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Abstract 

The broad topic of the present work is Statics and Kinematics of masonry structures 

made of monolithic blocks, that is rigid bodies submitted to unilateral constraints, loaded 

by external forces, and undergoing small displacements. Specifically, in this work, we 

study the effect, in term of internal forces, of specified loads, by using given 

settlements/eigenstrains to trigger special regimes of the internal forces. 

 

Although our main scope here is the analysis of masonry structures made of monolithic 

pieces, and whose blocks are not likely to break at their inside, the theory we use applies 

also to general masonry structures, such as those made of bricks or small stones. Such 

structures may actually fracture everywhere at their inside, forming rigid blocks in 

relative displacement among each other. If the partition of the structure is fixed in 

advance, we may search the displacement field u, which is a possible solution of a 

displacement type boundary value problem, by minimizing the potential energy ℘ of the 

loads, over the finite dimensional set of the rigid displacements of the blocks. Actually, 

the functional ℘ is linear in u, then, if the supports of the strain singularities, i.e. the 

potential fractures, are fixed in advance, the minimization of ℘ reduces to the 

minimization of a linear functional under linear unilateral and bilateral constraints. 

 

This simple theory, based essentially on Heyman’s model for masonry, is applied to 

cantilevered stairs, or, more precisely, to spiral stairs composed of monolithic steps with 

an open well. In the present work, a case study, the triple helical stair of the convent of 

San Domingos de Bonaval is analysed, by employing a discrete model.  

The convent of San Domingos de Bonaval, founded by St. Dominic de Guzman in 1219, 

is located in the countryside of San Domingos, in the Bonaval district of Santiago de 

Compostela. The majority of the buildings of the convent which are still standing, were 

built between the end of XVII and the beginning of XVIII centuries in Baroque style by 

Domingo de Andrade. A triple helical stair of outstanding beauty and structural boldness 

was also built by Andrade to connect the cloister with the stairs of the main building. 

This extraordinary triple helical staircase consists of three separate inter-woven coils, 

composed of 126 steps each. The three separate ramps lead to different stories and only 

one of them comes to the upper viewpoint. The steps are made of a whole stone piece of 

granite; they are built in into the outer cylindrical wall for a length of 0.3 m, and set in 

an inner stone rib. The steps do not apparently join (or even touch) each other but at their 

very end.  

 

A likely set of given settlements of the constraints is imposed on the structure, and the 

corresponding piecewise rigid displacement is found by minimizing the potential energy. 

Then the dual static problem is dealt with, by identifying the equilibrium of the individual 

steps and of the entire structure.  



 

The whole calculation procedure is carried out with the programming language Matlab. 

After a comparative analysis of the results, in particular with reference to the internal 

forces and internal moments diagrams (torsional and flexural moments, axial and shear 

forces) for all the steps, a possible explanation of the reason why such bold structure is 

standing safely, is given. 

 

Keywords: masonry, unilateral materials, helical stairs, rigid blocks, settlements. 
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1. Chapter_1                                                                                           

OVERVIEW ON MASONRY STRUCTURES 

1.1 Prologue 

Old masonry constructions 

Advances in materials science have made possible the design of materials based on the 

functional optimization of the mechanical properties. Through the modern 

homogenization technique, which describes the material behaviour at a macroscopic 

level, taking into account the material properties at micro or mesoscopic level, it is 

possible to functionally tuning the macroscopic properties of materials.  

Nowadays, it is also possible to represent the plasticity of materials, by quantifying the 

dislocation of their component crystals, and to simulate the propagation and nucleation 

of fractures in brittle materials. 

In this context of progress and innovation, and where attention to seismic safety is in 

continuous growth and development, masonry buildings are perceived by most of the 

modern technicians as old and unreliable constructions, due to the inherent weakness of 

material when compared to the strength and reliability of modern materials. 

However, when we are faced with a masonry construction, as an arch, a tower or a dome, 

we are inevitably impressed and fascinated by its undeniable expressive force, which 

leads us to preserve and keep it, as unquestionable heritage for the community  [1]. 

Besides, as Heyman observes  [2], “the fact remains that two severe earthquakes only 

slightly damaged Hagia Sophia (Fig. 1.1), and the bombardments of the Second World 

War often resulted in a medieval cathedral left standing in the ruins of a modern city. At 

a much less severe level of disturbance, the continual shifts and settlements of 

foundations experienced over the centuries seem to cause to the masonry structures no 

real distress”, giving evidence that masonry constructions exhibit an extraordinary 

stability. 

Heyman notes that ancient and medieval structures are characterized by low stresses, so 

that they work at a stress level which is one or two orders of magnitude below the 
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crushing strength of the material. This condition, combined with correct proportions and 

geometry, may explain the survival of these kind of structures through the centuries. 

Masonry constructions are, indeed, massive structures (Fig. 1.2) and their safety and 

stability are mainly provided by geometry and geometric proportions of the building 

(Fig. 1.3) (so that structural forces may be adequately accommodated), while strength 

plays a secondary role ( [2],  [3]).  

These concepts were clear to old master masons, who had an intuitive understanding of 

forces and resulting stresses, consolidated through successive experiences, trials and 

errors, and whose knowledge has been handed down over time, for centuries, verbally 

or by drawing (Fig. 1.4). 

 

 

 
Fig. 1.1: Interior of the basilica of Hagia Sophia (Istanbul) 
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Fig. 1.2: Examples of masonry constructions a) Parthenon (Atene, Greece); b) Lion Gate 

(Micene, Greece); c) Pantheon (Rome); d) Castel of the Mountain (Andria, Italy); e) Notre 

Dame Cathedral (Paris); f) St. Peter’s dome (Rome) 
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Fig. 1.3: An example of rules of proportion:  

Derand’s rule for buttress design  [4],  [5] 

 

 
Fig. 1.4: Pages of sketchbook of Villard de Honnecourt (from Willis 1859) [2] 
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Unilateral behaviour 

The statics of a masonry element can be compared to the equilibrium of cables, as both 

the cable and the masonry element are composed by a material that can be modelled as 

unilateral. A typical demonstration of this association can be recognized in Gaudì’s 

masterpieces: Gaudì hung chains of various lengths close to each other, arranging them 

so as to achieve the desired result (Fig. 1.5a); then he put a mirror below the built 

structure, in order to perceive the effect from the bottom upwards and exploited this to 

realize his architectural works. Among these, the most famous is the Sagrada Familia, in 

Barcelona (Fig. 1.5b). 

 

 
Fig. 1.5: Sagrada Familia, Gaudì (Barcelona): 

 a) Catenary model; b) View of the frontal façade 

Since ancient times, masonry buildings were built by relying on the material's 

compressive strength only. Masonry is, indeed, an elastic-brittle composite material, 

characterized by a very low tenacity and cohesion compared to the acting forces; both 

mortar and blocks, although sometimes of poor quality, exhibit a very low tensile 

strength, which varies based on how the blocks are relatively positioned among each 

other and how the mortar adheres to the blocks. Therefore, it seems safer to neglect 

tensile strength for these materials, and to assume a unilateral behaviour, in the sense 

that masonry material is incapable to resist tensile forces; the cable behaves in the 

opposite way, being able to withstand traction and no compression (Fig. 1.6).  
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Fig. 1.6: Unilateral behaviour for cables and masonry elements 

Quality of masonry 

Masonry is a composite material made of blocks and mortar. The size and the nature of 

the blocks can be very different from one type of masonry to another (see  [1],  [6]), but 

what it must be understood is that the way in which the stones are put in place is not 

random. Indeed, any masonry structural element is not a bunch of individual elements 

arranged casually, but rather a collection of well-organized units. The science of cutting 

and organizing the stone pattern in masonry is called strereotomy (see  [7]). 

In real masonry structures, one can usually identify large planar joints (e.g. horizontal 

joints in walls) through which large compressive forces are exerted and where, due to 

friction, sliding is not possible; on planes across which the transmission of compressive 

forces is feeble or absent (e.g. vertical planes in walls), the stones are interlocked so as 

to contrast sliding. 

The basic idea is that the main objective of the construction apparatus, realized through 

stone cutting geometry (stereotomy) and proper block disposition, is to avoid sliding. 

For example, in a wall, sliding is contrasted by interlocking along vertical planes and by 

friction on horizontal planes. 

The model of Heyman 

A simple way to describe the behaviour described above, is due to Heyman with his 

model [8], condensed into three basic assumptions: the material is not capable to transmit 

any tensile force; fractures, which are of pure detachment, occur without sliding; the 

material is rigid in compression. 

Heyman’s model is a valuable tool for the analysis of masonry structures, based on their 

unilateral behaviour. For an arch, for example, the unilateral behaviour of masonry gives, 

as an effect, the thrusts in correspondence of the abutments. 
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1.2  The masonry arch and the line of thrust 

Thrust 

The essential elements of masonry constructions can be understood by studying arches. 

These structures, which were invented some 6000 years ago in Mesopotamia, are usually 

composed by individual voussoir stones in mutual contrast among each other. In the 

manual “La pratica del fabbricare”, written by Carlo Formenti (see  [9]), the arches are 

defined as curved structures, whose pieces maintain equilibrium through mutual contrast 

(Fig. 1.7b). These blocks, subject to the force of gravity, transmit inclined forces whose 

line of action is contained within the masonry, and whose vertical component increases 

from the keystone to the springings, while the horizontal component remains constant 

(Fig. 1.7a). Then, an inclined force, called thrust force, is transmitted down to the 

springings, and must be resisted by the buttresses.  

Thrust line 

The arch is in equilibrium if the thrust, transmitted by the stones, is contained within the 

geometry of the arch; thus, a set of compressive stress equivalent to the thrust is obtained, 

and the locus of the points of application of the thrust is called line of thrust. Since the 

arch is a statically redundant structure, it can be in equilibrium under infinite states of 

internal stress and usually there exist infinite regimes of internal compression. 

The line of thrust is exactly the opposite of the equilibrated funicular polygon of a cable 

that maintains the equilibrium among the same forces, as discovered by Hooke and 

hidden in his famous anagram “Ut pendet continuum flexile, sic stabit contiguum rigidum 

inversum” (1675), in which he recognized the mathematical correspondence between the 

suspension bridge and the masonry arch (Fig. 1.8). 

In the centuries that followed, Hooke’s idea has been used to understand the arch 

behaviour through new graphical tools, in particular by using the graphical analysis in 

order to determine possible equilibrium states. A compendium of old and new results on 

masonry arches, can be found in  [7] and  [10]. A real case, which demonstrates this type 

of equilibrium, can be observed for example in the Trevi’s arch (Fig. 1.9), where, in the 

analysis, a distributed effect of the weight of the stone, rather than concentrated, is 

assumed. 

For a stone voussoir arch, it is possible to obtain an equilibrium solution of pure 

compressive forces, by imagining that the weight of each voussoir is supported by two 

compressive forces, which act through the contact surfaces between adjacent blocks (Fig. 

1.7b). 

The line of thrust can be determined mathematically by solving a differential equation 

of the type y’’=q/H, where y is the y-coordinate of the line of thrust, q is the given load 

per unit projected length and H is the horizontal thrust. A simple case is described in  

[11], where the second order equation of the thrust line and the value of the thrust in an 

arch, are obtained for some simple examples. The thrust is the main feature of the arches 

and vaults, determining their structural behaviour, and, according to the thrust value, the 

structures that support them must be designed. 
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Fig. 1.7: Masonry arch:  

a) Etruscan voussoir arch (Durm, 1885)  [12]; b) Mutual contrast effect in voussoir arch 

 

 
Fig. 1.8: Hooke's hanging chain  [2] 

 

 
Fig. 1.9: Trevi’s arch 
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Remark 1. In  [11], some differences between the equilibrium of cables and the 

equilibrium of arches are pointed out: 

1. the cable is a 1d structure that changes its geometry in order to satisfy the equilibrium 

with the external loads, while the arch is a 2d structure that, maintaining unchanged 

its initial shape, search inside itself a pressure line in equilibrium with the external 

loads; 

2. for a cable, of fixed length, there is only one equilibrium geometry, while for an arch 

there are infinite possible pressure lines; 

3. the unilateral condition for the cable is expressed by imposing that the axial force is 

a tensile force and that this axial force is tangent to the cable, regarded as a 1d 

structure, while for the arch it is required that the axial force is a compressive force 

and also that the pressure line is point by point inside the contour of the arch. 

 

Safety of the arch 

Therefore, in the case of a masonry arch, it is possible to find an admissible equilibrium 

solution if one of the infinite lines of thrust can be found, compatible with the unilateral 

assumption of the material, namely entirely contained within the masonry. There exists 

a minimum thickness, able to contain only one thrust line. On the basis of this minimum 

value, a geometric safety coefficient can be introduced, thanks to which it is possible to 

assess the safety of the structure against collapse  [2]. 

Rules of proportions 

The aim of masonry architecture has always been to ensure that the arch would remain 

upright and that the buttresses could absorb the thrust safely, in order to guarantee the 

life of the building for centuries or millennia. In this context, one wonders how the design 

rules were formulated, since the scientific theory of structures was rationally introduced 

only in the nineteenth century.  

There was, obviously, another kind of theory, not scientific but certainly effective, based 

on the geometrical rules of proportions, resulting from trials and errors, and critical 

observation of the masonry building process. 

The effect of settlements 

The most apparent consequence of the essentially unilateral behaviour of masonry is the 

likely appearance of widespread crack patterns, due to settlements or other disturbances 

of the environment. 

As it is observed in  [13]“…One could say that, in absence of any settlements or relative 

movements of the boundary, that is in absence of fractures, the structure is silent. When 

a fracture pattern appears, the structure speaks and tells us a part of its equilibrium story. 

If an arch is not fractured, the presence of the thrust is a purely speculative fact; but if 

cracks open up and three hinges form at the key and at the springings, we have a plastic 

hint of the force pattern..”.  

For example, the arch in Fig. 1.10, subjected to its own weight, is in equilibrium, since 
it is possible to find a thrust line (dashed line in Fig. 1.10a) entirely contained within the 

arch. If the presence of a horizontal settlement determines a mechanism in which three 
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hinges are formed (Fig. 1.10c), one of them at the extrados top and the other two at a 

certain height at the intrados, next to the abutments, then the thrust line must pass through 

these three hinges (Fig. 1.10b). 

Therefore, the settlement determines in the arch a mechanism which selects, among the 

possible infinitely many thrust lines, the actual thrust line. The arch becomes a statically 

determined structure, the thrust line is uniquely determined, and it is possible to know 

the real forces which ensure the equilibrium of the structure. 

 

               
Fig. 1.10: Equilibrium of a masonry arch:  

(a), (b) Line of thrust;  

(c), (d) Collapse mechanism for a masonry arch due to settlements 

An energy criterion 
By considering the positions of the hinges at the intrados as unknowns, the total energy 

of the system can be minimized with respect to these positions. The optimal position of 

these hinges, obtained through minimization of the potential energy ℘, is shown in Fig. 

1.10d. Such position coincides with the points at which the thrust line, passing through 

the extrados top hinge, is tangent to the intrados line (see Fig. 1.10b)  

The displacement is compatible with the given settlements, the internal forces are 

compressive, in equilibrium with the given load, and reconcilable with the 

displacements. Then this is a simple example of solution of a mixed boundary value 

problem, for a structure made of Heyman’s material. 
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1.3  Some historical notes 

Geometrical rules 
It should certainly be highlighted that the medieval builders developed a deep 

understanding of masonry behaviour, although they did not know anything about 

mathematics, elastic theory and strength of materials.  However, this non-scientific 

approach is difficult to accept, without prejudice, by modern architects and engineers, 

who instead feel more confident with an approach based on the concept of strength.  

Vitruvius recognizes in Ezekiel’s chapters the ‘great measure’, namely rod, used by the 

ancient builders in the absence of standard units, and also gives, in his ordinatio, 

proportions for the construction. In the ‘dark age’, his book was copied again and again 

for use in monastic schools and in the masonic lodges and the rules of proportion became 

the heart of the Gothic buildings. They were geometrical rules, found to be effective for 

buildings whose materials worked at low stresses  [14]. 

Galileo 

Galileo, in his Discorsi (1638), writes about the strength of materials and brilliantly 

points out that all these rules, which were mainly proportional, were wrong from the 

point of view of the strength, because of the square/cube law (that is the weight of any 

structure rises with the cube of the linear dimensions and the section of the members 

with the square). So, stresses grow linearly with the size of the structure. Although this 

condition is true and relevant for the modern structure, which are working very near the 

limit stresses, it is irrelevant for all the structures in which the stresses are very low, like 

masonry structures, for which Galileo’s law does not apply  [3].  

Hooke 

Hooke showed how arches worked, in a physical sense, through experiments on model 

arches, and he protected his intuitive understandings into anagrams, published in 1675, 

even if he could not provide the corresponding mathematical analysis. The solution of 

his anagram that is ‘as hangs the flexible line, so but inverted will stand the rigid arch’, 
was published only after his death. However, Hooke knew that by solving the problem 

of the catenary shape problem, he would at the same time found the corresponding arch 

shape able to carry the same loads in compression. 

Gregory 

The mathematical analysis of the catenary problem is given by Gregory in 1697, who 

states that if any thrust line can be found lying within the masonry, then the arch will 

stand. Gregory’s approach was followed by Poleni, in his study of St. Peter’s dome (Fig. 

1.11), and by La Hire (Fig. 1.12), who invented the force polygon and the corresponding 

funicular polygon for the arch and realized that a necessary condition to ensure the arch 

stability was the presence of friction between the voussoir interfaces, to prevent sliding.  

 



Chapter 1 - OVERVIEW ON MASONRY STRUCTURES 

 12 

 
Fig. 1.11: St. Peter’s dome: Poleni’s hanging model constructed to check the stability of St. 

Peter’s dome (Poleni, 1748) [15],  [16] 

 

 
Fig. 1.12:Wedge theory, De La Hire 
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La Hire 

La Hire (in his books of 1695 and 1712) aimed to determine the value of the arch thrust, 

so that the abutments could be designed and then he concluded that the arch would break 

at a section, somewhere between the springings and the keystone, in which a ‘hinge’ is 

developed. The concept of ‘hinge’, through which the forces within the arch pass, 

unlocks the statics of the arch, since the forces and the corresponding stress may be found 

and then the stability of the whole structure can be obtained. 

Couplet 

Two remarkable memoirs on arch thrust were written by Couplet in 1729 and 1730. In 

the first work, Couplet referred to La Hire’s analysis of frictionless case and evaluated 

the forces imposed by an arch on its centering during construction; in the second work, 

by making precise assumptions about material properties, he realized that voussoirs were 

bound together without sliding thanks to friction whilst no resistance to separation was 

offered. In his works, he assumed that ambient stresses are so low that crushing strength 

is of little importance. 

Couplet’s statements are summarized in the three key assumptions about masonry 

material, that is masonry has no tensile strength, it has an infinite compressive strength 

and sliding failure cannot occur. 

Two ways of approaching any structural problem are demonstrated in Couplet’s works, 

namely a static approach, in which the equilibrium is applied and the thrust line is 

considered, and a kinematic approach, in which a pattern of hinges determine a 

mechanism of the structure. Couplet then arrived to a sort of ‘safe theorem’, by stating 

that an arch will not collapse if the chord of half the extrados does not cut the intrados, 

but lies within the thickness of the arch; he also attempted to determine the least thickness 

of a semi-circular arch, which could carry only its own weight, finding the ratio t/R equal 

to 0.101, being t the thickness of the arch and R its radius, and placing at 45° the hinges 

positions. Some two hundred years later, Heyman will determine the correct position of 

the hinges (which is 31° from the springings) and the correct ratio t/R (which is 0.106), 

even if these different results do not have a substantial effect on the analysis. 

Finally, Couplet, by following La Hire’s approach, determined the value of the abutment 

thrust for a generic arch, and then he found that the thrust at the crown act horizontally 

and could consequently evaluate the magnitude of the abutment thrust, through which 

the piers’ dimensions could be evaluated. 

Danyzy 

Couplet’s contribution was crucial for a correct and complete solution to the problem of 

arch design, in 1732 an experimental confirmation of his approach was given by Danyzy 

(see for example Fig. 1.13 in which Danyzy indicates the use of arch and buttress plaster 

models to investigate collapse mechanisms due to support displacements), and by 1740 

this theory could be applied more generally to the analysis of masonry. 

 



Chapter 1 - OVERVIEW ON MASONRY STRUCTURES 

 14 

 
Fig. 1.13: First experiments on the collapse of arches with  

small gypsum block models, Frézier (1739) [14] 

Other contributions to the old theory 

In 1743, Poleni gave his contribution in a report on St. Peter’s dome, where meridional 

cracks had opened up; thanks to the previous discoveries by La Hire, Couplet, Hooke 

and Gregory, he determined, through equilibrium considerations, experimentally the 

thrust line and, he et al., also suggested the installation of extra ties in order to contain 

the horizontal thrust. 

Coulomb 

A big contribution to the major problems of civil engineering, that is the strength of 

beams and columns and the thrust of soil and arches, was given by Coulomb in 1773. 

Coulomb’s solutions were obtained by combining equilibrium equations with a 

knowledge of material properties. In particular, Coulomb’s solutions for arches are only 

marginally referred to the strength of the material (masonry), being rather a search of 

stability through the equilibrium, coupled by principles of maximum and minimum. 

Thus, he did not examine the strength of the arch, but rather its working state, that is the 

numerical value of the thrust. 

The theory of masonry arches was rigorously completed by Coulomb, who, assuming 

that slip among stones was prevented by friction, stated that in practice failure always 

occur when a sufficient number of hinges between voussoirs are developed. Coulomb 

also defined the minimum and maximum thrust values, within which the arch can be 

considered stable. His work was assimilated slowly into the technical education of 



Chapter 1 - OVERVIEW ON MASONRY STRUCTURES 

 15 

French engineers, as Navier; a definitive exposition of arch theory was given in 1845 by 

Villarceau, who developed a ‘safe’ inverse design method, presented in the form of 

tables, by imposing that the centre line of the arch must coincide with one of the infinite 

possible thrust lines for the given loads. 

Navier 

Claude-Louis Navier (1785-1836) can be considered the father of the modern theory of 

elasticity. Navier’s design philosophy involves the postulation of an elastic law of 

deformation and the assumption of certain boundary conditions that arise in the solution 

of the problem. It was, of course, Navier's linear-elastic philosophy that became 

paramount and was virtually unquestioned for a century and a half as the correct 

approach to structural design. The middle third rule for the arches, which states that the 

arch is safe if the line of thrust passes within a certain fraction of the thickness, say 1/3, 

arises since Navier, within the theory of elasticity applied to a beam, finds that the stress 

profile is linear; in this case, the section is wholly compressed if the centers of pressure 

are within the middle third of the section.  

Castigliano 

In 1879, Castigliano applied his energy theorem to masonry bridges, by assuming elastic 

properties of the stone and mortar, and he obtained solutions for which the bridge did 

not crack if the thrust line falls within the middle-third of the cross section. However, in 

the case of masonry, the theory of elasticity is of little help, as well as the middle third 

rule; the right condition, as Heyman emphasizes, is that the thrust line lies within the 

geometry of the arch. 

The new theory 

Pippard et al. (1936, 1938) showed that, referring to steel voussoirs arch, slightest 

imperfections of fit were able to transform an hyperstatic arch into a statically 

determinated three-pin arch; Pippard also attempted to interpret his results by applying 

principles of minimum elastic energy. 

Only by the twentieth century, when the plastic theorems are introduced, the 

‘equilibrium’ approach of Poleni, Coulomb and Villarceau is justified in order to be 

applied to the study of masonry construction. 

The necessary assumptions for the application of plastic theory to masonry structures are 

the same assumptions made by Couplet: masonry has no tensile strength, masonry has 

an infinite compressive strength and sliding does not occur; these assumptions are used 

by Kooharian, in 1953, to prove that the analysis of masonry structures could be done in 

the framework of plasticity, and that the Theorems of Limit Analysis could be employed  

[17].  

Referring to a hinge opened in a voussoir construction, he considered the yield surface 

of plastic theory, by assuming that the axial load N was transmitted at the hinge and then 

by evaluating the corresponding effective moment. Since nominal stresses are likely to 

be less than the acceptable value of 10 per cent of the crushing strength, suggested by 

Villarceau in the nineteenth-century, the portion of yield surface is usually very 

restricted.  



Chapter 1 - OVERVIEW ON MASONRY STRUCTURES 

 16 

The ‘safe’ theorem of plasticity states that if all stress resultants are equilibrated with the 

loads and lie within the yield surface, then the construction is safe, and cannot collapse. 

The power of this theorem lies in the fact that if it is possible to find any one safe state, 

then the structure is safe. Referring to an arch, this means that if it is possible to find, 

among the infinite thrust lines, one equilibrating the applied loads and located within the 

arch profile, then the arch will not collapse under those loads and it is stable. 

In general, when we approach masonry constructions, subject to low mean stresses, we 

can apply design rules ensuring that the shape of the structure conforms to the shape 

required by statics; these rules are purely geometric. 

1.4 Organization of work 

This PhD thesis is structured into five chapters. 

 

In Chapter 1 an overview of masonry structures is given; then, the essential aspects that 

characterize the behaviour of masonry materials, which were the design criteria since 

antiquity, are described. Finally, some historical notes about design criteria are exposed, 

that led to the modern Heyman unilateral model, recognized as a valuable tool for 

describing the behaviour of a broad class of masonry structures. 

 

In Chapter 2 the characteristic features of unilateral material are set out in detail, also 

recalling the main experimental evidence regarding fracture modes and failure 

mechanism affecting the masonry structures. In addition, the three basic assumptions of 

Heyman’s model are analysed and the essential aspects of simplified uniaxial models, 

namely model zero, one and two, are exposed, referring both to the case 2D and 3D. A 

mention is also made for refined models. Finally, some observations and experimental 

data are reported, related to the mechanical behaviour of masonry. 

 

In Chapter 3 the equations governing the problem of NRNT material (Normal Rigid No-

Tension material) are reported, stating the reasons for which it is possible to study the 

equilibrium of masonry structures with the tools offered by Limit Analysis. Starting from 

the definition of the boundary value problem, singular stress and strain fields can be used 

for unilateral material, such as line Dirac deltas. The equilibrium problem and the 

kinematical problem are described, making reference to statically admissible stress fields 

and to kinematically admissible displacement fields, and also defining the compatibility 

of loads and distortions. 

Finally, the theorems of Limit Analysis are set out, these being closely connected with 

the compatibility of loads and, consequently, with the equilibrium problem. 

The kinematic problem is solved by employing an energy approach. In particular, for 

unilateral materials, under Heyman’s assumptions, it is possible to solve the kinematic 

problem by minimizing the only potential energy associated with the loads. 

 

In Chapter 4 a simple model, based essentially on Heyman’s hypotheses, is applied to 

study the equilibrium of masonry structures made of monolithic pieces, in particular 
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cantilevered stairs, or, more precisely, spiral stairs, composed of monolithic steps, with 

an open well are analysed. 

