waveform  ̂ . In the case of the 

fundamental and interharmonics from 0 to 100 Hz, the difference in the amplitude errors 

between the sliding-window Parametric-DFT-Analytical-Parametric methods and TSM were 
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due to the different filtering schemes. It is also worth noting that TEM and TPM had different 

behaviors because TEM had a problem with evaluating the amplitude. 

 

Table 3.4 - Parametric-DFT-Analytical-Parametric methods - Case study 1: average percentage error in the 

estimation of amplitude and frequency of: (a) the fundamental, 5th , and 17th harmonics; (b) 32-Hz and 232-Hz 

interharmonics using STFTM, TEM, TPM, TSM, PDAPM, EDAEM, PDAEM and EDAPM  
Average error [%] 

 Amplitude Frequency 

 Fundamental 5th 17th Fundamental 5th 17th 

TEM 0.080 2.0 2.6 0.0010 0.010 0.0030 

TPM 0.0040 0.090 0.18 68∙10
-6

 310∙10
-6

 250∙10
-6

 

TSM 0.0010 0.0020 0.0090 30∙10
-6

 30∙10
-6

 30∙10
-6

 

PDAPM 0.16 0.92 0.70 720∙10
-6

 720∙10
-6

 720∙10
-6

 

EDAEM 0.17 0.92 0.70 27∙10
-6

 27∙10
-6

 27∙10
-6

 

PDAEM 0.16 0.92 0.70 720∙10
-6

 720∙10
-6

 720∙10
-6

 

EDAPM 0.17 0.92 0.70 27∙10
-6

 27∙10
-6

 27∙10
-6

 

STFTM 0.70 0.92 0.79 0.020 0.020 0.020 

(a) 

 

Average error [%] 

 Amplitude Frequency 

 32-Hz 

interharmonic 

232-Hz  

interharmonic 

32-Hz 

interharmonic 

232-Hz  

interharmonic 

TEM 1.9 51 0.090 0.23 

TPM 0.080 1.5 0.0030 0.0070 

TSM 0.007 0.020 850∙10
-6

 0.0030 

PDAPM 0.63 1.0 0.020 0.0020 

EDAEM 0.14 1.0 710∙10
-6

 0.0030 

PDAEM 0.63 1.0 0.020 0.0020 

EDAPM 0.14 1.0 710∙10
-6

 0.0030 

STFTM 30 21 6.7 0.80 

(b) 

 

Finally, it should be noted that STFTM generally had higher errors. With particular reference 

to the amplitudes of the interharmonics, the average percentage error was more than 20%. 

This was consistent with the desynchronization between the spectral components of the test 

signal and window duration fixed by IEC. It is also interesting to note that PDAPM and 

PDAEM had the same percentage error in the estimation of same spectral components, and 

Table 3.4 shows same results for EDAPM and EDAEM. This is because i) spectral analysis 

depended mainly on the results of the first step and ii) there was a reduced number of 

variables (only interharmonic amplitudes) in the last step. 

Table 3.5 shows the computational time for the waveform spectral analysis by all of the 

methods per unit of the STFTM computational time. It is important to note that, in this case, 

all of the sliding-window Parametric-DFT-Analytical-Parametric methods had a 

computational time significantly lower than TEM and TPM; moreover, the sliding-window 

Parametric-DFT-Analytical-Parametric methods were about the same order of magnitude as 

that of STFTM. 
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Figure 3.7 – Case study 1: spectrum of the first test waveform 

 

Table 3.5 - Parametric-DFT-Analytical-Parametric methods - Case study 1: computational time by all of the 

considered methods in p.u. of time required by STFTM 
 Computational time [p.u.] 

TEM 3.8∙10
4
 

TPM 3.0∙10
4
 

TSM 6.3 

PDAPM 4.4 

EDAEM 4.1 

PDAEM 4.9 

EDAPM 3.6 

STFTM 1 

 

b) Case study 2 

The test signal was a 3-s AC supply current of an ASD with a fundamental frequency of the 

output voltage equal to 19.99 Hz and a fundamental frequency of the supply-side current 

equal to 50.01 Hz. Also, in this case study, a white noise with a standard deviation of 0.001 

was added. The sampling rate was 20 kHz. For the parametric methods, the selected 

reconstruction error threshold was 0.5·10
-3

. 

Table 3.6 shows the average percentage errors of amplitudes and frequencies as defined in the 

previous case study. Specifically, it is interesting to note the behavior of the spectral analysis 

methods in the estimation of the 10-Hz interharmonic, whose amplitude was about 11% of the 

fundamental; this interharmonic was near another interharmonic component (at 12 Hz) with 

halved amplitude. 

Note that, for the selected 10-Hz interharmonic, TPM, PDAPM, and PDAEM had percentage 

errors in the estimation of its amplitude that were greater than that of STFTM, and they had 

percentage errors in the estimation of the frequency that were the same order of magnitude of 

that of STFTM. 

These phenomena were due to (i) the value of the error threshold (0.5·10
-3

) assumed for the 

parametric methods and (ii) the fact that the Prony model, unlike ESPRIT, did not include 

noise. In such circumstances, since there were two very close interharmonics, Prony algorithm 
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identified the aforesaid two components with a single interharmonic having a frequency that 

was the mean of the actual frequencies and having an amplitude that was the sum of the two 

actual amplitudes. 

 

Table 3.6 - Parametric-DFT-Analytical-Parametric methods - Case study 2: average percentage error in the 

estimation of amplitude and frequency of the fundamental, 10-Hz interharmonic and the 13th harmonic using 

STFTM, TEM, TPM, TSM, PDAPM, EDAEM, PDAEM and EDAPM  
Average error [%] 

 Amplitude Frequency 

 
Fundamental 

10-Hz 

interharmonic 
13th Fundamental 

10-Hz 

interharmonic 
13th 

TEM 0.030 16 0.17 900∙10
-6

 2.2 280∙10
-6

 

TPM 0.070 32 0.24 0.0020 4.0 220∙10
-6

 

TSM 0.070 0.79 0.090 55∙10
-6

 0.030 55∙10
-6

 

PDAPM 0.31 29 0.19 0.0050 3.9 0.0050 

EDAEM 0.17 0.79 0.13 46∙10
-6

 0.11 46∙10
-6

 

PDAEM 0.31 29 0.19 0.0050 3.9 0.0050 

EDAPM 0.17 0.79 0.13 46∙10
-6

 0.11 46∙10
-6

 

STFTM 0.14 22 0.22 0.020 5.3 0.020 

 

To analyze the above-mentioned problem in more depth, Table 3.7 shows the PDAPM’s 

errors obtained using a reconstruction error threshold of 0.5·10
-10

. It is evident that there was a 

significant improvement in the estimation of the spectral components, especially for the 10-

Hz interharmonic. Obviously, this increases in the resolution yielded an increase in the 

computational burden. 

 

Table 3.7 - Parametric-DFT-Analytical-Parametric methods - Case study 2: average percentage error in the 

estimation of amplitude and frequency of the fundamental, 10-Hz interharmonic and the 13th harmonic using 

PDAPM and setting a reconstruction error threshold equal to 0.5·10
-10

  
Average error [%] 

 Amplitude Frequency 

 
Fundamental 

10-Hz 

interharmonic 
13th Fundamental 

10-Hz 

interharmonic 
13th 

PDAPM 0.17 0.54 0.13 50∙10
-6

 0.050 50∙10
-6

 

 

Table 3.8 shows the computational time for the waveform spectral analysis by all of the 

methods (with threshold for all of the parametric methods equal to 0.5·10
-3

). Also for this case 

study, all of the sliding-window Parametric-DFT-Analytical-Parametric methods had 

computational times that were significantly less than those of TEM and TPM, and the time 

was about the half of that required by TSM.  

 

Table 3.8 - Parametric-DFT-Analytical-Parametric methods - Case study 2: computational time by all of the 

considered methods in p.u. of time required by STFTM 
 Computational time [p.u.] 

TEM 1.3∙10
4
 

TPM 4.9∙10
4
 

TSM 5.5 

PDAPM 3.4 

EDAEM 3.7 

PDAEM 3.5 

EDAPM 3.5 

STFTM 1 
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Moreover, the sliding-window Parametric-DFT-Analytical-Parametric methods seem to have 

the same order of magnitude than STFTM. It should be noted that, when the error threshold 

was equal to 0.5·10
-10

 (Table 3.7), the computational effort required by PDAPM was about 

four times greater it was when the error threshold was equal to 0.5·10
-3

. The same also was 

true for PDAEM. 

 

c) Case study 3 

In this case study, we analysed a 5-s AC supply-side current, measured by the test bench 

shown in Figure 3.6. For this waveform, the fundamental frequency of the output voltage and 

the fundamental frequency of the supply side current were about 30 and 50 Hz, respectively. 

Thus, taking into account that    is an integer (      ),  ̂   is approximately an integer 

multiple of 5 Hz, the fundamental frequency,  ̂  , is approximately equal to 50 Hz, and the 

harmonic/interharmonic frequencies, coherently with the relationships (3.4) through (3.6) 

(Section 3.3.1.c), were all approximately integer multiples of the IEC frequency resolution (5 

Hz). Then, STFTM should be able to provide a reliable estimation of all the spectral 

components, since the spectral leakage should be weak. For the parametric methods, the 

selected reconstruction error threshold was, once again, 0.5·10
-3

. 

Figure 3.8 shows the time evolution of the first 0.2 s of the considered waveform, and Figure 

3.9 shows the spectrum from 0 to 1 kHz obtained by STFTM.  

Note that, in the case of actual measured waveforms, TEM and TPM had many spurious 

components due to the high noise introduced by the measurement instruments; as shown 

below, they also required very high computational efforts. For TSM and the sliding-window 

Parametric-DFT-Analytical-Parametric methods, the aforesaid phenomenon was limited since 

the presence of the two low-pass band filters reduced the influence of noise. 

The same predominant spectral components were observed in the spectra provided by all of 

the methods, with only significant difference being their amplitudes; this is coherent with the 

results of the two previous case studies in which the percentage errors in the estimations of 

frequencies were always less than the percentage errors in the amplitudes. 

As an example of the results that were obtained, Table 3.9 shows the average values of the 

amplitudes for some significant spectral components estimated by all of the methods. In 

particular, note that, for the fundamental component, all of the methods that were used, 

detected an average amplitude of approximately 3.10 A, and the sliding-window Parametric-

DFT-Analytical-Parametric methods had lower values than those of TPM and TEM, but they 

were very close to that of STFTM.  

Also for the average values of the estimated 5
th

 harmonic amplitudes, it can be observed that 

the sliding-window Parametric-DFT-Analytical-Parametric methods, once again, approached 

the STFTM values closely, while they had values that were slightly lower than those of TPM 

and TEM. Finally, for the 70-Hz interharmonic, all of the amplitude values are in a range 

around 0.40 A. It should be also noted that TSM provided average amplitudes for all the 

spectral components very close to the values estimated by STFTM.  
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Figure 3.8 – Parametric-DFT-Analytical-Parametric methods - Case study 3: time evolution of the analyzed 

waveform 

 
Figure 3.9 – Parametric-DFT-Analytical-Parametric methods - Case study 3: spectrum obtained by the STFTM  

 

Table 3.10 shows the computational time for the spectral analysis by all of the methods per 

unit of the STFTM’s computational time. Again, the sliding-window Parametric-DFT-

Analytical-Parametric methods had significantly less computational times than TEM and 

TPM, and, at the same time, the computational effort of the sliding-window Parametric-DFT-

Analytical-Parametric methods was about half of that required by TSM. Note that the fastest 

method for the analysis of this measured waveform was STFTM; however, the sliding-

window Parametric-DFT-Analytical-Parametric methods required globally computational 
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times that had at the most one order of magnitude more than STFTM, with EDAPM having 

the best computational time among the sliding-window Parametric-DFT-Analytical-

Parametric methods. 

 

Table 3.9 - Parametric-DFT-Analytical-Parametric methods - Case study 3: comparisons of most significant 

average amplitudes (fundamental, 5th harmonic and 70-Hz interharmonic) using STFTM, TEM, TPM, TSM, 

PDAPM, EDAEM, PDAEM and EDAPM  
 Average amplitude [A] 

 
Fundamental 

70-Hz 

interharmonic 
5th 

TEM 3.11 0.39 2.80 

TPM 3.12 0.40 2.80 

TSM 3.08 0.40 2.77 

PDAPM 3.06 0.41 2.77 

EDAEM 3.07 0.39 2.77 

PDAEM 3.06 0.41 2.77 

EDAPM 3.07 0.39 2.77 

STFTM 3.06 0.41 2.77 

 

 

Table 3.10 - Parametric-DFT-Analytical-Parametric methods - Case study 3: computational time by all of the 

considered methods in p.u. of time required by STFTM 
 Computational time [p.u.] 