As observed by Heyman, the basic structural action for a cantilevered stair of small flight 

(quarter or half landing) is twist of individual treads, leading to shear stresses in the 

masonry; such stresses are low for short stairs, but become more and more harmful than 

direct compression for long flights. In a recent work by Angelillo, based on a continuous 

approximation of the stair structure, it is shown as the torsional Heyman’s mechanism 

can be combined with a Ring-Like regime, giving rise to large compressive forces and 

to moderate torsional torques, whose intensity reaches a plateau for long flights. A 

practical confirmation of the complementarity of Heyman and Ring-Like stress regimes 

is here obtained, for the case study of the triple helical stair of San Domingos de Bonaval, 

by employing a discrete model. In order to generate statically admissible sets of internal 

forces, likely sets of given settlements of the constraints are considered and the 

corresponding piecewise rigid displacements are found by minimizing the potential 

energy. The moving part of the structure is statically determined, then the dual static 

problem is dealt with by solving the equilibrium of the entire structure and of the 

individual steps. The whole calculation procedure is carried out with the programming 

language Matlab.  

 

In Chapter 5 the final considerations about the analysis procedure are given, highlighting 

the potential for its application in order to analyse also the equilibrium of other kinds of 

structures, modelled as an assembly of rigid blocks. 
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2. Chapter_2                                                                                                                                                                                

UNILATERAL MODELS FOR MASONRY 

 

Prologue. The main aspect of masonry materials is their physiological weakness under 

tensile loading, which may produce a sense of fear and lack of confidence in modern 

engineers, especially when diffuse crack patterns emerge at masonry surfaces. Actually, 

despite masonry material being rather weak under tensile stresses, when masonry 

structures present a well-proportioned geometry and load distribution, they work 

essentially in a compression regime, showing only local and limited sliding on internal 

surfaces and exhibiting a remarkable stability  [3]. 

Besides their correct proportions and the absence of overall sliding, it is precisely their 

weakness in tension which enables them to accommodate all the possible, and likely, 

small changes of boundary conditions (such as those produced by ground settlements or 

small disarrangements of the stones) with displacement fields which are essentially 

piecewise rigid and require barely any energy cost.  

The price to pay is the appearance of widespread fracture patterns, which, at first sight, 

may look as if dangerous, but most of times are irrelevant and may be forgotten, even 

for centuries, by closing the cracks structurally (e.g. with the scuci-cuci patching 

method) and covering them with plaster. 

The way in which they accommodate these unavoidable disturbances, with very small 

elastic deformations, scant irreversible deformations and only slight changes of the 

geometry, does not compromise the equilibrium of the structure and confers to masonry 

structures a peculiar stability.  

This stability is mainly guaranteed by the shape when the average stress level is low, as 

observed by Heyman  [2]. Geometrical rules of proportion were, in fact, fundamental in 

ancient structural design, (as an example for Gothic buildings) and, when correctly 

applied, lead to stable masonry structures (see  [18],  [19]).  The survival through the 

centuries of ancient masonry buildings has been possible thanks to their low stress levels 
and their shape. In most of the old masonry constructions there is a difference of one or 

two orders of magnitude between the working stresses and crushing strength. Heyman 
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defines ‘correct geometry’ the shape of the structure which guarantees that the structural 

forces may somehow be accommodated satisfactorily. Then, in structures whose 

materials work at low stresses, the effectiveness of the geometrical rules is recognized 

and their stability is governed by the shape  [14]. 

These concepts were clear to old master masons, whose intuitive understanding of forces 

and resulting stresses has been consolidated, by trial and error and by recording past 

experiences, into rules of construction, which have been handed down orally and shared 

secretly in masonic lodges. The modern class of Architects and Engineers, whose design 

approach is strongly based on the strength of materials and the calculation of stresses, 

can hardly accept a design criterion based on shape performances.  

A way to overcome this difficulty is to review these ancient and medieval concepts with 

a modern twist, by adopting the unilateral model, introduced for the first time by Jacques 

Heyman, in his famous article “The Stone Skeleton”  [8]. The three fundamental 

assumptions of this model, when translated into a continuum model, imply a normality 

law for stress and strain, then the analysis of masonry structures can be conducted within 

the frame of Limit Analysis, by applying the static and kinematic theorems on the basis 

of admissible stress and strain fields (see  [13]).  

2.1 Unilateral material 

Heyman refers to masonry buildings as a collection of dry stones, some squared and well 

fitted, some left unworked, and placed one on another to form a stable structure; mortar, 

when it is present, has the function to fill the interstices and does not add strength to the 

construction. Furthermore, the compaction under gravity of the masonry elements, which 

implies a general state of compressive stress and negligible tensions, guarantees the 

stability of the entire masonry construction. Heyman also points out that a low 

background of compressive stress is essential for the stability of the masonry structure, 

since it allows the development of friction forces, which lock the stones against to slip 

and allow the structure to maintain a certain overall shape; this low background stress 

can be as low as one-tenth of the compressive strength of the material, then crushing 

failure is rarely an issue  [2]. 

The fundamental element for these structures is represented by geometrical rules of 

proportion, which have been behind the structural design since antiquity, and are 

therefore those which guarantee the stability of masonry structures; ancient and medieval 

designers, although aware of masonry collapses, apparently did not pose any questions 

about the safety factor or the collapse loads. Heyman cites the studies of Wilars and other 

manuscripts, which have “uncovered some of the mysteries of the masons’ lodges…such 

reconstructed rules of building are entirely numerical, and deal with the practical 

determination of √2 , the relative proportion that one part of a building should bear to 

another, the automatic determination of elevations from plans, and so on…”  [8].  

A modern way to approach the analysis of masonry structures by applying these 

medieval concepts is to adopt a unilateral model, introduced for the first time by Jacques 

Heyman. The model is set in his famous article 'The Stone Skeleton' (1966), where some 

extremely raw, but at the same time effectively, fundamental assumptions are made: 
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i. masonry has no tensile strength; 

ii. stresses are so low that masonry has effectively an unlimited compressive 

strength; 

iii. sliding failure does not occur. 

 

With these three simplifying hypothesis, Heyman obtains a material infinitely strong in 

compression, which cannot accept tensile stresses and does not admit slip. 

The first assumption is quite conservative, since individual masonry blocks may be 

strong in tension, but mortar, if any, is extremely weak in tension; then, an attempt to 

impose tensile forces would pull the work apart  [2]. With the first hypothesis, we assume 

that the material is unilateral, that is it is incapable of withstanding the slightest tensile 

load and can also detach, with a zero energy mode, along any internal surface, namely a 

fracture line; in mathematical terms, for a masonry continuum, this means that the stress 

tensor T is negative semidefinite, that is it belongs to the cone of negative semidefinite 

symmetric tensors  (𝑇 ∈ 𝑆𝑦𝑚− that is  𝑇 ∙ 𝑣 ≤ 0, ∀𝑣), since only compressive stresses 

are allowed. 

The second assumption is made considering the low average values of compressive 

stresses, compared to the compressive strength of the material in traditional masonry 

structures; however, as Heyman points out, stress concentrations are possible and may 

lead locally to splitting or surface spalling. Such distress is usually a local phenomenon 

and does not normally lead to overall failure of the building; however, this statement 

must be questioned in relation to the behaviour of apparently solid walls, which may 

actually consist of two skins containing a rubble fill  [2]. 

With the third assumption sliding along a fracture line is not possible. As noted by 

Heyman, even if the slippage of individual stones occurs, masonry structures generally 

maintain their shape remarkably well, especially when a very small compressive pre-

stress is applied, in order to avoid the slip and the general loss of cohesion  [2]. In 

mathematical terms, for a masonry continuum, this hypothesis means that the total 

fracture deformation Eanel satisfies a normality law with respect to the cone 𝑆𝑦𝑚− of 

negative semidefinite symmetric tensors, then the tension does not work for the inelastic 

deformation and the latter is positive semidefinite (𝐸𝑎𝑛𝑒𝑙 ∈ 𝑆𝑦𝑚+). 

The no-sliding assumption is equivalent to assume infinite friction (see  [13]), and 

friction and sliding are the basic mechanism in block-block, and block-mortar-block 

interactions. The main strength of the simplified unilateral model of Heyman, which 

assumes that sliding is prevented and that friction is infinite, is that, even by neglecting 

these two important phenomena, which are still the most difficult challenges of modern 

Mechanics, it is still able to provide a good prediction on masonry behaviour. 

One of the primary goals for the realization of masonry structures is to avoid the sliding 

phenomenon between the stones, this is achieved by placing the stone blocks according 

to a particular construction pattern: on the horizontal planes, where compressive forces 

are developed by virtue of the vertical loads, the slip phenomenon is hindered by the 

friction forces, while on the vertical planes, where compressive forces are low, the 
phenomenon is limited by interlocking between the blocks. 
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As said, Heyman’s assumptions translate, for unilateral continua, into a normality 

assumption. Such a rule allows to employ the two theorems of Limit Analysis, the static 

and the kinematic ones. In the years that followed, these tools have been used by many 

authors (see for example  [20],  [21],  [22]). With these powerful tools, it is possible to 

describe the behaviour of large masonry structures  [2], while remaining their analysis 

extremely simple, specifically by applying the static and kinematic theorems on the basis 

of concentrated admissible stress and strain fields, as shown by Lucchesi in the case of 

the problem of the equilibrium of masonry-like, no-tension material in 2d, and by De 

Faveri in the case of reinforcement problems  [13]. 

As observed by Angelillo, in the context of masonry structures, only adopting the 

unilateral assumption we can correctly appreciate and interpret the fracture patterns, 

which are physiological in masonry and, rather than being the result of an overload, are 

most often due to small variations of the boundary conditions, as those due to foundation 

settlements or geometrical changes of the environment  [23].  

Geometry and loads are in strong relation with the specific fracture pattern which 

nucleates and evolves into the structure. In  [13], Angelillo observes that in absence of 

any settlements or relative movements of the boundaries, that is in absence of fractures, 

the presence of the thrust in a masonry arch is a purely speculative fact. But if fractures 

appear, in the form of a specific crack pattern, the corresponding force pattern can be 

derived. By discretizing a unilateral masonry structure into rigid blocks, a minimal 

energy criterion can be employed, in order to select the mechanism of the structure, that 

is the field of piecewise rigid displacements responding to given eigenstrains and 

boundary displacements  [13].  

2.2 Masonry behaviour 

In the book  [23], Angelillo describes two kind of approaches, through which the 

modelling of masonry structures is possible, namely simple and refined models. Simple 

models are based on the No-Tension assumption and can be applied to a large class of 

masonry buildings; refined models are more sophisticated, since they take into account 

aspects like softening and brittleness in the stress-strain laws, then they can be applied 

to specific types of masonry, for which the material properties and the geometrical 

constructive characteristics are known in detail. 

The fundamentals of masonry behaviour are represented by some common experimental 

facts, which characterize the behaviour of many kinds of masonry material, as: 

Local failure modes 

Three different modes are recognized. The first one, most frequent and usually irrelevant, 

is associated to the brittleness of the material and manifests itself with detachment 

fractures that separate neatly two parts of seemingly intact material (Fig.  2.1); the second 

is due to high compressive loads with shear and is a kind of mixed mode in which 

fractures of detachment alternate to lines of sliding (Fig.  2.2); the third is due to the 

crushing of the material under essentially pure compression and consists of finer 

detachment fractures, close together and separated by damaged material (Fig.  2.3) and 
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is the most dangerous, since failure under compression is usually sudden; the latter two 

modes occur when the load is critical or close to the collapse value. 

 

 
Fig.  2.1: Detachment fractures 

 
Fig.  2.2: Detachment and sliding fractures 

 
Fig.  2.3: Crushing due to compression 
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Structural failure mechanisms 

Three different modes are described, through which a masonry structure, or a part of it, 

may collapse. The first one is represented by crushing due to compression (Fig.  2.3); the 

second, that is the most frequent under seismic loads, is out of plane rocking (Fig.  2.4); 

the third is in-plane shear, which determines local failure modes of the masonry units in 

their own plane (Fig.  2.5) such as those shown in Fig.  2.2.  

 

 
Fig.  2.4: Out-of-plane rocking  [24] 

 
Fig.  2.5: In-plane failure 

Experimental tests results 

Given the high variance, both in terms of strength and stiffness, the qualitative 

experimental graph shown in Fig.  2.6 can be seen as the uniaxial stress-displacement 

plot of a high idealized masonry material. The main feature of masonry material is that 

the tensile strength 𝜎𝑡 is much lower than the compressive strength 𝜎𝑐; the ratio 𝜎𝑡/𝜎𝑐 is 

usually lower than 0.1 and can be as low as 0.01 or even, locally, vanishingly small. 
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Masonry behaves essentially as an elastic material in compression up to 80-90% of the 

strength, even if the stress-strain plot is non-linear due to the early micro-cracking of the 

material, and, in the post-critical phase, to a sort of plastic behaviour characterized by 

irreversible deformations (Fig.  2.6).  

 

 
Fig.  2.6: Typical uniaxial behaviour 

2.3 Simplified uniaxial models 

In order to describe the mechanical behaviour of an idealized masonry-like material, 

three simplified models can be adopted: 1) Model zero (RNT), 2) Model one (ENT) and 

3) Model two (ML), where the notations “zero”, “one” and “two” are referred to the 

number of parameters required in each model to describe the behaviour of the material.  

In model zero (RNT), where RNT means Rigid No-Tension material, a first 

approximation of the mechanical behaviour of masonry material is given, through a raw 

stress-strain diagram (Fig.  2.7a) where the material is indefinitely strong and stiff in 

compression and it is incapable of sustaining any tensile stress. This is essentially the 

model proposed by Heyman (see  [2],  [8]). The model is named zero since there are no 

material parameters. Both strength and stiffness are considered infinite in compression 

and are neglected in tension, then these two parameters must not be defined in the model. 

In fact, since in this model it is assumed that the material is rigid in compression and can 

elongate freely, if the bar exhibits a positive deformation, it can be interpreted as a 

measure of fracture into the material, either smeared or concentrated. Even if the material 

has a limited repertoire of admissible stresses and strains and exhibits fractures, its 

uniaxial behaviour in elongation is elastic  [23]. Indeed, there is a univocal relation 

between stress and strain: if the bar elongates the stress is zero, then, even if deformations 
occurs, the material does not accumulate any kind of energy.   
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In model one (ENT), where ENT means Elastic No-Tension material, there is only one 

defined parameter, represented by the stiffness in compression, namely the elastic 

modulus E (Fig.  2.7b). In this model, the compressive strength is assumed infinite, whilst 

strength and stiffness are completely neglected in tension. Moreover, the strain can be 

positive or negative; in particular, a positive strain represents the fracture part of 

deformation, while negative strain the elastic part. The ENT material has a global elastic 

behaviour, that is strain determines stress for any value of strain  [23].  

In model two (ML), where ML means Masonry-Like material, besides a defined stiffness 

in compression, there is also a limitation in terms of strength 𝜎𝑐 in compression (Fig.  

2.7c). Then, this model is useful in order to describe failure modes and mechanisms 

described above (see Fig.  2.2, Fig.  2.3, Fig.  2.5). As can be noted in Fig.  2.7c, the 

material exhibits a perfectly plastic behaviour in compression with an incremental 

constitutive response, the actual stress state is path dependent, that is it is determined by 

the whole strain history. Moreover, the anelastic deformation is composed by a reversible 

fracture part and in an irreversible crushing part; hence, the material is perfectly plastic, 

due to different behaviour in tension (elastic fracture) and compression (incremental 

plasticity), then the plastic deformations cannot be cancelled by reversing the strain  [23]. 

In this model, the elastic modulus E and the strength  𝜎𝑐 in compression are defined, 

while strength and stiffness in tension are neglected. 

 

 
Fig.  2.7: Simplified models: a) model zero; b) model one; c) model two 

2.4 Three-dimensional Simplified Models 

For real applications, these three simplified models must be extended to the three-

dimensional space. The No-Tension assumption translates to the condition that the stress 

tensor belongs to the cone of negative semidefinite symmetric tensors (𝐓 ∈ 𝑆𝑦𝑚−). The 

introduction of a convenient rule for the latent part of the deformation is necessary, that 

is the strain sustaining the unilateral constraint on the stress; this rule considers that no 

sliding along the fracture line occurs, that is the total fracture strain satisfies a normality 

law with respect to the cone of negative semidefinite symmetric tensors, namely 
(𝐓 − 𝐓∗) ≥ 0, ∀ 𝐓∗ ∈ 𝑆𝑦𝑚−. Such normality law, which is equivalent to 𝐓 ∙ 𝐄𝑎 =
0   & (𝐄𝑎 ∈ 𝑆𝑦𝑚+), allows for the application of the static and kinematic theorems of 

Limit Analysis. 
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The linear elastic assumption in compression in model one, can be generalized in case 

we refer to an isotropic material, by introducing a convenient Poisson ratio, usually set 

for masonry between 0.1 and 0.2. By combining the normality law with the linear elastic 

assumption in compression, the global response of model one is elastic, as well as hyper-

elastic, that is path independent.  

The isotropy restriction also simplifies the model two, where, besides the definition of 

the compressive strength 𝜎𝑐 , the shape of the limit compressive surface must be given. 

Even if the RNT model is rather raw, it is the only one appropriate for old masonry 

constructions, as acknowledged by many masonry experts (among which Heyman 

(1955), Huerta (2006) and Como (2010)), since the elastic models are incapable to define 

correctly the initial state of the structure, due to the uncertainties about boundary 

conditions and on the previous construction history  [23]. 

As recognized by Angelillo  [23], the elastic assumption in models one and two provides 

that the given settlements are accommodated by means of a small displacement 

mechanism, that is a kind of rigid body relative displacement of some parts of structure; 

then, the stress produced during the nucleation and growth of the fracture, necessary to 

activate the mechanism, are almost completely released, and the final state can be 

considered an essentially stress free reference state. 

By adopting the simplified models, we obviously neglect many aspects of real masonry 

mechanical properties, such as damage since the early stages of loading, which determine 

a stiffness reduction and a non-linear trend in the stress-strain plot; the brittle behaviour 

in tension, because of which energy is expended to open a crack; the fact that sliding is 

ruled by friction (then the anelastic strains and strain rates are not purely normal); the 

fact that ductility, when present, is rather limited, and finally that the elastic and anelastic 

responses are anisotropic; furthermore, in the anelastic compressive behaviour, after an 

initial hardening phase, a subsequent phase of softening is observed; under extreme 

conditions, there is also a sort of viscoelastic behaviour, since the cyclic response is 

hysteretic and the stress-strain plot depends on the rates; when large displacements 

occur, geometric non-linearities must be taken into account. 

Some of these more sophisticated aspects of masonry behaviour are described in §2.6. 

2.5 Elastic solutions versus Limit Analysis  

Once we accept the unilateral hypothesis as the basic assumption to capture masonry 

behaviour, still we have the option to consider deformability in compression, that is to 

adopt model zero or models one and two. 

It should be noted that by applying the rigid unilateral model, we give up the idea of 

searching the actual stress state of the structure, and we limit our interest to the structural 

safety assessment with the tools offered by the Limit Analysis.  

Indeed, the lack of information about the construction history, the presence of stone 

rearrangements and of unknown settlements in real structures, makes the Elastic 

Analysis the wrong tool to study the equilibrium of the structure correctly, since, for 

overdetermined structures, the elastic solution is extraordinary sensitive to very small 

variations of these unknown conditions. In other words, the ‘actual’ state of the structure 
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could be determined knowing exactly all the conditions that affect the solution, 

considering the detailed material properties and taking into account the compatibility of 

deformations; but, as noted by Heyman  [2], “the ‘actual’ state can indeed be determined, 

but only by taking account of the material properties (which may not be well-defined for 

an assembly of say stones and mortar), and by making some assumptions about 

compatibility of deformation – for example, the boundary conditions at the abutments of 

the arch. Even then, it must be recognized that the ‘actual’ state of the structure is 

ephemeral; it could in theory be determined if all the conditions affecting the solution 

were known exactly, but a sever gale, a slight earth tremor, a change in water table will 

produce a small change in the way the structure rests on its foundations, and this will 

produce an entirely different equilibrium state for the structure”. 

For this reason, the Elastic Analysis should be replaced by Limit Analysis, which is 

based on a fundamental premise: if we take two seemingly identical structures, which in 

fact have small imperfections, different from each other, so they are in different initial 

states, and they are slowly loaded up to reach the collapse condition, we will find that 

their collapse loads, and thus their ultimate strength values, are identical. Then, we arrive 

to the conclusion that small initial imperfections do not affect the ultimate strength of 

the structures  [2]. 

Hence, we give up the search of the ‘actual’ state of the structure, which is ephemeral, 

while we focus on the way in which this can collapse. Obviously it is not expected that 

the structure really collapses, a calculation is made, in which one imagines that the loads 

are increased by a certain factor; then, by applying the Static Theorem of Limit Analysis 

in the context of masonry structures, it must happen that a balanced stress field can be 

found that is compressive, which means that the stresses at every cross-section of the 

structure are less by some margin than the yield stress of the material, then the real 

structure is subject to working loads ‘lower’ than the ultimate ones, and will not collapse. 

In fact, as noted by Heyman, “the power of this safe theorem is that the equilibrium state 

examined by the designer need not be the actual state …if the designer can find a way 

in which the structure behaves satisfactorily, then the structure itself certainly can”  [2]. 

2.6 Refined models 

Masonry is a heterogeneous assemblage of units and joints, being the units represented 

by bricks, adobes, blocks, irregular stones and others, while mortar can be made of clay, 

bitumen, lime/cement, glue or other (see Lourenço and Milani in [23]). Thus, considering 

the enormous number of possible combinations given by the geometry, the nature of 

units and mortar and the arrangement of units, the first basic aspect to be clarified should 

consist in what we consider as masonry material. Of course, the analysis of regular 

masonry structures, with a regular arrangement of units and, consequently, a periodic 

repetition of the microstructure, provides important information in that sense. 

Experimental tests are rather difficult. The first difficulty is represented by the fact that 

the ‘microscale’ of the material is large, compared to the actual structural size. 

Furthermore, the behaviour of masonry depends, besides on the composition of units and 

joints, also on the arrangement and the treatment of units, which can be polished, sawn 

or artificially made with rough. Besides, the innumerable variations of masonry, the large 
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scatter of in situ material and the impossibility of reproducing it all in a specimen, forced 

the experimental research in the last decades to concentrate on brick block masonry.  

Different representations are possible (see for example  [25],  [26],  [27]), depending on 

the level of accuracy and the simplicity desired: (a) micro-modelling, where the 

geometry of units and joints is directly considered and the constitutive laws are obtained 

experimentally; (b) macro-modelling, where units and joints are smeared out in the 

continuum and the constitutive laws are obtained experimentally; (c) homogenization, 

where the micro-structure is handled mathematically in terms of geometry and material 

data to obtain a smeared continuum model; (d) structural component models, where 

constitutive laws of structural elements are directly provided in terms of internal forces, 

such as shear force or bending moment (and related generalized displacements), instead 

of stresses and strains  [23], seeFig.  2.8: 

 

 
Fig.  2.8: Modelling approaches for masonry:  

a) representation of regular running bond masonry; b) micro-modelling; c) macro-

modelling; d) homogenization; e) illustrative structural component models, with beam 

elements or macro-blocks [23] 

2.7 Mechanical behaviour, observations and numerical data 

A basic aspect in the mechanical behaviour of masonry is softening, which, if it is not 

abrupt, that is it consists in a gradual decrease of the mechanical resistance under a 
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continuous increase of the deformation applied, provides to the material a sort of 

ductility. 

In (Fig.  2.9) the experimental behaviour of masonry under tensile and compressive 

actions is depicted, where 𝑓𝑡 is the tensile strength, 𝑓𝑐 is the compressive strength, 𝐺𝑓 is 

the tensile fracture energy and 𝐺𝑐 is the compressive fracture energy. Softening is one of 

the main features of material which fail due to a process of progressive internal crack 

growth, like brick, mortar, stone or concrete.  

This phenomenon had been well identified for tensile failure, as well as it had been 

observed for shear failure, in which also an associated degradation of cohesion occurs; 

furthermore, for compressive failure, the behaviour is governed both by local and 

continuum fracturing processes. Referring to the experimental results, the shape of the 

non-linear response is also considered a parameter controlling the structural response, 

even if for engineering applications, this seems less relevant than the other parameters  

[23]. 

 

 
Fig.  2.9: Softening and definition of fracture energy:  

a) tension; b) compression 

Experimental tests show how the properties of masonry strongly depend on its 

constituents ones, as well as the interface between mortar and units controls the joints 

behaviour  [23]. It is also noteworthy that the bond between unit and mortar is often the 

weakest link in masonry assemblages and that the non-linear response of the joints, 

which is controlled by the unit-mortar interface, is one of the main features of masonry 

behaviour. In particular, the unit-mortar interface is affected by two different 

phenomena, namely the tensile and the shear failure, described by Lourenço et al. as 

Mode I and Mode II.  

The parameters needed for the tensile mode (Mode I) are the bond tensile strength 𝑓𝑡 and 

the bond fracture energy 𝐺𝑓. The factors that affect the bond between unit and mortar are 

highly dependent on the units, on the mortar and on the workmanship. The Eurocode 6 

provides indications about the characteristic value of the bond tensile strength. The shear 

response (Mode II) of masonry joints is affected by the ability of the experimental tests 

to generate a uniform stress state in the joints, since the equilibrium constraints 

determines non-uniform normal and shear stresses in the joints. As noted in  [23], in 

order to obtain the post-peak characteristics, the stress normal to the bed joint should be 
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maintained constant during testing. Experimental results provide an exponential shear 

softening diagram with a residual dry friction level. 

The main structural masonry property is represented by the compressive strength of 

masonry orthogonal to the bed joints and it is widely recognized that the precursor of 

masonry failure is due to the different elastic properties of unit and mortar. There are 

different formulas, which predict the compressive strength of masonry as a function of 

its components mechanical properties (Eurocode 6, OPCM 3431, PIET-70), even if they 

are affected by the direction of compressive load, the quality of mortar, the type of stone, 

the masonry bond and the masonry types. 

With reference to the Italian Code for Constructions (DM 14.1.2008), the values of 

strength in compression fc and shear ft of different types of coarse masonry with poor 

mortar are reported below (Tab. 2.1).  

Then, with reference to Model Code 90 (CEB-FIP, 1993), the expressions of Gc and Gf, 

namely the compressive and tensile fracture energy are given: 

 

𝐺𝑓,𝑐 = 15 + 0.43𝑓𝑐 − 0.0036𝑓𝑐
2 ,  (2.1) 

 

𝐺𝑓 = 0.04𝑓𝑡
0.7 ,  (2.2) 

 

 

with 𝑓𝑐 and 𝑓𝑡 expressed in N/mm2 and 𝐺𝑓,𝑐 in N/mm. As can be observed in Tab. 2.1, 

the values of tensile fracture energy are negligible, compared to the compressive ones.  
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Tab. 2.1: Reference mechanical strength and stiffness of different types of coarse masonry 

with poor mortar. Compressive and tensile strength fc and ft, compressive and tensile 

fracture energy Gc and Gf   
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3. Chapter_3                                                                                                                                                                                         

NORMAL RIGID NO-TENSION (NRNT) MODEL  

Prologue. In this chapter, we adopt the simplest possible unilateral model for masonry, 

namely the Normal Rigid No-Tension model. 

The fundamental assumptions for the NRNT model, are the no-tension assumption and 

the normality law of the total strain (coinciding with the anelastic strain) to the cone of 

admissible stress states. Thanks to the rule of normality, the theorems of Limit Analysis 

can be applied, in order to assess the ultimate capacity of masonry buildings, described 

through a unilateral model.  

When adopting the No-Tension assumption, the systematic use of singular stress and 

strain fields can be a powerful tool in the analysis of the structural model. Singular strains 

are commonly used in perfect plasticity, while the use of singular stress fields, although 

introduced for the first time in a mathematically unconscious way by Méry  [28](1840), 

has been rigorously formulated by Lucchesi, Silhavi and Zani, only in 2005  [29]. 

3.1 The Rigid No-Tension material 

The masonry structure is identified with the set Ω = Ω ∪ ∂Ω𝐷, i.e. it is considered closed 

on ∂Ω𝐷 and opened on the rest of the boundary, ∂Ω𝐷 being the constrained part of the 

boundary. The body is composed of Rigid No-Tension material, that is the stress T is 

negative semidefinite: 

 

𝐓 ∈ 𝑆𝑦𝑚−, (3.1) 

 

the effective strain E*=E(u) – E, is positive semidefinite: 
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𝐄∗ ∈ 𝑆𝑦𝑚+, (3.2) 

 

𝑆𝑦𝑚− , 𝑆𝑦𝑚+  being the convex cones of negative semidefinite and positive semidefinite 

symmetric tensors and E being the given eigenstrains, and the stress T does no work for 

the corresponding effective strain E*: 

 

𝐓 ∙ 𝐄∗ = 0 . (3.3) 

 

The effective strain E* is the latent strain, that is a positive definite tensor field, which 

does no work for the corresponding stress, and represents detachment fractures (see  

[30]). E* is a sort of “reaction” deformation associated to the constraint on stress (3.1). 

In order to avoid trivial incompatible loads (s, b), it is assumed that the tractions s satisfy 

the condition:  

 

𝐬  ∙ 𝒏 < 0   ,   or   𝐬 = 𝟎   ,   ∀𝐱 ∈  𝜕Ω𝑁  . (3.4) 

 

In the plane case (n=2), conditions (3.1) and (3.2) can be written as follows: 

 

𝑡𝑟𝐓 ≤ 0    ,    𝑑𝑒𝑡𝐓 ≥ 0  , (3.5) 

  

𝑡𝑟𝐄∗ ≥ 0    ,    𝑑𝑒𝑡𝐄∗ ≥ 0  . (3.6) 

 

3.1.1 The boundary value problem 

We consider the typical boundary value problem (BVP) for a continuum 2d body Ω, 

whose boundary 𝜕Ω is partly loaded and partly constrained. Then, we consider the 

equilibrium equations and the boundary conditions for the stress field, as well as the 

normality law for the inelastic strain, which arises when a detachment occurs. 

It is assumed that the body Ω ∈ ℝ𝑛 (here n=2), loaded by the given tractions s on the 

part 𝜕Ω𝑁 of the boundary, and subject to given displacement u on the complementary, 

constrained part of the boundary 𝜕Ω𝐷, is in equilibrium under the action of such given 

surface displacements and tractions, besides body loads b and distortions E, and 

undergoes displacements u and local deformations so small that the infinitesimal strain 

E(u) is a proper strain measure.  

The data of the problem are collectively denoted as d = (u, E; s, b). When eigenstrains 

are considered, under the small strain assumption, the total strain E(u) is decomposed 

additively as follows: E(u)=E* + E, being E* the effective strain of the material. 

 

The boundary value problem can be formulated as follows: 

“Find a displacement field 𝒖 and the allied strain 𝑬, and a stress field 𝑻 such that 
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𝐄∗ + 𝐄 =
1

2
(𝛻𝐮 + 𝛻𝐮𝑇)  , 𝐄∗ ∈ 𝑆𝑦𝑚+  ,   𝐮 = 𝐮 𝑜𝑛 𝜕𝛺𝐷  , 

  

(3.7) 

 

 

𝑑𝑖𝑣𝐓 + 𝐛 = 0  ,   𝐓 ∈ 𝑆𝑦𝑚−  ,   𝐓𝒏 = 𝐬  𝑜𝑛 𝜕𝛺𝑁  , (3.8) 

 

 

𝐓 ∙ 𝐄∗ = 0 ”, (3.9) 

 

𝒏 being the unit outward normal to 𝜕𝛺. 

 

We introduce the sets of kinematically admissible displacements 𝐾, and of statically 

admissible stresses 𝐻, defined as follows: 

 

𝐾 = {𝐮 ∈ 𝑆 s. t.  𝐄∗ = 𝐄(𝐮) − 𝐄  , 𝐄∗ ∈ 𝑆𝑦𝑚+ ,   𝐮 = 𝐮 𝑜𝑛 𝜕Ω𝐷 } , (3.10) 

 

 

𝐻 = {𝐓 ∈ 𝑆′ s. t.  𝑑𝑖𝑣𝐓 + 𝐛 = 0   ,   𝐓 ∈ 𝑆𝑦𝑚−   , 𝐓𝒏 = 𝐬 𝑜𝑛 𝜕Ω𝑁 } , (3.11) 

 

𝑆, 𝑆′ being two suitable function spaces. As observed in  [23], a sensible choice for these 

spaces is 𝑆 ≡ 𝑆𝐵𝑉 and 𝑆′ ≡ 𝑆𝐵𝑀, that is the spaces of Special Bounded Variation and 

of Special Bounded Measures. A solution of the bvp for masonry-like structures is a 

triplet (𝐮, 𝐄∗(𝐮), 𝐓) such that 𝐮 ∈ 𝐾, 𝐓 ∈ 𝐻, and 𝐓 ∙ 𝐄∗(𝐮) = 0. 

3.1.2 Singular stress fields 

If the differential equations of equilibrium are considered in a strong sense, the stress 

field T must be differentiable and its divergence must be continuous. On adopting a 

variational formulation, if the material is linear elastic, the minimal request for T is to 

be square summable, that is: 

 

√∫ 𝐓 ∙ 𝐓𝑑𝑎
Ω

< ∞. 
(3.12)  

 

For some rigid perfectly plastic materials (such as rigid unilateral materials), less regular 

and even singular stresses may be admitted. The minimal request for such materials is 

that T be summable: 

 

∫ √𝐓 ∙ 𝐓𝑑𝑎
Ω

< ∞ . (3.13)  
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If one admits stress fields that are only summable, the set of competing functions 

enlarges to bounded measures, that is to summable distributions 𝐓̃: 

 

∫ |𝐓̃|
Ω

< ∞, (3.14)  

 

which, in general, can be decomposed into the sum of two parts: 

 

𝐓̃ = 𝐓̃𝐫 + 𝐓̃𝐬 , (3.15)  

 

where 𝐓̃𝒓 is absolutely continuous with respect to the area measure (that is 𝐓̃𝒓 is a density 

per unit area) and 𝐓̃𝒔 is the singular part. 

 

If the stress field is summable (and also if it is square summable), it is not differentiable 

in a strong sense, and the equilibrium equations have to be reformulated in variational 

form, e.g. through the Virtual Work equation: 

 

∫ 𝐓 ∙ 𝐄(𝛿𝐮)𝑑𝑎
Ω

= ∫ 𝐬 ∙
𝜕Ω𝑁

𝛿𝐮𝑑𝑠 + ∫ 𝐛 ∙ 𝛿𝐮
Ω

𝑑𝑎  , ∀𝛿𝐮 ∈ 𝐾0,  (3.16) 

 

where 𝐾0 is the set of statically admissible stress field, whose expression is: 

 

𝐻° = {𝐓° ∈ 𝑆(Ω)𝑠. 𝑡. 𝑑𝑖𝑣𝐓° = 𝟎 , 𝐓°𝒏 = 𝟎 𝑜𝑛 𝜕Ω𝑁, 𝐓° ∈ 𝑆𝑦𝑚−},  (3.17) 

 

Singular stresses require also special modifications of the boundary conditions; the trace 

of the stress 𝐓 on the loaded part of the boundary is not given by 𝐓𝒏 if 𝐓 is singular. 

As reported in  [30], when we consider the boundary conditions related to the stress 

tensor 𝐓, the emerging stress vector 𝐬(𝐓) on the loaded part 𝜕Ω𝑁, that is its trace at the 

boundary, is not expressed in a Cauchy form 𝐬(𝐓) = 𝐓𝒏, unless 𝐓 is regular. If 𝐓 is a 

line Dirac delta of the form 𝐓 = P δ(Γ) 𝐭 ⊗ 𝐭, and the line of thrust Γ crosses the 

boundary at a point X ∈ Γ at an angle, that is 𝐭 ∙ 𝒏 ≠ 0, then 𝐬(𝐓) = P δ(X) 𝐭. The special 

case in which the line of thrust Γ is tangent to the boundary ∂ΩN, deserves a special 

attention. In such a case, even if any stress vector 𝐬(𝐓) emerges at the boundary due to 

the singular stress, the boundary condition 𝐓𝒏 = 𝐬 must be modified, since singular 

stress concentrated on Γ can balance, wholly or in part, the given tractions 𝐬. Therefore, 

the sign of the normal component of the tractions, given along the boundary, is not 

locally restricted, and, if the boundary is locally concave, purely tangential tractions and 

even tensile loads may be applied. In particular, if the interface is straight, equilibrium 

and material restrictions can be enforced if and only if 𝐬 ∙ 𝒏 ≤ 0, but the quantity 𝐬 ∙ 𝒌, 

where 𝒌 is the unit tangent vector to the boundary 𝜕𝛺, is still not restricted. 
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3.1.3 Singular strain fields 

Furthermore, we recall that a displacement field 𝐮 is said to be compatible if, besides 

being regular enough for the corresponding infinitesimal strain 𝐄(𝐮) to exist, 𝐮 satisfies 

the boundary conditions on the constrained part 𝜕Ω𝐷 of the boundary:  

 

𝐮 = 𝐮, 𝑜𝑛 𝜕Ω𝐷 . (3.18) 

 

For linearly elastic bodies, on adopting a variational formulation, the usual assumption 

is that E be square summable, that is: 

 

√∫ 𝐄 ∙ 𝐄𝑑𝑎
Ω

< ∞ , 
 (3.19) 

 

for some rigid, perfectly plastic (or rigid unilateral) materials, it is sufficient to assume 

that E be summable: 

 

∫ √𝐄 ∙ 𝐄𝑑𝑎
Ω

< ∞ .  (3.20) 

 

As before, the set of competing functions enlarges to bounded measures, that is to 

summable distributions 𝐄̃; then the displacement u can admit finite discontinuities, i.e. 

𝐮 can be a function with bounded variation. If 𝐄 were the whole gradient of 𝐮, the 

summability of 𝐄 would entail: 𝐮 ∈ 𝐵𝑉(Ω), exactly. Since 𝐄 is only the symmetric part 

of ∇𝐮, 𝐮 must belong to a larger space: 𝐵𝐷(Ω). The strain corresponding to 𝐮 is again a 

bounded measure:  

 

∫ |𝐄̃|
Ω

< ∞ .  (3.21) 

 

which, in general, can be decomposed into the sum of two parts: 

 

𝐄̃ = 𝐄̃r + 𝐄̃s .  (3.22) 

 

where 𝐄̃r is absolutely continuous with respect to the area measure (that is 𝐄̃r is a density 

per unit area) and 𝐄̃s is the singular part. 𝐄̃s has support on the union of a set of linear 1d 

measure (the jump set of 𝐮) and a set of fractional measures.  

If 𝐮 ∈ 𝐵𝐷(Ω), that is 𝐮 can be discontinuous, the boundary condition 𝐮 = 𝐮 on 𝜕Ω𝐷 

makes no sense. A way to keep alive the boundary condition of Dirichelet type is to 

identify the masonry body with the set Ω ∪ ∂Ω𝐷 , rather than with the domain Ω (usually 

an open set), and to assume that 𝐮 must comply with the constraint 𝐮 = 𝐮 on the skin 

𝜕Ω𝐷, admitting possible singularities of the strain at the constrained boundary. Then, 

from here on, we identify the masonry body with the set Ω ∪ ∂Ω𝐷. 
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Given the displacement field 𝐮 of 𝐱, by taking the gradient of 𝐮, in a classical sense if 𝐮 

is regular, and in a generalized sense if 𝐮 is singular, the strain 𝐄(𝐮) is derived. Vice 

versa, if 𝐄 of 𝐱 is given, the possibility of integrating the components 𝐸𝛼𝛽 to get (possibly 

discontinuous) components 𝑢𝛼 of 𝐮, is submitted to the necessary compatibility 

conditions (also sufficient if Ω is simply connected):  

 

𝐸11,22 + 𝐸22,11 − 2𝐸12,12 = 0 , (3.23) 

 

where a comma followed by an index, say 𝛼, means differentiation with respect to 𝑥𝛼. 

Only admitting discontinuous displacements this condition can be interpreted in a 

generalized sense and applied (with some care), also to discontinuous, and even singular, 

strains. 

The class of functions that can be used with Heyman’s materials is rather large, since it 

includes both continuous and discontinuous and even singular fields. In particular, 

singular strain fields are associated to piecewise linear discontinuous displacements, 

whilst singular stress fields can be interpreted as the internal forces arising in 1d 

structures located inside the 2d structure. In the present work, we refer to a specific set 

of functions contained in this large class, namely the set of piecewise rigid 

displacements.  

3.1.4 Stress and strain as line Dirac deltas 

When we adopt unilateral models for masonry materials, it makes sense to admit singular 

stresses and strains, that is stress fields 𝐓 and strain fields 𝐄 that can be concentrated on 

lines, named line Dirac deltas. These distributions are not functions in a strict 

mathematical sense, since they assign finite values to all points 𝐱 ∈ Ω, except to those 

belonging to a set of lines of Ω ∪ ∂Ω𝐷, to which infinite values are associated. Anyway, 

these infinite values must be such that these stresses or strains be summable, that is:  

 

∫ |𝐓|
Ω

< ∞  , ∫ |𝐄|
Ω

< ∞ ,  (3.24) 

 

or, in other words, 𝐓 and 𝐄 must be bounded measures. We call 𝑀(Ω) the set of bounded 

measures on Ω ∪ ∂Ω𝐷. Line Dirac deltas are special bounded measures  [23]. 

Hence, we restrict to consider stress and strain fields as being special bounded measures, 

namely Dirac deltas with support on a finite number of regular arcs.  

 

Regarding the strain, special displacement fields of bounded variation can be considered. 

In particular, restricting to discontinuous displacement fields 𝐮 having finite 

discontinuities on a finite number of regular arcs Γ, the strain 𝐄(𝐮) is composed by a 

regular part 𝐄𝑟, that is a diffuse deformation over Ω − Γ, and a singular part 𝐄𝑠, in the 

form of Dirac delta, concentrated on Γ. 
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We can interpret the jump of 𝐮 along Γ as a fracture, since Γ is the crack surface that 

separates the body Ω into two parts (see Fig.  3.1) and the jump of 𝐮 represents the 

relative translation of the two parts.  

 

 

 
Fig.  3.1: Discontinuous displacement along a straight line Γ:  

unit tangent t and normal m to Γ  [23] 

On such line, the jump of 𝐮 can be expressed as follows: 

 

⟦𝐮⟧ = 𝐮+ − 𝐮−, (3.25) 

 

where 𝐭 and 𝐦 are the unit tangent and normal to Γ and 𝐮+is the displacement on the 

side of Γ where 𝐦 points. The jump of 𝐮 can be decomposed into normal and tangential 

components: 

 

∆𝑣 = ⟦𝐮⟧ ∙ 𝐦 ,  ∆𝑤 = ⟦𝐮⟧ ∙ 𝐭 . (3.26) 

 

Moreover, on any crack the unilateral restriction about the non-compenetrability of 

matter requires that condition ∆𝑣 ≥ 0 must hold. The strain 𝐄 corresponding to a 

piecewise rigid displacement field 𝐮 is zero everywhere on Ω − Γ and is singular on Γ: 

 

𝐄(𝐮) = 𝛿(Γ) (Δ𝑣𝐦⨂𝐦 + 
1

2
∆𝑤𝐭⨂𝐦 + 

1

2
∆𝑤𝐦⨂𝐭) ,  

(3.27) 

 

 

where 𝛿(Γ) is the line Dirac delta with support on Γ, 𝐦 is the unit normal to Γ, 𝐭 is the 

unit tangent to Γ, and Δ𝑣 is the amplitude of the fracture. 

 

Regarding the stress, if the stress field 𝐓 is non-singular (say 𝐓 ∈ 𝐿2(Ω)), on a possible 

discontinuity line Γ, for equilibrium, the stress emerging on Γ must be continuous. Then, 

at any regular point of Γ, denoting with m the unit normal to Γ, the stress 𝐓 must satisfy 

the following condition:  
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(𝐓+ − 𝐓−)𝐦 = 𝟎 , (3.28) 

 

where 𝐓+ is the stress on the side Γ where 𝐦 points. Then, if 𝐓 ∈ 𝐿2(Ω), the possible 

jumps of 𝐓 must be restricted to the part of 𝐓 not-emerging on Γ. If 𝐓 is singular, say a 

Dirac delta on Γ, also the part of 𝐓 emerging on Γ can be discontinuous.  

The unbalanced emerging stress: 

 

𝐪 = (𝐓+ − 𝐓−)𝐦 , (3.29) 

 

in equilibrium, must be balanced by the stress concentrated on Γ (see Fig.  3.2). 

 

 

 
Fig.  3.2: Stress singularity: forces acting on the curve Γ  [23] 

Referring for notations to Fig.  3.2, the representation of the singular part 𝐓𝑠 of 𝐓 on Γ, 

is: 

 

𝐓𝑠 = 𝑁(𝑠)𝛿(Γ)𝐭⨂𝐭 , (3.30) 

 

where 𝑁(𝑠) is the intensity of the axial load, 𝛿(Γ) is the line Dirac delta with support on 

Γ, and 𝐭 is the unit tangent to Γ; therefore, q must be zero if Γ is straight. If the material 

is No-Tension, the unilateral assumption on stress implies the condition: 

 

𝑁(𝑠) ≤ 0 , (3.31) 

 

that means that only compressive axial forces are admitted along the interface Γ. 

3.1.5 Airy’s stress function formulation 

In absence of body forces (b=0), the equilibrium equations admit the following solution 

in terms of a scalar function F: 
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𝑇11 = 𝐹,22     ,     𝑇22 = 𝐹,11     ,     𝑇12 = −𝐹,12 .  (3.32) 

 

This is the general solution of the equilibrium equations, if the loads are self-balanced 

on any closed boundary delimiting Ω (see  [31]). The boundary condition 𝐓 𝐧 = 𝐬  on 

𝜕Ω𝑁, must be reformulated in terms of F. Denoting x(s) the parametrization of 𝜕Ω𝑁 with 

the arc length, the boundary conditions on F are: 

 

𝐹(𝑠) = 𝑚(𝑠)    ,     
𝑑𝐹

𝑑𝑣
= 𝑛(𝑠)        𝑜𝑛 𝜕Ω𝑁 , 

(3.33) 

 

in which 𝑑𝐹 𝑑𝑣⁄  is the normal derivative of F at the boundary (that is the slope of F in 

the direction of n) and 𝑚(𝑠), 𝑛(𝑠) are the moment of contact and the axial force of 

contact produced by the tractions 𝐬(𝑠), on a beam structure having the same shape of 

𝜕Ω, and cut at the point 𝑠 = 0.  

Regular and singular equilibrated stress fields can be derived by stress functions meeting 

the prescribed boundary condition on F and 𝑑𝐹 𝑑𝑣⁄ . The projection of a fold of F on Ω 

is called folding line and is denoted with Γ. On a fold of F, the second derivative of F, 

with respect to the normal 𝐦 to the folding line Γ, is a Dirac delta with support on Γ. 

Therefore, along Γ the Hessian H(F) of the stress function F is a dyad of the form: 

 

𝐇(𝐹) = ∆𝑚𝐹𝛿(Γ)𝐦⨂𝐦 , (3.34) 

 

where ∆𝑚𝐹 is the jump of slope of F in the direction of the normal 𝐦 to Γ. Recalling the 

Airy’s relation, the corresponding singular part of the stress is: 

 

𝐓𝑠 = 𝑁𝛿(Γ)𝐭⨂𝐭 , (3.35) 

 

where the axial contact force N is given by: 

 

𝑁 = Δ𝑚𝐹 . (3.36) 

 

3.1.6 The equilibrium problem: statically admissible stress fields 

A stress field 𝐓 is said statically admissible for a NRNT body, when it is in equilibrium 

with the body force 𝐛 and the tractions 𝐬 on ∂Ω𝑁, that is it is an equilibrated stress field, 

and also satisfies the unilateral condition (2.3), or equivalently condition (2.7) in a plane 

case. Then, the set of statically admissible stress fields H is: 

 

𝐻 = {𝐓 ∈ 𝑆(Ω)  𝑠. 𝑡. 𝑑𝑖𝑣𝐓 + 𝐛 = 𝟎, 𝐓𝒏 = 𝐬 𝑜𝑛 𝜕Ω𝑁, 𝐓 ∈ 𝑆𝑦𝑚−} , (3.37) 
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where 𝑆(Ω) is a function space of convenient regularity, which, for RNT materials, can 

be assumed as the set of bounded measures 𝑆(Ω) = M(Ω). The set of functions which 

compete for equilibrium for NRNT materials is so large that the search of statically 

admissible stress fields becomes easier. 

The equilibrium is imposed in a variational form, in order to reformulate the differential 

equations for non-smooth 𝐓, this can be done by using the Virtual Work Principle. Thus, 

we introduce the set of virtual displacements: 

 

𝐾0 = {𝛿𝐮 ∈ 𝑆∗(Ω)  𝑠. 𝑡. 𝛿𝐮 = 𝟎 𝑜𝑛 𝛿Ω𝐷} , (3.38) 

 

 

the stress field 𝐓 is in equilibrium with the force system (𝐬, 𝐛) if and only if: 

 

∫ 𝐬 ∙ 𝛿𝐮
𝜕Ω𝑁

+ ∫ 𝐛 ∙
Ω

𝛿𝐮 = ∫ 𝐓 ∙ 𝐄
Ω

(𝛿𝐮)  , ∀𝛿𝐮 ∈ δK . 
 

(3.39) 

 

 

𝑆∗(Ω) is a function space of convenient regularity and, if 𝐓 ∈ 𝑀(Ω), condition 𝑆∗(Ω) =
𝐶1(Ω) occurs, which ensures the possibility of computing the internal virtual work. 

 

Referring to any statically admissible stress field 𝐓, the domain Ω = Ω ∪ ∂Ω𝐷 can be 

partitioned as follows: 

 

Ω1 =  {𝐱 ∈ Ω 𝑠. 𝑡. 𝑡𝑟𝐓 ≤ 0 , 𝑑𝑒𝑡𝐓 ≥ 0} , (3.40) 

  

Ω2 =  {𝐱 ∈ Ω 𝑠. 𝑡. 𝑡𝑟𝐓 ≤ 0 , 𝑑𝑒𝑡𝐓 = 0} , (3.41) 

  

                                                 Ω3 =  {𝐱 ∈ Ω 𝑠. 𝑡. 𝐓 = 0 } . (3.42) 

 

 

Hence, by representing the stress field T through the following spectral decomposition: 

 

𝐓 = 𝜎1𝐤1 ⨂𝐤1 + 𝜎2𝐤2 ⨂𝐤2 , (3.43) 

 

the set Ω1 contains biaxial compressive stresses (𝜎1 < 0, 𝜎2 < 0), the set Ω2 contains 

uniaxial compression stresses (𝐓 = 𝜎 𝐤⨂𝐤 , 𝜎 < 0) and the set Ω3 is inert. The form and 

the regularity of these regions depend on the smoothness of T and, even in the case in 

which these regions degenerate, by admitting bounded measures (that is Dirac deltas 

with support on a finite number of regular arcs), the domain Ω = Ω ∪ ∂Ω𝐷 can be still 

partitioned in this way. 
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In absence of body forces, we can express a statically admissible stress field, referring 

to a scalar function F, named Airy’s function, then the unilateral condition for the stress 

field 𝐓, in the plane case, can be rewritten as follows: 

 

𝑡𝑟𝐓 = 𝐹,11 + 𝐹,22  ≤ 0  ,   det 𝐓 =  𝐹,11𝐹,22 − 𝐹,12
2 ≥ 0 , (3.44) 

 

Then, since the Hessian H(F) of F is negative semidefinite, the stress function F must 

be concave, thus in absence of body forces the equilibrium problem for a No-Tension 

material translates into the search of a concave function F, whose slope and value are 

specified on the part 𝜕Ω𝑁 of the boundary. 

 

3.1.7 The kinematical problem: kinematically admissible displacement fields 

When a displacement field u satisfies the boundary conditions 𝐮 = 𝐮 on the constrained 

part 𝜕Ω𝐷 of the boundary, such that the effective strain 𝐄∗ = (𝐄(𝐮) − 𝐄) is positive 

semidefinite, it is defined kinematically admissible for a NRNT body, and it is denoted 

K: 

 

 

𝐾 = {𝐮 ∈ 𝑇(Ω)  𝑠. 𝑡. 𝐮 = 𝐮 𝑜𝑛 𝜕Ω𝐷,   𝐄∗ = (𝐄(𝐮) − 𝐄) ∈ 𝑆𝑦𝑚+} , (3.45) 

 

where 𝑇(Ω) is a function space of convenient regularity and Ω = Ω ∪ ∂Ω𝐷.  

Since for a Normal Rigid No-Tension material we can consider discontinuous 

displacements, it can be assumed that the function space 𝑇(Ω) is represented by the set 

of functions of bounded variation, that is, for example, functions 𝐮 admitting finite 

discontinuities, which consist in finite jumps on a finite number of regular arcs.  

Since the derivative of 𝐮 does not exist in a classical sense, and the trace of 𝐮 on ∂Ω𝐷 is 

not well defined, we reformulate the relation between 𝐄 and 𝐮 in a weak form, by 

imposing the compatibility in a variational form, namely by using the Complementary 

Virtual Work Principle. Hence, we introduce the set of virtual stress field: 

 

 

𝐻0 = {𝛿𝐓 ∈ 𝑇∗(Ω)  𝑠. 𝑡. 𝑑𝑖𝑣𝛿𝐓 = 𝟎 , δ𝐓𝒏 = 𝟎 𝑜𝑛 𝜕Ω𝑁} , (3.46) 

 

the displacement field 𝐮 is compatible with the kinematical data (𝐮, 𝐄) if and only if: 
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∫ (𝛿𝐓𝐧) ∙ 𝐮
𝜕Ω𝐷

− ∫ 𝛿𝐓 ∙ 𝐄
Ω

= ∫ 𝛿𝐓 ∙ 𝐄
Ω

(𝐮), ∀𝛿𝐓 ∈ 𝛿𝐻 , 
(3.47) 

 

 

where 𝑇∗(Ω) is a function space of convenient regularity. If we consider, as in the case 

of linear elasticity, that 𝐮 ∈  𝐻1(Ω), then condition 𝑇∗(Ω) = 𝐿2(Ω) guarantees that the 

internal virtual work is finite. If 𝐮 ∈  BV(Ω), the possibility of computing the internal 

virtual work is ensured by condition 𝑇∗(Ω) = 𝐶°(Ω). 