TEM 2.9∙10
5
 

TPM 1.4∙10
5
 

TSM 22 

PDAPM 11 

EDAEM 9.5 

PDAEM 11 

EDAPM 8.9 

STFTM 1 

3.4 Sliding-window Wavelet-Modified ESPRIT method 

The problem of the spectral analysis of wide-spectrum waveform is analysed in detail in this 

Section. In fact, the growing use of devices equipped with static converters determines the 

injection in the grid of distorted currents with spectral components included in a wide 

frequency range (up to 150 kHz) [26,39-41]. In order to better underline how the problem of 

the waveform distortions that involve a wide frequency range is deeply rooted in modern 

electrical power systems, a detailed list of common supraharmonic emitters is provided in 

[42]. These are: (i) converters for industrial applications that mainly emit spectral components 

in the range from 9 kHz to 150 kHz; (ii) oscillation related to the electronic device 

commutation that mainly emit spectral components up to 10 kHz; (iii) street lamps that 

mainly emit spectral components up to 20 kHz; (iv) electro-vehicle chargers that mainly emit 

spectral components in the range from 15 kHz to 100 kHz; (v) photovoltaic and wind turbine 

inverters that mainly emit spectral components in the range from 4 kHz to 20 kHz; (vi) 

household devices, e.g., liquid-crystal display televisions or highly-efficient loads, that mainly 

emit spectral components in the range from 2 kHz to 150 kHz; (vii) PLC that mainly emit 

spectral components in the range from 9 kHz to 95 kHz. 
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Since these supraharmonic emitters are very common, the spectral components from 2 kHz to 

150 kHz have recently received great interest in the relevant literature [13-14,40-48]. Many 

research activities have recently focused on the effects of the high-frequency sources on the 

power systems and their propagation [13-15]. According to these studies, the main difference 

between the high-frequency emissions and low-frequency emissions is that, while the latter 

tend to propagate towards the distribution network, the former mainly flow within the 

installation, towards the other devices that offer a lower impedance than the network at so 

high frequencies (such as the electromagnetic compatibility (EMC) filter). The presence of 

EMC filter as interface at the PCC, also provides a low impedance for these high-frequency 

components coming from the distribution network. Therefore, high-frequency currents from 

both the installation and the network flow through the capacitor, causing high-frequency 

voltage distortion at the PCC [15]. 

Moreover, low-frequency spectral components and high-frequency spectral components are 

commonly characterized by different behaviours in the frequency and time domain. 

Specifically, while low-frequency components can be stationary and generally typified by 

piecewise constant frequencies in time (see also Chapter 2), high-frequency are usually not 

stationary, with significant time-variability both in frequency and in amplitude. However, 

these high-frequency spectral components are superimposed to low-frequency spectral 

components with consequent conflicting needs in term of time window length (and frequency 

resolution) for their spectral analysis.  

These high-frequency disturbances still require not only appropriate analysis tools, but also 

adequate standardizations, which allow to define proper indices and their maximum 

thresholds for the evaluation and the limitation of the high-frequency spectral components. 

In fact, the IEC standards address the range from 0 kHz to 9 kHz, recommending for signal 

processing, as previously stated, the use of the STFT with rectangular time windows 

characterized by a duration fixed as an integer multiple of the fundamental period [24,26]. 

The problem related to the STFT and to STFT-based methods, i.e. the inaccuracies associated 

with the inherent fixed frequency resolution and spectral leakage problems, has been proved 

to became more significant in case of waveforms characterized by wide spectra. This is due to 

the aforementioned different behaviours of low- and high-frequency spectral components and 

to the increasing desynchronization of high-frequency components. As attempt to reduce 

STFT inaccuracies, IEC suggests the use of grouping not only for the low frequency range, 

but also for the spectral content from 2 kHz to 9 kHz, assuming high-frequency resolution to 

be unnecessary for this range, in opposition to the modern requirements [18,37]. Recently, in 

[37], some measurement methods have been also indicated to provide an overview of spectral 

content in the range from 2 kHz to 150 kHz, as opposed to detailed measurement methods 

used for low-frequency range. These measurement methods for the high-frequency spectral 

components are informative and not normative; they include the extension of the grouping 

from 9 kHz to 150 kHz using a 10 Hz frequency resolution and 200 Hz bands to group this 

spectral content [37] and, then, they do not allow to obtain acceptable estimations of 

amplitudes and frequencies of supraharmonic spectral components. 

The others measurement methods suggested by IEC standard [37] for the evaluation of the 

high-frequency spectral content cannot be always applicable. In fact, these measurement 

methods suffer of complex and expensive implementation; also, they provide an enormous 
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amount of data to be stored as output. Hence, the IEC standard advises about the possible 

inclusion of other methods in future editions of the standard. 

As seen in Chapter 1, with reference to the low-frequency range, to solve the problems 

associated with the IEC standard method, many spectral analysis methods have been 

presented in the relevant literature for the assessment of time varying waveform distortions 

[23-24,26,37-38,40]. With reference to the high-frequency range, in the relevant literature, 

only few methods were applied to the spectral analysis of waveforms with wide spectra 

[38,40]. In particular, the method proposed in [40] was not applied for the simultaneous 

spectral analysis of the entire range from 0 to 150 kHz. It requires a high computational effort 

and a priori knowledge of the number of spectral components included in the analysed 

waveform, as well as the order of the correlation matrix. These two problems were overcome 

by the method proposed in [38], although it was not proper for the detection of high-

frequency time varying spectral component, when large-spectrum waveforms are analysed 

(see also Chapter 2). 

The sliding window Wavelet-Modified ESPRIT method (SWWMEM) proposed in [12] is 

specifically addressed to analyse electrical waveforms with spectral content up to 150 kHz. In 

this Section, the SWWMEM is analysed in detail. The method provides accurate estimation of 

spectral component parameters, while maintaining acceptable computational efforts. 

Moreover, it is particularly suitable when an accurate contemporary knowledge of low- and 

high-frequency spectral components and of their time behaviour is required, so SWWMEM is 

useful for: 

a. the evaluation of supraharmonic emission; 

b. the definition of adequate power quality indices to introduce standard methods and 

limits; 

c. the study of supraharmonic propagation and impact in power systems; 

d. the definition of new models which can emulate supraharmonic injection; 

e. the use of proper adaptive active filters to reduce the emission of supraharmonics. 

The SWWMEM applies a DWT and a sliding-window modified ESPRIT method (MEM) [38] 

(see also Chapter 2) in two successive steps. The DWT divides the original signal into low-

frequency and high-frequency waveforms. The MEM separately analyzes the two pass bands 

for a separate estimation of the low-frequency and high-frequency spectral components. 

The application of the SWWMEM has the following advantages: 

f. it allows a detailed estimation in time of each high-frequency spectral component; 

g. it has ability to provide the optimal time and frequency resolutions in each band to 

obtain an accurate time-frequency representation using the strategy of divide and 

conquer. 

The following Sub-sections first describe the proposed scheme in detail; then, several case 

studies are analysed with reference to synthetic and actual waveforms. 

3.4.1 Model formulation and solving procedure 
As stated in the Section 3.4, a waveform in a power system can be characterized by both high-

frequency and low-frequency (up to 2 kHz) spectral components involving conflicting needs 

in term of time window length and frequency resolution for their spectral analysis.  

The high-frequency spectrum is generally characterized by spectral components centred 

around frequencies not directly linked to the power system frequency and that are commonly 
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defined as ―asynchronous‖ components. The low frequency spectral components are mainly 

constituted by discrete components at frequencies that are linked to the power system 

frequency [14-15]. Moreover, as previously evidenced high-frequency and low-frequency 

spectral components present different time behaviours, being high-frequency components 

often not stationary with fast dynamics, and consequently with frequencies and amplitudes 

that can rapidly vary vs. time. Finally, in the absence of resonance effects, the energy content 

of high-frequency components usually is very small if compared with the characteristic low-

frequency spectral components. 