3.1.8 Compatibility and incompatibility of loads and distortions 

The loads (𝐬, 𝐛) and the distortions (𝐮, 𝐄) represent the data of a general BVP for a 

NRNT body. For NRNT materials, the equilibrium problem and the kinematical 

problem, that is the search of admissible stress and displacement fields for given data, 

are uncoupled, except when we refer to the condition which implies that the masonry 

material do not dissipate energy, that is 𝐓 ∙ 𝐄 = 𝟎.  

 

𝓵 (𝐬, 𝐛)   𝑙𝑜𝑎𝑑𝑠            

𝓵∗ (𝐮, 𝐄)  𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛𝑠  

 

When we refer to a NRNT material, the existence of statically admissible stress fields 

for given loads and kinematically admissible displacement fields for given distortion is 

submitted to particular conditions, named compatibility conditions of the data. Hence, 

we define compatible loads, the data (𝐬, 𝐛) for which the set of statically admissible 

stress field H is not empty, as well as compatible distortions, the data (𝐮, 𝐄)  such that 

the set of kinematical admissible displacement field K is not empty: 

 

ℓ 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 ⇔ {𝐻 ≠ ∅} , (3.48) 

 

ℓ∗ 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 ⇔ {𝐾 ≠ ∅} . (3.49) 

 

Hence, we can check the compatibility of loads and distortions by constructing a 

statically admissible stress field and a kinematically admissible displacement field. 

However, the compatibility of ℓ and ℓ∗ is necessary but not sufficient to prove the 

existence of a solution to the BVP for a NRNT material, since also the material restriction 

about the absence of internal dissipation must be satisfied. 

There is also an indirect way to verify the incompatibility of loads and distortions, which 

implies to consider the sets: 
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𝐻° = {𝐓° ∈ 𝑆(Ω) 𝑠. 𝑡.  𝑑𝑖𝑣𝐓° = 𝟎 ,   𝐓°𝒏 = 𝟎 𝑜𝑛 𝜕Ω𝑁, 𝐓° ∈ 𝑆𝑦𝑚−} (3.50) 

 

𝐾° = {𝐮° ∈ 𝑇(Ω) 𝑠. 𝑡.  𝐮° = 𝟎   𝑜𝑛 𝜕Ω𝐷  ,   𝐄(𝐮°) ∈ 𝑆𝑦𝑚+} , (3.51) 

 

which can reduce to the corresponding null stress and strain fields sets H°° and K°°, 

depending on the geometry of the boundary, of the loads and of the constraints.  

The incompatibility of loads can be assessed as follows: 

 

ℓ 𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 ⇐ {∃𝐮° ∈ 𝐾°  𝑠. 𝑡.  〈ℓ, 𝐮°〉 > 0} , (3.52) 

 

ℓ∗𝑖𝑠 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒 ⇐ {∃𝐓° ∈ 𝐻°  𝑠. 𝑡.  〈ℓ∗, 𝐓°〉 > 0} . (3.53) 

 

The incompatibility of loads implies the absence of equilibrium and the possibility of 

indefinite acceleration for the structure; the incompatibility of distortions implies the 

absence of zero energy modes through which the kinematical data can be accommodated. 

3.2 The Equilibrium problem: Limit Analysis  

As we have seen, the boundary value problem for masonry-like (NRNT) materials can 

be split in two problems, that is the kinematical problem and the equilibrium problem. 

The first consists in the search of a kinematically admissible displacement field, that is 

a displacement field belonging to the set K, the latter consists in the search of a statically 

admissible stress fields, that is a stress field belonging to the set H. 

Considering the equilibrium problem, for a structure made of NRNT material (that is a 

structure occupying the domain Ω, subject to the action of body loads 𝐛, constrained on 

the part ∂Ω𝐷 of the boundary and loaded by given tractions 𝐬 on the remaining part ∂Ω𝑁), 

we observe that the material restrictions defining NRNT materials are sufficient for the 

theorems of Limit Analysis to be valid.  

The theorems of Limit Analysis are strictly connected to the compatibility of load data 

(𝐬, 𝐛) (see § 3.1.8), as it will be seen below. In what follows we give a short account of 

the theory on which the theorems of Limit Analysis are constructed. 

3.2.1 Theorems of Limit Analysis 

We refer to perfectly-plastic materials, characterized by an associate plastic potential, 

according to the normality law and the stability postulate by Drucker: such materials are 
briefly defined as normal materials or stable materials.  
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In Appendix B, the basic ingredients of kinematics, balance laws and material 

restrictions characterizing perfectly plastic materials are given in detail. Who is already 

familiar with the Plasticity theory can skip Appendix B, and read directly what follows. 

When we consider an elastic-plastic material, stresses cannot grow indefinitely, since 

they cannot exceed the yielding limits; for this reason, the body loads 𝐛 and the tractions 

𝐬  cannot be indefinitely amplified. 

 

We now introduce some definitions. 

 

We define plastic collapse a state for which the structure, in whole or in part, suffers an 

unbounded acceleration driven by the given loads (𝐬, 𝐛). The fact that the loads drive the 

acceleration is attested by a positive value of the kinetic energy of the system. 

 

We observe that during collapse both the strains and the displacements grow indefinitely 

either over the whole structure or in a part of it. The part of the displacement field, which 

indefinitely grows at collapse (and the allied strains) defines a collapse mechanism. 

 

The stress field 𝝈𝑎 is called statically admissible stress field, if it satisfies the equilibrium 

equations (3.54) and the boundary equations (3.55): 

 

𝜕𝜎𝑖𝑗
𝑎

𝜕𝑥𝑖
+ 𝑏𝑖 = 0  , 𝑥 ∈ 𝑉 , 

(3.54) 

 

𝜎𝑖𝑗
𝑎𝑛𝑗 = 𝑠𝑖    , 𝑥 ∈ 𝜕𝑉 , (3.55) 

 

as well as the feasibility condition: 

 

𝑓(𝝈𝑎 ) ≤ 0 , (3.56) 

 

being 𝑛 the outward normal to 𝑉, whose boundary is 𝜕𝑉. 

 

We call admissible loads the load system (𝐬, 𝐛) which is in equilibrium with the 

admissible stress field 𝝈𝑎. The set (𝐬, 𝐛, 𝝈𝑎) is said to be equilibrated. The collapse load 

system (𝐬, 𝐛) and the stress 𝝈 at collapse, represent the admissible load-tension system 

(𝐬, 𝐛, 𝝈) determined under the collapse of the structure. 

 

The stress field 𝝈𝑠 is called statically safe stress field or safe stress field, if it satisfies 

the equilibrium equations (3.54) and the boundary equations (3.55), and also the 

compatibility condition: 

 

𝑓(𝝈𝑠 ) < 0 , (3.57) 
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and the load system (𝐛𝒔, 𝐬𝑠), which is in equilibrium with this safe stress field, is said 

safe load system.  

 

We consider the displacement rate field 𝐮̇𝟎, which satisfies the kinematic conditions on 

the constrained boundary of the domain V: 

 

𝐮̇𝟎 = 𝐮̇𝟎  , 𝐱 ∈ 𝜕𝑉𝐷  , (3.58) 

 

The corresponding infinitesimal strains rate field, which satisfies the kinematic 

conditions with 𝐮̇𝟎 are expressed as follows: 

 

ε̇0𝑖𝑗 =
1

2
 (

𝜕𝑢̇0𝑖

𝜕𝑥𝑗
+

𝜕𝑢̇0𝑗

𝜕𝑥𝑖
) , x ∈ 𝜕𝑉 . 

(3.59) 

 

The set (𝐮̇𝟎, ε̇0) is said kinematically admissible strain-displacement field, or briefly 

admissible kinematism.  

 

3.2.2 Static Theorem of Plastic Collapse 

Part I. If a load program is assigned, the existence of a statically safe stress field 𝝈𝑠 , for 

each instant of the load program, is a sufficient condition so that the plastic collapse will 

not occur. 

Part II. The structure cannot sustain an external load system if there is not even an 

admissible stress distribution 𝝈𝑎. In such a case, indeed, the equilibrium is not possible 

unless we violate the yielding limit. Hence collapse will occur. 

 

The Theorems of Limit Analysis can be enunciated through a very intuitive and 

discursive way, as follows: 

 

I. The structure does not collapse under an assigned load condition, if there exist 

at least one statically admissible stress field which is in equilibrium with the 

external load. 

 

II. The structure does collapse under an assigned load condition, if there exist at 

least one kinematically admissible mechanism such that the power dissipated 

inside the material is lower than the power produced by the external loads. 
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3.2.3 Limit Analysis for NRNT Materials 

The Static Theorem states that the load data {𝐬, 𝐛} do not produce collapse, if there exists 

at least one balanced stress field of pure compression and balancing the load data {𝐬, 𝐛}.  

 

The Kinematical Theorem states that the given loads produce collapse, if there exists at 

least one kinematically admissible displacement field 𝐮, for which the load data {𝐬, 𝐛} 

perform positive work. Such a displacement field, that is a no-sliding, no-shortening 

deformation, satisfying homogeneous boundary conditions on the constrained part of the 

boundary, represents a possible collapse mechanism. In this case, the structure is not in 

equilibrium and will accelerate.  

3.3 The kinematical problem: an energy criterion 

With the NRNT model, the problem of equilibrium, that is the search of a statically 

admissible stress field, and the kinematical problem, that is the search of a kinematically 

admissible displacement field, are essentially uncoupled, then they can be treated 

separately.  

The only equation which couples them is the condition that the internal work density 

must be zero; then we say that the solution of the equilibrium problem is reconcilable 

with the solution of the kinematical problem, if the stress corresponding to the former 

does, point by point, zero work for the strain corresponding to the latter. Actually, the 

kinematical problem is not completely independent of the equilibrium one. When a 

mechanism due to settlements or distortions is activated in a part of the structure, that 

part becomes statically determined and the reactive forces in that part can be obtained 

from the equilibrium equations. This behaviour is illustrated with a simple example in § 

1.2. 

Although the kinematical data {𝐮, 𝐄} are not at all secondary for masonry analysis, for 

which fractures and cracks are associated to compatible mechanism provoked by such a 

kind of actions, they do not appear into the theorems of Limit Analysis, then they are 

irrelevant for the assessment of structural safeness. By assuming, indeed, that the 

unilateral material is rigid in compression, cannot withstand any tensions and is non-

dissipative, the reference equilibrium geometry is not affected by the kinematical data; 

this is also a consequence of the small displacement assumption.  

Then, whether settlements are considered or not, under the action of given loads the 

structural geometry in stable. This condition is particularly advantageous, since most of 

the time the kinematical data are not known in detail, as the external forces. However, in 

real problems, the effect of these data is associated to a specific crack pattern, which 

implies a compatible mechanism that can be deduced through an inverse analysis. 

Moreover, among all the infinite possible kinematically admissible displacement fields, 

the special mechanism activated by the kinematical data {𝐮, 𝐄}, also depends on the load 

data {𝐬, 𝐛}. 
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3.3.1 The kinematical problem 

Regarding the kinematical problem, if the kinematical data cannot be adjusted through a 

compatible mechanism, that is a no-shortening, no-sliding displacement complying with 

the boundary constraints, the structure must deform, we say that the problem does not 

admit a solution. Then we can recall the existence and non-existence theorems.  

Compatibility theorem. The kinematical data {𝐮, 𝐄} are compatible if there exists at least 

one displacement field 𝐮 which is kinematically admissible, complying with the NRNT 

restrictions and satisfying the given boundary conditions. 

Incompatibility theorem. The given kinematical data {𝐮, 𝐄} are not compatible if there 

exists a statically admissible stress field, whose eigenstress are all negative, which 

performs positive work for these data.  

 

Remark 2. It can be observed that the kinematical and the equilibrium problems can be 

incompatible, in the sense that both the sets 𝐾, 𝐻 can be empty. In particular, the 

compatibility of the equilibrium problem is the key issue of the two theorems of Limit 

Analysis, which deal with the possibility of collapse of the structure. 

3.3.2 The energy criterion  

In the case study here analysed, it is assumed that the kinematical and the equilibrium 

problems are both compatible, that is the sets 𝐾, 𝐻 are not void and that collapse is not 

possible. A trivial case of compatibility of the kinematical problem and equilibrium 

problem occurs when the displacement data and the load data are zero respectively. 

When trying to solve the kinematical problem, the problem arises of selecting, among 

the possibly many kinematically admissible displacement fields, responding to the given 

kinematical data (settlements and distortions), the ones that guarantee also the 

equilibrium of the loads imposed on the structure. For elastic, and even for some elastic-

brittle materials, these states, that we can call solutions of the boundary value problem, 

can be found by searching for the minimum of some, suitably defined, form of energy. 

For elastic-brittle materials this energy is the sum of the potential energy of the loads, of 

the elastic energy and of the interface energy necessary to activate a crack on an internal 

surface (see  [32],  [33],  [34]). For elastic materials, it is the sum of the potential energy 

of the loads and of the elastic energy. For Heyman’s materials, it is just the potential 

energy of the loads. 

Then we may search a displacement field which is the solution of the kinematical 

boundary value problem, by minimizing the potential energy ℘ of the loads over a 

convenient function set, namely the set of piecewise rigid displacements. Such minimum 

problem is formulated as follows: 

 

“Find a displacement field 𝒖° ∈ 𝐾, such that: 

 

℘(𝒖°) = min
𝒖∈𝐾

℘(𝒖)  ,” (3.60) 
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where: 

℘(𝐮) = − ∫ 𝐬

∂ΩN

 ∙ 𝐮 𝑑𝑠 − ∫ 𝐛 ∙ 𝐮 da

Ω

 , 

 

(3.61) 

 

is the potential energy of the given loads. 

 

The numerical approximation of the solution of the kinematical problem is the object of 

some papers (see  [35],  [36],  [37],  [38]). A trivial example of the application of the 

energy criterion to a simple structure composed of rigid blocks, is shown in §1.2. 

The proof of the existence of the minimizer 𝐮° of ℘(𝐮) for 𝐮 ∈ 𝐾, is a complex 

mathematical question, as observed in  [37]. On assuming that the kinematic problem is 

compatible (that is 𝐾 ≠ ∅), what we can easily show is that: 

 

a. If the load is compatible (that is 𝐻 ≠ ∅) the linear functional ℘(𝑢) is bounded from 

below. 

b. If the triplet (𝐮°, 𝐄(𝐮°), 𝐓°) is a solution of the bvp, it corresponds to a weak 

minimum of the functional ℘(𝐮). 

 

Proofs. 

a. If the load is compatible, then there exists a stress field 𝐓 ∈ 𝐻, through which the 

functional ℘(𝐮) defined on 𝐾, for any 𝐮 ∈ 𝐾, can be rewritten as follows: 

 

℘(𝒖) =      − ∫ 𝐬
𝜕𝛺𝑁

 ∙ 𝐮 𝑑𝑠 − ∫ 𝐛 ∙ 𝐮 𝑑𝑎 =
𝛺

                                                         = ∫ 𝐬(𝐓)
𝜕𝛺𝐷

∙ 𝐮 𝑑𝑠 − ∫ 𝐓 ∙ 𝐄(𝐮)𝑑𝑎
𝛺

 , 

 

(3.62) 

 

𝐬(𝐓) being the trace of 𝐓 at the boundary. Assuming that the displacement data are 

sufficiently regular (say continuous), being 𝐬(𝐓) a bounded measure, the integral 

∫ 𝒔(𝐓) 
𝜕Ω𝐷

∙ 𝐮 𝑑𝑠 is finite; then, since 𝐓 ∈ 𝑆𝑦𝑚− and 𝐄 ∈ 𝑆𝑦𝑚+, the volume integral is 

non-negative, and ℘(𝐮) is bounded from below. 

 

b. If (𝐮°, 𝐄(𝐮°), 𝐓°) is a solution of the bvp, then, for any 𝐮 ∈ 𝐾, we can write: 

℘(𝐮) − ℘(𝐮°) = − ∫ 𝐬
𝜕Ω𝑁

 ∙ (𝐮 − 𝐮°)𝑑𝑠 − ∫ 𝐛 ∙ (𝐮 − 𝐮°)𝑑𝑎 =
Ω

              = − ∫ 𝐓° ∙ (𝐄(𝐮) − 𝐄(𝐮°)) 𝑑𝑎
Ω

 . 

 

(3.63) 

 

The result ℘(𝐮) − ℘(𝐮°) ≥ 0  , ∀𝐮 ∈ 𝐾, follows form normality (see  [39]). 

 

The physical interpretation of the above result is the following. Since the displacement 

field solving the b.v.p corresponds to a state of weak minimum for the energy, then it is 
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a neutrally stable equilibrium state, in the sense that the transition to a different state 

requires a non-negative supply of energy. 

Based on the minimum principle, if the equilibrium problem is compatible and the 

kinematical problem is homogeneous, 𝐮 = 𝟎 is a minimum solution. Indeed, in such a 

case: 

 

℘(𝐮) = − ∫ 𝐬

𝜕Ω𝑁

 ∙ 𝐮 𝑑𝑠 − ∫ 𝐛 ∙ 𝐮 𝑑𝑎 = 

Ω

− ∫ 𝐓 ∙ 𝐄(𝐮)𝑑𝑎

Ω

 , 

 

(3.64) 

 

𝐓 being any element of 𝐻. Since the right-hand side of (3.61) is non-negative, ℘(𝟎) = 0 

is the minimum of ℘ and 𝐮 = 𝟎 is a minimizer of the potential energy. Notice that, in 

this case, any 𝐓 ∈ 𝐻 is a possible solution in terms of stress, since 𝐓 ∙ 𝐄(𝟎) = 0 for any 

𝐓. 

An approximate solution of the minimum problem can be obtained, by restricting the 

search of the minimum in the restricted class of piecewise rigid displacements. In this 

case, the infinite dimensional space is discretized by considering a finite partition of the 

domain Ω into a number M of rigid pieces Ω𝑖 with 𝑖 = 1, … , 𝑀 such that the sum of the 

relative perimeters 𝑃(Ω𝑖) is a finite quantity. The boundary ∂Ω𝑖 of these rigid pieces Ω𝑖 

is composed in n segments Γ, whose extremities are denoted with 0 and 1 and whose 

length is ℓ. The segments Γ, called interfaces, consist of the common boundaries between 

both two inner adjacent elements and an inner element and the constrained boundary. 

Hence, we refer to the minimum problem where the displacement variable u belongs to 

a partitioned set, that is 𝐮 ∈ 𝐾𝑝𝑎𝑟𝑡
𝑀  : 

 

                                             ℘(𝐮̂) = min
𝒖∈𝐾𝑝𝑎𝑟𝑡

𝑀
℘(𝐮) . (3.65) 

 

In this case, we represent the generic piecewise rigid displacement through the vector U 

of 6M components, represented by the 6M rigid body parameters of translations and 

rotations of the elements, for which the assumption about positive semidefinite strain 

must hold. When we refer to piecewise rigid displacement, which are the most frequent 

and evident manifestation of masonry deformation in real masonry constructions, the 

strain is concentrated along the interfaces Γ, and on each interface, we consider the 

unilateral conditions and the absence of sliding among blocks. The associated stress 

vector must satisfy the negative semidefinite condition, that is it must be a compressive 

stress field.  

As pointed out in  [40], “…the piecewise rigid displacements, are not at all simple 

displacement fields for a continuum, and are usually ruled out in the standard numerical 

codes for fluids and solids which are employed to handle the complex boundary value 

problems of continuum mechanics. The main difficulty with discontinuous 

displacements, besides the managing of the singularity of strain for deformable 

materials, is the fact that the location of the support of the singularity (that is of the jump 
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set of the displacement) is not known in advance…”. This latter issue is discussed with 

the aid of some simple examples in the forthcoming paper  [36]. 

The situation becomes simpler if the interfaces between rigid parts can be fixed in 

advance, as is actually the case for masonry structures composed by monolithic blocks. 

In such a case, we may search the piecewise rigid displacement field by minimizing the 

potential energy ℘ of the loads applied to a known structure, formed by "M" given rigid 

blocks in unilateral contact without sliding with the soil and among each other. We can 

consider, as primal variable, the vector 𝐮̂ of the rigid body parameters (6M in space 

problems) of the structure; the functional ℘ is linear in 𝐮̂, then the minimization of ℘ 

reduces to the minimization of a linear functional under linear unilateral and bilateral 

constraints. Such a problem is an easy problem of convex analysis that can be solved 

with Linear Programming (see   [40],  [41],  [42]). 
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4. Chapter_4                                                                                                                                              

APPLICATIONS TO STRUCTURES MADE OF RIGID 

BLOCKS  

 

Prologue. The main mechanical aspect of masonry structures is their essentially 

unilateral behaviour. Such structures may actually fracture everywhere at their inside, 

forming rigid blocks in relative displacement among each other. Such piecewise rigid-

body displacements in masonry are physiological, and rather than the result of over-

loading, are most likely the direct product of small changes of the displacement type 

boundary conditions. 

It can be observed as, while for a standard over-determined structure, subject to bilateral 

constraints, the effect of small settlements and eigenstrains has a high probability of 

determining a substantial change of the internal forces, a structure subject to unilateral 

constraints, even if heavily over-constrained, is more prone to compensate the effect of 

large settlements without any increase of the internal forces, through the mobilization of 

zero energy modes. 

Furthermore, for a standard structure the existence of an equilibrium solution can be 

ensured only by virtue of its geometry and constraints and, if zero energy modes are 

admitted, the possibility of maintaining the equilibrium solution is severely restricted. 

Instead, for unilateral structures the equilibrium solution depends only on the loads and 

the coexistence of equilibrium solutions and of zero energy dissipation mechanisms, 

such as piecewise rigid displacements, is usually the rule. 

When a mechanism due to settlements or distortions is activated in a part of the structure, 

that part becomes statically determined and the reactive forces in that part can be 

obtained from the equilibrium equations.  

Here a simple model, based essentially on Heyman’s hypotheses, is applied to study the 

equilibrium of masonry structures made of monolithic pieces, in particular cantilevered 

stairs, or, more precisely, spiral stairs, composed of monolithic steps, with an open well 
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are analysed. The modelling of masonry structures made of monolithic blocks, through 

distinct element methods, has become popular in recent years (see  [43],  [44]).The case 

of cantilevered stairs is analysed with a discrete element approach by Rigò and Bagi in 

the forthcoming paper  [45]. 

As observed by Heyman in his paper  [46], the basic structural action for a cantilevered 

stair of small flight (quarter or half landing) is twist of individual treads, leading to shear 

stresses in the masonry; such stresses are low for short stairs, but become more and more 

harmful than direct compression for long flights. In a recent work by Angelillo  [47], 

based on a continuous approximation of the stair structure, it is shown as the torsional 

Heyman’s mechanism can be combined with a Ring-Like regime, giving rise to large 

compressive forces and to moderate torsional torques, whose intensity reaches a plateau 

for long flights.  

In the present work, we obtain a practical confirmation of the complementarity of 

Heyman and Ring-Like stress regimes, for the case study of the triple helical stair of San 

Domingos de Bonaval, by employing a discrete model. In order to generate statically 

admissible sets of internal forces, likely sets of given settlements of the constraints are 

considered and the corresponding piecewise rigid displacements are found by 

minimizing the potential energy. The moving part of the structure is statically 

determined, then the dual static problem is dealt with by solving the equilibrium of the 

entire structure and of the individual steps. The whole calculation procedure is carried 

out with the programming language Matlab.  

4.1 Case study 

The present work concerns the study of the equilibrium and of the effect of settlements 

in structures made of monolithic blocks; in particular, as an illustration of the method, 

we consider the case study of the triple helical stair of the convent of San Domingos de 

Bonaval, built by the Galician Baroque architect Domingo de Andrade, in the XVII 

century. The convent of San Domingos de Bonaval, founded by St. Dominic de Guzman 

in 1219, is located in the countryside of San Domingos, in the Bonaval district of 

Santiago de Compostela. 

This triple helical staircase consists of three separate interwoven coils, that lead to 

different storeys; only one of them reaches the upper viewpoint. Each step of the stair, 

made of a whole stone piece of granite, is built into the outer cylindrical wall for a depth 

of 0.3 m (see Fig.  4.1). The steps are not in contact among each other but at their inner 

end, where they form a rib and the railing is present (Fig.  4.1d). 
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Fig.  4.1: Convent of San Domingos de Bonaval: 

 a), b), c) View of the triple helical stair; d) Detail of the steps  

For what concerns the application of the unilateral model to vaults, the existing more 

recent literature is rather vast; apart from the production of the school of Salerno, 

originated by the paper on the Lumped Stress Method  [48], and applied to vaults in the 

papers by Fraternali et al.  [49], Angelillo & Fortunato  [5], Fraternali  [50], and recently 

by Angelillo et al. in  [51], we recall the pioneering work by O'Dwyer  [52], and the 

works by Block  [53], Block et al.  [54], Vouga et al.  [55], De Goes et al.  [56], Block 

and Lachauer  [57], Miki et al.  [58] and Marmo and Rosati  [59]. 

The equilibrium of helical stairs with an open well is formulated and applied to some 

case studies in  [47],  [60],  [61]. 

The equilibrium of the staircase shown in Fig.  4.1 is studied by Angelillo in  [47], by 

applying Heyman’s model for masonry material (rigid no-tension), and considering that 

each step behaves as a beam, supported and built in torsionally at the outer wall, and 

simply supported at the inner rib, a structural element which can transmit only contact 

compressive forces. 
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4.1.1 Heyman’s solution 

As observed by Heyman  [46], the basic structural action for a cantilevered stair for small 

flight (quarter or half landing), is represented by twist of individual steps, which leads to 

shear stresses in the masonry; such stresses are low for short stairs, but become more 

harmful than direct compression for long flights.  

Heyman considers that each step is supported by the step below on the free edge and it 

is inserted into the wall on the other edge, hence he models each step as a simply 

supported beam (Fig.  4.2). Considering that in the centroid of each step it is applied the 

load P, he obtains the reactive forces at the edges, equal to P/2. Proceeding from the top 

to the bottom, the equilibrium on the second step is given by the forces applied in the 

four edges of the step, then each step is subject to a torque:  Mt =
1

2
Pb. 

 
Fig.  4.2: “The mechanics of masonry stairs”, J.Heyman  [46] 

The forces acting on the step 2 are given by the forces on the step 1 and that of the step 

2, and so on. Thus, on the generic step, denoting with n=1 the step at the top of the stair, 

and with W the self-weight of the step, we have the following stress values: 

 

                                 Mt = (
2n−1

2
) W

b

2
  ,          Mf =

Wl

8
 . (4.1) 

 

As can be seen, the bending moment is the same of that of a simply supported beam, 

while the torque linearly increases from the top to the bottom of the stair. It is evident 

that this kind of model is valid only for stairs of modest heights, otherwise we could have 

torque values too high for the steps near the ground, which would lead to their break. 
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4.1.2 Continuum (Ring-Like) equilibrium solution  

In a recent work by Angelillo  [47], based on an approximation of the stair structure with 

a 2d curved continuum, it is shown as the torsional mechanism, described by Heyman, 

can be combined with a Ring-Like regime, which determines large compressive forces 

and to moderate torsional torques, whose intensity reaches a plateau for long flights.  