Eventually, the spectral analysis of waveforms including both low-frequency and high-

frequency spectral components requires an approach different from the traditional approach 

for the low-frequency components only.  

Motivated by above, the main features of the SWWMEM are (i) to isolate the different 

frequency bands of interest and (ii) to separately analyse each band, taking into account the 

different behaviour and needs of low-frequency and high-frequency components (Figure 3.10). 

The SWWMEM involves a two-step procedure as shown in Figure 3.10. In particular, the 

selected values     and      are the bands’ separation frequency and the maximum frequency 

of interest, respectively. In the first step, the number of decomposition levels is calculated, the 

waveform is adequately resampled and then filtered by the decomposition of a DWT, which 

produces a low-frequency band and a high-frequency band of the original waveform. Then, in 

the second step, the two parts of the waveform are resampled and analyzed separately by the 

SW MEM. 

 

 
(a) 

 

 
(b) 

Figure 3.10 – Scheme of the sliding-window Wavelet-Modified ESPRIT method: (a) first and (b) second step  

 

In the first step, the advantage of wavelet suitability for studying signals in different 

frequency bands with different frequency resolution are exploited [26]. Moreover, the DWT, 

differently to a common low/band-pass filter, performs a waveform decomposition that 

guarantees no phase-shifting and no signal leakage among the decomposed bands of 

frequency. This allows that, if all of the reconstructed signals of the different bands of 

frequency are added up, the original waveform is again obtained. In the second step, the 

ESPRIT method is used since it is one of the most accurate parametric methods; in particular: 

(i) ESPRIT method performs better than Prony’s method when the waveform to be analysed 
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is corrupted by noise; (ii) DWT can be couplet better with ESPRIT method than with other 

parametric methods; in fact, if    is the waveform sampling rate, ESPRIT method, as well as 

DWT, is able to detect spectral components up to     . In the following subsections, the main 

features of each of these steps are described in detail. 

 

a)  First step 

The first step of the proposed hybrid method is based on the application of a DWT obtained 

by using a sampled mother wavelet with discrete scale and translation parameters, applied to a 

sampled waveform [24]. 

Specifically, as shown in Chapter 1 and recalled in this Section for sake of clarity, given a 

sequence of samples  ( ) with             and the chosen continuous mother wavelet 

 (
   

 
)  with   and   continuous scale and translation parameters respectively, selecting 

    
 
 and      

 
  , the sampled discrete mother wavelet     ( ) is: 
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where   and   are integers and the values     ,      are fixed [24]. Hence, the DWT of 

 ( ) is provided by: 
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where the symbol   ̌indicates the complex conjugate [24]. 

It is well known that the DWT achieves the decomposition of the waveforms on different 

levels. Two parts are obtained for each level and they represent the approximation    and the 

detail    of the waveform in progressively-halved bands of frequency. In particular, by 

defining the scaling function  (
   

 
) as the aggregation of wavelets with scale factor    , 

and discretizing it as seen for the mother wavelet, at each level  , the approximation    and 

the detail    of the original waveform can be evaluated by the inverse DWT of the 

approximate   ( ) and detailed   ( ) coefficients, computed as follows: 
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where   is related to the translation in time and   is related to the selected frequency band [24]. 

Figure 3.11 shows a representation of the DWT decomposition for a waveform sampled at 

      Hz, where      is the maximum frequency of interest (i.e., 150 kHz).  
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Figure 3.11 – DWT decomposition scheme 

 

The DWT decomposition is often used as a filter bank, since it appears a sort of high and low 

pass band filters in cascade, with two bands of frequency obtained at each level. However, the 

bands are affected by overlap and attenuation at their edges. In the SWWMEM, by using a 

Meyer mother wavelet, multi-level DWT decomposition is achieved by assuming, as the 

number      of decomposition levels, a value that depends on      and on the bands’ 

separation frequency     (i.e., 2 kHz), i.e.,      ⌈    (
    

   
)⌉ , where the symbol ⌈ ⌉ 

indicates the rounding up operation.  

Note that as shown in Figure 3.10, the original waveform   ( ) to be analyzed can be pre-

processed to adapt the sampling frequency to the maximum frequency of interest     , 

obtaining the DWT input waveform  ( ). This pre-processing consists in an upsampling of 

  ( ), in order to avoid filter bounds to be too close to the frequencies that must be detected.  

Once the DWT decomposition is known, two different waveforms,   ( )  and   ( ), are 

obtained. They are the waveform   ( ) (―low-frequency waveform‖), which includes only the 

approximation          at the level        (Figure 3.11) and the waveform   ( ) (―high-

frequency waveform‖), which includes the sum of all of the details    (Figure 3.11). The level 

       instead of      was chosen to avoid the attenuation effects of the overlap 

introduced by the canonical DWT in the ranges of frequencies of interest. 

Both the low-frequency waveform   ( )  and the high-frequency waveform   ( )  are 

separately analyzed in the second step of the SWWMEM (Figure 3.10). 

 

b)  Second step 

The second step of the proposed hybrid method is based on the application of the SW MEM 

described in Chapter 2 [38]. This method is applied for the assessment of the low-frequency 

and high-frequency components included in   ( ) and   ( ), respectively. 

Specifically, denoting with   ( ) , of generic size   , either the sequence of the   -sized 

sampled data   ( ) or the sequence of the   -sized sampled data   ( ) (Figure 3.10), the 

ESPRIT model, shown in Chapter 1, is used to approximate the waveform samples with a 

linear combination of    complex exponentials added to a white noise  ( ) [24]: 
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 ̂ ( )  ∑    
   

  
    (        )     ( )             , (3.11) 

 

where     is the sampling period and   ,   ,   , and    are the amplitude, initial phase, 

frequency and damping factor of the  -th complex exponential, respectively. These are the 

unknown parameters to be estimated by using the transformation properties of the rotation 

matrix associated with the waveform samples. However, as demonstrated in Chapter 2, it was 

shown that a reduction of the unknown parameters in the model (3.11) is possible, considering 

that the damping factors and the frequencies of spectral components in power system 

applications generally vary slightly vs. time, especially at low-frequencies [38]. This is the 

basic principle of the SW MEM, where the estimation of frequencies and damping factors is 

realized only a reduced number of times along the whole waveform to be analyzed, with a 

great improvement in terms of computational effort [38]. In particular, the frequencies of the 

spectral components are initially evaluated in the first sliding window (also called ―basis 

window‖). Then the obtained values are assumed to be known quantities in the successive 

sliding windows (also called ―no-basis windows‖). The same handling is also performed for 

the damping factors.  

Note that a check is conducted in each no-basis window to evaluate if the frequencies and 

damping factors obtained in the basis window can be still considered valid. In particular, the 

reconstruction error of the waveform can be checked; if the reconstruction error is greater 

than a fixed threshold, a new basis window is generated, the frequencies and the damping 

factors are updated and these new values are imposed in the following no-basis windows [38]. 

This check makes the SW MEM also suitable for the high-frequency components assessment, 

since they might significantly vary vs. time as previously mentioned. 

The accuracy of the results and the computational effort of the SW MEM, both for the low-

frequency waveform and high-frequency waveform, are influenced significantly by the 

number of exponentials,   , by the selected order    
 of the correlation matrix and by the 

sampling frequency    
 [37].  

 

c)  Further details on the presented method performances 

It is worthwhile to outline the following considerations:  

(1)Thanks to the DWT decomposition in the first step, both   ( ) and   ( ) include a 

reduced number of spectral components than the original sequence  ( ) , so the 

analyses of these waveforms require smaller values of    than the analysis of the 

original sequence  ( ).  

(2)Since   ( )  include only high-frequency components, the duration of the analysis 

window for this waveform can be chosen shorter than that for the spectral analysis of 

  ( ), consequently reducing the value of    
.  

(3)Since the maximum frequency that the ESPRIT method and therefore the SW MEM is 

able to detect is half of the sampling frequency    
 [37], the low frequency waveform 

  ( ) can be downsampled to only      (two times the bands’ separation frequency), 

reducing the number of samples in each window and, once again, the global 

computational burden. 
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Note also that to prevent the problem associated with the attenuation introduced by the DWT 

decomposition, only the spectral components over     (i.e., 2 kHz) were stored when 

analyzing   ( ), whereas the spectral components up to     were stored when analyzing 

  ( ). 

Finally, it is important to observe that since the duration of window for the spectral analysis 

of   ( ) is shorter than that for the spectral analysis of   ( ), the SWWMEM could provide a 

number of high-frequency spectra greater than the number of spectra of the low-frequency 

waveform. This result is in accordance with the need for having a higher time resolution for 

the detection of the high-frequency components, since these components generally vary vs. 

time more than the low-frequency components. So, also the SW MEM limits, observed in 

Chapter 2, in the detection of time-varying supraharmonics are overcome in SWWMEM by 

analyzing separately the low-frequency and the high-frequency waveform. 

3.4.2 Numerical applications 
Several numerical analysis of synthetic and measured waveforms in different operating 

conditions of typical generation systems and loads were performed. For sake of conciseness, 

only three case studies are shown in this Section. Specifically, the first two case studies 

analyse synthetic waveforms while the third case study is an actual waveform measured at the 

PCC of fluorescent lamps installation. In particular, the second synthetic waveform is the 

same analysed in the case study 5 of Section 2.2.2 in Chapter 2.  

In order to test the effectiveness of the proposed hybrid method (SWWMEM) in terms of both 

computational burden and accuracy, the same waveforms were analyzed also through the 

STFT method (STFTM), selecting a 5 Hz frequency resolution, and through the traditional 

sliding-window ESPRIT method (TEM) [24]. 

Moreover, also the spectrogram presented in [44] is included for all of the considered case 

studies, in order to underline the different approach of SWWMEM in respect to the currently 

available high-frequency signal processing technique. 

All of the waveform analysis were performed in MATLAB environment. The MATLAB 

programs were developed and tested on a Windows PC with an Intel i7-3770 3.4 GHz and 16 

GB of RAM. 

 

a) Case study 1 

A synthetic 3 s waveform that emulates a current at the PCC of a PV system equipped with a 

full-bridge, unipolar inverter, is analyzed (Figure 3.12). Specifically, the waveform was 

assembled assuming a fundamental current of 40 A at 50.02 Hz and a frequency modulation 

index    of the inverter PWM technique equal to 200; then, all odd harmonics up to the 27th 

order (low-frequency components) and a white noise with a standard deviation of 0.001 were 

added.  
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Figure 3.12 – SWWMEM - Case study 1: synthetic current waveform 

 

The sampling frequency of the waveform was 50 kHz, in order to provide the most 

appropriate operating conditions for the parametric methods; this choice allowed the detection 

of the spectral components around the order     , that are the most significant introduced by 

the inverter PWM and whose amplitudes were fixed up to 2% of the fundamental, in order to 

emulate the behaviour of the PV system during high-irradiance conditions [49]. 

A resampling to 100 kHz was required in the first step of the SWWMEM, in order to 

guarantee an uncorrupted estimation of the spectral components of our interest. Moreover, 

fixing the bands’ separation frequency     equal to 2 kHz, the number      of decomposition 

levels was 5. 

For the TEM, the error threshold was fixed equal to 10
−5

, and the window of analysis moves 

by 0.04 s without overlap. The same setting was chosen also for the spectral analysis of the 

low-frequency waveform (downsampled to 5 kHz) through the SWWMEM. For the analysis 

of the high-frequency range waveform, instead, the error threshold was fixed equal to 10
−4

, 

and the window of analysis moves by 0.018 s without overlap. 

Table 3.11 shows the average percentage errors of the frequencies (Table 3.11.a) and of the 

amplitudes (Table 3.11.b) for five selected spectral components. These spectral components 

are the fundamental, the 3rd and the 11th harmonic (low-frequency components) and two 

components (       and      ) linked to the inverter switching frequency (high-

frequency components). The SWWMEM seems to outperform the STFTM, since it provides 

average percentage errors that are globally very similar to those obtained by the TEM, both 

for amplitude and frequency estimation. 

In particular, for the low-frequency spectral components, the errors of SWWMEM are slightly 

lower than that of TEM, while SWWMEM provides average percentage errors on frequency 

and amplitude that are two and three orders of magnitude lower than those obtained through 

the STFTM. 
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Table 3.11 - SWWMEM - Case study 1: (a) average percentage errors of frequency; (b) average percentage 

errors of amplitude. 

Average Errors of Frequency [%] 

 Fundamental 3rd harmonic 11th harmonic              

TEM 28·10
-6

 660·10
-6

 41·10
-6

 3.4·10
-6

 19·10
-6

 

SWWMEM 8.7·10
-6

 260·10
-6

 37·10
-6

 0.14·10
-6

 17·10
-6

 

STFTM 0.040 0.040 0.040 0.040 0.040 

(a) 

 

Average Errors of Amplitude [%] 

 Fundamental 3rd harmonic 11th harmonic              

TEM 140·10
-6

 0.017 0.0031 0.011 0.092 

SWWMEM 460·10
-6

 0.0029 0.0011 0.010 0.023 

STFTM 0.060 0.70 0.25 82 88 

(b) 

 

For the high-frequency components, the average percentage errors on the amplitudes obtained 

by SWWMEM show a significantly improved accuracy compared to the errors obtained 

through STFTM; in fact, STFTM errors are greater than 82% and are affected by spectral 

leakage problems that increase as the frequency increases. Also in this range of frequencies, 

the SWWMEM provides errors very close to the TEM errors, and they do not exceed 0.09% 

in amplitude and 2.5·10
−5

% in frequency. Similar mean errors were observed for all the 

spectral components of the whole waveform using both the SWWMEM and the TEM. 