In  [47] the stair is considered as a helical surface, composed by radial segments AB 

(representing the steps) and by a helical arch (representing the rib), on which the steps 

transmit part of the load. The outer edge of the step is inserted into the wall, where a 

bending and torsional support is considered, while the inner edge of the step is simply 

supported on top of the step below, this contact is modelled as a unilateral contact. On 

assuming that the stair is a membrane, the stresses concentrate on a surface (as a fan of 

uniaxial stresses) and on a line, namely the internal rib (Fig.  4.3).  

 

 
Fig.  4.3: Unilateral 2d and 1d curved structures where compressive stresses and stress 

resultants are concentrated 

According to Heyman’s behaviour, the steps transmit to the line structure , to which 

the end points A of the steps are attached, a force, per unit length of , directed vertically: 

q = qk̂ , and a resisting moment, per unit length of , directed radially: m = mn̂. A 

vertical load q=q(A) is applied to the spiral arch, whilst a moment equal and opposite to 

the distributed moment, due to the step load offset and acting on , can be transmitted 

by the steps to the wall, through torsional internal contact moments. Indeed, the structure 

 has no bending resistance and can transmit only contact forces R such that  R ∙ t ≤ 0, 

since the material is unilateral.  

From the equilibrium, we obtain the internal generalized stresses, that is the shear V(s), 

the bending moment Mf(s) and the torsional moment Mt(s) per unit length in the 

membrane:  

 

𝑉(𝑠) = −𝑞𝑠 , 

𝑀𝑓(𝑠) = −
𝑞𝑠

√1 + 𝑝2
 , 
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𝑀𝑡(𝑠) = 𝑞𝑠𝑟𝛿 , 

 

where 𝑞 is the constant load, 𝑟 is the internal radius, 𝛿 is the angle of the step, and 𝑝 is 

the slope of the spiral. 

As described in § 4.1.1, Heyman assumes that the loads Q(A) are transferred from the 

upper steps to the lower steps through vertical forces applied at the contact points 

between them. The forces transmitted to the step i by the upper step i-1 and by the lower 

step i+1 are vertical forces balanced with the vertical load due to the step i and form a 

torque, representing a torsional moment acting on the step. The torque value increases 

on proceeding from the upper steps to the lower steps and produces, inside the step, shear 

stresses (that is tensile stresses) that remain low if the torque is not too high. 

Then, the Heyman’s solution is valid for stairs of moderate flight, otherwise there would 

be too high torque values, and, consequently, undesired tensile stresses. 

It is evident that another solution is necessary. For this reason, in  [47], with the 

continuum solution, the combination of Heyman’s results with that of the Ring-Like 

behaviour is considered (Fig.  4.4).  

 

 

 
Fig.  4.4: Coupling of Heyman’s and Ring-Like behaviours  [47]  

Considering the Ring-Like behaviour, there is an axial contact force R = Nt̂  tangent to 

the spiral arch . Moreover, the steps, besides the vertical load q = q1k̂  acting on  and 

defined per unit length of , transfer to the spiral arch , at each point of , a distributed 

compressive force r (defined per unit of length of ) contained inside the steps and 

belonging to the plane (n̂, k̂), that is r = − rkk̂ + rnn̂ . 

From the equilibrium, we obtain a constant axial force N, which is tangent to the spiral 

arch . We also have radial forces inside each step, whose slope is equal to: ω =
h

R−r
 . 

The components of these radial forces, contained in the steps, are:  

 

                                    rk = q1         ,         rn =
rk

tanω
=

q1

tanω
  , (4.2) 

 

Then, the axial force is: 

                                            N = −
q1r0

tanω
 . (4.3) 
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This solution is valid for stairs constrained at both ends, or equivalently, to stairs whose 

ends are subject to convenient compressive axial forces. 

Therefore, one is forced to use the Heyman’s equilibrium solution in a first sector 

springing from the top of amplitude 𝛼0, and the Ring-Like solution in the remaining part 

of the stair. The minimal amplitude 𝛼0 of the sector, in which the Heyman’s solution can 

be adopted, is determined by the condition that the force transmitted from the first sector 

(free at the upper end) to the second sector must be a normal force tangent to the spiral 

arch . 

In order to transform the vertical force, transmitted by the first sector in correspondence 

of the amplitude 𝛼0, in a force tangent to Γ, the horizontal force P is considered. This 

horizontal force is transmitted to the outer wall 0, as a compressive force (Fig.  4.5). 

 

 
Fig.  4.5: Transmission of forces within the stair: 

 a) Equilibrium of forces at the end of the first sector; b) Minimal amplitude of the first 

sector; c) Equilibrium of horizontal forces due to the compressive force P1 on a sector of 

amplitude α0 proceeding from the top  [47] 

With this combined solution, limited shear and tensile stresses into the steps and also 

limited compressive stresses into the central rib are obtained, whatever be the flight of 

the helical stair. 

The main result of the analysis presented in  [47] is that the regime of torsion that is 

present in the upper, free part of the stair, can be gradually substituted by the Ring-Like 

stress regime which stabilizes and becomes essentially independent of the length of the 

stair. 

One of the scopes of the present work is to provide a practical confirmation of the 

analytical solution presented in  [47], by employing a discrete model of the stair, formed 

by M rigid pieces, which are the steps of the stair. The solution of this complex multi-

body model, in terms of displacements and internal forces, represents a nice example of 

the application of the energy criterion, and confirms the general validity of the proposed 

approach for the analysis of discrete structures, whose pieces are in unilateral contact, 

without sliding, among each other. 
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4.1.3 Geometrical and mechanical data  

The helical stair is characterized by a height of a complete landing H = 8.17 m, by an 

outer radius R = 2.70 m and an inner radius r = 1.00 m; each landing contains 42 steps, 

the rise of each step is h = 0.19 m, the step angle is δ = 0.1496 rad, the width of the 

step at the inner and outer boundaries are respectively ℓr = 0.1496 m and ℓR =
0.4039 m, and the length of the built in end is 0.30 m (Fig.  4.6 and Fig.  4.7).  

 

 
Fig.  4.6: Basic geometry of the stair 

 
Fig.  4.7: Dimensions of the step 

The steps we consider are made of monolithic stones. In particular, in the case study, the 

material of the stone is granite. We recall here the main mechanical properties of Galician 

granite (see  [47]): 

  

• 𝜎𝑐 ≈ 170 𝑀𝑃𝑎          compressive strength; 

• 𝜎𝑡 ≈   16 𝑀𝑃𝑎            tensile strength; 

• 𝜏° ≈    25 𝑀𝑃𝑎           shear strength; 

• 𝐸 ≈     24 𝐺𝑃𝑎            Young’s modulus; 

• 𝜌 ≈   2700 𝑘𝑔/𝑚3    density; 
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4.1.4 Reference systems 

Different reference systems (Fig.  4.8) are introduced, in order to facilitate the writing of 

the constraint conditions. In particular, we consider three different reference systems, as 

described below: 

 

1. G: Global System, whose origin is in the centre of the helix at ground level and 

whose z-axis is coincident with the axis of the helix and is directed upward; this 

system is used for describing the global geometry of the stair (Fig.  4.8a). 

2. S: Local System, chosen in such a way that its origin is in the middle point of the 

upper outer edge of the step, the first axis is directed radially and represents the axis 

of symmetry for the step, as seen from above; the y-axis is directed along the upper 

outer edge; finally, the third axis is vertical and directed upwards (Fig.  4.8b). 

3. K: Local System, whose origin is in the point N, the x-axis is directed radially, the 

z-axis parallel to the z-axis of the global system (Fig.  4.8c). 

 

 
Fig.  4.8: Reference Systems: a) Global System G, b) S-Local System S,  

c) Local System K 
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4.1.5 Three-dimensional Modelling  

The first aspect is the definition of the stair’s geometry in the program, this is done 

referring to the Global reference system. Hence, the helical equation is built starting from 

R (outer radius) and H (height of a complete landing of the helix); knowing the 

dimensions of the step, a couple of points is located on the helical equation, by using the 

(
2𝜋

𝑛
) angle, in order to identify the width of the step (plan view); finally, the 

correspondent upper points are determined, by adding the rise value of the step to the 

previous points (Fig.  4.9). 

 

 
Fig.  4.9: 3D views of the triple helical stairs 

Consequently, the nodes that belong to the visible part of the step and also to the socket 

part are built; each step is modelled with 15 nodes. Since we consider that the steps 

behave as rigid blocks, we also identify the relative centroids, where their own weight 

can be applied (Fig.  4.10).  

 

 
Fig.  4.10: Discretization of the step 

Once defined the geometry of the stair, we need to model the movement of the steps in 

order to allow them to move accordingly to our assumptions.  
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In order to do it, we define the displacement variables for the steps; since we assume that 

the structure is composed by rigid blocks, that is each step behaves as a rigid monolithic 

block, it is possible to evaluate how each step moves by referring to the displacements 

and rotations of the relative centroids; then we define the primal variables of our analysis, 

that is the Lagrangian parameters of the mechanical system, namely the six rigid body 

displacements (the three translations 𝑈, 𝑉, 𝑊 and the three rotations 𝜑1, 𝜑2, 𝜑3) which 

describe the infinitesimal translation and rotation, referred to the centroids of each step, 

expressed in the Global reference system.  

Given the fact that those movements are just theoretical, and, in any case, they will be 

limited to few decimetres at maximum, we can assume the small displacement and small 

angles hypothesis; this allows us define the displacement rule for the generic node P of 

the step with a linear equation in reference to the roto-translation of its centroid: 

 

                  Δ𝑃 = [

𝑢1(𝑃)

𝑢2(𝑃)

𝑢3(𝑃)
] = 𝑢(𝐺) +  𝜙(𝐺) ∙ [𝑥(𝑃) − 𝑥(𝐶)] =   

                                          = [
𝑈
𝑉
𝑊

] + [

0      − 𝜑3        𝜑2

𝜑3        0       − 𝜑1

−𝜑2        𝜑1        0
] ∗ [𝑥(𝑃) − 𝑥(𝐶)] , 

 

      

 

 

(4.4) 

 

where 𝑃 is the node label, 𝐺 is the centroid, 𝑢(𝐺) is the translation vector of the centroid 

and 𝜙(𝐺) is the skew matrix of infinitesimal rotation about the centroid, 𝑥(𝑃) and 𝑥(𝐺) 

are the coordinates of nodes P and G. Finally, we introduce the vector of rigid body 

displacement of the whole structure as: 

 

𝑢̂ = {𝑢1,1, 𝑢2,1, 𝑢3,1, 𝜑1,1, 𝜑2,1, 𝜑3,1, … , 𝑢1,𝑛, 𝑢2,𝑛, 𝑢3,𝑛, 𝜑1,𝑛, 𝜑2,𝑛, 𝜑3,𝑛 } . (4.5) 

 

Moreover, we need to express these displacements in all reference systems introduced. 

Being the Global system the canonical basis, for any valid basis 𝐵, the displacement rule 

for the generic node P can be written with the following rule: 

 

                                        Δ𝑃𝑙𝑜𝑐 = 𝐵−1(𝑃 + Δ𝑃) − 𝐵−1𝑃 . (4.6) 

The important fact is that the displacement Δ𝑃𝑙𝑜𝑐  is still a function of the displacement 

variables, 𝑈, 𝑉, 𝑊, 𝜑1, 𝜑2, 𝜑3, referred to the Global system. This approach allows us 

to compare displacements of nodes belonging to different steps. 

4.1.6 Constraints 

For simplicity, the contact among blocks is condensed into 15 contact nodes for each 

step. Depending on the node to which we refer, we can consider that the displacement is 
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prevented in both directions or just in one of them. In the first case a bilateral constraint 

is necessary, which is expressed by equality, while in the latter case, a unilateral 

constraint can be employed, expressed by inequality.  

 

The generic constraint is defined as follows: 

 

𝑈𝑖(𝑃) = 𝑎 ↔   𝑏𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  

   

  (4.7) 

𝑈𝑖(𝑃) ≤ 𝑎   

 ↔   𝑢𝑛𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  

𝑈𝑖(𝑃) ≥ 𝑎   

 

where 𝑖 is the index of one of the three axes, 𝑃 is the generic node to which the constraint 

condition is applied,  𝑈𝑖(𝑃) represents the displacement of node 𝑃 on the direction 𝑖, and 

𝑎 is the constant term. 

The constraint conditions can be defined in the more convenient local or global reference 

system (G, S, K). At the constrained boundary, these constraint conditions take into 

account the effect of possible settlements.  

 

The constraint conditions, summarized in Fig.  4.11, are grouped as follows: 

 

a. For each step (i) we consider the absolute constraint conditions: 

▪ Equalities, expressed in the S-Local System, representing the bilateral 

constraints for nodes in brackets: 

 

𝑒𝑞1.    𝑈1(𝐷/𝐴) = 0 , (4.8) 

𝑒𝑞2.    𝑈2(𝐷/𝐴) = 0 , (4.9) 

 

These equalities are written both for nodes D and A, as two case studies are here 

analysed, and convey the condition that node D (or A) cannot displace in the 

horizontal plane, that is it behaves as a bilateral horizontal support.  

 

▪ Inequalities, expressed in the S-Local System, representing the unilateral 

constraints for nodes in brackets: 

 

𝑖𝑛𝑒𝑞1.    𝑈3(𝐴)  ≥ −𝑐1 (settlement), (4.10) 

𝑖𝑛𝑒𝑞2.    𝑈3(𝐷)  ≥  0 ,  (4.11) 

𝑖𝑛𝑒𝑞3.    𝑈3(𝐷′) ≤  𝑐3 (settlement), (4.12) 
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𝑖𝑛𝑒𝑞4.    𝑈3(𝐵)  ≥ −𝜀1 (tolerance), (4.13) 

𝑖𝑛𝑒𝑞5.    𝑈3(𝐶)  ≥ −𝜀1 (tolerance), (4.14) 

𝑖𝑛𝑒𝑞6.    𝑈3(𝐵′) ≤  𝜀1 (tolerance), (4.15) 

𝑖𝑛𝑒𝑞7.    𝑈3(𝐶′) ≤  𝜀1 (tolerance), (4.16) 

𝑖𝑛𝑒𝑞8.    𝑈3(𝐴′) ≤  𝑐3 (settlement). (4.17) 

 

These conditions take into account the fact that the part of the step inserted into 

the wall presents inevitably a backlash, therefore, we considered free 

movements for each node in specific directions to account for this clearance. In 

particular, node A can move freely along the positive direction 3 and can drop 

to the quantity c1; node D can move freely along the positive direction 3 starting 

from its local reference position; node D’ can move freely along the negative 

direction 3 and can rise up to the quantity c3; nodes B, C, B’, C’ can move freely 

along the locally inward direction 2 and move laterally up to the quantity 1; 

node A’ can move freely along the negative direction 3 and can rise up to the 

quantity c3. 

 

b. For the ground step, we consider the absolute constraint condition expressed by an 

inequality, in the S-Local System, representing the settlement of the unilateral 

constraint for node in brackets: 

 

𝑖𝑛𝑒𝑞9.    𝑈3(𝑀) ≥ −𝑐2 (settlement). (4.18) 

 

This inequality conveys the assumption that at the base of the helical stair it is likely 

that a vertical settlement shows up; therefore, node M can drop of the quantity c2. 

The order of magnitude of c2 is chosen in such a way that the small displacement 

hypothesis applies. 

 

c. For all other steps, we also consider the relative constraint condition, expressed by 

inequalities written in the K-Local System, representing the unilateral constraints for 

nodes in brackets: 

 

𝑖𝑛𝑒𝑞9.      𝑈1(𝑀𝑖) − 𝑈1(𝑁𝑖−1) ≤      𝜀2 (tolerance), (4.19) 

𝑖𝑛𝑒𝑞10.    𝑈1(𝑀𝑖) − 𝑈1(𝑁𝑖−1) ≥    −𝜀2  (tolerance), (4.20) 

𝑖𝑛𝑒𝑞11.    𝑈3(𝑀𝑖) − 𝑈3(𝑁𝑖−1) ≥      0 .  (4.21) 

 

These inequalities convey the condition that in the horizontal plane the relative 

displacement between node M of the step (i) and node N of the step (i-1) is allowed 

in a neighbourhood of size 2, so small that the small displacement hypothesis is 

verified, while along the vertical direction this relative displacement must be equal 
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to zero, so as to realize contact between the two nodes, through which the reactive 

force can be transmitted. 

 

 
Fig.  4.11: Bilateral and unilateral constraints conditions considered  

at the nodes of each step 

Different sets of settlement and clearance values are considered, according to the small 

displacement hypothesis; the values of tolerances and settlements adopted in this 

application are reported in (4.22) - (4.26). Tolerances and settlements have one order of 

magnitude difference, namely: 

 

𝑐1 = 8 ∙ 10−3    [𝑚] (vertical settlement downward at node D  

of the socket), 

(4.22) 

 

𝑐2 = 3 ∙ 10−2    [𝑚] (vertical settlement downward for the  

ground step), 

(4.23) 

𝑐3 = 6 ∙ 10−3    [𝑚] (vertical settlement upward at node D’  

of the socket), 

(4.24) 

𝜀1 = 1 ∙ 10−3    [𝑚] (horizontal tolerance in the socket), (4.25) 

 

𝜀2 = 3 ∙ 10−4    [𝑚] (tolerance between Mi and Ni-1 nodes at  

step to step contact). 

(4.26) 

 



Chapter 4 - APPLICATIONS TO STRUCTURES MADE OF RIGID BLOCKS 

 66 

As previously stated, in order to facilitate the writing of some constraint conditions, such 

as those related to points M and N, in which we consider the presence of two pendulums 

in the horizontal plane (inclined at an angle 𝛿 2⁄  relative to the y-axis of the S-Local 
System), the K-Local System is used. One of the axes of the K-Local System coincides 

with the axis of the pendulum, along which its reaction is explicated (Fig.  4.8c). Writing 

the constraint conditions in Matlab, the position of the point to which they relate and the 

direction of movement prevented are specified. These two vectors are successively used 

to determine the point of application and the direction of the corresponding reaction 

vector.  

 

As stated at the beginning of this work, the multi-body structure of the stair is a highly 

statically indeterminate scheme, in the sense that the number of possible reactions is 

largely greater than the number of balance equations. When a mechanism is activated by 

the settlements, the moving part of the structure becomes a one degree of freedom 

mechanism and becomes statically determined, then it is possible to derive the forces 

which ensure the equilibrium of the structure through the balance equations. Then, if we 

can imagine or predict a likely scenario for the settlements, we can obtain a hint of the 

possible equilibrium regime of the structure. In this particular application, we consider 

two types of possible settlements, that we call settlements and tolerances, having one 

order of magnitude difference among each other. 

The proper settlements, which we assume present in the form of a vertical displacement 

of the node at the base of the stair and of vertical settlements of node A and D’ at the 

wall socket, are larger. The tolerances, which simulate a small clearance in the horizontal 

plane, at the wall socket and at the step to step contact, are smaller. 

According to the small displacement hypothesis, we considered different sets of 

reasonable settlements of the internal and of the external constraints of the stair, that is 

small relative movements of the steps at the wall and at the central rib. The settlements 

are imposed both as displacements of the ground step and as backlashes, assigned to the 

nodes in the socket (the results of the present work are referred to the values described 

in § 4.1.6). These settlements are likely to occur either during construction or a short 

time after construction. 

4.1.7 Energy 

In general, for an elastic-brittle structure, the energy is the sum of three quantities: the 

potential energy of the loads, the elastic energy and the interface energy necessary to 

activate a crack on an internal surface. The material considered in the case study responds 

to the hypothesis of Heyman’s model, in the sense that unilateral conditions with no-

sliding holds at contact between parts considered as rigid. Consequently, the energy 

quantity is represented, as said before, by the potential energy ℘ associated to the own 

weight of the steps: 

 

℘ = − ∑ 𝑚𝑠𝑡𝑒𝑝

𝑛

𝑠𝑡𝑒𝑝=1

𝑔𝑈𝑧,𝑠𝑡𝑒𝑝 , 
  

(4.27) 
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where (𝑚𝑠𝑡𝑒𝑝𝑔) is the weight of each step (≈ 1700 N) and  𝑈𝑧,𝑠𝑡𝑒𝑝  is the vertical 

displacement of the centroid of each step. The search of the solution of the boundary 

value problem, that is the displacement field compatible with the settlements imposed 

on the structure, is done through the minimization of the potential energy of the loads. 

Since in this case we consider rigid block displacement fields, the contribution of the 

elastic energy is zero. Furthermore, Heyman’s material is non-dissipative, in the sense 

that the stress makes no-work for the corresponding strain. The no-dissipation 

assumption implies, in particular, that there cannot be stress across a detached fracture 

line, and, dually, that there cannot be a fracture at a point across a surface if, at that point, 

there is compressive stress across the interface  [23]. Then, the interface energy necessary 

to activate a crack on an internal surface is zero. 

 

4.1.8 Energy minimization 

The minimization problem is set in Matlab. Being Matlab a programming language that 

operates on matrices, the previous constraint equalities and inequalities are converted 

into matrix form and then a linear programming problem is solved. The solution of the 

minimum problem is performed with a linear programming routine, through a function 

built in Matlab and called 'linprog', whose signature is set in the form: 

 

𝑚𝑖𝑛𝑥 𝑓𝑇𝑥   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝐴𝑖𝑛𝑒𝑞 𝑥 ≤ 𝑏𝑖𝑛𝑒𝑞  ,

𝐴𝑒𝑞 𝑥 = 𝑏𝑒𝑞 ,

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏 ,

 

 

(4.28) 

 

where: 

 

𝐴𝑖𝑛𝑒𝑞 𝑥 ≤ 𝑏𝑖𝑛𝑒𝑞  , constraint conditions written as inequalities (4.29) 

 

𝐴𝑒𝑞 𝑥 = 𝑏𝑒𝑞  , constraint conditions written as equalities (4.30) 

 

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏  , upper and lower limits of the variable x (4.31) 

 

and the function to be minimized 𝑓𝑇𝑥   is represented by the potential energy ℘ 

associated to the loads imposed on the structure. 

The 'linprog' function of Matlab recommends in its documentation, for minimization 

problems, the use of the 'Interior Point' or of the 'Dual-Simplex' algorithms, which are 

the fastest and use less memory space than the other algorithms. In particular, the Interior 

Point algorithm is chosen, which is a large-scale algorithm that uses linear algebra rules 

and that does not require either to store or to operate on the entire matrix that defines the 

problem.  This is possible as it works on sparse matrices and uses sparse linear algebra 
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calculations, when it is possible, making the calculation procedure particularly 

performing, both in terms of quality of solution and of execution timing. Medium-scale 

algorithms work on the entire matrix and use dense linear algebra formulas; then, for 

large problems, such as the present, full matrices occupy a memory space that requires 

high computing time. 

4.1.9 Saturated conditions 

In the case at hand we always have inequalities written with the “≤” condition, since 

“Linprog” function in Matlab requires the equalities and inequalities conditions written 

in this form. Considering, for example, the unilateral constraint 𝑥 ≤ 𝑎 in Fig.  4.12, that 

admits infinite solutions in the ] − ∞, 𝑎]  interval, we are interested, among all the 

infinite solutions, to spot the one for which the condition 𝑥 = 𝑎 is met, which implies 

that, in an iterative optimization procedure, the value of the x variable cannot grow any 

longer.  

 

 
Fig.  4.12: Unilateral condition x ≤ a 

In our case this means that the displacement in a particular direction has reached a limit, 

physically represented by the wall or by any other type of obstacle, such as the adjacent 

tread or the limit clearance. We consider this condition particularly interesting, because 

it shows that a contact has been realized, through which the internal forces can be 

transmitted. From now we call saturated inequalities the inequalities which are satisfied 

as equalities at the end of the optimization process. 

 

4.1.10 Kinematic Solution and Equilibrium 

The kinematical problem, formulated as a minimum problem, is solved by linear 

programming, and finally is reduced to the following matrix form:  

 

𝐶 ∙ 𝑢̂ = 𝑞 ,  (4.32) 

 

where: 
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▪ 𝐶 is the kinematic matrix, whose size is 6𝑛 × 6𝑛 and n is the number of the steps; 

▪ 𝑢̂ is the displacements vector (unknown), whose size is 6𝑛 × 1; 

▪ 𝑞 is the settlements vector (known), whose size is 6𝑛 × 1. 

 

Once the solution of the problem, that is the minimizer of the potential energy, is 

obtained, then the Static matrix S is constructed by means of the transposition of the 

Kinematic one, recalling the static-kinematic duality, so that S = CT. The Static matrix, 

thus obtained, allows the resolution of the equilibrium problem: 

 

𝑆 ∙ 𝑟 + 𝑓 = 0 ,  (4.33) 

 

where: 

▪ 𝑆 is the Static matrix, whose size is 6𝑛 × 6𝑛; 

▪ 𝑟 is the reactive force vector (unknown), whose size is 6𝑛 × 1; 

▪ 𝑓 is the active force vector (known), whose size is 6𝑛 × 1.  

 

From the Static problem, defined above, the vector of the unknown reactions is obtained: 

 

𝑟 = −𝑆−1 ∙ 𝑓 .  (4.34) 

 

Once the forces exerted by the bonds are selected and calculated, it is possible to compute 

the stress resultant inside the stair, in terms of contact forces, bending moments and 

torque, using the following vector formulas: 

 

Contact forces 

 

𝑟(𝑥) = ∑ 𝑓(𝑣𝑖) + ∫ −𝑃(𝜉)𝑒3̂

𝑙

𝑥

𝑑𝜉

𝑛

𝑖=1

 , 
  

(4.35) 

 

where: 

 

▪ 𝑥  is the cross section along the x-axis of the S-Local System, from the wall interface 

till the end of the step, defined between 0 and L; 

▪ 𝑣𝑖 are the vertices of the step;  

▪ 𝑓(𝑣𝑖) are the reactive forces on the step; 

▪ ∑ 𝑓(𝑣𝑖)𝑛
𝑖=1  is the sum of all forces at the right of the section x; 

▪ ∫ −𝑃(𝑥′)𝑒3̂
𝑙

𝑥
𝑑𝑥′ is the weight of the part of the step at the right of the section x; 
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Bending moments and torque 

𝑚(𝑥) = ∑ 𝑓(𝑣𝑖)  ×  [𝐺𝑥 − 𝑣𝑖] + ∫ −𝑃(𝜉)𝑒3̂

𝑙

𝑥

𝑛

𝑖=1

  ×  (𝑥 − 𝜉)𝑒1̂𝑑𝜉, 
  

(4.36) 

 

where: 

 

▪ 𝐺𝑥 is the centroid of the cross section x; 

▪ 𝑒1̂  is the unit vector along the symmetrical axis of the step, approximated (with a 

factor of 10−18) with the direction of the segment 𝐺𝑙 − 𝐺0; 

▪ 𝑒3̂  is the unit vector along the z-axis of the Global System. 

4.1.11 Identification of saturated conditions and construction of the C matrix 

The resulting solution, called x,sol, complies with the equalities and inequalities that 

characterize the minimization function (4.28). Subsequently, the inequalities 

transformed into equalities are identified through the solution x,sol.  

Recalling that Aineq represents the rows of the original matrix A that refers only to 

inequalities and xsol is the solution of the minimization problem, the first step is the 

evaluation of a new column vector, named bineq_sol, defined as follows: 

 

𝑏𝑖𝑛𝑒𝑞_𝑠𝑜𝑙 =  𝐴𝑖𝑛𝑒𝑞𝑥𝑠𝑜𝑙  ,  (4.37) 

 

once obtained bineq_sol, the identification of the set of rows i, for which holds the following 

condition, is possible: 

 

|𝑏𝑖𝑛𝑒𝑞,𝑖
− 𝑏𝑖𝑛𝑒𝑞_𝑠𝑜𝑙,𝑖

| < 10−6 .  (4.38) 

 

Once identified these rows, they are selected from Aineq matrix and are used to create a 

new matrix, called Aineq_sat. Then it is possible to reconstruct the kinematic matrix of the 

problem, simply by assembling the matrix of coefficients of the saturated inequalities 

Aineq_sat, just found, with that of the coefficients of the equalities Aeq: 

 

𝐶 = [
𝐴𝑒𝑞

𝐴𝑖𝑛𝑒𝑞_𝑠𝑎𝑡
] . 

  

(4.39) 

 

In the same way, the displacement and settlements vectors are obtained: 

 

 𝑢̂ = [
𝑥𝑠𝑜𝑙_𝑒𝑞

𝑥𝑠𝑜𝑙_𝑖𝑛𝑒𝑞_𝑠𝑎𝑡
]     ,     𝑞 = [

𝑏𝑒𝑞

𝑏𝑖𝑛𝑒𝑞_𝑠𝑎𝑡
] . 

  

(4.40) 
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4.1.12  Results 

Two cases are analysed, the first in which, for each step, the horizontal bilateral 

constraint is located in vertex A; the second in which it is located in vertex D. For these 

two cases, considering as given the same set of settlements, the optimization algorithm 

provides a minimum solution and the corresponding statically determined structure is 

identified. Since under the effect of the settlements that we consider, all the steps are 

mobilized, the whole structure becomes statically determined, then the evaluation of all 

internal forces is possible through the static-kinematic duality.  

 

Since in the case at hand the three helical flights do not interact with each other, the 

behaviour of each flight is independent from that of the others, hence the analysis can be 

carried out just referring to one of them. When the bilateral horizontal constraint is 

considered in vertex A, the optimization algorithm produces the graphic output depicted 

in Fig.  4.13: 

 

 
Fig.  4.13: Graphic output of the optimization algorithm 

 

In particular, Fig.  4.13 shows the structure in its initial (blue lines) and final (green lines) 

displaced condition and the activated unilateral constraints along the horizontal plane 

(represented by red circles) and along the z-axis (represented by red points), that is the 

points where the internal forces are acting on the structure, enforcing equilibrium. The 

concept of activated constraints is particularly interesting and is described in § 4.1.9.  

In order to visualize easily and rapidly the saturated inequalities for each tread, that is 

the internal forces exerted by the unilateral constraints on each tread, the graphic in Fig.  
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4.14, referred to one of the coils of the stair composed by three complete helix rounds 

(that is 126 steps), is employed. 

 
Fig.  4.14: Saturated inequalities for all the 126 treads  

(horizontal bilateral constraint in node A) 

On the x-axis, the numbers from 1 to 11 identify, for each tread, the index related to the 

unilateral constraint conditions; on the y-axis, the step number, ordered from 1 to 126 

(from bottom to top) is reported (for the set of unilateral constraints see § 4.1.6). The 

filled dots represent the saturated inequalities, while the empty dots represent the non-

saturated inequalities. Then, some interesting considerations can be made.  

As we can observe, node D (2nd column) always exhibits its maximum possible vertical 

settlement, that is it remains on the ground, whilst node A (1st column) does not reach 

the minimum value of vertical displacement (that is settlement c1). Moreover, node M 

reaches the given settlement, that is value c2, for the first tread at the floor level (9th 

column for the first tread), and for the other 125 treads the contact along the z-axis 

between node M of tread ‘i’ and node N of tread ‘i-1’ (11th column for treads from 2 to 

126) always occurs. Finally, node M of tread ‘i’ and node N of tread ‘i-1’, separate from 

each other in the horizontal plane (9th column for treads from 2 to 126).  

 

The infinitesimal clearance that we admit for nodes M and N in the horizontal plane is 

imposed so that the unilateral inequalities 9 or 10 can be easily verified as equalities, 
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making possible to evaluate the emerging internal forces in these nodes (see the red 

arrows in Fig.  4.15 and Fig.  4.16, representing the activated internal forces). 

 

 
Fig.  4.15: Emerging internal forces in nodes D and M  

(horizontal bilateral constraint in node A) 

In addition, looking at the 4th, 5th and 7th columns, which are referred to the part of the 

tread that is inserted into the wall socket, we can observe that for the first 17 treads node 

C touches the wall (5th column); for the treads from 18 to 22, node B touches the wall, 

whilst, for all the others treads, node C’ touches the wall. Thus, for the socket part, the 

internal forces are applied either in nodes B or C’ (Fig.  4.16). 
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Fig.  4.16: Emerging internal forces in nodes B, C and C’  

(horizontal bilateral constraint in node A) 

 

This particular behaviour is due to the sudden change of strategy chosen by the 

optimization algorithm, which looks for the minimum solution by applying an adaptive 

strategy in terms of displacement and rotation of the centroids of the treads. This can be 

seen from the rotation trend of the centroids along x-axis in Fig.  4.17 (highlighted part 

in the box), where a change of direction of the rotation occurs. A similar behaviour is 

also observed for translations of the centroids (Fig.  4.18). 
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Fig.  4.17: Trend of the angles of rotation about the centroids  

(horizontal bilateral constraint in node A) 

 

 
Fig.  4.18: Trend of the displacement of the centroids  

(horizontal bilateral constraint in node A) 
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This sudden change is also due to the fact that we have a saturated inequality on the z-

axis for node D (2nd column), that is an equality in node D, and also a bilateral constraint 

in the horizontal plane for node A, defined in the initial constraint condition of this first 

case. Thus, the algorithm needs to satisfy two bilateral constraints in two different nodes, 

that is a mathematical condition very restricting. For this reason, a second case is 

analysed, where the bilateral constraint in the horizontal plane is positioned in node D, 

so that this sudden change is mitigated. 

We remember that these bilateral constraints are defined by the user in the initial setting 

and represent equalities that are always active, while the activation of the inequalities 

along the z-axis depends on the solution found by the optimization algorithm. 

When the bilateral constraint is considered in node D, the optimization algorithm 

produces the output shown in Fig.  4.19, in terms of saturated inequalities: 

 
Fig.  4.19: Saturated inequalities for the 126 treads  

(horizontal bilateral constraint in node D) 

As for the previous case, node D always exhibits its maximum possible vertical 

settlement, that is it remains on the ground, whilst node A does not reach the minimum 

value of vertical displacement (that is settlement c1). Moreover, node M reaches the 

maximum settlement c2 at the ground, and for the other 125 treads the contact along z-

axis between node M of tread ‘i’ and node N of the tread ‘i-1’ always occurs. Finally, 
node M of tread ‘i’ and node N of the tread ‘i-1’ separate from each other in the horizontal 

plane (Fig.  4.20).  
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In addition, referring to the part of the tread that is inserted in the wall socket, we can 

observe that, for the first 14 treads, node C touches the wall, then for all the others treads 

node B touches the wall (Fig.  4.20).  

 

 

 
Fig.  4.20: Emerging internal forces in nodes D, M, B, B’, C and C’  

(horizontal bilateral constraint in node D) 

This behaviour is due to the fact that the treads rotate in the horizontal plane, that is round 

the z-axis, first in clockwise and then counter clockwise directions. In this second case, 

the sudden change of strategy of the optimization algorithm is not so evident, thus the 

trends of displacement and rotation of the centroids are more uniformly varying, as can 

be seen in Fig.  4.21 and Fig.  4.22. For this reason, we choose to continue the analysis 

for this second case. 
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Fig.  4.21: Trend of the angles of rotation about the centroids  

(horizontal bilateral constraint in node D) 

 
Fig.  4.22: Trend of the displacement of the centroids  

(horizontal bilateral constraint in node D) 

At the end of the optimization process, the kinematical problem solution is obtained, 

which consists in the translations and rotations values of the centroid of each step. Then, 
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it is possible to obtain the Static Matrix S, by means of transposition of the Kinematic 

one, through static-kinematic duality. From the Static problem, the vector of unknown 

reactive forces is obtained and consequently it is possible to calculate the internal stress 

resultants.  

An example of the representation of reactive forces is given in Fig.  4.23, where the 

internal forces which guarantee the equilibrium of step 44 are reported. The 

corresponding bending moment about axis 2 is shown in Fig.  4.24. Considering the 

internal forces of the entire stair, is also possible to evaluate the global trend of the stress 

resultants, the most meaningful for us being the axial force and torque, depicted in the 

graphs of Fig.  4.25. 

 

 
Fig.  4.23: Internal forces (tread 44) 
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Fig.  4.24: Bending moment about axis 2 (tread 44) 

 
Fig.  4.25: Stress resultants for 3 complete rounds (126 treads).  

a) Torque b) Axial force 
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As can be noted in Fig.  4.25, if we examine the diagrams from the top to the bottom of 

the stair, we can observe that the axial force gradually increases up to a certain step (the 

16th step from the bottom), after which it stabilizes around a constant value, while the 

torque initially increases with a linear trend up to the first 10 steps, then it stabilizes up 

to a certain step (the 16th step from the bottom), as happens for the axial force, and then 

it increases again.  

The complementarity between these two stresses can be noted; this gives a practical 

confirmation of the solution in the continuum obtained by Angelillo in  [47]; indeed, we 

can observe a smooth combination between the Heyman’s equilibrium solution, for 

which the torque is considered as the prevalent stress regime, and the Ring-Like model, 

which produces the increase of axial forces. 

Comparing the Heyman’s solution, which considers a linear increase of torque, with the 

equilibrium solution here obtained, it is possible to recognize Heyman’s behaviour for 

the first steps, and then the gradual substitution of the Ring-Like behaviour as proceeding 

from top to bottom. (Fig.  4.26).  

  

 
Fig.  4.26: Torque for Heyman and for the discrete with settlement solution 

Furthermore, as said, for the steps near the ground level, a sort of boundary effect, 
deserving further studies, can be also noted. 
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Moreover, it is noteworthy that the maximum torque and the shear stress values obtained 

with our solution (Mt=1,2 kNm, =5,38 MPa) are far less than that obtained using the 

Heyman’s solution (Mt=11,22 kNm, =50,27 MPa), the difference being of one order of 

magnitude. In the case at hand we can estimate a shear stress value compatible with the 

shear strength of the material (see § 4.1.3). 

For what concerns the bending moment diagram, the non-zero values at the ends are due 

to the eccentricity between the pressure line and the axis along which the bending 

moment is evaluated. Besides, the values of the bending moment in the vertical plane of 

the steps are of the same order of those of a simply supported beam and are very low 

(=0,0016 MPa) with respect to the tensile strength of the material (see § 4.1.3).  

4.2 Program user-interface 

The results seen above, are taken using the program developed for this work. In this 

paragraph, the user-interface of the program and all the possible functions are presented. 

When the program starts, all the minimization problem is carried out automatically, 

because the geometrical parameters cannot be modified by the user at this stage. Once 

the initial results are obtained, a selection screen is displayed to the user (Fig.  4.27), 

allowing both to deepen certain types of analysis (referring to a single step), and 

manipulate results in an appropriate manner, through graphical display or export of data 

in .csv files. 

 

In the control panel are reported the parameters used for the analysis, in particular the 

number of steps (that is 126 if we consider three complete landing of the helical stair) 

and the value of assigned settlements. Then, five function buttons are available:  

• Saturated inequalities; 

• Displacements; 

• Rotations; 

• Step analysis; 

• Stress. 
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Fig.  4.27: Control Panel of Matlab program 

 

Each of these buttons allows access to one or more of the methods described above. They 

can be activated in any order, as everyone does independent operations. Now we proceed 

to analyze in detail what offers each function. 

 

Saturated inequalities 

The first function (Fig.  4.28) is used to obtain graphics and 3D models, with graphical 

representation of the results (settlements, saturated inequality, etc.). 

 

 
Fig.  4.28: Saturated inequalities command 

The graph in Fig.  4.29 represents the saturated inequalities for each step, and uses a 

convenient representation with full or empty circles in the step-inequality graph. The 3D 

model (Fig.  4.30) makes clear the spatial points (red) of stair where a contact is realized, 

by adopting a differentiated representation according to the plan on which a contact is 

made; in blue is drawn the stair in its original position, in green its translated position. 
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Fig.  4.29: Saturated and non-saturated inequalities 

 

 

 

 
Fig.  4.30: View of the spatial contact points 
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Displacements and rotations 

The second and third function (Fig.  4.31, Fig.  4.32) are useful to analyse the 

displacements and rotations obtained for all the steps, with reference to the relative 

centroids.  

 

 
Fig.  4.31: Displacements command 

 

 
Fig.  4.32: Rotations command 

The results are reported in relation to the S-Local System, and are made available in two 

modes: the first is the graph with the trends of the displacements and rotations of the 

centroids (Fig.  4.33, Fig.  4.34); the second consists in the exportation of .csv data files, 

which are then imported and analysed with other programs. For example, in this study 

the graphs were produced, for convenience, using Excel. 
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Fig.  4.33: Displacements trend of the centroids 

 
Fig.  4.34: Rotations trend of the centroids 

Step analysis 

The fourth function (Fig.  4.35) is more complex, since it allows to calculate the reactive 

forces and also allows to check the balance of the steps.  
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Fig.  4.35: Step analysis command 

After testing the balance of all the step of the stair, the user can interact with a dynamic 

interface (Fig.  4.36), where he can select two main options: 

• the reference system to use for the results; 

• the step to be analysed. 

 

 
Fig.  4.36: Dynamic interface of step analysis command 

As an example, in Fig.  4.36 we chose to analyse the step 44 in the S-Local System. Once 

set these two options, the step in 3D can be seen (Fig.  4.37), with the vectors representing 

the reactions that are activated for that step, and that verify the balance. The screen does 
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not display the vector relative to its weight of the step, considered applied in the centroid, 

but this value is still taken into account in the calculations. For each reaction, four 

numerical values are also reported: 

• r   : reaction module, expressed in N; 

• Rx : projection of r on the x-axis of the selected reference system, expressed 

in N; 

• Ry : projection of r on the y-axis of the selected reference system, expressed 

in N; 

• Rz : projection of r on the z-axis of the selected reference system, expressed 

in N. 

 

 
Fig.  4.37: View of the step in 3D 

Stress  

The last function (Fig.  4.38) is the most complex, as it aims to allow both the 

visualization and the stress analysis for all the steps.  
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Fig.  4.38: Stress command 

The complexity is due to the fact that our interest is both in the stress trend in a single 

step and in the global behaviour of the full stair. Since the step is partitioned in twenty 

control sections (Fig.  4.39), it is possible to refer the analysis results to one or more 

sections of the steps. In particular, the index 1 is referred to the section in correspondence 

to the wall, while the index 20 is referred to the section in correspondence of the internal 

rib, where the railing is present. 

 

 
Fig.  4.39: Control sections 

After selecting this function, it is then shown to the user a dynamic interface, where four 

options can be selected: 

 

• Step/s to select: it can be either specified a single step, an interval ‘from-to’, or take 

into account all the steps (Fig.  4.40); 

• Section/s to select: each step is divided into 20 sections. Here it can be selected, in 

the same manner of the steps, the section/s of interest (Fig.  4.41); 

• Reference system to use for the results (Fig.  4.42); 

• Stress to analyze with reference to the step/s and the section/s selected. This option 

allows us to analyze the values of axial force, shear, bending moment and torsional 
moment (Fig.  4.43). 
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Then, the resulting graph is a 3D graph, where the x-axis represents the step/s, the y-axis 

represents the section/s and the z-axis represents the stress. In special cases, for example 

for a single step or a single section, the graph becomes 2D. An example of 2D stress 

diagram is reported in Fig.  4.44, where the axial force, indicated with the notation ‘r(1)’ 

is reported, referring to the S-Local System, considering steps from 2 to 126, and the 

section 1 in correspondence to the wall is considered. Two examples of 3D stress 

diagram are reported in Fig.  4.45 and in Fig.  4.46, where the axial force and the torsional 

moment are drawn, considering all the control sections of the steps from 2 to 126 and 

referring to the S-Local System. 

 

 
Fig.  4.40: Step selection 

  
Fig.  4.41: Section selection 
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Fig.  4.42: Reference System selection 

                  
Fig.  4.43: Stress selection 
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Fig.  4.44: Axial force for step from 2 to 126, section 1 

 
Fig.  4.45: 3D Diagram for Axial force for step from 2 to 126,  

for all the control sections 

 

Fig.  4.46: 3D Diagram for Torsional moment for step from 2 to 126,  

for all the control sections 
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5. Chapter_5                                                                                                                                             

CONCLUSIONS 

5.1 Some remarks by Huerta 

As noted by Huerta  [16], the study of historic buildings deals with two main issues: 1) 

understanding their structural behaviour, by studying the possible states of equilibrium 

and 2) trace the origin and significance of their cracks, trying to imagine what kind of 

movements gave origin to the observed pattern of cracks.  

In order to study the equilibrium of a structure, it is important to identify its structural 

parts, that is what can be considered structure and what not, since an inadequate 

identification of the structure and of its elements can be misleading. This issue can be 

addressed by referring to Heyman, who has already studied the most basic types of 

historic masonry structures. 

Regarding the origin and significance of the cracks, the analogy between the typical 

cracking patterns and the kind of movement which could have originated them must be 

sought, although “complicated patterns produced by combined movements will demand 

the analyst experience and insight”  [16]. 

Cracks represent the most evident manifestation of the nature of masonry material, due 

to the fact that masonry structures can adapt, while remaining safe, to small, unavoidable 

and unpredictable movements (e.g., soil settlements). For small movements we mean 

roughly 1/100 of the span, that is 100 mm for a 10 m span; in this case the state of 

equilibrium remains substantially unaltered and still “contained” within the distorted 

geometry. Hence, even if cracks could alarm a modern architect or engineer, they are in 

most cases irrelevant. Besides, since boundary conditions can vary at any time, the crack 

pattern may change, so there is no way to predict future movements, but, thanks to the 

Safe Theorem we learn that the structure will remain safe for any “small” movements in 

the future. 

Of course, the modern computer programs may be of great help in the study of the 

equilibrium of arches, vaults and buttresses, working within the assumptions of Limit 
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Analysis. The complexity lies in the definition of the geometry, since every building, 

even within a certain studied type, presents different problems and there is not a unique 

way to approach the problem.  

As noted by Huerta in  [16], “the task is not easy; no computer program will give us a 

unique answer, but the problem presents itself with all its fascinating complexity and 

richness. Now the analyst is in the situation to ask relevant questions and give meaningful 

answers. It is not an amateur task; it needs long years of study, practice and reflection”.  

5.2 A short discussion about this PhD work 

The present work extends previous research on the behaviour of masonry stairs. Its main 

purpose is the evaluation of the effect of settlements by employing a discrete model. 

The behaviour of masonry stairs has been already studied by other authors. In particular, 

Heyman observes that the basic structural action for masonry stairs of small flight is 

represented by twist of individual treads, which lead to shear stresses and, consequently, 

to tensile stresses in the masonry.  

In  [46] the author shows how such stresses, which are low for short stairs, can become 

more harmful than direct compression for long flights, so that the strength of the material 

is violated and the equilibrium of the structure is compromised. 

In  [47] Angelillo proposes an analytical study of a real case, that is the triple helical stair 

of San Domingos de Bonaval, in which he overcomes this problem combining two 

different models. He models the helical stair, made of monolithic steps, built in 

torsionally at their external boundary and supported on an internal rib, as a continuum 

shell. His analysis is based on the assumption that the material of the stair is unilateral, 

namely a No-Tension material in the sense of Heyman and he employs the Safe Theorem 

of Limit Analysis in order to obtain a statically admissible stress field, combining 

concentrated stresses and 2d diffuse uniaxial stresses. With his continuous model, 

Angelillo combines the equilibrium solution proposed by Heyman with a sort of Ring-

Like solution valid, by itself, only for a generic helical stair structure fixed at both ends. 

The combination of the two equilibrium solutions produces, in his analytical study, 

limited shear and tensile stresses into the steps and limited compressive stresses into the 

central rib. 

The complementarity of the two equilibrium solutions proposed by Angelillo is here 

checked from a completely different point of view, on a case study, by employing an 

energy approach for a discrete model of the helical stair of San Domingos de Bonaval. 

The structure is treated as a system composed by an assembly of rigid blocks, that is it 

is assumed that each step behaves as a rigid body, whose behaviour, in terms of possible 

movements that can be exhibited, can be described by the displacements and the rotations 

of their centroids. It is assumed that the staircase is subject only to its own weight, that 

is the weight of each step is applied at its centroid; moreover, the rigid blocks are 

submitted to unilateral constraints, with no-sliding on interfaces. 

While Angelillo refers to a static approach, that is applied for a continuous model of the 
masonry stair, in the present case we refer to a kinematic approach applied to a discrete 

model, in which we admit the presence of likely sets of given settlements of the 
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constraints. The effect of such settlements produces a piecewise rigid displacement field 

for the entire structure, which can be derived through an energy approach, by minimizing 

the potential energy of the loads. Since each individual step of the helical stair moves, 

the structure becomes statically determined as a whole, hence the corresponding 

statically admissible set of internal forces can be found, by invoking the static-kinematic 

duality. The whole calculation procedure and modelling are carried out with linear 

programming and implemented in the programming language Matlab. 

 

The complexity related to a faithful reproduction of the stair geometry have been 

overcome by referring to a slightly simplified shape of the steps. Moreover, the 

longitudinal axis of the treads, which is actually curve, is assumed to be straight, being 

in this case negligible the error of approximation (0,2 ‰). In order to capture the 

behaviour of different parts of the step, that is the part of the step inserted into the wall 

and the part near the internal rib, and consequently confirm the Ring-Like stress regime, 

different local reference systems are considered. The choice of using three different 

reference systems is also useful to make the writing of constraint conditions and the 

analysis of results easier. The writing of the constraint conditions for the various nodes 

of the step is the result of long considerations and different hypothesis, made with the 

fundamental help, the intuitions and experience of Professor Angelillo, about the 

possible structural behaviour of the staircase as a whole.  

Many attempts have been considered, taking into account different sets of possible 

settlements and clearances in correspondence of nodes along specific directions. The 

objective was to predict a possible scenario for the given settlements, which is able to 

mobilize the entire structure and, eventually, to identify a special set of internal and 

external reactions on each rigid piece composing the structure. 

 

The fundamental difference with the original work by Angelillo consists in the fact that 

the search of the displacement field, as a solution of the kinematical problem, is here 

obtained by employing an energy approach, namely by minimizing the solely potential 

energy ℘ of the loads over the set of piecewise rigid displacements. In this case, the 

functional ℘ is linear in 𝐮̂ (vector of rigid body parameters) and it is subject to linear 

constraints, hence the problem can be set as a Linear Programming problem, whose 

solution is obtained, in Matlab, through the Interior Point algorithm, which is 

recommended when the problem contains many variables, that is it is a “large-scale” 

problem. 

The interpretation of results, in terms of nodes displacements and of identification of 

reactive forces, is facilitated thanks to the concept of “saturated inequalities”: in this way, 

the visualization of steps behaviour is optimized and also the internal forces can be 

derived. Hence, the stress regime of the whole staircase can be obtained. 

For what concerns the diagram of bending moment, the non-zero values at the ends are 

due to the fact that there is an eccentricity between the actual pressure line and the axis 

along which the bending moment is evaluated. 
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5.3 Potentiality of the method and future developments  

By applying this method, which can also be employed for generic masonry structures, 

such as those made of bricks or small stones, the validity of the minimization procedure 

applied to masonry structures, discretized through rigid blocks, is checked. The solution 

obtained, in terms of internal forces, is qualitatively and quantitatively similar to that 

proposed by Angelillo in  [47], who applies a static approach to an approximated 

continuous model of the staircase.  

As a result, we find a force regime inside the structure which is compressive (that is 

compatible with the unilateral contact conditions on the interfaces) and determines stress 

levels inside the elements, well below the compressive and tensile strengths, showing 

the effectiveness of the discrete analysis, which can also be applied to different masonry 

structures. 

With the present discrete model, a practical confirmation of the complementarity of 

Heyman and Ring-Like stress regime, for the case study of the triple helical stair of San 

Domingos de Bonaval, is obtained and a possible explanation of the reason why such 

bold structure is standing safely is given. 

As said before, the power of the kinematic approach, presented in this work, is that it can 

also be applied to other types of masonry structures, through a discrete element 

modelling, by assuming that the masonry structure is constituted by an assembly of rigid 

blocks, which are in a unilateral contact among each other, and on whose interfaces 

sliding is prevented, according to Heyman’s fundamental assumptions. This method 

could be easily extended to other cases just by defining, in a parametric form, the 

functions that describe the geometry of the structure and its blocks partition. 

 

The work could be further improved by focusing on the following aspects: 

 

• Study of edge effects: we observed a particular behaviour in 

correspondence of the floor, where there is an increment in terms of 

torsional moment, in particular for the first sixteen steps. This is probably 

due to a side effect of the system configuration and can be further explored, 

in order to understand all the possible implications and, consequently, 

refine the model. 

• Study of different constraint configurations: during the model setup, we 

investigated different constraint configurations, and for two of them we 

evaluated all the possible results. Many other configurations can be 

explored, in order to understand better the correct way to model the 

constraints between adjacent blocks; for example, we can model edge-to-

edge and surface-to-surface constraints, or introduce other convenient 

reference systems. 

• Settlements Sensitivity Analysis (and relative calibration): in this work, we 

consider just one main settlement in correspondence of the base of the stair, 

and clearances and tolerances values for all the other nodes. Other types 

and values of settlements are hypothetically possible and can be introduced 

in this model. The work of settlement calibration was done manually, 
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referring to the wide experience of Angelillo. It could be possible and 

interesting to automatize the process of settlement calibration, by 

introducing a new objective function, designed for this specific purpose, 

and consequently improve the Matlab program to accomplish this task. 
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6. Appendix_A                                                                                                                                                               

LINEAR PROGRAMMING 

Prologue. This section introduces the basic concepts of Linear Programming, following 

the approach set out in the lesson indicated in point b of web list and also referring to the 

Mathworks documentation (point a in the web list) for the solution of linear 

programming problem in Matlab. 

 

*    *    * 

 

Linear programming is a mathematical technique for finding optimal solutions to 

problems that can be expressed through linear equalities and inequalities. Although only 

few complex real-world problems can be expressed perfectly in terms of a set of linear 

functions, linear programs can provide reasonably realistic representations of many real-

world problems, especially when a mathematical formulation of the problem is given in 

a creative manner (see point b in web sites list). 
 

The many nonlinear and integer extensions of Linear Programming are collectively 

known as the Mathematical Programming field, which is defined by Dantzig as the 

“branch of mathematics dealing with techniques for maximizing or minimizing an 

objective function subject to linear, nonlinear, and integer constraints on the variables.”  

Hence, Linear Programming represents a special case of Mathematical Programming, 

being “concerned with the maximization or minimization of a linear objective function 
in many variables subject to linear equality and inequality constraints.” [62] 

 

Linear programming can also be defined as “a mathematical method to allocate scarce 
resources to competing activities in an optimal manner when the problem can be 

expressed using a linear objective function and linear inequality constraints” (see point 
b in web sites list). 
 