However, SWWMEM generally seemed to produce slightly lower amplitude mean errors than 

TEM.  

Note that also the grouping, recommended by the IEC, both for the low-frequency 

components (using a 200 ms analysis window) and for the high-frequency components (using 

a 100 ms analysis window) was evaluated. This post-processing provides, for the low-

frequency components, percentage errors on the amplitude practically coincident with the 

values obtained for the STFTM in Table 3.11. Conversely, for the high-frequency 

components, the grouping provides an aggregation of spectral components centered around 

fixed frequencies equal to 19.9 kHz and 20.1 kHz, as shown in Figure 3.13. It is clear that at 

high-frequency, this aggregation allows only to detect approximately the allocation of the 

energetic content around the fixed frequencies.  

In Figure 3.14 the spectrogram with 1 kHz frequency resolution and 1ms time resolution is 

shown for the considered waveform, in order to underline the different approach of the 

spectrogram to the spectral analysis of wide-spectra waveforms in respect to SWWMEM. 

As shown in Figure 3.14, the spectrogram was able to detect the spectral content both at low-

and high-frequency with reduced computational effort, even if a great spread of color 

intensity around the real spectral components can be observed, cause of the spectral leakage 

and of the too large frequency resolution. In particular, the high-frequency spectral 

components related to the switching frequency appear concentrated around 20 kHz, but, 

unlike SWWMEM, it is impossible to individuate both the correct number of spectral 

components included in that range and each specific frequency and/or amplitude. Moreover, 

also a fake periodical variability in time seems to be introduced by this spectral analysis 

method. Similar behavior can be observed at low-frequency. 
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Figure 3.13 – SWWMEM - Case study 1: comparison between high-frequency International Electrotechnical 

Commission (IEC) grouping and actual high-frequency spectrum 

 

Finally, Table 3.12 shows the computational times required by all of the methods to analyze 

the 3s waveform, per unit of computational time required by STFTM. It is evident that 

SWWMEM requires a computational time comparable to that required by STFTM and that 

TEM requires a computational time that is about 22 times greater than SWWMEM, providing 

however results that are globally affected by similar errors. This is due to the presence of the 

DWT decomposition and of the resampling in the SWWMEM. In fact, they allow to model 

both the low-frequency and high-frequency waveforms with a reduced number of 

exponentials and with a reduced number of samples per analysis window than the TEM. In 

this way, the computational burden of the SWWMEM is low although the method holds the 

accuracy of a parametric method. 

 

 
Figure 3.14 – SWWMEM - Case study 1: time-frequency representation obtained by means the spectrogram 

with 1 kHz frequency resolution and 1 ms time resolution 
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Table 3.12 - SWWMEM - Case study 1: computational time by all of the considered methods in p.u. of time 

required by STFTM 
 Computational time [p.u.] 

TEM 221 

SWWMEM 4.3 

STFTM 1 

 

b) Case study 2 

In this case study, a frequency-modulated, high-frequency spectral component was added to 

the synthetic waveform of the previous case study, obtaining the waveform in Figure 3.15. 

This was made in order to both emulate the presence of secondary emission and to test the 

performance of the SWWMEM in the detection of time-varying spectral components, that are 

typical in the high-frequency range. The added spectral component    ( )  was a tone at 

              with a sinusoidal modulation in frequency, according to Equation (3.12): 

 

   ( )        (          ( )) (3.12) 

 

where: 

   ( )       (     ) (3.13) 

 

and     was fixed equal to the 0.5% of the fundamental amplitude,    was 5 Hz and    was 1 

Hz. The spectral analyses of this waveform were performed through the same settings of the 

previous case study. 

 

 
Figure 3.15 – SWWMEM - Case study 2: synthetic current waveform 

 

Figure 3.16 shows few ms of the actual modulated frequency and its estimations obtained 

through STFTM, TEM, SWWMEM and IEC grouping. Specifically, Figure 3.16.a shows that 

the IEC grouping associates the main part of the energetic content in correspondence of the 

group at 17.5 kHz. Figure 3.16.b shows a focus on the graphical comparison among the actual 
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modulated frequency, the STFTM, TEM and SWWMEM estimations. Note that, since in this 

case the actual value of the spectral component was prior known, for STFTM it is assumed 

that a single component is around 17,598 Hz and the other components are spectral leakage. 

So the modulated component in Figure 3.16 is that with the maximum amplitude value in a 

range of 20 Hz around the actual mean value    . Still, it is clear that STFTM fails the 

detection due to both the spectral leakage problems and the fixed frequency resolution, while 

TEM and SWWMEM are able to clearly identify the modulation. However, the SWWMEM 

seemed to provide the best results for this estimation. 

 

 
        (a) 

 
          (b) 

Figure 3.16 – SWWMEM - Case study 2: comparison among the actual time-varying frequency and its 

estimations obtained through: (a) IEC grouping, STFTM, TEM and SWWMEM; (b) STFTM, TEM and 

SWWMEM 

 

Since the average percentage errors on the estimation of the Table 3.11 spectral components 

slightly varied with respect to the results in case study 2, Table 3.13 shows only the average 
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percentage frequency errors and the average percentage amplitude errors for the added 

spectral component. The results are coherent with the behaviors shown in Figure 3.16, since 

the lowest amplitude and frequency errors were provided by the SWWMEM. In particular, 

STFTM and TEM amplitude errors were two order of magnitude higher than SWWMEM 

amplitude error. Moreover, the average percentage frequency error provided by SWWMEM 

was two and three orders of magnitude lower than the TEM and STFTM frequency errors, 

respectively. 

In Figure 3.17 the spectrogram with 1 kHz frequency resolution and 1 ms time resolution is 

shown for the considered waveform, in order to underline once again the different approach of 

the spectrogram to the spectral analysis of wide-spectra waveforms in respect to SWWMEM. 

 

Table 3.13 - SWWMEM - Case study 2: average percentage errors of frequency and amplitude for the 

frequency-modulated spectral component. 

Average error [%] 

 Amplitude Frequency 

TEM 24 0.0044 

SWWMEM 0.060 27·10
-6

 

STFTM 19 0.010 

 

 
Figure 3.17 – SWWMEM - Case study 2: time-frequency representation obtained by means the spectrogram 

with 1 kHz frequency resolution and 1 ms time resolution 

 

Similarly to the previous case study, in Figure 3.17 the spectrogram was able to detect the 

presence of spectral content both at low-and high-frequency, but, differently to SWWMEM, 

only rough and approximated information can be obtained. In particular, also the contribute of 

the spectral component around 17.958 kHz can be detected, but, in this case the related 

frequency appears time-invariant, since the real frequency modulation of this spectral 

component is not individuated, cause of the spectral leakage problems. 

Finally, Table 3.14 shows the computational time required by the three methods to analyze 

the 3-s waveform, per unit of computational time required by STFTM. Note that the 

SWWMEM required a higher computational time than the previous case study, since the 

frequency variation of the high-frequency modulated component prevented to keep the 
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estimated frequencies constant, requiring often an updating of their value (step 2 of 

SWWMEM). However, the time required by SWWMEM was still one order of magnitude 

lower than the time required by TEM. 

 

Table 3.14 - SWWMEM - Case study 2: computational time by all of the considered methods in p.u. of time 

required by STFTM 
 Computational time [p.u.] 

TEM 218 

SWWMEM 19 

STFTM 1 

 

c) Case study 3 

A 0.2 s-current waveform measured at the PCC of a single fluorescent lamp powered by high-

frequency ballast was analyzed. The total active power consumption of the lamp was about 

0.1 kW. The current waveform was measured with a Pearson current probe, model 411. The 

probe has its 3 dB cut-off frequencies at 1 Hz and 20 MHz with an amplitude accuracy of 

−0%, +1% in the frequency range of interest. The phase accuracy is less than 1 degree 

between 60 Hz to 333 kHz. The current was then sampled with 12 bits resolution and 10 MS/s 

sampling speed, and a low-pass filter with a cut-off frequency 1 MHz was used for anti-

aliasing purpose. More details on the installation structure, instrument specification and error 

verification of measurement are available in [16]. 

The analyzed current is shown in Figure 3.18; the high-frequency components on the peak of 

the waveform are clearly evident, unlike the high-frequency distortion around the zero 

crossing. 

 
Figure 3.18 – SWWMEM - Case study 3: actual current waveform 

 

However, according to the measurement procedure, based on 10 MHz sampling rate, the 

maximum frequency of interest cannot exceed 5 MHz. In this way, fixing the SWWMEM the 

bands’ separation frequency     to 2 kHz, the maximum number      of decomposition 

levels was 11. A resample to 10 kHz was performed for the low-frequency waveform while 

the high-frequency waveform was downsampled to 250 kHz, since our interest was the 
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detection of the spectral components up to 150 kHz. Then, the two different waveforms, i.e., 

  ( ) and   ( ), were analyzed with a sliding window of 0.04 s and of 5·10
−4

 s, fixing an 

error threshold of 10
−4

 and 10
−3

, respectively. The measured current was downsampled to 250 

kHz also for the analyses through TEM and STFTM, in order to guarantee a correct 

comparison of the methods in terms of computational burden. In particular, for the TEM, the 

error threshold was fixed equal to 10
−4

, and the sliding window duration was fixed to 0.04 s. 

The spectra obtained through the SWWMEM and STFTM were almost similar at low-

frequency. In fact, SWWMEM and STFTM individuated the same significant spectral 

components, though STFTM provided lower amplitudes than SWWMEM cause of the high 

spectral leakage. These low-frequency spectra included a fundamental component with a peak 

amplitude equal to about 0.7 A, and all of the other odd harmonics, whose amplitudes 

globally decrease as the harmonic order increases. These harmonic components reached a 

maximum amplitude equal to 3.6% of the fundamental in correspondence of the third 

harmonic, as shown in Figure 3.19.a. Figure 3.19.a shows the low-frequency spectrum 

obtained through SWWMEM, in percentage values of the fundamental amplitude. Finally the 

TEM detected a reduced number of spectral components at low-frequency than the other two 

methods. Probably, this was due to a too high duration of the analysis window that shifted 

most of the detected spectral components to high-frequency.  

At high-frequency, the STFTM spectral leakage increased, spreading the spectral content and 

missing the detection of specific tones. In particular, a distributed spectral content from 50 

kHz to 90 kHz was observed. The same high-frequency spectrum was also detected by TEM. 

In both the cases, the amplitudes were decreasing from 50 kHz to 90 kHz, with a maximum 

equal to the 0.1% and 0.3% of the fundamental amplitude for STFTM and TEM, respectively. 

Instead, the SWWMEM, due to the shorter analysis window, provided a high-frequency 

spectrum with defined single tones, as shown in Figure 3.19.b. 

The spectrum in Figure 3.19.b is referred to the first 5·10
−4

 s of the waveform shown in 

Figure 3.18, but it is very interesting to note that in the following analysis windows the 

SWWMEM provided a periodic shift of the spectral components around 80 kHz, from 35 kHz 

to 95 kHz. This means that the SWWMEM is able to detect a time varying high-frequency 

spectra. Figure 3.20 shows the time trend of the spectral component with maximum amplitude 

detected in the aforesaid range of frequency. Specifically, Figure 3.20.a shows the frequency 

variation in time, while Figure 3.20.b shows the amplitude variation in time. This component 

could be related to the zero-crossing, since, as shown in Figure 3.20, both the frequency and 

the amplitude variations in time had a periodicity of about 10 ms [16]. Note also that this 

component reached the maximum amplitude (about 0.03 A) at about 50 kHz, namely when 

the positive and negative peaks of the current waveform shown in Figure 3.18 occurred. 

In Figure 3.21 the spectrogram with 1 kHz frequency resolution and 1 ms time resolution is 

shown also for the considered measured waveform, always in order to underline the different 

approach of the spectrogram to the spectral analysis of wide-spectra waveforms in respect to 

SWWMEM. 
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       (a) 

 

         (b) 

Figure 3.19 – SWWMEM - Case study 3: (a) percentage low-frequency spectrum and (b) percentage high-

frequency spectrum obtained through SWWMEM 

 

Figure 3.21 shows the time-varying spectral content in the range from 50 kHz to 100 kHz, so, 

the spectrogram appeared able to detect significant variations in time of the high-frequency 

spectral content. However, differently by SWWMEM, once again, only no-detailed 

information on the specific frequency and amplitude of that spectral component can be 

obtained. 

Finally, Table 3.15 shows the computational times required by all of the methods to analyze 

the waveform, per unit of computational time required by STFTM: the results are coherent to 

what was theoretically expected, since the computational time required by SWWMEM is 

about four time of that required by STFTM, but it is four order of magnitude lower than that 

required by the TEM. 
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        (a) 

 
      (b) 

Figure 3.20 – SWWMEM - Case study 3: (a) frequency and (b) amplitude of a time varying high-frequency 

component obtained by SWWMEM 

 

 

 

Table 3.15 - SWWMEM - Case study 3: computational time by all of the considered methods in p.u. of time 

required by STFTM 
 Computational time [p.u.] 

TEM 1.2·10
5 

SWWMEM 4.4 

STFTM 1 
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Figure 3.21 – SWWMEM - Case study 3: time-frequency representation obtained by means the spectrogram 

with 1 kHz frequency resolution and 1 ms time resolution 

 

3.5 Conclusions 

New hybrid methods based on the joint of non-parametric and parametric methods have been 

presented in this Chapter, aiming to a fast and accurate estimation of all of the spectral 

components included in the waveforms to be analysed. 