The essential elements of a linear program are:  
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• a set of variables; 

• a linear objective function, indicating the contribution of each variable to the desired 

outcome; 

• a set of linear constraints, describing the limits on the values of the variables.  

 

The output of a linear program is a set of values, associated to the problem variables, 

which satisfy the objective function and are consistent with all the constraints.  

 

The formulation of a linear program represents the hardest part of the process in which 

a real-world problem is translated into a mathematical model. Once a problem has been 

formulated as a linear program, a computer program can be used to solve the problem. 

When the problem is solved, another delicate part concerns with the interpretation of the 

result. 

A.1 A brief introduction 

Linear Equalities  

When we deal with a linear program, all of the equalities and inequalities must be linear. 

A linear function has the following form:  

 

𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛 = 0 (A.1) 

 

being a the coefficients of the equality, which are fixed values, related to nature of the 

problem, and x the variables of the equality, which can vary into a range of values within 

the limits defined by the constraints.  

Linear equalities and inequalities are often written using summation notation, which 

makes it possible to write an equality in a much more compact form:  

 

𝑎0 + ∑ 𝑎𝑖𝑥𝑖

𝑛

𝑖=1

= 0 
(A.2) 

 

in which the index i starts in this case at 1 and runs to n. There is a term in the sum for 

each value of the index.  

The Decision Variables  

The variables are the quantities that need to be determined in order to solve the problem, 

sometimes they are called decision variables because the problem is to decide what value 

each variable should take. The problem is solved when the best values of the variables 

have been identified.  

Frequently, one of the hardest and/or most crucial steps in formulating a problem as a 

linear program is the definition of the variables of the problem. Sometimes creative 

variable definition can be used to dramatically reduce the size of the problem or make 
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linear an otherwise non-linear problem.  

A variety of symbols, with subscripts and superscripts, can be used to represent the 

variables of an LP. For this general introduction, the variables are represented as 

𝑥1, 𝑥2, … , 𝑥𝑛. 

 

The Objective Function  

The objective of a linear programming problem consists in the maximization or in the 

minimization of some numerical value and the objective function indicates how each 

variable contributes to the value to be optimized in solving the problem. The objective 

function takes the following general form:  

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ 𝑐𝑖

𝑛

𝑖=1

𝑋𝑖 
(A.3) 

 

being ci the objective function coefficient corresponding to the ith variable, and Xi the ith 

decision variable. The coefficients of the objective function indicate the contribution to 

the value of the objective function of one unit of the corresponding variable. (It is 

noteworthy that the way the general objective function above has been written implies 

that there is a coefficient in the objective function corresponding to each variable. Of 

course, some variables may not contribute to the objective function. In this case, it can 

be either assumed that the variable has a null coefficient, or that the variable is not in the 

objective function at all). 

 

The Constraints  

Constraints define the possible values that the variables of a linear programming problem 

may take. They typically represent resource constraints, or the minimum or maximum 

level of some activity or condition. They take the following general form:  

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑎𝑗,𝑖

𝑛

𝑖=1

𝑋𝑖 ≤ 𝑏𝑗      𝑗 = 1,2, … , 𝑚 
(A.4) 

 

being Xi the ith decision variable, aj,i the coefficient on Xi in constraint j and bj the right-

hand-side coefficient on constraint j. 

It can be noted that j is an index that runs from 1 to m, and each value of j corresponds 

to a constraint. Thus, condition (A.4) represents m constraints (equalities, or, more 

precisely, inequalities) with this form. Resource constraints are a common type of 

constraint. In a resource constraint, the coefficient aj,i indicates the amount of resource j 

used for each unit of activity i, as represented by the value of the variable Xi. The right-

hand side of the constraint bj indicates the total amount of resource j available for the 

project.  
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Moreover, while the constraint above is written as a less-than-or-equal constraint, 

greater- than-or-equal constraints can also be used. A greater-than-or-equal constraint 

can always be converted to a less-than-or-equal constraint by multiplying it by -1. 

Similarly, equality constraints can be written as two inequalities, that is a less-than-or-

equal constraint and a greater-than-or-equal constraint.  

A General Linear Programming Problem  

All Linear Programming problems have the following general form:  

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ 𝑐𝑖

𝑛

𝑖=1

𝑋𝑖   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑎𝑗,𝑖

𝑛

𝑖=1

𝑋𝑖 ≤ 𝑏𝑗      𝑗 = 1,2, … , 𝑚 

 

𝑎𝑛𝑑 𝑋𝑖 ≥ 0   𝑖 = 1,2, … , 𝑛 

 

 

 

(A.5) 

 

 

being Xi the ith decision variable, ci the objective function coefficient corresponding to 

the ith variable, aj,i the coefficient on Xi in constraint j and bj the right-hand-side 

coefficient on constraint j. 

A.2 Linear Programming Problem Formulation and graphic solution 

The basic steps of the formulation are expressed as follows:  

 

1. Identify the decision variables;  
2. Formulate the objective function;  

3. Identify and formulate the constraints.  

 

Once a problem is formulated, it can be entered into a computer program to be solved. 

The solution is a set of values for each variable that are consistent with the constraints 

(i.e., feasible) and result in the best possible value of the objective function (i.e., optimal).  

Not all Linear Programming problems have a solution, however. There are two other 

possibilities: a) there may be no feasible solutions (i.e., there are no solutions that are 

consistent with all the constraints); b) the problem may be unbounded (i.e., the optimal 

solution is infinitely large).  

If the first of these problems occurs, one or more of the constraints will have to be 

relaxed. If the second problem occurs, then the problem probably has not been well 

formulated since few, if any, real world problems are truly unbounded.  

 

Three key points that should be learned from the graphical solutions are: 
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1. the constraints should define a polygon in the case of two variables, or a n-

dimensional polyhedron in the case of more than 2 variables, called the feasible 

region;  

2. the objective function defines a set of parallel lines in the case of two variables, or a 

set of n-dimensional hyperplanes in the case of n variables, one for each potential 

value of the objective function; 

3. the solution is the last corner or face of the feasible region that the objective function 

touches as the value of the objective function is improved.   
 

This third point implies two important facts. First, the solution to a Linear Programming 

problem always includes at least one corner. Second, the solution is not always just a 

single point. If more than one corner point is optimal, then the face between those points 

is also optimal. The fact that the solution always includes a corner is used by the solution 

algorithm for solving Linear Programming problems. The algorithm searches from 

corner to corner, always looking for an adjacent corner that is better than the current 

corner. When a corner is found, which has no superior adjacent corners, then that is 

reported as the solution. Some of the adjacent corners may be equally good, however.  

An important concept is whether a constraint is binding. A constraint is said to be binding 

at points where it holds as an equality. For example, in the case of a less-than-or-equal 

constraint representing a resource limitation, the constraint is binding when all of the 

resource is being used.  

The graphical solution method can only be applied to Linear Programming problems 

with two variables. For problems that are larger than this, the solution can be obtained 

through a variety of computer programs.  

A.3 The Fundamental Assumptions of Linear Programming  

A problem can be realistically represented as a linear program if the following 

assumptions hold:  

1. Linearity: the constraints and objective function are linear, this requires that the 

value of the objective function and the response of each resource expressed by the 

constraints is proportional to the level of each activity expressed in the variables; 

linearity also requires that the effects of the value of each variable on the values of 

the objective function and the constraints are additive. In other words, there can be 

no interactions between the effects of different activities.  

 

2. Divisibility: the values of decision variables can be fractions. Sometimes these 

values only make sense if they are integers; then an extension of linear 

programming, called integer programming, is needed. 

 

3. Certainty: the model assumes that the responses to the values of the variables are 

exactly equal to the responses represented by the coefficients. 
 

4. Data: formulating a linear program to solve a problem assumes that data are 
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available to specify the problem. 

A.4 Linear Programming in Matlab 

A Linear Programming problem can be solved through the Matlab built in function 

linprog, which tries to find the minimum of a given problem, specified as follows: 

 

min
𝑥

𝑓𝑇 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 {

𝐴 ∙ 𝑥 ≤ 𝑏
𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

 

 

(A.6) 

 

being f, x, b, beq, lb, and ub vectors, and A and Aeq matrices. Being, indeed, Matlab a 

programming language that operates on matrices, the constraint equalities and 

inequalities are converted into matrix form. 

The function linprog attempts to find an x that minimizes the objective function f, which 

in this work is represented by the potential energy of the loads. 

 

Regarding to the inequalities: 

A is an M-by-N matrix, related to linear inequality constraints, where M is the number of 

inequalities, and N is the number of variables (length of f). We recall that we have 6 

variables for each step (3 rotations and 3 translations for each centroid), so the number 

of variables for the problem is 6n, and in our case the total number of variables is 

6*126=756. The number of variable is important, since it has a direct impact on the 

possible algorithm that we can choose for the analysis. The matrix A can be passed as a 

sparse matrix, and it encodes the M linear inequalities 𝐴 ∙ 𝑥 ≤ 𝑏, where x is the column 

vector of N variables, and b is a column vector with M elements. The vector b is an M-

element vector related to the A matrix and it encodes the M linear inequalities 𝐴 ∙ 𝑥 ≤ 𝑏, 

where x is the column vector of N variables, and A is a matrix of size M-by-N. 

 

Regarding to the equalities: 

Aeq is an Me-by-N matrix, related to linear equality constraints, where Me is the number 

of equalities, and N is the number of variables (length of f). The matrix Aeq encodes 

the Me linear equalities 𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞, where x is the column vector of N variables, 

and beq is a column vector with Me elements. 

The vector beq is an Me-element vector related to the Aeq matrix. The vector beq encodes 

the Me linear equalities 𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞, where x is the column vector of N variables, 

and Aeq is a matrix of size Me-by-N. 

 

Lower bounds and upper bounds are specified as a real vector or real array.  

 

The documentation of linprog function also contains some optimization options, some 

options apply to all algorithms, and others are relevant for particular algorithms (fig. A. 

1)  

https://it.mathworks.com/help/optim/ug/linprog.html#inputarg_f
https://it.mathworks.com/help/optim/ug/linprog.html#inputarg_A
https://it.mathworks.com/help/optim/ug/linprog.html#inputarg_f
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fig. A. 1: Optimization options for linprog function in Matlab (see point a in web sites list) 

A.5 Time and Space complexity of the minimization problem  

In the computer science, the amount of time and space required by an algorithm is 

quantified in a simplified form, providing the order of magnitude, expressed by the big 

O notation, where the argument of the big O is the complexity in two dimensions (time 

and space). The complexity is always given in relation to the input size, and it is useful 

to understand the behaviour of the algorithm when the input size changes. 

For example, if a problem requires constant time to finish, whatever is the input of the 

problem, its time complexity is O(1). An example for this kind of time complexity is the 

random function, which, whatever is the input size, always picks a random element of 

the input and it always requires the same amount of time. 

A slightly more complicated algorithm can require a O(n) complexity, and an example 

can be the count problem, where, in order to provide the count of all the element in the 

input, it must spend a small fixed amount of time on each of them. 

In the case at hand, Matlab allows us to use two main different algorithms with different 

complexity in time: 

• Simplex: which provides the most accurate results, but it finishes with exponential 

times O(n2); 

• Interior-point: which provides a slightly worst approximate function (in some 

cases), but it is polynomial in the input size, then it can be used for very large 
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problems. 

Hence, in the present work, the Simplex problem cannot be used, given the fact that it 

would require, even for relatively small problem with 756 variables, many weeks of 

calculation to complete (if it does not crash before) on a normal computer. For this 

reason, the Interior-point is applied, and the error of approximation is minimized by 

studying the initial value of the variables in the most appropriate way. 
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7. Appendix_B                                                                                                                                                     

PLASTICITY 

Prologue. This section introduces the basic concepts of plasticity, following the 

approach set out both in the course notes of Professor Nunziante (2005) and in his book  

[63]. 

B.1 Elastic-plastic constitutive law  

Anelastic body and internal variables 

Cauchy defines as elastic the body in which the stress in a certain instant is completely 

determined by the current strain field, whilst a body is anelastic when its deformation is 

defined by other parameters, related to the stress history (materials with memory) and 

other internal variables. 

The theory that deals with these materials, in the linear case, is called linear 

viscoelasticity. An alternative way of representing the parameters on which depends the 

behaviour of an anelastic body, is to introduce a number of internal variables 𝝃 =
[𝜉1, 𝜉2, … , 𝜉𝑛]𝑇. Therefore, the strain 𝑬 = [𝜀𝑖𝑗] for these materials is expressed by the 

function: 

 

𝑬 = 𝑬(𝑻, 𝑇, 𝝃) , (B.1) 

or: 

 

𝜺 = 𝜺(𝝈, 𝑇, 𝝃) , (B.2) 

 

𝑻 = [𝜎𝑖𝑗] being the Cauchy stress tensor and where condition (B.1) and condition (B.2) 

represent the tensorial and the vectorial (Voight) formulation of the total strain, 
respectively. The presence of these additional variables requires additional constitutive 

equalities. For anelastic bodies, with infinitesimal deformation, the strain is additively 

decomposed into an elastic and an anelastic part as follows: 
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𝑬 = 𝑬𝑒 + 𝑬𝑎 , (B.3) 

𝜺 = 𝜺𝑒 + 𝜺𝑎 , (B.4) 

 

where the elastic part of deformation is: 

 

𝑬 = 𝑪−1𝑻 , (B.5) 

𝜺 = 𝑪−1𝝈 , (B.6) 

 

while the anelastic components depend on the internal variables. 

The body is said to be in equilibrium, if it does not change spontaneously its state, when 

the external actions remain the same. 

Since in this context the focus is on the plastic behaviour of materials and structures, the 

plastic strain 𝑬𝑝 = 𝑬𝑎, representing the permanent deformation of the material, takes the 

role of an internal variable.  

Therefore, we can express the deformation as follows: 

 

𝑬 = 𝑬𝑒 + 𝑬𝑎 , (B.7) 

𝜺 = 𝜺𝑒 + 𝜺𝑝 . (B.8) 

 

The Plastic Flow  

The plastic behaviour of the material is non-conservative, in the sense that, during an 

increasing load process, part of the external energy is dissipated in other forms of energy, 

related to the development of irreversible deformations (or fractures) that arise within 

the material. On adopting the Voight notation, the strains 𝑬, 𝑬𝑒 , 𝑬𝑝 can be also expressed 

as column vectors of ℝ9 as follows: 

 

𝜺 = [𝜀1, 𝜀2, … , 𝜀9]𝑇 = [𝜀11, 𝜀12, … , 𝜀33]𝑇  , (B.9) 

 

as well as the stresses: 

 

𝝈 = [𝜎1, 𝜎2, … , 𝜎9]𝑇 = [𝜎11, 𝜎12, … , 𝜎33]𝑇  . (B.10) 

 

We can also consider the tensor form for strains: 

 

𝑬 = 𝑬𝑒 + 𝑬𝑝 = [𝜀𝑖𝑗
𝑒 ] + [𝜀𝑖𝑗

𝑝
] , (B.11) 

 

and for stresses: 

𝑻 = [𝜎𝑖𝑗] . (B.12) 
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If the load process is time dependent, conditions (B.7) and (B.8) can be rewritten in the 

following incremental forms: 

 

𝑬̇ = 𝑬̇𝑒 + 𝑬̇𝑝 , (B.13) 

or: 

𝜺̇ = 𝜺̇𝑒 + 𝜺̇𝑝 , (B.14) 

 

Where, by denoting by 𝑡 the time variable: 

 

(−)̇ =
𝑑(−)

𝑑𝑡
 . 

(B.15) 

 

The experimental results show that anelastic strains in many structural materials 

generally arise when a certain limit level for stress 𝝈 and also a certain level for stress 

increase 𝑑𝝈, are reached. In particular, the plastic function f0,  

 

𝑓0(𝝈) = 0 , (B.16) 

 

defines a limit domain in the stress space in ℝ9 (or in the principal stress space in ℝ3, 

for isotropic materials), and describes all the limit stress states 𝝈 (fig. B. 1). 

 

 
fig. B. 1: Limit domain  [63] 

It is usually assumed that the function f0 is almost everywhere (a.e.) differentiable, in the 

sense that it does exist a hyperplane which is tangent to the surface at a.e. point 𝝈 

satisfying condition (B.16). 

From here on we restrict to consider “perfect plasticity” and then we use the notation 

𝑬𝑝, 𝜺𝑝 for the anelastic strain 𝑬𝑎 , 𝜺𝑎. In perfect plasticity, it is assumed that plastic 

deformations arise if the following conditions are met: 
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𝑓0(𝝈) = 0 , 

𝑑𝑓0(𝝈) = (
𝑑𝑓0

𝑑𝜎𝑖
)

𝝈

= ∇𝑓0 ∙ 𝑑𝝈 = 0 . 

(B.17) 

(B.18) 

 

In (B.17) it is expressed the fact that the stress vector 𝝈 belongs to the yield domain, 

while in (B.18) it is required that the stress increase d𝝈 moves on the tangent plane to 

the limit domain at 𝝈, and then it is orthogonal to the normal n. The normal n is 

proportional to the quantity (
𝑑𝑓0

𝑑𝜎𝑖
)

𝝈
, representing the components of the gradient vector 

of 𝑓0. Through (B.18) it is ensured that the stress increase d𝝈 is such that the tension 

(𝝈 + 𝑑𝝈) satisfies condition (B.17), that is: 

 

𝑑𝑓0(𝝈) ≅ 𝑓0(𝝈 + 𝑑𝝈) − 𝑓0(𝝈) = 0 , (B.19) 

 

and consequently: 

𝑓0(𝝈 + 𝑑𝝈) = 0 . (B.20) 

 

The points 𝝈 for which condition (B.17) occurs, belong to the limit domain 𝑓0. The points 

internal to the surface 𝑓0 are such that the following condition holds: 

 

𝑓0(𝝈) < 0 , (B.21) 

 

and correspond to elastic states, while the stress states which are external to the limit 

domain 𝑓0(𝝈) = 0, are not admissible for elastic-perfectly-plastic materials, since they 

cannot be reached, such states are expressed by condition: 

 

𝑓0(𝝈) > 0 . (B.22) 

 

The plastic strain increase 𝑑𝐸𝑖𝑗
𝑝

 can be expressed in the following form: 

 

𝑑𝐸𝑖𝑗
𝑝

= 𝑑𝜆𝜋𝑖𝑗  ,  (B.23) 

 

where 𝝅 = [𝜋𝑖𝑗] is a second order symmetric tensor. The strain increase of the material 

can be characterized in the three following forms: 

 

𝑑𝜆 ≥ 0 ,   𝑓0(𝝈) = 0 ,   𝑑𝑓0(𝝈) = 0 ,   (B.24) 

 

𝑑𝜆 = 0 ,   𝑓0(𝝈) = 0 ,   𝑑𝑓0(𝝈) < 0 ,  (B.25) 

 

𝑑𝜆 = 0 ,   𝑓0(𝝈) < 0 ,  (B.26) 
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namely respectively plastic state, elastic return and elastic state. 

Referring to condition (B.23), the quantities 𝜋𝑖𝑗 determine the shape of the plastic strain 

increase, while the infinitesimal scalar 𝑑𝜆 assigns the entity of the plastic strain increase. 

This assumption is made according to experimental results for a perfectly plastic 

material, for which plastic strains arise (if condition (B.18) is satisfied) when a limit 

stress state is attained along specific planes of plastic flow, depending on the material 

and the stress. 

Moreover, the plastic strain increase does not depend neither on the direction nor on the 

magnitude of the stress increase 𝑑𝝈, which needs to satisfy only condition (B.18).  

Some metallic materials (such as steel) have, indeed, a structure made of polycrystalline 

aggregates. Each crystal is an assembly of atoms, with their own regular structure. These 

crystal aggregates, while presenting a macroscopic isotropic behaviour in elastic 

conditions, show plastic strains resulting from the relative motions, also said plastic slips, 

on special crystal planes, in response to shear stress therein. Such planes are those where 

the strength is minimal, and can thus define the mechanism. 

Based on these experimental evidences, the direction of the strain increase is ruled by a 

function 𝑃(𝑻), called the plastic potential, which generates the quantities 𝜋𝑖𝑗 as a 

function of the stress: 

 

𝜋𝑖𝑗 =
𝜕𝑃(𝑻)

𝜕𝑇𝑖𝑗
 , 

(B.27) 

 

For many materials, it is assumed that the plastic potential function 𝑃(𝑻) coincides with 

the yield function   𝑓0(𝑻): 

 

𝑃(𝑻) =   𝑓0(𝑻) , (B.28) 

 

and this hypothesis enables to define the so called Associated Plastic Potential that holds 

true for standard or associated materials. Hence, the constitutive law, in the case of 

plastic condition, can be rewritten as follows: 

 

𝑑𝑬𝑝 = 𝑑𝜆
𝜕𝑓0

𝜕𝑻
 , 

(B.29) 

 

𝑑𝜀𝑖𝑗
𝑝

= 𝑑𝜆
𝜕𝑓0

𝜕𝜎𝑖𝑗
 . 

(B.30) 

 

Conditions (B.29) and (B.30), also known as Normality Law or Normality rule, states 

that the direction of 𝑑𝑬𝑝 and 𝑑𝜺𝑝 is coincident with that of the normal n to the boundary 

or the yield domain   𝑓0 at the stress point 𝝈. 
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If we overlap the vector space referred to 𝑑𝜺𝑝 with that referred to 𝝈, both relating to 

ℝ9, with coincident bases, we can represent in the same plane the vectors 𝝈, 𝑑𝝈, 𝑑𝜺𝑝  
(fig. B. 2). 

 

 
fig. B. 2: Normality Law  [63] 

The quantity 𝑑𝜺𝑝 is not an exact differential, since if we consider two different 

transformations Γ1, Γ2 in the stress space, whose ends points 𝝈1, 𝝈2 are the same, we have 

in general different values of plastic strain increase ∆𝜺𝑝; hence, the increase 𝑑𝜺𝑝 is not 

differentiable and the increase ∆𝜺𝑝depends on the effective history of the material (fig. 

B. 3). 

 
fig. B. 3: Different stress transformations  [63] 

When the increases are time-dependent, the condition (B.30) can be rewritten as follows: 

𝜀𝑖̇
𝑝

= 𝜆̇ (
𝜕𝑓0(𝝈)

𝜕𝜎𝑖
)

𝝈

 , 
(B.31) 

with: 

𝜆̇ ≥ 0   𝑖𝑓   𝑓0(𝝈) = 0 ,   𝑓̇0(𝝈) = 0 ,   

 

𝜆̇ ≥ 0   𝑖𝑓   𝑓0(𝝈) = 0 ,   𝑓̇0(𝝈) < 0 , (B.32) 

 

𝜆̇ = 0   𝑖𝑓   𝑓0(𝝈) < 0 ,  
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If the plasticization function 𝑓0 is continuous but not differentiable at all points, we can 

assign a finite number m of functions 𝑓01(𝝈), … , 𝑓0𝑚(𝝈), such that the strength domain 

is defined by the m inequalities:  

 

𝑓01(𝝈)  ≤ 0, … , 𝑓0𝑚(𝝈) ≤ 0 , (B.33) 

 

and the yield condition, in this case, can be written as: 

 

𝑠𝑢𝑝𝑓0𝑖(𝝈) = 0, 𝑖 ∈ {1, … , 𝑚} , (B.34) 

 

Each function 𝑓0𝑖(𝝈) = 0 represents a surface, within which the function 𝑓0𝑖 is 

differentiable, while in the edge points the function 𝑓0𝑖 is not differentiable (fig. B. 4). 

 
fig. B. 4: Limit domain defined by m functions  [63] 

When a stress state, said 𝝈1, touches the limit domain in correspondence of the k-th 

plane, being 𝑘 ∈  {1, … , 𝑚}, the following limit condition occurs: 

 

𝑓0𝑘(𝝈1) = 0  ,   𝑓0𝑖(𝝈1) < 0 , ∀ 𝑖 ∈ {1, … , 𝑚} − {𝑘} , (B.35) 

 

In a similar way, when a stress state touches the intersection of l planes, with 1 < l < m, 

the following plastic condition is valid: 

 

𝑓0𝑗(𝝈) = 0   , ∀ 𝑗 ∈ {𝑛1, … , 𝑛𝑙} ⊆ {1, … , 𝑚} , 

𝑓0𝑖(𝝈) < 0  , ∀ 𝑖 ∈ {1, … , 𝑚} − {𝑛1, … , 𝑛𝑙} , 

 

(B.36) 

 

If condition (B.35) occurs together with condition (B.37): 
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𝑓̇0𝑘(𝝈) = 0  ,   𝑘 ∈ {1, … , 𝑚} , (B.37) 

 

plastic strain can arise, expressed as follows: 

 

𝜀𝑖̇
𝑝

= 𝜆̇𝑘 (
𝜕𝑓0𝑘

𝜕𝜎𝑖
)

𝝈

 , 𝜆̇𝑘 ≥ 0 , 
(B.38) 

 

If conditions (B.36) are satisfied together with condition (B.39): 

 

𝑓̇0𝑡(𝝈) = 0  ,   𝑡 ∈ {𝑛1, … , 𝑛𝑙} , (B.39) 

 

an increase of plastic strain can arise, expressed as follows: 

 

𝜀𝑖̇
𝑝

= ∑ 𝜆̇𝑡  
𝜕𝑓0𝑡

𝜕𝜎𝑖

𝑛𝑙

𝑡=𝑛1

, 𝜆̇𝑡 ≥ 0 , 
(B.40) 

 

where the sum is referred only to the l active planes of the plastic domain. More 

generally, we can refer to the following relation: 

 

𝜀𝑖̇
𝑝

= ∑ 𝜆̇𝑘  
𝜕𝑓0𝑘

𝜕𝜎𝑖

𝑚

𝑘=1

 , 
(B.41) 

with: 

𝜆̇𝑘 ≥ 0 𝑤ℎ𝑒𝑟𝑒 𝑓0𝑘(𝝈) = 0 , 𝑓̇0𝑘(𝝈) = 0 ,   

𝜆̇𝑘 = 0 𝑤ℎ𝑒𝑟𝑒 𝑓0𝑘(𝝈) = 0 , 𝑓̇0𝑘(𝝈) < 0 ,   

𝜆̇𝑘 = 0 𝑤ℎ𝑒𝑟𝑒 𝑓0𝑘(𝝈) < 0 ,   

 

(B.42) 

 

where the multiplier 𝜆̇𝑘 is referred to the k-th plane of the plastic domain. The quantities 
𝜕𝑓0𝑡

𝜕𝜎𝑖
 define the gradient vector of the active planes 𝑓0𝑡 in the stress space; thus, condition 

(B.41) expresses the vector of plastic strain increase as a non-negative linear 

combination (𝜆̇𝑡 ≥ 0) of the gradient vectors of the active planes, for this reason the 

vector  𝜺̇𝑝 belongs to the cone of the outward normal referred to the yield surfaces 

corresponding to the active stresses (fig. B. 4). 