In particular, a new three-step method which alternatively applies DFT and Prony method 

with sliding windows was described in Section 3.2. This method does not suffer from DFT 

spectral leakage problems, and it guarantees a significant reduction of computational effort 

compared with the application of the SW Prony applied for the full-band waveform. 

Similarly, new methods for the assessment of the AC supply-side current distortions due to 

PWM ASDs were explained in Section 3.3. These distortions are critical in power systems, 

since they include many harmonic/interharmonics components that vary in time and are 

linked to the double conversion systems that feed asynchronous motors with variable 

frequency. These methods are based on a four-step procedure, and once again the aim is to 

combine the accuracy of the parametric (ESPRIT or Prony) methods with the speed of both 

DFT method and theoretical formulas. 

Finally, a new sliding-window Wavelet-modified ESPRIT scheme, suitable for accurate 

analysis of waveforms that have very wide spectra, was presented in Section 3.4; the scheme 

also guarantees a relatively low computational cost. This method was based on the DWT 

decomposition of the original signal into low-frequency and high-frequency waveforms, 

separately analyzed by the SWWMEM in order to provide optimal time and frequency 

resolutions in each band and, then, an accurate time-frequency representation. 

All of the aforesaid methods have been tested on both synthetic and measured waveforms, and 

also they have been compared with the STFT, with the traditional Prony’s and/or ESPRIT 

method, and with other advanced methods proposed in relevant literature for the same range 

of applications. 
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The numerical experiments confirmed the goodness of the methods presented in this Chapter, 

for their area of applicability.  
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Conclusions 
 

 

 

 

A new advanced modified parametric method (sliding-window modified ESPRIT method) and 

three new advanced hybrid methods (sliding-window Prony-DFT-Prony method, sliding-

window Parametric-DFT-analytical-parametric method and sliding-window Wavelet-

modified ESPRIT method) have been proposed in this thesis. All of them have firstly been 

described theoretically, underlining the benefits in terms of accuracy and computational 

effort. Then, the methods are tested on both synthetic and measured waveforms, in order to 

evaluate their performances by stressing them in different conditions. The effectiveness of 

these new methods was also demonstrated by comparing them with the STFT, with the 

traditional Prony’s and/or ESPRIT method and with other advanced methods proposed in 

relevant literature for the same kind of applications. 

Results generally confirmed that: 

(i) the state-of-the-art methods, although based on different approaches, offer both 

pros and cons to the spectral analysis of time-varying waveforms; 

(ii) the new advanced methods presented in this thesis proved to be an attractive 

choice in order to avoid the main shortcomings of both non-parametric and 

parametric techniques;  

(iii) also, they proved to outperform other hybrid methods specifically addressed to the 

same applications. 

In particular, the sliding-window modified ESPRIT method was compared with the traditional 

ESPRIT method, with the hybrid ESPRIT-DFT method and with the DFT method was 

performed. The main outcomes of the numerical applications are the following: 

(i) the proposed method proved to be particularly beneficial for many waveforms; it 

requires a computational time down to only three times greater than the DFT 

method, while approaching the accuracy of the ESPRIT method;  

(ii) the proposed method can be a good alternative also to the use of the hybrid 

ESPRIT-DFT method, since it generally provides the same while running the 

analysis 5÷8 times faster than the hybrid ESPRIT-DFT method; 

(iii) the proposed method proved to suffer some inaccuracies and higher computational 

burden in the analysis of a wide-spectrum waveform with time-varying high-

frequencies spectral components. However, also the other methods considered for 

the comparison failed the same analysis, confirming the need of new methods 

specifically addressed to this increasingly spreading typology of waveforms.    
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The sliding-window Prony-DFT-Prony method was compared with the traditional Prony’s 

method, with the hybrid ESPRIT-DFT method and with the DFT method. The main outcomes 

of the numerical application are the following:  

(i) the proposed method provideded an accurate estimation of the fundamental period 

and, then, of the harmonics by using a synchronized analysis window to the 

fundamental period; 

(ii) an accurate estimation of interharmonic components was achieved due to the first 

and third step based on the Prony’s method application; 

(iii) the computational time was significantly reduced in comparison to the traditional 

Prony’s method applied for the full-band waveform;  

(iv) the proposed method provided performances of estimation that were similar to 

hybrid ESPRIT-DFT, although little differences in the spectrum have been 

observed due to the different approach of the ESPRIT and the Prony’s methods in 

the detection of the unknown parameters included in their models. 

The sliding-window Parametric-DFT-analytical-parametric method, specifically addressed 

for the assessment of the AC supply-side current distortions due to PWM ASDs, was 

compared with Prony’s method, with ESPRIT method, with DFT method and with the hybrid 

three-step Prony-ESPRIT-analytical method.  

The main outcomes of the numerical application are the following: 

(i) the desynchronization problems of DFT method were overcome, limiting the 

spectral leakage  that is due only to the presence of interharmonics above 100 Hz; 

(ii) the proposed method usually provided more accurate results than the traditional 

Prony’s and ESPRIT methods, benefitting from the division of spectral content 

into different frequency bands; the separate analysis partially avoided the difficulty 

of identifying the proper linear combination of exponentials that fits the analyzed 

waveforms; 

(iii) the accuracy of the proposed method was comparable with the accuracy of the 

hybrid three-step Prony-ESPRIT-analytical method, although requiring a 

significantly lower computational time; 

(iv) the computational burden of the proposed method is up to four orders of 

magnitude lower than the computational burden of the traditional Prony’s and 

ESPRIT methods; 

(v) the time required by the proposed method is comparable to the time required by  

DFT; 

(vi) the ESPRIT-DFT-analytical-Prony combination required the lowest time. 

Eventually, with reference to the sliding-window Wavelet-modified ESPRIT method, the 

problems related to the analysis of wide-spectrum waveforms with time-varying high-

frequencies spectral components have been overcome. The proposed method was compared 

with the traditional ESPRIT method, with the DFT method and with the time-frequency 

representation obtained with the spectrogram. The main outcomes of the numerical 

application are the following: 

(i) being based on the DWT decomposition of the original signal into low-frequency 

and high-frequency waveforms that are separately analyzed by the sliding-window 

modified ESPRIT method, the proposed method provided optimal time and 
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frequency resolutions in each band and, therefore, an accurate time-frequency 

representation; 

(ii) in presence of highly time-varying high-frequency components, the proposed 

method proved to overcome the limits of both the traditional ESPRIT method and 

the DFT method for the detection of the high-frequency components, reaching a 

computational time down to only four times greater than that required by the DFT 

method; 

(iii) the proposed method always outperformed currently available high-frequency 

signal processing techniques, i.e., the spectrogram, in terms of frequency, 

amplitude and time-variability of both the spectral components at low- and high-

frequency. 
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