In this case, the elastic-plastic constitutive law can be written as follows: 

 

𝜀𝑖̇ = 𝑎𝑖𝑗𝜎̇𝑗 + ∑ 𝜆̇𝑘  
𝜕𝑓0𝑘

𝜕𝜎𝑖

𝑚

𝑘=1

 , 
(B.43) 

with: 
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𝜆̇𝑘 ≥ 0 𝑤ℎ𝑒𝑟𝑒 𝑓0𝑘 = 0  ,   𝑓̇0𝑘 = 0 ,  

𝜆̇𝑘 = 0 𝑤ℎ𝑒𝑟𝑒 𝑓0𝑘 = 0   ,    𝑓̇0𝑘 < 0 ,   

𝜆̇𝑘 = 0 𝑤ℎ𝑒𝑟𝑒 𝑓0𝑘 < 0 .    

 

(B.44) 

 

 

Stable material (Drucker postulate)  

Referring to experimental test under one-dimensional stress regime (fig. B. 5),  

 
fig. B. 5: One-dimensional stress test  [63] 

if we consider the state A, characterized by values (𝜎1, 𝜀1), and we then apply the stress 

rate 𝜎̇1𝑑𝑡 > 0, a strain rate 𝜀1̇𝑑𝑡 > 0 arises, such that the specific power rate is a positive 

quantity:  

 

𝜎̇1𝜀1̇ > 0 , (B.45) 

 

which is depicted by a grey area in fig. B. 5. 

Through this result, we can state that when the material is in the state A, it requires a 

stress increase 𝜎̇1𝑑𝑡 in order to exhibit the strain increase 𝜀1̇𝑑𝑡, such that the specific 

power increase  𝜎̇1𝜀1̇ is a positive quantity. In this case, the material is termed stable. 

If we consider, instead, the state B, characterized by values (𝜎2, 𝜀2), and we then consider 

a strain rate 𝜀2̇𝑑𝑡 > 0, a stress rate 𝜎̇2𝑑𝑡 < 0 arises, such that the specific power rate is 

a positive quantity:  

 

𝜎̇2𝜀2̇ < 0 . (B.46) 

 

In this case, the material is called unstable. 

According to the definitions just given, we obtain the stability postulate by Drucker, 

which gives rise to some implications, referring to the plastic behaviour of materials and 
structures. 
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A material is said to be stable, in a certain state depending on the previous load history 

and under the effect of external loads F, if the generic variation of these loads, applied 

through a loading and unloading cycle (+𝐹̇, −𝐹̇), determines a stress variation cycle 

(+𝝈̇, −𝝈̇) in correspondence of the considered point, such that the consequent specific 

power variation is a non-negative quantity: 

 

∮ 𝝈̇ ∙ 𝜺̇ ≥ 0 . 
(B.47) 

 

Moreover, a stress state 𝝈𝑎 such that the condition 𝑓(𝝈𝑎) ≤ 0 is satisfied, being 𝑓 the 

material yield function, is denoted ad admissible stress state. 

 

If condition (B.43) occurs, referring to a stable material, the following properties 

descend: 

 

1. Considering the elastic-plastic material with an associate plastic potential, and 

referring to a particular limit stress state 𝝈 with the corresponding vector 𝜺̇𝑝, 

according with conditions (B.31) and (B.32), and to a generic admissible stress state 

𝝈𝑎, such that the following condition occurs: 

 

𝑓(𝝈) = 0  ,   𝑓(𝝈𝑎) ≤ 0 , (B.48) 

 

condition (B.47), considering a single plastic strain rate 𝜺̇𝑝, implies that: 

 

(𝝈 − 𝝈𝑎)𝑇 ∙ 𝜺̇𝑝 ≥ 0 . (B.49) 

 

If we consider, indeed, the initial stress state 𝝈𝑎 and the generic load and unload 

cycle Γ, which increases the stress from the value 𝝈𝑎 to the value 𝝈, and then 

decreases the stress from the value 𝝈 to the value 𝝈𝑎 (fig. B. 6): 
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fig. B. 6: Load and unload cycle Γ  [63] 

condition (B.47), referring to the cycle Γ, can be rewritten as follows: 

 

∮ 𝝈̇ ∙ 𝜺̇
Γ

𝑑𝑡 = ∮ 𝝈̇ ∙ 𝜺̇𝑒

Γ

𝑑𝑡 + ∮ 𝝈̇ ∙ 𝜺̇𝑝

Γ

𝑑𝑡 ≥ 0 , 
(B.50) 

 

where the first integral at right-hand, referred to the elastic part of the strain, is zero, 

since the transformation Γ is a closed cycle; the second integral at right-hand, for a 

single rate 𝜺̇𝑝 related to the stress state (𝝈, 𝝈̇𝑑𝑡), reduces to the single term 𝝈̇ ∙ 𝜺̇𝑝 

and thus: 

 

𝝈̇ ∙ 𝜺̇𝑝 ≥ 0 . (B.51) 

 

For 𝝈̇ such that 𝑓(𝝈 + 𝝈̇𝑑𝑡) < 0, we have that 𝜺̇𝑝 = 0 and condition (B.49) is 

trivially valid in equality form. For 𝝈̇ plastically admissible (plastic material), for 

which the condition 𝑓(𝝈 +  𝝈̇𝑑𝑡) = 0 occurs, given a plastic strain rate 𝜺̇𝑝 ≠ 0, the 

following condition holds true by virtue of the normality law: 

 

𝝈̇ ∙ 𝜺̇𝑝 = 0 . (B.52) 

 

If the material has also a hardening behaviour, the following condition holds: 

 

𝝈̇ ∙ 𝜺̇𝑝 > 0 . (B.53) 

 

Hence, the Drucker stability postulate is consistent with the definitions provided for 

both plastic and hardening materials. 
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2. The plastic domain is convex. Condition (B.49) implies that the admissible stress 

domain is convex, that is the stress states 𝝈 such that:  

 

𝑓(𝝈) ≤ 0. (B.54) 

 

From Convex Analysis, we recall the following theorem: 

Theorem. Considering a limited, closed and non-empty set 𝑆 ⊆ ℝ𝑘, if ∀𝐲 ∈ ℝ𝑘 , 𝐲 ∉
𝑆, a single 𝐱̅ ∈ 𝑆 exists, having 𝐱̅ the minimum distance from 𝐲, such that: 

 

(𝐱̅ − 𝐱)𝑻(𝐲 − 𝐱̅) ≥ 0 , ∀𝐱 ∈ 𝑆 , (B.55) 

 

the set S is convex. Condition (B.55), being 𝑆 ⊆ ℝ9, referring to the normality law 

and considering the following relations: 

 

𝑆 = {𝐱 ∈ 𝑆 ⟺ 𝑓(𝐱) ≤ 0} , 

(𝐲 − 𝐱̅) = 𝜺̇𝑝 , 

𝝈 = 𝐱̅  ,   𝝈𝑎 = 𝐱 , 

(𝐱̅ − 𝐱) = (𝝈 − 𝝈𝑎), 

 

 

 

(B.56) 

 

is coincident with condition (B.51) and implies the convexity of the set (B.54) (fig. 

B. 7a). 

 

      
fig. B. 7: Limit domain: a) Convex domain, b) Non-convex domain  [63] 

Moreover, in fig. B. 7b it is shown how the non-convex domain contradicts condition 

(B.49), as shown by a geometric counterexample. If we consider, indeed, that exist 

the vectors 𝝈, 𝝈𝑎 , 𝜺̇𝑝 such that: 

 

(𝝈 − 𝝈𝑎)𝑇 ∙ 𝜺̇𝑝 < 0 , (B.57) 

 

we prove, by contradiction, that condition (B.49) implies the convexity; if this does 

not happen, indeed, there would exist the vectors 𝝈, 𝝈𝑎 , 𝜺̇𝑝, which satisfies 

condition (B.57). 



 

 118 

 

3. For a perfectly plastic material, in correspondence of the critical stress state 𝝈1, such 

that: 

𝑓(𝝈1) = 0 , (B.58) 

 

the corresponding plastic strain rate vector is: 

 

𝜀𝑖̇
1𝑝

= 𝜆̇𝑘

𝜕𝑓0𝑘

𝜕𝜎𝑖
 ,  

(B.59) 

 

Now we consider, starting from the value 𝝈1, the stress rate 𝝈̇′𝑑𝑡, such that the 

following admissible condition is satisfied: 

 

𝑓(𝝈1 + 𝝈̇′𝑑𝑡) ≤ 0 , (B.60) 

 

Thus, the stress (𝝈1 + 𝝈̇′𝑑𝑡) is admissible and, by virtue of the convexity of the limit 

domain, we have that: 

 

𝝈̇′𝜺̇𝑝 ≤ 0 , (B.61) 

 

denoting with  𝝈̇′𝑑𝑡 all the possible admissible stress rates, starting from the stress 

state 𝝈1. 

 

4. Recalling condition (B.49), that we report in the following for convenience: 

 

(𝝈 − 𝝈𝑎)𝑇 ∙ 𝜺̇𝑝 ≥ 0 ,  

 

if we consider the stress state 𝝈, which is internal to the limit domain such that: 

 

𝑓(𝝈) < 0 , 
we have that: 

𝜺̇𝑝 = 0 , 
 

If we suppose, indeed, that the stress state 𝝈 is internal to the limit domain, and we 

consider, by contradiction, that the corresponding plastic strain rate is denoted with 

𝜺̇𝑝, then there will exist a spherical neighbourhood 𝐼(𝝈) that is entirely contained 

into the limit domain (fig. B. 8). 
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fig. B. 8: Spherical neighbourhood  [63] 

Now we consider any 𝝈𝑎 ∈ 𝐼(𝝈). Recalling the stability condition, expressed by 

condition (B.49), we refer to a different admissible stress 𝝈𝑎1 such that: 

 

(𝝈 − 𝝈𝑎1) = −(𝝈 − 𝝈𝑎) (B.62) 

 

Hence the following condition holds: 

 

(𝝈 − 𝝈𝑎1)𝑇𝜺̇ ≥ 0 ⇒ (𝝈 − 𝝈𝑎)𝑇𝜺̇𝑝 ≤ 0 , (B.63) 

 

Conditions (B.49) and (B.63) implies that the following condition holds: 

 

(𝝈 − 𝝈𝑎)𝑇 ∙ 𝜺̇𝑝 = 0 ,  

 

which, due to the fact that the spherical neighbourhood is arbitrarily chosen, implies 

that: 

 

𝜺̇𝑝 = 0 .  

 

5. Referring to condition (B.49), with the stress 𝝈 that reaches the boundary of the limit 

convex domain, which is regular and differentiable, we have an associated plastic 

potential, by virtue of the normality law: 

 

𝜀𝑖̇
𝑝

= 𝜆̇
𝜕𝑓

𝜕𝜎𝑖
   ,    𝜆̇ ≥ 0 , 

(B.64) 

 

Let we consider, now, the hyperplane 𝜋, which is tangent to the limit boundary in 

correspondence of the stress value 𝝈, and which is such as to leave the limit domain 

into the negative half-space  𝜋−, whose complementary part is denoted with 𝜋+.  It 

will exist a neighbourhood 𝐼(𝝈) such that: 

 

∀𝝈𝑎 ∈ 𝐼(𝝈) ∩ 𝐷 , 𝑓(𝝈𝑎) ≤ 0 , (B.65) 
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the vectors (𝝈𝑎 − 𝝈) can be projected into the negative half-space  𝜋−; if, by 

contradiction, the plastic strain rate 𝜺̇𝑝 does not have the same direction of ∇𝑓 (fig. 

B. 9), there would exist the vectors 𝝈𝑎 such that the product (𝝈 − 𝝈𝑎)𝑻 ∙ 𝜺̇𝑝 is a 

negative quantity:  

 

(𝝈 − 𝝈𝑎)𝑻 ∙ 𝜺̇𝑝 < 0 , (B.66) 

 

and then condition (B.49) would be contradicted. 

 
fig. B. 9: Hyperplane π  [63] 

Then, condition (B.64) must hold, and the condition of stability of the material, with 

the convexity of limit domain, implies the validity of the normality law. 

 

6. Considering the stability condition (B.49), here repeated for convenience: 

 

(𝝈 − 𝝈𝑎)𝑇 ∙ 𝜺̇𝑝 ≥ 0 .  

 

If the stress 𝝈 is a non-differentiable value on the limit boundary, the plastic strain 

rate 𝜺̇𝑝 belongs to the outwards normals cone, that is  𝜺̇𝑝 can be expressed as a linear 

combination of these outwards normals, through non-negative scalars (fig. B. 10). 

 
fig. B. 10: 𝜺̇𝑝belonging to the outwards normals cone  [63] 
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By varying the stress 𝝈𝑎 among all the possible vectors of the limit domain, which 

satisfy the following condition:  

 

  𝑓(𝝈𝑎) ≤ 0 ,   

 

the vector (𝝈 − 𝝈𝑎) describes the entire convex cone 𝛼. If we define the generic 

normal, which is external with respect to one of the hyperplanes tangent to the limit 

domain in correspondence of the stress state 𝝈, we have, recalling Farkas Theorem, 

the following condition: 

 

 𝜺̇𝑝 = 𝜆̇𝑖𝐧𝑖   , 𝜆̇𝑖
̇ ≥ 0 , (B.67) 

 

Thus, it is shown that the stability condition implies the existence of the Associated 

Plastic Potential, both in the case of differentiability and non-differentiability points 

on the limit domain. 

 

7. Let we consider the stress 𝝈 on the limit domain, referred to an elastic and perfectly 

plastic material, such that the function 𝑓(𝝈) = 0 is non-differentiable. Then we 

consider two different state of material, referred to two different stress increases, 

with the corresponding total strain increases (fig. B. 11): 

 

(𝝈,   𝑑𝝈1,   𝑑𝜺1), (𝝈,   𝑑𝝈2,   𝑑𝜺2) , 
 

which satisfy the plastic state equalities: 

 

𝑓(𝝈) = 0, 𝑓(𝝈 + 𝑑𝝈1) = 0, 𝑓(𝝈 + 𝑑𝝈2) = 0.   
 

Considering the elastic-plastic constitutive law, the virtual product (𝑑𝝈1 −
𝑑𝝈2)(𝑑𝜺1 − 𝑑𝜺2) satisfies, in general, the following condition:  

 

(𝑑𝝈1 − 𝑑𝝈2)(𝑑𝜺1 − 𝑑𝜺2) ≥ 0, (B.68) 

 

which implies, for the plastic strains, the following condition: 

 

(𝑑𝝈1 − 𝑑𝝈2)(𝑑𝜺1𝑝 − 𝑑𝜺2𝑝) ≥ 0. (B.69) 
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fig. B. 11: Different stress and strain increases  [63] 

8. Given the set of safe stress vectors 𝝈𝑠, such that: 

  

  𝑓(𝝈𝑠) < 0 , (B.70) 

 

the set of vectors 𝝈𝑠 defines the set of admissible stress vectors 𝝈𝑎, such that: 

 

  𝑓(𝝈𝑎) ≤ 0 . (B.71) 

 

The convexity of the set 𝝈𝑎 holds as well as that of the set 𝝈𝑠. 

If we refer to the vector 𝝈, belonging to the boundary of the yielding domain, such 

that: 

 

  𝑓(𝝈) = 0 , (B.72) 

 

It can be shown the existence of a hyperplane D for the stress vector 𝝈, which is 

defined by an outwards normal vector 𝐧 such that: 

 

 𝐧 ∙ (𝝈𝑎 −  𝝈) ≤ 0  , ∀𝝈𝑎 ∶ 𝑓(𝝈𝑎) ≤ 0 , (B.73) 

and: 

𝐧 ∙ (𝝈𝑠 −  𝝈) < 0  , ∀𝝈𝑠 ∶ 𝑓(𝝈𝑠) < 0 , (B.74) 

  

By virtue of the normality law, for 𝜺̇𝑝 corresponding to the stress vector 𝝈, we have: 

 

(𝝈 − 𝝈𝑠)𝑇 ∙ 𝜺̇𝑝 > 0  , ∀𝝈𝑠 ∶ 𝑓(𝝈𝑠) < 0 . (B.75) 

 

9. From the stability condition, here reported for convenience: 
 

(𝝈 − 𝝈𝑎)𝑇 ∙ 𝜺̇𝑝 ≥ 0 ,  
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for a perfectly plastic material, we have that: 

 

𝝈𝑎 ∙ 𝜺̇𝑝 ≤ 𝝈 ∙ 𝜺̇𝑝  , ∀𝝈𝑎  𝑠. 𝑡.  𝑓(𝝈𝑎) ≤ 0 , (B.76) 

 

where 𝜺̇𝑝 corresponds to the stress vector 𝝈. 

B.2 Theorems of Limit Analysis 

We refer to elastic-plastic materials, characterized by an associate plastic potential, 

according to the normality law and the stability postulate by Drucker: such materials are 

briefly defined as normal materials or stable materials.  

When we consider an elastic-plastic material, stresses cannot grow indefinitely, since 

they cannot exceed the yielding limits; for this reason, the body loads b and the tractions 

s cannot be indefinitely amplified. 

 

We now introduce some definitions: 

• We define plastic collapse the phenomenon in which, by increasing the load, the 

structure reaches a limit value for the load system (b, s), called limit load, which 

cannot be further amplified; the strains, however, can grow indefinitely, and 

consequently also the displacements of the whole structure or a part of it. 

• The part of the displacement field, which indefinitely grows in correspondence of 

the collapse, and its consequent strains, define a collapse mechanism. 

• The stress field 𝝈𝑎 is called statically admissible stress field, if it satisfies the 

equilibrium equalities (B.77) and the boundary equalities (B.78): 

 

𝜕𝜎𝑖𝑗
𝑎

𝜕𝑥𝑖
+ 𝑏𝑖 = 0  , 𝑥 ∈ 𝑉 , 

(B.77) 

 

𝜎𝑖𝑗
𝑎𝑛𝑗 = 𝑠𝑖    , 𝑥 ∈ 𝜕𝑉 , (B.78) 

 

as well as the compatibility condition: 

 

𝑓(𝝈𝑎 ) ≤ 0 , (B.79) 

 

being 𝑛 the outwards normal of the volume 𝑉, whose boundary is 𝜕𝑉. 

 

• We call admissible loads the load system (𝐛, 𝐬) which is in equilibrium with the 

admissible stress field 𝝈𝑎 so that the set (𝐛, 𝐬, 𝝈𝑎) is said to be equilibrated. The 

collapse load system (𝐛, 𝐬) and the stress 𝝈 at collapse, represent the admissible 

load-stress system (𝐛, 𝐬, 𝝈) that occurs under the collapse of the structure. 
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• The stress field 𝝈𝑠 is called statically safe stress field or safe stress field, if it satisfies 

the equilibrium equalities (B.77) and the boundary equalities (B.78), and also the 

compatibility condition: 

 

𝑓(𝝈𝑠 ) < 0 , (B.80) 

  

and the load system (𝐛𝒔, 𝐬𝑠) which is in equilibrium with this safe stress field is said 

safe load system.  

 

• We consider the displacement rate field 𝐮̇𝟎, which satisfies the kinematic conditions 

on the constrained boundary of the domain V: 

 

𝐮̇𝟎 = 𝐮̇𝟎  , 𝐱 ∈ 𝜕𝑉𝐷  , (B.81) 

 

The corresponding infinitesimal strains rate field, which satisfies the kinematic 

conditions with 𝐮̇𝟎, are expressed as follows: 

 

ε̇0𝑖𝑗 =
1

2
 (

𝜕𝑢̇0𝑖

𝜕𝑥𝑗
+

𝜕𝑢̇0𝑗

𝜕𝑥𝑖
) , x ∈ 𝜕𝑉 . 

(B.82) 

 

The set (𝐮̇𝟎, 𝜀0̇) is said kinematically admissible strain-displacement field, or briefly 

admissible kinematism.  

 

Static Theorem of Plastic Collapse 

Part I. If a load program is assigned, the existence of a statically safe stress field 𝝈𝑠 , for 

each instant of the load program, is a sufficient condition so that the plastic collapse will 

not occur. 

Part II. The structure cannot bear an external load system if does not exist an admissible 

stress distribution 𝝈𝑎. In such a case, indeed, the equilibrium is not possible unless we 

violate the material yield limit. Hence, the existence of a statically admissible stress field 

𝝈𝑎 is a necessary condition so that the plastic collapse will not occur. 

Considering, indeed, the virtual work relation: 

 

∫ 𝐛̇ ∙ 𝐮̇𝑑𝑉
𝑉

+ ∫ 𝐬̇ ∙ 𝐮̇𝑑𝑆
𝜕𝑉

= ∫ 𝛔̇ ∙ 𝛆̇𝑑𝑉
𝑉

= 0 , 
(B.83) 

 

remembering that the strain can be decomposed in an elastic and a plastic part: 

 

𝛆 = 𝛆𝑒 + 𝛆𝑝 , 
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we obtain: 

∫ 𝛔̇ ∙ (𝛆̇𝑒 + 𝛆̇𝑝)𝑑𝑉
𝑉

= 0 , 
(B.84) 

 

Referring to a perfectly plastic material, the following condition occurs: 

 

𝛔̇ ∙ 𝛆̇𝑝 = 0 , (B.85) 

 

even where 𝛆̇𝑝 ≠ 0. Hence, condition (B.84) can be rewritten as follows: 

 

∫ 𝛔̇ ∙ 𝛆̇𝑒𝑑𝑉
𝑉

= 0 . 
(B.86) 

 

Therefore, we can say that: 

 

∫ 𝛔̇ ∙ 𝛆̇𝑒𝑑𝑉
𝑉

= ∫ 𝛔̇ ∙ (𝐂−1 𝛔̇)𝑑𝑉
𝑉

= ∫ 𝛆̇𝑒 ∙ (𝐂 𝛆̇𝑒)𝑑𝑉
𝑉

= 0 , 
(B.87) 

 

being 𝐂−1 and 𝐂 quadratic forms definite positive. 

Hence, referring to the collapse mechanisms we have that the following conditions hold: 

 

𝛔̇ = 𝟎  , 𝛆̇𝑒 = 𝟎 , 𝛆̇ = 𝛆̇𝑝 , (B.88) 

 

that is the collapse mechanism exhibits only plastic strain rate 𝛆̇𝑝 , corresponding to the 

collapse rate 𝐮̇. 

This theorem allowed the development of methods able to obtain lower bounds of the 

limit load, or to evaluate the safety structures under assigned loads. We can, indeed, 

immediately exclude the collapse for a structure under assigned load set (𝐛, 𝐬), only by 

determining a safe stress fields equilibrated with the external load set. Reference to the 

constitutive law or the elastic solution is not needed. 

Kinematic Theorem of Plastic Collapse 

Let we consider the admissible mechanism (𝐮̇0, 𝛆̇0), the collapse load-stress set (𝐛, 𝐬, 𝝈) 

and the actual collapse mechanism (𝐮̇, 𝛆̇). Now we can write the virtual power equalities: 

 

∫ 𝝈 ∙ 𝛆̇0 𝑑𝑉
𝑉

− ∫ 𝐬 ∙ 𝐮̇0 𝑑𝑆
𝜕𝑉

− ∫ 𝐛 ∙ 𝐮̇0  𝑑𝑉
𝑉

= 0 , 
(B.89) 
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∫ 𝝈 ∙ 𝛆̇ 
𝑉

𝑑𝑉 − ∫ 𝐬 ∙ 𝐮̇ 
𝜕𝑉

𝑑𝑆 − ∫ 𝐛 ∙ 𝐮̇
𝑉

𝑑𝑉 = 0 . 
(B.90) 

 

We know that the elastic strain rate is zero in correspondence of a kinematically 

admissible mechanism: 

𝛆̇0 = 𝛆̇0𝑝. (B.91) 

 

Hence, conditions (B.89) and (B.90) can be rewritten as follows: 

 

∫ 𝝈 ∙ 𝛆̇0𝑝 𝑑𝑉
𝑉

− ∫ 𝐬 ∙ 𝐮̇0 𝑑𝑆
𝜕𝑉

− ∫ 𝐛 ∙ 𝐮̇0  𝑑𝑉
𝑉

= 0 , 
 

(B.92) 

 

 

∫ 𝝈 ∙ 𝛆̇𝑝

𝑉

𝑑𝑉 − ∫ 𝐬 ∙ 𝐮̇
𝜕𝑉

𝑑𝑆 − ∫ 𝐛 ∙ 𝐮̇
𝑉

𝑑𝑉 = 0 . 
 

(B.93) 

 

 

Let we consider, now, a statically admissible stress state 𝝈0, satisfying the normality law 

with respect to the 𝛆̇0𝑝, such that: 

 

𝝈 ∙ 𝛆̇0𝑝 ≤ 𝝈0 ∙ 𝛆̇0𝑝 , (B.94) 

 

By replacing condition (B.94) in conditions (B.92) and (B.93), we have: 

 

∫ 𝝈0 ∙ 𝛆̇0𝑝 𝑑𝑉
𝑉

− ∫ 𝐬 ∙ 𝐮̇0 𝑑𝑆
𝜕𝑉

− ∫ 𝐛 ∙ 𝐮̇0  𝑑𝑉
𝑉

≥ ∫ 𝝈 ∙ 𝛆̇𝑝̇ 𝑑𝑉
𝑉

− ∫ 𝐬 ∙ 𝐮̇ 𝑑𝑆
𝜕𝑉

− ∫ 𝐛 ∙ 𝐮̇  𝑑𝑉
𝑉

 . 

 

(B.95) 

 

Where the first integral at the left-hand represents the power dissipation, or internal 

power, and can be denoted with 𝐷̇: 

 

𝐷̇ = ∫ 𝝈0 ∙ 𝛆̇0𝑝 𝑑𝑉
𝑉

 , 
 

(B.96) 

 

the sum of the second and third integral at the left-hand represents the load power or 

external power, and is indicated with 𝑊̇: 
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𝑊̇ = ∫ 𝐬 ∙ 𝐮̇0 𝑑𝑆
𝜕𝑉

− ∫ 𝐛 ∙ 𝐮̇0  𝑑𝑉
𝑉

 , 
 

(B.97) 

 

The left-hand term in (B.95) represents, hence, the total power dissipation and it is 

defined in the class of kinematically admissible mechanism. 

Consequently, condition (B.95) can be shortly rewritten as: 

 

𝐷̇ − 𝑊̇ ≥ 0 , (B.98) 

 

and represents the kinematic theorem of plastic collapse, which states that the functional 

power dissipation exhibits its minimum value in correspondence of the actual collapse 

mechanism. In particular, in correspondence of the actual collapse mechanism, the 

following condition occurs: 

 

𝐷̇ = 𝑊̇ (B.99) 

 

This condition is usually imposed in order to determine the optimal collapse load with 

reference to a class of kinematically admissible mechanisms. 

Through the functionals 𝐷̇ and 𝑊̇, we can report the following statements: 

 

• The existence of a kinematical admissible mechanism, for which the following 

condition occurs: 

𝐷̇ < 𝑊̇ , (B.100) 

 

represents a sufficient condition so that the plastic collapse will not occur. 

 

• When the following condition, with reference to each kinematically admissible 

mechanism, occurs: 

 

𝑊 ≤̇ 𝐷̇ , (B.101) 

 

it represents a necessary condition so that the structure is able to sustain the loads, 

and the plastic collapse will not occur. 

 

• When the following condition, with reference to each kinematically admissible 

mechanism, occurs: 

 

𝑊 <̇ 𝐷̇ , (B.102) 

 

it represents a sufficient condition so that the structure is able to sustain the loads. 
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